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Abstract  

DESIGNING A BIOMIMETIC TESTING PLATFORM FOR ACTUATORS IN  

A SERIES-ELASTIC CO-CONTRACTION SYSTEM 

By 
Ryan Schroeder 

Dr. David Lee, Examination Committee Chair 
Professor of Biology 

University of Nevada, Las Vegas 

 Actuators determine the performance of robotic systems at the most intimate of 

levels. As a result, much work has been done to assess the performance of different 

actuator systems. However, biomimetics has not previously been utilized as a pretext for 

tuning a series elastic actuator system with the purpose of designing an empirical testing 

platform. Thus, an artificial muscle tendon system has been developed in order to assess 

the performance of two distinct actuator types: (1) direct current electromagnetic motors 

and (2) ultrasonic rotary piezoelectric motors. Because the design of the system takes 

advantage of biomimetic operating principles such as co-contraction in an agonist-

antagonist configuration, it exists as an ideal system for testing different actuators for 

implicit performance attributes that may or may not come closer to the physiological 

performance of biological muscle. 

 In order to assess the respective performances of the two actuator types, error and 

system efficiency were both measured simultaneously in an attempt to characterize the 

fidelity and efficacy of the force-feedback control system. Although both motor types 

were shown to perform competitively by torque error, the electromagnetic motors 

outperformed in terms of efficiency. It is ultimately concluded that either actuator type 
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may perform more impressively than the other when operating under the appropriate 

context of application. Specifically, it remains the interpretation of this study that 

piezoelectric motors require a stiffer elasticity as well as an extremely fast controller 

frequency in order to fully take advantage of its ultra-fast response time characteristic for 

torque control. 
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Chapter 1: Introduction 

1.1 Overview 

The need to develop robotic actuator systems, which can mimic and even exceed 

the performance of biological muscle, has long been stressed (Hollerbach et al., 1992). 

Although there has been much progress in recent years, conventional actuators still fall 

dramatically short of such an ambitious goal. Therefore, a new actuator design is 

proposed in order to assess the performance of two different motor types, namely the 

following: (1) DC electromagnetic motors (EM) and (2) ultrasonic rotary piezoelectric 

motors (PM). 

Although there are multiple parameters, which could be measured in order to 

assess the performance of different actuators, this research proposes the specific 

evaluation of torque error and system efficiency. By approaching the characterization of 

actuator performance with these two measures, a thorough insight should be accessible 

within the context of a biomimetic artificial muscle-tendon system. 

Although there exists a multitude of actuator types, it remains unsurprising that 

the main body of robotics actuation research has been inadequate in competing with the 

organic machinery of biological organisms. After billions of years, biology has fine-tuned 

an extremely impressive actuator. As a result, muscle is soft, contractile and dense with 

power. In addition, it can boast great efficiencies and has force/elastic memory 

characteristics. At the heart of these attributes is a fundamental operating principal, which 

can only be described as a ratcheting mechanism. Under the context of a sliding filament, 

actin and myosin perform cross-bridge cycling and pull on each other, allowing the 
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muscle to exert a linear contractile force in bulk. This process is fundamentally at ends 

with an EM that uses magnets in order to incite rotational force, or torque, about a rotor. 

However, PM’s also utilize a ratcheting mechanism, similar to that of muscle, in order to 

actuate motion. Thus, a biomimetic artificial muscle-tendon system (AMTS) has been 

designed in order to test and compare the performance characteristics of these two motors 

within the context of biomechanical function. 

In order to design a biomimetic AMTS, the physiology of the biological system is 

assessed and categorically prioritized into descending characteristics of importance. 

Muscle itself is arguably the most important element in the system. As stated above, this 

comparative study will look to EMs and PMs in order to compare their respective 

performances. However, another important observation identifies the muscle-tendon 

system as a series elastic actuator. These systems are essentially characterized by a force 

transmission to a load with an elastic element (e.g. tendon or spring) configured serially 

and in between the actuator and the load. This allows for a high-fidelity force control 

(given predictable deflections of the elastic element) as well as a broad dynamic range 

resulting from the capability of compliance to filter out chatter and unwanted vibrations. 

For these reasons a serial elastic configuration was designed for the robot. Although the 

benefits of series elastic actuators have already been demonstrated in many studies 

(Robinson et al., 1999; Pratt and Krupp, 2004), biomimetics has not yet been explored 

explicitly under the context of physiologically relevant parameter tuning (e.g. tendon 

elasticity, oscillation frequency, etc.). 

Besides the fact that a muscle-tendon system essentially behaves as a series elastic 

actuator, another important characteristic remains that of co-contraction. This means that 
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at any given time, two or more muscles may be pulling against each other about a joint. 

This particular design quality gives the system more flexibility and control over the net 

forces/torques to be asserted. Thus, the artificial muscle design incorporates two 

independent series elastic actuators in order to transmit a net torque about a central 

revolute joint while at the same time maintaining active levels of co-contraction. 

In order to assess the performance of EMs and PMs in the artificial muscle tendon 

system described in this document, a simple sinusoidal torque profile will be provided to 

the control system. This waveform will be prescribed to the system at various frequencies 

relative to the damped resonance of the system. Additionally, springs of varying elasticity 

will be applied to the system. An allometric analysis (Pollock and Shadwick, 1994) of 

tendon properties (e.g. cross-sectional area, resting length, etc…) was conducted by 

scaling motor torque to a biologically relevant body mass and consequentially, tendon 

properties. This analysis resulted in a relatively stiff spring. Thus, three different springs 

ranging from softer to stiffer (i.e. the stiffest being the most analogous to biological 

tendon) will be applied to the system. All trials will be tested with co-contraction levels 

relative to the maximum net-torque-inducing tension in the line (33%), which has been 

shown to occur in unpredictable biomechanical activities such as height landings 

(Yeadon et al., 2009).  

A relevant evaluation of actuator-specific performance will include error and 

system efficiency analysis. Here, error is defined as the difference between a prescribed 

torque/tension input to the controller and a measured torque/tension output via force 

transducers in the system. Current will also be measured in order to calculate electrical 

energy consumption so that it may be compared with mechanical output energy for an 
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analysis of system efficiency. By evaluating the system based on error and efficiency, the 

question of implicit force control and fidelity can be addressed under the context of a 

ratchet-based actuator as compared to an electromagnetic actuator. 

It should be noted that this document is laid out in a manner described throughout 

this paragraph. The organization is partitioned into four main chapters, the first of which 

comprises the current introduction. Chapter 2 describes the robotic testing platform, 

which was designed and built for this study. A thorough background and literature review 

is presented in sections 2.1 and 3.1. These include the subtopics of artificial muscle 

tendon systems, series-elastic actuators and motor comparisons (e.g. DC electromagnetic 

motors and piezoelectric motors). A description of general design foci is presented under 

the context of biomimetic function via sections 2.2 and 2.3 and it includes series-elastic 

actuators, co-contraction and the control system. Section 2.4 comprises of testing 

procedures utilized for the purposes of tuning different system parameters such as 

elasticity, mass moment of inertia, viscous damping, damped resonant frequencies and 

controller gains. Chapter 3 shifts the topic of focus from the robotic testing platform to 

the methodology and testing of different actuator types in a frequency domain. Finally, 

Chapter 4 summarizes the collective body of work with respect to the robotic testing 

platform as well as the specific motor study that was conducted. This summary depicts 

many of the most vital takeaway points as well as the potential of future work on this 

research. 
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Chapter 2: Robotic Testing Platform 

2.1 Background 

2.1.1$Artificial$Muscle1Tendon$Systems$
The concept of an artificial muscle is not a new one. In fact, perhaps the most 

famous and widely used artificial muscle was originally invented in 1958. Richard H. 

Gaylord developed the actuator now most commonly referred to as the McKibben 

artificial muscle. In the early 1960s, Joseph L. McKibben popularized the device by 

applying it to a wheel chair system for his paralyzed daughter, in an effort to restore some 

of her mobility and independence. However, the diversity of application did not stop 

there, and in the past several decades there has been much research (Klute et al., 1999; 

Tondu, 2012). on the various innovations of the McKibben muscle. 

Basically, its structure comprises of an inflatable bladder, which is sheathed with 

a double helical weave. By modulating the pressure of compressed gas inside of the 

bladder, it expands radially and contracts lengthwise. Although much of the design of the 

McKibben muscle seems obscure and at ends with the specific nature of biological 

muscle from an intuitive perspective (certainly muscle is not a pressurized gas), 

nonetheless, the driving point is that of contractile length actuation. In fact, it has been 

shown empirically that the McKibben muscle stands up to the task of biomimetic 

function in terms of its force-length relationships compared to that of biological muscle. 

However, it falls short at mimicking the characteristic force-velocity relationship that 

muscle so distinctly exhibits (Klute et al., 1999). Nevertheless, the McKibben muscle has 

certainly stood the test of time and thusly, it is used here as a characteristic example 

defining what is required of an artificial muscle at the most fundamental level. Again, the 
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fact that the McKibben muscle behaves as a contractile length actuator describes the most 

crucial distinction. 

 Given this qualification for an artificial muscle, it remains a fair question to ask if 

a rotary motor can ever truly be considered an artificial muscle. Certainly, the concept of 

rotation as the dynamic output of an actuator seems at ends with that of length 

contraction. However, a rotary motor may be coupled with a linear transmission in order 

to produce length contraction. In the research of current topic, 3D-printed plastic (ABS) 

spools were coupled to the motor shafts of electromagnetic motors and piezoelectric 

motors in order to instigate linear motion of a filament wrapping around the spool. 

It is important to note that this not only allows for length contraction at the 

filament but it also imposes a mechanical limitation in terms of how force can be 

transmitted from the actuator to the output of the system. This is to say that a filament can 

only transmit tension force and not compressive force. This particular attribute reflects 

the nature of a muscle-tendon unit in that both muscles and tendons can only interact 

through tension force. It should be noted that biological muscle is capable of lengthening, 

but only passively, by means of an external force (e.g. gravity) or a co-contractive muscle 

opposing its direction of action. 

Another characteristic of a muscle-tendon system is that of compliance in the 

tendon. In other words, a tendon is capable of relative displacement under tension and 

can return the energy of that displacement with very little hysteresis. Basically, the 

tendon acts as a linear spring. Thus, the relatively rigid filament wrapping around the 

spools on the motors is connected to a spring in series in order to give the design some 
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compliance. With these characteristics in place, the distinction of an artificial muscle-

tendon system (AMTS) is clear. Also, it should be noted that the configuration of an 

actuator in series with an elastic element is commonly called a series elastic actuator. 

This topic will be discussed more thoroughly in the following sub-section (2.1.2). 

 

2.1.2$Series$Elastic$Actuators$
Series elastic actuators (SEA) have found their way into robotics research largely 

over the past twenty years (Pratt and Williamson, 1995). Prior to this, the mentality of 

“the stiffer the better” was thought to be superior in terms of force transmission. 

However, researchers have recently shown that many of the limitations of elastic 

transmissions can be overcome and in fact, the benefits of elastic force transmission can 

far exceed that of its rigid counterpart (Pratt et al., 1995). This is especially true under the 

context of locomotive robots, where smooth force control is vital to a stable mechanical 

interaction with rough terrains. 

Not only have SEAs been proven in terms of their performance in isolated 

systems, but they have also been introduced into more complicated systems such as 

robotic organisms and exoskeletons (Pratt and Krupp, 2004; Veneman, 2006). As a result, 

great promise has been shown at the whole system level. Again, smooth force 

transmission provides a reliable and consistent quality benefitting the performance of 

force feedback in the control systems of such machines. 

One of the limitations undermining smooth force transmission in a rigid design is 

that of chatter, or excessive vibration. However, by placing a compliant component 
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(usually a spring) serially in between the actuator and the output of a given system, the 

compliance acts as a mechanical filter to the noise of vibration. Because most springs 

tend to exhibit very little hysteresis, nearly all energy gets returned to the device, 

including the vibrations it absorbs. However, there is also a time lag associated with the 

input of a given vibration and the output of that energy back into the system. As a result, 

the output of this noise is much smoother since it may be dispersed over a longer period 

of time. In other words, the noise’s energy is conserved, but its power is dissipated. 

Clearly, the spring is the defining element of an SEA relative to a rigid actuator 

system. As such, a large portion of research regarding these systems has focused on 

tuning the spring for optimal performance. In fact, appropriately tuned springs have been 

shown to help alleviate some of the adverse qualities of actuators such as DC motors and 

drives such as gear trains or belt drives. Specifically, higher spring constants can be 

shown to increase force bandwidth and lower spring constants can be shown to minimize 

stiction (i.e. static friction) and impedance (Robinson et al., 1999). Although many 

different actuators have been utilized for SEAs, piezoelectric motors have not yet been 

applied to such systems. This is likely because piezoelectric motors are not commonly 

thought of in the context of force feedback systems. Thus, the current topic of research 

intends to address this unexplored novelty. This subject will be explored more thoroughly 

in Chapter 3. 

!
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2.2 Design Foci in Biomimetics 

2.2.1$Design$Overview$
 The outlook perspective of design functionality dominated as a key component 

for consideration and continues to hold much sway in terms of the research described in 

this document. Not only was it required of the AMTS described to be an effective 

actuator system, but specifically the manner and strategy for actuation was determined a 

crucial attribute for biomimetic application. In other words, there are many ways to build 

a capable actuator system, but only a few ways to do so in a manner that reflects the 

biology of a muscle tendon system. Thus, a subtle balance must be drawn between 

designing a robust, capable machine and simultaneously prioritizing the most vital and 

fundamental attributes of the desired biology. The following paragraphs will describe and 

explain some of the key design realizations utilized for the most current iteration of this 

project. However, the specific points of biomimetic design will be left for discussion in 

future sections of this chapter. 

 Perhaps the most eye-catching feature of the AMTS is that of its load wheel. This 

particular component of the device acts as a baseline mass moment of inertia (MoI) to 

which, the actuators are designed to pull in rotation. In the biological analogy, the load 

wheel may be thought of as a body segment in rotation (e.g. a foot). The load wheel is 

bolted to a 3D-printed plastic (ABS) rail system that allows for additional 2.5lb weights 

to be added for increased loading. The load wheel is also mounted to a uni-axis torque 

transducer (Futek) on its underside. This torque transducer is assembled such that it can 

measure the reaction torque at the load wheel. It is also fixed to an aluminum plate 
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underneath it. The aluminum plate helps to isolate the transducer from mechanical noise 

and any relative motion seen beneath it.  

 Beneath the aluminum plate, an aluminum tube (outer diameter = 5/16”) acts as a 

center support for the torque transducer and the load wheel. It is also encompassed by a 

3D-printed triple-spool. This triple spool is utilized as part of a force transmission relying 

on two rigid filaments wrapping around the troughs of the spool. Thus, as tension forms 

in the filaments, rotation is incited about the spool and consequently, the tube, the 

transducer and the load wheel. It should be noted that the triple-spool was originally a 

double-spool. However, due to the continual force-couple resulting from one point of 

force contact hanging directly above the other, one of the filaments (the right side) was 

split into two at a “y” junction. Thus, the rogue moment was eliminated and the design 

was stabilized. 

 Beneath the center spool, the aluminum tube continues into a structural housing 

where two ball bearings allow for axial rotation about the tube. This revolute joint may be 

thought of similarly to a hinge joint in biology (e.g. an ankle). The structural housing of 

the joint is bolted to a rigid 80/20 aluminum structure that is mounted to the wall. Given 

the assumption of relatively low reaction forces at structural attachments, the 80/20 

mounts are likely overbuilt in terms of support. Regardless, it acts as a grounded fixture 

necessary in allowing for the negligibility of any structural effects such as swaying, 

bending or twisting.  

 From the center spool, the rigid filaments extend outward toward the outer 

extremes of the design. On the right side, the lowest and highest filaments are both 
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attached to a 3D-printed “y” junction. On the opposing side of the “y” junction, another 

filament attaches to an inline tension transducer (Futek). The left-side filament directly 

attaches to an identical tension transducer. These instruments are designed to measure the 

tension in the filaments, as well as everything else in series with the lines. The tension 

transducers may be considered analogous to Golgi tendon organs in biology. This 

functionality will be discussed further in future sections of this chapter. 

 Immediately distal to the tension transducers, linear extension springs are attached 

in series. These springs may be thought of as artificial tendons, capable of force 

transmission via tension and allowing for a predetermined compliance. Finally, a last 

piece of filament attaches the extension springs to two more single-spools on both sides 

of the actuator system. These single-spools allow for the filament to be wrapped around. 

They are also rigidly mounted via a setscrew at the rotary shafts of the motors just 

beneath. The motors themselves may be thought of as artificial muscles in the system. 

They are fixed to small sections of aluminum box beams, which are in turn bolted to the 

main 80/20 support frame. The main support frame may be thought of as a rigid skeletal 

structure that comprises the body of the entire system. An image displaying the design in 

full can be viewed below, both unlabeled and labeled (see Fig. 5 and Table 1) 
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Figure'1:'Design'diagram,'labeled'(bottom)'and'not'labeled'(top)'
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Table'1:'Design'diagram'legend'
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 The description provided in this section communicates a general overview of the 

actuator system, which was developed during the design phase of this research. The 

remainder of section 2.2 will delve into many of the specific foci, which were deemed the 

most appropriate in mimicking biomechanical function. Specifically, the following points 

will be discussed: (1) series elastic actuators as artificial muscle-tendon units (sub-section 

2.2.2) and (2) co-contraction in a flexor-extensor system (sub-section 2.2.3). 

 

2.2.2$Series$Elastic$Actuators$in$an$AMTS$
 In order to incorporate a series elastic actuator (SEA) into the design of an 

artificial muscle tendon system, it is important to first recognize the analogous elements 

of this design configuration. Specifically, these elements mainly comprise of the 

following: (1) an actuator (e.g. motor) ! biological muscle, (2) some elastic element 
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(e.g. spring) ! biological tendon and (3) a force (tension) transducer ! Golgi tendon 

organ. 

 It should be noted that an SEA does not technically necessitate a tension 

transducer, however this is one typical solution for introducing force feedback into the 

system. Often times, the length change of a spring can also be used for force feedback by 

taking advantage of Hooke’s Law.  

 Regardless of control sensors, the most fundamental interaction of an SEA 

remains the transfer of force from the actuator to the spring element. In the specific case 

of this AMTS, either an electromagnetic or a piezoelectric motor is used to wind a rigid 

filament around a 3D-printed plastic (ABS) spool in order to provide tension to its 

respective spring. The serial nature of this configuration guarantees a common tension 

felt throughout the line connecting the motor to the spring. However, this also implies 

that relative displacement between the two elements is non-uniform. Again, it is this 

relative displacement that is commonly used for measuring the tension resulting from the 

motor. However, placing a tension transducer in the same line eliminates a step from this 

calculation by directly measuring tension. Again, because tension is uniform in the line, 

the tension felt by the transducer is the same tension that the spring feels as well as the 

linear load acting on the motor through the radius of the spool and the actuation load 

acting on the center support tube via the radius of the center spool. The following 

equations describe the load on the motor and the actuation force pulling on the center 

spools in terms of the line tension: 

 



!
!

15!

!!"#$ = !!!"! ∗ !!! 

!!" = !!"! ∗ !!" 

 

 In the above equations, τload ! the torque load being felt by the motor, Ttot ! the 

total tension in the line, Rss ! the radius of the side spool (0.01m), τLW ! the torque at 

the load wheel and Rcs ! the radius of the center spool (0.01m). Because !!" = !!!! this 

means that the torque at the load wheel essentially is the load at the motor. This also 

means that there is a one to one gearing ratio between the motor and the output of the 

load wheel. Thus, ideally, any torque or rotational velocity of the motor should directly 

be transferred to the output at the load wheel. Of course, in actuality, there are always 

two actuators acting on the center spool at all times. As a result, the output is the 

superposition of both motors at any given time. 

 In terms of force feedback, the inline tension transducers are very similar to Golgi 

tendon organs in biology, which are connected to the tendon and muscle in series. When 

the muscle exerts a tension on the tendon, this same tension tightens strands of collagen 

that wrap around the afferent type lb sensory nerve fibers making up the organ. The 

action potential frequency of the resulting nerve impulse via tension stimulation signals 

the force being developed over approximately 10 or 20 motor units within the muscle. 

This signal is representative of the whole muscle force. The motor control system 

interprets this signal and regulates activities such as the transitions between stance and 

swing phases in the locomotion of certain animals (Conway et al., 1987). 

The following image (see Fig. 7) highlights both series elastic actuators while 

they are assembled in the system. 
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Figure'2:'Series'elastic'actuator'diagram 

 

 It should be noted that a rigid filament in series with an extension spring was 

chosen specifically and intentionally as an artificial tendon. Biological muscle is not 

capable of actively lengthening, otherwise called eccentric contraction. In fact, muscle 

can only elongate when its antagonist counterpart (or some other external force e.g. 

gravity) pulls it back. Similarly, a tendon cannot transmit force via compression, as in a 

rope, for example. Thus, the rigid filaments of the AMTS mimic this unidirectional 

behavior of the muscle tendon unit at the SEA level. 

 

2.2.3$Co1Contraction$
Co-contraction is an important concept in biology. In particular, the actuation of 

motion about a joint is nearly always regulated by at least two different muscle-tendon 
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units: an agonist and an antagonist. In biology, the agonist muscle is responsible for 

rotating some inertia (e.g. a leg segment) about its joint in a given direction, while the 

antagonist is responsible for opposing that motion in the opposite direction and with 

some magnitude. This opposing tension force is known as co-contraction. The idea of an 

agonist-antagonist muscle system should not be confused with the concept of a flexor-

extensor system. Generally speaking, a flexor is determined by which muscle folds a 

respective limb distally inward toward the body, while the extensor unfolds (i.e. extends) 

the limb. For the purposes of this research the agonist motor is defined as the actuator 

instigating a net torque, or driving torque, at the load wheel. Adversely, the antagonist 

artificial muscle opposes the driving torque in order to maintain an active co-contraction 

in the system. The following image (see Fig. 8) highlights the use of co-contraction in the 

AMTS of this research. 
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Figure'3:'Co>contraction'diagram'for'CCW'rotation'(top)'and'CW'rotation'(bottom) 

 

Although it may seem unintuitive, or even counter-productive to enlist an 

opposing muscle during co-contraction, there are actually great benefits associated with 

such a design. While it is true that utilizing an antagonist muscle for co-contraction will 

add an extra load to its agonist counterpart, it is also true that the added strain felt in the 
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tendon of the system acts as small potential energy reservoir that may be tapped for extra 

power as needed. In biology, this usually refers to a perturbation of some type. For 

example, a human standing on a raised platform can perform a height drop by falling to 

the ground. When this even occurs, extra co-contraction is employed in order to deal with 

the sudden perturbation via the normal force of collision (Yeadon, 2010). Effectively, this 

allows for the human to adjust their musculature in order to quickly stabilize and avoid 

injury. Essentially, the tendon stores extra energy that is released upon or shortly after the 

vertical collision with the ground. This allows the muscle-tendon system to do quick 

work for the goals just mentioned above. 

For the purposes of this research, a constant co-contraction was chosen depending 

on the experimental condition (e.g. torque magnitude). Specifically, the tension in the 

antagonist’s tendon was programmed to 33% of the waveform amplitude !!"# for each 

trial. This percentage was chosen as a result of previous research studying co-contraction 

levels in height droppings (Yeadon, 2010). In order to calculate 33%, torque was first 

converted into tension at the artificial tendon, via the following derivation: 

!!"! =
!!"#
!!"

+ !!! 

In the above equation, !!"#! the maximum amplitude of the target waveform, 

Tcc ! constant tension in the artificial tendon due to co-contraction, !!"! !  the total 

tension in the artificial tendon and Rcs ! the radius of the center spool (0.01m). Noting 

that a 33% co-contraction is desired for Tcc, the appropriate substitutions are made: 

!!"#
!!"

+ !!"!3 = !!"! 
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Thus, 

!!"#
!!"

= 2
3!!!" 

3
2
!!"#
!!"

= !!"! 

Knowing that: !!! = !
!!!"! 

We finally get, 

!!! =
1
2
!!"#
!!"

 

This equation resulted in tension !!! values of the following: 0.95, 1.34 and 

1.78N, given !!"# values of 0.019, 0.027 and 0.036 Nm, respectively. Because of the 

volatile nature of a height dropping in terms of perturbation, this is likely a higher than 

average amount of co-contraction seen in lower-limb activities typical of humans. 

However, it was nonetheless chosen in order to help address issues of sudden 

perturbation between the duel control systems of the AMTS. 

 

2.3 Control System 
 The control scheme of the AMTS is partitioned into two independent subsystems. 

The primary control is responsible for controlling torque output at the load wheel via the 

agonist motor, while the secondary control is tasked with modulating tension in the 

antagonist’s tendon (i.e. spring). By controlling tension in the spring opposing net torque 

about the load wheel, impedance can be utilized for perturbation rejection. In this way, 
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both motors are simultaneously tasked each with an independent control objective (i.e. 

two inputs, two outputs).  

 In order to simultaneously control both net torque about the load wheel and 

tension in the antagonist motor’s spring, three independent force transducers are utilized. 

For net torque control, a reaction torque transducer (Futek TFF325) (see Fig. 9 and Table 

4) is used to measure the instantaneous torque at the load wheel. For tension control, an 

inline tension transducer (Futek LSB200) (see Fig. 9 and Table 4) is used to measure the 

instantaneous tension in the opposing spring. Because only the tension on the antagonist 

side of the load wheel is regulated at a time, only two sensors are utilized simultaneously, 

while the other tension transducer hangs idly until the motors swap controller schemes.  

 

 

Figure'4:'Control'system'sensors,'Futek'torque'transducer'(left)'and'Futek'tension'transducer'(right)'

!

!

!

!

!

!
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Table'2:'Summary'of'transducers'

 

 

Table'3:'DAQ'hardware 

 

 

Although both controller subsystems have individual objectives, they both utilize 

a similar controller strategy, which has been well established over several decades of 

controller research. Specifically, a classic PID (proportional-integral-derivative) 

controller has been built for each control scheme. Since the PID controller refers to error 

regulation, it is mathematically defined in the following equation: 

!""#" = !"#$%& − !"#$%& 
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In the above equation, Target ! the prescribed target of whichever parameter is 

being controlled for (e.g. a sine waveform for net torque and a step input at some 

magnitude, for opposing tension) and Actual ! the instantaneous measurement of either 

the torque transducer (Futek) or the inline tension transducer (Futek). 

The proportional controller sends a control signal, which is proportional to the 

error by a constant Kp, as its name suggests. The integral controller sends a control signal 

that is proportional by a constant Ki to the integral of error over the controller time period 

1 !!"#$  where fctrl = 50Hz for both motor types. It should be noted that a trapezoidal 

rule algorithm was used to numerically calculate the integration of error in this part of the 

controller. The differentiator controller sends a control signal that is proportional by a 

constant Kd to the change in error over the controller time period described above. It 

should be noted that a variation of Newton’s difference quotient was used to numerically 

calculate the differentiation of error in this part of the controller. In order to converge all 

three methods (i.e. P, I and D) into a single, tangible control signal, they were all summed 

together. The final control signal was scaled by a master gain Km in order to approximate 

a linear conversion from pulse width modulation of voltage input to torque output at the 

motor. The following equations mathematically describe the controller operations: 

!"! = !! ∗ !""#"! 

!"! = !!! ∗ !""#"
!!!

!!!!!
!! ≈ !! ∗ ℎ ∗

!""#"!!! + !!!"!!
2  
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!"! = !! ∗
!
!" (!""#") ≈ !! ∗

!""#"! − !""#"!!!
2ℎ  

!"!"! = !! ∗ !"! + !"! + !"!  

In the above equation set, CS ! the controller signal, K ! the controller gain, 

Error ! the target minus the actual, h ! is the time step defined by the inverse of the 

controller frequency (50Hz), t ! time, subscript p ! stands for proportional, subscript i 

! stands for integral, subscript d ! stands for derivative, subscript m !  stands for 

master, subscript tot ! stands for total, and subscript j ! an iteration counter.  

The master gain was necessary in compensating for the lack of an established 

plant or model in the controller. Although, there has been much work performed on 

modeling the dynamics of electromagnetic motors over the past years (e.g. Krishnan and 

Pillay, 1989), the modeling of ultrasonic piezoelectric rotary motors has been somewhat 

sparse. Regardless, there has been some work done in order to characterize the dynamics 

of these actuators (Sun, 2010). However, these models are extremely complicated and 

require a very thorough understanding of subtle actuator characteristics, which are simply 

beyond the scope of this research. It has always been the prime objective of this author to 

ensure that a fair treatment of each motor type be given, such that an appropriate 

assessment is possible through the results of this study. Thus, any modeling discrepancies 

or inaccuracies could easily lead to a biased experimental result in terms of the 

performance of the respective motors. Thus, it was decided that a carefully tuned PID 

controller would suffice to control both motor types robustly enough for application, even 

without a thorough theoretical model of each motor type. 
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 An advantage of the control scheme outlined above is that both motors are 

constantly utilized to help control the system more effectively, regardless of their 

agonist/antagonist role. Another way to think of this strategy requires that the agonist 

motor play a lead role in controlling for net torque about the load wheel while the other 

motor supports this goal by regulating impedance in the system. 

 Although this control system implies that either subsystem is completely 

independent from the other, in reality, there is a very prominent physical interaction 

between the two. It is important to recognize that not only can the control systems work 

together, but sometimes they will also struggle against each other in a sequence of “tug-

of-war.” 

Take for example the antagonist motor tasked with actively maintaining a 

constant tension in its respective spring. As soon as the agonist motor begins to pull on its 

spring from the other side of the wheel in order to incite a net torque, the antagonist sees 

a spike in its tension. This instigates the antagonist motor to follow along with the torque 

motor in the same direction. In this case, both motors are decidedly working together 

towards a similar kinematic end goal. However, discord can emerge if/when the 

antagonist overshoots its goal of constant impedance. This commonly occurs when the 

agonist motor is approaching a local maximum of its prescribed sine waveform. When 

this happens, torque is reaching its maximum. This results in a more volatile control 

phase, with respect to a constant impedance scheme. As a consequence, the antagonist 

will often overshoot its target. This results in an amplified oscillation that also begins to 

perturb the net torque control with oscillations. A cascading effect can occur where both 

motors begin to pull against each other back and forward, resulting in an amplified sense 
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of overshoot for both control schemes simultaneously. A potential easing to this effect 

lies in the controller gains. By lowering the respective gains of the controllers, the motors 

will interact with perturbations less sensitively. In other words, this creates more 

tolerance for some level of perturbation at the cost of an increase in error. This becomes 

an important design limitation in terms of gains tuning for the control system. The topic 

will be expounded upon in sub-section 2.4.5 of this document. 

 

Figure'5:'Torque'controller'block'diagram'(top)'and'tension'controller'block'diagram'(bottom)'
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Table'4:'Controller'block'diagram'legend'
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2.4 System Parameter Tuning 

2.4.1$Elasticity:$Allometric$Scaling$and$Springs$Selection$
The elasticity of a series elastic actuator is paramount to its performance. 

Specifically, the spring constant ksp is used to characterize this property. It should be 

noted that Hooke’s Law for a linear spring states the following: 

! = −!!"∆! 

The above equation essentially indicates that force F is proportional to 

displacement ∆! of the elastic element, or spring. Thus, the primary question considers 

what an appropriate spring constant should be for an AMTS.  

 In biology, allometry (i.e. the study of scaling morphology to body size) is 

commonly used as a predicative tool for modeling different parameters of an animal’s 

body relative to its bulk mass or volume. To accomplish this, a power law equation is 

utilized in order to characterize this nonlinear relationship. A generalized power law 

equation has been listed below for the reader’s convenience: 

! = !!! 

Or in logarithmic form, 

log! = ! log ! + log ! 

 In the equations above, y ! the desired parameter prediction, x ! the known 

parameter, such as body size or mass, k ! the scaling coefficient and a ! the scaling 

exponent. 
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 By utilizing the allometric equations of specific muscle-tendon parameters, a 

“biologically relevant” spring constant was ascertained. In determining the necessary 

parameters needed to calculate the spring constant of a tendon, the following equations 

were formulated: 

Noting that ! = ∆!
!!
= !

! 

!!" =
!!
∆! =

!!
!! ∗ !!,!

= !! ∗ !!
!! ∗ !!,!

= !!" 

In the above equation, !! = !! !! !!  

Since ! = !!"  

And !! = !! in a serial configuration. 

In the above equation set, ! ! strain, ∆! !  a change in length, lo ! the resting 

length when no tension force is felt, ! ! stress, E ! Young’s Modulus, Fm ! the 

maximum force expected of the artificial muscle (e.g. motor), !! ! tendon strain,         

lo,t ! resting length of the tendon, Et ! Young’s Modulus of the tendon, !! ! the 

tendon stress, !! ! the muscle stress shown to be 0.3MPa (Close 1972; Wells, 1965), 

Am ! the cross-sectional area of the muscle, At ! the cross-sectional area of the tendon 

and Ft ! the tension force felt in the tendon. 

 Allometric curves (Pollock and Shadwick, 1984) were used to identify 

appropriate values for Am, At, lo,t, and Et, thus allowing for a solution of the ksp constant. 

The following table summarizes the scaling coefficients and exponents, which were taken 
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from the allometric curves. It should be noted that the Gastrocnemius muscle was chosen 

(somewhat arbitrarily) to scale the muscle/tendon properties. The allometric equations 

and curves are labeled “G” in the figure below (see Fig. 11). 

 

 

Figure'6:'Allometric'curves'for'scaling'muscle>tendon'properties'(Pollock'and'Shadwick,'1994) 
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 Once the biologically relevant spring constant was determined, multiple extension 

springs of different dimensions were gathered to include an appropriate range of stiffness 

for testing. A tension transducer (Futek) was fixed to a rigid mount on one end and the 

testing spring on its other end (see Fig. 12). The free end of the spring was attached to a 

variable load (0.85kg (30oz) or 1.3kg (45oz)) for testing. The mass was gently pulled 

downward at some arbitrary displacement. When the mass was released, the resulting 

oscillatory tension signal from the sensor was recorded in a Labview VI. The tension 

waveform was measured for its frequency and assumed to be equivalent to the system’s 

natural frequency. 

 

 

Figure'7:'Oscillating'spring>mass'model'for'testing'spring'constants 

 

 The above figure (see Fig. 12) is a free body diagram of the experimental system 

for testing spring constants. It represents a simple model of the system, which relies on 
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the assumption that any damping is negligible in the system. The following equation of 

motion mathematically characterizes the system based on the free body diagram: 

! + !!"
! ! = ! 

 In the above equation, ! ! the acceleration of the mass, ksp ! the spring 

constant, M ! the mass of the load, y ! the displacement of the mass and g ! the 

gravitational constant 9.81! !!! . Given the equation of motion listed above, the equation 

for system resonance frequency is given below. 

!! =
!!"
!  

Noting that: !! = 2!!! 

!!" = ! 2!!! ! 

In the above equation, fn ! the natural frequency of the system in Hz and !! ! 

the natural frequency of the system in !"#! . By utilizing the equations, the springs could be 

characterized via their elastic coefficients. It should be noted that three trials were run for 

every spring and at each load in order to verify the accuracy of the results. The 

experiment was also conducted using the exact configuration of the AMTS’s full tendon 

as assembled in the system. This was done in order to observe the contribution of spring 

elasticity to the system in relation to the contribution of elasticity in the filament and all 

of the connector pieces. Although these elements were assumed to be extremely rigid 

relative to the spring, this test was conducted to verify this assumption. The results of the 
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spring test are shown below (see Fig. 13) for the three springs that were chosen for 

application in the AMTS. 

 

Figure'8:'Spring'constant'test'results'

!

The bar graphs above show the results of the spring constant test. It should be 

noted that very little variance occurs in the data even for different loads tested. Also, the 

tendon elasticity tends to be slightly stiffer test for elasticity of just the spring. Finally, 

there is no statistical difference between the stiffness of the left tendon and the right 

tendon, even though its assembly is slightly different. The results of the selected springs 

via the spring constant test are summarized in the table below: 
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Table'5:'Summary'of'spring'constants 

 

!

2.4.2$Mass$Moment$of$Inertia$
The mass moment of inertia (MoI) for the system was determined by building a 

SolidWorks model of each rotating component and incorporating each component in a 

final assembly. In some cases, geometries were simplified slightly but the associated 

error in resulting mass MoI remains minimal. Also, the function that Solid Works utilizes 

in order to calculate these values was verified by comparing its values to theoretical 

values of simple geometries (e.g. a cylinder or tube). This verification process also 

ensured that the user was utilizing SolidWorks’ function properly. Finally, all bolts were 

assumed to be point masses contributing to the mass MoI via the following equation: 

!!"#$% = ! !! ∗ !!!
!!!!"#$%

!!!
 

!!"#$% = !!"#$ + !!"#$% + !!" 

In the above equations, Jbolts ! the total mass MoI for all of the bolts in rotation, i 

! the respective bolt number, Nbolts ! the total number of bolts rotating, mi ! the 

respective mass of bolt i (measured by an A&D Co. weight scale), ri ! the respective 
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distance between the point-mass representing the bolt and the axis of rotation, Jfixed ! 

the minimum mass MoI fixed in the system and JLW ! the mass MoI of the load wheel. 

The SolidWorks model is shown in the following images (See Fig. 14).  

 

 

Figure'9:'SolidWorks'mass'moment'of'inertia'model'

!

!

2.4.3$Damping$Effects$and$Modeling$the$Passive$System$
 In order to have a more robust understanding of the AMTS, a simple model of the 

passive part of the system (i.e. everything but the actuators) was deemed necessary. 
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Although elasticity had already been determined as well as the mass moment of inertia 

(refer to sections 2.4.1 and 2.4.2), any damping in the system had not yet been addressed. 

Thus, a simple model was constructed based off of the following block diagram (see Fig. 

15). 

 

 

Figure'10:'Model'of'the'passive'system'

!

 In the diagram (see Fig. 15) above, XL(t) ! the linear reference frame of the left-

side spring, XR(t) ! the linear reference frame of the right-side spring, θm(t) ! the 

reference frame for the center axis of rotation, RCS ! the radius of the center spool 

(0.01m), ksp ! the spring constant of the spring, m ! the total mass of all rigid bodies 

rotating, Jtot ! the total mass moment of inertia of all rigid bodies rotating, Xrel ! the 

end of the spring when it feels no tension, Xo ! the initial endpoint of the spring 
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assuming some pretension. The following diagram (see Fig. 16) shows a free body 

diagram of the passive system. 

 

 

Figure'11:'Free'body'diagram'of'the'passive'system 

 

The following equations relate the two linear reference variables accounting for 

the motion of the springs to the rotational reference variable defining the motion of the 

wheel: 

!! ! = −!! ! !!" 

!! ! = !! ! !!" 
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By summing all moments about the center of the circle and making the 

appropriate substitutions referenced above, the following equation of motion is derived 

for the passive system: 

−!!"!!! − !!!!! − !!!",!!!" !!!!" − !!,! + !!",!!!" −!!!!" − !!,! = 0 

Noting that: !!",! = !!",! = !!" and !!,! = !!,! = !! 

The equation of motion is simplified: 

!!"!!! + !!!!! + !2!!"!!"! !! = 0 

 The equation displayed above describes the rotational motion of the system. It 

should be noted that it was assumed the line attached to the idle motors does not slip, and 

is therefore fixed. Also, it was assumed that all damping was viscous in nature (i.e. 

proportional to rotational velocity). In order to understand the natural frequency of the 

system, the following equation was derived from the equation of motion. 

!! =
2!!"!!"!
!!"!

 

 Also, the damped resonant frequency can be defined by the equation below. 

!!" = !! 1− !! 

In the above equations, ωn ! the natural frequency of the passive system, ωDR ! 

the damped resonant frequency of the passive system and ξ ! the damping ratio 

characterizing viscous damping in the passive system. By solving for ξ, the following 

expression is derived: 
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! = 1− !!"
!!

! ! !
 

 In order to determine the damping ratio empirically, a simple experiment was 

conducted. While fully assembled and pre-tensioned, the load wheel was gently pulled on 

until it was displaced by some arbitrary angle. At the second the wheel was released, a 

stopwatch was initiated. At the maximum of every cycle, the stopwatch was pressed in 

order to measure the time period of the oscillations. Five trials were conducted for each 

of the three spring constants in order to verify that damping is constant in the system. 

Noting !!" = !!
!! , where !" ! the average time period of the measured oscillation, the 

damping ratio was solved for a total of fifteen trials, five per spring constant. Per the 

experimental method just described, an average value of ! = !.! was determined for the 

damping ratio of the system. Ultimately, this value signifies a predominant oscillatory 

nature. Because ! < !, the system is under-damped. It should also be noted that the 

damping coefficient of the system is calculated by using the following mathematical 

definition of the damping ratio: 

! = !!
!!

  

In the above equation, CC ! the critical damping coefficient, which is given by the 

expression !! = 8!!"!!"! !!"! . Thus, solving the above equation for the damping 

coefficient and substituting the expression for the critical damping coefficient derives the 

following: 
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!! = ! 8!!"!!"! !!"!  

The table below (see Table 8) indicates the final damping coefficients that were 

solved. 

'

Table'6:'Summary'of'damping'coefficients 

 

 

2.4.4$Tuning$the$Damped$Resonant$Frequency$for$Testing$Purposes$
 By successfully determining the damping ratio (refer to section 2.4.3), an 

important feat had been accomplished: a model for the passive system had been proven to 

conform to the physical system via resonance frequency testing. Thus, it was deemed 

practical to take advantage of the model for empirical bookkeeping. Specifically, a 

somewhat-arbitrary frequency was chosen for damped resonance, fDR: 0.35Hz. Although 

there is no special significance to this frequency, it happens to be a convenient frequency 

for the system, in terms of its order of magnitude. As was discussed in Chapter 1 of this 

document, high torque oscillation frequencies are not terribly common in the 

biomechanics of mammalian locomotion. For example, if the AMTS were applied to a 
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prosthetic ankle, high oscillation frequencies would be an unnecessary requirement for 

this kind of an application. 

 Because the elastic coefficients of springs in the AMTS have always been of vital 

interest, it was determined that three different spring constants should be tested for in the 

system (the determination of these spring constants is described in section 2.4.1 of this 

document), at different frequencies relative to resonance. However, because resonant 

frequencies are proportional to the square root of the elastic coefficient, this means that 

testing for different springs would result in a new resonant frequency for each condition. 

In order to eliminate this consequence, it was decided that every testing spring should be 

coupled with a different mass moment of inertia (MoI) in order to maintain the resonant 

frequency at the previously agreed upon value of 0.35Hz. 

 Thus, a strategy for modulating the system’s mass MoI was applied to the design 

of the actuator system. Utilizing a 3D-printed plastic (ABS) rail mounting system, 1.13kg 

(2.5lb) weights were placed on top of the load wheel at different radii away from the 

center of rotation. In this way, the flexibility of a variable radius allows for the system to 

feel the effects of the parallel axis theorem. This theorem is mathematically described 

below. 

!! = !!" +!!! 

 In the above equation, Jv ! the variable MoI comprising of a displaced rigid 

body, Jcm ! the MoI for the rigid body when rotation occurs around its center of mass, 

m ! the mass of the rigid body and d ! the distance between the axis of rotation and 

the axis of rotation occurring about the center of mass of the rigid body.  To summarize, 
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d was modulated along with the spring constant in order to maintain the 0.35Hz resonant 

frequency of the passive system.  

 Specifically, the equation for resonant frequency utilized in determining the 

damping ratio (section 2.4.3) was applied as follows: 

!!" =
1− !!
2! ∗ 2!!"! !!"

!!"!
 

Noting the following: !!"! = !!"#$% + 2 !!" +!!!  

Then, !!" = !
!!

!!!"! !!" ∗ !!!!
!!"#$%!! !!"!!!!

 

Finally, in order to determine the radius at which the added weights must be displaced, d 

is solved for in the following line: 

! = 1
2! ∗ 2!!"! !!" ∗ 1− !!

2!!!" ! − !!"#$% − 2!!"

! !

 

 In the above equations, fDR ! the damped resonant frequency, ξ ! the damping 

ratio of the passive system (described in earlier sections of this document), Rcs ! the 

radius of the center spool (0.01m), ksp ! the spring constant of choice, Jfixed ! the 

minimum mass MoI of the AMTS without any added weights, Jcm ! the mass MoI of 

the added weights rotating about their centers of mass, m ! the mass of the added 

weights (2.5!" ≈ 0.45!") and d ! the distance between the axis of rotation about the 

center of mass of the added weights and the axis of rotation of the load wheel. 
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 In application, an infinite degree of freedom with respect to the precision of 

variable radius d is not practical for accurate measurements. Thus, resonant frequencies 

were calculated as a function of d by varying its value in discrete and manageable 

measurement increments (e.g. 0.5cm). The resulting frequencies were very close to the 

0.35Hz target and were all within a tolerance of less than 1% difference. The following 

table summarizes these results (see Table 9). 

 

Table'7:'Summary'of'mass'moment'of'inertia'and'resulting'resonant'frequencies 

 

 

2.4.5$Tuning$Controller$Gains$
It is well understood that tuning a controller for a dynamic system is vital to the 

capacity of its function. However, what remains less clear is how to tune a given system. 

Regardless, there have been many different attempts to optimize this process. Much of 

this varying consideration can be attributed to the specific objective of the controller. For 

example, there are specific controllers meant to minimize or even eliminate overshoot in 

a system. This is called an over-damped system. 
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In the specific case of this artificial muscle-tendon system, a simple, classical 

approach has been taken. The PID controller has been implemented as a way of dealing 

with many of the transient unknowns in the system. Specifically, the piezoelectric motors 

introduce many unknown qualities that are inherently influential in the dynamics of the 

system. Although there have been mathematical models devised previously, which take 

these issues into account (Sun, 2010), they are extremely complicated and sensitive to the 

specific parameters of a given specific motor. This in conjunction with the inherent 

empirical nature of the project has led to the conclusion that developing such a model 

would be beyond the scope of this research. 

Thus, a PID controller system was developed in order to deal with the various 

unpredictable behaviors of the system as a whole. In terms of tuning the various gains, a 

classical Zeigler-Nichols tuning (Ziegler and Nichols, 1942) was implemented in order to 

address the importance of perturbation rejection. Specifically, perturbation is an 

extremely important consideration for the controller, which is a result of dueling 

controllers running simultaneously, and blindly with respect to one another. The 

following equations describe the classical controller: 

!! = 0.6 ∗ !! 

!! =
2 ∗ !!
!!

 

!! =
!! ∗ !!
8  
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 In the above equation set, Kp ! the proportional gain, Ki ! the integral gain, Kd 

! the derivative gain, Ku ! the minimum gain necessary to achieve oscillation around a 

set point when Ki = Kd = 0 and Tu ! the time period of Ku’s oscillation.  

Specifically, when one controller system reads feedback from the torque sensor 

(Futek), the other reads feedback from the tension sensor (Futek). In this way, the system 

is capable of providing a net torque at the load wheel while also regulating co-contraction 

in the antagonist motor. While this duel controller system is very effective at controlling 

for each individual objective, it can be tiresome for the system to deal with the two 

simultaneously. This is because every jump in the control signals for each controller acts 

as a perturbation to the other controller. In this way, each control system is constantly 

being challenged to reject perturbations from the opposite controller. For example, when 

the actuator starts at rest but begins to provide a net torque in a given direction, the 

constant co-contraction is perturbed by this tug coming from the other motor. Thus, it 

must deal with this sudden impulse as a perturbation. Similarly, the torque controller 

must deal with tugs on the line from the constant co-contraction controller as a relentless 

barrage of perturbation acting on the net torque of the load wheel. In order to deal with 

this constant volley of tugs between the agonist and antagonist motors, the Zeigler-

Nichols tuning has been chosen to determine the proportional, integral and differentiator 

gains, or Kp, Ki and Kd respectively.  

In addition to the three gains of the PID controller system, a master gain was 

applied to each controller system, Km. This master gain, when applied to the controller, 

scales up the proportionality of each gain relative to the next. This is necessary in order to 

compensate for the lack of an active model (i.e. a model including actuation) for the 
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system. The scaling of the master gain Km was tuned empirically with the prime objective 

of minimizing error. Thus, in order to not bias the performance of the system in terms of 

the controller gains, the master gain for each individual parameter being tested was 

individually tuned by hand. The table below (see Table 10) lists all of the master gain 

values utilized in ever trial.  
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Table'8:'Summary'of'master'gains'used'during'experimentation 
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Chapter 3: Performance Evaluation of Actuators 

3.1 Actuator Comparisons 

3.1.1$Electromagnetic$Motors!
Electromagnetic Motors (EMs) have played a significant role in robotics research 

over the past several years. They are cheap, powerful, and provide a practical controller 

interface for most typical applications. Additionally, it is convenient that they scale up 

easily for higher or lower power applications. However, there are other design attributes 

that significantly limit the capacity of EMs to be more useful actuators, especially for 

biomimetic applications. Some of these limitations include the following: high velocity 

domain, reliance on bulky force transmissions (e.g. gear trains) for appropriate dynamic 

range, counter-electromotive force (CEMF), motor burnouts due to stalling, and etc… 

One of the defining characteristics of electromagnetic motors remains their 

inherent propensity to spin at high rotational velocities. In some applications this is a 

positive attribute. For example, tattoo artists sometimes use a particular type of ink gun 

called a “rotary mechanism”. These machines basically utilize a crank-rocker mechanism 

where the output link is not fixed. Instead it is transformed from rotational motion to a 

linear motion at the tip by being guided into a closed funnel at its end. This allows the 

mechanism to output a small stroke of linear motion. In this application, an EM is ideal, 

because low force is required at very high velocities. However, this application is very 

much at ends with the kinds of needs that a locomotive robot or prosthetic limb might 

require. In other words, high rotational velocities must be transformed into a lower 

velocity domain in order to provide force-velocity properties appropriate for an artificial 

muscle. 
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Another problem with utilizing EMs for low velocity ranges is that of power 

capacity. For any motor, which has a linear force-velocity curve, a maximum power 

capacity can be found at 0.5*nnl, where nnl is the rotational velocity of the motor with no 

load. However, because nnl is typically very high, this means that the maximum power 

capacity of an EM tends to occur at very fast speeds. Thus, when utilizing an EM at low 

speeds, as would likely be necessary for biomimetic function, very little of the actuator’s 

total power capacity is available. This effect can be seen in the following picture (see Fig. 

1). It should be noted that this curve represents a general trend and is not representative 

of any specific data set. In other words, it is not to scale. 

!

Figure'12:'Low'force>velocity'ratio 
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In order to transform the force-velocity relationship indicative of electromagnetic 

motors, force transmissions such as gear trains are commonly used. Basically, by 

providing an interaction of the motor’s rotor with a set of meshed gears, the system is 

capable of outputting a higher force/velocity ratio. While this is a common solution to the 

problem in robotics, there are many design disadvantages to gear trains, such as static 

frictional effects and efficiency losses. These unfavorable characteristics will be explored 

more thoroughly later in this section. 

 

3.1.2$Piezoelectric$Motors!
Piezoelectric actuators represent a relatively new material innovation in actuator 

potential. However, there have been a number of designs developed over the past several 

years. Under the context of this project, ultrasonic rotary piezoelectric motors (PMs) have 

been selected based off of several design constraints. For an appropriate application to 

biomechanics a high torque-to-velocity relationship is required of its actuation. This 

parameter is based on the ratio of stall torque τstall to no-load velocity nnl, which tends to 

be fairly large in PMs relative to other actuator types. A generalized force-velocity curve 

is shown in the picture below (see Fig. 2). It should be noted that this curve represents a 

general trend and is not representative of any specific data set. In other words, it is not to 

scale. 

Because piezoelectric motors exhibit a high force-velocity ratio, this also means 

that their peak power capacity occurs in a lower velocity range than that of 

electromagnetic motors. Thus, when utilizing PMs for actuation in biomechanical 

applications, a higher potential power capacity is available for consumption (see Fig. 2). 
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Figure'13:'High'force>velocity'ratio'

!

In order to transform the force-velocity relationship of an actuator, gearing is 

typically required. Electromagnetic motors (EMs) are a good example of this. As was 

iterated previously, EMs almost always require gearing, save for the smallest torque 

applications that rely on high speeds. Although gear drives could be applied to PMs for 

the opposite effect (i.e. speeding them up), it is perhaps more sensible to utilize particular 

actuators, which inherently exhibit a force-velocity relationship matched to the desired 
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output of a design. This rationale is justified by the dynamic limitations of gear drives in 

general.  

Specifically, meshed spur gears are known to exhibit the following 

characteristics: (1) gear-windage losses, (2) static friction, or stiction (3) backlash and (4) 

mechanical failures due to stress concentrations. Windage effects describe the power 

consumption necessary to rotate the pinion and gear in the air-oil environment of a 

typical gearbox. Stiction refers to the static friction that gears must overcome at the 

interaction of their meshed teeth. Backlash exists in a non-ideal gear train where the teeth 

do not perfectly mesh. Basically, when small gaps exist between the teeth, there is always 

a lag when gears change direction and the gap must be made up before contact may be 

reestablished. This results in a small collision, which may cause vibration in the gear 

train. 

All of these imperfections can comprise of a compounding detriment with 

mechanical consequences specific to the efficiency of its system. It has been shown 

empirically and theoretically that these effects can result in efficiencies anywhere 

between 98 and 99% per meshed coupling (Anderson and Loewenthal, 1980). Although 

these numbers may not sound high, the accumulation of multiple meshed-gear couplings 

can escalate losses rather quickly. For example, a 1000:1 micro metal gear motor from 

Pololu Robotics & Electronics contains seven meshed-gear couplings. Assuming an 

average efficiency of 98.5% per mesh, the gear train results in a total efficiency of 

slightly below 90%. This represents a significant amount of power loss in the system. 
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A fair alternative to gearing the output of a particular actuator is to choose one 

that already matches the ideal dynamics required of the system. Thus, for a 

biomechanical application, a high force-velocity ratio can be conveniently found in 

piezoelectric actuators. It should be noted that there is a fundamental feature found in 

both piezo-based actuators as well as biological muscle, which dominates their similar 

force-velocity characteristic. Ratcheting describes the basic operating principle, to which 

both actuators adhere.  

In biological muscle, myosin heads are drawn toward the charged actin filament 

via a chemical bonding potential. As a muscle contracts, its myosin heads pull along the 

actin filament in synchronous manner. Thus, a bulk linear motion is dominated at the 

most fundamental level by this micro interaction. Similarly, piezoelectric motors utilize a 

small ratcheting mechanism of their own in order to output bulk motion. Specifically, 

ultrasonic rotary PMs maintain a ceramic-based core, which pulsates at a standing wave 

frequency of approximately 70~80Hz (www.discovtech.com/). As the piezoelectric core 

pulsates, stainless-steel blades called “pushers” are essentially wedged into the rotor. The 

pushers experience resonant vibrations at the ultrasonic resonances and elliptical 

displacements occur at their tips as a result. The elliptical pattern is designed to push the 

rotor along its inner surface such that bulk rotation occurs. The following images depict 

this interaction (see Fig. 3 and Fig. 4). 
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Figure'14:'Cross>section'of'a'piezoelectric'motor'

!

 

Figure'15:'Piezoelectric'motor'diagram'demonstrating'a'traveling'wave'

!

 Although substantial models have been developed in order to predict some of the 

dynamic traits that ultrasonic rotary piezoelectric motors exhibit (Sun, 2002), they tend to 

be very complicated and extremely sensitive to appropriate input parameters of the model 

such as modeling of the ceramic materials in the lead zirconate titanate core of the motor. 

It should be noted that the research described in this document primarily emphasizes an 

empirical-based approach for actuator comparisons. Although the promise of modeling 
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cannot be denied, the basis of its process in this research is beyond the scope of 

experimental-based work in terms of the AMTS design and performance measurements. 

There are many benefits of PMs that are unique to their specific design. One such 

attribute is its extremely high angular stepping resolution and accuracy. Specifically, a 

DTI PM-20R piezoelectric motor is capable of resolutions less than one arc-sec and an 

absolute accuracy of four arc-secs in its closed loop mode when using a high-resolution 

optical encoder (http://www.discovtech.com/). This particular trait is specifically made 

possible due to the small stroke of its ratcheting mechanism. 

 Another remarkable characteristic of PMs is that of an extremely fast response 

time (10-50µs). This ultra-fast sensitivity is due to a capacitive input impedance on the 

level of nano-farads as compared to the inductive input impedance of EMs on the level of 

milli-henries. PMs are also capable of being stalled safely and without a risk of the motor 

burning out. This is because a stall out turns out to be a simple mechanical jam at the 

steel pushers against the rotor. Similarly, when these actuators are not powered, they act 

as passive mechanical brakes, which require no additional electrical consumption. 

 Due to the incentive and unusual characteristics of piezoelectric motors, their 

conventional application in robotics has thus far been limited to high-resolution position 

controllers (e.g. an actuator for an electron microscope) and micro-actuators (Uchino, 

1997; Flynn et al., 1992). However, piezoelectric motors have not yet been considered in 

larger biomechanical systems and specifically for the purposes of an artificial muscle. 

Thus, it is proposed that perhaps the superior position control of PMs can translate into 

more resolute force/torque control and fidelity as well. Specifically, the ratcheting 
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operating principle of PMs are considered for the specific application of biomechanical 

function in an artificial muscle tendon system. 

 

3.1.3$Choice$of$Specific$Actuators$for$Artificial$Muscle$
Although the AMTS of current topic was designed with specific objectives in 

mind, it remains an effective testing platform flexible enough for evaluating a multitude 

of rotary motors. However, this study concerns itself with the specific comparison of 

electromagnetic motors to piezoelectric motors. Again, the context of a biomimetic 

application with respect to biomechanical function is vital to the testing backdrop of this 

study. Thus, these two motor types are incorporated into the design for the most relevant 

comparison. 

The choice of electromagnetic motors for the study was made in order to 

represent a sort of “bread and butter” actuator type within robotics industry today. 

However, the concept of utilizing piezoelectric motors for force feedback in 

biomechanical robotics is a somewhat novel idea. Thus, the intent is to compare the 

respective motor performance of a typical actuator with a non-typical actuator. 

Specifically, the models representing both motor types were chosen by a couple 

of key manufacturing specifications. In order to match the inherent dynamics in both 

actuators, stall torques and no-load speeds were specifically compared. Also, weight and 

current draw were considered. These considerations helped result in the particular 

actuator choices summarized in the following table (see Table 2). 
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Table'9:'Motor'specifications'table 

 

 

It should be noted that the no-load speed of the particular electromagnetic motor 

chosen is in fact slower than that of the piezoelectric counterpart. Although this 

specification may seem at ends with the concept that electromagnetic actuators tend to 

have a low force-velocity ratio, it is recalled that this conclusion considers a pure motor 

output, before any gearing or transmission. Thus, it should be pointed out that the 

electromagnetic motors are only capable of exhibiting such low speeds with its 986:1 

gearing ratio. In reality, the actuator’s implicit no-load velocity is approximately three 

orders of magnitude faster. 

The following are example images of the two motor types (See Fig. 6). 
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Figure'16:'Piezoelectric'motor'choice'(left)'and'geared'DC'motor'(right)'

!

Table'10:'Auxiliary'hardware'

 

 

3.2 Testing Protocol, Results and Discussion 

3.2.1$Methods$
The identification of some quality or measurement with respect to the 

understanding of a physical nature desired is extremely vital to the organization of 

experimental design. In other words, in order to understand a path forward, one must 

identify an end goal. Of course, paths are not always readily available or clear from the 

outset, especially in research and science. However, the clarity of an objective can 

oftentimes bleed precedence into the clarity of a trajectory. Simply put, planning helps 
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organize the process. Thus, a few key parameters were identified early on such that an 

appropriate experimental design could be outlined for this particular research. 

Specifically, error E has been earmarked as an important measure of fidelity with 

respect to the controller signals of both control schemes (i.e. net torque and opposing 

tension). Additionally, another key parameter was identified for empirical monitoring: 

system efficiency, η. In less formal terms, these two parameters (i.e. error and efficiency) 

were chosen in order to shed light on the performance of EMs and PMs relative to one 

another and in the context of a biomimetic AMTS. Thus, an appropriate experimental 

design was developed under the constraints of measuring the necessary parameters for 

error and efficiency. 

Given that the control subsystems of the AMTS already rely on error between the 

target torque/tension profile and the instantaneous measurement(s) of torque/tension that 

the system is physically experiencing, this was an easy parameter to measure for data 

analysis. Simply put, the instantaneous error for both torque control and tension control 

was saved with each iteration of the controller frequency (i.e. 50Hz), per trial. However, 

in order to run a single experimental trial, there was a thorough preparation process. This 

process will be described in the paragraphs and organizational table (see Table 11) 

following immediately below. 

The first step in an experimental trial run typical to this study involves the 

identification of the following parameters: motor type (e.g. EM or PM), condition 

number (e.g. C1 ! C3), frequency number (e.g. f1 ! f6), and trial number (e.g. 01 ! 

03). The motor type refers to the motors being tested in the particular trial. The condition 
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number refers to a whole suite of parameter settings, which are all dependent on each 

other. The frequency number refers to the prescribed frequency of the controller sine 

waveform. Finally, the trial number refers to how many times the particular combination 

of parameters has been run. The following table summarizes the different parameters 

combinations that were tested (see Table 11).!!

!

Table'11:'Testing'parameter'combinations'

!

 

It should be noted that the all of the values associated with the condition number 

parameters were determined as a linear function of the spring constant in condition 

number three. This means that since the spring constant in condition number two is 

approximately three-fourths of this value in condition number three, then the prescribed 

torque magnitude, the mass moment of inertia and the co-contraction tension of condition 

number two are all approximately equal to three-fourths of the value of their respective 

counterparts in condition number three. Thus, the proportionality of all of these 

parameters was kept constant for each condition number. In this way, the experimental 
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design allowed for different spring constants to be tested independently of competing 

parameter changes, the hope being to isolate any unintended parameter change effects in 

the performance of the actuator system. 

 Another point worth mentioning is the selection of specific prescribed frequencies 

for testing. First, all frequencies were chosen relative to the damped resonant frequency 

(fDR = 0.35Hz) of the system. Because it is physically impossible to test every range of 

frequencies relative to the damped resonant frequency, the span of a single order of 

magnitude was chosen and partitioned into six discrete frequencies increasing by 0.5*fDR 

each time. The following range approximates this order of magnitude: 0.1 ! 1.0Hz. This 

range was decided upon because it is the order of magnitude containing the damped 

resonant value as well as a relevant range of biomimetic frequencies. Although biological 

muscle-tendon systems are not absolutely restricted to this range of oscillation 

frequencies, it is capable of characterizing most typical function. 

 Once all of the parameters were identified, the Labview virtual instrument (VI) 

executed its code. The power supply was turned on as well as the DAQ system. Next, all 

transducers were nulled via a custom built Labview function where all data was averaged 

over a five-second time period. The resulting mean values were stored in the program and 

subtracted out from the measured signals throughout the rest of the trial. In order for the 

tension transducers (Futek) to be nulled, they were disconnected from the line and hung 

free of any tension in order to get an accurate null value. Similarly, no motion was 

instigated about the torque transducer (Futek) so that an accurate null value could be 

found. No signal was sent to the motors such that an accurate null value could be found 

for the current running through the shunt resistors.  
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 After the null values were calculated, the tension transducers (Futek) were 

reconnected in series with the springs. Next, the Labview code executed a while loop in 

order to pre-tension the tendons to the appropriate tension equivalent to the set point of a 

given trial. In this way, the trial would begin with no error (ideally). As the AMTS was 

pre-tensioned, the load wheel was rotated until both springs were approximately 

equidistant from the axis of rotation. This centering task would help ensure that a sensor 

or spring never got wrapped around the center tube support. If it did, this trial was thrown 

out and not recorded. 

 Finally, with the system pre-tensioned and centered, the Labview code would 

begin a standby phase of the trial. This means that actuator system attempts to provide net 

torque at the load wheel even though no data is being collected yet. During this stage, all 

final master controller gains were fine-tuned and the device was given a few cycles to 

reach a steady-state operation. Also, a Miro camera (Vision Research) was set to capture 

video of the tension transducer’s displacement as a function of time such that eventually 

this could be used to help calculate mechanical power output via the output velocity of 

the system. All of the camera settings are organized in the table below (See Table 12). 

'

Table'12:'Miro'camera'settings 
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Once the steady-state operation of the AMTS was reached, a record function 

coded into Labview was indicated such that data collection would begin at approximately 

the beginning of the next cycle. The record function would collect data for five full cycles 

and continue on for a sixth cycle such that no braking effects would alter the data during 

the last cycle. After the last cycle was completed, a post-trigger digital signal was sent to 

the Miro camera in order to stop filming and synchronize the data. The video frames 

associated with the trial were saved by indicating the total number of frames recorded. 

This calculation is provided in the line below: 

!"#$%!!". !"!!"#$%&!!"#$%&"& = ! 1! ∗ !!"!#$% ∗ !!"# 

In the above equation, f ! the input frequency of the prescribed torque target, 

Ncycles ! the number of cycles recorded (5) and fcam ! the frame rate of the camera 

(50Hz). 

This being a typical trial run, three trials were conducted for a total of fifteen 

complete cycles for each of the thirty-six parameter combinations resulting in a total of 

one hundred and eight trials for the study. For every one of the one hundred and eight 

trials, two different error profiles were recorded: one for torque error and one for tension 

error. After all of the torque errors were recorded and saved, they were read in a separate 

Labview VI. When executed, the VI prompts the user to choose which files to read. After 

the appropriate file for the desired trial is picked, the VI takes both error profiles and 

sums the absolute value of the individual elements in each error array in order to have a 

total sum of error for every cycle in a particular trial. This summed error is then divided 

by the number of data points in the cycle. This produces an average amount of error 
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magnitude per data point. Once these values were calculated for all fifteen cycles in three 

trials for the particular set of parameters, a final average was found for the error 

magnitude per data point. Finally, these errors were normalized to the magnitude of the 

prescribed torque profile for torque error and the magnitude of co-contraction for the 

tension error. The following equation mathematically describes the error-calculating 

algorithm, which was just explained. 

!"##$%&'(!!"!!""#" = ! (!"#.−!"#. )
!!!!"

!!!
 

!"#.!""#"!!"#!!"#$% = !"##$%&'(!!"!!""#"
!!"!#$%

  

!"#.!""#"!!"#!!"#"!!"#$% = !"#.!""#"!!"#!!"#$% ∗ !
!!"#$

 

 In the equation set above, Ndp ! the number of data points in a given trial, Tar. 

! the target torque/tension prescribed for the trial, Act. ! the instantaneous 

measurement of torque/tension that the system is experiencing, Ncycles ! the number of 

cycles per trial (5), f ! the prescribed torque frequency for the trial, fctrl ! the controller 

frequency (50Hz). 

 Error for both torque and tension was tabulated for every condition and frequency 

tested. Finally, all of these data were plotted for comparison. It should be noted that these 

results are shown and discussed in section 3.2.2 of this document. 

 It should be noted that the same set of the trials used to measure error were also 

used to measure system efficiency. However, different methods and measurements were 
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taken. Generally speaking, efficiency is always a ratio of a system’s energy output to its 

energy input. In the case of this AMTS, the output is defined as the mechanical energy of 

the load wheel rotating and the input is its electrical energy consumption. This equation 

can be found below. 

!""#$#%&$' = 100% ∗ !"#ℎ!"#$!%!!"#$%&!!"#$"#
!"#$%&'$("!!"#$%&!!"#$%&'()"#  

In order to calculate electrical energy consumption, voltage and current were 

measured with National Instruments DAQ card, PCI-6251. Specifically, a shunt resistor 

was placed in series with each motor driver and the motor being driven. Thus, using 

Ohm’s Law, the voltage differential measured over the shunt resistor could be divided by 

its resistance in order to get the current in the circuit. Ohm’s Law is solved for current in 

the equation below. 

! = !!!!"#
!!!!"#

 

In the above equation, Vshunt ! the voltage differential measured over the shunt 

resistor, Rshunt ! the resistance of the shunt resistor and I ! the current in the circuit. 

For practical purposes, this shunt resistor was placed after the motor driver circuit 

but before the motor in the case of the electromagnetic motors and before both the driver 

circuit and the motor in the case of the piezoelectric motors. Thus, the total voltage 

feeding current to the PMs was always the programmed value of the power supply, or 

!!" = 12!. However, because the shunt resistor was placed after the circuit in the case 

of the EMs, the voltage was expressed in terms of the circuit’s current (which is 
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conserved since the resistor is in series with the motor) and the motor’s resistance via the 

following equation. 

!!" = ! !!"!!"
 

In the above equation, VEM ! the voltage of the electromagnetic motor, IEM ! 

the current in the circuit of the electromagnetic motor and REM ! the resistance of the 

motor (measured by an ohmmeter to be 15.5Ω). In order to calculate instantaneous 

electrical power consumption by the motors, the following equation was used. 

!!"!# = ! ∗ ! 

 In the above equation, Pelec ! electrical power consumption, V ! voltage and I 

! current. It should be noted that the power eaten up by the shunt resistors themselves 

was not considered. This is because the voltage measurements were nulled while the 

loads of the resistors were being powered. Another important point of discussion lies in 

the selection process of the shunt resistors. There were two opposing design constraints, 

which were considered when choosing these resistances. The first constraint observes the 

fact that Ohm Law predicts a larger voltage differential at the resistor when its resistance 

is higher. This is because voltage is proportional to resistance. Thus, a large enough 

resistance was deemed necessary in order to get a signal with an acceptable signal-to-

noise ratio. At the same time, the larger the resistor is, the more power dissipation occurs, 

leading to a decrease in efficiency. Thus, it was also deemed that the resistance of the 

shunt resistor should only be as large as it had to be. 
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 To address this issue, a very small resistor was tested for voltage signals in the 

condition with the lowest expected current draw (condition number C1 at frequency 

0.175Hz). The resistance of the shunt resistor was slowly increased until a legible signal 

could be read. This method resulted in a shunt resistor of 10Ω for the case of the 

piezoelectric motors, and a resistance of 0.47Ω for the electromagnetic motors. Although 

it may seem that the shunt resistor of the piezoelectric motors may have resulted in more 

power dissipation due to a higher amount of resistance added to the circuit, this is not 

necessarily true. In actuality, it is the relative resistance of the shunt resistor to the total 

resistance of the entire circuit, which dictates what percentage of power dissipation 

occurs at the shunt resistor. Thus, due to the fact that the piezoelectric materials generally 

have a much higher resistance than the armature of an electromagnetic motor, the 

discrepancy is to be expected. 

 For all trials, electrical power consumption of each motor was recorded and 

saved. The power consumption for each motor was then summed together to give the 

total electrical power consumption over time. Once all trials were completed, the total 

electrical power consumption profile was integrated over the time of the five completed 

cycles in order to calculate the amount of electrical energy consumption for the full trial. 

This value was then divided by the number of cycles in the trial (5) in order to get an 

average value of energy consumption per cycle. The following equations describe the 

mathematical process explained just above. 

!!"!# = ! !!"!#,! + !!"!#,! !!" 
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!"#.!!"!# =
!!"!#
!!"!#$%

 

 At the same time that electrical power consumption was being recorded during the 

trials, mechanical output power was being monitored via the velocity of the lines feeding 

the load wheel’s axis of rotation as well as the tension in the lines. Specifically, a Miro 

camera from Vision Research was used in conjunction with Phantom Camera Control 

(PCC v2.5) image capture software and a marker tracking function built for MATLAB by 

Ty Hedrick of the University of North Carolina at Chapel Hill (Hedrick, 2008). 

 Although the output power of the AMTS can clearly be defined by the force and 

velocity of the load wheel, these parameters could not give any insight on the efficiency 

of individual motors (e.g. left or right side). Thus, assuming that the tendon lines never 

go slack (i.e. tension = 0 N), the rotational velocity of the wheel must be proportional to 

the linear velocity of the lines pulling on the center support tube. This linear relationship 

is given by the following equation: 

!!" = !!"#
!!"

 

 In the above equation, ωLW ! the rotational velocity of the load wheel, vlin ! the 

linear velocity of the line wrapping around the center spool and Rcs ! the radius of the 

center support tube (0.01m). Similarly, the torque magnitude felt at the load wheel must 

also be proportional to the tension felt in the line minus the opposing pretension. This 

linear relationship is shown in the equation below. 
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!! = !!"! − !!! = !
!!"
!!"

 

 In the above equation, Tτ ! the tension driving net torque at the load wheel, Ttot 

! the total tension in the line, Tcc ! the co-contractive tension in the line opposing net 

torque, τLW ! the torque felt by the load wheel and Rcs ! the radius of the center spool 

(0.01m). It is also noted that mechanical power may be defined by the following 

equation: 

!!"#! = ! ∙ !  

 Thus, assuming that the line is approximately horizontal (i.e. the tension force 

vector is oriented in the same direction as the horizontal component of the velocity 

vector)… 

!!"#! = !! ∗ !!"#,! 

 In the above equations, Pmech ! the mechanical power output of the system, ! ! 

force vector, ! ! velocity vector, and Tτ and vlin,x are defined in earlier equations. It 

should be noted that in reality there were very small amounts of power dissipation at the 

rotating joint in between the tension lines and the load wheel. However, these losses were 

assumed to be small enough to neglect, given that ball bearings typically result in 

minimal losses relative to the total magnitude of power in the system. 

 Because the total tension in the lines was already recorded for tension error 

calculations, the other measurement needed for mechanical power output was the output 

velocity in the lines. Thus, the inline tension transducers (Futek) were chosen as rigid 
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bodies to mark for tracking with the MATLAB function. In order to optimize the tracking 

function, a white sticker with a black ink dot was stuck to the center of each tension 

transducer before the trials were recorded. This enabled easy tracking performance via 

contrast in the MATLAB function. Also, two black ink dots were marked on the support 

frame of the AMTS at 0.035m apart. Because these two dots never saw any displacement 

throughout the trial, their average pixel displacement could serve as an accurate 

displacement calibration for the tracking of the tension transducers. Below is an example 

of the tracking function in MATLAB during an arbitrarily picked trial. 

 

 

Figure'17:'Matlab'tracking'function'example 
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 After the MATLAB function performed its displacement tracking on the tension 

transducers, the horizontal component of the displacement vectors were read in the 

Labview VI for calculating mechanical power output. First, the horizontal displacements 

were all multiplied by the conversion factor determined by the calibration dots: 

!.!"#!
!"!!"#$%& . Next, both displacement arrays were differentiated with a built-in Labview 

function using the “backwards” method. This produced horizontal velocity arrays for 

both tension transducers as a function of time. Finally, mechanical power output was 

calculated via the equations listed previous.  

 Mechanical energy output was calculated by integrating the power curves over the 

total time of the trial run. The mechanical energy output for each motor was added 

together and then divided by the total number of cycles (5) to get an average total 

mechanical energy output per cycle.  

!!"#! = ! !!"#!,! + !!"#!,! !!" 

!"#.!!"#! =
!!"#!
!!"!#$%

 

 Finally, the total average efficiency of the AMTS was calculated by dividing the 

average mechanical energy per cycle by the average electrical energy consumption per 

cycle. All three trials for the same parameters were averaged to get a final value for 

efficiency at the particular conditions and frequency of the trial. 
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3.2.2$Results:$Overview$
 One of the largest challenges to this study became the push to find relevance in 

mountains of data. Although the prospect of an artificial muscle sharing fundamental 

operating principles with biological muscle (i.e. ratcheting mechanism) seems promising, 

it was always unknown in exactly what way the piezoelectric motors (PM) would reveal 

their true colors in contrast to the capability of electromagnetic motors (EM) as an 

example of abstract actuator technology seemingly so at ends with biology. Thusly, 

multiple parameter combinations were decided upon as part of an aggressive strategy 

aiming to tease apart the potentially subtle differences between PMs and EMs. 

This section will focus on showcasing the entirety of this study’s results in a 

broad sense. The subsequent sections following will attempt to compress and reorganize 

the most insightful pieces of data into the most useful combinations while simultaneously 

noting useful takeaways. The plots on the following page (see Fig. 18) lay out an 

inclusive formatting of all the data collected during this study. It should be noted that 

every column of plots on the left is data collected from the PMs while every plot in the 

right column is that of the EMs. Also, each row of plots signifies a different parameter, 

which was measured. These include: normalized torque error 
!!"
!!"#

, normalized tension 

error !!"
!!!

 and efficiency η. 
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Figure'18:'All>inclusive'data'results 
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 Some of the more apparent observations in the above dataset are signified by the 

following relative frequency: frel = 1. This value, of course, refers to the frequency that 

signifies when the system is excited at resonance. As such, two general trends can be 

picked out. Firstly, a minimum of error tends to occur at this frequency. In particular, this 

trend may be viewed in the normalized torque error data. Furthermore, this global 

minimum tends to show itself more pronounced under conditions that are more prone to 

error (e.g. Condition 1) as an exaggeration. 

In the normalized tension error data, this trend of minimal error at resonance is 

much less distinctive. However, this is not surprising. In the case of torque control, the 

system is attempting a sinusoidal waveform of torque set points. This is very different 

from the step input of constant tension, which is simultaneously controlled for in the co-

contractive antagonist. Because a step input is not a repeatable, periodic function, its error 

as a manifestation of the tension controller is much less sensitive to resonance in the 

system. However, a slightly different trend can be noticed in the data. 

Primarily, a slow but appreciable rise in error occurs in the higher end of the 

frequency domain. This result is sensible given that a constant co-contractive tension is 

intuitively harder to control as higher torque magnitudes are oscillated between opposing 

directions in smaller time periods. In other words, the higher end of the frequency domain 

represents a more volatile control space, ultimately resulting in more of a jerky action. 

This rise in error can also be seen in the torque control as the input frequency increases. 

It may be observed that the piezoelectric motors perform badly in particular at the 

frequency at half of resonance. This trend is interpreted to be a result of an extremely 
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high response actuator (10-50µs) attempting to control for very slow input frequencies at 

a controller frequency three orders of magnitude smaller (50Hz ! 20ms). This controller 

frequency is very comparable with the response time of a typical electromagnetic motor 

(~10ms). Thus, an unfair advantage may exist for the electromagnetic motor under the 

particular design constraints of a 50Hz controller frequency. This phenomenon will be 

discussed in more detail in the final section of this chapter (3.2.4). 

Following this rationale for explaining a general lackluster performance on the 

part of the piezoelectric motors, the efficiency data are perhaps the most telling of this 

result. It is interesting to note that an inverse relationship between error and efficiency 

can be seen for both motors and in all condition numbers. This is to say that as error 

minimizes at resonance, system efficiency peaks. This is a logical and rational outcome, 

which helps lend credence to the study at hand. Regardless, there is a clear shift in the 

data of the piezoelectric motors as compared to the data of the electromagnetic motors. 

While the former hovers at efficiency levels near around 10%, the latter ranges from 

approximately 30-100%. 

It should also be noted that no data from the slowest frequency was included for 

the electromagnetic motors (*). All data that were collected at this frequency were 

deemed an anomaly due to artificially low power consumptive values resulting from a 

current signal to low to accurately measure. Thus, efficiencies were artificially robust to 

the point of a non-sensible result. Nonetheless, very high efficiencies like the results seen 

for the electromagnetic motor at resonance are in part explained by the potential energy 

interactions as an influence of the extension springs at resonance.  
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3.2.3$Condition$Number$Trends$
In order to gain a clearer view on the data, specifically in terms of the varying 

condition number, this section will attempt to the reorganize it by negating the trends 

dependent of frequency. In other words, the mean value across the frequency domain was 

calculated for both motors at all three conditions for normalized torque error. The 

following plot communicates these results (see Fig. 19). 

 

 

Figure'19:'Torque'error'results'per'condition'number'
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 In the above bar graph (see Fig. 19), it is fairly clear that a minimum normalized 

torque error occurs in the second condition. As a reminder, this condition exemplifies the 

medium stiff spring (i.e. 900N/m) as well as the medium mass moment of inertia and 

torque magnitude. Although the third condition exhibits considerably less error than that 

of condition one, there is nevertheless a small positive slope from two to three. This is a 

curious result based on the fact that condition three scales to the biologically relevant 

spring via the allometric analysis, which was discussed in section 2.4.1. However, the 

following plot (see Fig. 20) does lend insight to this phenomenon. 

 

Figure'20:'Torque'error'results'relative'to'the'EM'
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 First, it should be noted that that the red bars in the bar graph represent the torque 

error data relative to itself. As a result, every value is exactly one. These bars are merely 

included in the plot as a visual reference for the blue bars, which represent the average 

torque error of the piezoelectric motors (PM) divided by the average torque error of the 

electromagnetic motors (EM). In this way, trends of the error in both motors can be 

explored through all three condition numbers. Specifically, it is observable that the PMs 

tend to perform more favorable in the higher condition numbers, relative to the 

performance of the EMs. It was already shown in previous plots (see Fig. 19) that 

condition two was the most optimal condition number. However, in relative terms, the 

PMs perform better than the EMs. Another way to phrase this phenomenon is that 

although both motors perform worse in condition three than they do in condition two, the 

PMs perform less worse than the EMs in condition three.  

 This result represents a proverbial silver lining amidst the general lackluster 

performance of the piezoelectric motors. Basically, it shows that the PMs are potentially 

better suited for biomimetic applications, possible as a result of their muscle-like 

ratcheting operation. Because it has been shown that the PMs tend to fair better in 

condition three than the EMs, this result was deemed worthwhile to continue exploring its 

effect in further detail. Additionally, the fact that condition three comprises of the most 

biologically relevant conditions, specifically with respect to elasticity, qualifies it for 

further investigation. 

!
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3.2.4$Trends$at$Biological$Relevance$
 At the outset of this research, it was determined that biomimetics should serve as 

a fundamental point of focus for testing the actuators (e.g. PMs and EMs). Thus, 

additional analysis was performed specifically on the results of condition three with an 

emphasis on statistical analysis in order to tease apart the significance of the data. The 

following plot (see Fig. 21) compares normalized torque error in both motors at condition 

three over the relative frequency domain. 

 

Figure'21:'Torque'error'results'at'condition'three'
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 Although a general minimum of error can be found at resonance (i.e. frel = 1), the 

standard deviation of the surrounding bars contributes to the subtle ambiguity of the data. 

In other words, the letters in bold and found at the bottom of each bar plot represent a 

lack of statistical significance via the associated bars labeled by the same letter. For 

example, the normalized torque error of the electromagnetic motor at relative frequencies 

0.5, 1.0 and 1.5Hz are all labeled with an “E.” This indicates that there is no statistical 

significance between these values per the results of a statistical evaluation performed 

with JMP 7 statistical analysis software. 

 Regardless of similarities in data as a result of error propagating ambiguity, it is 

plainly observed that error increases toward the high end of the relative frequency 

domain. Additionally, error is particularly high for the piezoelectric motor at the lowest 

input frequency. As was already explained in prior sections, this is possibly an adverse 

result of the PM being favorable to very fast control frequencies. Thus, the limitations of 

a 50Hz controller are exaggerated in the case of a very slow input frequency. 

 Another trait of the above dataset (see Fig. 21) indicates that the piezoelectric 

motor seems to outperform the electromagnetic motor at most frequencies. The following 

figure (see Fig. 22) examines the trend(s) of efficiency for both motors under condition 

three. 
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Figure'22:'Efficiency'results'at'condition'three'
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measurements, which were too low to guarantee a fair reading of electrical consumption 

(*).  

Although the data clearly show a maximal efficiency for both motor types at 

resonance, the electromagnetic motors exhibit a very robust efficiency profile, which 

overshadows the efficiency performance of the piezoelectric motors. This point is 

particularly curious, given that PM are well known to be ultra-efficient motors. However, 

a sensitive oscillation may be to blame for such shortcomings.  

As has already been mentioned in this document, the piezoelectric motors used in 

this study maintain an inherently profound response time several orders of magnitudes 

faster than that of electromagnetic motors. Although this should be a benefit, it is 

interpreted of the resulting data presented in this document that the ultra-fast response 

time of the PMs has acted as a metaphorical shackle holding back the promise of superior 

performance. In other words, it is believed that the sensitive response at the controller 

input of the PMs results in an exaggerated controller response to error. This ultimately 

results in a harsh overshoot that triggers the actuator into a fit of oscillations about the set 

point. The EMs, on the other hand, do not exhibit this behavior with such fervor. Instead, 

the slower response time of the EMs, which is well matched to the controller frequency 

of 50Hz, allows for the EMs to respond more mutedly to error. Ironically, this leads to a 

better performance as the sensitivity of its response is well fit to the controller. 

Although this is an issue, which could be addressed via a more refined focus on 

the individual controller systems of the individual actuator types, it was felt that this 

solution would not address the issue at heart. In robotics industry today, it is very 
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common to use extensive control systems in order to cover up the inherent limitations of 

actuators commonly used (e.g. bulk hydraulic systems in Boston Dynamics’ Big Dog). 

Although many of these systems are extremely impressive and capable of wonderfully 

nimble dynamic tasks, the fact remains that credit is most prominently due to clever 

control schemes and intensive modeling applications. The actuators themselves are often 

a weak link in the design. Thus, it was decided early on that this research would not focus 

on utilizing in-depth control system in order to homogenize a superior performance out of 

both the PMs and EMs. Instead, a common and capable controller was implemented to 

both actuator types with very little nuance and intentionally. In this way, it was hoped 

that some of the more fundamental limitations as well as beneficial traits would come out 

more clearly in the data.  

It should also be noted that the distinct difference between the piezoelectric 

motors and the electromagnetic motors in terms of their response time lie their capacitive 

input impedance (i.e. capacity nano-farads) as opposed to the inductive input impedance 

of electromagnetic motors (i.e. milli-henries). Also, it is an unfortunate artifact of the 

equipment used for testing, that a 50Hz controller frequency was the fastest frequency 

that the processor could handle in Labview before missing data points. Barring these 

hardware limitations, it is clear that an increase in controller frequency would initially 

benefit both actuator types in terms of performance. However, it is hypothesized that no 

matter the sophistication of the controller used, eventually increasing the controller 

frequency by enough will result in a plateau of EM performance while the PMs will 

continue and possible surpass the relative bench mark between actuators. Regardless, this 
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study inevitably resulted in forthcoming of just how important the controller frequency is 

in order to showcase the benefits of an ultra-fast actuator. 
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Chapter 4: Conclusions and Future Work 

4.1 Conclusions 

4.1.1$Robotic$Testing$Platform$
The nature of the research described in this document has accumulated an 

appreciable value of knowledge, both in the form of biomimetic design, as well as 

actuator mechanics. The first iteration of a procedural strategy now exists for the design 

of a biomimetic test platform for artificial muscles in a series-elastic co-contractive 

system. Potentially, any type of rotary motor or linear actuator could be tested within the 

AMTS for a useful performance comparison. 

!

4.1.2$Performance$Evaluation$of$Actuators$ $
 There was significant indication in the data that condition two showed promise as 

an optimal vehicle for error minimization among both motor types. Even though 

condition three also performed well as the biological relevant condition, the first 

condition showed the worst performance out of the three.  

 Although the piezoelectric motor types failed to show performance improvements 

relative to electromagnetic motors across the board, there were significant instances 

showing potential (e.g. favorable performance indications at condition three). 

Additionally, a significant source of limitation has been identified in the form of a slow 

controller frequency, relative to the response time of PMs in particular. 
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4.2 Future Work 

 The most luring temptation for continuing work on this research includes the 

implication of an ultra-fast controller (kHz) in order to take full advantage of the fast 

response time inherent to the piezoelectric motor’s design. Regardless, there are many 

other directions the research could be taken in as well. 

One particular way forward on the research may also include the development of 

a more sophisticated controller including in-depth modeling for each of the motor types. 

Although this modeling could prove tricky, specifically for the piezoelectric motors, the 

certain complexity of the task may prove to be worthwhile in overcoming some of the 

limitations of each motor type. As was discussed in this document, one of the downsides 

of this could be that overly competent controllers tend to mask some of the inadequacies 

of actuator systems by artificially increasing their competency in dynamic systems. This 

was one of the original rationales for limiting the controller(s) of this project to a very 

simple system capable of accomplishing utility without necessarily exceeding. In this 

way, it was hoped that the flaws of the physical actuators would shine through for a 

clearer and more pure comparison. However, it may be worth a second consideration for 

future work, in order to optimize the performance(s) of both motor types. This may 

indeed result in a very different outcome than that which was found in the studies 

currently completed. 

 Another direction for future work with respect to the AMTS could focus more on 

the design aspects of the whole system. Utilizing multiple motors in parallel and in series 

could provide an interesting insight on the biomimetics of muscle fiber orientation in 

terms of trading increased velocity for increased torque production and vice versa. 
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Another way to incorporate more biomimetic design would be to find a method for 

increasing torque production past maximum values in the eccentric contraction phase. 

 Yet another area of future focus could include further experimentation with 

increased co-contraction as well as impedance control for perturbation rejection. These 

concepts were touched upon in the current iteration of this project, however they could be 

explored much more thoroughly in future research. 

 Finally, it would be rewarding to begin incorporating the AMTS design as a 

subsystem of a larger system such as an entire robotic leg or even a whole robotic 

organism. Another example for future application could potentially be a prosthetic joint 

such as an artificial ankle or knee. It would be very informative to observe the 

performance of the AMTS as an actuator in a larger system, more dynamically complex 

system. 
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Appendix: Sample Data 
!

 

Figure'23:'Sample'data'of'the'electromagnetic'motor'at'condition'three 
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!

Figure'24:'Sample'data'of'the'piezoelectric'motor'at'condition'three'
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Curriculum Vitae 
Ryan Schroeder 

4200!Paradise!Rd.!#2077!Las!Vegas,!Nevada!89169!
T:!(760)!900A4716!E:!schroe95@unlv.nevada.edu!!

!
I!plan!to!develop!a!career!in!Biomechanical!Engineering!so!that!I!may!use!this!knowledge!to!integrate!robotic!systems!
with!biological!systems!intended!for!the!purpose!of!assisting!disabled!peoples!as!well!as!enhancing!general!human!
performance.!I!ultimately!plan!on!achieving!a!Doctoral!degree!in!the!aboveAspecified!field.!

!
Teaching Assistant                                                              Spring ’14 to Present 

• Working!at!the!engineering!tutoring!center!at!UNLV!to!help!undergraduate!students!with!fundamental!
course!work!such!as!statics!and!dynamics.!

• Teaching!the!fluids!mechanics!lab!with!a!focus!on!fundamental!experiments!relevant!to!fluid!properties,!
hydrostatic!pressures,!laminar!flows!and!friction!losses!in!a!pipe!!

• Awarded!“Teaching!Assistant!of!the!Year”!for!the!Mechanical!Engineering!Department!at!the!University!of!
Nevada,!Las!Vegas!for!the!academic!school!year!of!2013A2014.!

!

Research Assistant – Lab of Comparative Biomechanics           Fall ’12 to Present 

• Researching!the!potential!of!piezoelectric!motors!to!outperform!electromagnetic!motors!in!the!context!of!
biomechanical!systems!such!as!prosthetics!or!exoskeletons!

• Designed!and!built!an!artificial!musculotendon!system!capable!of!biomimetic!function!with!respect!to!
operating!principles!such!as!neural!motor!control,!antagonistic!flexorAextensor!couples!and!impedance!for!
improved!force!control!

• Researching!simulations!of!a!quadruped!robot!by!utilizing!a!predictive!mathematical!model!to!test!
parameter!spaces!for!successful!trotting!gaits!(collaboration!with!Dr.!Mohamed!Trabia)!!

• Working!to!extend!the!image!processing!capabilities!of!Matlab!scripts!for!xAray!motion!analysis!

 
Senior Design Project                                                             Fall ’12 to Spring ‘13 

• Designed!an!ergonomic,!thermoAregulated!blanket!for!comfortable!sleeping!in!regions!having!extreme!
temperature!gradients!

• Modeling,!analysis!and!PowerPoint!presentation!for!project!objective,!analysis!and!results!

• Bill!of!Materials,!ordering!parts!and!building!a!working!prototype!

 
Conference Abstract 

• Schroeder,!R.!T.!and!Lee,!D.!V.!(2014).!Piezoelectric!Versus!Electromagnetic!Series!Elastic!Actuators!for!
MuscleATendon!Systems.!Integrative*and*Comparative*Biology.*
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University of Nevada, Las Vegas                                    Summer ’13 to Present 
M.S. in Mechanical Engineering, Specialty in Dynamics and Controls 

• Cumulative!GPA:!4.00!

• Dean’s!List!for!all!semesters!present!

• Multiple!projects!as!a!research!assistant!in!Dr.!David!Lee’s!Lab!of!Comparative!Biomechanics!(LoCB)!

• Relevant!Coursework:!Advanced!Dynamics,!Human!Motor!Control,!Robotics,!Comparative!Vertebrate!
Anatomy!and!Biomechanics,!Transport!Phenomenon!in!Humans!

 
University of Nevada, Las Vegas                               Summer ’10 to Spring ‘13 
Mechanical Engineering and Integrated B.S./M.S. Program 

• Cumulative!GPA:!3.83!

• Dean’s!List!for!all!semesters!present!

• Member!of!Tau!Beta!Pi!Honors!Society!and!ASME!!

• Member!of!Phi!Kappa!Phi!Honors!Society!

• Relevant!Coursework:!Automatic!Controls,!Vibrations,!Machine!Component!Design,!Dynamics!of!Machines,!
Biomechanics,!Material!Mechanics,!Special!Lectures!–!Biomechanics!of!Perturbed!Gait,!Dynamic!Systems!
Modeling!and!Analysis,!Measurements!

!

Musician’s Institute                                                             Fall ’07 to Spring ‘08 
Music Performance, Piano and Keyboards 

• Cumulative!GPA:!3.86!

• Coursework:!Music!Theory,!Technique,!Voicings,!Sight!Reading,!Music!Style!and!History,!Band,!Conducting!
and!Arranging.!

!

Victor Valley Community College                                     Fall ’05 to Spring ‘07 
Associates'Degree'in'Fine'Arts,'General'Education'

• Cumulative!GPA:!3.82!

• Graduated!with!High!Honors!

• Coursework:!College!Algebra,!Earth!Sciences,!Human!Biology!and!Anatomy,!Psychology,!Music!Appreciation!
and!Theory.!

 

 


