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ABSTRACT 

The goal of this thesis is to design a real-time, three-dimensional algorithm, named as the 

vector mesh (VM) algorithm, for unmanned aerial vehicles (UAV) to generate collision-

free motion in indoor or outdoor environments with unknown obstacles. This promising 

technology can be utilized in both military and commercial applications. The VM 

approach employs three data reduction phases to compute optimal navigation directions 

while on-board scanning range sensor continuously updates depth data. In order to 

develop the VM, vector filed histogram (VFH) which applied in 2D space was first 

simulated in Matlab. Then a 2D autonomous navigation was implemented on a developed 

Vision-based Ground Vehicle (VGV) and the entire system was controlled by a modified 

VFH method which was computing in the Robot Operating System (ROS). Also, the VM 

algorithm was simulated in ROS and integrated into Gazebo simulator which is an 

effective graphic based robot simulator in complex indoor and outdoor environment. In 

this study, it has been shown that the proposed VM can be an effective 3D obstacle 

avoidance algorithm for typical small-UAVs if 3D information is continuously provided.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Unmanned Autonomous System 

In the past decades, main reasons behind the exponential increase rate in the operation 

and development of unmanned autonomous systems (UAS) is the growing necessity of 

replacing humans work in dangerous missions or unreachable locations. More than 

twenty countries have invested substantial resources towards the development and the 

manufacturing UAS for a wide range of applications, both in the military and civilian 

domains 
[1]

. Additionally, future UAS design, such as Unmanned Ground Vehicle (UGV) 

and Unmanned Aerial Vehicle UAV without human controller, becomes more and more 

intelligent and robust according to requirement for upper level autonomy and increased 

difficulty tasks. 

A UAV is often classified as one of UAS and also known as drone which is a vehicle or 

an aircraft without a human pilot aboard. Two types of system control this aircraft, 

whether autonomous system which means small size onboard computer or remote 

controller such as ground control station and personal RC controller. Different propulsion 

methods of UAV lead to discriminative configurations, such like fixed-wing aircraft and 

rotary-wing aircraft. 
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MQ-9 Reaper Hunter UAV, shown in Fig. 1.1(a), is the typical military example which 

first flight was in 2007 and also executed a combat mission in Afghanistan 
[2]

. Beyond the 

military applications of UAVs, which have been used in plenty of civilian area containing 

aerial surveillance, commercial Photography, urgency rescue and high-class toy. Titan 

Aerospace bought by Google designed a solar-powered UAV, shown in Fig. 1.1(b), 

travels up to 20 kilometers high with capacity of having satellite typical functions, one 

(a) (b) 

(c) (d) 

Figure 1.1: The top-level of Unmanned Aerial Vehicle. (a) MQ-9 Reaper Hunter UAV for 

military use 
[2]

. (b) Solar-powered unmanned plane which will providing Internet access to 

developing world 
[3]

. (c) A160 Hummingbird helicopter suited for reconnaissance missions and 

resupply 
[4]

. (d) Phantom3 quadrotor for personal entertainment and video shoot 
[5]

. 
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such example is weather monitoring. The future work of this fixed-wing UAV is bringing 

Internet connectivity to distant region 
[3]

. The A160 Hummingbird helicopter UAV, 

shown in Fig. 1.1(c), built by Boeing has ability to take multiple missions just as target 

acquisition and surveillance with files at 260 km/h at a maximum altitude of 9150 m 
[4]

. 

Phantom3, shown in Fig. 1.1(d), is a commercial entertainment drone developed by 

Chinese company DJI with the controller a maximum range of 2000 meters and visual 

position system 
[5]

. The superiority of UAV such as reducing the exposure risk of pilot 

and enjoying magnificent landscape is becoming more and more apparent.   

 

1.1.1 Overview of Multicopter 

A multicopter is classified as a rotary-wing aircraft, also is most popular one of vertical 

take-off and landing (VTOL) aircraft that can hover, take off, and land vertically 
[6]

. Less 

kinetic energy cost in a flight condition because of individual rotor diameter smaller than 

equivalent rotary-wing aircraft. Small-scale multicopter haves frame that enclose the 

rotors, permitting flights through more challenging environments, with lower risk of 

damaging the vehicle or its surroundings 
[7]

. The most typical multicopter is the quadrotor 

which has 4 propellers and the hexarotor with 6 propellers is also a popular variety of 

multicopter because it has more thrust than equivalent quadrotor.  

Although quadrotor is an appealing VTOL aircraft with relative simple structure and light 

weight, it is a typical under-actuated, non-linear coupled system. This is due to quadrotor 

system have four inputs to control six degrees of freedom (DOF), which including 

translations and rotation along three principal axes. Four basic movements chose to be 

controllable variables. Quadrotor lift (or land) with increasing (or decreasing) throttle  
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during all the motors rotation shown in Fig. 1.2 (b). By increasing angular velocity of 

motor 1 and decreasing angular velocity of motor 3, shown in Fig. 1.2 (c), roll action is 

accomplished which will lead quadrotor move to rear direction. By increasing angular 

velocity of motor 2 and decreasing angular velocity of motor 4, shown in Fig. 1.2 (d), 

pitch action is accomplished which will lead quadrotor move to right direction. By 

(a) 

(e) 

T2 T1 

T4 T3 

M1 

M3 

M2 

M2 

𝑍𝑈 

𝑌𝑈 𝜃 

𝜙 

𝜓 

{𝑈} 𝑋𝑈 

𝑍𝐺  

𝑋𝐺 
𝑌𝐺  

{𝐺} 

𝑟 

4 

2 1 

4 

4 3 

4 

2 

2 

1 

1 1 

3 

3 3 

2 

(b) (c) 

(d) 

Left 

Rear 

Front 

Right 

Figure 1.2: Quadrotor system and basic movements. (a) A quadrotor order 

from 3D robotics and system sketch. (b) Throttle movement. (c) Roll 

movement (d) Pitch movement. (e) Yaw movement. 
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increasing angular velocity of motor 1 and motor 3 while decreasing angular velocity of 

motor 3 and motor 4, shown in Fig. 1.2 (e), yaw action is accomplished which will arm 

quadrotor rotate with z-axis along clockwise. 

 

1.2 Methods of Vision-based Obstacle Avoidance 

 

 

 

Unlike path planning in known environment, strong assumptions on knowledge of 

obstacles situation need to be completed in order to generate collision-free path. Vision 

sensing technique as the most effective and powerful method is now largely applied in 

the autonomous navigation task or obstacle avoidance mission 
[8]

.   

EPIX stereo camera 
[9]

 has two 2048 ×1088 pixel lines global shutter and captures 10 bits 

images at 340 fps shown in Fig. 1.3 (a). Hokuyo UTM-30LX scanning laser rangefinder, 

shown in Fig. 1.3 (b), as the widely used laser sensor has 30 m and 270 degree scanning 

(a) 

(b) (c) 

Figure 1.3: Vision cameras. (a) Stereo vision camera. (b) Hokuyo UTM-

30LX scanning laser rangefinder. (c) SR4000 TOF Camera from MESA 

imaging has 69 × 56 degree field of view (FOV) and maximum 10 m range. 
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range with high frequency 40 Hz which can implement in normal robotics research 
[10]

.  

A time-of –flight (TOF) camera is a high frame-rate and accuracy 3D image vision sensor 

which works by illuminates the scene with a modulated light source and observes the 

reflected light 
[11]

, such as SR4000 TOF Camera 
[12]

 shown in  Fig. 1.3(c) and Microsoft 

Kinect sneosr. 2D sensor or 3D camera suit for relevant dimensional algorithm for UGV, 

UAV or humanoid robot, nevertheless some cases employ several cameras for exhaustive 

surrounding information. 

A Markov Random Field approach to distinguish obstacle region and free-space area 

based on single monocular camera producing obstacle classifications 
[13]

, especial useful 

to avoid assorted varieties obstacles including tree and fences for low-power outdoor 

robotics applications. Similarly, monocular camera used for escaping from obstacles but 

utilizing different strategy that is Fast Terrain Mapping, which extracted features to 

update a sequential extended Kalman filter 
[14]

. Acknowledge of omnidirectional obstacle 

perception is the primary problem for a clutter and restricted environment. To solve that, 

autonomous system set up with multiple sensors containing a 3D laser scanner, two 

stereo camera and ultrasonic sensors proceeds global mission planner and local trajectory 

planning in multi-resolution local grid maps 
[15]

. A state-of art registration algorithm to 

detect obstacle location by reconstructing 3D point clouds, which achieved with a 

rotating 2D laser scanner 
[16]

. Simultaneous localization and mapping (SLAM) 
[17]

 is the 

approach of constructing a map of unknown environment from available sensor data and 

continuously estimating robot position and orientation. 
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1.3 Contribution 

The contribution of this study is the development of 3D obstacle avoidance, named 

Vector Mesh (VM), an algorithm for real-time navigation of quadrotor in unknown 

indoor environment. In the simulation of presented algorithm, 3D Kinect sensor 
[18]

 is 

used for collecting range data stored momentarily for generation of obstacle perceptions 

which are larger than the single detection. Additionally, obstacles estimation and path 

planning are based on Vector Field Histogram (VFH) 
[19]

 algorithm extended from 2D to 

3D. 

 

1.4 Thesis Organization 

This thesis is organized into five chapters as follows. Fundamental knowledge of 

Unmanned Aerial Vehicle (UAV) is introduced in Chapter 1 including current state-of-art 

applications of UAV. Relevant background theory of in sensors and algorithms of 

obstacle avoidance is described. In Chapter 2, a review of VFH algorithm is presented 

and drawbacks and comprehend advantages are illustrated using an example simulation. 

Chapter 3 presents a developed modified VFH algorithm for 2D environment. Besides, a 

vision-based ground vehicle system is demonstrated in order to perform autonomous 

navigation with developed 2D algorithm. In Chapter 4, the theory of proposed VM 

algorithm is presented and discussed. Also a computer simulation is presented to show 

the result. Moreover, a modified method is introduced to the algorithm to improve 

simulation results. Finally, conclusions and future work are presented in Chapter 5. 
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CHAPTER 2 

2D OBSTACLE AVOIDANCE APPROACH 

 

2.1 The Vector Field Histogram (VFH) Obstacle Avoidance Algorithm 

In 1991, Jojann Borenstein and Yoram Koren proposed a new real-time obstacle 

avoidance algorithm named as Vector Field Histogram, which detects unknown 

environment with range sensor and simultaneously generates collision-free path for 

ground mobile robots. This method covers three main components that are a two-

dimensional Cartesian histogram grid, polar histogram sector and candidate valley. To 

begin with, on-board sensors such as ultrasonic sensor or laser rangerfinder are used for 

mapping obstacles into histogram grid. Moreover, one-dimensional polar histogram 

whose sector density denotes a probability of obstacle in that direction is made after 

reducing first step data. Moreover, an optimal solution is selected in each candidate 

valley such that every sector density less than an experimental threshold value. The VFH 

algorithm is suitable for both ground and aerial vehicles and has been developed and 

implemented in many different types of robotics platforms. Also, Enhanced VFH 

algorithm (VFH+) 
[20]

 and VFH* algorithm 
[24]

 had been proposed for improved tracking 

and automated avoidance performance. In this Section, a 2D VFH algorithm is presented 

and will be extended to the 3D case which can be useful for complex maneuvers of 

robotic aerial vehicles or UAV in unstructured environments.   
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2.1.1 VFH Algorithm 

 

In this algorithm, the global world is described as a two-dimensional Cartesian histogram 

grid; a mesh size of cell in the grid is determined by a vehicle size as well as a 

computational power of the on-board computer. The VFH method shown in Fig. 2.1 uses 

24 on-board range sensors, each with 15 degree view, to measure distance between 

vehicle and obstacles. As shown in Fig. 2.1, 24 sectors represent range sensors, red 

polygons are obstacles and pink dash lines express a mean distance between obstacles 

and the vehicle. For every range reading, the Certainty Value (CV), the larger CV 

represents higher possibility of obstacle in that location, is increased by 1 at that detected 

cell which is located along the acoustic axis as shown in Fig. 2.2 (a). This process is 

repeated while a vehicle moves so that a probabilistic distribution of obstacles is 

Sensor view section 

𝑋  

𝑌  

22 

23 

24 

1 

2 

3 

Figure 2.1: On-board range sensor. 24 range sensors equipped to 

obtain omnidirectional obstacle perception; each one has a sensor view 

of 15 degree Red polygons represent obstacles. The vehicle frame 

represents vehicle and global frame as shown in the figure. 

𝑋  

𝑌  

Obstacle 

{𝐺} 

{𝑉} 

Sensor view section 
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calculated as shown in Fig. 2.2. The high value represents higher probability of collision 

to those directions as shown Fig. 3.2(b). 

12 13 

𝑋  

𝑌  

3 
4 

Histogram grid 

Certainty value 

Move 

(a) (b) 

Sensor view 

Figure 2.2: Mapping obstacles into histogram grid. (a) Only two cells respectively 

from view of sensor 3 and sensor 4 achieve accretion in each range scan and they 

lies on the end of pink dash lines which equal to measured distance. (b) On-going 

mapping process obtains much more accurate obstacle distribution during robot 

motion. 

Sensor view section 

{𝐺} 

{𝑉} 
{𝑉} 
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Fig. 2.3 shows an obstacle map transformed to polar coordinates. This transformation is 

needed for more efficient computation and it is conceptually easier to define the direction 

C* 

Activ

e cell 

8 

9 

10 

11 12 13 24 25 26 27 

28 

29 

𝑌  

𝑋  

{𝑉} 

𝑋  

𝑌  

{𝐺} 

Figure 2.3: Mapping obstacles into polar histogram. Active window is converted 

into polar histogram which shows in purple sections. For example, in sector 11 

and sector 27, active cell with red certainty value which represent 𝑚𝑖,𝑗 mapped 

into specific sector. 

H 
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of vehicle motion using one-dimensional polar histogram (denoted as  ) as shown in Fig. 

2.3. Also, the active window (C*) is defined with a vehicle at its center as shown in Fig. 

2.3. The size of the active window can be adjusted for different applications; the one used 

here is 33 × 33 cells which correspond to range of sensor. It should be noted that this 

active window moves together with the vehicle and it overlay a new area. We also call 

the cells inside of the active window are called active cells. Angular resolution      

used in Fig. 2.3 so that   contains 72 sectors. The active cells shown in Fig. 2.3 can be 

mapped to the polar map using:  

                                                      ,       (
     

     
)                                                          (2.1)   

                                                        (
  , 

 
) ,    , , ,  ,                                          (2.2)           

where    ,     is an active cell location and    ,     is a vehicle location in the active 

window.   ,  is an angle from x-axis of vehicle frame { },   is the sector which 

corresponds to the active cell of interest.      

After converting active cells into a one-dimensional polar histogram, the magnitude of 

active cell    ,  as shown in Fig. 2.3 becomes: 

                                                       ,     , 
   (     , )                                                 (2.3) 

                                                                                                                              (2.4) 

where   , 
  is the certainty value of active cell   ,   , the square here expresses to reduce 

noise which caused by single occurrence of sensor detection.   ,  is the distance between 

active cell and vehicle.  ,   are positive constants which are obtained from Eq. 2.4,       

is a half of diagonal of active window, if   is selected as an arbitrary integer then   is 

determined.                                                                                   
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The polar obstacle density    which represents probability of meeting the obstacle in the 

direction of sector   becomes:  

                                                        ∑  , ,      ,                                                           (2.5)                      

The distribution of polar obstacle density is discrete may cause to ragged obstacle 

estimation so that a function is applied to obtain smooth polar obstacle density   
 : 

 

  
  

                                

    
    , , ,    (2.6) 

where   is the amount of sectors.   is a constant integer which is chosen depending on 

experiments or simulations.   

As shown in Fig. 2.4, entire sectors defined around the vehicle or robot by the polar 

histogram are separated into insecure and safe valleys using a threshold   .  

For determining an optimal direction of the vehicle, safe valleys are divided into narrow 

and wide valleys with the threshold    (easily chosen from simulation) which is 

determined in the situation as shown in Fig. 2.5. The vehicle was set close to obstacle in a 

safe distance   that the one was chosen in wide environment larger than the one in 

narrow environment. Two specific sectors in the safe valley (not represent all the sectors) 

indicated as    the sector closet to X axis of vehicle and    the sector nearest to obstacle 

were selected. The threshold    was expressed as: 

              (2.7) 

where   is the angular resolution. 
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Figure 2.5: Threshold 𝜂  determination 

   

Figure 2.4: Steering control strategy: Elimination of insecure valleys with CV 

values larger than threshold 𝜂 . An optimal direction is determined from safe 

valleys with CV value less than 𝜂 .  
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A narrow valley is the one less than    and the sub-optimal direction is considered as the 

sector in the middle of narrow valley. For a wide valley greater than the   , a sub-optimal 

direction can be selected as a particular sector which has an interval of half threshold    

on the boundary closest to the target as shown in Fig. 2.4. In the end, the optimal 

direction   prefers to the sub-optimal direction which is closest to the target and is 

transformed into vehicle frame to control locomotion.   

          

2.1.2 Simulation Results and Discussion  

Yes 

Figure 2.6: Simulation flow chart. The rate about simulation loop is 10 Hz. 
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Computer simulation is carried out for the VFH algorithm using in Matlab 
[24]

 and its 

flow chart shown in Fig. 2.6. In this 2D simulation, it is assumed that a vehicle is 

equipped with a scanning laser range sensor with a field of view of 240°. Also, vehicle 

location is known and only kinematic motions of the vehicle are considered. The laser 

range sensor is simulated in Matlab such that it returns 24 range data in each sampling 

period and as shown in Fig. 2.7. 

 

 

 

 

1 
2 

3 
4 

24 23 22 
21 

Vehicle 

Vehicle 

movement 

direction 

Figure 2.7: Simulation method: A FOV of scanning laser sensor is split 

into 24 sectors (10° apart). The pink line lies in the center line of sector 

and it denoted obstacle distances. It is assumed that the rangefinder 

always aligned with vehicle’s direction of motion in each simulation loop. 

Sensor view sector 
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analytical position in the path; (e) Histogram grid for second position; (f) Motion direction 
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In this simulation, a size of UAV is assumed with a radius of 25 cm circular shape and it 

moves with a speed of 0.8 m/s. The UAV successfully navigates through environment 

with unknown obstacle location with relatively smooth path as shown in Fig. 2.8. It 

should be noted that two UAV positions in Fig. 2.8(a) and Fig. 2.8(d) are particular 

importance since it is too close to obstacles and can face to more than one option of its 

next move. As shown in Fig. 2.8(b) and Fig. 2.8(e), corresponding histogram grids 

represent obstacle distribution with CV values. The larger CV value means higher 

probability of collision with obstacles. Firstly,    was chosen as     of the maximum 

polar histogram density from a simulation and selection of     was described as Section 

2.1.1. Then, both thresholds were tuned in the simulation to obtain best performance so 

that     equaled to 10 and value of     was 150 at last. In Fig. 2.8(c) and Fig. 2.8(f), safe 

valleys were determined by    and separated into wide valley and narrow valleys with   . 

The sub-optimal direction which was the nearest one to goal would be selected to optimal 

direction  . 

As shown in Fig. 2.9, a smooth path can be obtained by tuning values of two thresholds. 

For higher value of the threshold    will result in crash with obstacle because some 

sectors represented area close to obstacles were considered into safe valleys. For the high 

value of the threshold    it can result in less chance of collision but navigation trajectory 

became less smooth and stiffer. Because wide valleys existed were regarded as narrow 

valleys based on high value of     so that sub-optimal directions of those valleys directly 

were chosen in the middle. Also, one of the drawbacks of this algorithm was shown in 

Fig. 2.9(c) that the path was close to obstacle 1.  The long obstacles such as obstacle 2 

would lead more impact on vehicle than short obstacles (obstacle 1) did because of the 
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method of obstacle estimation which based on the weighting of obstacles in detection 

area. Another shortcoming of this approach is luxurious computational cost due to the 

mapping strategy that is storing data all the time. 

          

 

(a) (b) 

(c) 

Figure 2.9: Tuning process for a desirable trajectory. (a) Oscillation and collision with 𝜂  

equal to 20 and 𝜂  equal to 50; (b) Reduce oscillation with keeping 𝜂  and changing with 𝜂  

to 10; (c) Keeping with 𝜂  and increasing 𝜂  to 100 lead to a good performance. 
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2.2 Summary 

In this Chapter, a detailed introduce of Vector Filed Histogram (VFH) for 2D obstacle 

avoidance is presented. Additionally, a computer simulation based on Matlab is 

accomplished assuming laser rangefinder is equipped on the vehicle. Also, simulation 

results are expressed and demonstrated to discuss the performance of this algorithm. 

Moreover, drawbacks are presented and analyzed in order to improve in the extended 3D 

obstacle avoidance. 
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CHAPTER 3 

MODIFIED VFH ALGORITHM AND EXPERIMENT 

 

The 2D navigation mission with utilization of the VFH method has satisfied a reasonable 

result although the only sensor used is the range sensor. The usage of this sensor is the 

main reason leading to high computational complexity, because a single reading of 

ultrasonic sensors results in incomprehensive obstacle information. Currently, high-

resolution range sensors such as laser scanner are available for mapping accurate 

environments for indoor applications. Hence, a modified VFH method proposed uses a 

laser rangefinder. Following sections explain this algorithm in detail and describe 

experiment implemented for further verification.  

 

3.1 Review of modified VFH  

The modified VFH is a local obstacle avoidance algorithm that generates navigation 

vectors based on a robot or a vehicle surrounding environment perception. This method 

can be implemented in autonomous navigation of a ground vehicle or 2D mission of a 

UAV assuming a laser scanner is onboard. This algorithm is computed on onboard 

computer and controls are sent to vehicle.       

A Vision-based Ground Vehicle (VGV) consists of a laser scanner, onboard computer 

and a ground vehicle and will both be used in the implementation of the modified VFH 

algorithm. The laser scanner equipped on the vehicle is assumed to have a FOV of 180° 

and a radius, denoted as   , equal to 4 meters. The detection area of the sensor is divided 
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into 512 portions every one contains a range value, denoted as RV, and has an angular 

resolution         as shown in Fig. 3.1.  

Each portion is expressed as a vector: 

             ,   { , , , ,   } (3.1) 

Where   is index of vector in Polar coordinate system that the polar axis as same as the X 

axis of the frame of the VGV which located in connection point of vehicle and sensor as 

shown in Fig. 3.1 and  RV is the magnitude and equal to     

 

{𝑮} 

Figure 3.1:  Normalized vector representation of sensor detection. The robot system 

consists with a 4-wheel-drive vehicle and a laser scanner. The half circle detection area 

is distributed to 512 vectors with regarding range data as magnitude in polar coordinate 

system. The orientation to which polar axis pointed is the same as X axis of VGV frame. 
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In order to analyze vector representation of obstacle information, a threshold is applied to 

determine dangerous valleys and safe valleys to travel through which are composed of 

merged vectors. The threshold    is expressed as: 

     (3.2) 

Where   is a constant can be adjust in the experiment. 

 

The dangerous valley, aqua zone as shown in Fig. 3.2, consists of continuous vectors 

which have a    value less than the threshold. The safe valley, signified by orange 

outlines as shown in Fig. 3.2, is comprised of sequential vectors whose    greater than 

threshold.  

In the case that no safe valley exists means that no safe direction is available; in other 

cases that a safe valley exists, the value of safe valley represents range is recorded as: 

{𝑮} 

𝑇  

𝑅𝑠 
    

  

  

  

Polar axis 

  

Obstacle 

Figure 3.2: Safe valley determination by threshold. Successive vectors 

which extend threshold are fused into safe valley remarked as orange area. 
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        ,                  ,      (3.2) 

Where   and   are the index of inside vectors which are separately nearest and farthest to 

the polar axis as shown in Fig. 3.2.The angular resolution of each vector is represented by 

 . 

 

A high-pass threshold, denoted as  , calculates the minimum valley that can be passed by 

VGV and  removes impassable previously safe valleys. As shown in Fig. 3.3(a), the 

threshold intersects with threshold with three points  ,   and  . This situation is 

modified into a geometry model as shown in Fig. 3.3(b), side   ̅̅ ̅̅  and side   ̅̅ ̅̅  are equal 

to the threshold  , side   ̅̅ ̅̅  is equivalent to the width of VGV denoted as  . The included 

angle   is equal to the value of high-pass threshold and solved by the law of cosines: 

        
    

   
  (3.3) 

Figure 3.3: High-pass threshold definition. (a) This threshold is used for eliminating 

safe valleys which are too narrow to go though. (b) Math model applied to decide 

the high-pass threshold value. 
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As shown in Fig. 3.4, the safe valley marked with a black X is removed by the high-pass 

threshold. After that every remaining safe valley will have a generated a sub-direction 

denoted as   signifying the middle of the valley using the angular resolution: 

  
       

 
   (3.4) 

Where   and   are the indexes of boundary vectors of corresponding safe valley. 

Finial direction for the vehicle to travel is chosen from the sub-direction that is nearest to 

90 degrees from the polar axis as shown in Fig. 3.4. The 90 degree is chosen in order to 

force the vehicle to travel forward if it can.  

 

 

{𝑮} 

  Polar axis 

𝐹 

Figure 3.4:  Determination of final direction. Removal of exceptional safe 

valleys which are not broad enough for robot to transit; Sub-direction is 

achieved in the center of the remaining safe valleys and final direction is 

the sub-direction that is closest to 90° in the polar coordinate system. 
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3.2 Development of Ground Vehicle Robot System 

 

3.2.1 System Setup  

 

The laser scanner sensor and on-board computer could be easily broken if a UAV crashed 

so a ground vehicle is used first to the test effectiveness of the 2D algorithm. This 

platform used the MiniBot, a commercially available 4-wheel-drive vehicle, from 

Inspector Bots 
[22]

. To develop the VGV system with autonomous obstacle avoidance, the 

onboard computer Odroid-U3 
[23]

 with strong processing capacity, a Hokuyo URG-04LX-

UG01 laser scanner 
[24]

 and an Arduino Uno microcontroller board 
[25]

 which outputs 

PWM signal, the motor driver of the vehicle were all added to the platform as shown in 

Fig.3.5. The Odroid-U3 is a powerful Linux computer with 1.7GHz Quad-Core processor 

Laser scanner 

Odroid-U3 Arduino Uno 

Battery 

Figure 3.5:  VGV system configuration. The 2650mAh batteries’ voltage is 

regulated to 5V with a UBEC to power Odroid-U3. The laser scanner and 

Arduino are powered by the onboard computer through USB cables. 

UBE
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and 2GByte RAM. The laser scanner employs a 180-degree FOV (other mode of FOV 

which is 240-degree was not used in this system) and a maximum range of 4 meters.  

Fig. 3.6 illustrates the system setup. The laser scanner sends distance data of obstacles to 

the onboard computer with Robot Operating System (ROS) 
[26]

 framework installed in 

order to implement high-level control constituting of the computation of the modified 

VFH algorithm. ROS nodes that execute calculation and communication were used. 

Hokuyo node collected the range data, algorithm node computed the final direction and 

serial node sent the commands to the Arduino from the onboard computer. A client 

computer remotely controlled desktop of onboard computer to launch ROS nodes with 

Wi-Fi. In the low-level control, the Uno board received a command denoting which was 

 

Hokuyo node 

 
Algorithm node 

Serial node 

ROS 

Laser 

scanner 
Data  

Wi-Fi 

High-level control 

Uno 

board 

Motor 

driver 

VGV 

Low-level control 
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Figure 3.6:  System work diagram 
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the safe direction and converted that directional command into PWM signals that were 

sent to motor driver to manipulate the VGV.  

 

3.2.2 Low level control of VGV 

The Uno board calculated the control values denoted as    and    after it has received its 

command from the high-level control.    and    were defined from 0 to 180.0 and scaled 

to corresponding PWM signals to drive left two motors and right two motors respectively 

based on an Arduino Servo library 
[34]

. However, only the range between 25.0 and 155.0 

can generate appropriate PWM signals to actuate motors in the test. The relation between 

control values and motor directions is shown in Fig. 3.7 and are expressed as: 

                                      {

      
 
      ,                       

 
 
     ,                 

      
 
     ,                        

                              (3.4) 

                                         {

            ,                        
       ,                  

             ,                         
                         (3.5) 

𝜁𝑟 𝜁𝑙 

 

 

 

25.0 155.0 

155.0 25.0 

90.0 90.0 

Forward 

Backward 

Forward 

Backward 

Figure 3.7: Control value. Relation between control values and motor directions of 

vehicle platform 
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For the vehicle platform the 4 kinds of locomotion modes used were rotation, advance, 

left-turn and right-turn which were determined by control values. The rotation mode was 

defined as rotating clockwise while the command from high-level control indicated there 

was no safe direction available and expressed as:  

                                                        {
 
 
      

 
 
      

                                                             (3.6) 

where angular velocity of rotation became faster if the value of    and    were increased. 

If the command showed that final direction   is existed, an error denoted as   was 

defined to determine other locomotion of VGV and expressed as: 

                                                               |     |                                                                 (3.7) 

The advance mode that forced VGV to go straightly satisfied the following condition: 

{
        
       

,        (3.8) 

where   was an adjustable error angle, and was selected as 8°.Increase of    and decrease 

of     would raise the forward velocity but if the condition that             was 

guaranteed.   

In the right-turn mode which satisfied the conditions       and    , a turning ration 

  was defined as: 

   
     

     
 (3.9) 

where larger value of   indicated drastic momentary turning.  

First of all, two set of relations between   and   were expressed as: 

{
      
     

    {
      
     

 (3.10) 

where    and    were adjustable depend on performance of experiments. 

Furthermore,    and    were substituted into Eq. 3.11 to obtain    
 and    

 respectively. 
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 (3.11) 

where    was selected as 135 in right-turn mode. 

Moreover, it’s assumed that   and    were satisfied the first order equation just as: 

        (3.12) 

where   and   were solved by substituting two points    ,    
  and (  ,    

). 

Lastly, the right-turn mode was expressed as: 

{
        

                    
 (3.13) 

In the left-turn mode which satisfied the conditions       and    , a turning ration   

was defined as: 

   
     

     
 (3.14) 

where    was selected to 45 in left-turn mode. 

Substituting the supplementary angle of final direction which is         into Eq. 3.13 

and substituting the received solution into Eq. 3.9 to obtain the turning ratio which should 

equal to Eq. 3.14 because of symmetry of the turning ratio. And the result was:  

{
                     

     
 (3.15) 
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3.3 Result and Discussion 

 

 

 

 

(a) 

(b) 

(c) 

Figure 3.8: Experiments with different thresholds. (a) First test with 

threshold equal to 0.5m; (b) Second test with threshold equal to 0.6m; 

(c)  Third test with threshold equal to 0.7m. 



 

32 

 

Three experiments were implemented in order to find the best appropriate threshold of 

2D modified VFH algorithm and obtain optimal performance. The result of first 

experiment that was applied a threshold of 0.5m was fail because the VGV didn’t avoid 

the obstacle front of it as shown in Fig. 3.8(a). Obviously, the ugly left-wheel leaded this 

collision so two possible reasons that one was dynamic problem of VGV and the other 

one was incorrect threshold occurred. In the Fig. 3.8(b), the threshold was increased to 

0.6 m and VGV avoid the front obstacle successfully but the performance was not perfect 

because it was close to obstacle and almost crashed the following obstacle. Therefore, the 

main reason was threshold so that it was raised to 0.7 m in the next experiment and the 

result was shown in Fig. 3.8(c). The VGV not only navigated between unknown obstacles 

without causing any collision but also kept safe range with obstacles and the path was 

perfectly smooth.  

Figure 3.9: The position captured in static for analyzing of 

adjusting threshold 
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(a) 

Figure 3.10: Direction chosen in histogram representations. (a), (b) and (c) 

implemented with threshold of 0.5m, 0.6m and 0.7m respectively. The vertical axis 

meant the RV of vector which was the detected range from sensor; the horizontal 

axis implied the sequence of vector in polar axis.   
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In the Fig. 3.9, a special position which at the corner was surrounded by obstacles 

selected to demonstrate the reason of success of obstacle avoidance applied with relative 

large threshold. As shown in Fig. 3.10(a), the safe valley, assumed the exceptional safe 

valley had been removed by high-pass threshold so that didn’t display, with threshold of 

0.5m was very broad and even the range representing front obstacle approximately from 

      to       located in safe valley. Then the inexact direction equaled to 101.6° 

leaded to collision at last. In Fig. 3.10(b), the edge area of obstacle still enclosed in the 

safe valley so that the VGV was close to obstacle but might hit in other situations. With 

increasing the value of threshold, the safe valley diminished but still was not risk for 

going through.   

 

3.4 Summary 

This Chapter presents a modified VHF obstacle avoidance algorithm for 2D navigation of 

vehicle based on laser scanner. Also a VGV system was developed and detail discussion 

is presented including hardware structure and software integration. ROS environment 

will be used for high-level control which is the same framework implemented in the 

following chapter for simulation. This autonomous system will be extended for the aerial 

vehicle platform. Moreover, experiment result is demonstrated and analysis.       
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CHAPTER 4 

3D OBSTACLE AVOIDANCE ALGORITHM 

 

The 3D navigation missions or exploration tasks are studied for multicopter in this 

chapter. In the 3D obstacle avoidance task, necessary sensor based detection of 

environments always extremely challenging. Currently, a simple 3D camera such as 

Kinect sensor 
[30]

 can achieve reasonable accuracy in three-dimensional range data but 

has relatively small field of view (FOV) for effective navigation in unstructured 

environments. The proposed 3D vector mesh (VM) algorithm can make up this weakness 

of sensor. The 3D VM algorithm is an extension of the 2D algorithm discussed in 

Chapter 3 for ground vehicle navigation, and it consists of three core stages: (1) voxel 

obstacle computation, (2) vector obstacle estimation, and (3) binary mesh representation. 

The advantage of 3D VM approach is that range data can be provisionally stored for 

adequate obstacle perception enough for free-collision path generation. The descriptions 

of these three stages and computer simulation results have been discussed in detail in the 

following chapter.  

         

4.1 Voxel Obstacle Estimation 

The global world space is described by three-dimensional Cartesian voxels and its size,  , 

can be determined by two factors. One is a computational cost and the other is detection 

accuracy of environment. Too small size can be computationally expensive and too large 

size results in potentially incorrect obstacle estimation. The voxel size can be adjusted 
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depending on different applications and easily tuned using computer simulation. The 

voxel is assumed to have a dimension of 10cm × 10cm × 10 cm as shown in Fig. 4.1. 

The voxel is expressed as: 

        ,     ,             (4.1) 

Where   ,   ,    mean coordinate of voxel in global frame which is denoted as { };    

is the obstacle probability for this voxel. 

The entire process is that sensors explore local environments and provide estimation of 

obstacle presence in global space expressed by voxels. This procedure of voxel 

representation of obstacles comprises of two simple phases: (1) transformation of 

obstacle position and (2) mapping of obstacles to voxels. 

 

 

𝒀𝑮 𝑿𝑮 

𝒁𝑮 0 

Figure 4.1: Global world space. This example demonstrates the voxel with 

𝐶𝑉 equal to 0. An index of voxel, 𝑋𝐺 ,𝑌𝐺 ,𝑍𝐺  are the position in global frame. 
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4.1.1 Transformation of Obstacle Position 

It is assumed that, a Kinect sensor from Microsoft
®
 is used for detecting obstacles in real-

time. Each pixel of a depth image obtained from the sensor is stored as range data.                          

  
      

     
     

       that obstacle position measured with respect to a Kinect frame 

{ }. The range points   
  needs to be transformed to the global frame, as shown in Fig. 

4.2 using the rotation matrix   
  defined for the UAV frame using X-Y-Z Euler angles 

and is denoted as { },  

  [

          

          

      

                          

                          

          

                          

                          

          
]

⏟                                                    
   

 
   (4.2)            

where   ,   ,    indicate rotation angles in  ̂ ,  ̂ ,  ̂  axes respectively, and each rotation 

angle is assumed is be obtained from an inertial measurement unit (IMU) mounted on 

UAV. It should be noted that                and               .                                                                             

The rotation matrix,   
 , between UAV and Kinect also expressed in the similar way as:    

  
  [

          

          

      

                          

                          

          

                          

                          

          
]

⏟                                                      
   

 (4.3) 

where   ,   ,    respectively represent rotation angles in  ̂ ,  ̂ ,  ̂  axes defined on UAV 

frame, where rotation angles are known because the Kinect sensor is fixed on UAV frame.  

[    
 

 
]

⏟  
   

 [
  

   
 

    

  
       

 
 

 

 
]

⏟                
   

[   
 

 
]

⏟
   

 
(4.4) 

where    
     

    
    

       is the position of a target point in global frame;    
  is the 

position of the Kinect frame origin in UAV frame and it is known.  

    
     

     
     

       is the position of the UAV frame origin in a global frame 
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and assumed known from onboard IMU sensor. Substituting Eq. 4.2 and Eq. 4.3 into Eq. 

4.4, the transformed position    
  can be calculated.    
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(b) 

Figure 4.2: Transformation of range points from Kinect frame to global 

frame. (a) Kinect sensor and UAV in simulation environment. The kinect 

sensor has a resolution of depth image about 640 × 480 pixels and a FOV 

(horizontal 60° and vertical 48.6°) so that sensor will return 30720 range 

point. (b)Coordinate frames {𝐺}, {𝑈}, and {𝐾}. 
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 4.1.2 Mapping  

The next step is to transform range data obtained in the previous step to be mapped into 

corresponding voxels in the global frame. The certain value (  ) of voxel will increase 

by 1at each data sampling up to 20 whose value can be determine by a number of factors 

including a vehicle speed and complexity of environments. Fig. 4.3 shows this mapping 

procedure expressed as:  

[

  

  

  

]  
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 ]
 
 
 
 
 
 

 (4.1) 

where      is a function returning smallest integer greater than or equal to a given number. 

  ,   ,    are coordinates of voxels and  ,    
 ,    

 
 

  are the coordinates of any target-

points measured in global frame.   is the size length of voxel. 

For computational efficiency of the proposed algorithm, a local space is defined around 

the UAV which is fixed to the UAV. This local space is a cube and its size,  , can be 

determined by the maximum detectable range of on-board sensor using the following 

relationship:  

{
     

        (
  

 
)   

 (4.6) 

where   is the number of voxels in each row or column in the local space.    is the 

sensor range. 

If voxel coordinates   ,   ,    are satisfied with the following conditions then voxels will 

be considered inside of the local space: 
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 (4.2) 

where    
 ,    

 ,    
  are the voxel coordinates corresponding to UAV location in global 

frame and can be obtained using Eq. 4.8 which is similar to Eq. 4.5. 
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 (4.8) 

where    
 ,    

 ,    
  are the coordinates of UAV in the global frame. 
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Figure 4.3: Mapping range data into voxels. The local space stores 𝐶𝑉 values of each 

voxel corresponding to obstacles existing in the space. The 𝐶𝑉 value of each voxel is 

increased whenever sensor detected obstacle. 
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While UAV is navigating in unknown environment, voxels inside of local space will be 

stored so that relatively detailed perception of environments is achieved.             

                                                 

4.2 Vector Obstacle Computation 

This section introduces how to convert voxel obstacle representation into vector based 

obstacle presentation. Firstly, a sphere space is defined in the local space; additionally, 

meshing of the sphere surface is to obtain vectors which divide an entire space; at the end, 

computation of vector magnitude which represents obstacle proportion in this direction. 

A mass of data is stored in the local space after estimation of voxels in each sensing loop 

so that a valid and feasible approach using vectors instead of voxels appeared to be more 

Figure 4.4: Voxels in spherical space. Converting voxels in the local space from 

Cartesian to Spherical coordinates. 
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attractive in 3D obstacle avoidance. The following example shows validity of the 

proposed approach: 

A spherical space is defined as shown in Fig. 4.4 with radius R equal to     of sensor 

range      The UAV is not only located at the center of sphere but also moves 

synchronously with it. The sphere frame, denotes as {S}, is parallel to the global frame as 

in Fig. 4.4. The reason that the sphere space is smaller than the local map is that the 

voxels inside of sphere can be good enough for estimating obstacles. Moreover, the 

voxels located between the local sphere and sphere space have been mapped in advance 

and can be used for next step of algorithm without wasting mapping time as long as those 

voxels contained by sphere space.     

The voxels need to be transformed from global frame to sphere frame and voxel 

expressed as: 

        ,     ,             (4.9) 

where   ,   ,    are the Cartesian coordinate of voxel in sphere frame and can be obtained 

from Eq. 4.10. 

[

  

  
  

]  [

      
 

      
 

      
 

] (4.10) 

Now, coordinates of the voxels are converted spherical coordinate system as shown in 

Fig. 4.4 and can be expressed as:  

       ,    ,           (4.11) 

where  ,  ,     are the spherical coordinates of voxel and can be obtained from Eq. 4.12. 
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 (4.12) 

Meshing the sphere space to generate vector,         ,     , from       to        

and from      with an interval of 10° as shown in Fig. 4.5. This interval,  , can be 

adjusted by either computer simulation as well as experiment. Mapping voxels into a 

vector space can be done by Eq. 4.13: 

{
 
 

 
       (

    

 
) ,    ,     

      (
 

 
) ,                     ,     

       ,    ,          

 (4.13) 

 where  ,     are the coordinates of vector in the sphere frame and        ,    ,      belongs to 

        ,      as shown in Fig. 4.5(b). 
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Figure 4.5: Vector obstacle computation in meshed sphere space. (a) Gridding sphere 

space to achieve vectors based on average angle; (b) Computation of the vector 

magnitude according to inferior voxels. 
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Vector magnitude, denoted as     ,     , need to be calculated based on all the voxels 

belong to vector. The     ,      represents obstacle probability in the direction of vector 

and can be expressed as: 

{

    ,      ∑         ,    ,     

   

               ,    ,     
 

       

 

(4.14a) 

(4.14b) 

(4.14c) 

where          ,    ,     
is the CV of        ,    ,      and   is the weighting function obtained from 

Eq. 4.14b. Square of the CV and weighting function affect sensitivity of detected obstacle so that 

weight of distant obstacle will be reduce and a reliable obstacle distribution can be received. 

        ,    ,     
 is the distance from        ,    ,      to sphere frame; a and b are constants 

satisfying Eq.4.14c; R is a sphere space radius. 

 

4.3 Binary Mesh Representation 

To improve efficiency of algorithm, a mesh obstacle representation,       ,     , is created 

to replace vector obstacle representation without changing coordinate as shown in Fig. 

4.6. The binary value, denoted as     ,     , means the obstacle possibility in the direction 

of corresponding mesh.     ,        indicates safe,     ,        expresses dangerous. A 

threshold modified by computer simulation or experiment can be applied to determine 

    ,      based on     ,      of each vector as shown in Eq. 4.15.   

    ,      {
 ,        ,                

         ,               
 (4.15) 

A global mesh matrix, M, and local mesh matrix,    ,     , are defined as following: 
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(4.17) 

 

For an arbitrary       ,      chosen from M, the corresponding sub-direction in the sphere 

frame, denoted as      ,      
  , is considered desirable if following two requirements are 

satisfied. Firstly,     ,      equals to 1. Secondly, binary values of all the meshes from 

   ,      equal to 1. The      ,      
  can be expressed as: 

Figure 4.6:  Selection of sub-direction according to binary mesh representation. After 

binary value of 𝑀𝑒𝑠  𝑖,   𝑗  is determined by threshold, searching in the global mesh 

matrix and local mesh matrix to find final direction. 
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{

     ,      
     ,   

            
           

 (4.18) 

where  ,   are spherical coordinate with unit degree in the sphere frame. 

Traversing the global mesh matrix to acquire entire feasible sub-directions and the one is 

closest to target selected to be optimum that has minimum included angle with target. 

To determine which sub-direction is nearest to the target, unit vector of sub-direction   
 

  

and target vector   
  representing in the sphere frame are created to solve included angle 

   as shown in Fig. 4.7(a). 

{
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 (4.19) 

where   
 ,   

 ,   
  are unit vector coordinates of sub-direction.  ,  are spherical coordinate 

of sub-direction and r equal to 1 for unit vector. 

{
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 (4.20) 

where    
 ,    

 ,    
  are coordinates of target in the sphere frame.   ,   ,    

 
 

 
 

  are 

coordinates of target in global frame and   ,   ,    
 

 
 

 
  are coordinate of UAV in global 

frame. The space frame located in the same position as the UAV in global.     

          
  

 
     

 

|   
 

  ||   
 |

  (4.3) 

where Eq.4.21 is solved with cosine formula between two Euclidean vectors to obtain  . 

Substitute unit vector of sub-directions respectively to obtain all the available  .   
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The sub-direction corresponding with mimimum included angle is the optimum and is 

represented in the UAV frame, denoted as   
  which also is an unit vector as shown in 

Fig. 4.7(b). 

  
    

 
    

       ,   ,    
 

 
 

 
   (4.22) 

where   
 

  is the optimal sub-direction in the sphere frame.   
  is the rotation matrix as 

same as   
  mentioned in Section 4.1;   ,   ,    

 
 

 
 

  are coordinates of optimal sub-

direction in the UAV frame. 

The final direction,     
 , in UAV frame is expressed as: 

{
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 (4.23) 

Where  ,  are the spherical coordinates with unit degree in the UAV frame as shown in 

Fig. 4.7(b).   
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Figure 4.7: Determination of final direction. (a) 𝑨 
𝑺

  is the unit vector of sub-direction 

and 𝑩 
𝑺  is the target vector in sphere frame. 𝛽  is the included angle between two vectors. 

(b) Transformation of final direction from the sphere frame to UAV frame. 
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4.4 Simulation Environment  

Simulation is the general way to test validity of algorithm before algorithm is 

implemented into the real robotic platform. Not only promotion of effectiveness can be 

done by simulation but also risk of mission taking in an unknown environment will be 

reduced. Gazebo open source simulator 
[27]

 integrated with the Robot Operating System 

(ROS) framework will be installed for simulation of 3D VM algorithm. The Gazebo 

accesses to high performance physics engines such as ODE 
[28]

 providing capacity of 

dynamics simulation. Additionally, a lot of environment models, robotics platforms as 

multicopter and common sensors models like Kinect sensor are available in Gazebo by 

contribution of worldwide researchers and scholars. In the simulation, the 3D VM 

algorithm will be test on a Vision-based Aerial Vehicle (VAV) system which consists 

with a quadrotor and a Kinect sensor. Fig. 4.8 shows an example screenshot of the 

Figure 4.8: Simulation environment in Gazebo simulator. A kitchen is simulated 

to test 3D VM algorithm in the VAV system.   
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simulated kitchen environment with the VAV system. The quadrotor model was 

developed by Technical University of Darmstadt with a radius of 0.8 m and the Kinect 

sensor is assumed with a FOV (horizontal 60° and vertical 48.6°) and a sensor range of 

3m. The kitchen size is 15m × 7.5m (length × width).   

Fig. 4.9 illustrates system work diagram in simulation environment. The simulation ran 

on a Dell desktop computer running Linux operating system, Ubuntu 
[29]

. ROS node is a 

process that executes computation and communicates with each other by the 

publisher/subscriber message mechanism. The Gazebo models can publish data to and 

subscribe control command from ROS through plugins which are compatible with ROS 

message interface.  

Figure 4.9: Simulation system work diagram. The Kinect model published range date 

to ROS and quadrotor model published location data to ROS and subscribe control 

commands from ROS. The 3D VM algorithm was separated into 3 nodes to compute 

control commands.   
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4.5 Result and Discussion 

In this simulation, the static target located in the position     ,    ,         and the VAV 

located in the position      ,     ,         in the global frame at the beginning. The 

global frame located in the middle of kitchen. As 3D VM algorithm does not deal with a 

low level control which is the quadrotor dynamics system, the quadrotor kinematics is 

generated automatically using the simulated model. The quadrotor model is controlled by 

the velocity command                                 ,     . However, only three 

of them will be used in the simulation for two situations as expressed:  

      (
 

 
) ,                          (4.24) 

where    is the linear velocity along Z axis, Eq. 4.24 is the first situation that VAV rises 

up. 

{
 

 
           

                     

     {
        ,         

         ,         

 (4.25) 

where   ,    are linear velocity along X axis and Z axis respectively;      is angular 

velocity yaw movement.  ,   are control commands which are the final direction in 

quadrotor frame. Eq. 4.25 is the second situation that is the navigation of VAV system. 

To determine the threshold, the simulation is started with a threshold of zero firstly as 

shown in Fig. 4.10. After the VAV rises up, the     ,   of each vectors in the sphere 

space are displayed in Fig. 4.10(c). Two axes represent indexes of vector that are i and j 

in the sphere frame as described in section 4.2.  After observation of     ,   distributions, 

an adjustable percentage 25% is applied to multiply by the maximum     ,  in this 

position of the VAV to obtain approximate threshold equal to 7500.  
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Figure 4.10: Determination of threshold. (a) The RViz visualization toolbox from ROS. The 

local space, the VAV, quadrotor frame, global frame, path, real-time direction, mapped voxel 

representations and target are displayed. (b) The scene in simulation environment. (c) The 

𝑀𝑉 𝑖,𝑗  distributions of vectors in sphere space based on sphere frame.      
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Figure 4.11: Collision in the corner. (a) VAV crash shown in RViz. (b) VAV crash shown in 

Gazebo simulator. (c) The 𝑀𝑉 𝑖,𝑗  distributions of vectors in this position based on sphere frame. 

(d) The 𝑀𝑒𝑠  𝑖,𝑗  representations with applied the threshold, green pattern means safe direction 

and red pattern means dangerous direction. The critical space inside of black dash lines and final 

direction expressed in pink arrow are also displayed.    
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However, there is a tiny collision as shown in Fig. 4.11(b) while the VAV appearing in 

the corner in the simulation. Although the final direction chosen, the pink arrow as shown 

in Fig. 4.11(a), theoretically points to safe area, but it’s not the optimal one which can 

avoid the obstacles successfully. Because of the discrete nature of     ,   distributions 

displayed in Fig. 4.11(c), the result of direction selection is rough and did not consider 

the space close to obstacles.        

Therefore, a smoothing function is applied to obtain modified magnitude value of vector, 

    ,  
 , as expressed as: 

                            ,  
  

    ,            ,              ,          ,           ,      

    
                (4.26) 

where   is adjustable constant, in this simulation it selected as 5. 

In the new simulation with implementing Eq. 4.26, the VAV can avoid the obstacles in 

the corner as shown in Fig. 4.12. The     ,   distributions now become much smoother 

than previous one as shown in Fig. 4.12(c). Then       ,   representations are converted 

from     ,   distributions with green and red patterns which mean safe direction and risk 

direction respectively as displayed in Fig. 4.12(d). Compare of this       ,   

representations and the previous one as shown in Fig. 4.11(d), the area enclosed in black 

dash line is the critical space close to obstacles and in front of VAV. The preceding 

simulation chooses final direction expressed with pink arrow inside of critical space 

resulting in a collision and the last simulation selects final direction outside of critical 

space leading to safe navigation.    
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Figure 4.12: Collision avoidance in the corner. (a) Safe navigation in the corner shown in RViz. 

(b) Safe navigation in the corner shown in Gazebo simulator. (c) The 𝑀𝑉 𝑖,𝑗  distributions of 

vectors in this position based on sphere frame. The new threshold is selected by the same way.  

(d) The 𝑀𝑒𝑠  𝑖,𝑗  representations with applied the threshold.    
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The entire path is shown in Fig. 4.13 applied a threshold equals to 20%. The VAV system 

can navigate in the unknown obstacles successfully controlled by this 3D VM algorithm 

and the flight trajectory is relatively smooth. The implementation in the real platform will 

be test in the future.  

    

  

(a) 

(b) 

Figure 4.13: Entire path in simulation. (a) The path displayed in XY plane. (b) The path 

displayed in YZ plane. The yellow voxels were mapped to represent obstacles in RViz. 
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Figure 4.14: Positions of VAV system in the entire simulation based on different thresholds. (a) 

The 𝑥 position. (b) The 𝑦 position. (c) The 𝑧 position.  

(a) 

(c) 

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

x 
(m

) 

Time(s) 

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

-8

-6

-4

-2

0

2

4

6

0 10 20 30 40 50 60 70

y 
(m

) 

Time (s) 

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70

z 
(m

) 

Time (s) 

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

(b) 



 

57 

 

 

 

 

(a) 

-8.00E-03

-6.00E-03

-4.00E-03

-2.00E-03

0.00E+00

2.00E-03

4.00E-03

6.00E-03

0 10 20 30 40 50 60 70

R
o

ll 
(r

ad
) 

Time (s) 

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

-8.00E-02

-6.00E-02

-4.00E-02

-2.00E-02

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

0 10 20 30 40 50 60 70

P
it

ch
 (

ra
d

) 

Time (s) 

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

Y
aw

 (
ra

d
) 

Time (s) 

Threshold=20%

Threshold=25%

Threshold=30%

Threshold=35%

(c) 

(b) 

Figure 4.15: Attitudes of VAV system in the entire simulation based on different thresholds. (a) 

The roll angle. (b) The pitch angle. (c) The yaw angle.  
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The entire positions and attitudes of VAV based on different thresholds as shown in Fig. 

4.14 and Fig. 4.15 respectively. There were 4 simulations implemented according to the 

thresholds equal to 20%, 25%, 30% and 35% separately and the VAV successfully 

avoided all the obstacles in the simulations. The   position of VAV in global frame was 

effected by the thresholds from simulation time 50s to 70s as shown in Fig. 4.14(a). The 

smaller threshold value leaded to larger   position to avoid obstacles. Due to velocity 

along Y axis didn’t consider in quadrotor model so that the   position shown in Fig. 

4.14(b) didn’t change with varied thresholds. In Fig. 4.14(c), the smaller threshold value 

made more oscillations in   position. The attitudes of VAV have similar results based on 

different thresholds as shown in Fig. 4.15. From simulation time 10s to 25s, there are 

relative smooth performances because of no huge obstacle in front of VAV. Then the 

VAV occurred in the corner surrounded by obstacles, yaw angle and roll angle were 

changing a lot. For the pitch angle as shown in Fig. 4.15(b), it changed while the VAV 

raised up in the initial and dropped down in the end as shown in Fig. 4.13. In Fig. 4.15(c), 

the yaw angle performance increased a lot at beginning because the VAV was pointed to 

different direction compared to target.     

Also second simulation was implemented at a start global position     ,     ,      and a 

target position      ,    ,      as shown in Fig. 4.16. The VAV still can avoid obstacles 

and navigate smoothly in unknown indoor environment. 
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4.6 Summary 

This chapter presented the specific demonstration of 3D VM algorithm with 3 sections 

for data reduction. In the first section discusses sensor data is discussed to convert into 

voxels which are stored in the global. Additionally, vector representation of obstacle is 

introduced in order to decrease data in created sphere space frame. Then, binary value of 

mesh instead of vector is manipulated to determine final direction which in UAV frame. 

Also, the setup of simulation environment is presented in detail. Moreover, an improved 

method is demonstrated to avoid collision in corner area and desirable result is obtained.   

(a) 

(b) 

Figure 4.16: Entire path in second simulation. (a) The path displayed in XY plane. (b) The path 

displayed in YZ plane. The yellow voxels were mapped to represent obstacles in RViz. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

This thesis proposes a novel method for obstacle avoidance for UAS to generate 

collision-free path in unknown environment assuming the attitude and location of UAS 

are obtained. The presented Vision-based Aerial Vehicle (VAV) system employs a 

Kinect senor with low cost and light weight features to detect environment and computes 

safe direction to navigate. 

To achieve this, the 2D Vector Filed Histogram (VFH) algorithm is studied as described 

in Chapter 2. The VFH uses two-stage data reductions that are mapping obstacles from 

sensor data into two-dimensional grids and conversion of obstacles between grids to 

histograms. Based on the VFH algorithm, the presented Vector Mesh (VM) approach 

extends detection space from 2D to 3D with three data reductions including obstacle 

reconstructions from range data into voxels, obstacle estimations between voxels and 

vectors and conversion of obstacle representations from vectors into meshes as presented 

in Chapter 5. The 2D modified VFH algorithm was implemented in the developed 

Vision-based Ground Vehicle (VGV) system based on the Robot Operating System (ROS) 

environment described in chapter 3 so that computer simulation was also performance in 

the same environment with integrated Gazebo simulator presented in Chapter 5.      

In summary, the VAV system applied the VM algorithm firstly had a crash in the corner 

because of the discrete distribution of vector obstacle estimations. Then a smooth 
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function was implemented to weight the distributions so that the final result that the VAV 

could avoid the obstacles successfully was accomplished.                 

 

5.2 Future Work 

There are numerous enhancement can be built upon the presented thesis. The most 

important developments will be focused on three main areas: localization of VAV system 

and quadrotor dynamics controller.  

One of the major limitations of this VM algorithm is that the localization information of 

quadrotor is obtained from simulator model. This part work needs to be done by using 

intelligent localization algorithm integrated with Inertial Measurement Unit (IMU) sensor 

if future experiment will be implemented in real platforms. What’s more, the obstacle 

estimation of VM algorithm is based on attitude and global location of quadrotor. The 

more accurate location data is achieved, the more correct mapping of obstacles will be 

presented.  

Another defect of this thesis is not including the quadrotor dynamics controller. A real 

platform such as the VGV system, described in chapter 3, with high-level control leading 

by ROS and low-level control managing by robotics dynamics controller can be 

developed for the VAV system. Due to the compatible of ROS environment, the VM 

algorithm code can be directly moved into onboard computer. Therefore, a fight 

controller module for low-level control such as Pixhaw 
[30]

 is the optional to determine 

locomotion of VAV.    
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APPENDIX A 

C++ FILE FOR 3D VM ALGORITHM 

 

A.1 Transformation of Data  

A ROS node is used for transforming sensor data from Kinect frame to global frame. 

1. #include "pcl_ros/point_cloud.h"   
2. #include <pcl/point_types.h>   
3. #include <pcl_ros/filters/filter.h>   
4. #include <ros/ros.h>   
5. #include <iostream>   
6. #include <fstream>   
7. #include <limits>   
8. #include <tf/transform_datatypes.h>   
9. #include <tf/LinearMath/Transform.h>   
10. #include "pcl_ros/transforms.h"   
11. #include <pcl_ros/impl/transforms.hpp>   
12. #include <tf/transform_listener.h>   
13. #include <math.h>   
14.    
15. using namespace std;   
16.    
17. class FilterPointcloud   
18. {   
19.    
20. public:   
21.     FilterPointcloud()   
22.     {   
23.        
24.      sub_kinect = nh.subscribe<pcl::PointCloud<pcl::PointXYZ> > ("camera/depth/p

oints", 1, &FilterPointcloud::callback,this);   
25.      point_pub= nh.advertise<pcl::PointCloud<pcl::PointXYZ> >("FilteredPoints",1

);   
26.     }   
27.    
28.     void callback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& inputCloud ); 

  
29.    
30. private:   
31.     ros::NodeHandle nh;   
32.     ros::Subscriber sub_kinect;   
33.     ros::Publisher point_pub;   
34. };   
35.    
36. void FilterPointcloud::callback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& 

inputCloud )   
37. {   
38.    
39.    //convert PointCLoud2 to PoiintXYZ and remove NAN data   
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40.     pcl::PointCloud<pcl::PointXYZ>::Ptr tempCloud1(new pcl::PointCloud<pcl::Poin
tXYZ>);   

41.     std::vector<int> indices;   
42.     pcl::removeNaNFromPointCloud(*inputCloud,*tempCloud1, indices);   
43.    
44.    // reduce data amout   
45.     pcl::PointCloud<pcl::PointXYZ>::Ptr simpleCloud(new pcl::PointCloud<pcl::Poi

ntXYZ>);   
46.     pcl::PointCloud<pcl::PointXYZ>::iterator it;   
47.     int counter = 0;   
48.     for( it= tempCloud1->begin(); it!= tempCloud1->end(); it++)   
49.    {   
50.       if(counter%25==0)   
51.       simpleCloud->push_back (pcl::PointXYZ (it->x, it->y, it->z));    
52.       counter ++;   
53.    }   
54.    
55.     // transform obstacle XYZ from Kinect frame into quadrotor frame   
56.     tf::Transform transform1;   
57.     transform1.setOrigin( tf::Vector3(0.05,-0.02,0.2) );   
58.     tf::Quaternion quat;   
59.     quat.setRPY(-1.5707963, 0.0, -1.5707963);//roll,pitch,yaw angle    
60.     transform1.setRotation(quat);   
61.     pcl::PointCloud<pcl::PointXYZ>::Ptr tempCloud2(new pcl::PointCloud<pcl::Poin

tXYZ>);   
62.     pcl_ros::transformPointCloud(*simpleCloud,*tempCloud2, transform1);   
63.    
64.    //transform obstacle XYZ from quadrotor into global frame   
65.     tf::TransformListener listener;   
66.     tf::StampedTransform transform2;   
67.     tf::Transform transform3;   
68.     tf::Quaternion Q;   
69.     tf::Vector3 V;   
70.     listener.waitForTransform("world", "base_link", ros::Time(0),ros::Duration(3

.0));   
71.     listener.lookupTransform("world", "base_link", ros::Time(0), transform2);   
72.     Q=transform2.getRotation();   
73.     V.setX(transform2.getOrigin().x());   
74.     V.setY(transform2.getOrigin().y());   
75.     V.setZ(transform2.getOrigin().z());   
76.     transform3.setOrigin(V);   
77.     transform3.setRotation(Q);   
78.    
79.     pcl::PointCloud<pcl::PointXYZ>::Ptr tempCloud3(new pcl::PointCloud<pcl::Poin

tXYZ>);   
80.     pcl_ros::transformPointCloud(*tempCloud2,*tempCloud3, transform3);   
81.    
82.     //publish filtered pointcloud   
83.     pcl::PointCloud<pcl::PointXYZ> outputCloud;   
84.     for( it= tempCloud3->begin(); it!= tempCloud3->end(); it++)   
85.    {   
86.       outputCloud.points.push_back (pcl::PointXYZ (it->x, it->y, it->z));    
87.    }   
88.     point_pub.publish(outputCloud);   
89. }   
90.    
91. int main(int argc, char **argv)   
92. {   
93.      ros::init(argc, argv, "filter_pointcloud_node");   
94.      FilterPointcloud  Filterproject;   
95.      ros::spin();   
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96.      return 0;   
97. }   

 

A.2 Mapping Voxels  

A ROS is node used for mapping the data into obstacle representations of voxels  

1. #include "pcl_ros/point_cloud.h"   
2. #include <pcl/point_types.h>   
3. #include <pcl_ros/filters/filter.h>   
4. #include <ros/ros.h>   
5. #include <iostream>   
6. #include <fstream>   
7. #include <limits>   
8. #include <tf/transform_datatypes.h>   
9. #include <tf/LinearMath/Transform.h>   
10. #include "pcl_ros/transforms.h"   
11. #include <pcl_ros/impl/transforms.hpp>   
12. #include <tf/transform_listener.h>   
13. #include <math.h>   
14. #include <map>   
15. #include <string>   
16. #include "hector_navigation/Map.h"   
17. #include "hector_navigation/Coordinate.h"   
18. #include "hector_navigation/StructKeyMap.h"   
19. #include "visualization_msgs/Marker.h"   
20. #include "visualization_msgs/MarkerArray.h"   
21.    
22. class LocalMap   
23. {   
24.    
25. public:   
26.     LocalMap()   
27.     {   
28.        
29.      sub_filter = nh.subscribe<pcl::PointCloud<pcl::PointXYZ> > ("FilteredPoints

", 1, &LocalMap::callback,this);   
30.      sub_map = nh.subscribe<hector_navigation::Map>("Local_Map", 1, &LocalMap::c

allback_map,this);   
31.      map_pub = nh.advertise<hector_navigation::Map>("Local_Map", 1);   
32.      pub_CubeList = nh.advertise<visualization_msgs::Marker>("CubeList", 1);   
33.      pub_MapOutline = nh.advertise<visualization_msgs::Marker>("MapOutline", 1);

   
34.    }   
35.    
36.     void callback_map(const hector_navigation::Map::ConstPtr& inputMap);   
37.     void callback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& inputCloud ); 

  
38.    
39.     hector_navigation::Map local_map;    
40.     typedef std::map<position,int> map_;   
41.    
42. private:   
43.     ros::NodeHandle nh;   
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44.     ros::Subscriber sub_filter;   
45.     ros::Subscriber sub_map;   
46.     ros::Publisher map_pub;   
47.     ros::Publisher pub_CubeList;   
48.     ros::Publisher pub_MapOutline;   
49. };   
50.    
51. void LocalMap::callback_map(const hector_navigation::Map::ConstPtr& inputMap)   
52. {   
53.    
54.    local_map.points=inputMap->points;   
55.    local_map.cv=inputMap ->cv;   
56.    
57. }   
58.    
59. void LocalMap::callback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& inputClo

ud )   
60. {   
61.     tf::TransformListener listener;   
62.     tf::StampedTransform transform2;   
63.     listener.waitForTransform("world", "base_link", ros::Time(0),ros::Duration(3

.0));   
64.     listener.lookupTransform("world", "base_link", ros::Time(0), transform2);   
65.     double x= round(transform2.getOrigin().x()/0.1);//UAV location in gloabl 3D 

grid frame   
66.     double y= round(transform2.getOrigin().y()/0.1);   
67.     double z= round(transform2.getOrigin().z()/0.1);    
68.    
69. //visualize loacal space and voxels   
70.     visualization_msgs::Marker  line_list;   
71.     line_list.header.frame_id = "world";   
72.     line_list.header.stamp = ros::Time::now();   
73.     line_list.ns = "Outline";   
74.     line_list.id = 1;   
75.     line_list.type = visualization_msgs::Marker::LINE_LIST;   
76.     line_list.action = visualization_msgs::Marker::ADD;   
77.     line_list.pose.orientation.w = 1.0;   
78.     line_list.scale.x = 0.005;   
79.     line_list.color.r = 1.0f;   
80.     line_list.color.g = 0.5f;   
81.     line_list.color.a = 1.0;   
82.    
83.     geometry_msgs::Point vertex;   
84.     vertex.x=x*0.1-0.05-2.9;   
85.     vertex.y=y*0.1-0.05-2.9;   
86.     vertex.z=z*0.1-0.05+2.9;   
87.     line_list.points.push_back(vertex);   
88.     vertex.x=x*0.1-0.05-2.9;   
89.     vertex.y=y*0.1-0.05-2.9;   
90.     vertex.z=z*0.1-0.05-2.9;   
91.     line_list.points.push_back(vertex);//12   
92.    
93.     vertex.x=x*0.1-0.05-2.9;   
94.     vertex.y=y*0.1-0.05-2.9;   
95.     vertex.z=z*0.1-0.05-2.9;   
96.     line_list.points.push_back(vertex);   
97.     vertex.x=x*0.1-0.05+2.9;   
98.     vertex.y=y*0.1-0.05-2.9;   
99.     vertex.z=z*0.1-0.05-2.9;   
100.     line_list.points.push_back(vertex);//23   
101.    
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102.     vertex.x=x*0.1-0.05+2.9;   
103.     vertex.y=y*0.1-0.05-2.9;   
104.     vertex.z=z*0.1-0.05-2.9;   
105.     line_list.points.push_back(vertex);   
106.     vertex.x=x*0.1-0.05+2.9;   
107.     vertex.y=y*0.1-0.05-2.9;   
108.     vertex.z=z*0.1-0.05+2.9;   
109.     line_list.points.push_back(vertex);//34   
110.    
111.     vertex.x=x*0.1-0.05+2.9;   
112.     vertex.y=y*0.1-0.05-2.9;   
113.     vertex.z=z*0.1-0.05+2.9;   
114.     line_list.points.push_back(vertex);   
115.     vertex.x=x*0.1-0.05-2.9;   
116.     vertex.y=y*0.1-0.05-2.9;   
117.     vertex.z=z*0.1-0.05+2.9;   
118.     line_list.points.push_back(vertex);//41   
119.    
120.     vertex.x=x*0.1-0.05+2.9;   
121.     vertex.y=y*0.1-0.05-2.9;   
122.     vertex.z=z*0.1-0.05+2.9;   
123.     line_list.points.push_back(vertex);   
124.     vertex.x=x*0.1-0.05+2.9;   
125.     vertex.y=y*0.1-0.05+2.9;   
126.     vertex.z=z*0.1-0.05+2.9;   
127.     line_list.points.push_back(vertex);//48   
128.    
129.     vertex.x=x*0.1-0.05+2.9;   
130.     vertex.y=y*0.1-0.05+2.9;   
131.     vertex.z=z*0.1-0.05+2.9;   
132.     line_list.points.push_back(vertex);   
133.     vertex.x=x*0.1-0.05+2.9;   
134.     vertex.y=y*0.1-0.05+2.9;   
135.     vertex.z=z*0.1-0.05-2.9;   
136.     line_list.points.push_back(vertex);//87   
137.    
138.     vertex.x=x*0.1-0.05+2.9;   
139.     vertex.y=y*0.1-0.05+2.9;   
140.     vertex.z=z*0.1-0.05-2.9;   
141.     line_list.points.push_back(vertex);   
142.     vertex.x=x*0.1-0.05+2.9;   
143.     vertex.y=y*0.1-0.05-2.9;   
144.     vertex.z=z*0.1-0.05-2.9;   
145.     line_list.points.push_back(vertex);//73   
146.    
147.     vertex.x=x*0.1-0.05-2.9;   
148.     vertex.y=y*0.1-0.05+2.9;   
149.     vertex.z=z*0.1-0.05+2.9;   
150.     line_list.points.push_back(vertex);   
151.     vertex.x=x*0.1-0.05+2.9;   
152.     vertex.y=y*0.1-0.05+2.9;   
153.     vertex.z=z*0.1-0.05+2.9;   
154.     line_list.points.push_back(vertex);//58   
155.    
156.     vertex.x=x*0.1-0.05-2.9;   
157.     vertex.y=y*0.1-0.05+2.9;   
158.     vertex.z=z*0.1-0.05+2.9;   
159.     line_list.points.push_back(vertex);   
160.     vertex.x=x*0.1-0.05-2.9;   
161.     vertex.y=y*0.1-0.05+2.9;   
162.     vertex.z=z*0.1-0.05-2.9;   
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163.     line_list.points.push_back(vertex);//56   
164.    
165.     vertex.x=x*0.1-0.05-2.9;   
166.     vertex.y=y*0.1-0.05+2.9;   
167.     vertex.z=z*0.1-0.05-2.9;   
168.     line_list.points.push_back(vertex);   
169.     vertex.x=x*0.1-0.05+2.9;   
170.     vertex.y=y*0.1-0.05+2.9;   
171.     vertex.z=z*0.1-0.05-2.9;   
172.     line_list.points.push_back(vertex);//67   
173.    
174.     vertex.x=x*0.1-0.05-2.9;   
175.     vertex.y=y*0.1-0.05+2.9;   
176.     vertex.z=z*0.1-0.05+2.9;   
177.     line_list.points.push_back(vertex);   
178.     vertex.x=x*0.1-0.05-2.9;   
179.     vertex.y=y*0.1-0.05-2.9;   
180.     vertex.z=z*0.1-0.05+2.9;   
181.     line_list.points.push_back(vertex);//51   
182.    
183.     vertex.x=x*0.1-0.05-2.9;   
184.     vertex.y=y*0.1-0.05+2.9;   
185.     vertex.z=z*0.1-0.05-2.9;   
186.     line_list.points.push_back(vertex);   
187.     vertex.x=x*0.1-0.05-2.9;   
188.     vertex.y=y*0.1-0.05-2.9;   
189.     vertex.z=z*0.1-0.05-2.9;   
190.     line_list.points.push_back(vertex);//62   
191.    
192.     pub_MapOutline.publish(line_list);   
193.    
194. //Delete far away COR in local_map (std::map structure) project   
195.     position P1;   
196.     position P2;   
197.     position P3;   
198.     map_ tep_map;   
199.     int map_size = local_map.cv.size();   
200.     for(int i=0; i<map_size; i++)   
201.    {     
202.          P1.x=local_map.points[i].x;   
203.          P1.y=local_map.points[i].y;   
204.          P1.z=local_map.points[i].z;   
205.          if ((P1.x >=(x-29) && P1.x<=(x+29)) && (P1.y >=(y-

29) && P1.y<=(y+29)) && (P1.z >=(z-29) && P1.z<=(z+29)))   
206.        {   
207.         tep_map[P1]=local_map.cv[i];   
208.      
209.        }       
210.    }   
211.    
212. // add new COR into local_map (std::map structure) project    
213.    
214.      int cloudsize = (inputCloud -> width) * (inputCloud -> height);   
215.      double x_;   
216.      double y_;   
217.      double z_;   
218.      for( int j=0; j<cloudsize; j++)   
219.      {     
220.    
221.         x_= round((inputCloud ->points[j].x)/0.1);   
222.         y_= round((inputCloud ->points[j].y)/0.1);   
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223.         z_= round((inputCloud ->points[j].z)/0.1);   
224.    
225.         if ((x_ >=(x-29) && x_<=(x+29)) && (y_ >=(y-

29) && y_<=(y+29)) && (z_ >=(z-29) && z_<=(z+29)))   
226.        {   
227.         P2.x=x_;   
228.         P2.y=y_;   
229.         P2.z=z_;   
230.    
231.             int value =tep_map[P2];   
232.             if (value <20)   
233.         {   
234.           value++;   
235.         }   
236.             tep_map[P2]=value;   
237.    
238.        }   
239.      }   
240.    
241.   // convert local_map project into (std::vector structure) to publish   
242.      visualization_msgs::Marker cube_list;   
243.      cube_list.header.frame_id = "world";   
244.      cube_list.header.stamp = ros::Time::now();   
245.      cube_list.ns = "Cubes";   
246.      cube_list.id = 2;   
247.      cube_list.type = visualization_msgs::Marker::CUBE_LIST;   
248.      cube_list.action = visualization_msgs::Marker::ADD;   
249.      cube_list.pose.orientation.w = 1.0;   
250.      cube_list.scale.x = 0.1f;   
251.      cube_list.scale.y = 0.1f;   
252.      cube_list.scale.z = 0.1f;   
253.      cube_list.color.r = 1.0f;   
254.      cube_list.color.g = 0.5f;   
255.      cube_list.color.a = 1.0;   
256.    
257.       hector_navigation::Coordinate coord;   
258.       map_::iterator iter;   
259.       for (iter = tep_map.begin(); iter != tep_map.end();++iter)   
260.       {   
261.         P3=  iter->first;   
262.         coord.x=P3.x;   
263.         coord.y=P3.y;   
264.         coord.z=P3.z;   
265.         if ((iter->second)==20)   
266.         {   
267.             geometry_msgs::Point temp;   
268.             temp.x = coord.x*0.1-0.05;   
269.             temp.y = coord.y*0.1-0.05;   
270.             temp.z = coord.z*0.1-0.05;   
271.             cube_list.points.push_back(temp);   
272.     }   
273.    
274.         local_map.points.push_back(coord);   
275.         local_map.cv.push_back(iter->second);   
276.       }   
277.    
278.       pub_CubeList.publish(cube_list);   
279.       local_map.header.stamp=ros::Time::now();   
280.       map_pub.publish(local_map);   
281. }   
282.    
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283. int main(int argc, char **argv)   
284. {   
285.      ros::init(argc, argv, "local_map_node");   
286.    
287.      LocalMap  localproject;   
288.    
289.      ros::spin();    
290.    
291.      return 0;   
292. }   

 

A.3 Mapping Vectors 

A ROS is node used for converting voxels into vectors. 

1. #include <ros/ros.h>   
2. #include <iostream>   
3. #include <fstream>   
4. #include <limits>   
5. #include <tf/transform_datatypes.h>   
6. #include <tf/LinearMath/Transform.h>   
7. #include <tf/transform_listener.h>   
8. #include <math.h>   
9. #include <map>   
10. #include <vector>   
11. #include <string>   
12. #include "hector_navigation/Map.h"   
13. #include "hector_navigation/Coordinate.h"   
14. #include "hector_navigation/StructKeyMap.h"   
15. #include "hector_navigation/Mesh.h"   
16. #include "hector_navigation/Row.h"   
17. #include "hector_navigation/Size.h"   
18.    
19. #define PI 3.14159265   
20.    
21. class SphereMap   
22. {   
23.    
24. public:   
25.     SphereMap()   
26.     {   
27.        
28.      sub_map = nh.subscribe<hector_navigation::Map>("Local_Map", 1, &SphereMap::

callback_map,this);   
29.      mesh_pub = nh.advertise<hector_navigation::Mesh>("Sphere_Mesh", 1);   
30.     }   
31.    
32.     void callback_map(const hector_navigation::Map::ConstPtr& inputMap);   
33.    
34.     typedef std::map<sphere,int> sphere_;//[(theta,phi,r),(cv)]   
35.     typedef std::map<Vector,double> vector_;//[(THETA,PHI),(mv)]   
36.     typedef std::vector<Vector>   direction;   
37.    
38. private:   
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39.     ros::NodeHandle nh;   
40.     ros::Subscriber sub_map;   
41.     ros::Publisher mesh_pub;   
42. };   
43.    
44. void SphereMap::callback_map(const hector_navigation::Map::ConstPtr& inputMap)   
45. {   
46.     position goal;   
47.     goal.x=3;   
48.     goal.y=0;   
49.     goal.z=1;   
50.    
51.     tf::TransformListener listener;   
52.     tf::StampedTransform transform2;   
53.     listener.waitForTransform("world", "base_link", ros::Time(0),ros::Duration(3

.0));   
54.     listener.lookupTransform("world", "base_link", ros::Time(0), transform2);   
55.     double x= round(transform2.getOrigin().x()/0.1);//UAV location in gloabl 3D 

grid frame   
56.     double y= round(transform2.getOrigin().y()/0.1);   
57.     double z= round(transform2.getOrigin().z()/0.1);       
58.    
59. //convert local_map into sphere_map   
60.    
61.     hector_navigation::Map local_map;   
62.     sphere_ sphere_map;//[theta,phi,r] --[cv]   
63.     sphere S_point;//[theta,phi,r]   
64.     double angle1,angle2,phi_,dis, theta_,x_,y_,z_;   
65.     int cv_;   
66.    
67.     local_map.points=inputMap->points;   
68.     local_map.cv=inputMap ->cv;   
69.    
70.     for (int i = 0; i<local_map.cv.size(); i++)   
71.    {   
72.         x_ =local_map.points[i].x;   
73.         y_ =local_map.points[i].y;   
74.         z_ =local_map.points[i].z;   
75.             cv_=local_map.cv[i];   
76.     
77.             dis=sqrt(pow(x_-x,2.0)+pow(y_-y,2.0)+pow(z_-z,2.0));   
78.     
79.         if (dis<=18.5)//local_map to sphere space, 70% of sensor range   
80.            {   
81.                     //3d grid to sphere --theta   
82.         angle2 =acos((z_-z)/sqrt(pow(x_-x,2.0)+pow(y_-y,2.0)+pow(z_-z,2.0)));   
83.             theta_=angle2*180/PI;   
84.                    
85.                 if (theta_ >25.0 && theta_ <=155.0)   
86.           {   
87.           S_point.Theta=ceil((theta_-25)/10);   
88.           }   
89.    
90.                    //3d grid to sphere --phi   
91.                angle1 = atan2(y_-y,x_-x);   
92.                if (angle1<=0  )   
93.           {   
94.           phi_=ceil((angle1*180/PI+360)/10);   
95.           }   
96.                else   
97.           {   
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98.           phi_=ceil(angle1*180/PI/10);   
99.           }   
100.                 S_point.Phi=phi_;   
101.    
102.                      //3d grid to sphere --R   
103.                 S_point.R=dis;   
104.    
105.             sphere_map[S_point]=cv_;   
106.            
107.             }   
108.      }   
109.    
110. //calcul Vector MV    
111.    
112.    vector_ vector_mv;//[THETA,PHI]--[MV]   
113.    sphere_::iterator iter;   
114.    Vector Index;//[THETA,PHI]   
115.    sphere S_point1;//[theta,phi,r]   
116.    for(iter=sphere_map.begin(); iter != sphere_map.end(); ++iter)   
117. {   
118.      S_point1=iter -> first;   
119.      Index.PHI=S_point1.Phi;   
120.      Index.THETA=S_point1.Theta;   
121.    
122.      double value=vector_mv[Index];   
123.      value=value+pow((iter -> second),2.0)*(10-0.5*S_point1.R);   
124.      vector_mv[Index]=value;   
125. }   
126.    
127. //smooth funcation appiled to  mv   
128. Vector index1, index2,index3,index4,index5,index6,index7,index8,index9; 

   
129.    
130. for (int j=1; j<37;j++)   
131. {   
132.   for(int k=1; k<14;k++)   
133.    {   
134.      index1.PHI=j-4;   
135.      index1.THETA=k;   
136.      index2.PHI=j-3;   
137.      index2.THETA=k;   
138.      index3.PHI=j-2;   
139.      index3.THETA=k;   
140.      index4.PHI=j-1;   
141.      index4.THETA=k;   
142.      index5.PHI=j;   
143.      index5.THETA=k;   
144.      index6.PHI=j+1;   
145.      index6.THETA=k;   
146.      index7.PHI=j+2;   
147.      index7.THETA=k;   
148.      index8.PHI=j+3;   
149.      index8.THETA=k;   
150.      index9.PHI=j+4;   
151.      index9.THETA=k;   
152.    
153.      vector_mv[index5]=(vector_mv[index1]*1+vector_mv[index2]*2+vector_m

v[index3]*3+vector_mv[index4]*4+vector_mv[index5]*5+vector_mv[index6]*4+vector_m
v[index7]*3+vector_mv[index8]*2+vector_mv[index9]*1)/11;   

154.    }   
155. }   
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156.    
157. //2D array structure store binary value   
158. hector_navigation::Row ROW;   
159. hector_navigation::Mesh MESH;   
160. Vector index_mesh;   
161. int mesh[13][36];   
162. for (int j=1; j<14;j++)   
163. {   
164.   for(int k=1; k<37;k++)   
165.    {   
166.         
167.     index_mesh.PHI=k;   
168.     index_mesh.THETA=j;   
169.     if (vector_mv[index_mesh]>7500.0)   
170.     {   
171.      mesh[j-1][k-1]=0;   
172.     }   
173.     else   
174.     {   
175.     mesh[j-1][k-1]=1;   
176.     }   
177.       
178.     ROW.row.push_back(mesh[j-1][k-1]);   
179.          file11<<vector_mv[index_mesh]<<" ";   
180.     }   
181.                
182.  MESH.column.push_back(ROW);   
183.  ROW.row.clear();   
184.    
185. }   
186.    
187. MESH.header.stamp=ros::Time::now();   
188. mesh_pub.publish(MESH);   
189.    
190. }   
191.    
192. int main(int argc, char **argv)   
193. {   
194.      ros::init(argc, argv, "sphere_map_node");   
195.      SphereMap  sphereproject;   
196.      ros::spin();   
197.      return 0;   
198. }   

 

A.4 Converting Meshes and Direction Selection  

A ROS is node used for converting vectors into mesh and determining optimal direction. 

1. #include <ros/ros.h>   
2. #include <iostream>   
3. #include <fstream>   
4. #include <limits>   
5. #include <tf/transform_datatypes.h>   
6. #include <tf/LinearMath/Transform.h>   
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7. #include <tf/transform_listener.h>   
8. #include <math.h>   
9. #include <vector>   
10. #include <string>   
11. #include "hector_navigation/StructKeyMap.h"   
12. #include <geometry_msgs/Twist.h>   
13. #include <geometry_msgs/Pose.h>   
14. #include <algorithm>   
15. #include "hector_navigation/Mesh.h"   
16. #include "hector_navigation/Row.h"   
17. #include "hector_navigation/Size.h"   
18. #include <visualization_msgs/Marker.h>   
19. #include "visualization_msgs/MarkerArray.h"   
20.    
21. #define PI 3.14159265   
22.    
23. class ControlCommand   
24. {   
25.    
26. public:   
27.     ControlCommand()   
28.     {   
29.        
30.      sub_mesh = nh.subscribe<hector_navigation::Mesh>("Sphere_Mesh", 1, &Control

Command::callback_mesh,this);   
31.      pub_vel = nh.advertise<geometry_msgs::Twist>("cmd_vel", 1);   
32.      pub_LineStrip = nh.advertise<visualization_msgs::Marker>("LineStrip", 1);   
33.      pub_Goalsphere = nh.advertise<visualization_msgs::Marker>("Goalsphere", 1);

   
34.      pub_Arrow= nh.advertise<visualization_msgs::Marker>("Arrow",1);   
35.     }   
36.    
37.     void callback_mesh(const hector_navigation::Mesh::ConstPtr& inputMesh);   
38.    
39.     typedef std::vector<Vector>   direction;   
40.     geometry_msgs::Twist moveCommand;   
41.     visualization_msgs::Marker  line_strip;   
42.    
43. private:   
44.     ros::NodeHandle nh;   
45.     ros::Subscriber sub_mesh;   
46.     ros::Publisher pub_vel;   
47.     ros::Publisher pub_LineStrip;   
48.     ros::Publisher pub_Goalsphere;   
49.     ros::Publisher pub_Arrow;   
50. };   
51.    
52. void ControlCommand::callback_mesh(const hector_navigation::Mesh::ConstPtr& inpu

tMesh)   
53. {    
54.     position goal;   
55.     goal.x=2.5;   
56.     goal.y=5.0;   
57.     goal.z=3.0;   
58.    
59. //PUBLISH Goal in RVIZ     
60.     visualization_msgs::Marker  dummy_goal;   
61.     dummy_goal.header.frame_id = "world";   
62.     dummy_goal.header.stamp = ros::Time::now();   
63.     dummy_goal.ns = "Dummy_Goal";   
64.     dummy_goal.id = 4;   
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65.     dummy_goal.type = visualization_msgs::Marker::SPHERE;   
66.     dummy_goal.action = visualization_msgs::Marker::ADD;   
67.     dummy_goal.pose.orientation.w = 1.0;   
68.     dummy_goal.scale.x = 0.1;   
69.     dummy_goal.scale.y = 0.1;   
70.     dummy_goal.scale.z = 0.1;   
71.     dummy_goal.color.r = 1.0f;   
72.     dummy_goal.color.a = 1.0;   
73.     dummy_goal.pose.position.x = goal.x;   
74.     dummy_goal.pose.position.y = goal.y;   
75.     dummy_goal.pose.position.z = goal.z;   
76.     dummy_goal.lifetime = ros::Duration();   
77.     pub_Goalsphere.publish(dummy_goal);   
78.    
79.     tf::TransformListener listener;   
80.     tf::StampedTransform transform2;   
81.     tf::Transform transform3;   
82.     tf::Quaternion Q;   
83.     tf::Vector3 V;   
84.     listener.waitForTransform("world", "base_link", ros::Time(0),ros::Duration(3

.0));   
85.     listener.lookupTransform("world", "base_link", ros::Time(0), transform2);   
86.     double x= transform2.getOrigin().x();//UAV location in gloabl    
87.     double y= transform2.getOrigin().y();   
88.     double z= transform2.getOrigin().z();    
89.    
90.     Q=transform2.getRotation();       
91.     V.setX(0);   
92.     V.setY(0);   
93.     V.setZ(0);   
94.     transform3.setOrigin(V);   
95.     transform3.setRotation(Q.inverse ());      
96.    
97. //PUBLISH path in RVIZ     
98.    
99.     line_strip.header.frame_id = "world";   
100.     line_strip.header.stamp = ros::Time::now();   
101.     line_strip.ns = "Lines";   
102.     line_strip.id = 0;   
103.     line_strip.type = visualization_msgs::Marker::LINE_STRIP;   
104.     line_strip.action = visualization_msgs::Marker::ADD;   
105.     line_strip.pose.orientation.w = 1.0;   
106.     line_strip.scale.x = 0.02;   
107.     line_strip.color.g = 1.0f;   
108.     line_strip.color.b = 1.0f;   
109.     line_strip.color.a = 1.0;   
110.    
111.         geometry_msgs::Point p;   
112.     p.x=x;   
113.     p.y=y;   
114.     p.z=z;   
115.     line_strip.points.push_back(p);   
116.     pub_LineStrip.publish(line_strip);   
117.    
118. //STEERING CONTROL   
119.         hector_navigation::Mesh MESH;   
120.         MESH.column= inputMesh ->column;   
121.    
122.    
123.         int mesh[13][36];   
124.         for (int j=0; j<13;j++)   
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125.         {   
126.           for(int k=0; k<36;k++)   
127.            {   
128.          mesh[j][k]=MESH.column[j].row[k];             
129.             
130.            }      
131.         }   
132.    
133.     bool is_ok=0;//pick up safe sub_directions   
134.     direction dire_vector;   
135.     Vector dire_index;   
136.     dire_vector.clear();   
137.        
138.     for (int j=1; j<12;j++)   
139.     {   
140.       for(int k=0; k<36;k++)   
141.       {   
142.    
143.         if (mesh[j][k]== 1)   
144.         {   
145.             if (k==0)   
146.             {   
147.                if (((mesh[j-1][35]==1 && mesh[j-1][k]==1)&& (mesh[j-

1][k+1]==1&&mesh[j][35]==1))   
148.      &&((mesh[j][k+1]==1 && mesh[j+1][35]==1)&& (mesh[j+1][k]==1&&mesh[j

+1][k+1]==1))  )   
149.                   {   
150.                                    is_ok=1;       
151.                      }   
152.    
153.             }   
154.             else if (k==35)   
155.             {   
156.                if (((mesh[j-1][k-1]==1 && mesh[j-1][k]==1)&& (mesh[j-

1][0]==1&&mesh[j][k-1]==1))    
157.     &&((mesh[j][0]==1 && mesh[j+1][k-

1]==1)&& (mesh[j+1][k]==1&&mesh[j+1][0]==1))  )   
158.    
159.                    {   
160.                                   is_ok=1;   
161.                    }         
162.    
163.             }   
164.             else   
165.             {   
166.                if (((mesh[j-1][k-1]==1 && mesh[j-1][k]==1)&& (mesh[j-

1][k+1]==1&&mesh[j][k-1]==1))    
167.     &&((mesh[j][k+1]==1 && mesh[j+1][k-

1]==1)&& (mesh[j+1][k]==1&&mesh[j+1][k+1]==1))  )   
168.    
169.                    {   
170.                                   is_ok=1;   
171.                    }    
172.              }   
173.              if (is_ok==1)   
174.             {                
175.               dire_index.THETA=(10*j+30)*PI/180;   
176.               dire_index.PHI=(10*k+5)*PI/180;   
177.               dire_vector.push_back(dire_index);   
178.    
179.             }   
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180.    
181.              is_ok=0;   
182.           }      
183.       }   
184.             
185.     }   
186. //choose the closest direction    
187.     direction::iterator IT;   
188.     vector<double> delta;   
189.     double Dot_product;   
190.     double magnitude;   
191.     double Angle;   
192.     for(IT=dire_vector.begin(); IT != dire_vector.end(); ++IT)   
193.     {      
194.          dire_index =*IT;   
195.          Dot_product=(goal.x-

x)*sin(dire_index.THETA)*cos(dire_index.PHI)+(goal.y-
y)*sin(dire_index.THETA)*sin(dire_index.PHI)+(goal.z-z)*cos(dire_index.THETA);   

196.          magnitude=sqrt(pow(goal.x-x,2.0)+pow(goal.y-y,2.0)+pow(goal.z-
z,2.0));   

197.          Angle=acos(Dot_product/magnitude);    
198.          delta.push_back(Angle);   
199.     }   
200. //transform direction to quadrotor frame and steer quadrotor which way t

o rotate   
201.     int min_index=min_element(delta.begin(),delta.end())-

 delta.begin();   
202.    
203.     double dir_theta=dire_vector[min_index].THETA;   
204.     double dir_phi=dire_vector[min_index].PHI;   
205.         tf::Vector3 S_dir;   
206.     S_dir.setX(sin(dir_theta)*cos(dir_phi));   
207.     S_dir.setY(sin(dir_theta)*sin(dir_phi));       
208.     S_dir.setZ(cos(dir_theta));   
209.         tf::Vector3 U_dir=transform3*S_dir;   
210.    
211.     double dir_THETA=acos(U_dir.getZ()/sqrt(pow(U_dir.getX(),2.0)+pow(U_

dir.getY(),2.0)+pow(U_dir.getZ(),2.0)));   
212.     double dir_PHI=atan2(U_dir.getY(),U_dir.getX());   
213.    
214. //Pubslih direction in RVIZ   
215.         visualization_msgs::Marker arrow;      
216.     arrow.header.frame_id = "base_link";   
217.     arrow.header.stamp = ros::Time::now();   
218.     arrow.ns = "Directions";   
219.     arrow.id = 5;   
220.     arrow.type = visualization_msgs::Marker::ARROW;   
221.     arrow.action = visualization_msgs::Marker::ADD;   
222.     arrow.pose.orientation.w = 1.0;   
223.     arrow.scale.x = 0.02;   
224.     arrow.scale.y=0.05;   
225.     arrow.scale.z=0.05;    
226.     arrow.color.r=1.0;       
227.     arrow.color.g = 0;   
228.     arrow.color.b = 1.0;   
229.     arrow.color.a = 1.0;   
230.    
231.         geometry_msgs::Point p1;   
232.     p1.x=0;   
233.     p1.y=0;   
234.     p1.z=0;   
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235.     arrow.points.push_back(p1);   
236.         geometry_msgs::Point p2;   
237.     p2.x=U_dir.getX();   
238.     p2.y=U_dir.getY();   
239.     p2.z=U_dir.getZ();   
240.     arrow.points.push_back(p2);   
241.     pub_Arrow.publish(arrow);   
242.    
243.     int rotate;   
244.     double error=0.087266;   
245.     if (dir_PHI >= error )   
246.     {   
247.         rotate=1;   
248.     }   
249.     else if (dir_PHI <= -error )   
250.     {   
251.         rotate=-1;   
252.     }   
253.     else   
254.     {   
255.         rotate=0;   
256.     }   
257.    
258.     if (abs(x-goal.x)<=0.3 && abs(y-goal.y)<=0.3  && abs(z-

goal.z)<=0.3 )   
259.     {   
260.         moveCommand.linear.x = 0.0;   
261.         moveCommand.linear.z = 0.0;   
262.         moveCommand.angular.z = -0.2;   
263.                 pub_vel.publish(moveCommand);   
264.         ROS_INFO_STREAM("Arrive goal !!");   
265.     }   
266.     else   
267.     {   
268.         if(z <0.5)//rise to 0.5m   
269.         {   
270.            moveCommand.linear.x = 0;   
271.            moveCommand.linear.z = 0.2;   
272.            moveCommand.angular.z = 0;   
273.            pub_vel.publish(moveCommand);   
274.            ROS_INFO_STREAM("Rise now !");   
275.         }   
276.         else   
277.         {   
278.             moveCommand.linear.x = 0.2;   
279.             moveCommand.linear.z = 0.2*tan(PI/2-dir_THETA);   
280.             moveCommand.angular.z = 0.2*rotate;   
281.             pub_vel.publish(moveCommand);   
282.         }   
283.     }   
284.        
285. }   
286.    
287. int main(int argc, char **argv)   
288. {   
289.      ros::init(argc, argv, "command_node");   
290.      ControlCommand  controlproject;   
291.      ros::spin();    
292.      return 0;   
293. }   
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