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ABSTRACT 

In the present age, rapid development in computing technology and high speed 

supercomputers has made numerical analysis and computational simulation more practical than 

ever before for large and complex cases. Numerical simulations have also become an essential 

means for analyzing the engineering problems and the cases that experimental analysis is not 

practical. There are so many sophisticated and accurate numerical schemes, which do these 

simulations. The finite difference method (FDM) has been used to solve differential equation 

systems for decades. Additional  numerical methods based on finite volume and finite element 

techniques are widely used in solving problems with complex geometry. All of these methods 

are mesh-based techniques. Mesh generation is an essential preprocessing part to discretize the 

computation domain for these conventional methods. However, when dealing with mesh-based 

complex geometries these conventional mesh-based techniques can become troublesome, 

difficult to implement, and prone to inaccuracies. In this study, a more robust, yet simple 

numerical approach is used to simulate problems in an easier manner for even complex problem. 

The meshless, or meshfree, method is one such development that is becoming the focus 

of much research in the recent years. The biggest advantage of meshfree methods is to 

circumvent mesh generation. Many algorithms have now been developed to help make this 

method more popular and understandable for everyone. These algorithms have been employed 

over a wide range of problems in computational analysis with various levels of success. Since 

there is no connectivity between the nodes in this method, the challenge was considerable. The 

most fundamental issue is lack of conservation, which can be a source of unpredictable errors in 

the solution process. This problem is particularly evident in the presence of steep gradient 
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regions and discontinuities, such as shocks that frequently occur in high speed compressible flow 

problems. 

To solve this discontinuity problem, this research study deals with the implementation of 

a conservative meshless method and its applications in computational fluid dynamics (CFD). 

One of the most common types of collocating meshless method the RBF-DQ, is used to 

approximate the spatial derivatives. The issue with meshless methods when dealing with highly 

convective cases is that they cannot distinguish the influence of fluid flow from upstream or 

downstream and some methodology is needed to make the scheme stable. Therefore, an 

upwinding scheme similar to one used in the finite volume method is added to capture steep 

gradient or shocks. This scheme creates a flexible algorithm within which a wide range of 

numerical flux schemes, such as those commonly used in the finite volume method, can be 

employed. In addition, a blended RBF is used to decrease the dissipation ensuing from the use of 

a low shape parameter. All of these steps are formulated for the Euler equation and a series of 

test problems used to confirm convergence of the algorithm. 

The present scheme was first employed on several incompressible benchmarks to validate 

the framework. The application of this algorithm is illustrated by solving a set of incompressible 

Navier-Stokes problems.  

Results from the compressible problem are compared with the exact solution for the flow 

over a ramp and compared with solutions of finite volume discretization and the discontinuous 

Galerkin method, both requiring a mesh. The applicability of the algorithm and its robustness are 

shown to be applied to complex problems. 
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 CHAPTER 1- INTRODUCTION 

Natural phenomena, whether electrical, biological, mechanical, chemical, environmental, 

geological or electronic, can be described by means of mathematical models. Since most of these 

problems are complex, it is hard to find exact solutions for these models. The way to find 

solutions for these problems is to solve them numerically or statistically. Nowadays, researchers 

have to be familiar with numerical or statistical techniques for a wide variety of problems.  By 

the advent of supercomputer technology, computational simulation techniques have increasingly 

become an essential way for simulating complex and practical problems in engineering and 

science where experimental analysis is highly expensive. 

The main purpose of numerical simulation is to discretize the continuum physical domain 

to a discretized domain which is solvable on computers. The discretization process is applied to 

both equations and the domain of the problem. Researchers can find an approximate solution for 

a complex problem efficiently, as long as a proper and reliable numerical method is 

implemented. 

 Previous research studies 

Many studies have focused on numerical or approximation methods to develop an 

efficient technique. Many numerical methods have been proposed and developed, utilizing the 

finite difference method (FDM), the finite volume method (FVM), the finite element method 

(FEM), the boundary element method (BEM), and more recently the meshless method to be 

discussed here.  
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Studies on meshless methods can be traced back to 1977, but only a few studies had been 

done in this area until the past two decades. Lucy (1977), using one of the oldest forms of the 

meshless method, smooth particle hydrodynamics (SPH), modeled astrophysical phenomenon. 

More recently, a wide range of meshless methods have been developed and studied. Such 

improved methods includ the smooth particle hydrodynamics (SPH) (Gingold & Monaghan, 

1977; Lucy, 1977; Monaghan, 1988; Randles & Libersky, 1996), the diffuse element method 

(DEM) (Nayroles, Touzot, & Villon, 1992), the element free Galerkin (EFG) method 

(Belytschko, Lu, & Gu, 1994; Lu, Belytschko, & Gu, 1994; Noguchi, Kawashima, & Miyamura, 

2000), the reproducing kernel particle method (RKPM), the moving least-squares reproducing 

kernel (MLSRK) method (Liu, Jun, Li, Adee, & Belytschko, 1995), the hp-clouds method 

(Duarte & Oden, 1996; Liszka, Duarte, & Tworzydlo, 1996), the finite point method (Onate, 

Idelsohn, Zienkiewicz, Taylor, & Sacco, 1996), the meshless local Petrov-Galerkin (MLPG) 

method (Atluri & Zhu, 1998), boundary node method (BNM) (Mukherjee & Mukherjee, 1997), 

the meshless local boundary integral equation (MLBIE) method (Atluri & Zhu, 2000), and the 

gridless Euler/Navier–Stokes solution (Batina, 1993; Morinishi, 1995). Another group of 

meshless methods, are based on radial basis functions (RBFs). More recently, RBFs have 

become attractive for solving partial differential equations. The RBF methods for multivariate 

approximation have wide applications in modern approximation theory when the task is to 

approximate scattered data in several dimensions.  

 Motivation  

For decades, the finite element method (FEM) and the finite volume method (FVM) have 

been the standards tool for numerically solving a wide variety of engineering problems 
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especially fluid flow and thermal problem simulation. However, as problems become more 

complex, these methods become inadequate and inefficient. A good mesh is very important in 

CFD. This can be an expensive issue in the sense of storage needed and CPU time, especially 

when dealing with complex geometries and/or complex physics such as crack propagation, shock 

propagation, astrophysics phenomena, metal cutting and extrusion. Conventional methods 

always have some difficulties when they are used to solve these kinds of problems. Therefore, to 

get accurate results, a highly dense mesh near the discontinuity is usually required; otherwise, the 

computational results are not reliable.  

Using conventional methods can cause some degradation of accuracy in complex physics, 

since adaptive meshing in conventional methods is difficult to implement. On the other hand, it 

is impractical to solve system containing billions of unknowns. The time and cost of mesh 

generation and mesh refinement in conventional methods is high.  

To reduce the cost of the meshing process, different methods have been proposed over 

the past three decades and a significant progress has been achieved in this area. Like all the 

previous techniques, the governing equations of essential parameters like mass, momentum, and 

energy must be conserved by each these new techniques One of the promising numerical 

techniques to satisfy all these limitations is the meshless, or meshfree method.  

Engineering research has began focusing the use of meshless method, over the past 

decade. Since meshless methods eliminate the mesh generation required for discretization of 

problem domains, the approximation process only needs to collocate a functional value on 

distributed set of nodes. The connection between nodes is not required, which helps reduce 
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storage. Time can also be saved by using a fully automated procedure to generate nodes (G. R. 

Liu, 2010). 

The use of meshless methods can lead to computational advantages with less 

programming efforts; especially a hybrid meshless method in combination with a conventional 

method can improve the result for complicated “multiphysics” problems. Some of the advantages 

of meshless are : 

1) Computational cost is reduced and storage saved significantly since a mesh and book 

keeping are not required.  

2) For cases where more refinement is needed, one can easily increase the accuracy by 

using r-adaptation or adding nodes to the computational domain. Providing high-

order shape functions are constructed. 

3) The Meshless routine can be used many time during the solving process.  

 Objective 

Compared to conventional FDM, FVM, and FEM, the meshless method can be used to 

track strong discontinuities or large deformations of strongly nonlinear problems. To increase the 

resolution near geometric complexities, one can add nodes and refine the simulation. This makes 

the programing and simulation more convenient to solve complex system of equations over 

arbitrary domains.  

There are different ways to distribute the nodes throughout the domain. One can use any 

type of uniform, nonuniform or hybrid distribution to collocate the data. The dependency of 

conventional methods on the mesh causes some problems in refinement processes near a 
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discontinuity. Thus, they are not very suitable and applicable for tracking discontinuities such as 

shocks or strong deformation, especially when they are not aligned with the original mesh edges 

(Belytschko, Krongauz, Organ, Fleming, & Krysl, 1996). The common procedure for solving a 

moving or evolving discontinuity in conventional techniques is to remesh the simulation field in 

each iteration. The remeshing process can be a source of numerous difficulties such as reduction 

of accuracy and cumbersome programming. Moreover, successive remeshing processes can also 

be a significant waste in terms of the computational time and cost. On the other hand, the 

meshless methods does not significantly require mesh dependency processes. The goal of 

meshless methods is to remove the mesh related problems by performing approximations over all 

the nodes. Therefore, moving deformation or discontinuity propagation can be tracked without 

remeshing, with little compromise in accuracy. Since the refinement process is easier in 

meshless, this degradation in accuracy can be compensated by performing refinement around the 

discontinuities.  

In the present study a blended localized Radial Basis Function Differential Quadrature 

(RBF-DQ) for solving the Euler equation is introduced. The algorithm is blended to three 

different regions and include a steep gradient limitation for the shape parameter, which changes 

to high and low values. The derivatives are approximated using RBF-DQ, and will be explained 

later. The other essential part of the study is dealing with the discontinuities and capturing shock 

propagation. An upwinding scheme is applied to compute the fluxes at the mid-point between the 

reference point and the support point. Roe’s solver which is an approximate Riemann solver is 

used in this study. The conservative values at the each side of the mid-point approximated by 

using blended RBF-DQ and then the fluxes are computed.  
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 Thesis Outline 

The scheme is examined for several incompressible and compressible cases with 

discontinuities. In the chapter 2, an introduction to RBF and more details about the aspects of 

RBF are provided. In chapter 3, we test the RBF-DQ code on several incompressible flow 

problems and compare with flow benchmarks obtained from other studies. Some details about 

the setup process are also provided. Chapter 4 introduce the Euler equation and its hyperbolic 

characteristics. The details of Roe’s scheme, which is used here for the purpose of upwinding, is 

described. The blended RBF-DQ is introduced and the idea of blending explained. In chapter 5, 

we obtain results for supersonic flow with an oblique shock throughout the domain. The results 

are in a good agreement with the exact solution. The method is also compared qualitatively and 

quantitatively with several other numerical schemes and in some cases, the results are more 

accurate. In addition, the dependency of different parameters on the accuracy of the solution such 

as uniform or nonuniform distribution of nodes and value of shape parameter and timestep are 

also discussed. Chapter 6 provides the conclusions drawn from this study and suggestions for 

future research in the area of RBF approximation. 
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 CHAPTER 2- RADIAL BASIS FUNCTIONS  

 Introduction 

Radial basis function methods are the means to approximate the multivariate functions 

we wish to study in this section. This type of truly meshfree interpolation begins with the idea 

that any arbitrary domain, especially irregular domains can be approximated by collocating about 

a number of nodes distributed in the domain with some set of basis functions. There are two 

types of RBF approximation, global meshless method and local meshless method. The former 

method solves the domain by using a large sparse matrix that is calculated from all the nodes 

inside the domain. This type of approximation has some well-known drawbacks, which will be 

discussed later. For the second method, one needs to divide the overall domain into a number of 

smaller subdomains, which leads to more effective and precise results when compared to global 

approximation. The size of the subdomain includes a predetermined number of the nearest nodes 

surrounding the reference point. The accuracy of the solution relies on many parameters such as 

the number of supporting nodes and their distribution and the value of the shape parameter. 

Formulation and details of these methods follow.  

RBFs were initially developed for multivariate scatter data and function interpolation. 

The meshfree feature of RBFs on higher dimensional problems motivated researchers to employ 

them in solving PDEs. After some research, they found that this type of meshfree approximation 

has high-order accuracy than conventional finite difference schemes on a scattered distribution of 

nodes (Tota, 2006). Due to the simplicity of programming and small amount storage required, 

researchers began to use them in all area of numerical modeling.  
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There are different types of RBFs, that have been developed and employed in 

approximating different numerical algorithms. The most frequently used RBFs are 

Multiquadrics (MQs): 22)( crr   

Gaussians: 

2

)( arer  0, a  

Thin-Plate Splines (TPS): )log()( 2 rrr   

Inverse MQs: 
22

1
)(

cr
r


 0, c  

The most popular type of RBF is the Multiquadrics basis function. It was first proposed 

by Hardy (1971).  Results of a study by Franke (1982) showed that Multiquadrics generally do 

better with scattered data compared to the other basis functions. In fact, the exponential 

convergence of MQ makes it preferable to other basis functions. MQ RBFs are used in the 

present work. Kansa’s method (Kansa, 1990) was developed by directly collocating radial basis 

functions, especially MQ approximations. He initially employed RBF methods to solve problems 

in fluid flow and CFD. He discretized the domain and equations by using RBFs over a random 

distribution of  nodes. The approach was similar to finite difference methods applied on random 

distribution of nodes. Other researchers began to show interest in RBFs for a variety of 

applications such as electromagnetic, fluid mechanics, heat transfer and solid mechanics 

problems. Other research in the area of RBFs comes from Larsson and Fornberg (2003), and 

Zhou et al. (2003). Some of the well-known drawbacks of RBFs are poor conditioning of large 

matrices resulting from the discretization of governing equations, and selection of an appropriate 

shape parameter especially, when dealing with steep gradient regions and discontinuities. To 
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overcome the first issue, some preconditioning and domain decomposition technique is required 

(Ling & Kansa, 2005; Mai-Duy & Tran-Cong, 2002). This is the reason for better performance 

of localized meshless method over global meshless.  

The solution for these problems will be discussed later. Wu and Shu (2002) developed a 

new branch of differential quadrature, which is fully mesh-free. This type of DQ uses radial basis 

functions as the approximation functions and the nodes inside each sub domain are used to 

approximate partial derivatives at a reference node. Shu et al. (2003) proposed a local RBF-based 

differential quadrature (RBF-DQ) method. They applied RBF-DQ for simulation of 

incompressible flow problems. There are also some pioneer studies on using RBFs for capturing 

socks and discontinuities. Shu et al. (2005) used RBF-DQ with an upwinding scheme to capture 

the shock waves and compressible flow simulation. The method is fully mesh-free but due to the 

small value of shape parameter, shocks are smeared. Harris el at. (2017) implemented a blended 

RBFs scheme where the shape parameter switches to high and low value according to the 

gradient region. Low value was used for steep gradient regions and higher values in smooth 

regions.  

The framework of this current meshfree approach is formed of three parts: the first part is 

the derivative approximation by the means of localized RBF-DQ method; then blend the 

approximation depending on the position of the node by changing the shape parameter; the last 

step is the meshfree upwinding scheme for flux calculation. 

In the following sections, we will introduce the global and localized RBF method. In 

addition, details about localized DQ-RBF will be provided later. 
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 Shape parameter 

The shape parameter is a key factor in RBFs approximation when using MQ and inverse 

MQ. Choosing an irrelevant number can create an inaccurate solution. It has a positive real value 

less than one. There is no theory and proven analysis of how to select the shape parameter to 

obtain the most accurate result. Wang and Liu (2002) investigated the effect of the shape 

parameter for MQ and Gaussian basis function. They found that for MQ basis, the condition 

number of the matrix is stable when the shape parameter is less than 1. They also showed that a 

high shape parameter increases the condition number. Another study, has carried out by Frank 

and Schaback (1998),  examined the RBF method to solve partial derivatives equations and 

derived a formula for choosing the shape parameter as  

IN

R
c




25.1
 

where NI is the size of the subdomain and R is the radius of the smallest subdomain. Hardy 

(1971) introduced another formula for estimating the shape parameter: 

dc  815.0  

  where d is calculated by 



1

1

i

i
I

d
N

d  with di being the distance between the reference node 

and the other nodes in the subdomain. Afiatdoust and  Esmaeilbeigi (2015) also examined an 

algorithm to find the optimal value of the shape parameter, and showed some improvement in the 

accuracy of the simulations.  Their proposed algorithm make a balance between accuracy and ill-

condition and obtain desirable accuracy only for solving ODEs. The algorithm is time-

consuming and its cost of calculation is high.  
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 Global RBF 

Consider the general differential equation 

)(xfLu        in   ,     )(xgBu    on          2.1 

where L can be any arbitrary differential operator, B is an operator imposed on the boundaries 

and can be any kind of boundary condition, such as Dirichlet, Neumann, or Robin condition. Let 

  N

iii xP
1

 be N collocation points in the analyzed domain, where    IN

iix
1
are interior nodes and 

  N

Nii
I

x
1
are boundary points. Kansa (1990) suggested the following approximation for Eq. 

(2.1)  

)()( xuxu j

N

ij

j


  2.2 

where 
N

ju 1 are the summation of unknowns and boundary values and )()( jj PPx   is the 

radial basis function. IN

ju 1  are the unknown coefficients to be determined, 
N

Nj I
u 1  are the 

boundary values which needed to be fixed after each iteration. For MQ RBFs, jPPr  is the 

Euclidean distance between nodes P=(x) and Pj=(xj). For each point (xj,yj), j  is calculated by 

the following expression 

222 )()()( cyyxxx jjj   2.3 

Substituting Eq. (2.1) into Eq. (2.2), leads to an N×N linear system of equations, 
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)())((
1

jjjj

N

j

xfuxL 


  , j=0,1,2,…,NI 
2.4 

)())((
1

jjjj

N

j

xguxB 


  , j= 1NN ,
2IN ,…, N  2.5 

in which we just solve for the interior nodes. Therefore, a matrix of NI×NI Eq. (2.1), for the 

unknown    IN

iix
1
 needs to be solved. In order to approximate each governing equation, there is a 

NI×NI linear system to be solved in each iteration, as NI denotes all the interior nodes. Random 

distribution of nodes can increase the condition number of the matrices and consequently leading 

to ill-conditioning and a source of instability. The idea of using the meshless method is to 

preform simulations on PC-Level creating huge matrices is not applicable in this situation. The 

solution can be highly expensive when large matrices need to be inverted. In addition, the global 

RBF meshless method is applicable for small and regular domains but is not practical for large 

complex geometries or/and physics involving many nodes. 

 Localized RBF 

The second type of RBF approximation is the localized meshless method. The drawbacks arising 

from the global meshless method can be largely overcome by using the localized meshless 

method. In fact, the idea of localized RBF interpolation starts with the concept that any irregular 

domain can be interpolated by doing collocation about a small number of nodes in each 

subdomains. The basis functions are calculated utilizing local points in each subdomain. Using 

subdomains to approximate a set of unknowns result in a more efficient and accurate solution 

method when compared to global interpolation techniques. To create the subdomains, for each 

interior node Pj , we assign a subdomain including m nearest nodes in the subdomain of 
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influence 
m

kjj P 1, 
. Here the reference node is marked Pj, while the index k changes between 1 to 

m consisting of the reference point itself. Fig. (2.1)  shows different subdomain stencils for 9, 15 

and 20 nodes. The reference point and its supporting points j

Ix , j =1, 2... m are identified by the 

red color.  

Once again, consider Eq. (2.1). To approximate the function or its derivatives, we can use 

support domains instead of the whole domain. Here, the function value, u, can be interpolated as: 

)()( xuxu j

m

ij

j


  in j  2.6 

and the differential operator L, can be calculated as 

)())((
1

jjjj

m

j

xfuxL 


  in j  2.7 

where the subdomain j is a small domain surrounding the reference point. Comparing Eq. (2.6) 

with Eq. (2.2) we see that the only difference in formulation is the size of the matrix, i.e., N×N 

versus a small matrix of m×m. This feature of the localized meshless method has some attractive 

advantages such as parallel processing capability (because of the presence of subdomains), easy 

calculation of the matrix inversion, and the ability for a fully independent approach at the 

problem setup stage.   
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 Figure 2.1 Size of subdomain a) 9 node stencil, b) 15 node stencil, c) 20 node stencil 

 

 RBF-DQ 

In this section, the formulation of the Localized RBF differential quadrature, LRBFDQ, 

method is given. In this method, the function is approximated by RBFs and all the derivatives are 

approximated by differential quadrature (DQ). Therefore, the derivative of the function at the 

reference point is interpolated by a weighted linear sum of function values at a number of 

discrete nodes inside its subdomain. It should be noted that these weight coefficients are only a 

function of the space between the distributed nodes. Shu el at. (2003) showed that the weighting 

c 

a b 
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coefficients can be easily computed utilizing a linear vector space and a function approximation. 

In this study the unknown function )(xf is approximated by the linear combination of the 

multiquadrics (MQs). As mentioned before, they are the most accurate basis function among 

various RBF-based interpolation methods. It should be noted that in the localized RBF-DQ 

method, the subdomain at other nodes are different. The size of the subdomain can also be 

changed, making the method more flexible. For example, the approximation of the mth order 

derivative of a function f(x) at the node xI  by RBF-DQ can be expressed as 
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, )(  , j=0,1,2,…,NI 
2.6 

)( j

Ixf = function values at the distributed points 

m

jIw , =RBF-DQ weight coefficients at the points 

where j

Ix are the positions of supporting point Ix , and II xx 0 .The symbol IN shows the number 

of supporting nodes within the subdomain of the reference point Ix . For simplicity of notation

)(xwk is used to replace )( kk xxw  , where kxx  is the Euclidean distance.  

According to the principle of superposition, all the basis functions should satisfy the relation 

described in Eq. (2.6) , i.e. expressed in matrix form as 
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From Eq. (2.3), one can easily obtain the first order derivative of 
1

1

x

i



 
as: 
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In a similar manner, the weighting coefficients of the y-derivatives can also be computed. 

Also, one can obtain the second and higher order derivatives of )(x by differentiating Eq. (2.3) 

successively. The second derivative can be expressed as 
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  2.9 

 Since the weighting coefficients are based on the local position of supporting points in 

the subdomains, this approach is very suitable in dealing with nonlinear problems. Since the 

derivatives are also evaluated directly from the function values at the nodes distributed in the 

domain, the method can be systematically employed to solve the both linear and nonlinear 

equations. Another interesting property of RBF-based DQ method is that it is truly meshfree, i.e., 

all the information required about the nodes in the domain only depends on their positions.  

 Summery 

In this chapter, we examined the radial basis function. There are few studies on the 

comparison of global and localized meshless. For example, Islam et al. (Yao, Siraj-Ul-Islam, & 

Sarler, 2012) showed the benefits of the localized meshless method for the case of the diffusion-

reaction problem in three dimensions. Waters and Pepper (2015) proved the advantages of the 

localized method over the global method by comparing results for different incompressible flow 

benchmarks. Sarler and (Šarler & Vertnik, 2006) showed that the drawbacks of global meshless 

method can be resolved using localized meshless.  
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To review the localized RBF meshless method, the main computational domain is 

divided to a number of smaller subdomains. For each interior node, a small matrix of m×m 

where m is the number of nodes in each subdomain is inverted. The size of the matrix in the 

global meshless method is N×N, where N is the total nodes in the computation domain. Since the 

distance between nodes are different for the random distribution, the order of matrix entries can 

be very different. Thus, the matrix can become ill-conditioned. The matrices in the localized 

meshless method are small and the concern of ill-conditioned matrices are mitigated. Shape 

parameters and time steps are to the distribution of nodes and velocities in both methods.  
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 CHAPTER 3- APPLICATION OF RBF-DQ TO SOLVE INCOMPRESSIBLE FLOW 

 Introduction 

 The advantages of using a localized meshless method have been discussed in the 

previous chapter. In this chapter, we implement the localized RBF-DQ to simulate several 

incompressible benchmark problems to verify the scheme. The results of this chapter are 

compared with the results of Waters and Pepper (2015). These benchmarks are coupled to the 

Navier-Stokes equations with convective heat transfer.   

There are different classical benchmarks are examined here: (1) the moving wall cavity, 

(2) natural convection inside a closed square, and (3) convective flow over a backward-facing 

step. We examine the localized RBF-DQ method on each of these benchmarks, and discuss the 

consistency and accuracy of the scheme.   

 Flow Solution 

 Governing Equations 

The nondimensional form of governing equation are used for incompressible laminar 

flow with convective heat transfer effects. The following scaling relations are used in the 

governing equations for momentum and energy:  
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3.1 

The, hats denote the dimensional variables. The dimensionless numbers, i.e. Reynolds number, 

Rayleigh number, Prandtl number, and Peclet number are defined as 
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The nondimensional forms of the governing equations can become written as 

  3.3 

 3.4 

 

3.5 

The body force is defined as B=Pr Ra T in the y direction for natural-convection problems. For 

all the other cases, B=0. 

Table 3.1 Constant parameter of each case 

 

 

 

 

 

 

 Projection Method 

The projection method is an efficient method to simulate time dependent Navier-Stokes 

equations. Chorin (1968), Chorin and Marsden (1993), and Temam (2000) were the first people 

who introduced this effective method for solving the  incompressible fluid flow cases. An 

intermediate velocity, V*, is calculated explicitly without involving the pressure gradient in 

Chorin’s method. Therefore the equation takes the form: 

Case Cvisc CT B 

2-D cavity 1/Re  0 

Natural convection Pr 1 Pr.Ra.T 

Flow with forced convection over 

backward-facing step 

1/Re 1/Pe 0 

BVCpVV
t

V
visc 



 2.

0 V

TCTV
t

T
T

2. 
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where B and Cvis are defined in the table and Vn is the velocity vector at the present time. The 

pressure gradient can be obtained from the expression 

1
*1







 n
n

p
t

VV

  
3.7 

Rewriting the above equation for the velocity at the (n+1) level, we obtaine 

1*1   nn ptVV   3.8 

The pressure at n+1 is required to compute the above equation. A divergence-free 

constraint is applied on the velocity field at this next time level, ∇Vn+1=0, to compute the 

pressure. The resulting equation is a Poisson equation for pn+1 in the following form: 

t

V
p n




 

*
12   3.9 

rearranging the above equation,  

1*1   nn ptVV  

which is the standard Hodge decomposition if the boundary condition for p on the domain 

boundary is ∇pn+1.n=0. Thus, the boundary condition for p is 

0
1




 

n

pn

  3.10 

It should be noticed that the continuity equation needs to be satisfied through the 

simulation domain. Therefore, the velocity field should satisfy the continuity equation in 

Chorin’s method after each iteration. In this chapter we implement the following steps to 

simulate the projection method: 
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• First we solve Eq. (3.6) by using the velocity at the present time and calculate the 

intermediate velocity. To make sure that the boundaries are satisfied, we fixed them after each 

iteration. Waters and Pepper (2015) showed that for the lid driven cavity and natural-convection 

problems, solving the convection term explicitly gives better accuracy. On the other hand, for the 

flow over a backward step, treating the convection part implicitly, yielded better accuracy. Thus 

the equation to solve for the first two cases is:  

BVVVC
t

VV nn

visc

n





).(*2

*

 
3.11 

and for the backward step, 

BVVVC
t

VV n

visc

n




 **2
*

).(  3.12 

This is the predictor step. 

•For the second step, the intermediate velocity calculated from the previous step is used 

to compute the pressure at the time n+1 by using Eq. (3.9).  The divergence-free constrain is 

applied in this step. It should be noted that the boundary condition for pressure in Eq. (3.10) need 

to be applied.  

• Finally, a new pressure is subjected to Eq. (3.8) to update the velocity. All the domain 

variables are now updated to the next time level. 

 Benchmarks Examination 

In this section, the present RBF-DQ algorithm is examined for the different benchmark 

cases. These cases are used to validate the code. As in the previous studies, we also did the 

simulation on a nonuniform distribution of points.  
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 Moving Wall Cavity 

The cavity problem is one of the most popular benchmark problems employed to validate 

and verify a new scheme. Commercial CFD software primarily use this benchmark to evaluate 

accuracy and feasibility of their code. For Re=100, the solution is characterized by the presence 

of a main circulation zone and counter rotating vortices in the corners of the squares.  

3.3.1.1. Problem setup 

For the cavity problem, the computational domain is a square of (0≤x≤1, 0≤y≤1). The top 

wall is moving at u=1 (dimensionless value) and the remaining walls are stationary. The 

boundary conditions are 

Upper edge: u=1, v=0  

Other edges: u=v=0  

3.3.1.2. Localized RBF-DQ 

To define the problem, the same number of total nodes as in reference study (Waters & 

Pepper, 2015) 240 points is used here. 200 of these nodes are interior nodes and 40 are 

boundaries. The size of the subdomains 
m

kjj P 1,  are set to 9 including the reference point 

itself; the shape parameter is c=0.2. This value is higher than in a the regular localized RBF 

(Waters & Pepper, 2015).  

The plot of the velocity vector for the localized RBF and the localized RBF-DQ are 

shown in Fig.(3.1) for Re=100. Results of the present method are in good qualitative agreement 

with results shown in reference paper (Waters & Pepper, 2015). 
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Figure 3.1 Cavity problem: Velocity vector plots of two scheme for Re=100. a) Present Scheme, 

b) Reference scheme (Waters & Pepper, 2015) 

 Natural Convection inside a close square 

3.3.2.1. Problem setup 

As in the cavity problem, the simulation domain is (0≤x≤1, 0≤y≤1) for the natural 

convection problem with a Rayleigh number of 103. The velocity of the walls are equal to zero, 

the left wall is heated, and the right wall is cold. For the top and bottom walls, an adiabatic 

condition is set. The boundary conditions are  

Left side: u=v=0, T=1  

 

Right side: u=v=0, T=0  

Upper and Lower sides: u=v=0, ∂T/∂y=0  

3.3.2.2. Localized RBF-DQ 

 The implementation is the same as the cavity problem except that the size of the 

subdomain changes to 20 and the shape parameter changes to 0.05. The reference paper (Waters 

a b 
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& Pepper, 2015) used 50 nodes for each subdomain. They also fixed the shape parameter to 0.02, 

which is relatively small.  

Velocity vector plots, and temperature contours are shown in Fig. (3.2) and Fig. (3.3), 

respectively. The velocity vectors are similar in both methods but the temperature isothermal plot 

is a bit different. In the localized RBF the isothermal lines are not normal to the adiabatic walls. 

However, for the case of RBF-DQ, they are normal to the top and bottom walls. The reason is 

due to the different size of the subdomains and different value for shape the parameter. 

 Flow with Forced Convection over a Backward-Facing Step  

3.3.3.1. Problem setup  

The simulation domain for this case is highly elongated and the scale is 30×1. The 

velocity and temperature at the inlet is define as: 
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and for top and bottom wall: 

u(x)=v(x)=0 

∇T.n =32/5 
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where n is the inward unit vector normal to the domain boundary. 

3.3.3.2. Localized RBF-DQ  

The total number of nodes for this case is 7680 and the size of the subdomain is 11. The 

shape parameter is fixed to c=0.05. 

The Dirichlet boundary points were updated explicitly after each time step. For Re=100, 

both of methods, produced comparable results, as shown in Fig. (3.4) for the streamlines and Fig. 

(3.4) for the isotherms. The present method captures the reattachment length as 2h which is the 

same as the result from Armaly el.at. experiment (Armaly, Durst, Pereira, & Schonung, 1983). 

 Summery 

The purpose of this chapter was to compare the results of the present method utilizing 

well-known incompressible benchmarks. The results from the present scheme for the three cases 

of incompressible flow indicate that it produces accurate solution. We also distributed the nodes 

randomly to examine the sensitivity of the code to the location of the nodes. The results show 

that the position of the nodes does not affect the results. Good agreement was also achieved 

when compared with the results obtained by Waters and Pepper (2015). For complex cases, some 

preprocessing is required to obtain good results. Also, care must be exercised as the shape 

parameter changes case by case. The method can be easily combined with other conventional 

methods to enhance solution accuracy, e.g., in cases involving conjugate heat transfer.  
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Figure 3.2 Natural convection: Velocity Vector plots of two scheme for Pr=0.71, and Ra=103. a) 

Present scheme, b) Reference scheme (Waters & Pepper, 2015)  

 

 

 

 

 

 

 

 

Figure 3.3 Natural convection: Temperature contours of two schemes for distribution with 

Pr=0.71, Ra=103. a) Present scheme, b) Reference scheme (Waters & Pepper, 2015) 
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Figure 3.4 Backward facing: Streamline for fluid flow. a) Present scheme, b) Reference scheme 

(Waters & Pepper, 2015) 

 

 

 

 

 

 

 

 

 

Figure 3.5 Backward facing: isothermal for fluid flow. a) Present scheme, b) Reference scheme 

(Waters & Pepper, 2015) 

 

 

 

a 

b 

b 

a 



28 

 
 

 CHAPTER 4- RBF-DQ FOR COMPRESSIBLE FLOW 

 Introduction  

The Navier-Stokes equations are generally displayed in one of two forms. The first form 

is introduced as the incompressible flow equation, as mentioned in the previous chapter. The 

second form is for compressible flow. Unlike the first form, the compressible flow equations 

allow the density of the fluid to change with the flow. In this chapter, we will discuss the Euler 

equation, which is one of the governing equations for the dynamics of a compressible flow 

without viscosity. The system originated from the general fluid flow equation i.e. Navier-Stoks 

equation in combination with equation of state. The principal goal of this chapter is to provide 

the detailed methodology of the blended RBF-DQ and the Riemann solvers and to apply the 

algorithm to a benchmark for validation and verification.  

 The Euler Equations 

Our focus in this section is deals with a hyperbolic system of PDEs that is subject to 

hyperbolic conservation laws. These types of equations need more requirements on the 

discretization techniques and are more complicated to solve than general parabolic or elliptic 

equations. Many studies have been carried out in this area to develop reliable and accurate 

schemes with high-resolution. Since many of the problems in this category are expensive to 

investigate experimentally a reliable simulation can be helpful.  

For the case of high speed compressible fluid flow, the effect of the boundary layer and 

viscosity is neglected, when assuming inviscid flow. The Navier-Stokes equations become 

hyperbolic, resulting in the Euler equations. The Euler equations are a system of non-linear 
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equations that can produce discontinuities throughout the domain even in the case of smooth 

initial conditions. In this section, we consider the unsteady Euler equations and the 

characteristics of this equation.  

There is some freedom in choosing the form of the governing equation describing the 

flow under consideration. A possible option is the primitive variables or physical variables, 

namely, mass density, pressure, and the x and y components of velocity for 2D domains. An 

alternative choice is the conservative variables, containing of mass density, the x-momentum 

component, the y-momentum component, and the total energy per unit mass. Physically, these 

conserved quantities result naturally from the application of the fundamental laws of 

conservation of mass, Newton‘s Second Law and the law of conservation of energy. 

Computationally, there are some advantages in expressing the governing equations in terms of 

the conserved variables. In fact, the primitive form of the Euler equations fails at shock waves. It 

gives the wrong jump conditions; consequently, they give the wrong shock strength, the wrong 

shock speed and thus the wrong shock position. Shock waves in air are small transition layers of 

very rapid changes of physical quantities such as pressure, density and temperature. The 

transition layer for a strong shock is of the same order of magnitude as the mean-free path of the 

molecules, that is about 10-7m. Therefore replacing these waves as mathematical discontinuities 

is a reasonable approximation. A work by Hou and Floch (1994) show that non-conservative 

schemes do not converge to the correct solution if a shock wave is present in the solution. The 

classical result of Lax and Wendroff (1960), on the other hand, says these problems can be 

solved by using the conservative form of the equations. Therefore, it is prudent to work with 

conservative methods if shock waves occur in the solution. 
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In the following section, we review the Euler equation and its properties.  

 Conservation-Law Form 

The Euler equations in two dimension can be written as: 

0
)()(
















y

v

x

u

t


 4.1 

0
)()()( 2
















y

uv

x

pu

t

u 
 4.2 

0
)()()( 2
















y

pv

x

uv

t

v 
 4.3 

0
)()()(
















y

vpvE

x

upuE

t

E 
 4.4 

These equation represent conservation of mass, momentum in x and y, and energy, 

respectively. Here  is the density, u is the x-velocity component, v is the y-velocity component, 

p is pressure, and E is the total energy / mass, and can be expressed in terms of the specific 

internal energy and kinetic energy as:  

)(
2

1 22 vueE   4.5 

The equations are closed with the addition of an equation of state. A common choice is 

the gamma-law equation of state:  

)1(  ep  4.6 

where  is the ratio of specific heats for the gas/fluid (for an ideal, monatomic gas, γ = 5/3), but 

any relation of the form p = p(, e) will work. In the case of non-linear systems of conservation 
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laws, the character of the flux function is determined by the Equation of State. One thing we 

notice immediately is there is no need for temperature in this equation set. However, when 

source terms are present, we need to obtain temperature from the equation of state. 

 RBF-DQ Implementation  

We write the conservative form of the Euler equations in the form of flux vectors. In this 

form, the equations can be written as:    
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For discretization of the spatial derivatives in Eq. (4.7), the localized RBF-DQ is applied. 

The meshless approximation of the Euler equation can be expressed as: 
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where 
x

jiw1

,  and 
y

jiw1

,  are the coefficients for the first order derivatives in the x and y directions, 

respectively. The points used for discretization are not located at the supporting nodes, and Ui,j 

are the conservative values at the mid-points between the support point j and the reference point 

i, as shown in Fig. (4.1).  
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Figure 4.1 Configuration in subdomain 

 

Shu el at. (2005) defined new flux and approximation functions for the mid-points. The 

new flux defined as 

)()( ,, jiyjix UGnUFnE   4.9 

in which nx and ny for each support point is expressed as   
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Then, by defining a new approximate function, Wi,j 
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the discretization form turns to a new form which is  
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NI denotes the size of the subdomain for the reference node i and E(Ui,0) = E(Ui). The new flux E, 

can be measured by the weighted linear sum of the new fluxes at the reference point and the mid-

Reference point 

Support point 

Mid-point 
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points in the ith subdomain. Therefore, for highly convective problems, calculation of the new 

fluxes at the mid-point is important and needs to be efficient as well as accurate.  

 Upwinding Scheme 

There are different types of stabilization techniques and shock capturing schemes. The 

common feature of all these techniques is that they add a specific amount of numerical diffusion 

to insure stability while preserving accuracy to a desired degree.   

For high order accurate schemes, the fluxes at the mid-points between the related points 

are denoted by the follow general equation: 

dEEE LR  )(
2

1
 4.13 

where an interface flux E  consists of the central average of normal fluxes and a diffusive flux, d, 

between the reference node (which is the left side and the support node (which the right side 

node). To eliminate nonphysical oscillations caused be discontinuities and steep gradients, we 

must determine the flow direction and the influence of upstream or downstream. Since the RBF-

DQ is not a mesh based scheme, it cannot identify the direction of this influence. A solution to 

this problem is to distinguish the directions of wave propagations of the considered hyperbolic 

system to calculate the flux at the mid-point. An upwind scheme can be employed to evaluate the 

new fluxes at the mid-point. Godunov’s method (Godunov, 1959) is one of the most popular 

upwind schemes. This method has been used to solve Riemann problems, and can provide the 

exact value of numerical flux at the mid-point. The scheme is convenient for the computation of 

the flux in Eq. (4.12). This is achieved by substituting the function values at the reference point i, 

and the specific supporting point k to set up a local 1D Riemann solution. It should be noted that 
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this flux evaluation still holds for the meshfree feature. For nonlinear equations, the Riemann 

problem requires trial an error, which can increase solution time. One way to reduce this burden 

is to employ an approximate Riemann solver to evaluate the fluxes at the mid-points in Eq. 

(4.12). In this study we use Roe’s approximate Riemann solver (Roe, 1981), which is one of the 

more common schemes. 

 Roe’s approximate Riemann solver 

Evaluating numerical diffusion requires some pre-analysis. Roe’s scheme is one of those 

solvers that preform these calculation to evaluate artificial diffusion. This method decomposes 

the conservative variables into characteristic waves (LeVeque, 1992). The main principle behind 

such schemes is that, given the characteristic decomposition of the waves, one can diagonalize an 

approximate Jacobian, Aij satisfying 

LRLR EEUUA  )(  4.14 

i.e., 

1 MMA  4.15 

where includes the eigenvalues denoting the speeds of individual waves, and M is the matrix 

indicating the transformation of conservative variables to characteristic variables. The columns 

of M are eigenvectors of A. With this diagonalization, the diffusion part can be calculated as: 

)( LR UUAd   4.16 

where 1 MMA , is Roe’s averaging matrix and produces an upwind scheme with different 

dissipation added to each characteristic wave to eliminate oscillations. The averaging denoteds a 

specific construction to calculate the Roe’s matrix. 
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For given states of the conservative variables on the both sides of the mid-point, the interface 

Jacobian, A, is evaluated using specially averaged variables. For a 2D domain, 
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The result of the Jacobian for a 2D domain can be computed as: 

 

for the direction normal to the interface with 
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with where nx , ny are the components of the unit interface normal, un = u.nx +v.ny  is the velocity 

component normal to the interface, and H is the enthalpy evaluated using interface quantities.  

Utilizing the approximate Roe’s solver, the fluxes at the mid-point can be computed by 

 )())()((
2

1
),( RLRLRL UUAUEUEUUE   4.21 

where E(UL), E(UR) and E(UL,UR) indicate the flux at the reference node, supporting node and 

the mid-point respectively. The L and R subscript is just chosen for simplicity. The subscript L 

indicates the domain variable at the reference node and the subscript R denotes the supporting 

node. The symbol A is the constant Jacobain matrix, which approximates the Jacobian matrix 

defined by 
𝝏𝑬

𝝏𝑼
.  

Recalling Eq. (4.21), Roe’s scheme presented here only has first-order accuracy. In fact, 

the flux between the mid-point and the points on both sides, is constant, and represents a first 

order spatial approximation. To increase the order of Roe’s approximation, we need to construct 

a high order spatial approximation. For the conventional methods, changing the order of the 

polynomial will increase the order of accuracy.  For the meshless method, we can extrapolate the 

conservative values to both sides of the mid-point and approximate a higher order flux. 

Therefore, the equation can be expressed as 
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in which the UL and UR indicate the conservative values at the mid-point, shown in Fig. (4.2), 

computed from the reference node and supporting node, respectively.  

 

 

 

Figure 4.2 Position of conservative variables 

The new Jacobian matrix, A*, is computed at the mid-point by using the new conservative 

values. In mash-based conventional methods, domain variables at the mid-point can be obtained 

by upwind approximation using functional values at specific mesh points. This approach is 

difficult when using the local RBF-DQ method, since the nodes are nonuniformly distributed. 

Since the derivatives can be calculated using RBF-DQ, the values at the mid-point can be 

calculated easily. Here, we just need to use the first two terms of the Taylor series expansion, 

i.e., only the function value and its derivatives at the reference point or the supporting point are 

needed to compute the mid-point variables.  

In this study, the equations to calculate the conservative values on the left and right side 

of the mid-point (UL and UR, respectively) are defined   

LL

L UUU   4.23 

RR

R UUU    

where LU and RU  are obtained from: 

A B 

Mid-point 𝑈𝐿  𝑈𝑅  

𝑈𝐿  𝑈𝑅  



38 

 
 








 












 






2
.

2
. LRRLRR

L

yy

y

Uxx

x

U
U  4.24 








 












 






2
.

2
. RLRRLR

R

yy

y

Uxx

x

U
U   

To decrease the dissipation of using low shape parameters in the smooth regions, we 

combine the blended method with the above formula to calculate ΔUL and ΔUR.  This means that 

similar formula as Eq. (4.24) are used with a high shape parameter for completely smooth 

regions and two different values are saved for each of ΔUL and ΔUR . Since the higher scheme 

can cause spurious numerical oscillation around discontinuities and high steep gradient regions, a  

monotonic solution can not be obtained unless special treatment is enforced. Therefore, to 

eliminate the presence of these oscillations, an essential principle was then suggested in the 

reconstruction procedure, i.e., a ‘limiter’. In this study, after the employment of a limiter, the 

variables are modified as 
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in which the superscript High and Low refer to high and low shape parameters and subscript k 

denotes all the support nodes of reference point i, and s denotes a Van Albada limiter (Sweby, 

1984), which for the high shape parameter can be expressed as 
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where is a very small number (for example, e = 10-6), to prevent division by zero in a uniform 

flow region, where the flux difference is very small. For the case of a low shape parameter, we 

just need to substitute the low value into the equation.  

 Summery 

To summarize this chapter we first discussed the Euler equation and then the 

methodology for capturing a shock wave. The blended localized RBF-DQ includes two 

approximation steps in the spatial discretization. These steps have a huge impact on the accuracy 

and consistency of the algorithm. The first approximation is to calculate the conservative values 

and consequently evaluate fluxes at the mid-point by using a good approximate upwinding 

scheme. We then approximate the divergence of the flux field by applying a weighted linear sum 

of function values at a number of discrete nodes inside the subdomain. The domain variable at 

the mid-point blends into three categories based on the position of the node. The following 

flowchart Fig. (4.3) illustrates the algorithm.  
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Figure 4.3 Present algorithm flowchart 
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 CHAPTER 5- COMPERISSIBLE FLOW BENCHMARK  

 Benchmark Problem 

For the case of compressible flow with the presence of a discontinuity, a supersonic 

scramjet engine is simulated. Supersonic flow passes through the system, and the result is the 

presence of successive oblique shocks. The computational domain is displayed in Fig. (5.1). The 

sharp wedge on the top wall creates the first oblique shock, and the subsequent reflections from 

the bottom wall and the wedge surface generate the reflected waves. The exact solution was 

provided by Wang and Widhopf (1989) and we can clearly see in Fig. (5.7) the accurate position 

of the reflections. The objective of this section is to verify the accuracy of the present meshless 

method using a uniform distribution of nodes with a specific set of initial and boundary 

conditions.  

 Problem domain 

As shown in Fig. (5.1), the top wall rotates -10.94°, generating a shock structure. Some 

similar, but simpler problems have been widely used as a benchmark for numerical schemes 

dealing with shocks (Tota, 2006). The total number of node is 1296, distributed uniformly in the 

domain as shown in  Fig.(5.2) with 1177 interior nodes and 119 defining boundaries. The 

number of points within a subdomain is limited to 9, including the reference node itself for all 

the nodal distributions. Choosing nodes is an important issue in shock capturing problems. To 

more accurately capture the discontinuities the support nodes in different direction and nodes 

with the same direction along the joint line between the reference and support node were 

removed. A schematic of the nodal configuration for the subdomains is shown in Fig. (5.3). 
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Figure 5.1 Benchmark domain 

 

 

 

 

 

 

 

Figure 5.2 Node distribution 

 

 

 

 

 

 

Figure 5.3 Configuration in subdomain 
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The flow variables at interior nodes are updated by the solution of Eq. (4.12) as time 

marches. The treatment is different for the case of boundary nodes. It is clear that appropriate 

boundary conditions are needed for the well-posed hyperbolic partial differential equation. Here, 

two classes of boundary conditions are considered: solid boundary conditions; and inflow and 

outflow boundary conditions.  

 Boundary conditions 

For the top and bottom walls, no-flow was utilized. Since the flow is inviscid, a no-slip 

reflection cannot be applied. A no-flow boundary is imposed by maintaining the velocity normal 

to the solid boundary at 0 (the tangential velocity can be nonzero). To make the solution more 

accurate and enforce no-flow boundary conditions on the solid wall, additional nodes are 

introduced on the outside of the solution domain, shown in Fig. (5.4). Therefore, the flow 

variables are defined to ensure vanishing normal velocities at the wall. 

Combined with the other boundary conditions, the flow variables can be defined at the 

reflected point R by the corresponding interior node I as 

nInR uu   

tItR uu   

5.1 

IR    

 tIR ee   

 

If the solid boundary is at an angle, θ, below the horizontal, then the normal and 

tangential components of velocity can be written as 
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Figure 5.4 Wall boundary condition 

Depending on the flow condition, careful consideration must be taken for the inlet and 

outlet boundary conditions. The method of characteristics used to identify the boundary 

condition on the inlet and outlet assuming a 1D Riemann relation. Note that the method 

considers the direction of the characteristic waves and the Riemann invariants throughout the 

system in an effort to ensure accuracy.  

For the case of 1D Euler equations, the Riemann invariants are calculated as: 

r

p
w


1 , 

 tuw 2  

5.3 
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where un and ut are the normal and tangential velocity components at the inlet or outlet. 

Rearranging, we can obtain the primitive variables as: 
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Following the above equations and theory of characteristic waves for supersonic flow, no 

additional treatment is required. For a supersonic upstream, the domain variables are fixed from 

the free stream value. For the exit condition, the values are calculated from the interior nodes.  

For the current benchmark, the inlet state is supersonic and its condition specified by 

prescribing the pressure, density and velocity vector as fixed. The inlet condition is the same as 

the reference value (Wang & Widhopf, 1989) for the nondimensional form of governing 

equation, and they are shown in Table (5.1). 

Since the flow at the outlet is still supersonic, the following first-order extrapolation is 

implemented,  

21*2   outletoutletoutlet UUU  5.5 
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Table 5.1 Inlet condition 

 

 

 

 

 

The computations are performed with different shape parameters and local timesteps. For 

the temporal discretization in Eq. (4.12), a local timestep based of the CFL condition is used for 

the explicit method. For each subdomain, a specific timestep is calculated. The size of the 

subdomains was set to 9 nodes.  

The results were compared with the exact solution and two conventional numerical 

methods the finite volume and discontinuous Galerkin method. The results actually appear to be 

better than the conventional methods in some cases.  

The Mach number and pressure contours are shown in Fig (5.5) and Fig (5.6), 

respectively. The method successfully captures the shock and agrees with the numerical 

methods.  

The finite volume model using a Steger Warming scheme Fig. (5.8) and a second order 

discontinuous galerkin, Fig. (5.9), were run with a fine grid to obtain accurate results. The 

number of nodes for the FV case was 9456 and for DG was 4544. Fig (5.10) shows the pressure 

Pressure 0.714 

Density 1.0  

Mach Number  2.9 

Y component of velocity 0 
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value along the bottom wall. The location of the shock agrees with the exact solution, along with 

the location of the reflected wave.  

 Effect of parameters 

 Shape parameter 

We also studied the effect of the shape parameter on the accuracy of the solution. A high 

shape parameter increases the condition number and consequently leads to ill-conditioning of the 

problem. Here we used two shape parameters to calculate the domain variables at the midpoint to 

evaluate the fluxes. For incompressible flow, the values are generally high. Using a blended 

scheme, we tried to increase the accuracy in the smooth region and eliminate the dissipation 

caused by low value shape parameter. Using just one small shape parameter results in a low 

value domain variable. 

 Size of subdomain  

The size of the subdomain has a great impact on the results. We compared results for 

different subdomains and tried to use the optimum value. The results for a subdomain of 5 was 

quite inaccurate. On the other hand, a subdomain of 15 was quite good but the computation time 

and cost were high. Therefore, we compromised with a subdomain of 9 nodes which gave good 

result with low computation time and cost. 

 Slope limiter 

In this study we used the Van Albada limiter (Sweby, 1984) to eliminate spurious 

oscillations near shocks. By using the limiter, we could increase the order of accuracy in the 

upwinding scheme and obtain higher resolution. The rate of convergence for a first order scheme 



48 

 
 

is faster than using a second order scheme. However, by increasing the order of the scheme with 

the limiter, the residual does not drop the value like the first order and it oscillated around a 

much higher value than schemes without the limiter. Therefore, if we want to avoid oscillations 

near discontinuities we need to pay this unavoidable cost.   

 Time step 

As mentioned in Chapter 4, a local time step was employed. The term local implies that 

the time were determined by the means of the subdomain, i.e., within each subdomain, a specific 

time step is used to calculate new domain variables. Chiu (2011) emphasizes that when one uses 

a uniform time step for the whole domain in a localized meshless method, the constraint on the 

time step usually depends upon the spectral radii of the inviscid flux Jacobian associated with the 

solution nodes with the smallest subdomain. Here for the each subdomain the time step was 

calculated by  

i

i
i

r
CFLt


  5.5 

where ri is the subdomain radius and λi is the maximum wave speed. This is the time step for the 

ith reference node. Therefore, different time step, based on the size of subdomain and maximum 

wave speed result in saving the computation time. This method works when the limit of time 

accuracy is not important anymore. For the case of final time restriction, we need to use the 

global time step. 

 

 



49 

 
 

 Postprocessing  

One of the great features of meshless methods is that one can do postprocessing 

separately. To show results with high resolution, we can define a new system of subdomains 

with a high number of nodes inside the whole domain and/or subdomains. The procedure is 

exactly the same as the processing method while in the post processing step we introduce more 

nodes with just performing one iteration. Therefore the result can be interpolated on more nodes 

with higher resolution. 
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                                              Figure 5.5 Mach number contour 

Figure 5.6 Pressure contour 
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Figure 5.7 Pressure contour using Finite Volume Method 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Pressure contour using DG Method 
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Figure 5.9 Exact solution (Wang & Widhopf, 1989) 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Pressure along the bottom wall 
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 CHAPTER 6- CONCLUSION AND FUTURE WORK 

 Summary of work 

In this study, we have presented a meshless based solver to capture shocks and 

discontinuities. Nonlinear convection dominant problems can produce discontinuities, even with 

a smooth initial condition. Numerical schemes need to be able to distinguish the direction of 

wave propagation to capture shocks. Since there is no connectivity among the nodes in a 

meshless method, the scheme must be able to identify upstream and downstream flows.   

The numerical scheme used here was based on RBF-DQ to approximate the function 

derivatives and an upwinding scheme added to the system to capture the shock wave 

propagation. The localized RBF-DQ method is very sensitive to the shape parameter, size of the 

subdomain and the number of nodes distributed within the domain.  

The model was first tested using three incompressible fluid flow benchmarks i.e., the 

Cavity flow problem, Natural convection, and forced convection over a backward facing step. 

The result were in a good agreement with previous studies. After assuring that the scheme and 

based algorithm were effective and accurate, we employed it on an Euler equation problem with 

the presence of oblique shocks within the domain.  

In order to increase the resolution, a second order Roe’s scheme with a Van Albada 

limiter was applied to calculate the fluxes at the mid-points. The scheme was then used to 

simulate the supersonic flow within a scramjet configuration and the effect of involved 

parameters on the solution were examined. Results of the present scheme were compared with 
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finite volume and discontinuous Galerkin techniques, and was found to be robust and accurate in 

capturing shocks location. 

 Future work  

Meshless methods and especially RBFs, are particularly promising an alternative for 

solving fluid flow. Recently many research studies have focused on the meshless method. Since 

this method is more recent than other methods, there are still issues that need more investigation.  

Studying the effect of the shape parameter is an important issue. This constant varies case by 

case and there is no theoretical approach yet to identify the optimum value for each problem. A 

bad value for the shape parameter can lead to inappropriate results. Parallel processing is the 

other potential feature of the meshless method that is attractive for the future. Since the domain 

is typically divided into a number of smaller subdomains, we can distribute operation among the 

processors to speed up the algorithm and save the computation time.  Nodes distribution 

techniques is another important parameter. Here one might implement several statistical methods 

to find the best way to establish node distribution based on the problem difficulties. 

Adaptation techniques can also be added to the meshless method to improve accuracy. 

Since mesh connectivity is no longer existent here, the process of adding or removing a node is 

very comfortable and easy.   
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 APPENDIX: NOMENCLATURE 

 

 

A       Jacobian matrix  
B                0; PrRaT 

cShape parameter 

Cvis     Pr;1/Re 

Ct         1;1/Pr 

diThe distance between the ith data point 

                  and its nearest neighbor 

Ei      Fluxes at the mid-point 

E                Total energy 

e                Internal energy 

F                Fluxes in x direction 

g                Gravity 

G               Fluxes in y direction 

H               Enthalpy 

L               Reference length 

NI              Internal node 

N               all collocation points in the domain 

p                dimensional pressure 

Pe              Peclet number 


VL
Pe   

Pr               Prandtl number



Pr  

Pj                point 

ri                         Radial dimension 

Re              Reynolds number


VL
Re  

Ra              Rayleigh number 


 3)( LTTg
Ra ch   

s                Van Albada limiter 

t                 Time 

t̂                Dimensional time 

  

T               Temperature  

T̂              Dimensional temperature    

cT              Cold (or reference) temperature 

hT              Hot temperature (heated wall) 

U      Conservative variables 

u      x component of velocity  
nV            Velocity at nth time level 
*V            Intermediate velocity 

V̂              Dimensional velocity vector 
v      y component of velocity 

xw1
         RBF-DQ for first x derivative 

yw1
        RBF-DQ for first y derivative 

             Gas constant 

λi                Maximum wave speed 
            Thermal diffusivity   

B               Coefficient of thermal expansion 

Density 

Dynamic viscosity 

         Kinematic viscosity 

              Radial basis function 

             Entire domain 

j           Local domain of influence 

             Del operator 

p           Pressure gradient 

t            Time step 

it            Local time step 

https://en.wikipedia.org/wiki/Thermal_diffusivity
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Dynamic_viscosity
https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity
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