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Abstract 

Nature is a constant source of inspiration for engineers and scientists through its simple, 

effective, and elegant solutions to many complex problems. Smart materials and soft robotics 

have been seen to be particularly well suited for developing biomimetic devices and are active 

fields of research. In this study, the design, modeling, and optimization of a new biomimetic soft 

robot is described. Preliminary work was made in the modeling of a biomimetic robot based on 

the locomotion and kinematics of jellyfish. Modifications were made to the governing equations 

for jellyfish locomotion that accounted for geometric differences between biology and the 

robotic design. Particularly, the capability of the model to account for the mass and geometry of 

the robot design. A simple geometrically defined model is developed and used to show the 

feasibility of a proposed biomimetic robot. With the concept verified, a more robust physics-

based model is developed. In this model, linear beam theory is coupled to an equivalent circuit 

model to actuate the robot with ionic polymer-metal composite (IPMC) actuators. The circuit 

model is verified using a robust, Multiphysics finite element model of the IPMC actuator. The 

newly created physics-based model of the soft robot is compared to that of the geometric model 

as well as biological jellyfish swimming to highlight its improved efficiency. The design is then 

optimized using a sequential quadratic programming algorithm for nonlinear multivariable 

optimization. Standard deviations of the optimized values are used to verify their accuracy, and 

the propulsion efficiency of the unoptimized and optimized model are compared to verify the 

improvement in efficiency and overall performance. Scale effects on the optimal design are also 

examined as an initial form of dimensional analysis. The optimized design shows clear 

improvement over the unoptimized counterpart, and the modularity of the modeling approach 

allows for more complex models that include nonlinearities to be easily added. 
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Chapter 1. Introduction 

Over the last 25 years, electroactive polymers (EAP) have emerged and grown into a vast 

and diverse field of research, with numerous potential applications in soft robotics and smart 

materials. Due to their similar behavior to biological muscle, these materials are commonly 

referred to as artificial muscles [1]. O’Halloran et al give an overview of EAP technology in [2], 

but the basic operation of these materials is a transduction of electrical stimuli into mechanical 

deformation. Most EAP materials have the capability of both electromechanical transduction, 

where they can act as actuators [3–5], as well as mechanoelectrical transduction, where they 

work as sensors [6–9]. This duality lies in the fundamentals of the electrochemical nature that 

governs both transduction modes, and is explored throughout literature [10–13]. The class of 

EAP includes materials such as dielectric elastomers, ferroelectric polymers, ionic polymer gels, 

and many more [2]. 

In this work the focus is placed on the ionic polymer-metal composite (IPMC). This 

material consists of an ionic polymer, typically Nafion® or Aquivion® [4,14], that is composited 

between two electrodes, most commonly platinum or gold. While there are a few fabrication 

methods for such materials, typically the electrodes are plated to an activated polymer membrane 

through an electroless process [15]. IPMC actuators have a unique characteristic in that they 

exhibit large mechanical deformations in response to a relatively low voltage [1,11,14,16,17], 

making them attractive for compact, low power soft robotics.  

IPMCs achieve their electromechanical transduction due to free moving cations within 

the polymer that are hydrated with water molecules. Under an applied electric potential to the 

electrodes, these hydrated cations migrate to the cathode and cause swelling at the polymer-

electrode interface, which in turn bends the IPMC towards the anode. Due to the similarities of 
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EAP to biological muscle, biology inspires many soft robotic designs seen in literature. This 

gives rise to an entire field of soft robotics, namely, biomimetic soft robotics [5,18].  

The IPMCs ability to actuate in water [19–22] has focused the soft robotics development 

heavily on aquatic animals. The biomimetic applications of IPMCs range from small scale 

biological structures such as cilia [23] all the way up to full size robots [24]. Fabrication of fin-

like actuators has been demonstrated in [15,25,26], while the authors in [27–32] all worked on 

developing small fish-like robots. Manta ray robots are seen in the works of [33,34], and a tiny 

dolphin robot is found in [35]. As will be elaborated on later, the jellyfish is of interest for this 

research. Many others have developed biomimetic jellyfish robots, using EAPs as well as 

traditional robotic actuators. A few of these designs can be found in [36–42].  

The jellyfish has been the focus of many researchers in the biology and engineering field, 

with varying interests in its swimming mechanism. As will be discussed in the next chapter, the 

jellyfish utilizes what is known as a jet propulsion method of locomotion. This has been 

extensively explored throughout literature from hydrodynamic, kinematic, and geometric 

perspectives. The interest here is to examine the behavior of the swimming jellyfish and develop 

a new biomimetic soft robot that builds on the basic mechanisms used in biology for locomotion 

and address any observed limitations. 
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Chapter 2. Biological Inspiration 

2.1. Kinematics of Swimming Jellyfish 

The work of [43] gives a great overview on biological and bioinspired forms, and has a 

wide breadth of information on the propulsion mechanisms used in nature by aquatic animals. 

There, the mechanism of jet propulsion is described as a method for fish locomotion. Jet 

propulsion is broken into three categories, bell constriction, mantel constriction, and shell 

compression. The jellyfish, as noted in the aforementioned work, mainly utilizes the bell 

constriction form of jet propulsion.  

This swimming behavior is characterized by the movement of a flexible bell, and 

propulsion is generated during alternating contraction and relaxation phases of the bell muscles, 

ejecting or refilling water into the volume of the bell. Two forms of bell constriction are 

available to jellyfish, depending on their geometry. Namely, jet and rowing propulsion, which 

are similar in the muscles activated during swimming, but differentiated by size of the muscle 

necessary to achieve each. The jet method of propulsion is of interest in this work, and it will be 

assumed from here onward that when referring to jellyfish swimming that jet propulsion will be 

the mechanism that is used. An illustrative graphic of the bell deformation that occurs during the 

contraction and relaxation phases is provided in Figure 2.1. 

Numerous studies have been conducted into the self-propulsion of aquatic animals. 

Specifically, Lauder et al. researched the use of bio-robotic models and how they may provide 

insight into the hydrodynamics and kinematics of aquatic propulsion, Lu et al. investigated the 

hydrodynamics of fish-like swimming through the use of numerical and experimental studies, 

and Triantafyllou et al. worked on the optimal thrust generated via jet-like flows from oscillating 
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foils similar to that of fish fins [44–46]. More in line with the work presented here, the jet 

propulsion of aquatic animals such as the jellyfish has been studied in [47–49]. 

The jellyfish itself has been the center of numerous studies involving a wide range of 

topics, such as the flow patterns during swimming, bell deformation kinematics, dynamics and 

structure, and the hydrodynamic effects of the biological structure and locomotion of the animal. 

These topics can be found throughout literature in [50–57]. Of particular interest is the work 

found in [51,58,59] where dynamic equations of motion (EoM) can be found that can be used to 

model the biological jet propulsion of jellyfish. These will be used and modified later in order to 

simulate the swimming of a proposed biomimetic soft robot. 

 
Figure 2.1 Illustration of Jet Propulsion Mechanism Found in Biological Jellyfish 
In between contraction and relaxation phases the fluid contained within the body of the jellyfish 
is exchanged with the surrounding fluid and the momentum exchanged in this process results in a 
net-positive thrust over the duration of a complete swimming cycle. 

2.1.1. Derivation of Governing Equations 

 The jet propulsion mechanism of the jellyfish as studied in [58] follows a simple dynamic 

EoM that can be used to simulate the swimming behavior of biological jellyfish. This also 

provides a source point for modeling jellyfish-like robotics, which will be demonstrated later in 

Chapter 4.1. Here, the governing equation is re-derived from [58] and analyzed to visualize how 

Contraction 

Relaxation 
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biological jellyfish swim, as well as give rise to the inspiration that leads to the development of 

the soft robot design presented later in this chapter.  

In [58], the jet propulsion swimming mechanism was broken down into four components: 

thrust, drag, inertia, and acceleration reaction. Each of these is modeled independently and then 

assembled to give the full dynamic EoM, that governs the swimming motion. Following the 

derivation of [58], the thrust is written as 

T = ue
𝑑𝑑𝑚𝑚
𝑑𝑑𝑡𝑡

 (2.1) 

where 𝑇𝑇, 𝑢𝑢𝑒𝑒, and 𝑚𝑚 are the thrust, velocity of fluid exchanged, and the mass of the jellyfish and 

contained fluid volume. 

Writing the mass of the jellyfish in terms of the total volume of the jellyfish and 

contained fluid, assuming the jellyfish is roughly the density of water [60], allows the ejected 

fluid velocity to be written as a function of total volume 

𝑑𝑑𝑚𝑚
𝑑𝑑𝑡𝑡

= 𝜌𝜌𝑤𝑤
𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

 (2.2) 

 

ue =
1

𝜌𝜌𝑤𝑤𝐴𝐴𝑉𝑉
𝑑𝑑𝑚𝑚
𝑑𝑑𝑡𝑡

=
1
𝐴𝐴𝑉𝑉

𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

 (2.3) 

where 𝜌𝜌𝑤𝑤, 𝑑𝑑𝑓𝑓, and 𝐴𝐴𝑉𝑉 are the density of water, total volume, and velar aperture area, respectively 

[52,58]. Now, thrust can be rewritten in terms of water density, velar aperture, and total volume 

T =
𝜌𝜌𝑤𝑤
𝐴𝐴𝑉𝑉

�
𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

�
2

 (2.4) 
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The drag component in the EoM is governed by the standard drag equation, given as 

Dforce =
1
2

Cd𝜌𝜌𝑤𝑤𝑆𝑆𝐴𝐴𝑢𝑢2 (2.5) 

where 𝐷𝐷 is the drag force, 𝐶𝐶𝑑𝑑 is the drag coefficient, 𝑆𝑆𝐴𝐴 is the cross-sectional area with respect to 

the swimming direction, and 𝑢𝑢 is the swimming speed of the jellyfish. Both the drag coefficient 

and cross-sectional area change as the jellyfish body deforms during swimming. To obtain the 

cross-sectional area, the truncated bell shape is used to derive the following expression for area 

as a function of volume 

SA = 𝑆𝑆0 +
3
2ℎ

𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

𝑡𝑡 (2.6) 

with 𝑆𝑆0 being the initial cross-sectional area and ℎ the height of the bell geometry at the start of a 

contraction phase. The structure of this truncated bell shape is shown in Figure 2.2. 

 
 

Bell 

Subumbrellar muscle 

Velum 

Height 

Figure 2.2 Illustration of Jellyfish Body Structure 
The hemiellipsoid structure of the jellyfish body can be defined through the bell height and the velar 
aperture radius. 
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The drag coefficient can be related to the Reynold’s number by assuming that the jellyfish bell 

behaves roughly the same as that of a sphere, providing a simple relation between flow speed 

and drag coefficient 

Cd =
24

(𝑅𝑅𝑅𝑅)𝑖𝑖 = 24 �
𝜈𝜈
𝑢𝑢𝐿𝐿𝑐𝑐

�
𝑖𝑖

 (2.7) 

where the definition of the Reynold’s number has been used with a kinematic viscosity of 𝜈𝜈 and 

characteristic length of 𝐿𝐿𝑐𝑐, calculated here as the ratio of volume to cross-sectional area. The 

exponent 𝑛𝑛 is defined as [58] 

n = � 1.0
0.7 𝑅𝑅𝑅𝑅 < 1

     𝑅𝑅𝑅𝑅 < 500 (2.8) 

 Acceleration reaction is an inertial type force that arises when an object accelerates 

through a fluid and is related to the inertia of the fluid that must be accelerated around the 

geometry of the object. Here, the acceleration reaction is  

G = −αAM𝜌𝜌𝑑𝑑𝑓𝑓
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

 (2.9) 

where 𝛼𝛼𝐴𝐴𝐴𝐴 is the added mass coefficient. From the form of this equation it is clear where the 

terms acceleration reaction and added mass come from. This force can be viewed as an 

additional mass the object must accelerate through the fluid, which is a function of the physical 

geometry of the object itself. Experiments have determined an added mass coefficient for a 

hemiellipsoid to be given by the following regression equation [58] 

αAM = �
ℎ
𝑟𝑟
�
1.4

 (2.10) 
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in which 𝑟𝑟 is the instantaneous bell radius. These force components must balance with the 

jellyfish’s inertial force, written using Newton’s Laws, and thus yields the following governing 

equation. Figure 2.3 gives a free body diagram of the forces involved in the jet propulsion 

swimming of a jellyfish. 

Finertia = ρw𝑑𝑑𝑓𝑓
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑇𝑇 − 𝐷𝐷 + 𝐺𝐺 
 

(1 + 𝛼𝛼𝐴𝐴𝐴𝐴)𝜌𝜌𝑤𝑤𝑑𝑑𝑓𝑓
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

=
𝜌𝜌𝑤𝑤
𝐴𝐴𝑉𝑉

�
𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

�
2

−
1
2

Cd𝜌𝜌𝑤𝑤𝑆𝑆𝐴𝐴𝑢𝑢2 

(2.11) 

 

 
Figure 2.3 Free Body Diagram of Swimming Jellyfish 
The inertial, acceleration reaction, and drag forces work against the thrust generation during the 
swimming cycle. 

2.1.2. Modeling of Jellyfish Locomotion 

A few points of discussion on the form of the governing equation are necessary prior to 

using it as a framework for soft robotics. First, it should be noted that the added mass coefficient 

used here is not applicable for geometries other than the hemiellipsoid shape assumed to define 

that of the biological jellyfish. Additionally, this component is normally defined in terms of an 

added mass tensor, which is highly dependent on surface geometry of an object and in some 

cases can be very complex to calculate [61,62]. 

Inertia 

Acceleration Reaction 

Drag 

Thrust 
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Next, it is important to take note of the strong dependence of the acceleration on the rate 

of change in the volume. This will be seen to play a critical role in designing an efficient 

swimming mechanism through a careful balance of the contraction and relaxation phases that 

dictate the internal volume. The lack of body forces in the equation is also of interest. This 

restricts the model to horizontal swimming where gravity will not contribute to the acceleration. 

Lastly, these equations will necessarily need some modification to account for differences 

between the body of a jellyfish, and that of a soft robot. Later, as the design of the robot is 

thoroughly defined, these changes will be elaborated on in more detail. 

The governing equation obtained in Equation (2.11) constitutes a first order 

nonhomogeneous nonlinear ODE in the variable 𝑢𝑢, and a second order ODE in the variable 𝑥𝑥 

defining the position. The solution of this equation is obtained numerically via a state-space 

representation and a 4th order Runge-Kutta method, as outlined next.  

First, the equation is written in state-space form using two state variables, 𝑦𝑦1 and 𝑦𝑦2, 

which are defined as 

�⃗�𝑦(𝑥𝑥, 𝑡𝑡) = �
𝑦𝑦1(𝑥𝑥, 𝑡𝑡)
𝑦𝑦2(𝑥𝑥, 𝑡𝑡)� = �𝑥𝑥�̇�𝑥� = �𝑥𝑥𝑢𝑢� (2.12) 

where the overhead dot short hand notation for differentiation with respect to time has been used. 

With these state variables, Equation (2.11) can now be rewritten 

�̇⃗�𝑦 = �𝑦𝑦1̇𝑦𝑦2̇
� =

⎩
⎨

⎧
𝑦𝑦2

𝜌𝜌𝑤𝑤
𝐴𝐴𝑉𝑉

�
𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡 �

2

− 1
2 Cd𝜌𝜌𝑤𝑤𝑆𝑆𝐴𝐴𝑦𝑦22

(1 + 𝛼𝛼𝐴𝐴𝐴𝐴)𝜌𝜌𝑤𝑤𝑑𝑑𝑓𝑓 ⎭
⎬

⎫
= 𝑓𝑓(�⃗�𝑦, 𝑡𝑡) (2.13) 

this allows both the position and velocity of the jellyfish to be integrated forward in time using 

any first order ODE solver. In this instance, a 4th order Runge-Kutta method (RK4) was used as 
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follows. Using the state space representation, the state at time 𝑡𝑡𝑖𝑖 + ℎ𝑡𝑡 can be written in terms of 

the state at the current time 𝑡𝑡𝑖𝑖 with a weighted average of four increments 

�⃗�𝑦𝑖𝑖+1 =  �⃗�𝑦𝑖𝑖 +
ℎ𝑡𝑡
6

(𝑓𝑓1 + 2𝑓𝑓2 + 2𝑓𝑓3 + 𝑓𝑓4) (2.14) 

where ℎ𝑡𝑡 is the integrator time step and the terms in parenthesis are the increments that are 

estimations of the slope of the function being integrated, given by the following equations. 

𝑓𝑓1 = 𝑓𝑓(�⃗�𝑦𝑖𝑖, 𝑡𝑡𝑖𝑖) (2.15) 

𝑓𝑓2 = 𝑓𝑓 ��⃗�𝑦𝑖𝑖 +
1
2
𝑓𝑓1, 𝑡𝑡𝑖𝑖 +

1
2
ℎ𝑡𝑡� (2.16) 

𝑓𝑓3 = 𝑓𝑓 ��⃗�𝑦𝑖𝑖 +
1
2
𝑓𝑓2, 𝑡𝑡𝑖𝑖 +

1
2
ℎ𝑡𝑡� (2.17) 

𝑓𝑓4 = 𝑓𝑓(�⃗�𝑦𝑖𝑖 + 𝑓𝑓3, 𝑡𝑡𝑖𝑖 + ℎ𝑡𝑡) (2.18) 

Then the acceleration of the jellyfish may be calculated by evaluating �̇�𝑦2 at each time step.  

As modeled in the literature, the volume rate of change is taken to be constant over both 

the contraction and relaxation phases. This can be achieved by defining a volume percentage 

change that should occur over these intervals, denoted 𝑑𝑑𝑑𝑑, and calculating the rate of change 

over the interval as 

𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

=

⎩
⎨

⎧−
𝑑𝑑𝑑𝑑
𝑡𝑡𝑐𝑐

𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛

𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓

𝑟𝑟𝑅𝑅𝑟𝑟𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛
 (2.19) 
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where 𝑡𝑡𝑐𝑐 and 𝑡𝑡𝑓𝑓 are the durations of the contraction and relaxation phases, respectively. This 

gives the volume for the jellyfish as 

𝑑𝑑𝑓𝑓 = �
𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

𝑡𝑡

0
𝑑𝑑𝑡𝑡 = 𝑑𝑑0 +

⎩
⎨

⎧ −
𝑑𝑑𝑑𝑑
𝑡𝑡𝑐𝑐
𝑡𝑡𝑚𝑚 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛

𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓

(𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑐𝑐) 𝑟𝑟𝑅𝑅𝑟𝑟𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛
 (2.20) 

for an initial volume of 𝑑𝑑0 at the start of the contraction phase and 𝑡𝑡𝑚𝑚 represents the time since 

the last complete swimming cycle. For the jellyfish modeled in [58] the results shown in Figure 

2.4 were obtained. As evident from the figure, the swimming mechanism of the jellyfish has a 

characteristic oscillation due to the alternating contraction and relaxation phases. This behavior 

is most easily seen in the velocity results but is also evident in the position and acceleration. 

While somewhat difficult to see, the velocity also shows an asymptotic behavior as the thrust 

slowly balances the drag and inertia forces to reach a steady-state average velocity.  

A major take-away from these results is the negative acceleration created during the 

relaxation phase of the swimming cycle. This is due to the mass-flux of water into the enclosed 

volume of the jellyfish bell, causing a negative momentum exchange that pulls the jellyfish 

backwards. If the contraction and relaxation phases were equal in time, it would be seen that the 

momentum exchange during each cycle would identically cancel, and after each cycle the 

jellyfish would return to a zero-velocity state. Thus, the relation between contraction and 

relaxation times is a crucial aspect of efficient jet propulsive swimming and must be carefully 

considered when designing a soft robot. 
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Figure 2.4 Position, Velocity, and Acceleration of Biological Jellyfish 
The characteristic position, velocity, and acceleration profiles of a swimming jellyfish are 
recreated using the derived model, and can be compared to the results obtained in [58]. 

2.2. Design Principle of a Biomimetic Jellyfish 

As noted previously, the jellyfish swimming mechanism has a disadvantage due to the 

intake of water during the relaxation phase. This causes a negative momentum exchange that 

pulls back on the animal, thus slowing it down. Here is where the proposed biomimetic robot 

seeks to modify the jet propulsion swimming mechanism. If the water that is drawn into the 

enclosed volume is redirected as to assist the propulsion of the device, then continual forward 

motion is achieved by an always increasing velocity until a steady-state is reached. This, 
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theoretically, should allow for a more efficient and effective swimming mechanism for a 

potential soft robot.  

To achieve this necessary modification, the addition of a distinct inlet and outlet to the 

enclosed volume is proposed. During contraction, only the outlet valve allows fluid flow, thus 

constraining the direction of the mass flux and hence the momentum exchanged. Then, during 

relaxation, the inlet would allow for the mass flux to occur along the same direction, therefore 

contributing a positive acceleration. A simple illustrative cross-section of such a design is given 

in Figure 2.5. A soft robot utilizing this sort of structure may be deformed via EAP actuators, as 

will be elaborated on later. 

 
Figure 2.5 Illustrative Cross-Section of Proposed Soft Robot Design 
The inlet and outlet valves illustrated here are intended to operate with a leaf-valve type 
mechanism wherein they allow fluid flow in only one direction. 

Inlet Outlet 

Direction of travel 
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Chapter 3. Electromechanical Modeling of Ionic Polymer-Metal Composite Actuators 

The modeling and simulation of IPMC actuators is a rich and diverse research field. A 

general overview of the electrochemistry and electromechanical transduction of IPMCs can be 

found in [10,13,63–67], while a few of the many modeling techniques and approaches are seen in 

[3,6,10,12,68–72]. The electromechanical modeling of IPMC actuators presented here falls into 

two categories, physics-based and equivalent circuit. These approaches differ in both robustness 

as well as difficulty. Physics-based models typically utilize continuum mechanics equations to 

describe the electrochemical interactions within the polymer. Circuit models are found 

throughout literature as an alternative to physics-based models and have the advantage of simple 

implementation while providing adequate results for most modeling applications. In both cases, 

the actuation of the IPMC is related to the charge or charge density within the polymer through 

an electromechanical coupling equation, as in [12,73]. To develop soft robotic systems utilizing 

EAPs accurate models for their electromechanical transduction are critical. 

 

3.1. Physics-Based Modeling 

To construct a physics-based model of the IPMC electrochemistry, the Poisson-Nernst-

Planck (PNP) system described in [12] and seen throughout literature [7,10,13,17,65,67,74–79]. 

The PNP equations can be used to describe an IPMC’s cation concentration and electric potential 

as two scalar fields in space and time. Actuation is achieved by coupling the PNP equations with 

continuum equations describing the polymer deformation through an electromechanical coupling 

equation. Below, a derivation of the governing equations is given, and these equations will be 

used to model an IPMC actuator in COMSOL Multiphysics similar to what is described in [80]. 
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3.1.1. Governing Partial Differential Equations 

Following the procedure of [17,67,77,81], the electric potential distribution within the 

ionic polymer may be calculated by the Gauss Law  

∇ ∙ 𝐷𝐷𝑒𝑒 = 𝜌𝜌𝑐𝑐 (3.1) 

where 𝐷𝐷𝑒𝑒 and 𝜌𝜌𝑐𝑐 are the electric displacement and charge density within the polymer, 

respectively. The electric displacement can be related to the electric field strength, 𝐸𝐸�⃗ , as 

𝐷𝐷𝑒𝑒 = 𝜀𝜀𝐸𝐸�⃗  (3.2) 

for a material with an absolute dielectric constant of 𝜀𝜀. Combining Equation (3.1) and Equation 

(3.2), the electric potential within the polymer is found to be governed by the Poisson equation 

for electrostatics 

∇ ∙ 𝐸𝐸�⃗ =  −∇2𝜙𝜙 =  
𝜌𝜌𝑐𝑐
𝜀𝜀

=  
𝐹𝐹(𝑐𝑐 − 𝑐𝑐0)
𝜀𝜀0𝜀𝜀𝑓𝑓

 (3.3) 

where 𝜙𝜙, 𝐹𝐹, 𝑐𝑐, 𝑐𝑐0, 𝜀𝜀0, and 𝜀𝜀𝑓𝑓 are the electric potential, Faraday’s constant, mobile cation 

concentration, fixed anion concentration, dielectric constant in vacuum, and relative dielectric 

permittivity, respectively.  

The electro-chemical model is completed by writing the mass balance equation for the 

mobile cation species in terms of the ion concentration time evolution and the cation flux within 

the polymer. This mass balance equation is written as 

𝜕𝜕𝑐𝑐
𝜕𝜕𝑡𝑡

= −∇ ∙ 𝐽𝐽 (3.4) 
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for an ion flux within the polymer of 𝐽𝐽. Considering only migrative and diffusive flux 

components, the ion flux is related to the concentration and electric potential within the polymer 

through 

𝐽𝐽 =  −(𝐷𝐷∇𝑐𝑐 + 𝑧𝑧𝜇𝜇𝐹𝐹𝑐𝑐∇𝜙𝜙) (3.5) 

where 𝐷𝐷, 𝑧𝑧, and 𝜇𝜇 are diffusivity, charge number, and mobility of the ions, respectively. This is 

an extension of Fick’s law that accounts for the migration of ions in an electric field. Flux 

associated with mechanical deformation of the polymer is neglected because it has been shown 

that during electromechanical transduction it is of much lower order than the migrative and 

diffusive components [80]. Substituting Equation (3.5) into Equation (3.4) we obtain the Nernst-

Planck equation 

𝜕𝜕𝑐𝑐
𝜕𝜕𝑡𝑡

= ∇ ∙ (𝐷𝐷∇𝑐𝑐 + 𝑧𝑧𝜇𝜇𝐹𝐹𝑐𝑐∇𝜙𝜙) (3.6) 

which frequently arises throughout literature to determine the migration and diffusion of the free 

cations in IPMC. 

Under an externally applied voltage, the free cations migrate towards the cathode while 

the anions remain fixed, which is defined via Equation (3.6). As the cations collect near the ion-

blocking electrode, a non-zero net charge is formed which results in an electric field that opposes 

the applied one [75], governed by Equation (3.3). These two equations define a set of coupled 

partial differential equations known as the Poisson-Nernst-Planck system, and fully govern the 

electrochemical nature of the IPMC actuator.  
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Mechanical deformation of the actuator can be described using Newton’s second law 

𝜌𝜌𝑚𝑚
𝜕𝜕𝑢𝑢�⃗
𝜕𝜕𝑡𝑡

= ∇𝜎𝜎 + 𝐹𝐹𝑏𝑏 (3.7) 

 

where 𝑢𝑢�⃗ , 𝜌𝜌𝑚𝑚, 𝜎𝜎 and 𝐹𝐹𝑏𝑏 are the displacement field, material density, stress tensor, and body 

forces, respectively. The stress strain relationship can be written as 

𝜎𝜎 = 𝐶𝐶: 𝜀𝜀𝑑𝑑 (3.8) 

where 𝐶𝐶 and 𝜀𝜀𝑑𝑑 are the stiffness tensor and strain tensor, respectively. The fourth order stiffness 

tensor retains the various material constants that describe the deformation behavior of the 

material. Here, linear elasticity is used which reduces the material constants to two elastic 

moduli, the Young’s modulus and Poisson’s ratio. Furthermore, to construct a simple model an 

assumption of infinitesimal strain is made resulting in the following strain displacement relation 

𝜀𝜀𝑑𝑑 =
1
2

(∇𝑢𝑢�⃗ + (∇𝑢𝑢�⃗ )𝑇𝑇) (3.9) 

These equations dictate the mechanical deformation of the polymer when viewed as a 

continuum. During an electromechanical transduction, an additional equation is needed to couple 

the electrochemical behavior to the mechanical deformation of the IPMC actuator. From [12,17] 

the internal stress of the polymer as a function of the ionic charge density is written as 

𝜎𝜎𝑒𝑒𝑒𝑒𝑡𝑡 = 𝛼𝛼ℎ𝜌𝜌𝑐𝑐 + 𝛽𝛽ℎ𝜌𝜌𝑐𝑐2 (3.10) 
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where 𝛼𝛼ℎ and 𝛽𝛽ℎ are electromechanical coupling coefficients. Due to the nature of IPMC 

actuation, wherein the hydrated mobile cations induce the bending behavior, these coefficients 

can be seen as hydrophilicity coefficients of the ions [79,82,83] as they directly correlate to the 

amount of water that travels with the free moving cations under the electrical input. The linear 

term is typically fitted to a small voltage step response, where the charge density is more 

symmetric and thus quadratic effects are not as prominent. The quadratic term is then used to 

correct the linear model at larger voltage inputs [17]. This external stress can then be added to 

the material stress tensor to provide the necessary electromechanical coupling that governs the 

IPMC actuation. When Newton’s EoM are solved for the mechanical deformation, the material 

stress tensor accounts for the body’s elastic response to the external loading while the external 

stress calculated with Equation (3.10). 

 

3.1.2. Multi-Physics Modeling in COMSOL 

Due to the highly nonlinear nature of the PNP system, as well as the equations of 

elasticity, many scholars commonly employ the finite element method [7,12,65,74–

77,79,80,84,85]. Here, COMSOL Multiphysics is used to solve the described equations. 

When attempting to solve the PNP system analytically it is common to see the equations 

be reduced to a single spatial dimension to obtain a solution more easily [8,9,67–69,74]. This is 

normally justified by noting that the cation migration within the polymer generates a charge 

density and electric potential that is virtually constant in the length and width directions, so the 

equations are solved along the thickness of the IPMC only. While this is not as common in 

numerical modeling when using commercial software such as COMSOL Multiphysics, it is just 
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as justified and leads to smaller stiffness matrices and faster computation, as will be 

demonstrated next. The approach is similar to what has been recently seen in [72]. 

In COMSOL, the Multiphysics module of Transport of Diluted Species with migration in 

electric field is used to model the Nernst-Planck equation, Electric Currents is used to solve for 

the electric potential in the electrodes, and a general form PDE module calculates the Poisson 

equation for the electrostatics within the ionic polymer. As with many models, a cantilever 

configuration is used; a schematic of which is shown in Figure 3.1 below. 

 
Figure 3.1 Cantilever IPMC Diagram for COMSOL Multiphysics Modeling 
Thickness of both the polymer membrane and the metallic electrodes have been exaggerated here 
for illustrative purposes. The cantilever configuration is commonly used throughout literature for 
modeling IPMC actuators and serves as a good baseline model for verification. 

The governing PDEs are solved along the y-axis seen in Figure 3.1, where the dashed line 

is an arbitrary representative slice along this direction. This reduction in dimensionality leads to 

a smaller computational domain in COMSOL, shown in Figure 3.2, where only the through the 

thickness profiles for concentration and electric potential are calculated. To verify the validity of 

this approach, a comparable model to that found in [80] was created. Both models utilize the 

same mesh density, 5000 elements, along the thickness of the membrane and simulate an IPMC 

with the parameters found in Table 3.1. In contrast to Equation (3.10), this model uses an 

electromechanical coupling equation found in [80,86] of the form 

𝐹𝐹 = 𝛼𝛼𝑐𝑐𝜌𝜌𝑐𝑐 (3.11) 

Membrane 

Electrodes 

y 

x 
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where the coupling is now between the charge density and an external force, and only the linear 

term has been retained, as in [80]. Later the original form of Equation (3.10) will be used, but for 

consistency with [80] this equation has been chosen for now. 

 
Figure 3.2 COMSOL Domain for 1D PNP FEM 
The COMSOL domain shown consists of two small domains that model the electrical current 
within the electrodes, and a larger domain which models the PNP equation along the thickness of 
the IPMC. 

Table 3.1 Model parameters for 2D vs 1D PNP Comparison 

Parameter Value 

Width (mm) 9.94 

Length (mm) 51.07 

Thickness, Polymer (mm) 0.57 

Thickness, Electrodes (mm) 0.08 

Diffusion Coefficient (m^2/s) 7e-11 

Permittivity (mF/m) 2 

Anion Concentration (mol/m^3) 1,200 

Poisson Ratio (1) 0.49 

Young’s Modulus (MPa) 249 

Density (kg/m^3) 2,000 

𝛼𝛼𝑐𝑐 (N/C) 2e-5 
 

A 2D domain is then used to calculate the mechanical deformation of the IPMC based on 

the results of the 1D PNP simulation. The domain is shown in Figure 3.3, where it is important to 

Electrodes Membrane 
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note that the vertical y-axis has its zero-line at the lower polymer-electrode interface. More 

detailed views of the COMSOL domains and meshes can be found in Appendix A. 

 

 

Figure 3.3 Domain for 2D Solid Mechanics in COMSOL 
The COMSOL domain used in the calculation of the mechanical deformation under the 
electromechanical transduction of the IPMC. 

 The cation concentration, charge density, and electric potential calculated on the 1D 

domain must be mapped to the 2D domain to calculate the electromechanical transduction. In 

this model, the coupling is one-way, and mechanical deformation has no effect on the anion 

concentration and hence the charge density. This has been shown to be acceptable for actuation 

type transduction [80]. To link the 1D and 2D domains, a general extrusion operator is used to 

map the 1D domain through a mathematical equation defining the geometry of the 2D domain. 

For the simple case of a cantilever IPMC, this can be written as 

𝑥𝑥𝑖𝑖 − 𝑡𝑡𝑒𝑒 = 𝑦𝑦 (3.12) 

where 𝑥𝑥𝑖𝑖, 𝑡𝑡𝑒𝑒, and 𝑦𝑦 are the x-axis variable in the 1D domain, thickness of the electrode, and y-

axis variable in the 2D domain, respectively. This equation maps all values obtained in the 1D 

PNP to their respective location in the 2D geometry along the thickness direction of the polymer 

membrane. The subtraction of the electrode thickness is necessary to ensure that both 𝑥𝑥𝑖𝑖 and 𝑦𝑦 

start at zero at the lower polymer-electrode interface.  

The comparison of the 1D and 2D COMSOL results can be seen in Figure 3.4, where it is 

evident that both solutions are in very good agreement. The maximum difference between the 

results occurs at approximately 4.65 seconds and yields a percent error of only 0.31%, thus 
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verifying the accuracy of the new approach. A few metrics for evaluating the efficiency of the 

model are given in Table 3.2, where the key result is the computation time. In using a 1D 

approach for the PNP system, the time required to obtain the results shown was reduced by a 

factor of ~23, which is a dramatic improvement. This can be further improved upon by 

leveraging the fact that charge density and concentration and potential gradients along the 

thickness direction are virtually negligible.  

 

 

Figure 3.4 Comparison of 1D and 2D PNP Models 
The comparison between 1D and 2D PNP solutions shown highlights the value in using a 
reduced dimensionality domain for the computation of the complicated PDE system. 

Table 3.2 Metrics for 1D vs 2D PNP Comparison 

Parameter 1D PNP 2D PNP 

Time step (s) 0.1 0.1 

Sim. Time (s) 6 6 

DoF (1) 51,780 329,119 

Comp. Time (s) 102 2,308 
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A modification is made to address this behavior of the PNP solution in these problems. 

Specifically, the membrane domain is partitioned into three segments, two located at each of the 

polymer-electrode interfaces, and one in the middle constituting the bulk of the membrane. The 

exterior partitions, referred to as buffer regions, are meshed with a higher mesh density than the 

bulk region, while the overall element count is reduced. Mesh reduction is conducted until the 

results would rise above a 0.1% change. This allows the 1D model to capture the steep gradients 

located in the buffer regions more easily, while not wasting computational resources in the bulk 

of the polymer where gradients are small. A schematic comparison of the two domains is given 

in Figure 3.5. 

 
Figure 3.5 Differences in 1D Domain Structures Used in COMSOL 
The refined domain uses insight into the nature of the PNP system, wherein large concentration 
gradients arise near the electrode polymer interface and within the bulk polymer the 
concentration is near constant. This is most clearly demonstrated in [67]. 

With the newly refined domain, further reduction in computational overhead is achieved 

without loss of accuracy, as demonstrated in Figure 3.6, again with some of the metrics for 

comparison given in Table 3.3. Of importance to note is the reduction in computation time by 

another factor of 2, as well as the refinement in temporal accuracy from a timestep of 0.1 to 0.01 

seconds. Displacement is accurate within 4% error between the two results and is further reduced 

Electrode Membrane Electrode 

Global 1D mesh structure 

Electrode Membrane Electrode 
Membrane 
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Membrane 
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with increased mesh density within the refined regions of the new domain. This increase in the 

time resolution allows for more accurate simulations in time while still requiring minimal 

computational efforts and demonstrates an advancement in the modeling procedures for IPMC 

based system. This potentially allows for more complex and dynamic soft robotics to be modeled 

with full IPMC physics included. 

 

 

Figure 3.6 Comparison of 1D and Refined 1D PNP Models 
Here the comparison between the refined mesh with buffer regions near the electrode polymer 
interface and the globally meshed domain is provided, again highlighting the accuracy obtained 
when using the more efficient mesh and domain structure. 

Table 3.3 Metrics for 1D vs Refined 1D PNP Comparison 

Parameter 1D PNP Refined 1D PNP 

Time step (s) 0.01 0.01 

Sim. Time (s) 6 6 

DoF (1) 51,780 30,180 

Comp. Time (s) 174 90 
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Upon examination of this model, it is clear that the use of a boundary load as in [80] will 

not work in all circumstances. For instance, in the case of an unconstrained IPMC, the boundary 

load would result in an unconstrained force resulting in constant rigid body acceleration of the 

IPMC, which is obviously unreasonable. To remedy this, the external stress physics was added 

into the material model in COMSOL. This allows for an electromechanical coupling equation of 

the form in Equation (3.10) to be used, and results in no rigid body acceleration when modeled 

as an unconstrained IPMC. This is illustrated in Figure 3.7, where an IPMC was given a step 

response in an unconstrained state and deforms as expected. 

 

Figure 3.7 Unconstrained IPMC Deformation Under External Stress Loading 
With a boundary load applied to the IPMC model, an unconstrained actuator would see an 
unbalanced force and experience rigid body motion. The alternative external stress 
electromechanical coupling fixes these issues, as demonstrated in this figure. 

The refined 1D PNP model has been compared to experimental actuation results from an 

IPMC made with off-the-shelf Nafion®. A plot of the actuation results is seen in Figure 3.8, and 

Table 3.4 contains the physical dimensions and electromechanical coupling coefficient used to 

obtain these results. From the figure, it is clearly seen that the COMSOL model can accurately 

capture the performance of the physical IPMC in the steady-state, while the initial transient 

portion is not quite as good. The phase-lag between the results is a result of the experimental data 

being captured not quite at the instant the actuation started and is not due to any missing physics 

in the COMSOL model.  
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Figure 3.8 Comparison Between Refined 1D COMSOL Model and Experimental Data 
The described IPMC model is shown to give good results when compared to a physical IPMC 
actuator and the collected experimental deformation. 

Table 3.4 Parameters and Dimensions of IPMC Used for Experimental Comparison 

Parameter Value 

Length (mm) 45.08 

Width (mm) 11.57 

Thickness (mm) 0.67 

Diffusion Coefficient (m^2/s) * 7e-11 

𝛼𝛼𝑐𝑐 (N/C) * 2e-5 

Voltage (V) 1 

Frequency (Hz) 1 

* Denotes an assumed value for the simulated model obtained from literature [80]. 
 

3.2. Equivalent Circuit Modeling 

Throughout literature, the use of an equivalent circuit representation for electrochemical 

nature of IPMCs has been used to provide a simple, relatively accurate model that is easily 

incorporated into soft robotics research [67,70,87–89]. Electrochemical transduction is modeled 
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using lumped circuit components, which can be determine both experimentally [88], or through 

the linearization of an analytical solution to the PNP system in order to explore the sources of the 

lumped impedance values from a physics standpoint [78]. The benefits of using a circuit-based 

model is that closed form solutions can be easily obtained for a variety of external potential 

inputs and the IPMC response to such inputs can be easily combined into models of physical 

devices. This requires no computational overhead, as compared to a finite element method 

approach that may give more accurate and meaningful results. The interest in investigating the 

equivalent circuit model is primarily for its ease of incorporation into other models of soft 

robotic systems using IPMC actuators. 

 

3.2.1. RCW Circuit Model 

Similar to [14,78], a circuit model that incorporates resistive, capacitive, and Warburg 

(RCW) impedances is used. These impedances model the surface and polymer resistance, 

inherent polymer capacitance and double layer capacitance due to cation migration, and charge 

transfer and diffusion within the polymer [78,90], respectively. A diagram of this circuit is 

provided in Figure 3.9. 

 

R 

C 

W 

Figure 3.9 Circuit Diagram Used for Equivalent Circuit IPMC Model 
The shown circuit diagram can be used to construct an accurate model for the 
electromechanical transduction of IPMC actuators. 
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The electrical impedance of each of these lumped circuit elements is written below, 

where 𝑅𝑅, 𝐶𝐶, and 𝑊𝑊 are the lumped electrical resistance, lumped capacitance, and Warburg 

impedance, respectively 

𝑍𝑍𝑅𝑅 = 𝑅𝑅 (3.13) 

𝑍𝑍𝑅𝑅𝑖𝑖𝑝𝑝 =  1
𝑗𝑗𝑗𝑗𝑅𝑅

  (3.14) 

𝑍𝑍𝑅𝑅𝑖𝑖𝑓𝑓𝑏𝑏𝑊𝑊𝑓𝑓𝑊𝑊 =
𝑊𝑊
�𝑗𝑗𝑗𝑗

 (3.15) 

A transfer function may be written between an input voltage and the respective current 

generated through the circuit [78]. 

𝐻𝐻(𝑠𝑠) =
𝐼𝐼(𝑠𝑠)
𝑑𝑑(𝑠𝑠) =

𝐶𝐶𝑠𝑠 + 𝑊𝑊√𝑠𝑠
𝑅𝑅𝐶𝐶𝑠𝑠 + 𝑅𝑅𝑊𝑊√𝑠𝑠 + 1

 (3.16) 

Akin to Equation (3.10), an electromechanical coupling equation can be written in the following 

form [73] 

𝑃𝑃 = 𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅𝑄𝑄 (3.17) 

where 𝑃𝑃, 𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅, and 𝑄𝑄 are the mechanical loading of the IPMC, electromechanical coupling 

coefficient, and total charge within the polymer, respectively. The actuation response of an 

IPMC under the RCW circuit model can then be obtained from the current via 

𝑄𝑄(𝑡𝑡) = � 𝑐𝑐(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
= ℒ−1 �

1
𝑠𝑠
𝐼𝐼(𝑠𝑠)� = ℒ−1 �

1
𝑠𝑠
𝐻𝐻(𝑠𝑠)ℒ{𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡(𝑡𝑡)}� (3.18) 
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where 𝑐𝑐(𝑡𝑡) is the electrical current through the circuit, 𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡(𝑡𝑡) is an externally applied voltage, 

and ℒ is the Laplace transform operator and an assumption of zero initial current was made. 

A physics-based model for the impedances used in the RCW circuit is found in [78], 

which gives a starting point for finding the correct parameters that fit the model to physical 

IPMC actuators. Here, the parameters were manually tuned from the baseline given by the 

physics-based model to arrive at suitable values to compare this model approach to that of 

COMSOL and to the experimental data collected from the physical IPMC. The parameter values 

used are given below in Table 3.5.  

Table 3.5 Parameter Values for Equivalent Circuit Model 

Parameter Value 

R (Ohm) 3.21 

C (mF) 1.62 

W (1/Ohm*s^2) 5e-1 

𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅 (N/C*m^2) 2.55 
 

Using the parameters given in Table 3.5, the circuit model was compared to the same 

experimental data as the physics-based COMSOL FEM model. A quasi-static linear beam 

equation was used with a distributed load calculated using Equation (3.17). More details on the 

beam theory equation used are given in 4.3.1. The results of the comparison can be seen in 

Figure 3.10, where again there is a good agreement of the circuit model to the experimental 

displacement. The input voltage and frequency for the model are the same as those found in 

Table 3.4. When using different physical IPMC samples, a tuning process will be necessary to 

capture the exact behavior of the sample’s electrochemical nature. Nevertheless, this approach is 

attractive due to the simplified mathematics behind it, and its ease of implementation as a 

component of a larger, more complex model, as will be discussed in the next section. 
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Figure 3.10 Comparison Between RCW Circuit Model and Experimental Data 
Like the COMSOL model, the described equivalent circuit model shows good agreement with 
the experimental data collected from a physical IPMC actuator. 

3.3. Comparison and Utility of Modeling Approaches 

The final question regarding the two modeling approaches seen is which to use in the 

development of the proposed robot design. For obvious reasons, the physics-based finite element 

approach taken in COMSOL is the more accurate technique. Following the work in [67], a non-

dimensional form illustrates that at the scales involved in IPMC applications the PNP system is a 

singularly perturbed equation and has boundary layer effects at both polymer-electrode 

interfaces. The FEM approach is capable of accurately capturing the complex electrochemistry 

occurring within the ionic polymer and is adaptable for any kind of material model or 

electromechanical coupling. While the advantages of a highly accurate model are numerous, the 

FEM implementation within an external package such as COMSOL does not lend itself to be 

combined in conjunction with other modeling techniques to simulate entire robotic systems. This 

is where the circuit-based model becomes attractive. 
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The physical basis for the circuit model is not as sound as the direct solution obtained via 

FEM, but there are many methods for determining suitable parameters [3,35,70,73,88,91,92] for 

a simple circuit model that yields accurate electromechanical transduction results for a given 

IPMC. Furthermore, the circuit model is easily integrated into larger modeling approaches, 

which will be the focus of Chapter 4.3.3, and gives researchers more flexibility with how the 

mechanical deformation of the IPMC is solved. For these reasons, the circuit model will be used 

for including the electromechanical effects of the IPMCs used in the proposed soft robot design. 

One final comparison between both methods and the experimental data is given in Figure 3.11 

for a comprehensive comparison and conclusion of the discussion in this chapter. 

 

Figure 3.11 Comparison of FEM, Equivalent Circuit, and Experimental IPMC Deflection 
Here, all pair-wise comparisons between the two described models as the experimental data are 
provided for compactness. 
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Chapter 4. Modeling of a Biomimetic Soft Robot 

Prior to constructing any models of the biomimetic soft robot shown in Chapter 2, the 

governing EoM must be modified to account for the differences between biological jellyfish and 

the proposed design. To model the soft robot design proposed in Chapter 2, two different 

approaches are taken. A preliminary model is constructed that considers the body of the robot as 

a geometric surface, and that the body retains this geometric description throughout the 

deformation process. The necessary derivations for the deformation, volume, and surface area 

are described and the model is compared to an equivalently sized biological jellyfish. This model 

is primarily used as a proof of concept of the robot design and demonstrates the feasibility of 

such a robot. The second model expands the concept and spirit of the first through an 

implementation of beam theory to ground the mechanical deformation of the robot body within 

solid mechanics. Further derivations are given for the pertinent parameters seen in EoM, and the 

equivalent circuit model for IPMCs is coupled with the beam theory implementation to model 

the electro-chemo-mechanical behavior of the final robot. 

 

4.1. Governing Equation and Model Inputs 

In deriving Equation (2.11), an assumption was made that the body of a jellyfish is 

approximately the same density as water. This assumption is no longer universally valid for all 

constructions of the biomimetic robot as the material used to construct the body of the device 

may vary in density. To remedy this, the mass of the robot is split into a persistent mass that 

encompasses the materials that make up the shell of the body and the mass of water contained 

within the robot. Furthermore, the added mass is an effect that occurs on the external interface 

with the water, and as such its effect should be based on the external volume of the robot shell. 
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This differentiation between internal and external volume amounts to accounting for the 

thickness of the material that is used to construct the robot.  

Lastly, to model the effect of having directional control over the inlet and outlet of water, 

the direction cosine of the outlet/inlet vector is included, as illustrated in Figure 4.1. This comes 

with an assumption that these outlet/inlet locations are symmetric about the direction of travel. 

For example, an inlet located perpendicular to the swimming direction would allow for the 

internal volume to refill but would not contribute any acceleration to the robot, while an inlet 

directed in the direction of swimming would allow for water intake and contribute a positive 

acceleration to the robot. This simple addition allows for the robot to have better control over its 

velocity profile during swimming and will be shown to be more effective than the swimming 

mechanism of biological jellyfish. 

The modified EoM can now be written as 

(𝑚𝑚𝑏𝑏 + 𝜌𝜌𝑤𝑤𝑑𝑑𝑖𝑖 + 𝛼𝛼𝐴𝐴𝐴𝐴𝜌𝜌𝑤𝑤𝑑𝑑𝑓𝑓)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= cos(𝜃𝜃)
𝜌𝜌𝑤𝑤
𝐴𝐴𝑉𝑉

�
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡
�
2

−
1
2

Cd𝜌𝜌𝑤𝑤𝑆𝑆𝐴𝐴𝑢𝑢2 (4.1) 

where 𝑚𝑚𝑏𝑏 is the mass of the robot body assumed to be fixed with a density not equal to water, 𝑑𝑑𝑖𝑖 

is the internal fluid volume, 𝑑𝑑𝑓𝑓 is the external volume of the body, and cos(𝜃𝜃) is the direction 

cosine illustrated in Figure 4.1. These modifications are necessary to capture a more accurate 

swimming behavior of the proposed robot.  
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Figure 4.1 Illustration of Direction Cosine for Inlet and Outlet Valves 
The direction cosine of an inlet or outlet for the proposed design is based off the polar angle 
starting on the positive x-axis and trending positive counterclockwise. 

In the modeling of biological jellyfish, the change in volume was assumed to be constant 

during the contraction and relaxation phase with a distinct rate during each phase. In anticipation 

of using an EAP actuator for the final model, a similar input source is constructed that can be 

used to mimic this kind of behavior. Here, a variable amplitude and duty cycle square wave is 

used as an input. This both serves to define the rate of change in volume for the original jellyfish 

model, as well as model an electric potential input that could be created with a function 

generator. This waveform was constructed via the Fourier series given below 

𝐹𝐹(𝑡𝑡) =
𝐴𝐴𝑡𝑡𝑐𝑐 + 𝐵𝐵𝑡𝑡𝑓𝑓
𝑡𝑡𝑐𝑐 + 𝑡𝑡𝑓𝑓

+ �
𝐴𝐴−𝐵𝐵
𝑛𝑛𝑛𝑛

�𝑠𝑠𝑐𝑐𝑛𝑛 �
2𝑛𝑛𝑛𝑛
𝑡𝑡𝑐𝑐 + 𝑡𝑡𝑓𝑓

𝑡𝑡𝑐𝑐� 𝑐𝑐𝑐𝑐𝑠𝑠 �
2𝑛𝑛𝑛𝑛
𝑡𝑡𝑐𝑐 + 𝑡𝑡𝑓𝑓

𝑡𝑡�
∞

𝑖𝑖=1

+ �1 − 𝑐𝑐𝑐𝑐𝑠𝑠 �
2𝑛𝑛𝑛𝑛
𝑡𝑡𝑐𝑐 + 𝑡𝑡𝑓𝑓

𝑡𝑡𝑐𝑐�� 𝑠𝑠𝑐𝑐𝑛𝑛 �
2𝑛𝑛𝑛𝑛
𝑡𝑡𝑐𝑐 + 𝑡𝑡𝑓𝑓

𝑡𝑡�� 

(4.2) 

Direction of travel 

Outlet Inlet 

𝜃𝜃 
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where 𝐴𝐴 and 𝐵𝐵 are the contraction and relaxation phase amplitudes, respectively. An example of 

the waveforms generated by the 3rd,.10th, and 1,000th partial sums of the Fourier series is given in 

Figure 4.2. As demonstrated in the figure, the series can construct a square wave of varying duty 

cycle with distinct amplitudes during each phase in a given cycle. This will be a very important 

feature that is leveraged in both models further on. Later it will become relevant to references the 

time ratio of relaxation time to contraction time, so it will be defined below. 

 

Figure 4.2 Representative Waveforms Generated with Fourier Series Square Wave 
The characteristic contraction and relaxation phases of the jellyfish can be captured by the 
Fourier series shown here. 

4.2. Geometry Based Modeling 

4.2.1. Description of Robot Body as Geometric Surface 

As discussed at the beginning of the chapter, this first modeling approach describes the 

body of the robot as a geometric surface. Specifically, the shell of the robot is defined as an 

ellipsoid with half-axis dimensions 𝑐𝑐, 𝑏𝑏, and 𝑐𝑐 as illustrated in Figure 4.3. This simplified 

geometric approach is mainly used as a proof of concept and feasibility study, while also helping 

𝛿𝛿𝑡𝑡 =
𝑡𝑡𝑓𝑓
𝑡𝑡𝑐𝑐

 (4.3) 
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aid in determining what parameters might play important roles in more robust and physics-based 

modeling approaches. A constraint is placed on the model that all deformed states of the body 

can be described though the definition of an ellipsoid, given by the well-known equation 

 

 

Figure 4.3 Geometric Description of Robot Body as an Ellipsoid 
The body of the robot can be approximated as an ellipsoid for initial feasibility study of the 
proposed design. 

4.2.2. Derivation of Model Parameters 

To use a geometric approach for modeling the biomimetic robot, the volume, deformation 

of the volume, cross-sectional area, drag, and added mass effects must be determined. The 

internal volume of the given ellipsoid is calculated with Equation (4.5), and, with an added wall 

thickness of 𝑑𝑑, the external volume with Equation (4.6) below. 

𝑑𝑑𝑖𝑖 =  
4
3
𝑛𝑛𝑐𝑐𝑏𝑏𝑐𝑐 (4.5) 

� 
𝑥𝑥
𝑐𝑐

 �
2

+ � 
𝑦𝑦
𝑏𝑏

 �
2

+ � 
𝑧𝑧
𝑐𝑐

 �
2

= 1 (4.4) 
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𝑑𝑑𝑓𝑓 =
4
3
𝑛𝑛(𝑐𝑐 + 𝑑𝑑)(𝑏𝑏 + 𝑑𝑑)(𝑐𝑐 + 𝑑𝑑) (4.6) 

The time rate of change for the internal and external volume are obtained 

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

=  
4
3
𝑛𝑛 �

𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

𝑏𝑏𝑐𝑐 + 𝑐𝑐
𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡
𝑐𝑐 + 𝑐𝑐𝑏𝑏

𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡
� (4.7) 

𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

=  
4
3
𝑛𝑛 �(𝑏𝑏 + 𝑑𝑑)(𝑐𝑐 + 𝑑𝑑)

𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

+ (𝑐𝑐 + 𝑑𝑑)(𝑐𝑐 + 𝑑𝑑)
𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

+ (𝑐𝑐 + 𝑑𝑑)(𝑏𝑏 + 𝑑𝑑)
𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡
� (4.8) 

where the half-axis dimensions of 𝑐𝑐, 𝑏𝑏, and 𝑐𝑐 are all able to vary with time. Now conservation of 

mass with respect to the body of the device can be written as 

𝑑𝑑𝑚𝑚𝑏𝑏

𝑑𝑑𝑡𝑡
=
𝑑𝑑(𝜌𝜌𝑏𝑏𝑑𝑑𝑏𝑏)
𝑑𝑑𝑡𝑡

= 𝜌𝜌𝑏𝑏
𝑑𝑑(𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖)

𝑑𝑑𝑡𝑡
= 𝜌𝜌𝑏𝑏 �

𝑑𝑑𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

−
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡
� = 0 (4.9) 

where 𝜌𝜌𝑏𝑏 is the density of the material that makes up the body of the robot. Assuming the input 

to the device will cause a deformation of the half-axis dimension 𝑐𝑐, and that the corresponding 

deformation will be symmetric about the 𝑧𝑧-axis, a constraint is enforced with the equation below. 

𝑏𝑏(𝑡𝑡) = 𝑐𝑐(𝑡𝑡) (4.10) 

Now, using Equation (4.10) along with the conservation of mass Equation (4.9), the rate 

of change of 𝑏𝑏 and 𝑐𝑐 are obtained as functions of the input deformation in 𝑐𝑐, as shown below. 

𝑏𝑏
𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

= −
2𝑏𝑏 + 𝑑𝑑

2(𝑐𝑐 + 𝑏𝑏 + 𝑑𝑑)
𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

 (4.11) 
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The cross-sectional area with respect to the swimming direction can be calculated based on the 

external volume 

𝑆𝑆𝐴𝐴 =
3𝑑𝑑𝑓𝑓

4(𝑐𝑐 + 𝑑𝑑) (4.12) 

Extending from the drag coefficient formulation seen in Equation (2.7), the formulation 

found in [93] is used. This allows for a wide range of Reynold’s numbers, 10-1 to 106, but still 

assumes a spherical body, which will introduce small errors into the model. A plot of this drag 

coefficient is provided in Figure 4.4.Overall though, the results should be accurate enough for a 

first approximation and feasibility study. 

𝐶𝐶𝑑𝑑 =  
24
𝑅𝑅𝑅𝑅

+  
2.6 𝑅𝑅𝑅𝑅5.0

1 + �𝑅𝑅𝑅𝑅5.0�
1.52 +  

0.411 � 𝑅𝑅𝑅𝑅
263000�

−7.94

1 + � 𝑅𝑅𝑅𝑅
263000�

−8.00 +
0.25 𝑅𝑅𝑅𝑅

106

1 + 𝑅𝑅𝑅𝑅
106

 (4.13) 

Finally, the added mass coefficient for an ellipsoid body is found using [94]: 

𝐴𝐴0 = 𝑐𝑐𝑏𝑏𝑐𝑐 ∫ 𝑑𝑑𝑊𝑊
(𝑐𝑐2+𝑊𝑊)�(𝑖𝑖2+𝑊𝑊)(𝑏𝑏2+𝑊𝑊)(𝑐𝑐2+𝑊𝑊)

∞
0 ,   𝛼𝛼𝐴𝐴𝐴𝐴 =  𝐴𝐴0

2 −𝐴𝐴0
 (4.14) 

With these parameters fully defined, the EoM given in Equation (4.1) can be used to simulate the 

biomimetic robot swimming. 
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Figure 4.4 Drag Coefficient as a Function of Reynold’s Number 
The drag coefficient correlation given in Equation (4.13) is valid over a large range of Reynold’s 
numbers, as shown here. 

4.2.3. Comparison to Biological Jellyfish 

In the proposed model, the biomimetic robot has a forward-facing inlet that, under ideal 

circumstances, allows for unidirectional mass flow through the body of the robot, which will be 

referenced as the P1 swimming mode. This effect manifests itself in the direction cosine term in 

Equation (4.1). A side effect of allowing this kind of control is that the model can be used to 

simulate a jellyfish, P2, mode, in which the inlet is directed rearward, simulating the familiar 

swimming characteristics seen in Figure 2.4. The direction cosine angle for each swimming 

mode is given in Table 4.1.  

Table 4.1 Direction Cosine Angles for Inlet and Outlet During Different Swimming Modes 

 Propulsion Mode 1 (P1) Propulsion Mode 2 (P2) 

Inlet 𝜃𝜃 = 0 𝜃𝜃 = 𝑛𝑛 

Outlet 𝜃𝜃 = 0 𝜃𝜃 = 0 
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As an input to the geometric model, the rate of change of the half-axis dimension 𝑐𝑐 is 

defined through the Fourier series found in Equation (4.2). A constraint is placed on the 

magnitude of the contraction and relaxation amplitudes that ensures that after one complete 

swimming cycle the volume returns to its initial state. This is written as 

𝐵𝐵 = −
𝑡𝑡𝑐𝑐
𝑡𝑡𝑓𝑓
𝐴𝐴 (4.15) 

For an input rate of change to 𝑐𝑐 of -0.3 𝑐𝑐𝑚𝑚 𝑠𝑠⁄ , the half-axis dimension varies in time as shown in 

Figure 4.5, where it is clear that the rate of change in the half-axis dimension is constant 

throughout both the contraction and relaxation phases, and the constraint given by 

Equation (4.15) forces the dimensions of the shell to return to their initial state after each cycle. 

 
Figure 4.5 Input Half-Axis Dimension for Geometric Model, 1000th Partial Sum Input 
Using the ellipsoid model, the input half-axis dimension 𝑐𝑐 takes on the above rate of change and 
numeric values during deformation. 
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Using this input waveform, a short simulation comparing the two swimming modes is 

presented in Figure 4.6. The 3rd and 1,000th partial sums are compared to illustrate the effect of 

a non-ideal input. As evident from the plots, the proposed P1 mode performs better when using 

the more efficient inlet/outlet directions as compared to the P2 mode. This was expected as the 

mass-flux into the internal volume is in the same direction as the mass-flux out during the 

contraction phase.  

The effects of the non-ideal input are also expected. A lower partial sum of the Fourier 

series leads to a larger transition region between contraction and relaxation phases, so the robot 

slows down and begins to refill the internal volume sooner than in the idealized case. This effect 

is also seen in the plot, where at approximately 𝑡𝑡 = 0.4 the robot begins to decelerate when the 

non-ideal partial sum is used. This contrasts with the sharp acceleration change seen in the plot 

for the idealized input. Ultimately, both input waveforms yield higher swimming performance 

than the biological swimming mode, and the proposed robot design looks to be a promising 

concept. 
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Figure 4.6 Simulation of Geometric Model with Various Inputs and Swimming Modes 
From the plots shown, the P1 swimming mode far out performs the P2 mode, and the higher 
partial sum that correlates to a more ideal input results in an increased performance. 

A plot of the thrust profile is given in Figure 4.7 where the effect of the forward-facing 

inlet is more easily seen. During the contraction phases, both thrust profiles are identical, but 

when the robot body begins to relax and take water into the internal volume, the P1 mode 

generates a positive thrust while the P2 mode is negative. An important consequence of this is 

that the relation between contraction and relaxation time is no longer as important in generating a 

net positive thrust. 
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Figure 4.7 Thrust Profile for Geometric Model in Both Swimming Modes 
The P1 swimming mode shows a positive thrust profile throughout both the contraction and 
relaxation phases of the swimming cycle, as opposed to the positive and negative profile of the 
P2 swimming mode. 

4.3. Physics-Based Modeling 

To advance from the simplified geometric based approach taken in the previous model, a 

more physics-based route is explored. Here, the deformation of the robot body will be governed 

through an implementation of beam theory to describe the shell wall displacement in response to 

mechanical loading from an EAP actuator. The beam theory is used to simplify the computation 

of mechanical deformation by reducing the problem from the continuum model of solid 

mechanics. As will be demonstrated, the use of beam theory here is modular, in the sense that 

more robust and higher order models can be easily implemented in its place. Again, the 

necessary model parameters for the dynamic EoM are derived and related back to the beam 

theory deformation used as the method of input. Then, focusing on IPMC actuators, the 

equivalent circuit model discussed before is implemented to inform the beam model on the 

electromechanical response of an IPMC.  
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4.3.1. Beam Theory Approach 

Relating back to Figure 4.3, the new modeling approach breaks away from the constraint 

of the robot body being fully defined by the equation of an ellipsoid. Instead, as illustrated in 

Figure 4.8, the body is broken into active and passive regions, where the active region is 

physically deformed under the IPMC loading, and the passive region is completely dictated by 

the boundary conditions imposed on the geometry. Again, the deformation is assumed to be 

symmetric about the z-axis. A cross-section is illustrated in, where the length measurement of the 

actuator is more apparent, and the planes of symmetry are highlighted. Throughout the modeling 

process, only the first quadrant of the cross-section is analyzed and the axis symmetry about the 

z-axis and mirror symmetry about the xy-plane is enforced. 

 
Figure 4.8 Diagram of Physics-Based Description of Robot Body 
Active portions of the robot body can be deformed using a wide variety of EAP actuators. 

x 

z 

y 

Active 

Passive  



45 
 

 
Figure 4.9 Illustrative Cross-Section of Proposed Physics-Based Model 
The symmetry z-axis and xy-plane are shown in the illustration, as well as the actuator length 
within the active portion of the shell wall, and the radius describing the neutral axis of the beam 
used within the beam theory. 

To describe the deformation of the shell wall, a cross-section slice along the y-z plane is 

taken and the upper portion of the shell is modeled as a curved beam. Using virtual displacement, 

a functional of the form below is obtained 

� 𝑀𝑀𝛿𝛿𝜅𝜅 + 𝑁𝑁𝛿𝛿𝜖𝜖 − 𝑃𝑃𝑤𝑤𝛿𝛿𝑤𝑤 − 𝑃𝑃𝑣𝑣𝛿𝛿𝑣𝑣
𝐿𝐿

0
𝑑𝑑𝑠𝑠 = 0 (4.16) 

where 𝑀𝑀, 𝑁𝑁, 𝑃𝑃, 𝑤𝑤 𝑣𝑣, and 𝑠𝑠 are the internal bending moment, internal axial load, external loading 

broken into transverse (𝑃𝑃𝑤𝑤) and axial (𝑃𝑃𝑣𝑣) directions, transverse and axial displacements, and the 

Sym., xy-plane 

Sym., z-axis 

Actuator Length 

Neutral Axis 
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local axial coordinate along the length of the beam, respectively. The infinitesimal strain of the 

beam is defined in terms of the curvature and axial strain, 𝜅𝜅 and 𝜖𝜖 , given by 

𝜖𝜖 = 𝑣𝑣′ −
𝑤𝑤
𝜌𝜌

 (4.17) 

𝜅𝜅 = 𝑤𝑤′′ + �
𝑣𝑣
𝜌𝜌
�
′
 (4.18) 

where 𝜌𝜌 is the undeformed radius of curvature of the beam, assumed to be constant for 

simplicity. The first terms in both strain expressions are the familiar axial and curvature strain 

found in the Euler-Bernoulli beam theory for straight beams [95]. Not as familiar are the second 

terms, which are couplings of the transverse and axial deformation to the axial and curvature 

strains which is found only in curved beams. It can be easily verified that as the radius of 

curvature tends towards infinity, these terms tend to zero and thus the straight beam theory is 

recovered.  

Now, the assumptions of an inextensible beam, transverse external load, and linear 

elasticity are applied which yields the new functional for the beam 

� 𝐸𝐸𝐼𝐼 �𝑤𝑤′′ +
𝑤𝑤
𝜌𝜌2
�𝛿𝛿 �𝑤𝑤′′ +

𝑤𝑤
𝜌𝜌2
� − 𝑃𝑃𝑤𝑤𝛿𝛿𝑤𝑤

𝐿𝐿

0
𝑑𝑑𝑠𝑠 = 0 (4.19) 

with Young’s modulus 𝐸𝐸 and cross-sectional moment of inertia 𝐼𝐼. Using the standard virtual 

displacement procedure, the functional shown can be used to construct the governing ODE for 

the beam’s deformation seen below. Similarly, it can be easily shown that as the radius of 

curvature tends towards infinity, the Euler-Bernoulli equation for straight beams is recovered. 

𝑤𝑤𝑖𝑖𝑣𝑣 +
𝑤𝑤′′

𝜌𝜌2
+
𝑤𝑤
𝜌𝜌4

=
𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼

 (4.20) 
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with a general solution obtained by solving the homogenous and particular solutions of 

Equation (4.20) 

𝑤𝑤(𝑠𝑠) = 𝐴𝐴𝑐𝑐𝑐𝑐𝑠𝑠 �
𝑠𝑠
𝜌𝜌
� + 𝐵𝐵𝑠𝑠𝑐𝑐𝑛𝑛 �

𝑠𝑠
𝜌𝜌
� + 𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠 �

𝑠𝑠
𝜌𝜌
� 𝑠𝑠 + 𝐷𝐷𝑠𝑠𝑐𝑐𝑛𝑛 �

𝑠𝑠
𝜌𝜌
� 𝑠𝑠 +

𝑃𝑃𝑤𝑤𝜌𝜌4

𝐸𝐸𝐼𝐼
 (4.21) 

 In anticipation of finding an easily modified model with as close to a closed form 

solution as possible, a volume integral of the form below must be calculated for use in the 

dynamic EoM. 

𝑑𝑑𝑖𝑖 = �𝑟𝑟2 𝑠𝑠𝑐𝑐𝑛𝑛 𝜃𝜃 𝑑𝑑𝑟𝑟𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙 (4.22) 

where 𝑟𝑟 = (𝜌𝜌 + 𝑤𝑤) describes the outer shell walls deformation, and hence internal volume. This 

form depends nonlinearly on the transverse deflection, 𝑤𝑤, of the beam model. Due to the form 

seen in Equation (4.21), which is entirely dependent on boundary conditions, an alternative 

approach is taken to ease the work necessary to compute the volume integral.  

Due to its ease in changing boundary conditions without a great deal of additional work, 

the Galerkin method is used to form a trial function for the functional in Equation (4.19) to 

approximate the transverse deflection. More precisely, the Galerkin method is used to construct 

approximations to the deflection in terms of monomials of the local axial coordinate, seen below. 

This facilitates easier calculation of the parameters used in the EoM, as will be demonstrated in 

the next section. The approximation is constructed as 

𝑤𝑤� = �𝑠𝑠𝑖𝑖𝑤𝑤�𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

= 𝑵𝑵𝑠𝑠𝒘𝒘�  (4.23) 

where 𝑤𝑤�  is the trial function, 𝑁𝑁𝑤𝑤 is the number of monomial shape functions used, 𝑵𝑵𝒔𝒔 is a vector 

of the shape functions, and 𝒘𝒘�  is a vector of the Galerkin coefficients 𝑤𝑤�𝑖𝑖. Boundary conditions 
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are enforced by influencing the resulting stiffness matrix directly using the Galerkin form of the 

displacement, slope, bending moment, and shear force of the beam, given below.  

𝑤𝑤� = 𝑵𝑵𝑠𝑠𝒘𝒘�  (4.24) 

𝑤𝑤�′ = 𝑵𝑵𝑠𝑠
′𝒘𝒘�  (4.25) 

𝑀𝑀�𝑚𝑚𝑓𝑓𝑚𝑚𝑒𝑒𝑖𝑖𝑡𝑡 = (𝑵𝑵𝑠𝑠
′′ +

𝑵𝑵𝑠𝑠

𝜌𝜌2
)𝒘𝒘�  (4.26) 

𝑑𝑑�𝑠𝑠ℎ𝑒𝑒𝑖𝑖𝑓𝑓 = (𝑵𝑵𝑠𝑠
′′′ +

𝑵𝑵𝑠𝑠
′

𝜌𝜌2
)𝒘𝒘�  (4.27) 

where the moment and shear relations have been derived from the Euler-Bernoulli expressions 

and introductory beam theory. Substitution of the Galerkin trial function into the functional in 

Equation (4.19) results in: 

𝛿𝛿𝒘𝒘�𝑻𝑻 � 𝑵𝑵𝑠𝑠
𝑇𝑇 �𝐸𝐸𝐼𝐼 �𝑵𝑵𝑠𝑠

(𝑖𝑖𝑣𝑣) +
𝑵𝑵𝑠𝑠
′′

𝜌𝜌2
+
𝑵𝑵𝑠𝑠

𝜌𝜌4
�𝒘𝒘� − 𝑃𝑃𝑤𝑤� 𝑑𝑑𝑠𝑠

𝐿𝐿

0
 (4.28) 

which can be written as: 

𝑲𝑲𝒘𝒘� = 𝑷𝑷� (4.29) 

with stiffness matrix and load vector defined as: 

𝑲𝑲 = � 𝑵𝑵𝑠𝑠
𝑇𝑇 �𝐸𝐸𝐼𝐼 �𝑵𝑵𝑠𝑠

(𝑖𝑖𝑣𝑣) +
𝑵𝑵𝑠𝑠
′′

𝜌𝜌2
+
𝑵𝑵𝑠𝑠

𝜌𝜌4
�� 𝑑𝑑𝑠𝑠

𝐿𝐿

0
 (4.30) 

𝑷𝑷� = 𝑵𝑵𝑠𝑠
𝑇𝑇𝑃𝑃𝑤𝑤 (4.31) 
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which is a system of linear equations to solve for the unknown Galerkin coefficients 𝑤𝑤�𝑖𝑖. The 

integration of the stiffness matrix is achieved using Gauss-Legendre quadrature. Because the 

shape functions are simple monomials, the quadrature scheme is easily implemented after a few 

modifications. 

The local axial coordinate is first normalized with respect to the length using the 

following coordinate transformation. 

𝜁𝜁 =
𝑠𝑠
𝐿𝐿

 (4.32) 

Traditional Gauss-Legendre quadrature is conducted on the domain [-1,1], so the quadrature 

weights and Gauss points are transformed as well with: 

𝐺𝐺𝑝𝑝′ = 1 − �
1 − 𝐺𝐺𝑝𝑝

2
� (4.33) 

𝐺𝐺𝑤𝑤′ =
𝐺𝐺𝑤𝑤
2

 (4.34) 

Where Equation (4.33) transforms the domain [-1,1] of the traditional Gauss points to the domain 

of [0,1] of the normalized local axial coordinate, and Equation (4.34) transforms the Gauss 

weights accordingly to obtain the correct integration. The integrand of the stiffness matrix can 

then be written as 

𝑵𝑵𝜁𝜁
𝑇𝑇 �𝐸𝐸𝐼𝐼 �𝑵𝑵𝜁𝜁

(𝑖𝑖𝑣𝑣) +
𝑵𝑵𝜁𝜁
′′

𝜌𝜌2
+
𝑵𝑵𝜁𝜁

𝜌𝜌4
�� = 𝑁𝑁�𝜁𝜁(𝜁𝜁) (4.35) 

with 𝑵𝑵𝜁𝜁 being the new shape functions in terms of the normalized length coordinate. Now the 

stiffness matrix, calculated using Gauss-Legendre quadrature, becomes 
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𝑲𝑲 = 𝐿𝐿� 𝑵𝑵𝜁𝜁
𝑇𝑇 �𝐸𝐸𝐼𝐼 �𝑵𝑵𝜁𝜁

(𝑖𝑖𝑣𝑣) +
𝑵𝑵𝜁𝜁
′′

𝜌𝜌2
+
𝑵𝑵𝜁𝜁

𝜌𝜌4
�� 𝑑𝑑𝜁𝜁

1

0
= 𝐿𝐿� 𝑁𝑁�𝜁𝜁(𝜁𝜁)𝑑𝑑𝜁𝜁

1

0
= 𝐿𝐿�𝐺𝐺𝑤𝑤,𝑖𝑖

′ 𝑁𝑁�𝜁𝜁�𝐺𝐺𝑝𝑝,𝑖𝑖
′ �

𝑂𝑂𝐺𝐺

𝑖𝑖=1

 (4.36) 

where 𝑂𝑂𝐺𝐺 is the order of the quadrature scheme. Now, with the transverse deformation able to be 

computed, the condition of inextensibility can be used to determine the local axial deformation 

induced in the beam. 

𝜖𝜖 = 𝑣𝑣′ −
𝑤𝑤
𝜌𝜌

= 0 (4.37) 

𝑣𝑣� =
1
𝜌𝜌
� 𝑤𝑤�𝑑𝑑𝑥𝑥
𝐿𝐿

0
=

1
𝜌𝜌
� �𝑠𝑠𝑖𝑖𝑤𝑤�𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

𝐿𝐿

0
𝑑𝑑𝑠𝑠 =

1
𝜌𝜌
�

𝐿𝐿𝑖𝑖+1

𝑛𝑛 + 1
𝑤𝑤�𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

 (4.38) 

The last step in this process illustrates how the use of monomial shape functions facilitates easier 

integration in the process of deriving these necessary equations. With the transverse and axial 

deformations computed in a frame local to the curved beam, they can be transformed into 

standard Cartesian coordinates via: 

�
𝑢𝑢𝑒𝑒
𝑢𝑢𝑦𝑦� = � 𝑐𝑐𝑐𝑐𝑠𝑠

(𝜃𝜃𝑠𝑠) 𝑠𝑠𝑐𝑐𝑛𝑛(𝜃𝜃𝑠𝑠)
−𝑠𝑠𝑐𝑐𝑛𝑛(𝜃𝜃𝑠𝑠) 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝑠𝑠)� �

𝑣𝑣�
𝑤𝑤�� (4.39) 

where 𝜃𝜃𝑠𝑠 = 𝑠𝑠 𝜌𝜌�  is the angle defining the position along the beam in polar coordinates with 

𝜃𝜃𝑠𝑠 =  0 starting at the beginning of the beam moving in a clockwise positive direction. 

An important question must be raised regarding the accuracy of the approach described. 

A simple beam model on the scale expected for the proposed design was created in COMSOL in 

which the continuum mechanics equations for mechanical deformation are solved under a linear 

elastic assumption and serves as a benchmark for the beam model. A plot comparing the 

deformation is given in Figure 4.10, while information regarding the beam geometry, material, 

and loading is given in Table 4.2. From the figure it’s clear that the proposed implementation of 
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the curved beam theory is acceptable and is in very good agreement with the robust finite 

element solution of the continuum equations. 

 
Figure 4.10 Comparison of Beam Theory to FEM Implementation 
The proposed modeling approach where a Galerkin approximation is used to model a curved 
beam is shown here to be valid when compared to the COMSOL FEM solution. 

Table 4.2 Beam Geometry and Loading for COMSOL Comparison 

Parameter Value 

Length (cm) 0.5 

Width (cm) 0.25 

Thickness (cm) 0.25 

Modulus (cm) 50 

Radius of Curvature (cm) 0.5 

Load (N/m) 0.1 
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One more point of concern is whether the use of a curved beam model is necessary in the 

given circumstance. In the limit as the radius of curvature of a beam approaches infinity, the 

solution should approach that of the straight beam. Therefore, it is proposed that an accurate 

measure of the effect of curvature would be to examine the error incurred in a beam’s deflection 

as a function of the radius of curvature to length ratio.  

Figure 4.11 demonstrates such an analysis, where the curvature aspect ratio of the beam 

used in this model is highlighted and shows that a maximum percent error of approximately 

3.5% is incurred when using a straight beam assumption. While this error is not necessarily 

outside the range of a reasonable approximation, the ease of the Galerkin approximation makes 

the decision to stay with a curved beam model obvious. 

 
Figure 4.11 Error of Straight Beam Assumption 
The abscissa measures the curvature aspect ratio of a curved beam, while the ordinate is a 
measure of the maximum error obtained in assuming an infinite radius of curvature, i.e. a straight 
beam. 

p/L (1)

1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 P
er

ce
nt

 E
rro

r (
%

)

0

2

4

6

8

10

Error Curve

Ratio of Beam



53 
 

4.3.2. Derivation of Model Parameters 

To derive an expression for the internal volume in this new model, Equation (4.22) is 

integrated first with respect to the azimuthal angle, 𝜙𝜙, and the radial distance to obtain: 

𝑑𝑑𝑖𝑖 =
4𝑛𝑛
3
� 𝑟𝑟3 𝑠𝑠𝑐𝑐𝑛𝑛(𝜃𝜃𝑠𝑠)𝑑𝑑𝜃𝜃𝑠𝑠

𝜋𝜋
2

0
 (4.40) 

where the symmetry of the deformation has been leveraged. The integration bounds are left as 

variable because the integrand, which is dependent on the Galerkin trial function, changes as the 

polar angle transitions from the active portion to the passive portion of the body. Substituting the 

trial function into the expression for radial position and factoring out the dependence on the 

loading and bending stiffness from the Galerkin coefficients yields 

𝑟𝑟 = (𝜌𝜌 + 𝑤𝑤�) = �𝜌𝜌 +
𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼

�𝜃𝜃𝑠𝑠𝑖𝑖𝑤𝑤��𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

� (4.41) 

where a change of variable has been made from the local axial coordinate into the polar angle, 

and the Galerkin coefficients 𝑤𝑤�𝑖𝑖 have absorbed the dependence on 𝜌𝜌 from this change of 

variable and become 𝑤𝑤��𝑖𝑖. The radial position is seen to have two components, the nominal radius 

of curvature with an addition of the transverse deflection along the beams length. Substitution of 

this into the volume integral results in the expression below. 

𝑑𝑑𝑖𝑖 =
4𝑛𝑛
3
� �𝜌𝜌3 + 3𝜌𝜌2

𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼

�𝜃𝜃𝑠𝑠𝑖𝑖𝑤𝑤��𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

+ 3𝜌𝜌�
𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼

�𝜃𝜃𝑠𝑠𝑖𝑖𝑤𝑤��𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

�

2𝜋𝜋
2

0

+ �
𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼

�𝜃𝜃𝑠𝑠𝑖𝑖𝑤𝑤��𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

�

3

� 𝑠𝑠𝑐𝑐𝑛𝑛(𝜃𝜃𝑠𝑠)𝑑𝑑𝜃𝜃𝑠𝑠 

(4.42) 
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In what is to follow, some notation is introduced to simplify the expressions and write the 

parameters for the EoM in terms of the mechanical loading. First, the summation terms risen to a 

power are condensed into a single expression. 

��𝜃𝜃𝑠𝑠𝑖𝑖𝑤𝑤��𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

�

𝑝𝑝

= 𝑊𝑊𝑝𝑝(𝜃𝜃𝑠𝑠) (4.43) 

which allows Equation (4.42) to be rewritten as: 

𝑑𝑑𝑖𝑖 =
4𝑛𝑛
3
� �𝜌𝜌3 + 3𝜌𝜌2

𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼
𝑊𝑊1(𝜃𝜃𝑠𝑠) + 3𝜌𝜌 �

𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼
�
2

𝑊𝑊2(𝜃𝜃𝑠𝑠) + �
𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼
�
3

𝑊𝑊3(𝜃𝜃𝑠𝑠)�𝑠𝑠𝑐𝑐𝑛𝑛(𝜃𝜃𝑠𝑠) 𝑑𝑑𝜃𝜃𝑠𝑠

𝜋𝜋
2

0
 (4.44) 

Integrating this expression term by term is a cumbersome task, but can be made 

significantly easier by noticing that if expanded, the integral is a series of integrals of the form 

� 𝑐𝑐𝑖𝑖𝜃𝜃𝑖𝑖 𝑠𝑠𝑐𝑐𝑛𝑛 𝜃𝜃 𝑑𝑑𝜃𝜃
𝛽𝛽

𝛼𝛼
 (4.45) 

 and using integration by parts on this integral gives a series representation of the indefinite 

integral, denoted by 𝐼𝐼𝑖𝑖(𝜃𝜃)  

𝐼𝐼𝑖𝑖(𝜃𝜃) = 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃) �
(−1)𝑚𝑚+1𝑛𝑛!
(𝑛𝑛 − 2𝑚𝑚)!

𝜃𝜃𝑖𝑖−2𝑚𝑚
�𝑖𝑖2�

𝑚𝑚=0

+ 𝑠𝑠𝑐𝑐𝑛𝑛 (𝜃𝜃) �
(−1)𝑘𝑘𝑛𝑛!

(𝑛𝑛 − 2𝑘𝑘 − 1)!  
𝜃𝜃𝑖𝑖−2𝑘𝑘−1 

�𝑖𝑖−12 �

𝑘𝑘=0

 (4.46) 

where ⌊ ⌋ is the floor operation, which gives the lowest integer value of its argument through 

truncation of the decimal. This allows the definite integrals of the form Equation (4.45) to be 

written as 

𝐼𝐼�̅�𝑖𝛼𝛼
𝛽𝛽 = 𝐼𝐼𝑖𝑖(𝛽𝛽) − 𝐼𝐼𝑖𝑖(𝛼𝛼) (4.47) 
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The integration of the internal volume can now be written in a compact form. From the 

form of Equation (4.44), it is clear that the integral can be resolved into a polynomial in the 

mechanical loading, with coefficients that are combinations of 𝐼𝐼�̅�𝑖𝛼𝛼
𝛽𝛽 and 𝑤𝑤��𝑖𝑖. The expansion and 

collection of these terms can be easily written in compact form using summations, the results of 

which are given in Appendix B, where the integration bounds and are properly taken care of for 

the active and passive portions of the shell. Finally, the internal volume is resolved into the cubic 

polynomial shown in Equation (4.48). The simple polynomial form is a result of the Galerkin 

approximation used. The time dependence of the volume has now been highlighted and stems 

solely from the time variations in the loading. The beam theory used has assumed static 

deflection, and thus the entire model is quasi-static, neglecting inertial effects in the mechanical 

deformation. 

𝑑𝑑𝑖𝑖(𝑡𝑡) =
4𝑛𝑛
3
�𝐴𝐴0 + 𝐴𝐴1 �

𝑃𝑃𝑤𝑤(𝑡𝑡)
𝐸𝐸𝐼𝐼

� + 𝐴𝐴2 �
𝑃𝑃𝑤𝑤(𝑡𝑡)
𝐸𝐸𝐼𝐼

�
2

+ 𝐴𝐴3 �
𝑃𝑃𝑤𝑤(𝑡𝑡)
𝐸𝐸𝐼𝐼

�
3

� (4.48) 

The cross-sectional area with respect to the flow direction can be derived with a similar 

approach as that taken for the volume. Specifically, the area integral necessary is: 

𝑆𝑆 = �𝑟𝑟 𝑑𝑑𝑟𝑟𝑑𝑑𝜃𝜃𝑠𝑠  (4.49) 

With the radial distance defined in Equation (4.41), the integral becomes: 

𝑆𝑆𝐴𝐴 = 4� 𝜌𝜌2 + 2𝜌𝜌
𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼

�𝜃𝜃𝑠𝑠𝑖𝑖𝑤𝑤��𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

+ �
𝑃𝑃𝑤𝑤
𝐸𝐸𝐼𝐼

�𝜃𝜃𝑠𝑠𝑖𝑖𝑤𝑤��𝑖𝑖

𝑁𝑁𝑤𝑤

𝑖𝑖=0

�

2

𝑑𝑑𝜃𝜃𝑠𝑠
𝜋𝜋
2�

0
 (4.50) 
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The integral is in terms of only monomials of the polar angle thus its integration is relatively 

straight forward and can be evaluated to the expression below, with the coefficients 𝐵𝐵0, 𝐵𝐵1, and 

𝐵𝐵2 provided in Appendix B. 

𝑆𝑆𝐴𝐴(𝑡𝑡) = 𝐵𝐵0 + 𝐵𝐵1 �
𝑃𝑃𝑤𝑤(𝑡𝑡)
𝐸𝐸𝐼𝐼

� + 𝐵𝐵2 �
𝑃𝑃𝑤𝑤(𝑡𝑡)
𝐸𝐸𝐼𝐼

�
2

 (4.51) 

 For the added mass and drag coefficient, additional assumptions were made that allow the 

same relations of the geometric model to be used. The added mass was initially calculated based 

on an ellipsoid of largest volume that fit the material points along the x, y, and z-axis of the robot 

body. After some numerical experimentation though, it was found that the added mass 

coefficient maintained very small oscillations around a value of 0.5, the value for a sphere, and 

due to the first approximation nature of this model the coefficient has been fixed to this value. 

Since the deformation to the body is relatively small, the assumption of a spherical geometry is a 

reasonable approximation. This also influences the approximation for the drag coefficient, where 

the same sphere drag equation used previously has been implemented in this model. 

 

4.3.3. Addition of IPMC Electromechanical Effects 

To couple the electromechanical transduction of an IPMC to the beam theory model, the 

mechanical loading of the beam, 𝑃𝑃𝑤𝑤, is related to the electrochemical behavior of the IPMC 

through Equation (3.17). 

𝑃𝑃𝑤𝑤 = 𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅𝑄𝑄 (4.52) 
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Again, where the charge, 𝑄𝑄, of the IPMC is found through the Laplace transform of the RCW 

circuit transfer function below. 

𝑄𝑄(𝑡𝑡) = ℒ−1 �
1
𝑠𝑠
𝐻𝐻(𝑠𝑠)ℒ{𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡(𝑡𝑡)}� (4.53) 

The Fourier series in Equation (4.2) is still used as the model input here, where it defines the 

input voltage to the IPMC. Using Equation (4.53), the charge response of the IPMC to the 

Fourier series input is given by 

𝑄𝑄(𝑡𝑡) = 𝐴𝐴𝑡𝑡𝑐𝑐+𝐵𝐵𝑡𝑡𝑟𝑟
𝑡𝑡𝑐𝑐+𝑡𝑡𝑟𝑟

2𝑐𝑐1+𝑐𝑐2
2

�1 − 𝑅𝑅𝑥𝑥𝑒𝑒 �− 2𝑡𝑡
2𝑐𝑐3+𝑐𝑐4

��+  

�
𝐴𝐴−𝐵𝐵
𝑛𝑛𝑛𝑛

2𝑐𝑐1 + 𝑐𝑐2
4 + �𝑓𝑓𝑖𝑖(2𝑐𝑐3 + 𝑐𝑐4)�

2 ��2 𝑠𝑠𝑐𝑐𝑛𝑛(𝑓𝑓𝑖𝑖𝑡𝑡𝑐𝑐) − (2𝑐𝑐3 + 𝑐𝑐4)𝑓𝑓𝑖𝑖(1 − 𝑐𝑐𝑐𝑐𝑠𝑠(𝑓𝑓𝑖𝑖𝑡𝑡𝑐𝑐))�𝑐𝑐𝑐𝑐𝑠𝑠(𝑓𝑓𝑖𝑖𝑡𝑡)
∞

𝑖𝑖=0
+ 

(2(1 − 𝑐𝑐𝑐𝑐𝑠𝑠(𝑓𝑓𝑖𝑖𝑡𝑡𝑐𝑐)) + (2𝑐𝑐3 + 𝑐𝑐4)𝑓𝑓𝑖𝑖 𝑠𝑠𝑐𝑐𝑛𝑛(𝑓𝑓𝑖𝑖𝑡𝑡𝑐𝑐))𝑠𝑠𝑐𝑐𝑛𝑛(𝑓𝑓𝑖𝑖𝑡𝑡) + 
 

�(2𝑐𝑐3 + 𝑐𝑐4)𝑓𝑓𝑖𝑖(1 − 𝑐𝑐𝑐𝑐𝑠𝑠(𝑓𝑓𝑖𝑖𝑡𝑡𝑐𝑐)) − 2 𝑠𝑠𝑐𝑐𝑛𝑛(𝑓𝑓𝑖𝑖𝑡𝑡𝑐𝑐)�𝑅𝑅𝑥𝑥𝑒𝑒 �−
2𝑡𝑡

2𝑐𝑐3 + 𝑐𝑐4
�� 

 

(4.54) 

with 

𝑐𝑐1 = 𝐶𝐶,   𝑐𝑐2 = 𝑊𝑊,   𝑐𝑐3 = 𝑅𝑅𝐶𝐶,   𝑐𝑐4 = 𝑅𝑅𝑊𝑊,   𝑓𝑓𝑖𝑖 =
2𝑛𝑛𝑛𝑛
𝑡𝑡𝑐𝑐 + 𝑡𝑡𝑓𝑓

 (4.55) 

The charge response to a representative input for the model is given in Figure 4.12. The 

capacitive charge and discharge profiles are clearly visible, and even in this short simulation the 

beginning of the decay to a steady state response is seen in the peaks of the charge during the 

contraction phases. 
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Figure 4.12 RCW Model Charge Response for Fourier Series Input 
Noting the input voltage, the charge response shows a non-net-zero charge over each swimming 
cycle due to the equal voltage amplitudes over different time periods. This can be remedied with 
an input that follows the constraint of Equation (4.15). 

4.3.4. Evaluation and Comparison to Previous Model 

A comparison of the swimming behavior of this physics-based model to the two previous 

models is given in Figure 4.13. For the comparison, the original model in Chapter 2 was used. A 

jellyfish of comparable size and volume exchange was modeled, the parameters of which are 

given in Table 4.3. An important note must be made here. The simulation of the biological 

jellyfish used was matched to a comparable volume exchange of the two proposed models. From 

[58], the typical volume change for a jellyfish is on the order of 50%, where here a change of 

only 7.5% is used. While Figure 4.13 demonstrates that the two proposed biomimetic robot 

models do perform better than the biological counter-part, the biological jellyfish model is not 

operating at full capacity.  

This comes from the limitations on the amount of deformation allowed within the newly 

proposed physics-based model. By using a linear beam theory, small strain limitations do not 
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allow for the IPMC to be actuated with large deformation. Thus, the model comparisons made 

here are for small actuation strokes, for not only the physics-based model but also for the 

geometric and biological models, as to keep them within the same performance levels for better 

comparison. Taking this into account, the proposed robot design has a clear advantage over the 

biological jellyfish, and these are only more prominent at higher levels of deformation and over 

longer simulation periods. 

 
Figure 4.13 Comparison of Physics-Based Model to Geometric and Jellyfish Models 
The two robot models are compared to the original model of biological jellyfish, where the final 
physics-based model is seen to perform better at the given percent volume change. 

 

 

 

D
is

ta
nc

e 
(c

m
)

0

0.2

0.4

Daniel 1983 Model

Geometric Model

Physics-Based Model

Ve
lo

ci
ty

 (c
m

/s
)

0

0.05

0.1

Time (s)

0 1 2 3 4 5 6 7 8 9

Ac
ce

le
ra

tio
n 

(c
m

/s
2

)

-0.1

0

0.1



60 
 

Table 4.3 Physics-Based Model Comparison Parameters 

Parameter 
Value 

Daniel 1983 Geometric Physics-Based 

Radius of Body (mm) ~ 25.4 25.4 

Height of Bell (mm) 25.4 ~ ~ 

Half-Axis Rate (mm/s) ~ 3 ~ 

Volume Change (%) 7.5 ~ ~ 

IPMC Length (mm) ~ ~ 20.5 

IPMC Width (mm) ~ ~ 9.94 

IPMC Thickness (mm) ~ ~ 0.57 

Voltage (V) ~ ~ 4 

Contraction Time (s) 0.5 0.5 0.5 

Time Ratio (1) 2 2 2 

Outlet Radius (mm) 12.7 1 1 
 

Evaluating the physics-based model on its own, the thrust profile given in Figure 4.14 for 

both P1 and P2 swimming modes is reminiscent of the geometric model. The biomimetic mode 

shows a constant positive thrust where the relaxation phase component is seen to be mirror over 

the zero-line. Furthermore, the longer simulation allows for the transient behavior of the initial 

IPMC actuation to be more easily seen. The peak thrust during the contraction phase is at the 

initial contraction, which is followed by a steep decay in thrust. Similarly, the relaxation phase 

sees a high initial thrust value, followed by a slower decay until the next contraction occurs. This 

is due to the initial expelling or intake of water and can be directly related to the mass flux 

through the system, as shown in Figure 4.15. 
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Figure 4.14 Thrust Profile for Physics-Based Model 
As seen before for the geometric based model, the physics-based model shows a positive thrust 
profile throughout the swimming cycle in the P1 swimming mode. 

 
Figure 4.15 Mass Flux for Physics-Based Model 
The mass flux throughout the body of the robot is characteristic of the momentum exchanged 
through the fluid pumped out of the device. 
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Observing the mass flux profile, during the contraction phase there is a negative flux as 

water leaves the internal volume. If a control volume is drawn at the outlet of the robot, and if 

the robot were constrained and fixed in place, the fluid motion through the control volume may 

be plotted. The ejected fluid through the control volume has a velocity given by 

𝑣𝑣𝑒𝑒 =
�̇�𝑚

𝜌𝜌𝑤𝑤𝐴𝐴𝑣𝑣
 (4.56) 

where �̇�𝑚 is the mass flux through the control volume. It can be easily visualized that during the 

relaxation phase, the velocity through this control volume is zero, assuming the inlet is forward 

facing. Thus, the system now behaves as a unidirectional fluid pump. Clearly, the longer the 

relaxation phase is the more pulsating the flow through the control volume becomes. If the time 

ratio for the robot is then lowered, the velocity through the control volume becomes more 

continuous. This is illustrated in Figure 4.16, where velocity profiles for the device in normal 

operation and the described low time ratio are shown for comparison. 

This type of operation transforms the robot into a fluid pump, allowing for a near 

constant mass flow or a pulsating flow, making it suitable for multiple applications in low 

volume fluid pumping, akin to the proposed design in [96]. An interesting feature is the 

unidirectional aspect of this pump, where using one-way valves inherent in the structure of the 

shell, back flow is restricted. The IPMC driven actuation also makes the system a low voltage 

component. An alternative input voltage waveform may also allow for a more uniform flow 

velocity, but this is a question for future optimization and experimentation. 
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Figure 4.16 Velocity Profiles for Fluid Pump Operation 
Fluid velocity profile at outlet of device. The outlet fluid velocity during a swimming operation 
shows the distinct pulse during contraction phases. By extending the contraction phase over a 
longer period and shortening the relaxation phase, the outlet velocity becomes more continuous 
and the device may be used as a fluid pump. (Top) Swimming operation. (Bottom) Fluid 
pumping operation.  
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Chapter 5. Design Optimization 

With a physics-based model for the swimming behavior of the proposed robot, there is a 

question of whether the original design can be improved upon. Here, a simple design 

optimization is conducted to search for model parameters that give largest swimming distance 

over a given period. To conduct the optimization, a sequential quadratic programming (SQP) 

routine is implemented in MATLAB on a few, hand selected design parameters. These 

parameters are investigated from a qualitative view to gain some understanding of how they 

might interact with each other during the optimization process. From there, an optimization 

routine is run to search for the optimal parameters, and the newly optimized design is compared 

to the originally proposed model. Some preliminary work on the scalability of the device is also 

presented and a discussion on the limitations of the model as it relates to its optimization 

capabilities is discussed. 

 

5.1. Sequential Quadratic Programming Optimization 

5.1.1. Selection of Design Variables 

The design variables selected for optimization were chosen manually with some insight 

into the model and its limitations. Of all the possible variables involved in the physics-based 

model, the three chosen as design parameters were the IPMC length, contraction time, and time 

ratio. Other parameters, such as IPMC thickness, IPMC width, valve aperture, input voltage, and 

many more have significant effects on the performance of the robot, but due to a few model 

limitations which will be discussed later, these were not viable selections. 

As expected, the IPMC length plays an important role, but its exact effects on the 

performance of the robot were not fully understood. To begin the optimization process, the 



65 
 

model was made into an executable MATLAB function that took an input of the IPMC length 

and would output the maximum distance traveled over a 30 second period. This gives a 

qualitative understanding of how the parameter affects the swimming behavior. The results of 

this numerical experiment are given in Figure 5.1, where there is a noticeable peak in 

performance around 𝐿𝐿 = 26 (mm). While the increase in performance with increasing length was 

expected, the rapid decay in distance traveled when passing the peak value was not. This is 

attributed to the degree the shell wall is deformed as the length increases. After the length passes 

the observed optimal value, the contraction and relaxation phases switch roles in the sense that 

during the “contraction” phase, the internal volume is increased, and the “relaxation” phase sees 

a decrease in volume. This effectively changes the operation behavior of the device and when 

keeping the contraction time and time ratio constant, this results in decreased performance. The 

parameters for the model simulation are given in Table 5.1. 

 
Figure 5.1 Distance vs IPMC Length 
A simple plot of distance traveled as a function of IPMC length shows that an optimal value for 
the length is located near 26 (mm). 
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Table 5.1 Simulation Parameters for IPMC Length Optimization 

Parameter Value 

Simulation Time (s) 30 

Time Step (s) 0.001 

Contraction Time (s) 0.5 

Time Ratio (1) 2 
 

To gain further insight in the design variables in question, a surface plot of distance 

traveled was constructed for the pairwise combinations of the three parameters. These surface 

plots are a kind of brute force optimization aid where one can visually identify the trends in the 

performance of the model based on the two-parameter combination. Since the approach requires 

repeated simulations, the accuracy of the model has been sacrificed to a degree to speed up the 

process, as reflected by the increased time step shown in Table 5.2. Because these surface plots 

are more qualitative, the loss in accuracy is not an issue, and a more robust optimization will be 

conducted in the next chapter. 

The surface plot for the combination of IPMC length and the contraction time shows an 

unsurprising trend. The familiar optimal value for the length parameter is evident, and a 

monotonically decreasing distance in the contraction time is seen. These results are expected, but 

it at least verifies the behavior seen in Figure 5.1. Turning to the plot of IPMC length and the 

time ratio, the surface profile is a little more interesting. The profile observed in Figure 5.1 is still 

prevalent, but the behavior of the surface shows a global maximum near a time ratio value of 

𝛿𝛿𝑡𝑡 ≅ 2.5. This means that there may be an optimal design solution in this neighborhood that 

could be found using a more robust optimization routine. For now, it will be taken only for a 

qualitative understanding of where a more optimal design may reside. Finally, the results of 

pairing the contraction time and time ratio give a predictable surface plot. The monotonically 
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decreasing behavior of the contraction time is evident while the peak value associated with the 

time ratio discussed previously is clearly seen. These qualitative results are presented in Table 

5.3, where the original unoptimized design parameters are listed alongside of the expected 

optimal parameter values. 

Table 5.2 Simulation Parameters for Pairwise Optimization 

Parameter Value Range 

Simulation Time (s) 20 ~ 

Time Step (s) 0.005 ~ 

Contraction Time* (s) 0.5 0.2-2 

Time Ratio* (1) 2 1-10 

Length* (mm) 20.5 5-35 

* Indicates the value taken when the variable is not selected as design parameter for optimization plots. 

 
Figure 5.2 Surface Plot of Distance vs Length and Contraction Time 
The two-parameter surface plot shows the interaction between the length and contraction time 
and their effect on distance traveled. 
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Figure 5.3 Surface Plot of Distance vs Length and Time Ratio 
The two-parameter surface plot shows the interaction between the length and time ratio and their 
effect on distance traveled. 

 
Figure 5.4 Surface Plot of Distance vs Time Ratio and Contraction Time 
The two-parameter surface plot shows the interaction between the time ratio and contraction time 
and their effect on distance traveled. 
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Table 5.3 Parameter Values for Unoptimized and Expected Optimal Designs 

Parameter Unoptimized Design Expected Optimal Value 

IPMC Length (mm) 20.5 26 

Contraction Time (s) 0.5 0.2 

Time Ratio (1) 2 2.5 
 

5.1.2. Optimization of Design Variables 

There are numerous methods for constrained nonlinear optimization, many of which are 

excellently described in [97]. To conduct a more thorough optimization of these design 

parameters, an implementation of the SQP method is performed in MATLAB using the fmincon 

function. This algorithm is capable of handling constrained nonlinear optimization problems. 

The constraints used here consist only of bounding limits on the design variables and an 

inequality constraint on the IPMC length. The boundary limits are given as 

10 < 𝐿𝐿𝑖𝑖𝑝𝑝𝑚𝑚𝑐𝑐 ≤  
𝑛𝑛
2
𝜌𝜌 − 𝜖𝜖𝐿𝐿 (5.1) 

1 < 𝛿𝛿𝑡𝑡 < 5 (5.2) 

0.05 < 𝑡𝑡𝑐𝑐  < 2 (5.3) 

where 𝜖𝜖𝐿𝐿 is the minimum amount of passive material that makes up the shell wall after the end of 

the IPMC. The inequality constraint ensures that the length of the IPMC does not exceed the 

hemisphere that is being modeled after symmetry planes have been addressed. The remaining 

boundaries for the design parameters have been chosen based on experience with the model. The 

lower boundary for the time ratio is chosen such that the relaxation time will be no shorter than 

the contraction, which is an implied assumption in the development of this model. The upper 



70 
 

boundary on the time ratio as well as the boundaries for the contraction time have been chosen to 

provide a large solution space for the optimization to search within. 

To make sure that the optimal solution obtained through this method is accurate, multiple 

implementations of the algorithm are conducted, each starting from an initial condition that is 

randomly perturbed. This ensures that more of the solution space is explored by the algorithm, 

and by collecting multiple solutions statistical metrics can be collected to verify the accuracy of 

the obtained values. The initial values and perturbations applied to them are given in Table 5.4, 

along with the simulation parameters used. The perturbations are applied via 

𝑋𝑋𝑖𝑖,0 = 𝑥𝑥𝑖𝑖 + 𝛿𝛿𝑖𝑖 𝑟𝑟𝑖𝑖,1(−1)�𝑓𝑓𝑖𝑖,2� (5.4) 

where 𝑋𝑋𝑖𝑖,0 is the ith parameter’s initial value, 𝑥𝑥𝑖𝑖 is the parameter’s nominal value, 𝛿𝛿𝑖𝑖 is the 

perturbation of the parameter, 𝑟𝑟𝑖𝑖,1 and 𝑟𝑟𝑖𝑖,2 are distinct random numbers generated for the 

parameter, and ⌊ ⌉ denotes the rounding operator, which outputs the integer value obtained after 

rounding its argument up or down depending on the leading digit of the decimal. This approach 

scales the value of each parameter by a range associated with the perturbation in both positive 

and negative directions based on two randomly generated numbers, thus ensuring that each 

successive implementation of the SQP algorithm begins at a different initial point.  
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The SQP function is implemented with the constraints given in Equations (5.1)-(5.3) with 

an initial condition obtained from Equation (5.4). Here, the routine was run for 100 trials, with 

the results of each being retained so that the mean and standard deviation for each of the 

resulting design parameters could be calculated. Random variables are uniformly distributed over 

the range [0,1]. 

Table 5.4 Parameters for SQP Optimization of Design Variables 

Parameter Value Perturbation 

Simulation Time (s) 30 ~ 

Time Step (s) 0.005 ~ 

IPMC Length* (mm) 20.5 5 

Time Ratio* (1) 2 1 

Contraction Time* (s) 0.5 0.1 

Passive Material, 𝜖𝜖𝐿𝐿 (mm) 5 ~ 

* Indicates the nominal value used in (5.4) 

 

After 100 successive SQP routines, the resulting optimal parameters obtained were 

processed into the probability density functions for the IPMC length, time ratio, and contraction 

time shown in Figure 5.5, Figure 5.6, and Figure 5.7, respectively. The mean and standard 

deviation for these results are provided in Table 5.5, where it is clear that the final optimal values 

are in good agreement with the expected results obtained from the surface plots.  

Of interest is how precise the results are for the IPMC length, evident from both the 

probability density function as well as the small standard deviation. Similarly, the contraction 

time shows a more compact distribution, indicating that the mean value obtained is more likely 

to be the ideal value. The time ratio shows a wider distribution, corresponding to its larger 

standard deviation. This implies that the result obtained is not as significant for the optimal 
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design. This is also expected from the form of the surface plots shown previously, where the 

decay in performance was not as significant for changes in the time ratio as compared to the 

contraction time or length. 

 
Figure 5.5 Probability Density Function: IPMC Length 
The probability density function for the IPMC length helps in visualizing the certainty in the 
optimal value obtained. 

 
Figure 5.6 Probability Density Function: Time Ratio 
The probability density function for the time ratio helps in visualizing the certainty in the optimal 
value obtained. 
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Figure 5.7 Probability Density Function: Contraction Time 
The probability density function for the contraction time helps in visualizing the certainty in the 
optimal value obtained. 

Table 5.5 Results of SQP Optimization 

Parameter Mean Value Standard Deviation 

IPMC Length (mm) 25.8 1.32 

Time Ratio (1) 2.31 0.502 

Contraction Time (s) 0.462 0.171 
 

5.2. Comparison of Unoptimized and Optimized Design 

The newly optimized model has been compared to the original unoptimized model for 

both the P1 and P2 swimming modes. As demonstrated in Figure 5.8, the optimized model far 

outperforms the unoptimized design. In both swimming modes, the optimal design shows an 

improvement of approximately a factor of 2 in terms of distance traveled. Again, the advantages 

of the P1 mode out performances P2, as expected. This strongly indicates that the proposed 

design may be useful in developing a high performance, highly efficient soft robot for aquatic 

applications. 
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Figure 5.8 Comparison of Unoptimized and Optimized Models: Distance Traveled 
Top: Comparison of distance in P2 swimming mode. Bottom: Comparison of distance in P1 
swimming mode. 

A quantitative comparison between the unoptimized and optimized model can be 

obtained by examining the propulsion efficiency of the two models at steady state. This 

efficiency is calculated using  

𝜂𝜂𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝 =
2

1 +
𝑣𝑣𝑓𝑓𝑓𝑓𝑊𝑊𝑖𝑖𝑑𝑑
𝑣𝑣𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑡𝑡

 (5.5) 

where 𝑣𝑣𝑓𝑓𝑓𝑓𝑊𝑊𝑖𝑖𝑑𝑑 and 𝑣𝑣𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑡𝑡 are the fluid velocity and robot velocity, respectively. As evident from 

the equation, as the robot velocity matches that of the fluid the efficiency approaches unity, and 

as the robot velocity drops lower than the fluid, the efficiency approaches zero. These 

efficiencies are calculated individually, at steady state, over the final contraction and relaxation 
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cycle, and the result is averaged to obtain the propulsion efficiency for the robot in each 

swimming mode. These results are tabulated in Table 5.6, along with the average thrust 

generated over the entire swimming cycle. Figure 5.9 shows the resulting velocity plots for the 

two models in both the P1 and P2 swimming modes. 

Table 5.6 Propulsion Efficiency for Unoptimized and Optimized Models 

Model Swimming Mode Efficiency (%) Mean Thrust (𝝁𝝁N) 

Unoptimized 
P1 10.8 8.20 

P2 5.06 2.58 

Optimized 
P1 11.6 14.2 

P2 6.27 5.38 

 
Figure 5.9 Velocity Profiles for Efficiency Calculation 
Top: Profile for swimming velocity during P2 mode. Upper profile is the optimized model. 
Bottom: Profile for swimming velocity during P1 mode. Upper profile is the optimized model. 
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The results shown in Figure 5.9 again show a factor increase in velocity of approximately 

2 for the optimal design as compared to the unoptimized approach. One further point of interest 

is that the more efficient swimming behavior of the biomimetic mode leads to the robot reaching 

its steady state behavior more rapidly. This is evident in the profile of the velocity plots, where 

the P1 swimming mode is seen to reach its steady state around 50 seconds, whereas the P2 mode 

takes approximately twice as long. 

 

5.3. Scale Effects on Optimal Parameter Values 

To gain insight into how the proposed robot design might scale, a second implementation 

of the SQP optimization was undertaken. Here, the size of the robot body is scaled, and the 

optimization routine is used to determine how the chosen design variable’s optimal value vary 

with the size of the robot. There are some limitations regarding the model that limit the physical 

size of the robot, but these will be elaborated on further in the discussion section of this chapter. 

Firstly, the boundaries of the design variables that have the units of length are scaled to 

the original body radius of 25.4 (mm), thus ensuring that the solution space scales along with the 

size of the robot. The SQP routine is then used to find an optimal parameter set for five different 

robot sizes over 25 trials. Data from all 25 optimization routines for each robot size are then used 

to construct statistics necessary to quantify the results. The final values obtained after this 

process are tabulated in Table 5.7, where a few interesting trends are seen.  

When looking down the column for the IPMC length, there is a clear linear trend that is 

almost one to one in terms of IPMC length and shell radius. Furthermore, the time ratio and 

contraction time seem to have no dependence on the size of the robot. As seen from the standard 

deviation, the results seem to become not as precise as the size of the robot scales up. This may 
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be an implication that as the robot becomes larger, the model no longer has as well defined of an 

optimal solution as compared to the smaller devices.  

Table 5.7 Results of Optimization with Scaled Shell Radius 

Radius of Shell 
(mm) 

Optimal Value, Mean / Std. Dev. 

IPMC Length (mm) Time Ratio (1) Contraction Time (s) 

10 10.7 / 0.951 2.11 / 0.557 0.418 / 0.125 

20 20.2 / 0.104 2.17 / 0.550 0.427 / 0.128 

30 30.7 / 2.22 2.30 / 0.544 0.438 / 0.236 

40 40.1 / 0.202 2.48 / 0.380 0.551 / 0.363 

50 52.6 / 7.31 2.52 / 0.895 0.840 / 1.23 
 

The data given in Table 5.7 is also presented in Figure 5.10, Figure 5.11, and Figure 5.12, 

where the trends are much easier to visualize. As evident in the data shown in the figures, as the 

shell radius increases, the precision of the SQP optimization decreases.  

 
Figure 5.10 Optimized IPMC Length Versus Radius of Shell 
The above figure shows the linear trend of the optimized IPMC length as a function of the shell 
radius. Equation (5.6) gives the regression line shown, where the slope is shown to be near unity. 

Radius of Shell (mm)

0 10 20 30 40 50

O
pt

im
al

 IP
M

C
 L

en
gt

h 
(m

m
)

0

10

20

30

40

50

60
Fitted Linear Trendline

SQP Results



78 
 

 
Figure 5.11 Optimized Time Ratio Versus Radius of Shell 
Here, a near constant trend is seen in the SQP results, with a much wider range of values. This is 
expected as during the initial SQP optimization the time ratio was seen to have a less well 
defined optimal value. 

 
Figure 5.12 Optimized Contraction Time Versus Radius of Shell 
Similarly, the contraction time shows a more constant trend as a function of the shell radius. This 
is also explained in the previous optimization analysis. 
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𝐿𝐿𝐼𝐼𝐼𝐼𝐴𝐴𝑅𝑅 = 1.06𝜌𝜌 − 0.985 (5.6) 

𝛿𝛿𝑡𝑡 = 0.011𝜌𝜌 + 1.98 (5.7) 

𝑡𝑡𝑐𝑐 = 0.00969𝜌𝜌 + 0.244 (5.8) 

 From the SQP data, linear regressions for each design parameter were found, with the 

IPMC length, time ratio, and contraction time being given by Equation (5.6), Equation (5.7), and 

Equation (5.8), respectively. The near one-to-one trend of the IPMC length seen in Table 5.6 is 

highlighted by the near unity slope of its regression equation. Similarly, both regression 

equations for time ratio and contraction time show a near constant form, with a small slope that 

may be explained by the larger standard deviation seen in the previous analysis. At larger shell 

radii, the optimal value is seen to be less distinct, particularly for the IPMC length.  

 

5.4. Discussion 

The optimization approach here is somewhat limited due to the use of only three design 

parameters. While other variables certainly play important roles in the functionality of such a 

robot design, the current model components do not lend themselves for a full suite of multi-

variable optimization. In particular, the RCW circuit model is not robust enough to capture the 

effects of back relaxation, steric interactions, and thickness of the polymer on the actuation 

performance of the IPMC. Additionally, the choice of a linear beam theory limits the IPMC 

deflection to small strains, and hence large deformations of the shell wall cannot be accounted 

for in the overall model. This also limits the capability to optimize the overall size of the robot.  
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As mentioned earlier, when attempting to optimize the size of the robot, the constrained 

on the IPMC length is very important. The model is not capable of handling a zero-percentage of 

passive material in the shell wall, and as such there must be some constraint in place to ensure 

that as the size of the robot increases the IPMC does not fully eliminate the passive portion in the 

design. Furthermore, from experience with the IPMC actuators, there is a tradeoff between 

performance and length, whereas the IPMC scales its actuation capabilities degrade. This 

phenomenon is not currently captured within the proposed models, and hence the scale effects on 

optimization demonstrated here are not valid at the larger size of robots. With the limitations of 

the circuit model in predicting the behavior of the IPMC at larger sizes, the optimization of the 

overall size and geometry of the robot is currently not feasible.  
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Chapter 6. Conclusion 

Biology has been shown to provide invaluable inspiration for the modeling, design, and 

development of soft robotic systems. Here, insight of the jet propulsion mechanism found in 

jellyfish lead to a new theory about an improved swimming mechanism for small aquatic robots. 

A robust finite element model of the complex Poisson-Nernst-Planck system of equations 

for IPMC actuation was described, wherein a reduction in the problem’s dimensionality was 

leveraged to drastically improve on the computational overhead required to solve these complex 

Multiphysics problems. The described approach was shown to give highly accurate results in 

good agreement with other modeling approaches found in literature. This was achieved by 

solving the PNP system in 1D and using a mapping equation to transform the results on this 

lower dimensional domain onto a full 2D domain, where the electromechanical transduction was 

solved and the IPMC displacement was calculated. This finite element model was then shown to 

be in good agreement with experimental data taken from an actual IPMC.  

Similarly, an equivalent circuit model was described which included resistive, capacitive, 

and Warburg impedances. The circuit model provides a quick, easy to implement, and highly 

modular model for the electrochemical behavior of IPMC actuators. This approach, when 

combine with an electromechanical coupling equation, can be used to model IPMC actuator 

displacement in response to an external voltage input. Using a straight beam model, the circuit 

model was shown to be in good agreement with both experimental data as well as the complex 

finite element implementation. 

Using a simplified geometrically defined model, the proposed biomimetic robot design 

was proved to be at least feasibly and to provide potential efficiency improvements over its 

biological inspiration. A simple ellipsoid geometry was found to provide a useful tool for the 
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description of a robotic system but lacked a physical basis that was desired for a more well-

defined model. The model still provided some critical information and insight into how a robot 

of this design may function and behave as compared to its biological jellyfish inspiration. 

The simplified geometric approach was improved upon by starting from a physical basis, 

namely, a beam theory found in the field of solid mechanics. Due to the spherical design, a linear 

curved beam was proposed and the deformation of such beam under a uniformly distributed load 

was calculated approximately through a Galerkin trial function. The trial function was 

specifically chosen to include only monomial terms so that future endeavors for developing a 

dynamic model for the swimming behavior would be easier to express mathematically. The 

choice of trial function was shown to be extremely useful in describing the internal volume and 

cross-sectional area for the physics-based model. The model was then completed by coupling the 

equivalent circuit model for IPMC deformation with the curved beam theory used to provide a 

fast and accurate modeling approach that is grounded in physical principles. The physics-based 

approach was found to be in good agreement with both the geometric and biological jellyfish 

models for the swimming regimes tested. Using the newly developed model, the ability for the 

proposed robot design be used as a low volume fluid pump was described. By changing how the 

device was constrained and examining a small control volume at the outlet of the system, it was 

shown that it is possible to generate nearly continuous flow or pulsating flow from the same 

device while relying only on low voltage inputs for the IPMC actuators. 

Finally, an optimization of the design was conducted. A few design parameters were 

chosen and their effect on the distance traveled by the robot was modeled. After narrowing down 

on three parameters, namely the IPMC length, contraction time, and time ratio, surface plots of 

the robot’s displacement were created to gain some valuable insight into the existence of a 
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possible optimal parameter set. From there, an implementation of sequential quadratic 

programming was used to find the exact optimal solution. In this optimization, 100 trials were 

used to construct mean and standard deviations of the design variables to verify that the 

optimization routine found a good maximum. From the results obtained, the optimal solution was 

verified, and the optimal model was compared to the original unoptimized implementation. The 

optimal parameters were shown to increase performance significantly, evident from plots of the 

distance traveled over time as well as comparing the average thrust and propulsion efficiency. A 

look at the scale effects on the optimal design parameters was taken, and it was shown that as the 

robot increases in size, the IPMC actuator necessary to achieve optimal performance also must 

increase linearly. The limitations of the model with regard to optimization were discussed. 

Specifically, the linear deflection and limited circuit model do not allow for a more complex 

multi-variable optimization with scaling to be conducted. This is an important topic for future 

research. 

Ultimately, the work here demonstrated the value in biological inspiration and model for 

the development of new and efficient soft robotic systems. The final physics-based model is 

highly modular and flexible in terms of the techniques and approaches used. The Galerkin 

approximation technique allows for boundary conditions on the beam to be changed with ease to 

allow for changes in the robot design, as well as provide a simple and concise way to describe 

the physical parameters that are key to modeling the swimming behavior of the robot. This 

approach also allows for more complex beam equations to be used, where the requirement on 

infinitesimal strain may be relaxed and larger deflections of the IPMC actuator may be captured. 

Additionally, the role of the circuit model is highly adaptable for new and improved equivalent 

circuit models, or other such approaches to modeling the electrochemical nature of IPMCs. 
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Chapter 7. Future Work 

7.1. Fabrication of Prototype 

To verify the model developed, a prototype for experiments must be created. Currently, 

some work has been made in this endeavor. The body of the robot would ideally be made of a 

soft, flexible, passive material that will allow for easy deformation of an enclosed internal 

volume. A design for the shell body of the robot has been drawn in CAD software, shown in 

Figure 7.1, to manufacture molds that can be used to cast a flexible elastomer body. Using this 

CAD model, two mold designs have been drawn and 3D printed for the manufacturing of a 

prototype robot.  

 
Figure 7.1 Engineering Sketch of Prototype Mold Design 
With the mold design shown, a soft elastomer material such as Ecoflex is cast into void shown in 
black in the A-A cross-section and cured to obtain a flexible shell. 
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The first mold is a four-part design that allows for an elastomer material to be poured and 

cast around a center core, seen in black in the cross-section A-A of Figure 7.1. This design 

requires the cured body to be cut and pulled off the central core and bonded back together to 

create an air tight shell. The expanded view B in Figure 7.1 shows two tabs where the cast body 

will be thin enough to easily cut and separate from the central core. With the shell created, the 

mold can be used without the core to recast and patch the cut portion of the body. 

A second mold has been designed that allows two half-shells to be cast simultaneously. 

In the assembly process of the prototype these half-shells will be bonded to the exterior surface 

of the main body to form pockets for IPMC actuators to be embedded into the body of the 

device. These molds have been 3D printed, as seen in Figure 7.3 and Figure 7.4, and an initial 

prototype is currently being manufactured, as shown in Figure 7.5. 

 
Figure 7.2 Second Mold Design CAD Image 
This mold design allows for two half shells to be cast and then bonded together in order to avoid 
cutting the shell off the central core of the previous design. 
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Figure 7.3 First 3D Printed Mold 
The first mold design was 3D printed for initial prototyping. 

 

 
Figure 7.4 Second 3D Printed Mold 
Similarly, the second mold was 3D printed to assemble pockets that will ultimately hold the 
IPMC actuators in the final prototype. 
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Figure 7.5 Current Status of Elastomer Prototype Body 
Using the 3D printed molds, the above Ecoflex shells have been cast and are under assembly. 

7.2. Structure of Future Experimental Study 

The experimental procedure is modeled after the work of [98] where the robot will be 

placed within a flow tank and its thrust and drag characteristics experimentally determined and 

compared to the proposed model. Furthermore, the swimming performance of the robot is to be 

evaluated through computer vision techniques. The robot may be placed within the flow tank and 

video footage will be recorded of the swimming behavior over a set period. Using optical feature 

tracking using optical flow techniques, along with calibrating the pixel-to-distance correlation for 

the video, the experimental swimming displacement can be collected and compared to the 

physics-based model. The drag characteristics of the robot body can be experimentally measured 

by towing the robot through the water at various speeds while a load cell is used to record the 

towing force. This allows for the drag force and hence drag coefficient to be calculated. A 

similar experimental setup may be used to measure the thrusting force. In this case, the system is 

kept static and the robot thrusts against the load cell measurement arm, and the resulting thrust 

force may be measured. This can be directly compared to the proposed model for verification. 
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7.3. Additions to Physics-Based Model 

One of the limitations of the currently proposed model is the reliance on infinitesimal 

strain in the beam theory. The proposed model has been shown to provide accurate beam 

deflection results using a Galerkin approximation. The flexibility gained by using such an 

approximation technique allows for easy modification of the beam theory used. By transitioning 

from the linear strain theory to a non-linear one, the same Galerkin approach can be used while 

the rest of the proposed model retains the same results and forms. This will ultimately allow for 

the modeling of large IPMC deformations and thus yield a more physically accurate model. 

Similarly, the equivalent circuit model is easily changed for other variants that include 

nonlinear circuit components or more finely tuned parameters. One interesting approach that is 

being investigated is the use of a 1D finite element implementation outside of COMSOL 

Multiphysics. The 1D approach has been shown to provide accurate results for the PNP system, 

and with this multiphysics-based model the more robust electromechanical coupling equations 

may be used. This, combined with a nonlinear beam theory, is very attractive for developing a 

highly accurate model of soft robotic systems. 
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Appendix A: Additional Figures of COMSOL Domains and Mesh 

 
Figure A.1 Finite Element Mesh for 2D PNP Domain 
The extremely dense mesh used in the 2D PNP COMSOL model leads to longer computation 
time and larger stiffness matrices in the FEM approach. 

 

 

Figure A.2 Enhanced View of Figure A.1 
The enhanced view of the 2D mesh shows the high aspect ratio rectangular elements within the 
polymer region of the model. 

 

 
Figure A.3 Finite Element Mesh of 2D Solid Mechanics Domain 
The 2D domain has a similar structure but has lower density and less severe aspect ratio 
elements. 
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Figure A.4 Enhanced View of Figure A.3 
This view shows the larger elements used to calculate the mechanical deformation in the solid 
mechanics domain. 

 

 

Figure A.5 Finite Element Mesh of 1D PNP Domain 
The refined 1D domain has two areas of interest when investigating the structure of the mesh. On 
the left is the electrode-polymer interface, and the right is the polymer-polymer interface at the 
buffer region. 

 

 

Figure A.6 Enhanced View of Figure A.5, Electrode-Polymer Interface 
The electrode-polymer interface shows the stark contrast between element density in the two 
respective sub-domains. 

 

 

Figure A.7 Enhanced View of Figure A.5, Membrane-Membrane Interface 
Similarly, the polymer-polymer interface has a drastic difference in mesh density. 
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Figure A.8 Finite Element Mesh of 2D Solid Mechanics Domain for 1D PNP Modeling 
A similar 2D domain is used for the solid mechanics physics when using the 1D PNP model. 

 

 

Figure A.9 Enhanced View of Figure A.8 
In this domain, the mesh is refined near the electrodes with a geometric sequence in order to 
more accurately capture the electromechanical coupling after the 1D PNP solution is mapped to 
the 2D domain. 
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Appendix B: Coefficients for Volume and Cross-Sectional Area in Physics-Based Model 
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