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ABSTRACT 

 

A technique is examined here that utilizes high energy beta decays from a short lived 

radioisotope to treat medical conditions such as shallow cancerous lesions.  A major benefit of 

beta particle interaction in tissue is a fixed penetration depth for the charged particle, with dose 

limited to the ultimate range of the beta particle.  This method improves on some current 

techniques of radioactive brachytherapy, where "seeds" are placed inside patients through 

temporary or permanent implantation in order to kill cancerous cells or inhibit growth of tissue.  

The use of low energy gamma-rays is the most common method of treatment currently for 

brachytherapy, with Ir-192 used in most high dose rate procedures.  The 73.8 day half-life of Ir-

192 means frequent replacement and the requirement to deal with the logistics of constantly 

decaying, fixed radioactive sources.   

This method instead utilizes the short 14.1 second half-life of indium-116 to quickly 

deliver dose to a treatment area while decaying to a stable ground state.  Since the isotope is very 

short lived, pumping is used to transport the isotope in a room temperature liquid eutectic 

between the “activation site” where the In-116 is created, and the “application site” where it is 

allowed to decay over a target area.  In-116 is produced at the activation site through neutron 

capture on the stable isotope In-115.  This radioactive In-116 is then pumped through a sealed, 

closed loop system using a peristaltic to an application site where it is allowed to decay for one 

minute, enough time to pass through over four 14.1 second half-lives and reach a stable ground 

state.  This applicator is a sealed spreader surface with a thin barrier to allow passage of the 

decay betas.  The loop is then repeated with the In-115 activated again and pumped.  
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This work examined the feasibility of this method with three types of neutron sources 

including a fixed Pu-Be source, a Dense Plasma Focus pulsed fusion neutron source and an X-

Ray producing accelerator using photoneutrons from a beryllium target.  Radiation transport 

modeling was used to determine the efficacy of this technique on two higher output neutron 

sources, including the use of a standard clinical accelerator used for external beam therapy, the 

Varian Clinac 2200C.  Neutron output from the Clinac was modeled based on photonuclear 

production in the accelerator components when operated at 20MeV.  Dose outputs were found to 

be viable for clinical use when the system is used on a Clinac due to the substantial photoneutron 

output. 

In addition to therapy, this work demonstrated the ability to measure neutron fluence at a 

remote location by measuring decaying In-116 from the eutectic after irradiation.  In particular, 

this was demonstrated with the pulsed DPF source and compared with existing yield 

measurement techniques.  The yield of neutrons from pulsed sources can be difficult to measure 

due to the intense and brief burst, preventing the use of normal radiation detectors that measure 

radiation over time.  Pulsed sources instead require activation of materials to create a signature of 

the yield magnitude which is then counted after the pulse.  This method showed excellent 

agreement with an existing method of beryllium activation detection. 

 

 

 

 

 



v 

 

ACKNOWLEDGMENTS 

 

This work would not have been possible without the support and encouragement of both 

my advisor and committee members during the course of my entire education and my coworkers 

over the past decade.  I’d like to thank my advisor Dr. William Culbreth for his constant support 

and insights during both my doctoral and master’s thesis work.  He constantly encouraged me to 

continue and finish with this research despite my constant distractions at work.  Next I must 

thank Dr. Daniel Lowe, both a coworker and friend since undergraduate days, for his help in data 

acquisition for this project.  Critical data for this work would not have been possible without his 

assistance.   I’d also like to thank Dr. Chris Hagen and the entire dense plasma focus crew 

including Steve Molnar, Larry Robbins, Dennis Dalley, Al Mitlyng and Tim Meehan.  I could 

not have asked for a better crew to work with at the DPF for the past decade.  Thanks to Dr. 

Trevor Wilcox for constant MCNP and parallel processing support over the years.  I also must 

thank my committee members Dr. Brendan O’Toole, Dr. Woosoon Yim, Dr. Yitung Chen, and 

Dr. Steen Madsen.  Not only were they dissertation committee members but I’ve had the 

pleasure of being a student of theirs from undergraduate to graduate classes.  Special thanks to 

Matthew Hodges for his assistance with the accelerator model.  I’d also like to apologize to my 

poor dog Fi for missing many walks during the final days of finishing this work. 

Finally, and most importantly, I’d like to thank my family for their unwavering belief that 

I would finish this work.  Thank you to my parents for their support through my entire education 

and constant encouragement during dire times when this dissertation seemed in peril of being left 

unfinished!   

 



vi 

 

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS .................................................................................................. v 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

CHAPTER 1   INTRODUCTION ...................................................................................... 1 

CHAPTER 2   REVIEW OF RELATED LITERATURE ................................................ 20 

CHAPTER 3   THEORY .................................................................................................. 27 

CHAPTER 4   MODELING ............................................................................................. 56 

CHAPTER 5   EXPERIMENTAL SETUP ...................................................................... 89 

CHAPTER 6   RESULTS ............................................................................................... 108 

CHAPTER 7   CONCLUSIONS .................................................................................... 138 

APPENDIX I .................................................................................................................. 142 

APPENDIX II ................................................................................................................. 167 

APPENDIX III ................................................................................................................ 169 

REFERENCES ............................................................................................................... 170 

CURRICULUM VITA ................................................................................................... 175 

 

 

 

 

 

 

 

 

 



vii 

 

LIST OF TABLES 

Table 3-1.  Quality Factors for Ionizing Radiation ....................................................................... 43 
Table 4-1.  Correction factors from model to experiment excluding decay corrections. ............. 70 

Table 4-2. Electron pulse frequency and magnitude for photoneutron models. ........................... 80 
Table 5-1. Pulse shaping and data collection modules for experimental runs. ........................... 100 
Table 5-2. Polyethylene reflector and moderator configurations used with the M6. ................. 107 
Table 6-1.  PDD in tissue from In-116 decay in a 1/16” thick GaInSn applicator. .................... 112 
Table 6-2. DPF predicted yields per shot based on CZT detector and models compared to 

independently measured DPF yields. .................................................................................. 118 
Table 6-3. Dose per DPF shot in tissue at a depth of 0.5mm from In-116 decay. ...................... 119 
Table 6-4.  Decay properties of the ground state and m1 state of In-116. .................................. 128 
Table 6-5.  Detected decays compared to MCNP predicted activation and detection of In-116 for 

the same moderator configuration on the M6, 3/8" front and 1" reflector.......................... 130 
Table 6-6.  Dose results measured for M6 and scaled for K15 and Clinac. ............................... 131 

Table 6-7.  Anticipated activation products in a pure GaInSn mixture. ..................................... 134 
Table 6-8.  Decay gammas and probability per decay from In-116 m1. .................................... 137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

LIST OF FIGURES 

 

Figure 1.1  Half-life comparison for medically useful brachytherapy isotopes (highlighted 

region). .................................................................................................................................... 6 
Figure 1.2  Conceptual design of the In-116 activation and dose delivery system. ..................... 15 
Figure 3.1  In-116 beta decay energy spectrum with Coulombic effects accounted for. ............. 35 
Figure 3.2  Example of MCNP Transport of Radiation Through Materials ................................. 46 

Figure 3.3  Individual electron tracks in an MCNP volume of tissue........................................... 47 
Figure 4.1  Conceptual Illustration of source term, activation, transport and application. ........... 57 
Figure 4.2.  Neutron capture cross section for In-115. .................................................................. 58 
Figure 4.3.  Calculated In-116 growth curve for exposure to a continuous neutron source. ........ 60 

Figure 4.4.  Conceptual activator cell radiator flow design (bottom) for modeling utilizing 

varying moderator and reflector thicknesses (cross section top). ......................................... 62 

Figure 4.5.  Physical polyethylene pieces used for DPF and Varian M6 moderating and 

reflectors. .............................................................................................................................. 63 

Figure 4.6.  Calculated electron CSDA range in GaInSn for energies of interest. ....................... 65 
Figure 4.7.  Emitted MCNP calculated decay spectrum from GaInSn cell and original decay 

spectrum. ............................................................................................................................... 66 

Figure 4.8.  X-Ray spectrum generated by decay electrons in the GaInSn cell. .......................... 67 
Figure 4.9  CAD model showing flow transition to thin applicator window area and applicator 

cell printed in clear plastic showing eutectic flow. ............................................................... 69 
Figure 4.10.  Calculated non-moderated Pu-Be Neutron Spectrum from Sources4C. ................. 72 
Figure 4.11  Pu-Be drum (left) and MCNP cross sectional model (right) .................................... 73 

Figure 4.12  Resultant Pu-Be neutron spectrum at irradiation point inside drum. ....................... 74 

Figure 4.13.  MCNP modeling geometry of DPF, neutron moderator and GaInSn cell.  Moderator 

was modeled both in this configuration and flush with the outer DPF tube. ........................ 75 
Figure 4.14.  MCNP modeling geometry of “INNY” DPF, neutron moderator and GaInSn cell. 76 

Figure 4.15.  Calculated DPF neutron spectrum reaching GaInSn for a 2in moderator. .............. 77 
Figure 4.16.  Calculated DPF In-116 activation in GaInSn target for varying moderator 

thicknesses assuming a single 1x10
11

 neutron pulse for all moderators. .............................. 78 
Figure 4.17.  MCNP geometry for photoneutron production in an M6 accelerator. .................... 79 

Figure 4.18.  Photoneutron spectrum and fluence at the GaInSn target from a Varian M6 

accelerator running at standard 156.6Hz rep rate. ................................................................ 80 
Figure 4.19.  Photoneutron calculated activation of GaInSn target from a Varian M6 and K15 

accelerator running at similar beam currents. ....................................................................... 81 

Figure 4.20.  Photoneutron spectrum from a 15MeV Primus clinical linac. Reprinted with 

permission [60]. .................................................................................................................... 83 
Figure 4.21.  Clinac 2100 20MV photoneutron spectrum used in MCNP model for activation 

scaling, based on S.Ovalle studies [61]. ............................................................................... 84 
Figure 4.22.  MCNP Model diagram for photoneutron production in a clinical Varian 2100C 

accelerator. ............................................................................................................................ 85 
Figure 4.23.  MCNP In-116 activation model results for various front moderator and rear 

reflector thicknesses. ............................................................................................................. 86 



ix 

 

Figure 4.24.  Segmented flow along the GaInSn transport tubing. ............................................... 87 

Figure 4.25.  Segmented versus uniform flow along the GaInSn transport tubing. ..................... 88 
Figure 5.1.  General overview of the pumping, detection and activation system and electronics 

used for all neutron sources. ................................................................................................. 90 

Figure 5.2.  Application cell from back side showing spread of GaInSn, white styrene thin 

window facing down (top) and application cell inside Hoffman box with associated 

pumping system and electronics (bottom). ........................................................................... 91 
Figure 5.3  Fisher Scientific™ Variable-Flow Peristaltic Pump [58]. ......................................... 92 
Figure 5.4  GaInSn sample irradiated on Pu-Be and shielded HPGe detector. ............................ 95 

Figure 5.5.  HPGe calibration curve fitting with Co-60, Cs-137 and Ba-133 sources. ................ 96 
Figure 5.6  CZT detector with preamp electronics (left) and active 10mmx10mm CZT face (left 

highlighted). .......................................................................................................................... 97 
Figure 5.7  External inputs and outputs to detection and pumping Hoffman box. ..................... 102 

Figure 5.8  Irradiation setup with pump and detector, transport line to moderating material and 

DPF neutron source (left) and close up of transport tubing on moderator (right). ............. 102 

Figure 5.9  Hoffman box containing pump and detector (highlighted left), transport line to 

moderating material and DPF neutron source (highlighted right). ..................................... 103 

Figure 5.10  The pumping system was also placed in the DPF tube turned horizontal to the 

ground to reduce distance from the pinch point, an “INNY” configuration. ...................... 103 
Figure 5.11.  Flow Scheme Used for transport of GaInSn through a Pu-Be source. .................. 104 

Figure 5.12  Irradiation setup for the Varian M6 photoneutron source. ..................................... 106 
Figure 6.1.  MCNP model geometry for determining PDD in tissue. ........................................ 109 

Figure 6.2.  PDD for In-116 ground state decay betas in tissue with and without bremsstrahlung 

produced X-Rays. ............................................................................................................... 110 
Figure 6.3.  PDD for In-116 decay in tissue compared to the Xoft 50kV X-Ray source. .......... 111 

Figure 6.4.  Electron backscatter geometries for tissue versus CZT detector............................. 113 

Figure 6.5.  Decay data on CZT for a DPF shot followed by 15 seconds of pumping. .............. 116 
Figure 6.6.  Decay data for a DPF irradiation . ........................................................................... 117 
Figure 6.7.  Predicted DPF yields from CZT detection of In-116 versus yield measured by 

independent detector showing good linear agreement. ....................................................... 118 
Figure 6.8.  Irradiation protocol followed for data collection on 15 seconding pumping runs. . 120 

Figure 6.9.  GaInSn decay on CZT detector for Varian M6 irradiation showing activated bolus 

arrival and subsequent decay on detector. .......................................................................... 121 

Figure 6.10.  In-116 metastable state m1 54.3 minute decay fit line. ......................................... 123 
Figure 6.11.  Residuals analysis for In-116 metastable state m1 54.3 minute decay fit showing 

good random residual spread. ............................................................................................. 124 
Figure 6.12.  Decay fit line for In-116 ground state with m1 state subtracted. .......................... 125 

Figure 6.13.  Detected GaInSn activity on CZT with ground and m1 component fits. .............. 126 
Figure 6.14.  Three decay components of CZT detector counts from decaying GaInSn. .......... 127 
Figure 6.15.  Comparison of PDD between In-116 ground state and m1 decay radiation. ........ 129 

Figure 6.16.  In-116 m1 state decay betas and gammas dose quantification to tissue for a 45 

minute cycle of activations and decays from a pair of activation/decay boluses. .............. 132 
Figure 6.17.  10 minutes of decay spectrum counting on the HPGe detector from Pu-Be 

Activation showing strong In-116 metastable state 1 decay. .............................................. 136 
 



1 

 

CHAPTER 1  

INTRODUCTION 

Despite being originally developed as a method of delivering radiation dose in a 

therapeutic capacity, this work evolved to also target an additional application in the field 

of radiation detection.  While both applications of this method, radiotherapy and 

detection, utilize a similar system of material activation and transport, their ultimate uses 

are distinctly different and warranted the inclusion of several sections that are unique to 

one application or the other.  The physical activation, transport and application of the 

activated isotope along with the theory, modeling and experimental testing are the same 

for both concepts and so those sections are combined whenever possible.  Descriptions of 

theory and results specific to each possible application are described separately.   

1.1    Background - Radiotherapy 

Treatment methods for cancer using radiation therapy have been in use since 1896 

when X-Rays were first reportedly used to treat cancer [1].  This treatment was just 

months after Roentgen first discovered how to produce X-Rays in a laboratory setting 

without the use of radioisotopes.  The ability to treat parts of the body inaccessible to 

traditional surgery has led to the widespread adoption of additional forms of radiation 

therapy, each method taking advantage of the properties of differing types of radiation.  

Radiation therapy today utilizes everything from X-Rays, electrons and protons, to the 

emerging use of neutrons, heavier nuclei such as helium or carbon [2], and exotic 

particles like muons [3].  Proton therapy for the treatment of prostate cancer, which has 

only recently become accessible to most patients, was first proposed for use in cancer 
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therapy in 1946 [4].  While the usefulness of radiation in destroying cancer cells has been 

apparent for quite some time, an increased understanding of radiation effects and rapid 

technological advancements have led to safer, more targeted and effective use in 

treatments.  Patients now have broad access to radiation therapy as the technology to both 

produce and deliver the radiation has been making steady advances. 

Radiation treatments can be generalized into either external or internal delivery 

methods, depending on how energy reaches the targeted area.  External delivery requires 

that the radiation be produced outside the body and is the method by which a majority of 

the previously mentioned radiation types are applied.  Most of these sources of radiation 

are produced through accelerators or high energy gamma ray emitting radioisotopes.  

Internal delivery of radiation is typically known as brachytherapy, derived from the 

Greek word “brachys” meaning short in reference to distance.  Radiation applied in this 

manner has a short range in tissue to avoid depositing energy outside the targeted area.  

Brachytherapy consisting of the insertion of an actual radioisotope into or near a cancer 

tumor was first proposed in 1901 with the use of Radium isotopes [5].  This method of 

treatment has advanced in the current day to the use of multiple types of radioactive 

isotopes to deliver a targeted dose to a tumor when a localized dose is preferable to 

external radiation therapies.  The placement of a radioisotope inside or in close proximity 

to a tumor often spares surrounding tissue, and a recent 2012 study has shown that 

external beam X-Ray therapy and brachytherapy have offered similar outcomes for 

prostate cancer treatment with brachytherapy costing hospitals substantially less than X-

Ray therapy [6] 
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Brachytherapy utilizes isotopes that decay with known emissions of low to 

medium energy gamma-rays and high energy electrons, and this decay radiation is used 

to treat tumors rather than using artificially generated X-Rays or electrons from an 

accelerator as is typical in external beam therapies.  X-Rays and gamma-rays, while both 

referring to high-energy photons, are typically used to describe ionizing photons emitted 

from the electron shell and photons emitted from the nucleus, respectively.  While X-

Rays emitted from the electron shell possess lower energies than gamma-rays emitted 

from the nucleus, artificially created accelerator based X-Rays emitted in the 

bremsstrahlung process can greatly exceed electron-shell X-Rays.  This work will follow 

this naming convention with gamma-rays referring to nucleus emitted photons and X-

Rays referring to both electron shell and accelerator bremsstrahlung produced sources.   

  Traditional high dose rate (HDR) brachytherapy involving the use of a 

radioactive source has been an effective but involved process.  The HDR brachytherapy 

procedure uses a physical, constantly decaying radioactive source that is placed directly 

adjacent to cancerous or other tissues that are targeted for treatment, allowing decay 

radiation to damage and kill the tissue.  HDR therapy is generally defined as a dose rate 

of at least 12 gray per hour (Gy/hr) with a gray being a unit of radiation dose equal to 1 

joule/kilogram of energy deposition.  In comparison, a low dose rate (LDR) therapy is 0.5 

to 2.0 Gy/hr and is typically used for permanent or semi-permanent implantation of 

radioactive “seeds” [7].  Both HDR and LDR therapies have enabled hospitals and clinics 

to provide outpatient treatment for patients since dose can be delivered quickly in as few 

as four treatments with HDR or a single implantation procedure with LDR, compared to 

20 or more clinical visits with external beam X-Ray therapy [6].  
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An effective HDR brachytherapy treatment must deliver radiation dose quickly 

since the procedure involves surgical application of catheters to allow a radioactive 

isotope to be placed in close proximity to the treatment volume.  Several catheters are 

inserted near the treatment site and the radioactive material is inserted using remote 

handling into each catheter at intervals corresponding to the desired dose.  This process 

of source insertion using a shielded system that is remotely operated is known as remote 

afterloading, and has been in use since the 1960’s.  This system does not require a doctor 

or therapist to handle or manually insert the source and spares support personnel from 

unwanted dose [7].  HDR afterloading treatment rooms require substantial shielding and 

safety interlocks, on the order of 18 inches or more of concrete compared to LDR 

treatment rooms which can often be performed in existing retrofitted X-Ray rooms. 

Candidate isotopes for use in both HDR and LDR procedures must possess half-

lives of at least several days since they cannot be produced on site and must be shipped to 

treatment clinics and hospitals after being produced in reactors or accelerators.  The 

shortest half-life used for permanent implants is gold-198 (Au-198) with a half-life of just 

2.7 days. These isotopes therefore must be manufactured continually and quickly shipped 

in order to be utilized in treatments.  A traditional isotope used for HDR therapy, iridium-

192 (Ir-192) has a half-life of 73.8 days and requires replacement three to four times a 

year at an annual cost of up to $15,000 as of 1993 [8].  Additional complications arise 

from the issue of dealing with shipping and receiving of these isotopes which must be 

shielded during storage in between patient treatments.  These very active sources require 

remote handling procedures at the treatment site to prevent unwanted dose to therapy 

personnel [9]. 
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Treatment plans for patients must account for the continuously weaker source 

used in HDR brachytherapy as the isotope decays between treatments.  As is the case in 

treatments using the common isotope Ir-192, with a half-life of about 74 days, the 

intensity of the source is cut in half every ten weeks and procedure times must therefore 

increase in duration by an inverse amount in order to deliver an equivalent radiation dose.  

Because of this continual decay, the Ir-192 seeds used are replaced every three to four 

months to maintain a high dose rate delivery system [10].  Isotopes with longer half-lives 

such as ruthenium-106, Ru-106, with a half-life of over 1 year do not require replacement 

as frequently but still require twice as much treatment time after one half-life has passed.  

Ru-106 requires replacement if a sufficient dose delivery rate over time can no longer be 

maintained, especially if a high dose rate is required for cancer cell control or if a short 

procedure time is required.   Replacement costs and complexity can quickly add up as the 

sources have a fixed limited shelf life, whether or not they are being utilized in 

treatments.  

Because radioisotopes are not typically produced onsite at treatment locations, 

isotopes with half-lives sufficiently long to survive shipping and transport must be used.  

In contrast, half-lives must not be exceedingly long since the isotopes must also decay 

quickly enough to deliver radiation dose in a desired amount of time.  Additionally, a 

longer lived isotope also requires a larger mass of isotope to deliver dose due to a reduced 

specific activity (activity per unit mass) compared to shorter lived isotopes, placing an 

upper limit on half-life since large masses become non practical for clinical use.  Longer 

lived isotopes used in brachytherapy include cobalt-60 (Co-60 half-life 5.27 years) and 

cesium-137 (Cs-137 half-life 30.08 years) with source diameters up to 6-8mm.  These 
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sources are used in LDR, MDR (medium dose-rate) or intracavity irradiation where 

source diameter is not as critical.  The shorter lived Ir-192 sources have diameters down 

to 0.59mm [8], small enough for usage in 20 gauge needles, and can be used for size 

restricted intraluminal applications, or uses of the source in small openings like vessels 

and organs.  This dual requirement for quick dose delivery and small source size makes 

very slow decaying isotopes impractical for brachytherapy use.  These two conflicting 

needs for an isotope that can both survive shipment while still providing fast dose 

delivery places a half-life time window around useful brachytherapy isotopes and greatly 

limits the potential candidates for therapy.  The most common isotopes in use for 

brachytherapy are typically constrained in half-lives from 2.7 days for Au-198, used in 

seed implantation, to an upper end of 30 years for Cs-137 used in LDR procedures [7].  

This window of useful half-lives is illustrated below in Figure 1.1 with comparative 

isotopes including potassium-40 (K-40) and carbon-14 (C-14), two isotopes present in 

organic matter.  By contrast, In-116 is an order of magnitude shorter lived than Au-198. 

 

Figure 1.1  Half-life comparison for medically useful brachytherapy isotopes (highlighted 

region). 
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This half-life window also limits the type of decay radiation that can be used in 

treatments to gamma-ray emitters with a few exceptions.  While electrons may be 

superior to x-rays in many applications, isotopes with at least a several day half-life tend 

to emit lower energy beta decay radiation with energies on the order of or less than 1 

MeV .  These low energy betas are not useful for treatments due to their limited range in 

tissue.  A rough range estimate for electrons in tissue is energy in MeV divided by 3 or 4 

resulting in a depth in centimeters at which percent depth dose is 80 to 90% of maximum 

dose, respectively [11].  Using this rule of thumb an accelerator produced mono-energetic 

6MeV electron beam would deliver a depth dose line of 80% at 2cm, making electrons 

useful for shallow treatments in patients.  With most beta decay isotopes emitting 

electrons below 1MeV, gamma-ray emitters of several hundred keV are instead used 

since these allow sufficient tissue penetration in addition to these types of isotopes 

possessing a sufficiently long half-life to be useful after shipping.  For an isotope with 

pure beta emission to be useful in brachytherapy, high energy decay electrons (greater 

than 2 to 3 MeV) are required that can penetrate a distance of at least several millimeters 

in tissue to provide a targeted dose to a shallow depth.  Since electrons interact 

continuously with tissue due to their negative charge, they have a finite range and never 

deposit dose beyond a cutoff distance that is dependent on their energy.  The maximum 

range for beta decay electrons in any material can be determined by equation 1.1: 

 
         

   

 
  {

       
 

                    

              
 

               1

1.1            
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 with E the electron energy in MeV and maximum range in units of cm
2
/g, 

allowing range to be computed for any density of material [12].  A 3MeV end point 

decay beta in tissue, for example, with density 1.0g/cm
3
 has a maximum range of 1.48 cm 

or 14.8mm.  This results in tissue beyond this depth being spared any radiation dose. 

Gamma-rays, on the other hand, interact probabilistically along their path length, 

sometimes depositing all of their energy in the first interaction, scattering several times 

and depositing energy in random locations, or occasionally passing straight through tissue 

with zero interaction.  If critical structures are to be spared, the use of electrons ensures 

that no dose is deposited by the electron beyond a certain depth.    

In theory, the ideal therapy isotope would emit high energy electrons that possess 

enough penetrating potential, on the order of several MeV, to treat tumors and lack 

gamma-ray emissions that would travel beyond the desired treatment volume.  This 

isotope would also have a high enough specific activity to deliver dose in a reasonable 

amount of time, but not decay too quickly to be used.  One isotope partially satisfying 

these requirements in current use is Ru-106 (and associated daughter product Rh-106), 

with a peak beta emission energy of 3.541MeV and a half-life of 372 days.  A beta decay 

spectrum of this energy, averaging 1.5MeV, can deliver effective dose to treat tumors 

down to more than 4mm in depth, while sparing deeper tissue.  This isotope has been in 

use for quite some time and has seen increasing use for treatments of shallow intraocular 

tumors [13] of the eye where short range of energy deposition is critical.  A long half-life 

of 372 days means that specific activity is reduced and treatments typically require that 

the source be temporarily implanted in the eye to deliver dose over several days due to a 

low dose rate.  No pure high energy beta emitters with a half-life less than Ru-106 are 
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currently in use for therapy since a majority of energetic pure beta emissions occur with 

short half-lives on the order of hours or less.  While isotopes with a much shorter half-life 

would allow quicker dose delivery of the beta radiation and a simplified treatment, 

production and transport to the clinic or hospital for onsite use is not possible since most 

of the isotope would have decayed during transportation.  Even traditional therapy 

isotopes like Ir-192 and Cs-137 require expensive production infrastructure and are 

created in large accelerators or nuclear reactors, making on-site production impractical. 

An illustration of the challenges in the medical community's dependency on 

manufacturing and shipping infrastructure for medical isotopes is the recent disruption to 

supplies of technetium-99m, or Tc-99m. This isotope is critical to the medical diagnostic 

field for its usage in myocardial stress tests.  Tc-99m is a daughter product of 

molybdenum-99, Mo-99, with half-lives of 6 hours and 66 hours, respectively.  Mo-99 is 

produced in only a few nuclear reactors around the world and then immediately shipped 

to facilities for use.  None of the Mo-99 used in the US is produced in domestic reactors 

with 100% of the supply coming from outside the country.  With a 2.75 day or 66 hour 

half-life, Mo-99 must be rapidly transported to customers and used before decay 

eliminates medical effectiveness.  Any temporary interruption in the production at the 

reactors creates an instant supply shortage within days.  With around 9 million of these 

procedures performed every year in the US, a reactor outage for just a few days creates 

significant issues for the healthcare system [14].  Mo-99 is a unique case in that it is 

produced through the intentional fission of highly enriched uranium-235 (U-235) foils, a 

heavily regulated material, and is not produced in any US reactors despite a high volume 

of use in diagnostic imaging.  A main source of Mo-99 from Canada, the NRU reactor at 
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Chalk River, is scheduled to eventually cease production which is driving demand for 

alternatives to the current method of U-235 target materials as a source [15].  Many 

therapy isotopes, including Ir-192 and Au-198, are manufactured using neutron capture 

on stable metals, making their production subject to less regulation and expense 

compared to Mo-99.  Longer half-lives for therapy isotopes like Ir-192 and Cs-137 also 

reduce the dependency on a continually renewed supply and can withstand short 

disruptions in supply.  Nevertheless, radiation therapy clinics remain dependent on an 

external manufacturer for delivery of their isotopes. 

Even with a reliable supply of manufactured therapy isotopes, rapid decay of 

isotopes during transport to the treatment facility still prevents the use of very short half-

life isotopes, eliminating the possibility of using potentially superior decay radiation 

properties.  This lag time between production and use means that if short lived isotopes 

are desired for treatment or diagnostic applications, they must be produced on site or in 

very close proximity to the application location.  Short lived isotopes that can only be 

produced in a sufficient quantity in nuclear reactors or that require large accelerator 

infrastructure have severely limited practicality and are not feasible for clinical use.  This 

limits the use of short lived isotopes to those that can be produced on site with a cost 

effective method such as a small accelerator. 

1.2    Summary of the Current Work - Radiotherapy Application 

The ability to produce a radioactive isotope on-site at a clinic has been hampered 

by the traditional requirements of a large accelerator or nuclear reactor to either 

transmute an isotope or for production through fission products.  If instead a radioactive 
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therapy isotope could be produced with a neutron source directly at a clinic or hospital 

site and immediately used for treatment, the potential number of elements to be used for 

treatment or imaging procedures increases dramatically.  Neutron production technology 

is advancing rapidly with sources becoming more compact and higher yielding.  

Additionally, existing accelerators that produce high energy X-Rays for external beam 

therapy (EBT) are already in use at most radiation therapy clinics.  These existing units 

possess sufficient electron/photon energy to produce neutron fields [16] and can actually 

be optimized to produce even more significant neutron fields, a normally unwanted 

byproduct in high energy X-Ray use.  These fields can be utilized in the activation and 

immediate pre-treatment production of medical isotopes.  Therefore the potential exists 

for the production of a medically useful isotope onsite at therapy locations using either 

new, compact neutron production technology or existing infrastructure. 

An ideal candidate for radiation therapy to tissues of shallow depths emits a pure 

high energy beta spectrum.  Therapies that currently use or could benefit from energetic 

beta radiation treatment include shallow eye lesions [17] and intravascular brachytherapy 

[18] where radiation dose is restricted to depths of only millimeters.  With the 

brachytherapy placement of sources in multiple locations using small needles in HDR 

treatments, even larger tumors can be targeted with short range beta particles.  A pure 

beta spectrum removes the unwanted dose delivered by gamma-rays which can travel 

great distances through a patient.  High energy means a minimum of several MeV, 

providing these betas enough penetration capability to reach tissue depths of several 

millimeters and making them effective for tumor and lesion treatments.  This ideal 

therapy candidate also should decay rapidly to a ground state, allowing it to quickly 
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deliver dose to the target tissue and then require zero shielding in between patient 

treatments, unlike traditional therapy isotopes.  It should not decay so rapidly, however, 

that it decays away before moving from onsite production to the patient.  Finally, this 

isotope should reach sufficient radioactive levels when exposed to a neutron source of 

moderate intensity, such as what might be possible to achieve with a small accelerator in 

a hospital or clinic setting.  When dealing with neutron interactions the cross section, a 

unit of area, is used to quantify the probability of an interaction taking place.  Therefore 

this candidate isotope must have a high activation cross section, or probability of 

capturing a neutron, when exposed to a neutron source. 

An ideal candidate matching all of these qualifications is an isotope of indium, In-

115.  This metal exhibits several properties that can be capitalized on for dose delivery in 

tissue.  First, the activated isotope of indium, In-116, is a nearly pure beta emitter, 

decaying by beta emission in 99.977% of decays.  This decay process is almost 

completely beta emission as only about 2% of these decays result in the emission of an 

associated gamma-ray.  Additionally, the beta decay process emits a single high energy 

beta in 99% of beta decays with a maximum end point of 3.274 MeV [19] and an average 

energy of 1.365 MeV , penetrating tissue to a depth of more than 9mm [20].  This single 

emission of a beta particle makes dose calculations substantially easier and the small 

fraction of gamma-rays, in only 2% of emissions, greatly reduces dose to surrounding 

tissues.  Additionally, this isotope quickly decays to a stable ground state of tin (Sn-116) 

with a half-life of only 14.1 seconds.  This short half-life means rapid transport from an 

on-site production location to the patient is possible and quick dose delivery to the 

patient.  Fast decay also eliminates the need to shield the indium both before and in 
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between treatments.  Finally, In-115 exhibits an excellent neutron capture cross section, 

with strong resonance regions in the thermal range where the probability of capture is 

even higher.  In fact, this high probability of neutron capture is often used to quantify 

neutron fields with indium foil activation being a common method of measuring neutron 

energies and fluences at reactors, accelerators and medical facilities [38]. 

The isotope of indium chosen here as a candidate for therapy, In-115, is a 95.71% 

component in natural indium.  The only other stable isotope of indium, In-113, makes up 

the remainder at 4.29%.  This high natural weight percent of In-115 provides a major 

additional benefit in that indium can be used in a natural form without the need for 

isotopic separation, a costly procedure used to "purify" elements into their isotopic 

constituents.  Neutron capture on the minor isotopic component, In-113, produces In-114 

with a half-life of 71.9 seconds and decays by beta emission with an endpoint energy of 

1.99 MeV and average energy of 778 keV.  A single rare gamma is associated with this 

decay in only 0.139% of decays.  Neutron capture on In-113 for thermal neutrons are also 

one order of magnitude lower than that of In-115, making the fraction of activated In-114 

less than 0.5% and its contribution to dose negligible. 

Indium in a pure form exists as a metallic element with a relatively low melting 

point of 157 degrees Celsius.  In a metallic form, indium is very soft and malleable 

making it common for use in manufacturing and the low melting point makes it a 

common addition to solder [39].  Solid indium could be irradiated in a neutron field, 

producing In-116, and then moved to a treatment site to be used in a similar fashion to 

traditional brachytherapy sources.  However with a half-life of only 14.1 seconds this 

process would need to happen quickly for the In-116 to remain useful.   
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This work investigates a novel method of applying the activated indium beta 

decay to a treatment site by rapid creation, transport and flexibility in application to 

treatment sites by using a very unique form of indium in a liquid at room temperature 

eutectic mixture.  When mixed with the elements gallium and tin, indium forms a eutectic 

mixture that does not solidify until -19 degrees Centigrade [40].  This mixture consists of, 

by weight percent, 68% gallium, 9.5% tin and 22.5% indium [41] with a density of 

6.44g/cc and creates great flexibility in how the indium can be irradiated, transported, and 

applied to the treatment site.  This eutectic mixture is often marketed under the 

commercial registered trademarked name Galinstan®  as a portmanteau of the 

components gallium, indium and stannum (Latin for tin), and is generally considered 

non-toxic to humans [42] and relatively inexpensive at $2 to $3 a gram in small 

quantities.  Since it is generally considered safe for humans Galinstan® is being used as a 

mercury replacement, especially in thermometers for the healthcare industry [43].  The 

mixture will generally be referred to as the eutectic or an abbreviation as GaInSn in the 

work if not referred to by its trademarked name. 

Through the use of a liquid metal transport mechanism, the indium can then be 

transported from the neutron source to the treatment site by pumping the mixture through 

non-metallic tubing and connections.  This allows the patient to be protected from the 

neutron source while still allowing quick transportation of the activated indium to the 

treatment site.  Additionally, a liquid carrier for the indium means that custom application 

shapes can be applied and treatment is no longer limited to a physical seed which is 

moved into place temporarily and moved incrementally to create a dose distribution.  

This flexibility to spread out the activated isotope opens the possibility to use the indium 
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in the treatment of larger surface area lesions, like skin cancer, by applying radiation to 

the lesion using custom shaped applicators that contain the mixture but allow radiation to 

pass into the target area.  The system examined here is a closed loop system, and the 

indium containing eutectic is re-circulated to be activated again after decay.  To allow the 

decay beta particles to reach the treatment area, a thin window applicator is used to 

reduce attenuation of the energetic electrons while still containing the indium mixture.  A 

conceptual outline of this process is illustrated in Figure 1.2.  Despite the flexibility of 

using GaInSn, a major challenge that must be dealt with is the corrosiveness of the 

mixture to metals.  Galinstan cannot be stored, transported or placed in contact with 

metallic elements as the mixture will quickly corrode and dissolve the metal.  This 

presents the unique challenge of using completely non-metallic components for the 

containment and transport of the mixture, including pumping mechanisms. 

 

Figure 1.2  Conceptual design of the In-116 activation and dose delivery system. 
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The work presented here demonstrates the feasibility of such a system and 

provides models of the effectiveness of this method for the possible treatment of 

cancerous tissues and lesions.  These models consist of both Monte-Carlo radiation 

transport predictions of activation efficiency and dose delivery using GaInSn activated by 

three types of neutron sources, and also examines analytically based predictions of the 

liquid transport system.  Physical testing results and dose measurement using actual 

neutron sources are also presented and analyzed for two of the neutron activation sources.  

Dose to actual human tissue is predicted based on experimental results with radiation 

detectors.  Finally benefits and challenges of each possible combination of neutron source 

and activation/delivery mechanism as a clinic treatment method are examined. 

1.3    Summary of the Current Work - Radiation Detector 

In addition to use in the medical field as a radiation therapy method, a potential 

use for this technique emerged based on how neutron activation in the material is 

quantified.   The goal of keeping the activating neutron source and the decay beta source 

isolated from each other for patient safety translates to this technique also being used to 

measure the neutron output from a neutron source at a distance.  A direct relation 

between the activating neutron fluence and the resulting beta particle decay emission can 

be determined with knowledge of the flow properties of the system and the time of 

irradiation.  Using measured irradiation time, flow rate, and beta decay on a detector the 

original neutron source activity can be determined.  This system features a method of 

placing an activation material, indium in this case, near the neutron source and 

subsequently transporting the activated material to a detector which can be placed outside 
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of any shielding or obstacles and have no need for electronic components near the 

neutron source.   

The ability to place a radiation detector remotely from the data acquisition or 

analysis location has several uses in the nuclear power industry including the placement 

of a probe within a reactor core where space is at a premium and high neutron fluence 

can quickly damage most traditional detectors.  Additionally, a probe such as this can be 

used in waste mitigation areas like the Hanford superfund site location where cleanup 

crews need to determine activity and contamination inside pipes and vessels used to 

house waste.  These locations can require that radiation probes travel long distances in 

confined areas that are difficult to access.  In potentially the most beneficial application 

of the system, a detector making use of a probe with activation material and no 

electronics near the probe point can be placed near pulsed radiation sources that emit 

large amount of electromagnetic interference (EMI) in addition to radiation.  Application 

of the system in this type of environment was demonstrated in this testing when used 

with the Dense Plasma Focus pulsed neutron source. 

Current radiation detectors used in harsh, high radiation environments like waste 

mitigation areas or inside nuclear reactors have typically relied on gas filled detectors due 

to their ability to utilize gamma-ray discrimination and withstand high fluence rates 

without damage.  These detectors use ionization and collisions with gas molecules by 

radiation particles, and recombination of the gasses subsequent to detection preserved 

their ability to detect radiation.  Gas filled detectors also offer resistance to transmutation, 

or the conversion of the atom to a different isotope when impinging radiation changes a 

proton or neutron in the nucleus.  High radiation areas are typically limited to gas 
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detectors due to the effects of radiation on solid detectors.  Scintillation detectors, that 

utilize solid materials which convert radiation to light, are often susceptible to damage 

from neutron fields and also have trouble distinguishing gammas from neutrons.  Neutron 

activation materials can be used which take advantage of intentional transmutation of the 

atoms in the material, in contrast to the damaging effects this transmutation causes in 

most solid detectors.  Activation materials must be placed manually and then retrieved 

and counted on a remote detector every time a measurement is to be made, and 

continuous measurement is not possible.   

The current system solves the issue of placing and retrieving activation materials 

by containing the activation isotope in the transported liquid medium.  With an on 

demand movement of activation materials, continuous measurements can be made and 

meet an important need in reactors for tracking radiation fields and neutron fluences over 

time.  In contrast to using the neutron source to induce radioactivity in the GaInSn for 

production of decay betas for medical use, the decay betas are instead used to infer the 

amount of neutrons intersecting the material near the neutron source.  This can be 

accomplished by a well characterized system with known flow properties and irradiation 

times.  Of particular interest is the use of this system with a pulsed neutron source like the 

DPF.  The DPF, a high output neutron source, also emits strong pulses of EMI which can 

damage detector electronics.  This pulsed source requires that radiation measurement 

instrumentation be adequately shielded from EMI or placed at a distance from the source 

of EMI to reduce damage or interference.  Because the system needs to be close to the 

DPF to pump the GaInSn, the detection electronics used to quantify decay betas were 

placed in an EMI shielded box with the GaInSn mixture pumped through tubing to the 
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source through a copper pipe extension on the EMI shielded box.  This setup served the 

dual purpose of making decay beta measurements for use in medical application while 

also demonstrating a detection system capable of measuring neutron radiation from a 

pulsed source.  A direct comparison of measured beta decay radiation amounts to a 

known, independently measured activating neutron fluence is presented here for several 

DPF shots to demonstrate the ability of the system to be used as a neutron measurement 

device.  
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CHAPTER 2  

REVIEW OF RELATED LITERATURE 

2.1   Traditional HDR Brachytherapy with Iridium-192 

 Decay radiation from the most popular HDR brachytherapy source, Ir-192, 

consists primarily of gamma-rays emitted after beta decay of the parent nucleus.  Four 

primary gammas are emitted during this decay with energies of 316keV, 468keV, 

308keV and 295keV respectively in order of intensity.  The preceding beta decay emits 

two betas with relatively low end point energies of 669keV and 533keV, which would 

exhibit a very short range in tissue but are absorbed in the shell cladding material used to 

seal the source and therefore do not contribute to tissue dose.  The associated gamma-

rays are therefore the primary radiation used to treat tissue near the Ir-192 seed.  While 

these gamma-rays deposit most of their energy by Compton scattering within several 

centimeters, they also can travel much deeper than the tumor volume due to the 

probabilistic interaction of gamma-rays with matter and deposit dose in unwanted areas 

of the body.  Additionally, these gamma rays are a major hazard when the source is in 

storage or being transported as they must be adequately shielded.  Because of these 

gamma-rays, the source must be remotely handled and stored and shipped in shielded 

containers. 

Ir-192 is produced by neutron irradiation in nuclear reactors, with the stable Ir-

191 being exposed to thermal neutrons and transitioning to Ir-192 through neutron 

capture.  Because Ir-192 can be produced from a stable isotope, there are fewer 

regulatory and legal issues than the production of Mo-99 and Tc-99 which rely on highly 
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enriched uranium foils.  Ir-192 can be produced in most high neutron flux reactors.  

When used for medical treatments, a source typically is activated to 10Ci or more, while 

industrial sources for radiography are much hotter at 20 to 150Ci [21]. The most common 

use for Ir-192 is in non-destructive testing, with decay gammas used for radiography in 

industrial applications to test for flaws in materials and structures.   

While the primary application of Ir-192 seeds is for prostate cancer therapy, this 

isotope is also used to treat breast cancer and some head and neck tumors.  These 

methods use catheters placed into and around the tumor which then follow with the HDR 

seed being fed into the catheter attached to a wire.  These procedures require careful 

planning and execution, as a stuck or broken HDR source can cause major complications 

in such a delicate process.  Other uses of brachytherapy include the treatment of lesions 

using rectal, vaginal, intraluminal, and nasopharyngeal applicators.  In contrast to HDR, 

LDR therapy involves the use of permanent implantation of radioactive seeds into tumor 

regions that slowly decay and deposit dose until they reach a ground state.  This method 

is not hampered by the need for off-site production of isotopes since the lower activity of 

LDR seeds makes them suitable for shipping. 

2.2    Uses of Beta Decay in Radiotherapy 

The use of beta decay in radiotherapy has seen more specialized applications than 

gamma-ray emitters like Ir-192 due to the short range of the charged beta particles in 

tissue.  However, this short range can be an advantage when treatment of shallow lesions 

requires that dose be delivered quickly with very little penetration beyond the lesion.  An 

example of this is the use of Rh-106 with a 371 day half-life decaying to Ru-106 with 
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subsequent decay by high energy beta emission (3.54MeV endpoint).  Rh-106 has been 

used in the treatment of ocular lesions, like retinoblastoma, and recently for ocular 

melanoma [23].  In-116 decays offer a comparable beta decay energy to Rh-106. 

Studies have also been examining the use of both beta and gamma emitters for use 

in intravascular brachytherapy.  This process uses radiation dose to inhibit restenosis after 

angioplasty but requires dose to be delivered within a very narrow depth of millimeters.  

A study found sufficient depth of penetration can be achieved with electrons above an 

energy of 1MeV [22].  This application of betas to intravascular brachytherapy requires 

10-30 Gy of dose delivery. 

2.3    Electronic Brachytherapy 

A very new and emerging technology that is competing with some uses of 

radioactive seed HDR brachytherapy is the utilization of small, low energy X-Ray 

sources.  The novelty of these sources are their miniaturized sizes, on the order of 2 

millimeters, allowing them to be used in situations where internal application of radiation 

is desired.  Xoft Inc is one of the leading developers of this technology and uses sources 

that produce 50 keV X-Rays that can be placed inside catheter tubes [24].  This 

technology is already FDA approved for the treatment of breast and cervical cancers and 

is also entering widespread use for skin cancer treatments.  The use of 50 keV X-Rays 

means shallow dose deposition, and delivery of 80% of dose within 2 millimeters.  

Additionally, the small source mimics the HDR brachytherapy method in that it can be 

placed directly near cancerous tissue.  These sources are often marketed as "electronic 

brachytherapy" which further exhibits their goal of competing with conventional isotope 
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based therapy.  A major benefit of this electronic brachytherapy is the lack of isotopes 

that need to be stored, replaced, and remotely handled.  The miniature X-Ray tube is 

either "on" or "off", and presents no radiation hazard when powered down.  Despite these 

benefits, however, these sources still utilize X-Rays which travel through and deposit 

dose in the tissue well beyond the treatment volume.    

2.4    Current Uses of GaInSn 

The applications for metals like GaInSn have expanded as mercury is removed 

from the market due to health concerns.  Favorable physical properties such as remaining 

liquid above -20C until a boiling point of 2300C provides for a wide range of 

applications.  GaInSn is generally seen as a safe alternative to mercury for common 

applications such as thermometers and dental fillings [25][26] and is generally regarded 

as non-toxic and safe to work with [27].  GaInSn and similar liquid metals are also 

finding applications in more uncommon areas that utilize the liquid nature of the material 

such as dynamically tunable antennas [28], varying inductors [29], and even for usage in 

cooling and heat transfer of electronics [30].   

Another intriguing new application of liquid metals with direct application to the 

usage of a eutectic in radiotherapy is the movement and pumping of the material through 

the process of Magnetohydrodynamic (MHD) pumping investigated at Purdue University 

[31].  This method utilizes the Lorentz force generated by passing a current through a 

material while subject to a magnetic field.  Major benefits of this method for a material 

like eutectics include the ability to pump the fluid with no mechanical parts, eliminating 

wear or corrosion issues.  The researchers at Purdue were able to move liquid GaInSn 



24 

 

with a cross sectional area of 4mm x 0.5mm at a rate of 10mm/s using a small MHD 

micro-pump and gold electrodes.  This rate is too slow for the current radiotherapy 

application being investigated involving a short 14 second half-life.  However MHD 

pumping of GaInSn was shown to be feasible and while this micro-pump was not 

designed for large volumes, the pump could be scaled up to use higher currents and 

magnetic fields.  Challenges facing this work included dealing with significant surface 

oxidation of the GaInSn which can make pumping difficult.  Correspondence with the 

authors found that further work was awaiting funding and that providing a thin layer of 

oxidation to reduce wetting and stalling of the eutectic was being considered [32]. 

2.5    Neutron Detection Methods 

In addition to radiotherapy, this work investigates the feasibility of a pumped 

eutectic based system as a neutron detection method.  Neutron detectors are unique in the 

world of radiation detection and monitoring due to the uncharged nature of neutrons and 

their weak interaction with materials.  Compared to X-Rays and gamma rays that readily 

interact with the electron clouds of materials, an uncharged neutron can only interact with 

the nucleus of a material.  The small relative cross section of the nucleus makes neutron 

interactions less probable than interactions that occur with electron clouds.  Additionally, 

neutrons must be absorbed or scatter off the nucleus and result in either emission of a 

charged particle through decay or physically impart enough energy to a light nucleus that 

it recoils as a charged particle, such as scatter from hydrogen.   

Neutron detection methods can be generally categorized as scatter reactions that 

rely on the neutron to impart kinetic energy onto the nucleus causing it to recoil or enter 
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an excited energy state, and capture reactions that rely on physical capture of the neutron 

in the nucleus with a resulting new isotope that then decays or emits a secondary particle.  

Which method is utilized depends on the neutron energy of interest and whether energy 

discrimination is desired.  Scatter reactions are generally limited to light isotopes, like 

hydrogen, where a large portion of the neutron energy can be transferred.  These are 

sometimes called proton recoil detectors, although recent work has been done to utilize 

heavier elements like helium [34].  Inelastic scattering, with a neutron escaping but 

leaving a nucleus in an excited state, can be used as a threshold reaction since the neutron 

must have enough initial energy to excite the nucleus into a quantized state.  Inelastic 

scatter has found recent applications in the measurement of fusion neutrons in new test 

reactors due to an inherent ability to discriminate high energy from low energy neutrons 

[35].  Capture reactions, on the other hand, rely on the total absorption of the neutron and 

result in transmutation of the capturing atom to a different isotope with one additional 

neutron.  Sometimes this new isotope is unstable, or radioactive, and will decay be 

emission of a particle that can then be detected.  Helium-3 (He-3), lithium and boron are 

the most well known elements used for the capture and detection of thermal neutrons in 

gas, with lithium and boron also integrated into solid detectors. 

Modern needs and drives for neutron detector development tend to be for 

applications in fusion work, both for energy and stockpile stewardship, and for next 

generation fission reactors.  Indium has become a standard neutron activation material for 

higher energy fusion neutrons due to an inelastic scattering reaction with a 336 keV 

threshold, thus eliminating contribution from scattered neutrons.  Other novel uses of 

isotopes are being explored including more exotic metals like the use of praseodymium 
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for the detection of neutrons above 10MeV [36]. Researchers are continually looking at 

hundreds of isotopes that offer various advantages for the detection of neutrons of 

varying energies.  The ideal isotope for a particular application is chosen based on 

energy, decay time, decay particles, cost and availability/purity of the activation material. 
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CHAPTER 3  

THEORY 

3.1    Neutron and Gamma Material Activation Sources/Accelerators 

Transforming a stable element into a radioactive isotope requires altering the 

proton to neutron ratio in the nucleus in order to push the element towards instability.  

This is often done through the removal or addition of neutrons, both of which cause the 

isotope to change in atomic weight and become radioactive if the new isotope is outside 

the range of stability.  Methods for adding and removing neutrons include accelerators 

and nuclear reactors depending on what reaction is desired.   

To remove neutrons, a common technique is the use of an accelerator to bombard 

the target nuclei with high energy protons, electrons or X-Rays.  With proton 

bombardment a neutron is ejected from the nuclei with replacement by a proton, a 

process abbreviated as a (p,n) reaction, which increases the proton to neutron ratio of the 

nucleus.  Using electrons or X-Rays, ejection of a neutron occurs by overcoming the 

binding energy of a neutron in the nucleus, a process that also increases the proton to 

neutron ratio.  The use of X-Rays in this method is referred to as a photonuclear 

interaction and this process favors higher atomic number nuclei, or high Z material, 

where the binding energy per nucleon is reduced and strong resonances exist that allow 

emission of a neutron.  Because of this process, high energy X-Ray sources sometimes 

avoid the use of high Z materials like tungsten for shielding to reduce excessive 

photoneutron production. 
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In contrast to removing neutrons from nuclei, increasing the number of neutrons 

in a nucleus is often accomplished through exposure to a neutron field produced by a 

reactor.  Many commonly used medical isotopes are produced in this fashion.  Nuclear 

reactors typically operate in the thermal range with neutron energies averaging 0.025eV.  

This is advantageous for neutron capture reactions since capture cross sections generally 

increase as neutron energy decreases, with certain resonance regions exhibiting strong 

peaks in neutron capture probability.  The higher probability for capture of thermal 

neutrons is due to their low energy, causing them to preferentially capture in the nucleus 

rather than scatter away or cause ejection of another nucleon, as is more probable for 

more energetic neutrons. Neutrons that are captured in the nucleus cause the isotope to 

transition to a heavier state, thus changing the mass number of the element and shifting 

the isotope towards a higher neutron to proton ratio.  This can be repeated as the nucleus 

captures additional neutrons and transitions further to heavier isotopes.   

When discussing neutron interactions, "cross section" becomes a dominant term 

used to reference the probability that certain interactions will take place.  The probability 

of neutron capture resulting in the emission of a proton, for example, would be presented 

as the (n,p) cross section in units of barns with one barn equal to an area of 10
-24

cm
2
.  

This cross sectional area definition is the projected area of the nucleus for a particular 

reaction.  In reality this is not a physical area since the probability of an interaction can 

vary greatly with the velocity of the neutron.  But reaction cross sections in units of barns 

are proportional to probability and are used for the calculation of interaction probabilities 

ranging from millibarns (mb) to megabarns (Mb) [55].  Neutron cross sections are both 

calculated using theory and measured in the lab for various materials and continually 
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refined by experimenters with results compiled into several international databases.  

Accurate cross sections are essential to working with and understanding neutron 

reactions.  

The technique of converting In-115 to In-116 investigated here could rely on a 

reactor neutron flux, but treatments would become prohibitively expensive and 

complicated since treatments using the short 14 second half-life would be required to take 

place immediately adjacent to a reactor.  Testing has been performed with three types of 

neutron sources that could potentially be used in a clinical setting including a fixed 

neutron emitting radioisotope, a pulsed fusion neutron emitting source, and a high energy 

X-Ray source used to produce photoneutrons.   

Activation of In-115 was first tested with a neutron emitting radioisotope source 

that produces neutrons continuously without the use of accelerators.  This semi-

permanent neutron source (Pu-Be) is a mix of two metals, plutonium and beryllium.  Pu-

Be sources produce neutrons when the beryllium metal is exposed to an alpha decay 

source, Pu in this design.  Plutonium-239, with a half-life of 24,000 years, decays 

primarily through the emission of alpha particles and offers an extremely long useful 

lifetime.  Similar sources of neutrons use other alpha emitting isotopes like Polonium-210 

or Americium-241, an isotope commonly found in household smoke detectors.  High 

energy alphas from this decay remove a neutron from the beryllium atom, the (,n) 

reaction, resulting in neutrons of a broad spectrum with an average energy of 4.5MeV.  

While useful as a continuous source of neutrons, this type of neutron source is not 

practical for clinical use due to the low neutron production efficiency and output, on the 

order of 10
7
 neutrons per second for a typical 2 Curie source.  The high expense and 
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overhead of a permanently radioactive source utilizing the (,n) reaction on Beryllium 

relegates these (,n) neutron sources to the research lab.  

Pulsed neutron sources are more practical than (,n) sources for use in a clinical 

application.  Commercially available pulsed sources, often referred to as "sting tubes", 

produce neutrons from the fusion reaction of the two heavy isotopes of hydrogen, 

deuterium and tritium.  These sources are commonly used in the oil and mineral 

industries for exploration purposes, produce higher neutron outputs than (,n) sources 

and can only produce radiation when powered on.  A typical deuterium fueled sting tube 

produces on the order of 1.5x10
7
 neutrons/sec/cm

2
 while a deuterium and tritium fueled 

tube produces approximately eighty times more neutrons, up to 1.2x10
9
 neutrons/sec/cm

2
, 

due to the higher fusion cross section for deuterium and tritium gases [33].  The 

commercial availability and competitive price of these sources makes neutron sting tubes 

a potential candidate for use in this application.   

The third potential neutron source for providing sufficient In-115 activation are 

high-energy X-Ray producing linear accelerators, or LINACS, that are commonly used in 

external beam cancer therapy.  In addition to electrons and X-Rays, these accelerators can 

be utilized as a source of neutrons to provide the required activation of the indium based 

treatment material. Rather than use the high energy X-Rays produced by the accelerator 

for dose delivery to tumors, secondary photo-neutrons produced through photonuclear 

interaction of the high energy X-Rays in the accelerator collimator or a specially 

designed X-Ray target can be used to irradiate the activation material.  These neutrons 

are typically an unwanted side effect in EBT accelerators, and studies have shown that 

significant neutron fields can be produced in the accelerator head.  Liu determined that a 
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Varian 2100 Clinac, a common accelerator used for EBT, produces upwards of 1x10
12

 

neutrons at the collimator per Gy of dose delivered with an average energy of 0.49MeV 

when the collimator jaws are fully closed and the Clinac is operated with an electron 

energy of 20 MV [37].  Typical clinical units can produce 6 Gy/min of photon dose, 

corresponding to a production capability of 1x10
11

 neutrons/sec.   With the collimator 

fully closed, the high energy X-Rays impinge directly on the high-Z collimator producing 

photo-neutrons that suffer very little attenuation and exit the collimator while the source 

X-Rays are almost fully absorbed.  Since the binding energy for nucleons decreases as 

the nucleus becomes heavier, high-Z materials exhibit lower photonuclear thresholds, 

making them ideal for the production of neutrons by high energy X-Rays.  Tungsten, a 

typical shielding material used in the collimator of a Clinac, will start producing 

photoneutrons when the X-Ray energy exceeds 6.2MeV, the threshold in tungsten for the 

Giant Dipole Resonance (GDR) reaction.  A modern 2100C Clinac can operate at 20 to 

22MeV X-Ray energy easily exceeding this minimum reaction energy.  These standard 

clinical accelerators can produce 1x10
11

 neutrons per second by simply closing the 

collimator jaws with no alteration of the accelerator, providing a substantial neutron field 

for potential activation of isotopes on site.   

When restricted to lower energy accelerators where the threshold for the GDR 

reaction in the heavy shielding materials like tungsten is not reached, other materials can 

be placed in the accelerator beam to produce photo-neutrons.  Beryllium can be used as 

an excellent photo-neutron source due to a loosely bound neutron in the nucleus with a 

threshold binding energy for photo-neutron emission with gammas above 1.7 MeV 

yielding 2 alpha particles and a neutron as 
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3.1 

 With a threshold of 1.7MeV, the use of beryllium as a source of photo-neutrons in 

a medium energy accelerator of 6 MV becomes viable as a source of photo-neutrons with 

more than 2/3 of the emitted X-Rays from the accelerator exceeding the threshold.  The 

use of a 6MV accelerator is investigated here with a beryllium target along with the 

application of moderating material to further favor the production of neutrons of the ideal 

energy for activation of indium.  These optimizations are examined in the concluding 

chapters of this work. 

3.2    Beta Emission by Radioactive Decay and Associated Radiation 

Beta particles are high energy electrons emitted directly from the unstable nucleus 

of an atom, as opposed to electrons that exist in the electron orbital cloud.  This emission 

of a beta particle occurs when a neutron in the nucleus transitions to a proton or when a 

proton transitions to a neutron.  The charge of the emitted beta particle will be negative 

during neutron conversion to a proton, known as beta minus decay, or positive during 

proton conversion to a neutron, known as beta plus decay.  Beta plus decay emits a 

positron, a particle with the same mass as an electron but opposite charge, an anti-particle 

of the electron.  These positrons will annihilate with their electron pairs and emit a pair of 

gamma-rays.  Positron emission is used in diagnostic imaging since detection of the 

annihilation gamma-rays can be used to locate their origin in the body, a process used in 

positron emission topography, or PET imaging.  
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  Beta minus decay is most prevalent when an atom contains excess neutrons, with 

a neutron decaying to move the atom to a more stable state.  Atoms can gain an excess 

neutron through neutron capture, or contain an excess number of neutrons as a result of 

decay from a heavier element.  To move the new unstable isotope back to a more stable 

neutron to proton ratio, the emission of the beta particle allows the nucleus to gain a 

proton by conversion of a neutron.  In contrast, isotopes that are lacking neutrons can also 

move to a stable proton to neutron ratio through the emission of a positron as a result of a 

proton transitioning it into a neutron.  This transition can also be achieved through the 

capture of an electron by a proton, a process known as electron capture.  Positron 

emission is less frequent than electron capture due to energy requirements since the mass 

of the resulting neutron is higher than the sum of the emitted positron and resulting 

proton.  This excess mass must come from energy in the nucleus as it transitions to a 

more stable nucleus that has lower total energy. 

In the treatment method examined here, positrons are not considered as a potential 

dose delivery mechanism due to the non-beneficial production of annihilation radiation 

produced when the positron comes to a stop in tissue.  The pair of 511 keV gammas 

produced in the annihilation of a positron and electron result in unwanted dose to the 

patient and isotopes that produce this decay radiation are therefore avoided.  Throughout 

this text it should be assumed that references to beta decay are describing the emission of 

negatively charged electrons rather than positrons.  This process of beta decay can be 

written schematically as 

   
      

      ̅ 3.2 
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with X and Y the nuclear species, or indium and tin respectively in this study, the 

negative beta particle   and  ̅ the associated anti-neutrino.  The parent isotope X gains 

in number of protons Z during conversion of a neutron.  This process for In-116 decay 

and beta emission to tin (Sn-116) is represented as 

 

     
        

        ̅ 3.3 

 

While the process of beta decay generally has a high available energy, up to 

10MeV, beta particles are not mono-energetic.  The coincident emission of an 

antineutrino shares the decay energy in a three body reaction, producing a spectrum of 

beta particle energies rather than a single peak energy as observed with gamma rays.  

This spectrum is illustrated below in Figure 3.1 for the first metastable state of In-116.  A 

beta particle end point energy of 3.274 MeV corresponds to the total maximum energy, or 

Q-value, of the decay.  This energy is shared by the products of decay in equation 3.3.  

Products include the daughter isotope tin, the decay beta particle and an anti-neutrino.  

The heavy daughter nucleus is given negligible kinetic energy, leaving the Q-value to be 

split among the antineutrino, which does not produce measureable interactions in tissue, 

and the beta particle.  Because of this distribution, mono-energetic emission of beta 

particles is never possible and dose calculations must account for both maximum beta 

energies and average energy.  In addition to simple sharing of kinetic energy, beta decay 

energy spectra must also account for energy lost by the beta particle to Coulombic 

attraction from the positively charged nucleus.   The negatively charged beta particle 

loses some energy during emission and escape from the nucleus, resulting in a drop in 
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emission probability at lower energies.  With this effect taken into account, a spectrum 

for In-116 can be calculated as illustrated in Figure 3.1.  

 

 

Figure 3.1  In-116 beta decay energy spectrum with Coulombic effects accounted for. 

 

 This spreading of beta particle energy into a spectrum results in an average 

electron energy of slightly more than one-third the endpoint energy, as illustrated 

previously.  Therefore In-116 exhibits an average electron decay energy of 1.365 MeV.  

This difference between the maximum possible end point energy and the average energy 

of observed betas limits the number of isotopes that are potential candidates for effective 

treatment of tumors due to the relatively short range of beta particles in tissue.  With a 

requirement to treat tissue to a depth of several millimeters, only beta emission with end 

point energies greater than 2 to 3 MeV can be considered for reaching shallow tumors 

due to the average beta energy.  
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Beta decay, by either emission of negatively charged electrons or positively 

charged positrons, is a precursor to gamma emission by the daughter nucleus and these 

gamma-rays can cause unwanted tissue dose even if the beta decay process fits the 

criteria for useful average energy and half-life.  Gamma-ray emission is the result of an 

energetic nucleus transitioning to a stable ground state through the emission of photons.  

A nucleus can be left in an excited state after almost any decay, or it can be bumped into 

an excited state through absorption of energy.  Following beta decay, the daughter 

nucleus is often left in an excited state and must emit one or more gamma-rays to reach a 

stable ground energy level.  Oftentimes these gamma-rays can be quite energetic, 

resulting in dose to tissue beyond the treatment volume.  Therefore it is beneficial to use 

isotopes that beta decay into relatively stable daughter nuclei resulting in the emission of 

few or very low energy gamma-rays. 

3.3    Radiation Dose Therapy and Tissue Interaction 

In the arsenal of tools that are used to fight cancer, radiation can be an effective 

method for stopping the spread of cancerous tumors.  Energy that is deposited in matter 

when radiation interacts with the electrons and nuclei of atoms can be used to damage or 

kill tumor cells.  By targeting tumors or lesions with radiation, treatments can sever the 

DNA strands of cancer cells and stop their spread by inducing cellular death or 

preventing further division.  Current therapy methods utilize several types of radiation 

including gamma-rays, electrons, protons, neutrons and even more exotic particles like 

muons.  The effectiveness of each type varies with the specific treatment required, but in 



37 

 

general the goal of these therapy methods is to deliver as much energy as possible to the 

target tumor or lesion while sparing healthy surrounding tissue. 

The current method investigated here utilizes electrons as a primary method for 

delivering radiation dose to tissue.  Electrons are unique among radiation therapy 

methods due to their small size and negative charge.  The charged nature of electrons 

means that they interact with the electron clouds of atoms and thus are continuously 

experiencing the Coulombic effects of the material they pass through.  This gives 

electrons a finite range in materials as they are continuously slowing down, and thus 

depositing energy, along their entire track length.  Gamma-rays, on the other hand, are 

energetic photons that only interact probabilistically with atoms and have the potential to 

pass through material without stopping or interacting.  Because of this, gamma and X-

rays tend to have much longer ranges in materials than electrons and can reach deeper 

tumors.  Conversely, this penetrating nature can cause issues if the tumor is in a shallow 

area as the gamma-rays will continue through the target tissue and deeper into healthy 

tissue where they can deliver unwanted radiation dose.  High energy X-Ray therapy, in 

fact, often results in skin side effects at both the entrance and exit side as the X-Rays 

penetrate the entire body.  For this reason, electrons are often chosen instead of X-Rays 

for shallow treatment areas that are close to the surface, on the order of several 

centimeters deep. 

Current therapy methods that utilize electrons produce them through the use of an 

accelerator that can provide high energy particles at relativistic speeds.  These electrons 

are rated typically in electron volts (eV), with one eV equal to the kinetic energy that an 

electron would possess if accelerated across a potential difference of one volt.  
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Accelerators can produce electrons with energies into the several million electron volt 

(MeV) range with a 20 MeV accelerator in common clinical usage.  With the rest mass of 

an electron being only 511 keV, electrons with kinetic energy higher than approximately 

5 keV are considered relativistic and can no longer be treated with classical mechanics.  

This 5 keV threshold arises from the rule of thumb that relativistic treatment must be 

used when relativistic momentum differs from classical momentum by more than 1%.  

This can be seen by comparing the classical momentum equation 3.4, with momentum p, 

rest mass of the electron me and velocity v to the relativistic momentum equation 3.5, 

with the addition of the speed of light c: 

       3.4 

 

   
   

√  
  

  

 
3.5 

As velocity v exceeds 0.14c, or 14% the speed of light, the relativistic momentum 

begins to differ from classical mechanics by more than 1% and we must begin to consider 

the particles relativistic.  Equation 3.5 can be expanded on to determine the kinetic 

energy of a relativistic particle as calculated in equation 3.6:   
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With a speed of 0.14c, the kinetic energy of an electron (mec
2
 equivalent rest mass 

of 0.511 MeV) that we must begin to consider relativistic effects is calculated to be 5.08 

keV. This implies that electrons that are dealt with clinically are relativistic in nature as 

their energy easily exceeds several hundred keV in order to reach useful depths in tissue. 

Electrons entering tissue begin depositing kinetic energy through several 

interaction methods including direct elastic and inelastic collisions resulting in ionization 

of atoms, and the emission of bremsstrahlung X-Rays or braking radiation, if they change 

direction rapidly.  However these X-Rays are exceedingly rare in tissue due to the low-Z 

value.  The fraction of decay beta energy lost to bremsstrahlung is proportional to the 

energy of the beta and the Z of the material according to: 

 

                            3.7 

 

with E the beta end-point or maximum energy.  Tissue, with a total Z of roughly 

10 and an effective Z of about 7.4 leads to a 3MeV beta endpoint decay losing only 

0.78% of kinetic energy to X-Rays.  Therefore production of bremsstrahlung X-Rays 

only becomes an issue with higher Z materials and high energy electrons.  

How X-Rays and gammas interaction with tissue is dependent on the photon 

energy with low energy photons depositing a majority of their energy through 

photoelectric absorption, transitioning to Compton scattering and eventually pair 

production at higher energies.  Diagnostic X-Rays do not typically exceed 120keV, or an 

average of 40kV, so that a majority of interactions remain in the photoelectric and 

Compton scattering range.  Therapeutic use of X-Rays must operate at higher energies in 
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order to reach a sufficient depth and produce interactions in tissue mostly through 

Compton scattering.  Operating a therapeutic X-Ray beam at energies above 24MeV 

leads to an increasing amount of pair production, greatly reducing local dose deposition, 

and so therapeutic X-Ray sources typically do not exceed 20MeV. 

The biological effects of radiation are largely due to the presence of oxygen and 

hydrogen in the body and their effects on deoxyribonucleic acid (DNA) strands when 

ionized rather than the actual energy deposited by incident radiation.  The capability of 

radiation to ionize these elements is the basis for the distinction between classifying 

radiation as ionizing and non-ionizing radiation, and their associated effects on DNA.   

While energetic electrons, photons and neutrons can carry significant kinetic energy, their 

ability to actually heat living organisms is very limited.  For example an electron carrying 

1 million electron volts (1 MeV) of kinetic energy, if fully stopped in just a gram of 

water, would deposit just 1.602x10
-13

 joules of energy in the form of heat.  In 

Kilocalories this would be the equivalent of only 3.829x10
-17

 Kcal and thus require 

2.612x10
16

 electrons to raise the temperature of the water by only 1 degree centigrade.  

Clearly the damaging effects of ionizing radiation on tissue are not due to heating alone. 

Instead, the major biological effects of ionizing radiation in living cells are due to 

the damage caused to DNA by ionized hydrogen and oxygen.  Since water makes up the 

majority of living tissue, there is an abundant volume of these atoms available for 

electrons produced by incident radiation to interact with.  Radiation is considered 

ionizing when it possesses enough energy to knock electrons free from atoms and 

therefore break chemical bonds.  The threshold for this is generally considered to be 

above 10eV based on the binding energy of the outer shell electrons in atoms of interest, 
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with hydrogen the primary reference. For the major components of tissue, these binding 

energies for hydrogen and oxygen are 13.6eV and 41.6eV, respectively [46].  Of 

particular interest for biological effects, the energy required to break water molecules and 

liberate a hydrogen ion is slightly higher than a single hydrogen electron ionization at 

16eV [47].  Thus X-Rays and radiation particles are always considered to be ionizing as 

they typically exceed this energy. 

 Radiation is a very general term for several types of phenomena that carry 

energy, from photons all the way to neutrons and heavy charged particles.  Distinguishing 

between ionizing and non-ionizing radiation allows us to determine which types of 

radiation can directly damage living cells.  Radiation that does not possess enough energy 

to remove electrons from their shells, below 10eV, is considered non-ionizing radiation.  

Longer wavelength radiation such as microwave radiation, radio waves, infrared and 

visible light are all examples of non-ionizing radiation.  These do not carry sufficient 

energy to dislodge electrons in hydrogen and oxygen and therefore can only damage 

living tissue through heating and thermal effects.  An exception to the inability of non-

ionizing radiation to effect tissue is ultra-violet light, with a wavelength in between 

visible light and X-Rays. While considered non-ionizing since a typical UV photon does 

not carry sufficient energy to ionize atoms, UV radiation still damages DNA by directly 

exciting the DNA molecules causing errors and unwanted bonds.  This makes UV 

radiation a major cause of skin cancer though not a viable treatment method for cancers 

due to its very shallow range in tissue.   

Ionizing radiation rarely damages cellular DNA by direct impingement due to the 

small size of the DNA structure relative to the cell volume.  While direct damage does 
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occasionally happen and results in severing of the DNA strand, the more typical reaction 

is indirect damage to the DNA through the production of ionized hydrogen and oxygen 

when water molecules are disassociated by the radiation.  Energetic electrons are created 

along the path of the incident radiation, whether it be beta particles gamma rays or other 

ionizing radiation.  These newly created electrons stream through cells producing free 

radicals, H+ and OH-, by ionizing water molecules along their track length. Most of these 

hydrogen and hydroxide ions recombine quickly, but those that do not can reach the 

DNA of the cell and cause damage to the strands.   

Damage to the DNA double helix strands are categorized by the severity of the 

breaks, a single strand break (SSB) or a double strand break (DSB), with the amount of 

damage from a particular radiation referred to as relative biological effectiveness (RBE) 

[45].  Each strand in the double helix structure of DNA consists of nucleotides that match 

a single counterpart nucleotide type on the other strand.  Replication of DNA occurs 

when the strands are split from one another and copied based on this pairing of 

nucleotides.  This means that in the case of a SSB, repairs can typically be made when 

only a single strand of the double helix is damaged by a radiation created free radical.  A 

DSB with damage to both strands however is significantly more difficult to repair as the 

split can sever the helix completely.  If the strand cannot be recombined, the cell will 

typically die or suffer mutations during replication.  

While all DNA damage is caused by both ionization of water in the cells or direct 

severing of the DNA by radiation, the efficiency of DNA damage by each type of 

ionizing radiation varies.  Two types of radiation depositing equal amounts of energy in a 

segment of tissue do not lead to identical outcomes for the tissue.  Simple energy 
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deposition in a material, or the number of Joules (J) deposited per Kilogram (kg), is 

quantified in terms of gray (Gy) with one Gy=1 J/kg.  Therefore two types of ionizing 

radiation with the same kinetic energy that are fully absorbed in a material will deposit 

the same energy in terms of Gy.  However, since cell damage is primarily caused by the 

secondary reactions in the material such as water ionization and hydrolization, two 

different types of radiation can result in differing amounts of cell damaging reactions.   

An electron and a neutron with the same kinetic energy, for example, will differ greatly 

in the amount of cell damage produced due to how quickly and how locally their energy 

is deposited.       

These differences in the relative biological factor (RBE) are the basis for the 

quality factor, or QF, which is used to normalize different ionizing radiation types to one 

another using the dose unit sievert (Sv) and the direct linear conversion of Sv =  Gy x QF.  

Quality factors for various types of ionizing radiation are presented in Table 3-1 based on 

United States NRC 20.1004. 

 

Table 3-1.  Quality Factors for Ionizing Radiation 

Radiation Type Quality Factor 

X-Rays, Gammas, Electrons 1 

Alpha Particles, heavy 

particles 20 

Neutrons (various energies) 10 

Protons 10 

 

 



44 

 

Radiation with a higher QF results in a higher number of SSB and DSB damage 

to DNA relative to the energy deposition.  This damage to the DNA is what causes cells 

to die or to cease cell division, and when dealing with cancerous tissue, this cell death or 

halting of division of the cancerous cells is the objective for control of a tumor.  

Radiation therapy for control of a tumor is achieved through targeted application to 

cancerous cells to produce cell death, or enough damage to cancer cell DNA that they 

cease to divide and halt reproduction.  Radiation must be carefully targeted at the 

cancerous cells and avoid healthy cells as much as possible, since healthy tissue is just as 

sensitive to radiation damage.  Since cell death from DNA damage occurs when the cell 

attempts to divide, the effectiveness of radiation as a cancer treatment is related to how 

quickly the cells are programmed to divide.  Because of this, cells that are slowly 

dividing or mature and fully differentiated tend to be resistant to cell death by radiation 

damage, in contrast to quickly dividing cells which are the most susceptible to death by 

radiation damage. 

3.4    Radiation Transport and Simulation / MCNP 

Therapy methods with electrons have been modeled extensively through the years 

by computer codes considered to be the gold standards for electron simulation for 

medical physics such as EGS (Electron Gamma Shower) that can quickly and accurately 

predict the dose that an electron beam will produce.  The treatment method being 

investigated here, however, involves far more complexity than a mono-energetic electron 

beam incident on a volume of tissue.  Rather than production of mono-energetic electrons 

in an accelerator typically found in the clinic, this method  instead utilizes secondary 
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radiation that is produced through the decay of a temporarily radioactive material 

produced through neutron activation.  Additionally, the electrons to be utilized here are 

distinctly non mono-energetic and not limited to a collimated beam, but rather are emitted 

in a spectrum of energies from a volume of material.  The use of a neutron source to 

activate an isotope to produce beta decay radiation requires a neutron transport code to 

predict both the effectiveness of the activation process, or how much of the desired 

isotope is actually produced, in addition to calculating the dose that is expected from the 

radioactive isotope.  The Monte-Carlo radiation transport code MCNP, developed at Los 

Alamos National Laboratories (LANL), is used in this investigation due to a 

comprehensive library of materials with neutron and photon data based on the ENDF B-

VI library of cross-sections, a wide range of available particles and energies, and the 

ability to utilize physics models when ENDF libraries are not available.   

MCNP is the latest generation of Monte Carlo transport codes that have been in 

development at LANL for almost 60 years.  The Monte-Carlo method of radiation 

transport involves transporting one particle at a time through materials configured in 

geometries specified by the user.  MCNP requires the user to build an “input deck” 

containing the sizes and locations of shapes along with their material composition.  A 

three dimensional model of the desired simulation is constructed, and CAD interfaces are 

available, allowing users to simulate almost any problem involving radiation transport, 

from nuclear reactors to planetary scale simulations.  In addition to materials and 

geometries, the user also inputs the type of radiation source or sources and their location.  

An illustration of the conceptual Monte-Carlo method transport of photons in MCNP is 

presented in Figure 3.2.  Particles are transported statistically from the source in random 
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directions through materials where the physics of each interaction is predicted using 

tabulated experimental data or physics models.  An individual particle is started at the 

source and followed until it interacts with an atom in some way, where secondary 

particles or radiation emission is produced, with the original and any secondary particles 

tracked until they are finally absorbed or when it reaches an area where it is not necessary 

to track anymore, such as a problem boundary.   

.  

Electron Path

Incident Photon

Escaping Electron Path

Compton Scatter

Escaping Photon

Source

Absorption

Material

 

Figure 3.2  Example of MCNP Transport of Radiation Through Materials 

 

The probability of an interaction with materials as the tracked particles travel is 

referred to as a cross section, described previously.  These cross sections are stored in a 

library for every material in the problem and each interaction of a particle is assigned a 

reaction based on the cross section probability.  Cross section libraries are experimentally 

obtained values, and if cross sections are for some reason not available for a particular 

material, then MCNP uses physics models based on theory.  Because of this, it is always 
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preferable to have access to cross section data libraries for all materials in a Monte Carlo 

simulation.  Transport of these particles is repeated as many times as necessary to 

produce statistically reliable predictions in the simulation.  

 

. 

Figure 3.3  Individual electron tracks in an MCNP volume of tissue. 

 

Extremely complex geometries and the transport of billions of particle tracks, 

often referred to as histories, can be tracked as the memory capacity of computers has 

continually expanded.  Electrons can be very computationally intensive to track, due to 

their short path lengths between interactions and even a single electron can take a 

spurious path through a material, as illustrated in Figure 3.3.  Entire computer clusters are 

often dedicated to radiation transport problems as a linear speed up is possible as more 

processors are utilized on a problem.  By transporting a sufficient numbers of particles, 

MCNP is able to predict how a real system will behave.  These features make Monte 

Carlo methods far superior to analytical calculations and predictions for the effects of 

radiation in the current work. 
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3.5    Radiation Detectors 

Quantifying the amount of radiation that would be delivered by a source to a 

patient requires an accurate method of detection.  Detection of radiation requires physical 

interaction of the particle in a detector to produce an effect that can be measured, such as 

the depositing of energy in a gas or solid material.  The earliest detectors used gasses to 

visualize electrons as they ionized the gas inside evacuated chambers.  As discussed 

previously, physical mediums like film, being reactive to both light and radiation, were 

used to inadvertently discover radiation and eventually to harness it for applications like 

medical imaging.  Early solid materials relied on the emission of light during radiation 

interactions in plastics and crystals, a process known as scintillation.  Advancements in 

semiconductor manufacturing have expanded the detection of radiation beyond just gases 

or scintillation and allowed direct conversion of radiation to electrons in a material, 

allowing more precise energy information to be extracted.  Even with advances in solid 

material detectors, gas filled detectors are still commonly used with the type of detector 

chosen depending on the goal of the measurement. 

To determine dose, or total energy delivered, a gas is often used in an ion 

chamber with an applied potential.  As a particle crosses the ion chamber, it interacts in 

the wall or occasionally the fill gas and strips electrons along its path.  These electrons 

then travel along the electric field lines in the chamber along the anode and cathode and 

produce a current.  When this applied electric field is large enough due to a sufficiently 

high voltage, a cascade of electrons forms as the stripped electrons accelerate through the 

gas and release additional electrons from the ionized gas.  This cascade results in a pulse 

of current, which is how proportional counters and Geiger-Mueller (GM) counters 
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function.   Ion chambers have been a staple in modern medical physics and are used to 

quantify total dose delivered.  They are often placed inside tissue equivalent phantoms to 

determine dose at various depths.  Because ion chambers rely on a gaseous medium, they 

typically don't provide good energy resolution since high energy radiation can pass 

through the entire gas volume without depositing all of its energy.  Pressurizing the gas is 

used to increase the density of gas molecules and therefore both the probability of 

radiation interaction and the electrons available for cascade reactions, but even highly 

pressurized chambers cannot compete with the density of a solid material.  In a solid 

material, radiation can often be fully stopped in a small volume of material with all 

kinetic energy collected.  Due to the availability of two excellent solid state detector 

materials, ion chambers were not used in this application but would be a viable method of 

dose measurement. 

Solid material detectors, often referred to as solid-state detectors, have made use 

of advances in semiconductor manufacturing techniques.  Materials like high purity 

silicon and germanium have led to detectors that can provide more precise energy 

measurements than gas filled detectors.  This advantage is primarily due to the fact that 

radiation can come to a full stop in a solid detector, rapidly depositing all of its kinetic 

energy in a small volume and not require a cascade of electrons through a gas to amplify 

the current and corresponding signal.  In solid materials, the electrons produced in the 

material migrate along electric field lines but do not produce cascades in the process.  

Since the energy of the incident particle is so quickly deposited, the electrons and "holes" 

produced along the path of the particle are typically sufficient to measure at the anode 

and cathode after use of a pre-amp. 
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Two types of solid detectors were utilized in this experiment, high purity 

germanium (HPGe) and Cadmium Zinc Telluride (CZT), with both functioning on the 

same principle of electron-hole pair production from incident radiation.  As a particle 

travels through a material ionizing atoms and releasing electrons along the way, the freed 

electron travels along the electric field lines to the positive cathode side of the detector 

while the "hole," or space the electron previously occupied in an atoms electron shell, 

also migrates along the field lines in the opposite direction to the anode as electrons 

cascade from atom to atom filling the travelling hole.   To start this process, an electron 

must be removed from orbit by the incident radiation, with the goal of removal of as 

many electrons as possible in order to provide sufficient counting statistics.  In order for 

this to happen, the electron binding energy must be low enough to allow a sufficient 

number of electron-hole pairs to be created from a single radiation event inside the 

detector.  A material with a high electron binding energy will result in very few electron-

hole pairs and therefore little to no signal.  Because semiconductors have binding 

energies that are higher than metals but significantly less than insulators, they have 

become a popular choice for radiation detectors.  A metal cannot be used for radiation 

detection, despite small binding energies, since the atoms freely conduct electrons even at 

room temperature which are then capable of moving along an applied electric field even 

with no radiation interaction.  Insulators exhibit the opposite quality with electrons that 

are too tightly bound to be liberated in sufficient quantity and cannot travel towards a 

positive cathode. 

Semiconductors are an ideal choice for a solid material to be used in radiation 

detection since the electrons are not free to travel at room temperature, like metals, while 
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also not being as tightly bound as insulators.  This binding energy of the electrons can be 

referred to as the bandgap energy, or the energy required to move electrons into a 

conduction band.  For CZT, the bandgap energy is 1.57eV at room temperature and 

HPGe is 0.67eV [56].  This low bandgap energy for HPGe means that HPGe must be 

cooled so that electrons at room temperature do not spontaneously enter the conduction 

band.  CZT, with a higher band gap, does not require cooling which is a significant 

benefit.  Energy resolution is another component of detector choice with HPGe offering 

superior energy resolution due to low energy requirement per electron hole (e-h) pair.  

HPGe requires 2.96eV per e-h pair whereas CZT requires 4.64eV.  This means that 

almost twice as many e-h pairs are created per eV in the HPGe compared to CZT.  

Additionally, manufacturing techniques allow much larger crystals of HPGe to be 

manufactured, on the order of 100cm
3 

in volume or 3 to 4 cm thick, allowing full 

absorption of higher energy gamma-rays [57].  CZT detectors are typically only available 

in volumes on the order of 3cm
3
 with thicknesses of a few millimeters, limiting energy 

gammas with thicknesses on the order of millimeters. 

3.6    Fluid Flow in the System 

The amount of radioactive material reaching the detection or treatment site 

depends both on the amount of initial activation and the flow characteristics of the fluid 

transporting the materials.  Rather than a solid material being repeatedly transferred 

between two points, the indium isotopes are in a heterogeneous liquid mixture and can 

diffuse within the fluid.  Movement in the fluid of the activated indium by diffusion, 

advection, and possible turbulence or non-laminar flow can spread the radioactive 
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material along the tubing during flow causing some material to arrive in advance of the 

main activated bolus while some lags behind.  Diffusion refers to the movement of atoms 

within the liquid in axial and radial directions along the flow path.  Advection is the 

transport of the atoms along the flow path from mass transfer due to inertial forces.  This 

relation between spreading of the activated material by diffusion and transport by 

advection must be accounted for when determining both dose to be delivered and when 

quantifying initial activation when used as a detector. 

The rate of diffusion of elements within the eutectic mixture can be estimated 

using a diffusion coefficient, determined by the Stokes-Einstein equation for liquids with 

a low Reynolds number [48] 

 

 
  

  

    
 

3.8 

 

With D the diffusion coefficient, k the Boltzmann constant, T the temperature of the 

liquid metal, r the radius of the atom and  the dynamic viscosity.  To examine the 

relative importance of diffusion in the flow of the activated material, the relationship 

between the rate of diffusion and advection can be compared using the dimensionless 

Peclet number: 

 
   

  

 
 3.9 

 

with L the characteristic length of the duct, U the mean velocity of flow and the product 

of the two quantifying the advection properties of the fluid.  This relation between 
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advection and diffusion means that liquids with a high Peclet number will have transport 

of materials in the fluid dominated by inertial forces over diffusion.  High Peclet number 

flow results in fluids that have very little diffusion between the laminae of fluid in the 

flow and this relationship becomes important when determining whether flow can be 

modeled using "segregated" flow.  This chemical engineering terminology refers to 

problems involving laminar flow in the transport of a reacting fluid [49].  

 A complete model of this system capable of predicting the amount of activated 

material at any point in the loop involves accounting for movement of the In-116 through 

both diffusion and advection, in addition to creation of the In-116 through activation and 

loss to radioactive decay.  These elements can be represented in a general form by the 

equation 

 
      ⃗             

  

  
 3.10 

with diffusion D, fluid velocity V, the neutron flux   that the fluid is exposed to, the 

radioactive decay constant of the isotope the neutron activation cross-sectionafor the 

isotope, and the concentration c of the isotope of interest in the liquid.Equation 3.10 can 

be rewritten for flow in a circular pipe with the Laplacian expanded into cylindrical 

coordinates for one-dimensional flow as 
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with radius r, velocity u and number density of the radioactive isotope N [50].   
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A radial velocity profile u of the liquid metal as a function of radius r under 

laminar flow can be represented by the equation 

 

 
       ̅ (  

  

   
) 3.12 

 

with ro the outer wall radius [52] and is valid for Reynolds numbers < 2300. Based on 

equation 3.12, the velocity of the fluid stagnates to zero at the walls as radius r 

approaches ro and reaches twice the average velocity at the centerline for r=0.  

Accounting for this flow at centerline traveling at twice the average speed is important 

when dealing with radioactive isotopes that are decaying during movement through the 

loop.  This becomes even more critical when dealing with a short-lived isotope like In-

116 with a half-life of 14.1 seconds.  The effect of radial diffusion and the validity of a 

segregated flow model can also be examined with the radial Peclet number.  This radial 

Peclet number, Peradial  in equation 3.13, can be used to determine the relation between 

diffusion and advection radially in the tube: 
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3.13 

Fluids exhibiting high axial Peclet and low radial Peclet numbers can be modeled with 

well-segregated flow and we can assume very little diffusion between layers.   

The portion of equation 3.11 covering radioactive activation and decay, 
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 3.14 

 

governs the rate at which the activity of the isotope increases or decreases due to neutron 

activation and decay.  Activation or creation of the radioisotope is driven by the product 

of the activation cross section a, the value of which is dependent on the incident neutron 

energies, and the flux  or number of neutrons intersecting the fluid.  Decay of the 

activated material, occurring continuously after activation, is driven by the half-life or 

time required for the isotope to decay by half.  Half-life of the material is accounted for 

with the time constant  which is natural log 2 divided by the half-life.  

Equation 3.11, the overall equation modeling the complete flow, activation and 

decay system was solved using finite difference approximations for the derivatives for 

one-dimensional laminar flow in a circular pipe.  An implicit solution using a numerical 

time iteration method was solved at every time step using inversion of a matrix.  An 

implicit method was chosen due to stability of the solutions and the ready availability of 

computing resources.  The iterative method chosen to accomplish this was the Gauss-

Seidel method.  Gauss-Seidel was used in the modeling of the system due to improved 

convergence speed over the Jacobi methodology for matrix solutions [51].  Application 

of this modeling method and predictions for fluid flow and activity of the In-116 isotope 

at the detector are discussed in detail in the proceeding chapter. 
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CHAPTER 4  

MODELING 

 

Modeling of the system consisted of fluid flow and material transport predictions 

for the entire system in addition to activation and radiation transport modeling to 

optimize irradiation setups and predict dose output.  The system as tested consists of two 

main components that are critical to the effectiveness of the process, the activation cell 

and the irradiator cell.  Additional features include the pumping mechanism and tubing as 

a transport vessel.  The activation cell and the irradiator cell were modeled in MCNP 

radiation transport simulations with five neutron activation sources to predict the 

production efficiency of the radioactive isotope and to predict the dose to be delivered to 

tissue with each.  Monte Carlo models of the actual radiation sources were also necessary 

to provide an accurate "source term" for the activation cell models.  The pumping 

mechanism and tubing were used in analytical predictions of fluid flow properties of the 

system to predict the arrival time, increase in dose over time and duration of dose 

delivery. 
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Figure 4.1  Conceptual Illustration of source term, activation, transport and application. 

 

4.1   Modeling of Activation Cell 

Two main components of the system, the activation cell and the applicator cell, 

were modeled in MCNP.  The activation cell is the first step in the dose delivery process 

where the stable element, In-115, is activated to In-116 through neutron capture.  

Activating as much In-115 as possible in the shortest amount of time is the primary goal 

in this cell.  Since In-115 exhibits substantial resonances for neutron capture at slow to 

thermal energies, an optimized cell geometry was used depending on what neutron source 

was used.  The neutron capture cross section for indium-115 is shown in Figure 4.2 with 

peak capture resonances appearing repeatedly across a neutron energy spectrum.  These 

resonance regions are areas where the incident neutron energy matches binding energies 

in the nucleus and result in an orders of magnitude increase in capture probability for a 

particular energy.  Therefore an activation cell that first moderates incident neutrons 

towards these resonant energies will produce a greatly increased amount of In-116 

compared to a high energy, mono-energetic source. 



58 

 

 

Figure 4.2.  Neutron capture cross section for In-115. 

 

The amount of In-116 created in the activation cell is critical to the effectiveness 

of the overall system.  The activation cell must position the eutectic mixture in the 

neutron field while providing sufficient moderation of the neutrons to optimize the 

(n,gamma) capture on In-115.  This moderation is dependent on the particular neutron 

energies incident on the applicator.  In this work, ideal moderation materials and 

geometries are investigated for the five potential sources of neutrons consisting of a 

broad spectrum Pu-Be source, mono-energetic deuterium fusion neutron source, and 

6MV, 15MV and 20MV X-Ray photo-neutron sources. Due to the significantly varying 

activation  cross section based on neutron energy exhibited in Figure 4.2, a simple 

average neutron energy assumption is not sufficient since individual neutron sources can 

produce substantially different neutron energies.  An accurate radiation transport model 

that can estimate all neutron energies and their magnitudes, or fluences, is necessary to 

obtain a more reliable activation prediction. 
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The activation cell must also contain a sufficient volume of the eutectic mixture to 

deliver the desired dose once reaching the applicator.  Since In-116 decays with a 14.1 

second half-life, the mixture is not continuously pumped between activator and applicator 

cells and the mixture instead remains stationary in the neutron field long enough to reach 

secular equilibrium.  This equilibrium is the point at which production of the In-116 is 

equivalent to the decay and further time under irradiation results in negligible increases in 

the quantity of In-116.  This equilibrium between In-116 production and decay over time 

during neutron irradiation can be represented by the equation 

 

        

  
                    4.1 

 

which can be seen as a component of the previous equation 3.11 with neutron flux, 

activation cross sectiona, and decay constant .  The decay constant for In-116 is equal 

to 0.693 / t1/2 or 0.0491 sec
-1

.  Solving for In-116 atoms as a function of time gives 

 

 
                    

      

 
 4.2 

 

With a constant activation rate, and assuming that the number of In-115 target atoms 

stays constant, the number of In-116 atoms gradually reaches a plateau after 4 to 5 half 

lives with equilibrium between decay and production. Figure 4.3 can be applied to any 

isotope based on only the decay half-life.  Short lived isotopes will quickly reach 
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equilibrium while longer lived isotopes will require long irradiations to reach their 

plateau. 

  

Figure 4.3.  Calculated In-116 growth curve for exposure to a continuous neutron source. 

 

Remaining in the neutron field beyond this point of equilibrium introduces 

unwanted additional neutron activation products with longer half-lives into the material 

as these longer lived isotopes start to build up.  Of particular interest is the first meta-

stable state In-116m1 with a half-life 54.3 minutes and a decay process involving high 

energy gamma-rays, which can present an unwanted dose component.  While creation of 

this isotope is difficult to avoid, resulting dose from the decay of In-116m1 can be 

minimized by limiting the time of exposure to the activated indium.  The rationale for 
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exposing the indium to a neutron activation field for no longer than about 4 half-lives 

also applies during the dwell time that the indium remains over the treatment area.  A 

dwell time in the applicator of 4 half-lives, or about one minute, delivers 94% of the 

decay betas from In-116 while minimizing dose from longer lived activation products.  

The impact of additional isotopes on dose, measurements of this metastable state and 

techniques to minimize both production and resultant extra dose are discussed in more 

detail in proceeding chapters. 

Equation 4.2 is applied whenever the source of neutrons is a continuous 

irradiation over time.  The five neutron sources modeled here consisted of four 

continuous sources and one pulsed source, the dense plasma focus (DPF).  The DPF 

produces all emitted neutrons within 100 to 200 nanoseconds, producing all activations at 

once and requiring only a decay correction as the material travels to the 

detector/applicator.   

Moderation needs for the activator cell depended on the source of neutrons 

utilized.  Due to the broad energy spectrum of the Pu-Be source, and the housing of the 

source in a large neutron moderating paraffin filled drum, a moderator was not 

anticipated to be needed.  Other sources, however did require moderators for optimizing 

In-116 production.  The monoenergetic DPF  source produces 2.45MeV neutrons by 

deuterium-deuterium fusion and therefore requires moderation.  The Varian M6 produces 

a broad spectrum of photoneutrons and also benefits from moderation. 
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Figure 4.4.  Conceptual activator cell radiator flow design (bottom) for modeling utilizing 

varying moderator and reflector thicknesses (cross section top). 
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Figure 4.5.  Physical polyethylene pieces used for DPF and Varian M6 moderating and 

reflectors. 

 

Since activation does not require the decay betas to pass through any materials or 

exit the tubing, the activator cell simply followed a radiator design that allowed 1cc of 

eutectic in 1/16” ID Teflon tubing to be exposed to the neutron moderation area.  This 

radiator design was used for all sources except for the Pu-Be source which utilized a cork 

screw pattern in order to fit the dimensions of the irradiation port. 

4.2  Applicator Cell 

At the opposite end of the process where the resulting radioactive isotope, In-116, 

is placed near the target tissue region during decay, the main goal is to allow as many 

beta particles to exit the applicator as possible and requires a thin window material to 

avoid attenuation of the electrons.  On this side of the process the primary goal was 
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designing a non-metallic cell that would maintain non-turbulent flow and efficiently 

deliver the activated fluid to a treatment area.  While liquid metal like GaInSn is 

convenient for transport by tubing and pumps, it also has a significant self-shielding 

effect on the emitted beta particles.  Because of this self-shielding, an applicator is most 

effective when it spreads the radioactive In-116 over a broad area while minimizing 

thickness of the liquid metal to allow beta particles to escape the mixture.  A design is 

presented in this work that minimizes turbulent flow and spreads the eutectic over a thin 

and broad surface area. 

Decay betas from In-116 possess an average energy of 1.365 MeV and have a 

range of several millimeters in tissue, but are severely self-attenuated within the eutectic 

mixture itself.  The continuous slowing down approximation (CSDA) range, which 

provides an average range for elections and accounts for deviations made during their 

track length, is only about 1.5 millimeters, or about 1/16”, in GaInSn for a 1.365 MeV 

beta.  This means that even in the case of a large volume of eutectic, only beta particles 

from the outer 1 to 2 millimeters of the fluid will escape and deposit dose in the adjacent 

tissue.  Therefore the ideal applicator spreads the mixture out at the application site to 

utilize the maximum surface area possible while minimizing self-attenuation of the betas 

within the eutectic by not becoming thicker than the CSDA range of the electrons. 
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Figure 4.6.  Calculated electron CSDA range in GaInSn for energies of interest. 

 

Given the CSDA range for an average In-116 decay beta of 1.5mm or ~1/16” 

based on Figure 4.6, the applicator should not be thicker than 1/16”.  Despite remaining 

no thicker than the CSDA range, self-attenuation and energy loss is unavoidable.  MCNP 

models show that In-116 betas still suffer significant attenuation and some energy loss 

during emission from the eutectic.  Figure 4.7 illustrates the resultant MCNP simulated 

emission spectrum from one side of a 1/16” thick cell compared to the original decay 

spectrum in solid.  .  
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Figure 4.7.  Emitted MCNP calculated decay spectrum from GaInSn cell and original 

decay spectrum. 

 

Note in Figure 4.7 the emitted spectrum scale on left axis and original decay 

spectrum scale on right.  This spectrum not only shows a loss of high energy betas but 

attenuation in emission magnitude as well.  The integral of the emission spectrum (solid 

line) is 1.0 with the plot a probability of electron energy per decay.  Integrating the 

emitted spectrum (data points) results in a total of 0.094, meaning only 9.4% of betas 

emitted within the GaInSn cell exit the surface. 

 

Energy (MeV)

E
m

it
te

d
 I

n
-1

1
6
 B

et
a
s 

p
er

 D
ec

a
y

In
-1

1
6
 B

et
a
s 

p
er

 D
ec

a
y

Beta Decay and Beta Emission Spectrum from GaInSn Applicator

0 0.5 1 1.5 2 2.5 3 3.5

0 0

1E-4 0.01

2E-4 0.02

3E-4 0.03

4E-4 0.04

5E-4 0.05

6E-4 0.06

7E-4 0.07

8E-4 0.08

9E-4 0.09

1E-3 0.1

Beta Emission Spectrum

Beta Decay Spectrum



67 

 

 

Figure 4.8.  X-Ray spectrum generated by decay electrons in the GaInSn cell. 

 

An additional reason to avoid an irradiation cell thicker than 1 CSDA length is the 

unnecessary generation of bremsstrahlung X-Ray radiation by the decaying betas.  A 

GaInSn cell made to be as thin as possible reduces total decays in the volume and 

electron path length. X-rays can easily exit a thick GaInSn cell and produce unwanted 

dose while the associated decay electrons do not.  Due to the range of In-116 decay betas, 

maximizing beta dose and minimizing X-Ray dose, an applicator cell thickness of 1/16” 

was chosen for this work. As shown in Figure 4.8, doubling the cell thickness also 

doubles the number of X-Rays exiting the cell, primarily due to the fact that twice as 
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much GaInSn is present for the same surface area and the X-Rays are minimally self-

attenuated in the eutectic. 

 In addition to self-attenuation in the eutectic, a closed loop system requires that 

the mixture be re-circulated back to the irradiator cell and not come into contact with the 

treatment surface or the detector used here.  While the GaInSn mixture is considered non-

toxic in humans based on the MSDS, intentional or accidental contact with skin or 

treatment areas is prohibited in a sterile environment.  Additionally, loss of the mixture 

between irradiation cycles would be undesirable.  A thin window is therefore used in the 

applicator cell to allow passage of the betas out of the eutectic and into the CZT detector.  

A 0.5mm styrene barrier is used as a window in this work, producing negligible 

attenuation of the beta particles while containing the eutectic mixture.  The corrosive 

nature of the GaInSn to metals is once again of concern as the applicator must use non-

metallic components.  Based on this requirement, models and physical prototypes utilize 

plastics like ABS and PLA for the activation and applicator cells which are fabricated on 

3D deposition and SLA printers. 
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Figure 4.9  CAD model showing flow transition to thin applicator window area and 

applicator cell printed in clear plastic showing eutectic flow. 

 

The ultimate goal of modeling the activation and applicator cells is to establish a 

reliable model to predict dose and allow for optimizations.  In order to effectively 

compare models of In-115 activation to physical experimental results of detected betas, 
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several factors must be accounted for including 1) self-attenuation of the beta particles in 

the GaInSn, 2) spectral changes due to scattering and absorption in the GaInSn as shown 

previously in Figure 4.7, 3) backscatter of betas from the CZT preventing detection, 4) 

geometrical effects like 1/R
2 
reduction from distance and differences between detector 

area and emission area, 5)  correcting for any attenuation by barriers or membranes and 

any occlusion of the detector face, and 6) decay correction for transit time of the pumped 

material.  MCNP models were used to determine the following values in Table 4-1 for the 

CZT detector and applicator utilized here.  These factors are applied to experimental data 

to compare to MCNP calculated activation amounts.  Combining all values in Table 4-1 

results in a correction factor of 3.2x10
-3

.  When using a photoneutron source, this factor 

becomes 2.46x10
-3

 based on reported differences of 30% overestimation in MCNP 

photoneutron calculations versus established benchmarks [63]. 

 

Table 4-1.  Correction factors from model to experiment excluding decay corrections. 

Model to Experiment Correction Betas detected per decay 

Beta fluence in CZT cell per decay (MCNP) 0.005 

Barrier attenuation (MCNP) 0.89 

Activation cell volume vs. Applicator volume 0.80 

Detector Occlusion 0.90 

Combined Correction Factor 3.2x10
-3

 

 

4.3  Monte Carlo Modeling of Neutron Activation Sources  

Optimizing In-116 production and designing an ideal moderator and activation 

cell requires an accurate neutron source term.  In-115 activation techniques would ideally 

use a neutron source with pure 1 to 2 eV neutrons to match the resonance peak in the 
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neutron capture cross section.  However real neutron sources produce a non-ideal 

spectrum of orders of magnitude higher energy and these neutrons need to be slowed 

down, or moderated, to become more effective at producing In-116.  Small changes in 

neutron energy can result in widely varying interaction probability, making average 

energy assumptions inaccurate. Activation models therefore used neutron source terms 

produced by MCNP modeling to predict actual neutron spectrums and fluences from all 

three neutron sources studied here.  Rather than simply use a pure Pu-Be neutron 

spectrum source term as shown in Figure 4.10,  MCNP models used this term combined 

with a model of the physical drum and shield to determine the actual spectrum 

encountered by the eutectic.  In the case of the DPF neutron source, the 2.45 MeV 

monoenergetic point source at the pinch point is created very close to scattering media 

inside the source chamber and attenuated by surrounding vacuum hardware, resulting in a 

broadening of the neutron energy.  The third neutron source, the Varian M6 accelerator, 

utilized a more complex MCNP model that produced neutrons through a process of 

electron bombardment of an X-Ray producing target, followed by photoneutron 

production in a beryllium target.  Finally, for scaling purposes to predict clinical dosage, 

a Varian Clinac neutron source was used based on prior photoneutron production studies. 
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Figure 4.10.  Calculated non-moderated Pu-Be Neutron Spectrum from Sources4C. 

 

For the Pu-Be source, the neutron spectrum used for modeling is calculated using 

the code SOURCES4C to produce Figure 4.10 which assumes a pure plutonium and 

beryllium mixture.  Pu-Be sources produce a relatively broad spectrum with peak neutron 

energy of 10MeV, an average energy of 4.8MeV, and source emission strength of 

1.13x10
7
 neutrons per second [44].  This source spectrum was placed inside an MCNP 

model of the physical source drum and associated paraffin shielding to calculate the 

moderated neutron spectrum.  The MCNP model and actual source drum are shown in 

Figure 4.11.  An access port to the source was included and measured 1.5 inches in 

diameter.  This access port is where the eutectic mixture was pumped into the shielding 

and into close proximity with the Pu-Be source.  Two configurations of the Pu-Be source 
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can be used, to include a "source up" and a "source down" configuration.  The source is 

normally located 3 inches below the access port but can be raised to provide a direct line 

of site down the access port.  This change in configuration allows for two possible 

neutron spectrums at the activation point based on moderation by the paraffin and 

proximity to the source.  Due to the significantly higher neutron fluence in the “source 

up” position, only that configuration was used for models.  The resulting heavily 

moderated neutron source is presented in Figure 4.12, verifying that no additional 

moderator is needed at the activator cell point. 

  

 

Figure 4.11  Pu-Be drum (left) and MCNP cross sectional model (right) 
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Figure 4.12  Resultant Pu-Be neutron spectrum at irradiation point inside drum. 

  

With a 1cc volume of GaInSn placed in the Pu-Be irradiation port, MCNP models 

calculate an In-116 production rate of 1.4x10
-4

 activations per emitted neutron.  With a 

Pu-Be steady neutron source strength of 1.1x10
7
 neutrons/second, we can expect a 

production rate  of 1.6x10
3
 atoms/second.  For a 60 second irradiation, we can decay 

correct using equation 4.2 with a resulting 3.0x10
4 

atoms of In-116 produced in the 1cc 

cell.  This small amount of activations is insufficient for providing clinical dose and is 

difficult to detect after being pumped to the detector.  For this reason, the Pu-Be source is 

only used for activation analysis to determine the composition of the GaInSn on the 

HPGe detector. 
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The DPF used in this work typically produces more than 1x10
11 

neutrons per 

pulse, emitted over a very short time frame of about 100 nanoseconds.   The DPF source 

was modeled in MCNP to predict activation in the GaInSn for varying thicknesses of 

neutron moderators.  Since the DPF produces mono-energetic 2.45 MeV neutrons, 

polyethylene moderators are required to slow neutrons down into an energy range where 

capture becomes more favorable.  Varying thicknesses of moderators were modeled 

including the use of reflectors behind the GaInSn cell.  The DPF model used in MCNP is 

shown in Figure 4.13  

 

 

Figure 4.13.  MCNP modeling geometry of DPF, neutron moderator and GaInSn cell.  

Moderator was modeled both in this configuration and flush with the outer DPF tube. 

Moderator and Galinstan Cell Neutron Producing “pinch” point 
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Figure 4.14.  MCNP modeling geometry of “INNY” DPF, neutron moderator and GaInSn 

cell. 

 

A sample moderated neutron output for a 2 inch moderator as shown in the above 

figures is presented in Figure 4.15 showing strong thermal production regions but also 

retaining a significant peak at 2.45 MeV, the energy of the primary fusion neutrons 

passing through the moderator.  For In-116 production, ideal neutrons should be in the 

thermal to several eV range, meaning that these high-energy neutrons do not contribute to 

capture and need to be moderated as much as possible.  Moderators studied here ranged 

from 0.5” to 3”.  DPF neutron yields vary from shot to shot, rather than the continuous 

output exhibited by the fixed source Pu-Be or the M6 accelerator, and shot to shot yields 

are measured with various yield detectors.  Therefore modeling outputs for dose are 

scaled to measured DPF output for each shot when calculating dose. 

 

Moderator and Galinstan Cell 

Neutron Producing “pinch” 
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Figure 4.15.  Calculated DPF neutron spectrum reaching GaInSn for a 2in moderator. 
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Figure 4.16.  Calculated DPF In-116 activation in GaInSn target for varying moderator 

thicknesses assuming a single 1x10
11

 neutron pulse for all moderators. 

 

From Figure 4.16 it is apparent that a reflector behind the front moderator and 

sandwiching the activation cell produces close to an order of magnitude more activations 

of In-116 per shot from the DPF.  Moderator distance to the DPF tube was also decreased 

during experiments to be flush with the tube outer surface and activation models were run 

for these configurations as well.  Additionally, a model of the activation cell in an 

“INNY” configuration (Figure 4.14) was modeled for comparison to experimental 

irradiations. 
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A model of the Varian M6 accelerator used at UNLV for these experiments and 

presented in Figure 4.17 was used to predict photoneutron production and moderation at 

the GaInSn to compare with experiments and optimize In-116 output [59].  Similar 

models were used for the M6 and the higher neutron output and higher energy K15 by 

swapping the target for a 9 and 15MeV compatible target in the model to scale up to 

predicted photoneutron yield. 

 

 

Figure 4.17.  MCNP geometry for photoneutron production in an M6 accelerator. 

 

Photoneutron production used a beryllium rod 3” in diameter, 6” in length placed 

directly on the exit of the uncollimated X-Ray target.  Electron pulse rates and currents 

were used in the model to determine photoneutron output according to 
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Table 4-2. Resulting photoneutrons for a 3/8" front moderator and 1" rear 

reflector is presented in Figure 4.18 for a standard beam current.  This spectrum was 

determined for every variation of moderator used in the experiments.  Moderator 

thicknesses and sequences were varied and are presented in the results. 

 

Table 4-2. Electron pulse frequency and magnitude for photoneutron models. 

Model and E Pulse Rate e- / sec 

M6 6MV 156.6Hz 3.14E+14 

K15  9MV 220Hz 7.14E+14 

K15 15MV 220Hz 6.73E+14 

 

 

 

Figure 4.18.  Photoneutron spectrum and fluence at the GaInSn target from a Varian M6 

accelerator running at standard 156.6Hz rep rate. 
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Figure 4.19.  Photoneutron calculated activation of GaInSn target from a Varian M6 and 

K15 accelerator running at similar beam currents. 

 

Predicted In-116 activation amounts are plotted in Figure 4.19 for the M6 

accelerator with a GaInSn activation cell sandwiched between a moderator and reflector 

as shown in Figure 4.17.  Results for a higher energy K15 is also presented showing the 

effect of the increased photoneutron production from 15MeV endpoint X-Rays.  For 

comparison, the predicted activation shown from the M6 and K15 accelerators use 

similar machine currents of 6.28x10
14

 and 6.73x10
14

 electrons/second on the target, 

respectively.  These currents are expected from accelerator rep-rates of 315Hz for the M6 

and 220Hz for the K15.   
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A model of an ideal activation cell for a Varian Clinac was also determined based 

on predicted photo-neutron spectrums for a 20MeV accelerator.  These accelerators are in 

widespread use in cancer treatment facilities and are a potential source of activation 

neutrons.  While not designed with neutrons as a primary emission goal, they are capable 

of significant neutron production through X-Ray interactions in the tungsten and high-Z 

components of the accelerator head including the collimator, target, filters, jaws and 

MLCs.  It was assumed that these accelerators were not modified in any way to optimize 

neutron output but instead relied on direct impingement of the X-Ray beam on the 

collimator and jaws, such as would be achieved by simply running the accelerator with 

the tungsten jaws and MLCs completely closed.  Several studies have looked at 

photoneutron production in clinical linacs, all with similarly shaped outputs such as that 

from a 15MV unit in Figure 4.20.  
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Figure 4.20.  Photoneutron spectrum from a 15MeV Primus clinical linac. Reprinted with 

permission [60]. 

 

A photoneutron spectrum from an extremely common clinical unit in the U.S., the 

Varian Clinac 2100C, is presented in Figure 4.21.  This spectrum is used in MCNP 

simulations according to the diagram in Figure 4.22 to calculate In-116 activation and 

predicted output.  Studies show that a closed jaw Clinac can produce 1.2x10
12

 neutrons in 

the accelerator head per MU [62], or monitor unit, which is a scaling value for dose 

produced per minute at isocenter.  A typical accelerator is capable of 600MU/min, 

meaning 7.2x10
14

 neutrons per minute can be produced in the accelerator head as a 

whole.  This is a substantial neutron flux and provides the opportunity for thermalization 

and activation of the In-115 being studied here. 
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Figure 4.21.  Clinac 2100 20MV photoneutron spectrum used in MCNP model for 

activation scaling, based on S.Ovalle studies [61]. 

Neutron Energy (MeV)

F
ra

ct
io

n
 o

f 
n

e
u

tr
o

n
s

Photoneutron Spectrum - 20MV Clinac

2E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

0

0.05

0.1

0.15

0.2

0.25

0.3



85 

 

 

Figure 4.22.  MCNP Model diagram for photoneutron production in a clinical Varian 

2100C accelerator. 
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Figure 4.23.  MCNP In-116 activation model results for various front moderator and rear 

reflector thicknesses. 

 

A Clinac 2100C operating at a full current of 600MU/min, producing 7.2x10
14

 

neutrons per minute with polyethylene moderators and reflectors sandwiched around a 

1cc GaInSn activation cell will produce the most activation with 1.5" front poly and 1" 

reflector according to Figure 4.23.  The importance of a reflector is apparent as removal 

results in a drop of 3.5x in activation.  A tungsten backing to shield the room from 

capture gammas in the polyethylene has no effect on activation amounts but will help 

reduce excess gamma dose in the room. 
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4.4   Analytical Modeling and Prediction of Fluid Pumping System 

Modeling was performed to predict the behavior of the activated material within 

the liquid transport mechanism using dimensions and conditions present in the 

experimental setups used for data collection.  Fluid modeling was performed for both the 

continuous source of neutrons from the Pu-Be and X-Ray photo-neutron source along 

with the pulsed source from the DPF.  With the use of a continuous source, the fluid must 

be held stagnant in the neutron field to achieve a steady state of activated material where 

decay is balanced with activation.   

Based on the radial velocity profile of the liquid metal determined earlier, the 

following segmented flow can be modeled based on fluid flowing in laminae. 

 

 

Figure 4.24.  Segmented flow along the GaInSn transport tubing. 
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Models predict that segmented flow will exhibit a gradual rise in detected 

radiation at the detector as the radioactive material in the center of the tubing, at r=0, 

reaches the detection area with twice the average speed of the bulk fluid.  The difference 

between assuming uniform flow and segmented flow is illustrated in Figure 4.25.  This 

“early arrival” of radioactive material has implications for dose delivery as this material 

begins depositing dose before the expected arrival of an activated bolus. 

 

 

Figure 4.25.  Segmented versus uniform flow along the GaInSn transport tubing. 

 

For the geometries used here, the detector face is 27.5 inches from the center of 

activator volume.  With a pumping speed of 1.8 inches per second, the expected arrival of 

the uniform flow bolus would be 15.3 seconds.  However with segmented flow accounted 

for, the detector will begin to encounter In-116 decays at half this time, or 7.6 seconds 

with the bulk material peaking at 15.3 seconds.  This characteristic is shown in the 

results. 
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CHAPTER 5  

EXPERIMENTAL SETUP 

 The pumping, activation, and application system was tested on three substantially 

different types of neutron sources and utilized two types of radiation detectors for 

quantifying the amount of neutron activation in the indium.  Each neutron source 

represented a potential option for neutrons in a clinical environment with varying 

effectiveness for activation of the indium isotope of interest.  Containment of the GaInSn 

while still allowing detection of decay beta particles was a challenge that required several 

revisions of the application cell, with a final design being used on all three types of 

neutron sources.       

5.1  Application Cell, Activation Area, and Pumping System 

Due to the corrosive to metal nature of GaInSn, a transport system was required 

with no metallic components coming into contact with the eutectic.  Silicon tubing was 

chosen to transport the eutectic between the activation site and irradiation site.  In clinical 

applications, tubing durability and wall strength are important features, especially if small 

radius turns are required.  Figure 5.1 outlines the main components of the system, 

referred to as the application cell, activation area and pumping system.  The application 

cell must allow beta particles to escape the eutectic and enter the detector or patient 

treatment area.  This component requires a thin exit window that contains the eutectic 

during circulation while still allowing passage of the beta radiation. 
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Figure 5.1.  General overview of the pumping, detection and activation system and 

electronics used for all neutron sources. 

 

The application cell components were constructed first in ABS plastic with fused 

deposition modeling (FDM) printing followed by a final design that utilized Accura® 60 

plastic printed on a stereolithography (SLA) printer.  SLA fabrication was used for 

applicator manufacturing due to tight tolerances required in the final print for passage of 

the liquid eutectic between tubing and applicator region.  The semi-translucent property 

of the Accura® 60 plastic was convenient for visually ensuring that no air pockets 

formed in the applicator region.  
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Figure 5.2.  Application cell from back side showing spread of GaInSn, white styrene 

thin window facing down (top) and application cell inside Hoffman box with associated 

pumping system and electronics (bottom). 

 

High corrosiveness of the eutectic with metals leaves only a few options for 

pumping and moving the material between activation site and treatment site.  The 

material could be translated back and forth between the two sites using a plunger/piston 

style method or pumped in a closed continuous loop.  The loop method was utilized in 

this work by using a peristaltic pump to squeeze the tubing and displace the fluid.  This 

method works in much the same way that peristaltic pumps are used for laboratory fluids 
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that must remain sterile or isolated inside tubing and how blood is moved in medical 

equipment.  A peristaltic pumping method was chosen due to the ability to maintain a 

constant pumping rate that can be correlated to eutectic mass flow rate based on pump 

speed and the ability to maintain a closed loop system.  Every revolution of the roller on 

the peristaltic delivers the same volume of material depending on tube diameter, with 

speed controller by a variable dial.  A Fisher Scientific™ Variable-Flow Peristaltic Pump 

model 13-876-2 was used as pictured in Figure 5.3.  These pumps utilize various rotary 

speeds and varying tube sizes to provide user selectable flow rates between 0.4 to 

85mL/min.  A narrower pumping volume speed is determined based on tube size 

selection.  1/16” ID tubing was used for a pumping volume speed of 3.0-12.0 mL/min 

depending on rheostat settings.   Pumping speed rheostat setting was recorded for every 

irradiation and measurement to provide eutectic flow rates. 

 

 

Figure 5.3  Fisher Scientific™ Variable-Flow Peristaltic Pump [58]. 
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5.2  Radiation Detection System  

Detection of decay radiation from the indium flowing through the applicator, both 

beta particles and gamma-rays, was performed with a High Purity Germanium (HPGe) 

detector manufactured by Ortec for spectral measurements of gamma radiation and by 

Cadmium Zinc Telluride (CZT) detectors by eV Products for dose measurement of the 

beta decay.  The HPGe was utilized primarily for identification of any additional 

unwanted isotopes using specific decay gamma rays in a spectral analysis.  The solid 

state HPGe detector is cooled with liquid nitrogen and offers very low electron hole (e-h) 

pair energy thresholds and excellent gamma-ray energy resolution can be achieved, 

allowing identification of activated isotopes within the eutectic.  With a thin beryllium 

window to allow passage of the betas, the HPGe also offers complete beta absorption and 

excellent gamma-ray energy resolution.  However since the HPGe was only used with the 

low activity Pu-Be source, beta dose was not quantified using this detector.   

CZT type detectors were used primarily to detect beta particles while offering 

significantly lower gamma-ray background than HPGe.  With a thickness of only 5mm 

the CZT has poor photon detection efficiency for higher energy gammas due to a small 

probability of interaction in the volume.  Beta particles of the energy investigated here, 

on the other hand, are fully absorbed in the CZT and provide complete energy deposition 

with even a 3MeV beta stopping before a depth of 4mm in the detector.  CZT also offered 

the advantage of no need for liquid nitrogen cooling and associated heat transfer 

components and electronics. 

A third detector type, the silicon PIPS type detector, traditionally used for alpha 

and beta detection, was initially used with poor outcome due to the limitations of 
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measuring beta particles with the high relative energy of the In-116 decays.  700 micron 

thick active depth PIPS were utilized but had insufficient active depth to fully stop the In-

116 beta particles.  This results in only partial charge collection of the betas.  PIPS also 

lack the thickness and density to collect gamma-rays and therefore provided no useful 

purpose for In-116 measurement.  While thicker depletion region PIPS are available, up 

to 1000um [55], cost and availability prevented their use in this work with CZT 

performing excellently in their place. 

 

5.2a    HPGe experimental setup 

As part of the effort to measure any potential impurities or unknown isotopes that 

might lead to undesirable secondary decay radiation, an HPGe detector was used to 

measure activation of a eutectic sample after irradiation with the UNLV Pu-Be source.  

Energy spectrums from the In-116 decays were measured using a multi-channel analyzer 

mode on a portable Canberra Falcon-5000 HPGe detector.  A 1 cc sample of the eutectic 

was irradiated in the Pu-Be access port for 1 hour to match the approximate amount of 

eutectic typically present during irradiation by the DPF and X-Ray photoneutron source.  

The 1 hour time of irradiation was chosen in order to allow sufficient buildup of any 

potential activation isotopes.   



95 

 

 

Figure 5.4  GaInSn sample irradiated on Pu-Be and shielded HPGe detector. 

 

The HPGe was calibrated using a 4 point method with three gamma check sources 

according to Figure 5.5 with an excellent linear channel/energy response. The HPGe was 

operated at -3400V, x5 Gain, 1.9x fine gain, with a shaping function setting of 8.8us rise 

time, 1.2us flat top and auto base line restore. 
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Figure 5.5.  HPGe calibration curve fitting with Co-60, Cs-137 and Ba-133 sources. 

 

5.2b    CZT experimental setup: 

Three identical CZT detectors, manufactured by eV Products, model number A4, 

were used in the course of the study to quantify beta decay.  These detectors house 

onboard preamps and their solid aluminum housings pictured in Figure 5.6 were modified 

to allow passage of beta particles into the CZT crystals by opening a hole in the 

aluminum and plastic housing.  Since the eutectic is contained in the applicator cell 

behind a thin styrene layer, the CZT was exposed to the air with the applicator facing the 

detector.  The active detection region consisted of four 5x5x5mm
3
 crystals for a total 

surface area of 1cm
2
 and thickness of 5mm.  This surface area and thickness is important 
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for calculating the beta fluence intersecting the detector and for calculating the equivalent 

dose that would be delivered to tissue.  All beta measurements were performed with a 

detector bias potential of +63V to +75V depending on the power source and preamp 

potential of +12V to +17V.   

 

 

Figure 5.6  CZT detector with preamp electronics (left) and active 10mmx10mm CZT 

face (left highlighted). 

5.3    Data Acquisition Procedure 

Data collection for both dose measurement and isotope identification was 

accomplished using a pulse counting technique commonly referred to as a multi-channel 

scalar (MCS) method, in addition to a pulse height measuring technique called pulse 

height analysis (PHA).  PHA is often performed using a multi-channel analyzer (MCA) 

mode to keep track of the height of voltage pulses from the radiation detector.  In general, 

MCS mode counts total pulses over time increments to track trends, while MCA mode 

builds a spectrum of the number of pulses of certain heights.  As discussed earlier, a 

radiation detector utilizes the charge deposited by an interacting particle to produce a 

current across a material with an applied voltage.  Detectors utilize materials as varied as 
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air or gasses mixed to produce desired characteristics, to materials such as pure 

semiconductors.  This work utilized the CZT and HPGe semiconductor materials which 

rely on the release of electron-hole pairs that then migrate through the material along the 

applied voltage fields to the anode and cathode, producing a pulse with a height 

corresponding to the particle energy.   

In MCA counting modes the height of these pulses is measured and the total 

particle energy deposited in the detector is then known.  Individual pulse heights can then 

be binned together according to voltage magnitude to produce an energy spectrum.  This 

energy spectrum is a pulse height histogram with bins equivalent to the frequency of 

pulses with the same heights, and thus energy, together along the abscissa.  This energy 

spectrum can be used to identify a particular isotope or isotopes as the source of the 

radiation.  In contrast to MCA mode, in MCS mode the frequency of all pulses during a 

specified time window can be measured to produce a time history of interactions.  In this 

mode, a pulse height window is sometimes used as a discriminator to count pulses of 

certain energies during a window of time.  MCS mode counting produces time decay 

plots which can be used to identify the half-lives of the parent isotopes.  Experiments 

here utilized MCA mode for HPGe spectral analysis and MCS mode for half-life decay 

fitting and for total dose/activation measurement. 

While the energy deposited in a detector by very slow count rate isotopes could be 

measured directly by an oscilloscope, the effects of pulse pile up require the use of 

hardware or software capable of dealing with radiation pulses that begin to pile on top of 

each other.  This effect is due to the capacitive nature of a radiation detector and the 

decay tail that occurs as the electron-hole pairs move towards the anode and cathode, 
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respectively.  After a single radiation interaction produces one pulse which then begins to 

decay, another pulse arrives before the capacitive decay has finished and stacks on the 

tail, causing that pulse to register an artificially large pulse height.  This false pulse height 

is compounded when the count rate becomes so high that the detector can saturate and no 

longer register events.  When saturation occurs, the detector is essentially "dead" and thus 

the frequency of this period is referred to as the detector dead time.   

Pulse pile up is primarily dealt with using pulse shaping techniques by analog 

circuitry techniques or more recently digital pulse shaping.  Dead time is a function of 

detector characteristics, such as electron-hole mobility and applied bias voltage.  Dead 

time in this work was not a significant issue due to the low to moderate count rates 

observed in the detector.  Pulse shaping was accomplished with digital analysis in the 

MCA and MCS software Genie 2000 by Canberra, and MCS-32 by Ortec.  Data 

acquisition utilized the Canberra DSA-1000 which provides both MCS and MCA 

acquisition modes and digitizes the pulses for pulse shaping in the software along with 

Ortec Easy-MCA's.  Pulse pile-up was prevented through the use of either amplifiers with 

built in shaping or constant fraction discriminators. 

MCS mode retains time information for the detector and is therefore extremely 

useful when determining parent isotopes based on half-life using decay of activity.  While 

it is now possible with newer digitizer software to retain both time and energy history for 

an individual event, the limitations of a CZT detector and broad beta energy make energy 

information unreliable in this case.  MCS mode data collection used 100 millisecond time 

bins with all pulses within a selected energy window binned into a histogram.  100ms 

time bins allowed excellent resolution for dealing with isotope half-life values in the 2 to 
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60 second range.  MCS data collection also allows for analysis of fluid pumping 

characteristics as arrival times of activated material are observed.  Equipment used to 

collect and analyze output from the CZT detector for the three types of neutron 

irradiation are listed in Table 5-1.  Differing hardware and software combinations are not 

expected to change the quality of data collection from each type of neutron source. 

 

Table 5-1. Pulse shaping and data collection modules for experimental runs. 

  Pu-Be Irradiations 

Ortec Inverter NIM module 

Ortec NIM module 584 Constant Fraction 

Canberra DSA-1000 MCA / MCS 

   DPF Irradiations 

Ortec Inverter NIM module 

Ortec NIM module 584 Constant Fraction 

Ortec MCS-32 

   Varian M6 Irradiations 

Ortec NIM module 682 Spectroscopy Amplifier 

Ortec MCS-32 

 

5.4a  Neutron Activation Sources: Dense Plasma Focus 

Activation of the GaInSn mixture with a pulsed Dense Plasma Focus (DPF) 

neutron source presented several challenges to successful data collection versus a static 

and continuous neutron source such as the Pu-Be or Clinac.  Due to the extremely short 

pulsed nature of the source, all activation takes place within the pulse time length of the 

machine which is about 100ns in this particular case.  Near instantaneous activation 

eliminates the need to pump and stop the fluid near the source long enough to saturate 
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and reach equilibrium, as would be required with a continuous source. However this 

exceptionally high yield of neutrons in a short time period requires a high current input 

from a large capacitor bank over a short period of time.  This creates significant 

electromagnetic interference (EMI) that can disable or damage electronics in the vicinity 

of the device.  Since the fluid must be pumped quickly from the activation cell to the 

applicator cell after activation, placing the detection and pumping assembly at an EMI 

safe distance from the DPF was not an option.  Due to this challenge, the detector 

electronics were EMI shielded and turned off as an additional precaution during actual 

firing of the DPF.  

To accomplish this, a metal Hoffman style box was used to house the entire 

experimental assembly, including the pump, detector electronics, applicator and 

triggering relays.  Power for the pump was provided by a battery inside the enclosure and 

voltage for the detector was applied externally over a BNC cable from a remote power 

supply that was off during shots.  Communication with the MCS card was provided over 

a 100ft BNC cable to a monitoring PC.  A trigger was also run to the enclosure to turn on 

the pump.  This allowed all electronics to be shielded from the EMI and remain off 

during a shot while enabling them to be quickly turned on immediately after neutrons 

were produced and the GaInSn was activated.   

During all DPF shots, multiple independent neutron yield measurement systems 

are operated to determine the number of neutrons emitted with every pulse.  The DPF can 

vary in output over several orders of magnitude, so shot-to-shot yield measurement is 

important.  For these runs, independent DPF neutron yields from a beryllium activation 
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detector are reported for comparison to In-116 activation results.  The beryllium detector 

has an expected uncertainty of ~10% in yield reporting. 

 

 

Figure 5.7  External inputs and outputs to detection and pumping Hoffman box. 

 

  

Figure 5.8  Irradiation setup with pump and detector, transport line to moderating 

material and DPF neutron source (left) and close up of transport tubing on moderator 

(right). 
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Figure 5.9  Hoffman box containing pump and detector (highlighted left), transport line 

to moderating material and DPF neutron source (highlighted right). 

 

 

Figure 5.10  The pumping system was also placed in the DPF tube turned horizontal to 

the ground to reduce distance from the pinch point, an “INNY” configuration. 

 

This same irradiation, pumping and detection setup in an EMI shielded Hoffman 

was used for both the Pu-Be and photo-neutron sources as well since it provided a 

compact and portable method of irradiation and counting of the In-116 decay.   
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5.4b  Neutron Activation Sources: Plutonium Beryllium (Pu-Be) 

With a significantly lower neutron yield than a DPF, the Pu-Be source was used 

primarily for spectral measurements and initial feasibility studies since low activation 

amounts make this not suitable for providing clinical doses.  Spectral measurements as 

discussed earlier examined the gamma decay lines of the material and can provide 

information on particular isotopes in the activated material.  Spectral analysis is 

important for determining the amount of unwanted or potentially dose modifying 

materials that can build up with repeated irradiations.  

Without a need for EMI shielding, the system could be run with continuous power 

and monitoring of the detector.  A pumping scheme to follow predicted optimal flow and 

stop times to maximize activation was used as illustrated in Figure 5.11. 

 

Figure 5.11.  Flow Scheme Used for transport of GaInSn through a Pu-Be source. 
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The GaInSn mixture was pumped into an access port on the side of the PuBe 

source shielding drum.  Models determined that proximity to the source was more 

effective for activation than adding moderator between the GaInSn and the Pu-Be 

material.  Since the shield drum consisting of paraffin wax poured into steel acts as a 

large moderator, it was not necessary to remove the Pu-Be source and the access port 

acted as an effective scattering and moderating material.  As indicated by the models the 

area in the access port of highest neutron activation effectiveness, a combination of 

fluence scattered neutron energy, was immediately adjacent to the Pu-Be source in a 

raised position.  Therefore the eutectic transport tubing extends all the way from outside 

the port to the source.  In addition to active pumping, a static volume of GaInSn was also 

irradiated in the Pu-Be source for 1 hour to build up any potential contaminants or 

unknown isotopes and subsequently analyzed on the shielded HPGe detector discussed 

previously. 

5.4c  Neutron Activation Sources: Photo-neutrons from Varian X-Ray Source 

While not typically intended as a source of neutrons, high energy X-Ray 

producing accelerators do produce neutrons as a secondary, and often unwanted, form of 

radiation.  These photo-neutrons are produced in the accelerator components and 

shielding through photonuclear interaction of the X-Rays.  These photo-neutrons can 

become a significant source of extra dose around an accelerator as X-Ray energies 

exceed 9MV and are typically shielded with polyethylene.  Accelerator designers take 

steps to minimize neutron production in accelerators above 9MV by changing both target 

materials and shielding materials to elements that have a higher photo-neutron threshold.   
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The accelerator available for these experiments, however, operated at 6MV with 

photo-neutron production not a typical concern.  Since it was desirable to produce 

neutrons, a material with a lower photo-neutron threshold was used to increase 

production beyond what would typically be generated in the accelerator target or 

shielding.  Neutron output from these X-Ray sources can be increased significantly by 

using target materials in the beam with low thresholds to produce photo-neutrons with 

beryllium being chosen for these experiments.  A high output Varian 6MV accelerator 

was used with a Be target measuring 3" diameter x 6" long.  Additional activation 

capability for the In-115 was provided by slowing the photo-neutrons with polyethylene 

moderation materials, moving the neutrons into an energy range with more favorable 

cross section for the In-115(n,)In-116 reaction. 

 

 

Figure 5.12  Irradiation setup for the Varian M6 photoneutron source. 
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The above figure shows a GaInSn irradiation configuration on the M6 accelerator 

with a polyethylene front (top piece) and poly reflector (bottom piece).  The eutectic 

enters the area between the poly pieces through tubing inside the copper shielding from 

the left and returns through the same port.  Polyethylene in experiments and modeling 

predictions were varied according to Table 5-2 to alter the photoneutron spectrum. 

 

Table 5-2. Polyethylene reflector and moderator configurations used with the M6. 

Configuration # 

Front 

Moderator Reflector 

M6-1 3/8” (0.953cm) 1” (2.54cm) 

M6-2 5/8” (1.58cm) none 

M6-3 5/8” (1.58cm) 1” (2.54cm) 

M6-4 1” (2.54cm) 1” (2.54cm) 
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CHAPTER 6  

RESULTS 

6.1  How Dose is Calculated and Presented 

Since energy deposited by the electrons is measured in a detector medium that 

differs significantly from the composition of human tissue, an equivalent tissue dose must 

be calculated.  This is typically done in the medical physics field through the use of ion 

chambers that are placed at various depths in a tissue equivalent material (TEM) or by 

using thin thermos-luminescent detectors (TLDs).  Physical differences between the ion 

chamber and real tissue are then adjusted for through the use of correction factors and a 

depth dose profile can be made.  In this particular case the electrons are of a low enough 

energy that very shallow depth dose profiles are produced, on the order of only a few 

millimeters deep.  This makes physical measurements challenging compared to typical 

mono-energetic 6 MeV and higher accelerator electron beam depth dose profiles which 

instead have depth dose profiles of tens of centimeters.  Because of the excellent 

capability for Monte-Carlo codes to predict electron behavior, a surface electron flux is 

measured here with the CZT detector for each neutron activation source, and a depth dose 

profile expected in tissue is then constructed by Monte-Carlo methods with MCNP.  

Physical validation of depth dose measurements would be required prior to clinical use in 

human medicine and these measurements would be done with repeated irradiation of 

TEM using stacked sub-millimeter thickness pieces of TEM material and a thin film at 

various depths.  However with limits during certain experiments on the frequency of 

neutrons available for activation, this more exhaustive process is not feasible here and 
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depth dose curves instead rely on surface dose and extrapolation to depth through Monte-

Carlo modeling, a well established method for radiation interaction prediction.  Figure 

6.1 outlines the MCNP geometry used to determine dose at depth in tissue for the In-116 

decay betas. 

 

 

Figure 6.1.  MCNP model geometry for determining PDD in tissue. 
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Figure 6.2.  PDD for In-116 ground state decay betas in tissue with and without 

bremsstrahlung produced X-Rays. 

 

The two dose curves above in Figure 6.2 show the minor contribution of X-Ray 

production in the GaInSn that only becomes apparent at depths greater than 12mm where 

the electron dose has essentially fallen off to zero.  This sharp dose fall-off stands in 

contrast to the PDD for a current methodology for shallow tumor treatment marketed by 

Xoft Inc that utilizes 50kV X-Rays.  As shown below in Figure 6.3, the competing Xoft 

X-Ray source continues to dose tissue for 10 of millimeters beyond where the In-116 

decay dose essentially becomes zero.  Ir-192, a standard brachytherapy technique 

utilizing gammas of 373 keV results in a similar PDD plot as the Xoft system.   
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Figure 6.3.  PDD for In-116 decay in tissue compared to the Xoft 50kV X-Ray source. 

 

Percent depth doses of interest for the GaInSn decay betas are provided in Table 

6-1.  It is apparent that this method is most applicable to shallow lesions no deeper than 

3mm, beyond which the dose falls off dramatically.  Potential treatable lesions with betas 

that can reach this depth, such as certain types of skin cancers and corneal lesions, are 

discussed in the conclusions. 
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Table 6-1.  PDD in tissue from In-116 decay in a 1/16” thick GaInSn applicator. 

 

 

With percent depth dose profiles established for the In-116 decay betas, we must 

convert the betas detected by the CZT detector to an equivalent dose in tissue.  The 

higher density CZT compared to tissue results in electrons quickly depositing their 

energy in a very shallow depth.  3MeV electrons have a CSDA range of 4mm in CZT, 

meaning that 4mm of CZT will fully stop any In-116 decay beta.  Because of this, we can 

assume that electrons are 100% absorbed within the CZT crystal used in these 

experiments.  With the energy of impinging betas on the CZT known based on isotope 

decay properties, a measure of beta count rate in the CZT can be directly converted to 

energy deposited and thus dose.  Based on this assumption, dose to tissue can be 

calculated by counting the total number of beta particles impinging the CZT detector and 

the values in Table 6-1 can be used to calculate both total dose and a depth dose profile.   

In addition to compensating for the path length differences in tissue, surface 

effects of the CZT detector versus those in tissue must be accounted for.  Just as 

correction factors are used for gas filled ion chambers to equate their response to 

equivalent dose in tissue, a correction factor is used for the CZT crystals used here. The 

large density difference between CZT and tissue has a major effect on the number of 

Depth PDD 

0.25mm 90% 

0.5 mm 80% 

1.0 mm 64% 

2.0 mm 40% 

3.0 mm 25% 

5.0 mm 8% 

10 mm 0.20% 
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electrons that scatter off the material and do not deposit energy.  Because the CZT 

detector is a flat, uniform material, complicating factors that arise with the use of ion 

chambers such as circular geometries, wall thicknesses, gas densities, active and non-

active regions and other factors did not need to be corrected for.   

An increased percentage of electrons backscattering out of the CZT detector and 

not being recorded is expected compared to electrons impinging on tissue.  A Monte-

Carlo MCNP model of both a tissue equivalent (TEM) and CZT detector material volume 

with an In-116 beta spectrum impinging on the surface was quantify electrons that enter 

the tissue or CZT versus those that are backscattered to determine a backscatter ratio 

according to Figure 6.4, also presented previously for backscatter correction in model 

comparisons.   

 

 

Figure 6.4.  Electron backscatter geometries for tissue versus CZT detector. 

 

  The predicted backscatter percentage from CZT for In-116 decay betas is 

approximately 36.5% versus about 1.5% for tissue, meaning that 36.5% of the total 

electrons that reach the CZT detector are scattered away and deposit no energy.  

Therefore, to find equivalent counts in tissue based on measured counts, the CZT 
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measured electron fluence must be multiplied by a backscatter factor, CB, that accounts 

for the difference between these two scattering percentages with a value of CB=1.6. 

With an ultimate goal of delivering electron dose to tissue, results are presented in 

terms of gray (Gy) and one-hundredth of a gray (cGy), a standard metric unit used to 

quantify radiation energy deposition that does not account for differences in tissue 

damaging effectiveness between types of radiation.  This effectiveness is the quality 

factor (QF) of radiation, a concept discussed previously.  The sievert (Sv) is commonly 

used to correct for effectives in tissue, with 1 Sv equal to 1 Joule of energy deposited per 

kilogram of mass when the QF=1.  The gray multiplied by the QF for a particular 

radiation type is equal to the Sv.  A dose of 1 Gy with a QF=10 would be equivalent to 10 

Sv, as would be calculated for alpha particles.  For simplicity, since this work deals only 

with electrons that have unity quality factor, all doses will be presented in units of Gy or 

cGy and will inherently account for the electron dose quality factor of 1. 

Decay activity of the GaInSn after neutron activation was measured in total 

electrons detected in the CZT per unit time, rather than energy deposition by individual 

electrons.  As discussed previously, due to the natural spread in energy of beta decay 

particles, identifying the original isotopic source of an individual beta particle is 

impossible when that energy is measured independently of any other particle.  When 

using a pulse counting technique with the CZT detector to determine dose, we must know 

the particle energy to determine actual dose.  However this information is not present in a 

multichannel scalar collection mode.  By counting total electrons over time, an activity 

decay plot is acquired which can be matched to the half-life of the original isotope.  This 

activity decay plot can be curve fit with exponentials to correlate half-life values to 
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known isotopes and identify the parent isotopes and the associated decay beta particles.  

With the parent isotopes known and total number and energy of electrons per unit time 

impacting the detector measured, the total decay energy deposited in the detector can be 

determined. 

Since dose is energy deposited per unit mass that the radiation interacts with, the 

mass and therefore the volume in which the energy is deposited is inversely proportional 

to the total dose.  In a high density CZT material, the electrons deposit energy quickly 

and in a shallow volume, leading to a high dose at the surface.  In tissue, however, the 

electrons travel much further and spread the dose deposition over a certain depth.  Dose 

in the CZT is therefore not equivalent to dose in tissue and results must account for 

increased electron path length in tissue.  To accomplish this, the calculated percent depth 

dose tables above for tissue are created through Monte-Carlo models using thin layers of 

tissue to determine dose at incremental depths.  Total dose at certain depths is determined 

by multiplying the PDD value by dose at the surface, or a depth of zero, which is 

considered to be 100% dose at a depth of 0mm.  This surface dose is determined by 

extrapolating dose at a measured depth back to zero and provides a reference to 

determine dose at a depth of interest.   

Total dose is simply the integral of dose over the total depth of penetration.  A 

percent depth dose table is presented for each neutron activation method, Pu-Be, DPF and 

LINAC since electron decay energies can change based on parent isotopes and parent 

isotope compositions are dependent on activation neutron energies.  Integral dose is then 

presented for each activation source and the various parameters that were investigated, 

including pumping times, activation times and source neutron intensities.   
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6.2  Activation and Dose Results From a Dense Plasma Focus Source 

Activation testing with the Dense Plasma Focus (DPF) source was performed 

with 2 configurations of moderator along the outside of the tube (radial) and with 

moderator and activator cell placed axially to reduce distance from the pinch point to the 

eutectic.  Unlike the Varian M6 which produces a volumetric source of photoneutrons 

along the path of the X-Ray beam in the beryllium, the DPF emits all neutrons from a 

small point source on the order of just a few cubic millimeters.  Therefore the intensity of 

neutrons hitting the activator cell is a function of the 1/R
2
 drop off of neutron fluence as 

distance is increased.  If the distance is doubled, the fluence drops by a factor of four, so 

proximity of the activator cell to the pinch point is critical for In-116 production.. 

 

Figure 6.5.  Decay data on CZT for a DPF shot followed by 15 seconds of pumping. 
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An example of beta decays detected on the CZT detector from the applicator cell 

is presented in Figure 6.5 for a single pulse of neutrons followed by 15 seconds of 

pumping the activated bolus to the detector.  A decay line can be fit to the peak to 

confirm the detection of the 14.1 second ground state of In-116 as shown in Figure 6.6.  

Using this fit line, the total activation present in the activation cell during neutron 

irradiation can be determined using decay time correction and the time between the DPF 

“shot” and the peak of activity.  The total activation in the irradiation cell is divided by 

the geometry-specific MCNP derived calibration factor to calculate a predicted neutron 

source strength.  This neutron yield is compared to an independent yield detector in Table 

6-2 and plotted in Figure 6.7 with good agreement. 

 

Figure 6.6.  Decay data for a DPF irradiation . 
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Table 6-2. DPF predicted yields per shot based on CZT detector and models compared to 

independently measured DPF yields. 

DPF 

Configuration  

MCNP 

Cal Factor 

Predicted Yield in 

neutrons/shot based 

on CZT counts 

Be Rod Measured 

neutrons/shot 

Models to 

Detected 

Ratio 

Standard 1.7E-05 2.27E+11 2.18E+11 1.04 

Flush 2.9E-05 3.03E+11 2.80E+11 1.08 

Flush 2.9E-05 4.96E+11 4.63E+11 1.07 

Flush 2.9E-05 1.84E+11 1.64E+11 1.12 

INNY 5.0E-05 1.90E+11 1.50E+11 1.27 

INNY 5.0E-05 1.56E+11 1.29E+11 1.21 

 

 

Figure 6.7.  Predicted DPF yields from CZT detection of In-116 versus yield measured by 

independent detector showing good linear agreement. 
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While the decay beta measurements on the DPF showed excellent yield 

measurement capabilities compared to existing yield monitors, dose per shot was 

insufficient to be useful in a clinical setting.  Results for 3 moderator configurations are 

presented in Table 6-3 along with optimized values.  These optimized values would be 

the dose from increased activation achieved with the ideal moderator/reflector 

combination examined earlier of 2in front and 2in reflector.  However even with an ideal 

moderator/reflector, the DPF is unable to produce sufficient activation for clinical use 

and the In-116 system can only be used as a neutron yield detector in this case. 

 

Table 6-3. Dose per DPF shot in tissue at a depth of 0.5mm from In-116 decay. 

Run # 

Detected 

counts 

Associated In-116 

Decays 

Dose 

(cGy/shot) 

Dose Rate Optimized 

(cGy/shot) 

2in standard 4436 1.39E+06 1.76E-03 1.11E-02 

2in flush 10600 3.31E+06 4.21E-03 1.53E-02 

2in flush 16702 5.22E+06 6.63E-03 2.42E-02 

2in flush 7178 2.24E+06 2.85E-03 1.04E-02 

INNY 12768 3.99E+06 5.07E-03 1.07E-02 

INNY 9292 2.90E+06 3.69E-03 7.79E-03 

 

6.3  Dose Results from X-Ray Photo-Neutron Source 

Activation testing of In-115 was most successful with the Varian M6 X-Ray 

source and a beryllium photoneutron target due to the high constant flux of neutron 

available from this source.  Raw data from one of these runs and an overall experimental 

timeline is presented in Figure 6.8.  The ideal irradiation protocol involved 60 seconds of 

neutron irradiation in the M6 with detector electronics off, followed by pump start and 
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the detector powered on.  The activated In-116 bolus shows a clear arrival at the detector 

towards a peak value depending on pump speed 

 

 

Figure 6.8.  Irradiation protocol followed for data collection on 15 seconding pumping 

runs. 
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Figure 6.9.  GaInSn decay on CZT detector for Varian M6 irradiation showing activated 

bolus arrival and subsequent decay on detector. 

 

The figure above is a raw data set from a 60 second irradiation with 15 seconds of 

pumping.  Since the m1 activation state becomes more prevalent as irradiations are 

repeated, this m1 background must be subtracted from each irradiation result to 

determine the contribution of the primary ground state decays.  The background 

subtraction analysis was performed for all runs and is presented in detail for this 

irradiation run only, with a summary of the results given for subsequent runs. 

Subtraction of the background m1 state component has an added benefit of 

confirming the isotopic composition of the decaying isotopes since unexpected 
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components will appear with distinct decay half-lives.  These decay fits can be used to 

confirm prior HPGe spectral analysis showing that the GaInSn is only exhibiting 2 decay 

components of In116, the 14.1 second ground state and the 54.3 minute m1 state.   

The m1 state decay line is fit to the data from Figure 6.9 after allowing the 14.1 

second ground state to decay sufficiently.  The fit line data was chosen as 300 seconds to 

2100 seconds with a fit line used assuming a single 54.3 minute decay half-life.  This 

single decay component fit line for the ground and m1 states is calculated using equation 

6.1 here: 

 

         
 
   
  
 

  

 
6.1 

 

with Ao the extrapolated decay activity at time zero, t1/2 the half-life of the 

component and t the time in seconds.  Using this fit line in Figure 6.10 below we see an 

excellent fit for the In-116 m1 state using a half-life of 54.3 minutes and an Ao of 1185, 

assuming that time zero occurs at the peak of the bolus arrival and start of decay at t=77 

seconds previously in Figure 6.9.   
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Figure 6.10.  In-116 metastable state m1 54.3 minute decay fit line. 
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Figure 6.11.  Residuals analysis for In-116 metastable state m1 54.3 minute decay fit 

showing good random residual spread. 

 

Both Figures Figure 6.10 and Figure 6.11 show excellent fit to the m1 component 

of In-116 decay from 300 seconds to 2100 seconds.  The residuals plot above is the 

difference between measured decay and the decay fit line using the In-116 m1 state.  

Random distribution of residuals means the fit line is sufficient.   Using this m1 state fit 

line, the raw decay from the applicator cell after the M6 irradiation can be corrected to 

provide the In-116 ground state component only with a 14.1 second half-life. 
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Figure 6.12.  Decay fit line for In-116 ground state with m1 state subtracted. 

 

It is apparent from the fit line data for the ground state and m1 In-116 decay 

states (14.1 seconds and 54.3 seconds, respectively) that no other isotopes are present in 

the GaInSn decay after irradiation as confirmed by the HPGe spectral analysis on the Pu-

Be activated sample.  Based on this, we can assume that all dose delivered to the detector 

or equivalent tissue is from these two decay states.  Combining these fit lines and 

summing the expected decay values from both states with the experimental data gives an 

excellent fit to the observed GaInSn decays on the CZT detector as shown in Figure 6.13. 
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Figure 6.13.  Detected GaInSn activity on CZT with ground and m1 component fits. 

 

With confirmation that we can separate the decay into two components from In-

116 ground state and m1, the contribution to dose from each metastable state can be 

evaluated.  The above figure can be separated into CZT detector counts based on type of 

particle by breaking down the decay spectrum into ground state betas, m1 betas and 

gammas, and background.  The same dataset used above with beam irradiation stopping 

at 60 seconds, pump turning on at 60 seconds, and peak arrival of the activated bolus at 

77 seconds, is presented in Figure 6.14. 
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Figure 6.14.  Three decay components of CZT detector counts from decaying GaInSn. 

 

Due to the buildup of the m1 decay state, its contribution to dose must be 

evaluated.  Since the m1 state decays primarily by low energy beta emission and higher 

energy gamma rays, it is not expected to contribute significantly to the shallow depths of 

the percent depth dose plots above.  However, the gammas would present a longer tail as 

they penetrate deeper into tissue than the In-116 grounds state beta particles.  A 

comparison of the decays of the ground state and m1 state is presented in Table 6-4.  

Note that the m2 state is included in the m1 cross section since it quickly decays (2 

second half-life) to the m1 state. 
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Table 6-4.  Decay properties of the ground state and m1 state of In-116. 

  
In-116 Ground 

State 

In-116 m1 metastable 

state 

Half-Life 14.1 seconds 54.3 minutes 

Thermal  81 barns 

121 barns (includes m2 

state) 

Decay 

Radiation (per 

decay) 

- 3.28 MeV 

(98.7%) -  0.604 MeV (10.3%) 

 

-  0.876 MeV (32.5%) 

  

-  1.01 MeV (54.2%) 

  Gammas Gammas 

 
No Significant 

Gamma emission 

0.138 MeV (3.70%) 

 

0.417 MeV (27.2%) 

  

0.819 MeV (12.1%) 

  

1.097 MeV (58.5%) 

  

1.294 MeV (84.8%) 

  

1.507 MeV (9.92%) 

  

2.112 MeV (15.1%) 
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Figure 6.15.  Comparison of PDD between In-116 ground state and m1 decay radiation. 

 

While it appears that the m1 decay state significantly increases the PDD at depths, 

these two states occur with large differences in half-life and therefore cannot be summed 

into a single dose profile curve.  Due to buildup during repeated irradiations, the activity 

of the m1 state can increase during decay over tissue.  Therefore they must be evaluated 

separately with the doses for the ground state and m1 state calculated independently with 

each irradiation. Doses are presented here first for the ground state 14.1 second decay for 

all cases.  Predicted m1 dose that would be delivered with continued irradiation is then 

presented. 
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Table 6-5.  Detected decays compared to MCNP predicted activation and detection of In-

116 for the same moderator configuration on the M6, 3/8" front and 1" reflector. 

Run 

# 

M6 Pulse 

Rate (Hz) 

Detected 

Decay Betas 

on CZT 

MCNP 

In-116 in 

Cell 

MCNP decay, 

transport and 

detection corrected 

Models to 

Detected 

Ratio 

18 157 108634 1.02E+08 1.05E+05 0.96 

19 157 110368 1.02E+08 1.05E+05 0.95 

20 157 105789 1.02E+08 1.05E+05 0.99 

21 157 109615 1.05E+08 1.08E+05 0.99 

22 250 152081 1.62E+08 1.67E+05 1.10 

23 315 198914 2.05E+08 2.10E+05 1.06 

 

From Table 6-7 we see excellent agreement between MCNP predicted activation 

values and the ground state decay betas detected on the CZT.  The third column is the 

total detected betas from the peak of the bolus arrival, approximately 77 seconds in these 

cases, with the m1 activity subtracted for each irradiation.  The m1 background 

demonstrated continual increase during sequential runs as expected.  The fourth column, 

MCNP predicted In-116 activations, is based on the 5/8" front and 1" reflector and the 

photoneutron production of the machine at a specific pulse rate and associated current.  In 

the fifth column, total MCNP calculated production expected in the GaInSn cell over 60 

seconds is corrected for decay in transit to the peak, 17 seconds, and multiplied by the 

detection efficiency factor 2.46x10
-3

 determined previously in Table 4-1.  With good 

agreement between predicted decays and detected decays, we can expand the analysis to 

derive actual dose from both the measured M6 irradiations and scale that dose to that 

expected from a clinical accelerator. 

Dose that would be expected in tissue utilizes all detected betas, including those 

in the rising portion of Figure 6.14.  Through inverse application of the decay detection 
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correction factor used to compare models to experiment for total activation, the total 

decays in the GaInSn cell can be determined through total area of the decay curve.  This 

total area includes the rising slope of the arrival of the bolus during pumping in column 

two of Table 6-6 with associated total decays in the GaInSn cell in column three.  Using 

these decay values, the percent depth dose models from section 6.1 can be used to 

determine the surface dose at 100% PDD.  For the In-116 ground state decay, MCNP 

calculates 1.27x10
-9

 cGy delivered per decay in the first 0.5mm depth cell.  This allows 

dose calculation in column 4 for one minute of decay. 

 

Table 6-6.  Dose results measured for M6 and scaled for K15 and Clinac. 

Run 

# 

Detected 

counts 

Associated 

In-116 

Decays 

M6 Dose 

(cGy/min) 

K15 Dose 

(cGy/min) 

Clinac 

Dose 

(cGy/min) 

Clinac 

Dose 

(Gy/hr) 

18 206473 5.33E+07 6.78E-02 1.06 19.4 11.6 

19 222051 5.52E+07 7.01E-02 1.10 20.1 12.0 

20 215114 5.18E+07 6.58E-02 1.03 18.8 11.3 

21 226442 5.31E+07 6.74E-02 1.06 18.6 11.2 

22 300454 7.28E+07 9.25E-02 0.91 16.6 9.9 

23 395178 9.70E+07 1.23E-01 0.96 17.5 10.5 

 

Clinac scaling utilized the maximum activation efficiency case determined 

previously of 1.5" front moderator and 1" reflector near the closed jaws of the accelerator 

head and operating a maximum current of 600MU/min. It is apparent that HDR 

brachytherapy in the range of 12 Gy/hour is only possible through the use of a Clinac due 

to the significantly higher In-116 activation compared to the lower energy K15 and M6. 
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With a higher output from the Clinac, the contribution of the m1 state consisting 

of both low energy betas and gamma-rays must be accounted for.  With optimized Clinac 

output, it was assumed that a single activator dwell over tissue was 60 seconds with a 15 

second pumping time.  Since one “bolus” can be activated while the other is decaying 

over tissue, the plot in Figure 6.16 presents pairs of dose representing the dose from each 

bolus.  The integral dose over a 45 minute cycle is ony 37.6 cGy, meaning that m1 dose 

is negligible compared to the 900 cGy (9Gy) that would be delivered by a 12Gy/hr In-

116 source in the same time period. 

 

 

Figure 6.16.  In-116 m1 state decay betas and gammas dose quantification to tissue for a 

45 minute cycle of activations and decays from a pair of activation/decay boluses. 
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If a Clinac is used as a photoneutron source, concern about neutron dose to the 

patient becomes an issue.  Even with the tungsten jaws fully closed, preventing X-ray 

dose, a patient near the Clinac will receive dose from photoneutrons “leaking” from the 

machine.  It is reported that a 20MV Clinac produces an equivalent photoneutron dose at 

1 meter equal to 1.78mSv/Gy at isocenter.  This means that a Clinac delivering 1Gy of 

photon dose would deliver 1.78mSv of photoneutron dose with the jaws closed [37].  A 

Clinac operating at 600MU/min to produce maximum In-116 activation would therefore 

produce 10.7mSv per minute of neutron dose at 1 meter.  With an annual background 

dose of only 6 mSv per year, it would be advisable to position the patient further than 1 

meter from the source to utilize 1/R
2
 reductions or provide neutron shielding. 

 

6.4  Production of Undesired Isotopes 

A major concern when dealing with the activation of materials is unintentional 

creation of isotopes with decay properties that might increase dose or remain radioactive 

longer than expected.  Ideally the GaInSn mixture would consist purely of indium, tin and 

gallium.  However without purchase of 99.999% or 5N pure components, we can expect 

other isotopes.  HPGe spectral analysis after neutron irradiation was used as a primary 

method to quantify activation of the known components (In,Sn,Ga) and identify 

contaminants.  Where isotopes can be identified, their decay products and half-lives are 

presented here.  Generally an isotope with a long half-life is not a concern for dose to a 

patient since the eutectic is only exposed to the patient for 1 minute at a time.  However 
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buildup of any long lived isotopes is a concern for continuous use of the same eutectic or 

for disposal. 

The first components to be analyzed are those we would expect to find in a pure 

GaInSn eutectic consisting only of In, Sn and Ga.  Table 6-7 outlines these elements and 

the potential activation product half-lives.  Thermal capture cross sections, that assume 

0.025eV neutrons, are presented for each isotopic component in the eutectic along with 

the dominant decay mechanism and half-life of that decay. 

 

Table 6-7.  Anticipated activation products in a pure GaInSn mixture. 

Element & 

GaInSn % Isotope 

Atomic Wt 

% 

Thermal Capture 

T1/2 

 

(barns) 

Decay 

Product 

Indium In-115 95.71 14.1 sec 202 3.28 MeV 

22.50% In-113 4.29 71.9 sec 12   1.98 MeV 

 

Sn-112 0.97 115 days 0.8  392 keV 

Tin Sn-120 32.6 27 hours 0.1 - 391 keV 

9.50% Sn-122 4.63 129 days 0.15 - 1.40 MeV 

  Sn-124 5.79 9.6 days 0.13   2.36 MeV 

Gallium Ga-69 60.1 21.1 min 0.3 1.65 MeV 

68% Ga-71 39.9 14.1 hours 4.8 961 keV 

*In-116 contains 3 metastable states depending on incident neutron energy if above thermal energies 

 

Note that for tin (Sn), the isotopes Sn-114 through Sn-119 make of 56% of natural 

tin by weight, however thermal neutron capture on these isotopes transitions them to 

heaver stable isotopes, i.e. Sn-114 transitions to Sn-115 which is stable.  These isotopes 

of tin are therefore excluded from this table of possible activation products.  In-115, the 

isotope of interest in this work, is the dominant activation isotope in this eutectic with the 

largest cross section (202 barns) for thermal capture.  All other possible thermal capture 

isotopes in GaInSn will not contribute to dose due to: (1) Low cross section resulting in 
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small activation quantities; (2) Low energy beta decay which results in reduced escape 

probability and dose. The tin isotope Sn-112 is the exception to this with a 392keV 

gamma. However Sn-112 activates with a capture cross section of less than 1 barn, is 

only 0.97% abundant in tin, and has a relatively long half-life of 115 days. Detectable 

levels of Sn-112 thermal capture were also not observed in the HPGe detector; and (3) 

Half-Lives much longer than the 1 minute dwell time over the dose site result in very 

little decay radiation during the dwell time.   

Given that the non In-115 components of GaInSn are not a contributor to dose, 

gamma spectroscopy was used with the HPGe detector after Pu-Be activation to analyze 

any impurities or unexpected decays.  A portable HPGe, the Canberra Falcon 5000, was 

utilized to measure a 1cc volume sample of GaInSn that underwent 1 hour of irradiation 

in the Pu-Be source.  This hour irradiation greatly exceeded how long the eutectic would 

normally be exposed to neutrons but was utilized to buildup enough activation products 

to investigate impurities.  
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Figure 6.17.  10 minutes of decay spectrum counting on the HPGe detector from Pu-Be 

Activation showing strong In-116 metastable state 1 decay. 

 

Based on Figure 6.17 it is apparent that the single major activated component 

detectable after 1 hour of irradiation is the first metastable state (m1) of In-116 above the 

ground state.  This m1 isotope of indium decays with the gamma-ray energies shown 

below in Table 6-8 with a strong presence of all expected signature decay lines in the 

HPGe measured spectrum.  
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Table 6-8.  Decay gammas and probability per decay from In-116 m1. 

Decay Gamma (keV) Probability per decay 

138.3 3.70% 

416.9 27.2% 

818.7 12.1% 

1097.3 58.5% 

1293.6 84.8% 

1507.6 9.92% 

 

 The strong decay presence of In-116 m1 can be expected since thermal capture on 

In-115 results in three possible isotopes: 1) In-116 ground state with a half-life of 14.1 

seconds, 2) In-116 m1 with a half-life of 54.3 minutes and 3) In-116 m2 with a half-life 

of 2.2 seconds.  The m2 state quickly decays to the lower m1 state during transport and 

can be combined with the m1 state.  Relative cross sections for these isotopes are 81b, 

81b and 40b respectively.  Because of the long half-life of the m1 state, we can safely 

assume that a short 1 minute exposure to a patient will results in no measurable dose from 

the m1 or m2 states.  However multiple irradiations of the GaInSn can result in buildup 

of this m1 isotope, so dose contribution was examined in previous sections.  This 54.3 

minute activation could be useful for neutron detection purposes, however.  Other 

potential activation components in the eutectic from Table 6-7 are not observed on this 

count, due to their beta decay nature and relatively small cross sections compared to In-

115.  With only the In-116 m1 decay state present on the gamma-analysis, the GaInSn 

sample used in testing is shown to be free of any unknown contaminants. 
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CHAPTER 7  

CONCLUSIONS 

 

Based on modeling and experimental results, it is apparent that viable applications 

of this In-116 activation, transport and decay system depend heavily on the type and 

intensity of neutron source used to activate the material.  The three neutron sources 

investigated here experimentally varied by several orders of magnitude in intensity from 

the 10
7
 neutrons/sec Pu-Be, to the 10

11 
neutron per pulse DPF, and finally the 

photoneutron M6 source producing ~10
7
 neutrons/sec into the activation target.  The Pu-

Be source proved to be only viable for neutron activation analysis of the GaInSn 

components with too few activations to provide dose in a therapy application.  The DPF, 

likewise, did not produce enough activation for therapy but In-116 production amounts 

were sufficient to make yield measurements of each shot.  An additional limitation of 

DPF neutron sources in regards to clinical usage is the variability of output with shot to 

shot output ranging over potentially an order of magnitude, making dose planning more 

difficult with varying dose delivered each time.  The M6 photoneutron source did not 

produce sufficient activation for clinical dose but did provide experimental validation of 

photoneutron activation potential for the In-116.   With scaling to a clinical 20MV 

accelerator, activations through photoneutron interactions become sufficient to perform 

HDR therapy with the activated GaInSn. 

While activations were not sufficient to provide clinical dose from the DPF 

source, detector decays did track excellently with the established beryllium yield 
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detector.  This allows neutron fluence measurements to be taken at any location where 

insertion of a probe containing the eutectic is possible.  Traditional neutron activation 

detectors require either placement and physical retrieval of a sample or the use of a 

quickly decaying material coupled to a detector.  The placement and retrieval of a sample 

offers the benefit of immunity to harsh EMI environments and the ability to measure 

neutron fluence in locations where electronics will not fit or be practical.  However the 

retrieved isotope cannot have a short half-life and must be replaced after each irradiation.  

Coupling of activation isotopes to detectors removes the requirements of retrieval and 

useable half-life, but can make measurements more limited in terms of EMI protection of 

the detector.   The system investigated here offers the benefits of both such measurement 

techniques while removing some of the limitations.  Activation of a eutectic such as this 

that can be pumped to an EMI protected detector from a small location near a pulsed 

source, with short decay times and no need to retrieve or replace samples. 

 

7.1   Clinical Applications 

Clinical application of this methodology will require the neutron flux that can be 

delivered from a photoneutron source such as the closed jaws of a 20MV accelerator.  

Since these types of units are very common across the world for X-Ray external beam 

therapy, their use for this purpose becomes viable.  As discussed in the results, a major 

concern is neutron dose from the machine.  With a 20 minute treatment exposing a 

patient on the Clinac table to 214 mSv, neutron shielding or increased distance is 

mandatory.  With movement to a distance of 5 meters from the table, the dose can be 
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reduced to 8.6 mSv.  This distance can be combined with polyethylene shielding for the 

patient to further reduce dose.  Polyethylene 7.6 inches thick will reduce neutron dose 

behind the shielding by a factor of 100 according to NCRP 151.  This would reduce 

patient dose from photoneutrons to 0.086mSv.  Additional room neutron shielding for the 

accelerator should be considered as well if the Clinac is to be operated at high dose rates 

with the jaws closed.   

An additional option for neutron activation of the In-115 in a clinical environment 

is the use of a dedicated compact continual neutron source, sometimes referred to as 

"sting tubes".  These sealed neutron sources produce fusion neutrons, similar to the DPF 

source, but do so with a continual beam current and not in a pulsed fashion.  While 

neutron yields are lower than a DPF, the activation material could potentially be placed 

much closer to the source.  Modern tubes can operate up to 1x10
8 
neutrons per second 

with some companies producing large, fixed fusion sources that claim 3x10
11

 neutrons 

per second.  While such a source would produce enough neutrons for therapeutic use of 

In-116, the cost burden of a large dedicated neutron source might make this impractical 

compared to utilizing existing clinical accelerators. 

 

7.2   Application as a Neutron Detector 

Neutron detection using the eutectic here, consisting of gallium, indium and tin, 

relied on the thermal capture of neutrons on indium.  Thermal capture makes the detector 

sensitive to neutrons of all energies, however, as scattered neutrons become more likely 

to be captured as the cross section increases with 1/velocity as the neutrons slow.  In 
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fusion neutron research, threshold reactions would be more useful.  Threshold reactions 

require the incident neutron to be above a certain energy, typically resulting in emission 

of a proton (n,p), two neutrons (n,2n), alpha (n,), or exciting a nuclei to a metastable 

state.  These reactions remove any sensitivity to neutrons that scatter below the threshold, 

making them very useful in fusion neutron research to investigate only the primary 

source of neutrons with energies from 2.45 to 14MeV.  Dissolving significant amounts of 

other materials into the GaInSn would alter its melting point, so using one of the existing 

isotopes for threshold neutron detection is ideal.   

Gallium-71, making up 40% of natural gallium and over 60% of the GaInSn by 

weight is a viable option for threshold reaction detection with two activation methods that 

could be measured using a beta decay detector.  The production of a neutron through the 

Ga-71(n,p)Zn-71 reaction offers a threshold of 2MeV and a half-life of 2.45 minutes.  

Alpha emission through  Ga-71(n,a)Cu-68 offers a steeply rising cross section that peaks 

at 14MeV, the energy of D-T fusion neutrons, and a half-life of 30.9 seconds with very 

energetic decay betas up to 4.4MeV.  The In-115 isotope could also be used in a 

threshold reaction with a the In-115(n,2n)In-114 decaying with a half-life of 72 seconds 

and a threshold of 6.8MeV.  Any isotope used here, however, would need to account for 

the 14.1 second decay of the thermal capture on In-115 that will always be present in a 

neutron environment.  Therefore decay half-lives longer than about 1 minute are 

preferable. 
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APPENDIX I 

NUMERICAL FLOW MODELING SOFTWARE 

 

Computational Model of Segregated Flow in a Flowing Radioactive Metal 

 

     A computer program was developed to calculate the radioactivity of GaInSn 

flowing through a length of tubing from a neutron source and through a downstream 

radiation detector.  The program also calculates the total number of beta particles that 

would be generated by the GaInSn at the detector and counted by the detector over some 

time interval.    A schematic of the flow problem is shown in figure A1.   

 

 

Figure A1  Schematic Drawing of a Neutron-Activated Liquid Metal Flow used as a Radiation 

Source 
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     Liquid GaInSn flows through a neutron source where it is activated by a 

continuous source of neutrons or by a pulsed neutron source.  A pump is used to move 

the liquid metal through the source with an effective tubing length of Lsource.  For a 

continuous neutron source, the GaInSn may remain in the source for a time period tpreflow 

to build up the concentration of the beta emitter, In-116.  At a time defined as tflow_start, the 

pump is turned on and the “bolus” of activated GaInSn is circulated towards the detector 

located at a distance of Lgap from the exit of the neutron source.  The effective length of 

tubing in the detector is Ldetector.  To capture as much of the radioactive bolus of GaInSn 

as possible in the detector, the flow is stopped at time tflow_stop.  The velocity of flow 

through the tubing is found by dividing the volumetric flowrate in mm
3
/s by the cross-

sectional area of the tubing.  The detector is turned on at tdetector_start and left on until 

tdetector_stop.  

     As an example, a pulsed source of neutrons with a strength of 10
11

 

neutrons/pulse is used to activate GaInSn moving at 110 mm
3
/s through a 1.6 mm 

diameter tube.  The pump is turned on for 15 seconds after the neutron pulse to circulate 

the activated liquid metal to the detector.  The resulting radioactivity of the GaInSn and 

the counts detected by the detector located 444 mm from the source.  The fluid flows at 

56 mm/s with a laminar Reynolds number of only 236.  The program models this 

segregated flow where the fluid along the centerline of the tube moves at twice the 

average velocity of the flow.  It takes approximately 8 seconds for the liquid metal to 

flow from the source to the entrance of the detector.  In this simulation, the detector 

samples for a period of 60 seconds and the resulting of radioactivity of the liquid metal in 
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the detector, along with the total counts (beta particles) that are released within the 

detector are reported as functions of time.   

Figure A2 shows the bolus of radioactive GaInSn within the detector after the 15 

seconds of flow.  The halflife of the activated In-116 is 14 seconds resulting in a delay 

between the peak of the radioactivity and the growth in the number of counts (beta 

particles) that are released within the detector.  Since this source is pulsed, the 

radioactivity in the activated GaInSn quickly dies off and the number of counts reaches a 

maximum. 

 

 

 

 

 

 

 

 



145 

 

 

      

The program uses the finite difference technique to compute the radioactivity 

within the liquid metal as a function of time.  The time increment used in the previous 

example is 0.1 seconds and the total length of tubing is divided into 425 intervals of 2.54 

mm.  The 425 resulting equations are solved at each time increment using a tridiagonal 

matrix solver based on the Gauss-Seidel method.  The complete program, sample input 

file, and sample output file are included in the appendices. 

 

 

 

 

 

Figure A2   Detector Response to Beta Emission from Activated Liquid 

GaInSn 
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'-------------------------------------------------------------------- 

' 

'   Program:  GaInSn.BAS 

' 

'   Purpose:  Calculate the radioactivity in GaInSn introduced 

'             by a neutron source.  The GaInSn is in a thin 

'             tube pumped by a syringe or peristalic pump.   

'             The PIP's detector is  

'             located downstream of the neutron source. 

' 

'   Input:    1)  input.dat  - file containing input data. 

' 

'   Output:   1)  detector-output.dat - file containing detector 

'                                       output (Bq) vs time (s). 

'             2)  spill               - spillout of a lot of  

'                                       intermediate data. 

'             3)  output.dat          - organized file of output 

'                                       data. 

'             4)  results are plotted to the screen, containing 

'                 the number of In-116 atoms per m^3 as a function 

'                 of time and position along the tubing. 

' 

'                 N_In115(i) = atoms/m^3 of In115. 

'                 N_In116(i) = atoms/m^3 of In116 (radioactive). 

'                 i          = increment along the length of tubing 

'                              from i = 0 to i = last. 

'                 Length_Increment = increment in length along the 

'                                    tube. 

' 

'-------------------------------------------------------------------- 

 

 

declare sub GS(nitems as integer, max_order as integer, _ 

               number_of_iterations as integer, _ 

               x() as double, a() as double, _ 

               location() as integer, b() as double, _ 

               tolerance as double) 

 

   '  Note that the variable location() is used to define the position of each 

   '  nonzero entry in the GS coefficient matrix. 

 

declare function Neutron_Flux_dt(x as double, t as double,  _ 

                                 x_source_exit as double,   _ 

                                 Time_Preflow as double,    _ 

                                 Time_Increment as double,  _ 
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                                 Source_Strength as double, _ 

                                 Source_Type as string) as double 

 

 

dim as double Length_Total, Tube_Diameter 

dim as double Flowrate 

dim as double Time_Increment, Time_Maximum 

dim as double Length_Increment, Length_Source, Length_Gap, Length_Detector 

dim as double viscosity, density 

dim as double atomic_radius_Ga, atomic_radius_Sn, atomic_radius_In 

dim as double PI, Boltzmann_Constant, A_avogadro 

dim as double F_In, F_Ga, F_Sn, F_In113, F_In115 

dim as double halflife_In116, decay_constant_In116 

dim as double atomic_weight_In, atomic_weight_Sn, atomic_weight_Ga 

dim as double atomic_weight_In115, atomic_weight_In116 

dim as double atomic_weight_GaInSn 

dim as double cross_section 

dim as double area, Re, velocity, friction_factor, pressure_drop 

dim as double Diffusion_Coefficient 

dim as double beta1, beta2, beta3, beta4 

dim as double Source_Strength 

dim as double temperature 

dim as double N_In, N_In115_initial 

dim as double x_source_exit, x_detector_entrance, x_detector_exit 

dim as double sum 

 

dim as integer NN = 3000, i, last 

dim as double  A(3,NN), C(3,NN), B(NN), D(NN) 

dim as integer location(2,NN) 

dim as double  N_In115(NN), N_In116(NN) 

 

dim as integer number_of_increments, number_of_iterations 

dim as double  t, x, phi, Tolerance 

dim as string  value, input_line 

dim as double  null 

dim as double  volume_of_GaInSn_near_detector, Detector_Diameter 

dim as double  activity_at_detector 

dim as integer i_detector 

dim as integer page, notpage 

dim as double  N_In116_Max 

dim as double  x_left, x_right 

dim as double  Time_Preflow, Time_Flow_Start, Time_Flow_Stop 

dim as double  Time_Start_Counting, Time_Stop_Counting 

dim as integer plot_increment, plot_flag 
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dim as double Pe_axial, Pe_radial, Pe, L, R 

 

dim as double x_source, x_detector, x_soure_width, Detector_Efficiency 

 

dim as string Source_Type 

dim as double phi_dt, Counts, Total_Counts, Detected_Counts 

 

 

   '----------------------------------------------------------------- 

   ' 

   '  A.  Read in the User Input. 

   '   

   '      All values are converted to SI units after being defined. 

   ' 

   '----------------------------------------------------------------- 

  

     '   

     '  A.1  Read in user data from 'input.txt.' 

     ' 

 

         open "input.txt" for input as #1 

 

      do while(eof(1) = 0)   

 

         line input #1, input_line      

         

         if mid(input_line,8,3) = "A.1" then Tube_Diameter    = val(mid(input_line,70,10))       

         if mid(input_line,8,3) = "A.2" then Flowrate         = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "A.3" then Source_Strength  = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "A.4" then Source_Type      = mid(input_line,70,10) 

         if mid(input_line,8,3) = "A.5" then cross_section    = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "A.6" then Detector_Efficiency = 

val(mid(input_line,70,10)) 

 

         if mid(input_line,8,3) = "B.1" then Time_Increment   = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "B.2" then Length_Increment = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "B.3" then Tolerance        = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "B.4" then N_In116_Max      = val(mid(input_line,70,10)) 

 

         if mid(input_line,8,3) = "C.1" then Time_Flow_Start  = val(mid(input_line,70,10))    

         if mid(input_line,8,3) = "C.2" then Time_Flow_Stop   = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "C.3" then Time_Start_Counting = 

val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "C.4" then Time_Stop_Counting  = 

val(mid(input_line,70,10)) 
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         if mid(input_line,8,3) = "C.5" then Time_Maximum     = val(mid(input_line,70,10)) 

 

         if mid(input_line,8,3) = "D.1" then Length_Source    = val(mid(input_line,70,10))  

         if mid(input_line,8,3) = "D.2" then Length_Gap       = val(mid(input_line,70,10))  

         if mid(input_line,8,3) = "D.3" then Length_Detector  = val(mid(input_line,70,10)) 

 

      loop 

 

         Tube_Diameter     /= 39.3701   ' (m). 

         Length_Increment  /= 39.3701   ' (m). 

         Flowrate          /= 1e9       ' (m^3/s). 

         Source_Strength   *= 1e4       ' (n/m^2 * s). 

         Length_Source     /= 39.3701   ' (m). 

         Length_Gap        /= 39.3701   ' (m). 

         Length_Detector   /= 39.3701   ' (m). 

         cross_section     /= 1e28            ' convert to (m^2). 

 

 

         close #1 

 

 

   '----------------------------------------------------------------- 

   ' 

   '  B.  Define Constants. 

   ' 

   '----------------------------------------------------------------- 

 

      ' 

      '  B.1  Constants. 

      ' 

 

         Boltzmann_Constant = 1.380649E-23     ' (J/K). 

         PI                 = 3.14159265358 

         A_avogadro         = 6.02214129E23    ' (atoms or molecules/mole). 

 

         atomic_radius_Ga   = 135e-9 / 2         ' (m). 

         atomic_radius_Sn   = 140e-9 / 2         ' (m). 

         atomic_radius_In   = 167e-9 / 2         ' (m). 

 

      ' 

      '  B.2  GaInSn Properties. 

      ' 

 

         viscosity = 0.0024                ' (kg/m*s) at 20 C. 

         density   = 6.44e3                ' (kg/m^3) at 20 C. 
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                                           ' source:  wiki page on GaInSn. 

 

      ' 

      '  B.3  Composition of Eutectic GaInSn and Indium. 

      ' 

  

         F_In113 = 0.043                   ' (fraction). 

         F_In115 = 0.957 

   

         F_In    = 0.215 

         F_Ga    = 0.685 

         F_Sn    = 0.100 

 

      ' 

      '  B.4  Nuclear Properties of Components 

      ' 

 

         halflife_In116      = 14.1              ' (s). 

         

         atomic_weight_In    = 114.818 / 1000    ' (kg/mole). 

         atomic_weight_Ga    = 69.723  / 1000    ' (kg/mole). 

         atomic_weight_Sn    = 118.710 / 1000    ' (kg/mole). 

 

         atomic_weight_In115 = 114.9038783/1000  ' (kg/mole) 

         atomic_weight_In116 = 115.9052600/1000  ' (kg/mole). 

 

      ' 

      '  B.5  Choose one of these three values for the [n,gamma] 

      '       cross-section for In-115. 

 

      '  cross_section       = 201.0           ' at 0.0253 eV. 

      '  cross_section       = 181.6           ' Maxwell averaged at 0.0253 eV. 

      '  cross_section       = 160.6e-3        ' Fission spectrum averaged.     

 

                                               ' (b), for [n,gamma] in In-115. 

 

      ' 

      '  B.6  Determine the total length of the tubing. 

      ' 

      

         Length_Total = Length_Source + Length_Gap + Length_Detector 

 

         x_source_exit       = Length_Source 

         x_detector_entrance = Length_Source + Length_Gap 

         x_detector_exit     = x_detector_entrance + Length_Detector 
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   '----------------------------------------------------------------- 

   ' 

   '  C.  Preliminary Calculations. 

   ' 

   '----------------------------------------------------------------- 

 

      ' 

      '   C.1  Calculate Flow Parameters. 

      ' 

    

         area        = (PI/4) * (Tube_Diameter)^2 

         velocity    = Flowrate / area 

         Re          = velocity * Tube_Diameter * density / viscosity 

         Length_Total = Length_Source + Length_Gap + Length_Detector 

 

         '   Assume smooth pipe walls. 

 

         if Re > 2300 then  

            friction_factor = 0.316 / Re^(1/4)  

         else 

            friction_factor = 64    / Re 

         end if 

 

         pressure_drop = friction_factor * Length_Total / Tube_Diameter * _ 

                         density * velocity^2 / 2 

 

 

      ' 

      '   C.2  Nuclear Properties. 

      ' 

  

        '  C.2.1  Initial number density of In-115 in GaInSn. 

        '         The units are (atoms/m^3). 

 

         atomic_weight_GaInSn = F_In * atomic_weight_In + _ 

                                F_Sn * atomic_weight_Sn + _ 

                                F_Ga * atomic_weight_Ga 

         N_In                 = F_In * density * A_avogadro / _ 

                                atomic_weight_GaInSn 

         N_In115_initial      = F_In115 * N_In 

 

         decay_constant_In116 = log(2)/halflife_In116 
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      '   

      '   C.3  Compute the Self-Diffusion Coefficient for In in GaSnIn. 

      '        The units for the diffusion coefficient are (m^2/s). 

 

         temperature           = (20 + 273)                 ' (K). 

 

         Diffusion_Coefficient = (Boltzmann_Constant * temperature) / _ 

                                 (6 * PI * viscosity * atomic_radius_In) 

             

 

      ' 

      '  C.4  Set up the coefficient matrix and the B matrix for solution. 

      ' 

      '                              A p = B  

      '                              C q = D 

      ' 

      '       "p" is the number density of In-115. 

      '       "q" is the number density of In-116. 

      ' 

 

         number_of_increments = Length_Total / Length_Increment 

 

 

      ' 

      '  C.5  Compute mass transfer dimensionless groups. 

      ' 

 

         L         = Length_Gap 

         R         = Tube_diameter / 2 

      

         Pe        = velocity * R^2 / (Diffusion_Coefficient * L)    

         Pe_axial  = velocity * L   /  Diffusion_Coefficient 

         Pe_radial = velocity * R   /  Diffusion_Coefficient       

 

 

   '----------------------------------------------------------------- 

   ' 

   '  D.  Define the initial concentrations of In-115 and In_116. 

   ' 

   '----------------------------------------------------------------- 

 

      ' 

      '  D.1  Define the initial values of N_115(i) and N_116(i). 
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      ' 

 

            i = 0 

            t = 0 

         for x = Length_Increment/2 to Length_Total step Length_Increment 

            N_In115(i) = N_In115_initial 

            N_In116(i) = 0 

            i += 1 

         next x           

            last = i 

 

 

   '----------------------------------------------------------------- 

   ' 

   '  E. Set up the screen for plotting. 

   ' 

   '----------------------------------------------------------------- 

 

 

      screen 20, 2  '  2 pages for screen flipping. 

      notpage = 1 

 

 

 

   '----------------------------------------------------------------- 

   ' 

   '  F.  Define the coefficient matrices. 

   ' 

   '----------------------------------------------------------------- 

 

         open "spill" for output as #3    '  This file contains intermediate values 

                                          '  from the computations. 

 

         open "detector-output.dat" for output as #4 

         print #4, "time (s), activity (bq), Detected_Counts_Total" 

 

open "plots.dat" for output as #5 

plot_increment = 50 

plot_flag = 0 

 

         Total_Counts    = 0 

         Detected_Counts = 0 

 

      for t = 0 to Time_Maximum step Time_Increment 
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         ' 

         '  F.1  Set the velocity of the GaInSn based on the timing. 

         ' 

 

            if ((t > Time_Flow_Start) and (t < Time_Flow_Stop)) then  

               velocity = Flowrate / area 

            else  

               velocity = 0 

            end if 

       

 

         ' 

         '  F.2  Define the beta parameters used in computing the 

         '       coefficient matrics, A, B, and C.  D, however, is 

         '       dependent upon the value of N_In115 in the new time 

         '       interval and is computed after solving A * N_115 = B. 

         ' 

 

            beta1 = velocity              * Time_Increment / Length_Increment 

            beta2 = Diffusion_Coefficient * Time_Increment / Length_Increment^2 

            beta3 = decay_constant_In116  * Time_Increment 

 

 

         ' 

         '  F.3  Define the coefficient matrices for Node at x = 0. 

         ' 

         '         The boundary conditions for this node are: 

         '              N_In115 = initial number density. 

         '              N_In116 = 0 

 

            x              =  Length_Increment/2 

            phi_dt         =  Neutron_Flux_dt(x, t, x_source_exit, _ 

                              Time_Preflow, Time_Increment,        _ 

                              Source_Strength, Source_Type) 

            beta4          =  phi_dt * cross_section 

 

            A(0,0)         =  1 + beta1 + 2 * beta2 + beta4 

            A(1,0)         = -beta2 

            A(2,0)         =  0 

 

            C(0,0)         =  1 + beta1 + 2 * beta2 + beta3 

            C(1,0)         = -beta2 

            C(2,0)         =  0 

 

            location(0, 0) = 1 
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            location(1, 0) = 0 

 

            B(0)           = N_In115(0) + (beta1 + beta2) * N_In115_initial 

 

 

         '  F.4  Define the coefficient matrices for Node at x = Length_Total. 

         ' 

         '         The boundary conditions for this node are: 

         '              N_In115 = initial number density. 

         '              N_In116 = insulated condition. 

 

            x              =  Length_Total - Length_Increment/2 

 

            phi_dt         =  Neutron_Flux_dt(x, t, x_source_exit, _ 

                              Time_Preflow, Time_Increment,        _ 

                              Source_Strength, Source_Type) 

            beta4          =  phi_dt * cross_section 

 

            A(0,last)      =  1 + beta1 + 2*beta2 + beta4 

            A(1,last)      = -beta1 - 2 * beta2 

            A(2,last)      =  0 

 

            C(0,last)      =  1 + beta1 + 2*beta2 + beta3 

            C(1,last)      = -beta1 - 2 * beta2 

            C(2,last)      =  0 

 

            location(0, last) = last - 1 

            location(1, last) = 0 

 

            B(last)           = N_In115(last) + beta2 * N_In115_initial 

          

 

        ' 

        '  F.5  Define the coefficient matrices for each Interior node. 

        ' 

 

               print #3, "t, x(in), phi, b4" 

 

               x = Length_Increment * 1.5 

 

            for i = 1 to (last - 1) 

               

               phi_dt         =   Neutron_Flux_dt(x, t, x_source_exit, _ 

                                  Time_Preflow, Time_Increment,        _ 

                                  Source_Strength, Source_Type) 
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               beta4          =   phi_dt * cross_section 

 

               A(0,i)         =   1 + beta1 + 2*beta2 + beta4 

               A(1,i)         = - beta1 - beta2 

               A(2,i)         = - beta2 

 

               C(0,i)         =   1 + beta1 + 2*beta2 + beta3 

               C(1,i)         = - beta1 - beta2 

               C(2,i)         = - beta2 

 

               location(0, i) = i - 1 

               location(1, i) = i + 1 

 

 

               print #3, using "########.###"; "t; x(in); phi; b4 = "; t; x * 39.3701; phi; 

               print #3, beta4 

 

               x += Length_Increment 

 

            next i 

 

 

            for i = 1 to (last - 1) 

               B(i) = N_In115(i) 

            next i 

 

 

         ' 

         '  F.6  Now, invert the matrix A*N_115 = B to find N_115(i). 

         ' 

 

            GS(last, 3, number_of_iterations, N_In115(), A(), location(), _ 

               B(), Tolerance) 

 

 

         ' 

         '  F.7  Find the vector D(NN).  This changes with x, t, and N_115. 

         ' 

 

            x = Length_Increment/2 

               phi_dt  =  Neutron_Flux_dt(x, t, x_source_exit, _ 

                          Time_Preflow, Time_Increment,        _ 

                          Source_Strength, Source_Type) 

               beta4   =  phi_dt * cross_section 

               D(0)    =  (1 - beta3) * N_In116(0) + beta4 * N_In115(0) 
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            x = Length_Total - Length_Increment/2 

               phi_dt  =  Neutron_Flux_dt(x, t, x_source_exit, _ 

                          Time_Preflow, Time_Increment,        _ 

                          Source_Strength, Source_Type) 

               beta4   =  phi_dt * cross_section 

               D(last) =  (1 - beta3) * N_In116(last) + beta4 * N_In115(last) 

 

               x = Length_Increment * 1.5 

            for i = 1 to (last - 1) 

               phi_dt  =  Neutron_Flux_dt(x, t, x_source_exit, _ 

                          Time_Preflow, Time_Increment,        _ 

                          Source_Strength, Source_Type) 

               beta4   =  phi_dt * cross_section   

               D(i)    =  (1 - beta3) * N_In116(i) + beta4 * N_In115(i) 

               x      +=  Length_Increment 

            next i            

 

 

         ' 

         '  F.8  Invert the simultaneous equations C*N_116 = D to find N_116(i). 

         ' 

 

            GS(last, 3, number_of_iterations, N_In116(), C(), location(), _ 

               D(), Tolerance) 

 

            print #3, "Iterations on N_116() = "; number_of_iterations 

 

 

         ' 

         '  F.9  Print out to disk the values of t, N_115, N_116, and 

         '       the radioactivity of In-116. 

         ' 

 

               print #3, " " 

               print #3, " " 

               print #3, "Time = ";t 

               print #3, " " 

               print #3, "  i, location(0,i), location(1,i)" 

            for i=0 to (last - 1) 

               print #3, i, location(0,i), location(1,i) 

            next i 

 

               print #3, " " 

               print #3, "  i, A(0,i), A(1,i), A(2,i), B(i)" 
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            for i=0 to (last   - 1) 

               print #3, using "   ##.#####"; i; A(0,i); A(1,i); A(2,i); B(i) 

            next i 

 

               print #3, " " 

               print #3, "  i, C(0,i), C(1,i), C(2,i), D(i)" 

            for i=0 to (last - 1) 

               print #3, using "   ##.#####"; i; C(0,i); C(1,i); C(2,i); D(i) 

            next i 

 

              print #3, " " 

              print #3, "t(s), x(in), phi, N_In116" 

            for i=0 to (last - 1) 

               x = i * Length_Increment + Length_Increment/2 

               phi_dt  = neutron_flux_dt(x, t, x_source_exit, Time_Preflow, _ 

                         Time_Increment, Source_Strength, Source_Type) 

               print #3, using "   ##.######"; t; x * 39.3701; phi_dt; N_In116(i) 

            next i 

 

               print #3, " " 

 

 

        ' 

        '  F.10  Now, compute the radioactivity of the In-116 immediately 

        '        above the PIP's detector.  Add up the contribution to 

        '        the beta count rate from the entire length of tubing in 

        '        the detector.  Also, compute the total number of counts 

        '        that will be measured by the detector. 

        ' 

 

              x   = 0.0 

              sum = 0.0 

           for i = 0 to (last - 1) 

              if ((x >= x_detector_entrance) and (x <= x_detector_exit))  then 

                 sum += (area * Length_Increment) * N_In116(i) 

              end if 

                 x += Length_Increment 

           next i 

 

              activity_at_detector = sum * decay_constant_In116 

 

           if ((t > Time_Start_Counting) and (t < Time_Stop_Counting)) then 

              Counts               = activity_at_detector * Time_Increment 

              Total_Counts        += Counts 

              Detected_Counts     += Counts * Detector_Efficiency 
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           end if 

 

           print #3, "N_In116(";i_detector;") =                ";_ 

              N_In116(i_detector);" at the detector, (atom/m^3)." 

 

           print #3, "Activity (bq) at detector = "; activity_at_detector 

 

           print #4, t; ", "; activity_at_detector; ", "; Detected_Counts 

 

 

        ' 

        '  F.11  Plot information on the computer screen. 

        ' 

 

           ' 

           '  F.11.1  Flip the pages to work on the nonvisible page. 

           ' 

 

              if page    = 0 then page    = 1 else page    = 0 

              if notpage = 1 then notpage = 0 else notpage = 1 

 

              screenset page, notpage   ' This flips the page. 

 

              cls     

 

              view   (    0,    0) - (1024, 700), 9 

              window (-0.05, -0.1) - (1.05, 1.1)     

 

 

           ' 

           '  F.11.2  Draw in the Pu/Be Source as a yellow region. 

           ' 

 

              x_left  = (0)             / Length_Total 

              x_right = (Length_Source) / Length_Total 

          

              line (x_left, 0) - (x_right, 1), 6, BF 

              line (x_source_exit/Length_Total, -0.02) - (x_source_exit/Length_Total, 1.05), 

13 

 

              draw string (x_source_exit/(2*Length_Total) - 0.07, 0.75), "Neutron Source" 

 

 

           ' 

           '  F.11.3  Draw in the Detector as a red region. 
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           ' 

 

              x_left  = (x_detector_entrance) / Length_Total 

              x_right = (x_detector_exit)     / Length_Total 

 

              line (x_left, 0) - (x_right, 0.5), 4, BF 

              line (x_detector_entrance/Length_Total, -0.05) - 

(x_detector_entrance/Length_Total, 0.55), 13 

 

              draw string (x_left + 0.07, 0.35), "Detector" 

            

     

           ' 

           '  F.11.4  Label the plot. 

           ' 

 

              draw string ( 0.40, -0.05), "X Position (in)" 

              draw string ( 0.01,  0.90), "N-In115 (atoms/m^3-s)" 

              draw string ( 0.60,  1.00), "Time(s) = " 

              draw string ( 0.85,  1.00),  str(int(t)) 

              draw string ( 0.60,  0.95), "Simulation ends at t(s) = " 

              draw string ( 0.85,  0.95),  str(Time_Maximum) 

               

              if (t < Time_Preflow) then 

                 draw string ( 0.60, 0.90), "NO FLOW UNTIL t(s) = " 

                 draw string ( 0.85, 0.90),  str(Time_Preflow) 

              else 

                 draw string ( 0.60,  0.90), "Flow Velocity (mm/s) = " 

                 draw string ( 0.85,  0.90),  str(velocity * 1000) 

              end if 

 

              draw string ( 0.60, 0.85), "Activity at Detector (Bq) = " 

              draw string ( 0.85, 0.85),  str(int(activity_at_detector)) 

 

              draw string ( 0.60, 0.80), "Actual Detected Counts = " 

              draw string ( 0.85, 0.80),  str(int(Detected_Counts)) 

 

              line (-0.02, 1) - (0.02,1) 

              draw string ( 0.03, 1), str(N_In116_max) 

 

 

           ' 

           '  F.11.5  Draw the axes.  Draw in and label the x-increments, as long 

           '         as there are less than 50 increments. 

           ' 
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              line (0, 0) - (0, 1.05), 14 

              line (0, 0) - (1.05, 0), 14 

 

              for x = 0 to Length_Total step Length_Increment 

 

                 line (x/Length_Total, -0.02) - (x/Length_Total, 0) 

                 if (Length_Total/Length_Increment < 50) then 

                    draw string (x/Length_Total, -0.025), str(int(x * 39.3701)) 

                 end if 

 

              next x 

 

 

           ' 

           '  F.11.6  Plot the data points, N_In116(t). 

           ' 

 

               pset(0, N_In116(0)) 

               i = 0 

             for x = Length_Increment/2 to Length_Total step Length_Increment 

               if (i < last) then 

                  line -(x/Length_Total, N_In116(i)/N_In116_max)    

                  i += 1 

               end if 

             next x 

 

 

if (plot_flag = plot_increment) then 

     i = 0 

   for x = Length_Increment/2 to Length_Total step Length_Increment 

     if (i < last) then  

        print #5, t, ",",x/Length_Total, ",",N_In116(i)/N_In116_max    

        i += 1 

      end if 

   next x 

    

   plot_flag = 0 

end if 

 

           ' 

           '  F.11.7  Sleep a short time between frame displays.     

           ' 

 

             sleep 10 
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plot_flag += 1 

  

 

      next t 

 

 

         input "Hit any key to continue"; value 

 

close #5 

 

 

   '----------------------------------------------------------------- 

   ' 

   '  G.  Printout. 

   ' 

   '----------------------------------------------------------------- 

 

      open "output.dat" for output as #2 

    

      print #2, "--------------------------------------------" 

      print #2, "|                                          |" 

      print #2, "|            Program GaSnIn                |" 

      print #2, "|                                          |" 

      print #2, "--------------------------------------------" 

      print #2, "                                        " 

      print #2, "A. Input Data.                          " 

      print #2, "  1.  Time increment (s):               "; Time_Increment 

      print #2, "  2.  Maximum time (s):                 "; Time_Maximum 

      print #2, "  3.  Tube Diameter (m), (in):          "; _ 

         Tube_Diameter, Tube_Diameter * 39.3701 

      print #2, "  4.  Tube Length (m), (in):            "; _ 

         Length_Total,   Length_Total   * 39.3701 

      print #2, "  5.  Flowrate of GaSnIn (mm^3/s):      "; Flowrate * 1e9 

      print #2, "  6.  Length of Source (m), (in):       "; _ 

         Length_Source,   Length_Source   * 39.3701 

      print #2, "  7.  Length of the Gap (m), (in):      "; _ 

         Length_Gap, Length_Gap * 39.3701 

      print #2, "  8.  Length of the Detector (m), (in): "; _ 

         Length_Detector, Length_Detector * 39.3701 

      print #2, "  9.  Length increment (m), (in):       "; _ 

         Length_Increment, Length_Increment * 39.3701 

      print #2, " 10.  Neutron source (n/cm^2*s):        "; Source_Strength / 1e4 

      print #2, " 11.  Source type:                      "; Source_Type 

      print #2, " 12.  Detector Efficiency (%):          "; Detector_Efficiency * 100 

      print #2, " 13.  Time (start counting) (s):        "; Time_Start_Counting 
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      print #2, " 14.  Time (stop counting) (s):         "; Time_Stop_Counting 

      print #2, "                                        " 

      print #2, "B. Flow Calculations.                   " 

      print #2, "  1.  Flowrate (m^3/s), (mm^3/s):       "; Flowrate, flowrate * 1e9 

      print #2, "      Tube cross-sectional area (mm^2): "; area 

      print #2, "  2.  Velocity (m/s), (in/s):           ", Flowrate / area, (Flowrate / area) * 

39.3701 

      print #2, "  3.  Reynolds Number:                  ", Re 

      print #2, "  4.  Friction factor:                  ", friction_factor 

      print #2, "  5.  Diffusion Coef. (cm^2/s):         "; Diffusion_Coefficient*1e4 

      print #2, "  6.  Pressure Drop thru Tube (Pa/psi): "; pressure_drop, _ 

         pressure_drop * 14.7 / 101325 

      print #2, "  7.  Effective Length (s. to d.) (m):  "; L 

      print #2, "  8.  Tubing radius (m):                "; R 

      print #2, "  9.  Peclet Number, Pe:                "; Pe 

      print #2, " 10.  Axial Peclet Number:              "; Pe_axial 

      print #2, " 11.  Radial Peclet Number:             "; Pe_radial 

      print #2, " 12.  Pe_radial * (R/L):                "; Pe_radial*(R/L) 

      print #2, "                                        " 

      print #2, "C. Simulation Parameters.               " 

      print #2, "  1.  beta 1:                           "; beta1 

      print #2, "  2.  beta 2:                           "; beta2 

      print #2, "  3.  beta 3:                           "; beta3 

      print #2, "  4.  Number of x increments:           "; number_of_increments 

      print #2, "                                        " 

      print #2, "D.  Nuclear Values.                     " 

      print #2, "  1.  Number density In (atoms/m^3):    "; N_In 

      print #2, "  2.  Initial N of In-115 (atoms/m^3):  "; N_In115_initial 

      print #2, "  3.  Time for fluid to flow from the   " 

      print #2, "      source exit to detector (s):      "; _ 

         (x_detector_entrance - x_source_exit)/(Flowrate / area) 

      print #2, "  4.  Total detector counts:            "; Total_Counts 

      print #2, "  5.  Actual detected counts:           "; Detected_Counts 

      print #2, "                                        " 

      print #2, "E.  Summary.                            " 

      print #2, "    E.1  Time:                          "; time 

      print #2, "    E.2  Date:                          "; date 

   

 

      close #2 

      close #3 

      close #4 

 

end 
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function Neutron_Flux_dt(x as double, t as double,  _ 

                         x_source_exit as double,   _ 

                         Time_Preflow as double,    _ 

                         Time_Increment as double,  _ 

                         Source_Strength as double, _ 

                         Source_Type as string) as double 

 

   dim as double PI = 3.14159265853, phi_dt_value 

 

 

      if (Source_Type = "continuous")  then 

         phi_dt_value = Source_Strength * Time_Increment 

         if (x < 0)             then phi_dt_value = 0 

         if (x > x_source_exit) then phi_dt_value = 0 

         if (t > Time_Preflow)  then phi_dt_value = 0 

      end if 

 

 

      if (Source_Type = "pulsed")  then 

         if (t = 0.0)  then 

            phi_dt_value = Source_Strength 

         else 

            phi_dt_value = 0.0 

         end if 

 

         if (x < 0)             then phi_dt_value = 0 

         if (x > x_source_exit) then phi_dt_value = 0 

 

      end if 

 

 

      return (phi_dt_value) 

 

end function 
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Sub GS(nitems as integer, max_order as integer, _ 

       number_of_iterations as integer, _ 

       x() as double, a() as double, _ 

       location() as integer, b() as double, _ 

       tolerance as double) 

 

'-------------------------------------------------------------------- 

' 

'   Subroutine GS 

' 

'   Purpose: 

' 

'   Input:    a)  nitems     -- number of values in the vector x(). 

'                 max_order  -- maximum number of non-zero diagonal 

'                               terms (e.g. triagonal = 3, penta- 

'                               diagonal = 5). 

'                 x()        -- this is used as the solution vector 

'                               for output, but serves as "guesses" 

'                               for the Gauss-Seidel routine as an 

'                               input vector. 

'                 a(i,j)     -- "max_order" vectors of non-zero 

'                               diagonals.  For i=0, the vector 

'                               contains the central diagonal. 

'                 location() -- this vector contains the locations 

'                               of the columns for each non-zero 

'                               diagonal component.  The first index 

'                               is zero for the first non-zero diagonal. 

'                 b()        -- right hand vector in A() x() = b(). 

' 

'   Output: 

'             a)  x(),    solution array. 

'             b)  number_of_iterations -- number required to converge. 

' 

'-------------------------------------------------------------------- 

 

 

   dim as double x_old(nitems), sum, new_error, max_error 

   dim as integer i, j 

 

         number_of_iterations = 0 

   do 

 

      for i=0 to (nitems - 1) 

 

            x_old(i) = x(i) 
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            sum = 0.0 

         for j=0 to (max_order - 2) 

            sum += a(j+1, i) * x(location(j, i)) 

         next j 

 

            x(i) = (b(i) - sum) / a(0,i) 

 

      next i 

 

         number_of_iterations += 1 

   

         max_error = abs(x(0) - x_old(0)) 

 

      for i=0 to (nitems - 1) 

         new_error = abs(x(i) - x_old(i)) 

         if (max_error < new_error) then max_error = new_error 

      next i 

 

   loop until (max_error < tolerance) 

 

 

end sub 
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APPENDIX II 

SAMPLE MCNP INPUT DECK 

 

Emission Percentage  

c ============================================================ 

c |   Quantifying emission of beta particles from Galinstan  | 

c ============================================================ 

c 

c ========= CELLS =========== 

c Galistan irradiation cell 

1 29 -6.44   -1      imp:p,e=1 

c  

c CZT Cell 

c 1 20 -5.85     -1  imp:p,e=1 

c 2 20 -5.85     -2  imp:p,e=1 

c  

98 0           -98 1   imp:p,e=1 

99 0               98  imp:p,e=0 

 

c ========= SURFACES ======== 

c Galinstan Cell for emission percent 

1 RCC 0 0 0  0 0 0.15875  1.27 

c 

c Scatter tally cell/surface 

c 2 RCC 0 0 -.1  0 0 -10  5 

c 

c WORLD 

98  RPP -10 10  -10 10  -10 10   

 

c ========= DATA ============ 

c Electron source simulating In-116 decay 

c 

sdef par=e erg=d3 POS 0 0 0  AXS 0 0 1  RAD=d1 EXT=d2 CEL=1 

SI1 0 1.27 

SI2 0 0.15875 

c 

c In116 m1 spectrum  

si3 0 2.52E-02 7.56E-02 1.26E-01 1.76E-01 2.27E-01 

      2.77E-01 3.27E-01 3.78E-01 4.28E-01 4.79E-01 5.29E-01 

      5.79E-01 6.30E-01 6.80E-01 7.30E-01 7.81E-01 8.31E-01 

      8.82E-01 9.32E-01 9.82E-01 

sp3 0 9.16E-02 9.29E-02 9.30E-02 9.13E-02 8.80E-02 

      8.34E-02 7.78E-02 7.16E-02 6.44E-02 5.65E-02 

      4.83E-02 4.03E-02 3.27E-02 2.52E-02 1.82E-02 

      1.21E-02 7.09E-03 3.66E-03 1.55E-03 2.40E-04 

c 

c 

c \/\/\/\/ TALLIES \/\/\/\/ 

c Betas exiting the Galinstan per decay 

f11:e 1.2  
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e11 0 310i 3.11 

c 

c Energy depositing in the TEM for dose calcultion 

c fc16 Electron Energy Deposition in Tissue (MeV/g) 

c f16:e 1 2  

c fc26 Photon Energy Deposition in Tissue (MeV/g) 

c f26:p 1 2 

c 

c /\/\/\/\/\/\/\/\/\/\/\/\  

c 

c 

mode p e 

print 

nps 5e8 

prdmp j 5e7 1 j 5e7 

c 

c \/\/\/\/ MATERIALS \/\/\/\/ 

c 

c Water as TEM 

c m10 6012 1 1001 2 

c 

c CZT d=5.85g/cc 

c Cd .96 Te 1 and Zn .04 atom fraction 

c m20 48000 0.96 30000 .04 52000  1  

c 

c Galistan Liquid Metal 

c 68.5% Ga, 21.5% In, 10% Sn 

m29 31000 -0.685  50000 -0.100  49113 -0.009  49115 -0.206 

c 

c Components  

c Indium (d=7.310g/cc) 

c m49 49113 -.0429  49115 -0.9571 

c Isotopes of Indium 

c m113 49113 1 

c m115 49115 1 

c 

c Moderator and System materials 

c Poly (density 0.94g/cc) 

c m10 1001 -0.143711  6012 -0.856289 
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APPENDIX III 

CZT DETECTOR 

 

CZT Detector with components and internal schematic used for beta 

measurements. 
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