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Abstract 

In recent years, the use of large-eddy simulation (LES) has grown into new research methods. LES 

is preferred when compared to Reynold’s Averaged Navier Stokes (RANS), which separates 

velocity components into steady and fluctuating components. While RANS is relatively easy to 

implement, it does not fully resolve the range of turbulence eddies and has limitations that make 

it inaccurate in many practical circumstances. Direct numerical simulation, DNS, fully resolves all 

turbulent eddies to the smallest grid scale, but requires an extremely fine grid. This makes it 

computationally impractical to use as the computational power required to solve even the simplest 

case is severely high. In LES, the large eddies are resolved while the small eddies are modelled. 

This can be advantageous as we lower the computational resources required for solving the flow 

while still maintaining accuracy.  

The use of RANS as well as DNS make them highly difficult in solving issues involving 

combustion processes. LES models tend to be simpler and require fewer adjustments when applied 

to a wide range of flows. In addition to turbulence, LES can also handle species transport and 

chemical reactions typically found in engine configurations, and makes it a very suitable choice.  

LES has many different approaches, including the popular Smagorinsky model. The main 

problem with the elementary Smargoinsky approach is that a model parameter, 𝐶𝑑 , is assumed 

constant over the entire region, which is generally not true for turbulent flows. Making the model 

dynamic to localize the parameter, we still have problems of the parameter varying too much (as 

much as ten times the mean) and the eddy viscosity becoming negative, resulting in instability. 

The Vreman LES model, as employed in this work, performs as well if not better than the dynamic 

Smagorinsky model, and does not require ad hoc procedures, including issues involving clipping. 
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In this study, the LES Vreman model with a finite element method with h-adaptation technique is 

verified and validated using several benchmark cases. The end result being part of an on-going 

effort to enhance combustion predictability and increase efficiencies within engines. 
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Chapter 1 Introduction 

The world is evolving to a more clean, greener and energy efficient place. Bills and laws such as 

the Clean Air Act passed in the 1990s required automotive makers to improve engine design as 

well as efficiency to reduce pollutant emissions and decrease fuel costs. Even today, the idea of 

improving efficiency and design has not changed. Automotive makers look to renewable fuel 

sources, as well as liquid forms of energy, such as hydrogen or electricity to replace the cost and 

reliance on oil. In the past, improving efficiency was difficult because of the complexity of 

simulating a combustion engine process and the lack of computer resources. Internal combustion 

engines are extremely intricate systems that include turbulent fluid flow, flame propagation, heat 

transfer, moving parts, and chemical reactions. Modeling such a system is a difficult task that 

requires a high performance computer to produce the calculation. In addition, creating the 

models to accurately simulate the physical process is a complicated process for internal 

combustion engines. 

Kiva [38] is a powerful multi-dimensional internal combustion engine code capable of 

solving many different systems that occur during engine processes such as turbulent fluid flow, 

heat transfer, moving meshes, and reactions. One of the difficulties of modeling turbulent flow is 

the accuracy required near the walls. Normally wall functions are used to approximate wall 

velocities in the viscous sublayer. While they do offer a good approximation for this layer, wall 

functions diverge rapidly during the buffer layer between the viscous sublayer and the transition 

region. In addition, wall functions are generally only good with y+ < 5 wall units and error 

generates rapidly past that. The y+ represents the distance to the wall made dimensionless in 

regards to shear velocity and kinematic velocity.  
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A popular approach is the Smargorinsky model which is particularly effective at 

resolving the turbulence scales. The downfall to Smargorinsky is that it models the eddy 

viscosity using a constant scale throughout the entire domain which is not accurate. In addition, 

the scaling can lead to fluctuations in the constant value and can even become negative resulting 

in instability. Lastly, a filter or some sort of clipping is required of the small scale eddies to 

produce good results. These small eddies are needed as they play an important role in accurately 

simulating reacting flow, multi-phase flow, and flow near the wall boundary. This issue makes 

the Smargorinsky model unappealing for use in combustion engines.  

Vreman [15], more recently developed a model that resolves the turbulence to the scale 

of the mesh by modelling the sub-grid scale eddies. These turbulence eddies are not lost, unlike 

Smargorinsky. The model uses first order velocity derivatives and does not involve any sort of 

filtering or clipping associated with Smargorinsky. The Vreman model is also capable of 

handling transitional flows wheras the Smargorinsky model cannot. In addition, the Vreman 

modeled has been found to be as accurate, if not more, as the Smargorinsky model and as good 

as the dynamic Smargorinsky model. This makes the model more suitable for combustion 

processes. 
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Chapter 2 Literature Survey 

This chapter presents an outline of research related to the numerous experimental and numerical 

investigations concerning turbulent LES modeling. 

 

2.1 Numerical Methods 

Many engineering problems often have analytical solutions associated with them that can be 

described by linear and homogenous differential equations. However, there are many other 

problems that have no analytical solution associated with them. These equations are nonlinear 

and nonhomogenous. Numerical methods are used to model differential equations that have no 

analytical solutions, whether linear or nonlinear, homogenous or nonhomogenous, or 1st and 2nd 

order. The three main methods used to model such equations are: finite difference method 

(FDM), finite volume method (FVM) and finite element method (FEM). 

 

2.1.1 Finite Difference Method (FDM) 

The finite difference method (FDM) is based on a discretization of the differential forms of the 

conservation equations based on truncation of Taylor series. FDM is the oldest technique of the 

three methods. The drawback of the FDM is due to its lack of flexibility on the geometry; it can 

only be effectively used with orthogonal meshes. Its implementation is simple, so numerical 

programs are easily developed. There are three main schemes to solve a differential equation 

using FDM.  The first is forward difference where the first and second order derivatives are 

approximated respectively by: 

   
2

1 2 1

2 2

2
 + ( ) ( )  and i i i i if f f f fdf d f

dx x
O x O x

dx x

    
  





  (2.1) 
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The rate of change is then approximated between the current time step and the next time step. 

The backward difference is similar to the forward difference scheme:  

 
2

1 1 2

2 2

2
+  and)  ( ( )i i i i if f f f fdf d f

O x O x
dx x dx x

    
  


 


  (2.2) 

Lastly, the central difference which incorporates both approaches and produces second 

order accuracy: 

 
2

1 1 1 1

2 2

2 22
+  and( )  )

2
(i i i i if f f f fdf d

O x O x
f

dx x dx x

   
  




 


  (2.3) 

The main problem with the FDM is that the error of the numerical solution increases with 

the number of steps; this error is referred to as accumulative error. Additionally, step size has 

strong effects on the accuracy of the model. Numerical stability is not always guaranteed and 

because of this FDM is typically used to approximate simple configurations involving partial 

differential equations (PDEs). [1] 

 

2.1.2 Finite Volume Method (FVM) 

The finite volume method (FVM) is a method for representing and evaluating partial differential 

equations in the form of algebraic equations [2]. Similar to the FDM, values are calculated at 

discrete places on a domain. The term finite volume refers to the small volume surrounding each 

node point on a domain. In the FVM, volume integrals in a partial differential equation that 

contain a divergence term are converted to surface integrals, using the divergence theorem, that 

is 

    
V

S

F dV F n dS     (2.4) 

These terms are then evaluated as fluxes at the surfaces of each element. FVM is 

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Divergence
http://en.wikipedia.org/wiki/Surface_integral
http://en.wikipedia.org/wiki/Divergence_theorem
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naturally conservative as the flux entering a given volume is the same as that leaving the adjacent 

volume.Another advantage of the FVM is its flexibility as it can be used with both structured and 

unstructured meshes, and it is not limited in regards to geometry as FDM. FVM is widely used in 

commercial applications and in computational fluid dynamics (CFD) due to its simplistic yet 

accurate approach. 

𝑑𝑓

𝑑𝑥
=

𝑓𝑖+1/2−𝑓𝑖−1/2

x
    (2.5) 

 

2.2 The Method of Weighted Residuals (MWR) 

The governing equations can be formulated into weak integral statements that are true over any 

domain size by approximating the dependent variables with an orthogonal basis set. These 

approximations are substituted for the dependent variables and the derivatives are performed on 

the polynomnial approximation. The Method of Weighted Residuals (MWR) can be used to 

obtain the weak statements for the governing equations which require the use of Green’s 

theorem. Green’s theorem allows for the reduction of a second order equation integrated over a 

volume or area to a first order equation integrated over an area or line, respectively. This allows 

us to produce the weak integral statement of the governing equations. The value of using the 

MWR is that it is a simplistic method for the creation of the weak statement. 

Next, a residual statement is introduced which states that the weighted integral of the 

weak statement over an element be equal to zero which allows the MWR to be applied to any 

domain size. The ability to solve the weighted residual statements in an accurate manner is 

coupled to the elements which discretizes the domain. The finite element method is employed to 

achieve the solution over discrete portions of the domain. These discrete domains are assembled 
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in linear fashion to solve the equations over the entire domain. The more refined the grid the 

better the accuracy of the solution.  

Since the problem domain is a discrete system, the finite element method seeks to 

minimize the residual, R, over the entire domain. For example, if the residual equation [4] is 

determined by: 

 
2( , )iR T x k T Q      (2.6) 

where Q is the source term, k is the thermal conductivity, and T  the temperature approximation 

and T  is given by: 

 
1

( )
n

i i i

i

T x T N


   (2.7) 

This is a polynomial expansion of order n. The term iN  is the weight, and iT  is the nodal 

temperatures. 

The finite element method seeks to minimize this Residual over a domain [5]. Requiring 

the residual to be zero on average is accomplished by multiplying the residual equation by the 

appropriate weighting function 
iW  and integrating over the entire domain. 

 ( , ) 0i iW R T x d


    (2.8) 

The inner product when equated to zero is an orthogonal projection of the residual since 

it seeks to find values for T to make the statement true. When applied over a domain, which is 

discretized into finite elements, the resulting set of algebraic equations can be solved for the 

unknown values, in our case, T at the nodes. 
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2.2.1 Finite Element Method (FEM) 

In mathematics, the finite element method (FEM) is a numerical technique for finding 

approximate solutions to boundary value problems for partial differential equations. It is based 

on the principle of variational calculus to minimize the error function and produce a stable 

solution. FEM uses many simple element equations over many small subdomains, i.e. finite 

elements, to approximate a more complex equation over a larger domain. The main advantages 

[3] of using FEM are: 

 Accurate representation of complex geometry 

 Easy representation of the total solution 

 Capture of local effects 

 Inclusion of dissimilar material properties  

A FEM solution involves dividing the domain of the problem into a collection of 

subdomains, where each subdomain is represented by a set of element equations. We then assemble 

all sets of the element equations into a global system of equations. This global system of 

equations can then be solved using several different techniques.  

 

2.2.2 H-P Adaptation 

There are two main types of adaptation available: mesh refinement and equation refinement, h 

and p-adaptation, respectively. H-adaptation is the process of taking a cell and creating a new 

cell within it via the block method. This maintains any curvature of the cell and the original 

element is not affected. H-adaptation eliminates the need of having a small mesh over the entire 

domain, instead locally refining where required, usually in areas of high gradient changes.  The 

use of h-adaptation yields accurate solutions and exponential convergence rates at the cost of 



 

8 

 

computational power. This is particularly important in the case of singularities such as those 

involved in the cavity-driven lid. Singularities are best handled with adaptation occurring early in 

the solution process.  

 Determining areas of mesh refinement is commonly done using a posteriori error estimate 

and a least-squares method to “smooth” the values at the nodal points. This requires a solution 

set of a linear matrix [35]. This process is done by using smoothed values and equal order 

interpolation used by the finite element method [36]. Using a local least squares method, we can 

minimize the number of nodes which need to be refined using a maximum tolerance error. The 

current error estimator is based on work by Oden and Ainsworth [34] which solves for these 

errors and expresses them as an “energy” or “𝐿2” norm [34]. The mesh adaptation process 

includes division and recovery of elements as well as removal of holes in the grid after dividing 

and recovering. This process is shown below in the flow chart in Figure 2.2. 

 

 

 

 

 

 

Figure 2.1 Example of h-adaptation 

 

Another type of adaptation is P-adaptation, which uses a higher degree polynomial for the 

basis function. The complexity of higher order degrees beyond quadratic becomes difficult to 

manage for the basis function. P-adaptation also offers exponential convergence at the cost of 

computational power.  
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Figure 2.2 h-adaptive method for unstructured finite element grids 
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2.2.3 Galerkin’s Method 

In choosing 
i iW N  , the method of weighted residuals becomes Galerkin’s method. 

Although other methods exist, we will be focusing exclusively on Galerkin's method. Although 

there are other weights, this choice of weight is popular and allows for the formulation of one set 

of basis functions. Integration is done over discrete elements in the domain where the 

accumulation of these integral equations over individual elements yields a system of integral 

equations describing the entire domain. I 

By using Green’s Theorem, we obtain the weak formulation of the integral equations. 

Continuing from 2.7, the weak formulation for the diffusion of heat is: 

 0i
i i

i i

W T T
k d W Qd W k d

x x n
  

   
         

     (2.10) 

Particularly beneficial is the way the integral expression automatically incorporates the surface 

fluxes which describes the flux of energy moving across the domain boundaries. 

 
i

T
q W k d

n


 
     
   (2.11) 

Determining the exactness of the approximated solution is fundamental to all 

approximation procedures. A measure for this bilinear equation presented above can be defined 

by the norm: 

 
0

P
h

H
T T ch    (2.12) 

where c  is a constant dependent on the domain, h is the size of the element, and p is the 

order of the approximating polynomial. The difficulty with determining the error with measure 

as currently described is that the exact or true solution T is not usually known. As first suggested 

by Zienkiewicz and Zhu [6], an approximation to the exact solution can be made if we know that 
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the solution lies within the bounds of the approximated projection or solution. A data smoothing 

process, such as the least squares method, will bring the approximate solution close to the actual 

solution. This method is applied to the gradient of velocity since the derivatives of the finite 

element using linear approximating functions are discontinuous at the nodes [7]. Therefore, 2.12 

may be used to evaluate the error. 

 

2.2.4 Isoparametric Elements 

It remains to choose an appropriate weight function and choosing the eigenvalues would 

accomplish the task. The 1st order Lagrangian interpolating polynomial is used as the 

eigenfunction. Choosing a normalized transformation for the interpolating function and an 

approximate weight produces Galerkin’s method with isoparametric elements and a normalized 

computational space. The linear system of equations is assembled from each element in the 

geometric domain, which is transformed to an element of normalized length in the computational 

domain. 

This mapping or transformation allows for the development of generic interpolating 

functions known as shape functions. These basis or shape functions for isoparametric tri-linear 

hexahedral elements are listed below [8]. 
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Figure 2.3 Mapping from physical to computational domain 
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  (2.13) 

Derivatives of the shape functions are obtained from the chain rule 

 
ji i

ij

j

xN N

x


 

 


  
  (2.14) 

Derivatives of a global quantity in this computational domain are easily obtained from the 

shape functions and the Jacobian [9] 
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  (2.15) 

where the Jacobian is defined as: 

 

x y z

x y z
J

x y z

  

  

  

   
 
  
 
   

  
  
 
   
 
   

  (2.16) 

The relationship between global and computational domain derivatives of a function is 

given by: 

 

j j

j j

j j

N Nx y z

x

N Nx y z

y

N x y z N

z

   

   

  

       
              
       

              
        
             

  (2.17) 

This transformation is nonsingular, meaning it is one to one onto the domain of the natural 

coordinate system. For each element, the derivatives of variables (i.e. trial functions) in the global 

domain can be defined as: 

 1

j

j

j

Nf

Nf
J

y

Nf

z









  
      
  

      
  
      







  (2.18) 



 

14 

 

where the inverse of the Jacobian 
1J 
 is given by: 

 

 1 1

x y z

x y z
J

J

x y z

  

  

  



   
 

  
 
   

   
  

 
   

 
   

  (2.19) 

Integration takes place over sampling points within the domain. Since we have made a 

transformation to a normalized computational domain, the implementation of Gauss-Legendre 

quadrature for the numerical integration can be applied directly to the integral equations without a 

change of limits. The integration in three dimensions is shown as follows: 

 
1 1 1

1 1 1
1 1 1

( , , ) ( , ) ( , , )
n n n

i j k

i j k

F J d d d WW W F J          
  

  

     (2.20) 

where the Gauss weights of integration 
iW  are evaluated at the Gauss points , ,    . For two 

point quadrature, the weights are 1.0 at points 
1

3
  for each direction. Therefore, in three 

dimensions, there are eight weighting points. Higher integration accuracy can be obtained with 

more points of integration. The integration for one point quadrature occurs at the centroid of the 

element in the computational domain with a weight of 2.0. 

 

2.3 Projection Algorithm 

There exists countless methods to find the solution to these nonlinear equations. A 

method to find the velocity, pressure, and vorticity formulation employing Newton’s method to 

linearize the momentum equation [16], and using the least squares FEM with a conjugate 
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gradient technique has been demonstrated to work well [17]. Without some form of projection in 

the FEM, mixed methods are required. That is, different approximations or finite dimensional 

spaces are necessary for the velocity (Lebesgue or 2L ) and pressure (Sobolev or H) are needed to 

satisfy the Div-Stability condition [18]. These conditions are also known as the LBB conditions. 

With the use of a projection method, where the pressure is being estimated from the flow, as well 

as in SIMPLE methods [18 & 19], the LBB conditions are satisfied. 

A self-adjoint projection scheme was developed by various researchers including Gresho 

and Chan [20], Lohner [19] and Ramaswamy [21] which provides a solution for nonlinear 

problems. This semi-implicit scheme has an advantage over iterative methods that may not have 

good convergence rates, i.e. supplied with a reasonable first guess. 

The projection method for the solution of the Navier-Stokes equations is a self-adjoint 

system created by decomposing the momentum into gradient driven or curl-free portions and 

divergence-free portions. A divergence free velocity field is maintained by the projection of the 

predicted velocity onto the divergence free space. An Euler-Lagrangian variational seeks to 

minimize the function [22] 

     2
*1

( , )
2

E V V V C V d
dt

 


        (2.21) 

In the incompressible case, pressure is recovered from the divergence of the momentum 

equation using some initial velocity or recently calculated velocity. The velocities are then 

updated from the pressure, which enforces continuity. This splitting method is discussed below 

as an Euler-Lagrange Variational projection into divergence free space. 

The projection-step algorithm used in this computer model is based on the method 

initially developed by Chorin [23]. Using Helmholtz-Hodge decomposition theorem, which 

states that any vector field in the domain   can be uniquely decomposed as: 
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 V U P    (2.22) 

where U is the divergence free velocity vector. 0U   in   and 0U n   on the boundary  . 

This portion of the decomposition is a projection onto a divergence free field [24 & 25].  

 

Figure 2.4 Decomposition of V into U and P 

 

The projection is shown in Fig. 4 for the velocity field, V. Notice the gradient portion has 

zero curl under the decomposition since the vector identity 0P  . The curl of a vector field 

that is a function of the gradient of a scalar is irrotational, i.e. curl free. 

Under the projection, we seek the proper P such that 

 P V U     (2.23) 

Taking the divergence of each side, we get 

        2P P V U V U V          (2.24) 

The linear orthogonal projection operator L, applied to the incompressible Navier-Stokes 

vector fields yields 

   2U
L P L U U U

t
 

 
      

 
  (2.25) 
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And since L is a linear operator and   0L P   as shown previously, pressure is 

removed from the equation set. The projection under L is given as: 

   2U
U U U

t
 


    


  (2.26) 

where U is the divergence free averaged time velocity. During the time advancement of the 

averaged field a projection onto the divergence free space is performed, maintaining a 

divergence free velocity field. This is accomplished with the proper choice of P, and splitting the 

velocity into the divergence-free field and the perturbed field or predictor. 

Splitting the velocity into two averaged components, 
*V  and V , the momentum 

equations under the linear orthogonal projection operator L becomes: 

 
*

21n n
n n n

V V
V V V

dt
   

      (2.27) 

where the velocity components of V are either from the initial guess or from the previously 

calculated time step. This is the divergence free velocity attained through the proper choice of 

grad(P). 

Given the approximate velocity just advanced from the previous explicit marching, the 

goal is to find some velocity V that satisfies continuity. We seek the projection of 
*V , a 

perturbed velocity, onto the divergence free space to complete the calculation of the velocities 

subject to incompressibility. Under the decomposition of the vector field  *L V , we make the 

projection 

 
*  where 0V V dt P V       (2.28) 

Taking the gradient of both sides, a Poisson equation for P is obtained in the form 

 
*

2 V
P

dt


    (2.9 
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In discretized finite element representation, we have 

 
 *

0
M V V

P
dt


    (2.30) 

where M is the mass matrix. The equations above are essentially the Euler-Lagrange 

equation 

  * 0
M

V V CP
dt

     (2.31) 

where C is the gradient operator. The equation is subject to the constraint of continuity. 

 0TC V    (2.32) 

The system is solved sequentially by creating a diagonal form of the mass matrix (a 

lumped matrix), multiplying by its inverse, and then by taking the gradients of both sides and 

enforcing continuity as shown below: 

 
1 *

* 1

T TC M CP C V

V V dtM CP







 
  (2.33) 

 

2.3.1 Weak Statements 

The weak statement for the projection is 

        *
1

n
j ji

k l i i

lj i j

N NN d
N N P d V

x x x dt 

      
     

         
    (2.34) 

where the summation creates the diagonalized mass matrix. Solving for the averaged V from the 

weighted residual statement produces the divergence free velocity. 
jN    is the shape function 

notation for the element,    represents a row vector (or matrix),    represents the transpose of 

a column, and   indicates the domain. 
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          
1

*

1

n
i

i i k l j i
l

N
V V dt N N d N P d

x



 

    
             

    (2.35) 

A time explicit advancement of velocity is made using the weakened momentum 

equations and an assumed initial pressure at time n=0. The projection onto a divergent free field 

is made to ensure mass continuity. Pressure can be determined if desired. Then the whole process 

is repeated as time progresses. After the inverse matrix is established for the solution of the 

pressure, the most time consuming part of the process is the solution of the Euler-Lagrange 

equation enforcing mass continuity. 

To apply the finite element method to the solution of the governing equations the weak 

statements of the equations are found and then coded. The energy and mass transport equations 

are included below. The method of weighted residuals is applied to the weak statements for the 

governing equations. The dependent variables are replaced with their trial functions. 

  
1

( )
n

n

i n i j i

i

Z z t N Z


       (2.36) 

where iZ  are the dependent variables, 
jN    are the basis or shape function notation for the 

element,    is a row vector (or matrix),    is the transpose of a column,   indicates the 

domain, and   is the surface boundary. 

Substituting the dependent variables trial functions into the governing equations and the 

2nd order terms described above, produces the following set of integrated ODE’s. 
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2.3.2 Weighted Residual Statement of Velocity under Decomposition: 

 

              

             

    

1

2

3

( )

n
j j

k l i i k k i i i

l i i

j j j j j

i i i t i t i

i i i i i

j

i i i t

i

N N
N N d V N N V d V N P d

x x

N N N N N
N d k N d V d V

x x x x

N
f x N d N

x

 

  

  

  

  

 

       
                  

             
              

             


  



  

  

    0i iV n d


  


  (2.37) 

where  if x  is the body force per unit mass, typically gravity. As mentioned previously, for 

slightly compressible fluids, those that are subject to the Boussinesq approximation for density 

changes as a function of temperature, this body force is the difference in gravity forces and 

buoyant forces  0 ig  . Similarly, we can derive the weighted residual statement of thermal 

energy: 

 

        

     

     

1

Pr Pr

0

n
j

p k j i p i k k i

l i

j j j jt t
i i i

i i i i

i i i i

N
C N N d T C N N V d T

x

N N N N
N d T d T

x x x x

N Q d N q d

 

 


 

 

 

    
               

                
                                   

   
        
   

 

 

 

  (2.39) 

 

 

2.4 Solution Process 

By integrating over each element and combining the contributions from each element to 

the nodes in common to those elements, a matrix equation is formed that will be solved for these 

nodal values. It is important to note that when integrating over each element, the contributions of 

the surface flux cancel everywhere except at the boundaries. This is an important distinction 
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between the finite element method and the finite volume method. It also leads some to the idea 

that the finite element method is not locally conservative. On the contrary, it is precisely 

conservative whereas the finite volume method is not because of the truncation error associated 

with evaluating the surface fluxes everywhere within the domain. The matrix equations for the 

explicit time advancement of momentum and heat can be written as: 

 
            

          

( )

( )

v v

T T T

M V A V V C P K V F

M T A V T K T F

   

  
  (2.39) 

The individual matrices for these equations are defined as: 

 

   

   

 

   

 

 

1

1

( )

( )

Pr

n

k i

l

n

T p k i

l

i
i k k

i

j j j j

v i t t

i i i i

j

i

i

j

V j i t j j

j

j t
T i

i

M N N d

M C N N d

N
A V N N V d

x

N N N N
K N d d

x x x x

N
C N d

x

V
F N f x d N n d

x

N
K N

x







  

 









 



 



 

 


 



         
                     


 




   



  
  

 







 



 



      

Pr

j t i i

i j j

T i i i j i

N N N
d d

x x x

F N Q d N N q d








 

      
                 

   
        

   



 
   

2.4.1 Time Advancement 

The initial guess of velocity is time marched explicitly by: 

                1 1 ( )
i

n n n n n

i i V V i i iV V t M F K V A V V C P            
  (2.40) 
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This explicit marching also applies equally to the scalar quantities of temperature as well. 

Before marching these quantities forward in time, the velocities need to be projected onto the 

divergence free field. The velocities are updated from the components of P 

 
1 * 1nV V dtM CP     (2.41) 

The pressure is calculated from either the discretized Poisson equation or is extracted 

directly from the projection algorithm by dividing by    with dt. This pressure is associated with 

the projection, the time advanced divergent velocity. To calculate the pressure experienced in the 

momentum equations, the gradient is taken of the divergent free Navier-Stokes equations, 

resulting in the Poisson equation. 

Scalar transport for energy and species are performed as per the scalar transport equation. 

           1 1 ( )
i

n n n n

i i V T i iT T t M F K T A V T            
  (2.42) 

Time step size should be a consideration of this explicit statement. The time scale of most 

engineering problems are governed by the faster time scales of turbulence and momentum 

transport. 

 

2.4.2 Mass Lumping 

Mass lumping is the combining of the time dependent terms in the mass matrix, row by 

row, into a diagonal matrix. This is done simply by adding the terms of each row. Mass lumping 

creates a new matrix that has its inverse as: 

 

1

1

1
L

L

n

L i j

j

M
M

where

M N N d







 

  (2.43) 
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Mass lumping makes the time dependent equation an explicit equation [26 & 16]. Mass 

lumping speeds the transient solution significantly because multiplication by the inverted mass 

matrix is not required at each time step. The size of the time increment for explicit advancement 

is governed by stability requirements based on the Courant and Reynolds cell numbers. The 

Courant number is needed for the finite difference method to help calculate the appropriate time 

step for a given solution. If the time step is too big based on the Courant number, then the 

solution will diverge. The Reynolds cell number is used to make sure the discretization scheme 

behaves appropriately, especially at critical cell numbers where oscillations can occur. 

 

2.4.3 Petrov Galerkin 

A Petrov-Galerkin scheme is used to weight the advection terms 

  
2

e
i i i

h
W N V N

V


     (2.44) 

where eh  is the element size, coth / 2 2 /     , 
2

e

e

h V

K
   and eK  is an effective diffusion 

term in the direction of the local velocity vector [17, 27, 28 & 29]. This weighting introduces 

selective artificial diffusion into the numerical scheme that acts along the local streamline. This 

method is effective at removing numerical dispersion in very steep gradient areas, leaving 

between 1-2% noise in the solution. This dispersive error is associated with modeling advection, 

and is precisely measured prior to the time advancement and then removed during integration. It 

is important to note that this Petrov-Galerkin method is also useful as a shock capturing scheme, 

even in the absence of molecular viscosity, i.e. Peclet number. 
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For non-hydrostatic calculations, the pressure is obtained from the solution of a Poisson 

equation based on the discretized momentum equations 

             
1

( )T

V VK p C M F K A V V

       (2.45) 

Currently, Sparse Cholesky or Krylov solvers are used to solve the Poisson pressure equation. A 

time dependent form of the continuity equation is used to correct the velocities. A forward-in-

time Euler scheme is employed to advance the discretized equations in time [16]. 

 

2.4.4 Stability and Time Dependent Solution 

The explicit Euler time integration scheme has time advancement restrictions that are met 

by the requirements of the Courant and Reynolds cell numbers. The determining equations for a 

forward-in-time, centered-in-space finite difference scheme can be found using a Von Neumann 

stability analysis [30]. In fact, only the stability of the linear equations can be analyzed with this 

type of analysis. Linearizing a nonlinear equation can be performed and the stability analyzed, 

although it is only locally applicable [31]. The stability analysis produces guidelines to constrain 

the time increments. 

Von Neumann stability analysis is based on Fourier mode analysis. Velocity can be 

expressed in its Fourier mode as: 

 
n n ik xj

ju U e    (2.46) 

where k is the wave number in the x-direction, k x  is the phase angle, 1i   , and j are the 

discretized coordinate indices. These components are substituted into the discretization and 

reduced. An amplification factor “G” is introduced such that. 

 
1n nU GU    (2.47) 
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Stability requires the absolute value of “G” be bounded for all values of k x . If it is assumed 

that the fluid mmotion is wave-like in nature, the discretization is made to represent the motion 

over a length x . The highest frequency in the interval that can be approximated is 2 x , i.e., it 

requires at least three points to approximately determine a sine wave between 0 and 2 . 

Hindmarsh [32] determined the necessary and sufficient conditions for stability of the 

advection-diffusion equation. This analysis as applied to the explicit Euler forward scheme 

produces the time increment limits as: 
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  (2.48) 

where the term 
jK  refers to the j-th directional component of the diffusion matrix. Since the 

Galerkin method utilizing linear interpolating polynomials has a centered-in-space type 

architecture, these stability constants certainly give some idea as to what the time increments 

might be allowed. 

Numerical experimentation with various types of problems has shown that the following 

stability conditions are usually satisfactory: 
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Construction of the x  or h in three dimensions is performed by finding the average value for 

the coordinates of each face and then taking the difference between opposing faces. The entire 

grid is searched for the constraining values in order to optimize the time step. 

 

2.5 Boundary Conditions 

Evaluating the boundary integral for the second order bilinear equation as: 

 
ˆ

i

T
W k d

n


 
  

 
   (2.50) 

over the surface  , we break the surface integral into its x and y components: 

 
ˆ ˆ ˆ

ˆˆ
x y

T T T
n T n n

n x y

  
   

  
  (2.51) 

 

Determining the value of the direction cosines, 
xn  and 

yn are obtained from noticing that 

 cos  and sinx y

dy dx
n n

d d
     

 
  (2.52) 

Therefore, the equation for the surface integral in 2-D becomes 

 
ˆ ˆ

i x y

T T
kW n n d

x y


  
   

  
   (2.53) 

 

2.5.1 Boundary Conditions for Velocity under Decomposition 

Dirichlet boundary conditions for velocity are simple: either a no-slip condition for solid 

objects or a fixed velocity at inlets. Outlet boundaries can be made with the assumption of a zero 

gradient for velocity. The zero gradient assumption requires the computational domain to be 
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constructed to match this imposed boundary condition. This statement can be relaxed with the 

use of viscous boundary condition [22]. 

Another boundary condition exists when a weak statement is created. Weakening the 

second derivative viscous term results in 

     j

i t i i

i

N
N V n d

x
 



 
  

 
   (2.54) 

This equation is zero for walls where no-slip boundary conditions exist. It is also zero where an 

inlet or outlet velocity is normal to the boundary. Otherwise the components of these boundary 

integrals are evaluated and used to relax the requirements of zero gradients at an outflow velocity 

when combined with the calculated pressure at the outflow. 

 

2.5.2 Boundary Conditions for Pressure and Velocity Corrector 

Because the equation for pressure in incompressible flow is a Poisson equation, it is therefore 

elliptic. Boundary conditions must be imposed at all surfaces of the computational domain. The 

Neumann boundary condition is: 

 
P V

n P n
n t

 
   

 
  (2.55) 

This boundary condition, when combined with a Dirichlet condition at some reference point to 

eliminate the singularity in the equation set, is sufficient to determine the pressure up to an 

arbitrary constant. 

The second half step is related to inviscid flow. The portion of the decomposition without 

curl relies on the determination of the proper scalar gradient to make the decomposition true. 

Therefore the proper boundary condition is related to the normal component of penetration 

through the boundary. This is defined as: 
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1 1n nn V n f 


   (2.56) 

where 1nf  is either the prescribed boundary condition or is evaluated from the viscous terms at 

the boundary, 

    j
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i
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 
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   (2.57) 

 

2.5.3 Euler-Lagrange Multiplier 

If a Lagrangian multiplier is substituted for pressure, the boundary conditions for the projection 

equation are found in the same manner as the pressure Poisson equation. The boundary condition 

for this multiplier is derived from: 

 
*V V

P
dt


    (2.58) 

And combined with the boundary conditions for pressure given earlier, the resulting traction 

equation is: 

 
*n n V V

n





     

  (2.59) 

Continuity applies to n V  so the boundary condition for    is: 

 
*  on n V

n








  (2.60) 

 

2.5.4 Boundary Conditions for Thermal Transport 

Thermal transport equations have either specified flux (Neumann) or fixed (Dirichlet) conditions. 

As noted earlier, a zero flux is automatically applied if no other boundary condition exists. The 

integral of thermal flux is calculated for the energy transport equation by: 
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    i j iN N q d


      (2.61) 

The shape functions are now for 1-D line elements or 2-D surface elements depending on 

whether the problem is 2-D or 3-D, respectively. 

 

2.6 Turbulence Modeling 

The biggest challenge in solving turbulence is accuracy and resolution. Turbulence, by its very 

nature, is unpredictable and random and interacts on many different length scales which interact 

with each other. The three main methods are described below. 

 

2.6.1 Reynolds-averaged Navier-Stokes (RANS) 

 The simplest method to use in solving turbulent flow is to employ the Reynolds-

Averaged Navier Stokes (RANS) method. The three methods of averaging are time, spatial and 

ensemble, with the most appropriate being a time averaged because almost all engineering flow 

problems involve inhomogenous turbulence. The equations are averaged over time with a mean 

component along with a fluctuating component. When time averaged, the Reynolds stress tensor 

is created and six new variables are formed which have not been solved. We need a closure 

scheme to solve for these variables and the most common way is using a zero, one, or two 

equation model. The most popular being the two equation k-ε and the k-ω model. The k-ε model 

is simple to implement but has poor prediction for swirling or rotating flows and flows with 

strong separation. In addition, it is only suitable for fully turbulent flows. The k-ω predicts better 

under strong adverse pressure gradients and can be used in separation flow such as 

turbomachinery. The disadvantage is that is tends to predict separation early and too big as well 
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as requires a fine mesh resolution near the wall. In regards to turbulence, both have problems and 

limitations that make them inadequate to deal with combustion engine processes. 

 

2.6.2 Direction Numerical Simulation (DNS) 

 The most accurate method for modeling turbulence is Direct Numerical Simulation 

(DNS).  The governing equations are solved and all motions contained in the flow are resolved. 

The results for DNS simulations contain very detailed information about the flow which is used 

as a tool for understanding turbulence production, dissipation, energy dissipation, and other 

variables of interest.  The size of the grid cannot exceed the Kolmogrov scale, ~
L

N


, where N is 

the number of points, L the characteristic length, and  the Kolmogorov scale. By letting 

1/4
3




 
  
 

, where  is the kinematic viscosity and  is the dissipation per unit mass, which is 

approximated by 
3

~
u

L
  where u is the characteristic velocity of the flow. The number of points 

for three dimensions can be rewritten as: 

3 9/4

9/4~ ~ ~ Re
L uL

N
 

   
  
  

     (2.62) 

 It can be seen that for high Reynolds numbers, DNS is impractical due to the amount of 

nodes. To overcome this problem, we turn to large eddy simulation (LES). 

 

2.6.3 Large Eddy Simulation (LES) 

Large eddy simulation (LES) separates the turbulence into large and small eddies. LES resolves 

the large eddies and the small eddies are modeled using a sub-grid scale model. LES is a 
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transient turbulence model that takes the best of RANS and DNS. Its main advantage is that it is 

highly adaptable and more accurate than RANS and its computational cost, while high, is less 

than that of DNS. The small eddies can be modeled using a form of the Smargorinsky method, 

which we will now go into more detail. 
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Chapter 3: LES Modelling Approach 

3.1 Filtering Definition and Properties 

 In LES, the turbulent flow is separated into large and small scales based on a cut-off 

length. This cut-off length is assumed to be equal to the size of the computational grid as 

illustrated in Figure 3.1. The scales which have a characteristic size greater than the cut-off 

length are then called large or resolved scales. The others are known as small or sub-grid scales. 

The large turbulent eddies are resolved and the smaller eddies are modeled which results in less 

nodes. 

Mathematically the scale separation is achieved by applying a scale high-pass filter to the 

exact solution. This is then represented by the convolution product in which the resolved 

component of an arbitrary variable ( , )jx t  is defined by: 

 
' ' '( , ) ( ) ( , )j j j j jx t G x x x t dx



      (3.1) 

Where   is the computational domain, G is the convolution kernel with a characteristic filter 

width   and ( , , )jx x y z  are the axes of the Cartesian coordinate system. 

There are several properties that the filter needs to demonstrate as the filtering operation 

is applied to the Navier-Stokes equations. They are: 

      i.e. conservation of constantsa a   (3.2) 

      i.e. linearity    (3.3) 

      i.e. commutation with derivation
j jx x

 


 
  (3.4) 
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Applying a filter to the Navier-Stokes equations, a part of the exact solution spectrum is 

lost as indicated in Figure 3.1. It follows that in order to represent the effect of the sub-grid 

scales in the total energy spectrum; a model which normally takes the form of a statistical 

description is required. 

 

Figure 3.1 Prediction of RANS, LES, and DNS 
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This filtering technique involves a change of variable in which the filtered variables are weighted 

by density. Since the approach is similar to Favre averaging, it is commonly called Favre 

filtering. Mathematically, this is written as: 

 
( , )

(x , t)
j

j

x t




    (3.5) 

 

( , )jx t  is the Favre filtered quantity obtained from the grid filtered component ( , )jx t  and   

is the density. It should be noted that (~) is linear but does not commute with the derivative 

operator in space or time. We now rewrite the instantaneous variable ( , )jx t  as: 

 
''( , ) ( , ) ( , )j j jx t x t x t     (3.6) 

In which 
''( , )jx t represents the SGS component at a length smaller than the grid filter width .  

 

3.2 Favre-filtered Navier-Stokes Equations 

The conservation laws of continuity, momentum, and energy can be expressed as: 
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where   is the density, 
ju  is the velocity vector, p  is the pressure, T  is the temperature, Pr is 

the Prandtl number, 
pC  is the specific heat at constant pressure. 

ij is evaluated using Stoke’s 

hypothesis: 
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  (3.10) 

In addition,  is the dynamic viscosity, which can be written as a function of temperature using 

the Sutherland formula:  
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T T
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

   
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  
  (3.11) 

where   varies depending on the ideal gas used; for air   = 120. 

To formulate the Navier Stokes equations which describe the evolution of the resolved 

scales, Favre-filtering is applied to the original equations. The Favre-filtered equations of 

continuity, momentum, and energy are obtained from equation (3.7), (3.8), and (3.9) are: 
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  (3.14) 

We can see that there are two nonlinear terms, one each in the momentum and energy equation, 

 and i j iu u u T   respectively. These nonlinear terms must be expressed in terms of the resolved 

scale variables and their fluctuating parts. We use Leonard’s decomposition [10] to decompose 

these nonlinear terms. 
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3.2.1 Leonard’s Decomposition 

The nonlinear term is first rewritten as a function of the filtered velocity vector 
ju and its 

fluctuating part 
''

ju . Applying this to the first nonlinear term in the momentum equation 

     '' '' '' '' '' ''

i j i i j j i j i j j i i ju u u u u u u u u u u u u u           (3.15) 

All terms on the right hand side can be expressed in terms of the SGS tensor 
ij  as 

  ij ij ij ij i j i jL C R u u u u        (3.16) 

where 
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where 
ijL  is the Leonard [10] tensor, 

ijC  is the cross-stress tensor, and 
ijR  is the Reynolds sub-

grid tensor. 
ijL represents the interactions between the large scales, 

ijC represents the interactions 

between the large and small scales, and 
ijR represents the interactions between the sub-grid 

scales. This decomposition technique allows the momentum equation (3.13) to be rewritten as: 
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  (3.18) 

where  ij i j i ju u u u     

Using the same technique, the energy equation (3.14) can be expressed as: 
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where  i i iq u T u T    

The effects of the SGS terms are represented in 
ij  and iq  . 

In order to ensure that the dynamics of the resolved scales remain accurate, the SGS 

terms have to be considered in the solutions of the governing equations. Since the small scales 

are more isotropic than the large scales, they can be modeled using an SGS model. 

 

3.3 Sub-grid Scale Viscosity 

The purpose of SGS models is to represent the energy loss due to the separation between large 

and small scales. These models do not attempt to produce the SGS stresses precisely; rather they 

take into account their effects of the resolved scale.  

The Boussinesq approximation states the following: 
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  (3.20) 

It should be noted that the isotropic part of the SGS stress tensor, kk , is commonly 

neglected due to the incompressibility of the sub-grid scales [11]. We now have a way to model 

ij  but we have a new term that also needs to be modeled,
sgs . 

 

3.3.1 Smargorinsky Model 

A widely used SGS in LES modeling is the Smagorinsky model [33] where 
sgs  is expressed as: 
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  (3.21) 

To obtain a proper value for SMC it is assumed that:  

 The cut-off wave number ck  lies within 
5/3k

 Kolmogorov cascade in the energy 

spectrum 

 The ensemble-averaged SGS dissipation 
sgs  is identical to the dissipation of the 

spectrum   

This gives an approximate value for SMC  as:  
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where kC  is the Kolmogorov constant. The Smargorinsky method yields good results for 

homogenous turbulent flow when the cut-off is placed far enough into the inertial range of the 

spectrum [12-14]. In this case, 1.4kC   which leads to 0.17SMC  . The Smagorinsky model is 

formulated on the assumption that the flow is turbulent, fully-developed, and isotropic. This is 

seldom the case. Figure 3.2 below shows the Kolmogorov scale. 

Another approach which is used by many to obtain a natural adaption of the model for 

inhomogenous flows is to determine the model coefficient as a function of space and time. This 

eradicates the need of an ad hoc and a priori prescription of the model coefficient. It should be 

noted that a dynamic procedure does not change the form of the original model, but rather it aims 

to adapt the model to the local structure of the flow dynamics. Thus, any SGS model with a 

constant coefficient can be used as a model for a dynamic procedure.  
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In order to overcome the shortcomings of the Smargorinsky model, Vreman [15] 

proposed a different SGS model which guarantees vanishing SGS dissipation in regions where 

the flow is laminar.  

 

Figure 3.2 Kolmogorov Scale of Eddy Energy 

 

3.3.2 Vreman Model 

Unlike Smargorinsky, the Vreman [15] model does not involve any explicit filtering, averaging 

or clipping procedure to stabilize the numerical procedure. Furthermore, it is easy to compute 

since it does not need more than the local filter width and the first order derivatives of the filtered 

velocity field. The Vreman model is defined as:  
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  (3.23) 

The superscript g denotes a grid-filtered quantity and VMC  is related to SMC  by 

22.5 SMCLv C , giving 0.072VMC   for homogenous turbulence. The main feature that the 

Vreman model has over the Smagorinsky model is its ability to compute zero SGS viscosity in 

laminar flow. It should be noted that both the Smargorinsky and Vreman model use constant 

coefficients, but these coefficients can be localized when implementing a dynamic model. 

Dynamic models provide a more accurate local coefficient for flow features in that area as a 

constant coefficient over the entire flow is not realistic. 

 The Vreman model is self-dampening, hence laminar flow can be modeled with it 

including the laminar sublayer. Therefore no wall function is used to calculate the flow near the 

wall, making it a good choice for wall bounded flow. Other LES models require wall functions 

or hybrid RANS systems to simulate the wall flow. 
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Chapter 4 – Results and Discussion 

We use the KIVA code to examine two different methods using a two equation k-ω RANS with 

wall functions and LES simulation to model the Navier-Stokes equations for both laminar and 

turbulent flow in a square cavity with moving velocity on top. KIVA uses a Predictor-Corrector 

split method along with Petrov-Galerkin weighting on the advection terms. The main solver uses 

a Krylov solver to solve the matrices. The cavity benchmark represents a difficult benchmark 

because of the singularity it contains in the corner. The first step is to verify that the solutions are 

indeed the right solution. Several cases at different Reynolds numbers are shown and compared 

to a k- ω RANS as well as an LES simulation. COMSOL, a popular FEM model, is also used to 

obtain a solution using a two step equation models of k-ω and k-ε RANS. All simulations are 

compared to Ghia [37] using the centerline geometric profile versus velocity.  

 

4.1 Geometry 

As shown below in Figure 5.1, we have defined 

the cavity with a height of 0.1 and a free stream 

velocity from 0.5017 to 1.5675, with the 

corresponding Reynolds from 3,200 to 10,000 

respectively. All solutions used a dynamic 

viscosity of 1.846e-04 to ensure proper 

Reynolds numbers.     

 

V  

Figure 4.1 Mesh and geometry of cavity lid 
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4.2 Mesh and Velocity Contours 

Using the KIVA code, two separate simulations were tested using LES and k-ω RANS with 

adaptation. Figure 2 and 3 below show the velocity profile of the cavity driven lid which will 

eventually be compared to Ghia [37]. Notice that for both, no singularity exists in the corner of 

the cavity which is typically found in most cases and notice that between Figure 2 and 3, the LES 

simulation has less overall damping than the RANS. This is especially evident at Re = 3200 and 

lower Reynolds numbers since at higher Reynolds numbers, the inertial forces are much larger 

than the viscous forces. 

 

Figure 4.2 Mesh and velocity contour at different Reynold’s numbers using LES 
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Figure 4.3 Mesh and velocity contour at different Reynolds using RANS simulation with adaptation 

 

Examining Figures 2 and 3, our results are consistent with benchmark profiles of Ghia [37] at 

different Reynolds numbers. The cavity driven lid is a particularly interesting problem because 

of the singularity in the top right corner of the lid where the velocity is affected by the free 

stream velocity and the velocity of wall, which is zero. Secondly, we are also reaching higher 

Reynold’s numbers which impose a potential problem in resolving the onset of turubulence. 
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4.3 Comparison of U versus Y and X versus V 

While looking at velocity profiles is informative and can lead us to detect major problems if any, 

it does not tell us anything about the accuracy of the system. For that, we have to delve deeper 

into the profile. We compared the velocity profile to the geometric center of the cavity driven lid 

using Ghia [37]. Results are shown below in Figure 4 and 5. The red line shows the LES 

simulation and the blue line shows the RANS simulation. 

 

Figure 4.4 U versus Y at different Reynolds using both LES and RANS 



 

45 

 

 

Figure 4.5 X versus V at different Reynolds using both LES and RANS 

 

As shown in Figure 5, the velocity profiles of both X and Y versus the vertical and horizontal 

geometric means are a close match, indicating results for LES and RANs are consistent with 

each other. When compared to Ghia [37], we see that while the results are close, they do not 

match his results. The values of Ghia are higher than the values of the LES or RANS simulation. 

In addition, the curve has more linearity to it. The reason for this is because Ghia used a 2nd order 

central finite difference scheme for his simulation with a 1st order upwind scheme. Secondly, he 

also used a fully laminar solution method in a turbulent domain. Last, he had a smoothing factor 

to ensure stability in his procedure using a coupled strongly implicit method. 
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4.4 Comparison to COMSOL Simulation 

Simulations used previously were also compared to a COMSOL simulation under the same 

conditions. Figure 6 below shows the mesh used comprised of approximately 66,000 grid cells 

using an automatic very fine grid generator. When compared against a fine grid of approximately 

20,000 gird cells, no changes were detected in convergence rate. To be on the cautious side, the 

results were done using the very fine grid of approximately 66,000 gird cells. COMSOL uses a 

pressure-correction method to solve the Navier-Stokes equations. It uses nested loops with the 

inner and outer loop. It solves the momentum equation beased on a provisional velocity and 

pressure taken from the previous loop and then corrects it by plugging it into the continuity 

equation. When dealing with incompressible flow, the divergence of the velocity must equal 

zero.  

Figure 7 and Figure 8 show the 

velocity and pressure contour of the 

COMSOL simulation. Streamlines were 

added to show the proper representation of 

the flow due the singularity of the top right 

corner of the simulation. That point exists 

because COMSOL is incapable of 

determining whether there is a moving 

boundary condition there or a no-slip 

boundary condition. The pressure contour                  

was added in to better show this singularity.   Figure 4.6 Mesh of COMSOL simulation 
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Figure 4.7 Velocity profile of COMSOL simulation for Re=3,200 

 

Figure 4.8 Pressure contour of COMSOL simulation for Re=3,200 
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Figure 4.9 U versus Y at different Reynolds using COMSOL 
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Figure 4.10 X versus V at different Reynolds using COMSOL 

Figures 9 and 10 show the COMSOL results for the cavity driven lid comparing U versus 

Y and X versus V at the geometric center profile. We see that in COMSOL, much like in KIVA, 

the solutions are not as laminar as in Ghia’s [37] results. In addition COMSOL has higher values 

at the boundaries. This is because COMSOL uses a law of the wall function as well as RANS 

modeling.  
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Chapter 5 Conclusion 

Comparisons of KIVA, COMSOL, and Ghia [37] have been performed using RANS and LES for 

a cavity driven flow with Reynolds ranging from 3,200 to 10,000. The turbulence models used 

were k-ω and k-ε for RANs and Vreman for LES. One of the advantages of using an LES model 

over RANS is that RANS simulates the vortex over an average time result whereas the LES can 

simulate different sizes and scales. In addition, LES can simulate transient flow while RANS 

cannot, thus predicting turbulence with a much higher accuracy. Additionally, RANS is incapable 

of modeling close to the boundary layer of the wall.  

When comparing the geometric center profiles of all cases, Ghia [37] only uses a laminar 

flow test case. That is to be expected as they did not have the computational power required to 

run any high turbulence simulation. COMSOL while more accurate, was still inaccurate near the 

wall. The KIVA code employed both RANS with wall bounded functions and LES. LES did a 

better job of modeling flows near the wall as well as more realistically modelling the vortices. 

Overall, all results were in good agreement with each other.  

The next step is to utilize the LES model in a turbulent flow using a dynamic Vreman 

model for compressible flows at high Mach numbers. Initial tests appear promising but more 

work needs to be done to improve the accuracy of the model. 

Additional work also needs to be done to parallelize for high performance computing. 

Since problems such as turbulent fluid flow are time intensive, reducing the amount of time 

using multiple processors would be extremely beneficial. Other work also includes optimizing p-

adaptation in KIVA to enhance convergence rate. 
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