
UNLV Theses, Dissertations, Professional Papers, and Capstones

August 2015

3D Obstacle Avoidance for Unmanned
Autonomous System (UAS)
Lin Zhao
University of Nevada, Las Vegas, crazymumu0804@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

Part of the Engineering Commons

This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations,
Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

Repository Citation
Zhao, Lin, "3D Obstacle Avoidance for Unmanned Autonomous System (UAS)" (2015). UNLV Theses, Dissertations, Professional
Papers, and Capstones. 2507.
https://digitalscholarship.unlv.edu/thesesdissertations/2507

http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2507?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

3D OBSTACLE AVOIDANCE FOR UNMANNED AUTONOMOUS SYSTEM (UAS)

By

Lin Zhao

Bachelor of Science in Mechanical & Electronic Engineering

Zhejiang University City College, China

2013

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Engineering – Mechanical Engineering

Department of Mechanical Engineering

Howard R. Hughes College of Engineering

The Graduate of College

University of Nevada, Las Vegas

August 2015

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

July 24, 2015

This thesis prepared by

Lin Zhao

entitled

3D Obstacle Avoidance for Unmanned Autonomous System (UAS)

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Engineering – Mechanical Engineering

Department of Mechanical Engineering

Woosoon Yim, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Mohamed Trabia, Ph.D.
Examination Committee Member

Kwang J. Kim, Ph.D.
Examination Committee Member

Sahjendra Singh, Ph.D.
Graduate College Faculty Representative

iii

ABSTRACT

The goal of this thesis is to design a real-time, three-dimensional algorithm, named as the

vector mesh (VM) algorithm, for unmanned aerial vehicles (UAV) to generate collision-

free motion in indoor or outdoor environments with unknown obstacles. This promising

technology can be utilized in both military and commercial applications. The VM

approach employs three data reduction phases to compute optimal navigation directions

while on-board scanning range sensor continuously updates depth data. In order to

develop the VM, vector filed histogram (VFH) which applied in 2D space was first

simulated in Matlab. Then a 2D autonomous navigation was implemented on a developed

Vision-based Ground Vehicle (VGV) and the entire system was controlled by a modified

VFH method which was computing in the Robot Operating System (ROS). Also, the VM

algorithm was simulated in ROS and integrated into Gazebo simulator which is an

effective graphic based robot simulator in complex indoor and outdoor environment. In

this study, it has been shown that the proposed VM can be an effective 3D obstacle

avoidance algorithm for typical small-UAVs if 3D information is continuously provided.

iv

ACKNOWLEDGMENTS

It’s been two years since the first day I came to University of Nevada, Las Vegas, the

place I started to research and chase personal objective. Firstly, I would like to thank my

advisor, Dr. Woosoon Yim for the continuous support and patience to my master study.

His guidance helped me in all the time of research and writing of this thesis. He is a nice

advisor, gracious professor and dedicated researcher. I could not have imagined having a

better advisor and mentor for study.

I would like to thank the NSF for financially supporting my research.

I would like to thank my thesis committee: Dr. Mohamed Trabia, Dr. Kwang J. Kim and

Dr. Singh, Sahjendra, for their insightful comments and encouragement, but also support

me to solve problems in their teaching. I would like to thanks all the professors and staffs

in UNLV helped me to research and classes.

I would like to my friends and workfellows that are Jameson Lee and Zachary Cook to

work with me and give me suggestions to finish the projects. Also, it’s very kind of Zack

to review my thesis.

I would like to thank my friends Qi Shen, Chao Chen and Wenlan Wu to give me

supports in both study and life; also I am so grateful with your advice in writing this

thesis.

Lastly, I would like to thank my parents to raise me up and support me to study. And

thanks to my girlfriend’s concern and encourage.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

CHAPTER 1 INTRODUCTION .. 1

1.1 Unmanned Autonomous System ... 1

1.1.1 Overview of Multicopter .. 3

1.2 Methods of Vision-based Obstacle Avoidance ... 5

1.3 Contribution .. 7

1.4 Thesis Organization .. 7

CHAPTER 2 2D OBSTACLE AVOIDANCE APPROACH... 8

2.1 The Vector Field Histogram (VFH) Obstacle Avoidance Algorithm 8

2.1.1 VFH Algorithm .. 9

2.1.2 Simulation Results and Discussion .. 15

2.2 Summary ... 20

CHAPTER 3 MODIFIED VFH ALGORITHM AND EXPERIMENT 21

3.1 Review of modified VFH .. 21

3.2 Development of Ground Vehicle Robot System ... 26

3.2.1 System Setup .. 26

3.2.2 Low level control of VGV .. 28

3.3 Result and Discussion ... 31

3.4 Summary ... 34

CHAPTER 4 3D OBSTACLE AVOIDANCE ALGORITHM .. 35

4.1 Voxel Obstacle Estimation .. 35

vi

4.1.1 Transformation of Obstacle Position .. 37

4.1.2 Mapping .. 39

4.2 Vector Obstacle Computation ... 41

4.3 Binary Mesh Representation ... 44

4.4 Simulation Environment ... 48

4.5 Result and Discussion ... 50

4.6 Summary ... 59

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 60

5.1 Conclusions ... 60

5.2 Future Work .. 61

C++ FILE FOR 3D VM ALGORITHM ... 62

A.1 Transformation of Data .. 62

A.2 Mapping Voxels ... 64

A.3 Mapping Vectors .. 69

A.4 Converting Meshes and Direction Selection .. 72

BIBLIOGRAPHY ... 78

VITA ... 82

vii

LIST OF FIGURES

Figure 1.1: The top-level of Unmanned Aerial Vehicle. .. 2

Figure 1.2: Quadrotor system and basic movements. ... 4

Figure 1.3: Vision cameras ... 5

Figure 2.1: On-board range sensor.. 9

Figure 2.2: Mapping obstacles into histogram grid .. 10

Figure 2.3: Mapping obstacles into polar histogram .. 11

Figure 2.4: Steering control strategy ... 14

Figure 2.5: Threshold determination ... 14

Figure 2.6: Simulation flow chart ... 15

Figure 2.7: Simulation method ... 16

Figure 2.8: Simulation result of 2D VFH algorithm ... 17

Figure 2.9: Tuning process for a desirable trajectory ... 19

Figure 3.1: Normalized vector representation of sensor detection 22

Figure 3.2: Safe valley determination by threshold .. 23

Figure 3.3: High-pass threshold definition ... 24

Figure 3.4: Determination of final direction .. 25

Figure 3.5: VGV system configuration .. 26

Figure 3.6: System work diagram .. 27

Figure 3.7: Control value .. 28

Figure 3.8: Experiments with different thresholds ... 31

Figure 3.9: The position captured in static for analyzing of adjusting threshold 32

Figure 3.10: Direction chosen in histogram representations. ... 33

file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624529
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624530
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624531
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624532
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624533
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624534
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624535
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624536
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624537
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624538
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624539
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624540
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624541
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624542
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624543
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624544
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624545
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624546
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624547
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624548
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624549
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624550

viii

Figure 4.1: Global world space ... 36

Figure 4.2: Transformation of range points from Kinect frame to global frame 38

Figure 4.3: Mapping range data into voxels ... 40

Figure 4.4: Voxels in spherical space ... 41

Figure 4.5: Vector obstacle computation in meshed sphere space 43

Figure 4.6: Selection of sub-direction according to binary mesh representation 45

Figure 4.7: Determination of final direction ... 47

Figure 4.8: Simulation environment in Gazebo simulator .. 48

Figure 4.9: Simulation system work diagram ... 49

Figure 4.10: Determination of threshold ... 51

Figure 4.11: Collision in the corner .. 52

Figure 4.12: Collision avoidance in the corner ... 54

Figure 4.13: Entire path in simulation. ... 55

Figure 4.14: Positions of VAV system in the entire simulation based on different

thresholds. ... 56

Figure 4.15: Attitudes of VAV system in the entire simulation based on different

thresholds. ... 57

Figure 4.16: Entire path in second simulation. ... 59

file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624551
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624552
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624553
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624554
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624555
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624556
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624557
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624558
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624559
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624560
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624561
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624562
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624563
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624564
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624564
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624565
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624565
file:///C:/Users/lin/Google%20Drive/thesis/Thesis.docx%23_Toc426624566

1

CHAPTER 1

INTRODUCTION

1.1 Unmanned Autonomous System

In the past decades, main reasons behind the exponential increase rate in the operation

and development of unmanned autonomous systems (UAS) is the growing necessity of

replacing humans work in dangerous missions or unreachable locations. More than

twenty countries have invested substantial resources towards the development and the

manufacturing UAS for a wide range of applications, both in the military and civilian

domains
[1]

. Additionally, future UAS design, such as Unmanned Ground Vehicle (UGV)

and Unmanned Aerial Vehicle UAV without human controller, becomes more and more

intelligent and robust according to requirement for upper level autonomy and increased

difficulty tasks.

A UAV is often classified as one of UAS and also known as drone which is a vehicle or

an aircraft without a human pilot aboard. Two types of system control this aircraft,

whether autonomous system which means small size onboard computer or remote

controller such as ground control station and personal RC controller. Different propulsion

methods of UAV lead to discriminative configurations, such like fixed-wing aircraft and

rotary-wing aircraft.

2

MQ-9 Reaper Hunter UAV, shown in Fig. 1.1(a), is the typical military example which

first flight was in 2007 and also executed a combat mission in Afghanistan
[2]

. Beyond the

military applications of UAVs, which have been used in plenty of civilian area containing

aerial surveillance, commercial Photography, urgency rescue and high-class toy. Titan

Aerospace bought by Google designed a solar-powered UAV, shown in Fig. 1.1(b),

travels up to 20 kilometers high with capacity of having satellite typical functions, one

(a) (b)

(c) (d)

Figure 1.1: The top-level of Unmanned Aerial Vehicle. (a) MQ-9 Reaper Hunter UAV for

military use
[2]

. (b) Solar-powered unmanned plane which will providing Internet access to

developing world
[3]

. (c) A160 Hummingbird helicopter suited for reconnaissance missions and

resupply
[4]

. (d) Phantom3 quadrotor for personal entertainment and video shoot
[5]

.

3

such example is weather monitoring. The future work of this fixed-wing UAV is bringing

Internet connectivity to distant region
[3]

. The A160 Hummingbird helicopter UAV,

shown in Fig. 1.1(c), built by Boeing has ability to take multiple missions just as target

acquisition and surveillance with files at 260 km/h at a maximum altitude of 9150 m
[4]

.

Phantom3, shown in Fig. 1.1(d), is a commercial entertainment drone developed by

Chinese company DJI with the controller a maximum range of 2000 meters and visual

position system
[5]

. The superiority of UAV such as reducing the exposure risk of pilot

and enjoying magnificent landscape is becoming more and more apparent.

1.1.1 Overview of Multicopter

A multicopter is classified as a rotary-wing aircraft, also is most popular one of vertical

take-off and landing (VTOL) aircraft that can hover, take off, and land vertically
[6]

. Less

kinetic energy cost in a flight condition because of individual rotor diameter smaller than

equivalent rotary-wing aircraft. Small-scale multicopter haves frame that enclose the

rotors, permitting flights through more challenging environments, with lower risk of

damaging the vehicle or its surroundings
[7]

. The most typical multicopter is the quadrotor

which has 4 propellers and the hexarotor with 6 propellers is also a popular variety of

multicopter because it has more thrust than equivalent quadrotor.

Although quadrotor is an appealing VTOL aircraft with relative simple structure and light

weight, it is a typical under-actuated, non-linear coupled system. This is due to quadrotor

system have four inputs to control six degrees of freedom (DOF), which including

translations and rotation along three principal axes. Four basic movements chose to be

controllable variables. Quadrotor lift (or land) with increasing (or decreasing) throttle

4

during all the motors rotation shown in Fig. 1.2 (b). By increasing angular velocity of

motor 1 and decreasing angular velocity of motor 3, shown in Fig. 1.2 (c), roll action is

accomplished which will lead quadrotor move to rear direction. By increasing angular

velocity of motor 2 and decreasing angular velocity of motor 4, shown in Fig. 1.2 (d),

pitch action is accomplished which will lead quadrotor move to right direction. By

(a)

(e)

T2 T1

T4 T3

M1

M3

M2

M2

𝑍𝑈

𝑌𝑈 𝜃

𝜙

𝜓

{𝑈} 𝑋𝑈

𝑍𝐺

𝑋𝐺
𝑌𝐺

{𝐺}

𝑟

4

2 1

4

4 3

4

2

2

1

1 1

3

3 3

2

(b) (c)

(d)

Left

Rear

Front

Right

Figure 1.2: Quadrotor system and basic movements. (a) A quadrotor order

from 3D robotics and system sketch. (b) Throttle movement. (c) Roll

movement (d) Pitch movement. (e) Yaw movement.

5

increasing angular velocity of motor 1 and motor 3 while decreasing angular velocity of

motor 3 and motor 4, shown in Fig. 1.2 (e), yaw action is accomplished which will arm

quadrotor rotate with z-axis along clockwise.

1.2 Methods of Vision-based Obstacle Avoidance

Unlike path planning in known environment, strong assumptions on knowledge of

obstacles situation need to be completed in order to generate collision-free path. Vision

sensing technique as the most effective and powerful method is now largely applied in

the autonomous navigation task or obstacle avoidance mission
[8]

.

EPIX stereo camera
[9]

 has two 2048 ×1088 pixel lines global shutter and captures 10 bits

images at 340 fps shown in Fig. 1.3 (a). Hokuyo UTM-30LX scanning laser rangefinder,

shown in Fig. 1.3 (b), as the widely used laser sensor has 30 m and 270 degree scanning

(a)

(b) (c)

Figure 1.3: Vision cameras. (a) Stereo vision camera. (b) Hokuyo UTM-

30LX scanning laser rangefinder. (c) SR4000 TOF Camera from MESA

imaging has 69 × 56 degree field of view (FOV) and maximum 10 m range.

6

range with high frequency 40 Hz which can implement in normal robotics research
[10]

.

A time-of –flight (TOF) camera is a high frame-rate and accuracy 3D image vision sensor

which works by illuminates the scene with a modulated light source and observes the

reflected light
[11]

, such as SR4000 TOF Camera
[12]

 shown in Fig. 1.3(c) and Microsoft

Kinect sneosr. 2D sensor or 3D camera suit for relevant dimensional algorithm for UGV,

UAV or humanoid robot, nevertheless some cases employ several cameras for exhaustive

surrounding information.

A Markov Random Field approach to distinguish obstacle region and free-space area

based on single monocular camera producing obstacle classifications
[13]

, especial useful

to avoid assorted varieties obstacles including tree and fences for low-power outdoor

robotics applications. Similarly, monocular camera used for escaping from obstacles but

utilizing different strategy that is Fast Terrain Mapping, which extracted features to

update a sequential extended Kalman filter
[14]

. Acknowledge of omnidirectional obstacle

perception is the primary problem for a clutter and restricted environment. To solve that,

autonomous system set up with multiple sensors containing a 3D laser scanner, two

stereo camera and ultrasonic sensors proceeds global mission planner and local trajectory

planning in multi-resolution local grid maps
[15]

. A state-of art registration algorithm to

detect obstacle location by reconstructing 3D point clouds, which achieved with a

rotating 2D laser scanner
[16]

. Simultaneous localization and mapping (SLAM)
[17]

 is the

approach of constructing a map of unknown environment from available sensor data and

continuously estimating robot position and orientation.

7

1.3 Contribution

The contribution of this study is the development of 3D obstacle avoidance, named

Vector Mesh (VM), an algorithm for real-time navigation of quadrotor in unknown

indoor environment. In the simulation of presented algorithm, 3D Kinect sensor
[18]

 is

used for collecting range data stored momentarily for generation of obstacle perceptions

which are larger than the single detection. Additionally, obstacles estimation and path

planning are based on Vector Field Histogram (VFH)
[19]

 algorithm extended from 2D to

3D.

1.4 Thesis Organization

This thesis is organized into five chapters as follows. Fundamental knowledge of

Unmanned Aerial Vehicle (UAV) is introduced in Chapter 1 including current state-of-art

applications of UAV. Relevant background theory of in sensors and algorithms of

obstacle avoidance is described. In Chapter 2, a review of VFH algorithm is presented

and drawbacks and comprehend advantages are illustrated using an example simulation.

Chapter 3 presents a developed modified VFH algorithm for 2D environment. Besides, a

vision-based ground vehicle system is demonstrated in order to perform autonomous

navigation with developed 2D algorithm. In Chapter 4, the theory of proposed VM

algorithm is presented and discussed. Also a computer simulation is presented to show

the result. Moreover, a modified method is introduced to the algorithm to improve

simulation results. Finally, conclusions and future work are presented in Chapter 5.

8

CHAPTER 2

2D OBSTACLE AVOIDANCE APPROACH

2.1 The Vector Field Histogram (VFH) Obstacle Avoidance Algorithm

In 1991, Jojann Borenstein and Yoram Koren proposed a new real-time obstacle

avoidance algorithm named as Vector Field Histogram, which detects unknown

environment with range sensor and simultaneously generates collision-free path for

ground mobile robots. This method covers three main components that are a two-

dimensional Cartesian histogram grid, polar histogram sector and candidate valley. To

begin with, on-board sensors such as ultrasonic sensor or laser rangerfinder are used for

mapping obstacles into histogram grid. Moreover, one-dimensional polar histogram

whose sector density denotes a probability of obstacle in that direction is made after

reducing first step data. Moreover, an optimal solution is selected in each candidate

valley such that every sector density less than an experimental threshold value. The VFH

algorithm is suitable for both ground and aerial vehicles and has been developed and

implemented in many different types of robotics platforms. Also, Enhanced VFH

algorithm (VFH+)
[20]

 and VFH* algorithm
[24]

 had been proposed for improved tracking

and automated avoidance performance. In this Section, a 2D VFH algorithm is presented

and will be extended to the 3D case which can be useful for complex maneuvers of

robotic aerial vehicles or UAV in unstructured environments.

9

2.1.1 VFH Algorithm

In this algorithm, the global world is described as a two-dimensional Cartesian histogram

grid; a mesh size of cell in the grid is determined by a vehicle size as well as a

computational power of the on-board computer. The VFH method shown in Fig. 2.1 uses

24 on-board range sensors, each with 15 degree view, to measure distance between

vehicle and obstacles. As shown in Fig. 2.1, 24 sectors represent range sensors, red

polygons are obstacles and pink dash lines express a mean distance between obstacles

and the vehicle. For every range reading, the Certainty Value (CV), the larger CV

represents higher possibility of obstacle in that location, is increased by 1 at that detected

cell which is located along the acoustic axis as shown in Fig. 2.2 (a). This process is

repeated while a vehicle moves so that a probabilistic distribution of obstacles is

Sensor view section

𝑋

𝑌

22

23

24

1

2

3

Figure 2.1: On-board range sensor. 24 range sensors equipped to

obtain omnidirectional obstacle perception; each one has a sensor view

of 15 degree Red polygons represent obstacles. The vehicle frame

represents vehicle and global frame as shown in the figure.

𝑋

𝑌

Obstacle

{𝐺}

{𝑉}

Sensor view section

10

calculated as shown in Fig. 2.2. The high value represents higher probability of collision

to those directions as shown Fig. 3.2(b).

12 13

𝑋

𝑌

3
4

Histogram grid

Certainty value

Move

(a) (b)

Sensor view

Figure 2.2: Mapping obstacles into histogram grid. (a) Only two cells respectively

from view of sensor 3 and sensor 4 achieve accretion in each range scan and they

lies on the end of pink dash lines which equal to measured distance. (b) On-going

mapping process obtains much more accurate obstacle distribution during robot

motion.

Sensor view section

{𝐺}

{𝑉}
{𝑉}

11

Fig. 2.3 shows an obstacle map transformed to polar coordinates. This transformation is

needed for more efficient computation and it is conceptually easier to define the direction

C*

Activ

e cell

8

9

10

11 12 13 24 25 26 27

28

29

𝑌

𝑋

{𝑉}

𝑋

𝑌

{𝐺}

Figure 2.3: Mapping obstacles into polar histogram. Active window is converted

into polar histogram which shows in purple sections. For example, in sector 11

and sector 27, active cell with red certainty value which represent 𝑚𝑖,𝑗 mapped

into specific sector.

H

12

of vehicle motion using one-dimensional polar histogram (denoted as) as shown in Fig.

2.3. Also, the active window (C*) is defined with a vehicle at its center as shown in Fig.

2.3. The size of the active window can be adjusted for different applications; the one used

here is 33 × 33 cells which correspond to range of sensor. It should be noted that this

active window moves together with the vehicle and it overlay a new area. We also call

the cells inside of the active window are called active cells. Angular resolution

used in Fig. 2.3 so that contains 72 sectors. The active cells shown in Fig. 2.3 can be

mapped to the polar map using:

 , (

) (2.1)

 (
 ,

) , , , , , (2.2)

where , is an active cell location and , is a vehicle location in the active

window. , is an angle from x-axis of vehicle frame { }, is the sector which

corresponds to the active cell of interest.

After converting active cells into a one-dimensional polar histogram, the magnitude of

active cell , as shown in Fig. 2.3 becomes:

 , ,
 (,) (2.3)

 (2.4)

where ,
 is the certainty value of active cell , , the square here expresses to reduce

noise which caused by single occurrence of sensor detection. , is the distance between

active cell and vehicle. , are positive constants which are obtained from Eq. 2.4,

is a half of diagonal of active window, if is selected as an arbitrary integer then is

determined.

13

The polar obstacle density which represents probability of meeting the obstacle in the

direction of sector becomes:

 ∑ , , , (2.5)

The distribution of polar obstacle density is discrete may cause to ragged obstacle

estimation so that a function is applied to obtain smooth polar obstacle density
 :

 , , , (2.6)

where is the amount of sectors. is a constant integer which is chosen depending on

experiments or simulations.

As shown in Fig. 2.4, entire sectors defined around the vehicle or robot by the polar

histogram are separated into insecure and safe valleys using a threshold .

For determining an optimal direction of the vehicle, safe valleys are divided into narrow

and wide valleys with the threshold (easily chosen from simulation) which is

determined in the situation as shown in Fig. 2.5. The vehicle was set close to obstacle in a

safe distance that the one was chosen in wide environment larger than the one in

narrow environment. Two specific sectors in the safe valley (not represent all the sectors)

indicated as the sector closet to X axis of vehicle and the sector nearest to obstacle

were selected. The threshold was expressed as:

 (2.7)

where is the angular resolution.

14

𝑋

𝑌

𝐷

{𝑉}

𝑘𝑟

𝑘𝑙

Figure 2.5: Threshold 𝜂 determination

Figure 2.4: Steering control strategy: Elimination of insecure valleys with CV

values larger than threshold 𝜂 . An optimal direction is determined from safe

valleys with CV value less than 𝜂 .

Safe Valley

Target Θ

𝑋

𝑌

𝑌

𝑋
𝜂

𝜂

{𝑉}

{𝐺}

15

A narrow valley is the one less than and the sub-optimal direction is considered as the

sector in the middle of narrow valley. For a wide valley greater than the , a sub-optimal

direction can be selected as a particular sector which has an interval of half threshold

on the boundary closest to the target as shown in Fig. 2.4. In the end, the optimal

direction prefers to the sub-optimal direction which is closest to the target and is

transformed into vehicle frame to control locomotion.

2.1.2 Simulation Results and Discussion

Yes

Figure 2.6: Simulation flow chart. The rate about simulation loop is 10 Hz.

Overlie a new active
window

Generation of polar
histogram

Chosen optimal direction

Require sensor data

Update certainty value in
histogram grid

Motion in one simulation
step

Start

Goal arrival?

No

End

Simulation Loop

16

Computer simulation is carried out for the VFH algorithm using in Matlab
[24]

 and its

flow chart shown in Fig. 2.6. In this 2D simulation, it is assumed that a vehicle is

equipped with a scanning laser range sensor with a field of view of 240°. Also, vehicle

location is known and only kinematic motions of the vehicle are considered. The laser

range sensor is simulated in Matlab such that it returns 24 range data in each sampling

period and as shown in Fig. 2.7.

1
2

3
4

24 23 22
21

Vehicle

Vehicle

movement

direction

Figure 2.7: Simulation method: A FOV of scanning laser sensor is split

into 24 sectors (10° apart). The pink line lies in the center line of sector

and it denoted obstacle distances. It is assumed that the rangefinder

always aligned with vehicle’s direction of motion in each simulation loop.

Sensor view sector

17

Goal

UAV

Goal

UAV

(a) (d)

(b) (e)

(c) (f)

Active

Windo

w

Active

Windo

w
UAV UAV

C
C

𝜂

Figure 2.8: Simulation result of 2D VFH algorithm. (a)First analytical position in the path;

(b)Histogram grid for first position ; (c) Motion direction selection in first case; (d) Second

analytical position in the path; (e) Histogram grid for second position; (f) Motion direction

selection in second case;

1
2

3

2 1

3

𝑋

𝑌

𝑋

𝑌

𝑌

𝑋

{𝐺} {𝐺}

{𝑉}

𝚯

𝑋

{𝑉}

𝑌

𝚯

𝚯 𝚯

𝜂

Goal Goal

18

In this simulation, a size of UAV is assumed with a radius of 25 cm circular shape and it

moves with a speed of 0.8 m/s. The UAV successfully navigates through environment

with unknown obstacle location with relatively smooth path as shown in Fig. 2.8. It

should be noted that two UAV positions in Fig. 2.8(a) and Fig. 2.8(d) are particular

importance since it is too close to obstacles and can face to more than one option of its

next move. As shown in Fig. 2.8(b) and Fig. 2.8(e), corresponding histogram grids

represent obstacle distribution with CV values. The larger CV value means higher

probability of collision with obstacles. Firstly, was chosen as of the maximum

polar histogram density from a simulation and selection of was described as Section

2.1.1. Then, both thresholds were tuned in the simulation to obtain best performance so

that equaled to 10 and value of was 150 at last. In Fig. 2.8(c) and Fig. 2.8(f), safe

valleys were determined by and separated into wide valley and narrow valleys with .

The sub-optimal direction which was the nearest one to goal would be selected to optimal

direction .

As shown in Fig. 2.9, a smooth path can be obtained by tuning values of two thresholds.

For higher value of the threshold will result in crash with obstacle because some

sectors represented area close to obstacles were considered into safe valleys. For the high

value of the threshold it can result in less chance of collision but navigation trajectory

became less smooth and stiffer. Because wide valleys existed were regarded as narrow

valleys based on high value of so that sub-optimal directions of those valleys directly

were chosen in the middle. Also, one of the drawbacks of this algorithm was shown in

Fig. 2.9(c) that the path was close to obstacle 1. The long obstacles such as obstacle 2

would lead more impact on vehicle than short obstacles (obstacle 1) did because of the

19

method of obstacle estimation which based on the weighting of obstacles in detection

area. Another shortcoming of this approach is luxurious computational cost due to the

mapping strategy that is storing data all the time.

(a) (b)

(c)

Figure 2.9: Tuning process for a desirable trajectory. (a) Oscillation and collision with 𝜂

equal to 20 and 𝜂 equal to 50; (b) Reduce oscillation with keeping 𝜂 and changing with 𝜂

to 10; (c) Keeping with 𝜂 and increasing 𝜂 to 100 lead to a good performance.

Goal Goal

Goal

𝜂

𝜂

𝜂
𝜂

𝜂

𝜂

1 2

3

20

2.2 Summary

In this Chapter, a detailed introduce of Vector Filed Histogram (VFH) for 2D obstacle

avoidance is presented. Additionally, a computer simulation based on Matlab is

accomplished assuming laser rangefinder is equipped on the vehicle. Also, simulation

results are expressed and demonstrated to discuss the performance of this algorithm.

Moreover, drawbacks are presented and analyzed in order to improve in the extended 3D

obstacle avoidance.

21

CHAPTER 3

MODIFIED VFH ALGORITHM AND EXPERIMENT

The 2D navigation mission with utilization of the VFH method has satisfied a reasonable

result although the only sensor used is the range sensor. The usage of this sensor is the

main reason leading to high computational complexity, because a single reading of

ultrasonic sensors results in incomprehensive obstacle information. Currently, high-

resolution range sensors such as laser scanner are available for mapping accurate

environments for indoor applications. Hence, a modified VFH method proposed uses a

laser rangefinder. Following sections explain this algorithm in detail and describe

experiment implemented for further verification.

3.1 Review of modified VFH

The modified VFH is a local obstacle avoidance algorithm that generates navigation

vectors based on a robot or a vehicle surrounding environment perception. This method

can be implemented in autonomous navigation of a ground vehicle or 2D mission of a

UAV assuming a laser scanner is onboard. This algorithm is computed on onboard

computer and controls are sent to vehicle.

A Vision-based Ground Vehicle (VGV) consists of a laser scanner, onboard computer

and a ground vehicle and will both be used in the implementation of the modified VFH

algorithm. The laser scanner equipped on the vehicle is assumed to have a FOV of 180°

and a radius, denoted as , equal to 4 meters. The detection area of the sensor is divided

22

into 512 portions every one contains a range value, denoted as RV, and has an angular

resolution as shown in Fig. 3.1.

Each portion is expressed as a vector:

 , { , , , , } (3.1)

Where is index of vector in Polar coordinate system that the polar axis as same as the X

axis of the frame of the VGV which located in connection point of vehicle and sensor as

shown in Fig. 3.1 and RV is the magnitude and equal to

{𝑮}

Figure 3.1: Normalized vector representation of sensor detection. The robot system

consists with a 4-wheel-drive vehicle and a laser scanner. The half circle detection area

is distributed to 512 vectors with regarding range data as magnitude in polar coordinate

system. The orientation to which polar axis pointed is the same as X axis of VGV frame.

𝑅𝑠

507

3

2

1 512

511

510

{𝑽𝑮𝑽} Polar axis

𝑌

𝑋

4

5

6

7

8
9

509

508

506
505

504
……

Sensor

Vehicle

23

In order to analyze vector representation of obstacle information, a threshold is applied to

determine dangerous valleys and safe valleys to travel through which are composed of

merged vectors. The threshold is expressed as:

 (3.2)

Where is a constant can be adjust in the experiment.

The dangerous valley, aqua zone as shown in Fig. 3.2, consists of continuous vectors

which have a value less than the threshold. The safe valley, signified by orange

outlines as shown in Fig. 3.2, is comprised of sequential vectors whose greater than

threshold.

In the case that no safe valley exists means that no safe direction is available; in other

cases that a safe valley exists, the value of safe valley represents range is recorded as:

{𝑮}

𝑇

𝑅𝑠

Polar axis

Obstacle

Figure 3.2: Safe valley determination by threshold. Successive vectors

which extend threshold are fused into safe valley remarked as orange area.

24

 , , (3.2)

Where and are the index of inside vectors which are separately nearest and farthest to

the polar axis as shown in Fig. 3.2.The angular resolution of each vector is represented by

 .

A high-pass threshold, denoted as , calculates the minimum valley that can be passed by

VGV and removes impassable previously safe valleys. As shown in Fig. 3.3(a), the

threshold intersects with threshold with three points , and . This situation is

modified into a geometry model as shown in Fig. 3.3(b), side ̅̅ ̅̅ and side ̅̅ ̅̅ are equal

to the threshold , side ̅̅ ̅̅ is equivalent to the width of VGV denoted as . The included

angle is equal to the value of high-pass threshold and solved by the law of cosines:

 (3.3)

Figure 3.3: High-pass threshold definition. (a) This threshold is used for eliminating

safe valleys which are too narrow to go though. (b) Math model applied to decide

the high-pass threshold value.

A

𝐹

B

C

B A

C

𝜃

(a) (b)

𝑇

25

As shown in Fig. 3.4, the safe valley marked with a black X is removed by the high-pass

threshold. After that every remaining safe valley will have a generated a sub-direction

denoted as signifying the middle of the valley using the angular resolution:

 (3.4)

Where and are the indexes of boundary vectors of corresponding safe valley.

Finial direction for the vehicle to travel is chosen from the sub-direction that is nearest to

90 degrees from the polar axis as shown in Fig. 3.4. The 90 degree is chosen in order to

force the vehicle to travel forward if it can.

{𝑮}

 Polar axis

𝐹

Figure 3.4: Determination of final direction. Removal of exceptional safe

valleys which are not broad enough for robot to transit; Sub-direction is

achieved in the center of the remaining safe valleys and final direction is

the sub-direction that is closest to 90° in the polar coordinate system.

𝟗𝟎

26

3.2 Development of Ground Vehicle Robot System

3.2.1 System Setup

The laser scanner sensor and on-board computer could be easily broken if a UAV crashed

so a ground vehicle is used first to the test effectiveness of the 2D algorithm. This

platform used the MiniBot, a commercially available 4-wheel-drive vehicle, from

Inspector Bots
[22]

. To develop the VGV system with autonomous obstacle avoidance, the

onboard computer Odroid-U3
[23]

 with strong processing capacity, a Hokuyo URG-04LX-

UG01 laser scanner
[24]

 and an Arduino Uno microcontroller board
[25]

 which outputs

PWM signal, the motor driver of the vehicle were all added to the platform as shown in

Fig.3.5. The Odroid-U3 is a powerful Linux computer with 1.7GHz Quad-Core processor

Laser scanner

Odroid-U3 Arduino Uno

Battery

Figure 3.5: VGV system configuration. The 2650mAh batteries’ voltage is

regulated to 5V with a UBEC to power Odroid-U3. The laser scanner and

Arduino are powered by the onboard computer through USB cables.

UBE

27

and 2GByte RAM. The laser scanner employs a 180-degree FOV (other mode of FOV

which is 240-degree was not used in this system) and a maximum range of 4 meters.

Fig. 3.6 illustrates the system setup. The laser scanner sends distance data of obstacles to

the onboard computer with Robot Operating System (ROS)
[26]

 framework installed in

order to implement high-level control constituting of the computation of the modified

VFH algorithm. ROS nodes that execute calculation and communication were used.

Hokuyo node collected the range data, algorithm node computed the final direction and

serial node sent the commands to the Arduino from the onboard computer. A client

computer remotely controlled desktop of onboard computer to launch ROS nodes with

Wi-Fi. In the low-level control, the Uno board received a command denoting which was

Hokuyo node

Algorithm node

Serial node

ROS

Laser

scanner
Data

Wi-Fi

High-level control

Uno

board

Motor

driver

VGV

Low-level control

PWM signal

Figure 3.6: System work diagram

Onboard

computer

Client

computer

28

the safe direction and converted that directional command into PWM signals that were

sent to motor driver to manipulate the VGV.

3.2.2 Low level control of VGV

The Uno board calculated the control values denoted as and after it has received its

command from the high-level control. and were defined from 0 to 180.0 and scaled

to corresponding PWM signals to drive left two motors and right two motors respectively

based on an Arduino Servo library
[34]

. However, only the range between 25.0 and 155.0

can generate appropriate PWM signals to actuate motors in the test. The relation between

control values and motor directions is shown in Fig. 3.7 and are expressed as:

 {

 ,

 ,

 ,

 (3.4)

 {

 ,
 ,

 ,
 (3.5)

𝜁𝑟 𝜁𝑙

25.0 155.0

155.0 25.0

90.0 90.0

Forward

Backward

Forward

Backward

Figure 3.7: Control value. Relation between control values and motor directions of

vehicle platform

29

For the vehicle platform the 4 kinds of locomotion modes used were rotation, advance,

left-turn and right-turn which were determined by control values. The rotation mode was

defined as rotating clockwise while the command from high-level control indicated there

was no safe direction available and expressed as:

 {

 (3.6)

where angular velocity of rotation became faster if the value of and were increased.

If the command showed that final direction is existed, an error denoted as was

defined to determine other locomotion of VGV and expressed as:

 | | (3.7)

The advance mode that forced VGV to go straightly satisfied the following condition:

{

, (3.8)

where was an adjustable error angle, and was selected as 8°.Increase of and decrease

of would raise the forward velocity but if the condition that was

guaranteed.

In the right-turn mode which satisfied the conditions and , a turning ration

 was defined as:

 (3.9)

where larger value of indicated drastic momentary turning.

First of all, two set of relations between and were expressed as:

{

 {

 (3.10)

where and were adjustable depend on performance of experiments.

Furthermore, and were substituted into Eq. 3.11 to obtain
 and

 respectively.

30

 (3.11)

where was selected as 135 in right-turn mode.

Moreover, it’s assumed that and were satisfied the first order equation just as:

 (3.12)

where and were solved by substituting two points ,
 and (,

).

Lastly, the right-turn mode was expressed as:

{

 (3.13)

In the left-turn mode which satisfied the conditions and , a turning ration

was defined as:

 (3.14)

where was selected to 45 in left-turn mode.

Substituting the supplementary angle of final direction which is into Eq. 3.13

and substituting the received solution into Eq. 3.9 to obtain the turning ratio which should

equal to Eq. 3.14 because of symmetry of the turning ratio. And the result was:

{

 (3.15)

31

3.3 Result and Discussion

(a)

(b)

(c)

Figure 3.8: Experiments with different thresholds. (a) First test with

threshold equal to 0.5m; (b) Second test with threshold equal to 0.6m;

(c) Third test with threshold equal to 0.7m.

32

Three experiments were implemented in order to find the best appropriate threshold of

2D modified VFH algorithm and obtain optimal performance. The result of first

experiment that was applied a threshold of 0.5m was fail because the VGV didn’t avoid

the obstacle front of it as shown in Fig. 3.8(a). Obviously, the ugly left-wheel leaded this

collision so two possible reasons that one was dynamic problem of VGV and the other

one was incorrect threshold occurred. In the Fig. 3.8(b), the threshold was increased to

0.6 m and VGV avoid the front obstacle successfully but the performance was not perfect

because it was close to obstacle and almost crashed the following obstacle. Therefore, the

main reason was threshold so that it was raised to 0.7 m in the next experiment and the

result was shown in Fig. 3.8(c). The VGV not only navigated between unknown obstacles

without causing any collision but also kept safe range with obstacles and the path was

perfectly smooth.

Figure 3.9: The position captured in static for analyzing of

adjusting threshold

33

0

0.5

1

1.5

2

2.5

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

0.5

512

𝚯 𝟏𝟎𝟏 𝟔

Safe valley

(a)

0

0.6

1.2

1.8

2.4

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

0.6

512

Safe valley

𝚯 𝟏𝟒𝟎 𝟔

(b)

0

0.7

1.4

2.1

2.8

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

0.7

512

Safe valley

𝚯 𝟏𝟒𝟖 𝟏

(a)

Figure 3.10: Direction chosen in histogram representations. (a), (b) and (c)

implemented with threshold of 0.5m, 0.6m and 0.7m respectively. The vertical axis

meant the RV of vector which was the detected range from sensor; the horizontal

axis implied the sequence of vector in polar axis.

34

In the Fig. 3.9, a special position which at the corner was surrounded by obstacles

selected to demonstrate the reason of success of obstacle avoidance applied with relative

large threshold. As shown in Fig. 3.10(a), the safe valley, assumed the exceptional safe

valley had been removed by high-pass threshold so that didn’t display, with threshold of

0.5m was very broad and even the range representing front obstacle approximately from

 to located in safe valley. Then the inexact direction equaled to 101.6°

leaded to collision at last. In Fig. 3.10(b), the edge area of obstacle still enclosed in the

safe valley so that the VGV was close to obstacle but might hit in other situations. With

increasing the value of threshold, the safe valley diminished but still was not risk for

going through.

3.4 Summary

This Chapter presents a modified VHF obstacle avoidance algorithm for 2D navigation of

vehicle based on laser scanner. Also a VGV system was developed and detail discussion

is presented including hardware structure and software integration. ROS environment

will be used for high-level control which is the same framework implemented in the

following chapter for simulation. This autonomous system will be extended for the aerial

vehicle platform. Moreover, experiment result is demonstrated and analysis.

35

CHAPTER 4

3D OBSTACLE AVOIDANCE ALGORITHM

The 3D navigation missions or exploration tasks are studied for multicopter in this

chapter. In the 3D obstacle avoidance task, necessary sensor based detection of

environments always extremely challenging. Currently, a simple 3D camera such as

Kinect sensor
[30]

 can achieve reasonable accuracy in three-dimensional range data but

has relatively small field of view (FOV) for effective navigation in unstructured

environments. The proposed 3D vector mesh (VM) algorithm can make up this weakness

of sensor. The 3D VM algorithm is an extension of the 2D algorithm discussed in

Chapter 3 for ground vehicle navigation, and it consists of three core stages: (1) voxel

obstacle computation, (2) vector obstacle estimation, and (3) binary mesh representation.

The advantage of 3D VM approach is that range data can be provisionally stored for

adequate obstacle perception enough for free-collision path generation. The descriptions

of these three stages and computer simulation results have been discussed in detail in the

following chapter.

4.1 Voxel Obstacle Estimation

The global world space is described by three-dimensional Cartesian voxels and its size, ,

can be determined by two factors. One is a computational cost and the other is detection

accuracy of environment. Too small size can be computationally expensive and too large

size results in potentially incorrect obstacle estimation. The voxel size can be adjusted

36

depending on different applications and easily tuned using computer simulation. The

voxel is assumed to have a dimension of 10cm × 10cm × 10 cm as shown in Fig. 4.1.

The voxel is expressed as:

 , , (4.1)

Where , , mean coordinate of voxel in global frame which is denoted as { };

is the obstacle probability for this voxel.

The entire process is that sensors explore local environments and provide estimation of

obstacle presence in global space expressed by voxels. This procedure of voxel

representation of obstacles comprises of two simple phases: (1) transformation of

obstacle position and (2) mapping of obstacles to voxels.

𝒀𝑮 𝑿𝑮

𝒁𝑮 0

Figure 4.1: Global world space. This example demonstrates the voxel with

𝐶𝑉 equal to 0. An index of voxel, 𝑋𝐺 ,𝑌𝐺 ,𝑍𝐺 are the position in global frame.

{𝑮}

0
0
0

0

0
0

0
0 0

CV

37

4.1.1 Transformation of Obstacle Position

It is assumed that, a Kinect sensor from Microsoft
®
 is used for detecting obstacles in real-

time. Each pixel of a depth image obtained from the sensor is stored as range data.

 that obstacle position measured with respect to a Kinect frame

{ }. The range points
 needs to be transformed to the global frame, as shown in Fig.

4.2 using the rotation matrix
 defined for the UAV frame using X-Y-Z Euler angles

and is denoted as { },

 [

]

⏟

 (4.2)

where , , indicate rotation angles in ̂ , ̂ , ̂ axes respectively, and each rotation

angle is assumed is be obtained from an inertial measurement unit (IMU) mounted on

UAV. It should be noted that and .

The rotation matrix,
 , between UAV and Kinect also expressed in the similar way as:

 [

]

⏟

 (4.3)

where , , respectively represent rotation angles in ̂ , ̂ , ̂ axes defined on UAV

frame, where rotation angles are known because the Kinect sensor is fixed on UAV frame.

[

]

⏟

 [

]

⏟

[

]

⏟

(4.4)

where

 is the position of a target point in global frame;
 is the

position of the Kinect frame origin in UAV frame and it is known.

 is the position of the UAV frame origin in a global frame

38

and assumed known from onboard IMU sensor. Substituting Eq. 4.2 and Eq. 4.3 into Eq.

4.4, the transformed position
 can be calculated.

𝒁 𝑼

𝑿 𝑲

𝒀 𝑮
𝒁 𝑮

{𝑮}

{𝑼}

{𝑲}

(b)

Figure 4.2: Transformation of range points from Kinect frame to global

frame. (a) Kinect sensor and UAV in simulation environment. The kinect

sensor has a resolution of depth image about 640 × 480 pixels and a FOV

(horizontal 60° and vertical 48.6°) so that sensor will return 30720 range

point. (b)Coordinate frames {𝐺}, {𝑈}, and {𝐾}.

𝑷𝑈
𝐺

𝑷𝐾
𝑈

𝑷
𝐾

𝑷
𝐺

𝑿 𝑮

𝑿 𝑼

𝒀 𝑼

𝒀 𝑲

𝒁 𝑲

Range point

(a)

39

 4.1.2 Mapping

The next step is to transform range data obtained in the previous step to be mapped into

corresponding voxels in the global frame. The certain value () of voxel will increase

by 1at each data sampling up to 20 whose value can be determine by a number of factors

including a vehicle speed and complexity of environments. Fig. 4.3 shows this mapping

procedure expressed as:

[

]

[

]

 (4.1)

where is a function returning smallest integer greater than or equal to a given number.

 , , are coordinates of voxels and ,
 ,

 are the coordinates of any target-

points measured in global frame. is the size length of voxel.

For computational efficiency of the proposed algorithm, a local space is defined around

the UAV which is fixed to the UAV. This local space is a cube and its size, , can be

determined by the maximum detectable range of on-board sensor using the following

relationship:

{

 (

)

 (4.6)

where is the number of voxels in each row or column in the local space. is the

sensor range.

If voxel coordinates , , are satisfied with the following conditions then voxels will

be considered inside of the local space:

40

{

 (4.2)

where
 ,

 ,
 are the voxel coordinates corresponding to UAV location in global

frame and can be obtained using Eq. 4.8 which is similar to Eq. 4.5.

[

]

[

]

 (4.8)

where
 ,

 ,
 are the coordinates of UAV in the global frame.

Local space

𝐿

8

𝒀 𝑮

𝑿 𝑮

𝒁 𝑮

{𝑮}

𝑷𝑈
𝐺

18

2

19
19

Figure 4.3: Mapping range data into voxels. The local space stores 𝐶𝑉 values of each

voxel corresponding to obstacles existing in the space. The 𝐶𝑉 value of each voxel is

increased whenever sensor detected obstacle.

18
12
0

{𝑼}

𝒁 𝑼

𝒀 𝑼

𝑿 𝑼

41

While UAV is navigating in unknown environment, voxels inside of local space will be

stored so that relatively detailed perception of environments is achieved.

4.2 Vector Obstacle Computation

This section introduces how to convert voxel obstacle representation into vector based

obstacle presentation. Firstly, a sphere space is defined in the local space; additionally,

meshing of the sphere surface is to obtain vectors which divide an entire space; at the end,

computation of vector magnitude which represents obstacle proportion in this direction.

A mass of data is stored in the local space after estimation of voxels in each sensing loop

so that a valid and feasible approach using vectors instead of voxels appeared to be more

Figure 4.4: Voxels in spherical space. Converting voxels in the local space from

Cartesian to Spherical coordinates.

Sphere space

{𝑮}

𝒀

𝑿

𝒁 12

18

19
19

2
8

18

0

𝜽

{𝑺}

𝒁

𝒀

𝑿

Local space

42

attractive in 3D obstacle avoidance. The following example shows validity of the

proposed approach:

A spherical space is defined as shown in Fig. 4.4 with radius R equal to of sensor

range The UAV is not only located at the center of sphere but also moves

synchronously with it. The sphere frame, denotes as {S}, is parallel to the global frame as

in Fig. 4.4. The reason that the sphere space is smaller than the local map is that the

voxels inside of sphere can be good enough for estimating obstacles. Moreover, the

voxels located between the local sphere and sphere space have been mapped in advance

and can be used for next step of algorithm without wasting mapping time as long as those

voxels contained by sphere space.

The voxels need to be transformed from global frame to sphere frame and voxel

expressed as:

 , , (4.9)

where , , are the Cartesian coordinate of voxel in sphere frame and can be obtained

from Eq. 4.10.

[

] [

] (4.10)

Now, coordinates of the voxels are converted spherical coordinate system as shown in

Fig. 4.4 and can be expressed as:

 , , (4.11)

where , , are the spherical coordinates of voxel and can be obtained from Eq. 4.12.

43

{

 √

 (4.12)

Meshing the sphere space to generate vector, , , from to

and from with an interval of 10° as shown in Fig. 4.5. This interval, , can be

adjusted by either computer simulation as well as experiment. Mapping voxels into a

vector space can be done by Eq. 4.13:

{

 (

) , ,

 (

) , ,

 , ,

 (4.13)

 where , are the coordinates of vector in the sphere frame and , , belongs to

 , as shown in Fig. 4.5(b).

{𝑺}
𝑿

𝒀 𝒁

Figure 4.5: Vector obstacle computation in meshed sphere space. (a) Gridding sphere

space to achieve vectors based on average angle; (b) Computation of the vector

magnitude according to inferior voxels.

19
18
19

6
7

𝑿

𝒀

𝒁

5

0
0

0
0

0
0

0

5 10 0

(b)

Vector

{𝑺}

1085.6

𝜃 𝜙

(a)

44

Vector magnitude, denoted as , , need to be calculated based on all the voxels

belong to vector. The , represents obstacle probability in the direction of vector

and can be expressed as:

{

 , ∑ , ,

 , ,

(4.14a)

(4.14b)

(4.14c)

where , ,
is the CV of , , and is the weighting function obtained from

Eq. 4.14b. Square of the CV and weighting function affect sensitivity of detected obstacle so that

weight of distant obstacle will be reduce and a reliable obstacle distribution can be received.

 , ,
 is the distance from , , to sphere frame; a and b are constants

satisfying Eq.4.14c; R is a sphere space radius.

4.3 Binary Mesh Representation

To improve efficiency of algorithm, a mesh obstacle representation, , , is created

to replace vector obstacle representation without changing coordinate as shown in Fig.

4.6. The binary value, denoted as , , means the obstacle possibility in the direction

of corresponding mesh. , indicates safe, , expresses dangerous. A

threshold modified by computer simulation or experiment can be applied to determine

 , based on , of each vector as shown in Eq. 4.15.

 , {
 , ,

 ,
 (4.15)

A global mesh matrix, M, and local mesh matrix, , , are defined as following:

45

 [

 , ,

 , ,

]

⏟

(4.16)

 , [

 ,

 ,

 ,

 ,

 ,

 ,

 ,

 ,

 ,

]

⏟

(4.17)

For an arbitrary , chosen from M, the corresponding sub-direction in the sphere

frame, denoted as ,
 , is considered desirable if following two requirements are

satisfied. Firstly, , equals to 1. Secondly, binary values of all the meshes from

 , equal to 1. The ,
 can be expressed as:

Figure 4.6: Selection of sub-direction according to binary mesh representation. After

binary value of 𝑀𝑒𝑠 𝑖, 𝑗 is determined by threshold, searching in the global mesh

matrix and local mesh matrix to find final direction.

𝑿

𝒀 𝒁

{𝑺}

0

1

1

1

1

1 0

0 0

1

1

1 1 1

1 1

1 1 1

0 0

𝑴𝒆𝒔𝒉 𝒊, 𝒋

𝑵 𝒊, 𝒋

46

{

 ,
 ,

 (4.18)

where , are spherical coordinate with unit degree in the sphere frame.

Traversing the global mesh matrix to acquire entire feasible sub-directions and the one is

closest to target selected to be optimum that has minimum included angle with target.

To determine which sub-direction is nearest to the target, unit vector of sub-direction

and target vector
 representing in the sphere frame are created to solve included angle

 as shown in Fig. 4.7(a).

{

 ,
 ,

 (4.19)

where
 ,

 ,
 are unit vector coordinates of sub-direction. , are spherical coordinate

of sub-direction and r equal to 1 for unit vector.

{

 ,

 ,

 (4.20)

where
 ,

 ,
 are coordinates of target in the sphere frame. , ,

 are

coordinates of target in global frame and , ,

 are coordinate of UAV in global

frame. The space frame located in the same position as the UAV in global.

|

 ||
 |

 (4.3)

where Eq.4.21 is solved with cosine formula between two Euclidean vectors to obtain .

Substitute unit vector of sub-directions respectively to obtain all the available .

47

The sub-direction corresponding with mimimum included angle is the optimum and is

represented in the UAV frame, denoted as
 which also is an unit vector as shown in

Fig. 4.7(b).

 , ,

 (4.22)

where

 is the optimal sub-direction in the sphere frame.
 is the rotation matrix as

same as
 mentioned in Section 4.1; , ,

 are coordinates of optimal sub-

direction in the UAV frame.

The final direction,
 , in UAV frame is expressed as:

{

 ,

√

 (

)

 (4.23)

Where , are the spherical coordinates with unit degree in the UAV frame as shown in

Fig. 4.7(b).

𝒁

𝒀

𝑿

{𝑺}

Target

𝜷

𝑨
𝑺

 𝑩
𝑺

Figure 4.7: Determination of final direction. (a) 𝑨
𝑺

 is the unit vector of sub-direction

and 𝑩
𝑺 is the target vector in sphere frame. 𝛽 is the included angle between two vectors.

(b) Transformation of final direction from the sphere frame to UAV frame.

(a) (b)

{𝑺}

{𝑼}

𝒁

𝒀

𝑿

𝑿

𝒀

𝒁

𝑨
𝑼

𝚯

𝚽

48

4.4 Simulation Environment

Simulation is the general way to test validity of algorithm before algorithm is

implemented into the real robotic platform. Not only promotion of effectiveness can be

done by simulation but also risk of mission taking in an unknown environment will be

reduced. Gazebo open source simulator
[27]

 integrated with the Robot Operating System

(ROS) framework will be installed for simulation of 3D VM algorithm. The Gazebo

accesses to high performance physics engines such as ODE
[28]

 providing capacity of

dynamics simulation. Additionally, a lot of environment models, robotics platforms as

multicopter and common sensors models like Kinect sensor are available in Gazebo by

contribution of worldwide researchers and scholars. In the simulation, the 3D VM

algorithm will be test on a Vision-based Aerial Vehicle (VAV) system which consists

with a quadrotor and a Kinect sensor. Fig. 4.8 shows an example screenshot of the

Figure 4.8: Simulation environment in Gazebo simulator. A kitchen is simulated

to test 3D VM algorithm in the VAV system.

49

simulated kitchen environment with the VAV system. The quadrotor model was

developed by Technical University of Darmstadt with a radius of 0.8 m and the Kinect

sensor is assumed with a FOV (horizontal 60° and vertical 48.6°) and a sensor range of

3m. The kitchen size is 15m × 7.5m (length × width).

Fig. 4.9 illustrates system work diagram in simulation environment. The simulation ran

on a Dell desktop computer running Linux operating system, Ubuntu
[29]

. ROS node is a

process that executes computation and communicates with each other by the

publisher/subscriber message mechanism. The Gazebo models can publish data to and

subscribe control command from ROS through plugins which are compatible with ROS

message interface.

Figure 4.9: Simulation system work diagram. The Kinect model published range date

to ROS and quadrotor model published location data to ROS and subscribe control

commands from ROS. The 3D VM algorithm was separated into 3 nodes to compute

control commands.

ROS framework

Binary mesh

representation node

Vector obstacle

representation node

Voxel obstacle

representation node Kinect model

Quadrotor model

Gazebo simulator

Plugin

Plugin

Message

flow

50

4.5 Result and Discussion

In this simulation, the static target located in the position , , and the VAV

located in the position , , in the global frame at the beginning. The

global frame located in the middle of kitchen. As 3D VM algorithm does not deal with a

low level control which is the quadrotor dynamics system, the quadrotor kinematics is

generated automatically using the simulated model. The quadrotor model is controlled by

the velocity command , . However, only three

of them will be used in the simulation for two situations as expressed:

 (

) , (4.24)

where is the linear velocity along Z axis, Eq. 4.24 is the first situation that VAV rises

up.

{

 {
 ,

 ,

 (4.25)

where , are linear velocity along X axis and Z axis respectively; is angular

velocity yaw movement. , are control commands which are the final direction in

quadrotor frame. Eq. 4.25 is the second situation that is the navigation of VAV system.

To determine the threshold, the simulation is started with a threshold of zero firstly as

shown in Fig. 4.10. After the VAV rises up, the , of each vectors in the sphere

space are displayed in Fig. 4.10(c). Two axes represent indexes of vector that are i and j

in the sphere frame as described in section 4.2. After observation of , distributions,

an adjustable percentage 25% is applied to multiply by the maximum , in this

position of the VAV to obtain approximate threshold equal to 7500.

51

13

10

7

4

10

5000

10000

15000

20000

25000

30000

1 3 5 7 9
11 13 15 17 19 21

23
25

27
29

31
33

35 j

7500

(c)

i

MV
(a) (b)

Figure 4.10: Determination of threshold. (a) The RViz visualization toolbox from ROS. The

local space, the VAV, quadrotor frame, global frame, path, real-time direction, mapped voxel

representations and target are displayed. (b) The scene in simulation environment. (c) The

𝑀𝑉 𝑖,𝑗 distributions of vectors in sphere space based on sphere frame.

52

13

10

7

4

10

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

6904

MV

j
i

(c)

13

10

7

4

1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 j

i

(d)

Figure 4.11: Collision in the corner. (a) VAV crash shown in RViz. (b) VAV crash shown in

Gazebo simulator. (c) The 𝑀𝑉 𝑖,𝑗 distributions of vectors in this position based on sphere frame.

(d) The 𝑀𝑒𝑠 𝑖,𝑗 representations with applied the threshold, green pattern means safe direction

and red pattern means dangerous direction. The critical space inside of black dash lines and final

direction expressed in pink arrow are also displayed.

(a) (b)

53

However, there is a tiny collision as shown in Fig. 4.11(b) while the VAV appearing in

the corner in the simulation. Although the final direction chosen, the pink arrow as shown

in Fig. 4.11(a), theoretically points to safe area, but it’s not the optimal one which can

avoid the obstacles successfully. Because of the discrete nature of , distributions

displayed in Fig. 4.11(c), the result of direction selection is rough and did not consider

the space close to obstacles.

Therefore, a smoothing function is applied to obtain modified magnitude value of vector,

 ,
 , as expressed as:

 ,

 , , , , ,

 (4.26)

where is adjustable constant, in this simulation it selected as 5.

In the new simulation with implementing Eq. 4.26, the VAV can avoid the obstacles in

the corner as shown in Fig. 4.12. The , distributions now become much smoother

than previous one as shown in Fig. 4.12(c). Then , representations are converted

from , distributions with green and red patterns which mean safe direction and risk

direction respectively as displayed in Fig. 4.12(d). Compare of this ,

representations and the previous one as shown in Fig. 4.11(d), the area enclosed in black

dash line is the critical space close to obstacles and in front of VAV. The preceding

simulation chooses final direction expressed with pink arrow inside of critical space

resulting in a collision and the last simulation selects final direction outside of critical

space leading to safe navigation.

54

13

10

7

4

10

50000

100000

150000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

32287

MV

j
i

(c)

13

10

7

4

1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 j

i
(d)

Figure 4.12: Collision avoidance in the corner. (a) Safe navigation in the corner shown in RViz.

(b) Safe navigation in the corner shown in Gazebo simulator. (c) The 𝑀𝑉 𝑖,𝑗 distributions of

vectors in this position based on sphere frame. The new threshold is selected by the same way.

(d) The 𝑀𝑒𝑠 𝑖,𝑗 representations with applied the threshold.

(b) (a)

55

The entire path is shown in Fig. 4.13 applied a threshold equals to 20%. The VAV system

can navigate in the unknown obstacles successfully controlled by this 3D VM algorithm

and the flight trajectory is relatively smooth. The implementation in the real platform will

be test in the future.

(a)

(b)

Figure 4.13: Entire path in simulation. (a) The path displayed in XY plane. (b) The path

displayed in YZ plane. The yellow voxels were mapped to represent obstacles in RViz.

56

Figure 4.14: Positions of VAV system in the entire simulation based on different thresholds. (a)

The 𝑥 position. (b) The 𝑦 position. (c) The 𝑧 position.

(a)

(c)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

x
(m

)

Time(s)

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

-8

-6

-4

-2

0

2

4

6

0 10 20 30 40 50 60 70

y
(m

)

Time (s)

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70

z
(m

)

Time (s)

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

(b)

57

(a)

-8.00E-03

-6.00E-03

-4.00E-03

-2.00E-03

0.00E+00

2.00E-03

4.00E-03

6.00E-03

0 10 20 30 40 50 60 70

R
o

ll
(r

ad
)

Time (s)

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

-8.00E-02

-6.00E-02

-4.00E-02

-2.00E-02

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

0 10 20 30 40 50 60 70

P
it

ch
 (

ra
d

)

Time (s)

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

Y
aw

 (
ra

d
)

Time (s)

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

(c)

(b)

Figure 4.15: Attitudes of VAV system in the entire simulation based on different thresholds. (a)

The roll angle. (b) The pitch angle. (c) The yaw angle.

58

The entire positions and attitudes of VAV based on different thresholds as shown in Fig.

4.14 and Fig. 4.15 respectively. There were 4 simulations implemented according to the

thresholds equal to 20%, 25%, 30% and 35% separately and the VAV successfully

avoided all the obstacles in the simulations. The position of VAV in global frame was

effected by the thresholds from simulation time 50s to 70s as shown in Fig. 4.14(a). The

smaller threshold value leaded to larger position to avoid obstacles. Due to velocity

along Y axis didn’t consider in quadrotor model so that the position shown in Fig.

4.14(b) didn’t change with varied thresholds. In Fig. 4.14(c), the smaller threshold value

made more oscillations in position. The attitudes of VAV have similar results based on

different thresholds as shown in Fig. 4.15. From simulation time 10s to 25s, there are

relative smooth performances because of no huge obstacle in front of VAV. Then the

VAV occurred in the corner surrounded by obstacles, yaw angle and roll angle were

changing a lot. For the pitch angle as shown in Fig. 4.15(b), it changed while the VAV

raised up in the initial and dropped down in the end as shown in Fig. 4.13. In Fig. 4.15(c),

the yaw angle performance increased a lot at beginning because the VAV was pointed to

different direction compared to target.

Also second simulation was implemented at a start global position , , and a

target position , , as shown in Fig. 4.16. The VAV still can avoid obstacles

and navigate smoothly in unknown indoor environment.

59

4.6 Summary

This chapter presented the specific demonstration of 3D VM algorithm with 3 sections

for data reduction. In the first section discusses sensor data is discussed to convert into

voxels which are stored in the global. Additionally, vector representation of obstacle is

introduced in order to decrease data in created sphere space frame. Then, binary value of

mesh instead of vector is manipulated to determine final direction which in UAV frame.

Also, the setup of simulation environment is presented in detail. Moreover, an improved

method is demonstrated to avoid collision in corner area and desirable result is obtained.

(a)

(b)

Figure 4.16: Entire path in second simulation. (a) The path displayed in XY plane. (b) The path

displayed in YZ plane. The yellow voxels were mapped to represent obstacles in RViz.

60

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This thesis proposes a novel method for obstacle avoidance for UAS to generate

collision-free path in unknown environment assuming the attitude and location of UAS

are obtained. The presented Vision-based Aerial Vehicle (VAV) system employs a

Kinect senor with low cost and light weight features to detect environment and computes

safe direction to navigate.

To achieve this, the 2D Vector Filed Histogram (VFH) algorithm is studied as described

in Chapter 2. The VFH uses two-stage data reductions that are mapping obstacles from

sensor data into two-dimensional grids and conversion of obstacles between grids to

histograms. Based on the VFH algorithm, the presented Vector Mesh (VM) approach

extends detection space from 2D to 3D with three data reductions including obstacle

reconstructions from range data into voxels, obstacle estimations between voxels and

vectors and conversion of obstacle representations from vectors into meshes as presented

in Chapter 5. The 2D modified VFH algorithm was implemented in the developed

Vision-based Ground Vehicle (VGV) system based on the Robot Operating System (ROS)

environment described in chapter 3 so that computer simulation was also performance in

the same environment with integrated Gazebo simulator presented in Chapter 5.

In summary, the VAV system applied the VM algorithm firstly had a crash in the corner

because of the discrete distribution of vector obstacle estimations. Then a smooth

61

function was implemented to weight the distributions so that the final result that the VAV

could avoid the obstacles successfully was accomplished.

5.2 Future Work

There are numerous enhancement can be built upon the presented thesis. The most

important developments will be focused on three main areas: localization of VAV system

and quadrotor dynamics controller.

One of the major limitations of this VM algorithm is that the localization information of

quadrotor is obtained from simulator model. This part work needs to be done by using

intelligent localization algorithm integrated with Inertial Measurement Unit (IMU) sensor

if future experiment will be implemented in real platforms. What’s more, the obstacle

estimation of VM algorithm is based on attitude and global location of quadrotor. The

more accurate location data is achieved, the more correct mapping of obstacles will be

presented.

Another defect of this thesis is not including the quadrotor dynamics controller. A real

platform such as the VGV system, described in chapter 3, with high-level control leading

by ROS and low-level control managing by robotics dynamics controller can be

developed for the VAV system. Due to the compatible of ROS environment, the VM

algorithm code can be directly moved into onboard computer. Therefore, a fight

controller module for low-level control such as Pixhaw
[30]

 is the optional to determine

locomotion of VAV.

62

APPENDIX A

C++ FILE FOR 3D VM ALGORITHM

A.1 Transformation of Data

A ROS node is used for transforming sensor data from Kinect frame to global frame.

1. #include "pcl_ros/point_cloud.h"
2. #include <pcl/point_types.h>
3. #include <pcl_ros/filters/filter.h>
4. #include <ros/ros.h>
5. #include <iostream>
6. #include <fstream>
7. #include <limits>
8. #include <tf/transform_datatypes.h>
9. #include <tf/LinearMath/Transform.h>
10. #include "pcl_ros/transforms.h"
11. #include <pcl_ros/impl/transforms.hpp>
12. #include <tf/transform_listener.h>
13. #include <math.h>
14.
15. using namespace std;
16.
17. class FilterPointcloud
18. {
19.
20. public:
21. FilterPointcloud()
22. {
23.
24. sub_kinect = nh.subscribe<pcl::PointCloud<pcl::PointXYZ> > ("camera/depth/p

oints", 1, &FilterPointcloud::callback,this);
25. point_pub= nh.advertise<pcl::PointCloud<pcl::PointXYZ> >("FilteredPoints",1

);
26. }
27.
28. void callback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& inputCloud);

29.
30. private:
31. ros::NodeHandle nh;
32. ros::Subscriber sub_kinect;
33. ros::Publisher point_pub;
34. };
35.
36. void FilterPointcloud::callback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr&

inputCloud)
37. {
38.
39. //convert PointCLoud2 to PoiintXYZ and remove NAN data

63

40. pcl::PointCloud<pcl::PointXYZ>::Ptr tempCloud1(new pcl::PointCloud<pcl::Poin
tXYZ>);

41. std::vector<int> indices;
42. pcl::removeNaNFromPointCloud(*inputCloud,*tempCloud1, indices);
43.
44. // reduce data amout
45. pcl::PointCloud<pcl::PointXYZ>::Ptr simpleCloud(new pcl::PointCloud<pcl::Poi

ntXYZ>);
46. pcl::PointCloud<pcl::PointXYZ>::iterator it;
47. int counter = 0;
48. for(it= tempCloud1->begin(); it!= tempCloud1->end(); it++)
49. {
50. if(counter%25==0)
51. simpleCloud->push_back (pcl::PointXYZ (it->x, it->y, it->z));
52. counter ++;
53. }
54.
55. // transform obstacle XYZ from Kinect frame into quadrotor frame
56. tf::Transform transform1;
57. transform1.setOrigin(tf::Vector3(0.05,-0.02,0.2));
58. tf::Quaternion quat;
59. quat.setRPY(-1.5707963, 0.0, -1.5707963);//roll,pitch,yaw angle
60. transform1.setRotation(quat);
61. pcl::PointCloud<pcl::PointXYZ>::Ptr tempCloud2(new pcl::PointCloud<pcl::Poin

tXYZ>);
62. pcl_ros::transformPointCloud(*simpleCloud,*tempCloud2, transform1);
63.
64. //transform obstacle XYZ from quadrotor into global frame
65. tf::TransformListener listener;
66. tf::StampedTransform transform2;
67. tf::Transform transform3;
68. tf::Quaternion Q;
69. tf::Vector3 V;
70. listener.waitForTransform("world", "base_link", ros::Time(0),ros::Duration(3

.0));
71. listener.lookupTransform("world", "base_link", ros::Time(0), transform2);
72. Q=transform2.getRotation();
73. V.setX(transform2.getOrigin().x());
74. V.setY(transform2.getOrigin().y());
75. V.setZ(transform2.getOrigin().z());
76. transform3.setOrigin(V);
77. transform3.setRotation(Q);
78.
79. pcl::PointCloud<pcl::PointXYZ>::Ptr tempCloud3(new pcl::PointCloud<pcl::Poin

tXYZ>);
80. pcl_ros::transformPointCloud(*tempCloud2,*tempCloud3, transform3);
81.
82. //publish filtered pointcloud
83. pcl::PointCloud<pcl::PointXYZ> outputCloud;
84. for(it= tempCloud3->begin(); it!= tempCloud3->end(); it++)
85. {
86. outputCloud.points.push_back (pcl::PointXYZ (it->x, it->y, it->z));
87. }
88. point_pub.publish(outputCloud);
89. }
90.
91. int main(int argc, char **argv)
92. {
93. ros::init(argc, argv, "filter_pointcloud_node");
94. FilterPointcloud Filterproject;
95. ros::spin();

64

96. return 0;
97. }

A.2 Mapping Voxels

A ROS is node used for mapping the data into obstacle representations of voxels

1. #include "pcl_ros/point_cloud.h"
2. #include <pcl/point_types.h>
3. #include <pcl_ros/filters/filter.h>
4. #include <ros/ros.h>
5. #include <iostream>
6. #include <fstream>
7. #include <limits>
8. #include <tf/transform_datatypes.h>
9. #include <tf/LinearMath/Transform.h>
10. #include "pcl_ros/transforms.h"
11. #include <pcl_ros/impl/transforms.hpp>
12. #include <tf/transform_listener.h>
13. #include <math.h>
14. #include <map>
15. #include <string>
16. #include "hector_navigation/Map.h"
17. #include "hector_navigation/Coordinate.h"
18. #include "hector_navigation/StructKeyMap.h"
19. #include "visualization_msgs/Marker.h"
20. #include "visualization_msgs/MarkerArray.h"
21.
22. class LocalMap
23. {
24.
25. public:
26. LocalMap()
27. {
28.
29. sub_filter = nh.subscribe<pcl::PointCloud<pcl::PointXYZ> > ("FilteredPoints

", 1, &LocalMap::callback,this);
30. sub_map = nh.subscribe<hector_navigation::Map>("Local_Map", 1, &LocalMap::c

allback_map,this);
31. map_pub = nh.advertise<hector_navigation::Map>("Local_Map", 1);
32. pub_CubeList = nh.advertise<visualization_msgs::Marker>("CubeList", 1);
33. pub_MapOutline = nh.advertise<visualization_msgs::Marker>("MapOutline", 1);

34. }
35.
36. void callback_map(const hector_navigation::Map::ConstPtr& inputMap);
37. void callback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& inputCloud);

38.
39. hector_navigation::Map local_map;
40. typedef std::map<position,int> map_;
41.
42. private:
43. ros::NodeHandle nh;

65

44. ros::Subscriber sub_filter;
45. ros::Subscriber sub_map;
46. ros::Publisher map_pub;
47. ros::Publisher pub_CubeList;
48. ros::Publisher pub_MapOutline;
49. };
50.
51. void LocalMap::callback_map(const hector_navigation::Map::ConstPtr& inputMap)
52. {
53.
54. local_map.points=inputMap->points;
55. local_map.cv=inputMap ->cv;
56.
57. }
58.
59. void LocalMap::callback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& inputClo

ud)
60. {
61. tf::TransformListener listener;
62. tf::StampedTransform transform2;
63. listener.waitForTransform("world", "base_link", ros::Time(0),ros::Duration(3

.0));
64. listener.lookupTransform("world", "base_link", ros::Time(0), transform2);
65. double x= round(transform2.getOrigin().x()/0.1);//UAV location in gloabl 3D

grid frame
66. double y= round(transform2.getOrigin().y()/0.1);
67. double z= round(transform2.getOrigin().z()/0.1);
68.
69. //visualize loacal space and voxels
70. visualization_msgs::Marker line_list;
71. line_list.header.frame_id = "world";
72. line_list.header.stamp = ros::Time::now();
73. line_list.ns = "Outline";
74. line_list.id = 1;
75. line_list.type = visualization_msgs::Marker::LINE_LIST;
76. line_list.action = visualization_msgs::Marker::ADD;
77. line_list.pose.orientation.w = 1.0;
78. line_list.scale.x = 0.005;
79. line_list.color.r = 1.0f;
80. line_list.color.g = 0.5f;
81. line_list.color.a = 1.0;
82.
83. geometry_msgs::Point vertex;
84. vertex.x=x*0.1-0.05-2.9;
85. vertex.y=y*0.1-0.05-2.9;
86. vertex.z=z*0.1-0.05+2.9;
87. line_list.points.push_back(vertex);
88. vertex.x=x*0.1-0.05-2.9;
89. vertex.y=y*0.1-0.05-2.9;
90. vertex.z=z*0.1-0.05-2.9;
91. line_list.points.push_back(vertex);//12
92.
93. vertex.x=x*0.1-0.05-2.9;
94. vertex.y=y*0.1-0.05-2.9;
95. vertex.z=z*0.1-0.05-2.9;
96. line_list.points.push_back(vertex);
97. vertex.x=x*0.1-0.05+2.9;
98. vertex.y=y*0.1-0.05-2.9;
99. vertex.z=z*0.1-0.05-2.9;
100. line_list.points.push_back(vertex);//23
101.

66

102. vertex.x=x*0.1-0.05+2.9;
103. vertex.y=y*0.1-0.05-2.9;
104. vertex.z=z*0.1-0.05-2.9;
105. line_list.points.push_back(vertex);
106. vertex.x=x*0.1-0.05+2.9;
107. vertex.y=y*0.1-0.05-2.9;
108. vertex.z=z*0.1-0.05+2.9;
109. line_list.points.push_back(vertex);//34
110.
111. vertex.x=x*0.1-0.05+2.9;
112. vertex.y=y*0.1-0.05-2.9;
113. vertex.z=z*0.1-0.05+2.9;
114. line_list.points.push_back(vertex);
115. vertex.x=x*0.1-0.05-2.9;
116. vertex.y=y*0.1-0.05-2.9;
117. vertex.z=z*0.1-0.05+2.9;
118. line_list.points.push_back(vertex);//41
119.
120. vertex.x=x*0.1-0.05+2.9;
121. vertex.y=y*0.1-0.05-2.9;
122. vertex.z=z*0.1-0.05+2.9;
123. line_list.points.push_back(vertex);
124. vertex.x=x*0.1-0.05+2.9;
125. vertex.y=y*0.1-0.05+2.9;
126. vertex.z=z*0.1-0.05+2.9;
127. line_list.points.push_back(vertex);//48
128.
129. vertex.x=x*0.1-0.05+2.9;
130. vertex.y=y*0.1-0.05+2.9;
131. vertex.z=z*0.1-0.05+2.9;
132. line_list.points.push_back(vertex);
133. vertex.x=x*0.1-0.05+2.9;
134. vertex.y=y*0.1-0.05+2.9;
135. vertex.z=z*0.1-0.05-2.9;
136. line_list.points.push_back(vertex);//87
137.
138. vertex.x=x*0.1-0.05+2.9;
139. vertex.y=y*0.1-0.05+2.9;
140. vertex.z=z*0.1-0.05-2.9;
141. line_list.points.push_back(vertex);
142. vertex.x=x*0.1-0.05+2.9;
143. vertex.y=y*0.1-0.05-2.9;
144. vertex.z=z*0.1-0.05-2.9;
145. line_list.points.push_back(vertex);//73
146.
147. vertex.x=x*0.1-0.05-2.9;
148. vertex.y=y*0.1-0.05+2.9;
149. vertex.z=z*0.1-0.05+2.9;
150. line_list.points.push_back(vertex);
151. vertex.x=x*0.1-0.05+2.9;
152. vertex.y=y*0.1-0.05+2.9;
153. vertex.z=z*0.1-0.05+2.9;
154. line_list.points.push_back(vertex);//58
155.
156. vertex.x=x*0.1-0.05-2.9;
157. vertex.y=y*0.1-0.05+2.9;
158. vertex.z=z*0.1-0.05+2.9;
159. line_list.points.push_back(vertex);
160. vertex.x=x*0.1-0.05-2.9;
161. vertex.y=y*0.1-0.05+2.9;
162. vertex.z=z*0.1-0.05-2.9;

67

163. line_list.points.push_back(vertex);//56
164.
165. vertex.x=x*0.1-0.05-2.9;
166. vertex.y=y*0.1-0.05+2.9;
167. vertex.z=z*0.1-0.05-2.9;
168. line_list.points.push_back(vertex);
169. vertex.x=x*0.1-0.05+2.9;
170. vertex.y=y*0.1-0.05+2.9;
171. vertex.z=z*0.1-0.05-2.9;
172. line_list.points.push_back(vertex);//67
173.
174. vertex.x=x*0.1-0.05-2.9;
175. vertex.y=y*0.1-0.05+2.9;
176. vertex.z=z*0.1-0.05+2.9;
177. line_list.points.push_back(vertex);
178. vertex.x=x*0.1-0.05-2.9;
179. vertex.y=y*0.1-0.05-2.9;
180. vertex.z=z*0.1-0.05+2.9;
181. line_list.points.push_back(vertex);//51
182.
183. vertex.x=x*0.1-0.05-2.9;
184. vertex.y=y*0.1-0.05+2.9;
185. vertex.z=z*0.1-0.05-2.9;
186. line_list.points.push_back(vertex);
187. vertex.x=x*0.1-0.05-2.9;
188. vertex.y=y*0.1-0.05-2.9;
189. vertex.z=z*0.1-0.05-2.9;
190. line_list.points.push_back(vertex);//62
191.
192. pub_MapOutline.publish(line_list);
193.
194. //Delete far away COR in local_map (std::map structure) project
195. position P1;
196. position P2;
197. position P3;
198. map_ tep_map;
199. int map_size = local_map.cv.size();
200. for(int i=0; i<map_size; i++)
201. {
202. P1.x=local_map.points[i].x;
203. P1.y=local_map.points[i].y;
204. P1.z=local_map.points[i].z;
205. if ((P1.x >=(x-29) && P1.x<=(x+29)) && (P1.y >=(y-

29) && P1.y<=(y+29)) && (P1.z >=(z-29) && P1.z<=(z+29)))
206. {
207. tep_map[P1]=local_map.cv[i];
208.
209. }
210. }
211.
212. // add new COR into local_map (std::map structure) project
213.
214. int cloudsize = (inputCloud -> width) * (inputCloud -> height);
215. double x_;
216. double y_;
217. double z_;
218. for(int j=0; j<cloudsize; j++)
219. {
220.
221. x_= round((inputCloud ->points[j].x)/0.1);
222. y_= round((inputCloud ->points[j].y)/0.1);

68

223. z_= round((inputCloud ->points[j].z)/0.1);
224.
225. if ((x_ >=(x-29) && x_<=(x+29)) && (y_ >=(y-

29) && y_<=(y+29)) && (z_ >=(z-29) && z_<=(z+29)))
226. {
227. P2.x=x_;
228. P2.y=y_;
229. P2.z=z_;
230.
231. int value =tep_map[P2];
232. if (value <20)
233. {
234. value++;
235. }
236. tep_map[P2]=value;
237.
238. }
239. }
240.
241. // convert local_map project into (std::vector structure) to publish
242. visualization_msgs::Marker cube_list;
243. cube_list.header.frame_id = "world";
244. cube_list.header.stamp = ros::Time::now();
245. cube_list.ns = "Cubes";
246. cube_list.id = 2;
247. cube_list.type = visualization_msgs::Marker::CUBE_LIST;
248. cube_list.action = visualization_msgs::Marker::ADD;
249. cube_list.pose.orientation.w = 1.0;
250. cube_list.scale.x = 0.1f;
251. cube_list.scale.y = 0.1f;
252. cube_list.scale.z = 0.1f;
253. cube_list.color.r = 1.0f;
254. cube_list.color.g = 0.5f;
255. cube_list.color.a = 1.0;
256.
257. hector_navigation::Coordinate coord;
258. map_::iterator iter;
259. for (iter = tep_map.begin(); iter != tep_map.end();++iter)
260. {
261. P3= iter->first;
262. coord.x=P3.x;
263. coord.y=P3.y;
264. coord.z=P3.z;
265. if ((iter->second)==20)
266. {
267. geometry_msgs::Point temp;
268. temp.x = coord.x*0.1-0.05;
269. temp.y = coord.y*0.1-0.05;
270. temp.z = coord.z*0.1-0.05;
271. cube_list.points.push_back(temp);
272. }
273.
274. local_map.points.push_back(coord);
275. local_map.cv.push_back(iter->second);
276. }
277.
278. pub_CubeList.publish(cube_list);
279. local_map.header.stamp=ros::Time::now();
280. map_pub.publish(local_map);
281. }
282.

69

283. int main(int argc, char **argv)
284. {
285. ros::init(argc, argv, "local_map_node");
286.
287. LocalMap localproject;
288.
289. ros::spin();
290.
291. return 0;
292. }

A.3 Mapping Vectors

A ROS is node used for converting voxels into vectors.

1. #include <ros/ros.h>
2. #include <iostream>
3. #include <fstream>
4. #include <limits>
5. #include <tf/transform_datatypes.h>
6. #include <tf/LinearMath/Transform.h>
7. #include <tf/transform_listener.h>
8. #include <math.h>
9. #include <map>
10. #include <vector>
11. #include <string>
12. #include "hector_navigation/Map.h"
13. #include "hector_navigation/Coordinate.h"
14. #include "hector_navigation/StructKeyMap.h"
15. #include "hector_navigation/Mesh.h"
16. #include "hector_navigation/Row.h"
17. #include "hector_navigation/Size.h"
18.
19. #define PI 3.14159265
20.
21. class SphereMap
22. {
23.
24. public:
25. SphereMap()
26. {
27.
28. sub_map = nh.subscribe<hector_navigation::Map>("Local_Map", 1, &SphereMap::

callback_map,this);
29. mesh_pub = nh.advertise<hector_navigation::Mesh>("Sphere_Mesh", 1);
30. }
31.
32. void callback_map(const hector_navigation::Map::ConstPtr& inputMap);
33.
34. typedef std::map<sphere,int> sphere_;//[(theta,phi,r),(cv)]
35. typedef std::map<Vector,double> vector_;//[(THETA,PHI),(mv)]
36. typedef std::vector<Vector> direction;
37.
38. private:

70

39. ros::NodeHandle nh;
40. ros::Subscriber sub_map;
41. ros::Publisher mesh_pub;
42. };
43.
44. void SphereMap::callback_map(const hector_navigation::Map::ConstPtr& inputMap)
45. {
46. position goal;
47. goal.x=3;
48. goal.y=0;
49. goal.z=1;
50.
51. tf::TransformListener listener;
52. tf::StampedTransform transform2;
53. listener.waitForTransform("world", "base_link", ros::Time(0),ros::Duration(3

.0));
54. listener.lookupTransform("world", "base_link", ros::Time(0), transform2);
55. double x= round(transform2.getOrigin().x()/0.1);//UAV location in gloabl 3D

grid frame
56. double y= round(transform2.getOrigin().y()/0.1);
57. double z= round(transform2.getOrigin().z()/0.1);
58.
59. //convert local_map into sphere_map
60.
61. hector_navigation::Map local_map;
62. sphere_ sphere_map;//[theta,phi,r] --[cv]
63. sphere S_point;//[theta,phi,r]
64. double angle1,angle2,phi_,dis, theta_,x_,y_,z_;
65. int cv_;
66.
67. local_map.points=inputMap->points;
68. local_map.cv=inputMap ->cv;
69.
70. for (int i = 0; i<local_map.cv.size(); i++)
71. {
72. x_ =local_map.points[i].x;
73. y_ =local_map.points[i].y;
74. z_ =local_map.points[i].z;
75. cv_=local_map.cv[i];
76.
77. dis=sqrt(pow(x_-x,2.0)+pow(y_-y,2.0)+pow(z_-z,2.0));
78.
79. if (dis<=18.5)//local_map to sphere space, 70% of sensor range
80. {
81. //3d grid to sphere --theta
82. angle2 =acos((z_-z)/sqrt(pow(x_-x,2.0)+pow(y_-y,2.0)+pow(z_-z,2.0)));
83. theta_=angle2*180/PI;
84.
85. if (theta_ >25.0 && theta_ <=155.0)
86. {
87. S_point.Theta=ceil((theta_-25)/10);
88. }
89.
90. //3d grid to sphere --phi
91. angle1 = atan2(y_-y,x_-x);
92. if (angle1<=0)
93. {
94. phi_=ceil((angle1*180/PI+360)/10);
95. }
96. else
97. {

71

98. phi_=ceil(angle1*180/PI/10);
99. }
100. S_point.Phi=phi_;
101.
102. //3d grid to sphere --R
103. S_point.R=dis;
104.
105. sphere_map[S_point]=cv_;
106.
107. }
108. }
109.
110. //calcul Vector MV
111.
112. vector_ vector_mv;//[THETA,PHI]--[MV]
113. sphere_::iterator iter;
114. Vector Index;//[THETA,PHI]
115. sphere S_point1;//[theta,phi,r]
116. for(iter=sphere_map.begin(); iter != sphere_map.end(); ++iter)
117. {
118. S_point1=iter -> first;
119. Index.PHI=S_point1.Phi;
120. Index.THETA=S_point1.Theta;
121.
122. double value=vector_mv[Index];
123. value=value+pow((iter -> second),2.0)*(10-0.5*S_point1.R);
124. vector_mv[Index]=value;
125. }
126.
127. //smooth funcation appiled to mv
128. Vector index1, index2,index3,index4,index5,index6,index7,index8,index9;

129.
130. for (int j=1; j<37;j++)
131. {
132. for(int k=1; k<14;k++)
133. {
134. index1.PHI=j-4;
135. index1.THETA=k;
136. index2.PHI=j-3;
137. index2.THETA=k;
138. index3.PHI=j-2;
139. index3.THETA=k;
140. index4.PHI=j-1;
141. index4.THETA=k;
142. index5.PHI=j;
143. index5.THETA=k;
144. index6.PHI=j+1;
145. index6.THETA=k;
146. index7.PHI=j+2;
147. index7.THETA=k;
148. index8.PHI=j+3;
149. index8.THETA=k;
150. index9.PHI=j+4;
151. index9.THETA=k;
152.
153. vector_mv[index5]=(vector_mv[index1]*1+vector_mv[index2]*2+vector_m

v[index3]*3+vector_mv[index4]*4+vector_mv[index5]*5+vector_mv[index6]*4+vector_m
v[index7]*3+vector_mv[index8]*2+vector_mv[index9]*1)/11;

154. }
155. }

72

156.
157. //2D array structure store binary value
158. hector_navigation::Row ROW;
159. hector_navigation::Mesh MESH;
160. Vector index_mesh;
161. int mesh[13][36];
162. for (int j=1; j<14;j++)
163. {
164. for(int k=1; k<37;k++)
165. {
166.
167. index_mesh.PHI=k;
168. index_mesh.THETA=j;
169. if (vector_mv[index_mesh]>7500.0)
170. {
171. mesh[j-1][k-1]=0;
172. }
173. else
174. {
175. mesh[j-1][k-1]=1;
176. }
177.
178. ROW.row.push_back(mesh[j-1][k-1]);
179. file11<<vector_mv[index_mesh]<<" ";
180. }
181.
182. MESH.column.push_back(ROW);
183. ROW.row.clear();
184.
185. }
186.
187. MESH.header.stamp=ros::Time::now();
188. mesh_pub.publish(MESH);
189.
190. }
191.
192. int main(int argc, char **argv)
193. {
194. ros::init(argc, argv, "sphere_map_node");
195. SphereMap sphereproject;
196. ros::spin();
197. return 0;
198. }

A.4 Converting Meshes and Direction Selection

A ROS is node used for converting vectors into mesh and determining optimal direction.

1. #include <ros/ros.h>
2. #include <iostream>
3. #include <fstream>
4. #include <limits>
5. #include <tf/transform_datatypes.h>
6. #include <tf/LinearMath/Transform.h>

73

7. #include <tf/transform_listener.h>
8. #include <math.h>
9. #include <vector>
10. #include <string>
11. #include "hector_navigation/StructKeyMap.h"
12. #include <geometry_msgs/Twist.h>
13. #include <geometry_msgs/Pose.h>
14. #include <algorithm>
15. #include "hector_navigation/Mesh.h"
16. #include "hector_navigation/Row.h"
17. #include "hector_navigation/Size.h"
18. #include <visualization_msgs/Marker.h>
19. #include "visualization_msgs/MarkerArray.h"
20.
21. #define PI 3.14159265
22.
23. class ControlCommand
24. {
25.
26. public:
27. ControlCommand()
28. {
29.
30. sub_mesh = nh.subscribe<hector_navigation::Mesh>("Sphere_Mesh", 1, &Control

Command::callback_mesh,this);
31. pub_vel = nh.advertise<geometry_msgs::Twist>("cmd_vel", 1);
32. pub_LineStrip = nh.advertise<visualization_msgs::Marker>("LineStrip", 1);
33. pub_Goalsphere = nh.advertise<visualization_msgs::Marker>("Goalsphere", 1);

34. pub_Arrow= nh.advertise<visualization_msgs::Marker>("Arrow",1);
35. }
36.
37. void callback_mesh(const hector_navigation::Mesh::ConstPtr& inputMesh);
38.
39. typedef std::vector<Vector> direction;
40. geometry_msgs::Twist moveCommand;
41. visualization_msgs::Marker line_strip;
42.
43. private:
44. ros::NodeHandle nh;
45. ros::Subscriber sub_mesh;
46. ros::Publisher pub_vel;
47. ros::Publisher pub_LineStrip;
48. ros::Publisher pub_Goalsphere;
49. ros::Publisher pub_Arrow;
50. };
51.
52. void ControlCommand::callback_mesh(const hector_navigation::Mesh::ConstPtr& inpu

tMesh)
53. {
54. position goal;
55. goal.x=2.5;
56. goal.y=5.0;
57. goal.z=3.0;
58.
59. //PUBLISH Goal in RVIZ
60. visualization_msgs::Marker dummy_goal;
61. dummy_goal.header.frame_id = "world";
62. dummy_goal.header.stamp = ros::Time::now();
63. dummy_goal.ns = "Dummy_Goal";
64. dummy_goal.id = 4;

74

65. dummy_goal.type = visualization_msgs::Marker::SPHERE;
66. dummy_goal.action = visualization_msgs::Marker::ADD;
67. dummy_goal.pose.orientation.w = 1.0;
68. dummy_goal.scale.x = 0.1;
69. dummy_goal.scale.y = 0.1;
70. dummy_goal.scale.z = 0.1;
71. dummy_goal.color.r = 1.0f;
72. dummy_goal.color.a = 1.0;
73. dummy_goal.pose.position.x = goal.x;
74. dummy_goal.pose.position.y = goal.y;
75. dummy_goal.pose.position.z = goal.z;
76. dummy_goal.lifetime = ros::Duration();
77. pub_Goalsphere.publish(dummy_goal);
78.
79. tf::TransformListener listener;
80. tf::StampedTransform transform2;
81. tf::Transform transform3;
82. tf::Quaternion Q;
83. tf::Vector3 V;
84. listener.waitForTransform("world", "base_link", ros::Time(0),ros::Duration(3

.0));
85. listener.lookupTransform("world", "base_link", ros::Time(0), transform2);
86. double x= transform2.getOrigin().x();//UAV location in gloabl
87. double y= transform2.getOrigin().y();
88. double z= transform2.getOrigin().z();
89.
90. Q=transform2.getRotation();
91. V.setX(0);
92. V.setY(0);
93. V.setZ(0);
94. transform3.setOrigin(V);
95. transform3.setRotation(Q.inverse ());
96.
97. //PUBLISH path in RVIZ
98.
99. line_strip.header.frame_id = "world";
100. line_strip.header.stamp = ros::Time::now();
101. line_strip.ns = "Lines";
102. line_strip.id = 0;
103. line_strip.type = visualization_msgs::Marker::LINE_STRIP;
104. line_strip.action = visualization_msgs::Marker::ADD;
105. line_strip.pose.orientation.w = 1.0;
106. line_strip.scale.x = 0.02;
107. line_strip.color.g = 1.0f;
108. line_strip.color.b = 1.0f;
109. line_strip.color.a = 1.0;
110.
111. geometry_msgs::Point p;
112. p.x=x;
113. p.y=y;
114. p.z=z;
115. line_strip.points.push_back(p);
116. pub_LineStrip.publish(line_strip);
117.
118. //STEERING CONTROL
119. hector_navigation::Mesh MESH;
120. MESH.column= inputMesh ->column;
121.
122.
123. int mesh[13][36];
124. for (int j=0; j<13;j++)

75

125. {
126. for(int k=0; k<36;k++)
127. {
128. mesh[j][k]=MESH.column[j].row[k];
129.
130. }
131. }
132.
133. bool is_ok=0;//pick up safe sub_directions
134. direction dire_vector;
135. Vector dire_index;
136. dire_vector.clear();
137.
138. for (int j=1; j<12;j++)
139. {
140. for(int k=0; k<36;k++)
141. {
142.
143. if (mesh[j][k]== 1)
144. {
145. if (k==0)
146. {
147. if (((mesh[j-1][35]==1 && mesh[j-1][k]==1)&& (mesh[j-

1][k+1]==1&&mesh[j][35]==1))
148. &&((mesh[j][k+1]==1 && mesh[j+1][35]==1)&& (mesh[j+1][k]==1&&mesh[j

+1][k+1]==1)))
149. {
150. is_ok=1;
151. }
152.
153. }
154. else if (k==35)
155. {
156. if (((mesh[j-1][k-1]==1 && mesh[j-1][k]==1)&& (mesh[j-

1][0]==1&&mesh[j][k-1]==1))
157. &&((mesh[j][0]==1 && mesh[j+1][k-

1]==1)&& (mesh[j+1][k]==1&&mesh[j+1][0]==1)))
158.
159. {
160. is_ok=1;
161. }
162.
163. }
164. else
165. {
166. if (((mesh[j-1][k-1]==1 && mesh[j-1][k]==1)&& (mesh[j-

1][k+1]==1&&mesh[j][k-1]==1))
167. &&((mesh[j][k+1]==1 && mesh[j+1][k-

1]==1)&& (mesh[j+1][k]==1&&mesh[j+1][k+1]==1)))
168.
169. {
170. is_ok=1;
171. }
172. }
173. if (is_ok==1)
174. {
175. dire_index.THETA=(10*j+30)*PI/180;
176. dire_index.PHI=(10*k+5)*PI/180;
177. dire_vector.push_back(dire_index);
178.
179. }

76

180.
181. is_ok=0;
182. }
183. }
184.
185. }
186. //choose the closest direction
187. direction::iterator IT;
188. vector<double> delta;
189. double Dot_product;
190. double magnitude;
191. double Angle;
192. for(IT=dire_vector.begin(); IT != dire_vector.end(); ++IT)
193. {
194. dire_index =*IT;
195. Dot_product=(goal.x-

x)*sin(dire_index.THETA)*cos(dire_index.PHI)+(goal.y-
y)*sin(dire_index.THETA)*sin(dire_index.PHI)+(goal.z-z)*cos(dire_index.THETA);

196. magnitude=sqrt(pow(goal.x-x,2.0)+pow(goal.y-y,2.0)+pow(goal.z-
z,2.0));

197. Angle=acos(Dot_product/magnitude);
198. delta.push_back(Angle);
199. }
200. //transform direction to quadrotor frame and steer quadrotor which way t

o rotate
201. int min_index=min_element(delta.begin(),delta.end())-

 delta.begin();
202.
203. double dir_theta=dire_vector[min_index].THETA;
204. double dir_phi=dire_vector[min_index].PHI;
205. tf::Vector3 S_dir;
206. S_dir.setX(sin(dir_theta)*cos(dir_phi));
207. S_dir.setY(sin(dir_theta)*sin(dir_phi));
208. S_dir.setZ(cos(dir_theta));
209. tf::Vector3 U_dir=transform3*S_dir;
210.
211. double dir_THETA=acos(U_dir.getZ()/sqrt(pow(U_dir.getX(),2.0)+pow(U_

dir.getY(),2.0)+pow(U_dir.getZ(),2.0)));
212. double dir_PHI=atan2(U_dir.getY(),U_dir.getX());
213.
214. //Pubslih direction in RVIZ
215. visualization_msgs::Marker arrow;
216. arrow.header.frame_id = "base_link";
217. arrow.header.stamp = ros::Time::now();
218. arrow.ns = "Directions";
219. arrow.id = 5;
220. arrow.type = visualization_msgs::Marker::ARROW;
221. arrow.action = visualization_msgs::Marker::ADD;
222. arrow.pose.orientation.w = 1.0;
223. arrow.scale.x = 0.02;
224. arrow.scale.y=0.05;
225. arrow.scale.z=0.05;
226. arrow.color.r=1.0;
227. arrow.color.g = 0;
228. arrow.color.b = 1.0;
229. arrow.color.a = 1.0;
230.
231. geometry_msgs::Point p1;
232. p1.x=0;
233. p1.y=0;
234. p1.z=0;

77

235. arrow.points.push_back(p1);
236. geometry_msgs::Point p2;
237. p2.x=U_dir.getX();
238. p2.y=U_dir.getY();
239. p2.z=U_dir.getZ();
240. arrow.points.push_back(p2);
241. pub_Arrow.publish(arrow);
242.
243. int rotate;
244. double error=0.087266;
245. if (dir_PHI >= error)
246. {
247. rotate=1;
248. }
249. else if (dir_PHI <= -error)
250. {
251. rotate=-1;
252. }
253. else
254. {
255. rotate=0;
256. }
257.
258. if (abs(x-goal.x)<=0.3 && abs(y-goal.y)<=0.3 && abs(z-

goal.z)<=0.3)
259. {
260. moveCommand.linear.x = 0.0;
261. moveCommand.linear.z = 0.0;
262. moveCommand.angular.z = -0.2;
263. pub_vel.publish(moveCommand);
264. ROS_INFO_STREAM("Arrive goal !!");
265. }
266. else
267. {
268. if(z <0.5)//rise to 0.5m
269. {
270. moveCommand.linear.x = 0;
271. moveCommand.linear.z = 0.2;
272. moveCommand.angular.z = 0;
273. pub_vel.publish(moveCommand);
274. ROS_INFO_STREAM("Rise now !");
275. }
276. else
277. {
278. moveCommand.linear.x = 0.2;
279. moveCommand.linear.z = 0.2*tan(PI/2-dir_THETA);
280. moveCommand.angular.z = 0.2*rotate;
281. pub_vel.publish(moveCommand);
282. }
283. }
284.
285. }
286.
287. int main(int argc, char **argv)
288. {
289. ros::init(argc, argv, "command_node");
290. ControlCommand controlproject;
291. ros::spin();
292. return 0;
293. }

78

BIBLIOGRAPHY

[1] Anonymous,” Unmanned Aircraft Systems Roadmap 2005– 2030”, Office of the

Secretary of Defense, Washington, DC, USA, 2005.

[2] Defense Update, “MQ-9 Reaper Hunter/Killer UAV”. Retrieved from http://defense-

update.com/products/p/predatorB.htm on 13 April 2015.

[3] Samuel Gibbs, “Google’s Titan drones to take flight within months”, The Guardian,

Retrieved from http://www.theguardian.com/technology/2015/mar/03/googles-titan-

drones-to-take-flight-within-months on 14 April 2015.

[4] Wikipedia, “Boeing A160 Hummingbird”, Retrieved from

https://en.wikipedia.org/wiki/Boeing_A160_Hummingbird on 14 April 2015.

[5] DJI, ”The Phantom3”, Retrieved from http://www.dji.com/product/phantom-3 on 16

April 2015.

[6] Alex M. Stoll, Edward V. Stilson, JoeBen Bevirt and Pranay Sinha, “A

Multifunctional Rotor Concept for Quiet and Efficient VTOL Aircraft”, 14th AIAA

Aviation Technology, Integration, and Operations Conference, Los Angeles, USA,

August 2013.

[7] Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander and Claire J. Tomlin,

“Quadrotor Helicopter Flight Dynamics and Control:AIAA Guidance, Navigation and

Control Conference and Exhibit, Hilton Head, United States, August 2007.

[8] Mehmet Serdar Guzel and Robert Bicker, “Vision Based Obstacle Avoidance

Techniques”, Recent Advances in Mobile Robotics, Chapter 5, InTech, December 14,

2011.

[9] EPIX, “Silicon Video 2KS”, Retrieved from

http://www.epixinc.com/products/sv2ks.htm on16 April 2015.

[10] Dirk Holz, Matthias Nieuwenhuisen, David Droeschel, Michael Schreiber and Sven

Behnke, “Towards Multimodal Omnidirectional Obstacle Detection for Autonomous

Unmanned Aerial Vehicles”, International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, Vol. XL-1/W2, pp. 201-206, September

2013.

http://defense-update.com/products/p/predatorB.htm
http://defense-update.com/products/p/predatorB.htm
http://www.theguardian.com/technology/2015/mar/03/googles-titan-drones-to-take-flight-within-months
http://www.theguardian.com/technology/2015/mar/03/googles-titan-drones-to-take-flight-within-months
https://en.wikipedia.org/wiki/Boeing_A160_Hummingbird%20on%2014%20April%202015
http://www.dji.com/product/phantom-3
http://www.epixinc.com/products/sv2ks.htm%20on16%20April%202015

79

[11] G.J. Iddan and G. Yahav, “3D IMAGING IN THE STUDIO (AND

ELSEWHERE...)”, Proceedings of the SPIE 4298: Videometrics and Optical

Methods for 3D Shape Measurements, pp. 48-55, 2011.

[12] David Droeschel, Dirk Holz, J¨org St¨uckler, and Sven Behnke, “Using Time-of-

Flight Cameras with Active Gaze Control for 3D Collision Avoidance”, In

Proceedings of IEEE International Conference on Robotics and Automation (ICRA),

Anchorage, USA, pp. 4035-4040, May 2010.

[13] Ian Lenz, Mevlana Gemici, Ashutosh Saxena, “Low-Power Parallel Algorithms for

Single Image based Obstacle Avoidance in Aerial Robots”, In International

Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, pp.

772-779, October 2012 .

[14] Daniel Magree, John G. Mooney, Eric N. Johnson, “Monocular Visual Mapping for

Obstacle Avoidance on UAVs”, in International Conference on Unmanned Aircraft

Systems (ICUAS), Atlanta, USA, pp. 471-479, May 2013.

[15] Matthias Nieuwenhuisen, David Droeschel, Marius Beul, and Sven Behnke,

“Obstacle Detection and Navigation Planning for Autonomous Micro Aerial

Vehicles”, In Proceedings of International Conference on Unmanned Aircraft

Systems (ICUAS), Orlando, USA, pp. 1040-1047, May, 2014.

[16] Dirk Holz and Sven Behnke, “Registration of Non-Uniform Density 3D Point

Clouds using Approximate Surface Reconstruction”, in Proceedings of the

International Symposium on Robotics (ISR) and the German Conference on

Robotics (ROBOTIK), Munich, German, pp. 1-7, June 2014.

[17] Henning Lategahn, Andreas Geiger and Bernd Kitt, “Visual SLAM for Autonomous

Ground Vehicles”, In International Conference on Robotics and Automation (ICRA),

Shanghai, China, pp. 1732-1737, May 2011.

[18] Microsoft, “The Kinect Sensor”, Retrieved from https://www.microsoft.com/en-

us/kinectforwindows/ on 15 October 2014.

[19] Johann Borenstein and Yoram Koren. “The vector field histogram-fast obstacle

avoidance for mobile robots”, IEEE Journal of Robotics and Automation, Vol. 7, No.

3, pp. 278-288, June 1991.

80

[20] Iwan Ulrich and Johann Borenstein. “VFH+: Reliable Obstacle Avoidance for Fast

Mobile Robots”, in Proceedings of the IEEE International Conference on Robotics

and Automation, Vol. 2, Leuven, Belgium, pp. 1572-1577, May 1998.

[21] Iwan Ulrich and Johann Borenstein, “VFH*: Local Obstacle Avoidance with Look-

Ahead Verification”, in Proceedings of the IEEE International Conference on

Robotics and Automation, San Francisco, USA, pp. 2505-2511, April 2000.

[22] Inspector Bots, “The MINIBOT Robotic Platform”, Retrieved from

http://www.inspectorbots.com/_Home.html on 20 April 2015.

[23] Hardkernel, “Odroid-U3”, Retrieved from

http://www.hardkernel.com/main/products/prdt_info.php?g_code=g138745696275

on October 2014.

[24] Hokuyo, “URG-04LX-UG01”, Retrieved from https://www.hokuyo-

aut.jp/02sensor/07scanner/urg_04lx_ug01.html on March 2014.

[25] Arduino, “Uno board”, Retrieved from

https://www.arduino.cc/en/Main/arduinoBoardUno on February 2015.

[26] Robot Operating System (ROS), Retrieved from http://www.ros.org/ on November

2014.

[27] Gazebo simulator, Retrieved from http://gazebosim.org/ on November 2014.

[28] Open Dynamics Engine, Retrieved from http://www.ode.org/ on November 2014.

[29] Ubuntu Operating System, Retrieved from http://www.ubuntu.com/ on November

2014.

[30] 3DRobotics, “Pixhawk”, Retrieved from http://3drobotics.com/kb/pixhawk/ on May

2014.

[31] Paolo Stegagno, Massimo Basile, Heinrich H. Bülthoff, and Antonio Franchi, “A

Semi-autonomous UAV Platform for Indoor Remote Operation with Visual and

Haptic Feedback”, IEEE International Conference on Robotics and Automation,

Hong Kong, China,pp. 3862-3869. June 2014.

[32] Larry Matthies, Roland Brockers, Yoshiaki Kuwata and Stephan Weiss. “Stereo

vision-based obstacle avoidance for micro air vehicles using disparity space”, IEEE

International Conference on Robotics and Automation, Hong Kong, China, pp.

3242-3249, 2014.

http://www.inspectorbots.com/_Home.html
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g138745696275
https://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html
https://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html
https://www.arduino.cc/en/Main/arduinoBoardUno
http://www.ros.org/
http://gazebosim.org/
http://www.ode.org/
http://www.ubuntu.com/
http://3drobotics.com/kb/pixhawk/

81

[33] Lionel Heng, Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc

Pollefeys, “Autonomous Obstacle Avoidance and Maneuvering on a Vision-Guided

MAV Using On-Board Processing”, IEEE International Conference on Robotics and

Automation, Shanghai, China, pp.2472-2477, May 2011.

[34] Haosong Yue, Weihai Chen, Xingming Wu and Jingbing Zhang. “Kinect Based Real

Time Obstacle Detection for Legged Robots in Complex Environments”, IEEE 8th

Conference on Industrial Electronics and Applications (ICIEA), Melbourne,

Australia, pp. 205-210, June 2013.

[35] David Droeschel, J¨org St¨uckler, and Sven Behnke, “Local Multi-Resolution Surfel

Grids for MAV Motion Estimation and 3D Mapping”, in Proceeding of 13th

International Conference on Intelligent Autonomous System (IAS), Padova, Italy,

July, 2014.

[36] Jongho Park and Youdan Kim, “Stereo Vision Based Collision Avoidance of

Quadrotor UAV”, International Conference on Control, Automation and Systems

(ICCAS), JeJu Island, South Korean, October 2012.

[37] Ashish R. Derhgawen and D. Ghose, “Vision Based Obstacle Detection using 3D

HSV Histograms”, Annual IEEE on India Conference (INDICON), Hyderabad,

India, pp. 1-4, December 2011.

82

VITA

Graduate College

University of Nevada, Las Vegas

Lin Zhao

Degrees:

Bachelor of Science in Mechanical and Electronic Engineering, 2013

Zhejiang University City College, China

Thesis title: 3D Obstacle Avoidance for Unmanned Autonomous System (UAS)

Thesis Examination Committee:

 Committee Chair: Woosoon Yim Ph.D.

 Committee Member: Mohamed Trabia Ph.D.

 Committee Member: Kwang J. Kim Ph.D.

 Graduate College Representative: Sahjendra Singh Ph.D.

