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ABSTRACT 

 

Neutron-Gamma Discrimination in Elpasolite Scintillator Detector 

 

by 

Brittany Morgan 

 

 

Dr. Alexander Barzilov, Examination Committee Chair 

Associate Professor of Mechanical Engineering 

University of Nevada, Las Vegas 

 

Existing nuclear stockpiles and weapons-making capabilities imperil the global community. 

Current nonproliferation efforts involve the research and development of newer, more efficient 

detection systems that can be deployed for the interdiction and monitoring of special nuclear 

materials (SNM). Spontaneous and induced fission events in SNM produce neutrons and gamma 

rays, which can be detected and analyzed, in particular, using scintillator detectors. Various 

electronic data acquisition systems and data analysis methods have been employed to record and 

characterize neutron and photon signatures. The goal of this thesis is to develop a new method of 

discrimination between photons and neutrons in the CLYC elpasolite scintillator detector.  

Because neutrons and photons interact uniquely with scintillator materials, they generate 

scintillation light decay signals of different time profiles. Several conventional and digital pulse 

shape discrimination (PSD) methods exist to exploit the different features of detector signal 

waveforms caused by the different time profiles of the scintillation decay. They can be categorized 

on the basis of their implementation: time domain only or time and frequency domain. In this 

study, wavelet analysis is implemented in the time domain. When the discrete wavelet transform 
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is applied to each pulse, the Haar wavelet is sampled over the signal to generate a set of 

coefficients, which are then further analyzed using numerical integration. The wavelet-based 

signal analysis code has been written in Matlab. The code processes a single detector waveform at 

a time. It first applies the discrete wavelet transform to smooth the waveform, and then calculates 

the power of this signal. After performing partial integrations on different parts of the coefficients’ 

curve, it calculates the radiation identification (RID) value that serves as a threshold for neutron-

gamma discrimination. Beyond the identifying threshold, the signal is categorized as a neutron 

event; below it is categorized as a photon event.  

Plots of the total integral under the power of the waveform versus RID values and counts versus 

RID values were generated to visualize the PSD properties; the figure of merit (FOM) of the PSD 

method was calculated. The FOM quantifies the quality of neutron-gamma discrimination. The 

PSD algorithm and the Matlab code were developed and tested on the set of neutron and photon 

waveforms experimentally measured with the CLYC detector and excellent neutron-gamma 

separation was observed.   
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CHAPTER 1 - INTRODUCTION 

1.1 Background 

Growth of the nuclear industry has introduced a number of avenues that utilize radiation 

detection technologies. Some examples of applications that would benefit from the capability to 

discriminate between radiation types include, but are not limited to, the following [1]:  

1. Nuclear medicine and radiation oncology involve extensive use of radiological imaging 

and therapy techniques which are implemented using radiation detectors [2]; 

2. Interdisciplinary research projects conducted at national laboratories such as DOE’s 

spallation neutron source necessitate accurate, efficient neutron detectors [3];  

3. Industrial plants monitor corrosion with neutron radiography [4]; the strong attenuation 

of neutrons causes high sensitivity in metals yielding a detailed radiograph of industrial 

materials;  

4. Inertial and magnetic confinement fusion research [5] requires neutron detection to 

determine the presence or absence of fusion in experimentation; and, lastly, 

5. Nuclear power plants mandate facility and personnel monitoring for general health and 

safety of workers and the environment [6]. 

Current political climate, however, has warranted nonproliferation, safeguards and security as 

the primary motivations for advancement of radiation detection technologies. Despite the end of 

the Cold War over two decades ago, nuclear weapons stockpiles continue to imperil the 

international community. Russia and the United States respectively possess approximately 7500 

and 7200 nuclear weapons, accounting for over 90% of the global stockpile [7], while other 

countries account for the remaining 10%.  
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Ready-made weapons of mass destruction are not, however, the sole nuclear threat to global 

security. Mere weapons-making capability and retention of special nuclear materials likewise 

plague the international community, as demonstrated recently in the nuclear deal between the 

United States and Iran [8], which involved the dismantling of centrifuges and surrender of fuel – 

in summary, a renouncement of a potential nuclear weapons program. The reality is that with 

world-wide development of new nuclear technologies, there will be continued need for nuclear 

nonproliferation efforts.  

In addition to proliferation issues, other threats such as cyber-attacks pose danger to the nuclear 

industry, according to the Nuclear Threat Initiative Security Index [9], the most recent documented 

event being the Stuxnet virus [10]. While tackling cyber security is its own issue, considerable 

physical measures must be taken to secure special nuclear materials. SNM is defined by the Atomic 

Energy Act of 1954 as plutonium, uranium-233, uranium enriched in either uranium-233 or 

uranium-235, and other material as determined by the Nuclear Regulatory Commission (NRC) 

[11]. It is categorized “according to the risk and potential for its direct use in a clandestine fissile 

explosive or for its use in the production of nuclear material for use in a fissile explosive” [12]. 

The NRC Safeguard categories of SNM [12] are listed in Table 1. 
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Table 1: Safeguard Categories of SNM 

 

 

Category I SNM, as shown in Table 1, clearly poses the most consequential threat to national 

security as it encompasses the greatest amount of fissile material, whereas Categories II and III 

consist of smaller quantities. Both the Department of Energy and the NRC have implemented 

security programs specifically to address SNM. Each of these agencies has its own design basis 

threat [13, 14], a set of classified documents that assesses the technical, economic, and political 

components of an SNM threat and outlines the physical protection measures necessary to 

Category Nuclide 
Minimum Quantity 

(grams or kilograms) 

 

 

 

I: Strategic SNM 

U-235 contained in HEU* ≥ 5 kg 

U-233 ≥ 2 kg 

Pu  ≥ 2 kg 

Any combination of U-235 in HEU*,  

U-233, and Pu 

≥ 5 kg 

 

 

II: Special Nuclear 

Material of Moderate 

Strategic Significance 

U-235 contained in HEU* > 1 kg, but < 5 kg 

U-235 contained in LEU**  ≥ 10 kg 

U-233 ≥ 500 g, but < 2 kg 

Pu ≥ 500 g, but < 2 kg 

Combined quantity = (g U-235) +  

2(g U-233 + g Pu) 

> 1000 g, but < 2 kg 

 

 

III: Special Nuclear 

Material of Low 

Strategic Significance 

U-235 contained in HEU* > 15 g, but < 1 kg 

U-235 contained in LEU** > 1 kg, but < 10 kg 

U-233 > 15 g, but < 500 g 

Pu >15 g, but < 500 g 

Combined quantity = (g U-235) +  

(g U-233) + (g Pu) 

>15 g 

* Highly Enriched Uranium: ≥ 20% enriched in U-235 

** Low-Enriched Uranium:  < 20%  enriched in U-235 
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counteract a threat. Additionally, other measures, such as inspection programs, reviews, 

performance tests, and detection systems have been deployed for further protection against 

potential nuclear attacks [14]. Border security is the most obvious mode of protection [15], but 

domestic monitoring of nuclear facilities, including physical protection and materials’ accounting, 

are also important aspects of keeping nuclear materials secure [16]. In summary, greater focus on 

development of better, more efficient radiation detection technologies is crucial for securing ports-

of-entry, government sites, and other sensitive locations. 
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1.2 Project Motivation and Objective 

Neutron detection technologies are at the forefront of the effort to support the interdiction, 

search, and characterization objectives [17] of special nuclear materials. SNM emits neutrons and 

photons due to spontaneous and/or induced fission events. Though detection systems unique to 

each form of radiation (neutrons and photons) are widely available, various scintillators have been 

developed that are capable of simultaneously detecting gamma rays and neutrons and 

discriminating both forms of radiation. Signals detected by scintillators are characterized by fast 

and slow events, which cause prompt and delayed fluorescence respectively. The fraction of light 

in the slow component depends on the rate of energy loss, which is unique for each particle. 

Neutrons experience much slower energy loss than gamma rays, so their signal tails are 

distinguishable [18].  

The objective of this thesis is to propose a new method of on-the-fly digital discrimination 

between neutrons and photons in scintillator detectors for the benefit of safeguards and other 

radiological applications. The solid-state scintillator studied in this research was the 

Cs2LiYCl6:Ce3+ (CLYC) elpasolite [19], and the digitizer/signal processor used was the eMorpho 

[20]. The PSD method described herein was inspired by existing wavelet-based techniques [21], 

and also incorporates numerical integration methods. 
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1.3 Radiation Signatures of Fission Events 

1.3.1 Spontaneous and Induced Fission 

As mentioned previously, nuclear materials are fissile or fissionable. Hence, they are 

characterized by measurement of prompt and delayed neutrons and photons emitted in spontaneous 

or induced fission events. Passive neutron assay is the term used for detection of spontaneous 

events; it refers to a detection system or array placed near a potential spontaneous fission source 

[22]. High neutron and/or photon attenuation of suspect materials may prevent accurate assessment 

and characterization of material using passive assay techniques. In such cases, active neutron or 

photon interrogation is applied to create induced fission events by bombarding the sample with 

highly penetrating radiation beams [22]. SNM neutron emissions data [23] is provided in Table 2.  

The natural decay process of spontaneous fission occurs in heavy nuclei as a result of 

competition between the nuclear force and Coulomb repulsion [24]. As the atomic number 

increases, the total nuclear force increases linearly with A. The Coulomb repulsion energy of the 

protons, however, increases at a rate proportional to Z2 [24]. Thus, at higher atomic numbers, 

namely A > 200, the Coulomb repulsion becomes more prominent, increasing likelihood of nuclear 

instability. The propensity for nuclei to fission can furthermore be explained by thermodynamics. 

Heavy nuclei in the uranium range have a typical binding energy of ~7.6 MeV/nucleon [24]. When 

a heavy nucleus fissions into lighter nuclides of approximately half the original atomic number, 

the Coulomb barrier is overcome, and the binding energy per nucleon indicates that the product 

nuclides are more stable than the original nucleus.  
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Table 2: Neutron Emissions Data of Special Nuclear Materials 

  

 

 

In order to achieve this more tightly bound state, energy must be released. This energy 

primarily takes the form of kinetic energy of the fragments, but can also be distributed among 

neutrons, β particles, and γ rays [24]. Higher decay probability is associated with larger energy 

release in fission because of the increased variety in energy distribution and final states.  

 

Table 3: Binding Energy of the Last Neutron 

 

 

 

 

 

 

 

Nuclide Spectrum Type Total Neutron Yield, νt Delayed Neutron Yield, νd 

92-U-233 thermal 2.4968 ± 0.0036 0.0067 ± 0.0003 

92-U-235 thermal 2.4355 ± 0.0023 0.0162 ± 0.0005 

92-U-238 fast 2.819 ± 0.020 0.0465 ± 0.0024 

94-Pu-238 fast 3.00 ± 0.14 0.0047 ± 0.0005 

94-Pu-239 thermal 2.8836 ± 0.0047 0.0065 ± 0.0003 

94-Pu-240 fast 3.086 ± 0.025 0.0090 ± 0.0004 

94-Pu-241 thermal 2.9479 ± 0.0055 0.0160 ± 0.0008 

94-Pu-242 fast 3.189 ± 0.035 0.0183 ± 0.0010 

Fissioning 

Nucleus AZ 
Critical Energy, MeV 

Binding Energy of Last 

Neutron in AZ, MeV 
233U 5.5 * 
234U 4.6 6.6 
235U 5.75 * 
236U 5.3 6.4 
238U 5.85 * 
239U 5.5 4.9 

239Pu 5.5 * 
240Pu 4.0 6.4 

* These nuclei cannot be formed by the absorption of neutrons 

by the nuclei A-1Z. 
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Induced fission is an alternative route for materials that either lack the level of instability 

necessary for spontaneous fission or have low spontaneous signatures that can be enhanced by the 

input of energy. Induced fission occurs when the critical energy of fission [25] to overcome the 

Coulomb barrier is introduced by an external particle, most commonly by neutron absorption. 

When a neutron is absorbed, the compound nucleus rises to an excited state of an energy equal to 

the kinetic energy of the entering neutron plus its binding energy in the compound nucleus [25]. 

When the binding energy of the incoming neutron alone exceeds critical energy of fission, kinetic 

energy is not required for fission to be induced. See Table 3 [25] for critical energies of fission for 

special nuclear materials in MeV.  One possible route for the induced fission reaction of 235U by 

neutron absorption is provided below. It should be noted that the nucleus that actually fissions is 

236U. 

 𝑈92
235 + 𝑛0

1 → 𝑈92
236 → 𝑅𝑏37

90 + 𝐶𝑠55
143 + 3𝑛 + 𝑄 (1) 

 

It is important to distinguish between the terms fissile and fissionable. Fissile nuclides can 

sustain a chain reaction with low energy or even zero energy neutrons [25], the latter viable when 

the rest mass of a neutron, 939.57 MeV, is sufficient to exceed the critical energy of the A+1Z 

nucleus. Fissionable nuclides, on the other hand, require neutrons with sufficient kinetic energy to 

initiate fission [26]. In either case, fission immediately occurs upon absorption. 
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Table 4: Neutron Energies 

 

 

The most prominent particle emission due to fission is prompt neutrons, which are emitted 

instantaneously [25], in contrast to delayed neutrons, which are released after the fission event 

during the β- decay of fission fragments. The average total number of neutrons released per fission 

for a particular isotope, denoted by the symbol ν, varies with the energy of the incident neutron. 

Prompt gamma rays are also emitted during fission [25], and they are distinguished from delayed 

gamma rays according to their release time. 

 

 

 

Class Energy Description 

Cold Neutrons 0 eV – 0.025 eV 
Neutrons in thermal equilibrium with very cold 

surroundings 

Thermal Neutrons 0.025 eV 
Neutrons in thermal equilibrium 

with surrounding medium 

Epithermal Neutrons 0.025 eV – 0.4 eV Neutrons of kinetic energy greater than thermal 

Cadmium Neutrons 0.4 eV – 0.5 eV 
Neutrons of kinetic energy below Cd cut-off 

energy 

Epicadmium 

Neutrons 
0.5 eV – 1 eV 

Neutrons of kinetic energy above Cd cut-off 

energy 

Slow Neutrons 1 eV – 10 eV  Neutrons with kinetic energy in this range 

Resonance Neutrons 10 eV – 300 eV 

Neutrons whose probability of neutron capture 

exceeds the probability of fission; at specific 

energies (resonance peaks), the σa increases 

drastically 

Intermediate 

Neutrons 
300 eV – 1 MeV Neutrons with kinetic energy in this range 

Fast Neutrons  

(also Fission 

Neutrons) 

1 MeV – 20 MeV Neutrons of kinetic energy greater than 1 MeV 

Relativistic Neutrons ≥ 20 MeV Neutrons in this high energy range 
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1.3.2 Neutron and Photon Interactions with Matter 

Neutrons interact with matter uniquely due to their lack of electric charge. There are two 

primary interaction mechanisms, scattering and capture, which depend on the kinetic energy of the 

incident neutron. See Table 4 [26] for energy classification of neutrons. Scattering, which can be 

elastic or inelastic, dominates at high kinetic energy, whereas radiative capture dominates at low 

kinetic energy. The likelihood of either interaction depends on the microscopic cross section σ 

[27], which describes the probability of interaction in barns (cm2). Different types of interactions 

exist for a given target material. The sum of microscopic cross sections is the total probability of 

any kind of interaction with a nucleus, as shown in Equation 2. When the target material is mixed, 

microscopic cross sections for these materials must be considered through the use of the 

macroscopic cross section, shown in Equation 3.  

 

 σ𝑡  =  σ𝑒 + σ𝑖 +  σ𝛾  +  σ𝑓  + ⋯ (2) 

[t = total, e = elastic, i = inelastic, γ = gamma/photon, f = fission] 

 Σ =  nσ (3) 

[n = density of nuclei] 

 

Neutrons are attenuated in matter in a manner related to the absorption cross section. Equation 

4 relates the incident beam intensity and the intensity remaining after the neutron beam transports 

through a finite distance of material.  

 I(x) =  I0  ·  e−σtnx (4) 
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Figure 1: Fission Cross Sections of U-235 and U-236 

 

Gamma rays, on the other hand, are electromagnetic radiation caused by nuclear transitions. 

Unlike neutrons, photons interact with the electromagnetic fields (i.e., electrons) of atoms. Photons 

can undergo three interaction mechanisms with matter, depending on the energy of the incident 

radiation and the type of material in the target: the photoelectric effect, the Compton effect, and 

pair production. Figure 2 [28] illuminates the dominant interactions for incident photon energies 

and the atomic number of the absorbing material.  

The photoelectric effect occurs when a low-energy photon interacts with an atom. It completely 

transfers its energy to an atomic electron and disappears. The photoelectron is ejected from the 

atom with an energy equal to the difference between the energy of the incident photon and the 
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binding energy of the electron [29]. If the source of the photoelectron is not the outer shell, 

electronic reconfiguration occurs; an outer shell electron drops to a lower level to fill the vacancy. 

This transition causes characteristic x-ray emission or ejection of an Auger electron [29]. 

The Compton effect is the most likely interaction for mid-high energy range of incident 

photons. Compton scattering occurs when the incident photon collides with an atomic electron, 

scattering through some angle θ [29].  

Lastly, pair production occurs at high incident photon energies. In this case, the photon nears 

the Coulomb field of an atom and materializes into a positron and an electron pair. This is a 

threshold process requiring 1022 keV. The positron slows down and annihilates with another 

electron in the medium, releasing two 511- keV gamma rays. 

 

 

Figure 2: Photon Interactions with Matter 
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Interactions of neutrons and photons with matter is the basis for the radiation detection 

technologies. Photons, as explained above, interact directly with electrons; when gamma radiation 

interacts with a detector, such as a gas-filled detector or proportional counter, ionization 

immediately occurs and electric current is generated. Neutrons, however, interact with a detector 

material via two major mechanisms: recoil and capture. Recoil occurs when a neutron scatters off 

a nucleus, which causes charged particles (protons) to recoil with subsequent ionization of the 

surrounding material [30]. The other mechanism, neutron capture, causes a nuclear reaction that 

produces charged particles (i.e., protons, alpha particles, or fission fragments), which can cause 

ionization that generates current in a detector that can be processed using analog or digital 

electronics.  
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CHAPTER 2 – LITERATURE REVIEW 

2.1 Review of Radiation Detection Data Analysis Methods 

2.1.1 Overview of Pulse Shape Discrimination Techniques 

Different types of radiation, namely neutrons and photons, produce different pulse shapes due 

to their unique interactions with scintillators. The primary factor causing different pulse shapes is 

the time profile of the current produced [31]. Pulse shape discrimination thus employs 

computational methods to exploit these characteristic shapes and categorize them appropriately. 

Methods of pulse discrimination differ depending on whether the pulses are analyzed on the fly, 

i.e. on board the detector, or upon transfer to another computer.  

Several conventional and digital pulse discrimination methods exist and are currently in use. 

They can be categorized on the basis of their implementation: time domain only or time and 

frequency domain. Time domain methods rely on specific time, relative to peak time and 

amplitude, making it “more sensitive to noise and light intensity” [31]. Frequency domain methods 

apply frequency transform methods to create a set of coefficients that can be analyzed for 

discrimination. A brief overview [31] of some currently used PSD methods is provided to show 

some of the variety in mathematical technique: 

Rise time discrimination method (RTD) and charge comparison method (CCM) both require 

pulse integration for analysis. These methods measure the entire charge integration against the 

partial charge integration of either the rise or tail of the pulse and use the ratio of one against the 

other as an identifying feature of the pulse. 

Pulse gradient analysis (PGA) measures the gradient of pulse tails. The trailing edge of a 

neutron pulse has a shallower gradient than that of a photon pulse [32]. An identifying threshold 
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value is defined by finding the ratio of the pulse’s relative height in the trailing edge with a pulse 

peak so that anything above the threshold value is one type of radiation, whereas a pulse with a 

value lying below the threshold is defined as another type of radiation. 

Zero crossing method (ZCO) is specifically used to discriminate bipolar pulses, which have 

unique zero-crossover points that depend on pulse shape and rise time. Prior to analyzing for the 

zero-crossover, the pulses must individually be passed through a “shaping network” [31].  

Frequency gradient analysis (FGA) involves applying a Fourier transform to the signal. The 

zero-frequency and first-frequency components are extracted and used to define a discrimination 

parameter. FGA is insensitive to pulse response variations of a photomultiplier tube [33] and has 

the potential to be used in embedded electronic systems for on-the-fly analysis.  

 Principal component analysis (PCA) uses an algorithm that applies orthogonal 

transformation to a set of scintillation pulses in a matrix. The pulses are converted into coefficients 

called principal components, from which their eigenvectors are analyzed to identify unique 

differences [33]. Since PCA is applied to a set of pulses, it cannot be implemented in embedded 

electronics for real-time analysis. 

2.1.2 Review of Discrete Wavelet Transform and Haar Wavelet 

The methods described in the previous section are some of the more common techniques used 

for pulse discrimination. The method used in this study actually combines ideas from rise time 

discrimination, charge comparison, and pulse gradient analysis with a mathematical technique 

called the discrete wavelet transform for a more accurate method of pulse shape discrimination.  

The discrete wavelet transform is one of many transformations that can be applied to a raw 

signal for the purpose of extracting information that is not necessarily apparent. It passes the raw, 
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time-domain signal through a series of varying high-pass and low pass filters, which extracts the 

high-frequency and low-frequency information from the signal [34]. These filters are applied in 

windows sampled for every spectral component, which vary over the signal. The discrete wavelet 

transform is defined as follows:  

 W(τ,s) = 𝜓 (𝜏, 𝑠) = 
1

√|𝑠|
 ∫ 𝑥(𝑡) 𝜓* 

𝑡− 𝜏

𝑠
 𝑑𝑡 =  ∫ 𝑓(𝑥)𝜓∗

𝜏,𝑠
(𝑥)𝑑𝑥

∞

−∞
 (5) 

 

 𝑓(𝑥) =  
1

𝐸𝜓𝑠2√𝑠
∬ W(τ, s)

∞

−∞

𝜓∗
𝜏,𝑠

(𝑥) 𝑑𝜏 𝑑𝑠 (6) 

As shown above, the transformed signal is a function of two variables, τ and s, which stand for 

translation and scale, respectively [34]. The translation parameter refers to the movement of the 

window, which continuously shifts over regions of the signal. The scale parameter refers to the 

level of detail chosen for the transform in each window; it is the inverse of the frequency at which 

the wavelet is applied in a single window. The mother wavelet is represented by 𝜓*. Literally, a 

‘wavelet’ is just a small wave [34], and ‘mother’ indicates that the given wavelet serves as a 

template for producing the functions applied in each window. The star* indicates normalization. 

The wavelet is initially set at the beginning of the signal or time 𝑡 = 0. The product resulting 

from the wavelet function at some defined scale, 𝑠 = 1 in the case of this study, and the signal is 

then integrated over all time. The resulting number is then multiplied by the constant term  
1

√|𝑠|
 , 

and the value is saved as the coefficient representing the wave at 𝑡 = 0 and 𝑠 = 1. The wavelet 

window at scale 𝑠 = 1 is then shifted by τ, and the above process is repeated to produce a coefficient 

for 𝑡 = τ and 𝑠 = 1. The process is repeated for the entire signal. Lastly, 𝑠 is increased by a small 
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amount, and the procedure is performed again. The result of this process is a set of detail and 

approximation coefficients, which together are called frames. 

The mother wavelet used in this study is the Haar wavelet [35]. It is a step function of with 2𝑀 

subintervals of length  ∆𝑥 = (𝐵 − 𝐴)/(2𝑀). The first eight Haar wavelets are illustrated on the in 

Figure 7. Note that 𝑖 = 1 is invalid; it is a box rather than a step function wave. The 𝑖’th Haar 

wavelet is defined (Eq. 7) under the following conditions:  𝑖 > 2,   𝜇 =  
𝑀

𝑚
,   𝜉1(𝑖) = 𝐴 + 2𝑘µ𝛥𝑥,   

𝜉2(𝑖) = 𝐴 + (2𝑘 + 1)µ𝛥𝑥, and 𝜉3(𝑖) = 𝐴 + 2(𝑘 + 1)µ𝛥𝑥 .  

 

 ℎ𝑖(𝑥) =  {
1       𝑓𝑜𝑟 𝑥 𝜖 [𝜉1(𝑖), 𝜉2(𝑖)),

−1    𝑓𝑜𝑟 𝑥 𝜖 [𝜉2(𝑖), 𝜉3(𝑖)),
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (7) 
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Figure 3: The First Eight Haar Wavelets 
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2.2 Quantification of Pulse Discrimination Techniques 

When a new pulse discrimination method has been developed, its accuracy can be visually 

evaluated with a scatter plot; the radiation identification values for each signal are plotted against 

the total integral under the power of the waveform, which represents energy or power of the pulse 

or a related quantity. Neutron and gamma-ray signals recorded by a single detector are thus 

evaluated with the PSD method and a plot is generated simultaneously with two distinct regions 

which ideally have no overlap.  

Each region is fitted to a Gaussian distribution centered about the average radiation 

identification value (RID) for neutron and photon, respectively [36]. The 𝜎 parameter of the 

Gaussian is calculated for both the neutron and photon regions so that the figure of merit (FOM) 

can be calculated [37]. Below are equations for Gaussian fit and figure of merit. The term 𝑋 is the 

mean value of  𝑥, the RID sample input. 

 
𝐺𝑋,𝜎(𝑥) =  

1

𝜎√2𝜋
𝑒−(𝑥−𝑋)2/2𝜎2

 

 

(8) 

 

 𝐹𝑂𝑀 =
|𝑋𝑛𝑒𝑢𝑡𝑟𝑜𝑛 − 𝑋𝑝ℎ𝑜𝑡𝑜𝑛|

2√2 𝑙𝑛2(𝜎𝑛𝑒𝑢𝑡𝑟𝑜𝑛 + 𝜎𝑝ℎ𝑜𝑡𝑜𝑛)
 (9) 
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CHAPTER 3 – Experimental Measurements 

3.1 Radiation Measurements Using Scintillation Detectors 

3.1.1 Mechanism of Scintillation 

Scintillator detectors, unlike their gas-filled predecessors, are typically composed of solid 

material (liquid scintillators also exist) [39]. Solid state scintillator detectors are advantageous 

because, due to their higher densities, they have better efficiency for gamma-ray interactions. Solid 

state detection medium is preferable for real world applications. They are rigid, non-toxic, and 

non-flammable. The energies of radiation interaction can be measured, which allows for radiation 

source characterization or the differentiation between scattered and un-scattered particles. 

 

 

Figure 4: Scintillator Detector Scheme 
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Scintillation refers to the process of giving off light, so a scintillator is “any material that can 

release a photon in the UV or visible-light range, when an excited electron in the scintillator returns 

to its ground state” [39]. The scintillation photons can be collected using an optical read-out such 

as a photomultiplier tube (PMT) or solid state silicon photomultipliers (SiPM). It collects the 

scintillation photons at a cathode and translates them into an electric signal. See Figure 3 [40] for 

a diagram. Two conditions must be satisfied for a solid state detector: 1) the materials must be 

optically transparent and have little background noise in the absence of radiation, and 2) electrons 

and ions must be able to be transported through it [41].  

Several materials are able to scintillate. Among the most cost-effective are organic scintillators, 

which often contain conjugated ring compounds. The interaction between molecules within 

organic compounds are relatively weak, and they have two modes for absorbing energy: they can 

undergo excitation and they can vibrate against each other [41]. While excitation usually occurs at 

a few eV, vibrational energies only amount to ~0.1 eV, as the iterative interaction causes loss of a 

few eV each time. Upon excitation, the molecule will decay down to its lowest vibrational state, 

and furthermore to its ground state.  

Inorganic scintillators are composed of materials with much higher atomic number and density 

[40] than organic scintillators, including, but not limited to, bismuth germinate, lutetium 

oxyorthosilicate, and gadolinium oxyorthosilicate. The larger density allows for an increased 

energy capacity – thus high energy radiation can be sufficiently processed and detected with 

inorganic scintillators. However, this broader range in energy comes with a price. Scintillation 

crystals such as NaI, in particular, are manufactured to such “exacting tolerances” [40], that they 

must be handled with great care; their hygroscopic nature requires hermetic sealing so that 

moisture is not absorbed, destroying the crystal’s properties. Another notable characteristic of 
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some inorganic, crystal scintillators is their fortification with activators, which provide states in 

the energy gap between activated and excited states of the other material [41].  

For organic and inorganic scintillators alike, decay time is a crucial characteristic because it 

denotes the length of time that scintillation photons are emitted after a radiation interaction [40]. 

The length of decay time determines the ease discrimination between radiation types as well as 

what modes the detector will primarily be operated in.  

3.1.2 CLYC Scintillator 

An inorganic scintillator composed of the elpasolite Cs2LiYCl6 (CLYC) was used in the 

detector system for this study. The solid state CLYC is attractive for applications in portable 

detection systems due to its ability to simultaneously detect photons and neutrons [42]. Neutrons 

have been conventionally detected with solid state scintillators activated with 3He, 6Li, and 10B, 

which have high neutron absorption cross sections at low energies; for fast neutrons, detection 

systems have been constructed with 1H scattering or moderators to slow them down to thermal 

energies [43]. The CLYC crystal’s composition has 6Li for thermal neutron absorption, but also 

boasts a new method for fast neutron detection using 35Cl [44]. The reactions are shown below:  

 
𝑛0

1  + 𝐿𝑖3
6 →  𝐻1

3 +  𝐻𝑒2
4  

 
(10) 

 
𝑛0

1  + 𝐶𝑙17
35 →  𝑆16

35 + 𝑝1
1  

 
(11) 

In the thermal reaction, the Q-value is 4.78 MeV, shared by the alpha particle (2.05 MeV) and 

triton (2.73 MeV). The fast reaction has a Q-value of 0.615 MeV, which entirely goes to the proton 

in addition to the incident neutron energy [44].  
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The CLYC crystal has three light decay times: 1, 50, or 1000 nanoseconds [44]. Its light yields 

are 73,000 photons per thermal neutron and 22,000 photons per 1-MeV gamma ray [42, 43]. The 

CLYC’s energy resolution is a remarkable 3.9% FWHM and 662 keV [42], compared to NaI 

crystals which have resolutions of 7.5% FWHM at 662 keV [43].  

 

 

 

Figure 5: CLYC 

 

 

Figure 6: High Voltage Base 
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3.2 Optical Readout 

3.2.1 Mechanism of Photomultiplier Tube 

As mentioned previously, the scintillation photons need to be converted into an electric signal 

[39]. The photomultiplier tube is a standard device of optical readout. There are several 

components to a PMT: the photocathode, the focusing grid, a series of dynodes, and a high-voltage 

power supply. In the detector assembly, as shown in Figure 3, the photocathode lies flush with the 

scintillator. The photocathode is a thin layer of photo-emissive material – it emits electrons when 

struck by photons [39]. Photoemissive materials are typically metal alloys like K2CsSb and 

Na2KSb, which have electrons to spare. Once electrons have been emitted by the photocathode, 

the focusing grid applies an electric field to channel the electrons toward the first dynode. The 

PMT must be in vacuum, as well as be contained in housing as shown in Figure 5 [45] that protects 

against outside electric or magnetic fields. 

 

 

Figure 7: Hamamatsu Photomultiplier Tubes 
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The series of dynodes is merely a chain of electrodes, similar to the photocathode. They are 

likewise made of metal alloys that have a “high probability of secondary electron emission” [40] 

and multiply the number of initial electrons. The high voltage, accompanied by a series of voltage 

dividers, sets the potential difference between adjacent dynodes at a few hundred volts. The 

electrons thus accelerate towards each of these with ~100 eV of energy. Some energy is consumed 

when releasing the electrons from the dynode, however, so gain is limited at 30 – 50 eV in total. 

For those that actually release at the surface of the dynode and make it to the next dynode, gain is 

realistically around 5 eV [40]. Each PMT contains 8 – 12 dynodes, for a total multiplication factor 

of around 106. At the end of the dynode chain is an anode, which collects all electrons and produces 

the electric signal.  

 

 

Figure 8: Hamamatsu Photomultiplier Tube Housing 
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3.2.2 Hamamatsu Photomultiplier Tube 

The photomultiplier tube used in the CLYC detector assembly was the Hamamatsu R6231-100 

tube [46], shown in Figure 6. Its outer diameter is 51 mm, and the diameter of the photocathode 

effective area is 46 mm. Inside are 8 dynode stages, and the maximum voltage from anode to 

cathode is 1500 V, with a supply voltage of 1000 V. Typical gain is 2.3105 at the anode. 

Other features include a spectral response of 300 – 650 nm and a minimum luminous sensitivity 

of 110 µA/lm. A typical rise time (the time to reach the waveform maximum) is 8.5 ns, with a total 

transit time of 48 ns.  

 

 

Figure 9: Hamamatsu R6231-100 

 

 

Figure 10: Detector Assembly Scheme 
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3.3 Signal Processing 

3.3.1 Signal Analyzers 

Despite amplification from the dynode chain in the photomultiplier tube, the signal output of 

the anode is still small against the PMT’s intrinsic noise. In many detectors, this issue is solved by 

attaching a preamplifier directly to the PMT. The preamplifier not only increases the signal 

strength by a factor up to 100, but also lengthens decay time thereby extending the pulse tail before 

passing the signal to the remaining electronics [47].  

The next step is signal processing in the pulse height analyzer (PHA), which measures the 

pulse amplitude. This can either be a single channel analyzer (SCA) or a multichannel analyzer 

(MCA), the only difference between the two being stringent, operator-set limits on the SCA [47]. 

The PHA extracts energy information from the voltage signal, and the accepted pulses are recorded 

by the scaler/timer. When using an SCA, events outside the set range are rejected. An MCA, 

however, digitizes the entire PMT output into one of several channels, and then displays all 

radiation events in a pulse-height spectrum. The horizontal axis of a pulse-height spectrum 

represents a narrow range of pulse heights, whereas the vertical axis represents the event count at 

that pulse height. See Figure 6 [47] for an example of an MCA pulse-height spectrum readout. 

3.3.2 eMorpho Digitizer 

The CLYC detector assembly included the eMorpho, a digitizer/MCA unit which does not 

require a preamplifier due to its internal and buffer amplifiers, the latter which restricts bandwidth 

[48]. The data stream is processed in real-time by a field programmable gate array (FPGA) which 

communicates with a computer via USB. 
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CHAPTER 4 – COMPUTATIONAL ANALYSIS 

The waveforms were collected using the CLYC-eMorpho detector system, identified visually 

with Igor Pro software, and then saved as text files. Twenty digitized waveforms each of neutrons 

and photons were initially analyzed and compared in Matlab, and a signal identification scheme 

was coded using the wavelet transform.  

Following the scheme in Figure 11, the text file input of the signal is uploaded to the directory 

and saved as a vector. The discrete wavelet transform is applied to the vector, producing two levels 

of coefficients, the approximation coefficients and the detail coefficients. The approximation 

coefficients represent the de-noised version of the original signal, or the approximation of the 

signal. The detail coefficients, on the other hand, represent the deviation of raw values from the 

approximated signal, and thus are not useful for pulse discrimination purposes. 

 

 

Figure 11: Scheme of Waveform Processing 
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The approximation coefficients are normalized as a vector and scaled down so that the baseline 

is flush with the x-axis. The wave vector is then transformed into a power function via the 

following equation:  

 𝑃(W) =  
|W(τ, s) |2

√2𝜋
 (12) 

 

The power is calculated to exaggerate the defining characteristics of the wave so that feature 

extraction more apparent. As shown below in Figure 12, the tail of the neutron waveform power 

has greater breadth, whereas the gamma-ray waveform power is narrower with a much steeper 

slope. This is also true of the waveforms themselves, but to a lesser extent. Another function that 

also exploits these characteristics could be used – power has physical merit and has been used 

previously in wavelet analysis in PSD methods [22].  

 

Figure 12: Power of the Waveform 
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The integral is calculated with a trapezoidal function, and the radiation identification value is 

calculated from partial integration over preset time ranges. The RID value for neutrons is larger 

than that for gamma rays, so a threshold parameter is set so that incoming radiation is categorized 

as either a neutron or a gamma ray. A study was conducted to determine the ideal time frame for 

partial integration of the power of the waveform. As illustrated in the diagram in Figure 11, the 

time scale for the signal has 1024 bins of 12.5 nanoseconds, but even in the truncated powers of 

the waveforms in Figure 12, one can see that tails bear no distinguishing characteristics beyond 

300 bins. The region of interest lies between the rise time and the decay of the pulse, around 100 

– 300 bins.  
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CHAPTER 5 – RESULTS 

5.1 Pulse Shape Discrimination 

Including the forty waveforms used to determine the threshold for RID values between 

neutrons and photons for the CLYC detector, a total of 505 waveforms were analyzed using the 

computational method described in the previous chapter. Their discrimination is illustrated in the 

scatter plot in Figure 13. The x-axis represents the RID value, and the y-axis represents the 

corresponding full integral of the power of the signal with units of Volts2·nanoseconds. The dashed 

line (the threshold between neutrons and photons) in Figure 13 at the value of 0.865 represents the 

boundary implemented for identifying the radiation type.  

 

Figure 13: Scatter Plot of Total Integral vs. RID 
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The points in the plot with RIDs greater than the threshold have been identified as neutrons, 

and those less than the threshold are gamma rays. It was determined that the CLYC detector 

enables excellent PSD properties. The analysis of a few waveforms, however, generated borderline 

RID values, as shown in the scatter plot as well as the histogram depicted in Figure 14. Most of 

the points nearest the threshold are gamma rays with low total integrals, which correspond to their 

low energy. This follows from a decreased amplitude of the waveform which moderates the slope 

of the gamma tail. The analysis attempts to exploit the steepness of the gamma-ray signal tail 

relative to the neutron signal tail, so diminishment of this feature could result in misidentification.  

 

 
 

 

Figure 14: Radiation Identification Frequency 

 

 

 



 

 

33 

 

 

Table 5: Gaussian Fits 

 

 Total Number N Mean  𝑿 𝝈  

𝑭𝑶𝑴 = 𝟏. 𝟕𝟓 Neutron 182 1.2184 0.1178 

Gamma 323 0.5669 0.0686 

 

The mean and standard deviation values were calculated for Gaussian fits of the RID value 

distributions for neutrons and gamma rays. This information was used to calculate the figure of 

merit for the PSD [39]. The figure of merit (Table 5) for separation between neutrons and photons 

for the CLYC detector using the developed technique is 1.75. In any dataset, the FOM is dependent 

on the following [39]:  

a) the waveform amplitude range, which corresponds to the energy of the waveform – the 

total integral of the waveform power in this case; and 

b) the number of radiation quanta analyzed.  

The Pu/Be source produced many more photons than neutrons. The detector registered 

approximately 8 – 10 times as many photons as neutrons. The number of waveforms for each type 

of radiation saved for this analysis was affected by this bias, but effort was made to save enough 

neutrons to compensate for some of this discrepancy. As shown in Table 5, compared to the 

number of neutron waveforms, less than twice as many gamma-ray waveforms were collected.  

The variation in waveform energy was large for the gamma-ray waveforms, but small for the 

neutrons, as shown in the scatter plot (Figure 13). The scaled total integral values of the power 

vectors created after vector normalization of the wavelet coefficients span a much greater range 

for gamma rays than for neutrons. The RID integrals for gamma rays span the approximate vertical 

range of 0.5 – 8.5, whereas the density of the RID integrals for neutrons is primarily concentrated 

in the range of 5.5 – 7.5. If limits are applied in the computational analysis to exclude any points 
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with integrals outside the range designated by the dashed red lines in Figure 13, the figure of merit 

will improve. These lines represent the region of interest for the neutrons from the mixed Pu/Be 

source. The total integral, as mentioned previously, is representative of the waveform power and 

furthermore the energy. A given source will have its own typical neutron emission energies, so 

setting limits to analyze a specific energy range is common practice.   
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5.2 Error Analysis 

The primary source of error in creating the RID is the wavelet decomposition. The wavelet 

transform de-noises/compresses data by approximation, so error is intrinsic to the process. In the 

second chapter of this thesis, it was mentioned that a scaling function is used through the projection 

[49]. These coefficients are defined in Equation 13. 

 𝑐(𝜏, 𝑠) = 𝑐𝜏,𝑠 = < 𝑓(𝑡), 𝜓∗
𝜏,𝑠

(𝑡) > =
1

2𝜏/2
∫ 𝑓(𝑡)𝜓∗(2−𝜏𝑡 − 𝑠)𝑑𝑡  (13) 

It is the approximation from this scaling that produces the error in the sets of coefficients 

(frames). Scaling can occur on multiple levels, i.e., 𝑠 = 1, 2, 3…etc., but in this study, only a first 

level decomposition was considered. The mean square error of the approximation coefficients and 

scaling functions are expressed in Equations 14 and 15 [49]. 

 𝐸𝜓
𝑁 =  ∫[𝜓𝑁

∞(𝑡) − 𝜓𝐿
𝑁(𝑡)]2𝑑𝑡 (14) 

 𝐸𝜓∗
𝑁 =  ∫[𝜓∗

𝑁
∞(𝑡) −  𝜓∗

𝐿
𝑁(𝑡)]2𝑑𝑡 (15) 

The term 𝑁 is the number of taps [49], which is specific to the mother wavelet chosen. The 

Haar wavelet has two taps. The term 𝐿 is half the length of the digital waveform. The radiation 

input files are 1024 units in length, so 𝐿 is 512. The total error can be simplified; the normalized 

mean square error for K total coefficients (1024) between 𝑓(𝑛) and 𝑐(𝑛) is defined in Equations 

16 and 17 [49].  

 𝑒(𝑛) = |𝑓(𝑛) − 𝑐(𝑛)| (16) 
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 𝑒𝑚𝑠𝑒 =  
1

𝐾
∑

[𝑒(𝑛)]2

[𝑓(𝑛)]2

𝐾

𝑛=1

 (17) 

 

In summary, the error of a single waveform is calculated as follows: the square of the difference 

between each frame (the approximation coefficient and its corresponding detail coefficient) is 

summed, and this sum is divided by the total number of frames for the waveform. 
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CHAPTER 6 – CONCLUSIONS & FUTURE WORK 

6.1 Conclusions 

A new method of on-the-fly discrimination between neutrons and photons was developed for 

the CLYC elpasolite detector. This work demonstrates that wavelet decomposition can be used 

with other numerical techniques to construct a radiation identification scheme that fully separates 

radiation types measured by a single detector simultaneously.  

6.2 Future Work 

There are several possibilities for future work based on this research: 

 Increased levels of decomposition could be studied and compared to the first level 

decomposition.  

 The Matlab code could be converted into a universal programming language such as C or 

C++ and uploaded to the FPGA module of the eMorpho digital analyzer. This would enable 

on-board discrimination of radiation. 

 The method could be tested with other scintillator detectors. This would require resetting 

parameters according to the unique time profiles of the scintillator signals. 

 Furthermore, though this method is specific to neutron and gamma ray discrimination, a 

similar technique could be applied to any other radiation combinations measured with a 

single detector with unique time profiles.    
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