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ABSTRACT 

The National Operating Committee on Standards for Athletic Equipment (NOCSAE) was 

established to enlist research directed towards the reduction of head injuries in organized sports. 

The function of the test methods developed by NOCSAE is to provide the blueprint for reliable 

and repeatable procedures to measure the evaluation of various types of protective sports 

headgear and projectiles. In addition, the methods also govern hardware such as testing apparatus 

and data acquisition instrumentation. In helmet testing, the method dictates whether the impact is 

induced by a projectile system or by a drop tower system with an anvil at the base. Altogether, the 

methods and procedures are used to determine a pass/fail for a Severity Index (SI) within 

specified tolerances. The SI is a measure of the severity of impact with respect to the 

instantaneous acceleration experienced by the headform (fitted with helmet) as it is impacted, and 

is defined as: 

 
T

2 5

0

SI a t dt 
.

 

where ‘a(t)’ is the instantaneous acceleration expressed in g’s. Also, NOCSAE standards for 

(drop) impact testing require the impact velocities to be measured during the last 1.5 in. (40mm) 

of free fall.  

Although the NOCSAE standard uses the SI as a performance characteristic, the standard 

does not provide a means to measure the force of the impact to the headform (fitted with helmet) 

either by the helmet impacting an object or by the helmet being impacted by an object. Therefore, 

this analysis seeks to incorporate the measurement of the force of the impact as a viable test 

parameter without deviating from the protocols established by NOCSAE. 

The objective of this research was to design, build, and validate a test structure for testing 

and measuring the effectiveness of baseball helmets in reducing shock to the head. Further, the 

design incorporated two test methods into one structure. The three primary components of the test 
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structure were the Pendulum, the Pedestal, and the Linear Bearing Table (LBT). The design of the 

test structure and the test methods were guided by the following NOCSAE standards: 

 ND-001:‘Standard Test Method and Equipment Used in Evaluating the Performance 

Characteristics of Protective Headgear/Equipment’.  

ND-021: ‘Standard Projectile Impact Testing Method and Equipment Used in Evaluating the 

Performance Characteristics of Protective Headgear, Faceguards or Projectiles’. 

ND-022: ‘Standard Performance Specification for Newly Manufactured Baseball/Softball 

Batter’s Helmets’.  

ND-023:‘Laboratory Procedural Guide for Certifying Newly Manufactured Baseball/Softball 

Batter’s Helmets’. 

Congruent with ND-001, the NOCSAE medium headform was used for all tests. Of 

course, two major modifications to the preceding test methods were implemented. First, a single 

test structure was designed to conduct both the drop tower test and the projectile test. This is in 

contrast to ND-001 and ND-021, which employ a separate apparatus for each test. Second, a 

means to measure the force of the impact into the headform was developed.  

Further, the applications of theoretical equations, in particular energy equations, were 

applied to the collected data with the hopes of forming a basis for comparison with established 

findings.  

The results revealed that certain energy equations could be applied with a certain level of 

confidence to determine impact velocity, especially without the presence of impact attenuation. In 

addition, an unforeseen development suggested that an object in a stationary setting, such as a 

batter in baseball, may incur more damage from the rebound of an impact than the impact itself. 

The results generated by the supplementary procedures will aid in developing a basis for 

comparison and creation of a means to reasonably measure the contributing biomechanical 

factors, such as linear acceleration, to the shock created by head impacts, which is the leading 

cause of sports related concussions.  
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1. CHAPTER 1 – INTRODUCTION  

In the 1960’s spectator attendance at athletic events had surpassed previous decades. The 

burgeoning popularity of the events resulted in increased media coverage, which eventually gave 

rise to greater exposure of organized sports. The increased publicity generated more opportunities 

for athletic scholarships and also ushered in an era of profitable professional sports contracts. 

Driven by those opportunities, athletes engaged in more aggressive and forceful performances. 

Unfortunately, with the increased voracity in play serious injuries occurred more frequently, 

especially in the sport of football.  The decade culminated with 32 fatalities documented in 1968 

from head and neck injuries directly due to participation in organized football. In 1969, with the 

injuries in football as the catalyst, the National Operating Committee on Standards for Athletic 

Equipment (NOCSAE) was established to enlist research directed towards the reduction of head 

injuries in organized sports. Based on the research commissioned from several academic 

institutions, NOCSAE developed methods, rigging, and performance requirements for testing 

football protective headgear. Subsequently, over the years NOCSAE developed performance 

standards for the protective headgear and equipment used in a variety of sports. Currently, 

NOCSAE performance standards are in compliance with the testing codes specified by the 

American National Standards Institute (ANSI) and the American Society for Testing and 

Materials (ASTM). 

1.1. NOCSAE versus the Other Standards 

   Since its inception, NOCSAE has evolved into the archetypical governing body for the 

testing methods of, and for the development of, performance standards for protective sports 

equipment. However, in the years following NOCSAE’s origin several organizations have been 

created with the directive of developing performance standards for protective sports equipment. 
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Included in these establishments are companies, such as Biokinetics®, Cadex®, and the Safety 

Equipment Institute (SEI)®. Although most of these enterprises establish certifications in 

accordance with the specifications of organizations such as ANSI and ASTM, some of the testing 

equipment is different from those used by NOCSAE, in particular the headform. Some 

laboratories use metal headforms to simulate the human head during helmet impact testing. 

However, NOCSAE employs an instrumented model human head possessing a high bio-fidelity 

which offers a reasonable mechanical analog of the human skull. As a result, the NOCSAE test 

methods and equipment were used during this experimental analysis.  

Despite some procedural and hardware differences implemented in helmet testing, all of 

these companies are in pursuit of the common goal of mitigating the shock responsible for the 

occurrence of most sports related head injuries. The motivation behind this experimental analysis 

was to quantify certain properties that lead to head shock. 

1.2. Motivation and Goal for This Experimental Analysis 

Head shock is the leading cause of sports related concussions. The focal point of this 

analysis was to develop a procedure to quantify the properties associated with head impact, such 

as the impact force. Then use those findings to form a basis for comparison with other research. 

In recent years research has shown that multiple concussions sustained over time can lead to 

Traumatic Brain Injury (TBI) and subsequently Chronic Traumatic Encephalopathy (CTE). 

According to a report published by the Center for Disease Control (CDC), between the years of 

2001 and 2005 the average annual number of emergency department visits due to non-fatal sports 

related TBIs for all age groups was 207,830 (CDC-MMWR: July 27, 2007 / 56(29),733-737). 

During the same time frame the average annual number of emergency department visits for 

baseball related non-fatal TBIs was 10,103, which was 6.2% of all sports related TBI emergency 

visits. The average annual number of hospitalizations was 811, which accounted for 5.6% of all 
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sports related TBIs (CDC-MMWR: July 27, 2007 / 56(29), 733-737). The report also claimed that 

persons in the age group of 5-18 years comprised 65% of the average annual number of 

emergency department visits due to non-fatal sports related injuries (SR) TBIs (CDC-MMWR: 

July 27, 2007 / 56(29),733-737).  

A more recent report published by the CDC focused on the average annual number of 

emergency department visits due to non-fatal SR TBIs for the age group ≤19 between the years of 

2001 and 2009. The average annual number of emergency department visits for baseball related 

non-fatal TBIs during this time frame was 9,634, which surmised 7.9% of all reported sports 

related TBIs (CDC-MMWR: Oct 7, 2011 / 60(39), 1337-1342). The findings in these reports 

emphasize that there is a need to reduce the occurrence of sports related TBIs particularly by 

improving the preventative equipment used in organized sports.  

Ultimately, one of the goals of this analysis was to more effectively measure and quantify 

the biomechanical measures that can lead to sports related head shock, in particular linear 

acceleration. In addition, it was desired to apply theoretical applications and analytical techniques 

to the collected data to form a basis for comparison with the current pedagogy dedicated to 

reducing SR TBIs. Tables 1-1 and 1-2 itemize a portion of the information presented in the 

CDC’s report spanning 2001 to 2005, while Table 1-3 summarizes some of the findings from the 

report covering the period from 2001 to 2009.  

The information used to generate the CDC’s reports was gathered from data compiled by 

the National Electronic Injury Surveillance System (NEISS), which is a data bank maintained by 

the Consumer Product Safety Commission (CSPC). 
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Table 1-1: Est. Annual No. & Percentage of ED Visits for Non-Fatal SR TBIs [3] [4] 

ALL AGES (2001-2005) 5-18 yrs. (2001-2005) 

Activity 

Annual 

Average # of 

TBIs 

% of 

all ED 

visits³ 

Activity 

Annual 

Average # of 

TBIs 

% of 

all ED visits for 

TBIs 

Football 22689 5.7 Football 20293 89.4 

Baseball 10103 6.2 Baseball 7433 73.6 

Basketball 14680 2.4 Basketball 11506 78.4 

Total¹ 47472 14.3  39232 64.9² 

 

 

Table 1-2: Est. Annual No. & Percentage of Hospitalizations for Non-Fatal SR TBIs [3] [4]  

ALL AGES (2001-2005) 5-18 yrs. (2001-2005) 

Activity 
Annual 

Average # of TBIs 

% of 

all Hosp.
4
 

Activity 
Annual 

Average # of TBIs 

% of 

all Hosp.³ 

Football 891 13.1 Football 775 13.7 

Baseball 811 21.6 Baseball 419 21.8 

Basketball 465 9.7 Basketball 365 13.6 

Total¹ 2167 44.4  1559 17.9² 

 

Table 1-3: Est. Annual No., Percentage, & Rank of ED Visits for Non-Fatal SR TBIs [3] [4] 

AGES ≤19 (2001-2009) 

Activity 

Annual 

Avg. # 

of  TBIs 

% of all 

SR ED 

visits 

attributed 

to TBIs 

MALE FEMALE 

Annual 

Rank 

Annual 

Avg. 

Total 

Annual 

Avg. % 

Total 

Annual 

Rank 

Annual 

Avg. 

Total 

Annual 

Avg. % 

Total 

Football 25376 7.2 1 24431 19.9 N/A N/A N/A 

Baseball 9634 7.9 5 8030 6.5 N/A N/A N/A 

Basketball 13987 3.7 4 9372 7.6 4 4615 9.2 

 

 

 

 

 

 



5 

 

 

 

2. CHAPTER 2 – REVIEW OF PREVIOUS WORK 

The primary structural design focus of this research was to incorporate NOCSAE’s drop 

impact and projectile impact tests, two separate test methods, into one test structure. ND-021 

recommends using an air-cannon to conduct projectile impact tests. However, in order to create a 

test structure that could accommodate drop tests and projectile tests, a pendulum seemed like a 

plausible alternative. In general, the intention was to conduct tests that could generate results that 

could form a basis for comparison with research aimed at head impact and sports related head 

injury. 

The preeminent study in the field of sports related head injury and the quantification of 

the kinetic biomechanical factors associated with head impact was the groundwork conducted at 

Virginia Tech (V-tech). Through the use of laboratory research and field tests conducted with 

football helmets fitted with Head Impact Telemetry (HIT) ® technology, V-tech managed to 

compile the most referenced compendium of information on sports related head injury due to 

impact. However, although the body of work created by V-tech is considered the tip of the spear 

in head injury analysis, the breadth of that study was too encyclopedic. Thus, the aspiration of the 

literature search was to target prior work with a more intimate scope and with objectives more 

closely aligned to those of this experimental analysis.  

This experimental analysis consisted of two elements which included the physical 

concept and the theoretical applications. The physical concept was concerned with the tower’s 

structural design and the intricacies of fabricating a single structure that incorporated multiple 

impact test methods. The theoretical consideration was driven by the desire to apply analytical 

processes to empirical data. Guided by these factors the literature search uncovered three relevant 

findings. One project addressed the structural design aspect by proposing to modify the NOCSAE 
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impact method through the use of a pendulum. The subject of the other two research papers was 

the application of analytical tools to collected data.  

2.1. Method and Apparatus for Testing Football Helmets  

United States Patent US 6,871,525 B2 ‘Method and Apparatus for Testing Football 

Helmets’ summarizes the embodiment of an impact test structure designed by inventors Withnall 

and Bayne. The design consists of a weighted pendulum arm which is utilized to impart an impact 

force on a football helmet mounted to the base stand of the structure. The linear and rotational 

acceleration caused by the impact is measured and used to calculate a Head Impact Power Index 

(HIP). The HIP is then used as a standard to quantify the effectiveness of the helmet in preventing 

injury to a player. The inventors claimed that the advantage that their invention had over the 

NOCSAE standard was attributed to the modification of how the impact was delivered and the 

collection of additional data. 

The NOCSAE standard ND-002 ‘Standard Performance Specification for Newly 

Manufactured Football Helmets’, which governs the evaluation of the performance characteristics 

of football helmets, dictates that helmet impact tests can be conducted by performing a drop test. 

A headform fitted with the helmet being tested is dropped from a prescribed height and allowed 

to strike an anvil at the base of the drop assembly. Also, the standard designates that an 

accelerometer mounted on the inside of the headform measure only the linear acceleration of the 

impact. The inventors state that their method incorporates two essential differences from the 

NOCSAE test method. First, Withnall and Bayne claim that because the impact face of their 

pendulum has the same radius of curvature as a football helmet and is covered with the same 

polycarbonate plastic material, it delivers a glancing impact, which is a more realistic simulation 

of the head to head impacts that occur in football. Second, their system measures both the linear 

and rotational acceleration of the headform caused by the impact. Withnall and Bayne stated that 
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their test method and subsequent test standard was developed to supplement but not replace ND-

002.  

Although Withnall and Bayne’s structure was designed to test football helmets, their 

concept of modifying the test method by utilizing a pendulum was identical to the central 

structural design concept of this analytical experiment. Figure 2-1 is an illustration of Withnall 

and Bayne’s helmet impact apparatus.  

 

 

Figure 2-1: Withnall & Bayne's Impact Pendulum [12] 
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2.2. Research Papers Addressing Analytical Techniques 

This experimental analysis was composed of two facets. In the previous section, research 

relating to the design aspect of the structure was covered. The focus now shifts to the analytical 

processes that can be used to quantify the collected data. 

NOCSAE as one of the governing entities for developing performance standards for 

protective sports equipment developed its own analytical tool to quantify test data. 

The Severity Index (SI) value is a measure of the severity of impact with respect to the 

instantaneous acceleration experienced by the headform as it is impacted and is defined as: 

                                                          
T

2 5

0

SI a t dt 
.

                                                   (2-1) 

where ‘a(t)’ is the instantaneous acceleration expressed in g’s. It is essentially a weighted 

integration under the acceleration curve for specific time durations. The SI value only dictates the 

pass/fail criterion for a particular piece of sport equipment, but it offers no measure for the 

correlation between impact severity and probability of a concussion. Dissatisfied with the short 

comings of the SI, researchers later developed the Head Injury Criterion (HIC). The HIC is a 

measure of the likelihood of head injury arising from an impact. The equation for HIC is as 

follows: 
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where t1 and t2 were the initial and final times in seconds respectively and similar to the SI ‘a’ is 

the acceleration value expressed in g’s. 

In the paper ‘Concussion in professional football: reconstruction of game impacts and 

injuries’, 2003 researchers Pellman, Viano and Tucker et al. sought to find a way to correlate the 

SI and HIC values to the occurrence of a concussion.  They created a knowledge bank of impact 

http://en.wikipedia.org/wiki/Head_injury
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and concussion data by observing videotapes of head impacts and concussions filmed by the 

National Football League during games between the years of 1996 and 2001. Based on the 

application of analytical tools, the researchers stated that in most of the athletes concussions 

occurred at an SI value of 300 and above and a HIC value of 250 and above. Other researchers 

believe that the HIC is restricted because it places emphasis on the linear acceleration, as well as, 

the fact it is a measure of severe brain injury rather than Mild Traumatic Brain Injury (MTBI). 

This perspective is covered in the second of the two research papers. 

In the published paper titled ‘Head Impact Severity Measures for Evaluating Mild 

Traumatic Brain Injury Risk Exposure’, 2009 authors Greenwald and Gwin et al. sought to 

quantify the sensitivity of various biomechanical measures of head impact, such as linear 

acceleration, rotational acceleration, and impact duration. The researchers suggested that values 

such as the HIC treat these variables as separate entities. However, Greenwald et al.  

hypothesized that the elements of head shock and TBIs can better be quantified if they are treated 

as inter-related. Hence, they applied analytic methods, such as Principal Component Analysis 

(PCA) that account for the relationships among the variables (Greenwald). Their goal was to 

quantify the sensitivity of various biomechanical measures of head impact and then use those 

values to identify the percentage of all concussions that were incorrectly identified by the 

conventional measures, an occurrence they termed as a ‘false response’. 

After applying their analytical tools to data collected from instrumented helmets used at 

13 institutions, their results revealed that linear acceleration measures exhibited the lowest false 

response rate among the biomechanical measures. For correct prediction levels, linear 

acceleration had a false response rate of 1.6% (Greenwald). In addition, they stated that the HIC 

false response rate was greater at 1.9%. In general, they discovered that, for prediction levels 
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above 70%, linear acceleration had the lowest false responses, and rotational acceleration yielded 

the lowest false response for prediction levels below 70%. 

The results of the aforementioned papers suggest that there is no ubiquitous analytical 

method that can be applied to the data to form a quantifiable basis for comparison. In contrast, a 

combination of techniques should be used to develop more congruent findings. The SI and HIC 

values as they were applied in this experimental analysis are addressed in greater detail in 

Chapter 6.  
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3. CHAPTER 3 – NOCSAE’S GENERAL AND BASEBALL STANDARDS 

 There are four NOCSAE documents that encompass the breadth of this study. Two of the 

documents govern the general test methods for protective sports headgear, the third dictates the 

performance standards for baseball/softball batter’s helmet, and the fourth governs the laboratory 

procedural guide for baseball/softball batter’s helmet. In general, this analysis did adhere to the 

instructions outlined in these documents. However, modifications to the guidelines were 

introduced. Indeed, those modifications form the essence of this study, as will be discussed in 

chapter four. The information in the documents cover a wide range of topics ranging from 

laboratory test equipment for the general testing of sports protective headgear to the specific 

practices for baseball/softball batter’s helmet certification. Therefore the subsequent coverage of 

these documents will focus only on the material pertinent to this analysis. 

3.1. NOCSAE DOC ND-001 

The NOCSAE Document (ND) titled ‘Standard Test Method and Equipment Used in 

Evaluating the Performance Characteristics of Protective Headgear/Equipment’, or more 

commonly referred to as ND-001 regulates the test method for drop testing protective 

headgear/equipment. The scope of this method incorporates the impact test instruments and 

equipment, the testing environment, and the drop test procedure. 

3.1.1. Impact Test Instruments and Equipment 

Sections 15.1~15.5 in ND-001 describe the hardware that is required to conduct a helmet 

drop impact test. The primary apparatus is the drop tower which is a metal structure anchored to a 

wall with its base mounted and securely attached to a formidable stone slab. The tower is 

comprised of two vertical guide rods used for the linear movement of a carriage assembly. The 

guide rods are tautly attached to the top mount plate and an anvil base plate. In addition, 
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NOCSAE recommends the use of a hoist motor with a reversible speed controller and a pulley 

system to retract the carriage assembly. As the name suggests, the anvil base plate is used to 

mount the impact anvil. The impact surface of the anvil is covered with a Modular Elastomer 

Programmer (MEP) Pad. Figure 3-1 is a numbered schematic of the NOCSAE drop impact 

structure, and Table 3-1 provides a brief description of the numbered items. The two other major 

pieces of equipment are the NOCSAE headform and the data acquisition system.  

 

 

Figure 3-1: NOCSAE's Complete Drop Impact Structure [8] 
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Table 3-1: NOCSAE's Drop Impact Structure Components 

Item Number Description 

1 Drop carriage 

 2¹
b 

½” MEP Testing Pad 

3 Hook-eye Turnbuckle, Forged Steel 3/8” w/ 6” take-up 

4 1/8” Wire Rope Thimble 

5 1/8” Spring Music Wire 

6 1/8” Wire Rope, Tiller Rope Clamp, Bronze 

7 3/8” 16 x 3 Eye Bolt 

8 3/8” Forged Eye Bolt 

9 Right Angle DC Hoist 

10 Single Groove Sheave (Pulley) 3¾” 

11 Top Mount Plate 

12 18” Top Channel Bracket 

13 Wall Mount Channel Bracket 4” x 1 5/8” 

14 Mechanical Release System 

15 Lift Cable, Wire Rope, 20’ Coil 

16 Anvil Base Plate 

17 Anvil 

18 Headform Adjuster 

19 Headform Rotator Stem 

20 Headform Threaded Lockring 

21 Headform Collar 

22 Nylon Bushing 

 23²
b 

Medium Headform 

 

NOCSAE defines its headforms as an instrumented model human head designed to fit the 

carriage assembly and possessing a high bio-fidelity. NOCSAE standards require the use of 

headforms manufactured by Southern Impact Research Center (SIRC). The headforms are 

available in three color-coded sizes red for large headforms, blue for medium, and green for small 

headforms. Mounted at the center of gravity of each headform is a small piezoelectric tri-axial 

accelerometer, which is designed for vibration measurements in the three orthogonal axes. 

Measurements collected by the accelerometer are analyzed by the data acquisition system. 

NOCSAE prescribes the KME 200 data analyzer. However, the organization states that any 

computer equipped with appropriate data acquisition software can be substituted providing its 

properties are equivalent to those of the KME data analyzer. Table 3-2 itemizes the 
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anthropometric measurements of the medium headform, Figure 3-2 is a picture of the NOCSAE 

medium headform, and Figure 3-3 is a picture depicting the drop impact structure as assembled 

by SIRC. 

Table 3-2: Approximate Dimensions of NOCSAE Medium Headform 

Point Of Measure Headform Dimension-inches (mm) 

Stetson Size 7¼ 

Head Breadth 5.98 (152) 

Max. Brow width (Frontal Diameter) 5.20 (132) 

Ear hole to ear hole (Bitragion Diameter) 5.51 (140) 

Max. Jaw Width (Bigonial Diameter) 4.65 (118) 

Head Length (Glabella to back of head) 7.87 (200) 

Outside eye corner to back of head 6.81 (173) 

Ear hole to back of head 3.86 (98) 

Ear hole to outside corner of eye 2.95 (75) 

Ear hole to top of head 5.24 (133) 

Eye pupil to top of head 4.53 (115) 

Ear hole to jaw angle 3.03 (77) 

Bottom of nose to point of chin 2.80 (71) 

Top of nose to point of chin 4.88 (124) 

Head circumference 22.68 (576) 

Head weight including mounting interface 10.8 lb. (4.90kg) 
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Figure 3-2: NOCSAE Medium Headform 

 

 

Figure 3-3: NOCSAE Drop Assembly As Assembled By SIRC [10] 
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3.1.2. The Testing Environment  

Sections 12.1~12.4 of ND-001 chiefly cover the protocol for conditioning and testing 

environments for protective headgear/equipment. The sections state that for the objective of 

conditioning, the headgear/equipment should be exposed to the testing environment for a 

minimum of four hours in ambient temperatures, and up to a maximum of twenty-four hours for 

high temperature environments. However, the standard recommends that testing be conducted in 

an environment with a temperature of 75 F° ±5F° (22 C° ±2 C°). 

3.1.3. The Drop Test Procedure 

Generally, the NOCSAE drop test method requires the headgear being tested to be placed 

on the appropriate headform and dropped to achieve an accepted free fall velocity. Initially, the 

headform is attached to the drop carriage and then the helmet is placed on the headform. The drop 

carriage, carrying the helmet fitted headform, is raised to a determined height and released for 

free fall. The impact velocities are measured in the last 1.5in. (40mm) of free fall, which is just 

prior to the helmet impacting the anvil. The impact velocities outlined in NOCSAE standards are 

based on specific velocities and not impact heights. Therefore, according to ND-001, if height 

adjustments made to attain the proper velocity account for more than ten percent of the drop 

height the system should be evaluated for repair. Further, impacts that result in velocities that 

exceed the performance criteria are declared inconclusive. The other criterion defined in the 

document is the impact locations on the headform/helmet. 

The headform adjuster and rotator stem, items 18 and 19 in Figure 3-1, allows the 

headform to be rotated through seven and three numbered positions respectively. The position of 

the headform is adjusted by rotating either the adjuster or the stem (or both) to a desired 

numbered position. For testing purposes, NOCSAE dictates six compulsory positions, and twenty 
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valid random positions. Figure 3-4 is a graphic of the adjuster and rotator stem as depicted in ND-

001, and Table 3-3 itemizes the six compulsory and four valid random headform testing positions. 

 

 

Figure 3-4: Headform Adjuster and Rotator Stem [8] 

 

Table 3-3: Compulsory and Valid Random Headform Testing Positions 

Position Rotator Stem Headform Nose Position NOCSAE Definition 

1 1 2 South Normal Front Position 

2 1 2 Southeast Normal Right Front Boss Position 

3 2 1 East Normal Side Position 

4 2 1 Northeast Normal Right Ear Boss Position 

5 2 1 North Normal Rear Position 

6 4 3 North Normal Top Position 

7 4 3 South Valid Random Position 

8 4 3 Southeast Valid Random Position 

9 4 3 East Valid Random Position 

10 4 3 Northeast Valid Random Position 

 

The objective of the drop test method is to acquire the resultant acceleration and use it to 

calculate the Severity Index (SI). The SI is a measure of the severity of impact with respect to the 

instantaneous acceleration experienced by the headform (fitted with helmet) as it impacts the 



18 

 

 

 

anvil. The value for SI is obtained from equation (2-1). The integration for this calculation must 

begin after the data acquisition system triggers just before the value of the signal reaches4 g’s on 

the up side of the pulse and must end when the signal drops below the 4 g point on the down side 

of the pulse. ND-001 does not specify a pass-fail SI. However, the document does state that 

appropriate SI levels range from 300 SI ±3% to a maximum of 2000 SI ±2%. The next general 

standard to be addressed delineates the projectile method for testing headgear/equipment. 

3.2. NOCSAE DOC ND-021 

ND-021 is the ‘Standard Projectile Impact Test Method and Equipment Used in 

Evaluating the Performance Characteristics of Protective Headgear, Faceguards or Projectiles’. 

The basis of this test method is to outline the laboratory equipment and procedures relevant to 

projectile testing of protective headgear/equipment and certain projectiles, such as baseballs and 

softballs. The content of ND-021 is identical to that of ND-001 in regards to the conditioning and 

testing environments. However, there are some differences in the required testing instruments and 

equipment, test method, and data acquisition procedure. Considering ND-021 describes projectile 

testing as well, only the information pertinent to helmet testing will be covered in this outline. 

3.2.1. Projectile Test Instruments and Equipment 

Sections 12.1~12.10 of ND-021 summarize the instruments and equipment necessary to 

conduct projectile impact tests on headgear and the projectile itself.  

The primary instruments of concern are the air cannon assembly, the linear bearing table, 

and a major league baseball. ND-021 recommends the use of an air cannon capable of launching 

a baseball at speeds of 60 mph ±2 mph. The document also suggests that two velocity sensors 

should be positioned between the nozzle of the air cannon and the headform as it is mounted on 

the linear bearing table. The linear bearing table is the structure on which the headform is 
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mounted during a test, and according to the standard it should have a maximum mass of 5.7kg ± 

0.5kg (12.57lb ± 1.102lb). The baseball should be constructed as specified by Major League 

Baseball and should have a mass of between 140~145 grams (5~5.25oz), a circumference of 

9.00~9.25 inches, and a compression-deflection value between 200~300 pounds. Figure 3-5 and 

3-6 are drawings of the air cannon as part of the projectile impact test assembly and linear bearing 

table respectively as represented in ND-021. 

 

 

Figure 3-5: Projectile Impact Test Assembly (Air Cannon) [8] 

 

A: Air Reservoir 

B: Air Solenoid 

C: Loading Breech 

D: Interchangeable Barrel 

E: Velocity Measurement Sensors 

F: NOCSAE Headform Mounted on Linear Bearing Table 

 

A 

B 

C D 

E 

F 
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Figure 3-6: Linear Bearing Table (LBT) for Projectile Impact Test [8] 

 

3.2.2. Projectile Impact Test Procedure 

The test method for projectile impact testing is relatively straight forward. The headform 

fitted with a helmet is positioned on the linear bearing table, and then the projectile is propelled at 

the headform. NOCSAE headforms are manufactured with the left ear, therefore, the method 

specifies that the projectile impacts the right side of the headform. The projectile must be 

propelled in such a manner that the impact velocity is within 3% of the velocity specified by the 

standard. The specified velocities are based on the SI response of the headform. Consequently, a 

value of 1200 SI between 36~44 mph is an appropriate response for a medium headform.  

As with the drop impact method, the goal of the projectile method is to use the resultant 

acceleration to derive the SI value. However, because this method can also be used to evaluate 

baseballs and softballs, different data can be collected. The velocity measurement sensors along 

with additional instruments and equipment can be used to determine the Coefficient of Restitution 

(COR) of the projectile. The COR is a unit less number between 0 and 1 derived from the ratio of 
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the velocity of the baseball after impact with the velocity of the baseball before impact. Figure 3-

7 is a picture of the projectile impact test as assembled by SIRC. 

 

 

Figure 3-7: NOCSAE Projectile Impact Test as Assembled by SIRC [10] 

 

3.3. NOCSAE DOC ND-022 

ND-022 focuses on helmet test preparation and is titled ‘Standard Performance 

Specification for Newly Manufactured Baseball/Softball Batter’s Helmet’. Most of the directives 

in this document are referenced from ND-001 and ND-021. However, Section 5.1~5.8 lists the 

procedure for baseball/softball batter’s helmet impact attenuation tests. The relevant information 
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in section five relates to the position of the helmet in reference to the muzzle of the air cannon 

and the impact locations on the helmet. 

ND-022 specifies that the headform fitted with a helmet must be positioned within 

twenty-four inches from the end of the muzzle of the air cannon or from the point of release of 

the baseball. The standard restates the properties of the baseball as cited in ND-021, but 

additionally it requires the baseball to have a COR range of 0.5~0.55. The test method stipulates 

that a minimum of three helmets should be tested at ambient temperatures. The first two helmets 

should be impacted with a softball at a velocity of 55mi./hr. (24.6m/s) at the mandatory locations 

tabulated in Table 3-3. The third helmet should be impacted with a baseball, with the same 

velocity, at the location that resulted in the highest SI reading of the two previously impacted 

helmets. ND-022 does not cover data acquisition. The fourth NOCSAE manual, and the second 

baseball specific document, summarizes the laboratory procedures for baseball/softball batter’s 

helmet certification. 

3.4. NOCSAE DOC ND-023 

The objective of ‘Laboratory Procedural Guide for Certifying Newly Manufactured 

Baseball/Softball Batter’s Helmets’ or ND-023 is to establish recommended practices for 

baseball/softball batter’s helmet certification.  

Similar to ND-022, the majority of the information in ND-023, such as laboratory 

environment, equipment calibration, and test set-up, is referenced from ND-001 and ND-021. The 

pertinent material is the list of required test equipment. Sections 3.1~3.7 itemize the necessary 

test equipment for helmet certification including the twin guide rods for the drop tower, 

headforms, ball propelling device, accelerometers, and other miscellaneous equipment. Primarily, 

ND-023 is a compendium of the information detailed in ND-001, ND-021, and ND-022. The 

standards and test methods covered in this section form a partial basis for the NOCSAE helmet 
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testing protocols. However, as will be discussed in the next chapter, in the context of this 

experimental analysis they served as peripheral guidelines for the generation of supplemental 

information. 
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4. CHAPTER 4 – HELMET TESTING STRUCTURE (HYBRID TOWER) 

An examination of NOCSAE’s catalogue revealed that load cells were not listed on the 

instrument lists and force measurement was not a requirement in the data acquisition process. It 

was in the need to fill that void where the aspiration of this experimental analysis resided, which 

was to enact minor modifications to the test method in order to generate beneficial quantitative 

data that could form a basis for comparison. The modifications included positioning 

accelerometers in strategic locations on the test structure with the intent of collecting readings to 

derive transfer functions. As previously mentioned, the alterations in the test method were 

implemented within the scope of the NOCSAE standards, and were intended to supplement those 

methods not take away from them. The following sections detail the design and construction of 

the helmet test structure and test method procedure. 

4.1. Helmet Test Structure 

The concept of this design was an apparatus which provided the capability to conduct 

both drop impact and projectile impact helmet tests. Essentially, the notion was to create a device 

that incorporated the test methods of ND-001 and ND-021. The embodiment of the design was a 

free standing hybrid drop-tower-pendulum structure. 

The primary structural components of the device were the four-post tower with a base 

plate and a top plate, the modified I-beam pendulum attached to the top plate, a pedestal, and a 

linear bearing table. The secondary elements included the twin-rod guide assembly, the carriage, 

the DC powered hoist, and an anvil. Most of the structural components were fabricated from 6000 

series aluminum including the carriage and the furnishings used to affix and secure the 

components. However, some minor elements, such as the guide rods were made of mild steel. To 

avoid metal deformation and to facilitate disassembly, the hybrid tower was constructed using 

gussets and bolts in place of welding techniques. 
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A 9-foot, 2 inch square post was attached to each corner of the base plate using two 

gussets and a 9-bolt pattern and to each corner of the top plate with two gussets and a 6-bolt 

pattern. The base plate was a 2 foot square, 1½ inch thick aluminum slab. Three T-slots were 

channeled along the entire width of the base plate. In addition, bolt holes machined through the 

entire depth of the plate were strategically located across its surface area. The T-slots were used 

to secure the linear bearing table, the pedestal, and the anvil to the base plate. The T-slots allowed 

the pedestal and the anvil to be moved laterally to the left and right of the structure’s centerline. 

Also, the slots permitted the front edge of the linear bearing table to be adjusted within five 

inches of the front edge of the base plate. The bolt holes in the base plate were used to attach the 

tower to a granite pediment. This was in accordance with ND-001 which requires the base of the 

drop tower to be securely mounted on a stone foundation.  The top plate was a 2 foot square, 1 

inch thick aluminum slab with a square pattern of holes spaced 5 inches apart across its surface 

area. The holes were used to attach the DC powered hoist and the gussets for the pendulum to the 

top plate. Figure 4-1 is a SolidWorks® schematic of the conceptual tower design and Figure 4-2 

is a full length view of the Hybrid drop tower without the pendulum attached.  
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Figure 4-1: SolidWorks Conceptual Hybrid Tower Design 
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Figure 4-2: Full Length View of Hybrid Impact Tower 
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4.2. T-beam Pendulum 

The pendulum was a modified I-beam device intended to simulate the projectile test 

method of ND-021. 

The completed pendulum consisted of a 7½ feet long tapered 6000 series aluminum T-

beam with a flange width of 3.44 inches and a thickness of 0.34 inches. The tapered T-beam was 

created by removing one of the flanges of a six foot I-beam and then cutting an 18 inch angled 

wedge from the end. The tip of the wedge was machined to create a smooth flat surface on the ‘T’ 

side; this end would serve as the free end of the pendulum. Subsequently, the wedge was welded 

edge to edge to the same end from which it was cut in order to bring the beam to the required 

length of 7½ feet (90 inches). In its mounted position, the top of the beam was attached to a rod 

which was supported by two gussets bolted to the top plate of the tower. Linear bushings were 

used to fit the bolt to the gussets thus allowing the pendulum to swing through the front plane of 

the tower. The total mass of the T-beam was 19.21lb (8.71kg). 

A four inch slot was cut through the free end to provide a means to secure measurement 

instruments, the baseball, and other devices to the end of the pendulum.  A bolt fastened through 

the slot was the anchor for the attachments. The non-impact side of the bolt was threaded and 

used to bolster the pendulum bob, which could also serve as the added mass of the pendulum. The 

head of the impact segment of the bolt was tapped to accommodate the screw on the non-impact 

face of the load cell. Finally, a specially fabricated concave adapter designed to cradle the 

baseball was coupled to the threaded hole on the impact face of the load cell. The physical 

arrangement of those components was pivotal in the execution of the experimental analysis 

mainly because it provided a means to mount a load cell between the baseball and the free end of 

the pendulum. In addition, an accelerometer could be mounted to the adapter.  
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The significance of this strategy was the ability to measure the acceleration of the 

pendulum, hence the baseball, but more importantly the force of the impact into the baseball and 

subsequently into the helmet-headform assembly. To iterate, the measurement of the force of the 

impact albeit central to the analysis, is not a requirement under NOCSAE standards. The effective 

mass of the pendulum was 11.0 lb. (4.989 kg). Figure 4-3 is a SolidWorks® illustration of the T-

beam. Figure 4-4 depicts the pendulum suspended from the top plate of the tower, and Figure 4-5 

is a close up view of the free end of the pendulum showing the adapter and the load cell. The two 

other major elements, the pedestal and the linear bearing table, were designed to be 

interchangeable depending on the capacity in which the hybrid tower was being used. 

 

 

Figure 4-3: SolidWorks Illustration of Tapered T-Beam 
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Figure 4-4: Pendulum Suspended from Top Plate of Hybrid Tower 
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Figure 4-5: Free End of Pendulum with Load Cell & baseball Adapter 

 

4.3. The Pedestal 

The pedestal was designed to be utilized in either the drop tower or pendulum 

application. The pedestal could be used to accommodate a second headform fitted with a helmet. 

Ergo, in the drop tower capacity a helmet on helmet impact can be implemented, which as alluded 

to earlier, represents a more realistic simulation of the impacts that occur in football. 

The primary components of the pedestal included four ¾ inch thick gussets and a two 

inch square center post, all made of 6000 series aluminum. Each gusset was secured to a face of 

the center post with four bolts and extended four inches beyond the post.  
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A 1.1 inch diameter vertical hole was machined through most of the length of the center 

post. In addition, two horizontal holes were machined through the entire width of the center post, 

and in the corresponding location on two of the gussets. The vertical hole was used to 

accommodate the headform rotator shaft and the horizontal holes were for the bolts used to secure 

the rotator shaft to the pedestal. The pedestal was secured to the tower with the use of clamps and 

the T-slots in the baseplate. However, it could be rotated to change the impact location on the 

headform. The mass of the pedestal was 9.10lb (4.128 kg).  

During pendulum testing, the pedestal was used to position and hold the headform in 

place for static impacts. The pedestal did not allow the headform to move after impact, as 

required by ND-021, hence the collision was partially inelastic and enabled a more accurate 

measurement of the force of the impact. Figure 4-6 is the SolidWorks® schematic of the pedestal 

with the headform rotator shaft, and Figure 4-7 depicts the pedestal mounted to the baseplate of 

the tower (inset: Pedestal). The third primary structural component of the tower, the linear 

bearing, table facilitated pendulum testing as well and it was consistent with the type of collision 

dictated by ND-021. 
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Figure 4-6: SolidWorks Illustration of Pedestal 

 

 

 

Figure 4-7: Pedestal Mounted to Baseplate of Tower (Inset: Pedestal) 



34 

 

 

 

4.4. The Linear Bearing Table 

The Linear Bearing Table (LBT) possessed a design very similar to the concept 

illustrated in ND-021 and Figure 3-7. The top and base plates were fabricated from ½ inch thick 

6000 series aluminum. The base plate was 10 inches by 36 inches and the top plate, used to 

support the headform, was 10 inches by 12 inches. A ¼ inch deep, 2 inch square hole was 

machined in the center of the top plate. This hole was used to secure the center post that housed 

the headform rotator shaft. The center post possessed the same characteristics as the one used for 

the pedestal. Linear bushings housed in pillow-blocks permitted the top plate, thus the headform, 

to traverse along the 36 inch long, ¾ inch diameter steel rods mounted to the base plate. 

Consequently, the movement of the headform after impact was more consistent with the 

somewhat elastic collision recommended by ND-021. 

 In order to keep the alignment of the headform with the baseball consistent between 

pedestal and LBT testing, the clearance between the top and base plates was 1/8 inch. However, 

this proved to be a challenge for securing the LBT to the base plate of the tower because the 

space did not allow the top plate to clear the heads of the bolts. Therefore, three measures were 

taken to alleviate the problem. First the grooves in the base plate used to hold the bolts were inset 

¼ inch from the top surface of the base plate. Second, two 1/8 inch deep channels were cut along 

the entire length of the bottom of the top plate directly above the location of the grooves in the 

base plate. Finally, the heads of the bolts were machined down approximately one sixteenth of an 

inch. Ultimately, enough room was created to remove any impediment between the two plates. 

The mass of the top plate of the LBT was 9.23lb (4.187kg).  Figure 4-8 is a SolidWorks® 

illustration of the linear bearing table, and Figures 4-9 and 4-10 depict the linear bearing table 

alone and as it was mounted to the base plate of the tower respectively. 
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Figure 4-8: SolidWorks Illustration of the Linear Bearing Table Conceptual Design 

 

 

 

Figure 4-9: Linear Bearing Table (LBT) 
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Figure 4-10: LBT Mounted to Baseplate of Tower 

 

4.5. Secondary Components 

The secondary elements of the hybrid tower, such as the twin-rod guide assembly, the 

carriage, the anvil, and the DC powered hoist, were all consistent with test method of ND-001. 
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The anvil however was slightly altered. A tapped hole, used to attach a load cell, was inserted on 

the top surface of the anvil. Also, some clearance space was machined on the bottom surface of 

the plate holding the MEP pad to ensure that the load cell would not be damaged during an 

impact. These modifications allowed the force of the impact of the helmet with the anvil to be 

measured. The force measurement provided supplemental data not required by ND-001. Figures 

4-11, 4-12, and 4-13 are pictures of the twin-rod guide assembly/carriage, the anvil, and the DC 

powered hoist respectively.  

This section revealed that there were some comparable and contrasting hardware 

characteristics of the hybrid tower with NOCSAE’s drop tower and projectile method. Table 4-1 

itemizes the similarities and differences in those characteristics. In the upcoming   chapters the 

topic delves into the testing procedures including the software and hardware (chapter 5), and test 

helmets (chapter 6). Wherever it was relevant, the differences or similarities between the test 

method used in this analysis, including the impact properties that were measured and acquired, 

and those prescribed by NOCSAE were be highlighted.  
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Figure 4-11: Twin-Rod Guide Assembly with Carriage 

 

 

Figure 4-12: Anvil (Inset: Anvil with MEP Pad) 
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Figure 4-13: DC Powered Hoist 

 

Table 4-1: Characteristics of Hybrid vs. NOCSAE Tower & Projectile Impact Test 

Characteristic Hybrid Tower NOCSAE Drop Tower 
NOCSAE Projectile 

Impact 

Mount 
Free Standing, 

Anchored to Granite Pediment 

Attached to Wall, 

Anchored to Concrete 

Surface 

Housed on Rack 

Impact Type 
 Drop   

 Pendulum (Projectile) 
 Drop 

 Air Cannon 

(Projectile) 

Helmet 

Testing 

Capability 

 Football Helmet to Anvil 

 Football Helmet to Football 

Helmet 

 Baseball to Baseball Batter’s 

Helmet 

 Football Helmet to 

    Anvil 

 Baseball to 

    Baseball Batter’s    

Helmet 

Measurement 

Instruments 

 Tri-Axial Accelerometer 

 Piezoelectric Miniature 

Accelerometer 

 IEPE Force Sensor 

 Tri-Axial 

Accelerometer 

 Tri-Axial 

Accelerometer 

 Velocity Sensor 
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5. CHAPTER 5 – ANALYSIS SOFTWARE AND HARDWARE TOOLS 

Comprehensively, this experimental analysis was developed to acquire data to 

supplement the information produced when the test methods of ND-001 and ND-021 are 

conducted. NOCSAE uses the KME 200 Data Analyzer for post-processing data, and the 

standards do not endorse a system by a specific manufacturer. However, the standards do require 

that a data analyzer with capabilities equivalent to the KME 200 and a computer equipped with 

the appropriate software be employed. As with most empirical research, the backbone of this 

experimental analysis was the software and hardware devices that comprised the data acquisition 

system. Consequently, this chapter provides an account of the software and hardware constituents 

of the system. 

5.1. The Data Acquisition System 

Brüel & Kjær’s PULSE® is an analyzer platform used in Vibroacoustic, Electroacoustic, 

and Structural Dynamic applications. The system possesses real-time data acquisition, data 

management, and post-processing capabilities. The PULSE® platform contains software and 

hardware facets, both of which were utilized in this analysis. The following sections expound on 

these two elements citing equipment specific to this experiment. 

5.1.1. PULSE® Software 

 Most experimental measurement procedures can be disseminated into a logical sequence 

of events. The logical sequence of events includes transducer conditioning, basic measurement 

analysis, post-processing of analyzed data, and the display of results. For this analysis the 

PULSE® graphic user interface was used to initiate and carry-out the logical sequence of events. 

In PULSE® each event within the sequence is implemented with an Organizer function. The 

event and its corresponding Organizer function within PULSE® were as follows: 
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 Transducer Conditioning: Implemented with the ‘Configuration Organizer’ 

 Basic Measurement Analysis: Implemented with the ‘Measurement Organizer’ 

 Post-processing of Analyzed Data: Implemented with the ‘Function Organizer’ 

 Display of results: Implemented with the ‘Display Organizer’ 

Within the PULSE® environment, the Organizer functions are located in the dropdown menu of 

the ‘Organizer’ tab on the toolbar and are outlined in the following sections. 

5.1.1a. Configuration Organizer 

The Configuration Organizer was used to set-up the front-end configuration of PULSE®. 

This tool was used to select the accelerometers from the ‘Transducer Database’. The 

accelerometers were listed by serial number in the database. There is also an option to add 

accelerometers to the transducer database if they are not already listed. In addition, accelerometer 

properties such as sensitivity can be adjusted in the transducer database dialog box. Once the 

accelerometers were selected (or added) the serial number appeared in the dropdown queue of the 

‘Configuration Organizer’. Right clicking on the highlighted accelerometer serial number opens 

the Configuration Properties window, which provides a summary of the accelerometer settings 

and properties. As with most windows based software, the accelerometer can be renamed by 

double clicking on its icon in the dropdown queue.  

Four accelerometers and the load cell were added to the database for testing including the 

tri-axial accelerometer in the headform and the miniature accelerometer for the baseball adapter. 

The miniature accelerometer was positioned on the baseball adapter during pedestal and LBT 

testing and could be positioned on the proposed headform adapter during drop tests. The 

headform adapter is discussed further in Chapter 8. Figure 5-1 illustrates the Configuration 

Organizer and the Configuration Properties while Figure 5-2 depicts the Transducer Database 

window. 



42 

 

 

 

 

Figure 5-1: PULSE Transducer Configuration Organizer/Properties 

 

 

Figure 5-2: PULSE Transducer Database Administrator 
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5.1.1b. Measurement Organizer    

The Measurement Organizer provided basic auto and cross-spectral data, and time 

functions when available. This function was used to group the accelerometers as well as to select 

and assign the type of analyzer used to evaluate the accelerometer signals. In the dropdown queue 

of the measurement organizer the accelerometers were arranged in logical groups by right 

clicking the word ‘Group’ choosing ‘Insert signal’ and selecting the appropriate accelerometer. 

Further, one or more analyzers could be assigned to each group based on the type of analysis 

required. The FFT analyzer was used for this analysis and it was applied to the accelerometer and 

the force signals. It uses the Fast Fourier Transformation algorithm to calculate a spectrum from a 

time domain signal.  

Right clicking on an accelerometer in the queue opened the properties window for that 

particular accelerometer. In this window the sensitivity, offset, and gain of the accelerometer 

could be adjusted. Likewise, right clicking on an analyzer opened the properties window for that 

analyzer. Properties such as frequency lines, bandwidth, and averaging mode were adjusted in 

this window. In addition to assigning analyzers, the Measurement Organizer was also used to set-

up the test trigger. The trigger was a system feature that allowed the system to start and stop 

collecting data at a specified time or event. For each test, the trigger was assigned to the load 

(force signal) cell and set to start collecting data 5 milliseconds before impact and stop collecting 

data after the impact. Figure 5-3 is a screenshot of the Measurement Organizer queue displaying 

the Accelerometer and Force (load cell) groups, Figure 5-4 is the properties box for an 

accelerometer, Figure 5-5 shows the FFT analyzer property box, and Figure 5-6 illustrates the 

Trigger setup box. 
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Figure 5-3: PULSE Measurement Organizer 

 

 

Figure 5-4: PULSE Signal/Transducer Measurement Property Box 
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Figure 5-5: PULSE FFT Analyzer Property Box 

 

 

 

Figure 5-6: Trigger Properties Set-up Box 
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5.1.1c. Function Organizer    

As the name implies, this tool was used to implement various functions used to analyze 

the signals measured by the load cell and the accelerometers, and its main use was the post-

processing of the data. Analyzers were used to apply the selected function to the accelerometers. 

For each test in this analysis the Time function was applied to each axis of the Tri-Axial 

accelerometer in the headform, to the accelerometer attached to the baseball adapter, and to the 

load cell. In addition, the Frequency Response H2 function was applied to each axis of the Tri-

Axial accelerometer in the headform.  

The Time function allowed measurements to be acquired as a unit of measure versus 

time. Hence, in the case of the load cell the data was represented as Newton (N) versus time (sec). 

Accordingly, the accelerometer data was exhibited as acceleration (m/s
2
) versus time (sec). 

The Frequency Response H2 generated a mathematical representation, in terms of spatial 

or temporal frequency, of the relation between the input and output of a linear time-invariant 

system, commonly referred to as a Transfer Function. The Transfer Function of interest in this 

analysis was the ratio of the output acceleration to the input acceleration. The corporeal 

embodiment of this was the ratio of the acceleration of the Y axis of the headform with the 

baseball adapter acceleration. The value of the resulting Transfer Function was of course a unit 

less (m/s
2
/ m/s

2
) number. Right clicking on a function in the queue opened the ‘Function’ window 

in which the function could be applied to a signal (accelerometer or load cell) and implemented 

by an analyzer. Figure 5-7 displays a screenshot of the Function Organizer with the Frequency 

Response H-2 property window visible.  

 

http://en.wikipedia.org/wiki/LTI_system_theory
http://en.wikipedia.org/wiki/Time-invariant_system
http://en.wikipedia.org/wiki/Time-invariant_system
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Figure 5-7: Function Organizer with Frequency Response H-2 Property Window 

 

5.1.1d. Display Organizer and Workbook 

The two remaining features that finalized the logical sequence of events were the Display 

Organizer and the Workbook. The Display Organizer was used to create and display graphical 

representations of the data processed by the functions. Right clicking on a function display in the 

queue opened the window used to format properties of the graph such as axis units, coordinates, 

and color palettes. The Workbook tool provided a way to save a desired screen layout. Once the 

organizers and displays were arranged in the desired setting, the layout could be saved in the 

Workbook dropdown queue. In addition, each layout could be uniquely named. Double clicking 

on the layout name in the Workbook queue opened that particular layout. Figure 5-8 depicts the 

Display organizer with the Workbook queue to the right. 
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Figure 5-8: Display Organizer and Workbook Queue 

 

5.2. Hardware Components 

The hardware components consisted of the measurement devices and the data acquisition 

module coupled to a computer equipped with PULSE®. The measurement devices included the 

PCB Piezotronics Type 352A21 accelerometer and the Dytran Model 1051V4 IEPE Force Sensor 

(load cell). The data acquisition module was the Brüel & Kjær Type 3560-C. The accelerometer 

was attached to the outer surface of the concave adapter used to cradle the baseball, while the 

load cell was bolted between the pendulum and the concave adapter with the use of tapped holes. 

The data acquisition module was capable of supporting six input channels, five of which were 

utilized. Channels 1 through 3 were used for the headform tri-axial accelerometer, channel four 

was occupied by the adapter accelerometer, and the load cell was connected through channel five. 

Figure 5-9 illustrates the accelerometer and the load cell in relation to the concave adapter and 

Table 5-1 itemizes the specifications of the hardware components used during the analysis. 
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This chapter covered the software and hardware tools used to conduct the impact testing 

analysis, in the subsequent chapter the discussion targets the test methods and procedures that 

were implemented using these tools. Further, the validation of each method is assessed by virtue 

of its adherence to the corresponding NOCSAE procedure. 

 

 

Figure 5-9: Load Cell & Accelerometer Attached to Concave Baseball Adapter 
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Table 5-1: Specifications of Data Acquisition Hardware Components 

Component 
Manufacturer 

/Purpose 
Specifications 

 

 

PCB Piezotronics/ 

Measurement Device: 

Accelerometer placed 

on baseball adapter. 

   

Sens. (±15 %) =0.25 mV/(m/s²) 

Meas. Range = ±19600 m/s² pk 

Freq. Range (±5 %) = 1.0 to 10000 

Hz 

Freq. Range (±10 %) = 0.7 to 13 kHz 

Freq. Range (±3 dB) = 0.3 to 20000 

Hz 

Res. Freq. = ≥80 kHz 

Brdband. Res. (1) = 0.1 m/s² rms 

Temp. Range = -65 to 250 °F 

Excitation Voltage  = 18 ~ 30 VDC 

Current Excitation = 2~20 mA 

Height/Weight = .14in/.02oz 

 

 

Dytran/ Measurement 

Device: Dytran model 

1051V4 is an IEPE 

force sensor. Placed 

between Pendulum and 

baseball. 

 

    10 mV/lbf sensitivity 

    500 lbf compression range 

    500 lbf tension range 

    10,000 lbf maximum compression 

    500 lbf maximum tension 

    10-32 radial connector 

    1/4-28 tapped holes top and  bottom 

    28 grams,  Stainless steel 

    High natural frequency 

    IEPE 

 

 

Brüel & Kjær / Data 

Acquisition Module. 

Link between 

measurement devices 

and analysis software. 

 

  25 kHz analysis frequency range 

  Six input channels  

 Two generators with 25 kHz 

frequency      

  range 
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6. CHAPTER 6 - HYBRID TOWER IMPACT TEST METHODS AND ROCEDURES 

Initially, this analysis was inspired by the motivation to build and validate a drop impact 

tower to examine and quantify shock to the head through reliable and repeatable testing 

procedures. The tentative proposal involved conducting drop impact tests on football helmets 

using the anvil as the impact surface. However, the unpredictable nature of building and testing 

an experimental structure and the incongruences between predicted results and observed results 

altered the trajectory of the inquiry. As a result the latest embodiment of the project focused on a 

different objective and encompassed greater detail than the original proposal.  

The evolved mission still included validating the tower, but projectile impact testing of 

baseball batter’s helmets became the centric theme. Indeed, the methods of ND-001 & ND-021 

and the specifications of ND-022 & ND-023 remained the governing statutes. Ergo, test protocols 

such as helmet impact locations and baseball properties were consistent with those standards. In 

general, the only significant modifications included using a pendulum to deliver the projectile 

impact, adding static impacts using the pedestal, and the acquisition of force data. The following 

sections outline the test methods in the same order as each of the relevant NOCSAE standard in 

the continuing effort to exhibit the similarities and or differences in each approach. 

6.1. Hybrid Tower Helmet Test Methods 

In the spirit of order and completeness, the methods and specifications used in this 

analysis will be outlined as they applied to each standard successively from ND-001 through ND-

023. 

6.1.1. Test Methods As They Applied To ND-001 

Most of the information covered in ND-001governs the administration of football helmet 

drop impact testing and manufacturers’ responsibilities for helmet certification, which was 
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outside the scope of this analysis. The regulations that were common to all helmets tested 

including conditioning environment, instrument calibration, and system checks were adhered to 

and are addressed below. 

Conditioning Environment 

a) The standard requires helmets to be exposed to the testing environment a minimum of four 

hours prior to testing. During testing, the helmets were placed in the test environment within 

twenty-four hours, but no less than twelve hours prior to testing. 

b) In accordance with the standard, the temperature in the testing environment was maintained 

within the stipulated range of 72 F° ±5 F° (22 C° ±2 C°). Note*: Low temperature [32 F° (-3 

C°)] and High temperature [115 F° (46 C°)] tests were not conducted. 

 Instrument Calibration 

a) The only calibration requirement was that the data acquisition system correctly calculated 

Severity Index (SI) values ±3% across a range of 300 SI to 2495 SI. It must be noted that SI 

values were not determined by the data acquisition system, but by post-processing of the data 

acquired by the system. 

System Checks  

a) Trial runs were conducted before each battery of tests to ensure connections were secure and 

to verify that PULSE® was functioning as required. System checks were also performed after 

a software crash or an anomalous test result. 

6.1.2. Test Methods As They Applied To ND-021 

ND-021 outlines the method for protective headgear and projectile impact testing. 

Therefore, at this point it is fitting to address the differences in the method of the experimental 
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analysis and this standard. First, although the analysis complied with the regulation regarding the 

properties of the baseball, the projectile itself was not evaluated. Second, a pendulum was used to 

deliver the baseball to the headform in contrast to an air cannon. Finally, in addition to mounting 

the headform on a linear bearing table, the headform was also tested in a static position using the 

pedestal. The following stipulations were respected as they applied to this analysis. 

Headgear/Baseball Construction, Labeling, and Position 

a) The headgear used during testing was fabricated to remain on the wearer’s head during 

impact. The two batter’s helmets were made of rigid, durable material that would be 

considered resistant to weather elements. Helmet A was made of carbon fiber and Helmet B 

was made of plastic. The Pitcher hat however, was constructed of fabric and could not be 

considered resistant to weather elements. Helmet A and the Pitcher hat were clearly labeled 

with the name of the manufacturer, but only Helmet B, considered an amateur helmet, and the 

Pitcher hat were labeled with the size. 

b) The headgear was placed on the headform as per the standard, but the experiment deviated 

from the standard in regards to the distance between the projectile and the headform prior to 

executing a test. In tests using the pedestal and the linear bearing table, the headform was 

positioned so as to barely touch the baseball as the pendulum hung in its unimpeded vertical 

position. On the other hand, ND-021 requires the headform to be at or within twenty-four 

inches from the nozzle of the air cannon prior to the initiation of a test. Figure 6-1 is a picture 

of the three-sample headgear that was tested and Figures 6-2 through 6-4 are views of the 

inside of each headgear. The padded inner lining of the Pitcher hat significantly affects the 

value of the measured impact velocity, as will be stated later. 
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Figure 6-1: Sampled Headgear: Helmet A, Helmet B, and Pitcher Hat 

 

 

 

Figure 6-2: Inner Surface of Carbon Fiber Helmet A 
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Figure 6-3: Inner Surface of Plastic Helmet B 

 

 

Figure 6-4: Inner Surface of Fabric Pitcher Hat 
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c) The baseball was a Rawlings® Corked/Rubber Pill Yarn Wound Core ball. The ball was 

within the physical property guidelines with a weight of 141.7 grams and a circumference of 

9 inches. Determining the Compression-Deflection and Coefficient of Restitution (COR) for 

the baseball was not within the scope of this analysis. However, NOCSAE standard ND-027 

recommends using the guidelines stipulated by the American Society of Testing and 

Materials (ASTM) regulation F1887/1888 for calculating those values.  

Test Instruments and Equipment 

a) The list of suggested equipment included a projectile launching device, strike plate, 

electronic speed monitors, and a compression measuring device. In addition the standard 

required that the combined weight of the moving top layer of the LBT and the post to 

support the headform be no greater than 5.7 kg ±0.5 kg (12.57 lb. ± 1.1 lb.) As previously 

mentioned, the pendulum was used in place of an air cannon and the compression-deflection 

was not determined. Also, neither a strike plate nor electronic speed monitors were utilized. 

However, the combined weight of the top plate of the LBT and the headform support post 

was within the prescribed weight at 9.23 1b. 

6.1.3. Test Methods As They Applied To ND-022 

The crucial aspects of ND-022 that the experimental analysis abided by included impact 

locations and test requirements. 

Impact Locations 

a) The benefit of delivering the impacts to the helmet locations specified by ND-022 was the 

ability to form a congruent basis for comparison of results with findings of other analyses. 

However, during pedestal and linear bearing table testing only right side 90° impacts were 

delivered to the headform and each headgear. Figure 6-5 is a sketch taken form ND-022 
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showing the impact locations on the baseball batter’s helmet and Figure 6-6 depicts the 

position of the head for right side impacts on a linear bearing table. 

 

 
 

Figure 6-5: NOCSAE Impact Locations for Baseball Batter's Helmet 
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Figure 6-6: Right Side Helmet Impact on Linear Bearing Table 

 

Test Requirements 

a) Helmets may shimmy out of position after an impact; fortunately the standard allows the 

repositioning of helmets for proper fit after impact. Although the headform and each helmet 

was impacted several times (at least 5) during any particular test, only one sample of each 

helmet model was tested. In contrast, ND-022 requires three of each helmet model to be 

tested. 

6.1.4. Test Methods As They Applied To ND-023 

ND-023 is a laboratory procedural guide for certifying newly manufactured baseball 

helmets. Essentially, it is a concise itemized list referencing the various stipulations put forward 

in ND-001, ND-021, and ND-022. Hence, the applicability that governed the other standards was 

pertinent to ND-023 as well.  
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6.2. Hybrid Tower Test Procedures 

In Chapter 3 an overview of the four NOCSAE standards relevant to this experimental 

analysis was presented. In the previous section, the elements of the methods covered in those 

standards that were implemented in this project were presented. Those sections served as a 

backdrop for the focal point of this endeavor, which was the test procedure. In the upcoming 

sections the two primary elements of the test procedure are mapped, including the theoretical 

applications administered to the acquired data and the test process, which is covered in a 

subsequent section. 

6.2.1. Theoretical Applications Administered to the Acquired Data 

Applying theoretical equations to the data was guided by the paramount aspiration of the 

entire analysis, which was to discern and quantify certain empirical data for comparison with 

theoretical values.  Empirical data was collected by two means, instrument and observed. 

Through the use of the load cell and the accelerometers, instrument collected data included the 

impact force and the impact acceleration of the pendulum and the Y axis of the headform. 

Observable collected data included the pendulum rebound height during pedestal tests and the 

LBT travel distance (which was not used for reasons forthcoming) after impact. In addition to the 

energy equations used to derive the theoretical values, two more equation driven values were 

calculated including the Severity Index (SI) and the Head Impact Criterion (HIC). In the 

succeeding sections the context will hone in on illuminating the details of the theoretical 

applications beginning with the development of the energy equations. 

6.2.1a. Energy Equations as Applied to the Pedestal 

As stated earlier, the energy equations were used to quantify the empirical data for 

comparison with theoretical values, the most important value being the impact velocity of the 
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baseball. Frankly, determining the actual value of the velocity of the baseball was the crux of the 

experimental analysis.  

A sum-of-the-forces theoretical analysis of the pendulum to determine the baseball 

impact velocity would require calculating the moment of inertia of the T-beam relative to its point 

of rotation. Also, the corresponding equation would require taking the rotational viscous friction 

into account. Finally, the analysis would involve determining the applied torque. The resulting 

equation would yield angular acceleration and would be represented by the following equation; 

 
2 a

1
MgLsin B

ML
      

            (6-1) 

where ML is the moment of inertia of the T-Beam based on the assumption of a concentrated 

mass at the end, B is the rotational viscous friction of the bearings, a is the applied torque, and 

  is the angular acceleration. Technical constraints precluded the calculation of the inertia and 

friction terms on the right hand side of equation 6-1 for the pendulum in the hybrid tower’s test 

configuration. Therefore, in order to decipher what lay ahead and to move forward with the 

experimental analysis, a simplified assumption was made in regards to the pendulum analysis.  

The decision was made to treat the pendulum not as a continuous beam, but as a massless 

rod with a lumped mass at the end. The starting point for the assumption was based on applying 

the energy equation using the moment of inertia of the pendulum about its point of rotation ‘a’. In 

addition, to corroborate the assumption, the relationship between the angle that a pendulum arm 

subtends during its motion and the height above the equilibrium point was used in the starting 

derivation. Figure 6-7 is a picture displaying the relationship between the angle of the pendulum 

arm and the height above its vertical resting equilibrium point. The derivation of the energy 

equation that governed the pendulum based on the assumption follows Figure 6-7. 
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Figure 6-7: Simple Pendulum Physics as Applied to the Hybrid Tower 
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where aJ was the moment of inertia of the pendulum about its point of rotation ‘a’, m was the 

mass at the centroid of the pendulum,   was angular velocity, and g was the acceleration due to 

gravity.  

In general, the principle that forms the foundation for the assumption is based on a simple 

pendulum with the mass concentrated at the end in an environment that neglects friction and air 

resistance as is shown in Figure 6-8.  

 

 

Figure 6-8: Rotation of a Uniformed Rod About its Center of Gravity 

 

From Figure 6-8 it can be seen that the force required to rotate the rod can be determined by the 

following equation: 

P

L2
F W m g

L1
                 (6-4) 

where F is the required force, W is the weight measured at the center of gravity of the rod, L1 is 

the distance from the end of the rod to the center of gravity, and L2 is the entire length of the rod. 

The term on the right hand side of the equation (mpg) is the corresponding equation for force as 

applied to a massless rod with the mass concentrated at the end. In this case, the force (F) was 

measured with the load cell and the effective mass of the pendulum, which was used for the value 
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of mp was calculated by measuring the weight of the pendulum with a digital force gauge and 

then dividing that value by the acceleration due to gravity. 

Once equation 6-4 was developed, proceeding with the analysis was simply a matter of 

using the appropriate values based on the set-up of the test system. Therefore with the assumption 

of a concentrated mass at the end the pendulum’s moment of inertia about the pivot was J = mL
2
. 

The rest of the derivation was as follows: 

 P

2

P

m gL
2 1 cos

m L
                                 (6-5)                  

 
g

2 1 cos
L

    
 

Since 
2 2 2v L                                   

   2 2 g
v L 2 1 cos 2gL 1 cos

L
        

 v 2gL 1 cos     

v 2gh                               (6-6) 

where v was the theoretical tangential impact velocity of the pendulum and h was the vertical 

linear height measured from the tip of the pendulum to its equilibrium point at its resting position 

at the bottom, 
P

m was the effective mass of the pendulum, and L was the length of the pendulum. 

As the pedestal was a fixed structure, there was some rebound of the pendulum after impact. The 

hypothesis was that the sum of the rebound potential energy of the pendulum plus the kinetic 

energy of the baseball was equal to the potential energy of the initial position of the pendulum. 

Using energy equations, this hypothesis could be represented by implementing the following 
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derivation in which equation 6-6 could be modified to calculate the baseball velocity by 

incorporating the rebound height to yield the following equation: 

2

P 1 P 2 b b

1
m gh m gh m v

2
    

 P
b 1 2

b

m
v 2g h h

m
      (6-7) 

where mb was the mass of the baseball and h2 was the rebound height of the pendulum. Equations 

6-6 and 6-7 served as the foundation for the analytical analysis of the pendulum, and both 

equations emerged from the assumption illustrated in Figure 6-8.  

Obviously, this procedure constituted a rudimentary way of determining the theoretical 

velocity. However, the main tenet was to bear in mind that the length of a pendulum and the angle 

determine the maximum achievable tangential velocity at the base.  

6.2.1b. Energy Equations as Applied to the LBT 

The final desired destination when the energy equations were applied to the LBT was the 

same as for the pedestal with one adjustment. As the top plate of the LBT moved after impact, the 

pendulum did not rebound; consequently the assumption was that the total work energy 

performed by the pendulum was equal to the sum of the work done by the travel of the top plate 

of the LBT and the impact kinetic energy of the baseball. 

 It is well known that work energy is the product of force and distance traveled. Hence, 

an important factor was to consider if the work performed by the pendulum should have been 

calculated using the height (h) distance, which was the vertical linear path-independent distance 

traveled, or arc length, which was the rotational non-linear path-dependent distance traveled. Arc 

length was calculated as the product of the distance from the center of rotation to the point of 

interest (R), which in this case was the length of the pendulum and the angle θ, which was the 
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angle subtended by the pendulum arm. Unfortunately, many attempts to create a reasonably 

accurate model of the LBT using the energy equations based on the assumption were 

unsuccessful. One of the implications that may have precluded developing a justifiable model of 

the LBT is discussed further in chapter 8. Next the Severity Index (SI) is covered. 

6.2.1c. Severity Index (SI) 

The SI value is a unit less measure of the severity of impact with respect to the 

instantaneous acceleration experienced by the headform as it is impacted [8]. NOCSAE standard 

ND-021 requires that the headforms pass through a specific SI value within a specific impact 

velocity range. The data entered into the SI equation (2-1) was the x and y coordinate, time and 

acceleration values acquired by PULSE®. 

The impact acceleration values calculated by PULSE® were represented in meters per 

second squared by default. As a result, each value was divided by 9.8067 m/s^2 to derive the 

acceleration due to gravity g. The imported value for time was the time duration from the zero 

acceleration value just after the trigger to the point when the first impact peak returned to zero or 

within a reasonable approximation of zero at that time stamp. The aim was to determine the SI 

value of the pulse, which was essentially the area under the peak point of the acceleration curve. 

The integration was executed in Matlab®, and it was carried out for each of the five drops for the 

adapter accelerometer and for the Y axis of the tri-axial accelerometer in the headform. The 

values for the Y-initial response of the headform tri-axial accelerometer were multiplied by -1 

because they were negative due to its placement in the headform. An average SI was calculated 

for the four heights. Presently, it is worth mentioning that during pedestal testing an observable 

phenomenon lead to additional calculations. 

After examining the graphs of the pedestal test results it was evident that for the Y tri-

axial accelerometer in the headform, the area under the rebound acceleration peak appeared 
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greater than the initial impact acceleration peak. This observation inspired the decision to 

calculate the SI values for the second acceleration peak for the headform accelerometer. The Y-

rebound acceleration values were positive and did not require multiplication by -1. The time 

duration, however was taken between the second and third time values at which the acceleration 

was zero. In the following chapters the hypothesis driven by the rebound phenomenon is explored 

in greater detail. 

The reason for formulating the SI values during this analytical experiment was simply to 

form a compatible basis for comparison with NOCSAE standards. ND-021 requires that an 

appropriate response for the medium headform, the size used during testing, is to pass through 

1200 SI within the velocity range of 36-44 mph. The ambition of the experiment was not to prove 

this criterion, but simply not to operate beyond it. Also, as mentioned in Chapter 2, studies by 

Pellman et al. have shown that concussions occur in athletes at an approximate SI value of 300 

[6]. The other impact value derived was the HIC, which is discussed next. 

6.2.1d. Head Injury Criterion (HIC) 

The Head Injury Criterion (HIC) is a measure of the likelihood of head injury arising 

from an impact. It is a unit less value calculated using an average of the acceleration over a period 

of time during the impact. The HIC is a derivative of the Wayne State Tolerance Curve (WSTC), 

which was conceived to quantify head injury acceleration thresholds in vehicular impacts. 

However, the WSTC uses skull fracture as a criterion in contrast to brain injury or the onset of a 

concussion. Similar to the SI, the HIC is based on linear acceleration versus impact time duration. 

The time frame is usually between 3ms to 36ms with 15ms being the accepted standard. Also, the 

time frame is set to include the maximum acceleration pulse. The HIC is considered to be a more 

accurate measure of the severity of an impact because it is weighted with a time duration factor. 

http://en.wikipedia.org/wiki/Head_injury
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The same procedure applied to the data for the SI values was used to formulate the HIC 

equation (2-2) values. The x and y coordinates were imported into Matlab® for the integration 

step. Further, all the measures taken during pedestal testing to calculate the rebound SI values 

were repeated for the rebound HIC values. NOCSAE baseball standards do not make any 

provisions for calculating the HIC. However, research has shown that in general athletes suffer 

concussions around an HIC value of 250 [6]. Consequently, obtaining the HIC values was another 

way of creating a basis for comparison with other research findings. The succeeding section 

covers the test procedure. The curve for HIC15 is shown in the Appendix (A-3). 

6.2.2. Drop Heights and Test Technique 

The testing procedure was simple, which was to impact the headform and the headform 

fitted with a helmet multiple times from varying heights while it was attached to either the 

pedestal or the LBT.  

Drop Heights 

The headform and each helmet were impacted from four different drop heights five times 

each. Each height corresponded to a particular angle of the pendulum from its vertical 

equilibrium position and was represented by the vertical distance from the center of the headform 

up to the horizontal plane parallel to the end of the pendulum at the point where the baseball was 

attached. The height of the pendulum above the equilibrium position could be determined by 

implementing the principles of Figure 6-7 and equation 6-6. Table 6-1 itemizes the five heights 

including the four drop heights and the maximum height (not tested), the corresponding angles, 

and the resulting theoretical tangential velocity based on simple pendulum kinematics.  
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Table 6-1: Maximum Velocity of Pendulum Based on Height Above Equilibrium Point 

Theoretical Velocity At Equilibrium Position Based on Pendulum Length of 90in 

Degrees Height* (in) Velocity (mi/hr.) Velocity (ft./sec) Velocity (m/s) 

30 12 5.48 8.04 2.45 

45 26.36 8.1 11.88 3.62 

50 32.14 8.95 13.13 4.00 

60 45 10.59 15.53 4.73 

90 90 14.98 21.97 6.70 

 

Test Technique 

The test technique consisted of five straightforward steps which were repeated five times 

at each height and are outlined below. 

1) Assure that the pendulum was hanging in its equilibrium position. Also, the pedestal or the 

LBT was secured in such a manner that the baseball attached to the end of the pendulum was 

barely touching the headform or helmet at the equilibrium position. After impacts a helmet 

may shim out of position. Hence, verify that the helmet fit the headform the way it was 

intended to be worn. 

2) Elevate and maintain the pendulum at the desired drop height using the 6-foot extendable 

slide rule as shown in Figure 6-7 

3) Verify that the trigger in PULSE® was set, and then initiate the data collection sequence. 

4) Release the pendulum. 

a) Catch the pendulum at its maximum rebound height after it strikes the headform during 

pedestal tests and measure and record the height. 

b) Measure and record the travel distance of the LBT after impact (12in. & 26.36in.)  

5) Save and then export the data from PULSE® 
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The same test technique was used for both the pedestal and the LBT with one exception. 

Impacts were not conducted at the 32.14 in. and 45 in. drop heights. At those two heights the 

energy imparted to the system caused the LBT to impact the shaft supports at the far end and then 

rebound. Ultimately, it was determined that the data from those tests would be inconclusive. In 

the final section of this chapter the naming convention of each signal used during testing and the 

significance of the name is discussed. Also, the details of which signal response values were 

calculated and compared are outlined. 

6.2.3. Response Names and Comparison of Results 

Prior to the testing phase of the experimental analysis, there was no preset plan to adopt a 

particular naming convention for the signal responses. In fact, the response names are reminiscent 

of the location of the sensor or the observed phenomenon associated with that response during 

testing. Five sensors were used during testing including the load cell, miniature accelerometer, 

and the headform tri-axial accelerometer. The results for the load cell were not factored into the 

analysis, so in the spirit of clarification the names of the accelerometers are addressed next. 

The miniature accelerometer was placed on the baseball adapter, which was located on 

the end of the pendulum. For this reason, the response for that accelerometer was titled the 

‘Adapter’ accelerometer. Henceforth, any discussion that pertains to the acceleration or velocity 

of the adapter is in direct reference to the accelerometer on the baseball adapter located at the end 

of the pendulum. The significance of the adapter accelerometer was to determine the velocity of 

the pendulum on initial impact. The term ‘rebound height’ as it is used in this analysis, is strictly 

in reference to the height the pendulum achieved after it rebounded from striking the headform 

during pedestal testing. Rebound height is represented by h2 in equation 6-7 and is not associated 

with the rebound of the headform itself. The other two names of significance were Y-initial and 

Y-rebound. 
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In chapter 1 it was mentioned that the NOCSAE headform is a reasonable model of the 

human head and that it is fitted with a tri-axial accelerometer. Also, it seems feasible to assume 

that the accelerometer is an analog of the human brain. Therefore, the response of the 

accelerometer to an impact could simulate the response of the brain to an impact. This was the 

logic that drove the decision to use the names Y-initial and Y-rebound. The direction of the 

impact during testing required that only the Y axis response of the tri-axial accelerometer located 

inside the headform could be used for the analysis. Y-initial was perceived to be the initial 

movement of the brain in the direction of the impact upon impact. Y-rebound was perceived to be 

the movement of the brain in the direction opposite to impact during the head’s recoil from an 

impact. To clarify, Y-initial and Y-rebound represented the initial response peak and the recoil 

response peak respectively on the same signal response, which was the Y axis of the tri-axial 

accelerometer located inside the headform. This distinction is further explained in Figures 8-1 and 

8-2 in chapter 8. Table 6-2 itemizes the signal response titles, location, and significance.  

 

Table 6-2: Signal Response Titles and Significance 

Signal Response Titles and Significance 

Response 

Title 

Sensor 

Location 
Sensor Type Significance 

Adapter 

Baseball 

adapter 

at the end of 

the pendulum. 

Miniature 

accelerometer 

Pendulum 

acceleration/ 

velocity 

Y-initial 

Y axis of tri-

axial 

accelerometer 

inside 

headform. 

Tri-axial 

accelerometer 

Headform 

(brain) 

initial accel./ 

velocity 

in direction 

of impact 

Y-

rebound 

Y axis of tri-

axial 

accelerometer 

inside 

headform 

Tri-axial 

accelerometer 

Headform 

(brain) 

recoil accel./ 

velocity 

in opposite 

direction 

of impact 
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The result values generated in this analysis were either measured or calculated and then 

compared. The strategy was the same for both the pedestal and the LBT. The only difference was 

the comparisons for the LBT were restricted to the equivalent response for the pedestal. 

The measured values for each were the force, adapter accelerometer, and Y-initial and Y-

rebound. The calculated values for each were the pendulum velocity, the headform velocity, the 

SI and the HIC. For the pedestal the calculated velocities were compared to each other and to the 

velocities derived by equation 6-6 and 6-7. In addition, for the pedestal the SI and HIC values for 

the bare headform were compared with those with the headform fitted with each of the headgear 

and for the Y-initial versus Y-rebound. For the LBT, the calculated velocities were only 

compared to the velocity of the corresponding response for the pedestal. All the velocities, with 

the exception of equations 6-6 and 6-7, and the SI and HIC values were calculated using 

Matlab®. Table 6-3 lists the calculated and compared velocity values and the SI and HIC values 

for the experimental analysis. 

In chapter 7 the results of the tests are examined. As the details of the tests unfurl, it is 

important to remember that the main objective was not to create a method that seamlessly 

translated empirical data into theoretical values. It was, however, intended to validate the hybrid 

tower by developing a basis for comparison of the collected data with established findings. 
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Table 6-3: Calculated and Compared Velocity, SI, and HIC Values 

Calculated and Compared Velocity, SI, and HIC Values 

Title Calculated Represented 
Compared 

with 

Adapter 

Integrate adapter 

Accelerometer 

curve. 

Pendulum Velocity. 

Y-init./ 

Y-reb./ 

Eqns. 6-6/6-7 

Y-initial 

Integrate Y axis 

Accelerometer 

initial peak. 

Headform velocity 

From initial impact. 

Adapter/ 

Y-reb./ 

Eqns. 6-6/6-7 

Y-rebound 

Integrate Y axis 

Accelerometer 

recoil peak. 

Headform velocity 

From recoil of initial impact. 

Adapter/ 

Y-init./ 

Eqns. 6-6/6-7 

SI (not a 

velocity) 
Equation 2-1 

Threshold value for 

occurrence of concussion 

as stated by Pellman. 

 

Bare 

headform vs. 

Protected 

headform 

HIC (not a 

velocity) 
Equation 2-2 

Threshold value for 

occurrence of concussion 

as stated by Pellman. 

 

Bare 

headform vs. 

Protected 

headform 

Theoretical 

Velocity
5
 

Equation 6-6 

Theoretical velocity of a 

pendulum with the dimensions as 

that of the hybrid tower. 

Adapter/ 

Y-init./ 

Y-rebound 

Theoretical 

Velocity
5
 

Equation 6-7 

Hypothetical velocity of baseball 

based on the dimensions 

of pendulum and hypothesis. 

Adapter/ 

Y-init./ 

Y-rebound 
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7. CHAPTER 7 - TEST RESULTS 

Earlier the discussion alluded that multiple variables alter the trajectory of an 

experimental analysis as it is conducted. The variables range from manufacturing setbacks, if 

building a system is involved, to unforeseen shortfalls in the test method. However, an important 

component in the process is whether the results remain consistent within the scope of 

adjustments. As the test results are examined the presence of consistency within them will be 

emphasized. In each case the headform was used as the base value. In each section the review of 

the results begin with the pedestal test results followed by the test results of the LBT. However, 

the tables will have the results for both structures to facilitate comparison. 

7.1. Pedestal and LBT Test Results 

7.1.1. Measured Velocities vs. Energy Equation Derived Velocity Values 

For the pedestal, the headform and each helmet were impacted at the four drop heights 

five times each. At each height the adapter velocity value for the headform was the closest to the 

value derived by equation 6-6. The adapter velocities for Helmet-B had the second closest values 

followed by the adapters for Helmet-A, and then the Pitcher hat. These results seemed plausible 

in the sense that the bare headform offered no deflection while the Pitcher hat, which had the 

most padding, offered significantly more energy absorption. In each instance the velocity of Y-

initial in the headform was less than the adapter velocity, as it should have been. However the 

second peak, which was classified earlier as the Y-rebound, was the highest of the velocities 

including those derived by equation 6-6. This phenomenon may be related to the fact that more 

energy might be associated with the rebound of the impact than the impact itself. These trends 

were consistent for Y-rebound for the headform and the headgear at each drop height for equation 

6-6. 
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In contrast, the velocity values generated by equations 6-7 differed significantly from the 

measured values. They were much larger values. The adapter for the headform had the highest of 

these values, followed by the adapter for Helmet A, but surprisingly the values for the adapter for 

the Pitcher Hat were slightly higher than those for Helmet B’s adapter values. The focus now 

shifts to the LBT. 

NOCSAE does not have a standard that uses a pedestal for testing baseball headgear, 

therefore the pedestal tests in this experimental analysis was one of the test method modifications 

mentioned earlier.  The use of a LBT is the prescribed method for testing baseball headgear.  

The data pool for the LBT tests was half that of the pedestal because tests were not 

conducted at 32.14in and 45in. drop heights. The test results were not in accordance with what 

was expected. The results for Helmet B turned out to be inconclusive. The measured velocity 

values for the adapter were very low for Helmet B. There must have been an arbitrary occurrence 

which affected the instrument readings. That incident constituted one of the unforeseen 

developments that can arise in an experimental analysis. The adapter velocities were not as high 

as those of the pedestal, but they were consistent in the sense that the adapter headform had the 

highest values while the adapter Pitcher hat had the lowest. Unlike the pedestal results, the Y-

rebound velocities were smaller in value than the adapter velocities, but greater than the Y-initial 

velocities. Those findings were found to be more closely aligned with general intuition. The 

aforementioned results were consistent for the headform and each headgear at both heights with 

the exception of Helmet B. 

In section 6.2.1b it was mentioned that attempts to reasonably model the LBT using the 

energy equations involving work were unsuccessful. One of the possibilities for this could have 

been the rods on which the LBT travelled. Maybe there was some bending in the rods due to the 

combined weight of the LBT and the headform (23.2lb) that could have absorbed some energy 
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from the system. Of course, this notion is purely conjecture. Figure 7-1 itemizes the average 

velocity values of each drop height for the headform and each headgear. The cells bordered in 

black are measured velocities, the green text compares measured velocity with equation 6-6 and 

the red text is a comparison with equation 6-7. 

 

 

Figure 7-1: Measured Velocities vs. Velocities Derived by Energy Eqns. for Pedestal & LBT 

 

Test Element

12 inch 26.36 inch 32.14 inch 45 inch 12 inch 26.36 inch

mi/hr mi/hr mi/hr mi/hr mi/hr mi/hr 

Headform

Adapter 5.165 7.939 9.089 10.735 4.976 7.704

Engy. Eqn. (6-6) 5.470 8.107 8.951 10.592 N/A N/A

Engy. Eqn. (6-7) 28.003 42.984 47.601 57.179 N/A N/A

Y-Initial 3.329 4.660 5.109 5.872 3.361 4.735

Y- Rebound 6.871 9.886 10.851 12.451 4.260 6.274

Helmet A

Adapter 4.455 6.568 7.383 8.514 4.395 6.255

Engy. Eqn. (6-6) 5.470 8.107 8.951 10.592 N/A N/A

Engy. Eqn. (6-7) 28.155 42.382 46.508 55.312 N/A N/A

Y-Initial 3.141 4.378 4.733 5.430 3.213 4.524

Y- Rebound 6.307 8.990 9.861 11.431 3.510 5.331

Helmet B

Adapter 3.849 7.490 8.375 10.036 0.817 1.383

Engy. Eqn. (6-6) 5.470 8.107 8.951 10.592 N/A N/A

Engy. Eqn. (6-7) 27.384 40.469 45.010 54.335 N/A N/A

Y-Initial 3.368 4.616 5.017 5.784 3.289 4.649

Y- Rebound 6.999 9.688 10.574 12.117 3.974 5.919

Pitcher Hat

Adapter 4.024 5.924 6.682 7.825 3.887 5.850

Engy. Eqn. (6-6) 5.470 8.107 8.951 10.592 N/A N/A

Engy. Eqn. (6-7) 28.458 42.584 46.646 55.235 N/A N/A

Y-Initial 3.028 4.306 4.736 5.465 3.049 4.386

Y- Rebound 5.969 8.517 9.440 11.002 3.472 5.405

PEDESTAL LBT

AVERAGE VELOCITY OF 5 TEST RUNS
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7.1.2. Severity Index (SI) & Head Injury Criterion (HIC) 

The central theme for the SI and HIC values was the same as it was for the velocity 

value, which was consistency. In the pedestal results, once again the adapter for the headform 

yielded the highest values in both the SI and HIC categories. There were two instances where the 

headform adapter SI value stood out. First at the 32.14in drop height the SI value came very close 

to the NOCSAE recommended value of 1200 for the medium headform. Second, at the 45in. drop 

height the SI value exceeded the NOCSAE recommended value of 1200 for the medium 

headform. The NOCSAE value only pertains to the response of the tri-axial accelerometer in the 

headform, but if the true baseball velocity is close to those adapter values, then this may be an 

indication that the test went beyond the 36-44 mph range. Those results seemed feasible because 

at those two drop heights the theoretical baseball velocity derived by using equation 6-7 

consistently exceeded the NOCSAE maximum velocity value range of 36-44mph. Also, the bare 

headform offers no impact mitigation. This result did seem to add some validity to the premise 

that the hybrid tower could be used to form a basis for comparison of collected data with 

established findings. Also, it raised the question of whether the energy equations were catering 

for system properties that the sensors were not.  

Consistent with the velocity results, the Pitcher hat values were the lowest, but in this 

batch of results Helmet A generated higher values than Helmet B for most of the adapter and Y-

initial accelerometers values. Helmet A was composed of carbon fiber which is a sturdier material 

than the plastic used for Helmet B. Yet, Helmet B yielded lower SI and HIC values for some of 

the initial impact velocities. This may have quite possibly been related to the restitution energy of 

the helmet materials. 

As evident in Figure 6-4, the Pitcher hat was the most padded of the three headgears thus 

its low SI and HIC values were congruent with the physics of the experiment. In terms of crossing 
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the SI (300) and HIC (250) concussion threshold for most athletes, neither the Y-initial nor the Y-

rebound responses exceeded the threshold values. The velocity values for these responses were 

relatively low, so the low SI and HIC numbers made sense. 

 Finally, one more consistent trend was observed in the pedestal results. Identical to the 

velocity results, the SI and HIC values for the headform Y-rebound was greater than the SI and 

HIC values of the Y-initial for each headgear at every drop height. This fact was exemplified by 

plotting the Y-initial and Y-rebound SI and HIC values for the bare headform and the headform 

with each headgear and extrapolating the curve. Also, the theoretical SI and HIC values at which 

concussions occur according to Pellman were represented by a horizontal line on the plot as well. 

For the bare headform and for the headform fitted with each headgear the Y-rebound 

curve was steeper and reached the SI and HIC horizontal line faster than Y-initial. The values 

when the headgear was fitted with Helmet A and Helmet B were close, but Y-rebound was 

consistently a steeper curve compared to Y-initial. Further, as with all the results, the curve for 

the Pitcher hat was the shallowest. Y-rebound for the bare headform crossed the SI line in the 

range of 70~75 mph. For Helmet A the range was 80~90 mph, and for Helmet B and the Pitcher 

hat the range was 75~80 mph. The Y-rebound HIC ranges were similar to the SI values. The 

range for the bare headform was of 70~75 mph. For Helmet A and the Pitcher hat the range was 

80~90 mph, and for Helmet B the range was 80~85 mph. Those observations lend further 

credence that the rebound of the impact may have more energy than the impact itself.  

There were only two observations that could be gleaned from the LBT SI and HIC 

values. Again, this was due to the elimination of two drop heights.   

First, it was obvious that with such small impact velocity values the occurrence of SI 

values above the NOCSAE standard for the medium headform would disappear. Second, unlike 

the pedestal, for the most part the Y-initial SI values were greater than those of the Y-rebound. As 
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before, the adapter accelerometer SI and HIC values were the highest. Figures 7-2 and 7-3 list the 

average SI and HIC values respectively for all the test elements. The cell outlined in black 

exceeds the NOCSAE SI standard of 1200 for the medium headform. Figures 7-4 ~ 7-15 illustrate 

the extrapolated plots of the Y-initial and Y-rebound SI and HIC curves for the bare headform 

and the headform fitted with each headgear. Figures 7-16 ~ 7-27 display the average adapter and 

headform Y axis acceleration responses at each drop height for the pedestal and LBT 

respectively. The peaks of the Y-initial response and the Y-rebound response are reversed on the 

Y tri-axial acceleration graphs due to the headform tri-axial accelerometer placement during 

testing. In general the Y-initial peak should have been positive and the Y-rebound peak should 

have been negative. Also, the wider area under the Y-rebound peak is clearly evident on the Y tri-

axial plots. 

In the closing chapter the significance of the results are discussed. In addition, the short 

comings of the hybrid tower and the applied test method are addressed. Finally, the suggestions 

for future work are covered. 
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Figure 7-2: Average Severity Index (SI) Values for Pedestal & LBT Tests 

 

Test Element

12 inch 26.36 inch 32.14 inch 45 inch 12 inch 26.36 inch

Headform

Adapter 246.844 816.160 1163.440 1876.760 199.213 662.903

Y-Initial 19.860 52.209 67.664 101.729 17.185 46.930

Y- Rebound 38.084 99.011 125.075 175.801 10.892 32.669

Helmet A

Adapter 82.972 313.306 460.798 673.804 89.121 321.084

Y-Initial 15.365 38.417 49.048 72.074 14.336 37.208

Y- Rebound 27.018 69.265 87.235 126.071 6.882 21.044

Helmet B

Adapter 56.859 264.987 378.633 697.093 6.234 25.162

Y-Initial 13.813 37.759 49.309 75.745 11.906 35.765

Y- Rebound 33.975 82.662 104.393 147.909 8.722 26.041

Pitcher Hat

Adapter 48.711 146.003 198.179 314.875 48.722 161.712

Y-Initial 9.507 24.787 32.423 48.851 9.570 25.802

Y- Rebound 25.958 67.227 87.418 128.734 6.609 23.786

AVERAGE SI OF 5 TEST RUNS

PEDESTAL LBT
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Figure 7-3: Average Head Injury Criterion (HIC) for Pedestal & LBT Tests 

 

 

 

 

 

 

 

 

 

 

Test Element

12 inch 26.36 inch 32.14 inch 45 inch 12 inch 26.36 inch

Headform

Adapter 103.931 313.377 439.360 690.511 37.236 116.613

Y-Initial 10.141 23.205 29.955 42.428 5.910 14.709

Y- Rebound 27.705 73.076 92.236 130.070 6.847 18.771

Helmet A

Adapter 38.032 121.460 204.850 299.939 18.279 61.420

Y-Initial 6.638 15.895 18.906 27.532 4.259 10.762

Y- Rebound 20.799 53.848 68.860 98.148 4.497 11.994

Helmet B

Adapter 8.353 132.873 182.331 309.557 0.603 2.374

Y-Initial 6.864 16.849 21.637 32.242 4.115 11.100

Y- Rebound 24.508 60.816 76.726 108.681 5.878 16.754

Pitcher Hat

Adapter 27.147 72.631 96.350 148.270 13.441 38.786

Y-Initial 5.751 15.592 20.225 29.314 4.011 10.085

Y- Rebound 18.842 46.341 59.949 88.540 3.944 14.089

AVERAGE HIC OF 5 TEST RUNS

PEDESTAL LBT
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Figure 7-4: Headform SI Values - No Protection - Pedestal Tests 

 

 

Figure 7-5: Headform HIC Values - No Protection - Pedestal Tests 
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Figure 7-6: Headform SI Values - Helmet A - Pedestal Tests 

 

 

Figure 7-7: Headform HIC Values - Helmet A - Pedestal Tests 
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Figure 7-8: Headform SI Values - Helmet B - Pedestal Tests 

 

 

Figure 7-9: Headform HIC Values - Helmet B - Pedestal Tests 
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Figure 7-10: Headform SI Values Pitcher Hat - Pedestal Tests 

 

 

Figure 7-11: Headform HIC Values - Pitcher Hat - Pedestal 

 

 

 

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

S
I 

V
a

lu
es

 

Baseball Velocity - mph 

Headform SI Values Pitcher Hat- Pedestal Tests 

Initial Impact - Pitcher Hat

Rebound - Pitcher Hat

Initial Impact - Headform

Rebound - Headform

Concussion Level

Poly. (Initial Impact - Pitcher

Hat)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100

H
IC

 V
a

lu
es

 

Baseball Velocity - mph 

Headform HIC Values - Pitcher Hat - Pedestal Tests 

Initial Impact - Pitcher Hat

Rebound - Pitcher Hat

Initial Impact - Headform

Rebound -- Headform

Concussion Level

Poly. (Initial Impact - Pitcher

Hat)



85 

 

 

 

 

Figure 7-12: Headform SI Values - Initial Impact - Pedestal Tests 

 

 

Figure 7-13: Headform SI values - rebound - Pedestal Tests 

 

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

S
I 

V
a

lu
es

 

Baseball Velocity - mph 

Headform SI Values - Initial Impact - Pedestal Tests 

Headform Only

Headform + Helmet A

Headform + Helmet B

Headform + Helmet C

Concussion Level

Poly. (Headform Only)

Poly. (Headform + Helmet A)

Poly. (Headform + Helmet B)

Poly. (Headform + Helmet C)

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

S
I 

V
a

lu
es

 

Baseball Velocity - mph 

Headform SI Values - Rebound- Pedestal Tests 

Headform Only

Headform + Helmet A

Headform + Helmet B

Headform + Helmet C

Concussion Level

Poly. (Headform Only)

Poly. (Headform + Helmet A)

Poly. (Headform + Helmet B)

Poly. (Headform + Helmet C)



86 

 

 

 

 

Figure 7-14: Headform HIC Values - Initial Impact - Pedestal Tests 

 

 

Figure 7-15: Headform HIC Values - Rebound - Pedestal Tests 
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Figure 7-16: Pendulum Impact Acceleration for 12 Inch Drop Height 

 

 

Figure 7-17: Pendulum Impact Acceleration for 26.36 Inch Drop Height 
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Figure 7-18: Pendulum Impact Acceleration for 32.14 Inch Drop Height 

 

 

Figure 7-19: Pendulum Impact Acceleration for 45 Inch Drop Height 
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Figure 7-20: Acceleration Plot for Y Axis of Headform Tri-Axial at 12 Inch 

 

 

Figure 7-21: Acceleration Plot for Y Axis of Headform Tri-Axial at 26.36 Inch 
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Figure 7-22: Acceleration Plot for Y Axis of Headform Tri-Axial at 32.14 Inch 

 

 

Figure 7-23: Acceleration Plot for Y Axis of Headform Tri-Axial at 45 Inch 
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Figure 7-24: Pendulum Impact Acceleration for 12 Inch Drop Height 

 

 

Figure 7-25: Pendulum Impact Acceleration for 26.36 Inch Drop Height 
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Figure 7-26: Acceleration Plot for y Axis of Headform Tri-Axial for 12 Inch 

 

 

Figure 7-27: Acceleration Plot for Y Axis of Headform Tri-Axial for 26.36 Inch 
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8. CHAPTER 8 - CONCLUSIONS 

At the onset of this academic quest the fundamental goal was to develop a means to more 

reasonably quantify head shock due to impact. The targeted approach to achieving this objective 

was to modify existing NOCSAE test methods. The telescopic outlook was to generate results 

that could possibly be added to existing findings geared towards a better understanding of the 

contributing factors of TBIs. However, although the unpredictable nature of hands-on 

experimentation may have changed the trajectory of this experimental analysis, the final 

destination was still achieved. As the results are discussed the examiner must remain vigilant to 

realize the accomplishments as measures of success. 

8.1. Discussion of Results 

As mentioned in one of the opening chapters of this report, this experimental analysis 

was a dual faceted endeavor with physical and theoretical aspects. Hence, the synopsis of the 

results covers the theoretical application, as well as the physical phase. The physical phase is 

addressed first. 

8.1.1. Results of Physical Component 

Considering the logistics that were involved in its fabrication and assembly, the physical 

embodiment of the hybrid tower itself was an accomplishment. The customizable design of the 

hybrid tower provided the ability to conduct both static and LBT tests. During static tests the 

headform was attached to the pedestal which was secured to the base plate. Conversely, with a 

slight modification the pedestal could be removed and the LBT could be installed. Installation of 

the LBT provided the ability to conduct tests comparable to those proposed by ND-021 and ND-

022.   
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In each configuration the pendulum was used to deliver the impacts. Drop tests were not 

conducted, but the baseplate was designed to accommodate installation of the anvil used in drop 

tests. In general, the hybrid tower could be configured to execute baseball to helmet, helmet to 

helmet, and helmet to anvil impact tests. Also, the proposal to use a pendulum could be further 

validated by the fact that Withnall and Bayne chose to patent the pendulum concept that they 

introduced into their design. Finally, NOCSAE itself is in the process of evaluating the proposal 

for a test method in which a Pneumatic Ram may replace the drop and projectile impact methods 

[8]. Taken as a whole, the aforementioned factors help validate the hybrid tower and serve to 

establish it as the first measure of success for this experiment. An illustration of NOCSAE’s 

proposed Pneumatic Ram can be viewed in Appendix A-1. 

8.1.2. Results of Theoretical Component 

The destination of this experimental analysis during its latest iteration remained the same 

as the original ideology. Therefore, as the theoretical results are scrutinized the intent was to 

concentrate on the factors that helped realize that goal. 

The pedestal test results revealed that the rebound acceleration of the headform from an 

impact was greater than the initial headform impact acceleration. This observation may form a 

basis for the consideration that rebound energy may be a greater contributor to TBIs than the 

initial impact energy. The pedestal tests may not be relevant to the glancing impacts that occur in 

football, but in a stationary setting, such as a batter in baseball they seem applicable. Further, 

when the Y-initial and Y-rebound SI and HIC values were plotted and extrapolated it was evident 

that the curves for Y-rebound values were steeper and reached the threshold for concussion point 

as stated by Pellman faster than the Y-initial curve. This was true for the bare headform and the 

headform fitted with each helmet. Those results make a claim that based on the limited velocity 

values achieved during testing, and relative to the comparison of the data generated by this 
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experiment with that of Pellman as illustrated in Figures 7-4 ~ 7-15, it appears that helmets do not 

remove the potential for injury. 

Figure 8-1 illustrates the first 30 milliseconds of the Y axis of the headform tri-axial at a 

drop height of 45 inch for the pedestal. Notice the greater area under the Y-rebound peak 

compared to the Y-initial impact peak. To build on the discussion in 6.2.3, Y-initial and Y-

rebound are simply the first and second peaks respectively of the response of the Y axis of the tri-

axial accelerometer located inside the headform. Figure 8-2 inverses the Y-initial peak so it can 

be compared side-by-side with the Y-rebound peak. 

 

 

Figure 8-1: First 30 msec of Headform Y Axis Response at 45 Inch for Pedestal 
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Figure 8-2: Greater Area under Rebound Peak than Initial Impact Peak 
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possessed more ‘give’, whereas Helmet A’s rigid carbon fiber design ‘transferred’ more of the 

energy. This was the hypothesis that seemed plausible to explain the slightly higher SI and HIC 

values for Helmet A during pedestal tests.  

There were some anomalies in the LBT results as well. The most obvious of these were 

the unusually low values for the pendulum (adapter) accelerometer for Helmet B, which may 

have been attributed to instrument or system error.  

The hypothesis concerning the LBT was that the difference between the work performed 

by the pendulum and the work performed by the top slide of the LBT should result in the baseball 

impact energy. This speculation seemed reasonable, but the notion to use the arc distance as 

opposed to the linear (height) distance was debatable. Unfortunately, preliminary analysis of the 

LBT resulted in conflicting results that were not resolved. Consequently, it was evident that there 

was some energy that went unaccounted for during LBT tests. One area that seemed suspect was 

the rods on which the LBT travelled. Maybe there was some bending in the rods due to the 

combined weight of the LBT and the headform (23.2lb) that could have absorbed some energy 

from the system.  

Based on the constraint of the fixed length of the pendulum, an actual impact velocity of 

70 mi/hr. may have been unattainable. However, some of the velocity values determined using 

equations 6-7 did reach 55 mi/hr., and since these are energy equations it proves that the Hybrid 

tower is capable of imparting energy values equal to or greater than those delivered in NOCSAE 

tests.   

As stated, some of the unaccounted energy could have been in the form of the helmet 

material restitution energy. The restitution energy was not calculated in the analysis. However, 

some of the energy loss could have been determined by calculating the value of the following 

equation: 
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      2 2

P 1 2

1
m v v

2
                    (8-1) 

where mp was the effective mass of the pendulum and v1 and v2 were its velocities before and after 

impact respectively. Ultimately, the consistent average transfer function value of .9 for the 

headform verified that as long as the impact angle or height could be measured, the assumption 

that gave rise to the implementation of equation 6-6 was sufficient. The bottom line is that the 

input energy can be quantified using the pedestal rebound energy and the LBT kinetic energy and 

whatever energy is left over minus system damping is equivalent to the kinetic energy of the 

baseball. 

Perhaps there were no groundbreaking revelations made during the theoretical 

applications of the data. However, the observance that the  rebound from the impact carries more 

energy and may cause more damage than the initial impact itself, and the congruency between the 

measured impact velocities and the velocities derived using equation 6-6 do help to signify a 

measure of success. 

8.2. Moving Forward 

In certain situations to move forward successfully requires looking back. Consequently, 

before advocacy for future tests can be proposed, this section opens with a retrospective 

examination of the areas for improvement with the experimental analysis. 

8.2.1. Areas for Improvement 

There were two concerns that arose during testing. First, the procedure to position the 

baseball at the drop height was flawed. Lifting the pendulum to the desired height was acceptable, 

but manually holding it in place before the drop was not. One possible solution would be to 

design a ruled or calibrated stand with a removable pin or locking mechanism on which the end 

of the pendulum could be placed. In order to release the pendulum, the pin would be removed or 
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the locking mechanism would be released. This concept would remove the possibility of human 

error by ensuring that the same height is achieved each time. The second concern was the length 

and stability of the LBT. Test conducted using the LBT were restricted to the 12in and 26.36in 

drop heights because the top slide of the LBT impacted the shaft supports at the higher drop 

heights. Increasing the LBT from three feet to possibly six feet could alleviate that problem. Also 

adding more shaft supports and placing the bearings in a position which would allow the table to 

slide above the shafts may yield better results. 

8.2.2. Recommendations for Future Test 

The drop impact test method was not evaluated during this experimental analysis, for this 

reason that may be an appropriate starting point for future test. One possible adaptation to the 

NOCSAE drop test method could be to record the acceleration of the impact by positioning an 

accelerometer at the point of impact between the headform and the anvil. This modification to the 

method would add an extra stream of data. To facilitate accelerometer placement a headform 

adapter could be designed. The headform adapter would be attached to the headform at the point 

where the headform makes contact with the anvil. Basically, the adapter would serve the same 

purpose that the baseball adapter did in this analysis. Figure 8-3 is a conceptual model of the 

headform adapter and there are two more illustrations of the adapter in appendix section A-2.  

Finally, future testing could also involve testing the effectiveness of different shock attenuation 

materials. These fabrics could either be used as helmet inserts or they could be used to construct 

the helmet itself. Essentially, boundless options lie on the horizon. 
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Figure 8-3: Conceptual design of Headform Adapter for Drop Impact Tests 

 

The work performed in this experimental analysis can be used as the foundation for 

research of much broader latitude. Most of the objectives that were laid out were achieved and 

information that could possibly be added to the current knowledge base aimed at TBI research 

was generated. As the work progresses, the focus should be to propose a model to help 

understand what is occurring at the point of impact and not what is measured due to the impact. 

This would be necessary to develop effective shock mitigating methodologies. Ultimately, if the 

two factors necessary to validate an experiment of this nature are to one conceive, design, build, 

and test an impact test structure with a concept similar to a future NOCSAE proposal and to two 

help elucidate the characteristics of the contributing biomechanical factors of TBIs, then this 

experimental analysis was a triumph. 
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9. APPENDIX 

A-1. NOCSAE Proposed Pneumatic Ram 

 

 

Figure 9-1: NOCSAE's Proposed Pneumatic Ram [8] 
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A-2. Proposed Headform Adapter 

  

 

Figure 9-2: Inner Surface of Proposed Headform Adapter for Drop Tests 

 

 

Figure 9-3: Impact Surface of Proposed Headform Adapter 
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A-3. HIC 15 Curve 

 

 

Figure 9-4: Skull Fracture Curve for HIC 15 [16] 
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A-4. Sample Matlab® Code 

 
%% Head Injury Criteria Y-Tri-Axial 2nd Peak 

%% LBT Right Side Impacts (Feb 19 2015)Weighted/Non-Weighted 

%% Drop Tower/Pendulum Thesis 

%% MAR 1 2015 

  %% Importing Data Points from Excel for Helmet A 

********************************************************************************************** 

%%  LBT HelmetA Y-Tri-Axial Accelerometers 2nd Peak 

**************************************************** 

 %% ************************* WEIGHTED *************************************************************** 

 %% 12 Y-Tri----------------------------------------------------------------------------- 

HelmetA_12A_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','12','X3:X172'); 

HelmetA_12A_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','12','Y3:Y172'); 

HelmetA_12B_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','12','X3:X172'); 

HelmetA_12B_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','12','Z3:Z172'); 

HelmetA_12C_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','12','X3:X172'); 

HelmetA_12C_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','12','AA3:AA172'); 

HelmetA_12D_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','12','X3:X172'); 

HelmetA_12D_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','12','AB3:AB172'); 

HelmetA_12E_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','12','X3:X172'); 

HelmetA_12E_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','12','AC3:AC172'); 

HelmetA_12avg_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','12','X3:X172'); 

HelmetA_12avg_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','12','AD3:AD172'); 

  

%% 26 Y-Tri----------------------------------------------------------------------------- 

HelmetA_26A_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','X3:X153'); 

HelmetA_26A_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','Y3:Y153'); 

HelmetA_26B_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','X3:X153'); 

HelmetA_26B_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','Z3:Z153'); 

HelmetA_26C_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','X3:X153'); 

HelmetA_26C_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','AA3:AA153'); 

HelmetA_26D_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','X3:X153'); 

HelmetA_26D_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','AB3:AB153'); 

HelmetA_26E_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','X3:X153'); 

HelmetA_26E_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','AC3:AC153'); 

HelmetA_26avg_trix = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','X3:X153'); 

HelmetA_26avg_triy = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36','AD3:AD153'); 

  

 %% *****************************  NON - WEIGHTED 

************************************************************ 

 %% 12 Y-Tri----------------------------------------------------------------------------- 

HelmetA_12A_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','X3:X145'); 

HelmetA_12A_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','Y3:Y145'); 

HelmetA_12B_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','X3:X145'); 

HelmetA_12B_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','Z3:Z145'); 

HelmetA_12C_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','X3:X145'); 

HelmetA_12C_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','AA3:AA145'); 

HelmetA_12D_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','X3:X145'); 

HelmetA_12D_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','AB3:AB145'); 

HelmetA_12E_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','X3:X145'); 

HelmetA_12E_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','AC3:AC145'); 

HelmetA_12avg_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','X3:X145'); 

HelmetA_12avg_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','12NW','AD3:AD145'); 

 %% 26 Y-Tri----------------------------------------------------------------------------- 

HelmetA_26A_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','X3:X151'); 

HelmetA_26A_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','Y3:Y151'); 

HelmetA_26B_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','X3:X151'); 

HelmetA_26B_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','Z3:Z151'); 

HelmetA_26C_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','X3:X151'); 

HelmetA_26C_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','AA3:AA151'); 

HelmetA_26D_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','X3:X151'); 

HelmetA_26D_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','AB3:AB151'); 

HelmetA_26E_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','X3:X151'); 

HelmetA_26E_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','AC3:AC151'); 

HelmetA_26avg_trixNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','X3:X151'); 

HelmetA_26avg_triyNW = xlsread('Velocity HelmetA 19 FEB.xlsx','26.36NW','AD3:AD151'); 

  

 %% Importing Data Points from Excel for Helmet B 

********************************************************************************************** 

%% LBT HelmetB Y-Tri-Axial Accelerometers 2nd Peak 

***************************************************** 
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 %% *************************WEIGHTED 

********************************************************************* 

 %% 12 Y-Tri----------------------------------------------------------------------------- 

HelmetB_12A_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','12','X3:X146'); 

HelmetB_12A_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','12','Y3:Y146'); 

HelmetB_12B_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','12','X3:X146'); 

HelmetB_12B_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','12','Z3:Z146'); 

HelmetB_12C_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','12','X3:X146'); 

HelmetB_12C_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','12','AA3:AA146'); 

HelmetB_12D_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','12','X3:X146'); 

HelmetB_12D_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','12','AB3:AB146'); 

HelmetB_12E_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','12','X3:X146'); 

HelmetB_12E_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','12','AC3:AC146'); 

HelmetB_12avg_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','12','X3:X146'); 

HelmetB_12avg_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','12','AD3:AD146'); 

 %% 26 Y-Tri----------------------------------------------------------------------------- 

HelmetB_26A_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','X3:X140'); 

HelmetB_26A_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','Y3:Y140'); 

HelmetB_26B_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','X3:X140'); 

HelmetB_26B_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','Z3:Z140'); 

HelmetB_26C_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','X3:X140'); 

HelmetB_26C_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','AA3:AA140'); 

HelmetB_26D_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','X3:X140'); 

HelmetB_26D_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','AB3:AB140'); 

HelmetB_26E_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','X3:X140'); 

HelmetB_26E_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','AC3:AC140'); 

HelmetB_26avg_trix = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','X3:X140'); 

HelmetB_26avg_triy = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36','AD3:AD140'); 

  

%% *****************************  NON - WEIGHTED 

************************************************************ 

 %% 12 Y-Tri----------------------------------------------------------------------------- 

HelmetB_12A_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','X3:X149'); 

HelmetB_12A_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','Y3:Y149'); 

HelmetB_12B_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','X3:X149'); 

HelmetB_12B_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','Z3:Z149'); 

HelmetB_12C_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','X3:X149'); 

HelmetB_12C_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','AA3:AA149'); 

HelmetB_12D_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','X3:X149'); 

HelmetB_12D_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','AB3:AB149'); 

HelmetB_12E_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','X3:X149'); 

HelmetB_12E_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','AC3:AC149'); 

HelmetB_12avg_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','X3:X149'); 

HelmetB_12avg_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','12NW','AD3:AD149'); 

 %% 26 Y-Tri----------------------------------------------------------------------------- 

HelmetB_26A_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','X3:X144'); 

HelmetB_26A_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','Y3:Y144'); 

HelmetB_26B_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','X3:X144'); 

HelmetB_26B_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','Z3:Z144'); 

HelmetB_26C_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','X3:X144'); 

HelmetB_26C_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','AA3:AA144'); 

HelmetB_26D_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','X3:X144'); 

HelmetB_26D_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','AB3:AB144'); 

HelmetB_26E_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','X3:X144'); 

HelmetB_26E_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','AC3:AC144'); 

HelmetB_26avg_trixNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','X3:X144'); 

HelmetB_26avg_triyNW = xlsread('Velocity HelmetB 19 FEB.xlsx','26.36NW','AD3:AD144'); 

 

%% Importing Data Points from Excel for Headform 

********************************************************************************************** 

%% LBT Headform Y-Tri-Axial Accelerometers 2nd Peak 

********************************************************* 

 %% ************************* WEIGHTED ************************************************* 

 %% 12 Y-Tri----------------------------------------------------------------------------- 

Headform_12A_trix = xlsread('Velocity Headform 19 FEB.xlsx','12','X3:X113'); 

Headform_12A_triy = xlsread('Velocity Headform 19 FEB.xlsx','12','Y3:Y113'); 

Headform_12B_trix = xlsread('Velocity Headform 19 FEB.xlsx','12','X3:X113'); 

Headform_12B_triy = xlsread('Velocity Headform 19 FEB.xlsx','12','Z3:Z113'); 

Headform_12C_trix = xlsread('Velocity Headform 19 FEB.xlsx','12','X3:X113'); 

Headform_12C_triy = xlsread('Velocity Headform 19 FEB.xlsx','12','AA3:AA113'); 

Headform_12D_trix = xlsread('Velocity Headform 19 FEB.xlsx','12','X3:X113'); 

Headform_12D_triy = xlsread('Velocity Headform 19 FEB.xlsx','12','AB3:AB113'); 

Headform_12E_trix = xlsread('Velocity Headform 19 FEB.xlsx','12','X3:X113'); 

Headform_12E_triy = xlsread('Velocity Headform 19 FEB.xlsx','12','AC3:AC113'); 

Headform_12avg_trix = xlsread('Velocity Headform 19 FEB.xlsx','12','X3:X113'); 

Headform_12avg_triy = xlsread('Velocity Headform 19 FEB.xlsx','12','AD3:AD113'); 
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 %% 26 Y-Tri----------------------------------------------------------------------------- 

Headform_26A_trix = xlsread('Velocity Headform 19 FEB.xlsx','26.36','X3:X138'); 

Headform_26A_triy = xlsread('Velocity Headform 19 FEB.xlsx','26.36','Y3:Y138'); 

Headform_26B_trix = xlsread('Velocity Headform 19 FEB.xlsx','26.36','X3:X138'); 

Headform_26B_triy = xlsread('Velocity Headform 19 FEB.xlsx','26.36','Z3:Z138'); 

Headform_26C_trix = xlsread('Velocity Headform 19 FEB.xlsx','26.36','X3:X138'); 

Headform_26C_triy = xlsread('Velocity Headform 19 FEB.xlsx','26.36','AA3:AA138'); 

Headform_26D_trix = xlsread('Velocity Headform 19 FEB.xlsx','26.36','X3:X138'); 

Headform_26D_triy = xlsread('Velocity Headform 19 FEB.xlsx','26.36','AB3:AB138'); 

Headform_26E_trix = xlsread('Velocity Headform 19 FEB.xlsx','26.36','X3:X138'); 

Headform_26E_triy = xlsread('Velocity Headform 19 FEB.xlsx','26.36','AC3:AC138'); 

Headform_26avg_trix = xlsread('Velocity Headform 19 FEB.xlsx','26.36','X3:X138'); 

Headform_26avg_triy = xlsread('Velocity Headform 19 FEB.xlsx','26.36','AD3:AD138'); 

 %% *****************************  NON - WEIGHTED 

************************************************************ 

 %% 12 Y-Tri----------------------------------------------------------------------------- 

Headform_12A_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','X3:X151'); 

Headform_12A_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','Y3:Y151'); 

Headform_12B_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','X3:X151'); 

Headform_12B_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','Z3:Z151'); 

Headform_12C_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','X3:X151'); 

Headform_12C_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','AA3:AA151'); 

Headform_12D_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','X3:X151'); 

Headform_12D_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','AB3:AB151'); 

Headform_12E_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','X3:X151'); 

Headform_12E_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','AC3:AC151'); 

Headform_12avg_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','X3:X151'); 

Headform_12avg_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','12NW','AD3:AD151'); 

 %% 26 Y-Tri----------------------------------------------------------------------------- 

Headform_26A_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','X3:X147'); 

Headform_26A_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','Y3:Y147'); 

Headform_26B_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','X3:X147'); 

Headform_26B_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','Z3:Z147'); 

Headform_26C_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','X3:X147'); 

Headform_26C_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','AA3:AA147'); 

Headform_26D_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','X3:X147'); 

Headform_26D_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','AB3:AB147'); 

Headform_26E_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','X3:X147'); 

Headform_26E_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','AC3:AC147'); 

Headform_26avg_trixNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','X3:X147'); 

Headform_26avg_triyNW = xlsread('Velocity Headform 19 FEB.xlsx','26.36NW','AD3:AD147'); 

 %% Importing Data Points from Excel for 

Pitcher********************************************************************************************** 

%% ************************* WEIGHTED ************************************************* 

%% 12 Y-Tri----------------------------------------------------------------------------- 

Pitcher_12A_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','12','X3:X145'); 

Pitcher_12A_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','12','Y3:Y145'); 

Pitcher_12B_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','12','X3:X145'); 

Pitcher_12B_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','12','Z3:Z145'); 

Pitcher_12C_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','12','X3:X145'); 

Pitcher_12C_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','12','AA3:AA145'); 

Pitcher_12D_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','12','X3:X145'); 

Pitcher_12D_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','12','AB3:AB145'); 

Pitcher_12E_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','12','X3:X145'); 

Pitcher_12E_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','12','AC3:AC145'); 

Pitcher_12avg_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','12','X3:X145'); 

Pitcher_12avg_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','12','AD3:AD145'); 

 %% 26 Y-Tri----------------------------------------------------------------------------- 

Pitcher_26A_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','X3:X142'); 

Pitcher_26A_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','Y3:Y142'); 

Pitcher_26B_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','X3:X142'); 

Pitcher_26B_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','Z3:Z142'); 

Pitcher_26C_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','X3:X142'); 

Pitcher_26C_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','AA3:AA142'); 

Pitcher_26D_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','X3:X142'); 

Pitcher_26D_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','AB3:AB142'); 

Pitcher_26E_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','X3:X142'); 

Pitcher_26E_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','AC3:AC142'); 

Pitcher_26avg_trix = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','X3:X142'); 

Pitcher_26avg_triy = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36','AD3:AD142'); 

 %% *****************************  NON - WEIGHTED 

************************************************************ 

 %% 12 Y-Tri----------------------------------------------------------------------------- 

Pitcher_12A_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','X3:X155'); 

Pitcher_12A_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','Y3:Y155'); 

Pitcher_12B_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','X3:X155'); 
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Pitcher_12B_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','Z3:Z155'); 

Pitcher_12C_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','X3:X155'); 

Pitcher_12C_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','AA3:AA155'); 

Pitcher_12D_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','X3:X155'); 

Pitcher_12D_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','AB3:AB155'); 

Pitcher_12E_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','X3:X155'); 

Pitcher_12E_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','AC3:AC155'); 

Pitcher_12avg_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','X3:X155'); 

Pitcher_12avg_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','12NW','AD3:AD155'); 

%% 26 Y-Tri----------------------------------------------------------------------------- 

Pitcher_26A_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','X3:X139'); 

Pitcher_26A_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','Y3:Y139'); 

Pitcher_26B_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','X3:X139'); 

Pitcher_26B_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','Z3:Z139'); 

Pitcher_26C_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','X3:X139'); 

Pitcher_26C_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','AA3:AA139'); 

Pitcher_26D_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','X3:X139'); 

Pitcher_26D_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','AB3:AB139'); 

Pitcher_26E_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','X3:X139'); 

Pitcher_26E_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','AC3:AC139'); 

Pitcher_26avg_trixNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','X3:X139'); 

Pitcher_26avg_triyNW = xlsread('Velocity Pitcher 19 FEB.xlsx','26.36NW','AD3:AD139'); 

 %% Getting time differences  

 %% LBT Helmet A************************************************************************ 

 %% ********************  Weighted  **************************************************** 

 %% 12 Y-Tri------------------------------------------------------------------------------ 

 HelmetA_12A_trit1 = HelmetA_12A_trix(1); 

HelmetA_12A_tritf = HelmetA_12A_trix(end); 

HelmetA_12A_tridif = HelmetA_12A_tritf - HelmetA_12A_trit1; 

  

HelmetA_12B_trit1 = HelmetA_12B_trix(1); 

HelmetA_12B_tritf = HelmetA_12B_trix(end); 

HelmetA_12B_tridif = HelmetA_12B_tritf - HelmetA_12B_trit1; 

  

HelmetA_12C_trit1 = HelmetA_12C_trix(1); 

HelmetA_12C_tritf = HelmetA_12C_trix(end); 

HelmetA_12C_tridif = HelmetA_12C_tritf - HelmetA_12C_trit1; 

  

HelmetA_12D_trit1 = HelmetA_12D_trix(1); 

HelmetA_12D_tritf = HelmetA_12D_trix(end); 

HelmetA_12D_tridif = HelmetA_12D_tritf - HelmetA_12D_trit1; 

  

HelmetA_12E_trit1 = HelmetA_12E_trix(1); 

HelmetA_12E_tritf = HelmetA_12E_trix(end); 

HelmetA_12E_tridif = HelmetA_12E_tritf - HelmetA_12E_trit1; 

  

HelmetA_12avg_trit1 = HelmetA_12avg_trix(1); 

HelmetA_12avg_tritf = HelmetA_12avg_trix(end); 

HelmetA_12avg_tridif = HelmetA_12avg_tritf - HelmetA_12avg_trit1; 

 %% 26 Y-Tri------------------------------------------------------------------------------ 

  

HelmetA_26A_trit1 = HelmetA_26A_trix(1); 

HelmetA_26A_tritf = HelmetA_26A_trix(end); 

HelmetA_26A_tridif = HelmetA_26A_tritf - HelmetA_26A_trit1; 

  

HelmetA_26B_trit1 = HelmetA_26B_trix(1); 

HelmetA_26B_tritf = HelmetA_26B_trix(end); 

HelmetA_26B_tridif = HelmetA_26B_tritf - HelmetA_26B_trit1; 

  

HelmetA_26C_trit1 = HelmetA_26C_trix(1); 

HelmetA_26C_tritf = HelmetA_26C_trix(end); 

HelmetA_26C_tridif = HelmetA_26C_tritf - HelmetA_26C_trit1; 

  

HelmetA_26D_trit1 = HelmetA_26D_trix(1); 

HelmetA_26D_tritf = HelmetA_26D_trix(end); 

HelmetA_26D_tridif = HelmetA_26D_tritf - HelmetA_26D_trit1; 

  

HelmetA_26E_trit1 = HelmetA_26E_trix(1); 

HelmetA_26E_tritf = HelmetA_26E_trix(end); 

HelmetA_26E_tridif = HelmetA_26E_tritf - HelmetA_26E_trit1; 

  

HelmetA_26avg_trit1 = HelmetA_26avg_trix(1); 

HelmetA_26avg_tritf = HelmetA_26avg_trix(end); 

HelmetA_26avg_tridif = HelmetA_26avg_tritf - HelmetA_26avg_trit1; 

  



108 

 

 

 

%% **************************** Non - Weighted 

********************************************************* 

 %% 12 Y-Tri------------------------------------------------------------------------------ 

  

HelmetA_12A_trit1NW = HelmetA_12A_trixNW(1); 

HelmetA_12A_tritfNW = HelmetA_12A_trixNW(end); 

HelmetA_12A_tridifNW = HelmetA_12A_tritfNW - HelmetA_12A_trit1NW; 

  

HelmetA_12B_trit1NW = HelmetA_12B_trixNW(1); 

HelmetA_12B_tritfNW = HelmetA_12B_trixNW(end); 

HelmetA_12B_tridifNW = HelmetA_12B_tritfNW - HelmetA_12B_trit1NW; 

  

HelmetA_12C_trit1NW = HelmetA_12C_trixNW(1); 

HelmetA_12C_tritfNW = HelmetA_12C_trixNW(end); 

HelmetA_12C_tridifNW = HelmetA_12C_tritfNW - HelmetA_12C_trit1NW; 

  

HelmetA_12D_trit1NW = HelmetA_12D_trixNW(1); 

HelmetA_12D_tritfNW = HelmetA_12D_trixNW(end); 

HelmetA_12D_tridifNW = HelmetA_12D_tritfNW - HelmetA_12D_trit1NW; 

 HelmetA_12E_trit1NW = HelmetA_12E_trixNW(1); 

HelmetA_12E_tritfNW = HelmetA_12E_trixNW(end); 

HelmetA_12E_tridifNW = HelmetA_12E_tritfNW - HelmetA_12E_trit1NW; 

  

HelmetA_12avg_trit1NW = HelmetA_12avg_trixNW(1); 

HelmetA_12avg_tritfNW = HelmetA_12avg_trixNW(end); 

HelmetA_12avg_tridifNW = HelmetA_12avg_tritfNW - HelmetA_12avg_trit1NW; 

 %% 26 Y-Tri------------------------------------------------------------------------------ 

  

HelmetA_26A_trit1NW = HelmetA_26A_trixNW(1); 

HelmetA_26A_tritfNW = HelmetA_26A_trixNW(end); 

HelmetA_26A_tridifNW = HelmetA_26A_tritfNW - HelmetA_26A_trit1NW; 

  

HelmetA_26B_trit1NW = HelmetA_26B_trixNW(1); 

HelmetA_26B_tritfNW = HelmetA_26B_trixNW(end); 

HelmetA_26B_tridifNW = HelmetA_26B_tritfNW - HelmetA_26B_trit1NW; 

  

HelmetA_26C_trit1NW = HelmetA_26C_trixNW(1); 

HelmetA_26C_tritfNW = HelmetA_26C_trixNW(end); 

HelmetA_26C_tridifNW = HelmetA_26C_tritfNW - HelmetA_26C_trit1NW; 

  

HelmetA_26D_trit1NW = HelmetA_26D_trixNW(1); 

HelmetA_26D_tritfNW = HelmetA_26D_trixNW(end); 

HelmetA_26D_tridifNW = HelmetA_26D_tritfNW - HelmetA_26D_trit1NW; 

  

HelmetA_26E_trit1NW = HelmetA_26E_trixNW(1); 

HelmetA_26E_tritfNW = HelmetA_26E_trixNW(end); 

HelmetA_26E_tridifNW = HelmetA_26E_tritfNW - HelmetA_26E_trit1NW; 

  

HelmetA_26avg_trit1NW = HelmetA_26avg_trixNW(1); 

HelmetA_26avg_tritfNW = HelmetA_26avg_trixNW(end); 

HelmetA_26avg_tridifNW = HelmetA_26avg_tritfNW - HelmetA_26avg_trit1NW; 

%% LBT Helmet 

B****************************************************************************************** 

 %% ********************  Weighted  

************************************************************************* 

 %% 12 --------------------------------------------------------------------------------------- 

HelmetB_12A_trit1 = HelmetB_12A_trix(1); 

HelmetB_12A_tritf = HelmetB_12A_trix(end); 

HelmetB_12A_tridif = HelmetB_12A_tritf - HelmetB_12A_trit1; 

  

HelmetB_12B_trit1 = HelmetB_12B_trix(1); 

HelmetB_12B_tritf = HelmetB_12B_trix(end); 

HelmetB_12B_tridif = HelmetB_12B_tritf - HelmetB_12B_trit1; 

  

HelmetB_12C_trit1 = HelmetB_12C_trix(1); 

HelmetB_12C_tritf = HelmetB_12C_trix(end); 

HelmetB_12C_tridif = HelmetB_12C_tritf - HelmetB_12C_trit1; 

  

HelmetB_12D_trit1 = HelmetB_12D_trix(1); 

HelmetB_12D_tritf = HelmetB_12D_trix(end); 

HelmetB_12D_tridif = HelmetB_12D_tritf - HelmetB_12D_trit1; 

  

HelmetB_12E_trit1 = HelmetB_12E_trix(1); 

HelmetB_12E_tritf = HelmetB_12E_trix(end); 

HelmetB_12E_tridif = HelmetB_12E_tritf - HelmetB_12E_trit1; 
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HelmetB_12avg_trit1 = HelmetB_12avg_trix(1); 

HelmetB_12avg_tritf = HelmetB_12avg_trix(end); 

HelmetB_12avg_tridif = HelmetB_12avg_tritf - HelmetB_12avg_trit1; 

%% 26 --------------------------------------------------------------------------------------- 

HelmetB_26A_trit1 = HelmetB_26A_trix(1); 

HelmetB_26A_tritf = HelmetB_26A_trix(end); 

HelmetB_26A_tridif = HelmetB_26A_tritf - HelmetB_26A_trit1; 

  

HelmetB_26B_trit1 = HelmetB_26B_trix(1); 

HelmetB_26B_tritf = HelmetB_26B_trix(end); 

HelmetB_26B_tridif = HelmetB_26B_tritf - HelmetB_26B_trit1; 

  

HelmetB_26C_trit1 = HelmetB_26C_trix(1); 

HelmetB_26C_tritf = HelmetB_26C_trix(end); 

HelmetB_26C_tridif = HelmetB_26C_tritf - HelmetB_26C_trit1; 

  

HelmetB_26D_trit1 = HelmetB_26D_trix(1); 

HelmetB_26D_tritf = HelmetB_26D_trix(end); 

HelmetB_26D_tridif = HelmetB_26D_tritf - HelmetB_26D_trit1; 

  

HelmetB_26E_trit1 = HelmetB_26E_trix(1); 

HelmetB_26E_tritf = HelmetB_26E_trix(end); 

HelmetB_26E_tridif = HelmetB_26E_tritf - HelmetB_26E_trit1; 

 HelmetB_26avg_trit1 = HelmetB_26avg_trix(1); 

HelmetB_26avg_tritf = HelmetB_26avg_trix(end); 

HelmetB_26avg_tridif = HelmetB_26avg_tritf - HelmetB_26avg_trit1; 

 %% **************************** Non - Weighted 

********************************************************* 

%% 12 Y-Tri--------------------------------------------------------------------------------------- 

HelmetB_12A_trit1NW = HelmetB_12A_trixNW(1); 

HelmetB_12A_tritfNW = HelmetB_12A_trixNW(end); 

HelmetB_12A_tridifNW = HelmetB_12A_tritfNW - HelmetB_12A_trit1NW; 

  

HelmetB_12B_trit1NW = HelmetB_12B_trixNW(1); 

HelmetB_12B_tritfNW = HelmetB_12B_trixNW(end); 

HelmetB_12B_tridifNW = HelmetB_12B_tritfNW - HelmetB_12B_trit1NW; 

  

HelmetB_12C_trit1NW = HelmetB_12C_trixNW(1); 

HelmetB_12C_tritfNW = HelmetB_12C_trixNW(end); 

HelmetB_12C_tridifNW = HelmetB_12C_tritfNW - HelmetB_12C_trit1NW; 

  

HelmetB_12D_trit1NW = HelmetB_12D_trixNW(1); 

HelmetB_12D_tritfNW = HelmetB_12D_trixNW(end); 

HelmetB_12D_tridifNW = HelmetB_12D_tritfNW - HelmetB_12D_trit1NW; 

  

HelmetB_12E_trit1NW = HelmetB_12E_trixNW(1); 

HelmetB_12E_tritfNW = HelmetB_12E_trixNW(end); 

HelmetB_12E_tridifNW = HelmetB_12E_tritfNW - HelmetB_12E_trit1NW; 

  

HelmetB_12avg_trit1NW = HelmetB_12avg_trixNW(1); 

HelmetB_12avg_tritfNW = HelmetB_12avg_trixNW(end); 

HelmetB_12avg_tridifNW = HelmetB_12avg_tritfNW - HelmetB_12avg_trit1NW; 

 %% 26 Y-Tri--------------------------------------------------------------------------------------- 

  

HelmetB_26A_trit1NW = HelmetB_26A_trixNW(1); 

HelmetB_26A_tritfNW = HelmetB_26A_trixNW(end); 

HelmetB_26A_tridifNW = HelmetB_26A_tritfNW - HelmetB_26A_trit1NW; 

  

HelmetB_26B_trit1NW = HelmetB_26B_trixNW(1); 

HelmetB_26B_tritfNW = HelmetB_26B_trixNW(end); 

HelmetB_26B_tridifNW = HelmetB_26B_tritfNW - HelmetB_26B_trit1NW; 

  

HelmetB_26C_trit1NW = HelmetB_26C_trixNW(1); 

HelmetB_26C_tritfNW = HelmetB_26C_trixNW(end); 

HelmetB_26C_tridifNW = HelmetB_26C_tritfNW - HelmetB_26C_trit1NW; 

  

HelmetB_26D_trit1NW = HelmetB_26D_trixNW(1); 

HelmetB_26D_tritfNW = HelmetB_26D_trixNW(end); 

HelmetB_26D_tridifNW = HelmetB_26D_tritfNW - HelmetB_26D_trit1NW; 

  

HelmetB_26E_trit1NW = HelmetB_26E_trixNW(1); 

HelmetB_26E_tritfNW = HelmetB_26E_trixNW(end); 

HelmetB_26E_tridifNW = HelmetB_26E_tritfNW - HelmetB_26E_trit1NW; 

  

HelmetB_26avg_trit1NW = HelmetB_26avg_trixNW(1); 

HelmetB_26avg_tritfNW = HelmetB_26avg_trixNW(end); 
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HelmetB_26avg_tridifNW = HelmetB_26avg_tritfNW - HelmetB_26avg_trit1NW; 

%% LBT Pitcher---------------------------------------------------------------------------- 

 

%% ********************  Weighted  

************************************************************************* 

%% 12 --------------------------------------------------------------------------------------- 

Pitcher_12A_trit1 = Pitcher_12A_trix(1); 

Pitcher_12A_tritf = Pitcher_12A_trix(end); 

Pitcher_12A_tridif = Pitcher_12A_tritf - Pitcher_12A_trit1; 

  

Pitcher_12B_trit1 = Pitcher_12B_trix(1); 

Pitcher_12B_tritf = Pitcher_12B_trix(end); 

Pitcher_12B_tridif = Pitcher_12B_tritf - Pitcher_12B_trit1; 

  

Pitcher_12C_trit1 = Pitcher_12C_trix(1); 

Pitcher_12C_tritf = Pitcher_12C_trix(end); 

Pitcher_12C_tridif = Pitcher_12C_tritf - Pitcher_12C_trit1; 

  

Pitcher_12D_trit1 = Pitcher_12D_trix(1); 

Pitcher_12D_tritf = Pitcher_12D_trix(end); 

Pitcher_12D_tridif = Pitcher_12D_tritf - Pitcher_12D_trit1; 

  

Pitcher_12E_trit1 = Pitcher_12E_trix(1); 

Pitcher_12E_tritf = Pitcher_12E_trix(end); 

Pitcher_12E_tridif = Pitcher_12E_tritf - Pitcher_12E_trit1; 

  

Pitcher_12avg_trit1 = Pitcher_12avg_trix(1); 

Pitcher_12avg_tritf = Pitcher_12avg_trix(end); 

Pitcher_12avg_tridif = Pitcher_12avg_tritf - Pitcher_12avg_trit1; 

  

%% 26 --------------------------------------------------------------------------------------- 

Pitcher_26A_trit1 = Pitcher_26A_trix(1); 

Pitcher_26A_tritf = Pitcher_26A_trix(end); 

Pitcher_26A_tridif = Pitcher_26A_tritf - Pitcher_26A_trit1; 

  

Pitcher_26B_trit1 = Pitcher_26B_trix(1); 

Pitcher_26B_tritf = Pitcher_26B_trix(end); 

Pitcher_26B_tridif = Pitcher_26B_tritf - Pitcher_26B_trit1; 

  

Pitcher_26C_trit1 = Pitcher_26C_trix(1); 

Pitcher_26C_tritf = Pitcher_26C_trix(end); 

Pitcher_26C_tridif = Pitcher_26C_tritf - Pitcher_26C_trit1; 

  

Pitcher_26D_trit1 = Pitcher_26D_trix(1); 

Pitcher_26D_tritf = Pitcher_26D_trix(end); 

Pitcher_26D_tridif = Pitcher_26D_tritf - Pitcher_26D_trit1; 

  

Pitcher_26E_trit1 = Pitcher_26E_trix(1); 

Pitcher_26E_tritf = Pitcher_26E_trix(end); 

Pitcher_26E_tridif = Pitcher_26E_tritf - Pitcher_26E_trit1; 

  

Pitcher_26avg_trit1 = Pitcher_26avg_trix(1); 

Pitcher_26avg_tritf = Pitcher_26avg_trix(end); 

Pitcher_26avg_tridif = Pitcher_26avg_tritf - Pitcher_26avg_trit1; 

  

%% **************************** Non - Weighted 

********************************************************* 

 %% 12 Y-Tri--------------------------------------------------------------------------------------- 

  

Pitcher_12A_trit1NW = Pitcher_12A_trixNW(1); 

Pitcher_12A_tritfNW = Pitcher_12A_trixNW(end); 

Pitcher_12A_tridifNW = Pitcher_12A_tritfNW - Pitcher_12A_trit1NW; 

  

Pitcher_12B_trit1NW = Pitcher_12B_trixNW(1); 

Pitcher_12B_tritfNW = Pitcher_12B_trixNW(end); 

Pitcher_12B_tridifNW = Pitcher_12B_tritfNW - Pitcher_12B_trit1NW; 

  

Pitcher_12C_trit1NW = Pitcher_12C_trixNW(1); 

Pitcher_12C_tritfNW = Pitcher_12C_trixNW(end); 

Pitcher_12C_tridifNW = Pitcher_12C_tritfNW - Pitcher_12C_trit1NW; 

  

Pitcher_12D_trit1NW = Pitcher_12D_trixNW(1); 

Pitcher_12D_tritfNW = Pitcher_12D_trixNW(end); 

Pitcher_12D_tridifNW = Pitcher_12D_tritfNW - Pitcher_12D_trit1NW; 

  

Pitcher_12E_trit1NW = Pitcher_12E_trixNW(1); 
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Pitcher_12E_tritfNW = Pitcher_12E_trixNW(end); 

Pitcher_12E_tridifNW = Pitcher_12E_tritfNW - Pitcher_12E_trit1NW; 

  

Pitcher_12avg_trit1NW = Pitcher_12avg_trixNW(1); 

Pitcher_12avg_tritfNW = Pitcher_12avg_trixNW(end); 

Pitcher_12avg_tridifNW = Pitcher_12avg_tritfNW - Pitcher_12avg_trit1NW; 

 %% 26 Y-Tri--------------------------------------------------------------------------------------- 

  

Pitcher_26A_trit1NW = Pitcher_26A_trixNW(1); 

Pitcher_26A_tritfNW = Pitcher_26A_trixNW(end); 

Pitcher_26A_tridifNW = Pitcher_26A_tritfNW - Pitcher_26A_trit1NW; 

  

Pitcher_26B_trit1NW = Pitcher_26B_trixNW(1); 

Pitcher_26B_tritfNW = Pitcher_26B_trixNW(end); 

Pitcher_26B_tridifNW = Pitcher_26B_tritfNW - Pitcher_26B_trit1NW; 

  

Pitcher_26C_trit1NW = Pitcher_26C_trixNW(1); 

Pitcher_26C_tritfNW = Pitcher_26C_trixNW(end); 

Pitcher_26C_tridifNW = Pitcher_26C_tritfNW - Pitcher_26C_trit1NW; 

  

Pitcher_26D_trit1NW = Pitcher_26D_trixNW(1); 

Pitcher_26D_tritfNW = Pitcher_26D_trixNW(end); 

Pitcher_26D_tridifNW = Pitcher_26D_tritfNW - Pitcher_26D_trit1NW; 

  

Pitcher_26E_trit1NW = Pitcher_26E_trixNW(1); 

Pitcher_26E_tritfNW = Pitcher_26E_trixNW(end); 

Pitcher_26E_tridifNW = Pitcher_26E_tritfNW - Pitcher_26E_trit1NW; 

  

Pitcher_26avg_trit1NW = Pitcher_26avg_trixNW(1); 

Pitcher_26avg_tritfNW = Pitcher_26avg_trixNW(end); 

Pitcher_26avg_tridifNW = Pitcher_26avg_tritfNW - Pitcher_26avg_trit1NW; 

  

%% LBT Headform****************************************************************************** 

%% ********************  Weighted  

************************************************************************* 

%% 12 ------------------------------------------------------------------------------------------------

--- 

Headform_12A_trit1 = Headform_12A_trix(1); 

Headform_12A_tritf = Headform_12A_trix(end); 

Headform_12A_tridif = Headform_12A_tritf - Headform_12A_trit1; 

  

Headform_12B_trit1 = Headform_12B_trix(1); 

Headform_12B_tritf = Headform_12B_trix(end); 

Headform_12B_tridif = Headform_12B_tritf - Headform_12B_trit1; 

  

Headform_12C_trit1 = Headform_12C_trix(1); 

Headform_12C_tritf = Headform_12C_trix(end); 

Headform_12C_tridif = Headform_12C_tritf - Headform_12C_trit1; 

  

Headform_12D_trit1 = Headform_12D_trix(1); 

Headform_12D_tritf = Headform_12D_trix(end); 

Headform_12D_tridif = Headform_12D_tritf - Headform_12D_trit1; 

  

Headform_12E_trit1 = Headform_12E_trix(1); 

Headform_12E_tritf = Headform_12E_trix(end); 

Headform_12E_tridif = Headform_12E_tritf - Headform_12E_trit1; 

  

Headform_12avg_trit1 = Headform_12avg_trix(1); 

Headform_12avg_tritf = Headform_12avg_trix(end); 

Headform_12avg_tridif = Headform_12avg_tritf - Headform_12avg_trit1; 

  

%% 26 ------------------------------------------------------------------------------------------------

--- 

Headform_26A_trit1 = Headform_26A_trix(1); 

Headform_26A_tritf = Headform_26A_trix(end); 

Headform_26A_tridif = Headform_26A_tritf - Headform_26A_trit1; 

  

Headform_26B_trit1 = Headform_26B_trix(1); 

Headform_26B_tritf = Headform_26B_trix(end); 

Headform_26B_tridif = Headform_26B_tritf - Headform_26B_trit1; 

  

Headform_26C_trit1 = Headform_26C_trix(1); 

Headform_26C_tritf = Headform_26C_trix(end); 

Headform_26C_tridif = Headform_26C_tritf - Headform_26C_trit1; 

  

Headform_26D_trit1 = Headform_26D_trix(1); 
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Headform_26D_tritf = Headform_26D_trix(end); 

Headform_26D_tridif = Headform_26D_tritf - Headform_26D_trit1; 

  

Headform_26E_trit1 = Headform_26E_trix(1); 

Headform_26E_tritf = Headform_26E_trix(end); 

Headform_26E_tridif = Headform_26E_tritf - Headform_26E_trit1; 

  

Headform_26avg_trit1 = Headform_26avg_trix(1); 

Headform_26avg_tritf = Headform_26avg_trix(end); 

Headform_26avg_tridif = Headform_26avg_tritf - Headform_26avg_trit1; 

 %% **************************** Non - Weighted 

********************************************************* 

 %% 12 Y-Tri------------------------------------------------------------------------------------------

--------- 

Headform_12A_trit1NW = Headform_12A_trixNW(1); 

Headform_12A_tritfNW = Headform_12A_trixNW(end); 

Headform_12A_tridifNW = Headform_12A_tritfNW - Headform_12A_trit1NW; 

  

Headform_12B_trit1NW = Headform_12B_trixNW(1); 

Headform_12B_tritfNW = Headform_12B_trixNW(end); 

Headform_12B_tridifNW = Headform_12B_tritfNW - Headform_12B_trit1NW; 

  

Headform_12C_trit1NW = Headform_12C_trixNW(1); 

Headform_12C_tritfNW = Headform_12C_trixNW(end); 

Headform_12C_tridifNW = Headform_12C_tritfNW - Headform_12C_trit1NW; 

  

Headform_12D_trit1NW = Headform_12D_trixNW(1); 

Headform_12D_tritfNW = Headform_12D_trixNW(end); 

Headform_12D_tridifNW = Headform_12D_tritfNW - Headform_12D_trit1NW; 

  

Headform_12E_trit1NW = Headform_12E_trixNW(1); 

Headform_12E_tritfNW = Headform_12E_trixNW(end); 

Headform_12E_tridifNW = Headform_12E_tritfNW - Headform_12E_trit1NW; 

  

Headform_12avg_trit1NW = Headform_12avg_trixNW(1); 

Headform_12avg_tritfNW = Headform_12avg_trixNW(end); 

Headform_12avg_tridifNW = Headform_12avg_tritfNW - Headform_12avg_trit1NW; 

 %% 26 Y-Tri------------------------------------------------------------------------------------------

--------- 

Headform_26A_trit1NW = Headform_26A_trixNW(1); 

Headform_26A_tritfNW = Headform_26A_trixNW(end); 

Headform_26A_tridifNW = Headform_26A_tritfNW - Headform_26A_trit1NW; 

  

Headform_26B_trit1NW = Headform_26B_trixNW(1); 

Headform_26B_tritfNW = Headform_26B_trixNW(end); 

Headform_26B_tridifNW = Headform_26B_tritfNW - Headform_26B_trit1NW; 

  

Headform_26C_trit1NW = Headform_26C_trixNW(1); 

Headform_26C_tritfNW = Headform_26C_trixNW(end); 

Headform_26C_tridifNW = Headform_26C_tritfNW - Headform_26C_trit1NW; 

  

Headform_26D_trit1NW = Headform_26D_trixNW(1); 

Headform_26D_tritfNW = Headform_26D_trixNW(end); 

Headform_26D_tridifNW = Headform_26D_tritfNW - Headform_26D_trit1NW; 

  

Headform_26E_trit1NW = Headform_26E_trixNW(1); 

Headform_26E_tritfNW = Headform_26E_trixNW(end); 

Headform_26E_tridifNW = Headform_26E_tritfNW - Headform_26E_trit1NW; 

  

Headform_26avg_trit1NW = Headform_26avg_trixNW(1); 

Headform_26avg_tritfNW = Headform_26avg_trixNW(end); 

Headform_26avg_tridifNW = Headform_26avg_tritfNW - Headform_26avg_trit1NW; 

 %% Integration  

g = 9.8067; 

p = 5/2; 

  

%% Helmet 

A*****************************************************************************************************

************************* 

%% Helmet A Velocities **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**-

-**--**--**--**--** 

%% Helmet A Velocity----------------------------------------------------------------------------------  

%% ********************************* WEIGHTED   

%% 12-------------------------------------------------------------------------------------------------

------------------ 

HelmetA_12A_tri_vel = trapz(HelmetA_12A_trix,(HelmetA_12A_triy)) 
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 HelmetA_12B_tri_vel = trapz(HelmetA_12B_trix,(HelmetA_12B_triy)) 

  

HelmetA_12C_tri_vel = trapz(HelmetA_12C_trix,(HelmetA_12C_triy)) 

  

HelmetA_12D_tri_vel = trapz(HelmetA_12D_trix,(HelmetA_12D_triy)) 

  

HelmetA_12E_tri_vel = trapz(HelmetA_12E_trix,(HelmetA_12E_triy)) 

  

HelmetA_12avg_tri_vel = trapz(HelmetA_12avg_trix,(HelmetA_12avg_triy)) 

  

%% 26 ------------------------------------------------------------------------------------------------  

HelmetA_26A_tri_vel = trapz(HelmetA_26A_trix,(HelmetA_26A_triy)) 

  

HelmetA_26B_tri_vel = trapz(HelmetA_26B_trix,(HelmetA_26B_triy)) 

  

HelmetA_26C_tri_vel = trapz(HelmetA_26C_trix,(HelmetA_26C_triy)) 

  

HelmetA_26D_tri_vel = trapz(HelmetA_26D_trix,(HelmetA_26D_triy)) 

  

HelmetA_26E_tri_vel = trapz(HelmetA_26E_trix,(HelmetA_26E_triy)) 

  

HelmetA_26avg_tri_vel = trapz(HelmetA_26avg_trix,(HelmetA_26avg_triy)) 

  

%% **************************  Non - Weighted  

************************************************************** 

 %% Helmet A Y-Tri-Axial Velocity --------------------------------------------------------------------

------ 

HelmetA_12A_tri_velNW = trapz(HelmetA_12A_trixNW,(HelmetA_12A_triyNW)) 

  

HelmetA_12B_tri_velNW = trapz(HelmetA_12B_trixNW,(HelmetA_12B_triyNW)) 

  

HelmetA_12C_tri_velNW = trapz(HelmetA_12C_trixNW,(HelmetA_12C_triyNW)) 

  

HelmetA_12D_tri_velNW = trapz(HelmetA_12D_trixNW,(HelmetA_12D_triyNW)) 

  

HelmetA_12E_tri_velNW = trapz(HelmetA_12E_trixNW,(HelmetA_12E_triyNW)) 

  

HelmetA_12avg_tri_velNW = trapz(HelmetA_12avg_trixNW,(HelmetA_12avg_triyNW)) 

 

HelmetA_26A_tri_velNW = trapz(HelmetA_26A_trixNW,(HelmetA_26A_triyNW)) 

  

HelmetA_26B_tri_velNW = trapz(HelmetA_26B_trixNW,(HelmetA_26B_triyNW)) 

  

HelmetA_26C_tri_velNW = trapz(HelmetA_26C_trixNW,(HelmetA_26C_triyNW)) 

  

HelmetA_26D_tri_velNW = trapz(HelmetA_26D_trixNW,(HelmetA_26D_triyNW)) 

  

HelmetA_26E_tri_velNW = trapz(HelmetA_26E_trixNW,(HelmetA_26E_triyNW)) 

  

HelmetA_26avg_tri_velNW = trapz(HelmetA_26avg_trixNW,(HelmetA_26avg_triyNW)) 

%% Helmet A SI Values **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--

**--**--**--**--**--** 

%% Helmet A Y-Tri-Axial SI----------------------------------------------------------------------------  

%% ******************************  Weighted  

****************************************************************** 

%% 12-------------------------------------------------------------------------------------------------

------------------------ 

HelmetA_12A_tri_SI = trapz(HelmetA_12A_trix,(abs((HelmetA_12A_triy))./g).^p) 

  

HelmetA_12B_tri_SI = trapz(HelmetA_12B_trix,(abs((HelmetA_12B_triy))./g).^p) 

  

HelmetA_12C_tri_SI = trapz(HelmetA_12C_trix,(abs((HelmetA_12C_triy))./g).^p) 

  

HelmetA_12D_tri_SI = trapz(HelmetA_12D_trix,(abs((HelmetA_12D_triy))./g).^p) 

  

HelmetA_12E_tri_SI = trapz(HelmetA_12E_trix,(abs((HelmetA_12E_triy))./g).^p) 

  

HelmetA_12avg_tri_SI = trapz(HelmetA_12avg_trix,(abs((HelmetA_12avg_triy))./g).^p) 

 %% 26 -----------------------------------------------------------------------------------------------

--------------------------- 

HelmetA_26A_tri_SI = trapz(HelmetA_26A_trix,(abs((HelmetA_26A_triy))./g).^p) 

  

HelmetA_26B_tri_SI = trapz(HelmetA_26B_trix,(abs((HelmetA_26B_triy))./g).^p) 

  

HelmetA_26C_tri_SI = trapz(HelmetA_26C_trix,(abs((HelmetA_26C_triy))./g).^p) 
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HelmetA_26D_tri_SI = trapz(HelmetA_26D_trix,(abs((HelmetA_26D_triy))./g).^p) 

  

HelmetA_26E_tri_SI = trapz(HelmetA_26E_trix,(abs((HelmetA_26E_triy))./g).^p) 

  

HelmetA_26avg_tri_SI = trapz(HelmetA_26avg_trix,(abs((HelmetA_26avg_triy))./g).^p) 

 %% ********************************* Non - Weighted 

*************************************************** 

%% Helmet A Y-Tri-Axial SI------------------------------------------------ 

  

HelmetA_12A_tri_SINW = trapz(HelmetA_12A_trixNW,(abs((HelmetA_12A_triyNW))./g).^p) 

  

HelmetA_12B_tri_SINW = trapz(HelmetA_12B_trixNW,(abs((HelmetA_12B_triyNW))./g).^p) 

  

HelmetA_12C_tri_SINW = trapz(HelmetA_12C_trixNW,(abs((HelmetA_12C_triyNW))./g).^p) 

  

HelmetA_12D_tri_SINW = trapz(HelmetA_12D_trixNW,(abs((HelmetA_12D_triyNW))./g).^p) 

  

HelmetA_12E_tri_SINW = trapz(HelmetA_12E_trixNW,(abs((HelmetA_12E_triyNW))./g).^p) 

  

HelmetA_12avg_tri_SINW = trapz(HelmetA_12avg_trixNW,(abs((HelmetA_12avg_triyNW))./g).^p) 

   

HelmetA_26A_tri_SINW = trapz(HelmetA_26A_trixNW,(abs((HelmetA_26A_triyNW))./g).^p) 

  

HelmetA_26B_tri_SINW = trapz(HelmetA_26B_trixNW,(abs((HelmetA_26B_triyNW))./g).^p) 

  

HelmetA_26C_tri_SINW = trapz(HelmetA_26C_trixNW,(abs((HelmetA_26C_triyNW))./g).^p) 

  

HelmetA_26D_tri_SINW = trapz(HelmetA_26D_trixNW,(abs((HelmetA_26D_triyNW))./g).^p) 

  

HelmetA_26E_tri_SINW = trapz(HelmetA_26E_trixNW,(abs((HelmetA_26E_triyNW))./g).^p) 

  

HelmetA_26avg_tri_SINW = trapz(HelmetA_26avg_trixNW,(abs((HelmetA_26avg_triyNW))./g).^p) 

  

%% Helmet A HIC Values **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**-

-**--**--**--**--**--** 

 %% Helmet A HIC -------------------------------------------------------------------------------------

--------------------- 

 %% ************************************* Weighted 

********************************************************************************** 

  

%% 12 ------------------------------------------------------------------------------------------------

---------------------- 

HelmetA_12A_tri_HIC = 

HelmetA_12A_tridif*(((1/HelmetA_12A_tridif)*(trapz(HelmetA_12A_trix,((HelmetA_12A_triy)./g))))^p) 

  

HelmetA_12B_tri_HIC = 

HelmetA_12B_tridif*(((1/HelmetA_12B_tridif)*(trapz(HelmetA_12B_trix,((HelmetA_12B_triy)./g))))^p) 

  

HelmetA_12C_tri_HIC = 

HelmetA_12C_tridif*(((1/HelmetA_12C_tridif)*(trapz(HelmetA_12C_trix,((HelmetA_12C_triy)./g))))^p) 

  

HelmetA_12D_tri_HIC = 

HelmetA_12D_tridif*(((1/HelmetA_12D_tridif)*(trapz(HelmetA_12D_trix,((HelmetA_12D_triy)./g))))^p) 

  

HelmetA_12E_tri_HIC = 

HelmetA_12E_tridif*(((1/HelmetA_12E_tridif)*(trapz(HelmetA_12E_trix,((HelmetA_12E_triy)./g))))^p) 

  

HelmetA_12avg_tri_HIC = 

HelmetA_12avg_tridif*(((1/HelmetA_12avg_tridif)*(trapz(HelmetA_12avg_trix,((HelmetA_12avg_triy)./g))))

^p) 

 %% 26 -----------------------------------------------------------------------------------------------

---------------------- 

HelmetA_26A_tri_HIC = 

HelmetA_26A_tridif*(((1/HelmetA_26A_tridif)*(trapz(HelmetA_26A_trix,((HelmetA_26A_triy)./g))))^p) 

  

HelmetA_26B_tri_HIC = 

HelmetA_26B_tridif*(((1/HelmetA_26B_tridif)*(trapz(HelmetA_26B_trix,((HelmetA_26B_triy)./g))))^p) 

  

HelmetA_26C_tri_HIC = 

HelmetA_26C_tridif*(((1/HelmetA_26C_tridif)*(trapz(HelmetA_26C_trix,((HelmetA_26C_triy)./g))))^p) 

  

HelmetA_26D_tri_HIC = 

HelmetA_26D_tridif*(((1/HelmetA_26D_tridif)*(trapz(HelmetA_26D_trix,((HelmetA_26D_triy)./g))))^p) 

  

HelmetA_26E_tri_HIC = 

HelmetA_26E_tridif*(((1/HelmetA_26E_tridif)*(trapz(HelmetA_26E_trix,((HelmetA_26E_triy)./g))))^p) 
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 HelmetA_26avg_tri_HIC = 

HelmetA_26avg_tridif*(((1/HelmetA_26avg_tridif)*(trapz(HelmetA_26avg_trix,((HelmetA_26avg_triy)./g))))

^p) 

 %% *************************************** Non - Weighted 

*************************************************************************** 

%% Helmet A Y-Tri-Axial HIC ------------------------------------------------------- 

  

HelmetA_12A_tri_HICNW = 

HelmetA_12A_tridifNW*(((1/HelmetA_12A_tridifNW)*(trapz(HelmetA_12A_trixNW,((HelmetA_12A_triyNW)./g))))

^p) 

  

HelmetA_12B_tri_HICNW = 

HelmetA_12B_tridifNW*(((1/HelmetA_12B_tridifNW)*(trapz(HelmetA_12B_trixNW,((HelmetA_12B_triyNW)./g))))

^p) 

  

HelmetA_12C_tri_HICNW = 

HelmetA_12C_tridifNW*(((1/HelmetA_12C_tridifNW)*(trapz(HelmetA_12C_trixNW,((HelmetA_12C_triyNW)./g))))

^p) 

  

HelmetA_12D_tri_HICNW = 

HelmetA_12D_tridifNW*(((1/HelmetA_12D_tridifNW)*(trapz(HelmetA_12D_trixNW,((HelmetA_12D_triyNW)./g))))

^p) 

  

HelmetA_12E_tri_HICNW = 

HelmetA_12E_tridifNW*(((1/HelmetA_12E_tridifNW)*(trapz(HelmetA_12E_trixNW,((HelmetA_12E_triyNW)./g))))

^p) 

  

HelmetA_12avg_tri_HICNW = 

HelmetA_12avg_tridifNW*(((1/HelmetA_12avg_tridifNW)*(trapz(HelmetA_12avg_trixNW,((HelmetA_12avg_triyNW

)./g))))^p) 

  

  

HelmetA_26A_tri_HICNW = 

HelmetA_26A_tridifNW*(((1/HelmetA_26A_tridifNW)*(trapz(HelmetA_26A_trixNW,((HelmetA_26A_triyNW)./g))))

^p) 

  

HelmetA_26B_tri_HICNW = 

HelmetA_26B_tridifNW*(((1/HelmetA_26B_tridifNW)*(trapz(HelmetA_26B_trixNW,((HelmetA_26B_triyNW)./g))))

^p) 

  

HelmetA_26C_tri_HICNW = 

HelmetA_26C_tridifNW*(((1/HelmetA_26C_tridifNW)*(trapz(HelmetA_26C_trixNW,((HelmetA_26C_triyNW)./g))))

^p) 

HelmetA_26D_tri_HICNW = 

HelmetA_26D_tridifNW*(((1/HelmetA_26D_tridifNW)*(trapz(HelmetA_26D_trixNW,((HelmetA_26D_triyNW)./g))))

^p) 

  

HelmetA_26E_tri_HICNW = 

HelmetA_26E_tridifNW*(((1/HelmetA_26E_tridifNW)*(trapz(HelmetA_26E_trixNW,((HelmetA_26E_triyNW)./g))))

^p) 

  

HelmetA_26avg_tri_HICNW = 

HelmetA_26avg_tridifNW*(((1/HelmetA_26avg_tridifNW)*(trapz(HelmetA_26avg_trixNW,((HelmetA_26avg_triyNW

)./g))))^p) 

   

%% Helmet B 

****************************************************************************************************** 

%% Helmet B Velocities **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**-

-**--**--**--**--** 

 %% Helmet B Velocity --------------------------------------------------------------------------------

------------------- 

 %% ************************************* Weighted 

********************************************************************************** 

 %% 12 -----------------------------------------------------------------------------------------------

- 

HelmetB_12A_tri_vel = trapz(HelmetB_12A_trix,(HelmetB_12A_triy)) 

  

HelmetB_12B_tri_vel = trapz(HelmetB_12B_trix,(HelmetB_12B_triy)) 

  

HelmetB_12C_tri_vel = trapz(HelmetB_12C_trix,(HelmetB_12C_triy)) 

  

HelmetB_12D_tri_vel = trapz(HelmetB_12D_trix,(HelmetB_12D_triy)) 

  

HelmetB_12E_tri_vel = trapz(HelmetB_12E_trix,(HelmetB_12E_triy)) 

  

HelmetB_12avg_tri_vel = trapz(HelmetB_12avg_trix,(HelmetB_12avg_triy)) 
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 %% 26 -----------------------------------------------------------------------------------------------

- 

HelmetB_26A_tri_vel = trapz(HelmetB_26A_trix,(HelmetB_26A_triy)) 

  

HelmetB_26B_tri_vel = trapz(HelmetB_26B_trix,(HelmetB_26B_triy)) 

  

HelmetB_26C_tri_vel = trapz(HelmetB_26C_trix,(HelmetB_26C_triy)) 

  

HelmetB_26D_tri_vel = trapz(HelmetB_26D_trix,(HelmetB_26D_triy)) 

  

HelmetB_26E_tri_vel = trapz(HelmetB_26E_trix,(HelmetB_26E_triy)) 

  

HelmetB_26avg_tri_vel = trapz(HelmetB_26avg_trix,(HelmetB_26avg_triy)) 

  

%% *************************************** Non - Weighted   

%% Helmet B Y-Tri-Axial Velocity --------------------------------------------------------------------- 

%% 12 Y-Tri-------------------------------------------------------------------------------------------

----- 

HelmetB_12A_tri_velNW = trapz(HelmetB_12A_trixNW,(HelmetB_12A_triyNW)) 

  

HelmetB_12B_tri_velNW = trapz(HelmetB_12B_trixNW,(HelmetB_12B_triyNW)) 

  

HelmetB_12C_tri_velNW = trapz(HelmetB_12C_trixNW,(HelmetB_12C_triyNW)) 

  

HelmetB_12D_tri_velNW = trapz(HelmetB_12D_trixNW,(HelmetB_12D_triyNW)) 

  

HelmetB_12E_tri_velNW = trapz(HelmetB_12E_trixNW,(HelmetB_12E_triyNW)) 

  

HelmetB_12avg_tri_velNW = trapz(HelmetB_12avg_trixNW,(HelmetB_12avg_triyNW)) 

  

%% 26 Y-Tri-------------------------------------------------------------------------------------------

----- 

HelmetB_26A_tri_velNW = trapz(HelmetB_26A_trixNW,(HelmetB_26A_triyNW)) 

  

HelmetB_26B_tri_velNW = trapz(HelmetB_26B_trixNW,(HelmetB_26B_triyNW)) 

  

HelmetB_26C_tri_velNW = trapz(HelmetB_26C_trixNW,(HelmetB_26C_triyNW)) 

  

HelmetB_26D_tri_velNW = trapz(HelmetB_26D_trixNW,(HelmetB_26D_triyNW)) 

  

HelmetB_26E_tri_velNW = trapz(HelmetB_26E_trixNW,(HelmetB_26E_triyNW)) 

  

HelmetB_26avg_tri_velNW = trapz(HelmetB_26avg_trixNW,(HelmetB_26avg_triyNW)) 

%% Helmet B SI Values **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--

**--**--**--**--**--** 

  

%% Helmet B SI---------------------------------------------------------------------------------------- 

  

%% ************************** WEIGHTED   

%% 12-------------------------------------------------------------------------------------------------

- 

HelmetB_12A_tri_SI = trapz(HelmetB_12A_trix,(abs((HelmetB_12A_triy))./g).^p) 

  

HelmetB_12B_tri_SI = trapz(HelmetB_12B_trix,(abs((HelmetB_12B_triy))./g).^p) 

  

HelmetB_12C_tri_SI = trapz(HelmetB_12C_trix,(abs((HelmetB_12C_triy))./g).^p) 

  

HelmetB_12D_tri_SI = trapz(HelmetB_12D_trix,(abs((HelmetB_12D_triy))./g).^p) 

  

HelmetB_12E_tri_SI = trapz(HelmetB_12E_trix,(abs((HelmetB_12E_triy))./g).^p) 

  

HelmetB_12avg_tri_SI = trapz(HelmetB_12avg_trix,(abs((HelmetB_12avg_triy))./g).^p) 

  

%% 26-------------------------------------------------------------------------------------------------

- 

HelmetB_26A_tri_SI = trapz(HelmetB_26A_trix,(abs((HelmetB_26A_triy))./g).^p) 

  

HelmetB_26B_tri_SI = trapz(HelmetB_26B_trix,(abs((HelmetB_26B_triy))./g).^p) 

  

HelmetB_26C_tri_SI = trapz(HelmetB_26C_trix,(abs((HelmetB_26C_triy))./g).^p) 

  

HelmetB_26D_tri_SI = trapz(HelmetB_26D_trix,(abs((HelmetB_26D_triy))./g).^p) 

  

HelmetB_26E_tri_SI = trapz(HelmetB_26E_trix,(abs((HelmetB_26E_triy))./g).^p) 

  

HelmetB_26avg_tri_SI = trapz(HelmetB_26avg_trix,(abs((HelmetB_26avg_triy))./g).^p) 
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 %% ******************************** NON - WEIGHTED   

%% Helmet B Y-Tri-Axial SI----------------------------------------------------------------------------

- 

%% 12-------------------------------------------------------------------------------------------------

- 

HelmetB_12A_tri_SINW = trapz(HelmetB_12A_trixNW,(abs((HelmetB_12A_triyNW))./g).^p) 

  

HelmetB_12B_tri_SINW = trapz(HelmetB_12B_trixNW,(abs((HelmetB_12B_triyNW))./g).^p) 

  

HelmetB_12C_tri_SINW = trapz(HelmetB_12C_trixNW,(abs((HelmetB_12C_triyNW))./g).^p) 

  

HelmetB_12D_tri_SINW = trapz(HelmetB_12D_trixNW,(abs((HelmetB_12D_triyNW))./g).^p) 

  

HelmetB_12E_tri_SINW = trapz(HelmetB_12E_trixNW,(abs((HelmetB_12E_triyNW))./g).^p) 

  

HelmetB_12avg_tri_SINW = trapz(HelmetB_12avg_trixNW,(abs((HelmetB_12avg_triyNW))./g).^p) 

  

%% 26-------------------------------------------------------------------------------------------------

- 

HelmetB_26A_tri_SINW = trapz(HelmetB_26A_trixNW,(abs((HelmetB_26A_triyNW))./g).^p) 

  

HelmetB_26B_tri_SINW = trapz(HelmetB_26B_trixNW,(abs((HelmetB_26B_triyNW))./g).^p) 

  

HelmetB_26C_tri_SINW = trapz(HelmetB_26C_trixNW,(abs((HelmetB_26C_triyNW))./g).^p) 

  

HelmetB_26D_tri_SINW = trapz(HelmetB_26D_trixNW,(abs((HelmetB_26D_triyNW))./g).^p) 

  

HelmetB_26E_tri_SINW = trapz(HelmetB_26E_trixNW,(abs((HelmetB_26E_triyNW))./g).^p) 

  

HelmetB_26avg_tri_SINW = trapz(HelmetB_26avg_trixNW,(abs((HelmetB_26avg_triyNW))./g).^p) 

  

 %% Helmet B HIC -------------------------------------------------------------------------------------  

%% ************************************** WEIGHTED  

%% 12 Y-Tri-------------------------------------------------------------------------------------------

-------------------------------- 

HelmetB_12A_tri_HIC = 

HelmetB_12A_tridif*(((1/HelmetB_12A_tridif)*(trapz(HelmetB_12A_trix,((HelmetB_12A_triy)./g))))^p) 

  

HelmetB_12B_tri_HIC = 

HelmetB_12B_tridif*(((1/HelmetB_12B_tridif)*(trapz(HelmetB_12B_trix,((HelmetB_12B_triy)./g))))^p) 

  

HelmetB_12C_tri_HIC = 

HelmetB_12C_tridif*(((1/HelmetB_12C_tridif)*(trapz(HelmetB_12C_trix,((HelmetB_12C_triy)./g))))^p) 

  

HelmetB_12D_tri_HIC = 

HelmetB_12D_tridif*(((1/HelmetB_12D_tridif)*(trapz(HelmetB_12D_trix,((HelmetB_12D_triy)./g))))^p) 

  

HelmetB_12E_tri_HIC = 

HelmetB_12E_tridif*(((1/HelmetB_12E_tridif)*(trapz(HelmetB_12E_trix,((HelmetB_12E_triy)./g))))^p) 

  

HelmetB_12avg_tri_HIC = 

HelmetB_12avg_tridif*(((1/HelmetB_12avg_tridif)*(trapz(HelmetB_12avg_trix,((HelmetB_12avg_triy)./g))))

^p) 

% 26 Y-Tri--------------------------------------------------------------------------------------------

------------------------------- 

HelmetB_26A_tri_HIC = 

HelmetB_26A_tridif*(((1/HelmetB_26A_tridif)*(trapz(HelmetB_26A_trix,((HelmetB_26A_triy)./g))))^p) 

  

HelmetB_26B_tri_HIC = 

HelmetB_26B_tridif*(((1/HelmetB_26B_tridif)*(trapz(HelmetB_26B_trix,((HelmetB_26B_triy)./g))))^p) 

  

HelmetB_26C_tri_HIC = 

HelmetB_26C_tridif*(((1/HelmetB_26C_tridif)*(trapz(HelmetB_26C_trix,((HelmetB_26C_triy)./g))))^p) 

  

HelmetB_26D_tri_HIC = 

HelmetB_26D_tridif*(((1/HelmetB_26D_tridif)*(trapz(HelmetB_26D_trix,((HelmetB_26D_triy)./g))))^p) 

  

HelmetB_26E_tri_HIC = 

HelmetB_26E_tridif*(((1/HelmetB_26E_tridif)*(trapz(HelmetB_26E_trix,((HelmetB_26E_triy)./g))))^p) 

  

HelmetB_26avg_tri_HIC = 

HelmetB_26avg_tridif*(((1/HelmetB_26avg_tridif)*(trapz(HelmetB_26avg_trix,((HelmetB_26avg_triy)./g))))

^p) 

  

 %% ************************************** NON - WEIGHTED   
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%% Helmet B Y-Tri-Axial HIC --------------------------------------------------------------------------

----------------------------- 

%% 12 Y-Tri-------------------------------------------------------------------------------------------

-------------------------------- 

HelmetB_12A_tri_HICNW = 

HelmetB_12A_tridifNW*(((1/HelmetB_12A_tridifNW)*(trapz(HelmetB_12A_trixNW,((HelmetB_12A_triyNW)./g))))

^p) 

  

HelmetB_12B_tri_HICNW = 

HelmetB_12B_tridifNW*(((1/HelmetB_12B_tridifNW)*(trapz(HelmetB_12B_trixNW,((HelmetB_12B_triyNW)./g))))

^p) 

  

HelmetB_12C_tri_HICNW = 

HelmetB_12C_tridifNW*(((1/HelmetB_12C_tridifNW)*(trapz(HelmetB_12C_trixNW,((HelmetB_12C_triyNW)./g))))

^p) 

  

HelmetB_12D_tri_HICNW = 

HelmetB_12D_tridifNW*(((1/HelmetB_12D_tridifNW)*(trapz(HelmetB_12D_trixNW,((HelmetB_12D_triyNW)./g))))

^p) 

  

HelmetB_12E_tri_HICNW = 

HelmetB_12E_tridifNW*(((1/HelmetB_12E_tridifNW)*(trapz(HelmetB_12E_trixNW,((HelmetB_12E_triyNW)./g))))

^p) 

  

HelmetB_12avg_tri_HICNW = 

HelmetB_12avg_tridifNW*(((1/HelmetB_12avg_tridifNW)*(trapz(HelmetB_12avg_trixNW,((HelmetB_12avg_triyNW

)./g))))^p) 

  

%% 26 Y-Tri-------------------------------------------------------------------------------------------

-------------------------------- 

HelmetB_26A_tri_HICNW = 

HelmetB_26A_tridifNW*(((1/HelmetB_26A_tridifNW)*(trapz(HelmetB_26A_trixNW,((HelmetB_26A_triyNW)./g))))

^p) 

  

HelmetB_26B_tri_HICNW = 

HelmetB_26B_tridifNW*(((1/HelmetB_26B_tridifNW)*(trapz(HelmetB_26B_trixNW,((HelmetB_26B_triyNW)./g))))

^p) 

  

HelmetB_26C_tri_HICNW = 

HelmetB_26C_tridifNW*(((1/HelmetB_26C_tridifNW)*(trapz(HelmetB_26C_trixNW,((HelmetB_26C_triyNW)./g))))

^p) 

  

HelmetB_26D_tri_HICNW = 

HelmetB_26D_tridifNW*(((1/HelmetB_26D_tridifNW)*(trapz(HelmetB_26D_trixNW,((HelmetB_26D_triyNW)./g))))

^p) 

  

HelmetB_26E_tri_HICNW = 

HelmetB_26E_tridifNW*(((1/HelmetB_26E_tridifNW)*(trapz(HelmetB_26E_trixNW,((HelmetB_26E_triyNW)./g))))

^p) 

  

HelmetB_26avg_tri_HICNW = 

HelmetB_26avg_tridifNW*(((1/HelmetB_26avg_tridifNW)*(trapz(HelmetB_26avg_trixNW,((HelmetB_26avg_triyNW

)./g))))^p) 

  

%% Headform  

  

%% Headform Velocities **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**-

-**--**--**--**--** 

 %% Headform Velocity --------------------------------------------------------------------------------

--------------------- 

 %% ****************************************** WEIGHTED 

******************************************************************* 

%% 12 ------------------------------------------------------------------------------------------------

--- 

Headform_12A_tri_vel = trapz(Headform_12A_trix,(Headform_12A_triy)) 

  

Headform_12B_tri_vel = trapz(Headform_12B_trix,(Headform_12B_triy)) 

  

Headform_12C_tri_vel = trapz(Headform_12C_trix,(Headform_12C_triy)) 

  

Headform_12D_tri_vel = trapz(Headform_12D_trix,(Headform_12D_triy)) 

  

Headform_12E_tri_vel = trapz(Headform_12E_trix,(Headform_12E_triy)) 

  

Headform_12avg_tri_vel = trapz(Headform_12avg_trix,(Headform_12avg_triy)) 
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 %% 26 -----------------------------------------------------------------------------------------------

---- 

Headform_26A_tri_vel = trapz(Headform_26A_trix,(Headform_26A_triy)) 

  

Headform_26B_tri_vel = trapz(Headform_26B_trix,(Headform_26B_triy)) 

  

Headform_26C_tri_vel = trapz(Headform_26C_trix,(Headform_26C_triy)) 

  

Headform_26D_tri_vel = trapz(Headform_26D_trix,(Headform_26D_triy)) 

  

Headform_26E_tri_vel = trapz(Headform_26E_trix,(Headform_26E_triy)) 

  

Headform_26avg_tri_vel = trapz(Headform_26avg_trix,(Headform_26avg_triy)) 

  

 %% ********************** NON - WEIGHTED 

**************************************************************************** 

 %% Headform Y-Tri-Axial Velocity --------------------------------------------------------------------

-------- 

%% 12 Y-tri-------------------------------------------------------------------------------------------

-------- 

Headform_12A_tri_velNW = trapz(Headform_12A_trixNW,(Headform_12A_triyNW)) 

  

Headform_12B_tri_velNW = trapz(Headform_12B_trixNW,(Headform_12B_triyNW)) 

  

Headform_12C_tri_velNW = trapz(Headform_12C_trixNW,(Headform_12C_triyNW)) 

  

Headform_12D_tri_velNW = trapz(Headform_12D_trixNW,(Headform_12D_triyNW)) 

  

Headform_12E_tri_velNW = trapz(Headform_12E_trixNW,(Headform_12E_triyNW)) 

  

Headform_12avg_tri_velNW = trapz(Headform_12avg_trixNW,(Headform_12avg_triyNW)) 

  

 %% 26 Y-tri------------------------------------------------------------------------------------------

--------- 

Headform_26A_tri_velNW = trapz(Headform_26A_trixNW,(Headform_26A_triyNW)) 

  

Headform_26B_tri_velNW = trapz(Headform_26B_trixNW,(Headform_26B_triyNW)) 

  

Headform_26C_tri_velNW = trapz(Headform_26C_trixNW,(Headform_26C_triyNW)) 

  

Headform_26D_tri_velNW = trapz(Headform_26D_trixNW,(Headform_26D_triyNW)) 

  

Headform_26E_tri_velNW = trapz(Headform_26E_trixNW,(Headform_26E_triyNW)) 

  

Headform_26avg_tri_velNW = trapz(Headform_26avg_trixNW,(Headform_26avg_triyNW)) 

 

%% Headform SI Values **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--

**--**--**--**--**--** 

 %% Headform Y SI-------------------------------------------------------------------------------------

--------------- 

 %% ********************************* WEIGHTED 

************************************************************************ 

 %% 12 -----------------------------------------------------------------------------------------------

- 

Headform_12A_tri_SI = trapz(Headform_12A_trix,(abs((Headform_12A_triy))./g).^p) 

  

Headform_12B_tri_SI = trapz(Headform_12B_trix,(abs((Headform_12B_triy))./g).^p) 

  

Headform_12C_tri_SI = trapz(Headform_12C_trix,(abs((Headform_12C_triy))./g).^p) 

  

Headform_12D_tri_SI = trapz(Headform_12D_trix,(abs((Headform_12D_triy))./g).^p) 

  

Headform_12E_tri_SI = trapz(Headform_12E_trix,(abs((Headform_12E_triy))./g).^p) 

  

Headform_12avg_tri_SI = trapz(Headform_12avg_trix,(abs((Headform_12avg_triy))./g).^p) 

  

%% 26 ------------------------------------------------------------------------------------------------ 

Headform_26A_tri_SI = trapz(Headform_26A_trix,(abs((Headform_26A_triy))./g).^p) 

  

Headform_26B_tri_SI = trapz(Headform_26B_trix,(abs((Headform_26B_triy))./g).^p) 

  

Headform_26C_tri_SI = trapz(Headform_26C_trix,(abs((Headform_26C_triy))./g).^p) 

  

Headform_26D_tri_SI = trapz(Headform_26D_trix,(abs((Headform_26D_triy))./g).^p) 

  

Headform_26E_tri_SI = trapz(Headform_26E_trix,(abs((Headform_26E_triy))./g).^p) 
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 Headform_26avg_tri_SI = trapz(Headform_26avg_trix,(abs((Headform_26avg_triy))./g).^p) 

  

%% ********************************** NON - WEIGHTED   

%% Headform Y-Tri-Axial SI----------------------------------------------------------------------------

----- 

%% 12 Y-tri-------------------------------------------------------------------------------------------

----- 

Headform_12A_tri_SINW = trapz(Headform_12A_trixNW,(abs((Headform_12A_triyNW))./g).^p) 

  

Headform_12B_tri_SINW = trapz(Headform_12B_trixNW,(abs((Headform_12B_triyNW))./g).^p) 

  

Headform_12C_tri_SINW = trapz(Headform_12C_trixNW,(abs((Headform_12C_triyNW))./g).^p) 

  

Headform_12D_tri_SINW = trapz(Headform_12D_trixNW,(abs((Headform_12D_triyNW))./g).^p) 

  

Headform_12E_tri_SINW = trapz(Headform_12E_trixNW,(abs((Headform_12E_triyNW))./g).^p) 

  

Headform_12avg_tri_SINW = trapz(Headform_12avg_trixNW,(abs((Headform_12avg_triyNW))./g).^p) 

 

%% 26 Y-tri-------------------------------------------------------------------------------------------

----- 

Headform_26A_tri_SINW = trapz(Headform_26A_trixNW,(abs((Headform_26A_triyNW))./g).^p) 

  

Headform_26B_tri_SINW = trapz(Headform_26B_trixNW,(abs((Headform_26B_triyNW))./g).^p) 

  

Headform_26C_tri_SINW = trapz(Headform_26C_trixNW,(abs((Headform_26C_triyNW))./g).^p) 

  

Headform_26D_tri_SINW = trapz(Headform_26D_trixNW,(abs((Headform_26D_triyNW))./g).^p) 

  

Headform_26E_tri_SINW = trapz(Headform_26E_trixNW,(abs((Headform_26E_triyNW))./g).^p) 

  

Headform_26avg_tri_SINW = trapz(Headform_26avg_trixNW,(abs((Headform_26avg_triyNW))./g).^p) 

  

%% Headform HIC Values **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**-

-**--**--**--**--**--** 

 %% Headform Y-Tri-Axial HIC -------------------------------------------------------------------------  

%% **************************** WEIGHTED  

%% 12 Y-tri------------------------------------------------------------------------------------------- 

Headform_12A_tri_HIC = 

Headform_12A_tridif*(((1/Headform_12A_tridif)*(trapz(Headform_12A_trix,((Headform_12A_triy)./g))))^p) 

  

Headform_12B_tri_HIC = 

Headform_12B_tridif*(((1/Headform_12B_tridif)*(trapz(Headform_12B_trix,((Headform_12B_triy)./g))))^p) 

  

Headform_12C_tri_HIC = 

Headform_12C_tridif*(((1/Headform_12C_tridif)*(trapz(Headform_12C_trix,((Headform_12C_triy)./g))))^p) 

  

Headform_12D_tri_HIC = 

Headform_12D_tridif*(((1/Headform_12D_tridif)*(trapz(Headform_12D_trix,((Headform_12D_triy)./g))))^p) 

  

Headform_12E_tri_HIC = 

Headform_12E_tridif*(((1/Headform_12E_tridif)*(trapz(Headform_12E_trix,((Headform_12E_triy)./g))))^p) 

  

Headform_12avg_tri_HIC = 

Headform_12avg_tridif*(((1/Headform_12avg_tridif)*(trapz(Headform_12avg_trix,((Headform_12avg_triy)./g

))))^p) 

  

%% 26 Y-tri------------------------------------------------------------------------------------------- 

Headform_26A_tri_HIC = 

Headform_26A_tridif*(((1/Headform_26A_tridif)*(trapz(Headform_26A_trix,((Headform_26A_triy)./g))))^p) 

  

Headform_26B_tri_HIC = 

Headform_26B_tridif*(((1/Headform_26B_tridif)*(trapz(Headform_26B_trix,((Headform_26B_triy)./g))))^p) 

  

Headform_26C_tri_HIC = 

Headform_26C_tridif*(((1/Headform_26C_tridif)*(trapz(Headform_26C_trix,((Headform_26C_triy)./g))))^p) 

  

Headform_26D_tri_HIC = 

Headform_26D_tridif*(((1/Headform_26D_tridif)*(trapz(Headform_26D_trix,((Headform_26D_triy)./g))))^p) 

  

Headform_26E_tri_HIC = 

Headform_26E_tridif*(((1/Headform_26E_tridif)*(trapz(Headform_26E_trix,((Headform_26E_triy)./g))))^p) 

  

Headform_26avg_tri_HIC = 

Headform_26avg_tridif*(((1/Headform_26avg_tridif)*(trapz(Headform_26avg_trix,((Headform_26avg_triy)./g

))))^p) 
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%% ********************************** NON - WEIGHTED *********************** 

 %% Headform Y-Tri-Axial HIC -------------------------------------------------------------------------

------------------------------------ 

%% 12 Y-tri-------------------------------------------------------------------------------------------

---------------------------------- 

Headform_12A_tri_HICNW = 

Headform_12A_tridifNW*(((1/Headform_12A_tridifNW)*(trapz(Headform_12A_trixNW,((Headform_12A_triyNW)./g

))))^p) 

  

Headform_12B_tri_HICNW = 

Headform_12B_tridifNW*(((1/Headform_12B_tridifNW)*(trapz(Headform_12B_trixNW,((Headform_12B_triyNW)./g

))))^p) 

  

Headform_12C_tri_HICNW = 

Headform_12C_tridifNW*(((1/Headform_12C_tridifNW)*(trapz(Headform_12C_trixNW,((Headform_12C_triyNW)./g

))))^p) 

  

Headform_12D_tri_HICNW = 

Headform_12D_tridifNW*(((1/Headform_12D_tridifNW)*(trapz(Headform_12D_trixNW,((Headform_12D_triyNW)./g

))))^p) 

  

Headform_12E_tri_HICNW = 

Headform_12E_tridifNW*(((1/Headform_12E_tridifNW)*(trapz(Headform_12E_trixNW,((Headform_12E_triyNW)./g

))))^p) 

  

Headform_12avg_tri_HICNW = 

Headform_12avg_tridifNW*(((1/Headform_12avg_tridifNW)*(trapz(Headform_12avg_trixNW,((Headform_12avg_tr

iyNW)./g))))^p) 

  

%% 26 Y-tri-------------------------------------------------------------------------------------------

---------------------------------- 

Headform_26A_tri_HICNW = 

Headform_26A_tridifNW*(((1/Headform_26A_tridifNW)*(trapz(Headform_26A_trixNW,((Headform_26A_triyNW)./g

))))^p) 

  

Headform_26B_tri_HICNW = 

Headform_26B_tridifNW*(((1/Headform_26B_tridifNW)*(trapz(Headform_26B_trixNW,((Headform_26B_triyNW)./g

))))^p) 

  

Headform_26C_tri_HICNW = 

Headform_26C_tridifNW*(((1/Headform_26C_tridifNW)*(trapz(Headform_26C_trixNW,((Headform_26C_triyNW)./g

))))^p) 

  

Headform_26D_tri_HICNW = 

Headform_26D_tridifNW*(((1/Headform_26D_tridifNW)*(trapz(Headform_26D_trixNW,((Headform_26D_triyNW)./g

))))^p) 

  

Headform_26E_tri_HICNW = 

Headform_26E_tridifNW*(((1/Headform_26E_tridifNW)*(trapz(Headform_26E_trixNW,((Headform_26E_triyNW)./g

))))^p) 

  

Headform_26avg_tri_HICNW = 

Headform_26avg_tridifNW*(((1/Headform_26avg_tridifNW)*(trapz(Headform_26avg_trixNW,((Headform_26avg_tr

iyNW)./g))))^p) 

 %% Pitcher  

%% Pitcher Velocities **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--

**--**--**--**--** 

  

 %% Pitcher Y-Tri-Axial Velocity ---------------------------------------------------------------------

------ 

  

%% ******************************** WEIGHTED   

%% 12 Y-Tri-------------------------------------------------------------------------------------------

----- 

Pitcher_12A_tri_vel = trapz(Pitcher_12A_trix,(Pitcher_12A_triy)) 

  

Pitcher_12B_tri_vel = trapz(Pitcher_12B_trix,(Pitcher_12B_triy)) 

  

Pitcher_12C_tri_vel = trapz(Pitcher_12C_trix,(Pitcher_12C_triy)) 

  

Pitcher_12D_tri_vel = trapz(Pitcher_12D_trix,(Pitcher_12D_triy)) 

  

Pitcher_12E_tri_vel = trapz(Pitcher_12E_trix,(Pitcher_12E_triy)) 

  

Pitcher_12avg_tri_vel = trapz(Pitcher_12avg_trix,(Pitcher_12avg_triy)) 
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%% 26 Y-Tri-------------------------------------------------------------------------------------------

----- 

Pitcher_26A_tri_vel = trapz(Pitcher_26A_trix,(Pitcher_26A_triy)) 

  

Pitcher_26B_tri_vel = trapz(Pitcher_26B_trix,(Pitcher_26B_triy)) 

  

Pitcher_26C_tri_vel = trapz(Pitcher_26C_trix,(Pitcher_26C_triy)) 

  

Pitcher_26D_tri_vel = trapz(Pitcher_26D_trix,(Pitcher_26D_triy)) 

  

Pitcher_26E_tri_vel = trapz(Pitcher_26E_trix,(Pitcher_26E_triy)) 

  

Pitcher_26avg_tri_vel = trapz(Pitcher_26avg_trix,(Pitcher_26avg_triy)) 

  

%% ****************************** NON - WEIGHTED 

************************************************************************ 

 %% Pitcher Y-Tri-Axial Velocity ---------------------------------------------------------------------

------ 

%% 12 Y-Tri-------------------------------------------------------------------------------------------

----- 

Pitcher_12A_tri_velNW = trapz(Pitcher_12A_trixNW,(Pitcher_12A_triyNW)) 

  

Pitcher_12B_tri_velNW = trapz(Pitcher_12B_trixNW,(Pitcher_12B_triyNW)) 

  

Pitcher_12C_tri_velNW = trapz(Pitcher_12C_trixNW,(Pitcher_12C_triyNW)) 

  

Pitcher_12D_tri_velNW = trapz(Pitcher_12D_trixNW,(Pitcher_12D_triyNW)) 

  

Pitcher_12E_tri_velNW = trapz(Pitcher_12E_trixNW,(Pitcher_12E_triyNW)) 

  

Pitcher_12avg_tri_velNW = trapz(Pitcher_12avg_trixNW,(Pitcher_12avg_triyNW)) 

  

%% 26 Y-Tri-------------------------------------------------------------------------------------------

----- 

Pitcher_26A_tri_velNW = trapz(Pitcher_26A_trixNW,(Pitcher_26A_triyNW)) 

  

Pitcher_26B_tri_velNW = trapz(Pitcher_26B_trixNW,(Pitcher_26B_triyNW)) 

  

Pitcher_26C_tri_velNW = trapz(Pitcher_26C_trixNW,(Pitcher_26C_triyNW)) 

  

Pitcher_26D_tri_velNW = trapz(Pitcher_26D_trixNW,(Pitcher_26D_triyNW)) 

  

Pitcher_26E_tri_velNW = trapz(Pitcher_26E_trixNW,(Pitcher_26E_triyNW)) 

  

Pitcher_26avg_tri_velNW = trapz(Pitcher_26avg_trixNW,(Pitcher_26avg_triyNW)) 

  

%% Pitcher SI Values **--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--**--

**--**--**--**--**--** 

 %% Pitcher Y-Tri-Axial SI----------------------------------------------------------------------------

%% ************************* WEIGHTED 

********************************************************************** 

 %% 12------------------------------------------------------------------------------------------------

-- 

Pitcher_12A_tri_SI = trapz(Pitcher_12A_trix,(abs((Pitcher_12A_triy))./g).^p) 

  

Pitcher_12B_tri_SI = trapz(Pitcher_12B_trix,(abs((Pitcher_12B_triy))./g).^p) 

  

Pitcher_12C_tri_SI = trapz(Pitcher_12C_trix,(abs((Pitcher_12C_triy))./g).^p) 

  

Pitcher_12D_tri_SI = trapz(Pitcher_12D_trix,(abs((Pitcher_12D_triy))./g).^p) 

  

Pitcher_12E_tri_SI = trapz(Pitcher_12E_trix,(abs((Pitcher_12E_triy))./g).^p) 

  

Pitcher_12avg_tri_SI = trapz(Pitcher_12avg_trix,(abs((Pitcher_12avg_triy))./g).^p) 

  

%% 26-------------------------------------------------------------------------------------------------

- 

Pitcher_26A_tri_SI = trapz(Pitcher_26A_trix,(abs((Pitcher_26A_triy))./g).^p) 

  

Pitcher_26B_tri_SI = trapz(Pitcher_26B_trix,(abs((Pitcher_26B_triy))./g).^p) 

  

Pitcher_26C_tri_SI = trapz(Pitcher_26C_trix,(abs((Pitcher_26C_triy))./g).^p) 

  

Pitcher_26D_tri_SI = trapz(Pitcher_26D_trix,(abs((Pitcher_26D_triy))./g).^p) 
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Pitcher_26E_tri_SI = trapz(Pitcher_26E_trix,(abs((Pitcher_26E_triy))./g).^p) 

  

Pitcher_26avg_tri_SI = trapz(Pitcher_26avg_trix,(abs((Pitcher_26avg_triy))./g).^p) 

  

%% *************************** NON - WEIGHTED 

********************************************************************************** 

 %% Pitcher Y-Tri-Axial SI---------------------------------------------------------------------------- 

%% 12-------------------------------------------------------------------------------------------------

- 

Pitcher_12A_tri_SINW = trapz(Pitcher_12A_trixNW,(abs((Pitcher_12A_triyNW))./g).^p) 

  

Pitcher_12B_tri_SINW = trapz(Pitcher_12B_trixNW,(abs((Pitcher_12B_triyNW))./g).^p) 

  

Pitcher_12C_tri_SINW = trapz(Pitcher_12C_trixNW,(abs((Pitcher_12C_triyNW))./g).^p) 

  

Pitcher_12D_tri_SINW = trapz(Pitcher_12D_trixNW,(abs((Pitcher_12D_triyNW))./g).^p) 

  

Pitcher_12E_tri_SINW = trapz(Pitcher_12E_trixNW,(abs((Pitcher_12E_triyNW))./g).^p) 

  

Pitcher_12avg_tri_SINW = trapz(Pitcher_12avg_trixNW,(abs((Pitcher_12avg_triyNW))./g).^p) 

  

%% 26------------------------------------------------------------------------------------------------- 

Pitcher_26A_tri_SINW = trapz(Pitcher_26A_trixNW,(abs((Pitcher_26A_triyNW))./g).^p) 

  

Pitcher_26B_tri_SINW = trapz(Pitcher_26B_trixNW,(abs((Pitcher_26B_triyNW))./g).^p) 

  

Pitcher_26C_tri_SINW = trapz(Pitcher_26C_trixNW,(abs((Pitcher_26C_triyNW))./g).^p) 

  

Pitcher_26D_tri_SINW = trapz(Pitcher_26D_trixNW,(abs((Pitcher_26D_triyNW))./g).^p) 

  

Pitcher_26E_tri_SINW = trapz(Pitcher_26E_trixNW,(abs((Pitcher_26E_triyNW))./g).^p) 

  

Pitcher_26avg_tri_SINW = trapz(Pitcher_26avg_trixNW,(abs((Pitcher_26avg_triyNW))./g).^p) 
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A-5. NOTES 

¹ The total of the annual averages for the years spanning 2001-2005.  

² The total of the annual average percentages of ED visits for all recreational and SR TBIs for the 

years spanning 2001-2005; not just the three sports presented in the table. 

³ Percentage of all ED visits attributed to TBIs for activity for the years spanning 2001-2005. 

4
 Percentage of all hospitalizations attributed to SR TBIs for activity for the years spanning 2001-

2005. 

5 
Not conducted for LBT tests. 

¹
b
 1/8” MEP Faceguard Testing or 3” MEP Calibration Pads can also be used. 

²
b
 Small or large headforms can also be used. 
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 Brüel & Kjær’s PULSE® 

Mechanical Engineer Intern                                                                 Mar 2015 – Present                                                                                           

United States Air Force                                                                           Las Vegas, NV   

  Practical application of mechanical engineering principles, concepts and techniques to 

solve mechanical engineering problems. 

 Uses governing codes, standards & best practices for design, construction, operations, and 

maintenance of mechanical systems. 

 Implement elements of programming and funding in the Air Force to build work 

requirements.                                                                                        

Knowledge Operations Specialist                                                         Jan 2013 – Present 

United States Air Force Reserves                                                            Las Vegas, NV 

 Perform, supervise and manage data, information and knowledge-sharing services in a 

fixed and expeditionary environment. 

 Plan, coordinate, share and control an organization's data and information assets. 

 Manage technologies to capture, organize and store tacit and explicit knowledge.                                                                                        

University Police Officer                                                                       Jul 2005 – Oct 2005 

University of Nevada Las Vegas                                                              Las Vegas, NV 

 Worked as part of a proactive patrol team to be a visible presence, deter crime, and reassure 

the school community. 

 Issued citations for moving and non-moving traffic violations. 

Police Officer                                                                                          Jul 2002 – May 2005 

New York City Police Department                                                 New York City, NY 

 As a member of a regimented team, intervened in situations involving crimes; conducted 

arrests with due regard for the human rights, security, and safety of detained individuals 

and safety of colleagues. 

 Issued citations for moving and non-moving traffic violations. 

Air Traffic Controller                                                                           May 1995 – May 2000 

United States Army                                                                           Various Locations 

 Within a systematic and coordinated team environment, sequenced arrival aircraft for 

landing and issued departure clearances; controlled the movement of aircraft on taxiways 

and prioritized flight data; issued weather advisories; assisted in the installation and 



129 

 

 

 

operation of tactical air traffic control facilities. 

ACADEMIC ACHIEVEMENTS  

 Successfully Passed Fundamentals of Engineering Exam: EIT #OT6623, 2011. 

 Successfully completed NASA USRP Internship at John H. Glenn Research Center, 

Cleveland OH summer 2011. 

 Alliance of Professionals of African Heritage: Certificate for Outstanding Academic 

Achievement, 2010. 

 College of Southern Nevada: Outstanding Student of the Year, Physical Sciences,             

2006 – 2007. 

CERTIFICATIONS 

 CompTIA® Network+ Certified 2006. 

PROFESSIONAL AFFILIATIONS 

 Member, Tau Beta Pi Engineering Honor Society, 2011 – Present. 

 Member, National Society of Black Engineers, NSBE, 2010 – Present. 

 Member, American Society of Mechanical Engineers, ASME, 2010 – Present. 

 Member, American Institute of Aeronautics and Astronautics, AIAA, 2010 – Present. 

PROFESSIONAL AWARDS 

 United States Air Force Civil Service Pin, 2015 

 NYPD Certificate of Achievement for Perfect Attendance, 2004. 

 U.S. Army Commendation Medal, 03/2000. 

 U.S. Army Achievement Medal (2), 07/1998 & 01/1999. 

 U.S. Army Good Conduct Medal, 05/1998. 

 

 

 

 


