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ABSTRACT 

Development of a Black-Box Transient Thermal Model for Residential Buildings 
 

by 

Andrew Cross 

Dr. Robert Boehm, Examination Committee Chair 
Distinguished Professor of Mechanical Engineering 

University of Nevada, Las Vegas 
 

Heavily populated metropolitan areas located in cooling-dominated climates, as are 

found in the Desert Southwest, pose a challenge to electrical utilities that service these 

areas. During the late afternoons of the summer months, residents of these 

metropolitan areas require larger than normal amounts of power to run their homes’ air 

conditioning systems, at significant expense to the utilities. In the study reported here, 

interior temperature and power consumption data, accumulated over the course of a 

year and a half from seven houses within a Las Vegas neighborhood, are used to 

develop a predictive black-box statistical model for residential thermal transience. The 

model is able to predict when a collection of homes’ air conditioners will either cycle on 

or off based on multiple measured inputs. When used in conjunction with a series of 

residential thermostats located in roughly the same area, the model can be used as a 

predictive controller to manipulate those homes’ thermostats’ setpoints in an attempt 

to level the homes’ electrical demand by preventing the air conditioners from all 

running simultaneously, and alleviate utility expenses associated with producing power 

during peak demand periods.  
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Chapter 1 – Introduction 

1.1 – Background 

The Southwest region of the United States is a particularly hot and arid corner of the world. Vast 

swaths of Nevada, Arizona, New Mexico, Utah, and portions of California are covered by deserts 

that, according to the National Oceanic and Atmospheric Administration, are observed to be 

both the warmest and most solar irradiated areas of the country [1]. Despite these conditions, 

some of the United States’ largest metropolitan areas are located within this region. The greater 

Las Vegas, Nevada area boasts nearly two million persons, and Phoenix, Arizona more than 

doubles this population with over four million residents. Trends identified by the 2010 Census 

suggest that both of these populations will continue to increase. 

These heavily-populated areas currently pose increasingly significant problems for electric utility 

companies, particularly during the summer months when residents stave off sweltering heat by 

running air conditioning systems in their homes nearly constantly. The U.S. Energy Information 

Administration (EIA) 2009 Residential Energy Consumption Survey (RECS) indicates that 25% of 

the energy consumed by homes in Arizona is used strictly for air conditioning, or four times the 

national average [2]. The aggregate effect of large portions of the population simultaneously 

demanding electricity creates an undesirable strain on the electric utilities’ generators. This 

effect is commonly referred to as peak demand, or peak load, and it commonly occurs during 

the late summer afternoons when the business day overlaps with people returning home from 

work, as demonstrated in Figure 1. 
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FIGURE 1 – ILLUSTRATIVE DAILY ELECTRIC UTILITY LOAD CURVE 

Air conditioning isn’t the only culprit to create peak load problems, though. Record cold spells in 

the state of Texas have resulted in its independently-operated grid breaking peak consumption 

records multiple times within the last five years. It is generally understood that space 

conditioning, from both residential and commercial buildings, during extreme weather 

conditions is largely responsible for sharp electrical peak demands around the world [3]. With 

the limited existence of practical utility-scale energy storage systems, utility companies are 

forced to meet these increased demands (roughly) in real time in one of three ways. The 

preferred course of action is to bring additional power plants on-line, often referred to as 

‘peaker plants’ that, due to their supplementary nature, are often more costly to operate and 

utilize natural resources less efficiently than their primary power plant, or ‘base load plant’, 

counterparts. Less preferred is the option to import electricity from another utility, usually at 

significant cost. As a last resort, when the utilities determine that the cost of meeting the 
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higher-than-normal demand is too great, they implement rolling blackouts to limit demand and 

match it to their generating capabilities. 

Unfortunately, the United States’ peak demand continues to rise. The North American Electric 

Reliability Corporation (NERC) in conjunction with the Energy Information Administration (EIA) 

publishes this data seasonally [4], and supplements it by offering five-year projections [5]. They 

anticipate that the national summer peak load will increase almost 7.5% from 2012 to 2017 

(Figure 2). That number amounts to nearly 56.5 GW of additional generating capacity potentially 

needing to be constructed. Considering that utilizing peaker plants is the utilities’ most 

preferred method for handling this load, and that their capacity is generally on the order of 75-

100 MW, this projection suggests that as many as 750 additional (rarely utilized) plants would 

need to be built over the next several years to combat this peak load increase.  

 

FIGURE 2 – NORTH AMERICAN PEAK LOAD PROJECTION [4][5] 
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attempting to meet steadily increasing demand with costly additional generators. Suffice to say, 

the United States Southwest is not the only area of the world that could stand to benefit from 

measures aimed at reducing this peak electrical demand. Multiple energy management 

techniques and advanced technologies are currently being developed by researchers across the 

globe. These advancements are generally referred to as being contributions to the ‘smart-grid’, 

and have direct implications on the ability of utilities and customers alike to curb electrical 

consumption during critical periods. So beneficial are these improvements to the well-being of 

the global electrical market that spending in this industry is estimated to reach $65 billion 

annually by 2017 [6]. 

1.2 – Load Management Strategies  

Utilities and energy providers have been throttling the production of electricity up and down to 

meet demand for the past century, but it wasn’t until the energy crisis of the 1970’s that utilities 

began to take a serious look at instituting policies and programs to better manage demand 

rather than just production. Planners and those that outlaid capital spending expenditures 

realized that there were really only a few hours out of the entire calendar year where the 

system load approached being within 5% of the peak load (Figure 3). 

 

FIGURE 3 – ILLUSTRATIVE ANNUAL ELECTRICAL LOAD [7] 
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With better predictive tools, and improved control over loads during these times, the costs 

associated with the building, operating, and maintaining of expensive peaking generators could 

be significantly reduced, if not eliminated entirely. 

The industry is divided on some of the classifications used to categorize the differing load 

management strategies that have been developed in the last 40 years, but a convenient 

delineation can be made between utility-controlled and customer-controlled strategies. Utility-

controlled strategies include supply-side power pooling agreements between utilities that help 

stabilize electrical loads over a larger network, and all kinds of large scale energy storage 

systems. Additionally, some utility programs maintain direct control over certain customers’ 

loads and work directly with commercial and industrial entities to establish "interruptible" loads 

that can be shed when necessary, or economically lucrative. These later strategies fall under the 

classification of demand side management (DSM) programs, as do the rest of the customer-

controlled strategies. 

DSM essentially involves any action, policy, or program that aims to alter end users’ 

consumption habits by a reduction or change in the customers’ patterns of use [8]. A couple 

obvious DMS programs include well-known public-relation campaigns that aim to encourage 

consumers to keep lights off in unoccupied rooms, and to swap incandescent light bulbs with 

significantly more efficient LED alternatives. These programs can be considered load reduction 

strategies, as they ultimately aim to reduce overall consumption. Supplementing these efforts is 

a technique known as curtailment that aims to reduce the amount of power demanded from the 

utility, without necessarily reducing overall consumption, by substituting grid-supplied power 

with power produced by on-site solar collection devices or alternative sources of power. This 

can also be achieved by relatively small battery storage systems that provide an attractive 
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capability to DSM programs in that they allow electricity stored during off-peak hours to be used 

by the consumer during critical peak times. These batteries have seen an increase in 

(international) popularity recently as the technology matures and effective battery controllers 

are developed. The last generalized DSM strategy is demand deferral. A demand deferral 

program attempts to influence when electricity is demanded by either relying on customers to 

modify their consumption by offering (statically) tiered pricing structures for different times of 

the day (known as "time of use", or TOU) or by simply volunteering to use resource-intensive 

appliances and equipment during off-peak time periods. 

1.3 – Demand Response 

Another load management program that is of particular interest to this paper is somewhat of a 

combination of the aforementioned strategies. So called “demand response” (DR) is defined by 

the DOE as 

“Changes in electric usage by demand-side resources from their normal consumption 

patterns in response to changes in the price of electricity over time, or to incentive 

payments designed to induce lower electricity use at times of high wholesale market 

prices or when system reliability is jeopardized.” [9] 

By this definition, demand response is seemingly an obvious demand deferral strategy, and 

therefore a customer-controlled DSM. However, the feasibility and usefulness of such a system 

relies heavily on the utilities’ ability to notify customers of the dynamic pricing changes that 

ultimately drive customer behavior modifications. Therefore, the industry generally refers to 

any load reduction strategy that is based on monetary incentives or compensation for electricity 

consumption reduction during peak times as a being a demand response effort. 
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Dynamic pricing is a concept that is closely related to the aforementioned TOU tiered pricing 

structure – the cost of electricity varies as a function of time, but unlike a rigidly structured TOU 

program, dynamic prices are allowed to fluctuate throughout the day. This fluctuation can be 

managed autonomously through the use of controllers and algorithms that monitor demand 

and adjust prices accordingly, but due to the difficulty in communicating these pricing changes 

to the consumer in a way that would influence consumption habits, the fluctuations are 

generally “triggered” by a utility controller and only instituted during projected periods of peak 

demand, usually around 24 hours in advance. In this sense, both the consumer and the utility 

share some burden of responsibility when it comes to implementing DR in an effective manner.  

Despite the difficulties associated with negotiating this burden, several influential entities view 

DR as potentially providing the greatest immediate benefit of all of the DSM programs, including 

the Federal Energy Regulatory Commission (FERC) and the U.S. Department of Energy (DOE). At 

the request of Congress as stated in section 571 of the Energy Independence and Security Act of 

2007 (EISA), FERC and the DOE developed a national assessment and separate action plan on 

the implementation of DR in the United States. This assessment was delivered to Congress in 

June of 2009 and was one of the first national analyses to examine DR on a state-by-state basis 

and to capture the regional differences (critical for capturing the influence of air conditioning) of 

peak loading [10]. Following this assessment, per the EISA, a national action plan on demand 

response (NAPDR) was commissioned and delivered to Congress two years later [11]. Per this 

implementation proposal, DR can be differentiated into five approaches:  

 Dynamic pricing without enabling technology: As described above, this DR type is based 

purely on the concept of dynamically changing electricity prices influencing consumer 

behavior. 
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 Dynamic pricing with enabling technology: Dynamic pricing is still a major component of 

this type of DR program, but “enabling technology” automatically takes advantage of 

changes in a dynamic price. Perhaps one of the most obvious candidates for this type of 

technology is programmable thermostats that communicate directly with the utility to 

stay abreast of dynamic pricing changes. These thermostats would have the capability of 

adjusting heating, ventilation, and air conditioning (HVAC) usage to operate as cost 

effectively as possible during critical peak pricing time periods. 

 Direct Load Control: This DR program is, as previously described, an agreement between 

the consumer and the utility whereby the utility directly controls consumer demand 

during critical periods. 

 Interruptible tariffs: Often also referred to as interruptible rates (INTR), these 

contracted agreements between consumer and utility establish an agreed-upon amount 

of energy the consumer is willing, or able, to shed quickly upon notification from the 

utility. This results in a monetary incentive of some sort that benefits the consumer, but 

as cumbersome as these agreements can be, they are often only available to 

commercial, industrial, and governmental buildings of at least a modest size. 

 Other DR programs: Other, more intricate, DR strategies are available strictly to 

consumers of large amounts of electricity, including capacity and demand bidding 

whereby the consumer submits frequent load reduction bids to their utility in exchange 

for a tariff, rebate, or other incentive. These programs can be either price-initiated or 

instead based on reliability concerns. 

The NAPDR simulated these five different approaches to DR implementation by breaking down 

their rates of adoption into four indicative scenarios. The distinction between these scenarios is 

mostly based on dynamic pricing participation, realizing that any substantial amount of dynamic 
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pricing participation is predicated on the installation of an infrastructure that is capable of 

bilateral communications between the utility and consumer. 

 Business-As-Usual (BAU) constitutes a steady continuation of current DR programs. 

 Expanded BAU (EBAU) is the scenario by which current DR programs are maintained and 

expanded to all states. Critically, this scenario does not consider the impact of dynamic 

pricing. 

 Achievable Participation (AP) assumes that dynamic pricing with enabling technology is 

offered to nearly all consumers, with at least 60% of said consumers choosing to 

participate in such a program. This scenario is considered to be the most realistically 

achievable. 

 Full Participation (FP) is the scenario that attempts to simulate the maximum possible 

benefit of DR. It assumes that 100% of consumers mandatorily participate in DR. 

By examining data from surveys and case studies across the country, the NAPDR projected the 

potential impact of these DR programs and extrapolated them to 2019, as shown in Figure 4. 

These simulations were created by examining data for the 15 highest load days of the year, and 

analyzing these days as if they had utilized DR programs for just four hours each day. BAU shows 

a modest 4% peak reduction is potentially possible by 2019, but remembering that the peak 

load is projected to increase by nearly 7% over this same time period, BAU is not enough of a 

strategy to effectively reduce the country’s peak load. However, by simply expanding current 

programs and implementing them across all 50 states, a 9% peak reduction could be achieved 

by 2019. This would offset the estimated natural peak load growth, but considering the error 

associated with such projections, the program would likely not be a sustainable long-term 

solution to minimizing peak load. The NAPDR suggests, in accordance with the DOE’s definition 



10 
 

of demand response, that the true benefit of DR lies in dynamic pricing. By achieving a 60% 

marketplace penetration of dynamic pricing programs, the peak load could be reduced nearly 

9%. When taken into consideration with the other DR approaches, 14% of the peak load could 

be reduced by 2019 – nearly twice as much as its anticipated growth. Although not realistically 

achievable by 2019, the peak could be reduced 20%, mostly by taking advantage of dynamic 

pricing simultaneously with enabling technology. 

 

FIGURE 4 – U.S DEMAND RESPONSE POTENTIAL BY PROGRAM TYPE (2019) [10] 

Additionally, the NAPDR also categorized their simulation results as a function of building type, 

rather than by DR program (Figure 5). Their results indicate that within the realistic AP scenario, 

essentially half of the total 14% peak reduction would be due to residences taking advantage of 

dynamic pricing. 

One of the conclusions drawn from the NAPDR was that, although the majority of DR efforts in 

effect today come from large industrial and commercial consumers, it is the residential class of 
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buildings that represents the largest per-customer potential for DR benefit stemming from the 

adoption of dynamic pricing programs. It is this conclusion that forms the premise of this paper. 

 

FIGURE 5 – U.S. DEMAND RESPONSE POTENTIAL BY CLASS (2019) [10] 

1.4 – Project Details 

Villa Trieste is a 185-unit housing development located near the western edge of Las Vegas, 

Nevada that was constructed specifically to research the efficacy of peak shifting/reduction 

strategies in a cooling-dominated climate. This was made possible through a Department of 

Energy (DOE) grant and the subsequent creation of a partnership between the University of 

Nevada Las Vegas, Pulte Homes (home builders), and NV Energy (electrical utility company). The 

primary objective of the DOE’s grant is to achieve peak load reductions of up to 65%, as 

measured at the substation that services Villa Trieste, when compared to a standard-production 

housing development. To assist researchers in addressing this objective, each home at Villa 

Trieste has been built with a 1.8 kW PV array located on its roof. In addition, a limited 
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networking infrastructure is included within each home to facilitate the eventual installation of 

“smart” bilaterally communicating thermostats that would have the capability of connecting to 

an off-site server. Each home is comprised of two finished stories, and is one of four available 

floor plans ranging in size from 1,487-1,960 ft2. As of early 2014, nearly every one of the almost 

200 Villa Trieste homes is occupied and making use of its included PV array, but logistical issues 

have impeded the installation of the aforementioned thermostats. 

An important detail of the project that needs to be mentioned is the fact that the investigations 

included within this paper were not part of the original project proposal. As such, certain system 

elements were not necessarily optimized with the objectives of this paper in mind. Some of 

these shortcomings will be expanded upon within this paper, but the fact remains that the Villa 

Trieste housing development provides an excellent source of empirical data for the 

investigations included herein. 

1.5 – Objectives 

As discussed, the premise of this paper stems from the assertion that DR implementation and 

the adoption of dynamic pricing within the residential building sector is an excellent strategy for 

managing peak loading. Within the context of the Villa Trieste housing development, which is 

located in the cooling-dominated climate of Las Vegas, DR is largely synonymous with air 

conditioning management. Large commercial and industrial facilities have been minimizing the 

costs associated with air conditioning utilization since the early 1980’s when the concept of 

‘intelligent buildings’ was introduced. One way in which these facility managers minimize 

operating costs is by constructing intricate computer models that allow them to understand, in 

advance, the impact a certain amount of cooling (or heating) of a particular zone will have on 

said zone’s temperature. Equipped with this knowledge, facility managers can, for example, 
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schedule a chiller plant to operate at a time optimized to allow the building to reach a certain 

temperature before employees arrive to the building in the morning. This approach reduces the 

waste associated with unnecessarily conditioning the building when it is without occupants, and 

eliminates the amount of guesswork involved with manual operation. Despite the successes of 

these sorts of transient thermal models, they are not often used within the residential sector 

due to a variety of limitations. This paper examines these limitations, and attempts to overcome 

them while at the same time providing a method for accurately predicting the transient thermal 

response of a residential building. 

In addition to providing the method for predicting these buildings’ transient thermal responses, 

several applications for these models are introduced and discussed. One such application is a 

server-side controller that attempts to utilize thermal response predictions to schedule and 

coordinate the air conditioning loading cycles of a certain sample of houses. This level of 

coordination attempts to ensure that, at any given time, a number of houses are not utilizing 

their air conditioners, and therefore not contributing to a near-peak load. Another possible 

application is server-side tracking of a home’s heating and cooling characteristics. As will be 

shown, a home’s transient responses are predictable enough that, given a large enough sample 

size, the rate at which it takes an air conditioner to cool down a home could be monitored over 

time to potentially identify HVAC equipment failures and provide ‘early alert’ type warnings to 

home owners[12].  
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Chapter 2 – Thermal Response Models and Controllers 

As has been alluded to, it was the energy crisis of 1973 that motivated professionals to 

emphasize the importance of energy efficiency in building design. This particular period of time 

also happened to coincide with the creation of the microprocessor and the rapid development 

of consumer-level computers. This greatly increased researchers’ ability to quickly perform 

complex calculations. With this level of computational power at their disposal, researchers 

began developing more advanced dynamic thermal models to simulate building performance. 

Over the next twenty-five years, over three hundred different types of models were developed 

[13]. The one thing that nearly all these models had in common was that they were constructed 

to evaluate the heat transfer equations for conduction, convection, and radiation under varying 

ambient and interior conditions. In fact, one of these early models, TRNSYS, developed by 

researchers at the University of Wisconsin, is in its seventeenth revision and still widely used 

today to simulate thermal systems [14]. 

As the amount of this research grew through the 1980’s, certain models’ characteristics that 

were identified during a building’s design phase began to ultimately influence the operation and 

autonomous control of said building’s mechanical equipment. With the advent of 

microcontrollers and increasing commercial viability of embedded circuits, analog equipment 

controls were phased out in favor of digital replacements that allowed for previously 

unprecedented levels of logical control over mechanical systems. During this time, an entire 

industry materialized that focused on developing building models that integrated with, and 

ultimately controlled, buildings’ HVAC equipment. This became known as model predictive 

control (MPC).  Although certain MPCs may rely on different types of input and output data, and 

the methods by which they utilize said data may differ, they all attempt to predict the future 

behavior of a building in an attempt to maximize some sort of cost function over a specified 
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duration. Nearly all the research that has been reported on HVAC-related MPCs indicate that 

they achieve higher levels of energy efficient operation over non-predictive control methods 

[15]. 

Of course, the types of buildings initially being subjected to MPC were the ones that stood to 

monetarily benefit the most from the extensive engineering analyses – large commercial and 

industrial facilities. This has remained relatively unchanged for the last 30 years. Residential 

buildings really have yet to benefit from advanced modeling and control for a variety of reasons 

including their size, type of mechanical equipment, predictability, and benefit [16]. Residential 

buildings have a much smaller thermal mass when compared to industrial and commercial 

buildings, and therefore exhibit transient thermal responses that are more difficult to capture 

within the framework of a model [17]. In addition, occupancy patterns are much more irregular 

in a home than in a Monday through Friday, 9-to-5, commercial facility, which ultimately 

impacts the nearly immeasurable internal gains of a building. However, perhaps the largest 

obstacle facing advanced residential HVAC control is the level of autonomy necessary to make it 

practical. Within the context of an industrial or commercial building, a facilities engineer is 

usually ultimately responsible for the operation of the HVAC equipment. They generally have 

access to very specific physical thermal characteristics of their building that allows them to build 

intricate and accurate predictive models. The same engineers are on-site when systems fail and 

need to be manually overridden, or models need to be updated and improved. An advanced 

controller within a residential home is not afforded this luxury, and must function indefinitely, 

as intended, and without systemic errors. This can be particularly problematic considering that a 

single control error could potentially negate hours, or even days, worth of operational savings 

[18]. With the rising cost of energy and the recent drive for adoption of DR initiatives within the 
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residential sector, research teams have earnestly begun developing comprehensive and 

accurate house-specific thermal and energy models and controllers [19]. 

Broadly speaking, there are two distinct types of models defined by the American Society of 

Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) [20] – forward models and 

data-driven models. The various types of data-driven models are the most relevant to this 

paper, for reasons that follow. 

2.1 – Forward Models 

Also referred to as the classical approach, a forward model attempts to predict a certain output 

based on knowledge of forcing inputs (usually ambient conditions such as dry bulb temperature, 

solar radiation, relative humidity, etc.) and a detailed understanding of the physical building 

(geometry, wall material and thickness, HVAC equipment specifics and their operating 

schedules, etc.). The building itself need not necessarily be built to create these models, which is 

why they are abundantly used during the design stage of building development. The 

aforementioned TRNSYS code is one such type of model, as are other popular simulation tools 

such as SPARK, EnergyPlus, and EnergyPlus’s predecessors BLAST and DOE-2 [21]. 

These models are of little use to this paper’s objectives, though. In addition to generally being 

computationally intensive and time-consumingly individually tailored, they rely too much on 

buildings’ physical parameters to be practically applied to a wide variety of residences. They’re 

simply not optimized for dealing with HVAC control and the minimization of cooling costs [18]. 

Fundamentally, the ‘knowns’ of a forward model are the forcing inputs (electrical consumption, 

HVAC operation, etc.) and the physical characteristics, while the unknowns are the outputs 

(temperature and humidity versus time); in the case of the Villa Trieste homes, and more 

generally any home with a bilaterally communicating thermostat, the ‘knowns’ are the inputs 



17 
 

and the outputs and the ‘unknowns’ are physical characteristics of the building. Thus, a different 

sort of model is used when describing the physical parameters of a building. These types of 

models rely on empirical output data, and known as data-driven models. 

2.2 – Data-Driven Models 

These models are also often referred to as inverse models. Unlike forward models, they use the 

outputs of a building, or system, in conjunction with its inputs to deduce, or quantify, the 

building’s parameters and their effect on the forcing inputs. These are the types of models used 

once a building has been constructed and performance data is available. Since this method 

relies on empirical data, the derived models are generally more simple to use, they are easier to 

validate than forward models, and they often result in more accurate predictions of future 

performance than forward models [20]. 

Although the form and exact specifics of a building’s performance data vary from method to 

method, the data itself can be obtained in one of two ways–either passively under a building’s 

normal operation, in which case the collected dataset is referred to as ‘nonintrusive’, or while 

the building is being subjected to an experimental and predetermined set of conditions in which 

case the dataset is considered to be ‘intrusive’. Intrusive datasets generally result in more 

accurate models than nonintrusive dataset since they guarantee the model is subjected to a 

wider range of conditions than are generally encountered during normal operation–the variety 

of the sample size is greater. 

Data-driven models can be further classified by the frequency and method by which they are 

trained. ‘Offline’ models are trained from a static historical dataset; they are then completely 

retrained when subjected to a new dataset. ‘Online’, or real-time, models differ in that they do 

not necessarily rely on a fixed dataset for training. Real-time data can be processed by the 
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model, allowing it to make incremental changes to itself as it is fed new information. Online 

models can be computationally very expensive–they essentially continuously optimize some sort 

of cost function, whereas offline models optimize a comparable cost function much less 

frequently. For this reason, offline models tend to be easier to implement and are represented 

more within the literature [22] . 

2.2.1 – White-Box (Physical) Models 

Data-driven models can be further distinguished by the degree to which they depend on an 

understanding of a given building’s physical system. On one end of the spectrum, white-box, or 

physical, models require a complete understanding of a building’s physical characteristics. They 

involve a physical description that generally includes features such as building geometry, 

materials, geographic location, and HVAC details. They are generally regarded more as forward 

models than data-driven models, but are occasionally used within the data-driven realm for 

relatively simple systems due to their high level of accuracy [23]. The effort involved in collecting 

and establishing all of a building’s parameters is too prohibitive to allow white-box models to be 

regularly used in practice, and the models they render are generally fairly complex. 

2.2.2 – Black-Box (Empirical or Parametric) Models 

On the other end of the spectrum, black-box models require little-to-no knowledge of a 

building’s physical characteristics. They are essentially stochastic models; they work by 

parameterizing certain aspects of a system either statistically or in terms of differential 

equations and transfer functions. Quite often the resulting model is formulated in such a way 

that it is difficult to relate it to any sort of physical meaning. Black-box models are ‘trained’ with 

historical data, and often don’t perform well when the forcing inputs deviate from the set of 

training data. Despite this, black-box models are the most widely used data-driven approach for 
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evaluating demand-side management programs [20]; their predictions are relatively accurate 

and they require significantly less computational power than their white-box model 

counterparts. 

2.2.2.1– Linear Regression Models 

These types of models vary considerably in their approach, and are either completely 

statistically based, or rooted in some sort of physics formulation. What they generally all have in 

common is that they are primarily based on linear differential equations, although most systems 

exhibit some sort of nonlinearity. Coefficients are strategically added to the differential 

equation, and then regressed in a variety of fashions to best-fit the DE to a set of training data. 

Most regression methods attempt to find functional relationships between weather variables 

and building outputs [24]. One of the earliest efforts into digital, automatic, and predictive 

thermal control of small-scale buildings dates back to 1988 [25], and utilized this method. 

Shapiro et al. used a thermal resistance and capacitance (RC) model (that described the building 

with just five parameters), analogous to an electrical circuit, in conjunction with forecasted 

weather data to project anticipated zone temperatures and adjust pre heating/cooling 

strategies accordingly. Recently, a similar RC method was used to predict cooling loads of an 

interior room without occupants, but instead used a non-linear regression algorithm [17][26]. 

Another approach abandons the RC analogy, and instead relies on the weighted 

parameterization of integrated input variables [18]. The method outlined by Rabl et al. relies on 

just four inputs: non-solar heat input to the building (internal gains), solar radiation, exterior 

temperature, and interior temperature as well as their corresponding coefficients. An analysis of 

this method examined the accuracy of a first-order versus that of a second-order model. What 

the analysis revealed was that the error associated with the first-order model was equivalent to 
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the magnitude of its time constant – there was little benefit to using the more complex second-

order model for their purposes. However, they include a caveat that first-order models may not 

work as well for other applications. 

2.2.2.2 – Artificial Neural Network Models 

Artificial neural networks, or often just abbreviated ‘neural networks’ (NN), differ considerably, 

in principle, from regression models.  That is, unlike regression models, the structure of a NN is 

not derived or deduced from any sort of understanding of physics or heat transfer. Instead, they 

are models that are completely inferred from sets of data – they are true black-boxes in this 

sense. Without the fundamental physical basis of regression models, NNs are not at all 

dependent on linear differential equations. This is beneficial when dealing with the inherent 

nonlinearity of transient thermal problems. In fact, NNs were born from the desire to improve 

on the existing legacy of linear models throughout all of the physical sciences. Early developers 

of the NN were intent on mimicking the behavior and function of a biological brain–they wanted 

to develop algorithms that were capable of ‘learning’ a system over time. Many references will 

still refer to this analogy with the operation of a brain, but in reality, present-tense neural 

networks bear little resemblance to biology, and are rather simply advanced statistical models. 

Neural networks are composed of multiple interconnected node ‘layers’, with weights 

associated with each of the interconnections. As data flows into the model from the input layer, 

they are multiplied by their respective connection’s weight,   , and summed at a ‘neuron’, or 

node (Figure 6). This summation is then compared against an activation value,    , or threshold 

weight, that is a property of the node itself and is always just multiplied by one. When the 

summed data,    satisfies the threshold, they are run through an activation function, generally a 
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sigmoid, and the node generates an output value,   . Mathematically, this is described by 

Eqn.(2.1). 

To expand the NN, the input values are sent to more nodes, and those nodes feed into 

(potentially) more layers. This ultimately creates a multilayered neural network (Figure 7), 

described by Eqn. (2.2). It is the construction of these intermediary, or hidden, layers between 

the inputs and outputs that proves to be the most challenging task when building NNs. 

This structure has no real way of ‘learning’ and self-adjusting its weights, though. There are 

multiple techniques for training NNs, but within the building modeling literature, 

backpropagation, or backprop, seems to be the most popular through the use of the Levenberg-

Marquardt method. Essentially, after the NN calculates output values, they are compared 

against the expected output and a difference between the values is calculated. This error is then 

back propagated through the network, and weights are adjusted in such a way to reduce the 

error. This learning algorithm is advantageous due to its speed, as well as its autonomy. It has 

also been proven to be successful for multiple MPC applications 

[24][27][28][29][30][31][32][33][34]. 

 

FIGURE 6 – A SINGLE NEURAL NETWORK NODE [35] 
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After the network has been exposed to a relatively small amount of training data, the iterative 

changes made to the weights by back propagation are minimal. One of the advantages of this 

approach is that nearly anything can be used as an input to the system. When it comes to 

modeling residential energy consumption, for example, some of the obvious inputs would be 

ambient temperature, solar radiation, etc., but NNs are flexible enough to consider less dynamic 

inputs, as well. Aydinalp has investigated constructing NNs in such a way to include socio-

economic factors such as household income, dwelling type, size of the house, and employment 

status of homes’ adults [28]. 
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FIGURE 7 – MULTILAYERED NEURAL NETWORK [35] 
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During the 1990’s, the American Society of Heating, Refrigeration, and Air-Conditioning 

Engineers (ASHRAE) sponsored a pair of competitions known as The Great Energy Predictor 

Shootout I & II. The purpose of both competitions was to pit black-box models against each 

other to find the most effective approach for modeling commercial building energy usage, with 

the end goal being to accurately predict the operational cost savings of retrofits. One of the 

conclusions shared between both competitions was that neural networks provide the most 

accurate model of a building’s energy use [36], though their accuracy is highly dependent on the 

construction of the network and the arrangement of nodes. 

Neural networks had been gaining popularity amongst the building modeling community before 

The Great Energy Predictor Shootouts [24] (on a larger scale, at least 35 utilities had adopted 

NNs for short-term load forecasting by 1998 [29]), but it has only been during the last 15 years 

that they have been incorporated into full-blown HVAC-related MPC environments [37]. A 

couple of related studies explored using NNs for predicting the optimal start/stop times of 

heating systems  [27][38], and a similar method has been applied to deducing the optimal 

start/stop times of air conditioners [39]. However, these studies relied on training data that was 

generated from forward-models. 

Ruano et al. were able to take a comparable approach to HVAC start/stop times, but instead 

opted to utilize an adaptive, rather than static, NN like the prior study [40]. A static, or off-line, 

NN is ‘taught’ strictly from its initial training set, which can cause accuracy issues when inputs 

vary substantially outside of the bounds of the training data. The network simply has no 

experience on how to handle the differing inputs, and no way of correcting itself. This (usually) 

undesirable effect could be observed by training a model with Spring/Fall ambient weather 

conditions then subjecting it to Summer/Winter data. This issue can be circumvented by utilizing 
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an adaptive, or on-line, NN with the tradeoff being a bit of computational power. Adaptive NNs 

never really turn off of training mode. Instead, for each time step they consider a certain 

amount of historical data as training data, and recalculate their weights accordingly. 

2.2.3 – Grey-Box Models 

As discussed, white-box models are completely based on the physical characteristics of a 

building and the underlying principles of physics, and black-box models are generally more 

statistically based with no considerations for specific building characteristics, so grey-box, or 

semi-physical, models are, naturally, a combination of both approaches. Like white-box models, 

they make use of physical characteristic parameters, but rather than being exact 

representations of the building, they’re generalized from a rough framework. Similar to black-

box models, these parameters are then fit to the system’s known empirical data with black-box 

techniques such as linear regression or other statistical methods. This sort of hybrid model had 

been suggested before [41], but Deque et al. were some of the first to use the ‘grey-box’ phrase 

and present a general methodology [42].Their examination of an unoccupied French home 

during the summer months revealed that their grey-box model was within 5% of accurately 

predicting the home’s cooling load when compared to a much more computationally intensive 

physical model. Almost simultaneously, Oussar and Dreyfus presented several arguments for the 

utility of such a an approach within the realm of engineering and industrial controls [43]. 

Another study used a physics-based approach in conjunction with an ARMA algorithm to achieve 

a model accuracy of around 1% for a California office building [44]. Yet another set of papers 

utilized the familiar thermal circuit analog with non-linear regression and parameter estimation 

techniques to successfully predict optimal temperature setpoints that ultimately limited peak 

demands in several commercial buildings between 33%-51% [45][46].  
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Chapter 3 – Mechanical Systems and Data-Collection Hardware 

Regarding some of the physical details of the buildings being analyzed within this thesis, one of 

the unique advantages to the Villa Trieste project is that the development was constructed 

specifically as a means for collecting real-world empirical data on the impact of different 

demand reduction strategies. This chapter will develop an understanding of some of the 

mechanical systems included within the Villa Trieste homes, as well as a summary of the devices 

that are used to control and collect data on said systems. 

3.1 – Data Collection Hardware, Phase I 

The first phase took place from early February 2011 to late September 2012, and was a 

preliminary data collecting effort undertaken while the specifics of the second phase were being 

developed. The owners of seven homes participated in this initial pilot, and agreed to have their 

energy consumption, and solar panel generation, monitored. Additionally, temperature 

measurements were recorded in each of these homes for ‘representative’ rooms on both first 

and second floors. Data was recorded at a rate of once per minute for the duration of the 

experiment. 

3.1.1 – Energy Monitoring 

At each of the seven participating homes, project boxes were installed next to each home’s 

respective utility service panel, either within a garage or outside next to the panel. Each box was 

loaded with five WattNode Pulse watt-hour transducers1 and a wireless ZigBee module (Figure 

8). The community-wide installation of these devices resulted in the creation of a local ZigBee 

mesh network. A single GSM2 modem was added to this network, which was configured to 

                                                            
1 Model WNB-3Y-208-P produced by Continental Control Systems LLC 
2 The Global System for Mobile communications (GSM) is an international communications standard most 
often used by cellular devices. 
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communicate, through the Internet, with a data-logging database server located at UNLV’s 

campus (Figure 9). 

 

FIGURE 8 – WATTNODE MODEL WNB-3Y-208-P AND INSTALLED PROJECT BOX 

 

 

FIGURE 9 – ENERGY CONSUMPTION/GENERATION DATA LOGGING DIAGRAM 
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The CTs attached to each WattNode device were wired so that they could monitor the circuits 

described in Table 1. However, not every installation went in with consistently-sized CTs. The CT 

sizes that were installed in each home are shown in Table 2. The only appreciable difference in 

these installations is the scaling factor that is ultimately used to convert the WattNode 

measurements to energy or power units, as shown in Chapter 4. 

TABLE 1 – CURRENT TRANSDUCER APPLICATIONS FOR ENERGY MONITORING 

Circuit Description Database Designation 

Mains In data1 

Mains Out data2 

Fan Circulating Unit data3 

Air Conditioner data4 

PV Array data5 

 

TABLE 2 – SENSOR NAME DESIGNATIONS AND CT RATINGS 

    Temperature Sensor ID CT Ratings (Amps) 

House ZigBee ID First Floor Second Floor Mains In Mains Out FCU Cond PV 

1 PWR4 TEMP5 TEMP 6 150 - 30 50 30 

2 PWR 7 TEMP 7 TEMP 8 150 30 50 150 50 

3 PWR 6 TEMP 9 TEMP 10 150 - 30 50 30 

4 PWR 8 TEMP 11 TEMP 12 150 30 50 150 50 

5 PWR 3 TEMP 13 TEMP 14 150 30 50 150 50 

6 PWR 2 TEMP 15 TEMP 16 150 30 50 150 50 

7 PWR 5 TEMP 17 TEMP 18 150 30 50 50 50 

 

3.1.2– Temperature Monitoring 

The ZigBee mesh network that was just described also extended within the homes where 

temperature sensors were located. Each home included two Texas Instruments TMP102 digital 

temperature sensors, so that the temperatures within both first and second stories could be 

monitored. The sensors were stored inside enclosures that were created to be plugged in to 

standard 120V wall outlets. These enclosures not only provided power to the sensors, as well as 
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the supplementary ZigBee hardware, but they also kept the equipment stationary at 

approximately a foot off the floor in all locations. Every enclosure measured temperature, and a 

select few additionally measured humidity. Devices were identified and tabulated in the 

database by the nomenclature TEMPX where X designates a number between 5 and 18 (Table 

2). 

3.2 – Data Collection Hardware, Phase II 

Phase II was developed to serve slightly different purposes in a less intrusive, more interactive 

way. Naturally, there are some notable differences in the equipment used during this phase 

when compared to the first. During Phase I, equipment was installed in seven Villa Trieste 

homes to record their respective interior temperatures from February 2011 to September 2012, 

as well as power generation and consumption. Phase II differs in this regard. Power 

measurements are not included within the scope of this experiment, and temperature sensors 

do not exist in the form of stand-alone enclosures plugged in to electrical outlets. Instead, 

temperature sensors are replaced with a functional thermostat that not only monitors room 

temperatures and controls HVAC equipment through conventional means, but also acts as a 

two-way communicating device with UNLV’s on-campus server. The only hardware 

supplementing this thermostat is a gateway in each home that bridges communications 

between the thermostats’ ZigBee mesh network and the Internet.  

Researchers at UNLV constructed an intuitive web-based interface that allows homeowners to 

monitor, schedule, and control their thermostats’ setpoints. A restricted portion of the same 

website includes controls for the utility company to implement temperature setbacks during DR 

events. The intent is that the system will allow homeowners to use familiar thermostat 
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hardware, while at the same time providing a DSM environment that allows the utility to make 

progress toward the “Full Participation” scenario outlined by NAPDR. 

3.3– HVAC 

It has been previously established that demand response initiatives in cooling-dominated 

climates are generally synonymous with air-conditioning management programs. Many of the 

thermal models reference during Chapter 2 allude to this, but the majority of them are focused 

on the mechanical optimization of large commercial facilities. A lot of the same concepts are still 

applicable, but there is at least one critical difference between the operation of these large 

buildings and small homes–the HVAC systems themselves. In large buildings, the air conditioners 

can be quite complex and composed of many individual integrated components (chillers, cooling 

towers, etc.) that can each be purchased, serviced, and replaced when necessary. Their 

controllers tend to be just as complex in terms of their ability to coordinate all this equipment, 

but due to the size of the buildings they service, they are generally set to run as steady-state 

systems for extended periods of time. 

Residential HVAC systems are much different. A little over 60% of homes in the United States 

now feature central air units [47] as their primary means of space cooling, but across the 

Mountain South region that includes portions of Arizona, Nevada, and New Mexico, this number 

jumps to nearly 80%. These popular units are their own self-contained vapor-compression-cycle-

based systems, and most combine all the components of a holistic HVAC system. For obvious 

reasons, they are controlled much more simplistically than large building HVAC systems. 

Typically, a thermostat located within the home is the controller responsible for dictating when 

heating, ventilation, or air-conditioning components turn on and off. This type of control 

strategy treats the entire home as a single zone, and is referred to as bang-bang or hysteretic 
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control. It is not a particularly efficient way to run a mechanical system, but variable speed 

motor controllers have yet to make an appreciable impact on the central air-conditioning 

market in the United States [48]. Often, logic is included within these thermostats to prevent 

units from rapid cycling, which could be damaging to components. These units are also often 

oversized, and the combination of all these factors results in these systems displaying a much 

more cyclical behavior than their large-building counterparts. Combined with the fact that 

smaller buildings are categorically skin-dominated when compared to larger buildings (which 

makes them more susceptible to ambient condition changes), it is easy to understand why 

thermal and mechanical modeling is not nearly as well represented within the literature for 

residential buildings as it is for larger facilities. 

3.4– Thermostats 

As just discussed, thermostats are a residential building’s primary means of autonomous HVAC 

control. Modern microprocessor and thermistor-based thermostats are actually quite simple, 

and have not varied substantially in their functionality from their bi-metallic electromechanical 

predecessors. The basic thermostat allows a user to specify a desired zone temperature, or 

‘setpoint’. It then compares the localized temperature measurement from its temperature 

sensing element to this user-specified setpoint, and activates cooling when the temperature 

exceeds the setpoint. Similarly, it initiates heating when the temperature falls below the 

setpoint. As presented, this would result in heating and cooling equipment battling nearly 

constantly to maintain a consistent setpoint temperature. The reality is that the user is expected 

to manually place the thermostat in either heating or cooling mode. For example, while in 

cooling mode, the thermostat recognizes that it is only responsible for cooling the home, and 

that it will passively heat back up. Some modern thermostats are capable of operating in auto 
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mode, whereby no manual intervention is necessary and the controls logic of the thermostat 

includes provisions to prevent the air conditioner and heater from working against each other. 

In terms of activating the heating and cooling modes, most modern thermostats accomplish this 

by interfacing with an external 24 V transformer and relay board that is generally included as 

part of the central air system, as seen in Figure 10. These connections can be slightly more 

complex depending on the heating and cooling sources used, but the basic wiring diagram of 

Figure 10 is adequate to develop an understanding of the systems located in Villa Trieste. 

 

FIGURE 10 – BASIC THERMOSTAT CIRCUIT [49] 
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These 24 V ‘low-voltage’ systems are not the only type of thermostats on the market – millivolt 

and line voltage systems have some niche applications, as well – but the National Electrical 

Manufacturers Association’s (NEMA) publication of NEMA DC 3 for the first time in 1972 

established a standard for governing low-voltage thermostats, cementing their place in the 

residential market. One of the accomplishments of this standard was that it established an 

alphanumeric code (Table 3) for the terminals shown in Figure 10, as well as a collection of 

additional terminals that accommodate the slightly more complex installations. This is an 

important, if not explicitly stated, fact of the development of Phase II’s thermostat – modern 

thermostats are essentially completely interchangeable. The method by which they interact 

with HVAC equipment does not substantially differ from model to model, so when choosing or 

developing a thermostat to place in the Villa Trieste homes for Phase II, external communication 

and logic capabilities are essentially the only criteria by which any thermostats need be 

compared. 

TABLE 3 – BASIC HEAT/COOL SYSTEM TERMINAL DESIGNATIONS [50] 

Function Terminal Marking 

Power R 

Heat transformer power Rh 

Cool transformer power Rc 

Common C 

1st stage cool Y or Y1 

2nd stage cool Y2 

1st stage heat W or W1 

2nd stage heat W2 

3rd stage heat W3 

Fan G 

Active in heat (i.e., damper, etc.) B, or O/B 

Active in cool (i.e., damper, etc.) O, or O/B 
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With this in mind, UNLV researchers decided upon a ZigBee-enabled thermostat3. The system 

was developed to operate as is seen in Figure 11, with each thermostat maintaining a 

connection to a ZigBee router. A router’s purpose is to act as an intermediary between UNLV’s 

servers and the thermostats – transcoding TCP/IP and ZigBee signals back and forth. Though 

outside the scope of this paper, this system has been shown to successfully and reliably enable 

two-way communications between the thermostats and the UNLV server. 

 

FIGURE 11 – THERMOSTAT CONNECTIONS DIAGRAM 

With communications between UNLV’s servers and the thermostats in place, the system has 

been configured to log the appropriate data that would make Phase I’s temperature measuring 

equipment unnecessary. The most obvious measurement is temperature, but with that being 

said, the temperature measurements collected from thermostats differ in not-insignificant ways 

from the traditional measurement approach taken during Phase I. While the sensors used in 

Phase I were designed to measure and report data at 1-minute intervals, the thermostats are 

event-based devices. This means that instead of logging uniformly reported data, the 

                                                            
3 Manufactured by RCS Technology, the thermostat model is TZB45. 
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thermostats will only report back to UNLV’s servers whenever the temperature it senses 

changes. This is further complicated by the fact that thermostats, and not just the particular 

model used in the study, have an internal averaging algorithm in place to damper out transient 

temperature changes. In addition, unlike Phase I’s sensors, the thermostats’ resolution is only to 

the nearest degree. 

Another issue that is inherent with all residential thermostats [51] is that they are quite often 

placed in locations where their temperature measurements are poor representations of the 

whole-zone temperature. Residents combat this by decreasing, or increasing, their thermostat’s 

setpoint to achieve a particular “comfortable” temperature in a particular area of the home that 

is not necessarily reflected on the thermostat. This would negatively impact thermal models 

that were heavily reliant on accurate temperature readings, but as will be discussed in Chapter 

5, this misrepresentation of the “true” zone temperature, has no impact on the proposed 

model’s efficacy. 

These distinctions may seem problematic from a measurements standpoint, but for the 

purposes of this research, event-based reports offer several advantages. Since the thermostats 

are capable of communicating exactly when they trigger the various relays described above, the 

UNLV server can log HVAC equipment cut-in and cut-out times with essentially no error. This is 

critical for the proposed model. 

There is a tradeoff with thermostats replacing Phase I equipment, though. The CTs of Phase I 

located near utility service panels provide valuable information on the amount of energy the air-

conditioning and fan controller units consume, which cannot be accomplished with the 

thermostats’ limited capabilities. However, as will be shown in Chapter 4, the equipment’s 

energy consumption can be fairly accurately estimated with some simple techniques. 
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Chapter 4 – Villa Trieste Power Consumption 

At this point, it is worth reiterating the difference between power and energy. Though often 

used interchangeably with no ill effects in many contexts, the distinction between the two is 

important here. Whereas power is an instantaneous measure of the rate at which work is done, 

energy is power integrated over a duration. This is why electrical power is most commonly 

expressed in terms of watts, and energy is expressed as watt-hours. While an expanded goal of 

DR, as outlined in Chapter 1, is to ultimately save energy as the technology develops, the original  

goal of DR is still to reduce peak demand, which, strictly speaking, equates to a reduction in the 

maximum power draw. As described in Chapter 1, power plants are capable of supplying 

sustained power draws (energy); it is the instantaneous, or short-term, draws that are extremely 

costly for utilities. 

As discussed in Chapter 3, Phase I of the Villa Trieste experiment involved installing WattNode 

Pulse devices to monitor electricity consumption and generation in seven homes from early 

February 2011 to late September 2012. Current transducers were installed at each of these 

homes to measure and record incoming energy, PV generation, outgoing energy, AC 

consumption, and fan circulation consumption. 

4.1.1 – Assessing the Quality of Data 

Before undertaking a full analysis of the data, a preliminary examination of the recorded energy 

data showed some irregularities; certain sensors exhibited long periods with no reported data. 

An example of the database’s structure, along with some data is shown in Table 4. A script was 

written to help visualize and quantify the inconsistencies in this data, which can be found in 

Appendix A. Each sensor was examined in weekly increments over the duration of the 

experiment, and plots were generated to examine the amount of time between recorded 
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measurements. Ideally, all sensors would plot at one minute intervals on the y-axis, indicating 

there being just 1 minute between data records, but the plots revealed a significant amount of 

missing data for all sensors across the entire experiment period. A sample plot from a week 

during June 2011 can be seen in Figure 12. In addition, the database contains no data from the 

sensor identified as PWR4. This effectively limits the sample size to 6 homes. 

TABLE 4 – WATTNODE PULSE MEASUREMENTS EXAMPLE DATA 

id datetime powerSensor data1 data2 data3 data4 data5 

24 2/2/2011 13:57 PWR8 0 4 6 0 22 

23 2/2/2011 13:57 PWR3 0 0 0 0 22 

22 2/2/2011 13:57 PWR5 2 0 10 0 20 

21 2/2/2011 13:57 PWR7 0 20 0 0 22 

20 2/2/2011 13:56 PWR3 0 0 0 0 21 

19 2/2/2011 13:56 PWR5 2 1 5 0 21 

18 2/2/2011 13:56 PWR7 0 20 1 0 22 

17 2/2/2011 13:55 PWR8 0 0 0 0 21 

25 2/2/2011 13:58 PWR7 0 20 0 0 22 

26 2/2/2011 13:58 PWR5 3 1 10 0 21 

27 2/2/2011 13:58 PWR3 0 0 0 0 21 

 

The missing data could be attributed to a number of problems, but with no local cache or data 

recording “handshake” confirmation built in to the test setup, some form of communications 

error would seem to be the likely root cause for the missing data. The irregularities in the 

reporting between sensors suggests that it was not the GSM mobile network connection at 

fault. Rather, it was likely the ZigBee mesh network that failed to relay certain sensors’ data to 

the GSM router. A review of the physical map of Villa Trieste confirms that the steady signals 

shown in Figure 12 (PWR3, PWR5, and PWR7) were clustered in such a way that they were part 

of a “chain” of nodes that were in close proximity to the GSM modem, while PWR2 and PWR8 

were the nodes furthest away from the mesh network. 



37 
 

Before the start of the 2012 summer season, extenuating circumstances necessitated the GSM 

modem be moved from its previous location. While this did not completely eliminate the gaps in 

the recorded data, it did appear to, in general, result in fewer missing pieces of data, as shown 

by comparing Figures 12 and 13. 

By utilizing the script located in Appendix A and modifying it to examine daily, rather than 

weekly, data, several days during the 2012 DR season were identified that feature relatively few 

missing records, as seen in Table 5. The next section will use this subset of days in a portion of 

its analysis. 

TABLE 5 – MINUTES OF POWER DATA MISSING FROM THE RECORD FOR THE DAYS GIVEN 

 
2012 

 
07/02 07/08 07/09 07/17 07/22 08/08 

PWR2 1.28 1.12 14.22 2.03 4.77 30.75 

PWR3 1.13 0.55 0.63 0.62 1.67 0.75 

PWR5 0.60 0.55 0.57 0.60 0.68 0.57 

PWR6 0.52 2.05 1.82 2.62 6.82 0.60 

PWR7 0.60 0.50 1.07 0.52 0.57 0.45 

PWR8 0.52 0.53 1.57 6.52 0.57 0.53 
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FIGURE 12 – POWER DATA QUALITY FOR A JUNE WEEK IN 2011 
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FIGURE 13 – POWER DATA QUALITY FOR A JUNE WEEK IN 2012 
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4.1.2 – Pulse Output Conversion 

The WattNode Pulse that was used for these energy measurements is a commercial watt-hour 

transducer. It works by pulsing a low-voltage output signal (through the use of opto-isolated 

solid state relays) that is proportional to a given amount of energy flowing through a monitored 

wire, as measured by a CT. It converts current measurements to energy measurements by 

assuming a nominal voltage that is determined by the wiring of the device. The proportionality 

constant that scales the pulses to energy units is dependent on the rating of the CT used during 

the measured period. To determine the proportionality constant (in watt-hours per pulse) for a 

given CT, Eqn.(4.1) is used. It is set by the particular WattNode model, which is consistent across 

each of the installations. 

     
          

     
 
          (    )

  
 (4.1) 

Since the system was configured to record data at 1-minute intervals, this results in pulses being 

accumulated, then stored, for each WattNode over a given minute. Understanding that these 

pulses represent energy measurements over a consistently short duration, an estimation for the 

average power per pulse over a given minute can be calculated as shown in Eqn.(4.2). 

  ̅̅ ̅̅̅   
       

    
 (4.2) 

As Table 2 indicates, three different CT sizes were installed at Villa Trieste: 30 A, 50 A, and 15 A. 

Using Eqns.(4.1) and (4.2), constant scale factors can be calculated to transform WattNode 

pulses into both energy and power units, as seen in Table 6. 

Equipped with the proportionality constants recorded in Table 6 for scaling WattNode pulses to 

both energy and power, the power consumption tendencies for these six sensors over the dates 
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indicated in Table 5 were examined. The analysis involved making use of MATLAB’s built-in 

timeseries object. This object made it computationally efficient to sync all of the sensors’ data to 

a common time domain, thereby making their ‘signal’ summations extremely quick. A linear 

interpolation method was used when resampling each of the sensors’ ‘signals’ to the common 

one-minute incremented time vector, as demonstrated below by Figure 14. 

TABLE 6 – WATTNODE PROPORTIONALITY CONSTANTS 

Valid for WNB-3Y-208-P Only 

CT Rating 
(Amps) 

WhPP   ̅̅ ̅̅ ̅   

30 0.75 0.045 

50 1.25 0.075 

150 3.75 0.225 

 

 

FIGURE 14 – GENERALIZED LINEAR RESAMPLING METHOD 

In terms of the script’s resulting plots, each figure features two subplots; the top plot indicates 

the total amount of power (averaged over minute intervals) the six homes collectively draw, and 

the bottom plot reflects the percentage of air conditioners that are simultaneously on at a given 

time. The bottom subplot also includes the ambient outdoor temperature, so that observations 

can be made when the peak demand occurs, and how this relates to the maximum daily 

ambient temperature. The script used for this examination can be found in Appendix B, and its 

output for the subset of days identified in Table 5 can be seen in Figures 15-20. 
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FIGURE 15 – MEASURED HOMES’ POWER CONSUMPTION FOR 2012-07-02 

 

 

FIGURE 16 – MEASURED HOMES’ POWER CONSUMPTION FOR 2012-07-08 
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FIGURE 17 – MEASURED HOMES’ POWER CONSUMPTION FOR 2012-07-09 

 

 

FIGURE 18 – MEASURED HOMES’ POWER CONSUMPTION FOR 2012-07-17 
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FIGURE 19 – MEASURED HOMES’ POWER CONSUMPTION FOR 2012-07-22 

 

 

FIGURE 20 – MEASURED HOMES’ POWER CONSUMPTION FOR 2012-08-08 

Immediately, several observations can be made about these plots. First and foremost, the lag 

between elevated air conditioner usage and the hottest part of the day is several hours in every 

case. This corroborates the published literature introduced earlier in this paper, and validates 
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the assertion that DR programs are most effectively applied from the late afternoon to early 

evening hours. Additionally, it is observed that the only day out of the batch that did not feature 

all air conditioners running simultaneously was the only day in which the ambient temperature 

never exceeded 100°F (Figure 18); this is why DR events are typically planned in advance when 

the ambient temperature is projected to exceed a given threshold. The measures are simply 

otherwise unnecessary for the strictest implementations of DR that only aim to reduce 

maximum power draws. 

Lastly, the plot for July 22nd (Figure 19) is a telling example of the sample’s air conditioners 

inadvertently synchronizing their operation, collectively resulting in an extremely variable load 

from the utility’s point of view. From about 4:00 PM to 8:00 PM the percentage of ACs that are 

on varies cyclically between 20% to 80% (once hitting 100%). Figure 20 exhibits a lesser degree 

of the same behavior over the same daily time period, but a baseline of around half of the ACs 

remain on for the duration, resulting in far less variable electrical demand. Though it will be 

impossible to test this conjecture given the data available at this time, the author hypothesizes 

that the uniformity of the homes, given that they were built within weeks of each other by the 

same contractors in the same housing development, contributes in some way to this 

synchronization. A collection of less homogenous homes, with significantly different 

architectural aspects, mechanical equipment, and thermal capacities, may inherently exhibit a 

tendency toward more regular power demands. 

Though there is evidence in all of the plots above, the excessively variable load of July 22nd 

illustrates exactly how a thermal model may be used to reduce peak demand by shifting the 

electrical usage of several air conditioners either forward or backward in time by manipulating 

thermostat setpoints as part of a MPC scheme. Right at about 5:30 PM, it can be seen that all 6 
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air conditioners are running simultaneously before they all shut off at nearly the same time. This 

trend continues, though not quite to the same degree, for the next hour and a half. If, for the 

several minutes leading up to 5:30 PM, each home’s thermal model was able to accurately 

predict its air conditioner’s cut-in time, UNLV’s central controller could quickly derive a plan for 

offsetting the operation of several air conditioners by increasing their thermostats’ setpoints 

and delaying the next air conditioner ON event. 
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Chapter 5 – Thermal Model Development 

Since the Villa Trieste experiment was not designed specifically for this particular thrust of 

research, certain aspects of the model development differ slightly from the methods generally 

followed in the published literature. For example, the Phase I data recording methods included 

no provisions for ensuring a complete minute-by-minute record of the homes’ temperature and 

power consumption be stored in a database; without a local cache on the recording devices, any 

data that were unsuccessfully transmitted immediately following a minute-long recording 

period was lost. The incompleteness of this data, as well as the incompleteness of ambient 

temperature records, complicates the model development process; an alternative source of 

weather data was required. 

Another major difference between the process described herein and the majority of the 

published literature is that these models have no controlling component–the individual house 

models can only be validated against already-existing data, and in their current form cannot be 

used as a MPC; the impact of the model-driven control strategy will not be able to be quantified 

at this time. 

Other than the differences described above, much of the model development process was 

comparable to the methods followed by previous researchers. The general process is as follows: 

1. Validation and pre-processing of the data 

2. Selection of a model framework with which to work within from the options listed 

during a discussion of the differing modeling approaches (Chapter 1 – Thermal Response 

Models and Controllers) 

3. Model creation 

4. Evaluation of the model’s relative accuracy 
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Borrowing terminology from control theory, this process of building analysis through model 

creation is known as ‘system identification’. Considering the application of this research, ‘house 

identification’ is a much more suitable term, as others throughout the literature have 

mentioned [52]. 

5.1– Input Data Validation and Pre-Processing 

Before undertaking the selection of the model, it is useful to understand exactly what data are 

available, their basis, and where they come from. 

5.1.1 – Home Sensor Data 

The initial model utilizes a dataset that was created from measurements from the homes of 

Phase I of the experiment (3.1– Data Collection Hardware, Phase I). This dataset was placed into 

an online structured query language (SQL) database located on the campus of UNLV. A SQL 

database provides several computational advantages, including the ability to store/access/and 

write specific pieces of information to a non-volatile location. In addition, SQL databases are 

often used in web applications, so although the processes and methods described herein are 

prototyped and written in MATLAB, they could be relatively easily ported to a web-based 

language for online use. 

An excerpt of this data as it is stored within the database, which has been placed in table 

‘temperature’, has been included in Table 7. Temperatures are measured as dry bulb 

temperatures and are stored in degrees Fahrenheit (°F), while humidity values are relative 

humidity (RH) and expressed as percentages. Not every home was outfitted with a humidity 

sensor. 

TABLE 7 – INTERIOR TEMPERATURE SQL FORMAT EXAMPLE 

Row Name id datetime tempSensor temp hum 
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SQL Class int(11) datetime text float float 

 32 2011-02-02 13:58:03 TEMP17 76.32 0 

 31 2011-02-02 13:57:44 TEMP5 69.24 0 

 30 2011-02-02 13:57:35 TEMP14 73.4 0 

 

With each of the 14 devices (one per story for each of the seven participating homes) configured 

to a sample at a rate of once per minute over the nearly 20-month test period, the size of the 

combined data totals almost 450 megabytes (MB) and nearly 11.5 million rows within the 

database. 

Unfortunately, an examination of this recorded data shows some inconsistencies. Certain sets of 

data exhibit signs of stepwise measurements for periods of time that could be the result of 

damaged sensors or misconfiguration. Examples of untrusted, and therefore unused, 

temperature measurements taken over a random two-day summer period are shown in Figure 

21. A sampling of trusted measurements taken over the same time period is shown in Figure 22 

for comparison. A summary of the trusted and disregarded dataloggers is documented in Table 

8. 

One of the advantages provided to this research over the existing literature is that the total 

number of independent thermodynamic variables can be reduced by one, thanks to the 

environmental conditions; with almost no relative humidity and extremely low variability in the 

humidity that is present, the impact of latent heat can be ignored. Only sensible heat is 

considered. 
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TABLE 8 – SUMMARY OF TRUSTED AND DISREGARDED DATALOGGERS 

Trusted Sensors 

 

Disregarded Sensors 

Home First floor Second Floor 

 

Home First floor Second Floor 

1 - TEMP6 

 

1 TEMP5 - 

2 TEMP7 TEMP8 

 

2 - - 

3 - TEMP10 

 

3 TEMP9 - 

4 - TEMP12 

 

4 TEMP11 - 

5 TEMP13 TEMP14 

 

5 - - 

6 TEMP15 TEMP16 

 

6 - - 

7 TEMP17 TEMP18 

 

7 - - 

 

5.1.2 – Ambient Environmental Data 

Since the thermal model is also dependent on ambient conditions, a weather dataset was added 

to the same database. A temporary weather station was installed at Villa Trieste even prior to 

Phase I of the experiment, but its data were found to be unusable. An analysis of its recorded 

information shows that large chunks of data are missing from periods of time that coincide with 

the first phase experiment (Figure 23). However, extremely localized weather data were not 

necessarily critical for the purposes of this research. Ambient conditions, especially solar 

insolation, do not vary substantially over relatively small distances of several miles. Multiple 

researchers have used weather data that have been collected away from the immediate vicinity 

of the building they were analyzing [31][44][53]– in some cases, up to 18 miles away [54] – with 

no reported ill effects. In addition, for the peak shifting controls investigated within this paper to 

be adopted on a utility-wide scale, it would be impractical to install multiple weather stations at 

every housing development. A central, or generalized, weather station must be utilized. 
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FIGURE 23 – DAILY SAMPLES RECORDED BY VILLA TRIESTE WEATHER STATION 

Fortunately, a weather station maintained by the Center for Energy Research (CER) personnel, 

and administered by the Measurement and Instrumentation Data Center (MIDC) of the National 

Renewable Energy Laboratory (NREL), is located on the campus of UNLV, a little over 11 miles 

east of Villa Trieste. It extensively records historical ambient conditions on a per-minute basis 

dating from the present back to March 16, 2006, and makes this information publically 

accessible through an assisted database querying interface4. Three different solar 

measurements were extracted from this weather station’s historical data (global horizontal 

irradiance [GHI], direct normal irradiance [DNI], and a calculated diffuse horizontal irradiance 

[DHI]), in addition to the dry bulb temperature from February 2011 through the end of 

September 2012. This raw dataset was then processed for formatting and added to a ‘weather’ 

table located within the same database as the interior temperature data (Table 9). 

                                                            
4 https://www.nrel.gov/midc/apps/go2url.pl?site=UNLV 
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TABLE 9 – AMBIENT CONDITIONS SQL FORMAT EXAMPLE 

Row 

Name 

date globalHoriz directNormal diffuseHoriz ambientTemp 

Type datetime decimal(10,6) decimal(10,6) decimal(9,6) decimal(7,4) 

 2011-02-01 06:55:00 10.724 4.15061 10.5769 48.722 

 2011-02-01 06:56:00 11.4441 32.2975 10.2012 48.74 

 2011-02-01 06:57:00 13.0352 148.092 6.8829 48.776 

 

Each of the solar measurements is specified in terms watts per square meter (W/m2), and 

temperature is expressed as degrees Fahrenheit (°F). The pyranometer responsible for the solar 

measurements is a Kipp & Zonen CM3 and is accurate within 25 W/m2 when properly calibrated. 

The resistance temperature detector (RTD) is a weatherproof Young 41342 Platinum RTD that is 

accurate within ±0.3°C at 0°C. All sensors are assumed to be accurate. 

5.2 – Model Output Requirements 

Although this research does not explicitly include the development of the controls portion of a 

model predictive controller, it is the intention of the author that this predictive model be 

extended to someday control the thermostats that were described in Chapter 3. As Chapter 4 

illustrated, this thermal predictive model could ultimately be used to decrease the collective 

variability of air conditioner power demands over a set of homes. Knowledge of exactly how 

long particular houses would take to heat up or cool down to a given threshold, or setpoint, 

would allow researchers to derive a cost function for optimizing both thermal comfort and 

electrical stability.  

Considering the input data available, the model’s output should not simply be a prediction of 

how long a particular heating or cooling cycle will last, but rather the rate at which the house’s 

interior temperature changes. By deriving a rate, rather than a strict duration, the length of a 
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given heating or cooling cycle can be calculated based on different future temperatures 

(optimized setpoints). 

Given the scope of this research, and the historical datasets that are available, the creation of an 

online model would not be feasible. An offline model that was updated nightly would offer the 

benefit of a semi-dynamic training dataset, without the computational encumbrance of an 

online model’s real-time optimization. If UNLV’s server was able to train the model at night and 

simply use the input-output model during the day, it should computationally be able to control a 

relatively large collection of thermostats. 

5.3 – Model Selection 

Quite a few different methods for creating thermal models were discussed within Chapter 2. 

Almost all of these different modeling approaches have been shown to be successful under 

certain circumstances. However, quite a few of these thermal models were conceived for use on 

large commercial facilities, and even more were developed to investigate prolonged energy use 

over an extended period of time rather than to predict transient thermal responses. Many of 

these models would not be practical, in a broad sense, for distributing peak shifting over 

multiple residential buildings. Thus, the criteria for model selection are listed below. 

1. The thermal model must be self-adaptive and make use of the empirical dataset that is 

available. 

2. It should require extremely limited human interaction, whether that be up-front data 

entry or maintenance. 

3. It must be capable of making short-range transient predictions rather than longer trend 

energy consumption estimations. 
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A summary of the potential candidates for model framework selection are listed in Table 10. 

Forward models are of no use in this application, nor are white-box data-driven models. Several 

black-box techniques could potentially be useful, but ARMAX and OE/Box-Jenkins methods are 

not conducive to the type of analysis that needs to be done. The two most viable methods for 

investigation are regression and neural networks. 

TABLE 10 – MODEL SELECTION DECISION 

  
Forward Data-Driven 

  
| White-Box Black-Box Grey-Box 

  
| | Regression ARMAX OE/Box-Jenkins NN | 

C
ri

te
ri

a 1   
 

X X X X X 

2   
 

X X X X   

3     X     X   

 

5.4 – House Identification 

Regardless of the specifics of the black-box, whether it be a regression method or a neural 

network model, the inputs and outputs of the system that are available to be used do not vary. 

In this sense, the black box analogy is very fitting (Figure 24). Mathematically, this black-box can 

be conceptualized as a simple function Eqn. (5.1). 
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Input 
 

Output 

Date/Time   
 

Device   
 

Current Indoor Temperature   
Time of Occurrence of 

Future Indoor Temperature Future Indoor Temperature Black-Box 

Global Horizontal Radiation   

Direct Normal Radiation   
 

Diffuse Horizontal Radiation   
 

Current Ambient Temperature   
 

Air Conditioner State   

FIGURE 24 – BLACK BOX ANALOGY INPUT/OUTPUT 

           [  ( )   ( 
 )     ( )     ( )     ( )   ( )  ] (5.1) 

Where:   : Future time when the interior temperature reaches a given threshold (HH:MM) 

  : Current time (HH:MM) 

   : Interior temperature (°F) 

     : Global Horizontal Irradiance during   (W/m2) 

    :  Direct Normal Irradiance during   (W/m2) 

     : Horizontal Irradiance during   (W/m2) 

   : Ambient dry bulb temperature (°F) 

  : Air Conditioner State (ON or OFF) 

5.4.1 – Air Conditioner State Estimation 

There is one input from the black-box schematic illustrated above that is significantly different 

from the others – the on/off state of the air conditioning system. Rather than being a numerical 
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measurement, it is a discrete state that can be determined from the air conditioners’ power 

consumption measurements, as introduced in Chapter 4. Two different methods are presented 

for converting granular minute-by-minute data to an event-based record of the air conditioners’ 

status. 

5.4.1.1 – As Recorded by Current Transducers 

Chapter 4 introduced the methods by which the recorded WattNode pulses could be converted 

to either power or energy units. However, the examination made during said chapter was 

focused on multiple homes’ simultaneous electric consumption over the course of a day rather 

than ascertaining an individual home’s HVAC state to be used as an input for the thermal model. 

When examining the power data at the daily scale, the minute-by-minute resolution is 

adequate. However, when attempting to predict transience, a more accurate record of exactly 

when the AC state transitions occur is desired. 

Figure 14 visually presented a generalized AC cycle, while Table 11 shows an actual excerpt of 

data from the script included in Appendix B (data is selectively queried from the database). Both 

of these inclusions indicate the steady-state nature of the air conditioner when it is in operation. 

TABLE 11 – AN EXCERPT FROM THE RECORDED POWER DATA 

Device Timestamp Pulses 

'PWR2' '2012-07-02 12:12:46.0' 0 

'PWR2' '2012-07-02 12:13:46.0' 9 

'PWR2' '2012-07-02 12:14:46.0' 13 

'PWR2' '2012-07-02 12:15:46.0' 13 

'PWR2' '2012-07-02 12:16:46.0' 14 

'PWR2' '2012-07-02 12:17:46.0' 13 

'PWR2' '2012-07-02 12:18:46.0' 13 

'PWR2' '2012-07-02 12:19:46.0' 13 

'PWR2' '2012-07-02 12:20:46.0' 6 

'PWR2' '2012-07-02 12:21:46.0' 0 
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This tendency is consistent with any constant-speed compressor-driven air conditioner [55], 

though the power required during a given cycle is also dependent on the temperature of the 

refrigerant that enters the compressor, which is in turn dependent on the ambient temperature. 

This fact can be observed by an examination of Figures 25-27, which plot ambient temperature 

versus the average power draw per AC cycle. Each of these plots confirms that air conditioner 

efficiency is dependent on the ambient temperature. As the ambient temperature increases, so 

does the power–in a nearly linear fashion. 

 

FIGURE 25 – AMBIENT TEMP. VS. AC POWER CONSUMPTION FOR PWR2 ON 7/2/2012 
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FIGURE 26 – AMBIENT TEMP. VS. AC POWER CONSUMPTION FOR PWR3 ON 7/17/2012 

 

 

FIGURE 27 – AMBIENT TEMP. VS. AC POWER CONSUMPTION FOR PWR7 ON 8/8/2012 

Although operating in steady-state, this difference can be attributed to the sample rate of the 

recordings not being synchronized with the pulse rate of the WattNode. To identify the exact 

power demand during this AC-on cycle, the total number of pulses can be averaged over the 

sample period. In this case, that is 79 pulses over a period of 6 minutes, resulting in a pulse 

every 4.557 seconds. If this same rate is applied to the shoulder periods, it can be calculated 

that the AC turns on approximately 19 seconds into the first ‘shoulder’ period, and it turns off 
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around 27 seconds into the second ‘shoulder’ period. This method is further described by 

Eqns.(5.2) through (5.4) below. 

          (  )     (5.2) 

           (  )     (5.3) 

   
  (   )

∑  (  )
   
   

 (5.4) 

Where:   : The time sample corresponding to the ‘shoulder’ period when the AC turns ON 

   : The time sample corresponding to next ‘shoulder’ period when the AC turns OFF 

  ( ): Number of a pulses as a function of a given time sample 

    Timestamp 

   : Amount of time between power pulses (seconds) 

 
The above equations were utilized by the program included in Appendix E. This program was 

written to produce a plot, for each temperature sensor on a given date, that would illustrate 

exactly when the corresponding air conditioner was turning on and off, and how the AC’s 

operation affected the home’s measured temperature. A selection of these plots has been 

included in Figures 28-29. 

Figure 28 shows a couple examples in which the AC-event-transition timestamps derived from 

WattNode pulses corresponded well with the homes’ transient temperature changes. On the 

other hand, Figure 29 shows several examples of similarly derived timestamps not particularly 

matching up well with the temperature swings. Of these poor examples, both plots include 

temperature sensors from within the same house. The leftmost plot, which includes TEMP7’s 

measurements, shows the AC-on transitions correlating with the temperature profile well 

enough, but also appears to consistently show the measured temperature continuing to 
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decrease for several minutes after the AC-off transition. The rightmost plot, which shows 

TEMP8, illustrates the exact opposite behavior–AC-off transitions at the appropriate times, and 

AC-on transitions that occur after the temperature has already begun to decrease. 

Of note, TEMP7 is the downstairs temperature sensor, and the TEMP8 sensor is located upstairs. 

The majority of these offsets can be used to infer different mechanical and physical 

characteristics of the home. The temperature sensor located on the first floor is likely very close 

to an air register–the temperature of TEMP7 trends downward very quickly after the air 

conditioner is turned on. After the AC is turned off, the cooled air that is already within the 

home’s ductwork continues to influence the temperature of the room for a short period of time. 

This amount of time is longer during the night, and shorter during the day–indicating the impact 

of ambient temperature and solar irradiance. The second floor is comparable in this regard; the 

temperature decreases momentarily after the AC is turned off. The temperature of this zone 

consistently begins to trend upward again more quickly than the first floor, suggesting that the 

second floor is either more susceptible to the influences of the ambient temperature than the 

first floor, or its general thermal mass is smaller. 

The only troubling offset can be seen in the early morning time period of TEMP8. The plot 

suggests that the temperature of the second floor decreases up to a full degree before the AC 

switches on. Though not included here, the rest of the generated plots show the same general 

behavior.  An examination of the data shows that, in several instances, the fan control unit turns 

on several minutes before the AC, but not consistently for all hours of the early morning. This is 

the only temperature sensor that shows this level of disconnect between the AC turning on and 

the temperature of the zone decreasing; further investigations are necessary. 
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Further processing of the data could result in estimates for the air conditioners’ energy 

consumption profiles. Similarly, trendlines could be generated for each individual air 

conditioner’s efficiency and its sensitivity to the ambient temperature. Though not a primary 

objective of this paper, the author hypothesizes that this sensitivity to the ambient temperature 

could be monitored over the lifetime of the air conditioner and potentially be used as a fault 

detection method for identifying when the unit’s performance begins to trend negatively–a 

possible sign of low refrigerant levels or some sort of mechanical issue. 

5.4.1.2 – As Inferred by Temperature Measurements 

The method outlined above, in 5.4.1.1, for determining AC status based on current transducer 

measurements is the method generally followed by the relevant literature. Although accurate, 

this method is costly in several senses. The CTs, as well as their supporting hardware, are 

affordable individually, but can be quite expensive when scaled up for housing-development-

sized installations. Additionally, these line-voltage devices require the services of a 

knowledgeable electrician when they are installed, and may also require an additional enclosure 

be installed near a home’s utility box. In an attempt to potentially mitigate these costs for future 

research, a method was investigated for inferring the cyclical operation of a home’s air 

conditioner based on just temperature sensor readings, since temperature sensors are 

extremely inexpensive. 

Referring to just the first day of the range that was examined during 5.1.1 – Home Sensor Data 

(July 21, 2011), Figure 30 shows the second floor measured temperature response for house 7. 

This sample shows some very clear air-conditioning behavior, with the following observations 

dictating the formulation of the AC state estimation: 
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1. From around 10:00 PM to 6:00 AM, the thermostat is set to ‘night’ mode where the 

temperature stays between 73°F and 79°F. From an understanding of how thermostats 

behave (3.4 – Thermostats), the ‘night’ setting is likely 77°F. 

2. From 7:00 AM to 2:30 PM, the response suggests a setback temperature is in effect. 

3. The extended period of time required for the house to heat up during the setback 

temperature suggests that the home may be equipped with a two-stage air conditioning 

system. 

4. From 2:30 PM to 8:00 PM the thermostat is likely set to ‘evening’ mode, where the air 

conditioner maintains a temperature between 79°F and 84°F, implying a thermostat 

setting of 82°F. 

5. From approximately 8:00 PM to 10:00 PM the slope of the downward trending 

temperature seems to shallow significantly, perhaps once again, suggesting two-stage 

air-conditioning performance. 

6. The temperature response resembles a sawtooth signal. Indeed, there appears to be 

very little thermal inertia within the house. This is consistent with the remarks made 

about differences between large commercial facilities and residential homes. As soon as 

the constantly downward sloping temperature reaches a particular point, the house 

appears to tend to warm back up immediately. The same is true for the upward 

temperature trends; the air conditioner appears to have an immediate impact on the 

temperature of the room in which the sensor is located. 

Each pronounced downward trend indicates the operation of the air conditioner. From the 

limits suggested by points 1 and 4, noise and transient downward trends, as seen around 11:30 

AM and 2:00 PM can be distinguished from active cooling by filtering out downward    trends 

that are less than a given threshold. This condition is sufficient for identifying when the air 
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conditioner is operating, but it doesn’t provide enough context for determining exactly when 

the transition from on to off, and vice versa, occurs. Point 6, from above, implies that the 

identification of the signal’s local maxima and minima would indicate the beginning and end 

times of the air conditioner’s operation. 

 

FIGURE 30 – TYPICAL MEASURED DAY TEMPERATURE FOR DEVICE TEMP18 

The script that was written to produce plots of the internal temperatures versus AC cycling (as 

determined by the current transducers) was modified and expanded to also estimate the 

approximate operation of the air conditioner (Appendix C) through a sliding-window approach. 

For each time sample  , a window of length   corresponding to    (   ) is evaluated in several 

ways. This continues for        . By method of trial and error, a window size of 15 minutes 

provided an excellent level of accuracy without being too computationally intensive. 

The algorithm begins by assuming the status of the AC is off. Whenever the AC is off, the 

algorithm’s objective is to identify when it turns back on. Similarly, the priority of the algorithm 

when the status is on is to identify when it transitions to being back off. The behavior of the air 

conditioner is defined by Eqn.(5.5). 
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  {
       
        

 (5.5) 

 
Whenever the AC is off, the script looks to identify Eqn.(5.6). That is, when a temperature drop 

across the window exceeds the threshold         (Figure 31), it registers the AC as being on, 

and scans backward through the window looking for a local maximum that indicates exactly 

when this transition occurs. It then immediately begins looking for the AC-off transition. This is 

accomplished by examining each window for a local minimum. If the local minimum exists at  , 

the algorithm assumes that       and moves on to the next window. This continues until 

the minimum is identified and recorded, and the process starts over again, attempting to 

identify the AC-on transition. Several more considerations are programmed in for instances 

where “plateaus” exist and transience impacts the calculations, but the algorithm ultimately 

makes a record of all the AC-on/AC-off transitions and when they occur within the given time 

range. These generalized temperature trends can be plotted ,along with the measured interior 

temperature for visual inspection (Figure 32). 

 ( )   (  [   ])                (5.6) 
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FIGURE 31 – AIR CONDITION STATUS DETERMINATION 

 

 

FIGURE 32 – GENERALIZED TEMPERATURE TRENDS 

The justification for exploring this alternate determination of the AC state is based on some of 

the characteristics of residential buildings that were discussed in Chapter 1, most notably the 

relatively small amount of thermal mass these buildings possess, the tendency for residential AC 

units to be oversized, and square footages small enough to ensure (for all intents and purposes) 

that the temperature sensor is located in proximity to a cold-air register. These factors should 

contribute to the measured temperature within a home shifting extremely quickly after an AC 
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event transition occurs, as demonstrated by Figures 28-29. To assess the validity of this 

assumption, a program was written to compile the necessary data and produce a series of plots 

overlaying air conditioner CT measurements and interior temperature readings; this program 

was later expanded, but the plot-producing functionality was not removed. It can be found in 

Appendix C. 

A pair of these plots, generated from first-floor temperature measurements, can be seen in 

Figure 33. The leftmost sample indicates that TEMP8 is extremely reactive to the AC’s 

operational status – pronounced downward temperature trends correspond extremely well to 

the points in time in which the WattNode measured the air conditioner as being on. The 

rightmost plot displays similar same behavior, though not every AC cycle corresponds to a 

pronounced downward trend in the measured temperature. Regarding the second-floor 

correlation between temperature and the AC operational status, Figure 34 shows two 

representative plots. They also demonstrate the immediate effect an air conditioner has on the 

temperature of a room. The author hypothesizes that the second-floor data may even be, in 

general, a better indicator of the air conditioner’s operation than the first-floor data. The second 

floor would likely be more prone to heating up quickly due to its proximity to the roof and its 

associated solar gains, thereby making the downward temperature trends more distinguishable 

from transience than the first-floor. In addition, fewer internals gains from appliances and 

residents would result in a second-floor behaving more like a steady-state system than a first-

floor, which would be easier to analyze. Tables 12 and 13 appear to back up this assertion–the 

number of transitions derived from the second-floor temperatures is much closer to the number 

derived from the CTs. 
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TABLE 12 – AC EVENT TRANSITION COUNTS FOR 07/22/2012 FROM DIFFERENT SOURCES 

Determined 
by CTs 

Determined by First-
Floor Temperatures 

Determined by Second-
Floor Temperatures 

ID Count ID Count Error ID Count Error 

PWR2 119 TEMP15 99 20 TEMP16 97 22 

PWR3 99 TEMP13 64 35 TEMP14 92 7 

PWR5 49 TEMP17 48 1 TEMP18 48 1 

PWR6 101 TEMP9 0 101 TEMP10 34 67 

PWR7 131 TEMP7 12 119 TEMP8 132 -1 

PWR8 101 TEMP11 33 68 TEMP12 99 2 

 
TABLE 13 – AC EVENT TRANSITION COUNTS FOR 07/02/2012 FROM DIFFERENT SOURCES 

Determined 
by CTs 

Determined by First-
Floor Temperatures 

Determined by Second-
Floor Temperatures 

ID Count ID Count Error ID Count Error 

PWR2 99 TEMP15 81 18 TEMP16 74 25 

PWR3 35 TEMP13 28 7 TEMP14 38 -3 

PWR5 45 TEMP17 45 0 TEMP18 41 4 

PWR6 83 TEMP9 2 81 TEMP10 48 35 

PWR7 125 TEMP7 4 121 TEMP8 125 0 

PWR8 103 TEMP11 30 73 TEMP12 103 0 

 
A numerical validation of this temperature-derived AC state scheme would consist of comparing 

its timestamps of the AC event transitions against the comparable timestamps that were 

generated from the current transducers’ data (5.4.1.1). Using the current transducers’ data as a 

baseline, the amount of the time temperature-derived timestamps lag behind, or in front of, the 

baseline timestamps could be calculated to find out exactly how accurate this method is. A 

cursory glance at this type of analysis suggests that temperature sensors could very viably, and 

cost-effectively replace current transducers in a large-scale experimental environment for the 

purposes of identifying AC event transitions within the context of a residential thermal model. 

5.4.2 – AC Event Database Storage 

Both methods for reasonably approximating AC event transitions ultimately funnel into a section 

of code that is intended to ‘compress’ the minute-by minute data down to a record that is akin 
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to an event-based arrangement. Instead of including records for every minute of a given day, 

the `signatures` database contains detailed specifics for only the AC on/off cycles. The 

preliminary version of this piece of code computationally intensively looped through the data, 

and for every AC cycle, it calculated the mean dry bulb temperature and mean global horizontal 

solar radiation over the event duration. These averaged values were originally intended to be 

used as inputs to the black-box model, but it was observed through an examination of the 

code’s results that the ambient conditions a house was exposed to over an AC cycle did not vary 

substantially from the instantaneous measurements at the event’s start (with the exception of 

lengthy setback-cycles). Figure 35 demonstrates this with horizontal lines representing the 

averaged ambient conditions for each AC on/off event duration throughout a day. In addition, 

for the model to adhere to the premise of Eqn. (5.1), ambient conditions would only be available 

to the model at time  –the model would not have access to future measurements to determine 

mean values over the length of the upcoming event. 

 

FIGURE 35 – MEAN AMBIENT CONDITIONS DURING TEMPERATURE TREND INTERVALS 
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In lieu of the results presented later in 5.4.4.2 that show no real benefit in the use of averaged 

ambient values, the final version of the ‘compression’ script only considers cycle characteristics 

as they are observed at time  . This significantly improves the speed of the ‘compression’, as the 

method is able to take advantage of the MATLAB timeseries class. This timeseries class is 

responsible for synchronizing interior temperature, ambient temperature, and global horizontal 

radiation measurements to the time domain of the previously calculated event transitions table. 

It accomplishes this by the linear interpolation method introduced visually by Figure 14. 

The script then performs several calculations to classify and quantify temperature trends in the 

form of, what essentially amounts to, the slope of the change in interior temperature over time. 

The duration, in seconds, of each AC event is tabulated, then divided by the change in 

temperature over the given event duration5, which is also recorded. Lastly, the air conditioner’s 

status is added for each time period and uploaded to the database. An excerpt record from this 

database can be found in Table 14 (records split for formatting), followed by a description for 

each field in Table 15. 

  

                                                            
5 The inverse slope of the vector is recorded since the duration (in seconds) of the vector is orders of 
magnitude higher than the change in temperature (in degrees), and floating point numbers small enough 
to accommodate the true value of the slope are inefficient to store within any database scheme. 



76 
 

TABLE 14 – AN EXCERPT FROM THE DATABASE CONTAINING ‘COMPRESSED’ EVENT-BASED DATA 

Row 
Name 

id tempSensor periodStart periodEnd duration 

Type int(11) char(6) datetime datetime smallint
(6)   4015 TEMP10 2012-07-27 03:51:32 2012-07-27 04:22:53 1881 

  4016 TEMP10 2012-07-27 04:22:53 2012-07-27 04:25:06 133 

  4017 TEMP10 2012-07-27 04:25:06 2012-07-27 05:00:20 2114 

  4018 TEMP10 2012-07-27 05:00:20 2012-07-27 05:02:25 125 

  4019 TEMP10 2012-07-27 05:02:25 2012-07-27 06:08:26 3961 

  4020 TEMP10 2012-07-27 06:08:26 2012-07-27 06:10:24 118 
 
Row 
Nam
e 

startTempIn endTempIn invSlope startRad startTempAmb mode 

Type decimal(5,2) decimal(5,2) decimal(9,3
) 

decimal(7,3
) 

decimal(6,3) tinyint(1
)   85.2 86.09 2115.067 0 83.575 0 

  86.09 85.16 -142.043 0 83.362 1 

  85.16 86.07 2320.527 0 83.253 0 

  86.07 85.31 -166.113 18.127 82.003 1 

  85.31 86.31 3964.965 19.585 81.945 0 

  86.31 85.6 -165.498 237.203 83.32 1 
 

TABLE 15 – FIELD DESCRIPTIONS FOR THE ‘COMPRESSED’ EVENT-BASED DATABASE 

id Database-assigned unique identification 

tempSensor Temperature sensor identification 

periodStart Timestamp of the AC event's start (yyyy-mm-dd HH:MM:SS) 

periodEnd Timestamp of the AC event's end (yyyy-mm-dd HH:MM:SS) 

duration Duration of the AC event (seconds) 

startTempIn Interior temperature at the AC event's start (°F) 

endTempIn Interior temperature at the AC event's end (°F) 

invSlope 
Duration/change in interior temperature over AC event 
duration 

startRad Global horizontal radiation at the AC event's start (W/m2) 

startTempAmb Ambient dry bulb temperature at the AC event's start (°F) 

mode AC ON/OFF status 
 

5.4.3 – Linear Regression 

The formulation of this black-box model follows the process investigated by Rabl et al. [18][56], 

and later Jang [52]. It attempts to establish a governing differential equation based on a physical 

model, discretize the equation, then parameterize and weigh the inputs to best fit the measured 

output data. 
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The model is based on a simplified understanding of the three basic heat transfer modes 

experienced by any building – conduction Eqn.(5.7), infiltration/ventilation (convection) 

Eqn.(5.8), and radiation Eqn.(5.9). Conduction, in this case, encompasses the heat loss that 

occurs through walls, windows, doors, floors, etc. It can be considered to be a function of the 

surface area of the building,  , the building’s steady-state overall loss coefficient,  , as well as 

the temperatures inside,    , and outside,     . Infiltration and ventilation represent a 

significant contributor to building heat loss, but they are quite difficult values to accurately 

quantify. Traditionally, they are considered to be primarily influenced by the difference between 

    and      [57]. The total amount of heat loss then also becomes a function of the specific 

heat capacity of air,   , the air’s density,  , and the volume of air that is displaced between the 

interior and the ambient,   . The amount of radiant heat energy that is added to the house is 

understood to be just a function of global horizontal radiation,     . Direct normal and diffuse 

horizontal radiation are not treated as independent parameters. An assumption is made that 

there is no lag between the time radiation falls on the house, and the time the temperature 

within the house adjusts accordingly. 

              (        ) (5.7) 

                               (        ) (5.8) 

            (    ) (5.9) 

 
Additionally, two more heat sources are considered – internal gains Eqn.(5.10), and heat added 

by mechanical systems Eqn.(5.11), which in this case is simply the air conditioner. Internal gains 

can be affected by numerous influences including the number of people in the house, the 
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appliances running at a given time, lighting, and more, and are therefore extremely impractical 

to attempt to quantify in a dynamic fashion; internal gains are assumed to be constant 

throughout the day. Likewise, the contributions made by air conditioners are also assumed to be 

constant, when operating. 

          
  

   (5.10) 

            
  

   (5.11) 

 
By further assuming that conduction, infiltration, and ventilation are linear functions of the 

difference between     and      , the rest of the heat gains and losses described above can be 

used to form a black-box model that predicts how long it takes a house to either heat up, or cool 

down, to a known threshold Eqn.(5.12). 

   (  ( 
 )    ( ))  ( [  ( )    ( )]       ( )      ) (5.12) 

Where:   : Amount of time it will take for the house to reach the next    /     transition (s) 

   ( 
 ): A known future temperature, as determined by the thermostat setting (°F) 

  : Coefficient weighting the impact of the difference between     and      

  : Coefficient weighting the impact of radiation 

  : Coefficient weighting the impact of mechanical HVAC systems (air conditioning) 

  : Regression error 

 
With the black-box model now established, and historical input data available for the variables 

included in Eqn.(5.12), a script was written (Appendix D) to solve the equation’s coefficients 

through the ordinary least squares method (OLS) for a given house over a specified period of 
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time. This curve-fitting process constitutes the model’s training. This approach is repeated for 

each home, so that each home is associated with its own unique coefficients for the time period 

considered. Differences between these coefficients from home to home somewhat quantify 

how the homes respond differently to the forcing inputs; these numbers also represent the 

conclusion of the system identification, or house identification, process that was introduced at 

the beginning of the chapter. 

In terms of the model training process itself, Eqn.(5.12) is regressed in a two-step process. The 

first step consists of carefully constructing a subset of data from the original dataset for the time 

period considered. The purpose of this first step is to eliminate as many independent variables 

as possible from Eqn.(5.12), and establish the impact of the difference in temperature between 

the interior and the ambient,  , when as many external influences can be ignored. A good 

subset of data for this purpose includes night-time hours when there is no cooling supplied by 

the AC system, or when      and   both go to 0. Equation (5.12) can then be reduced to 

Eqn.(5.13), and the inverse slope of a night-time AC-off event suddenly becomes a linear 

function of the difference in temperatures between the interior and ambient. 

 [  ( )    ( )]     
  

  ( 
 )    ( )

 (5.13) 

 
Some additional processing of this subset of training data eliminates records where the right 

side of Eqn.(5.13) evaluates to slope values that are drastically different than the rest of the 

dataset, allowing the OLS to more accurately represent the dataset’s true trend; any outliers 

outside of 1.5 standard deviations from normal are eliminated. This ‘corrected’ dataset is then 

linearly regressed, through the use of the OLS method, to Eqn.(5.13), and best-fit values for the 

coefficients   and   are determined. 
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The second step in the model training process begins by applying the coefficients that were 

determined for   and   during the first step to Eqn.(5.12), and rearranging the equation once 

again so that one side includes the unknown coefficients, and the other side can be evaluated, 

allowing another linear regression to occur. This is equation (5.14).  

     ( ̅)     (     )  
  

  ( 
 )    ( )

  [  ( ̅)    ( )] (5.14) 

 
Similarly to the first regression, the dataset is ‘corrected’ to remove rows of data that include 

statistically outlying slope values that are at least 1.5 standard deviations from normal. This 

statistical pruning is applied separately to the data subsets corresponding to time periods when 

the air conditioner is either on or off to improve the effectiveness of the method. The necessity 

for this step can be seen between the differences in Figures 36-37.  

 
FIGURE 36 – GENERALIZED TRAINING DATA WITH STATISTICAL OUTLIERS 
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FIGURE 37 – GENERALIZED TRAINING DATA WITH STATISTICAL OUTLIERS REMOVED 

Additionally, Figure 37 illustrates the distinct groupings of the AC-on and AC-off temperature 

trajectories. They are grouped on either side of zero (a zero slope in this case would be no 

measured temperature change occurring during an AC cycle, which would not be physically 

possible based on the control method used by thermostats as discussed in 3.4), as expected. 

These groupings also indicate that the rate at which this particular house cools down is fairly 

consistent regardless of the difference between    and    – the slope of the best-fit curve is 

relatively steep and the inverse slope does not vary much across the    range. This justifies the 

decision to treat             as a constant. Conversely, AC-off shows a much higher 

dependence on the temperature difference between the interior and ambient. This makes sense 

from a physical standpoint. 

At this point, the second regression is performed, and the coefficients   and   are determined. 

This finalizes the house identification for the time period considered. Adhering to the offline 

model ideal, once the coefficients’ values have been determined, they are added to the 

database. Later, another script will rely on these values when it attempts to utilize the model for 

making AC event duration predictions, as discussed in 5.4.4.2. 
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An important component to this linear regression method is the formulation of the dataset that 

is used to train the model. A larger dataset should theoretically result in a more accurate model, 

but at the cost of increased computational power. In an attempt to balance these 

considerations, varying lengths of training data were examined for their impact on the accuracy 

of the best-fit linear regression. Table 16 includes figures and corresponding statistical data for 

differing dataset durations. Each figure in this table is representative of the first step in the 

regression process, during the night when the AC is off. 

Increasing the number of days included within the training set appears to do very little with 

regards to increasing the accuracy of the OLS fit; the coefficient of determination decreases 

after just a few days of training data. For this reason, for the rest of this research, the dataset 

that will be responsible for training the model will be restricted to the three days prior to the 

day in which the model will ultimately be applied. As the amount of information within the 

training set increases, the F statistic continues to rise while its p value correspondingly falls. This 

confirms that there is certainly a general relationship between the temperature trajectory and 

the indoor-outdoor temperature difference during the night when the air conditioner is off. 
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TABLE 16 – RESULTS OF VARYING LENGTHS OF TRAINING SETS ON REGRESSION ACCURACY 

 

Days of Data: 1 
Observations: 23 
 
R2 statistic: 0.644 
F statistic: 37.92 
p value: 4.14e-06 

 

Days of Data: 2 
Observations : 33 
 
R2 statistic: 0.681 
F statistic: 66.13 
p value: 3.49e-09 

 

Days of Data: 4 
Observations: 57 
 
R2 statistic: 0.593 
F statistic: 80.1 
p value: 2.54e-12 

 

Days of Data: 7 
Observations: 91 
 
R2 statistic: 0.502 
F statistic: 89.6 
p value: 4.08e-15 
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5.4.4– Linear Regression Model Validation 

The performance of this linearly regressed model is assessed slightly differently than the 

validation of most models within the literature. In the majority of published papers, a building 

model is extended to provide the basis for a control strategy. The building’s mechanical systems 

are then manipulated per this control strategy, and the building’s outputs are measured and 

compared against building outputs that were generated from the baseline model-less control 

strategy. That method of validation is not yet available for this research, though it could 

potentially be pursued during Phase II of the Villa Trieste experiment, as discussed in 3.2. 

However, the model can still be evaluated for its predictive accuracy, thanks in large part to the 

nature of the model itself. An intermediary output of the model is an interior temperature 

trajectory, or slope, and the intention of this output is to be used in conjunction with a desired 

future temperature (what would normally be a thermostat setpoint) to ultimately determine an 

AC event duration. Since the dataset is historical, and ‘future’ temperatures of the next AC 

on/off transition,   ( 
 ), are known, the model can be validated by how closely it predicts the 

durations of these already-occurred AC events–Eqn. (5.12) is solved and compared against the 

measured results. In the MPC sense, the amount of time until the next AC on/transition,     , 

would be unknown, but   ( 
 ) would be understood to be either       or     . This is shown 

visually in Figure 38. 
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FIGURE 38 – VISUAL REPRESENTATION OF THE MODEL’S OUTPUT 

5.4.4.1 – Regression Coefficients 

The results of the OLS linear regression for July 21, 2011 are shown in Table 16 as they were 

stored in the database. The coefficients are relatively consistent for each set of sensor data. 

Magnitudes are comparable, as are signs, with the exception of TEMP16’s alpha value. It is 

positive, where every other sensor’s alpha coefficient is negative. An examination of the training 

set that was used to determine these coefficients for TEMP16 shows that the temperature 

trajectories were not truly representative of the home’s thermal response. This was an error 

rooted in the AC state estimation script (as inferred by temperature measurements, not as 

recorded by the current transducers), not necessarily the regression analysis. This particular 

error was not corrected, but the improved method introduced in the next section does utilize 

CT-based AC state calculations instead. 
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TABLE 17 – RESULTS OF REGRESSION FOR EACH SENSOR ON JULY 21, 2011 

device regressionDay samples alpha gamma beta delta lambda 

char(6) date int(5) float float float float float 

TEMP6 2011-07-21 527 -15.9117 563.384 0.147663 -584.067 8.025 

TEMP7 2011-07-21 325 -42.0777 1256.14 0.133543 -954.803 19.449 

TEMP8 2011-07-21 671 -18.4602 684.784 0.043119 -568.802 10.230 

TEMP13 2011-07-21 218 -41.8922 1045.93 0.087686 -867.774 5.084 

TEMP14 2011-07-21 866 -27.9218 790.027 0.102956 -744.915 8.118 

TEMP15 2011-07-21 147 -27.0789 1349.99 0.806008 -2229.1 45.591 

TEMP16 2011-07-21 157 9.11428 1384.72 0.45235 -1986.22 10.146 

TEMP17 2011-07-21 168 -39.2035 1014.37 0.490345 -954.568 11.13 

TEMP18 2011-07-21 153 -13.964 491.977 0.122909 -518.122 10.755 

 

5.4.4.2 – Trajectory Prediction 

As mentioned, the OLS regression relies on three day-long datasets, and the coefficients that are 

a result of this analysis are valid for just the day immediately following the training set. When 

these coefficients are used to evaluate Eqn.(5.12), the model is effectively ‘offline’ since the 

coefficients are applied, without being updated, until the next day. A demonstration of a single 

day’s predicted trajectories, and subsequent AC event durations, is shown in Figure 39. 

 

FIGURE 39 – LINEAR REGRESSION PREDICTED TRAJECTORIES 
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To determine the accuracy of a given trajectory, the predicted AC event duration,    , is 

compared to the actual state duration,    , and the difference is expressed as a percentage of 

   . Additionally, the predicted durations were also calculated by using averaged radiation and 

ambient temperature values,    ̅, as described in 5.4.2. The results of these evaluations can be 

found in Table 18. As can be seen, there are no substantial improvements gained by using 

averaged values, thus justifying the use of instantaneous      and    values at time   rather 

than averaged values from   to   . 

There are two very notable data samples within this table. The model does a very poor job of 

predicting the trajectories that begin at 05:58:41 and again at 20:18:47. These appear to be 

intervals of time in which thermostat setpoints are changing. 

Within Table 18, the critical time period from early afternoon to late evening has been 

highlighted as the typical demand response period. The amount of error shown during this time 

ranges from an underestimation of 43% of the actual state duration all the way up to an 

overestimation of 81%. The model performs much more reliably during the late evening and 

early morning hours; however this does little to promote the utility of this model, as predictions 

during these times do not assist in minimizing critical peak demands.  

Table 18 also exhibits some signs of bias. For this particular sensor on the day examined, the 

model seems to be more accurate when the air conditioner is off and the algorithm is 

attempting to predict when it turns back on, as seen in Figure 40. There could be several reasons 

for this occurrence: 

1. The overly-simplified model could potentially be missing a critical independent variable. 
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TABLE 18 – LINEAR REGRESS. TRAJECTORY LENGTH PREDICTION ERROR FOR TEMP17 ON 2011-07-24 

Trajectory 
Start             ̅        ̅         

       
   

 

(HH:MM:SS) (s) (s) (s) (s) (s) (s) 

00:15:39 900 1389 1381 8 489 54.3% 
00:30:39 1560 1585 1629 -44 25 1.6% 
00:56:39 840 1247 1260 -13 407 48.5% 
01:10:39 1801 1823 1889 -66 22 1.2% 
01:40:40 1020 1137 1148 -11 117 11.5% 
01:57:40 1980 1725 1834 -109 -255 -12.9% 
02:30:40 840 1065 1042 23 225 26.8% 
02:44:40 1980 1976 2021 -45 -4 -0.2% 
03:17:40 720 900 806 94 180 25.0% 
03:29:40 2341 2159 2238 -79 -182 -7.8% 
04:08:41 660 509 581 -72 -151 -22.9% 
04:19:41 2280 2081 2159 -78 -199 -8.7% 
04:57:41 600 526 425 101 -74 -12.3% 
05:07:41 2460 2344 2358 -14 -116 -4.7% 
05:48:41 600 309 312 -3 -291 -48.5% 
05:58:41 13322 4770 4621 149 -8552 -64.2% 
09:40:43 540 -93 -64 -29 -633 -117.2% 
09:49:43 5760 4620 4339 281 -1140 -19.8% 
11:25:43 600 125 69 56 -475 -79.2% 
11:35:43 4683 4576 3754 822 -107 -2.3% 
12:53:46 658 1384 1453 -69 726 110.3% 
13:04:44 3000 3702 2615 1087 702 23.4% 
13:54:44 1020 1553 1613 -60 533 52.3% 
14:11:44 1921 1960 2082 -122 39 2.0% 
14:43:45 960 1017 1154 -137 57 5.9% 
14:59:45 1620 1735 1670 65 115 7.1% 
15:26:45 960 1476 1507 -31 516 53.8% 
15:42:45 1860 1588 1645 -57 -272 -14.6% 
16:13:45 1200 1390 1402 -12 190 15.8% 
16:33:45 1621 1551 1681 -130 -70 -4.3% 
17:00:46 720 1303 1344 -41 583 81.0% 
17:12:46 1740 1529 1533 -4 -211 -12.1% 
17:41:46 1020 1441 1463 -22 421 41.3% 
17:58:46 2100 1431 1375 56 -669 -31.9% 
18:33:46 1020 1790 1755 35 770 75.5% 
18:50:46 2341 1329 1390 -61 -1012 -43.2% 
19:29:47 960 1564 1564 0 604 62.9% 
19:45:47 1980 1473 1529 -56 -507 -25.6% 
20:18:47 5821 3381 2980 401 -2440 -41.9% 
21:55:48 1020 1050 1087 -37 30 2.9% 
22:12:48 1260 1599 1599 0 339 26.9% 
22:33:48 1140 1119 1133 -14 -21 -1.8% 
22:52:48 1260 1603 1562 41 343 27.2% 
23:13:48 1500 1490 1497 -7 -10 0.6% 
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2. The time it takes for the house to cool down is significantly shorter than the time it 

takes for it to heat up (Figure 41). The shorter duration makes the prediction more 

difficult from a percentage-based metric. 

3. The inconsistencies of   ( 
 ) and   ( ) demonstrate behavior unlike a thermostat with 

consistent set points and dead band offsets. This may be particularly relevant to the set-

back time period where it is difficult to discern what temperature the air conditioner is 

attempting to allow the house to cool to. 

4. The assumption made by Eqn.(5.11) that the energy contribution of the air conditioner 

is steady and consistent may not be valid for the purposes of the model. 

5. Either the internal gains assumption made by Eqn.(5.10) may be invalid, or the internal 

gains dominate the other heating modes to the point that its inherent variability is too 

ill-suited for an offline prediction model. 

 

FIGURE 40 – ERROR BIAS IN THE LINEAR REGRESSION PREDICTION MODEL 
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FIGURE 41 – NORMALIZED TRAJECTORY DURATIONS FOR AC ON/OFF STATES 

To confirm that the selected sensor on the given day was representative of the model’s 

accuracy, predictions were also run for multiple sensors on several other summer days. The 

results were averaged and summarized in Table 19. 

TABLE 19 – AVERAGE EVENT DURATION ERROR OF SEVERAL DEVICES OVER MULTIPLE DAYS 

6/18/2011  9/13/2011 

Device/ 
Status 

    
(s) 

    
(s) 

Error 
(s) 

Error 
(%)  

Device/ 
Status 

    
(s) 

    
(s) 

Error 
(s) 

Error 
(%) 

TEMP6         
 

TEMP8         

AC ON 411 620 209 50.4% 
 

AC ON 500 -872 -1372 -281.6% 

AC OFF 1359 962 -397 -8.5% 
 

AC OFF 5224 3672 -1551 -19.9% 

TEMP8         
 

TEMP12         

AC ON 466 277 -188 -40.1% 
 

AC ON 609 433 -176 -13.2% 

AC OFF 2093 1741 -352 -10.1% 
 

AC OFF 313 1061 748 -6.6% 

TEMP17         
 

TEMP13         

AC ON 809 797 -12 -6.7% 
 

AC ON 360 -355 -715 -199.5% 

AC OFF 3632 2738 -895 -5.2% 
 

AC OFF 352 3841 3489 -22.3% 

TEMP18         
 

TEMP18         

AC ON 844 1009 165 27.4% 
 

AC ON 889 503 -387 -28.6% 

AC OFF 4116 1536 -2580 -45.8% 
 

AC OFF 808 3039 2231 16.9% 
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Table 19 indicates that the ability of the model to accurately predict trajectory duration is highly 

variable from sensor to sensor. Several daily predictions averaged out to be within 10% of the 

true duration, while others were so inaccurate that they predicted negative durations. In this 

state, the model is unusable in any capacity.  

5.4.5 – Curvilinear Regression 

Several shortcomings of the first-order linear regression approach to trajectory prediction were 

discussed within the last section. Namely, natural processes are usually nonlinear (that is, their 

best-fit curves are defined by power functions), and linearized models tend to do a poor job of 

generalizing the relationship between independent and dependent variables. Nonlinear, or 

curvilinear, models are typically computationally intensive due to the involvement of an 

exponential term in the regression, but one type of curvilinear model can still be best-fit with 

the OLS approach (meaning the regression method is still technically linear, even though the 

results of the model are free to take on a parabolic shape) – a polynomial model. This simply 

means that input variables are allowed to be second-order terms, as shown in Eqn.(5.15). 

               
  (5.15) 

These second-order input variables can also be explained with the introduction of interaction 

terms. Interaction terms allow a model to consider the influence two or more input variables 

have on each other, rather than just how they affect the dependent variable. This is 

accomplished by assigning a regression coefficient to the product of two or more inputs, as 

shown in Eqn.(5.16). In this sense, a second-order input can be considered to be just another 

interaction term–between the input and itself, as shown in Eqn.(5.17). 
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  (5.16) 

    
         (5.17) 

Taking these interaction terms into consideration during model development allows for a 

significant assumption improvement to be made over the linear model; no longer do equations 

(5.11) and (5.12) necessarily apply. The energy contributions of an air conditioner do not need 

to be constant throughout the day. Instead, the air conditioner can be influenced by both the 

difference in temperature between indoors and outdoors and the amount of solar radiation 

falling on the house at a given time. This is shown by the inclusion of these interaction terms in 

the curvilinear regression model of Eqn.(5.18). 

  

  ( 
 )    ( )

  [  ( )    ( )]
   [  ( )    ( )]            

   [  ( )    ( )]
     [  ( )    ( )]         

(5.18) 

However, the tradeoff between the curvilinear and linear regression models is that the 

complexity of the model increases with the additional terms. Instead of relying on four 

coefficients, the model now includes eight coefficients that must be regressed. Fortunately, the 

method for resolving these values is very similar to the linear approach. The first regression step 

is once again performed for the dataset that includes only time periods of no solar radiation 

(night time), and when the air conditioner is off. This simplifies Eqn.(5.18) to the form of 

Eqn.(5.19), and the coefficients      and   are determined through the OLS approach. 

  

  ( 
 )    ( )

  [  ( )    ( )]
   [  ( ̅)    ( )]    (5.19) 

With the initial coefficients now established, the remaining coefficients can be determined 

through an OLS regression of the full three-day dataset, for both air conditioner operating states 
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Eqn.(5.20). These coefficients are added to the database in a manner identical to those outlined 

in Table 17. 

  

  ( 
 )    ( )

  [  ( )    ( )]
   [  ( )    ( )]   

            [  ( )    ( )]
     [  ( )    ( )]         

(5.20) 

5.4.6– Curvilinear Regression Validation 

For initial illustrative purposes, the validation of the curvilinear approach examines a sensor that 

exhibits a particularly cyclical interior temperature, and doesn’t appear to feature any 

thermostat setpoint changes–TEMP8. This allows for a high level of consistency in the data, 

which is made evident by regarding the tight grouping of trajectories shown in the figure 

included as part of Figure 42. 

 

Method:  
Curvilinear 
 
Days of Data: 3 
Observations: 69 
 
R2 statistic: 0.90 
F statistic: 312.1 
p value: 2.25e-34 

 
FIGURE 42 – COMPARATIVE REGRESSION RESULTS FOR NIGHT WARMING (CURVILINEAR) 

Additionally, the trajectory groupings of Figure 42 show a definite dependence on the difference 

in temperature between the interior and the ambient. With a coefficient of determination of 

0.90, the second-order nature of Eqn.(5.20) tends to fit the data better than the linear model 

shown in Figure 43. The residuals for both methods are shared in Figure 44.  
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Method:  
Linear 
 
Days of Data: 3 
Observations: 69 
 
R2 statistic: 0.85 
F statistic: 379.9 
p value: 2.58e-29 

FIGURE 43 – COMPARATIVE REGRESSION RESULTS FOR NIGHT WARMING (LINEAR) 

 

 

Method:  
Curvilinear 
 
Norm of Residuals: 
155.69 
 

 

Method:  
Linear 
 
Norm of Residuals: 
194.94 

FIGURE 44 – ACCURACY OF CURVILINEAR VS. LINEAR REGRESSION FOR NIGHT WARMING 

 



95 
 

The second-order bias of the linear residuals, qualitatively measured by the decrease in the 

normality of residuals, further justifies the adoption of the curvilinear model as the default 

regression method. 

Of course, the curvilinear validation must also extend into the full dataset–not just the night-

warming training subset. Figure 45 is an extension of Figures 43-44. It still shows the relationship 

between temperature trajectories and the interior/ambient temperature differential, but its 

axes have been inverted for formatting. It also includes the full dataset and further illustrates 

the distinct groupings of night, AM, and PM trajectories. As expected, the largest temperature 

differential takes place in the afternoon hours and the longest trajectories occur when the air 

conditioner is off and solar radiation is non-existent. Figure 45 becomes even more interesting 

when the inclusion of solar radiation is considered, as shown in Figure 46. 

 

FIGURE 45 – 2D DISTINCT DAY/NIGHT TEMPERATURE TRAJECTORY GROUPINGS 
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FIGURE 46 – 3D DISTINCT DAY/NIGHT TEMPERATURE TRAJECTORY GROUPINGS 

By also plotting the temperature trajectories versus solar radiation, multiple seemingly non-

linear patterns become clearly visible. It is these non-linear trends that highlight the superiority 

of the curvilinear over linear regression method for this particular application. The results of the 

model’s training have been added to the plot seen in Figure 47. 

 

FIGURE 47 – CURVILINEAR MODEL TRAINING RESULTS 

5.4.6.1 – Regression Coefficients 

Unlike the linear regression method, the coefficients determined by the curvilinear method are 

not particularly consistent for each sensor over the same time period. An excerpt of this table 



97 
 

can be seen in Table 20, which is divided due to formatting constraints. Magnitudes vary 

tremendously for each coefficient across the sensors, and even signs are not particularly 

consistent. One possible reason for this is that, due to the increased order of the defining 

equation, there are more degrees of freedom for the resulting best-fit curves, which in turn 

increase the number of potential curve shapes. As cautioned in 2.2.2, however, it is ill-advised to 

attempt to draw physical conclusions from the parameterization weights of a black-box model. 

TABLE 20 – CURVILINEAR REGRESSION COEFFICIENTS 

tempSensor date samples alpha beta gamma delta 

TEMP7 2012-07-06 330 -3.03374 -36.9245 2062.13 0.434859 

TEMP8 2012-07-06 315 0.320988 -41.4315 924.214 0.110144 

TEMP9 2012-07-06 165 -176.305 -152.018 19383.9 7.04147 

TEMP10 2012-07-06 210 -4.95901 -49.0768 1718.79 0.456438 

TEMP11 2012-07-06 286 1.73431 -46.7201 1063.39 0.179314 

TEMP12 2012-07-06 297 -0.0177045 -5.77173 310.863 0.0408463 

TEMP13 2012-07-06 93 -0.317504 -67.0371 1272.67 5.50857 

TEMP14 2012-07-06 97 3.97966 -155.691 1678.59 6.68066 

TEMP15 2012-07-06 234 -1.24011 -54.4381 1834.82 0.626558 

TEMP16 2012-07-06 228 1.37001 -46.0447 799.537 0.0844042 

TEMP17 2012-07-06 106 -4.98759 48.6746 728.994 0.559952 

TEMP18 2012-07-06 94 -0.582331 0.665858 432.454 0.445513 

tempSensor date epsilon zeta eda lambda error 

TEMP7 2012-07-06 -2405.57 3.11799 33.7726 -0.505502 45.9687 

TEMP8 2012-07-06 -933 -0.41443 41.6062 -0.111426 -74.2099 

TEMP9 2012-07-06 -21286.7 177.259 233.719 -7.99634 53.3492 

TEMP10 2012-07-06 -2078.33 4.95627 45.0407 -0.384611 132.164 

TEMP11 2012-07-06 -1455.5 -2.35255 46.1192 -0.140902 51.2462 

TEMP12 2012-07-06 -397.373 -0.0973828 5.34473 -0.0254408 10.8726 

TEMP13 2012-07-06 -1395.64 -0.513102 57.4439 -5.78606 -36.0655 

TEMP14 2012-07-06 -1834.75 -5.32683 157.752 -6.87178 36.4424 

TEMP15 2012-07-06 -2214.35 0.939941 53.2553 -0.583487 122.503 

TEMP16 2012-07-06 -1085.95 -1.6924 44.6037 -0.0291007 209.385 

TEMP17 2012-07-06 -1086.57 4.67081 -53.6579 -0.354696 146.671 

TEMP18 2012-07-06 -588.21 0.0760113 2.87414 -0.45134 46.2695 
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5.4.6.2 – Model Training 

The quality of the model’s trajectory predictions fundamentally relies on the training of the 

model itself. The quality of this training is dependent on two criteria: 

1. Consistency of the trajectories within the training dataset 

2. Similarity between the training dataset and the dataset the trained model is applied to 

Addressing the first of these criteria, the temperature sensor and training dataset that was 

featured in the last section was intentionally chosen to illustrate the feasibility of the process. In 

reality, not every training set features the same level of consistency. Figures 48-50 show a 

sampling of some of these instances. 

 

FIGURE 48 – MODEL TRAINING RESULTS FOR TEMP7 FROM THE DATASET OF 7/26/2012-7/28/2012 
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Each of these figures demonstrates slightly different problems. Beginning with Figure 48, the 

dataset that was used to train this particular model was taken from the same house, over the 

same time period, as the accurately trained model shown in Figure 47. The difference being that 

Figure 48 is based on TEMP7, which is the sensor located on the home’s first floor. Outside of 

the obvious observation that the temperature trajectories are simply not nearly as well-grouped 

for the first floor (Figure 48) as they are for the second floor (Figure 47), there are still a couple 

interesting points that can be made. The temperature trajectories are simply much longer on 

average on the first floor. Figure 48 shows temperature trajectories as generally being between 

1000 and 2500 s/°F, whereas the trajectories of Figure 47 are between 200 and 800 s/°F. Being 

that these models are based on sensors from within the same house, they share an air 

conditioner–their AC event durations have to be the same lengths. This means that the 

temperature changes experienced by the second floor must be higher than those on the first 

floor. This is confirmed by Figure 29. 

This demonstrates the impact temperature swings have on the quality of the trajectories that 

form the training sets, and the perils of relying on non-controller-instituted temperature data. 

Revisiting Figure 38, the AC event durations appear to be relatively consistent. These durations 

form the numerator of the trajectory. What is not consistent is  (  )   ( ) for each of these 

events, and herein lies the problem. For large numerators, small fluctuations in the denominator 

will result in drastically different temperature trajectories as shown in Table 21. This issue is 

addressed in 5.4.6.4. 

TABLE 21 – PROBLEMS CAUSED BY SMALL TEMPERATURE FLUCTUATIONS IN TRAJECTORY PREDICTIONS 

AC Event 
Duration  
(s) 

T(t*)-T(t) 
 (°F) 

Temperature 
Trajectory 
(s/°F) 

2100 1.5 1400 
2100 1.1 1909 
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FIGURE 49 – MODEL TRAINING RESULTS FOR TEMP17 FROM THE DATASET OF 7/2/2012-7/4/2012 

The same problems that plague the model shown in Figure 48 also plague the model shown in 

Figure 49, but this model also features problems of its own. It does a respectable job of curve-

fitting the trajectories that correspond to the air conditioner being on, but on the other hand, 

the predictions for the AC-off trajectories seem to follow a path that inflects in a different 

direction than the other figures in the section. This is caused by the regression attempting to 

best-fit the data points that sit below 0 on the y-axis; they correspond to points in time where 

the interior temperature is warmer than the ambient. This intuitively makes sense that it would 

cause problems for the model–the direction of conductive and convective heat transfer 

between the house and the ambient is reversed compared to the rest of the dataset. Since the 

very basic regression method is predicated on curve-fitting, the more sporadic the data, the less 

effective this modeling approach will be.  



101 
 

 

FIGURE 50 – MODEL TRAINING RESULTS FOR TEMP14 FROM THE DATASET OF 7/3/2012-7/5/2012 

Figure 50 is affected by the same problems already mentioned, but also suffers from an 

extremely sparse dataset. The night-time trajectories are fairly well predicted (with the 

exception of the points below 0 on the y-axis), but over the three-day span of data, there are 

only five data points that take place during afternoon hours, and three of these five points are 

for AC-on trajectories. An examination of the interior temperature profile for one of the training 

days (Figure 51) shows that this home’s AC is effectively turned off from 6:00 AM to 6:00 PM.  
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FIGURE 51 – EXTREME AC SETBACK FOR TEMP14 ON 7/4/2012 

The regression accuracy does not suffer in this case due to the second point made at the 

beginning of this section–this behavior is consistent for all three days’ worth of the training 

data. If the following day exhibits similar behavior, the model will do a decent job predicting the 

majority of the AC cycle durations; if the following day includes air-conditioning use throughout 

the afternoon, the model will significantly over-predict the duration of every AC-off cycle. 

5.4.6.3 – Initial Model Results 

Despite the issues with the training datasets that were mentioned above, the model was still run 

for certain sensors, on a small sampling of summer days, as seen in Table 22. The columns 

within this table are partitioned to make it easy to compare the accuracy of the AC-on and AC-

off cycle duration predictions. The columns are further divided to indicate the time period over 

which the cycle durations were averaged. The    header reflects an average from the entirety 

of the day, while the    columns contain averages of just those durations that occur during the 

peak period. Subscripts   and   are used to differentiate actual versus predicted, respectively. 
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Error columns are denoted by  , and show the prediction accuracies as a percentage of the 

actual. 

For the remainder of this paper, the peak period is understood to mean the period of time from 

1:30 PM through 7:00 PM. These times were selected based on the Las Vegas utility’s (NV 

Energy) experimental pricing trial that ran from 3/14/2011 to 3/14/2013 [58], with a 30 minute 

lead-in to potentially accommodate pre-cooling considerations. 

For the most part, there is absolutely no consistency in the accuracy of the predictions. Even for 

the same sensor, accuracy on a day-to-day basis fluctuates considerably. TEMP15, in particular, 

over-estimates AC-on durations for the first 3 dates examined, then proceeds to under-estimate 

the next 3. TEMP15’s trained model also does a poor job of predicting AC-off trajectories, 

especially during the peak period. Most importantly, however, none of the sensors show peak 

period predictions being consistently better than all-day predictions.  
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TABLE 22 – AC CYCLE DURATION PREDICTIONS 

 
TEMP8 

 
AC-On Average Durations (s) AC-Off Average Durations (s) 

Day                                                     

7/2/12 269 234 -13.0% 372 323 -13.2% 1097 1126 2.7% 895 995 11.2% 

7/8/12 351 236 -32.9% 522 378 -27.6% 969 1160 19.7% 795 1447 81.9% 

7/9/12 406 341 -16.1% 561 486 -13.4% 921 1020 10.8% 784 1227 56.6% 

7/17/12 233 187 -19.7% 307 240 -21.7% 1302 1135 -12.8% 971 1161 19.6% 

7/25/12 300 293 -2.4% 408 385 -5.6% 1015 921 -9.2% 861 664 -22.9% 

8/8/12 378 327 -13.6% 562 477 -15.2% 944 1017 7.7% 842 932 10.6% 

             

 
TEMP12 

 
AC-On Average Durations (s) AC-Off Average Durations (s) 

Day                                                     

7/2/12 580 478 -17.4% 1096 679 -38.1% 1097 877 -20.0% 1365 980 -28.2% 

7/8/12 725 670 -7.6% 732 824 12.6% 1024 827 -19.3% 1150 832 -27.6% 

7/9/12 769 656 -14.7% 1323 917 -30.7% 1016 803 -20.9% 743 782 5.2% 

7/17/12 432 404 -6.4% 784 522 -33.4% 1070 888 -16.9% 751 924 23.0% 

7/25/12 675 583 -13.6% 1304 873 -33.0% 1117 846 -24.2% 897 871 -2.9% 

8/8/12 872 582 -33.3% 1914 957 -50.0% 1110 1115 0.4% 815 1315 61.3% 

             

 
TEMP15 

 
AC-On Average Durations (s) AC-Off Average Durations (s) 

Day                                                     

7/2/12 394 890 125.6% 571 1002 75.5% 1361 1013 -25.6% 788 187 -76.2% 

7/8/12 516 583 13.0% 1014 800 -21.1% 896 990 10.5% 639 468 -26.8% 

7/9/12 514 551 7.2% 781 801 2.6% 854 739 -13.5% 597 542 -9.2% 

7/17/12 314 76 -75.8% 433 174 -59.9% 1220 1113 -8.8% 930 1091 17.4% 

7/25/12 408 384 -5.9% 619 581 -6.2% 973 913 -6.1% 808 1157 43.2% 

8/8/12 560 538 -4.0% 818 878 7.4% 1026 415 -59.6% 672 -952 -241.6% 

             

 
TEMP17 

 
AC-On Average Durations (s) AC-Off Average Durations (s) 

Day                                                     

7/2/12 966 926 -4.1% 892 1053 18.0% 2838 2768 -2.5% 1811 1617 -10.7% 

7/8/12 1073 965 -10.1% 1171 1090 -6.9% 2294 2120 -7.6% 1496 1800 20.4% 

7/9/12 1178 1028 -12.8% 1500 1235 -17.7% 2244 2413 7.5% 1515 2685 77.2% 

7/17/12 846 927 9.6% 740 1010 36.5% 3796 3071 -19.1% 2629 3932 49.5% 

7/25/12 1012 1016 0.4% 1035 1161 12.2% 2634 2086 -20.8% 1792 1380 -23.0% 

8/8/12 1120 946 -15.6% 1279 1168 -8.7% 2327 2797 20.2% 1596 2721 70.5% 
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5.4.6.4 – Training Dataset Improvements 

Remembering that the performance of this offline, curvilinear, black-box model is fundamentally 

reliant on how well the model is trained, this section discusses several changes that were made 

to the formulation of the training datasets in an attempt to improve the model’s performance 

during the peak period. 

Tackling the sources of error as they were presented in section 5.4.6.2, the first training dataset 

improvement deals with the issue of the sparse dataset. The purpose of the OLS method is to 

best-fit a curve to a collection of data points; it does this by ‘weighing’ each data point equally. 

This allows a single anomaly in the data to significantly influence the best-fit. There are two 

ways to handle this issue: 

1. Increase the size of the dataset, so that the single anomaly has less of an impact on the 

OLS regression 

2. Restrict the dataset to only include only worthwhile data points 

Increasing the size of the dataset has negative computational implications, so, as ambiguously as 

the second point is presented, it is actually a more worthwhile pursuit. The results presented by 

Table 22 were influenced by 24-hour training data, and they reflect the model’s attempt to best-

fit trajectories for the entire day. Since the purpose of the model is to ultimately model the 

homes’ thermal transience during peak periods, it makes sense to only train the models with 

data from this time period. This has no impact on the first step of the regression process, it still 

relies on night-time cycles, but the second step ends up being only trained by night-time cycles 

and those cycles that occur during the peak period. Morning cycles no longer impact the 

regression. 
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Extending the notion of only including worthwhile data points to the second source of error 

mentioned, the training set can also be culled of the data in which the temperature of the 

interior and the ambient are close. An examination of Figures 48-50, as well as several more 

unpublished figures, suggests that the homes’ thermal responses become erratic when the 

interior temperature is within 5 °F, or less, of the ambient temperature. 

With these changes in place, the model was rerun on TEMP8 for the same time periods as Table 

22. The impact the improved dataset has on the model is substantial, as shown in Table 23. 

Unexpectedly, the model performed better across the entirety of the day, but it also more 

accurately predicted peak period AC cycle durations, as expected. The reason for the model’s 

drastic improvement can be seen between a comparison of Figures 52-53. 

TABLE 23 – IMPACT OF TRAINING DATASET IMPROVEMENTS ON MODEL PERFORMANCE 

 
TEMP8 

 
AC On Average Durations AC Off Average Durations 

Day                                                     

7/2/12 269 216 -19.8% 372 318 -14.6% 1097 1117 1.8% 895 979 9.4% 

7/8/12 351 355 1.0% 522 533 2.0% 969 1013 4.5% 795 1056 32.9% 

7/9/12 406 374 -7.8% 561 527 -6.0% 921 960 4.3% 784 1132 44.4% 

7/17/12 233 201 -13.5% 307 275 -10.5% 1302 1035 -20.5% 971 1029 6.0% 

7/25/12 300 296 -1.4% 408 425 4.3% 1015 993 -2.1% 861 754 -12.5% 

8/8/12 378 334 -11.7% 562 503 -10.5% 944 1043 10.5% 842 961 14.1% 
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FIGURE 52 – COMPARISON OF AN IMPROVED DATASET VERSUS ITS BASELINE (BASELINE) 

 

 

FIGURE 53 – COMPARISON OF AN IMPROVED DATASET VERSUS ITS BASELINE (IMPROVED) 

Despite these promising results, there is still room for improvement. The last source of error 

suggested in section 5.4.6.2 involves the issue of fluctuating denominators in the trajectories 

that compose the training dataset. This problem can be further understood by taking a look at a 

graph of AC on/off cycle durations throughout a given day (Figure 54). As the time of day 

approaches late afternoon, the amount of time the air conditioner runs is on increases while the 

durations of its off-cycle correspondingly falls. This makes sense, as the home is requiring more 

cooling for the warmest part of the day. More notably, though, the trends for each cycle state 
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are extremely consistent. The right-most plot of Figure 29 is a fairly good representation of the 

daily temperature trends measured by TEMP8–it features no sign of thermostat setpoint 

changes at any point throughout the day. This being the case, the thermostat that controls this 

home’s AC is adhering to the same       and      temperature thresholds (Figure 38) 

throughout the entire day. Hypothetically, if this    between thresholds was simply 1°F for the 

whole day, the day’s trajectories would be equivalent to the day’s cycle durations, and the 

trajectories would be just as consistent as the durations presented in Figure 54. 

 

FIGURE 54 – AC ON/OFF CYCLE DURATIONS FOR TEMP8 ON 7/26/2012 

Of course, none of the thermostats have temperature threshold differences of just 1 °F, but as 

long as the threshold    is held constant, the regularity of the AC cycle durations will transfer to 

the derived trajectories, resulting in a more consistent training dataset and a subsequent 

improvement in the OLS regression accuracy. 

In lieu of any data on the setpoints that were observed during the interior temperature 

measurements, approximations must be made for the       and      temperatures. Since the 

dataset has already been restricted to the peak period, the average of the AC-on and AC-off 
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temperature measurements during this time and recalculates the temperature trajectories 

based on these averaged values. Two examples of this process can be seen in Figure 55. 
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5.4.6.5– Final Model Results 

Following the implementation of training dataset improvements that were discussed above, the 

program included in Appendix E was once again run for the same sensors and dates included 

within Table 22, so that the benefit of the training dataset improvements could be quantified. 

These results can be seen in Table 24. 

Peak period prediction accuracies are generally improved for every day examined across every 

sensor, with the most notable improvements occurring for TEMP8. On average, nearly all AC-On 

cycle predictions for this sensor were within 8% of the actual durations. For the majority of 

TEMP8’s AC-Off cycle predictions, the model was accurate to within 16%. TEMP12’s AC-On 

predictions generally under-calculated the actual durations by over 30%, except for 7/8/12, in 

which it over-calculated by 14.2%. A review of its training dataset (Figure 56) shows inconsistent 

trajectories for both night-time and peak period data points, so the prediction errors are 

unsurprising. TEMP15 on 7/17/12 is even worse in this regard (Figure 57), but an examination of 

the left-most plot of Figure 58 shows that the initial interior temperature measured by the 

sensor was questionable. The same can be said for TEMP17, which can be seen in the right-most 

plot of Figure 58. 

These results, though not ideal, are still encouraging. TEMP8’s data, which was most closely 

processed to emulate event-based reporting, showed the model’s ability to consistently make 

accurate AC cycle duration predictions within 10% of the true cycle length. Unfortunately, for 

the majority of the sensors, the interior temperatures they recorded could not be counted on 

for their accuracy; this lack of basis data makes it extremely challenging to cross-validate the 

results of TEMP8. At the same time, the results of TEMP8 suggest that there is some merit to 
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this modeling approach. Further work must be done before any real conclusions can be drawn 

as to the model’s utility. 

  



113 
 

TABLE 24 – AC CYCLE DURATION PREDICTIONS 

 
TEMP8 

 
AC On Average Durations AC Off Average Durations 

Day                                                     

7/2/12 269 215 -20.1% 372 326 -12.3% 1097 1086 -0.9% 895 956 6.7% 

7/8/12 351 363 3.2% 522 537 2.9% 969 992 2.3% 795 1031 29.7% 

7/9/12 406 383 -5.8% 561 536 -4.5% 921 939 2.0% 784 1097 40.0% 

7/17/12 233 210 -9.8% 307 286 -6.8% 1302 993 -23.7% 971 989 1.8% 

7/25/12 300 294 -2.1% 408 422 3.4% 1015 971 -4.3% 861 729 -15.3% 

8/8/12 378 338 -10.6% 562 518 -7.9% 944 1020 8.0% 842 950 12.9% 

             

 
TEMP12 

 
AC On Average Durations AC Off Average Durations 

Day                                                     

7/2/12 580 479 -17.3% 1096 762 -30.5% 1097 813 -25.8% 1365 840 -38.5% 

7/8/12 725 666 -8.1% 732 835 14.2% 1024 834 -18.6% 1150 921 -19.9% 

7/9/12 769 654 -15.0% 1323 866 -34.6% 1016 785 -22.7% 743 754 1.5% 

7/17/12 432 460 6.4% 784 528 -32.7% 1070 781 -27.0% 751 759 1.0% 

7/25/12 675 578 -14.4% 1304 889 -31.8% 1117 773 -30.8% 897 778 -13.3% 

8/8/12 872 602 -31.0% 1914 877 -54.2% 1110 1099 -1.1% 815 1329 63.0% 

             

 
TEMP15 

 
AC On Average Durations AC Off Average Durations 

Day                                                     

7/2/12 394 480 21.8% 571 644 12.8% 1361 1083 -20.4% 788 268 -66.0% 

7/8/12 516 521 1.1% 1014 789 -22.2% 896 915 2.1% 639 341 -46.6% 

7/9/12 514 495 -3.7% 781 741 -5.1% 854 648 -24.1% 597 191 -68.0% 

7/17/12 314 48 -84.6% 433 -35 -108.0% 1220 1790 46.7% 930 857 -7.8% 

7/25/12 408 264 -35.2% 619 443 -28.5% 973 865 -11.1% 808 988 22.2% 

8/8/12 560 606 8.1% 818 931 13.9% 1026 714 -30.4% 672 -347 -151.6% 

             

 
TEMP17 

 
AC On Average Durations AC Off Average Durations 

Day                                                     

7/2/12 966 830 -14.1% 892 829 -7.1% 2838 2966 4.5% 1811 1729 -4.5% 

7/8/12 1073 868 -19.2% 1171 896 -23.5% 2294 1934 -15.7% 1496 1790 19.7% 

7/9/12 1178 984 -16.5% 1500 1085 -27.7% 2244 2077 -7.5% 1515 2239 47.8% 

7/17/12 846 2188 158.6% 740 994 34.3% 3796 2261 -40.4% 2629 1823 -30.7% 

7/25/12 1012 967 -4.4% 1035 1049 1.3% 2634 2265 -14.0% 1792 1598 -10.8% 

8/8/12 1120 957 -14.5% 1279 1000 -21.8% 2327 2405 3.4% 1596 2013 26.1% 
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FIGURE 56 – TRAINING DATASET FOR TEMP12 ON 7/9/2012 

 

 

FIGURE 57 – TRAINING DATASET FOR TEMP15 ON 7/17/2012 

  



115 
 

  

FI
G

U
R

E
 5

8
 –

 I
N

T
E

R
IO

R
 T

E
M

P
E

R
A

T
U

R
E

 D
A

T
A

 E
R

R
O

R
S

 I
M

P
A

C
T

IN
G

 M
O

D
E

L 
R

E
S

U
LT

S
 

 



116 
 

Chapter 6 – Future Work 

The results presented in 5.4.6.5 indicate that the black-box model that was developed was 

moderately effective for determining AC cycle durations for certain interiors on certain days 

after a significant amount of pre-processing of the data. However, the black-box model could 

not be validated further do to the lack of quality interior temperature measurements that 

resulted in wildly variable model outputs. Thus, the first task recommended for future work 

involves abandoning minute-by-minute temperature sensor data in favor of temperature 

records made by event-based thermostats. This will be achievable as the Villa Trieste project 

transitions from Phase I to Phase II (Chapter 3), and two-way communicating thermostats are 

installed within the homes. 

With quality data to analyze, the curvilinear approach to model training would be able to be 

validated. Additionally, other, more adaptive, algorithms could be investigated for their ability 

to increase training efficacy and accuracy. Among the candidates for worthwhile investigation, 

artificial neural networks potentially show the most measurable benefit. 

Once the model is validated and trained to the point that it consistently is able to make 

‘usefully’ accurate AC cycle prediction, the model’s applications are abundant. The ability to 

predict exactly when a home will reach a certain temperature based on current conditions can 

benefit electricity producers and consumers alike. With the thermal model tied into the 

functional operation of a controller [59], or thermostat, residents could cut down on their 

electrical bills by setting back their thermostats in the morning and taking advantage of the 

controller’s model-predictive ability to return the home to a given temperature at the exact 

time of day specified by the resident. 
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Electricity producers could incorporate the thermal model into model predictive controls as 

well. The ability to predict exactly when a collection of air conditioners would be turning on 

would be extremely useful as a component to demand response initiatives [60]. When 

predicting time periods of critical peak loading, a utility-scale model predictive controller could 

quickly, and intelligently, manipulate thermostat setpoints for a certain sampling of homes to 

ensure the peak demand would not be reached, while at the same time only affecting homes 

that could still maintain their level of thermal comfort. 

Potentially furthering the benefit of this research to both energy producers and consumers, the 

impact an air-conditioning system has on the temperature of a home could be monitored over 

time. If the impact were able to be quantified, and a measureable decrease in air conditioner 

efficiency was observed, it could provide possible early-detection equipment failure warnings to 

residents. 
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Chapter 7  – Conclusion 

Intelligent energy management is becoming an increasingly important component of the 

modern world. It is of particular importance for metropolitan areas in cooling-dominated 

climates, where energy-intensive air conditioners are prolific. The thermal model for residential 

buildings developed within these pages could potentially ultimately contribute to some of these 

important utility-wide energy management initiatives. 

The thermal model is statistically based and constructed on a black-box, input-output 

framework. It relies on weather data, as well as interior temperature measurements and air-

conditioning on/off signals, to predict how long a home’s air conditioner will either stay on or 

off based on the amount of sunlight at a given time and the difference between the outdoor 

ambient temperature and the temperature within the home. 

A dataset of the aforementioned measurement collected from seven homes over a period of 

almost two years was used to validate the model that was developed. Unfortunately, significant 

portions of data within this dataset were shown to be unusable, for various reasons. After a 

tremendous amount of pre-processing, portions of the dataset were able to be used to train the 

thermal model and gauge the model’s efficacy. From a random selection of six days from the 

late-July early-August period of 2012, the model was applied to second-story zone temperature 

measurements from a selected house. For the most part, the model was able to predict air 

conditioner on-cycle durations to within 10% of their actual durations, and air conditioner off-

cycles to within 30% of theirs. None of the other zones that were examined exhibited the same 

consistency, but they were shown to suffer from fundamentals errors associated with the 

collection of the interior zone temperature measurements. 
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Although the dataset that was available for the purposes of this research was not ideal, and 

proved to make it extremely difficult to validate the performance of the thermal model, there 

was just enough quality data to show that the thermal model could potentially be feasible. The 

model was built such that a future dataset that was ideally derived from thermostat 

measurements, rather than temperature sensors, could quickly be substituted and used for the 

purpose of more effectively training the model, which would ultimately lead to overall better 

performance of the model. 
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%This script examined power data for each participating house over the week 

%specified. It graphs the time between power records versus time. The  

%purpose is to identify periods in time in which few power records were 

%dropped. The total amount of time missing for each sensor during the week 

%is included. 

  

clc 

clear all 

warning('off','all'); 

  

tic 

  

% ------INITIALIZE THE DATABASE 

  

host = '[REDACTED]';  %MySQL hostname 

user = '[REDACTED]';   %MySQL username 

password = '[REDACTED]';    %MySQL password 

dbName = '[REDACTED]'; %MySQL database name 

  

%# JDBC parameters 

jdbcString = sprintf('jdbc:mysql://%s/%s', host, dbName); 

jdbcDriver = 'com.mysql.jdbc.Driver'; 

  

%# Create the database connection object 

conn = database(dbName, user , password, jdbcDriver, jdbcString); 

  

% ------ESTABLISH THE RUNTIME SPECIFICS 

week = [25]; 

year = 2011; 

NumTicks = 8; 

  

% ------DATA PROCESSING 

for m = 1:1:length(year) 

    for n = 1:1:length(week) 

         

    qry = sprintf(['SELECT powerSensor, datetime ',... 

        'FROM `power` ',... 

        'WHERE WEEK(datetime,0) = %u ',... 

        'AND YEAR(datetime) = %u ',... 

        'ORDER BY powerSensor ASC, datetime ASC'],week(n),year(m)); 

    rs = fetch(exec(conn, qry)); 

    power = get(rs, 'Data'); 

     

    if ~strcmp(power{1,1},'No Data') 
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    power(:,3) = num2cell(datenum(cell2mat(power(:,2)))); 

  

    qry = sprintf(['SELECT DISTINCT powerSensor ',... 

        'FROM `power` ',... 

        'WHERE WEEK(datetime,0) = %u ',... 

        'AND YEAR(datetime) = %u ',... 

        'ORDER BY powerSensor ASC'],week(n),year(m)); 

    rs = fetch(exec(conn, qry)); 

    powerSensors = get(rs, 'Data'); 

    numSensors = length(powerSensors); 

  

    data = 0; 

    for i = 1:1:length(powerSensors)  

    %Split up each sensor 

    powerSeries{i} = cell2mat(power(strcmp(powerSensors(i),power(:,1)),3)); 

  

    %Calculate the number of minutes between measurement recordings 

    for j = 2:1:length(powerSeries{i}) 

        powerSeries{i}(j,2) = (powerSeries{i}(j,1) - ... 

                               powerSeries{i}(j-1,1))*1440; 

  

        %Tabulate how many minutes of lost data there is 

        if powerSeries{i}(j,2) > 1+(1/60) 

            powerSeries{i}(j,3) = powerSeries{i}(j,2) - 1; 

        end             

    end 

  

    %Calculate the total time lost in each day 

    TL(i) = round(sum(powerSeries{i}(:,3))*100)/100; 

    end 

  

    % ------DATA VISUALIZATION 

  

    clear title xlabel ylabel 

    fig = figure('Position',[200 200 575 750]); 

  

    for i = 1:1:numSensors 

    p{i} = subplot(numSensors,1,i); 

    plot(powerSeries{i}(:,1), powerSeries{i}(:,2)); 

    set(p{i},'YLim',[0 2]) 

    L = get(gca,'XLim'); 

    set(gca,'XTick',linspace(L(1),L(2),NumTicks)) 

    %legend(sprintf('%s',powerSensors{i})) 

    text(powerSeries{i}(end,1),0.9,sprintf('%s: %.2f minutes missing',... 

         powerSensors{i},TL(i)),... 
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        'HorizontalAlignment','right',... 

        'VerticalAlignment','top',... 

        'BackgroundColor','white',... 

        'EdgeColor','black',... 

        'Margin',2) 

    datetick('x','mm/dd','keepticks')   

    set(p{i}, 'Position', [0.05, 1-(i*(1-.02)/numSensors-.05), ... 

                           0.91, (1-.1)/numSensors-.05]) 

    end 

  

    drawnow 

    set(gcf,'PaperPositionMode','auto') 

    print(fig, '-dpng', ... 

          sprintf('[REDACTED]\\power_quality\\%u-%u.png',week(n),year(m))); 

     

    end 

     

    end 

end 

  

toc 
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%This takes a look at all the houses simultaneously for the dates 

%specified. It makes two plots for each day, showing total power 

%consumption, utilization as a percentage of the total number of AC units, 

%and the ambient temperature 

  

clc 

clear all 

warning('off','all'); 

  

tic 

  

%% ------INITIALIZE THE DATABASE 

  

host = '[REDACTED]';  %MySQL hostname 

user = '[REDACTED]';   %MySQL username 

password = '[REDACTED]';    %MySQL password 

dbName = '[REDACTED]'; %MySQL database name 

  

%# JDBC parameters 

jdbcString = sprintf('jdbc:mysql://%s/%s', host, dbName); 

jdbcDriver = 'com.mysql.jdbc.Driver'; 

  

%# Create the database connection object 

conn = database(dbName, user , password, jdbcDriver, jdbcString); 

  

%% ------ESTABLISH THE RUNTIME SPECIFICS 

  

%Sensor IDs 

%Temperature, Power 

devices = [{'TEMP5' 'PWR4'}; 

           {'TEMP6' 'PWR4'}; 

           {'TEMP7' 'PWR7'}; 

           {'TEMP8' 'PWR7'}; 

           {'TEMP9' 'PWR6'}; 

           {'TEMP10' 'PWR6'}; 

           {'TEMP11' 'PWR8'}; 

           {'TEMP12' 'PWR8'}; 

           {'TEMP13' 'PWR3'}; 

           {'TEMP14' 'PWR3'}; 

           {'TEMP15' 'PWR2'}; 

           {'TEMP16' 'PWR2'}; 

           {'TEMP17' 'PWR5'}; 

           {'TEMP18' 'PWR5'}]; 

  

%Current Transducer Ratings for each power measurement box 



126 
 

%WattNode, Main In, Main Out, Fan control unit, Air conditioner, PV 

CTsizes = [{'PWR4' 150 0 30 50 30}; 

           {'PWR7' 150 30 50 150 50}; 

           {'PWR6' 150 0 30 50 30}; 

           {'PWR8' 150 30 50 150 50}; 

           {'PWR3' 150 30 50 150 50}; 

           {'PWR2' 150 30 50 150 50}; 

           {'PWR5' 150 30 50 50 50}]; 

  

%Wh per pulse = CT Size/pulseConvert 

pulseConvert = 40; %Set by WNB-3Y-208-P WattNode 

  

%The day to examine 

% startDay = '2012-07-01'; 

% numberOfDays = 5; 

dates = {'2012-07-02','2012-07-08','2012-07-09',... 

         '2012-07-17','2012-07-22','2012-08-08'}; 

  

% for k = 0:1:numberOfDays 

for k = 1:1:length(dates) 

date = dates{k}; 

  

dateRange = {datestr(date,'yyyy-mm-dd HH:MM:SS'),  

             datestr(addtodate(datenum(date),1,'day'),... 

             'yyyy-mm-dd HH:MM:SS')}; 

  

%% ------DATA PROCESSING 

%data4: AC WattNode pulses  

qry = sprintf(['SELECT powerSensor, datetime, data4 ',... 

              'FROM `power` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'ORDER BY powerSensor ASC, datetime ASC'],... 

              dateRange{1},dateRange{2}); 

rs = fetch(exec(conn, qry)); 

power = get(rs, 'Data'); 

  

qry = sprintf(['SELECT DISTINCT powerSensor ',... 

              'FROM `power` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'ORDER BY powerSensor ASC'],... 

              dateRange{1},dateRange{2}); 

rs = fetch(exec(conn, qry)); 

powerSensors = get(rs, 'Data'); 

  

qry = sprintf(['SELECT datetime, ambientTemp ',... 
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              'FROM `weatherAll` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'''],... 

              dateRange{1},dateRange{2}); 

rs = fetch(exec(conn, qry)); 

weather = get(rs, 'Data'); 

time = timeseries(cell2mat(weather(:,end)),weather(:,1)); 

time.name = 'time'; 

  

data = 0; 

for i = 1:1:length(powerSensors) 

%Split up each sensor so that they can be synched 

powerSeries{i} = power(strcmp(powerSensors(i),power(:,1)),:); 

  

%Convert the pulses to Wh 

CT = cell2mat(CTsizes(strcmp(CTsizes(:,1),powerSensors(i)),5)); 

WhPP = CT/pulseConvert; %Watt-hours per pulse 

powerSeries{i}(:,4)=num2cell(cell2mat(powerSeries{i}(:,3)).*WhPP); %Wh 

powerSeries{i}(:,5)=num2cell(cell2mat(powerSeries{i}(:,4)).*60./1000); %KW 

 

%On/Off 

powerSeries{i}(:,6)=num2cell(double(cell2mat(powerSeries{i}(:,4)).*60~=0)); 

  

%Make the timeseries 

ts{i,1}=timeseries(cell2mat(powerSeries{i}(:,3:end)),powerSeries{i}(:,2)); 

ts{i,2}=timeseries(cell2mat(weather(:,end)),weather(:,1)); 

ts{i,1}.name = powerSensors{i}; 

ts{i,2}.name = 'weather'; 

  

%Sync the weather to the power record 

ts{i,2} = resample(ts{i,2},getabstime(ts{i,1}),'linear'); 

  

  %Identify each cycle, calculate the average power demand and the average 

  %ambient and interior temperatures over that time 

  j=2; 

  m=1; 

  while j < length(ts{i,1}.data) 

    %Identify when the pulses start 

    if ts{i,1}.data(j,3) ~= 0 && ts{i,1}.data(j-1,3) == 0 

      ss(1) = j+1; %starting steady-state index    

        %Shift the index up until the AC switches OFF 

        while ts{i,1}.data(j,3) ~= 0 && j < length(ts{i,1}.data) 

            j=j+1; 

        end 

      ss(2) = j-2; %ending steady-state index 
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      %Average power required and the ambient temp. over the same period 

      ts{i,3}{m,1} = mean(ts{i,1}.data(ss(1):ss(2),3)); 

      ts{i,3}{m,2} = mean(ts{i,2}.data(ss(1):ss(2),1));  

      m=m+1;         

    end 

    j=j+1; 

  end 

  

%Plot the pulses consumption versus the ambient temperature 

fig1 = figure; 

set(gcf,'PaperPositionMode','auto') 

set(fig1, 'Position', [400 200 440 230]) 

scatter(cell2mat(ts{i,3}(:,1)),cell2mat(ts{i,3}(:,2)),'Marker','*') 

title(sprintf('Effect of Ambient Temp. on AC Power Draw for %s (%s)',... 

               date,powerSensors{i})) 

ylabel('Ambient Temperature (°F)') 

xlabel('Average Power Demand Per AC Cycle (kW)') 

drawnow 

print(fig1,'-dpng','-r100',... 

      sprintf('[REDACTED]\\AC-Eff\\%s-%s-(EFF).png',powerSensors{i},date));                                 

  

%Sync the power record to the common weather record  

%so that all the power records can be added 

ts{i,1} = resample(ts{i,1},getabstime(time),'linear'); 

  

%Sum the power and energy measurements 

data = data + ts{i,1}.data(:,2:end); 

end 

  

%% ------DATA VISUALIZATION 

  

% if max(data(:,3)./size(powerSensors,1)) == 1 

  

clear title xlabel ylabel 

fig2 = figure('Position',[200 200 550 300]); 

set(gcf,'PaperPositionMode','auto') 

  

p1 = subplot(2,1,1); 

plot(datenum(getabstime(ts{i,1})),data(:,2)); 

ylabel('Power (kW)'); 

datetick('x','HH:MM') 

title(sprintf('Measured Homes'' Power Consumption - %s',date)) 

  

p2=subplot(2,1,2); 

p2=plotyy(datenum(getabstime(ts{i,1})),... 
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          100*data(:,3)./size(powerSensors,1),... 

          datenum(getabstime(ts{i,2})),ts{i,2}.data,'plot'); 

 

ylabel(p2(1),'% of AC''s On') % left y-axis 

ylabel(p2(2),'Temperature (°F)') % right y-axis 

  

xlabel('Time (HH:MM)'); 

datetick('x','HH:MM') 

set(p2,'xtick',get(p1,'xtick'),'xticklab',get(p1,'xticklab')) 

title('Measured Homes'' Air Conditioner Operating Status') 

  

set(p1, 'Position', [0.09, 0.60, 0.83, 0.32]) 

set(p2, 'Position', [0.09, 0.12, 0.83, 0.32]) 

drawnow 

print(fig2,'-dpng','-r100',... 

      sprintf('[REDACTED]\\CollectivePower\\%s-(CP).png',date));                                 

  

%end 

  

end 

toc 
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%This script compares two methods developed for determining the 

%timestamps of AC on/off transition points. 

  

clc 

clear all 

warning('off','all'); 

  

tic 

  

%% ------INITIALIZE THE DATABASE 

  

host = '[REDACTED]';  %MySQL hostname 

user = '[REDACTED]';   %MySQL username 

password = '[REDACTED]';    %MySQL password 

dbName = '[REDACTED]'; %MySQL database name 

  

%# JDBC parameters 

jdbcString = sprintf('jdbc:mysql://%s/%s', host, dbName); 

jdbcDriver = 'com.mysql.jdbc.Driver'; 

  

%# Create the database connection object 

conn = database(dbName, user , password, jdbcDriver, jdbcString); 

  

%% ------ESTABLISH THE RUNTIME SPECIFICS 

  

%Sensor IDs 

%Temperature, Power 

devices = [{'TEMP5' 'PWR4'}; 

           {'TEMP6' 'PWR4'}; 

           {'TEMP7' 'PWR7'}; 

           {'TEMP8' 'PWR7'}; 

           {'TEMP9' 'PWR6'}; 

           {'TEMP10' 'PWR6'}; 

           {'TEMP11' 'PWR8'}; 

           {'TEMP12' 'PWR8'}; 

           {'TEMP13' 'PWR3'}; 

           {'TEMP14' 'PWR3'}; 

           {'TEMP15' 'PWR2'}; 

           {'TEMP16' 'PWR2'}; 

           {'TEMP17' 'PWR5'}; 

           {'TEMP18' 'PWR5'}]; 

  

%Current Transducer Ratings for each power measurement box 

%WattNode, Main In, Main Out, Fan control unit, Air conditioner, PV 

CTsizes = [{'PWR4' 150 0 30 50 30}; 
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           {'PWR7' 150 30 50 150 50}; 

           {'PWR6' 150 0 30 50 30}; 

           {'PWR8' 150 30 50 150 50}; 

           {'PWR3' 150 30 50 150 50}; 

           {'PWR2' 150 30 50 150 50}; 

           {'PWR5' 150 30 50 50 50}]; 

  

%Wh per pulse = CT Size/pulseConvert 

pulseConvert = 40; %Set by WNB-3Y-208-P WattNode 

  

%The day to examine 

% startDay = '2012-07-01'; 

% numberOfDays = 5; 

dates = {'2012-07-02','2012-07-08','2012-07-09','2012-07-17',... 

         '2012-07-22','2012-08-08'}; 

 

% for k = 0:1:numberOfDays 

for k = 1:1:length(dates) 

date = dates{k}; 

%date = datestr(addtodate(datenum(startDay),k,'day'),'yyyy-mm-dd'); 

  

dateRange = {datestr(date,'yyyy-mm-dd HH:MM:SS'),... 

             datestr(addtodate(datenum(date),1,'day'),... 

             'yyyy-mm-dd HH:MM:SS')}; 

  

%% ------DATA PROCESSING 

%data4: AC WattNode pulses  

qry = sprintf(['SELECT powerSensor, datetime, data4 ',... 

              'FROM `power` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'ORDER BY powerSensor ASC, datetime ASC'],... 

              dateRange{1},dateRange{2}); 

rs = fetch(exec(conn, qry)); 

power = get(rs, 'Data'); 

  

qry = sprintf(['SELECT DISTINCT powerSensor ',... 

              'FROM `power` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'ORDER BY powerSensor ASC'],... 

              dateRange{1},dateRange{2}); 

rs = fetch(exec(conn, qry)); 

powerSensors = get(rs, 'Data'); 

  

qry = sprintf(['SELECT tempSensor, datetime, temp ',... 

              'FROM `temperature` ',... 
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              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'ORDER BY tempSensor ASC'],... 

              dateRange{1},dateRange{2}); 

rs = fetch(exec(conn, qry)); 

temps = get(rs, 'Data'); 

  

%Options for the temperature AC status estimate 

window = 15; %number of samples (must be odd) 

windowSide = (window-1)/2; 

  

n = 1; 

for i = 1:1:length(powerSensors) 

  powerSensor = powerSensors(i); 

   

  %Split up each sensor individually 

  series(i,1) = powerSensor; 

  series{i,2} = power(strmatch(powerSensor,power(:,1)),2:3); 

   

  %% ------STATE BASED ON AC TRANSDUCER 

   

  %Go through the routine that identifies "shoulders" in the power data and 

  %attempts to ascertain the timestamps of the ON/OFF transitions 

  j = 2; %index 

  state = 1; %ON/OFF state of the AC 

  while j < length(series{i,2}) 

    %Identify the time period in which the AC switches ON 

    if (series{i,2}{j-1,2} == 0 || j == 2)&& series{i,2}{j,2} ~= 0 

       

      k(1) = j+1; %starting steady-state index 

       

      %Shift the index up until the AC switches OFF 

      while series{i,2}{j,2} ~= 0 && j < length(series{i,2}) 

        j = j+1; 

      end 

      k(2) = j-2; %ending steady-state index 

      

      if k(1) <= k(2) 

          %Number of pulses during the steady-state period of the cycle 

          Puls = sum(cell2mat(series{i,2}(k(1):k(2),2))); 

  

          %Seconds per pulse based on steady-state performance 

          sp = etime(datevec(series{i,2}{j-1,1}),... 

                     datevec(series{i,2}{k(1),1}))/Puls; 

  

          %Create the "simplified" AC event transition record 
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          %Event Start 

          event = addtodate(datenum(series{i,2}{k(1),1}),... 

                                   -sp*series{i,2}{k(1)-1,2},'second'); 

  

          if n == 1 

            series{i,3}{n,1} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

  

            %Event Stop 

            event = addtodate(datenum(series{i,2}{k(2),1}),... 

                                      sp*series{i,2}{k(2)+1,2},'second'); 

            series{i,3}{n,2} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

            series{i,3}{n+1,1} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

  

            series{i,3}{n,3} = state; 

            state = ~state; 

          else 

            series{i,3}{n-1,2} = datestr(event,'yyyy-mm-dd HH:MM:SS');   

            series{i,3}{n,1} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

  

            series{i,3}{n-1,3} = state; 

            state = ~state; 

  

            %Next Event Start 

            event = addtodate(datenum(series{i,2}{k(2),1}),... 

                                      sp*series{i,2}{k(2)+1,2},'second'); 

            series{i,3}{n,2} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

            series{i,3}{n+1,1} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

  

            series{i,3}{n,3} = state; 

            state = ~state; 

          end 

  

          n=n+2;  

      end 

    end 

     

     

    j = j+1; 

  end 

   

  %Trim off the last incomplete record 

  series{i,3} = series{i,3}(1:end-1,:); 

   

  n=1; 
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  %% ------STATE BASED ON TEMPERATURE 

     

  %Which temperature sensors match the power sensor being examined 

  tempSensors = devices(strmatch(powerSensor,devices(:,2)),1); 

   

  for ii = 1:1:length(tempSensors) 

     

    j = 1; 

    passInitial = 0; 

    k = 1; 

    state = 0; 

       

    tempSensor = tempSensors(ii);    

     

    %Split up each sensor individually 

    series(i,3*ii+1) = tempSensor; 

    series{i,3*ii+2} = temps(strmatch(tempSensor,temps(:,1)),2:3); 

    %plot(datenum(cell2mat(series{1,5}(:,1))),cell2mat(series{1,5}(:,2))) 

     

    for p = window:1:length(series{i,3*ii+2}) 

     

    %Status indicates whether the air conditioner is on or off 

    %Determine if a significant downward trend starts at the given loop 

        %level by comparing the previous slope to the upcoming slope 

    if state == 0 && ... 

            series{i,3*ii+2}{p,2}-series{i,3*ii+2}{p-(window-1),2} < -1.15 

  

        j = p; 

        while state == 0           

        if j ~= p 

            %If the drop in temperature after the given point is 

            %significantly more than the drop in temperature 

            %before the given point 

            if j == 1                

                state = 1; 

            elseif series{i,3*ii+2}{j+1,2}-series{i,3*ii+2}{j,2} > 0 && ... 

                   series{i,3*ii+2}{j-1,2} < series{i,3*ii+2}{j,2} + ... 

                   0.75*(series{i,3*ii+2}{j+1,2}-series{i,3*ii+2}{j,2}) 

  

              series{i,3*ii+3}{k,1} = series{i,3*ii+2}{j+1,1}; 

              if k ~= 1                     

                series{i,3*ii+3}{k-1,2} = series{i,3*ii+2}{j+1,1}; 

              end 

              series{i,3*ii+3}{k,3} = ~state; 
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              state = 1; 

              k = k+1; 

            elseif series{i,3*ii+2}{j+1,2}-series{i,3*ii+2}{j,2} == 0 

            %If the sample has plateaued, look further back into the  

            %samples to find out if it's truly plateaued 

            m = j; 

            while m ~= 0 && series{i,3*ii+2}{m+1,2} - ... 

                            series{i,3*ii+2}{m,2} == 0 

               m = m-1;  

            end 

            m = m+1; 

  

            if m-windowSide < 1 

                state = 1; 

            elseif series{i,3*ii+2}{m-windowSide,2} < ... 

                   series{i,3*ii+2}{m,2} | ... 

                   series{i,3*ii+2}{m-1,2} < ... 

                   series{i,3*ii+2}{m,2} + 0.75*(series{i,3*ii+2}{p,2}-... 

                   series{i,3*ii+2}{p+1,2}) 

                series{i,3*ii+3}{k,1} = series{i,3*ii+2}{j+1,1}; 

                if k ~= 1                     

                  series{i,3*ii+3}{k-1,2} = series{i,3*ii+2}{j+1,1}; 

                end 

                series{i,3*ii+3}{k,3} = ~state; 

  

                state = 1; 

                k = k+1; 

            end 

            end 

        end 

  

        j = j-1; %decrease the index that looks at the temperature 

        end 

         

         

    elseif state == 1 && series{i,3*ii+2}{p,2} - ... 

                         series{i,3*ii+2}{p-(window-1),2} > 0 

     

    %Find the local minimum value. It has already been established  

    %that a local minimum exists 

    indexOfMin = find(cell2mat(series{i,3*ii+2}(p:-1:p-(window-1),2))==... 

            min(cell2mat(series{i,3*ii+2}(p:-1:p-(window-1),2))),1,'last'); 

  

    series{i,3*ii+3}{k,1} = series{i,3*ii+2}{p-indexOfMin+1,1}; 

    if k ~= 1                     
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      series{i,3*ii+3}{k-1,2} = series{i,3*ii+2}{p-indexOfMin+1,1}; 

    end 

    series{i,3*ii+3}{k,3} = ~state; 

  

    state = 0; 

    k = k+1; 

         

    end  

    end 

     

  end 

   

  %% ------DATA VISUALIZATION 

   

  %Plot temperature measurements vs power transducer-derived transitions 

  %for each power sensor 

  fig(i) = figure; 

  set(fig(i),'Position',[200 200 900 275]); 

  %Power 

  line(datenum(series{i,2}(:,1)),cell2mat(series{i,2}(:,2)),'color','k') 

  haxes1 = gca; % handle to axes 

  datetick('x','HH:MM') 

  xlabel('Time of Day (HH:MM)'); 

   

  haxes1_pos = get(haxes1,'Position'); % store position of first axes 

  haxes2 = axes('Position',haxes1_pos,... 

                'YAxisLocation','right',... 

                'Color','none',... 

                'YColor','b'); 

  set(haxes2,'XTick',[]) 

   

  %Temperatures 

  %line(datenum(series{i,5}(:,1)),cell2mat(series{i,5}(:,2)),... 

  %             'Parent',haxes2,'color','b') %First floor 

  line(datenum(series{i,8}(:,1)),cell2mat(series{i,8}(:,2)),... 

               'Parent',haxes2,'color','b') %Second floor 

   

  ylabel(haxes1,'# of Wattnode Pulses for the AC') % left y-axis 

  ylabel(haxes2,'Interior Temperature (°F)') % right y-axis 

   

  title(sprintf('Temperature vs. AC Status (%s, %s) - 

%s',series{i,1},series{i,7},date)) 

  drawnow 

   

  set(gcf,'PaperPositionMode','auto') 
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  print(fig(i), '-dpng', ... 

        sprintf('[REDACTED]\\justify_AC_status\\(%s)-%s-%s.png',date,... 

                 cell2mat(powerSensor),cell2mat(tempSensor))) 

  

end 

  

end 

toc 
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%Establish the regression method for best-fitting a curve to determined 

%trajectories 

clc 

clear all 

tic 

  

%% ------INITIALIZE THE DATABASE 

  

host = '[REDACTED]';  %MySQL hostname 

user = '[REDACTED]';   %MySQL username 

password = '[REDACTED]';    %MySQL password 

dbName = '[REDACTED]'; %MySQL database name 

  

%# JDBC parameters 

jdbcString = sprintf('jdbc:mysql://%s/%s', host, dbName); 

jdbcDriver = 'com.mysql.jdbc.Driver'; 

  

%# Create the database connection object 

conn = database(dbName, user , password, jdbcDriver, jdbcString); 

  

%% ------ESTABLISH THE RUNTIME SPECIFICS 

  

%The required time data - it takes the day that's about to be predicted and 

%performs the regression on the previous 3 days 

regressionDates = { 

    {'2012-07-30'} 

}; 

  

%Sensor List 

devices = {'TEMP7'}; 

  

figureCount = 1; 

for datesCount = 1:1:length(regressionDates) 

  

date = regressionDates{datesCount}; 

dateRange = {datestr(addtodate(datenum(date),-3,'day'),... 

             'yyyy-mm-dd HH:MM:SS'), 

             datestr(date, 'yyyy-mm-dd HH:MM:SS'), 

             datestr(addtodate(datenum(date),1,'day'),... 

             'yyyy-mm-dd HH:MM:SS')}; 

  

for deviceCount = 1:1:length(devices) 

  

tempSensor = devices{deviceCount}; 
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%-------------[INTERIOR TEMPERATURE DATA]------------ 

qry = sprintf(['SELECT datetime, temp ',... 

               'FROM `temperature` ',... 

               'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

               'AND tempSensor = ''%s'''],... 

               dateRange{1},dateRange{2},tempSensor); 

rs = fetch(exec(conn, qry)); 

thermostat = get(rs, 'Data'); 

  

%-------------[SIGNATURE]----------------------------- 

%Pull the complete given device's data over the regression period 

qry = sprintf(['SELECT startTempIn, invSlope, duration, ',... 

                      '(startTempIn-endTempIn), startRad, ',... 

                      'startTempAmb, mode, periodStart ',... 

               'FROM `signaturePwr` ',... 

               'WHERE tempSensor = ''%s'' ',... 

               'AND periodStart BETWEEN ''%s'' AND ''%s'' ',... 

               'ORDER BY periodStart'],... 

               tempSensor,dateRange{1},dateRange{2}); 

rs = fetch(exec(conn, qry)); 

sig = get(rs, 'Data'); 

%The mode comes in as logical 

sig = [cell2mat(sig(:,1:6)),cell2mat(sig(:,7)),datenum(sig(:,8))]; 

  

%Remove the samples with daylight and when the AC is running 

sigNight = sig(~logical(sig(:,7)),:); %When the AC is off 

sigNight = sigNight(~(sigNight(:,5) > 5),:); %When the GHI is over 5 

  

%------------[NIGHT REGRESSION]------------ 

%There are some slopes that really throw off the data. Remove the rows that 

%are more than 1.5 standard deviations from the median 

dev = 1.5; %Standard Deviation level 

  

outliers = abs(sigNight(:,2)-median(sigNight(:,2)))>dev*std(sigNight(:,2)); 

sigNight = sigNight(~outliers,:); 

  

choice = input('Perform (l)inear or (c)urvilinear regression? [c]:','s'); 

  

if strcmp(choice,'l') %Linear 

    X = [sigNight(:,6)-sigNight(:,1),ones(size(sigNight,1),1)]; 

else %Curvilinear 

    X = [(sigNight(:,6)-sigNight(:,1)).^2,sigNight(:,6)-sigNight(:,1),... 

          ones(size(sigNight,1),1)]; 

end 
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y = sigNight(:,2); %inverse slope 

[b,~,~,~,~] = regress(y,X); 

  

%The WARM UP trajectories vs the actual temp sensor readings for the NIGHT 

fig1 = figure; 

set(gcf,'PaperPositionMode','auto') 

set(fig1, 'Position', [100 100 440 230]) 

%--------AmbientTemp---startT_in--vs--invSlope 

scatter(sigNight(:,6)-sigNight(:,1),sigNight(:,2)) 

hold on 

  

if strcmp(choice,'l') %Linear 

    scatter(sigNight(:,6)-sigNight(:,1),... 

            b(1)*(sigNight(:,6)-sigNight(:,1)) + b(2),'r*') 

else %Curvilinear 

    scatter(sigNight(:,6)-sigNight(:,1),... 

            b(1)*(sigNight(:,6)-sigNight(:,1)).^2 + ... 

            b(2)*(sigNight(:,6)-sigNight(:,1)) + b(3),'r*') 

end 

  

title(sprintf('Night Warming from %s to %s - %s',... 

      dateRange{1},dateRange{2},tempSensor)) 

ylabel('Temperature Trajectory (s/°F)') 

xlabel('Difference in Temperature Between T_a and T_i (°F)') 

legend('Data','Predictions') 

  

%Store the results of the first regression test 

coeff = b; %alpha, beta, gamma 

  

  

%------------[FULL DAY REGRESSION]------------ 

%Same thing, remove the outliers, but remove them seperately for ON and OFF 

%AC operation modes 

statusOn = sig(logical(sig(:,7)),:); 

statusOff = sig(~logical(sig(:,7)),:); 

  

outlierOn = abs(statusOn(:,2) - median(statusOn(:,2))) > ... 

            dev*std(statusOn(:,2)); 

outlierOff = abs(statusOff(:,2) - median(statusOff(:,2))) > ... 

             dev*std(statusOff(:,2)); 

  

statusOn = statusOn(~outlierOn,:); 

statusOff = statusOff(~outlierOff,:); 

  

%Illustrates the trajectory groupings for the on/off AC states 
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sig = cat(1,statusOn,statusOff); %Combines the two matricies 

filter = logical([]); 

filter(:,1) = sig(:,5) < 5; %No radiation (night) 

filter(:,2) = ~filter(:,1) & hour(sig(:,8)) < 12; %AM 

filter(:,3) = ~filter(:,1) & hour(sig(:,8)) >= 12; %PM 

  

fig2 = figure; 

scatter(sig(filter(:,1),2),sig(filter(:,1),6)-sig(filter(:,1),1),'o',... 

        'DisplayName','Night') %Night 

hold on 

scatter(sig(filter(:,2),2),sig(filter(:,2),6)-sig(filter(:,2),1),'+',... 

        'DisplayName','AM') %AM 

scatter(sig(filter(:,3),2),sig(filter(:,3),6)-sig(filter(:,3),1),'d',... 

        'DisplayName','PM') %PM 

title(sprintf('Trajectory Data from %s to %s - %s',... 

      dateRange{1},dateRange{2},tempSensor)) 

xlabel('Temperature Trajectory (m/°F)') 

ylabel('Difference Between T_a and T_i (°F)') 

  

%3D representation of the Ta-Ti vs. radiation vs. trajectory 

fig3 = figure; 

scatter3(sig(filter(:,1),6)-sig(filter(:,1),1),sig(filter(:,1),2),... 

         sig(filter(:,1),5),'o') %Night 

hold on 

scatter3(sig(filter(:,2),6)-sig(filter(:,2),1),sig(filter(:,2),2),... 

         sig(filter(:,2),5),'+') %AM 

scatter3(sig(filter(:,3),6)-sig(filter(:,3),1),sig(filter(:,3),2),... 

         sig(filter(:,3),5),'d') %PM 

xlabel('T_a - T_i (°F)') 

ylabel('Temperature Trajectory (s/°F)') 

zlabel('Solar Radiation (W/m^2)') 

legend('Night','AM','PM') 

  

%Determining the last coefficents beta and del 

%b = regress(y,X) <-Formatting example 

x1 = sig(:,5); %radiation 

x2 = sig(:,7); %ACstatus 

x3 = sig(:,7).*(sig(:,6)-sig(:,1)).^2; %ACstatus/delT^2 interation 

x4 = sig(:,7).*(sig(:,6)-sig(:,1)); %ACstatus/delT interation 

x5 = sig(:,7).*sig(:,5); %ACstatus/radiation interation 

y = sig(:,2) - coeff(1).*(sig(:,6)-sig(:,1)).^2 - ... 

    coeff(2).*(sig(:,6)-sig(:,1)) - coeff(3); 

  

X = [x1,x2,x3,x4,x5,ones(length(sig),1)]; 

[b,~,~,~,~] = regress(y, X); 
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%Combine the night-regressed coefficients with the day's coefficients 

coeff(4:9) = b(1:6); %delta, epsilon, zeta, eda, lambda, and the error 

  

%Review the regression 

figure(fig2) 

plot(coeff(1).*(sig(:,6)-sig(:,1)).^2+coeff(2).*(sig(:,6)-sig(:,1))+... 

     coeff(3)+coeff(4).*sig(:,5)+coeff(5).*sig(:,7)+... 

     coeff(6).*sig(:,7).*(sig(:,6)-sig(:,1)).^2+... 

     coeff(7).*sig(:,7).*(sig(:,6)-sig(:,1))+... 

     coeff(8).*sig(:,7).*sig(:,5)+coeff(9).*sig(:,7),sig(:,6)-... 

     sig(:,1),'k*','DisplayName','Prediction') 

legend(get(fig2, 'Child'),'show') 

  

%Upload the regression coefficients to the database 

%Write the signature matrix to the database 

if ~isconnection(conn) 

   conn = database(dbName, user , password, jdbcDriver, jdbcString);  

end 

  

colnames = {'device','regressionDay','samples','alpha',... 

            'gamma','beta','delta'}; 

fastinsert(conn,'regression',colnames,... 

           {tempSensor,date,length(sig),C(1),C(2),C(3),C(4)}); 

  

end 

end 

  

toc 
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%This is the final program that is the culmination of this paper's efforts. 

%It analyzes past interior temperatures, measured energy data, and weather  

%data to to develop 'signatures' for each home studied. It then makes AC  

%event duration predictions based on this 'signature'. 

  

clc 

clear all 

warning('off','all'); 

tic 

%% ---------[INITIALIZE THE DATABASE]-------------------------------------- 

  

%connection parameteres 

host = '[REDACTED];  %MySQL hostname 

user = '[REDACTED]';   %MySQL username 

password = '[REDACTED]';    %MySQL password 

dbName = '[REDACTED]'; %MySQL database name 

  

%# JDBC parameters 

jdbcString = sprintf('jdbc:mysql://%s/%s', host, dbName); 

jdbcDriver = 'com.mysql.jdbc.Driver'; 

  

%# Create the database connection object 

conn = database(dbName, user , password, jdbcDriver, jdbcString); 

  

%% ---------[ESTABLISH THE RUNTIME SPECIFICS]------------------------------ 

  

date = '2011-07-21'; 

  

%CT Sizes: Temperature Sensor, WattNode, Mains-in, Mains-out, Fan, AC, PV 

devices = {{'TEMP5' 'PWR4' 150 0 30 50 30}; 

           {'TEMP6' 'PWR4' 150 0 30 50 30}; 

           {'TEMP7' 'PWR7' 150 30 50 150 50}; 

           {'TEMP8' 'PWR7' 150 30 50 150 50}; 

           {'TEMP9' 'PWR6' 150 0 30 50 30}; 

           {'TEMP10' 'PWR6' 150 0 30 50 30}; 

           {'TEMP11' 'PWR8' 150 30 50 150 50}; 

           {'TEMP12' 'PWR8' 150 30 50 150 50}; 

           {'TEMP13' 'PWR3' 150 30 50 150 50}; 

           {'TEMP14' 'PWR3' 150 30 50 150 50}; 

           {'TEMP15' 'PWR2' 150 30 50 150 50}; 

           {'TEMP16' 'PWR2' 150 30 50 150 50}; 

           {'TEMP17' 'PWR5' 150 30 50 50 50}; 

           {'TEMP18' 'PWR5' 150 30 50 50 50} 

          }; 
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indices = [4 8 11 13]; %Range of devices to analyze for the date specified 

period = 'PP'; %All day or Peak Period (PP) 

results={}; %Initialize the final results cell 

run = 'Y'; 

  

%% ---------[RUN THE COLLECTION OF SCRIPTS AS SPECIFIED]------------------- 

while ~strcmp(run,'N') 

     

dateRange = {datestr(date,'yyyy-mm-dd HH:MM:SS'),  

             datestr(addtodate(datenum(date),1,'day'),... 

             'yyyy-mm-dd HH:MM:SS')}; %date reformatted 

          

%The first day of the regression period  

date3Back = datestr(addtodate(datenum(dateRange{1}),-3,'day'),... 

                    'yyyy-mm-dd HH:MM:SS'); 

     

for indexCount = 1:1:length(indices) 

index = indices(indexCount); 

tempSensor = devices{index}{1}; 

powerSensor = devices{index}{2}; 

  

  

%% ---------[GENERATE THE "COMPRESSED" EVENT-BASED DATA]------------------- 

clear('weather','track','time','temperature','stdHigh','ssStart',... 

      'ssEnd','sp','signatureRecords','sig','shStart','shEnd',... 

      'setPointSched','setChanges','powerAC','power','meanHigh','m',... 

      'ii','i','events','event','coeff','Puls'); 

%Check to see if the signature data has already been determined  

%for the given day and given device 

qry = sprintf(['SELECT count(id) ',... 

               'FROM `signaturePwr` ',... 

               'WHERE tempSensor = ''%s'' '... 

               'AND date(periodStart) = ''%s'''],... 

               tempSensor,date); 

rs = fetch(exec(conn, qry)); 

signatureRecords = cell2mat(get(rs, 'Data')); 

  

if signatureRecords ~= 0 

%Delete records to ensure no duplicates are created 

exec(conn, sprintf(['DELETE FROM `signaturePwr` ',... 

                    'WHERE tempSensor = ''%s'' ',... 

                    'AND date(periodStart) = ''%s'''],... 

                    tempSensor,date)); 

end 
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%-------------[INTERIOR TEMPERATURE DATA]------------ 

qry = sprintf(['SELECT datetime, temp ',... 

              'FROM `temperature` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'AND tempSensor = ''%s'''],... 

              dateRange{1},dateRange{2},tempSensor); 

rs = fetch(exec(conn, qry)); 

temperature = get(rs, 'Data'); 

  

%-------------[WEATHER DATA]------------ 

qry = sprintf(['SELECT datetime, globalHoriz, ambientTemp ',... 

              'FROM `weatherAll` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'''],... 

              dateRange{1},dateRange{2}); 

rs = fetch(exec(conn, qry)); 

weather = get(rs, 'Data'); 

  

%-------------[POWER DATA]------------ 

%1: Main in, %2: Main out, %3: Fan circulation unit, %4: AC, %5: PV 

qry = sprintf(['SELECT datetime, data1, data2, data3, data4, data5 ',... 

              'FROM `power` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'AND powerSensor = ''%s'''],... 

              dateRange{1},dateRange{2},powerSensor); 

rs = fetch(exec(conn, qry)); 

power = get(rs, 'Data'); 

  

qry = sprintf(['SELECT DISTINCT data4, count(*) ',... 

              'FROM `power` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'AND powerSensor = ''%s'' ',... 

              'GROUP BY data4'],... 

              dateRange{1},dateRange{2},powerSensor); 

rs = fetch(exec(conn, qry)); 

powerAC = cell2mat(get(rs, 'Data')); 

%plot(datenum(power(:,1)),cell2mat(power(:,5)));datetick 

%most common pulse count (operational energy draw) 

powerAC = powerAC(powerAC(:,2)==max(powerAC(length(powerAC)/2:end,2)),1); 

  

%How well the power-derived ON/OFF corresponds to the measured temp. 

clear title xlabel ylabel 

fig3 = figure; 

set(fig3,'PaperPositionMode','auto') 

% set(fig3,'Position', [200 500 829 250]) %For plotting 2-column figures 

% axes('Position',[.08 .15 .88 .75]) 
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set(fig3,'Position', [200 500 829 168]) %For plotting 3-column figures 

axes('Position',[.08 .23 .88 .62]) 

plot(datenum(cell2mat(temperature(:,1))),... 

             cell2mat(temperature(:,2)),... 

             'DisplayName','Temperature'); 

title(sprintf('From %s to %s - %s',dateRange{1},dateRange{2},tempSensor)) 

xlabel('Time of Day (HH:MM)') 

ylabel('Interior Temperature (°F)') 

datetick; hold on; drawnow 

  

%Create the signature data 

i = 2; %index for all the temperature rows 

ii = 1; %index for the signature rows 

m = 1; %index for setpoint schedule 

track = zeros(1,2); 

sig = cell(1,12); 

  

while i < length(temperature) && i < length(power) 

if power{i,5} ~= 0 && power{i-1,5} == 0 %Identify when the pulses start 

  

%--------[IDENTIFY AC ON CYCLE]----------------- 

shStart = i; %starting shoulder index 

ssStart = i+1; %starting steady-state index 

  

%Shift the index up until the AC switches OFF 

while power{i,5} ~= 0 && i < length(temperature) && i < length(power) 

    i = i+1; 

end 

  

ssEnd = i-2; %ending steady-state index 

shEnd = i-1; %ending shoulder index 

  

%--------[DETERMINE AC EVENT TIMESTAMPS]---------------- 

if shEnd - shStart > 1 %Error check to make sure it's actually a cycle 

  

%Number of pulses during the steady-state period of the cycle 

Puls = sum(cell2mat(power(ssStart:ssEnd,5))); 

  

%Seconds per pulse based on steady-state performance 

sp = etime(datevec(power{shEnd,1}),datevec(power{ssStart,1}))/Puls; 

  

%Create the "simplified" AC event transition record 

%Event Start 

event = addtodate(datenum(power{ssStart,1}),round(-sp*power{shStart,5}),... 

                  'second'); 
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if ii ~= 1 

%Off Cycle End 

sig{ii-1,2} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

end  

  

%On Cycle Start 

sig{ii,1} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

sig{ii,9} = logical(1); %AC status 

  

%On Cycle End 

event = addtodate(datenum(power{ssEnd,1}),round(sp*power{shEnd,5}),... 

                  'second'); 

sig{ii,2} = datestr(event,'yyyy-mm-dd HH:MM:SS'); 

  

%Off Cycle Start 

sig{ii+1,1} = datestr(event,'yyyy-mm-dd HH:MM:SS'); %event stop time 

sig{ii+1,9} = logical(0); %AC status 

  

ii=ii+2; 

end 

  

end 

i = i+1;     

end 

  

%--------[SYNCHRONIZE DATA TO AC EVENT TIME DOMAIN]---------------- 

%Create the timeseries 

temperature = timeseries(cell2mat(temperature(:,2)),temperature(:,1)); 

events = timeseries(cell2mat(sig(:,9)),sig(:,1)); 

weather = timeseries(cell2mat(weather(:,2:3)),weather(:,1)); 

weather.data(weather.data(:,1) < 0,1) = 0; %Correct negative rad values 

  

%Name the timeseries 

temperature.name = 'temperature'; 

events.name = 'events'; 

weather.name = 'weather'; 

  

%Synchronize the time vectors to the AC events 

temperature = resample(temperature,getabstime(events)); 

weather = resample(weather,getabstime(events)); 

  

%Visualize the accuracy of the power-derived AC event transitions 

time = datenum(getabstime(temperature)); 

plot(time(logical(events.data)),... 
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     temperature.data(logical(events.data)),... 

     'LineStyle','none',... 

     'Marker','x',... 

     'MarkerSize',10,... 

     'MarkerEdgeColor','red',... 

     'DisplayName','AC Turn On') 

plot(time(~logical(events.data)),... 

     temperature.data(~logical(events.data)),... 

     'LineStyle','none',... 

     'Marker','+',... 

     'MarkerSize',10,... 

     'MarkerEdgeColor','black',... 

     'DisplayName','AC Turn Off') 

  

%--------[CHARACTERIZE THE AC EVENTS]---------------- 

sig(1:end-1,3) = num2cell(etime(datevec(sig(1:end-1,2)),... 

                                datevec(sig(1:end-1,1))));%duration (sec) 

sig(:,4) = num2cell(temperature.data); %starting interior temp. 

sig(1:end-1,5) = num2cell(cell2mat(sig(2:end,4)) - ... 

                          cell2mat(sig(1:end-1,4))); %change in temp. 

sig(1:end-1,6) = num2cell(cell2mat(sig(:,3))./cell2mat(sig(:,5))); %s/deg 

sig(:,7) = num2cell(weather.data(:,2)); %starting exterior temp. 

sig(:,8) = num2cell(weather.data(:,1)); %starting radiation 

sig(:,10) = {tempSensor}; 

sig = sig(1:end-1,:); %The last record isn't complete, so drop it 

  

%T_high and T_low temperatures during night and peak periods 

sig(:,11) = {logical(0)}; 

sig(:,12) = sig(:,6); 

filter = cell2mat(sig(:,9))==1 & ... 

        (datenum(datestr(sig(:,1),'HH:MM:SS')) >= datenum('13:30:00') & ... 

         datenum(datestr(sig(:,1),'HH:MM:SS')) < datenum('19:00:00')); 

T_high = mean(cell2mat(sig(filter,4))); 

sig(filter,11) = {logical(1)}; 

  

filter = cell2mat(sig(:,9))==0 & ... 

        (datenum(datestr(sig(:,1),'HH:MM:SS')) >= datenum('13:30:00') & ... 

         datenum(datestr(sig(:,1),'HH:MM:SS')) < datenum('19:00:00')); 

T_low = mean(cell2mat(sig(filter,4))); 

sig(filter,11) = {logical(1)}; 

  

filter = cell2mat(sig(:,11)) == 1 & cell2mat(sig(:,9)) == 1; %PP AC-on 

sig(filter,12) = num2cell(cell2mat(sig(filter,3))./(T_low-T_high)); 

  

filter = cell2mat(sig(:,11)) == 1 & cell2mat(sig(:,9)) == 0; %PP AC-off 
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sig(filter,12) = num2cell(cell2mat(sig(filter,3))./(T_high-T_low)); 

  

%Include a box that indicates the peak period and temperature bounds 

x{1} = datenum(datevec(date)+[0 0 0 13 30 0]); 

x{2} = datenum(datevec(date)+[0 0 0 19 00 0]); 

plot([x{1} x{2}],[T_high T_high],'--r',... 

                                 'LineWidth',2,... 

                                 'DisplayName','Peak Period T_h_i_g_h') 

plot([x{1} x{2}],[T_low T_low],'--k',... 

                               'LineWidth',2,... 

                               'DisplayName','Peak Period T_l_o_w') 

  

legend(get(fig3, 'Child'),'show') 

legend('location','southwest') 

drawnow 

print(fig3,'-dpng','-r100',... 

      sprintf('[REDACTED]\\LinearEst\\%s-%s-(LIN).png',tempSensor,date)); 

  

%Upload the given day to the database 

%For certain days when the measured temperature doesn't change between 

%AC on/off events, the trajectory kicks back strange values. Clear out  

%these rows before updating the database. 

sig = sig(abs(cell2mat(sig(:,6))) < 999999,:); %Infinite of large slopes 

colnames = {'tempSensor','periodStart','periodEnd','duration',... 

            'startTempIn','endTempIn',... 

            'invSlope','startRad','startTempAmb','mode',... 

            'isPeak','impSlope'}; 

fastinsert(conn,'signaturePwr',colnames,... 

           [sig(:,10), sig(:,1), sig(:,2), sig(:,3), sig(:,4),... 

            num2cell(cell2mat(sig(:,4))+cell2mat(sig(:,5))),... 

            sig(:,6), sig(:,8), sig(:,7), sig(:,9),... 

            sig(:,11), sig(:,12)]); 

                                      

%Create the duration vs time plot 

clear title xlabel ylabel 

fig4 = figure; 

set(gcf,'PaperPositionMode','auto') 

set(fig4, 'Position', [400 200 440 230]) 

scatter(datenum(sig(cell2mat(sig(:,9))==1,1)),... 

        cell2mat(sig(cell2mat(sig(:,9))==1,3)),'bo','DisplayName','AC On') 

hold on 

scatter(datenum(sig(cell2mat(sig(:,9))==0,1)),... 

        cell2mat(sig(cell2mat(sig(:,9))==0,3)),'rd','DisplayName','AC Off') 

datetick 

title(sprintf('AC Cycle Durations for %s - %s',date,tempSensor)) 



153 
 

ylabel('AC Cycle Durations (s)') 

xlabel('Time of Day (HH:MM)') 

legend(get(fig4, 'Child'),'show') 

  

drawnow 

print(fig4,'-dpng','-r100',... 

      sprintf('[REDACTED]\\Durations\\%s-%s-(DUR).png',tempSensor,date));                                 

  

  

%% ---------[RESOLVE THE MODEL PARAMETERS FOR THE CURRENT DAY]------------- 

clear('Puls','colnames','event','events','i','ii','m','meanHigh',... 

      'power','powerAC','qry','setChanges','setPointSched','shEnd',... 

      'shStart','sig','signatureRecords','sp','ssEnd','ssStart',... 

      'stdHigh','temperature','time','track','weather'); 

%See if the sensor has been signature'd the 3 previous days, and if the  

%current day has had its regression coefficients calculated yet 

qry = sprintf(['SELECT date(periodStart) AS `date`, '... 

                      'count(*) AS `count` ',... 

              'FROM `signaturePwr` ',... 

              'WHERE tempSensor = ''%s'' ',... 

              'AND periodStart BETWEEN ''%s'' AND ''%s'' ',... 

              'GROUP BY date(periodStart)'],... 

              tempSensor,date3Back,dateRange{1}); 

rs = fetch(exec(conn, qry)); 

signatureRecords = get(rs, 'Data'); 

  

qry = sprintf(['SELECT alpha, beta, gamma, delta, epsilon, zeta, eda, ',... 

                      'lambda, error, trainingPeriod ',... 

              'FROM `regressionpolyPwr` ',... 

              'WHERE tempSensor = ''%s'' ',... 

              'AND trainingPeriod = ''%s'' ',... 

              'AND date = ''%s'''],... 

              tempSensor, period, date); 

rs = fetch(exec(conn, qry)); 

regressionRecord = get(rs, 'Data'); 

  

if size(signatureRecords,1) == 3 

  

%Query in the AC event records 

if strcmp(period,'PP') 

qry = sprintf(['SELECT startTempIn, impSlope, duration, '... 

                      '(startTempIn-endTempIn), startRad, ',... 

                      'startTempAmb, mode, periodStart ',... 

               'FROM `signaturePwr` ',... 

               'WHERE tempSensor = ''%s'' ',... 
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               'AND periodStart BETWEEN ''%s'' AND ''%s'' ',... 

               'AND (isPeak = 1 OR startRad < 5) ',... 

               'ORDER BY periodStart'],... 

               tempSensor,date3Back,dateRange{1});     

else %AD 

qry = sprintf(['SELECT startTempIn, invSlope, duration, '... 

                      '(startTempIn-endTempIn), startRad, ',... 

                      'startTempAmb, mode, periodStart ',... 

               'FROM `signaturePwr` ',... 

               'WHERE tempSensor = ''%s'' ',... 

               'AND periodStart BETWEEN ''%s'' AND ''%s'' ',... 

               'ORDER BY periodStart'],... 

               tempSensor,date3Back,dateRange{1});     

end     

  

rs = fetch(exec(conn, qry)); 

sig = get(rs, 'Data'); 

sig = [cell2mat(sig(:,1:6)),cell2mat(sig(:,7)),... 

                            datenum(sig(:,8))]; %Mode comes in as a logical 

  

%Create delta T column, then remove the rows where del T < 5 

sig(:,9) = sig(:,6)-sig(:,1); 

sig=sig(sig(:,end)>5,:); 

  

%Remove the samples with daylight and when the AC is running 

sigNight = sig(~logical(sig(:,7)),:); %When the AC is off 

sigNight = sigNight(~(sigNight(:,5) > 5),:); %When the GHI is over 5 

  

%------------[NIGHT REGRESSION]------------ 

%There are some slopes that really throw off the data. Remove the rows that 

%are more than 1.5 standard deviations from the median 

dev = 1.5; %Standard Deviation level 

  

outliers = abs(sigNight(:,2)-median(sigNight(:,2)))>dev*std(sigNight(:,2)); 

sigNight = sigNight(~outliers,:); 

  

%[b,bint,r,rint,stats] = regress(y,X) 

X = [(sigNight(:,6)-sigNight(:,1)).^2,... 

      sigNight(:,6) - sigNight(:,1),ones(size(sigNight,1),1)]; 

y = sigNight(:,2); %inverse slope 

[b,~,~,~,~] = regress(y,X); 

  

%The WARM UP trajectories vs the actual temp sensor readings for the NIGHT 

fig1 = figure; 

set(gcf,'PaperPositionMode','auto') 
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set(fig1, 'Position', [100 100 440 230]) 

scatter(sigNight(:,6)-sigNight(:,1),sigNight(:,2)) 

hold on 

scatter(sigNight(:,6)-sigNight(:,1),b(1)*(sigNight(:,6) - ... 

        sigNight(:,1)).^2 + b(2)*(sigNight(:,6)-sigNight(:,1))+b(3),'r*') 

title(sprintf('Night Warming from %s to %s - %s',... 

      date3Back,dateRange{1},tempSensor)) 

ylabel('Temperature Trajectory (m/°F)') 

xlabel('Difference in Temperature Between T_a and T_i (°F)') 

legend('Data','Predictions') 

drawnow 

print(fig1,'-dpng','-r100',... 

      sprintf('[REDACTED]\\NightWarming\\%s-%s-%s-(NW).png',... 

      tempSensor,period,date)); 

  

%Store the results of the first regression test 

coeff = b; %alpha, beta, gamma 

  

%------------[FULL DAY REGRESSION]------------ 

%Query that selects given time periods through the day 

%Same thing, remove the outliers, but remove them seperately for ON and OFF 

%AC operation modes 

statusOn = sig(logical(sig(:,7)),:); 

statusOff = sig(~logical(sig(:,7)),:); 

  

outlierOn = abs(statusOn(:,2) - median(statusOn(:,2))) > ... 

                                dev*std(statusOn(:,2)); 

outlierOff = abs(statusOff(:,2) - median(statusOff(:,2))) > ... 

                                  dev*std(statusOff(:,2)); 

  

statusOn = statusOn(~outlierOn,:); 

statusOff = statusOff(~outlierOff,:); 

  

%Illustrates the trajectory groupings for the on/off AC states 

sig = cat(1,statusOn,statusOff); %Combines the two matricies 

filter = logical([]); 

filter(:,1) = sig(:,5) < 5; %No radiation (night) 

filter(:,2) = ~filter(:,1) & hour(sig(:,8)) < 12; %AM 

filter(:,3) = ~filter(:,1) & hour(sig(:,8)) >= 12; %PM 

  

fig2 = figure; 

set(gcf,'PaperPositionMode','auto') 

set(fig2, 'Position', [1100 100 525 230]) 

scatter(sig(filter(:,1),2),sig(filter(:,1),6)-sig(filter(:,1),1),'o',... 

        'DisplayName','Night')%Night 
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hold on 

scatter(sig(filter(:,2),2),sig(filter(:,2),6)-sig(filter(:,2),1),'+',... 

        'DisplayName','AM') %AM 

scatter(sig(filter(:,3),2),sig(filter(:,3),6)-sig(filter(:,3),1),'d',... 

        'DisplayName','PM') %PM 

title(sprintf('Trajectory Data from %s to %s - %s',... 

      date3Back,dateRange{1},tempSensor)) 

xlabel('Temperature Trajectory (s/°F)') 

ylabel('Difference Between T_a and T_i (°F)') 

drawnow 

  

% %3D representation of the Ta-Ti vs. radiation vs. trajectory 

% fig3 = figure; 

% scatter3(sig(filter(:,1),6)-sig(filter(:,1),1),... 

%          sig(filter(:,1),2),sig(filter(:,1),5),'o')%Night 

% hold on 

% scatter3(sig(filter(:,2),6)-sig(filter(:,2),1),... 

%          sig(filter(:,2),2),sig(filter(:,2),5),'+') %AM 

% scatter3(sig(filter(:,3),6)-sig(filter(:,3),1),... 

%          sig(filter(:,3),2),sig(filter(:,3),5),'d') %PM 

% xlabel('T_a - T_i (°F)') 

% ylabel('Temperature Trajectory (s/°F)') 

% zlabel('Solar Radiation (W/m^2)') 

% legend('Night','AM','PM') 

  

%Determining the last coefficents beta and del 

%b = regress(y,X) <-Formatting example 

x1 = sig(:,5); %radiation 

x2 = sig(:,7); %ACstatus 

x3 = sig(:,7).*sig(:,9).^2; %ACstatus & delT^2 (interation) 

x4 = sig(:,7).*sig(:,9); %ACstatus & delT (interation) 

x5 = sig(:,7).*sig(:,5); %ACstatus & radiation (interation) 

y = sig(:,2) - coeff(1).*sig(:,9).^2 - coeff(2).*sig(:,9) - coeff(3); 

  

X = [x1,x2,x3,x4,x5,ones(length(sig),1)]; 

[b,~,~,~,~] = regress(y, X); 

  

%Combine the night-regressed coefficients with the day's coefficients 

coeff(4:9) = b; %delta, epsilon, zeta, eda, lambda, and the error 

  

%Review the regression 

figure(fig2) 

plot(coeff(1).*sig(:,9).^2+coeff(2).*sig(:,9) + coeff(3) + ... 

     coeff(4).*sig(:,5) + coeff(5).*sig(:,7) + ... 

     coeff(6).*sig(:,7).*sig(:,9).^2 + coeff(7).*sig(:,7).*sig(:,9) + ... 
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     coeff(8).*sig(:,7).*sig(:,5) + coeff(9),sig(:,9),... 

     'k*','DisplayName','Prediction') 

legend(get(fig2, 'Child'),'show') 

drawnow 

print(fig2,'-dpng','-r100',... 

      sprintf('[REDACTED]\\Trajectories\\%s-%s-%s-(TRAJ).png',... 

      tempSensor,period,date)); 

  

% figure(fig3) 

% scatter3(sig(:,9),coeff(1).*sig(:,9).^2 + coeff(2).*sig(:,9) + ... 

%          coeff(3)+coeff(4).*sig(:,5)+ coeff(5).*sig(:,7) + ... 

%          coeff(6).*sig(:,7).*sig(:,9).^2 + ... 

%          coeff(7).*sig(:,7).*sig(:,9) + ... 

%          coeff(8).*sig(:,7).*sig(:,5),sig(:,5),'k*') %PM 

% legend('Night','AM','PM','Prediction') 

  

%------------[UPDATE THE DATABASE]------------ 

colnames = {'tempSensor','date','samples','alpha','beta','gamma',... 

            'delta','epsilon','zeta','eda','lambda','error',... 

            'trainingPeriod'}; 

  

if ~strcmp(regressionRecord{1},'No Data') && ... 

    sum(strcmp(period,regressionRecord(:,10))) == 1 

  

    %Update the existing record 

    update(conn,'regressionpolyPwr',colnames,... 

          {tempSensor,date,length(sig),coeff(1),coeff(2),coeff(3),... 

          coeff(4),coeff(5),coeff(6),coeff(7),coeff(8),coeff(9),period},... 

          sprintf(['where tempSensor = ''%s'' AND date = ''%s'' ',... 

                   'AND trainingPeriod = ''%s'''],tempSensor,date,period));  

else 

    %Write the new data to the database 

    fastinsert(conn,'regressionpolyPwr',colnames,... 

            {tempSensor,date,length(sig),coeff(1),coeff(2),coeff(3),... 

            coeff(4),coeff(5),coeff(6),coeff(7),coeff(8),coeff(9),period}); 

end 

  

end 

  

  

%% ---------[USE THE MODEL PARAMETERS TO MAKE TIME PREDICTIONS]-------- 

clear('X','b','coeff','colnames','dev','filter','outlierOff',... 

      'outlierOn','outliers','qry','regressionRecord','sig','sigNight',... 

      'statusOff','statusOn','tempResult','x1','x2','x3','x4','x5','y'); 
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%-------------[MODEL PARAMETERS]------------------- 

qry = sprintf(['SELECT alpha, beta, gamma, delta, epsilon, '... 

                      'zeta, eda, lambda, error ',... 

               'FROM `regressionpolyPwr` ',... 

               'WHERE tempSensor = ''%s'' ',... 

               'AND date = ''%s'' ',... 

               'AND trainingPeriod = ''%s'''],... 

             tempSensor,date,period); 

rs = fetch(exec(conn, qry)); 

coeff = cell2mat(get(rs, 'Data')); 

  

if ~strcmp(coeff,'No Data') 

     

%-------------[COMPRESSED TEMPERATURE DATA]--------- 

qry = sprintf(['SELECT periodStart, periodEnd, duration, '... 

                      'startTempIn, endTempIn, ',... 

                      '(startTempAmb-startTempIn), invSlope, '... 

                      'startRad, startTempAmb, mode ',... 

               'FROM `signaturePwr` ',... 

               'WHERE periodStart BETWEEN ''%s'' and ''%s'' ',... 

               'AND tempSensor = ''%s'' ',... 

               'ORDER BY periodStart ASC'],... 

               dateRange{1},dateRange{2},tempSensor); 

rs = fetch(exec(conn, qry)); 

sig = get(rs, 'Data'); 

  

%-------------[INTERIOR TEMPERATURE DATA]------------ 

qry = sprintf(['SELECT datetime, temp ',... 

              'FROM `temperature` ',... 

              'WHERE datetime BETWEEN ''%s'' and ''%s'' ',... 

              'AND tempSensor = ''%s'''],... 

              dateRange{1},dateRange{2},tempSensor); 

rs = fetch(exec(conn, qry)); 

temperature = get(rs, 'Data'); 

  

fig5 = figure; 

set(gcf,'PaperPositionMode','auto') 

set(fig5, 'Position', [600 200 795 278]) 

axes('Position',[.08 .13 .89 .77]) 

p{1} = plot(datenum(temperature(:,1)),cell2mat(temperature(:,2))); 

hold on 

p{2} = plot([datenum(sig(:,1)),datenum(sig(:,2))],[cell2mat(sig(:,4)),... 

             cell2mat(sig(:,5))],'r','LineWidth',2); 

  

for i=1:1:length(sig) 
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%Use model parameters to calculate the slope at time t 

slope = coeff(1)*sig{i,6}^2 + coeff(2)*sig{i,6} + coeff(3) + ... 

        coeff(4)*sig{i,8} + coeff(5)*sig{i,10} + ... 

        coeff(6)*sig{i,10}*sig{i,6}^2 + coeff(7)*sig{i,10}*sig{i,6} + ... 

        coeff(8)*sig{i,10}*sig{i,8}; 

  

%Use the slope with T(t*)-T(t) to calculate the event duration (seconds) 

duration = (sig{i,5}-sig{i,4})*slope; 

  

%Tabulate the prediction results 

tempResult{i,1} = sig{i,3}; %actual duration 

tempResult{i,2} = duration; %predicted duration 

tempResult{i,3} = sig{i,10}; %AC mode 

  

if datenum(datestr(sig{i,1},'HH:MM:SS')) >= datenum('13:30:00') && ... 

   datenum(datestr(sig{i,1},'HH:MM:SS')) < datenum('19:00:00') 

tempResult{i,4} = logical(1); %It's a peak period prediciton 

else 

tempResult{i,4} = logical(0); 

end 

  

%Plot the trajectory 

p{3} = plot([datenum(sig{i,1}) addtodate(datenum(sig{i,1}),... 

            duration,'second')],... 

     [sig{i,4} sig{i,5}],'k','LineWidth',2); 

end 

  

datetick 

title(sprintf('AC Event Duration Predictions for %s - %s',date,tempSensor)) 

ylabel('Temperature (°F)') 

xlabel('Time of Day (HH:MM)') 

legend([p{1} p{2}(1) p{3}],{'Measured Temp.',... 

                            'Compressed Trajectory',... 

                            'Predicted Trajectory'}) 

drawnow 

print(fig5,'-dpng','-r100',… 

      sprintf('[REDACTED]\\Results-AD\\%s-%s-%s-(RES).png',... 

      tempSensor,period,date)); 

  

%Transfer the temp results prediction results to the permanent table 

j = size(results,1) + 1; 

results{j,1} = tempSensor; 

results{j,2} = date; 

  

%ON durations 
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%Actual AD 

results{j,3} = mean(cell2mat(tempResult(cell2mat(tempResult(:,3))==1,1)));  

  

%Predicted AD 

results{j,4} = mean(cell2mat(tempResult(cell2mat(tempResult(:,3))==1,2))); 

results{j,5} = (results{j,4}-results{j,3})/results{j,3}; %error of above 

  

%Actual PP 

results{j,6} = mean(cell2mat(tempResult((cell2mat(tempResult(:,3))==1) &... 

                                       (cell2mat(tempResult(:,4))==1),1))); 

%Predicted PP                                    

results{j,7} = mean(cell2mat(tempResult((cell2mat(tempResult(:,3))==1) &... 

                                       (cell2mat(tempResult(:,4))==1),2))); 

results{j,8} = (results{j,7}-results{j,6})/results{j,6}; %error of above 

  

%OFF durations 

%Actual AD 

results{j,9} = mean(cell2mat(tempResult(cell2mat(tempResult(:,3))==0,1))); 

  

%Predicted AD 

results{j,10} = mean(cell2mat(tempResult(cell2mat(tempResult(:,3))==0,2))); 

results{j,11} = (results{j,10}-results{j,9})/results{j,9}; %error of above 

  

%Actual PP 

results{j,12} = mean(cell2mat(tempResult((cell2mat(tempResult(:,3))==0)&... 

                                       (cell2mat(tempResult(:,4))==1),1))); 

                                    

%Predicted PP                                    

results{j,13} = mean(cell2mat(tempResult((cell2mat(tempResult(:,3))==0)&... 

                                       (cell2mat(tempResult(:,4))==1),2))); 

results{j,14} = (results{j,13}-results{j,12})/results{j,12};%error of above 

  

end 

  

end 

  

%Option the user to continure running scripts for the next day 

date = datestr(addtodate(datenum(date),1,'day'),'yyyy-mm-dd'); 

run = input(sprintf('Run scripts for %s? ([Y]/N): ',date),'s'); 

  

%Close the plot windows 

close all 

  

end 

toc 
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