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Abstract

This thesis describes a nonlinear contrast enhancement technique to implement night vision in digital

video. It is based on the global histogram equalization algorithm. First, the effectiveness of global

histogram equalization is examined for images taken in low illumination environments in terms of

Peak signal to noise ratio (PSNR) and visual inspection of images. Our analysis establishes the

existence of an optimum intensity for which histogram equalization yields the best results in terms

of output image quality in the context of night vision. Based on this observation, an incremental

approach to histogram equalization is developed which gives better results than the conventional

approach in terms of PSNR. This algorithm is also applied to implementing video surveillance in

poorly illuminated environments to achieve real time night vision. This involves the application of

histogram equalization to digital video frames with data transmission and buffering over a computer

network.
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Chapter 1

Introduction

1.1 Motivation

The goal of any night vision technology is to enable a person to see in the dark. In the past, night

vision was implemented by making use of the infrared spectrum of electromagnetic waves and devices

such as image intensifiers. With the growing popularity of digital computing, many digital image

processing techniques have been proposed([1], [2], [3]) to implement night vision. These techniques

can enhance the images captured by ordinary cameras under low light conditions and can be imple-

mented completely in software. They do not require the use of infrared light and special devices.

One of the popular and efficient algorithms for adjusting the contrast of an image is a nonlinear

contrast enhancement technique called histogram equalization. With respect to night vision, many

algorithms based on this technique have been proposed and successfully implemented([4], [5], [6]).

In this thesis an improved histogram equalization approach with respect to night vision is presented.

This algorithm is applied to video surveillance which involves the capturing of image frames from

a camera, video transmission, recording and buffering over a computer network and application of

histogram equalization to these frames in real time. Due to these requirements, the efficiency of

the technique used is of critical importance. As it is intended to be part of an intelligent video

surveillance system, the quality of the images produced is also extremely important. The end result

must be suitable for the application of object detection and pattern recognition algorithms which

would otherwise not have been possible for images captured in the dark.

1.2 Objective

In most histogram equalization algorithms the cumulative distribution function of the image his-

togram is normalized such that the maximum intensity value of the equalized image is 255 (the

maximum possible intensity value for the commonly used 8-bit encoded grayscale image). This the-

sis proposes to show that this approach does not always yield the optimum result for night vision. By

gradually increasing the maximum intensity level from the maximum intensity of the original image
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to 255, the existence of an optimal intensity is shown to give better results in terms of subjective

quality of the equalized image and also the Peak Signal to Noise Ratio (PSNR) when compared to

the image taken under ”well-illuminated” conditions. The application of this technique is evaluated

on several images taken under low light conditions and the results in terms of PSNR are compared

to support our claim. Based on this observation, a modified approach to implementing histogram

equalization is developed which yields better results.
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Chapter 2

Background

Vision is the most advanced of human senses and images plays a crucial role in our perception.

However, human vision is only limited to a small portion of the electromagnetic spectrum which is

called visible light. Due to some morphological and anatomical limitations of the human eye, it is not

possible for us to see clearly in the dark or under low light conditions. In contrast, many nocturnal

and deep sea animals have far better night vision than humans, due to differences in the biological

structure of their eyes. Night vision refers to the ability to see under low light conditions. Night

vision is made possible either through biological or technological means. With the invention of night

vision technology it has become possible for humans to see in the dark. Although this technology

was originally developed for military use, it also has applications in surveillance, security, wildlife

observation and navigation. In the area of intelligent video surveillance, night vision can be used as a

tool that can reveal objects even under low light conditions which enables us to detect hidden objects.

There are many approaches to implementing night vision. In this chapter some basic concepts

behind night vision and how it has been implemented traditionally are discussed. Also, some of

the fundamentals of digital images and digital image processing techniques which can be applied to

enhance images for the purpose of night vision are introduced.

2.1 Light Wave

To understand night vision, a basic understanding of light and the electromagnetic spectrum is

needed. As charged particles having wave-like behavior travel through space they absorb and emit

energy in the form of electromagnetic radiation known as light. In 1666, Sir Isaac Newton discovered

that when a beam of sunlight is passed through a glass prism, the emerging beam of light is not

white but consists instead of a continuous spectrum of colors ranging from violet at one end to red at

the other[7]. The range of colors in visible light represents only a tiny portion of the electromagnetic

spectrum. Toward the lower end of the spectrum are radio waves which have wavelengths billions

3



of times longer than those of visible light. Toward the higher end are gamma rays with wavelengths

millions of times smaller than those of visible light.

The energy of the electromagnetic radiation depends on its wavelength and frequency. Wavelength

is the distance between two consecutive crests or troughs of the wave. Frequency is the number of

waves per second. Shorter wavelengths have higher frequency. Among the colors in visible light,

violet has the highest frequency and red the lowest. Fig. 2.1 shows an example of a sinusoidal wave

highlighting the wavelength.

Figure 2.1: A sinusoidal wave

2.1.1 The Infrared Spectrum

Just next to the visible light spectrum and having a longer wavelength is the infrared spectrum.

Parts of this infrared spectrum can be used for night vision. The infrared spectrum can be split

further into five categories.

1. Near-infrared (NIR). This is closest to visible light and has wavelengths that range from 0.7

to 1.4 micrometers. Image intensifiers are sensitive to this area of the spectrum and this kind

of radiation is useful for night vision devices.

2. Short-wavelength infrared (SWIR). These have wavelengths between 1.4 - 3 micrometers.
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3. Mid-wavelength infrared (MWIR). These have wavelengths between 3 - 8 micrometers.

4. Long-wavelength infrared (LWIR): These have wavelengths between 8 - 15 micrometers.

5. Far infrared (FIR). These have wavelengths between 15 - 1000 micrometers.

NIR and SWIR are referred to as reflected infrared while MWIR and LWIR are referred to as thermal

infrared. The main difference between the thermal infrared and the reflected infrared is that the

thermal infrared is emitted by the object instead of being reflected off it. This makes it possible

for sensors to capture the scene based on thermal emissions without any external light or thermal

source such as an infrared illuminator.

2.2 Overview of Night Vision Technologies

Night vision has traditionally been made possible by a combination of two approaches - sufficient

spectral range and sufficient intensity range. Spectral range techniques can sense radiation that is

invisible to a human observer. It is known that human vision can only perceive a small portion

of the electromagnetic spectrum called visible light. Enhanced spectral range allows the viewer to

make use of non-visible sources of electromagnetic radiation such as infrared or ultraviolet radiation.

Some animals can see better than humans at night using portions of the infrared and/or ultraviolet

spectrum. Intensity Range techniques usually make use of an image intensifier technology with

low-noise and high sensitivity devices. Based on these approaches, night vision technology can be

broadly divided into three main categories.

• Image intensification. Image intensification technologies work on the principle of intensifying

the amount of photons received from the available sources of light like starlight or moonlight.

• Active illumination. Active illumination technologies work on the principle of combining imag-

ing intensification technology with an active source of illumination in the near infrared (NIR)

or shortwave infrared (SWIR) region of the electromagnetic spectrum.

• Thermal imaging. Thermal imaging technologies work on the principle of detecting the temper-

ature difference between the background and the foreground objects. It captures the portion

of the infrared light spectrum which is emitted as heat by objects. Hotter objects emit more

of this radiation than cooler objects.

2.2.1 Image Intensification

This method of night vision has been heavily researched by Russia and the United States particu-

larly for military purposes. Image intensification works by magnifying the available light to achieve
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better vision. Based on the type of image intensifier tube used, this technology is usually classified

into generations 1, 2 and 3. Fig. 2.2 shows the structure of a Gen-1 image intensifier. In a Gen-1

device, an objective lens focuses whatever available light (photons) there is on the photocathode of

an image intensifier tube. The light energy causes electrons to be released from the cathode which

are accelerated by an electric field to increase their speed (energy level). The electrons are then made

to strike a phosphor screen. The energy of the electrons makes the phosphor glow. This process

is repeated multiple times to drastically increase the intensification of the image. The visual light

shows the desired view to the user or to an attached photographic camera or video device. Strictly

speaking, the light itself is not amplified. However, the image is said to become intensified because

the output visible light is many times brighter than the incoming light. A Gen-2 tube follows the

same general principle as that of the Gen-1 tube, but it differs from Gen-1 tube by employing a

special electron amplifier - the micro channel plate (MCP) instead of the multi-stage magnification.

The electrons enter holes in this microchannel plate and bounce off the internal specially-coated

walls which generate more electrons as the electrons bounce through. This creates a denser cloud

of electrons representing an extremely intensified version of the original image. A Gen-3 tube dif-

fers from a Gen-2 by the use of a photo cathode based on Gallium Arsenate which has greater

sensitivity[8]. Fig. 2.3 shows the structure of a Gen-2 image intensifier. A green phosphor is used

in these applications because the human eye can differentiate more shades of green than any other

color, allowing for greater differentiation of objects in the picture. A drawback of this technique is

that it is not useful when there is absolutely no light because it works on the principle of intensify-

ing the available light. This technology is used in Night Vision Devices (NVDs) and Night Vision

Goggles.

Figure 2.2: A Gen-1 multistage image intensifier.
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Figure 2.3: A Gen-2 MCP image intensifier.

2.2.2 Active Illumination

Active infrared night vision combines infrared illumination in the NIR or SWIR range with the use

of CCD cameras that are sensitive to this light. The resulting scene which would have appeared

dark to the naked human eye, then appears as a monochrome image on a display device. Active

infrared night vision is now commonly found in many security applications for both commercial and

government purposes, where it enables effective night time imaging under poor visibility conditions.

A major disadvantage of this kind of technology is that active infrared light can be detected by night

vision goggles. Hence, in certain applications like in tactical military operations there can be a risk

of being detected and giving away position.

Laser range gated imaging is another form of active illumination night vision technology which make

use of a high powered pulsed source of illumination which is also used for imaging. A pulsed laser is

used to illuminate the scene while the reflected light is detected by a camera with a short exposure

time referred to as a gate. The gate is delayed so imaging occurs at a particular range, thus the

image is only from the reflection of objects at that range[9]. Range-gated imaging employs laser

sources in the SWIR band. Traditional active illumination technology may not work well under

conditions such as dust, smoke, or fog due to the backscattered light. The range-gated imaging

system removes these reflections and allows imaging at the desired range only.

2.2.3 Thermal Imaging

Thermal imaging is another technique for night vision. It detects thermal radiation using the thermal

infrared portion of the IR spectrum without the need for additional illumination. It operates on

the concept that all objects emit infrared energy depending upon their temperature. In general,

the hotter an object is, the more radiation it emits. A thermal imager is a device that captures
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the infrared radiation from objects in the scene and creates an electronic image. They do not even

rely on reflected ambient light. Moreover, they are are able to penetrate obscurants such as smoke,

fog and haze. Thermal images are normally black and white in nature, where cold objects appear

black and hot objects appear white. Some thermal cameras show images in color. This approach

provides a great way of better differentiating between objects at different temperatures. They are

widely used in security networks, and for night vision on aircrafts, where they are also referred to

as FLIR (for forward-looking infrared.)

2.3 Digital Image Processing

Digital Image processing is a subfield of digital signal processing. It deals with computer algorithms

to process digital images[7]. Digital Image processing techniques provide us with a different approach

to implementing night vision. Instead of utilizing the infrared light and special camera or devices,

image processing algorithms can be used on images captured by ordinary cameras under low light

conditions. These algorithms can be implemented in hardware or software.

2.3.1 Digital Image

An image typically refers to the light intensity variations across a two-dimensional plane[10]. A

digital image is essentially a two-dimensional array of light-intensity levels, which can be denoted

by f(x, y), where the value or amplitude of f at spatial coordinates (x, y) gives the intensity of the

image at the point. The intensity is a measure of the relative brightness of each point[7]. For a

colored image, this value is usually represented by three numbers pertaining to the decomposition

of the color into the three primary components red(R), green(G) and blue(B). Any color visible to

human eye can be represented in this manner. The intensity of these colors is represented by a

number between 0 and 255. For example, white may be encoded as R = 255, G = 255, B = 255 and

black as R = 0, G = 0, B = 0. In other words, a color image is a two dimensional array of color

values of pixels, each of which is encoded by 3 bytes, representing the three primary colors. This

allows the image to contain a total of 256× 256× 256 = 16.8 million different colors. This technique

is also known as RGB encoding, and is specifically adapted to human vision. For a monochrome

(single color) image each pixel is coded by only 1 byte which represents the intensity value of the

pixel, i.e., the possible 256 shades of gray between black and white. These discrete intensity shades

are usually referred to as the gray levels, with black representing the darkest level and white, the

brightest level. For night vision, grayscale images are used instead of color images because the clarity

of objects in the dark is more important than the color of objects. The range of 0-255 was agreed

upon for two reasons. The first is that the human eye is not sensitive enough to differentiate between

8



more than 256 levels of intensity. Therefore 256 is usually enough quality for human perception.

The second reason for the value of 256 is that it is convenient for computer storage. A byte, which

is the computers memory unit, can be coded up to 256 values.

2.3.2 Digital Image Resolution

Image resolution either refers to the Spatial resolution or the Gray-level resolution. Spatial resolution

is the smallest discernible detail in an image[7]. Assume a chart with vertical lines of width W and

the space between the lines also having width W. A line pair refers to one line plus its adjacent

space. Therefore, the width of a line pair is 2W, and there are 1/2W line pairs per unit distance.

A common definition of resolution is the smallest number of discernible line pairs per unit distance.

Gray-level resolution similarly refers to the smallest discernible change in gray level[7]. Due to

hardware considerations, the number of gray levels is usually an integer power of 2, as mentioned

in the previous section. The most common number is 8 bits which gives 256 gray levels. When a

strict measure of physical resolution relating pixels and the level of detail they resolve in the original

scene are not necessary, it can informally be said that an L-level digital image of size M * N as has

a spatial resolution of M * N pixels and a gray-level resolution of L levels.

2.3.3 Image sensor technology: CCD and CMOS

An image sensor is a device that converts an optical image into an electronic signal. It is the key

device that determines the quality of the camera’s picture[11]. Most of the image sensors used

in digital cameras today are either CCD (charge coupled device) or CMOS (complementary metal

oxide semiconductor). Both types of imagers convert light into electric charge and process it into

electronic signals[12]. In a CCD sensor, every pixel’s charge is transferred through just one or a

very limited number of output nodes to be converted to voltage. It is then buffered, and sent off-

chip in the form of an analog signal. Since all of the pixel can be devoted to light capture, the

uniformity in output is high which leads to better image quality. In a CMOS sensor, each pixel has

its own charge-to-voltage conversion, and additional circuitry for amplification, noise-correction and

digitization. The chip’s output is in the form of digital bits. These additional functionality reduce

the area available for light capture. Since each pixel is doing its own conversion, it is a massively

parallel architecture having high total bandwidth for high speed but the uniformity in output is

lower. Due to these major differences, CMOS sensors are more suited for devices that require speed

and low power consumption, while CCD sensors are more suited when high image quality is required

and/or for low light imaging. Since our work deals with images taken under low light conditions,

CCD cameras are used instead of CMOS for all our test images.
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2.3.4 Light and Image Characteristics

This section describes some light and image characteristics which will be helpful in understanding

the implementation of night vision using digital image processing techniques.

• Radiance: It is the total amount of energy that flows from the light source and is usually

measured in Watts (W)[7].

• Luminance: It gives a measure of the amount of energy an observer perceives from a light

source[7]. For example, light emanating from a source which operates in the far infrared region

of the spectrum could have high radiance, i.e., a lot of energy, but a human observer would

hardly perceive it, i.e., its luminance would be almost zero. Luminance is measured in lumens

(lm). In image processing terms, luminance can be computed as a properly-weighted sum of

linear-light red, green, and blue primary components[13]. In contemporary video cameras, the

coefficients are

Y = 0.2126R + 0.7152G + 0.0722B (2.1)

• Luma: Closely related to luminance, luma is the properly-weighted sum of gamma-compressed

red, green, and blue primary components. In the models used by PAL and NTSC systems the

coefficients are

Y ′ = 0.299R′ + 0.587G′ + 0.114B′ (2.2)

In the model used by HDTV, luma is computed as

Y ′ = 0.2126R′ + 0.7152G′ + 0.0722B′ (2.3)

• Brightness: It is a subjective descriptor of light perception that is practically impossible to

measure[7]. It embodies the notion of intensity or the gray-level of a monochrome image and

can be thought of as the overall lightness or darkness of an image.

• Contrast: It can be described as the difference in brightness between objects or regions[10].

For example, a white horse standing in a snowy field has poor contrast, while a black dog

against the same white background has good contrast.
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2.3.5 Digital Video

If a series of digital images is displayed in rapid succession and at a constant rate it forms a Digital

Video. These individual digital images in the video are often referred to as frames. Since every

frame is an orthogonal bitmap digital image it is made up of a raster of pixels. If it has a width

of W pixels and a height of H pixels, it is said that that the frame size is WxH. The rate at which

these frames are displayed is measured in Frames per Second(fps).

2.4 Image Processing Methods

There are two main methods to process an image depending upon the domain in which the image

is processed, namely the spatial domain or the frequency domain. The spatial domain means the

image plane, and spatial domain techniques work by directly manipulating the pixels in an image.

Frequency domain processing techniques are based on modifying the spatial frequency spectrum

of the image given by the Fourier transform of the image. It is also possible to combine different

methods in both these categories to obtain the desired enhancement.

1. Spatial Domain Methods.

The spatial domain refers to the aggregate of pixels composing an image, and spatial domain

methods are procedures that operate directly on these pixels. Image processing functions in

the spatial domain may be expressed as

g(x, y) = T [f(x, y)] (2.4)

where f(x, y) is the input image data, g(x, y) is the processed image data, and T is an op-

erator on f , defined over some neighborhood of (x, y)[7]. Contrast stretching and histogram

equalization are examples of spatial domain techniques.

2. Frequency Domain Methods.

Frequency domain methods are based on transforming the image to its frequency represen-

tation, performing image processing on the frequency representation and then computing the

inverse transform back to the spatial domain. The foundation of frequency domain techniques

is the convolution theorem. The processed image, g(x, y), is formed by the convolution of an

image f(x, y) and a linear, position-invariant operation h(x, y) as

g(x, y) = h(x, y) ∗ f(x, y) (2.5)
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By the convolution theorem, the following frequency domain relation holds

G(u, v) = H(u, v)F (u, v) (2.6)

where G, H, and F are the Fourier transforms of g, h and f respectively. H(u, v) is called the

transfer function of the process. In a typical image enhancement application, f(x, y) is given

and the goal, after computing F (u, v), is to select a H(u, v) so that the desired image g(x, y)

exhibits some highlighted feature of f(x, y), i.e.

g(x, y) = F−1[H(u, v)F (u, v)] (2.7)

Examples of frequency domain methods include highpass and lowpass filters.

Image processing methods can also be classified into Global and Local methods.

1. Global Methods.

Image processing methods that use a single transformation operation on the image as a whole

are known as global methods. The main advantage of global methods is that they are computa-

tionally efficient and relatively simple to implement. The disadvantage is that global methods

do not make effective use of local information while working on the overall characteristic of

the image which in some scenarios may lead to inferior results. Examples of Global methods

include lowpass and highpass filters and histogram transformations.

2. Local Methods.

A local image processing method is one in which the transformation operation is dependent on

the location and the neighborhood of the pixel looked at. These methods are adaptive to the

local information within the image. Examples of such methods include Adaptive histogram

equalization techniques which are effective in enhancing details in local areas of the image.

However, because each transformation is done locally and independently it can lead to abrupt

changes and boundaries appearing in the image and can lead to artificial appearance of the

original image. Also, local image processing methods are relatively more computationally

expensive.

2.4.1 Linear and Nonlinear operations

Let H be an operator whose input and output are images. H is said to be a linear operator if, for

any two images f and g and any two scalars a and b.
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H(af + bg) = aH(f) + bH(g) (2.8)

In other words, the result of applying a linear operator to the sum of two images (that have been

multiplied by the constants shown) is identical to applying the operator to the images individually,

multiplying the results by the appropriate constants, and then adding those results[7]. An operator

that fails the test of equation.(2.8) is said to be a nonlinear operator. For example, an operator that

computes the absolute value of the difference of two images is a nonlinear operator.

2.4.2 Image Histograms

The histogram of a digital image with gray levels in the range [0, L − 1] is a discrete function

h(rk) = nk, where rk is the kth gray level and nk is the number of pixels in the image having gray

level rk. It is common practice to normalize a histogram by dividing each of its values by the total

number of pixels in the image, denoted by n. Thus, a normalized histogram is given by p(rk) = nk/n

for k = 0, 1, 2, ..., L−1[7]. p(rk) provides an approximate estimation of the probability of occurrence

of gray level rk . The sum of all components of a normalized histogram is equal to 1. Histograms

form the basis for a number of spatial domain processing techniques. Histogram manipulation can

be used effectively for image enhancement and it also forms the basis for our work on night vision.

Histograms are simple and efficient to calculate in both software and hardware implementations

which is why they are used extensively for real-time image processing.

Fig. 2.4 shows an example of a dark image and its corresponding histogram. The histogram plot is

simply the plot corresponding to the gray level values rk along the horizontal axis and the h(rk) = nk

values along the vertical axis. Notice how the values are all lumped together towards the extreme left

end of the horizontal axis. Such a histogram is typical of images taken under low light conditions.

It indicates that almost all pixels in the image have very low intensity values.

2.5 Image Processing Techniques for Night Vision

Most image processing techniques used for night vision are based on adjusting the contrast of

the image to make objects in the scene more easily detectable. These include linear contrast

stretching[7], histogram equalizaton[7], wavelet based contrast enhancement[14], retinex[15] and

gamma correction[2]. There are many variants of the conventional histogram equalization techniques

in use([16], [4], [5]). They can broadly be classified into three categories, namely, Global, Adaptive

13



Figure 2.4: A dark image and its corresponding histogram.

and Block-based. Global histogram equalization refers to the conventional histogram equalization

approach in which the equalization operation is applied to the image as a whole. This is a very

efficient and popular approach which is suitable for most images taken under low light. However,

this approach may not produce effective results if the illumination in the original scene is uneven.

Adaptive histogram equalization first separates the image into small blocks and then applies the

conventional histogram equalization technique on each of these blocks. It is a local image processing

method. However, this technique can still lead to discontinuities between blocks and noise amplifica-

tion. Block based histogram equalization basically uses the same approach as the Adaptive version

but in this case the blocks are overlapping whereas in Adaptive it was non-overlapping. This is done

to solve the problem of block discontinuities. An advantage of global histogram equalization over

the adaptive and block based approaches is that it is very efficient to compute and can be applied

to real-time video without making any major changes in the algorithm.

The theory behind some of the above mentioned techniques is explained in the next few sections.

2.5.1 Contrast Stretching

Contrast stretching is a typically a linear transformation which can be applied to images taken under

poor illumination conditions. The basic idea behind it is to increase the dynamic range of the gray

levels in the image being processed[7]. Contrast stretching is also referred to as normalization. This

operation works as follows. Initially, the upper and lower pixel value limits over which the image

is to be normalized is specified. Usually these limits are the minimum and maximum possible pixel

values of the original image. For example, for an 8-bit graylevel image the lower and upper limits

might be 0 and 255. Let n represent the lower limit and m the upper limit. The normalization

procedure then reads every pixel in the image to find the lowest and highest pixel values currently
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present. Say these are called l and u respectively. Then each pixel P is scaled using the following

function:

Pout = (Pin − l)(
m− n

u− l
) + n (2.9)

Fig. 2.5 shows the result of the application of linear contrast stretching to the image in Fig. 2.4.

Observe that the object in the image is now more easily visible and the corresponding histogram is

slightly stretched.

Figure 2.5: A contrast stretched image and its corresponding histogram.

Contrast stretching does not significantly distort relative graylevel intensities and does not increase

the contrast too dramatically. Due to this the level of contrast increase may not be sufficient for

proper night vision.

2.5.2 Nonlinear Contrast Enhancement

Nonlinear contrast enhancement is a nonlinear operation to adjust the contrast of an image. It

typically involves an operation called histogram equalization. This histogram equalization can be of

different types as mentioned in section. 2.5. The theory behind this technique is explained in the

next section.

2.5.3 Histogram Equalization

Histogram Equalization is an efficient image processing algorithm for contrast adjustment. The

histogram equalization transform works by spreading the histogram of the input image uniformly so

that the intensity levels of the histogram-equalized image span a larger range of the gray scale. An

15



image in which the pixels tend to occupy the full range of possible gray levels in a uniform manner

has an appearance of high contrast. Such an image shows a great deal of gray-level detail and has

high dynamic range. Therefore, histogram equalization has proven to be a very effective tool for

night vision.

The probability, pr of occurrence of gray level rk in an image is approximated by

pr(rk) =
nk

n
, k = 0, 1, 2, ...., L− 1 (2.10)

where, n is the total number of pixels in the image, nk is the number of pixels that have gray level

rk, and L is the total number of possible gray levels in the image (which is 256 for the 8-bit encoded

grayscale image). Then, the histogram equalization transformation can be expressed as

sk = T (rk) =

k∑
j=0

pr(rj) =

k∑
j=0

nj

n
, k = 0, 1, 2, ...., L− 1 (2.11)

where, sk is the level of the output pixel obtained after applying the histogram equalization opera-

tion T on input pixel with level rk. Thus, a processed (output) image is obtained by mapping each

pixel with level rk in the input image into a corresponding pixel with level sk in the output image[7].

Fig. 2.6 shows the result of the application of global histogram equalization to the image in Fig. 2.4.

The original image is on the left and the equalized image is on the right. Notice that the object

can now clearly be seen in the image. However, there is an amplification of noise in the image. It

is a known fact that global histogram equalization can alter the brightness of the image in a way

which may not correspond well with human perception of a good quality image[6]. Fig. 2.7 shows

the comparison of histograms between the two images. Observe how the histogram on the right now

spans the entire range of the grayscale from 0 to 255.

In the next chapter, it is shown that equalizing the image to include graylevels upto the maximum,

i.e., 255 may not always produce optimum results in terms of Peak Signal to Noise ratio. Based on

this observation, our own approach to histogram equalization is developed and explained in detail.
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Figure 2.6: An example of Histogram Equalization

Figure 2.7: Histogram Comparison

2.6 Network programming fundamentals

Our work on image processing for night vision is applied to a video surveillance system. Therefore,

it is necessary to understand the basics of network programming which enables us to transmit

individual image frames data which are captured at one location to one or more viewers at different

remote locations.

2.6.1 The Client Server Network Model

One of the most commonly used models used in computer networking is the Client Server Model. In

this model the server is usually a centrally housed powerful machine which does the bulk of all the

processing tasks and/or database storage and is maintained by a system administrator. The clients
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are usually less powerful machines which access data or request some services from the server. The

clients and servers are connected together by a network. For example, this network maybe a wired

Local Area Network (LAN) of a company in a single building or it can involve a vast number of

machines and routers with both wireless and wired communication as in the case of the Internet.

The client-server model typically involves two processes, one on the client machine and one on the

server machine as shown in Fig. 2.8. Communication takes place by the client process sending a

message over the network to the server process. The client process then waits for a reply message.

When the server process gets the request, it performs the requested work or looks up the requested

data and sends back a reply.

Figure 2.8: Requests and Replies in a Client Server Model

2.6.2 Protocol Hierarchies

In order to minimize the complexity of their design, networks are organized as a stack of layers or

levels where each level is built upon the one below it. The number of layers, their names, contents

and function vary from network to network. Each layer offers certain services to the higher layers

but hides from them the details of how these services are actually implemented. This is a funda-

mental idea to manage complexity used in computer science in which a particular piece of software

or hardware provides a service to its users but keeps the details of its internal state and algorithms

hidden from them. The advantage of this approach is that the developer can change the implemen-

tation while keeping the interface visible to the outside world consistent. Virtually, layer n on one

machine communicates with layer n on another machine. The rules used in this communication are

collectively known as the layer n protocol. Basically, a protocol is an agreement between the layers

on how communication is to proceed[17]. No data is actually transferred directly from layer n on

one machine to layer n on another machine. Instead, each layer passes data and control information
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to the layer immediately below it and this process continues until the lowest layer is reached. After

the lowest layer is reached this information is passed to the physical medium through which actual

communication occurs.

A set of layers and protocols is called a network architecture[17]. The specification of an architecture

must be detailed enough so that an implementer can write the software or build the hardware for

each layer which obeys the appropriate protocol correctly. The architecture does not include the

details of the implementation or the specification of the interfaces to be used. These are present

within the machines and not visible to the outside. It is also not necessary that the interfaces on

all machines in a network be the same. It is sufficient that each machine can correctly use all the

protocols no matter how they are implemented. A list of layered protocols used by a certain system

is called a protocol stack[17].

Two important network architectures are the OSI reference model and the TCP/IP reference model.

Fig. 2.9 shows the layers used in these models. Although the protocols associated with the OSI

model are rarely used any more, the model itself acts as a valid and general model for designing

other network architectures. The TCP/IP model in itself is not of much use but the protocols asso-

ciated with TCP/IP are widely used.

Figure 2.9: The OSI and TCP/IP Reference Models

Each layer of these network models will not be discussed in detail as network programming mainly
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deals with the protocols in the Transport Layer. A brief summary of the layers is given below. For

details please refer to [17].

1. Physical Layer: The physical layer is concerned with transmitting raw bits over a communica-

tion channel. This includes dealing with the mechanical, electrical, and timing interfaces and

the physical transmission medium.

2. Data Link Layer: The data link layer is concerned with flow regulation and error handling. It

usually accomplishes this task by making the sender break up the input data into data frames

which may be from a few hundred to few thousand bytes and transmit the frames in sequential

order.

3. Network Layer: The network layer is mainly concerned with the routing of data packets from

source to destination.

4. Transport Layer: The basic function of the transport layer is break the data accepted from

the upper layers into smaller units, pass them to the network layer, and ensure that the units

arrive correctly and in order at the other end. It must ensure efficiency and must be able to

isolate the upper layers in such a way that they are not affected by the changes in hardware

technology. The protocols of the transport layer will be discussed in the next subsection (2.6.3)

as it forms the basis for networking programming.

5. Application Layer: The application layer contains a variety of protocols that are commonly

needed by users. These include the widely used HTTP, FTP and SMTP protocols.

2.6.3 Transport Layer Protocols - TCP and UDP

A connection-oriented service is one in which the service user first establishes a connection, uses

the connection, and then releases the connection. The service guarantees that the receiver gets the

data in the order in which they were sent. In contrast, a connectionless service is one in which each

message carries the full destination address, and each one is routed through the system independent

of all the others. Hence, the service itself does not guarantee that the message will arrive in the

same order in which it was sent.

A reliable service is one that ensures that messages are not lost. It is usually implemented by having

the receiver acknowledge the receipt of each message so the sender knows that it arrived correctly.

The acknowledgement process introduces overhead and delays, which are strictly required for some
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applications but are sometimes undesirable for other applications. On the other hand, an unreliable

service is one in which the receiver does not acknowledge the receipt of messages and hence it does

not guarantee that each message sent is received.

Two of the most widely used transport layer protocols are TCP and UDP. They differ from each

other in terms of quality of service.

TCP (Transmission Control Protocol), is a reliable connection-oriented protocol that delivers a byte

stream from one machine to another machine in the internet without error. It breaks the incoming

byte stream into discrete messages and sends each one on to the internet layer. At the destination,

the receiving TCP process reconstructs the received messages and creates the output stream. TCP

also performs flow control to make sure a fast sender cannot swamp a slow receiver by sending more

messages than it can handle.

UDP (User Datagram Protocol), is an unreliable connectionless protocol for applications that do

not require the services provided by TCP like sequencing or flow control and/or wish to provide

their own implementation of such services. It is also well suited for one-shot, client-server based

request-reply queries and for applications in which prompt delivery is more critical than accurate

delivery, such as transmitting speech or video. Since our work deals with the transmission of video

frames, the protocol of choice is UDP.

2.6.4 Socket Primitives

Communication across a network works by processes on different computers communicating with

each other. A network socket is an endpoint of such a communication. Currently, most communica-

tion between computers are Internet Protocol based. Therefore, most network sockets are Internet

sockets. Usually, the operating system provides an application programming interface (API) that

allows application programs to use network sockets. Such an API is called a socket API. Internet

socket APIs are usually based on the Berkeley sockets standard. The combination of an IP address

and a port number forms a socket address. Based on this address, internet sockets deliver incoming

data packets to the proper application process or thread. The Internet Assigned Numbers Authority

(Iana) defines port numbers for common services[18]. Services not on the Iana list can have port

numbers in the range 1,024 to 65,535. IP version 4 addresses use 32 bits to represent a network

address. For class C addresses using a subnet mask of 255.255.255.0, these bits are separated into

four octets. These four octets when expressed in decimal form the commonly used dotted-quad no-
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tation, such as 192.168.102.3. The first two octets (192.168 in this example) represents the network

number, the third octet (102) defines the subnet, and the final octet (3) denotes the host identifier[19].

As mentioned earlier in subsection (2.6.3), the UDP protocol is used for network programming in

our work. The typical socket primitives associated with UDP are

• SOCKET: It is used to create a new end point and allocate table space for it specifying the

addressing format to be used, the type of service desired and the protocol.

• BIND: It is used to assign a network address to the socket.

• SEND: It is used for sending some data across the network.

• RECEIVE: It is used for receiving some data from the network.

These primitives are used to send and receive UDP datagrams to and from the network.

2.6.5 Buffering and Flow Control

In network data transmission there is always a possibility that a fast sender can swamp a slow receiver

with more data than it can handle. For video frames this could mean frames getting garbled at the

receiver’s end. Conversely, in the case of a slow sender and fast receiver it can lead to extremely

low frame rates at the receiver. Since UDP offers a connectionless service, it does not ensure by

itself that the data sent from the server will arrive at the client in the same order. It also does not

provide any flow control. Hence, it is upto the programmer to implement the flow control of the

data via buffering. The video frames data need to be buffered at both the sender and receiver’s end

to ensure proper flow control. Our implementation to solve this issue is explained in detail in the

next chapter.
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Chapter 3

Implementation and Results

This chapter describes the implementation details of the histogram equalization algorithm for night

vision and compares the results of the incremental approach of histogram equalization to the con-

ventional one. It also describes the network programming architecture used for video transmission.

All test images used for the analysis were taken using a Logitech 2 Megapixels CCD camera with

a Carl Zeiss Tessar design lens of focal length 3.7mm and maximum aperture of f/2.0 where f is a

reference to the f-number or focal ratio of the optical system. For details on optical systems refer to

[20]. The software was implemented in C# using Microsoft Visual Studio 2008.

3.1 Histogram Equalization implementation

Our implementation of night vision is based on an image processing algorithm known as global

histogram equalization. The theory behind histogram equalization was given in section (2.5.3).

Algorithm. 3.1 gives an outline of the algorithm. The algorithm first converts the RGB input image

to a grayscale image. It then finds the minimum and maximum intensity levels in the grayscale

image and computes the histogram of the image. Then, for each intensity level ranging from the

minimum intensity in the grayscale image to the maximum intensity, the cumulative frequency and

cumulative probability are computed. The new intensity for each of these intensity levels is calculated

by multiplying the cumulative probability at that level with the maximum possible intensity of 255.

Later, it is shown that this approach, i.e., equalizing the image histogram to span the entire grayscale

range [0-255] does not lead to the best results in terms of output image quality for night vision and

an analysis is performed to find the optimum intensity which will lead to better output image quality.

Fig. 3.1 shows the result of histogram equalization. A simple visual inspection of the original image

(on the left) taken under low illumination and the equalized image (on the right) clearly shows that

the face can be seen quite distinctly in the equalized image but not in the original image. However,

the amplification of striped noise is observed in the equalized image. Fig. 3.2 shows the comparison
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Algorithm 3.1 Algorithm for Histogram Equalization

frequency[]← 0
cumFrequency[]← 0
cumProbability[]← 0
newIntensity[]← 0
Intensitymin ← 255
Intensitymax ← 0

. For each pixel in input image, convert RGB to grayscale.

. Calculate Minimum and Maximum Grayscale intensity and find histogram of image.
for x = MINX →MAXX do

for y = MINY →MAXY do
c← Imageinp.GetP ixel(x, y)
Y ← (c.Red ∗ 0.3) + (c.Green ∗ 0.59) + (c.Blue ∗ 0.11)
frequency[Y ]← frequency[Y ] + 1
if Y ≤ Intensitymin then

Intensitymin ← Y
end if
if Y ≥ Intensitymax then

Intensitymax ← Y
end if

end for
end for

. Calculate cumulative frequency and probability.

. Calculate equalized intensity using the cumulative probabilty.
for i = Intensitymin → Intensitymax do

cumFrequency[i]← cumFrequency[i− 1] + frequency[i]
cumProbability[i]← cumFrequency[i]/TOTALPIXELS
newIntensity[i]← cumProbability[i] ∗ 255

end for

. Create the output histogram equalized image using the new intensity.
for x = MINX →MAXX do

for y = MINY →MAXY do
c← Imageinp.GetP ixel(x, y)
Y ← (c.Red ∗ 0.3) + (c.Green ∗ 0.59) + (c.Blue ∗ 0.11)
Imageout.SetP ixel(x, y, newIntensity[Y ])

end for
end for
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of histograms of the two images. It can be seen that in the original image all the graylevels of the

image occupy a very small range to the extreme left of the grayscale which is why the image is very

dark while in the equalized image the range of graylevels has increased to span the entire range

[0-255] which leads to enhancement in the contrast of the image.

Figure 3.1: Global Histogram Equalization under low illumination

Figure 3.2: Histogram comparison

3.2 Peak Signal to Noise Ratio

In the following sections an assessment of the results of histogram equalization at different equal-

ization intensity values is made. This thesis claims that there exists an optimum intensity which

gives the best results in terms of output image quality. It is not sufficient to perform this analysis

simply on the basis of visual inspection since it is a subjective measure and may vary from person

to person. Therefore, in order to make an objective evaluation of the output image, the metric Peak
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Signal to Noise ratio (PSNR) is used.

Peak Signal to Noise Ratio or PSNR is the ratio between the maximum possible power of a signal

and the power of corrupting noise that affects the quality of its representation. Because many sig-

nals have a very wide dynamic range, (ratio between the largest and smallest possible values of a

changeable quantity) the PSNR is usually expressed in terms of the logarithmic decibel scale[21].

In relation to image processing, the PSNR can be used to systematically compare algorithms by

running them on the same set of test images to identify which produces better results. The mathe-

matical representation of the PSNR is as follows

PSNR = 20 log (
MAXf√
MSE

) (3.1)

where MAXf is the maximum possible signal value, which is 255 for an 8 bit monochrome image,

and MSE is the mean squared error given by

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[f(i, j)− g(i, j)]2 (3.2)

where f represents the matrix data of the original or ”known to be good” image, g represents the

matrix data of the degraded image in question (in our case, this is the histogram equalized image),

m represents the numbers of rows of pixels of the images and i represents the index of that row, n

represents the number of columns of pixels of the image and j represents the index of that column.

3.3 Optimum Intensity for Histogram Equalization

The gray level intensity range for an image taken under low light conditions is typically very small

and usually ranges from 0 to 40 or 0 to 60. The basic idea behind histogram equalization is to

expand this range. In order to obtain an equalized image of highest possible quality, a test is

devised that performs the histogram equalization at each intensity starting from the maximum gray

level intensity of the original image upto the maximum possible gray level intensity of 255. At

each intensity level an output image is obtained. An objective evaluation of the quality of each of

these output images is made using the PSNR metric. In order to do this, for each of our original

images taken under low illumination, a corresponding ”ideal” image, i.e., a corresponding image
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taken under ”well illuminated” conditions is required. Although the definition of ”well illuminated”

can be subjective, care is taken to use an image in which there is no uneven illumination and which

in general matches the human perception of an image taken under ideal light conditions. For the

PSNR calculation, the equalized image at each intensity level is compared to this ideal image which

implies that the obtained PSNR gives a reasonable objective estimate of the quality of the equalized

images. Algorithm. 3.2 is an outline for this histogram equalization test procedure. Basically, it is

the same algorithm as Algorithm. 3.1 applied to each intensity starting from the maximum intensity

of the initial dark image upto the maximum possible intensity of 255. First, the RGB input image is

converted to a grayscale image. Then, the minimum and maximum intensity levels in the grayscale

image are found and the image histogram is computed. Then, for each intensity level ranging from

the minimum intensity in the grayscale image to the maximum intensity, the cumulative frequency

and cumulative probability are computed. For each intensity starting from the maximum intensity

of the original image upto 255, the new intensities for each intensity level in the original image is

calculated and an output image is produced using the new intensities. The PSNR is calculated for

each of these output images.

On running this test for several images taken under low illumination, it can be seen that the PSNR

follows a general pattern. It increases smoothly starting from the maximum intensity of the original

image, eventually reaches a maximum value and then decreases smoothly. The intensity at which

the PSNR is maximum gives us the ideal equalized image. These tests support our claim that there

exists an optimum intensity value at which the histogram equalization gives better results than at

the maximum gray level intensity of 255.

Fig. 3.3(a) shows the image of a book taken under low light conditions and Fig. 3.3(b) its correspond-

ing grayscale image. Fig. 3.3(c) shows the same image taken under ideal light conditions along with

Fig. 3.3(d), its corresponding grayscale image. This is used as a control image for calculating the

PSNR. The graylevel intensities of the original dark image ranges from 0 to 41. The peak graylevel

intensity of the corresponding well illuminated image is 229.
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Algorithm 3.2 Algorithm for Gradual Histogram Equalization

frequency[]← 0
cumFrequency[]← 0
cumProbability[]← 0
Intensitymin ← 255
Intensitymax ← 0

. For each pixel in input image, convert RGB to grayscale.

. Calculate Minimum and Maximum Grayscale intensity and find histogram of image.
for x = MINX →MAXX do

for y = MINY →MAXY do
c← Imageinp.GetP ixel(x, y)
Y ← (c.Red ∗ 0.3) + (c.Green ∗ 0.59) + (c.Blue ∗ 0.11)
frequency[Y ]← frequency[Y ] + 1
if Y ≤ Intensitymin then

Intensitymin ← Y
end if
if Y ≥ Intensitymax then

Intensitymax ← Y
end if

end for
end for

. Calculate cumulative frequency and probability.
for i = Intensitymin → Intensitymax do

cumFrequency[i]← cumFrequency[i− 1] + frequency[i]
cumProbability[i]← cumFrequency[i]/TOTALPIXELS

end for

. Calculate new intensity level for each Equalizing Intensity value
for eqIntensity = (Intensitymax + 1)→ 255 do

newIntensity[]← 0
for i = Intensitymin → Intensitymax do

newIntensity[i]← cumProbability[i] ∗ eqIntensity
end for

. Create the output histogram equalized image using the new intensity.
for x = MINX →MAXX do

for y = MINY →MAXY do
c← Imageinp.GetP ixel(x, y)
Y ← (c.Red ∗ 0.3) + (c.Green ∗ 0.59) + (c.Blue ∗ 0.11)
Imageout.SetP ixel(x, y, newIntensity[Y ])

end for
end for

. Calculate PSNR using this output image and the ideal image taken under good illumination.
end for
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Figure 3.3: Image of book under different conditions:(a)Low light RGB.(b)Low light

Grayscale.(c)Well illuminated RGB.(d)Well illuminated Grayscale.

Fig. 3.4 shows the plot of PSNR values obtained after histogram equalization at different intensities.

This clearly shows that the PSNR follows a smooth curve starting at a value of 9.363 at intensity

42, peaking at a value of 18.152 at an intensity of 177 and then decreasing gradually. Table. 3.1

shows PSNR values at different intensities. Observe that the PSNR at maximum intensity 255 is

only 13.188.

Figure 3.4: PSNR after equalization of book image at different intensities

Fig. 3.5 shows the comparison of the dark image with the equalized image at maximum intensity

of 255. Fig. 3.6 shows this same comparison at the peak PSNR intensity of 177. On comparing

the equalized images of Fig. 3.5 and Fig. 3.6, by visual inspection, it can be seen that in the case
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Intensity PSNR (dB)
42 9.363
72 11.181
102 13.323
152 17.217
170 18.063
171 18.089
172 18.088
173 18.118
174 18.098
175 18.145
176 18.148
177 18.152
178 18.145
179 18.142
180 18.133
181 18.132
182 18.131
183 18.104
202 17.336
232 15.019
255 13.188

Table 3.1: PSNR values for book image at different intensities

of equalization at intensity 255 there is an uneven brightness in the equalized image. It is known

that histogram equalization can lead to uneven brightness and over-enhancement in the produced

image([22], [23]) which is quite clear in this case. However, it can be observed that in the case

of equalization at intensity 177, the output image has smoother brightness variations and is more

comparable to the ideal image of Fig. 3.3(d). Fig. 3.7 and Fig. 3.8 show the histogram comparison

after equalization at intensity 255 and 177 respectively.

As another example, consider Fig. 3.9(a) which shows the image of some books and stationery items

taken under low illumination and Fig. 3.9(b) its corresponding grayscale image. Fig. 3.9(c) shows the

same image taken under well lighted conditions along with Fig. 3.9(d), its corresponding grayscale

image. The graylevel intensities of the original dark image ranges from 0 to 23. The peak graylevel

intensity of the corresponding well illuminated image is 253.

Histogram equalization is again performed at each intensity level starting from the maximum inten-

sity of original image upto 255. Fig. 3.10 shows the plot of PSNR values obtained. Observe that

it follows the same pattern as Fig. 3.4, i.e., it gradually increases, reaches a maximum value and
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Figure 3.5: Histogram Equalization of book image at Intensity Level 255

Figure 3.6: Histogram Equalization of book image at Intensity Level 177

then decreases again. The optimum intensity here is 168. Table. 3.2 shows PSNR values at different

intensities.

Fig. 3.11 and Fig. 3.12 show the comparison of the original dark image of stationery items with the

equalized image at maximum intensity of 255 and optimum intensity of 168 respectively.

3.4 Incremental approach to Histogram Equalization

In the previous section, it was shown that histogram equalization using the maximum possible

intensity of 255 does not yield the best results in terms of PSNR of the output image. This was

done by performing the conventional histogram equalization at different intensities for several test

images taken under poor visibility conditions and comparing the PSNR values. In this section,

an incremental approach to histogram equalization is developed. In this approach too, histogram

equalization is done starting from the maximum intensity in the original dark image and all the

way upto 255. However, for each equalization step, the output image of the previous step acts as
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Figure 3.7: Histogram after Equalization of book image at Intensity Level 255

Figure 3.8: Histogram after Equalization of book image at Intensity Level 177

the input. For example, if the dark image has gray level intensities in the range 0 - 20, first an

equalization is performed using the original image at gray level intensity of 21. The equalized image

obtained is then used as an input image for the next equalization at intensity 22 and so on upto the

maximum possible value of 255. Since histogram equalization is a nonlinear operation, better results

can be expected using this approach than by using the same dark image for each step. Here again,

the PSNR is calculated for each output image obtained at different intensities. The PSNR plot again

follows the same general pattern as seen in the previous section and the optimum intensity level (

the one at which PSNR is maximum ) is obtained somewhere between the maximum intensity level

of the original dark image and 255. A comparison is made of the PSNR obtained by the conventional

approach and the incremental approach and it is found that the incremental approach yields slightly

better results. The outline of the algorithm is given in Algorithm. 3.3. The Histogram Equalization

is now presented as a function which takes as its input parameters, an image and a value by which

to increment the maximum intensity of that image for the equalization. The output image produced

by each histogram equalization step is used as an input for the next step. Refer to Appendix. A for
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Figure 3.9: Image of stationery items under different conditions.(a)Low light RGB.(b)Low light
Grayscale.(c)Well illuminated RGB.(d)Well illuminated Grayscale.

Figure 3.10: PSNR after equalization of stationery image at different intensities

the C# source code for this algorithm.

This algorithm is applied to the stationery items image of Fig. 3.9(b). The PSNR at each step in

the equalization process is computed as done previously. Fig. 3.13 shows the PSNR plot for different

intensities using the incremental approach.

.

On comparing this PSNR plot with that of the previous approach in Fig. 3.10, it can be seen that

the maximum PSNR for the incremental method is 15.735 at intensity 168 which is slightly greater

than 15.710 using the conventional method. Table. 3.3 shows the comparison of PSNR values at

different intensities for the two methods. PSNR1 represents the PSNR values for the incremental

histogram equalization and PSNR2 represents the values for the conventional method. Observe that
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Algorithm 3.3 Algorithm for Incremental Histogram Equalization

THRESHOLD ← 0
Imageeq ← Imageorg
while THRESHOLD < 255 do

Imageeq ← HistogramEqualize(Imageeq, 1)
end while

function HistogramEqualize(Imageinp,incrementV al)
frequency[]← 0
cumFrequency[]← 0
cumProbability[]← 0
Intensitymin ← 255
Intensitymax ← 0

. For each pixel in input image, convert RGB to grayscale.

. Calculate Minimum and Maximum Grayscale intensity and find histogram of image.
for x = MINX →MAXX do

for y = MINY →MAXY do
c← Imageinp.GetP ixel(x, y)
Y ← (c.Red ∗ 0.3) + (c.Green ∗ 0.59) + (c.Blue ∗ 0.11)
frequency[Y ]← frequency[Y ] + 1
if Y ≤ Intensitymin then

Intensitymin ← Y
end if
if Y ≥ Intensitymax then

Intensitymax ← Y
end if

end for
end for

. Calculate cumulative frequency and probability.

. Calculate new intensity level for the Equalizing Intensity value
newIntensity[]← 0
eqIntensity ← Intensitymax + incrementV al
if eqIntensity ≥ 255 then

eqIntensity ← 255
end if
for i = Intensitymin → Intensitymax do

cumFrequency[i]← cumFrequency[i− 1] + frequency[i]
cumProbability[i]← cumFrequency[i]/TOTALPIXELS
newIntensity[i]← cumProbability[i] ∗ eqIntensity

end for
. Create the output histogram equalized image using the new intensity.

for x = MINX →MAXX do
for y = MINY →MAXY do

c← Imageinp.GetP ixel(x, y)
Y ← (c.Red ∗ 0.3) + (c.Green ∗ 0.59) + (c.Blue ∗ 0.11)
Imageout.SetP ixel(x, y, newIntensity[Y ])

end for
end for
THRESHOLD ← Intensitymax

. Calculate PSNR using this output image and the ideal image taken under good illumination.
return Imageout

end function
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Intensity PSNR (dB)
24 8.270
72 10.889
102 12.787
152 15.441
160 15.625
161 15.643
162 15.650
163 15.661
164 15.677
165 15.666
166 15.681
167 15.697
168 15.710
169 15.705
170 15.697
171 15.695
172 15.685
173 15.670
202 14.778
232 13.006
255 11.553

Table 3.2: PSNR values for stationery image at different intensities

the PSNR at intensity 255 is greater for the conventional method than for the incremental one.

However, the maximum PSNR which is at intensity 168 for both cases is greater in the incremental

approach.

.

Fig. 3.14 shows the stationery image after incremental histogram equalization at different maximum

intensities. Observe that as the equalizing intensity increases the image tends to get brighter and

the objects become more visible. However, if the images are observed closely for higher intensities

at above 200 (see last row of images) it can be seen that the change in brightness is too drastic.

According to the calculated PSNR value the central image, i.e., at intensity level 168 gives the image

that is most comparable to the ideal well lighted image of Fig. 3.9(d)

.

Fig. 3.15 shows a similar analysis for the book image of Fig. 3.3(b). In this case the third image in

the second row at intensity 177 gives the highest PSNR. Notice the drastic change in brightness at

intensity 255 (the last image in the third row).
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Figure 3.11: Histogram Equalization of stationery image at Intensity Level 255

Figure 3.12: Histogram Equalization of stationery image at Intensity Level 168

3.5 Video transmission, Buffering and Flow Control

As our work on histogram equalization for night vision is applied to video surveillance, this section

describes the implementation of video capture, recording and transmission over the network.

The network programming basics including the client-server model and UDP data transmission was

introduced in the previous chapter. In our implementation a client server network model is used in

which the server includes the implementation of video frame capturing, buffering of video frames

in files and database storage, the client includes the implementation of viewing the video and night

vision. The client can also request the server to send past video frames from the database. At the

server end, there is a multithreaded architecture. There are four threads working in parallel, each

dedicated to a specific task as follows :

1. Buffering : This thread is dedicated to capturing video frames from the camera, buffering the

video frames in files and recording the frames in a database for future use. It captures each

frame in a byte array and buffers k of these byte arrays in each video data file. It also saves
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Figure 3.13: PSNR after incremental histogram equalization of stationery image at different inten-
sities

Intensity PSNR1 PSNR2
24 8.270 8.270
72 10.902 10.889
102 12.807 12.787
152 15.472 15.441
153 15.512 15.482
154 15.528 15.496
155 15.551 15.519
156 15.570 15.538
157 15.603 15.573
158 15.611 15.582
159 15.637 15.608
160 15.657 15.625
161 15.674 15.643
162 15.680 15.650
163 15.690 15.661
164 15.706 15.677
165 15.693 15.666
166 15.708 15.681
167 15.723 15.697
168 15.735 15.710
169 15.729 15.705
170 15.719 15.697
171 15.717 15.695
172 15.706 15.685
173 15.689 15.670
202 14.769 14.778
232 12.977 13.006
255 11.517 11.553

Table 3.3: PSNR values comparison
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Figure 3.14: Stationery images after incremental histogram equalization at different intensities:
(a)24. (b)72. (c)102. (d)152. (e)168. (f)186. (g)202. (h)232. (i)255.

the length of each of these k byte arrays in a corresponding size data file. It follows a circular

buffer implementation in which it buffers n files before overwriting the first file. The number of

byte arrays (frames) to buffer in each file k and the number of files to buffer before overwriting

n can be adjusted based on the speed of the system and network used.

2. Transmitting : This thread is responsible for reading the frames from the frame buffer and

sending it to the client over the network. It always transmits if there is atleast one buffered

file present in the system. This number can also be adjusted according to the speed of the

network used.

3. Listener : This thread is dedicated to listening on a specified port for incoming database data

send requests from the client. On receiving such a request it starts the Transmit from database

thread to fulfill the client’s request.

4. Transmit from database: This thread is responsible for reading the specified frame data out

of the database based on the date and time request sent from the client and sending it to the

client over the network.

Since the objective here is live data transmission, prompt delivery is needed rather than reliable

delivery. Due to this, the UDP protocol is used instead of TCP for all data transmission. UDP and

TCP were introduced in the previous chapter. Since UDP does not provide any flow control of its

own, it has to be ensured that a slow receiver is not swamped by a fast sender and also that the
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Figure 3.15: Book images after incremental histogram equalization at different intensities: (a)42.
(b)72. (c)102. (d)125. (e)152. (f)177. (g)202. (h)232. (i)255.

frames are received in the correct order in which they are sent. This is achieved via proper buffering.

Fig. 3.16 shows the diagram of the working of the circular buffer. The buffering and transmitting

threads work in parallel.

.

The client end also includes a multithreaded architecture where one thread is dedicated for buffering

the frames received from the server into files and another one for reading the frames from the buffer

and displaying the video. Similarly, there are another set of two threads in which one is dedicated

to buffering frames received from the database of the server and another one to display the video

associated with these frames. The buffering threads save each frame in a byte array and buffer k of

these byte arrays in each video data file. They also save the length of each of these k byte arrays in

a corresponding size data file. Again, a circular buffer implementation is used in which n files are

buffered before overwriting the first file. The displaying threads begin reading the frame data out

of the buffered files when there are atleast m files present in the buffer. Refer to Appendix. B for

the C# source code for circular buffer implementation at the client’s end.
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Figure 3.16: Circular File Buffer implementation at Server End



Chapter 4

Conclusion

In this thesis, it was shown that the conventional histogram equalization algorithm in which the im-

age histogram is equalized to span the entire gray level range [0-255] does not yield the best output

image quality for night vision in terms of Peak Signal to Noise Ratio and subjective evaluation of

the images. This was established experimentally on a number of images taken in low illumination

environments. The PSNR for each of these images after histogram equalization over the graylevel in-

tensity values ranging from the maximum intensity level of the original dark image to the maximum

possible value of 255 was calculated. The calculated PSNR supported our claim that the equalizing

intensity of 255 does not give the best results. The existence of an optimum intensity at which

the PSNR is maximum was also established. Based on this analysis, a new incremental histogram

equalization approach was developed in which the image histogram was equalized at each intensity

level starting from the maximum intensity found in the original image upto 255, but in which, for

each step the histogram equalized output image of the previous step was used as input. It was found

experimentally that this new incremental approach yields higher maximum PSNR values than the

conventional histogram equalization. This algorithm was further used to achieve real time night

vision in digital video and was successfully applied in implementing a video surveillance system in

which video frames were captured and stored on a server and transmitted over a computer network

to a client computer in which it could be viewed. This system achieved good output image quality

even for dark video frames enabling a viewer at the client’s end to see under poor visibility conditions.

Further work can be done in enhancing the quality of the output images produced. For example, in

each of the images, the presence of striped noise of similar pattern was observed, which could be due

to the low illumination conditions in which the images were taken. Digital filtering techniques can

be applied to identify and remove such noises to further enhance the quality of the output images.
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Appendix A

Histogram Equalization in C#

A.1 Histogram Equalization operation

private Image equal izeHistogramGradual ( Image img , int va l )

{

Bitmap bmp = ( Bitmap ) img ;

Bitmap bmpEq = new Bitmap (pbEq . Width , pbEq . Height ) ;

Color c , cEq ;

int minIntens i ty = 256 ;

int maxIntens ity = 0 ;

int [ ] o r g I n t e n s i t y = new int [ 2 5 6 ] ;

int e q I n t e n s i t y = 0 ;

// c a l c u l a t e minimum and maximum i n t e n s i t y

for ( int x = MIN X; x <= MAX X; x++)

{

for ( int y = MIN Y; y <= MAX Y; y++)

{

c = bmp. GetPixel (x , y ) ;

i f ( c .R > maxIntens ity )

maxIntens ity = c .R;

i f ( c .R < minIntens i ty )

minIntens i ty = c .R;

o r g I n t e n s i t y [ c .R]++;

}

}
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i f ( ( maxIntens ity + va l ) > MAX INTENSITY) e q I n t e n s i t y = MAX INTENSITY;

else e q I n t e n s i t y = ( maxIntens ity + va l ) ;

int [ ] cumFrequency = new int [ maxIntens ity + 1 ] ;

double [ ] cumFrequencyProb = new double [ maxIntens ity + 1 ] ;

int [ ] newIntens i ty = new int [ maxIntens ity + 1 ] ;

for ( int i = 0 ; i <= maxIntens ity ; i++)

{

cumFrequency [ i ] = 0 ;

cumFrequencyProb [ i ] = 0 ;

newIntens i ty [ i ] = 0 ;

}

for ( int i = minIntens i ty ; i <= maxIntens ity ; i++)

{

i f ( i == 0) { cumFrequency [ i ] = o r g I n t e n s i t y [ i ] ; }

else cumFrequency [ i ] = cumFrequency [ i − 1 ] + o r g I n t e n s i t y [ i ] ;

cumFrequencyProb [ i ] = (double ) cumFrequency [ i ] / (double )TOTAL PIXELS;

newIntens i ty [ i ] = ( int ) ( cumFrequencyProb [ i ] ∗ e q I n t e n s i t y ) ;

}

//new HE Image

for ( int x = MIN X; x <= MAX X; x++)

{

for ( int y = MIN Y; y <= MAX Y; y++)

{
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c = bmp. GetPixel (x , y ) ;

cEq = Color . FromArgb( c .A, newIntens i ty [ c .R] , newIntens i ty [ c .R] ,

newIntens i ty [ c .R] ) ;

bmpEq . Se tP ixe l (x , y , cEq ) ;

}

}

pbEq . Image = bmpEq ;

i f ( imageSaveHE != null )

imageSaveHE . Dispose ( ) ;

imageSaveHE = bmpEq ;

Fi leStream f s = new Fi leStream ( e q I n t e n s i t y . ToString ( )+” .bmp” , FileMode .

OpenOrCreate ) ;

imageSaveHE . Save ( f s , System . Drawing . Imaging . ImageFormat .Bmp) ;

f s . Close ( ) ;

i f ( l ightedImage != null )

this . calcPSNR ( l ightedImage , bmpEq, e q I n t e n s i t y ) ;

t h r e s h o l d I n t e n i s t y = maxIntens ity ;

return bmpEq ;

}

A.2 PSNR calculation

private void calcPSNR ( Image o r i g i n a l , Image equa l i zed , int va l )

{

Bitmap bmpOrg = ( Bitmap ) o r i g i n a l ;

Bitmap bmpEqu = ( Bitmap ) equa l i z ed ;

double sum = 0 ;

double o rg In t en s i t y , equ In t en s i t y ;

double MSE = 0 ;

double PSNR = 0 ;

Color cOrg , cEqu ;
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for ( int x = MIN X; x <= MAX X; x++)

{

for ( int y = MIN Y; y <= MAX Y; y++)

{

cOrg = bmpOrg . GetPixel (x , y ) ;

cEqu = bmpEqu . GetPixel (x , y ) ;

o r g I n t e n s i t y = (double ) cOrg .R;

equ In t en s i t y = (double ) cEqu .R;

sum += Math .Pow( ( o rg In t en s i t y−equ In t en s i t y ) ,2 ) ;

}

}

MSE = sum / TOTAL PIXELS;

PSNR = 20 ∗ Math . Log10 (MAX INTENSITY) − 10 ∗ Math . Log10 (MSE) ;

Console . WriteLine ( va l + ” : ” + MSE + ” : ” + PSNR) ;

DataRow r = PSNRTable .NewRow( ) ;

r [ MaxIntensityCol ] = va l ;

r [ PSNRCol ] = Math . Round(PSNR, 3 ) ;

PSNRTable . Rows . Add( r ) ;

}
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Appendix B

Video Receiver in C#

B.1 Buffering thread action

public void F i l l B u f f e r ( )

{

int max = AppSet t ingsContro l l e r . GetAppSetting ( ” B u f f e r F i l e s L i m i t ” , 20) ;

int maxFrames = AppSet t ingsContro l l e r . GetAppSetting ( ” FramesInFi leLimit ” ,

40) ;

Console . WriteLine ( ” f i l l i n g . . . ” ) ;

while ( true )

{

try

{

rece iveByteArray = l i s t e n e r . Receive ( ref groupEP ) ;

saveByteArray . Add( rece iveByteArray ) ;

saveFrameSize . Add( rece iveByteArray . Length ) ;

i f ( saveByteArray . Count >= maxFrames )

{

f i l eCount++;

i f ( f i l eCount > max)

f i l eCount = 1 ;

S t r ing vidFi lename = v i d e o F i l e P r e f i x + f i l eCount . ToString ( ) + ” . dat” ;
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St r ing s i z eF i l ename = s i z e F i l e P r e f i x + f i l eCount . ToString ( ) + ” . dat ” ;

Fi leStream vidFi leStream = new Fi leStream ( vidFilename , FileMode . Create ,

F i l eAcce s s . Write ) ;

StreamWriter s i z eF i l eS t r ea m = new StreamWriter ( s i z eF i l ename ) ;

try

{

foreach (byte [ ] byteArrayElement in saveByteArray )

v idFi l eStream . Write ( byteArrayElement , 0 , byteArrayElement . Length ) ;

foreach ( int s izeArrayElement in saveFrameSize )

s i z eF i l eS t r eam . WriteLine ( s izeArrayElement ) ;

}

catch ( Exception ex )

{

}

f ina l ly

{

saveByteArray . Clear ( ) ;

saveFrameSize . Clear ( ) ;

f i l e s B u f f e r e d = f i l e s B u f f e r e d > 5 ? 5 : f i l e s B u f f e r e d + 1 ;

v idFi l eStream . Close ( ) ;

s i z eF i l eS t r eam . Close ( ) ;

}

}

i f ( i s L i v e )

Program . f . updateProgress ( ) ;

else

Program . f . updateProgressDB ( ) ;
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}

catch ( Exception ex )

{

Console . WriteLine ( ” Buf f e r ” + ex . Message ) ;

}

}

}

B.2 Client Configuration controller

<?xml version=” 1 .0 ” encoding=” utf−8” ?>

<c o n f i g u r a t i o n>

<appSett ings>

<add key=” Lis tenPort ” value=”11000”/>

<add key=”ListenPortDB” value=”11001”/>

<add key=” receiveFromAddress ” value=” 1 2 7 . 0 . 0 . 1 ”/>

<add key=”receiveFromAddressDB” value=” 1 2 7 . 0 . 0 . 1 ”/>

<add key =”sendToAddress” value=” 1 2 7 . 0 . 0 . 1 ”/>

<add key =”sendToPort” value=”11002”/>

<add key=” B u f f e r F i l e s L i m i t ” value=”20”/>

<add key=” Buf ferL imitForDisp lay ” value=”3”/>

<add key=” FramesInFi leLimit ” value=”40”/>

<add key=” DisplayDelay ” value=”200”/>

<add key=” WaitForFileDelay ” value=”200”/>

</ appSett ings>

</ c o n f i g u r a t i o n>
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