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Abstract

The oxidation of stainless steel is influenced by the presence of oxygen in the surrounding medium; the

oxygen reacts with the alloy to form an oxide. In certain environments, such as nuclear reactor coolant

systems, minimal oxidation of the stainless steel containment functions as a protective shield from corrosive

coolants such as liquid lead-bismuth eutectic.

In the current study, this minimal oxidation is evaluated for a system in which corrosion-resistant stainless

steel alloy EP-823 is subject to an environment of flowing oxygenated liquid lead-bismuth eutectic at a

temperature of 743 K, whereby the thickness of the forming oxide layer is attributed to diffusion of oxygen

within a plane comprised of the alloy. Fick’s second law of diffusion and the advection-diffusion equation

in one spatial dimension are utilized as the mathematical model. The diffusion problem attributed to the

oxidation of metal alloys introduces complications in the domain due to: the change in density as the oxide

is formed, the discontinuity in diffusion coefficients between the oxide and metal phases, and the occurrence

of two moving boundaries – one separating the oxide and metal phase and the other, the interior unexposed

boundary. These complications are resolved by transformations of: the space coordinate of the interface

boundary, the calculating space coordinate, and the space coordinate of interior moving boundary. Hereby,

the domain of the mathematical model is fixed. The discontinuity of the diffusion coefficients at the phase

boundary is resolved by a final transformation.

The implicit numerical scheme applied to the mathematical model is described. This method, termed

the ‘enthalpy method’, is typically used for moving boundary phase change problems. The implemented

Newton-Raphson iterative technique for this finite difference method and the solution by a tri-diagonal

matrix algorithm are also described.

Input parameters for the numerical simulation are derived both from physical assumptions and from

controlled experiments of the oxidation of EP-823 alloy, which had been previously determined an optimal

corrosion-resistant steel [1]. Such parameters include the concentration of oxygen at interface, which is

determined by considering the solubility of oxygen in EP-823 alloy. The effective oxidation of the alloy is

studied by assessing the oxidation of the alloys component metals. The plausible oxidation reactions and

resulting oxides are compiled based on partial pressure of oxygen in lead-bismuth eutectic, temperature, and

free energy of formation of the relevant oxides. Hereby, input parameters such as mass fraction of the metal

in its component oxide and density of the metal were obtained. The experimentally determined scale removal

rate was also used as an input. The diffusivity of oxygen in the oxide and metal phases was estimated based

on the physical assumptions of higher porosity in the oxide phase.

The numerical results, which are in the form of the oxygen concentration profiles as a function distance
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from the calculating space coordinate at varying time intervals, contain the the calculated corresponding

oxide layer thicknesses. The results are fit to a parabolic growth rate law, whereby the the growth rate,

kp, of each relevant oxide is determined. The growth of copper (I) oxide, aluminum (III) oxide, niobium

(II) oxide, and tungsten (IV) oxide demonstrate good adherence to the parabolic rate law. The numerical

kp values are benchmarked with the experimental effective kp value for EP-823. It is determined that the

experimental kp value is closest to the numerically determined kp values of aluminum (III) oxide and niobium

(II) oxide.

From the kp values, the steady state thickness of each oxide, δs, is derived by the Tedmon model for

oxidation-ablation. These values are benchmarked with the semi-empirically determined steady state thick-

ness from the mentioned controlled experiments, which is 35.8 µm, and which is found to be closest to the

numerically determined δs value for niobium (II) oxide, at 20.1 µm.

In order to ascertain the numerically determined kp and δs values, further work in assessing and optimizing

stability and convergence criteria must be done.

The Pilling-Bedworth ratio for the alloying metal oxides is also calculated. The ratios suggest that

aluminum (III) oxide and niobium (II) oxide, for which the respective ratios are 1.27 and 1.37, are the most

stable relative to the oxides of the other alloying metals.

Furthermore, by considering selective oxidation of alloying metals, co-precipitation, oxidation states of

the metals, crystal structure, and ionic radii, the likelihood of the participation of certain alloying elements

in the effective oxide layer can be gauged.

Thus, it is determined that the one-dimensional planar oxidation model can be effective as a preliminary

tool in assessing the oxidation of the alloy in terms of participation of its component metals. Hereby, the

objectives of the study are met.
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Chapter 1 Introduction

1.1 Material Degradation

Material degradation is defined as the loss of performance of an engineering system. The factors involved

in degradation are losses of mechanical strength, efficiency, lifetime, and appearance of a system. Wear and

the need for tedious and expensive control of these losses are also included in the definition. The direct and

indirect costs related to loss, replacement, and prevention of material degradation are significant. In the year

2013, the estimated annual cost of material degradation for the United States alone is $500 billion [2]. More

importantly, material degradation eventually causes potential failure or contamination of systems leading to

the impairment or loss of human life. Because these economic and societal impacts should not be ignored,

the rigorous study of material degradation is essential.

With respect to the study of material degradation, metals are generally distinguished from non-metals.

One main form of metal degradation is the corrosion of metals and metal composites. The topic of corrosion

is divided into: contributing factors, high temperature corrosion, measurement, characteristics, forms, and

control processes in prevention [3]. The purpose of a corrosion control process, which is the broad topic of

the current study, is to ensure longevity of the metal or metal composite.

The study of control processes in prevention of corrosion involves: material selection, design, electrochem-

ical protection, coating, passivation, and operating environment [4]. In the current study, the relationship

among material selection, operating environment, and passivation is researched. The composition of the

structural material is determined by metallurgical techniques. The resulting mechanical factors, such as

stress or the presence of non-reactive impurities, either promote or inhibit corrosion. The chemistry at-

tributed to the composition also affects corrosion. The medium of the operating environment is either

semi-solid, such as soil, or fluid, such as air or water. To address corrosion control in an aqueous medium

such as water or liquid metal, temperature, pH, partial pressure and concentration of dissolved oxygen,

presence and formation of ions, velocity, and conductivity of the medium are regulating factors [5]. By mon-

itoring and adjusting these factors and choosing the correct structural material, limited surface corrosion of

a metal or metal composite can be maintained at an optimal thickness to prevent further corrosion. This

process is referred to as passivation.

1.2 Passivation

In order to discuss passivation of metals and metal composites, the concept of corrosion is further de-

scribed. Metals and metal composites used in engineering systems are refined and/or purified forms (e.g.

stainless steel) of naturally occurring metal oxides (e.g. iron ore, hematite and magnetite). From a practical
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perspective, corrosion can be defined as the tendency of the refined metal to revert back to its original metal

oxide phase. This process occurs via an electrochemical reaction between the metal and its environment;

this involves the transfer of electrons from the metal by two half cell reactions: one anodic or oxidizing,

and the other, cathodic or reducing. By losing these electrons, the metal loses mass – whereby degradation

begins [4]. Thus, the scientific definition of corrosion is the electrochemical degradation of metals and metal

composites.

The film of a corrosion resistant surface, or passivated surface, experiences a certain region of anodic and

cathodic polarization, both of which are directly attributed to a specific range of ion current density and pH.

The stabilizing ion current density and stabilizing pH are maintained by conditions which are specific to:

metal, solution, temperature, the degree of reducing atmosphere, and whether ablasion of the surface occurs

[4]. Furthermore, in order for a stable passivating layer to be achieved, the rate of metal oxide formation

must exceed that of metal dissolution in the surrounding fluid [6]. The interface of the corrosion resistant film

and un-oxidized metal is considered anodic because it is the location where oxidation of the metal occurs as

a result of inward oxygen ion diffusion from the surrounding medium. Alternately, the cathodic side occurs

at the exposed surface of the film because it is the site of the reduction of outward migrating metal ions. In

this manner, the oxide layer functions as both a conductor and an electrolyte [4].

If the assumption is made that oxide layer growth is guided primarily by the reaction at the anodic side,

then the formation of the passivating layer can be correlated to inward oxygen diffusion. In other words,

if oxidation is rate controlling with respect to the total oxidation-reduction system, then the formation of

the oxide layer is dependent on the migration of oxygen ions from the fluid to the interface of the oxide and

the metal. This flux of oxygen ions is mathematically modeled via Fick’s laws of diffusion, from which a

parabolic growth rate of the oxide layer is derived. Hereby, the diffusion of oxygen ions into the metal is

modeled as a means of determining the passivation capacity of the resulting oxide layer.

In order for passivation to occur, it is presupposed that the surrounding medium contains a concentration

of oxygen which influences oxidation such that the oxide layer thickness is protective. An example of such

media are liquid lead alloy coolants, such as lead-bismuth eutectic (LBE), which are commonly used in nuclear

reactor coolant systems. Due to the corrosive nature of the liquid lead alloys on the containment (primarily

a design consisting of stainless steels), maintaining an optimal oxygen level to promote passivation of the

stainless steel is ideal in avoiding critical safety issues in nuclear reactor environments [6]. By monitoring

diffusion of oxygen from the coolant medium into the stainless steel, whereby an oxide layer is formed, the

optimal oxygen concentration level in the medium is determined.
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1.3 Literature Review

The selected literature for the survey is discussed. As per the present model, the assumptions and

mathematics of planar diffusion with respect to Fick’s diffusion laws have been described extensively by

Crank [7]. Based on the assumptions made, Crank has explained diffusion with respect to topics such as

moving boundaries or interfaces, the definition and measurement of discontinuous diffusion coefficients, and

finite difference methods. These topics directly relate to the present diffusion model.

The moving interface in the present model designates the phase change from metal to oxide. As oxidation

progresses, the location of this interface moves inward from the original surface of the metal. A model of a

travelling phase change boundary in two-phases has been solved by Stefan with respect to heat flux. The

Stefan solution has been outlined by Merimanov and Hill [8, 9].

Furthermore, the solutions of heat flux within a composite sheet comprised of two layers for which the

thermal conductivities are different have been solved by Carslaw and Jaeger [10]. Both the Stefan solution

and that of Carslaw and Jaegar have been employed by Crank to develop a solution for planar diffusion

in both metal and oxide phases which are separated by a moving boundary and for which the diffusion

coefficients differ [7]. For mathematical simplicity, transformations of moving boundary value problems into

stationary boundary value problems have been formulated by Landau [11]. By transforming the coordinate

of the moving boundary into a fixed boundary, the application of this method immobilizes the domain of

the boundary value problem [11].

A parabolic growth rate for metal oxidation has been proposed by Wagner. It is derived from Fick’s law

in which Wagner has considered chemical potential, activity, and motility of oxygen anions [12]. Wagner

also has considered density change in the domain occuring as a result of both metal oxide formation and

uneven distribution of cations in the resulting layer [12]. Wagner has concluded that this discontinuity

is a complicating factor in oxidation-diffusion moving boundary problems. Coates and Dalvi confirm this

complication in an extension of Wagner’s theories to the various alloys [13]. An oxidation model combining

Wagner’s parabolic rate law and a linear term representing the volatilization of Fe-Cr alloys in air has been

developed by Tedmon et al. [14]. With respect to heat conduction, the asymptotic growth of the moving

boundary layer which has been formulated by Stefan is outlined by Hill [9].

As mentioned, finite difference method applications for the two phase diffusion model have been described

by Crank [7]. Crank has explained how the Crank-Nicholson method and the other methods are to be used

to numerically solve the diffusion model. Ding and Lagoudas have applied a coordinate transformation

inspired by Landau’s method to one-dimensional diffusion problems in planar, cylindrical and spherical

geometries [15]. By implementing an implicit numerical method with respect to the transformed boundary
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value problem, the oxidation of titanium has been simulated and benchmarked with experimental data; the

results were found to be in good agreement with the experimental data [15]. Shamsundar and Sparrow

have examined the density change effect of metal oxidation on solutions of moving boundary conduction

problems [16]. Both complications of change in density and the moving boundary have been resolved by

Wong and Chan by a special coordinate transformation which is likened to the mentioned Stefan solution

in heat transfer [17]. An implicit finite difference code using the Newton-Raphson iterative method has

been used to simulate the oxidation of a zirconium alloy in steam [17]. Tan has developed a mathematical

model for one-dimensional planar diffusion wherein the parabolic oxide layer growth rate is combined with

a linear oxide scale removal rate resulting from erosion or ablation of the oxide surface [6]. The density

changes in both the metal and oxide phase have been considered and incorporated into the model which

thus accounts for volume expansion. A coordinate transformation, similar to Wong’s, has been applied to

arrest the interior moving boundary of the unexposed surface. An implicit finite difference scheme utilizing

the Newton-Raphson iterative model has been applied to the transformed boundary value problem [6]. The

resulting code has been used to simulate the oxidation of titanium and zirconium, the results of which have

been compared to the results obtained by Ding and Lagoudas as well as available experimental data [6, 15].

The main experimental research literature surveyed is that of Zhang. The experiments conducted herein

involved subjecting different steel alloys to typical nuclear reactor coolant environments [1]. Zhang has incor-

porated scale removal into the Tedmon model in order to approximate steady-state oxide layer thicknesses

from experimental oxide layer thicknesses for each alloy tested [1].

1.4 Motivation for Study

The motivation of the present study is to investigate the impact of stainless steel composition on pas-

sivation in typical nuclear reactor coolant system environments. Specifically, modelling oxidation of the

corrosion-resistant stainless steel alloy EP-823 by lead bismuth eutectic is the overall focus. The following

objectives are outlined in light of this motivation.

1. In Chapter 2, after making reasonable assumptions which have a physical basis, a mathematical model

of the one-dimensional planar oxidation-diffusion problem with moving phase boundaries is to be

articulated.

2. In Chapter 3, the objective is to describe the numerical method applied to the mathematical oxygen-

diffusion model.

3. In Chapter 4, the manner in which input parameters for the numerical simulation are derived and

justified based on both physical assumptions and results of a controlled experiment conducted on

4



EP-823 stainless steel is delineated; the goal is to numerically simulate this controlled experiment by

resolving the oxidation of the alloy into the individual oxidation-reactions of its component alloying

metals.

4. In Chapter 5, the numerical data from the simulation are evaluated with three main objectives. The

first is to determine the growth rate of the resulting oxide layer of each alloying element and compare it

to the effective experimental growth rate determined for EP-823. The second is to apply the Tedmon

equation for oxidation-ablation to the growth rate to determine the steady state thickness of the

resulting oxide layer and then compare this thickness to the corresponding experimental value. The

final objective is to examine selective oxidation by comparing free energy of formation, Pilling-Bedworth

ratio, and the oxidation states of the alloying elements in the respective oxides.

5. In Chapter 6, by the comparisons made in Chapter 5, in conjunction with consideration of the Pilling-

Bedworth ratio, selective oxidation, oxidation states and crystal structures of the alloying metal oxides,

a determination of the efficacy of the one-dimensional oxygen-diffusion model as a useful tool in deciding

the passivation capacity of an alloy is made.
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Chapter 2 Theory

2.1 One-Dimensional Planar Oxidation

The oxidation of metals and metallic alloys is a process both chemical and physical in nature. Atomic

diffusion of oxygen from the surrounding fluid into the metal or alloy, atomic inter-diffusion of alloying

elements within the domain of the metal or alloy, and outward atomic diffusion of alloying elements into the

surrounding fluid are essential to the process of oxidation. For the current discussion, diffusion is defined

as the spontaneous transport of atoms in response to a concentration gradient of said atoms. The chemical

reaction of oxidation is assumed to be so fast that the rate of oxidation is controlled entirely by diffusion

[7]. Furthermore, it is assumed that the rate of outward diffusion, or flux, of the alloying elements is orders

of magnitude greater than the inward flux of atomic oxygen [6]. Based on these assumptions, the entire

oxidation process is limited by the one-way, inward transport of atomic oxygen from the surrounding fluid.

Hereby, the diffusion pattern of oxygen within the metal alloy is correlated to the thickness of the resulting

oxide layer. A diffusion model is achieved by monitoring the oxygen concentration within the alloy with

respect to both distance from its surface of and time.

Prior to initial diffusion of oxygen, the region of the metal alloy being considered is assumed to be

comprised of a single isotropic material free of oxygen as shown in Figure 1. As diffusion or sorption begins,

Figure 1: Oxygen-Free Material Prior to Diffusion

this region becomes a composite zone of two distinct layers: the oxide layer and the un-oxidized metal alloy

layer, as shown in Figure 2. Each of these regions is assumed to be isotropic within its respective layer. A

sharp interface adjoining the layers is assumed to be normal to the spatial direction, x. This assumption

presumes a uniform flux of oxygen atoms through all planes normal to the spatial direction, x. In turn, this
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Figure 2: Layers Formed via Diffusion

causes a uniform growth of the oxide layer which is separated from the metal alloy layer by the adjacent

interface. Because the tendency of oxygen to diffuse through the oxide layer varies from oxygen diffusivity

in the metal alloy layer, the concentration of oxygen is separately considered for each layer.

2.2 Mathematical Model of One-Dimensional Planar Oxidation

The concentration of oxygen, C2, in the metal phase is represented by the advection-diffusion equation

(1) [7].

∂C2(x, t)

∂t
= DMe

∂2C2(x, t)

∂x2
− VMe

∂C2(x, t)

∂x
(1)

The concentration can also be referred to as molar density. The variables x and t are the position coordinate,

measured normal to the exposed alloy surface, and time, respectively. This equation can be derived from the

continuity equation, which states that the rate of change for a scalar quantity, presently concentration, in a

differential control volume is given by the sum of net flux, generation, and consumption of the scalar quantity

within the differential volume element. In the present case, two sources of net flux exist: namely diffusive

flux and advective flux. The left hand side of equation (1) expresses the rate of accumulation or depletion of

the oxygen concentration; the first term in right hand side of equation (1) represents the diffusion of oxygen,

in which the proportionality constant, DMe, is the diffusion coefficient of oxygen in the metal phase. The

product of DMe and the local curvature, which gives the local minima and maxima of oxygen concentration

with respect to space, is the expression for diffusion of oxygen. The advection term is given by the second

term on the right hand side of equation (1). Advection can be defined as the transport of a substance due

to bulk motion. For the case of oxidation of metallic alloys, advection occurs as a result of the change in
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density of the portion of the metallic alloy which experiences oxidation. In general, the oxides of the alloying

elements are less dense than the alloying elements; thus, oxidation of the alloy is accompanied by an increase

in volume in the region where the reaction takes place. In order to accommodate this increase in volume,

the un-oxidized portion of the alloy experiences a shift, which is characterized by the velocity of its moving

front, denoted VMe. The surface of this moving front, the x-coordinate of which is given by L(t), is always

normal to the spatial direction x. The product of the first partial derivative of the concentration of oxygen

with respect to position, which gives the change in concentration as a function of location, and VMe is the

expression for advection. The term VMe is described first in terms of L(t) [6]. If L0 represents the original

width of the metal alloy, then VMe is given by

VMe(t) =
L(t)− L0

t
. (2)

It is assumed that neither generation nor consumption of oxygen are inherent in the oxidation process. To

summarize, the advection-diffusion equation predicts how the combination of diffusion and advection causes

a change in concentration with respect to time.

The concentration of oxygen, C1, in the oxide phase is modeled using Fick’s second law (3),

∂C1(x, t)

∂t
= DOx

∂2C1(x, t)

∂x2
(3)

which is a special case of the advection-diffusion equation, wherein no advection term is present. Because

the oxidation takes place in the entire domain of the oxide phase, the bulk movement of the oxide phase

is neglected [6]. The left hand side of equation (3), which describes the rate of change in the oxygen

concentration, is proportional to the local curvature of the concentration gradient, or the second partial

derivative of concentration with respect to position as given by the right hand side of equation (3). The

proportionality constant, DOx, represents the diffusion coefficient of oxygen in the oxide phase. The product

of the local curvature and DOx is the expression for diffusion of oxygen. To restate, Fick’s second law predicts

how diffusion causes a change in concentration with respect to time.

Each of the equations, (1) and (3), can only be applied to diffusion within an isotropic material, so that

the flow of oxygen at any point is normal to the surfaces of constant concentration through the point due to

symmetry [7]. For the purpose of one-dimensional planar modeling of oxygen diffusion, equations (1) and (3)

are partial differential equations in a single Cartesian spatial dimension, x. To rephrase, the concentration

gradient of oxygen only exists along the x-axis in this case. Thus, the oxygen diffuses only in the positive

x-direction.
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While the diffusion coefficient in solids is predicted to be a function of temperature by the Arrhenius

relation

D = D0e
−(Ea/RT ) (4)

where D0 is the maximal diffusion coefficient at infinite temperature, Ea is the activation energy for diffusion,

T is the absolute temperature, and R is the universal gas constant, the diffusion coefficients in the present

model, DOx and DMe, are assigned constant values. This is due to the fact that the present model does not

directly incorporate changes in temperature. A general case of diffusion coefficient, D, is also understood as

the magnitude of the molar flux, J , through a surface per unit concentration gradient from Fick’s first law

of diffusion,

J = D
∂C

∂x
(5)

For the time being, the diffusion coefficient changes discontinuously from one constant value, DOx, to another

constant value, DMe, at a certain concentration level of oxygen which corresponds to the x-coordinate of

the interface adjoining oxide and metal alloy layers. Because two constant values are assigned, the present

oxidation model can be called an isothermal oxidation model with binary diffusivity. The selection of the

constant values for DOx and DMe will be discussed later.

The values of C shown in Figure 3 are set at the following locations in the model in order to provide the

boundary conditions for equations (1) and (3). The concentration of oxygen, CO0, in the surrounding fluid

at the original surface of the reacting metal alloy, where x = 0, is assumed to be at constant continuous

saturation [18]. As such, diffusion of oxygen in the surrounding fluid is not considered in the model [6].

As the x-coordinate approaches the oxide/metal alloy interface from this point, the oxygen concentration

decreases to the critical oxygen concentration for oxide formation, COM , which is experimentally determined

[15]. For purposes of this oxidation model, COM is assigned the atomic percent of oxygen in the type of

metal oxide assumed to form at the interface. At this x-coordinate point, a finite disappearance in oxygen

concentration occurs. This negative jump in concentration is bound on the lower end by the solubility limit

of oxygen in the metal alloy which is denoted CMO. The x-coordinate of this discontinuity is the exact

location of the interface between oxide and metal alloy and is denoted δ(t) because its position changes as a

function of time. As such, CO0 and COM will serve as the lower and upper bounds for oxygen concentration,

C, in equation (3). CMO is the lower bound for oxygen concentration in equation (1) while the upper bound

is represented by CM∞. The exact values of CO0, COM , CMO and CM∞ are specified later.

Due to the discontinuity in oxygen concentration at the interface which cannot be directly expressed

by the two underlying partial differential equations (1) and (3), a third equation is necessary for closure.

This condition, which functions like the Stefan Condition for heat conduction [9], models the velocity of
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the moving interface, dδ(t)
dt , as a function of quantities obtained from both sides of the interface which are

constrained by the conservation of mass. These quantities are the mass fluxes at the location of the interface.

The moving interface is expressed by equation (6) as

DOx
∂C1(δ(t), t)

∂x
= DMe

∂C2(δ(t), t)

∂x
− |COM − CMO|

dδ(t)

dt
, t > 0. (6)

This equation can also be regarded as a mathematical statement of the discontinuous change in the diffusion

coefficient accompanied by a discontinuity in the concentration gradient [7]. The mass flux from the oxide

layer, DOx
∂C(δ(t),t)

∂x , is set equal to the sum of the mass flux from the metal alloy layer, DMe
∂C(δ(t),t)

∂x , and

the product of the negative jump in oxygen concentration, |COM − CMO|, and the velocity of the moving

interface, dδ(t)
dt . The velocity is assigned variable VOM given by

VOM (t) =
dδ(t)

dt
. (7)

The governing equations for each phase and the boundary conditions are shown in Figure 3.

Figure 3: Governing Equations for Oxygen Concentration, C, w.r.t. x and t

The initial conditions are considered next. Because the interface initially coincides with the original

un-oxidized surface of the alloy, initial oxide layer concentration, C1(x, 0), is unavailable [15]. Based on the

earlier assumption that the material is initially free of oxygen, a reasonable condition is

C1(x, 0) = 0, 0 < x <∞. (8)
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The x-coordinate of the interface and the initial oxygen concentration in the metal alloy layer at t = 0 are

given by

δ(0) = 0, C2(x, 0) = 0 for 0 < x <∞. (9)

So far, the planar model for two-phase oxidation of metal alloys has been described. The governing equations

are summarized in Table 1.

Table 1: Governing Equations for Planar Diffusion Model for Oxidation

Phase Oxide Layer Metal Layer Interface

Equation Name Fick’s Second Law Advection-Diffusion Interface Condition

Governing Equations (t > 0)
∂C1(x,t)

∂t = DOx
∂2C1(x,t)
∂x2

∂C2(x,t)
∂t = DMe

∂2C2(x,t)
∂x2 − VMe(t)

∂C2(x,t)
∂x

DOx
∂C1(δ(t),t)

∂x −DMe
∂C2(δ(t),t)

∂x
|CMO−COM |

=
dδ(t)
dt

where VMe(t) =
L(t)−L0

t where V OM (t) =
dδ(t)
dt

x-domain 0 < x < δ(t) δ(t) < x < L(t)

Boundary Conditions C1(0, t) = CO0 C2(δ(t), t) = CMO C1(δ(t), t) = |COM − CMO|+C2(δ(t), t)
C1(δ(t), t) = COM C2(L(t), t) = CM∞

Initial Condition C1(x, 0) = 0, 0 < x <∞ C2(x, 0) = 0, 0 < x <∞ δ(0) = 0

2.3 Derivation Interface Velocity

The following describes first how VOM is expressed in terms of relevant parameters. Next, VMe is

conveyed in terms of VOM . Linking these velocities simplifies the spatial coordinate transformation which

will be discussed later. Accounting for the mass of element M in both its oxidized form, MxOy, and its

un-oxidized form, M , by the principle mass conservation is useful in the discussion.

The current model can handle the oxidation of a single element, M , which undergoes the chemical

oxidation reaction:

xM +
y

2
O2 −→MxOy. (10)

Thus, for diffusion within a metallic alloy comprised of many elements, the oxidation of each element

can only be considered separately. This presumes that only the element, M , despite the presence of other

reactive elements, is uniquely reactive with the incoming diffusing oxygen.

In the model, the atoms of element M which undergo oxidation, Mtotal−R, are assumed to be located

specifically within a certain width, ∆λ, of the original metal alloy plane [6]. This assumption requires a

homogeneous distribution of the atoms of element M within the original metal alloy layer as illustrated in

Figure 4.
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Figure 4: Width, ∆λ, in Homogeneous Metal Plane

As the atomic oxygen diffuses into the plane, it reacts with M contained in ∆λ to form MxOy, which

displaces M as shown in Figure 5. Although ∆λ shifts as oxidation proceeds, its width remains constant.

Some atoms of element M diffuse into the formed oxide layer where they react with the diffusing oxygen.

These atoms are denoted MMxOy−R. Thus, two distinct reaction locations are identified in the present

model: within the width ∆λ or within or on the surface of the oxide layer, MxOy. In terms of oxidation,

what distinguishes these locations is the allocation of the M atoms originally reserved for oxidation within

∆λ, denoted M∆λ−R. In other words, a percentage of reacting M atoms originally located in ∆λ migrate

into the oxide layer as seen in Figure 5.

Figure 5: Oxidation Reaction Locations, ∆λ and MxOy, and δin and δout
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Hereby, the parameter p is defined by the ratio:

p =
M∆λ−R

Mtotal−R
. (11)

Therefore, 1− p is

1− p =
MMxOy

Mtotal−R
. (12)

If reacting M atoms tend to be oxidized within ∆λ, the oxide layer exhibits compactness and higher density.

Alternatively, a porous oxide layer is favored to the extent of M atoms migrating to and being oxidized

within or on the surface the oxide layer [6]. To restate, the disparity in allocation of reacting M atoms leads

to the formation of a compact inner oxide layer of thickness δin(t) as well as a porous outer layer of thickness

δout(t) with respect to the x-direction as shown in Figure 5. To specify, the inner oxide layer partially

forms via displacement of the reacting M atoms by the molecular product, MxOy. This displacement is

accompanied by an inward inner layer volume expansion. The remnant non-reactive component metals of

the alloy also comprise the inner oxide layer, resulting in its high density. The reaction occurring at the

surface or within the formed oxide layer creates an outward outer layer volume expansion. This layer is

assumed to be comprised of pure MxOy. This idea is supported by calculations done by Wagner, which

indicate that the distribution of M atoms, or the cations in this case, in the oxide layer is not uniform [12].

At a time, t + ∆t, the inner and outer layers change by ∆δin and ∆δout, respectively. This is shown in

Figure 6.

Figure 6: VOM Obtained at t+ ∆t by Fixing Calculating Coordinate at New Oxide Surface
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Thus, the total change in thickness, ∆δtot, can be shown as

∆δtot = ∆δin + ∆δout. (13)

As suggested earlier, the volume expansion is assumed to occur bidirectionally: inward partially substi-

tuting the metal and outward beyond the spatial coordinate of the original surface of the metal as indicated

in Figure 5. If the original point of the x-coordinate, x = 0, is continually calculated and fixed at the surface

of the forming oxide layer, as illustrated in Figure 6, the velocity of the moving interface, VOM , can be

represented at time, t+ ∆t, by

VOM (t+ ∆t) =
∆δtot

∆t
=

∆δin + ∆δout
∆t

(14)

For the task of deriving ∆δin and ∆δout from the mass conservation of M∆λ−R and MMxOy−R, respec-

tively, relevant parameters are defined in addition to p and are compiled in Table 2. Essentially, the mass

Table 2: Parameters for Deriving VOM

Parameter Symbol Definition Dimensions

ρMe Density of Metal Alloy [M/L3]

ρin Density of ∆δin [M/L3]

ρout Density of ∆δout [M/L3]

w Weight Ratio of Element M in Metal Alloy

r Mass Fraction of M in MxOy

p M∆λ−R/Mtotal−R

1− p MMxOy−R/Mtotal−R

∆λ Thickness of Layer in which Mtotal−R are Located [L]

Kr Scale Removal Rate [L/t]

of the un-oxidized M∆λ−R per cross section of ∆λ is set equal to the mass of the oxidized M∆λ−R per cross

section of ∆δin as shown in (15) [6].

ρMewp∆λ = rρin∆δin (15)

Similarly, the mass of un-oxidized MMxOy−R per cross section of ∆λ is set equal to the mass of the sum of

both oxidized and scaled off MMxOy−R per cross section of ∆δout as expressed in equation (16). The scale

removal of ∆δout which is caused by erosion or ablation of the oxide layer is a function of conditions of fluid

flow. For the present model, the scale removal rate, Kr is assigned a constant value, which will be described
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later.

ρMew(1− p)∆λ = rρout∆δout + rρoutKrt (16)

Solving equations (15) and (16) respectively for ∆δin and ∆δout, substituting into equation (14), and sim-

plifying yields

VOM (t+ ∆t) =
ρMew∆λ

r · (t+ ∆t)

(
p

ρin
+

1− p
ρout

)
+Kr. (17)

At this point, a new factor, m, is defined as

m =
ρMew

r

(
p

ρin
+

1− p
ρout

)
, (18)

such that equation (17) can be expressed as

VOM (t+ ∆t) =
m∆λ

t+ ∆t
+Kr. (19)

In redefining VMe, first equating the displacement of L to displacement of the oxide layer at time t+∆t with

respect to ∆λ gives

L(t+ ∆t)− L0 = ∆δtot(t+ ∆t)−∆λ (20)

whereby equation (2) becomes

VMe(t+ ∆t) =
∆δtot(t+ ∆t)−∆λ

t+ ∆t
. (21)

By substitution of equations (14) and (19) into equation(21), the task of expressing VMe in terms of VOM is

complete by equation (22).

VMe(t+ ∆t) =

(
1− 1

m

)
VOM (t+ ∆t)− Kr

m
(22)

The governing equations are rewritten in terms of VOM . Subsequently, non-dimensionalization is per-

formed first for the advection-diffusion equation, then for Fick’s second law, and finally for the interface

condition. The procedure for non-dimensionalizing the advection-diffusion equation is given in Appendix A.

The results of the preceding operations are tabulated in Table 3.
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Table 3: Non-Dimensionalized Governing Equations for Planar Diffusion Model for Oxidation

Phase Oxide Layer Metal Layer Interface

Equation Name Fick’s Second Law Advection-Diffusion Interface Condition

Governing Equations (t̄ > 0) DMe
DOx

∂C̄1(x̄,t̄)
∂t̄

=
∂2C̄1(x̄,t̄)
∂x̄2

∂C̄2(x̄,t̄)
∂t̄

=
∂2C̄2(x̄,t̄)
∂x̄2 −

((
1− 1

m

)
V̄OM (t̄)− K̄r

m

)
∂C̄2(x̄,t̄)
∂x̄

DOx
DMe

∂C̄1(δ̄(t̄),t̄)
∂x̄ −∂C̄2(δ̄(t̄),t̄)

∂x̄
|C̄MO−C̄OM |

= V̄OM (t̄)

x̄-domain 0 < x̄ < δ̄(t̄) δ̄(t̄) < x̄ < L̄(t̄)

Boundary Conditions C̄1(0, t) = 1 C̄2(δ̄(t̄), t̄) = C̄MO
C̄1(δ̄(t̄), t̄) = C̄OM C̄2(L̄(t̄)) = C̄M∞

Initial Condition C̄1(x̄, 0) = 0; 0 < x̄ <∞ C̄2(x̄, 0) = 0;0 < x̄ <∞ δ(0) = 0

Dimensionless Variables

t̄ = DMet
(L0)2 C̄2 = C2

CO0
x̄ = x

L0
L̄(t̄) =

L(t)
L0

C̄1 = C1
CO0

K̄r = KrL0
DMe

δ̄(t̄) =
δ(t)
L0

V̄OM (t̄) =
VOM (t)L0
DMe

C̄OM = COM
CO0

C̄MO = CMO
CO0

C̄M∞ = CM∞
CO0

2.4 Coordinate Transformation

Next, the application of a coordinate transformation in non-dimensionalized spatial direction x̄ to gov-

erning equations is discussed. This transformation is inspired by the Landau position transformation, which

is characterized by fixed spatial boundaries [15]. Behavior of a moving boundary is explicitly captured when

it is immobilized via a transformation of coordinate. In the present model, the two non-dimensional physical

moving boundaries are identified as δ̄(t̄) and L̄(t̄). The former represents the oxide/metal interface which

travels with non-dimesional velocity, V̄OM (t̄). The latter stands for the side of the metal alloy which is

unexposed to the oxidizing fluid and moves with non-dimensinal velocity, V̄Me(t̄). In the present model, the

task of immobilizing of L̄(t̄) is achieved while the procession of δ̄(t̄) is tracked. This task naturally follows

from the procedure for non-dimensionalization of the governing equations, wherein V̄Me, which represents the

advection velocity, is eliminated. Ultimately, a non-linear boundary value problem which does not explicitly

consider advection is mathematically created for a fixed domain. The coordinate transformation procedure

is outlined. The transformation of the spatial coordinate is carried out first for the domain of the metal

phase and then for that of the oxide phase. The transformed coordinate is then extended to the governing

equations. The interface condition is described as well.

The transformation of x̄-coordinate in the advection-diffusion region (metal phase) starts with identifying

the x̄ domain:

δ̄(t̄) < x̄ < L̄(t̄). (23)

The transformed coordinate is represented by ȳ. In order to fix the upper bound of the x̄ domain to 1 such
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that,

ȳ((x̄ = L̄(t̄)) = 1), (24)

a relation between L̄(t̄) and 1 is sought. Recall the the non-dimensional form of equation (2) is

V̄Me(t̄) =
L̄(t̄)− 1

t̄
. (25)

Solving for 1 with V̄Me(t̄) in terms of V̄OM (t̄) gives

1 =
K̄r t̄

m
−
(

1− 1

m

)
V̄OM (t̄) · t̄+ L̄(t̄). (26)

The non-dimensional forms of equations (7) and (9) respectively give

V̄OM (t̄) · t̄ = δ̄(t̄). (27)

Substitution of equation (27) into equation (26) gives

1 =
K̄r t̄

m
−
(

1− 1

m

)
δ̄(t̄) + L̄(t̄). (28)

Substitution of equation (28) into equation (23) gives

δ̄(t̄) + K̄r t̄

m
< x̄+

1

m
((1−m)δ̄(t̄) + K̄r t̄) < 1. (29)

Thus, the expression for transformed coordinate ȳ in the advection-diffusion region is

ȳ = x̄+
1

m
((1−m)δ̄(t̄) + K̄r t̄), for δ̄(t̄) < x̄ < L̄(t̄),

δ̄(t̄) + K̄r t̄

m
< ȳ < 1. (30)

The transformation of x̄-coordinate in the Fick’s second law of diffusion region (oxide phase) starts with

identifying the x̄ domain:

0 < x̄ < δ̄(t̄). (31)

The ȳ-coordinate at the interface in both the domains of the advection-diffusion region and the Fick’s second

law of diffusion region is equated by equation (32):

ȳ(x̄ = δ̄−(t̄)) = ȳ(x̄ = δ̄+(t̄)) =
δ̄(t̄) + K̄r t̄

m
. (32)
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Substitution of equation (32) into equation (31) yields

K̄r t̄

m
<
x̄+ K̄r t̄

m
<
δ̄(t̄) + K̄r t̄

m
. (33)

Noting that in 0 < x̄ < δ̄(t̄)

t̄ =
x̄

V̄OM (t̄)
, (34)

the expression in equation (33) changes to

0 <
x̄

m̄

(
1 +

K̄r

V̄OM (t̄)

)
<
δ̄(t̄) + K̄r t̄

m
. (35)

Thus, expression for transformed coordinate ȳ is

ȳ =
x̄

m̄

(
1 +

K̄r

V̄OM (t̄)

)
for 0 < x̄ < δ̄(t̄), 0 < ȳ <

δ̄(t̄) + K̄r t̄

m
. (36)

Now, the transformed coordinate is applied to the non-dimensional governing equations. For the advection-

diffusion region, the governing equation is

∂C̄2(x̄, t̄)

∂t̄
=
∂2C̄2(x̄, t̄)

∂x̄2
−
((

1− 1

m

)
V̄OM (t̄)− K̄r

m

)
∂C̄2(x̄, t̄)

∂x̄
. (37)

The transformed coordinate from equation (30) is rewritten in equation (38) with the non-dimensional oxygen

concentration, C̄2, which is a function of time and position of both the non-transformed and transformed

coordinate.

ȳ = x̄+
1

m
((1−m)δ̄(t̄) + K̄r t̄); C̄2(x̄, t̄) = C̄2(ȳ, t̄). (38)

Application of the chain rule to equation (38) gives

∂C̄2(x̄, t̄)

∂t̄
=
∂C̄2(ȳ, t̄)

∂ȳ

(
1

m
((1−m)V̄OM (t̄) + K̄r t̄

)
+
∂C̄2(ȳ, t̄)

∂t̄
, (39)

∂C̄2(x̄, t̄)

∂x̄
=
∂C̄2(ȳ, t̄)

∂ȳ
, (40)

and

∂2C̄2(x̄, t̄)

∂x̄2
=
∂2C̄2(ȳ, t̄)

∂ȳ2
. (41)
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Substituting equations (39), (40), and (41) into equation (37) gives

∂C̄2(ȳ, t̄)

∂t̄
=
∂2C̄2(ȳ, t̄)

∂ȳ2
(42)

which is the transformed advection–diffusion equation. For the Fick’s second law of diffusion region, the

governing equation is

DMe

DOx

∂C̄1(x̄, t̄)

∂t̄
=
∂2C̄1(x̄, t̄)

∂x̄2
. (43)

The transformed coordinate from equation (36) is rewritten in equation (44) with the non-dimensional oxygen

concentration, C̄1:

ȳ =
x̄

m̄

(
1 +

K̄r

V̄OM (t̄)

)
; C̄1(x̄, t̄) = C̄1(ȳ, t̄). (44)

Application of chain rule to equation (44) gives

∂C̄1(x̄, t̄)

∂t̄
=
∂C̄1(ȳ, t̄)

∂t̄
, (45)

∂C̄1(x̄, t̄)

∂x̄
=
∂C̄1(ȳ, t̄)

∂ȳ

(
1

m

(
1 +

K̄r

V̄OM (t̄)

))
, (46)

and

∂2C̄1(x̄, t̄)

∂x̄2
=
∂2C̄2(ȳ, t̄)

∂ȳ2

(
1

m

(
1 +

K̄r

V̄OM (t̄)

))2

. (47)

Substituting equations (45), (46), and (47) into equation (43) gives

DMe

DOx

(
∂C̄1(ȳ, t̄

∂t̄

)
=

(
1

m

(
1 +

K̄r

V̄OM (t̄)

))2
∂2C̄1(ȳ, t̄)

∂ȳ2
. (48)

which is the transformed Fick’s second law of diffusion. The results of the coordinate transformation so far

are summarized in Table 4. The fixed domain of the planar model is illustrated in Figure 7.
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Table 4: Transformed Partial Differential Equations for Planar Diffusion Model on Fixed Domain

Phase Oxide Layer Metal Layer

Equation Name Fick’s Second Law Region Advection-Diffusion Region

Transformed Coordinate, ȳ ȳ = x̄
m

(
1 + K̄r

V̄OM (t̄)

)
for 0 < x̄ < δ̄(t̄) ȳ = x̄ + 1

m((1−m)δ̄(t̄) + K̄rt̄), for δ̄(t̄) < x̄ < L̄(t̄)

Governing Equations (t̄ > 0) DMe
DOx

(
∂C̄1(ȳ,t̄)

∂t̄

)
=
(

1
m

(
1 + K̄r

V̄OM (t̄)

))2 ∂2C̄1(ȳ,t̄)
∂ȳ2

∂C̄2(ȳ,t̄)
∂t̄

=
∂2C̄2(ȳ,t̄)
∂ȳ2

ȳ-domain 0 < ȳ <
δ̄(t̄)+K̄rt̄

m
δ̄(t̄)+K̄rt̄

m < ȳ < 1

Boundary Conditions C̄1(0, t̄) = 1 C̄2

(
δ̄+(t̄)+K̄rt̄

m , t̄
)

= C̄MO

C̄1

(
δ̄−(t̄)+K̄rt̄

m , t̄
)

= C̄OM C̄2(1, t̄) = C̄M∞

Initial Condition C̄1(ȳ, 0) = 0; 0 < ȳ < 1 C̄2(ȳ, 0) = 0; 0 < ȳ < 1

Figure 7: Width, ∆λ, and Homogeneous Distribution of M Atoms in Metal Plane

2.5 Simplification of Diffusion Coefficient

At this point, the transformation is normally applied to the interface condition, which is in turn sub-

stituted into the two transformed partial differential equations for further simplification and closure. In

the present model, the two transformed equations are instead simplified in the following manner such that

transforming the interface condition is avoided [17]. First, a modification of the diffusion coefficients results

in

D̄Ox =
DOx

Dme

(
1

m

(
1 +

K̄r

V̄OM (t̄)

))2

, D̄Me = 1 (49)
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which allows for the transformed equations to be of the form

∂C̄(ȳ, t̄)

∂t̄
= D̄(C̄(ȳ, t̄))

∂2C̄(ȳ, t̄)

∂ȳ2
. (50)

in which D̄ and C̄ assume the associated values in equation (49) and in Table 4, respectively. Keeping the

goal of simplification in mind, it is necessary to describe how the diffusion coefficient behaves as a function

of oxygen concentration. Physical values of oxygen concentration, C̄, exhibit a break in continuity at the

interval [C̄MO, C̄OM ] where the diffusion coefficent, D̄, is undefined. Thus, equation (50) is only valid in

regions outside this interval. To reconcile this issue, the values of D̄ on [C̄MO, C̄OM ] are set equal to zero

as shown in Figure 8. By doing so, the values of C̄ are no longer restricted in equation (50). Thus, the

transformation of the interface condition is eliminated.

Figure 8: Diffusion Coefficient, D̄, as Discontinuous Function of Oxygen Concentration, C̄

The justification for this simplification is explained by the steep decrease in oxygen concentration from

C̄OM to C̄MO within a boundary layer of a thin thickness. This steep decrease is modeled as a finite jump

when the thickness is reduced to a zero thickness through which diffusion is impossible. The new governing

equation for all phases of the planar oxidation model is summarized in Table 5.
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Table 5: Simplified Planar Diffusion Governing Equation

Governing Equation
∂C̄(ȳ,t̄)
∂t̄

= D̄(C̄(ȳ, t̄))
∂2C̄(ȳ,t̄)
∂ȳ2

Diffusion Coefficient, D̄(C̄(ȳ, t̄)) D̄ = D̄Ox on [1, C̄OM )

D̄ = 0 on [C̄OM , C̄MO]

D̄ = D̄Me on (C̄MO, C̄M∞]

Boundary Conditions C̄(0, t̄) = 1

C̄(1, t̄) = C̄M∞

Initial Condition C̄(ȳ, 0) = 0 on 0 < ȳ < 1

2.6 Kirchhoff Transformation

For anticipated numerical simulation, further simplification is achieved by applying the Kirchhoff trans-

formation to the governing equation shown in Table 5 [19]. Noting that the diffusion coefficient, D̄, is

concentration dependent as in equation (51),

D̄ = D̄(C̄(ȳ, t̄)), (51)

a new variable Z is defined by

∂Z(C̄(ȳ, t̄))

∂C̄
= D̄(C̄(ȳ, t̄)). (52)

Hereby, the discontinuous relationship between the diffusion coefficient and oxygen concentration, seen in-

Figure 8, is removed as seen in Figure 9. The region where Z is constant represents the latent change

in molar atomic oxygen concentration, C̄, across the phase boundary which relates to what drives phase

change. Application of the chain rule to equation (52) and substitution of the result into equation (50) in

dimensionless form gives

∂C̄(ȳ, t̄)

∂t̄
=
∂2Z̄(C̄(ȳ, t̄))

∂ȳ2
. (53)
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Figure 9: Function Z(C̄) from Kirchhoff Transformation
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Chapter 3 Numerical Method

3.1 Implicit Scheme

An implicit finite difference method typically used for phase change moving boundary problems called

the ”enthalpy method” is implemented [20]. This numerical method results in a set of non-linear equations

and is applied to a fixed grid. The spatial interval [0, a] is divided into N nodes of equal width, ∆ȳ, with

the end nodes of width
∆ȳ

2
. The index for time and space are n and i, respectively. From this point, the

overbar is removed as all terms will be considered non-dimensional. In a center-in-space scheme, for interior

node i to advance from time level n to n+ 1 through time step ∆t, equation (53) can be expressed implicitly

by

Cn+1
i − Cni

∆t
=

1

∆y2
[Z(Cn+1

i+1 )− 2Z(Cn+1
i ) + Z(Cn+1

i−1 )]. (54)

The value of C is specified to be 1 at the exposed surface and CM∞ at the metal front. These boundary

conditions are expressed by

Cn+1
1 = 1 (55)

and

Cn+1
N = CM∞. (56)

3.2 Application of Newton-Raphson Method

Thus, equations (54), (55), and (56) are the system of non-linear equations for Cn+1
i = 1, . . . , N . The

iterative scheme applied is the Newton-Raphson method for which a new iterative index, k, is introduced

whereby equation (54) can be expressed as

Ck+1
i,n+1 − C1

i,n+1

∆t
=

1

∆y2
[Z(Cki+1,n+1) +D(Cki+1,n+1)(Ck+1

i+1,n+1 − C
k
i+1,n+1)] −

2

∆y2
[Z(Cki,n+1) +D(Cki,n+1)(Ck+1

i,n+1 − C
k
i,n+1)] +

1

∆y2
[Z(Cki−1,n+1) +D(Cki−1,n+1)(Ck+1

i−1,n+1 − C
k
i−1,n+1)],

(57)

in which two substitutions are made. The first, an approximation from the first order Taylor Series expansion,

is

Z(Cn+1
j ) = Z(Ckj,n+1) +D(Ckj,n+1)(Ck+1

j,n+1 − C
k
j,n+1), (58)
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and the second is

Cni = C1
i,n+1. (59)

3.3 Tri-Diagonal Matrix Algorithm

Coefficients of Ck+1
j,n+1 for a tri-diagonal matrix formed from a system of linear equations are determined

from equation (57). For the interior nodes i belonging to [2, N − 1], the coefficients, given symbols f , g, and

h, are expressed in Table 6.

Table 6: Coefficients of Ck+1
j,n+1 for Tri-Diagonal Matrix

Symbol Spatial Node, j Discretized Concentration, C Coefficient

f i− 1 Ck+1
i−1,n+1 − 1

∆y2
(D(Cki−1,n+1))

g i Ck+1
i,n+1

2

∆y2
(D(Cki,n+1)) +

1

∆t

h i + 1 Ck+1
i+1,n+1 − 1

∆y2
(D(Cki+1,n+1))

The matrix equation is depicted in equation (60) and is solved for oxygen concentration, Ck+1
j,n+1, with a

tri-diagonal matrix algorithm.



g h . . . 0

f
. . .

. . .
...

...
. . .

. . . h

0 . . . f g





Ck+1
1

Ck+1
2

...

Ck+1
N


=



Q(Ck1 )

Q(Ck2 )

...

Q(CkN )


(60)

The function Q(Ckj ) on the right hand side of equation (60) is given by

Q(Ckj ) = C1
i,n+1 +

1

∆y2
[Z(Cki−1,n+1)− 2Z(Cki,n+1) + Z(Cki+1,n+1) −

D(Cki−1,n+1)(Cki−1,n+1) + 2D(Cki,n+1)(Cki,n+1) −

D(Cki+1,n+1)(Cki+1,n+1)].

(61)

The iteration begins with (59) and proceeds until

max

∣∣∣∣∣C
k+1
i,n+1 − Cki,n+1

Cki,n+1

∣∣∣∣∣ ≤ ε, i = 1, . . . , N, (62)

in which ε is a small number [17].
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Recalling from equation (49) that the diffusion coefficient, D, is a function of VOM , and thus a function

of t, the numerical code is designed to calculate VOM at each time step [6].

The algorithm of the numerical code is designed to obtain a fixed advance of the nominal interface position

∆δnom at each time step. It is described as follows:

1. The advance of the interface position, ∆δk, is compared with the nominal interface position, ∆δnom;

if the discrepancy is larger than a given percentage, the results are discarded.

2. After each time step, ∆tk, the interface velocity, V kOM is calculated from the new interface position,

∆δk, by

V kOM =
∆δk

∆tk
. (63)

3. The new interface velocity, V k+1
OM is extrapolated with respect to the next new interface position, ∆δk+1,

by

V k+1
OM =

∆δk+1

∆δk
V kOM . (64)

4. Thus, the new time step, ∆tk+1, is calculated by

∆tk+1 =
∆δk+1

V k+1
OM

. (65)

5. The iterative procedure continues until the selected time step produces and interface advance within

the specified tolerance relative to the nominal value.

The numerical code was compiled using Microsoft Visual C++ Studio.
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Chapter 4 Numerical Simulation

The present oxidation model is used to simulate oxidation conditions in nuclear reactor coolant environ-

ments. From certain aspects of the coolant environment, the parameters needed for the oxidation model

are obtained. The first aspect is the type of structural material, in this case a stainless steel alloy, used in

the containment design. From this information alone, the weight ratios, w, of the component metals, the

density of the metal alloy, ρMe, and the solubility limit concentration of oxygen in the metal layer, CMO,

are determined. The next two aspects are the temperature and oxygen concentration of the contained liquid

coolant. From these aspects, the stoichiometry of the possible metal oxides is predicted. This provides ρin

and ρout, the inner and outer oxide layer densities for each oxide, and the mass fraction, r, of the metal M

in its corresponding oxide, MxOy. Additionally, this information provides the diffusivity of oxygen in the

metal alloy layer, DMe, the minimum concentration of oxygen needed to form of the inner oxide layer, COM

and DOx, the diffusivity of oxygen in the oxide layer. The remaining parameter needed is the scale removal

rate, Kr, which depends on the preceding three aspects and also on the velocity of the moving liquid coolant

[1]. To summarize, the four aspects considered for the present oxidation simulation are: the type of stainless

steel alloy, the liquid coolant temperature, the oxygen concentration of the coolant, and the liquid coolant

velocity.

These four aspects were taken into account as control variables in corrosion experiments done by Zhang

[1]. Hereby, simulation of these experimental conditions is ideal for two reasons. The first is, as mentioned,

the input parameters for the model are obtained from a single controlled experiment in a nuclear coolant

system environment. The second is that the experimental results are used as a benchmark for the numerical

simulation. Each aspect of the experiments is discussed in relation to how the necessary parameters are

derived.

4.1 Selection of EP-823 Stainless Steel Alloy

In the experiments, a variety of steels had been subject to typical operating conditions of nuclear reactor

coolant environments. The oxide layer growth of each type of steel was monitored. The resulting experimental

thickness of the oxide layer, δ, was extrapolated to its steady state, or asymptotic, thickness, δs. The typical

spallation thickness for stainless steel, or the minimum thickness at which the oxide layer is no longer stable

in this environment, had been approximated to and accepted as 40 µm [1]. Based on the experimental results,

the steel which exhibited formidable resistance to liquid metal coolant corrosion and oxidation was found

to be EP-823 stainless steel alloy. In experimental conditions, the stable and protective oxide layer formed

via oxidation of EP-823 alloy was predicted to reach its steady state thickness of 35.8 µm over a period

of 26 years, which is below the typical spallation thickness [1]. Because this metal alloy had demonstrated
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promise as a structural material based on the experimental results, its oxidation is characterized in the

present model.

4.2 Derivation of Simulation Parameters

4.2.1 Weight Ratios of Alloying Elements

The weight ratios, w, of the component elements of EP-823 are shown in Table 7 [21]. The term ‘weight

ratio’ is the mass of the alloying element in a given total mass of alloy to the given total mass.

Table 7: Chemical Composition of Martensitic Stainless Steel Alloy EP-823

Element Sulfur Boron Phosphorus Copper Aluminum Cerium Carbon Niobium Vanadium Manganese Tungsten Nickel Molybdenum Silicon Chromium Iron
Symbol S B P Cu Al Ce C Nb V Mn W Ni Mo Si Cr Fe
Weight Ratio 0.00004 0.00005 0.00005 0.0001 0.0002 0.0008 0.0017 0.0026 0.0034 0.0054 0.006 0.0065 0.007 0.0111 0.1169 0.84

4.2.2 Mass Fraction of M in MxOy

In the corrosion experiments on EP-823 alloy performed by Zhang [1], temperature, oxygen concentration,

and velocity of the coolant, in this case Lead-bismuth eutectic (LBE), were controlled at 743 K, 0.01 ppm,

and 1.9 m s−1, respectively. As mentioned, this information is used in identifying possible metal oxides using

the Ellingham diagram, a graphical representation of the stability of metal oxides [22]. This process involves

first selecting only the metal alloying components of EP-823. Thus, non-metal elements included in Table 7

are removed. An updated list is shown in Table 8. Although silicon is not a metal, it is included in this list.

Table 8: Alloying Elements of EP-823 Considered for Oxidation Model

Element Copper Aluminum Cerium Niobium Vanadium Manganese Tungsten Nickel Molybdenum Silicon Chromium Iron
Symbol Cu Al Ce Nb V Mn W Ni Mo Si Cr Fe
Weight Ratio 0.0001 0.0002 0.0008 0.0026 0.0034 0.0054 0.006 0.0065 0.007 0.0111 0.1169 0.84

To read the Ellingham diagram, the partial pressure of diatomic oxygen in LBE, PO2
, is needed. Equation

(66), is derived from the free energy values of the dissociation of diatomic oxygen in LBE, 1
2O2(g) −→ O.

log PO2
= 2 log(wt -%O) + 2 log

(
208

16

)
+

2

2.3R

(
−12398

T
+ 27.938

)
. (66)

This relates the atomic oxygen concentration in LBE, 0.01 ppm or 1× 10−6 wt.-%O and absolute temperature

T , in Kelvin, to PO2
in atmospheres [23]. PO2

is calculated to be 5.1× 10−17 atm.

Figure 10 shows the Ellingham diagram obtained from [24]. A series of free energy of formation lines

for oxidation reactions is intercepted by the experimental temperature, 743 K or 470 ◦C. This point of

intersection on each formation line corresponding to elements in Table 8 is again crossed by a second line
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linking the temperature and the formation reaction to its equilibrium partial pressure. Those reactions which

show an equilibrium partial pressure below that of the experimental partial pressure, PO2
, are highlighted.

The relatively low equilibrium partial pressure favors oxidation, rather than reduction. The oxides resulting

from these reactions are listed.
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Figure 10: Ellingham Diagram
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Since the Ellingham diagram does not contain the formation lines for uncommon metals such as tungsten,

molybdenum, cerium, and niobium, binary phase diagrams were used to determine stable oxides for these

alloying elements. Two such diagrams for the binary systems of tungsten-oxygen and niobium-oxygen are

shown in Figures 11 and 12, respectively [25]. The experimental LBE oxygen concentration and temperature

are used to predict the formation of tungsten (IV) oxide, WO2. The phase diagram for the niobium-oxygen

system showed that niobium (II) oxide, NbO, is stable under the given experimental conditions. Phase

diagrams for the systems of cerium-oxygen and molybdenum-oxygen are not conclusive regarding thermo-

dynamically stable oxides. Thus, the oxidation reactions of alloying elements cerium and molybdenum are

omitted from the simulation. An updated list of elements and corresponding oxidation reactions character-

ized in the present model is compiled in Table 9.

Figure 11: Phase Diagram of W-O system [25]
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Figure 12: Phase Diagram of Nb-O system [25]

Table 9: Elements and Related Oxidation Reactions Simulated in Oxidation Model

Alloying Element Symbol Oxidation Reaction IUPAC Name of Oxide

Copper Cu 2Cu +
1

2
O2 −→ Cu2O Copper(I)Oxide

Aluminum Al
2

3
Al +

1

2
O2 −→

1

3
Al2O3 Aluminium(III)Oxide

Niobium Nb Nb +
1

2
O2 −→ NbO Niobium(II)Oxide

Vanadium V
2

3
V +

1

2
O2 −→

1

3
V2O3 Vanadium(III)Oxide

Manganese Mn Mn+
1

2
O2 −→ MnO Manganese(II)Oxide

Tungsten W
1

2
W +

1

2
O2 −→

1

2
WO2 Tungsten(IV)Oxide

Nickel Ni Ni +
1

2
O2 −→ NiO Nickel(II)Oxide

Silicon Si
1

2
Si +

1

2
O2 −→

1

2
SiO2 Silicon(IV)Oxide

Chromium Cr
2

3
Cr +

1

2
O2 −→

1

3
Cr2O3 Chromium(III)Oxide

Iron Fe
3

4
Fe +

1

2
O2 −→

1

4
Fe3O4 Iron(II,III)Oxide

2Fe3O4 +
1

2
O2 −→ 3Fe2O3 Iron(III)Oxide
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Now the parameter, mass fraction r of element M in its respective oxide, MxOy, is calculated using

r =
x ·Atomic MassM

x ·Atomic MassM + y ·Atomic Mass O
. (67)

4.2.3 Oxygen Concentrations at Surface, Inner Oxide/Interface Boundary and Interior

From the assumptions made in Chapter 2, the surface concentration of oxygen is set to a constant

saturated supply of 100 at.-%O.

To evaluate CMO, the solubility of oxygen in the alloy is discussed. The class of steels to which EP-823

belongs are subject to extensive deoxidization in the steelmaking cooling process. Therefore the oxygen

concentration solubility limit of the steel is estimated by utilizing both the weight ratio of carbon in Table 7

and equation (68), which relates atomic oxygen content and carbon content in pre-cooled liquid steel [26].

wt.-%Carbon in alloy × wt.-%Oxygen in alloy = 0.0025 (68)

By converting the weight ratio of carbon in Table 7 to a weight percent of 0.17 wt.-%C, a weight percent

of oxygen in pre-cooled steel of 0.015 wt.-%O is obtained. The conversion of the weight percent oxygen to

atomic percent oxygen involves the following. First the weight ratio of each alloying element, w, is converted

to mass of the element per 100 g alloy, wi. The calculated weight percent of oxygen from equation (68) is

also converted to mass of oxygen per 100 g alloy. This value is also included in the list of wi. Next, wi is

divided by the atomic mass of each alloying element, Mi, to obtain moles of each element M per 100 g alloy,

denoted Xi. The values of Xi are summed to obtain total moles of alloy per 100 g alloy, denoted X. Each

value of Xi is divided by X to obtain the atomic ratio of atoms of the respective alloying element to total

atoms of alloy, ai. The task of finding atomic percent of each element, listed in the right column of Table 10,

is achieved.

Thus, the atomic percent of the oxygen concentration solubility is estimated to be 0.05 at.-%O and, as

mentioned in Chapter 2, is set as the value for the interface parameter CMO in the present model. It should

be noted that this value is generous because it exceeds the actual oxygen solubility limit for EP-823, as steels

belonging to this class lose much of the pre-cooled oxygen content during solidification.

Two assumptions are made regarding the composition of the oxide layer for the purpose of evaluating

COM . As mentioned in Chapter 2, the oxide layer is comprised of both a compact inner sublayer and a

porous outer sublayer. The first assumption is that the inner sublayer is purely comprised of iron (II,III)

oxide, Fe3O4. This assumption is based on experimental studies indicating that Fe3O4, commonly known

as magnetite, is the primary component of the oxide layer [27]. This assumption reserves the porous outer
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Table 10: Weight Percent to Atomic Percent for Alloying Elements of EP-823

Atomic Mass of M g/mol g M/100g alloy mol M/100g alloy Atomic Percent M
Mi wi Xi 100*ai

Element
Boron 10.811 0.005 0.0005 0.03
Carbon 12.0107 0.17 0.0142 0.77
Oxygen 15.9994 0.015 0.0009 0.05
Aluminium 26.9815386 0.02 0.0007 0.04
Silicon 28.0855 1.11 0.0395 2.16
Phosphorus 30.973762 0.005 0.0002 0.01
Sulfur 32.065 0.004 0.0001 0.01
Vanadium 50.9415 0.34 0.0067 0.37
Chromium 51.9961 11.69 0.2248 12.31
Manganese 54.938045 0.54 0.0098 0.54
Iron 55.845 84 1.5042 82.34
Nickel 58.6934 0.65 0.0111 0.61
Copper 63.546 0.01 0.0002 0.01
Niobium 92.90638 0.26 0.0028 0.15
Molybdenum 95.96 0.7 0.0073 0.40
Cerium 140.116 0.08 0.0006 0.03
Tungsten 183.84 0.6 0.0033 0.18

sublayer for the oxides listed in Table 9. One case in which both layers are comprised of magnetite is also

simulated. Thus, the value for COM is fixed to the atomic percent of oxygen in Fe3O4 which is calculated by

COM =
4 atoms O

3 atoms Fe + 4 atoms O
=

4

7
= 57 at.-%O. (69)

Lastly, the atomic percent of oxygen at the unexposed front, CM∞ is assumed to be 0 at.-%O.

While in Chapter 2 the oxygen concentration is defined as molar density with dimensions [molL−3], the

atomic percent of oxygen is akin to the non-dimensional molar density. The atomic percent of oxygen at

each boundary of the planar model is shown in Figure 13. The profile of the predicted oxygen concentration

pattern is also drawn.
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Figure 13: Input Parameter Values for Boundary Oxygen Concentration

4.2.4 Densities of Metal Phase and Inner and Outer Oxide Layers

The density of the alloy, ρMe, is specified to be 7.87 g/cm3, which is the approximate density of a class

of low alloy carbon steels to which EP-823 belongs [28]. It follows from the assumption of composition of

the inner oxide layer that its density, ρin, is fixed to that of Fe3O4. The density of the outer layer, ρout, is

in accordance with the oxide from Table 9 being considered.

4.2.5 Contribution of Reactive M to Inner Oxide Layer Formation

The value of the ratio of reactive atoms of element M contributing to the inner oxide layer to the total

reactive M atoms, p, is set to 0.8. This assumption is also based on the work of Wagner, who had found an

uneven distribution of cations in the oxide layer [12].

4.2.6 Scale Removal Rate

The manner in which the parameter Kr, scale removal rate is obtained is described. Scale removal is

described as the tendency of the flowing liquid to remove the oxide layer surface by means of ablation and

erosion. It is commonly known as the corrosion rate or the recession rate. In the analysis of the experiments,

Zhang approximated the scale removal rate in the mentioned experimental conditions by a solution based

on both Tedmon’s oxidation-evaporation model [1]. The Tedmon relation, when applied to the oxidation-

ablation model is given by equation (70) [14]. The linear scale removal term, Kr, is subtracted from the

parabolic oxide layer growth term,
kp
δ(t) , wherein kp is the parabolic growth constant derived in Appendix
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B. As the thickness of the oxide layer increases, the rate of oxidation decreases due to the fact that oxygen

atoms must travel farther. This is modeled by parabolic growth.

dδ(t)

dt
=

kp
δ(t)
−Kr (70)

Although the calculation of kp is not directly explained in the report by Zhang, it is assumed the parabolic

rate law (Appendix B) was fitted to experimental times, texp, and corresponding experimental oxide layer

thicknesses, δexp whereby kp is determined. If the steady state is applied to equation (70), then the steady

state or asymptotic thickness, δs, can be expressed by

Kr =
kp
δs
. (71)

By substitution of equation (71) into equation (70), the first order non-linear ODE given by equation (72)

is obtained.

dδ(t)

dt
=

kp
δ(t)
− kp
δs

(72)

Because no general solution exists for this type of equation, a solution for oxide layer thickness, shown in

equation (73), is approximated by Zhang [1].

δ(t) = (2kpt)
1
2 − 2

3

kp
δs
t (73)

By equation (73), δs is obtained by substitution of corresponding texp and δexp. Finally, Kr is obtained by

substituting the fitted kp value and δs into equation (71).

From the data obtained by Zhang, the value of Kr for the given experimental conditions is given as

1.572× 10−13 m s−1 [1]. The corresponding kp value was determined to be 1.124× 10−17 m2/s.

4.2.7 Diffusion Coefficient of Oxygen

The diffusion coefficient of oxygen within the oxidation plane is dependent on the partial pressure of

oxygen in the surrounding fluid, the type of surrounding fluid, the composition of the oxide and metal

phases, the partial pressure of hydrogen, and the total pressure of the fluid which is exerted on the material.

Experimental data on diffusion coefficients of oxygen in oxides which considers the present simulation

environment is lacking. However, experiments had been conducted on magnetite, Fe3O4, at higher partial

pressures of oxygen in water, which is the surrounding medium [29]. The reported diffusion coefficients at

a temperature of 500 ◦C are on the order of 1× 10−10 µm2/s. This is the value used for DOx for the entire
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oxide layer in the present simulation.

Experimental data on oxygen diffusion in EP-823 alloy and the class of martensitic steels to which it

belongs is also limited. For DMe the value of DOx was divided by 4. This is based on the assumption that

the diffusion of oxygen oxide layer is facilitated by the porosity of the layer. Thus, DMe is given a value of

2.5× 10−11 µm2/s in the present simulation.

While the non-dimensional value, D̄Me is set to 1, as mentioned in Chapter 2, the nondimensional value,

D̄Ox, varies based on density, ρout, weight ratio w, and mass fraction r, because all are factored into the

value of m, which is defined in equation (18). Equation (49) demonstrates how m and D̄Ox are related.

The list of input parameters used for the numerical simulation is compiled in Table 11.

Table 11: Input Parameters

Element M w Atomic Mass Oxide rhoout Molar Mass r rhoin rhoMe Kr DOx DMe p m

g/mol g/cm3 g/mol g/cm3 g/cm3 m/s m2/s m2/s

Cu 0.0001 63.546000 Cu2O 6.000 143.0900 0.888196 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.000166964
Al 0.0002 26.981539 Al2O3 3.987 101.9600 0.529257 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.000610384
Nb 0.0026 92.906380 NbO 7.300 108.9060 0.853088 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.004377527
V 0.0034 50.941500 V2O3 4.870 149.8810 0.679759 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.007721551
Mn 0.0054 54.938050 MnO 5.430 70.9374 0.774458 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.010531954
W 0.0060 183.850000 WO2 10.800 215.8390 0.851792 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.009625772
Ni 0.0065 58.693400 NiO 6.670 74.6928 0.785797 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.012049220
Si 0.0111 28.085000 SiO2 2.196 60.0800 0.467460 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.045990407
Cr 0.1169 51.996100 Cr2O3 5.220 151.9904 0.684202 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 0.260063187
Fe 0.8400 55.847000 Fe3O4 5.150 231.5330 0.723616 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 1.771684554
Fe 0.8400 55.847000 Fe2O3 5.240 159.6900 0.699443 5.15 7.86 1.572E-13 1.00E-22 2.50E-23 0.8 1.826619376

The present model, which had been previously developed to model the oxidation of pure titanium, was

modified for the current simulation. It uses 500 nodes with a time step of 0.01s [6]. Per time step, the

number of iterations is 2. Thus the accuracy is set as ε = 10−4 [6]. The simulation produces results which

are non-dimensional with respect to oxygen concentration and dimensional with respect to space and time.

The original length of the metal plane is set to 70 µm. The simulation was run for physical times of 0.5 h,

1 h, 2 h, 4 h, 8 h, 16 h, 32 h, 64 h, 128 h, and 250 h for each oxide.
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Chapter 5 Results and Discussion

5.1 Concentration Profile

The progression of oxide layer growth for the successive time interval simulations is shown. The oxygen

concentration, C, is plotted as a function of the distance from the exposed surface, which is the continually

renewed calculating coordinate mentioned in Chapter 2. Figure 14 shows these plots. The extent to which

the oxide/metal interface moves inward with respect to the original thickness of the specimen, 70 µm, can

be seen. The profile of the concentration matches the prediction in Figure 13 in Chapter 4.

Figure 14: Non-Dimensional Oxygen Concentration Profile v. Distance

In general, the concentration decrease from the surface inward is linear until it reaches the interface

where a negative jump in concentration is seen. Per simulation, the boundary and oxide metal interface
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concentrations remain at the atomic percent values mentioned in Chapter 4. It is evident in Figure 14 that

Al2O3 and Cu2O exhibit the greatest inward growth, whereas the remaining oxides show inward growth

which is less than 5 µm at the greatest time interval of 250 h.

The thicknesses for each oxide at each time interval are shown in Table 12. It is evident from this table as

well, that the growth of the oxide layer for Al2O3 and Cu2O is the greatest. For the remaining oxides, it can

be seen that the growth is limited. For the iron and chromium oxides, no change in thickness is seen at all.

Evaluation of the stability criterion for the number of nodes used for the simulation of oxide growth for these

oxides would be of help. The optimal value of the convergence accuracy, ε, chosen for the simulation must

be assessed and must be adjusted accordingly such that the oxide layer thicknesses derived from the model

are more accurate. In the present model, the convergence accuracy, ε, and number of nodes, N are assigned

uniform values for all oxide simulations. The assessment of stability and convergence for the simulation

of oxide growth for each oxide must include the all the values in the dimensionless factor m, which have

direct bearing on the oxide layer oxygen diffusivity, DOx in the model. Because all stainless steels, including

EP-823 alloy, are comprised primarily of iron, the lack of oxide layer growth due to iron composition does

not make sense.

One explanation for this may be the fact that the model, at a maximum interval of 250 h can only apply

to incipient oxidation. It can be argued that running the simulations for greater time intervals may lead to

the evolution of an oxide layer with a finite thickness.

Table 12: Oxide Layer Thickness Values from Simulation

Time (h) Cu2O Al2O3 NbO V2O3 MnO NiO WO2 SiO2 Cr2O3 Fe2O3 Fe3O4
0.5 2.80561096 0.84168336 0.14028056 0.14028056 0.14028056 0.14028056 0.14028056 0.14028056 0.14028056 0.14028056 0.14028056 Oxide
1 3.92785592 1.12224492 0.14028052 0.14028052 0.14028052 0.14028052 0.14028052 0.14028052 0.14028052 0.14028052 0.14028052 Layer
2 5.61122284 1.54308584 0.28056114 0.14028054 0.14028054 0.14028054 0.14028054 0.14028054 0.14028054 0.14028054 0.14028054 Thickness
4 7.99599168 2.24448868 0.28056108 0.14028058 0.14028058 0.14028058 0.14028058 0.14028058 0.140280568 0.14028058 0.14028058 (micron)
8 11.22244736 3.08617236 0.42084166 0.28056116 0.14028056 0.14028056 0.28056116 0.14028056 0.14028056 0.14028056 0.14028056
16 15.85170472 4.34869772 0.70140282 0.42084172 0.28056112 0.28056112 0.28056112 0.14028052 0.14028052 0.14028052 0.14028052
32 22.44488944 6.17234444 0.84168334 0.42084164 0.42084164 0.28056114 0.42084164 0.14028054 0.14028054 0.14028054 0.14028054
64 31.84368888 8.69739488 1.26252488 0.70140278 0.56112228 0.42084168 0.56112228 0.14028058 0.14028058 0.14028058 0.14028058
128 45.03005776 12.34468776 1.68336676 0.98196396 0.70140276 0.70140276 0.84168336 0.14028056 0.14028056 0.14028056 0.14028056
250 62.84569 17.25451 2.38477 1.402806 0.9819639 0.8416834 1.1222445 0.2805611 0.15831663 0.140280561 0.140280561

The concentration profile of NbO, which is among the oxides displaying minimal growth, is magnified in

Figure 15.
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Figure 15: Concentration Profile of Niobium II Oxide

5.2 Steady State Thickness

The semi-empirical method Zhang [1] uses to approximate the steady state thickness, δs, which is de-

scribed in Chapter 4, is applied to the present simulation. For each reaction listed in Table 9, the results of

the simulations are evaluated in the following manner:

1. The parabolic rate constant, kp, is determined.

2. The steady state thickness, δs, is determined by the Tedmon equation (70).

3. The steady state thickness, δs, is approximated by equation (73).

5.2.1 Power Law

As mentioned in Chapter 4, the simulation for each reaction is run for a series of physical time intervals,

the maximum time period of which is 250 h. As mentioned, with respect to the progression of oxidation

on stainless steel, these reaction times are considered incipient; thus, this analysis is limited to oxidation

kinetics during initial exposure of the metal alloy to the oxidizing environment.

For each time interval, corresponding data indicating oxide layer thickness, δ, is obtained from the

simulation. In order to determine the extent to which parabolic growth is obeyed, oxide layer thickness data
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values are plotted versus the corresponding time interval values as shown in Figure 16. The data values are

organized in Table 12.

A power law regression is applied to the distribution of the plot of each reaction.

Figure 16: Oxide Layer Thickness Data v. Time Fit to Power Law
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Based on the model proposed by Wagner [12], an ideal regression equation for parabolic growth would

be of the form

δ = (2kpt)
0.5. (74)

It can be seen in Figure 16 that while certain growth rates are reasonably close to the parabolic case, as in

the oxide formations of Cu2O, Al2O3, NbO, and WO2, the remaining oxides show growth patterns which

deviate, in varying degrees, from Wagner’s model. The foregoing discussion on modifying stability and

convergence criteria for each oxide applies here as well.

5.2.2 Parabolic Rate Constant

To predict δs using the steady state Tedmon equation (71) or the approximation made by Zhang [1] in

equation (73), kp is needed. To this end, the squares of the oxide layer thickness values in Table 12 are

plotted against the respect time intervals as shown in Figure 17; a linear regression is applied assuming that

the initial oxide layer thickness is zero.
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Figure 17: Squares of Oxide Layer Thickness Data v. Time

For each reaction, the slope of the regression, gives a value twice the parabolic rate constant, 2 · kp,

according to equation (74). The values determined for kp are shown in Table 13. These values as well as

the values for the interval times, t, are substituted into equation (74) to obtain parabolic curves depicted in

Figure 18.

Table 13: Parabolic Rate Constant Values, kp

Cu2O Al2O3 NbO V2O3 MnO NiO WO2 SiO2 Cr2O3 Fe2O3 Fe3O4

2kp(micron
2/h) 1.58E+01 1.19E+00 2.28E-02 7.80E-03 3.90E-03 3.00E-03 5.10E-03 3.00E-04 1.00E-04 1.00E-04 1.00E-04

kp(micron
2/h) 7.90E+00 5.95E-01 1.14E-02 3.90E-03 1.95E-03 1.50E-03 2.55E-03 1.50E-04 5.00E-05 5.00E-05 5.00E-05

kp(micron
2/s) 2.20E-03 1.65E-04 3.17E-06 1.08E-06 5.42E-07 4.17E-07 7.08E-07 4.17E-08 1.39E-08 1.39E-08 1.39E-08

kp(m
2/s) 2.20E-15 1.65E-16 3.17E-18 1.08E-18 5.42E-19 4.17E-19 7.08E-19 4.17E-20 1.39E-20 1.39E-20 1.39E-20
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Figure 18: Oxide Layer Thickness Data v.Time Fit to Parabolic Law

The experimental value of kp for EP-823 alloy reported by Zhang at 3000 h exposure [1], determined to

be 1.124× 10−17 m2/s, falls between the kp values calculated for Al2O3 and NbO as shown in Figure 17. A

direct explanation for this cannot be deduced without the optimization of stability and convergence criteria.

For future work, the consideration of the tendency of selective oxidation of certain alloying metals to

effect a parabolic growth rate is ideal. This tendency is better explained by referencing the Ellingham

diagram shown in Figure 10. The lower the oxidation reaction curve of a certain element with respect to

the free energy of formation axis, the more likely the oxidation of this element. Furthermore, at a given

temperature and alloying element composition, the oxidation of the element corresponding to the bottom

most reaction line is favored [22]. In other words, the reaction with the lowest free energy of formation

requirement competes with other concurrent isothermal reactions by reducing the oxides with a higher free
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energy. In the case of the alloying metals considered for the present simulation, the oxidation of aluminum

and silicon are suppositive over the oxidation of each of the remaining alloys. Thus, the role of the copper

oxide layer growth rate is the effective parabolic growth rate for EP-823 is perhaps limited by other more

likely reactions. While a conclusive method to reconcile parabolic rate constants for the oxides of each

individual oxide with the overall rate constant for the alloy does not exist, examining selective oxidation of

certain alloying elements clarifies some ambiguity.

Further discussion involves the tendency of more than one alloying element to form a single oxide. This

phenomena, referred to as co-precipitation of oxides, has been reported in corrosion experiments [1, 30]. For

example, evidence of the formation of iron-chromium spinel oxides of the form (FexCr1−x)3O4 has been often

seen in the oxide layer after 1000 h exposure to LBE in conditions similar to the experiments conducted by

Zhang [1, 30, 31]. In fact, it is unlikely that the oxide layer contains portions of pure single metal oxides.

Rather, these co-precipitates, or spinel oxides are the common by-product. In order for spinel formation,

the thermodynamics and kinetics of the reaction as well as maintenance of matched or unmatched oxidation

states of the co-precipitating elements, and stability of the crystal structure of the oxide are factors. The

oxidation states of the metals in the corresponding oxides are listed in Table 14.

Table 14: Oxidation States of Metals in Metal Oxides, Ionic Radii, and Crystal Structures

Alloying Element Symbol Oxide IUPAC Name of Oxide Metal Oxidation State Ionic Radius Crystal Structure Calculated kp
[nm] [m2/s]

Copper Cu Cu2O Copper(I)Oxide +1 0.077 FCC 2.20E-15

Aluminum Al Al2O3 Aluminium(III)Oxide +3 0.053 FCC, HCP 1.65E-16

Niobium Nb NbO Niobium(II)Oxide +2 3.17E-18

Vanadium V V2O3 Vanadium(III)Oxide +3 0.088 HCP 1.08E-18

Manganese Mn MnO Manganese(II)Oxide +2 0.067 SC 5.42E-19

Tungsten W WO2 Tungsten(IV)Oxide +4 Cubic 7.08E-19

Nickel Ni NiO Nickel(II)Oxide +2 0.069 FCC 4.17E-19

Silicon Si SiO2 Silicon(IV)Oxide +4 0.041 Cubic 4.17E-20

Chromium Cr Cr2O3 Chromium(III)Oxide +3 0.063 BCC 1.39E-20

Iron Fe Fe3O4 Iron(II,III)Oxide +2,+3 0.077 BCC 1.39E-20

Fe2O3 Iron(III)Oxide +3 0.064 BCC 1.39E-20

While the formation of copper (I) oxide is favored thermodynamically for the operating conditions, the

unique oxidation state of copper in its oxide form at +1 may hinder it from participating in a co-precipitation

reaction. Thus, it is argued that while the parabolic growth rate constant for copper (I) oxide is greater

than that for the other alloying elements, it is unlikely that this oxide is produced.

Moreover, while the oxidation states of aluminum, vanadium, chromium, and iron are the same with
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respect to plausible oxide formation, the rate of co-precipitation may be determined by the metal oxides with

the slowest growth rate, which by the prediction of this model, are the oxides of chromium and iron. Thus,

the low kp values for oxides of iron and chromium obtained by this model may provide some explanation

as to why the spinel layers analyzed in past experiments are primarily comprised of (FexCr1−x)3O4 type

oxides [31]. Furthermore, as shown in Table 14, the crystal structures of the chromium and iron oxides

are alike which arguably promotes co-precipitation. The similar ionic radii of chromium and iron in the

+3 oxidation state possibly facilitates combination of these elements into a single oxide. Thus, although

aluminum and vanadium share oxidation states with iron and chromium, the difference in the ionic radii

and corresponding oxide crystal structure can arguably preclude co-precipitation with iron and chromium.

However, the oxidation states and crystal structures of vanadium and aluminum in their respective oxides

coincide as well as those of silicon and tungsten. Niobium, manganese and nickel share oxidation states but

do not share crystal structures in their corresponding oxides.

Two additional comments follow. Although scale removal is considered in the present model, it is only

considered as a physical detraction from the total oxide layer thickness. Scale removal, however, also promotes

oxidation by creating non-uniformities on the exposed surface of the metal oxide [4]. The scale removal

experienced by the steels in the experiments conducted by Zhang [1] likely promoted and enhanced the

oxidation rate. This provides another reason for the discrepancy between the experimentally determined

and numerically determined kp values. Also, as mentioned, the present model does not consider the outward

diffusion of metal ions, which, depending on the operating conditions and type of oxide layer, can either

contribute to or detract from the parabolic rate constant obtained in the present simulation.

To summarize, the numerically obtained kp values for the individual oxides in the present model are as-

sessed and reconciled with the experimentally determined kp in terms of selective oxidation, co-precipitation,

oxidation state and crystal structure, and scale removal.

Next, the relationship between the parabolic rate constant and oxygen diffusivity is discussed. Per the

model proposed by Wagner [12], kp is proportional to the average oxygen diffusion coefficient, D̄Ox [32].

To be specific, solution of Fick’s second law when the unexposed side of the plane is assumed to have zero

oxygen concentration, in terms of δ and t, is given by:

δ = 2
√
D̄Oxt (75)

Solving equations (74) and (75) for kp give the the relation

kp = 2D̄Ox (76)
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By reversing the transformation on D̄Me in equation (49), and assuming that K̄r << V̄OM , the diffusion

coefficient of oxygen can be expressed by

D̄Ox =
DOx

m2
(77)

in which it recalled that m is dimensionless factor given by equation (18), the values of which are included

in Table 11. The values for D̄Ox are compiled in Table 15. A linear regression is applied to kp versus D̄Ox

whereby equation eq. (78) is obtained.

kp = 0.6121D̄Ox (78)

Table 15: Normalized Oxygen Diffusion Coefficient Values, D̄Ox

Cu2O Al2O3 NbO V2O3 MnO NiO WO2 SiO2 Cr2O3 Fe2O3 Fe3O4

kp(m
2/s) 2.1956E-15 1.6533E-16 3.1667E-18 1.0833E-18 5.4167E-19 4.1667E-19 7.0833E-19 4.1667E-20 1.3889E-20 1.3889E-20 1.3889E-20

DOx(m2/s) 3.5872E-15 2.6841E-16 5.2185E-18 1.6772E-18 9.0153E-19 1.0793E-18 6.8878E-19 4.7279E-20 1.4786E-21 3.1859E-23 2.9971E-23

A comparison of equations (78) and (76) indicates that, for a constant DOx, the values of kp obtained

from the present simulation are approximately three times less than those fitting an ideal parabolic growth.

Once the convergence and stability criteria are determined for each oxide, plausible explanation for this is

that the input value for DOx, estimated to be 1× 10−22 m2/s is an overestimation of the actual diffusivity

oxygen within the oxide layer.

Finally, because DOx varies inversely with the square of w, so it follows for kp. Thus, in this model, the

kp value will be higher for elements with lower weight ratios. This is the most direct explanation for the

obtained kp values.

5.2.3 Steady State Thickness

Discussion of the parabolic growth rate constant leads directly to the prediction of the steady state or

asymptotic thickness, δs. Rearrangement of equation (71) gives

δs =
kp
Kr

(79)

whereby δs is calculated with respect to the Tedmon oxidation-ablation model. For each oxide considered in

the present simulation, δs is determined from the obtained values of kp. These values are shown in Table 16.

The experimental value for δs obtained by Zhang is 35.8 µm [1]. Without the consideration of stability

and convergence criteria for the model, no direct conclusions can be made. It can be stated, however, that

equation (79) shows that the values obtained for δs are proportional to the values obtained for kp.
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The approximation proposed by Zhang [1] in equation (73) is solved for δs by

δs =
2kptexp

3((2kptexp)
1
2 − δexp)

. (80)

For the experimental values, texp and δexp, the time and oxide layer thickness from the simulations run at

the 250 h interval are substituted into equation (80). The results are also shown in Table 16. Both positive

and negative values for δs are obtained. Referring back to Figure 18, it can be seen that the fitted parabolic

curve at 250 h falls below the corresponding δexp values; in these cases, the denominator in (80) is rendered

negative. As oxidation progresses, the experimental values should ideally fall below the increasing parabolic

to reach an asymptotic thickness. Thus, in the incipient time region, without the optimization of stability

and convergence, the approximation made by Zhang is not valid for the present model.

Table 16: Steady State Thickness, δs

micron Cu2O Al2O3 NbO V2O3 MnO NiO WO2 SiO2 Cr2O3 Fe2O3 Fe3O4
Zhang Appr. 6.845E+04 -2.898E+04 7.044E+02 -1.018E+02 5.956E+01 1.027E+01 6.147E+01 -3.731E+00 -4.110E+01 4.673E-01 4.673E-01
kp/Kr 1.396E+04 1.052E+03 2.014E+01 6.890E+00 3.445E+00 2.650E+00 4.505E+00 2.650E-01 8.833E-02 8.833E-02 8.833E-02

5.2.4 Pilling-Bedworth Ratio

Discussion and consideration of a dimensionless quantity called the Pilling-Bedworth ratio follow. With

respect to corrosion and oxidation, the Pilling-Bedworth ratio is the ratio metal oxide molar volume to that

of the corresponding metal from which the oxide is created [33]. Historically, it had been one of the first

methods of determining the likelihood of a stable oxide to form. The method to calculate the ratio, denoted

RPB is given by

RPB =
Moxide · ρmetal

n ·Mmetal · ρoxide
(81)

where Moxide, Mmetal, n, ρoxide and ρmetal are the molar mass of the oxide, atomic mass of the respective

metal, number of metal atoms per metal oxide molecule, oxide density and respective metal density. When

this ratio falls within the region

1 < RPB < 2 (82)

the oxide layer is considered to be passivating and prevents further oxidation [33]. When the ratio falls below

this region, the oxide layer is considered too thin to offer any protection. Conversely, if the ratio is greater

than this region, the oxide layer, while ample, is prone to chipping and erosion whereby protection is greatly

reduced or removed [33].

The RPB value was calculated for each of the oxides pertaining to this simulation. The ratios are listed

in Table 17.
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Table 17: Pilling-Bedworth Ratio

Metal Metal Oxide

Element Symbol ρmetal Mmetal Molecular ρoxide Moxide No. Metal Atoms/ Pilling-
Formula Molecule Metal Oxide Bedworth Ratio

g/cm3 g/mol g/cm3 g/mol n RPB

Copper Cu 8.96 63.546 Cu2O 6 143.09 2 1.681310127
Aluminum Al 2.7 26.981539 Al2O3 3.987 101.96 2 1.279530498
Niobium Nb 8.57 92.90638 NbO 7.3 108.906 1 1.376145107
Vanadium V 6.11 50.9415 V2O3 4.87 149.881 2 1.845682976
Manganese Mn 7.21 54.93805 MnO 5.43 70.9374 1 1.71449989
Tungsten W 19.25 183.85 WO2 7.16 231.84 1 3.390333691
Nickel Ni 8.908 58.6934 NiO 6.67 74.6928 1 1.699588745
Silicon Si 2.329 28.085 SiO2 2.196 60.08 1 2.268781376
Chromium Cr 7.19 51.9961 Cr2O3 5.22 151.9904 2 2.013139079
Iron Fe 7.874 55.847 Fe3O4 5.15 231.533 3 2.112905031
Iron Fe 7.874 55.847 Fe2O3 5.24 159.69 2 2.148384449

Although more effective methods of predicting passivation capacity have been developed, the Pilling-

Bedworth ratio gives a general idea of whether the surface area of the unoxidized metal will be completely

covered by the resulting oxide. Within the region identified in equation (82), the entire surface area of the

metal is predicted to be shielded by the oxide without the risk of the oxide layer being scaled off. Although

all oxides in the layer are considered passivating, it has been stated that oxides for which the ratio is closer

to 1 than to 2 are optimal due to compactness [4].

By this logic, the RPB values of Al2O3 and NbO suggest that these oxides are optimal relative to oxides

of other alloying elements. While it cannot be concluded that this is perhaps the reason for the value of

experimental kp and δs values reported by Zhang [1] falling between the numerical values of kp and δs

obtained in the present simulation for Al2O3 and NbO, future models could determine whether a correlation

exists between the Pilling-Bedworth ratio and the values of the parabolic rate constant and the steady state

thickness.
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Chapter 6 Conclusions and Future Work

To summarize, the determination of the parabolic growth rate constant, kp, for the oxides of each indi-

vidual alloying metal of a metal alloy using the present numerical simulation can be a preliminary tool in

characterizing the oxidation of the alloy in certain oxidizing environments. In the present study, the oxida-

tion of stainless steel alloy EP-823 exposed to LBE in nuclear reactor coolant conditions is characterized. For

each alloying metal of EP-823, its oxidation is numerically modeled using a finite difference method code,

which tracks the concentration changes in a planar geometry with respect to space and time. By Fick’s laws

of diffusion, the oxidation of the element is linked to oxide layer thickness which in turn is fit to a parabolic

growth law, the coefficient of which is the parabolic growth rate constant, kp. The kp values obtained for each

alloying oxide are compiled and benchmarked with oxidation data from experiments conducted on EP-823

alloy. The experimental value of the kp value falls within the range of kp values obtained from the simulation

for each alloying element. The benchmarked experimental value for steady state thickness is 35.8 µm, which

is within the range of steady state thicknesses computed numerically per oxide of each alloying element.

Future work considering convergence criteria and optimization of stability for the simulation of the

individual oxides are necessary to confirm and better assess the oxide layer growth model. Furthermore,

an algorithm which allows for increased time intervals would allow for better compatibility between the

numerical and benchmark values in determining the parabolic growth rate constant.

Moreover, a model considering temperature as an input could provide parabolic growth rate constant

estimations at different temperatures whereby the activation energy, Q, of the oxidation reaction could be

determined from the Arrhenius relation,

kp = k0 exp
−Q
RT

(83)

in which k0 is the maximal growth constant. Models which consider other growth models such as linear,

cubic, and logarithmic laws can also aid in the characterization oxidation reactions which do not fit the

parabolic law.

As far as predicting effective oxidation, a model which simultaneously computes the contribution of each

alloy to the complete oxide layer is ideal. This however, would require extensive study in electrochemistry,

selective oxidation and co-precipitation, among other topics. The present model is deterministic; whether

deterministic or stochastic models are ideal for simulating oxide layer growth can be researched.
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Appendix A

Example of Non-Dimensionalizing a Governing Equation

(1) Advection-Diffusion Equation (Governing Equation):

∂C2(x, t)

∂t
= DMe

∂2C2(x, t)

∂x2
−
((

1− 1

m

)
VOM (t+ ∆t)− Kr

m

)
∂C2(x, t)

∂x
(A-1)

(2) x-domain:

δ(t) < x < L(t) (A-2)

(3) Boundary Conditions:

C2(δ(t), t) = CMO, C2(L(t), t) = CM∞ (A-3)

(4) Initial Condition:

C2(x, 0) = 0, 0 < x <∞ (A-4)

(5) Define Dimensionless Variables.

t̄ =
t

tn
, x̄ =

x

xn
; C̄2 =

C2

Cn
, t̄ =

t

tn
, L̄(t̄) =

L(t)

Ln
, K̄r =

Kr

Krn
, V̄OM (t̄) =

VOM (t)

VOMn
(A-5)

(6) Apply Chain Rule to (A-1). Simplify.

∂C2(x, t)

∂t
=
Cn
tn

∂C̄2(x̄, t̄)

∂t̄
,
∂C2(x, t)

∂x
=
Cn
xn

∂C̄2(x̄, t̄)

∂x̄
,
∂2C2(x, t)

∂x2
=

Cn
xn2

∂2C̄2(x̄, t̄)

∂x̄2
(A-6)

(7) Substitute equation (A-6) into equation (A-1).

�Cn
tn

∂C̄2(x̄, t̄)

∂t̄
= DMe

�Cn
xn2

∂2C̄2(x̄, t̄)

∂x̄2
−�Cn
xn

((
1− 1

m

)
VOMnV̄OM (t̄)− KrnK̄r

m

)
∂C̄2(x̄, t̄)

∂x̄
(A-7)

(8) Simplify.

xn
2

tnDMe

∂C̄2(x̄, t̄)

∂t̄
=
∂2C̄2(x̄, t̄)

∂x̄2
− xn
DMe

((
1− 1

m

)
VOMnV̄OM (t̄)− KrnK̄r

m

)
∂C̄2(x̄, t̄)

∂x̄
(A-8)

(9) Choose Values for Characteristics.

xn = L0, tn =
L0

DMe
, VOMn =

DMe

L0
,Krn =

DMe

L0
(A-9)
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(10) Substitute equation (A-9) into equation (A-8). Simplify.

∂C̄2(x̄, t̄)

∂t̄
=
∂2C̄2(x̄, t̄)

∂x̄2
−
((

1− 1

m

)
V̄OM (t̄)− K̄r

m

)
∂C̄2(x̄, t̄)

∂x̄
(A-10)

(11) Choose additional characteristic values.

δn = L0, Cn = CO0, Ln = L0 (A-11)

(12) Substitute equation (A-11) into equations (A-2), (A-3), and (A-4).

x− domain : δ̄(t̄) < x̄ < L̄(t̄) (A-12)

BoundaryConditions : C̄2(δ̄(t̄), t̄) = C̄MO, C̄2(L̄(t̄)) = C̄M∞ (A-13)

InitialCondition : C̄2(x̄, 0) = 0, 0 < x̄ <∞ (A-14)
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Appendix B

Derivation of Parabolic Growth Rate Due to the Diffusion of Oxygen

This derivation is based on Wagner’s model of parabolic oxide layer growth [12]. Parabolic kinetics in

oxidation occur when the oxide layer thickness grows in proportion to the square root of time. Here the

diffusion of one of the reactants, the oxygen anions, is considered to determine the rate of the oxidation

process. Thus, the oxide layer growth rate, given by the change in thickness, x, per change in time, t, is

proportional to the flux of the oxygen anions, J0x, through the oxide layer where:

dx

dt
∝ J0x. (B-1)

Since J0x can be defined by the product of concentration, COx, and the velocity, VOx, of the oxygen ions,

and VOx is proportional to the gradient of chemical potential, µOx, of the ions, the flux of oxygen anions can

be expressed by

J0x = COxBOx
dµOx
dx

(B-2)

where BOx is the motility of the ions. The activity, or effective concentration, of the oxygen ions can be

expressed in terms of chemical potential in two ways by [34]:

µOx = µOx
◦ + kT ln aOx = µOx

◦ + kT lnCOx. (B-3)

Substitution of equation (B-3) into (B-2) gives

JOx = BOxkT
d lnCOx
dx

. (B-4)

By Wagner’s model [32],

kT
d lnCOx
dx

= kT
dCOx
dx

(B-5)

Thus equation (B-4) becomes

JOx = BOxkT
dCOx
dx

(B-6)

And substitution of equation (B-6) into equation (B-1) gives

BOxkT
dCOx
dx

=
dx

dt
(B-7)
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When the chemical potential, µOx, is set as a constant at the boundaries of the oxide layer, then

dCOx
dx

=
∆COx
x

. (B-8)

Substitution of equation (B-8) into equation (B-7) gives

BOxkT
∆COx
x

=
dx

dt
. (B-9)

By rearranging equation (B-9) and setting

BOxkT∆COx = kp, (B-10)

where kp is the parabolic rate constant, and applying a separation of variables followed by integration yields

x2 = 2kpt, (B-11)

which is the parabolic rate law.
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