
UNLV Theses, Dissertations, Professional Papers, and Capstones 

8-1-2016 

Visualization of dropwise condensation on vertical plate and Visualization of dropwise condensation on vertical plate and 

horizontal tube geometry horizontal tube geometry 

Blake Naccarato 
University of Nevada, Las Vegas, blake.naccarato@gmail.com 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Mechanical Engineering Commons 

Repository Citation Repository Citation 
Naccarato, Blake, "Visualization of dropwise condensation on vertical plate and horizontal tube geometry" 
(2016). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3093. 
https://digitalscholarship.unlv.edu/thesesdissertations/3093 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3093?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3093&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


VISUALIZATION OF DROPWISE CONDENSATION ON VERTICAL PLATE AND 

HORIZONTAL TUBE GEOMETRY 

 

 

 

 

By 

 

 

 

 

Blake Naccarato 

 

 

 

 

Bachelor of Science in Engineering – Mechanical Engineering 

University of Nevada, Las Vegas 

2014 

 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the 

 

 

 

 

Master of Science in Engineering – Mechanical Engineering 

 

 

 

 

Department of Mechanical Engineering 

Howard R. Hughes College of Engineering 

The Graduate College 

 

 

 

 

 

 

 

University of Nevada, Las Vegas

 August 2017



 

ii 
 

  

  

 

Thesis Approval 

The Graduate College 

The University of Nevada, Las Vegas 

        

July 10, 2017 

This thesis prepared by  

Blake Naccarato 

entitled  

Visualization of Dropwise Condensation on Vertical Plate and Horizontal Tube 

Geometry 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science in Engineering – Mechanical Engineering 

Department of Mechanical Engineering 

                
Kwang Kim, Ph.D.    Kathryn Hausbeck Korgan, Ph.D. 
Examination Committee Chair     Graduate College Interim Dean 

 

Robert Boehm, Ph.D. 
Examination Committee Member 

        

Woosoon Yim, Ph.D. 
Examination Committee Member 

 

Daniel Gerrity, Ph.D. 
Graduate College Faculty Representative 

 



iii 

Abstract 

A droplet detection method has been developed to measure the distribution of droplet 

sizes on a flat plate under dropwise condensation. Dropwise condensation heat transfer may be 

modeled by combining an expression for the single droplet heat transfer rate with the droplet size 

distribution. The ability to measure this distribution is integral to the validation of such models. 

An example study is undertaken in which heat flux is obtained for a given surface treatment by 

implementing such a model and measuring the droplet size distribution. These results are 

compared with the heat flux measured by internal coolant temperature monitoring for external 

condensation on a tube featuring the same surface treatment. 

The plate condensing heat exchanger is a modular design for condensate visualization. 

The core of the design is a four-way pipe cross with open flanges on each end. Flange caps are 

designed to accomplish the goal of condensate visualization, and are easily exchangeable 

depending on design intent. The sample side flange features a conductive contact between an 

external cold plate and internally-mounted sample. A viewing flange opposite the sample side 

flange allows for lighting and capture of video data of the condensation process. A third flange 

features an internal, concentric boiler for steam generation. A vacuum pump valve and ambient 

temperature and pressure sensors are fitted to the fourth flange cap. Dropwise condensation 

models are explored in this setup by detection of droplets in the captured video data. 

Droplet detection is performed by a Circle Hough Transform that has been modified to 

handle the order-of-magnitude differences in droplet radii within the same image. The Circle 

Hough Transform is applied to detect a radius range corresponding to the largest droplets, then 

the next largest droplets, and so on until the smallest detectable droplets have been marked. 

Detections in any given stage of the modified Circle Hough Transform are used to mask the 
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detection region for the next stage. This reduces detection noise emanating from larger droplets 

that would otherwise overwhelm detections of smaller droplets. Another technique used in 

reducing detection noise involves illumination leveling, morphological erosion, and 

morphological reconstruction of the video data. The combination of these methods yield 

measurements of the droplet size distribution suitable for heat transfer analysis. 

The droplet size distribution is dependent upon a balance between droplet growth and 

sweeping of condensate, which is observable by analyzing the distribution in each frame of the 

video data. While the distribution is constant for very large condensing surfaces, the local droplet 

size distribution varies as droplets nucleate, grow, coalesce, and are swept away by departing 

droplets. This apparatus and detection method make it possible to observe time-dependent 

growth and sweeping mechanisms as well as the droplet size distribution that emerges from these 

mechanisms. This study demonstrates the utility of the apparatus and detection method for the 

validation of dropwise condensation heat transfer models. 
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Nomenclature

𝑎 Projected droplet area (m2) 

𝐴𝑠 Condensing surface area (m2) 

𝐴(r) Surface area covered by droplets 

with radii between 

 𝑟 and (𝑟 + 𝑑𝑟) (m2) 

𝑏 Power index in the large droplet 

size distribution 

𝑏𝑚𝑜𝑑 Power index resulting from 

nonlinear fit to measured droplet 

size distribution 

𝑐𝑝,𝑐 Specific heat of the 

condensate (J/kg-K) 

𝛿 Coating thickness (m) 

Δ𝑇 Subcool temperature (K) 

Δ𝑇𝑐 Temperature drop across 

the PC-HEX coolant (K) 

Δ𝑇𝑐𝑜𝑎𝑡 Temperature drop across the 

coating (K) 

Δ𝑇𝑐𝑢𝑟𝑣 Temperature drop due to droplet 

curvature (K) 

Δ𝑇𝑑𝑟𝑜𝑝 Temperature drop through the 

droplet (K) 

Δ𝑇𝑖 Temperature drop at the 

liquid-vapor interface (K) 

Δ𝑇𝑚𝑜𝑑 Measured temperature drop in 

either the PC-HEX or TC-HEX 

apparatus (K) 

Δ𝑇𝑝 Temperature drop across the 

plate (K) 

Δ𝑇𝑡 Temperature drop across the 

tube (K) 

Δ𝑇𝑤 Temperature drop across the 

PC-HEX chamber wall (K) 

𝑓 Fraction of surface area covered 

by droplets with radii greater 

than 𝑟 

𝑔 Image gradient magnitude at 

current pixel 

𝑔𝑥 Image x-directional gradient at 

current pixel 

𝑔𝑦 Image y-directional gradient at 

current pixel 

ℎ𝑐 Heat transfer coefficient of the 

PC-HEX coolant (W/m2K) 

ℎ𝑒𝑞 Equivalent heat transfer 

coefficient (W/m2K) 

ℎ𝑒𝑞,𝑚𝑒𝑎𝑠 Measured equivalent heat 

transfer coefficient (W/m2K) 

ℎ𝑒𝑞,𝑚𝑜𝑑 Equivalent heat transfer 

coefficient modified for 

additional temperature 

drops (W/m2-K) 

𝐻𝑓𝑔 Enthalpy of vaporization of 

water (J/kg) 

ℎ𝑖 Heat transfer coefficient at the 

liquid-vapor interface (K) 

𝑖 x-coordinate of current pixel 

𝐼 grayscale intensity of current 

pixel 

𝑗 y-coordinate of current pixel 

Ja Jacob number 

𝑘 Thermal conductivity of the 

plate/tube (W/mK) 

𝑘𝑐 Thermal conductivity of the 

condensate (W/mK) 

𝑘𝑐𝑜𝑎𝑡 Thermal conductivity of the 

coating (W/mK) 

𝑘𝑤 Thermal conductivity of the 

PC-HEX chamber wall (K) 

𝐿 Length of the PC-HEX tube 

sample (m) 

𝑀 Magnitude of a vote in the 

Circle Hough Transform 

�̇�𝑐  Mass flow rate of coolant in the 

PC-HEX tube sample (kg/s) 

𝜇 Condensate viscosity (Pa-s) 

𝑛  Small droplet size 

distribution (m3) 

𝑛𝑚𝑜𝑑 Modified small droplet size 

distribution (m-3) 

𝑁𝑠 Nucleation site density (m-2) 
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𝑁 Large droplet size 

distribution (m-3) 

𝑁𝑚𝑜𝑑 Large droplet size distribution 

with modified power 

index 𝑏𝑚𝑜𝑑 (m-3) 

𝜙 Radius encoded as phase in 

Circle Hough Transform 

𝜙𝑎𝑣𝑔 Average phase as a result of 

multiple votes on one pixel 

𝑞𝑑 Single droplet heat transfer 

rate (W) 

𝑞𝑑,𝑚𝑜𝑑 Single droplet heat transfer rate 

modified for additional 

temperature drops (W) 

𝑞′′ Heat flux (W/m2) 

𝑞𝑚𝑒𝑎𝑠
′′  Measured heat flux (W/m2) 

𝑞𝑚𝑜𝑑
′′  Heat flux modified for 

additional temperature 

drops (W/m2) 

𝑟 Droplet radius (m) 

𝑟𝑎𝑣𝑔 Average radius as a result of 

multiple votes on one pixel (m) 

𝑟𝑒 Radius at which droplets begin 

to coalesce due to being larger 

than the nucleation site 

density (m) 

𝑟𝑒𝑠𝑡 Radius estimate for circle 

detection (m) 

𝑟𝑒𝑠𝑡,𝑚𝑎𝑥 Maximum radius estimate for 

circle detection (m) 

𝑟𝑒𝑠𝑡,𝑚𝑖𝑛 Minimum radius estimate for 

circle detection (m) 

𝑟𝑖 PC-HEX inner tube outer 

radius (m) 

𝑟𝑚𝑎𝑥 Maximum droplet radius before 

departing under its own 

weight (m) 

𝑟𝑚𝑖𝑛 Minimum thermodynamically 

viable droplet radius (m) 

𝑟𝑜 PC-HEX outer tube outer 

radius (m) 

𝜌 Density of condensate (kg/m3) 

𝜌𝑔 Density of steam (kg/m3) 

𝑆 Surface renewal rate (m2/s) 

𝜎 Surface tension of the 

condensate (N/m) 

𝑡 Plate thickness (m) 

𝑇𝑐,𝑎𝑣𝑒 Average coolant 

temperature (K) 

𝑇𝑐,𝑖 Inlet coolant temperature (K) 

𝑇𝑐,𝑜 Outlet coolant temperature (K) 

𝑇𝑠 Temperature at surface just 

beneath coating (K) 

𝑇𝑠𝑎𝑡 Saturated steam temperature (K) 

𝑡𝑤 PC-HEX chamber wall 

thickness (m) 

𝜏 Sweeping period (s) 

𝜃 Water contact angle (°) 

𝑇𝑤 PC-HEX chamber wall 

temperature (K) 

𝑢Δ𝑇 Relative uncertainty in subcool 

temperature (K) 

𝑢Δ𝑇𝑐
 Relative uncertainty in coolant 

temperature difference (K) 

𝑢ℎ𝑒𝑞,𝑚𝑒𝑎𝑠
 Relative uncertainty in heat 

transfer coefficient (K) 

𝑢𝑞𝑚𝑒𝑎𝑠
′′  Relative uncertainty in heat 

flux (K) 

𝑈𝑞𝑑,𝑚𝑒𝑎𝑠
 Absolute uncertainty in single 

droplet heat transfer rate (W) 

𝑢𝑟 Relative uncertainty in droplet 

radius 

𝑈𝑟 Absolute uncertainty in droplet 

radius (m) 

𝑤 Complex weight function for the 

Circle Hough Transform 

𝑥𝑒𝑠𝑡 Estimate of circle center 

x-location 

𝑦𝑒𝑠𝑡 Estimate of circle center 

y-location 

𝑥𝑣𝑜𝑡𝑒𝑟 x-coordinate of voter pixel 

𝑦𝑣𝑜𝑡𝑒𝑟 y-coordinate of voter pixel
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Chapter 1. Introduction 

The effectiveness of condensation heat transfer to a surface is affected by the type of 

condensation that occurs. The two types of condensation considered in this study are shown 

in Figure 1. Heat transfer is shown to improve in dropwise condensation compared to filmwise 

condensation [1,2]. In filmwise condensation, steam condenses onto a surface in the form of a 

film. This is the case with steam condensation onto an untreated, metal surface. The condensate 

has high thermal resistance compared to the condensing surface and acts as an insulator. This 

flooding of the surface prevents direct condensation to the substrate. In dropwise condensation, 

as discovered by Schmidt et al. [3], droplets form at microscale imperfections on the surface 

called nucleation sites. Direct condensation to droplets causes them to grow. Droplets that grow 

large enough to intersect will coalesce. Droplets continue to grow and coalesce until some 

become large enough to depart the surface under the influence of gravity. Departing droplets 

sweep away any condensate in their path, freeing up nucleation sites for more droplets to form. 

This process has a lower effective thermal resistance than that of filmwise condensation because 

a greater fraction of the substrate is exposed at any given time. 

Dropwise condensation can be promoted by making the condensing surface more 

hydrophobic. Khandekar and Muralidhar [4] provide a good overview of hydrophobicity as it 

relates to dropwise condensation. A surface is hydrophobic if the contact angle that a water 

droplet makes with the surface is greater than 90°. The definition of the contact angle can be seen 

in Figure 2 (see page 5). Thomas Young [5] describes the formation of a water contact angle in 

terms of the surface energies of the substrate, fluid, and surrounding vapor. Subsequent works by 

Wenzel [6] and Cassie and Baxter [7] sought to define the effect of surface microstructure on 

hydrophobicity. Dettre and Johnson [8,9] explore the importance of contact angle hysteresis on 
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wettability. Contact angle hysteresis is the difference in contact angle between a growing and 

shrinking droplet. Yaminksy [10] attributes this range of observed contact angles to droplet 

contact-line pinning due to surface roughness. Surface treatments that increase the contact angle 

and decrease contact angle hysteresis tend to promote dropwise condensation. 

A variety of surface modifications have been found to promote dropwise condensation. 

Enright et al. [11] provide a review of various techniques. Self-assembled monolayers are 

atom-thick surface treatments that show good hydrophobicity [12–15]. These can be compared 

with thicker polymer coatings of PTFE and PPS [14]. Rare-earth oxides have also been shown to 

be hydrophobic and relatively weatherable by Azimi et al. [16]. Techniques involving 

microelectromechanical systems (MEMS) also yield hydrophobic surfaces, such as the one 

described by Huang and Leu [17]. Hydrophobic surface preparation by laser irradiation 

techniques is demonstrated out by Lee et al. [18]. Promotion of hydrophobicity also has 

applications in the medical field and for discouraging surface icing. For the former, Movafaghi et 

al. [19] show that titania surfaces are hemophobic and may reduce platelet adhesion. Guo et 

al. [20] present the latter with icephobic surfaces formed by a combination of machining and 

crystal growth. 

Various models of dropwise condensation heat transfer have been proposed [1,2,21–23]. 

These approaches involve the combination of heat transfer through a single droplet with a model 

of the population of droplets on the surface, called the droplet size distribution. LeFevre and 

Rose [2] propose a distribution that defines the number of droplets of a given radius per unit area 

of condensing surface. The form of this distribution has since been verified by experimental 

results [24–26]. The droplet size distribution was explored further by Tanaka [27]. The results by 

Tanaka are backed up by Neumann [28] and Maa [29], who show that small droplets contribute 
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to heat transfer. Small droplets are those which are too small to coalesce with their nearest 

neighbors. This is because droplets must form at nucleation sites on the surface. If the nucleation 

site density can be assumed to be uniform, then droplets smaller than the distance between 

nucleation sites cannot coalesce. Kim and Kim [23] also propose a droplet size distribution that 

accounts for such droplets. Individual droplet heat transfer is explored by Fatica and Katz [22], 

who find an expression for thermal conduction through a single droplet by integrating across 

isothermal surfaces between the droplet base and cap. Recently, Kim and Kim [23] found an 

analytical result to this problem. Summing the heat transfer rates of individual droplets according 

to the droplet size distribution yields the expected heat flux through the condensing surface. 

Two external condensation experiments are used to explore heat transfer and visualize 

condensation on hydrophobic surfaces. One is a tube condensing heat exchanger with carefully 

monitored coolant conditions inside the tube sample and ambient conditions in the surrounding 

chamber. This apparatus was originally developed for the study of external condensation on a 

horizontal tube by Cheng [30]. The second is a plate condensing heat exchanger with a large 

viewport to the condensing surface of the plate sample. This apparatus has been developed 

specifically for this study. The former apparatus allows for measurement of heat flux by 

inlet-outlet coolant temperature monitoring, while the latter is used to measure the droplet size 

distribution on a flat plate. These two apparatuses are used to explore population-based models 

of dropwise condensation heat transfer. 

In this work, the droplet size distribution is measured in the flat plate heat exchanger by 

applying a circle detection method to images of active dropwise condensation on the sample 

surface. The method employed in this study is a modified form of the Circle Hough 

Transform [31,32]. The basic method has been modified to allow for detection of a wide range of 
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droplet sizes. The measured droplet size distribution is used to explore time-dependent 

characteristics of dropwise condensation and to inform an estimate of heat flux. The measured 

droplet size distribution is combined with a model of individual droplet heat transfer to yield 

estimates of the heat flux and equivalent heat transfer coefficient. These estimates are compared 

with measurements of heat flux from the tube condensing heat exchanger for the same surface 

treatment. 

 

 

Figure 1. Filmwise and Dropwise Condensation on Horizontal Tube 

Top: Filmwise condensation on horizontal tube. Bottom: Dropwise condensation on horizontal 

tube. 
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Chapter 2. Theoretical Consideration 

A theory of heat flux for condensation heat transfer is obtained from a combination of 

individual droplet heat transfer and the droplet size distribution. The heat flux laid out here 

neglects thermal resistances beneath a surface coating, so it defines a maximum obtainable heat 

flux for any given application of the coating. Heat flux measurements on a plate and tube 

geometry are compared with this maximum expected heat flux. 

 

Figure 2. Condensate Droplet Model 

The condensate droplet is assumed to take the shape of a spherical cap with radius 𝑟 and contact 

angle 𝜃. The coating thickness is 𝛿. The subcool temperature Δ𝑇 is the difference between 

saturation temperature 𝑇𝑠𝑎𝑡 and surface temperature 𝑇𝑠. 

2.1. Single Droplet Heat Transfer 

Various models of the heat transfer through a single droplet have been 

proposed [1,2,22,23]. These models define four temperature drops between ambient conditions 

and the substrate that make up the subcool temperature Δ𝑇, which is the difference 

between 𝑇𝑠𝑎𝑡 and 𝑇𝑠 in Figure 2. The condensate droplet is assumed to take the shape of a 

spherical cap. The subcool temperature Δ𝑇 is as follows 

Δ𝑇 = Δ𝑇𝑖 + Δ𝑇𝑐𝑢𝑟𝑣 + Δ𝑇𝑑𝑟𝑜𝑝 + Δ𝑇𝑐𝑜𝑎𝑡 (2. 1) 

θ

r

δ

Ts

Tsat
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where Δ𝑇𝑖, Δ𝑇𝑐𝑢𝑟𝑣, Δ𝑇𝑑𝑟𝑜𝑝, and Δ𝑇𝑐𝑜𝑎𝑡 are the temperature drops across the liquid-steam 

interface, due to droplet curvature, across the droplet, and across the coating, respectively. While 

Fatica and Katz [22] use numerical integration to model Δ𝑇𝑑𝑟𝑜𝑝, Kim and Kim [23] have 

obtained it analytically. The latter method is used to model temperature drop through the droplet. 

The temperature drops in Equation 2.1 are defined in [23] 

Δ𝑇𝑖 =
𝑞𝑑

ℎ𝑖2𝜋𝑟2(1 − cos 𝜃)
 (2. 2) 

Δ𝑇𝑐𝑢𝑟𝑣 =
𝑟𝑚𝑖𝑛Δ𝑇

𝑟
 (2. 3) 

Δ𝑇𝑑𝑟𝑜𝑝 =
𝑞𝑑𝜃

4𝜋𝑟𝑘𝑐 sin 𝜃
 (2. 4) 

Δ𝑇𝑐𝑜𝑎𝑡 =
𝑞𝑑𝛿

𝑘𝑐𝑜𝑎𝑡𝜋𝑟2 sin2 𝜃
 (2. 5) 

where 𝑞𝑑 is the single droplet heat transfer rate, and Δ𝑇𝑐𝑢𝑟𝑣 is provided by LeFevre and Rose [2]. 

The interfacial heat transfer coefficient ℎ𝑖 is reported by Tanasawa [33] to vary 

from 0.383 MW/m2K to 15.7 MW/m2K for 0.01 atm to 1.0 atm. A PTFE-based coating is used in 

this experiment. Its thermal conductivity 𝑘𝑐𝑜𝑎𝑡 is 0.30 W/mK [34]. Its thickness 𝛿 is 12.7 μm. 

The contact angle 𝜃 is 165°. 𝑟𝑚𝑖𝑛 is the minimum thermodynamically viable droplet radius [35] 

𝑟𝑚𝑖𝑛 =
2𝑇𝑠𝑎𝑡𝜎

𝐻𝑓𝑔𝜌Δ𝑇
 (2. 6) 

where 𝑇𝑠𝑎𝑡 is the saturated steam temperature, 𝜎 is the surface tension, 𝐻𝑓𝑔 is the enthalpy of 

vaporization of water, and 𝜌 is the density of water. Substituting Equations 2.2 – 2.5 into 

Equation 2.1 yields the following 

𝑞𝑑 =
Δ𝑇𝜋𝑟2 (1 −

𝑟𝑚𝑖𝑛

𝑟 )

𝛿
𝑘𝑐𝑜𝑎𝑡 sin2 𝜃

+
𝑟𝜃

4𝑘𝑐 sin 𝜃
+

1
2ℎ𝑖(1 − cos 𝜃)

 (2. 7) 
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The heat transfer rate through a single droplet is obtained. The sum of heat transfer rates through 

the entire population of droplets on a surface yields the heat flux through that surface. This 

requires a model of the expected droplet size distribution. 

2.2. Large Droplet Size Distribution 

The preceding single-droplet model is combined with a model of the droplet size 

distribution. The model by LeFevre and Rose [2] begins with a function that defines the fraction 

of surface area covered by droplets of radius 𝑟 and greater, and its derivative 

𝑓(𝑟) = 1 − (
𝑟

𝑟𝑚𝑎𝑥
)

𝑏

 (2. 8) 

𝑓′(𝑟) = −
𝑏

𝑟
(

𝑟

𝑟𝑚𝑎𝑥
)

𝑏

 (2. 9) 

where 𝑟𝑚𝑎𝑥 is the largest droplet size that can exist on the surface before departing due to 

gravity. The area fractions utilized in this theory are visualized for a sample area covered by 

droplets in Figure 3. The fraction of surface area covered by droplets greater than droplet 

radius 𝑟 but less than droplet radius (𝑟 + 𝑑𝑟) is expressed in terms of Equation 2.9 by means of 

a first-order, forward Taylor series expansion of 𝑓 about 𝑟 

𝐴(r) ⅆ𝑟 = 𝑓(𝑟) − 𝑓(𝑟 + 𝑑𝑟) = −𝑓′(𝑟) (2. 10) 

The constrained surface area fraction 𝐴(r) is just the product of projected droplet area 𝑎 with the 

number of droplets per unit area 𝑁 of the condensing surface between 𝑟 and (𝑟 + 𝑑𝑟) 

𝐴(𝑟) ⅆ𝑟 = 𝑎(𝑟)𝑁(𝑟) ⅆ𝑟 = 𝜋𝑟2𝑁(𝑟) ⅆ𝑟 (2. 11)  

The projected droplet area must be specified because the radius 𝑟 is defined as the radius of the 

spherical droplet cap, not of the circular contact area between droplet and surface. This is chosen 
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because for contact angles greater than 90°, optical measurement of droplet radii normal to the 

surface yields the spherical cap radius, not the circular base radius. With the radius expressed 

this way, the model neglects droplets that form under the canopy of other, larger droplets. 

Combining Equations 2.9 – 2.11 yields LeFevre and Rose’s model [2] of the droplet size 

distribution with a variable 𝑏 index 

𝑁(𝑟) =
𝑏

𝜋𝑟3
(

𝑟

𝑟𝑚𝑎𝑥
)

𝑏

 (2. 12) 

which gives the number of droplet counts expected between radii 𝑟 and (𝑟 + 𝑑𝑟) per unit area of 

the condensing surface. LeFevre and Rose chose a value of 1/3 for the 𝑏 index. Rose clarifies in 

a later paper that 1/3 was chosen for this index to best fit the data available at the time [24]. 

Results were subsequently verified by Graham [25] and by Rose and Glicksman [26]. The index 

is left unexpressed so that it can vary in a nonlinear fit of experimental data to the theoretical 

form of the droplet size distribution. 
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Figure 3. Representation of Area Fractions 

Top-left: Fractional area 𝑓(𝑟) covered by droplets with radius greater than 𝑟. 

Top-right: Fractional area 𝑓(𝑟 + 𝑑𝑟) covered by droplets with radius greater than (𝑟 + 𝑑𝑟). 

Bottom: Fractional area 𝐴(𝑟) 𝑑𝑟 covered by droplets with radii between 𝑟 and (𝑟 + 𝑑𝑟). 

𝑓(𝑟) 𝑓(𝑟 + 𝑑𝑟)

𝐴 𝑟 𝑑𝑟 = 𝑓 𝑟 − 𝑓(𝑟 + 𝑑𝑟)
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2.3. Small Droplet Size Distribution 

The droplet size distribution presented in Equation 2.12 is based on the assumptions that 

direct condensation occurs at droplet caps and that neighboring droplets coalesce when they 

overlap. This is accurate for large droplets. However, coalescence does not occur for droplets 

with a radius smaller than the nucleation site density. The droplet size distribution is 

overpredicted below the critical radius. Models of the small droplet size distribution have been 

proposed [2,23,27,36]. The specific model presented here is the one proposed by Kim and 

Kim [23]. The critical radius below which the small droplet distribution takes over is defined 

𝑟𝑒 = (4𝑁𝑠)−1 2⁄  (2. 13) 

where 𝑁𝑠 is the condensing surface nucleation site density and nucleation sites are arranged in a 

square grid. The nucleation site density is  2.5×1011 m-2 from the literature [23]. This model 

accounts for growth of droplets by direct deposition and surface renewal due to sweeping of 

large droplets. The surface renewal rate 𝑆 is related to the sweeping period 

𝜏 =
𝐴𝑠

𝑆
 (2. 14) 

where 𝐴𝑠 is the area of the condensing surface being considered. The surface renewal rate is the 

area of surface swept by departing droplets per unit time. The sweeping period is the time taken 

for the entire surface to be swept. The small droplet distribution 𝑛 by Kim and Kim [23] is made 

consistent with the large droplet size distribution by boundary conditions at the equivalent 

radius 𝑟𝑒 such that 

𝑛(𝑟𝑒) = 𝑁(𝑟𝑒) (2. 15) 

𝑛′(𝑟𝑒)

𝑛(𝑟𝑒)
=

𝑁′(𝑟𝑒)

𝑁(𝑟𝑒)
 (2. 16) 
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where 𝑛 is the small droplet size distribution and 𝑛′ is its derivative with respect to radius, and 𝑁 

is the large droplet size distribution and 𝑁′ is its derivative. The first condition states that both 

distributions must be equal at the equivalent radius. The second condition states that the 

logarithmic derivative with respect to 𝑟 must be equal at the equivalent radius. The latter is 

imposed because the large droplet size distribution is linear in log-log scale, and the log slope of 

the small droplet distribution should match at the equivalent radius. 

The boundary conditions were solved for a 𝑏 index of 1/3 by Kim and Kim [23]. 

Therefore, the resulting small droplet size distribution in their paper is dependent upon a 𝑏 index 

of 1/3. Since a nonlinear least-squares fit to experimental data with arbitrary 𝑏 index is desired, 

the general form of the small droplet size distribution is obtained here 

𝑛(𝑟) = 𝑁(𝑟𝑒)
𝑟

𝑟𝑒

𝑟𝑒 − 𝑟𝑚𝑖𝑛

𝑟 − 𝑟𝑚𝑖𝑛

𝐴2𝑟 + 𝐴3

𝐴2𝑟𝑒 + 𝐴3
𝑒𝐵1+𝐵2 (2. 17) 

where 

𝐴1 =
Δ𝑇

2𝜌𝐻𝑓𝑔
 (2. 18) 

𝐴2 =
𝜃(1 − cos 𝜃)

4𝑘𝑐 sin 𝜃
 (2. 19) 

𝐴3 =
1

2ℎ𝑖
+

𝛿(1 − cos 𝜃)

𝑘𝑐𝑜𝑎𝑡 sin2 𝜃
 (2. 20) 

and 

𝐵1 =
𝐴2

𝜏𝐴1
[
𝑟𝑒

2 − 𝑟2

2
+ 𝑟𝑚𝑖𝑛(𝑟𝑒 − 𝑟) − 𝑟𝑚𝑖𝑛

2 ln (
𝑟 − 𝑟𝑚𝑖𝑛

𝑟𝑒 − 𝑟𝑚𝑖𝑛
)] (2. 21) 

𝐵2 =
𝐴3

𝜏𝐴1
[𝑟𝑒 − 𝑟 − 𝑟𝑚𝑖𝑛 ln (

𝑟 − 𝑟𝑚𝑖𝑛

𝑟𝑒 − 𝑟𝑚𝑖𝑛
)] (2. 22) 
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where Δ𝑇 is the subcool temperature, 𝜌 is the density of condensage, 𝐻𝑓𝑔 is the enthalpy of 

vaporization of condensate, 𝜃 is the water contact angle, 𝑘𝑐 is the coating thermal conductivity, 

ℎ𝑖 is the liquid-vapor interfacial heat transfer coefficient, 𝛿 is the coating thickness, and 𝑘𝑐𝑜𝑎𝑡 is 

the coating thermal conductivity. By inspection, Equation 2.17 and Equation 2.12 are equal 

when 𝑟 is set to 𝑟𝑒, satisfying the first boundary condition in Equation 2.15. The logarithmic 

derivative boundary condition in Equation 2.16 pertains to the unknown sweeping period 𝜏. It 

can be shown that Equation 2.16 is independent of the 𝑏 index, and as such, the sweeping 

period 𝜏 is independent of the 𝑏 index as well 

𝜏 =
3𝑟𝑒

2(𝐴2𝑟𝑒 + 𝐴3)2

𝐴1(11𝐴2𝑟𝑒
2 − 14𝐴2𝑟𝑒𝑟𝑚𝑖𝑛 + 8𝐴3𝑟𝑒 − 11𝐴3𝑟𝑚𝑖𝑛)

 (2. 23) 

The combined droplet size distribution accounts for direct growth of small droplets, direct 

growth and coalescence of large droplets, as well as periodic sweeping by the largest droplets. 

2.4. Heat Flux and Equivalent Heat Transfer Coefficient 

Heat flux through the surface is obtained by combining the previously obtained droplet 

distribution with the heat transfer through a single droplet in Equation 2.7. The model of heat 

flux and an equivalent heat transfer coefficient is obtained as follows 

𝑞′′ = ∫ 𝑞𝑑𝑛 𝑑𝑟
𝑟𝑒

𝑟𝑚𝑖𝑛 

+ ∫ 𝑞𝑑𝑁 𝑑𝑟
𝑟𝑚𝑎𝑥

𝑟𝑒 

 (2. 24) 

ℎ𝑒𝑞 =
𝑞′′

Δ𝑇
 (2. 25) 

where the first integral represents the heat flux due to small droplets and the second integral 

represents the heat flux due to large droplets. Small droplets are represented by the small droplet 

distribution 𝑛 that ranges from the minimum thermodynamically viable droplet radius 𝑟𝑚𝑖𝑛 to the 
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radius at which coalescence begins 𝑟𝑒. Large droplets are represented by the large droplet 

distribution 𝑁 which ranges from 𝑟𝑒 to the departing droplet radius 𝑟𝑚𝑎𝑥. This heat flux considers 

only the effect of the coating and condensate layer. This defines the maximum heat flux possible 

for a given implementation of the coating. The equivalent heat transfer coefficient lumps the 

coating and condensate into a single, equivalent convection term. This term accounts for the 

effect of the coating and condensation characteristic on the surface, and varies with the assumed 

or measured subcool temperature. This can be used in the comparison of different surface 

treatments, although in this study the surface treatment is consistent across samples. In a real 

implementation, the heat flux depends on additional thermal resistances beneath the coating. This 

is considered when comparisons are made to measurements of heat flux on a plate and tube 

surface. 
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Chapter 3. Experimental Setup 

Two apparatuses are used to explore condensation on the plate and tube geometry. The 

Plate Condensing Heat EXchanger (PC-HEX) has been built as a part of this study, while the 

Tube Condensing Heat EXchanger (TC-HEX) apparatus was developed in a previous study [30]. 

The PC-HEX and TC-HEX apparatuses feature external condensation on a plate and tube 

geometry, respectively. The convenient surface geometry in the PC-HEX apparatus facilitates 

condensate visualization, from which heat flux is estimated. These results are compared with 

those from the TC-HEX apparatus. 

3.1. Plate Condensing Heat Exchanger (PC-HEX) 

The PC-HEX apparatus consists of a central pipe cross with four interchangeable flange 

ends. One flange end is dedicated to each of the following tasks: sample mounting and cooling, 

boiling water, condensate measurement, and ambient condition monitoring and control. Details 

of the apparatus, installed instrumentation, and the experimental method used are described here. 

3.1.1. Apparatus 

The PC-HEX apparatus is designed for optimal condensate visualization and ease of 

assembly. The apparatus consists of an enclosed chamber with a large viewport opposite the flat 

plate sample, a boiler, and pressure and temperature sensors. The chamber is mounted to a strut 

channel frame. A solid model rendering of the design intent is portrayed in Figure 4. The core of 

the chamber is a four-way pipe cross with an internal diameter of 102 mm. Flange connections 

are welded to the four legs of the chamber, allowing for mounting of flange caps. Compressible 

gaskets are used at the mating surface of flanges and flange caps. The following figures depict 

the chamber in its uninsulated state for clarity of function. The final state of the chamber also 

includes insulation, as is seen in Figure 9. 
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Figure 4. PC-HEX Design Render 

The chamber features four flange caps with unique capabilities. A flat plate sample is mounted 

and cooled on the sample side. Another flange features an internal boiler and condensate drain. A 

borosilicate viewport is bolted to the third. The fourth flange houses sensors and a pump valve. 

The sample side flange is pictured in Figure 5. A flat plate is mounted to a copper plug, 

which is installed in the chamber and backed by the cold plate. Coolant circulates at 150 g/s 

through a U-shaped copper tube (with 8 mm ID) inside the aluminum cold plate. A process 

chiller is used to supply the coolant. Two T-type thermocouples are embedded in the copper 

plug, just 3.2 mm from the mounted sample. The gap between flange cap and plug is sealed by 

two O-rings. The flat plate sample is mounted to the plug by two screws. The viewport is 

mounted opposite the sample side flange to permit viewing of condensate on the sample. 

Viewport
Pump

Side

Sample

Side

Boiler
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Figure 5. PC-HEX Sample Side Flange 

Left: The sample side flange exterior. (A) Coolant in. (B) Coolant out. (C) Cold plate. (D) Copper 

plug. (E) Thermocouple ports. Right: The interior as seen from the viewport flange. The sample 

is mounted to the copper plug. 

The copper plug is also shown in Figure 6, where the canopy is seen more clearly. The 

plug is placed in the apparatus such that the canopy shields the plate from condensate runoff 

from above. Thermal paste is applied between the sample and copper plug to ensure good 

thermal contact. The sample has a PTFE-based hydrophobic coating and is supplied by a 

confidential industry contact. Small tapped holes on the back of the plug permit affixing a handle 

to the plug for easy installation and removal from the chamber. The cold plate is tightened 

against the back of the plug, compressing the face-sealing O-ring and ensuring good thermal 

contact. Thermal paste is also applied at the interface between the cold plate and plug. 

(A) (B)

(C)

(D)
(E)

Cold

Plate

Copper

Plug
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Figure 6. PC-HEX Sample Mounted to Copper Plug 

The copper plug is installed in the sample side flange cap and seals with two O-rings. A canopy 

is installed above the sample to prevent condensate runoff from above the sample affecting the 

results. The sample is weatherable PTFE-based coating supplied by a confidential industry 

contact. 

The boiler flange is pictured in Figure 7. A 250 W cartridge heater is installed in 

a 500 cm3 internal boiler. This volume is measured from just below the steam outlet and just 

above the cartridge heater. At the heating rate supplied, the boiler is sized to supply steam for 

over an hour. The floating ball bearing in the sight gauge sinks when the boiler water level drops 

too low, indicating the need to refill the boiler. The fill valve is used to fill the boiler. The drain 

valve is used to remove condensate from the main chamber. The drain is installed in the 10 cm of 

annular space between the concentric 73 mm OD boiler and 102 mm ID chamber. An outlet on 

the far end of the boiler permits steam into the main chamber, where it condenses on the sample 

as well as the walls of the chamber. Auxiliary heating pads and insulation limit most of the 

condensation to the sample side wall. 

Canopy

O-rings
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Figure 7. PC-HEX Boiler Flange 

Left: The boiler flange exterior. The boiler holds roughly 500 cm3 of water. (A) Boiler fill valve. 

(B) Outline of internal, concentric boiler. (C) A 250 W cartridge heater. (D) Condensate drain 

valve. Right: The internal boiler, which is a butt-welded tube with an outer diameter of 73 mm is 

concentric with the chamber. (A) The boiler fill valve leads to the boiler. (B) Steam outlet to the 

chamber. (C) The condensate drain valve leads to the bottom of the chamber. 

3.1.1. Handling of Noncondensable Gases 

The pump side flange is shown in Figure 8. A pressure transducer and two T-type 

thermocouples are used to monitor ambient conditions. Noncondensable gases in air hinder 

condensation and reduce the effective nucleation density of surfaces inside the chamber. It is 

desired to remove as much air from the chamber as possible, so a pump valve has been installed. 

Data regarding the expected leak rate of the chamber is shown in Appendix A. The conditions 

measured by the pump side flange are far enough from the cold plate to assume accurate readings 

of the ambient saturation temperature and pressure. The assembled PC-HEX apparatus is shown 

in Figure 9. Auxiliary heating pads and insulation is installed to reduce start-up time and offset 

heat loss to the significant mass of the chamber. The compactness of the resulting design is 

convenient for visualization of condensation with a modest focal length lens. The flange cap 

design is also modular, allowing re-design and replacement of individual components. 

(A)

(B)

(C)

(D)

(A) (B)

(C)
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Figure 8. PC-HEX Pump Side Flange 

The pump side of the system, with sensors and a pump valve. (A) Thermocouples. (B) Pressure 

transducer. (C) Pump valve. 

   

Figure 9. PC-HEX Apparatus 

Left: The state of the chamber prior to installation of the auxiliary heater and insulation. 

Right: Auxiliary heating pads are installed between the chamber and insulation. 

(A)

(B)

(C)

Aux. HeaterAux. Heater
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3.1.2. Experimental Method 

The purpose of the PC-HEX apparatus is to visualize condensate on a flat plate. Video 

data is processed for droplet detections. These detections make up the measured droplet size 

distribution in each frame of video data. The experimental method outlined here has been 

designed to maximize the consistency of optical condensate measurement. What follows is a 

description of the setup procedure for active components and data acquisition, camera setup, as 

well as start-up and runtime procedures. 

Active components in the design include the pump, chiller and boiler, and auxiliary 

heating pads. The pump is used to achieve a rough vacuum of about 14 kPa absolute pressure in 

the chamber. The chiller consists of two closed loops, one of which is supplied by facility water, 

and the other which circulates deionized water through the cold plate. A PID temperature 

controller is used to control heat output from the auxiliary heating pads, which are affixed to the 

outside of the pipe cross. The temperature input is a thermocouple contacting the outside surface 

of the pipe cross. The power source for the pads is controlled by the temperature controller. 

There are four T-type thermocouples and a pressure transducer installed in the apparatus. 

A National Instruments DAQ is used in conjunction with LabVIEW to obtain sensor readings. 

The LabVIEW block diagram made for this purpose is shown in Figure 10. The thermocouples 

have been calibrated at the temperatures of an ice bath and boiling water. Two thermocouples 

each monitor plate temperature and ambient temperature. The PX309-030AV absolute pressure 

transducer has a linear characteristic established by the 5-point NIST certificate provided by the 

manufacturer. The pressure transducer monitors ambient pressure. Readings are captured 

alongside the current system time, which is synchronized with the system time for the cameras 

used in the experiment. 
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Figure 10. LabVIEW Block Diagram for PC-HEX Data Acquisition 

The block diagram used to acquire temperatures and pressures in the PC-HEX apparatus. 

The camera is mounted on an optical bench by clamps and an adjustable post. A cinema 

lens with 135 mm fixed focal length is used with two different cameras in this setup. One of the 

cameras used is a high-speed camera capable of 3.6 Gbit/s throughput and 2 GB memory. The 

maximum square resolution of 600×600 pixels yields as much as 1300 fps recorded over 4 s. 

However, a balance between speed, single capture duration, and lighting governs the decision to 

capture footage at 360 fps for about 15 s. A photo of this setup is shown in Figure 11. While the 

high-speed camera is appropriate for capturing short-lived condensation sweeping events, a 

Digital Single-Lens Reflex (DSLR) camera is employed to obtain continuous recording of 

long term condensate patterns. At a resolution of 720×720 pixels and 60 fps, the DSLR yields 

detections of smaller droplets at the expense of framerate. In both cases, an LED ring light is 

affixed to the viewport to illuminate the sample. Minimizing the distance between the light and 

the window reduces glare. 
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Figure 11. PC-HEX High-Speed Camera and Data Acquisition Setup 

(A) Data acquisition device. (B) Viewport of PC-HEX. (C) The lens has a focal length of 

135 mm. (D) High-speed camera. Resolution of 600×600 pixels and up to 1000 fps. (E) Ring 

light controller. 

System start-up begins with opening all valves and removing the copper plug from the 

chamber. A temporary handle is installed on the exterior side of the plug to unseal it from the 

sample side flange cap. Thermal paste is applied and the sample is mounted using the internal 

screws. The plug is re-inserted and its handle is removed. The cold plate is mounted, with 

thermal paste applied between it and the copper plug. The boiler is refilled and any condensate 

left in the chamber is removed, after which the boiler side valves are closed. A preliminary video 

is captured of the bare plate sample to obtain lighting characteristics. This is used later to 

equalize illumination on the sample and remove background imperfections, if necessary. The 

pump side valve is opened and air is pumped out of the chamber. Once sensor readings indicate 

negligible change in pressure with time, the valve is closed and the pump turned off. At this 

point, the boiler is turned on, auxiliary heating pads are set to the desired temperature, and the 

coolant inlet temperature is set. 

(A)

(B)

(C) (D)

(E)
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Runtime procedures begin when chamber pressure has reached at least 60 kPa. The 

chiller temperature is reduced to obtain the desired subcool temperature. Condensation begins to 

generate on the sample surface. Video is captured when subcool temperature stabilizes and 

sufficient cycles of condensation growth and sweeping have passed. The viewport must be 

defogged by use of a heat gun, permitting at least fifteen minutes for video capture before it must 

be defogged again. This process is repeated as needed to capture video at different subcool 

temperatures. The boiler must be periodically refilled, and it is encouraged, but not necessary, to 

drain the condensate pool in the chamber whenever the boiler is refilled. This cuts down on glare 

from reflections off the condensate water level below the sample. Vacuum must be pulled in the 

chamber again whenever the boiler is refilled. 

When the experiment is complete, the chiller is set to room temperature and the boiler 

and heating pads are turned off. Condensate is drained and the cooldown process begins. 

Runtime data is presented in Appendix A for the samples used in this study. 

3.2. Tube Condensing Heat Exchanger (TC-HEX) 

The core of the TC-HEX apparatus is a horizontal tube sample section mounted in a 

condenser. Coolant flows inside the tube sample, while condensate forms on the outer wall of the 

tube. A boiler is required to supply steam to the condenser. Details of the apparatus, installed 

instrumentation, and the experimental method used are described here. 

3.2.1. Apparatus 

The TC-HEX apparatus is designed for measurement of the heat flux through a horizontal 

tube sample. The boiler and condenser are the main components. A photo of the chamber is 

shown in Figure 12. The process diagram of the chamber is shown in Figure 13. Some 

insulation has been removed for demonstration purposes. A pump valve permits the removal of 
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air from the apparatus prior to experimentation. Facility water is connected to a 

temperature-controlled loop that circulates water through a coil inside the boiler chamber of the 

TC-HEX apparatus. A pool of deionized water in contact with the coil boils and follows the 

steam path above the chamber. Steam flows into the condenser where it condenses onto the outer 

wall of the cooled tube sample. Condensate then returns to the boiler by a return path below the 

condenser. Condensation occurs elsewhere in the apparatus as well, but heat losses are 

minimized by a bed of loose-fill insulation around each chamber, as well as insulation along the 

steam path and condensate return. 

 

Figure 12. TC-HEX Apparatus 

Steam travels up the steam path (A) into the condenser (B). Steam condenses on the tube, which 

has internal coolant flow (E). Condensate flows along the return line (C) back to the boiler (D), 

which provides steam to the steam path. The vacuum pump valve (F) is used to remove air from 

the chamber. 

(B)

(E)

(D)

(C) (F)

(A)
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Figure 13. TC-HEX Process Diagram 

Steam travels up the steam path (A) into the condenser (B). Steam condenses on the tube, which 

has internal coolant flow (E). Condensate flows along the return line (C) back to the boiler (D), 

which provides steam to the steam path. Boiler water is heated by a temperature-controlled 

loop (G). The vacuum pump valve (F) is used to remove air from the chamber. 

The tube sample is cooled by a deionized water loop from the chiller. The chiller 

circulates 150 g/s of water through the tube. A top-down view of the inlet to the tube is shown 

in Figure 14. The inlet and outlet fixtures are at the front and rear of the condenser, respectively, 

and feature the same design. The treated sample is mounted to the chamber with compression 

fittings at the front and rear. A brass pipe cross is fitted onto the end of the sample with another 

compression fitting. A coolant inlet and resistance temperature detector (RTD) mount are 

mounted to the pipe cross perpendicular to the tube sample. There is an RTD at both the coolant 

inlet and outlet. A brass inner tube is inserted into the sample, fitted at the far end of the pipe 

cross, creating an annular space for coolant to flow. The annular cross-section, pictured 

in Figure 25, reduces the required flow rate to achieve adequate cooling and ensures a more 

uniform coolant temperature profile. The inner tube contains air, but is capped with loose fill 

insulation to prevent unintended heat loss. 

(B)

(E)

(D)

(A)

(F)

(C)

(G)
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Figure 14. TC-HEX Inlet Coolant Line 

The pipe cross has four connections. It is mounted to the sample tube at the top, the inner tube at 

the bottom, and features an RTD and coolant inlet to the left and right, respectively. Coolant 

flows in the annular space between the inner and outer tubes. 

Instrumentation used for the TC-HEX apparatus is shown in Figure 15. Five T-type 

thermocouples and two pressure transducers monitor ambient conditions in the boiler and 

condenser. Two RTD’s monitor coolant inlet and outlet temperatures. There is also a check valve 

on the boiler in case of overpressure. A high-speed camera is mounted outside of the central 

viewport to record condensation on the outside wall of the tube sample. Lighting is directed into 

the upper and lower viewports to illuminate the sample during recording only. 
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RTD Inner

Tube

Coolant

Path
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Figure 15. TC-HEX Instrumentation 

Left: View of the boiler and the left side of the condenser. (A) Pressure transducers. (B) 

Thermocouples. (C) Coolant flow path. (D) Boiler check valve. (E) Coolant inlet RTD (coolant 

outlet RTD at back of apparatus). Right: View of the right side of the condenser. The camera and 

its viewpoint of the tube sample are shown. 

3.2.2. Experimental Method 

The TC-HEX apparatus is designed for measurement of heat flux by coolant temperature 

monitoring. The long tube test section maximizes the coolant temperature difference measured 

for a given condition. A description of the setup procedure, start-up and runtime procedures 

follows. 

Installing the tube sample requires mounting it to the condenser, attaching the front and 

rear coolant lines, and installing the inner tube. All tube-to-pipe connections are made with 

compression fittings. The front tube-to-condenser compression fitting is removed entirely to 

prevent abrasion of the sample as it is slid into the condenser. The tube is then secured to the 

condenser at both ends. Next, coolant lines are fixed to the front and back of the tube sample. 

The inner tube is slid into the outer tube and mounted to the front and back coolant lines. This 

completes the mounting process for the tube sample. 
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(C)
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Viewpoint
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Start-up procedures involve pumping and warmup of the boiler and chiller. The vacuum 

pump is attached to the pump valve by a hose and air is removed from the chamber. Pumping 

continues until the pressure inside the chamber is no longer changing significantly. The valve is 

closed and hose disconnected. The facility water lines for the boiler and chiller are then turned 

on. The boiler is turned on and set to 115°C. Once the chamber pressure rises above atmospheric, 

the boiler temperature is reduced to 105°C and the pump valve is reopened to achieve blowdown. 

Exiting steam and entrained air leave the chamber, further reducing the partial pressure of air in 

the chamber. The valve is closed and the chiller is turned on. The chiller is set to 90°C and 

allowed to warm up. 

Runtime procedures begin once the chiller inlet and outlet temperatures are steady. Data 

points are taken when measured ambient and coolant conditions are steady for ten minutes or 

longer. The values of each thermocouple, RTD, and pressure transducer are taken for a 

prescribed chiller temperature. The chiller temperature is reduced by a constant increment and 

the process is repeated. When it is desired to capture high-speed video of the condensation 

process, viewports are defogged and lighting is introduced to the chamber by the top and bottom 

viewports. The camera records footage from the middle viewport. Afterward, the lights are 

turned off to prevent unintended radiative heating of the tube. 

Shutdown procedures begin once enough data points have been taken for a given tube 

sample. The boiler and chiller temperatures are returned to room temperature, allowed to cool 

down, and then shut off. New samples are not fitted until cooldown is complete. 
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Chapter 4. Data Handling 

Data captured from each apparatus is handled differently. Video data from the PC-HEX 

apparatus is first processed for droplet detections. Next, the droplet size distribution, heat flux, 

and an equivalent heat transfer coefficient are found. Uncertainty of droplet detections is also 

considered. Numerical measurements from the TC-HEX apparatus require less pre-processing, 

but the droplet size distribution is not measured. Heat flux and an equivalent heat transfer 

coefficient are found, and measurement uncertainty is determined. 

4.1. PC-HEX Data 

A modification of the original Circle Hough Transform (CHT) by Duda and Hart [37] is 

used to detect droplets. The method is applied to video frames that have been processed to 

balance illumination and remove glare. The measured droplet size distribution is obtained from 

droplet detections. A modification of the single droplet heat transfer model is developed to 

account for additional thermal resistances in the PC-HEX apparatus, and is used to estimate heat 

flux through the droplet population. The propagation of uncertainty from the droplet detection 

process is also considered. 

4.1.1. Droplet Detection 

Droplet detection is a specific application of general circle detection. The original CHT 

method employed by Duda and Hart [37] involves accumulating votes for possible centers at an 

estimated radius distance away from each prominent edge pixel. However, a modification of the 

CHT by Kimme et al. [38], as described by Davies [32], will be used instead. This method uses 

edge orientation to cast votes normal to the edge and in a direction dependent on the polarity of 

circles with respect to the background. This significantly reduces the number of votes made, and 
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improves the accuracy of the CHT. Additionally, a range of radii estimates may be tried in one 

iteration by use of the log phase coding method described by Atherton [31]. 

The specific implementation used in this study is a substantial modification of functions 

present in the MATLAB Image Processing Toolbox [39]. The code has been repurposed to be 

applied sequentially to different radius ranges with masking of previously detected circles. This 

is necessary because a wide range of circle sizes cannot be accurately detected in one pass of the 

CHT, but repeated passes result in duplicate erroneous detections tangent to larger circles. An 

example of a modified CHT, suitable for droplet detection, is performed on an image of coins on 

a planar surface, as seen in Figure 16. 

   

Figure 16. Image of Coins and Prominent Edges 

Left: An image of coins. Right: Candidate pixels for circle edges (shown in white) are found by 

computing the gradient of pixel intensities and setting an appropriate threshold below which 

gradients are ignored. 

The first step to circle detection is establishing voters on significant image features. A 

Sobel operator [40] is used to compute the horizontal and vertical pixel intensity 

gradients 𝑔𝑥 and 𝑔𝑦 at each pixel, from which the gradient magnitude 𝑔 is found. In the 
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following definition of the gradient, subscript 𝑖 refers to the x-coordinate of the current pixel and 

subscript 𝑗 refers to the y-coordinate of the current pixel 

𝑔𝑥,𝑖,𝑗 = (𝐼𝑗−1 + 2𝐼𝑗 + 𝐼𝑗+1)
𝑖+1

− (𝐼𝑗−1 + 2𝐼𝑗 + 𝐼𝑗+1)
𝑖−1

 (4. 1) 

𝑔𝑥,𝑖,𝑗 = (𝐼𝑖−1 + 2𝐼𝑖 + 𝐼𝑖+1)𝑗+1 − (𝐼𝑖−1 + 2𝐼𝑖 + 𝐼𝑖+1)𝑗−1 (4. 2) 

𝑔𝑖,𝑗 = √𝑔𝑥,𝑖,𝑗
2 + 𝑔𝑦,𝑖,𝑗

2  (4. 3) 

where 𝐼 is the grayscale intensity at pixels specified by the indices. The Sobel operator is used 

because it can discern edge directions better than a simple central difference operator. An edge 

threshold has been chosen that removes less prominent edges, such as those of the surface 

beneath the coins. The resulting thresholded edges are pictured in Figure 16. A voter is placed at 

each significant edge pixel. Each voter casts a discrete number of votes at distances normal to the 

edge, such that 

𝑥𝑒𝑠𝑡 = 𝑥𝑣𝑜𝑡𝑒𝑟 − 𝑟𝑒𝑠𝑡

𝑔𝑥

𝑔
 (4. 4) 

𝑦𝑒𝑠𝑡 = 𝑦𝑣𝑜𝑡𝑒𝑟 − 𝑟𝑒𝑠𝑡

𝑔𝑦

𝑔
 (4. 5) 

where 𝑥𝑒𝑠𝑡 and 𝑦𝑒𝑠𝑡 are estimates of the coordinates of a circle center with radius 𝑟𝑒𝑠𝑡 and pixel 

subscripts 𝑖 and 𝑗 have been dropped. The gradient ratio in Equation 4.4 represents the cosine of 

the angle to the radial spoke between the voter and the estimated center, while the gradient ratio 

in Equation 4.5 represents the sine of the angle. The distances at which votes are cast vary 

between estimated radii 𝑟𝑒𝑠𝑡,𝑚𝑖𝑛 and 𝑟𝑒𝑠𝑡,𝑚𝑎𝑥. An example of a single voter casting votes is 

shown in Figure 17. 
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A phase angle 𝜙 is assigned to each radius estimate 𝑟𝑒𝑠𝑡 between the minimum and 

maximum radius estimates as follows 

𝜙(𝑟𝑒𝑠𝑡) = 2𝜋
ln 𝑟𝑒𝑠𝑡 − ln 𝑟𝑒𝑠𝑡,𝑚𝑖𝑛

ln 𝑟𝑒𝑠𝑡,𝑚𝑎𝑥 − ln 𝑟𝑒𝑠𝑡,𝑚𝑖𝑛
− 𝜋 (4. 6) 

  

The radius range is mapped between a phase of -180° and 180°. Vote magnitude decreases as 

radius increases. A magnitude 𝑀 is also assigned to each radius estimate, such that the weight of 

the vote for estimate 𝑟𝑒𝑠𝑡 varies inversely with circumference of a circle with radius 𝑟𝑒𝑠𝑡 as 

follows 

𝑀(𝑟𝑒𝑠𝑡) =
1

2𝜋𝑟𝑒𝑠𝑡
 (4. 7) 

This magnitude scaling is performed to even out the accumulation of votes at the centers of 

circles of different sizes, considering larger circles receive more voters on their circumference. 

The magnitude and phase are encoded into a complex weight function 𝑤 that is defined here 

𝑤(𝑟𝑒𝑠𝑡) = 𝑀𝑒𝑖𝜙 (4. 8) 

An example of vote weights (for a radius range from 1 to 2) is shown in Figure 17. A single 

voter casts the encoded set of votes towards the center of the circle. This process is repeated for 

each voter. Votes that land on the same pixel are added. The vote magnitude at that pixel 

increases, while the phase averages. All votes from each voter are accumulated in this manner. 
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Once a potential circle center has been located, the value of the phase at that location 

decodes to an estimate of its radius. Decoding is done by inverting Equation 4.6 at the potential 

center pixel 

𝑟𝑎𝑣𝑔 = exp (ln 𝑟𝑒𝑠𝑡,𝑚𝑖𝑛 +
𝜙𝑎𝑣𝑔 + 𝜋

2𝜋
(ln 𝑟𝑒𝑠𝑡,𝑚𝑎𝑥 − ln 𝑟𝑒𝑠𝑡,𝑚𝑖𝑛)) (4. 9) 

where the phase 𝜙𝑎𝑣𝑔 is just the phase of accumulated votes at that pixel and 𝑟𝑎𝑣𝑔 is the decoded 

radius estimate. 

   

Figure 17. Examples of Single Voter and Vote Weights 

Left: A single voter at an edge. The voter casts a set of votes normal to the edge. Right: The 

complex weight 𝑤 given to a single voter’s set of votes. 

A modification of this method has been made to avoid voting outside of a specified 

detection region. This is useful in restraining detections to regions of active condensation on a 

flat plate. An example is shown in Figure 18. Votes only accumulate inside the yellow-outlined 

detection region. In the first stage, a radius range corresponding to the size of quarters is chosen. 

Current 
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rest,minrest,max

2𝜋𝑤 𝑟𝑒𝑠𝑡,𝑚𝑎𝑥

2𝜋𝑤 𝑟𝑒𝑠𝑡,𝑚𝑖𝑛
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The most significant vote accumulation occurs for votes cast towards the center of quarters. 

Local vote maxima below a prescribed accumulated vote threshold are hidden, after which the 

centroids of remaining local maxima are extracted. Centroids that fall below the accumulated 

vote threshold are discarded, and the remaining centroids represent detected quarters. The phase 

at these centroids is decoded, giving an estimate of the radius of detected quarters. 

   

Figure 18. Quarter and Nickel Detection Stages 

Left: The first detection stage. Vote accumulation is shown in a heatmap overlay. Red circles 

indicate positive detections in the yellow-outlined detection region. Right: The second detection 

stage. Voting is disallowed within previously detected quarters. Nickels are now detected. 

This method is suitable for detecting circles over a range of radii, but votes cast will be 

less focused for true detections within wider ranges. This results in less accurate detection of all 

circles within the wider range. It is desired, then, to apply the CHT repeatedly to the same image, 

where the upper limit of radii to detect in any iteration is the same as the lower limit of the 

previous iteration. The lower limit is chosen for each iteration so that a similar number of 

detections occur in each iteration. 
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Voting on or within previously detected circles is disallowed, cutting down on voting 

noise in subsequent runs of the CHT. The second stage of the detection is shown in Figure 18. 

The radius range chosen focuses votes on nickels, while creating unfocused rings of accumulated 

votes on smaller coins. The noise present in the quarter detection stage is minimized, which was 

mostly due to votes cast from the arbitrary interior edges of the quarters. 

The third and fourth detection stages are shown in Figure 19. Detection of circles with 

fewer edge pixels becomes more difficult, but disallowing votes within previously detected 

circles mitigates the issue. While the magnitude assigned to votes scales with radius, there is 

additional flexibility in being able to adjust the vote threshold for individual ranges. Smaller 

droplets also have less defined edges, requiring a lower edge threshold than with larger droplets. 

This detection method works best when background noise is removed in pre-processing. 

   

Figure 19. Penny and Dime Detection Stages 

Left: The third detection stage. Right: The final detection stage. 
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4.1.2. Video Processing 

Raw video is not necessarily the best input format to the droplet detection method. 

Uneven illumination, sample surface inconsistencies, and glare on droplets all contribute to 

inconsistent detections. The lighting and video capture conditions should be optimized to 

minimize the amount of video processing necessary, but these issues cannot be eliminated 

entirely. The following figures show the process on a single frame from the video data. 

Background handling is carried out when illumination varies across a sample or there are 

local irregularities on the sample surface. The video data is pixelwise divided by an image of the 

background with the same illumination used during experimentation. This minimizes subtle 

differences in illumination and surface irregularities that affect droplet detection. An example of 

this process is shown in Figure 20. Non-destructive contrast stretching is also carried out on the 

resulting image to fill the range allowed by the data type. This is done linearly so that relative 

pixel intensities are preserved. 

A detection region is established for any given input data, confining detections to just the 

region of the sample surface with relatively few irregularities and active condensation. The edges 

of a sample do not have as intimate contact with the plug and cold plate as the interior, and 

would artificially shift the droplet size distribution if included in the detection region. Droplet 

glare breaks up the circular shape of droplets and contributes noise to the detection method. 

Reducing droplet glare without affecting droplet edges requires morphological operations to be 

performed on the image. These operations are carried out in Figure 21. 

First, a contrast stretching step is performed that tends to flatten the intensities of glare 

points in the image. This ensures that the following steps will affect most glare points evenly. 

The next step is to morphologically erode the image, eliminating droplet glare but softening 



37 

droplet edges. Finally, morphological reconstruction is performed with the contrast-adjusted 

image as the mask and the eroded image as the marker. This preserves edges present in the mask 

while taking pixel intensities from the marker. The resulting image is a good candidate for 

droplet detection. An example of this same image with a four-stage CHT is shown in Figure 22. 

The first stage looks for the largest droplets on the plate, with detections marked in red. 

Subsequent stages look for smaller droplets each time, with detections marked in green, blue, 

and yellow for decreasing radius. Each radius range shares its upper bound with the lower bound 

of the radius range above it. Video data of dropwise condensation with overlaid detections is 

presented in Appendix B. 
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Figure 20. Background Handling Process 

Left: Raw input image. Middle: Image of plate background with no condensate present. 

Right: Result of pixelwise division of the left image by the middle image after contrast stretching. 

     

Figure 21. Detection Region and Glare Removal Process 

Left: Region-restricted and further contrast-adjusted image. Middle: Morphologically eroded 

image. Right: Morphological reconstruction with the left image as a mask and the middle image 

as the marker. 

       

Figure 22. Droplet Detections during Droplet Sweeping Event 

Detections are color-coded by the stage in which they were identified. Left: Video frame just 

before a droplet sweeping event. Middle: Video frame during the event. Right: Video frame at 

the end of the event. 
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4.1.3. Relating Measurements to Theory 

The measured droplet size distribution is found as a histogram of droplet radii with bin 

width Δ𝑟. The theoretical distributions 𝑁 in Equation 2.12 and 𝑛 in Equation 2.17 give the 

number of droplets per unit area per unit bin width Δ𝑟. Therefore, the theoretical distributions are 

presented as 𝑁Δ𝑟 and 𝑛Δ𝑟. A nonlinear least-squares fit is made of the measured distribution to 

the function 𝑁Δ𝑟, with variable 𝑏 index. The best-fit 𝑏 index is 𝑏𝑚𝑜𝑑, informing modified 

distributions 𝑁𝑚𝑜𝑑Δ𝑟 and 𝑛𝑚𝑜𝑑Δ𝑟 which are also presented alongside the measured distribution. 

Applying the theoretical model of temperature drops in the experimental setup requires 

measuring the saturation temperature far from the sample as well as the temperature just beneath 

the coating. This surface temperature cannot be directly measured in the apparatus used in this 

study to characterize condensation on a flat plate. Additional temperature drops are introduced to 

relate the actual measured temperature to the surface temperature in the model. The model 

describing the experimental setup is shown in Figure 23. The wall temperature 𝑇𝑤 is directly 

measured by a thermocouple embedded in the wall near the sample. The overall temperature 

drop from saturation temperature 𝑇𝑠𝑎𝑡 to the chamber wall temperature 𝑇𝑤 is 

Δ𝑇𝑚𝑜𝑑 = Δ𝑇 + Δ𝑇𝑝 + Δ𝑇𝑤 = 𝑇𝑠𝑎𝑡 − 𝑇𝑤 (4. 10) 

with subcool temperature Δ𝑇 defined in Equation 2.1 with 𝑞𝑑,𝑚𝑜𝑑 in place of 𝑞𝑑, temperature 

drop through the plate Δ𝑇𝑝, and temperature drop through the chamber wall Δ𝑇𝑤. The newly 

introduced temperature drops are defined for a single droplet as 

Δ𝑇𝑝 =
𝑞𝑑,𝑚𝑜𝑑𝑡

𝑘𝜋𝑟2 sin2 𝜃
 (4. 11) 

Δ𝑇𝑤 =
𝑞𝑑,𝑚𝑜𝑑𝑡𝑤

𝑘𝑤𝜋𝑟2 sin2 𝜃
 (4. 12) 



40 

where 𝑡 is the plate thickness, 𝑘 is the thermal conductivity of plate, 𝑡𝑤 is the chamber wall 

thickness, and 𝑘𝑤 is the chamber wall thermal conductivity. The stainless-steel plate has 

thickness 𝑡 of 0.61 mm. The distance 𝑡𝑤 between the thermocouple embedded in the wall and the 

plate is 3.2 mm. Substituting Equations 2.1 – 2.5 and Equations 4.12 – 4.14into Equation 4.10 

yields the individual droplet heat transfer rate for the experimental setup 

𝑞𝑑,𝑚𝑜𝑑 =
Δ𝑇𝑚𝑜𝑑𝜋𝑟2 (1 −

𝑟𝑚𝑖𝑛

𝑟 )

𝛿 𝑘𝑐𝑜𝑎𝑡⁄ + 𝑡 𝑘⁄ + 𝑡𝑤 𝑘𝑤⁄
sin2 𝜃

+
𝑟𝜃

4𝑘𝑐 sin 𝜃
+

1
2ℎ𝑖(1 − cos 𝜃)

 (4. 13) 

where 𝛿 is the coating thickness, 𝑘𝑐𝑜𝑎𝑡 is the coating thermal conductivity, and 𝑘𝑐 is the thermal 

conductivity of condensate. The additional temperature drops result in a reduction of the heat 

transfer rate through a droplet when compared to the theoretical. The modified small droplet size 

distribution 𝑛𝑚𝑜𝑑 is dependent on 𝑞𝑑,𝑚𝑜𝑑. It changes only in that coefficient 𝐴3 is replaced 

with 𝐴3,𝑚𝑜𝑑 defined here as 

𝐴3,𝑚𝑜𝑑 =
1

2ℎ𝑖
+

1 − cos 𝜃

sin2 𝜃
(

𝛿

𝑘𝑐𝑜𝑎𝑡
+

𝑡

𝑘
+

𝑡𝑤

𝑘𝑤
) (4. 14) 

 

The modified distributions 𝑛𝑚𝑜𝑑 and 𝑁𝑚𝑜𝑑 (with modified index 𝑏𝑚𝑜𝑑) are combined 

with 𝑞𝑑,𝑚𝑜𝑑 to yield modified heat flux 𝑞𝑚𝑜𝑑
′′ . The unmodified theoretical heat flux 𝑞′′ in 

Equation 2.24 is also shown alongside measured data. The measured heat flux 𝑞𝑚𝑒𝑎𝑠
′′  is found by 

summing the heat transfer contribution of each detected droplet and dividing by the substrate 

surface area 𝐴𝑠 such that 

𝑞𝑚𝑒𝑎𝑠
′′ =

∑𝑞𝑑,𝑚𝑜𝑑

𝐴𝑠
 (4. 15) 
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This heat flux neglects heat transfer through droplets smaller than can be measured. Assuming an 

accurate measurement of droplets within the measurable radius, this underestimates the actual 

heat flux taking place. It is also desired to obtain an equivalent heat transfer coefficient that 

accounts for the effect of the coating. The modified heat transfer coefficient is 

ℎ𝑒𝑞,𝑚𝑜𝑑 = (
Δ𝑇𝑚𝑜𝑑

𝑞𝑚𝑜𝑑
′′ −

𝑡

𝑘
−

𝑡𝑤

𝑘𝑤
)

−1

 (4. 16) 

ℎ𝑒𝑞,𝑚𝑒𝑎𝑠 = (
Δ𝑇𝑚𝑜𝑑

𝑞𝑚𝑒𝑎𝑠
′′

−
𝑡

𝑘
−

𝑡𝑤

𝑘𝑤
)

−1

 (4. 17) 

where 𝑡 is the plate thickness, 𝑘 is the thermal conductivity of plate, 𝑡𝑤 is the chamber wall 

thickness, 𝑘𝑤 is the chamber wall thermal conductivity, and temperature Δ𝑇𝑚𝑜𝑑 is the measured 

temperature difference between the saturated steam and chamber wall thermocouples. The 

subcool temperature is obtained by rearranging Equation 2.25 as follows 

Δ𝑇 =
𝑞′′

ℎ𝑒𝑞
 (4. 18) 

which applies to both the modified and measured heat flux and heat transfer coefficients. 

 

Figure 23. Thermal Resistances for Plate Geometry 

The experimental setup of the PC-HEX apparatus involves an externally-insulated cold plate in 

contact with the chamber wall, upon which a treated plate is mounted. Temperature 𝑇𝑤 is the 

chamber wall temperature, 𝑇𝑠 is surface temperature, and 𝑇𝑠𝑎𝑡 is saturation temperature. The 

thermal conductivity of the condensate is 𝑘𝑐. 
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Figure 24. Equivalent Untreated Plate Model 

The temperature drops across the coating and condensate layer are lumped into an equivalent 

heat transfer coefficient ℎ𝑒𝑞. 

4.1.4. Measurement Uncertainty 

The general approach used for uncertainty analysis is outlined here. For an arbitrary 

function of three variables 𝑔(𝑥, 𝑦, 𝑧), the absolute uncertainty 𝑈𝑔 of 𝑔 is the root sum square of 

individual contributions by the independent variables 𝑥, 𝑦, and 𝑧. The relative uncertainty is 

found as the ratio of the absolute uncertainty to the magnitude of the quantity being considered. 

The absolute and relative uncertainty for arbitrary function 𝑔 are as follows 

𝑈𝑔 = √((
𝜕𝑔

𝜕𝑥
𝑈𝑥)

2

+ (
𝜕𝑔

𝜕𝑦
𝑈𝑥)

2

+ (
𝜕𝑔

𝜕𝑧
𝑈𝑥)

2

 )  𝑛(𝑟𝑒) (4. 19) 

𝑢𝑔 =
𝑈𝑔

𝑔
 (4. 20) 

where individual contributions to uncertainty are estimated as the product of the first-order 

sensitivity of 𝑔 to changes in that variable and the absolute uncertainty in that variable. The 

relative uncertainty computation facilitates the comparison of relative contributions to error by 

quantities with different units. This approach is applied to uncertainty analysis in both the 

PC-HEX and TC-HEX apparatuses. 

Uncertainty in the PC-HEX apparatus propagates from uncertainty in the measurement of 

droplet radius. A radial uncertainty of one pixel is expected in the droplet detection routine. The 
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absolute and relative uncertainty in measurement of the droplet radius is 𝑈𝑟 and 𝑢𝑟, respectively. 

The absolute uncertainty in single droplet heat transfer rate is 𝑈𝑞𝑑,𝑚𝑒𝑎𝑠
. The relative uncertainties 

in heat flux, equivalent heat transfer coefficient, and subcool temperature are 𝑢𝑞𝑚𝑒𝑎𝑠
′′ , 𝑢ℎ𝑒𝑞,𝑚𝑒𝑎𝑠

, 

and 𝑢Δ𝑇, respectively. 

Results of the root sum square uncertainty analysis for relevant quantities in the PC-HEX 

experimental setup are as follows 

𝑈𝑟 = ±1 pixel (4. 21) 

𝑢𝑟 =
𝑈𝑟

𝑟
 (4. 22) 

𝑈𝑞𝑑,𝑚𝑒𝑎𝑠
= (1 +

𝐴3,𝑚𝑜𝑑

𝐴2𝑟 + 𝐴3,𝑚𝑜𝑑
) 𝑞𝑑,𝑚𝑒𝑎𝑠𝑢𝑟 (4. 23) 

𝑢𝑞𝑚𝑒𝑎𝑠
′′ =

√∑𝑈𝑞𝑑,𝑚𝑒𝑎𝑠
2

𝐴𝑠𝑞𝑚𝑒𝑎𝑠
′′

 
(4. 24) 

𝑢ℎ𝑒𝑞,𝑚𝑒𝑎𝑠
=

Δ𝑇𝑚𝑜𝑑

Δ𝑇
𝑢𝑞𝑚𝑒𝑎𝑠

′′  (4. 25) 

𝑢Δ𝑇 = √1 + (
Δ𝑇𝑚𝑜𝑑

Δ𝑇
)

2

 𝑢𝑞𝑚𝑒𝑎𝑠
′′  (4. 26) 

where the sum in Equation 4.24 represents the sum of squared absolute uncertainties 𝑈𝑞𝑑,𝑚𝑒𝑎𝑠
 for 

each droplet counted in the detection region. The contribution of uncertainty in Δ𝑇𝑚𝑜𝑑 to 

relevant quantities is assumed to be minor compared to the contribution from uncertainty in 𝑟. 

This is because many detections occur near the minimum resolvable radius of four pixels, each 

of which have a relative uncertainty approaching ±25%. Uncertainty in Δ𝑇𝑚𝑜𝑑 is much less than 

this. Another assumption made is that the minimum thermodynamically viable droplet 

radius 𝑟𝑚𝑖𝑛 is insignificant compared to the radius 𝑟 being measured. This is a reasonable 
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assumption because measured droplets are on the order of millimeters, while the minimum 

thermodynamically viable radius is on the order of nanometers or smaller. 

Uncertainty in the droplet detection method is mitigated by applying it to equivalent 

transformations of the video data. The method is applied four times, once each on the original 

video as well as vertically-, horizontally-, and diagonally-mirrored transformations of the video. 

The mean of four trials reduces the directionality of the method and gives a better estimate of the 

droplet size distribution. It is more robust, but too complex for the purposes of this study, to 

detect droplets in overlapping sub-regions within the frame, which would also result in sampling 

each area four times but reduce the maximum array size handled at one time. 

4.2. TC-HEX Data 

Coolant temperature and ambient measurements from the TC-HEX apparatus yield the 

heat flux through a sample. A modification of the single droplet heat transfer model is developed 

to account for additional thermal resistances in the TC-HEX apparatus. The measured heat flux 

is compared to the theoretical heat flux from this modified single droplet heat transfer equation. 

The propagation of measurement uncertainty is also considered. 

4.2.1. Relating Measurements to Theory 

Measuring the temperature just beneath the coating surface is not performed in the 

TC-HEX apparatus. Instead, average coolant temperature is measured. Convection by the coolant 

and conduction to the tube are considered when finding heat flux and subcool temperatures. A 

cross-sectional view of the tube is shown in Figure 25, and the radial, one-dimensional heat 

transfer problem is defined as in Figure 26. 
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Figure 25. TC-HEX Tube Sample Cross-Section 

A cross-section of the tube sample. The outer radius of the inner tube 𝑟𝑖,𝑜 is 4.76 mm. The inner 

radius of the outer tube 𝑟𝑖 is 7.05 mm. The outer radius of the outer tube 𝑟𝑜 is 7.94 mm. The 

length 𝐿 (into the page) is 533 mm. 

Additional temperature drops are introduced to relate the measured coolant temperature 

to the surface temperature. The coolant temperature 𝑇𝑐,𝑎𝑣𝑒 is obtained as the average of inlet and 

outlet coolant temperatures. The overall temperature drop from saturation temperature 𝑇𝑠𝑎𝑡 to the 

coolant temperature 𝑇𝑐,𝑎𝑣𝑒 is 

Δ𝑇𝑚𝑜𝑑 = Δ𝑇 + Δ𝑇𝑡 + Δ𝑇𝑐 = 𝑇𝑠𝑎𝑡 − 𝑇𝑐,𝑎𝑣𝑒 (4. 27) 

with subcool temperature Δ𝑇 defined in Equation 2.1 with 𝑞𝑑,𝑚𝑜𝑑 in place of 𝑞𝑑, temperature 

drop through the tube Δ𝑇𝑡, and temperature drop through the coolant Δ𝑇𝑐  

Δ𝑇𝑡 =
𝑞𝑑,𝑚𝑜𝑑𝑟𝑜 ln(𝑟𝑜 𝑟𝑖⁄ )

𝑘𝜋𝑟2 sin2 𝜃
 (4. 28) 

Δ𝑇𝑐 =
𝑞𝑑,𝑚𝑜𝑑𝑟𝑜

ℎ𝑐𝑟𝑖𝜋𝑟2 sin2 𝜃
 (4. 29) 

where 𝑟𝑜 is outer radius of the outer tube, 𝑟𝑖 is the inner radius of the outer tube, 𝑘 is the thermal 

conductivity of the outer tube, and ℎ𝑐 is the coolant side heat transfer coefficient. Tube curvature 

is assumed to not change the droplet contact area appreciably. The coolant side heat transfer 
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coefficient ℎ𝑐 is obtained from a correlation by Gnielinski [41] with friction factor obtained from 

Petukhov [42]. Substituting Equations 2.1 – 2.5 and Equations 4.28 – 4.29 into Equation 4.27 

yields the individual droplet heat transfer rate for the experimental setup 

𝑞𝑑,𝑚𝑜𝑑 =
Δ𝑇𝑚𝑜𝑑𝜋𝑟2 (1 −

𝑟𝑚𝑖𝑛

𝑟 )

𝛿 𝑘𝑐𝑜𝑎𝑡⁄ + 𝑟𝑜(ln(𝑟𝑜 𝑟𝑖⁄ ) 𝑘⁄ + 1 (ℎ𝑐𝑟𝑖)⁄ )
sin2 𝜃

+
𝑟𝜃

4𝑘𝑐 sin 𝜃
+

1
2ℎ𝑖(1 − cos 𝜃)

 (4. 30) 

The modified small droplet size distribution 𝑛𝑚𝑜𝑑 is dependent on 𝑞𝑑,𝑚𝑜𝑑. It changes only in that 

coefficient 𝐴3 is replaced with 𝐴3,𝑚𝑜𝑑 defined here as 

𝐴3,𝑚𝑜𝑑 =
1

2ℎ𝑖
+

1 − cos 𝜃

sin2 𝜃
(

𝛿

𝑘𝑐𝑜𝑎𝑡
+ 𝑟𝑜 (

ln(𝑟𝑜 r𝑖⁄ )

𝑘
+

1

ℎ𝑐𝑟𝑖
)) (4. 31) 

The modified distributions 𝑛𝑚𝑜𝑑 and 𝑁𝑚𝑜𝑑 (with modified index 𝑏𝑚𝑜𝑑) are combined 

with 𝑞𝑑,𝑚𝑜𝑑 to yield modified heat flux 𝑞𝑚𝑜𝑑
′′ . The unmodified theoretical heat flux 𝑞′′ in 

Equation 2.24 is also shown alongside measured data. The measured heat flux 𝑞𝑚𝑒𝑎𝑠
′′  is found as 

the heat transfer into the coolant divided by the outer area of the outer tube 

𝑞𝑚𝑒𝑎𝑠
′′ =

�̇�𝑐𝑐𝑝,𝑐(𝑇𝑐,𝑜 − 𝑇𝑐,𝑖)

2𝜋𝑟𝑜𝐿
 (4. 32) 

where �̇�𝑐 is 150 g/s, 𝑟𝑜 is 7.94 mm and 𝐿 is 533 mm. The measured heat flux for the PC-HEX is 

limited to those droplets that can be measured, but the heat flux here accounts for all the energy 

to the system. Assuming an accurate measurement of coolant temperatures, the measured and 

modified theoretical heat fluxes should be similar. 
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Figure 26. Thermal Resistances for Tube Geometry 

The experimental setup of the TC-HEX apparatus involves coolant flowing between an inner and 

outer tube with steam condensing on the other side of the outer tube. Temperature 𝑇𝑐,𝑎𝑣𝑒 is the 

average coolant temperature, 𝑇𝑠 is the surface temperature, and 𝑇𝑠𝑎𝑡 is saturation temperature. 

An equivalent heat transfer coefficient is also defined for the tube geometry. The 

modified theoretical and measured equivalent heat transfer coefficients are 

ℎ𝑒𝑞,𝑚𝑜𝑑 = [
Δ𝑇𝑚𝑜𝑑

𝑞𝑚𝑜𝑑
′′ − 𝑟𝑜 (

ln(𝑟𝑜 𝑟𝑖⁄ )

𝑘
+

1

ℎ𝑐𝑟𝑖
)]

−1

 (4. 33) 

ℎ𝑒𝑞,𝑚𝑒𝑎𝑠 = [
Δ𝑇𝑚𝑜𝑑

𝑞𝑚𝑒𝑎𝑠
′′

− 𝑟𝑜 (
ln(𝑟𝑜 𝑟𝑖⁄ )

𝑘
+

1

ℎ𝑐𝑟𝑖
)]

−1

 (4. 34) 

where 𝑟𝑜 is outer radius of the outer tube, 𝑟𝑖 is the inner radius of the outer tube, 𝑘 is the thermal 

conductivity of the outer tube, 𝑟𝑖 is the outer radius of the inner tube, and ℎ𝑐 is the coolant side 

thermal conductivity. Temperature Δ𝑇𝑚𝑜𝑑 is the measured temperature difference between the 

saturated steam and average coolant temperature. The subcool temperature is prescribed for 

theoretical properties and found by Equation 4.18 for measured properties. 
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This equivalent heat transfer coefficient is also compared to the Nusselt correlation for 

filmwise condensation 

ℎ𝑓𝑤𝑐 = 0.728 [
𝑔𝜌(𝜌 − 𝜌𝑔)ℎ𝑓𝑔

′ 𝑘𝑐
3

2𝜇Δ𝑇𝑟𝑜
]

0.25

 (4. 35) 

ℎ𝑓𝑔
′ = 𝐻𝑓𝑔(1 + 0.068Ja) (4. 36) 

where 𝑔 is the acceleration due to gravity, 𝜌 is the density of condensate, 𝜌𝑔 is the density of 

steam, 𝑘𝑐 is the thermal conductivity of condensate, 𝜇 is the viscosity of condensate, Δ𝑇 is the 

subcool temperature, 𝑟𝑜 is the outer radius of the outer tube, 𝐻𝑓𝑔 is the latent heat of 

vaporization, and Ja is the Jakob number. 

4.2.2. Measurement Uncertainty 

The same approach for uncertainty analysis shown in Equations 4.19 and 4.20 is used for 

the TC-HEX apparatus. The absolute and relative uncertainty in measurement of the coolant 

temperature difference is 𝑈Δ𝑇𝑐
 and 𝑢Δ𝑇𝑐

, respectively. The relative uncertainties in heat flux, 

equivalent heat transfer coefficient, and subcool temperature are 𝑢𝑞𝑚𝑒𝑎𝑠
′′ , 𝑢ℎ𝑒𝑞,𝑚𝑒𝑎𝑠

, and 𝑢Δ𝑇. 

Results of such analysis for relevant quantities in the TC-HEX experimental setup are as follows 

𝑈Δ𝑇𝑐
= ±(0.15 + 0.002𝑇𝑐,𝑎𝑣𝑒) (4. 37) 

𝑢Δ𝑇𝑐
=

𝑈Δ𝑇𝑐

Δ𝑇𝑐
 (4. 38) 

𝑢𝑞𝑚𝑒𝑎𝑠
′′ = 𝑢Δ𝑇𝑐

 (4. 39) 

𝑢ℎ𝑒𝑞,𝑚𝑒𝑎𝑠
=

Δ𝑇𝑚𝑜𝑑

Δ𝑇
𝑢Δ𝑇𝑐

 (4. 40) 

𝑢Δ𝑇 = √1 + (
Δ𝑇𝑚𝑜𝑑

Δ𝑇
)

2

 𝑢Δ𝑇𝑐
 (4. 41) 
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where 𝑈Δ𝑇𝑐
 is defined for a Class A RTD. The contribution of uncertainty Δ𝑇𝑚𝑜𝑑 to relevant 

quantities is assumed to be minor compared to the contribution from uncertainty in Δ𝑇𝑐. This is 

because relative uncertainty is higher for lower temperature differences and Δ𝑇𝑐 is much lower 

than Δ𝑇𝑚𝑜𝑑. Comparison of Equations 4.37 – 4.41 with Equations 4.21 – 4.26 show that the 

PC-HEX approach will have lower uncertainty than the TC-HEX approach if 𝑢𝑞𝑚𝑒𝑎𝑠
′′  for the 

PC-HEX is less than that of 𝑢Δ𝑇𝑐
 for the TC-HEX. 

It can be seen that 𝑢Δ𝑇𝑐
 increases with decreasing Δ𝑇𝑐. At high coolant temperature 

(i.e. 100°C) and low coolant temperature difference (i.e. 0.5°C), relative uncertainties 

𝑢Δ𝑇𝑐
, 𝑢𝑞𝑚𝑒𝑎𝑠

′′ , and 𝑢ℎ𝑒𝑞,𝑚𝑒𝑎𝑠
 exceed 70%, and relative uncertainty 𝑢Δ𝑇𝑐

 exceed 140%. The relative 

uncertainty in the same parameters for the PC-HEX are nearly constant across a wide range of 

subcool temperatures. Determining heat flux by measuring the droplet size distribution may 

prove more accurate than determining heat flux by measuring coolant temperature differences. 

This claim depends on the accuracy of the single droplet heat transfer model and the droplet 

detection method. 
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Chapter 5. Results 

Results are obtained from the PC-HEX apparatus video data by use of the developed 

theory. The relationship between the theory and droplet contact angle is also considered. Results 

are compared with those of the TC-HEX apparatus, and discrepancies are discussed. Finally, 

measurement uncertainty is determined for both apparatuses. 

5.1. PC-HEX 

The droplet size distribution is obtained from detecting droplets on the surface over many 

frames of video data. Two processed frames from a video sequence are shown in Figure 27. 

Detections are reliable down to droplets with a four-pixel radius, corresponding to 272 μm. The 

number of edge pixels available for a very small droplet limits the number of votes that can be 

made towards its center. A lower vote threshold is set to detect such droplets. Too low a vote 

threshold introduces false positive detections, so a four-pixel minimum radius was chosen. 

     

Figure 27. Processed Video Frames Highlighting Droplet Sweeping Event 

Left: A processed video frame with a droplet beginning to depart the surface. Right: A processed 

video frame taken 167 ms later. The droplet has swept additional condensate along with it. 
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Droplet sweeping events occur periodically when a droplet grows large enough to depart 

the surface under its own weight. The departing droplet entrains any condensate in its path. This 

exposes the sample surface and allows for droplets to nucleate, grow, coalesce, and eventually be 

swept again. The plot in Figure 28 shows sweeping events and the droplet count density over 

time, with the specific event from Figure 27 highlighted by a cyan-colored circle. The droplet 

population increases over time with growth and coalescence, but is reduced by sweeping events. 

The droplet size distribution emerges from this balance between droplet growth and 

sweeping. It gives the count density of droplets of a given radius. It is obtained by binning 

droplet detections in video data by their radii. Droplet counts in each bin scale with the 

instantaneous droplet count density shown in Figure 28. A representative droplet size 

distribution is obtained by averaging counts across frames of the video data. 

 

Figure 28. Droplet Count Density and Sweeping Events Over Time 

Droplet nucleation causes an increase in droplet count density. Sweeping events cause a decline 

in the droplet count density. 
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This representative distribution is shown as the circular data points in Figure 29.The bin 

width used for binning counts is one pixel, or 68 μm. The measured distribution in is compared 

with the theoretical, where the 𝑏 index is taken to be 1/3 from LeFevre and Rose [2]. A nonlinear 

least-squares fit is also made from the data to the theoretical large droplet size distribution in 

Equation 2.12 with variable 𝑏 index. The fitted 𝑏 index comes out to 0.3320, resulting in the 

fitted distribution trending very close to that with a 𝑏 index of 1/3. The leftmost circular data 

point in Figure 29 is the only data point above the fitted function, but it is at least one order of 

magnitude larger than most data points below the fitted function. Its deviation above the fitted 

function offsets all other points deviating below it. 

 

Figure 29. Droplet Size Distribution and Single Droplet Heat Transfer Rate 

Left axis: Theoretical, fitted, and measured distributions. A bin width of 1 pixel or 68 μm is used. 

Right axis: Single droplet heat transfer rate expected at a given radius. The product of this 

function with the droplet size distribution yields the heat flux at a given radius. 
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The theoretical single droplet heat transfer rate from Equation 4.13 is also plotted 

in Figure 29, on the secondary axis. The heat flux through the surface is found by integrating the 

product of the droplet size distribution with the single droplet heat transfer rate. This shows that 

larger droplets have the greatest influence on the heat flux. Large droplets also appear to be 

underrepresented in the distribution, which is due to the small area of the sample. The active 

detection area of the sample is ~10 cm2, such that bins containing droplets with radii larger than 

~500 μm are expected to have fewer than ten droplets each. A larger sample area would permit 

more droplets in these bins, yielding a better estimate of the droplet size distribution. 

The heat flux is found by summing up the individual heat transfer rate contributions of 

droplets detected in each frame and dividing by the detection area. This is represented by 

Equation 4.15. The instantaneous heat flux is also computed for each frame of video data, from 

Equation 4.17. The results are shown in Figure 30. The mean measured heat flux through the 

measurable range of droplets is found to be 470 W/m2. This amounts to about half of the 

theoretical heat flux measured over the same range. The underrepresentation of larger diameter 

droplets in Figure 29 reduces the measured heat transfer relative to the theory. A larger sample 

area would more adequately represent the largest droplets, thus reducing this discrepancy. 

The minimum measurable droplet radius is 272 μm, while the minimum 

thermodynamically viable droplet radius is on the order of a nanometer. The portion of droplets 

from about a nanometer to 272 μm is not captured. This portion of the distribution makes a 

substantial contribution to heat flux in this model. The total theoretical heat flux predicted 

from Equation 2.24 is 2.8 kW/m2. Only about 17% of the expected heat flux is captured by the 

measured droplet size distribution. Up to 32% of the expected heat flux may be captured with a 

large enough sample area. A higher resolution camera would capture more of the heat flux. 
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Similar observations can be made about the measured versus theoretical equivalent heat 

transfer coefficient. The measured equivalent heat transfer coefficient is 70 W/m2K, while the 

theoretical value from 4.16 is 410 W/m2K. The instantaneous and mean heat transfer coefficients 

are presented in Figure 31. About 32% of the expected equivalent heat transfer coefficient is 

captured within the measurable range, and the measured value is about 17% of the full 

410 W/m2K predicted by theory. A higher resolution camera would capture more droplets, 

closing the gap between the directly measured and full-distribution heat transfer coefficients. 

Additional data for the PC-HEX is shown in Appendix A. The dataset captured during 

the experimental runs that yielded droplet detections from Figure 22 and Figure 27 is shown. 

The video data with overlaid detections is also presented in Appendix B. Video data was 

produced by overlaying circles detected from the modified CHT method onto the original video. 

 

Figure 30. Instantaneous and Mean Heat Flux 

Instantaneous and mean heat flux for the video data. The mean heat flux is 470 W/m2. 
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Figure 31. Instantaneous and Mean Equivalent Heat Transfer Coefficient 

Instantaneous and mean equivalent heat transfer coefficient for the video data. The mean 

equivalent heat transfer coefficient is 70 W/m2K. 

5.2. Interpretation of Theory 

The subcool temperature, from just beneath the coating to saturated steam, is found by 

the theory to be 6.7 K given a heat flux and equivalent heat transfer coefficient of 470 W/m2 

and 70 W/m2K. Since the temperature difference between the wall and saturated steam is 6.8 K, 

only a 0.1 K additional temperature drop occurs from beneath the coating to the chamber wall. 

This model predicts dominating thermal resistance somewhere in the coating, condensate, or 

interfacial layer. Inspection of Equations 2.7, 4.13, and 4.30 reveal that all thermal resistance 

terms in the denominator approach infinity as contact angle approaches 0° or 180°. This decrease 

represents the loss of liquid-solid interfacial area as the droplet base shrinks with increasing 

contact angle. At the same time, obtaining ℎ𝑒𝑞,𝑚𝑜𝑑 from Equations 4.16 and 4.33 represents the 

resistances through either the plate/wall or tube/coolant as much smaller than they appear in the 
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single droplet model. If the additional thermal resistances are neglected, Equations 4.16, 4.18, 

and 4.33 yield the following 

ℎ𝑒𝑞,𝑚𝑜𝑑 ≈
𝑞𝑚𝑜𝑑

′′

Δ𝑇𝑚𝑜𝑑 
 (5. 1) 

Δ𝑇 =
𝑞𝑚𝑜𝑑

′′

ℎ𝑒𝑞,𝑚𝑜𝑑
≈ Δ𝑇𝑚𝑜𝑑 (5. 2) 

which shows the insignificance of the additional temperature drops in the modified temperature 

drop Δ𝑇𝑚𝑜𝑑 for both the PC-HEX and TC-HEX apparatuses. 

The large thermal resistances in the single droplet model are not offset by the associated 

increase in the droplet size distribution for increasing contact angle. The droplet size distribution 

is shown in Figure 32. The ratio of the small droplet size distribution for contact angles of 120° 

and 150° each over 90° is shown. As contact angle increases, the small droplet size distribution 

first decreases, then increases again. The cross-over angle at ~140° is due to the tradeoff between 

ratios of 𝐴2 and 𝐴3 over 𝐴1 as they appear in the exponential term within 𝐵1 and 𝐵2 in 

Equation 2.17. 

Even though a small change in droplet size distribution is observed, the marked decrease 

in single droplet heat transfer rates for increasing contact angle overwhelms this change. This is 

shown in Figure 33 as the heat flux distribution, which is the product of the droplet size 

distribution with 𝑞𝑑. The integral under this curve gives the heat flux, which is equivalent to 

Equation 2.24. The small droplet size distribution is as much as 1% higher when increasing the 

contact angle from 90° to 165°. However, the single droplet heat transfer rate drops to about a 

fifth of its original value given this same change. The heat flux distribution and resulting heat 

flux is an order of magnitude lower for a contact angle of 165° compared to that of the 90° and 

120° contact angles. 
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Figure 32. Droplet Distribution and Ratio for Increasing Contact Angle 

Top: The droplet size distribution for a contact angle of 90°. Bottom: The fractional change in 

small droplet size distribution for increasing contact angle. The change is less than 2% for a 

contact angle of 165° versus a contact angle of 90°. 
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Figure 33. Single Droplet Heat Transfer and the Heat Flux Distribution 

Top: The single droplet heat transfer rate decreases as contact angle increases. Bottom: The 

product of the droplet size distribution with single droplet heat transfer rate decreases as contact 

angle increases. 
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5.3. TC-HEX 

The heat flux measured in the TC-HEX apparatus is much higher than what is measured 

in the PC-HEX apparatus. The tube samples have the same, PTFE-based coating with the same 

thickness as the PC-HEX plate sample. The heat flux through the sample over a range of subcool 

temperatures is shown in Figure 34. The expected heat flux for a subcool temperature of 6.7 K 

is ~75 kW/m2. The heat flux directly measured in the PC-HEX apparatus is 470 W/m2. This can 

be extrapolated to 870 W/m2 if considering the small sample size, or 2.8 kW/m2 if considering 

the un-measured portion of the distribution. Even though the PC-HEX and TC-HEX apparatuses 

have slightly different thermal resistances, it would not cause an order of magnitude difference in 

measured heat flux. This order of magnitude difference is due to the extremely high thermal 

resistance terms for the single droplet heat transfer rate with a contact angle of 165°. 

Similar observations are made for the measured equivalent heat transfer coefficient. The 

equivalent heat transfer coefficient for the PC-HEX apparatus is 70 W/m2K at 6.7 K subcool 

temperature. This value might reach 130 W/m2K on a larger sample surface, and the theoretical 

value across all droplets is 410 W/m2K. The equivalent heat transfer coefficient for the TC-HEX 

apparatus is shown in Figure 34. The value is close to 12 kW/m2K for 6.7 K subcool 

temperature. This difference is similarly attributable to the high contact angle in the model. Also, 

the equivalent heat transfer coefficient for dropwise condensation is like that of the Nusselt 

filmwise condensation characteristic for these samples. In this case, the PTFE-based coating is 

thick enough at ~12 μm to offset the heat transfer benefit of dropwise condensation. 

Qualitative video data of condensation on TC-HEX sample tubes is comparable to the 

quantitative video obtained by the PC-HEX. Frames from the video data taken at a subcool 

temperature of about 6 K are shown in Figure 35. Video data is also available in Appendix B. 
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The droplet size distribution observed on the tube geometry is like that observed on the plate 

geometry, but it is harder to measure because the viewing changes across the tube height. 

A temperature difference of 16.6 K between average coolant temperature and saturated 

steam temperature is set to achieve a subcool temperature around 6.7 K in the PC-HEX 

apparatus. Using the value of 16.6 K as Δ𝑇𝑚𝑜𝑑 in Equations 4.30 and 4.40 gives an expected 

heat flux of 3.9 kW/m2 and equivalent heat transfer coefficient of 250 W/m2K, with subcool 

temperature 16.1 K. The model values are much lower than measured due to the large thermal 

resistance predicted by the high contact angle. 

5.4. Measurement Uncertainty 

Measurement uncertainties considered in the PC-HEX apparatus are that of the droplet 

radius, heat flux, heat transfer coefficient, and subcool temperature. The maximum and mean 

measurement uncertainties are reported for data plotted in Figure 28 – Figure 30. Droplet radii 

have 25% and 20% maximum and mean uncertainty. The heat flux and heat transfer coefficient 

measurements both have 1.2% uncertainty, while the subcool temperature has 1.7% uncertainty. 

Measurement uncertainties considered in the TC-HEX apparatus are that of the coolant 

temperature delta, heat flux, heat transfer coefficient, and subcool temperature. The maximum 

and mean measurement uncertainties are reported for data plotted in Figure 34. The coolant 

temperature and heat flux both have 21% and 12% maximum and mean uncertainty. The 

equivalent heat transfer coefficient has 59% and 31% maximum and mean uncertainty. The 

subcool temperature has 62% and 33% maximum and mean uncertainty. A low measurement 

uncertainty is needed in both the PC-HEX and TC-HEX apparatuses to be able to reliably 

compare their results. The uncertainties in both are low enough to back up conclusions made in 

this study. 
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Figure 34. Heat Flux and Equivalent Heat Transfer Coefficient for PC-HEX Tube Samples 

All three samples have the same surface treatment. Top: Heat flux for varying subcool 

temperature. Bottom: Equivalent heat transfer coefficient for varying subcool temperature. 
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Figure 35. Frame from High-Speed Video Data of PC-HEX Samples 

Frame of video data captured of each sample with an inlet coolant temperature of 80°C, 

corresponding to a subcool temperature of about 6°K. Recent sweeping events control the locally 

varying maximum droplet radius. 

PTFE 1

PTFE 2

PTFE 3
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Chapter 6. Conclusion 

The relevance of this study lies in the implementation of droplet detection in video data 

captured from the PC-HEX apparatus. Measurement of the droplet size distribution and the 

droplet count density over time is made possible by the specially modified CHT. Certain 

adjustments to the apparatus and detection method are planned in a future study, and another heat 

transfer model is considered. 

6.1. Relevance of Current Study 

The ability to measure the condensate droplet population is crucial in the exploration of 

dropwise condensation heat transfer. Results found in this study agree with the theoretical large 

droplet size distribution, as shown in Figure 29. A decreasing count frequency with increasing 

droplet radius is observed. Additionally, the experimental setup allows for observation of 

transient characteristics of the local droplet size distribution. An example of this type of data is 

presented in Figure 28. It is insightful in that it allows for tracking of the mechanisms from 

which the droplet size distribution emerges. Sweeping events are distinctly visible as an abrupt 

decline in the droplet count density. Droplets entering the measurable region by growth and 

coalescence result in the steady rise of the droplet count density when sweeping is not 

happening. These events correspond directly to real events in the video data. 

The TC-HEX apparatus yields heat flux measurements that only depend on the 

inlet-outlet coolant temperature difference. This provides a result that is independent of the 

mechanisms that induce the heat flux. While nonspecific, results obtained from the TC-HEX 

apparatus are used to check those obtained by the PC-HEX apparatus, with its method of heat 

flux measurement that is mechanism-specific. Quantitative measurement of the droplet size 

distribution is difficult for video data of the TC-HEX apparatus. As seen in Figure 35, the 
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viewing angle changes across the tube height. While the TC-HEX apparatus yields reliable heat 

flux measurements, droplet detection is best performed on the plate geometry of the PC-HEX 

apparatus. 

The droplet detection method developed during this study detects droplets with radii that 

differ by an order of magnitude or more. This is necessary in the measurement of the droplet size 

distribution. The standard CHT has been modified to take place over multiple stages with vote 

masking on previously detected circles. This reduces detection noise in the later stages of the 

process, cutting down on false or missed detections. Another benefit of this method is that it can 

be used to quickly process time series data. Manual droplet counting may yield a suitable 

average droplet size distribution, but quickly becomes unmanageable for large image sets. 

6.2. Future Study 

Refinements to the PC-HEX apparatus and detection method will further improve the 

ability of the platform to evaluate models of heat transfer by dropwise condensation. The 

modularity of the apparatus facilitates the planned changes to its sample side and boiler. The 

underlying detection method established in this study will remain the same, but better memory 

management will be implemented to handle higher resolution video data. Ground truth 

verification of droplet counts will also be implemented. 

The boiler size limits experimental runtime as seen in Figure 37 and Figure 38 in 

Appendix A. Sharp drops in saturation temperature correspond to boiler refills. The 500 cm3 

internal boiler has insufficient capacity to run longer than an hour, especially if a larger heating 

element is used. The boiler flange with an internal boiler will be exchanged for a flange that 

provides an inlet for an external boiler. The condensate return line will feed condensate back to 
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the boiler. The rate of heat input will be controllable up to 1 kW, allowing for experimental 

control over the rate of steam generation. 

Fittings that are more appropriate for maintaining vacuum pressure will also be used 

throughout the apparatus. The leak rate recorded in Figure 36 in Appendix A is sufficiently low 

for the shorter-duration runs performed in this study. However, longer runs will be possible 

given a larger boiler. Sensor fittings and ball valves with the appropriate vacuum rating will be 

used to minimize leak rate. The larger boiler will also ramp up chamber pressure more quickly, 

minimizing the time spent at low pressure. 

The sample side flange will be made to accommodate a larger sample. The largest 

achievable sample size in the PC-HEX geometry is 80 cm2, which is eight times larger than the 

sample used in this study.  Video data will be captured at a resolution of 2160×2160 pixels 

instead of 720×720, and a bin width of three pixels (204 μm) will used instead of one pixel 

(68 μm). With these changes, expected counts in each bin will increase by the ratio of new-to-old 

sample area. This change guarantees that at least eight counts will occur in bins near the 

maximum droplet radius. This should mitigate the under-representation of large droplets seen in 

Figure 29. The higher resolution camera will also reduce the minimum measurable droplet 

radius to below 100 μm, which yields more data for the heat flux estimated by any given single 

droplet model. 

Higher resolution video data requires better memory and processor management. The 

time taken to run CHT-based droplet detection methods increases exponentially with image size, 

so large data will need to be broken down into manageable parts. Additional verification of the 

droplet detection method is also important. While inspection of the detection output is enough to 



66 

verify a small sample area at low resolution, actual ground truth verification is needed for larger 

data sets. These changes will make for a more robust detection method. 

6.3. Prospective Heat Transfer Model 

One possible approach to heat flux estimation by droplet detection is by monitoring the 

mass flux of condensate swept from the surface. It has been shown that droplet sweeping events 

can be detected in a plot of droplet count density over time. These events may be studied further 

by observing the amount of condensate being swept. Given an assumption of droplet shape and 

condensate density, a model of single droplet mass is obtained. A combination of this model of 

droplet mass and the large droplet size distribution shows that 95% of condensate mass is made 

up by droplets with radii ranging from a tenth of the maximum droplet radius to the maximum 

droplet radius. 

Accumulating the measured mass of droplets in regions that are about to be swept yields 

the swept condensate mass. Measuring swept condensate mass over time gives the mass flux of 

condensate. Assuming constant conditions, the mass of condensate stored on the surface should 

remain constant over time for a large enough sample. Therefore, the mass of condensate being 

swept over time equals the mass of condensate forming over time. Such a model would allow for 

heat flux to be inferred from the latent heat change required to form this mass flux of condensate, 

as well as an expression for the sensible heat change based on residency time. 

6.4. Final Remark 

The droplet detection method developed in this study has been used to measure droplet 

population characteristics in the PC-HEX apparatus. These measurements provide insight into 

mechanisms of dropwise condensation heat transfer, including droplet growth and sweeping.  

Combining this approach with a given model of single droplet heat transfer and comparing 
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results to those of the TC-HEX heat exchanger allow for evaluation of the model. Application of 

the modified CHT droplet detection method also yields transient information about the droplet 

population. Minor modifications to the apparatus and detection method will contribute to a future 

study that explores dropwise condensation heat transfer further. 
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Appendix A: PC-HEX Numerical Data 

The PC-HEX chamber is brought down to minimum pressure, and a leak rate is 

established. The chamber is found to leak at 4 Pa/s. During experimentation, the boiler operates 

for about an hour before it is vented to atmosphere and the boiler is refilled. The vacuum pump is 

then used to minimize air pressure before continuing. This ensures that the partial pressure of air 

in the chamber is no more than 30 kPa during operation. 

 

Figure 36. PC-HEX Chamber Undisturbed Pressure 

The vacuum pump valve is closed at 3 min, and pressure readings are recorded. Pressure rises 

over time in the chamber. The leak rate is 4 Pa/s at the low-pressure limit. 
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Temperature data presented in the experimental run resulting in the capture of frames 

from Figure 22 is shown in Figure 37. The wall temperature thermocouples report an 

erroneously high temperature at around 500 s and 7250 s, corresponding to temporarily disabling 

the data acquisition channel for re-seating of the thermocouples. The frames shown in Figure 22 

were taken around 131 min. The step changes of 𝑇𝑤 correspond to changes in chiller set-point to 

induce variable subcooling. The ramp in 𝑇𝑠𝑎𝑡 corresponds to the 250 W internal boiler slowly 

ramping up the pressure in the chamber. The periodic decline in saturation temperature 

corresponds to refilling of the boiler and pumping down of the chamber. 

 

Figure 37. Full Experimental Run for First PC-HEX Sample 

This time series shows relevant temperatures gathered during operation of the PC-HEX 

apparatus. The frames shown in Figure 22 were captured around 131 min. 
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Temperature data presented in the experimental run resulting in the capture of frames 

from Figure 27 is shown in Figure 38. The frames shown in Figure 27 were taken around 

132 min. The step changes of 𝑇𝑤 correspond to changes in chiller set-point to induce variable 

subcooling. The ramp in 𝑇𝑠𝑎𝑡 corresponds to the 250 W internal boiler slowly ramping up the 

pressure in the chamber. The periodic decline and in saturation temperature corresponds to 

refilling of the boiler and pumping down of the chamber. 

 

Figure 38. Full Experimental Run for Second PC-HEX Sample 

This time series shows relevant temperatures gathered during operation of the PC-HEX 

apparatus. The frames shown in Figure 27 were captured around 132 min. 
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Appendix B: Video Data from the PC-HEX and TC-HEX Apparatuses 

Video data is in the attached supplemental material on ProQuest. 
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