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ABSTRACT 

 

Simulations of Interfacial Electrokinetics with Applications to Microfluidic Systems 

 

by 

 

Sebastian Uppapalli 

 

Dr. Hui Zhao, Examination Committee Chair 

Assistant Professor of Mechanical Engineering 

University of Nevada Las Vegas 

 

 

 Electrokinetics plays an important role in facilitating fluid transport and particle 

manipulation in microfluidic systems. This dissertation studies the mechanics of 

electrokinetic phenomena for microscale particles and drops. The work aims to increase 

the understanding of complex electrokinetic phenomena for applications in Lab-on-Chip 

technology, assembly of colloidal particles and two-phase flow sensing. The standard 

model consisting of the Poisson-Nernst-Planck equations is used to study the electric 

double layer polarization of charged dielectric particles and channel wall which plays a 

major role in control and manipulation of colloidal particles and understanding of 

electrohydrodynamic flow field.  

 The cases of polarization of “soft” particle under the influence of alternating 

current field, influence of residual charges and particle size on electrostatic interaction 

between charged particles at oil-water interface, and characterization of streaming 

potential due to drop deformation for a two phase steady flow are modeled and simulated. 

The theoretical predictions were compared and favorably agree with analytical and 

experimental observations. The study provides insights to the electrokinetic behavior of 

micro particles and drops in response to electric fields and pressure driven 

hydrodynamics respectively. It also helps to quantify the mechanics of colloidal assembly 
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for monolayered geometry. Implementation of above ideas can improve the designs of 

devices used for sensing, control and manipulation in microfluidic systems. 
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CHAPTER 1 

INTRODUCTION 

 

Perspective 

 “Electrokinetics” refers to the study of electrically driven mechanical motion of 

charged particles or fluids. Thus, it involves study of electrohydrodynamics ie, the 

coupling of electromagnetism and hydrodynamics. In this dissertation we only deal with 

electromagnetic phenomena in electrostatic regime. Sometimes, the term is used more 

narrowly for fluid or particle motion in electrolytes and ionic liquids.  

 The microfabrication technology has advanced the microelectronic and 

computational technologies at amazing speed making Internet and modern 

telecommunications possible. The enormous potential of this technology has lately been 

directed towards fields of Mechanical and Bio-Medical engineering, leading to rapid 

development of Micro-Electrical-Mechanical Systems (MEMS) and Laboratory-on-Chip 

(LoC) devices.  

 A LoC device is a microscale chemical or biological laboratory built on thin glass 

or plastic plate with a network of microchannels, electrodes, sensors and electronic 

circuits (Li, 2004). Application of electric fields via electrodes along microchannels 

allows control and manipulation of fluid flow and other operations on the chip. In 

conventional laboratories, analysis is generally carried out as a series of separate 

operations using separate tools, techniques and macro-sized instruments requiring large 
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volume of samples and chemicals. This results in higher operating costs and overheads 

and longer time for analysis. The LoC device, on the other hand, consists of miniaturized 

integrated components capable of performing same series of tasks on a single chip. 

Furthermore, using microfabrication technology, many parallel microchannels can be 

embedded on a single chip, so that it can perform multiple tasks at any given time.  

Currently, issues related to higher costs and access in health care are driving the 

development of such devices. 

 Similarly to detect and analyze environmental pollutants, water borne pathogens, 

moisture management in soils, flow rates in industrial piping, water intrusion in oil wells 

or conversely oil-spill near water reservoirs requires development of micro-sensors that 

can provide cheap, accurate and on-site analysis of required properties with higher 

resolution and sensitivity. 

 In most biomedical and industrial applications, the commonly used media is 

liquid. Therefore, the key to the functions of LoC and micro-sensors is quantitative 

control of flow, mass and heat transfers in microchannels. Study of transport processes in 

microchannels is called microfluidics. Precise manipulation of microfluidic processes is 

key to proper operation and performance of such sensors and LoC devices. Generally, 

microscale systems have large surface area to volume ratio and hence the effect of liquid 

and channel wall interface becomes very significant. Since most solid-liquid interfaces 

have electrostatic charge and consequently electric fields associated with them, study of 

interfacial electrokinetic phenomena are very important to microfluidic processes (Li, 

2004).  In recent years, research towards material assembly using electrokinetic 

phenomena has led to successful creation of lattice structures at micro scale (Ristenpart, 
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2003). At present, lack of understanding of complicated electrokinetic transport 

phenomena at microscales presents a hindrance in development of such advanced 

technologies.   

 

History 

 Advances in Electrokinetics can be divided into two categories. One concerning 

Theoretical Modeling and another concerned with fabrication. 

 Electrokinetic phenomena belong to the oldest areas of surface and colloid 

science. Only surface tension and related concepts have a longer history, dating from the 

time of Francis Hauksbee, Newton's assistant at the Royal Society. The discovery of the 

electrokinetic phenomena electrophoresis, electro-osmosis, and streaming potential, gave 

rise to the concept of the electrical double layer (Wall, 2009).  In 1808, Reuss first 

observed the electrokinetic phenomena when he applied a Direct Current to clay water 

mixture. Later, in 1846 Napier made a distinction between Electro-osmosis and 

Electrophoresis.  It was Helmholtz, in 1879, who developed the first analytical model to 

describe electrokinetic phenomena. Finally, Pellat in 1904 and Smoluchowski in 1921 

developed an extension to Helmholtz model to derive electrokinetic velocity. 

  Richard Feynman’s lecture in 1959 regarding miniaturization and successive 

invention of microfabrication technology to fabricate electronic chips, scientific and 

commercial advances in the field of microsystem technology has been tremendous. In the 

late 1970s, this technology was extended to machining mechanical microdevices leading 

to development of MEMS. 
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Figure 1Image of a sample fluidic network (Courtesy: Mathies lab, UC Berkley). 

 The development of microflow sensors, micropumps, and microvalves in the late 

1980s constituted the early stage of microfluidics. Since then, the field has rapidly 

developed when it was realized that the main application fields of microfluidics are life 

sciences and chemistry (Manz et. al., 1989).  

 In the mid-1990s, microfluidics was applied as a research tool in the field of 

genomics. Later DARPA provided research support, to realize portable bio-chemical 

warfare detection systems, pushing microfluidics into mainstream RD&D field. This is 

indicated by Figure 2 that shows an exponential increase of papers on microfluidics in 

subsequent years. 

 

Surface Phenomena 

 Generally, we may classify the transport processes into three categories according 

to the characteristic dimension, cL  of the systems:  
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1. Macroscale systems - mLc 200  

2. Microscale systems - mLnm c 200100   

3. Nanoscale systems - nmLc 100  

 

 

Figure 2 Publication of microfluidic related papers (Nguyen & Wereley, 2006). 

 

 Because of large surface-to-volume ratio in microchannels, the surface properties 

become enormously important. For example, a microchannel of m100 diameter, has a 

surface-to-volume ratio ( VS / ) of 14102  m . Thus, for fluid flows in microchannels 

(Conlisk, 2013): 
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1. Surface properties like, charge, roughness, hydrophobicity etc. have significant 

effect on fluid flow.  

2. Significant fluid slip may occur at wall, if the surface is hydrophobic. 

3. The continuum approximation may break down, especially for compressible 

flows. 

4. Molecular diffusion, which is very slow at macroscale, becomes very fast at micro 

and nanoscales. 

5. Pressure driven flow is only viable for very low flow rates min/1~ nL .  

 It becomes increasingly difficult to pump liquids by pressure in microchannels 

because pressure gradient scales as ./1~ 3hp  Thus, fluid, biomaterials and other 

particles are often transported electrokinetically. Figure 3 below shows various sizes of 

microfluidic devices.  

 

Figure 3 Size characteristics of microfluidic devices (Nguyen & Wereley, 2006). 
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Applications 

  The major applications, of microfluidics and associated electrokinetic phenomena 

are in biotechnology, nanotechnology, pharmaceutical, food processing and 

environmental monitoring industry. Medical diagnostics (in lab or point-of-care), genetic 

sequencing, chemistry production, and environmental monitoring are some of the 

examples where microfluidics has been successfully applied at commercial level. 

Concurrent with the exploration of new effects, microfluidics today is looking for further 

application fields beyond conventional fields, such as flow control, chemical analysis, 

biomedical diagnostics, and drug discovery. New applications utilizing microfluidics for 

distributed energy supply (fuel cells and capacitors), distributed thermal management, 

and chemical production are promising. Chemical production using distributed 

microreactors makes new products possible. The large-scale production can be realized 

easily by running multiple identical microreactors in parallel. Scalability is inherent in 

microfluidics, and can be approached from the point of view of “numbering up” rather 

than scaling up (Nguyen & Wereley, 2006).  

 In biotechnology, the most highly developed applications are probably their use to 

screen conditions (such as pH, ionic strength and composition, co-solvents, and 

concentration) for protein crystallization. Other applications for which there are 

laboratory demonstrations include separations coupled to mass spectroscopy, high-

throughput screening in drug development, bioanalyses, examination and manipulation of 

samples consisting of a single cell or a single molecule.    
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 The manipulation of multiphase flows is another strength of microfluidic systems. 

They enable the generation and manipulation of monodisperse bubbles or droplets of a 

dispersed gas or liquid phase in a continuous liquid stream providing new pathways to 

generate particles and emulsions. Droplets can also serve as compartments in which to 

study fast organic reactions (Whitesides, 2006). Similarly, non-linear electrokinetics has 

been successfully used in laboratory environment to create lattices and various patterns of 

particle assembly. Such assemblies can be controlled and manipulated to develop new 

materials with specific electrical, mechanical and optical properties (Zhao, 2012). 

Electrokinetic phenomena, historically, has found wide applications in geotechnical 

engineering (Shang, 2011) and recently, in capacitive desalination and bubble removal in 

additive manufacturing. 

 

Current Status 

 Initially, microfluidics developed as a part of MEMS technology, which in turn 

used the established technologies and infrastructure of microelectronics. Fluid mechanics 

researchers are interested in the new fluids phenomena possible at the microscale. In 

contrast to the continuum-based hypotheses of conventional macroscale flows, flow 

physics in microfluidic devices is governed by a transitional regime between the 

continuum and molecular-dominated regimes. Besides new analytical and computational 

models, microfluidics has enabled a new class of fluid measurements for microscale 

flows. Microfluidic tools allow Life Scientists and chemists to explore new effects not 

possible in traditional devices. These new effects, new chemical reactions, and new 
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microinstruments lead to new applications in chemistry and bioengineering. These 

reasons explain the enormous interest of research disciplines in microfluidics. Nowadays, 

almost all conferences of professional societies, such as the Institute of Electrical and 

Electronic Engineers (IEEE), American Society of Mechanical Engineers (ASME), 

International Society for Optical Engineering (SPIE), and American Institute of Chemical 

Engineers (AIChe), have technical sessions for microfluidics.  

 With relatively recent accomplishments in the Human Genome Project and huge 

potential in the fields of biotechnology and nanotechnology, microfluidic devices have 

the potential to be a commercial success. The apparent interest and participation by 

industry in microfluidics research and development shows commercial potential of 

microfluidic devices for practical applications. 

  

Scope of the Dissertation 

 This dissertation aims to improve understanding of complex electrokinetic 

phenomena by modeling and simulating the influence of interfacial electrokinetics; (1) in 

controlling and manipulating microscale particles, as applicable to biomedical separation 

and sorting and material assembly and (2) in development of a two-phase flow sensor by 

characterizing microscale droplet deformation in a two component flow. 

In all three cases, the modeling meets three specific criteria: 

1. Apply standard theoretical model developed from first principles. 
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2. Validate the results from simulations with established results, either experimental 

or analytical. 

3. Understand influence of various electrokinetic properties governing the physical 

phenomena. 

 In this regard, the dissertation is organized as follows. Chapter 2 presents the 

fundamental principles governing electrokinetic phenomena and discusses various types 

of electrokinetic phenomena. In Chapter 3, Polarization of a soft particle under the action 

of AC electric fields with applications to dielectrophoresis is studied. Chapter 4 discusses 

the influence of surface charges and particle size on electrostatic interactions between 

colloidal particles at oil-water interface and chapter 5 presents characterization of droplet 

deformation in a two-phase flow. Chapter 6 concludes. 
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CHAPTER 2 

FUNDAMENTALS OF ELECTROKINETICS 

 

Introduction 

 Electrokinetic phenomena are a family of several different physicochemical 

effects that occur in electrolytes, ionic and dielectric liquids. There is a common source 

for these effects, the so called Interfacial Double Layer or Electric Double Layer (EDL) 

that appears on the surface of an object when it is exposed to a fluid. Influence of external 

force on EDL generates tangential motion with respect to charged surface (Bruus, 2007). 

As discussed in the previous chapter, that as the typical length scale of the system 

approaches micro scale level and smaller, pressure driven transport, becomes increasingly 

difficult and electrokinetic phenomena are often used for transporting charged and 

uncharged species and biomolecules at micro and nano scales (Conlisk, 2013). Here we 

briefly review the basic governing equations, as well as several types of electrokinetic 

phenomena. 

 

Governing Equations of Incompressible Fluids 

 For an incompressible fluid like water, the governing equation is the Navier-

Stokes equation which takes the non-dimensional form as (Fox et. al., 2011) 

fupuu
t

u




 


2

Re

1
    (2.1) 
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where, 


uL
Re is the Reynolds number, ,,, fpu and L  is the velocity, pressure, the 

external force, kinematic viscosity and characteristic length respectively. In micro and 

nano systems, where 1Re  because of smaller length scales, the non-linear terms can be 

neglected and the governing equation reduces to Stokes equation which takes the form as 

(Morgan & Green, 2003) 

fup
t

u
Sc 



 


2     (2.2) 

where, 
D

Sc


  is the Schmidt number and D is the mass diffusivity. Stokes equation is 

relatively easier to solve due to linearity of u as compared to Navier-Stokes equation. 

 

Basic Concepts in Electrostatics 

 Gauss's law states that "the total electric flux through any closed hypothetical 

surface of any shape drawn in an electric field is proportional to the total electric charge 

enclosed within the surface". Mathematically, Gauss's law takes the form of an integral 

equation (Popovic, 1971; Stratton, 2007): 

  dVEdVdsE el
s




0

1
   (2.3) 

where, E


 is the electric field, el   is volume charge density and 0   is the permittivity of 

vacuum. Applying Divergence theorem, Gauss’s law can be writtn in differential form as 
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0

elE 


     (2.4) 

 The validity of the electrostatic approximation rests on the assumption that the 

electric field is irrotational: 

0 E


     (2.5) 

 Because the electric field is irrotational, it is possible to express the electric field 

as the gradient of a scalar function, , called the electrostatic potential. An electric field,

E


 points from regions of high electric potential to regions of low electric potential, 

expressed mathematically as 

E


     (2.6) 

 From equations 2.4 and 2.6 we can derive Poisson’s equation given as 

0

2




 el      (2.7) 

 In the absence of unpaired electric charge, Poisson’s equation reduces to 

Laplace’s equation. 

02        (2.8) 

 

 

 



14 
 

Conservation of Species 

 Computing fluxes of ions in non-equilibrium situations requires development of 

models that relate flows to forces in ionic solutions. Motion of chemical species in a fluid 

medium is a function of ion fluxes due to diffusion, ion migration under the influence of 

electrostatic forces and velocity gradients of ions (Johnston & Wu, 1995). 

 Fick’s law of diffusion describes ion flux due to concentration gradient 

cDj       (2.9) 

where, D  is the diffusion coefficient and c is the species concentration. 

 To determine flux due to electrostatic forces, consider the situation of an ionic 

solution of uniform concentration with a potential gradient given by   . The field will 

produce a force on a charge q equal to  q . The charge q  carried by a mole of ions is 

given by Fzi , where F , is the Faraday’s constant and iz is the valence of ions. So the 

force on a mole of ions due to the electric field is  Fzi . In an aqueous solution, the 

interactions of solute and solvent molecules result in transport processes being limited 

largely by the equivalent of frictional forces; since at low 1Re  , viscous forces 

dominate inertial forces. Thus when an ion is acted on by an electric field, it tends to 

move with a drift velocity that is proportional to the force provided by the field. This 

proportionality is the ion mobility im . Thus, ionic flux could be written as 

 Fczmj ii     (2.10) 

 Similarly, ionic flux due to velocity is simply 
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iucj


      (2.11) 

where, iu


is the ion velocity due to random thermal motion and fluid velocity. 

 These fluxes when applied to control volume, lead to generalized form of the 

Nernst-Planck equation which, in the presence of chemical reaction, is a conservation of 

mass equation. 

r
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i Rc
Tk

ze
DuccD

t

c





].[ 


   (2.12) 

Here, 
RT

D
mi  and

Bk

eR
F  . R  is the universal gas constant, e is the charge of an 

electron, Bk  is the Boltzmann constant and rR is the rate of chemical reaction. 

 

Dipole Moment and Polarization 

 When a dielectric material is subjected to an external uniform electric field, it 

becomes polarized. Polarization occurs due to locally induced dipole moments as the 

bound charges in the material slightly separate, as shown in Figure 4. Electric dipole 

moment is a measure of separation of positive and negative charges in a system or in 

other words measure of system’s polarity. For a simple case of two point charges q and 

q  the dipole moment is given as qdp  where, d  is the displacement vector measured 

from negative charge to positive charge. The aggregate effect of these local dipoles is to 

produce a spatially dependent moment per unit volume or polarization P (Herczyński, 

2013) given as  
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dvPpd


      (2.12) 

 

Figure 4 Polarization of a dielectric material. 

 For a linear, homogeneous, isotropic dielectric material, polarization is linearly 

dependent on the electric field as (Feynman, 1964) 

EP


0      (2.13) 

where 1 r .  is the susceptibility of the material and r  is the relative permittivity 

of the material. Separating total volume charge density into free and bound charges we 

can write 

P
felel


      (2.14) 

 From equation 2.4 and 2.14 we get 

felPE   )( 0


    (2.15) 
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 Substituting equation 2.13 in equation 2.15 we get the Poisson’s equation for a 

linear, isotropic, dielectric material. 

r

fel






0

2       (2.16) 

 

Basics of electric double Layer 

 Consider an electrolyte in contact with a solid surface. This could be in the form 

of a channel wall or a solid particle suspended in the liquid. Depending on chemical 

composition, of solid and liquid, chemical processes on the surface will result in charge 

transfer [Kirby, 2009]. This is often because of ionic adsorption. Aqueous solutions 

universally contain positive and negative ions (cations and anions, respectively), which 

interact with partial charges on the surface, adsorbing to and thus ionizing the surface and 

creating a net surface charge. This net charge results in a electrostatic field, which causes 

the surface to be surrounded by a cloud of counter-ions from the bulk. The counterions 

are influenced by potential gradient and thermal motion creating an ion/counterion layer 

which extends from the surface into the solution. The larger the partial charges in the 

material, the more ions are adsorbed to the surface and larger the cloud of counter-ions. A 

solution with a higher concentration of electrolytes also decreases the size of the counter-

ion cloud. This ion/counterion layer is known as the electric double layer (EDL), 

presence of which screens the surface charge [Kirby, 2009]. Figure 5 below shows a 

sketch of the EDL. 
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 EDL is composed of two distinct layers: a fixed layer called Stern layer, 

composed of counterions strongly adsorbed on to the surface and another, slightly mobile 

layer called Diffuse layer composed of mixture of coions and counterions. The ions in 

diffuse layer can move under tangential stress since they are not strongly adsorbed to the 

Stern layer. The double layer is formed in order to neutralize the charged surface and, in 

turn, causes an electrokinetic potential between the surface and any point in the bulk 

fluid. This voltage difference is on the order of millivolts and is referred to as the Surface 

potential. The magnitude of the surface potential is related to the surface charge and the 

thickness of the double layer [Bruus, 2007].  

  

Figure 5 Electric Double Layer around a spherical particle. 
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 As we leave the surface, the potential drops off roughly linearly in the Stern layer 

and then exponentially through the diffuse layer, approaching zero at the imaginary 

boundary of the double layer. The potential curve is useful because it indicates the 

strength of the electrical force between particles and the distance at which this force 

comes into play. The plane separating the diffuse layer and the Stern layer is called 

Slipping plane and electric potential at this plane is called Zeta or Electrokinetic 

Potential, . This potential relates to the mobility of the particle. Although zeta potential 

is an intermediate value, it is sometimes considered to be more significant than surface 

potential as far as electrostatic repulsion is concerned. 

 The characteristic thickness of EDL is called Debye length, D . The non-

dimensional Debye length, can be derived using potential scale 
RT

F
 ˆ , 

concentration scale
0

ˆ
c

c
c 
   and characteristic length scale, cL . For weak solutions, co 

and counterions can be modeled as an ideal gas. This allows ionic concentrations near a 

charged surface to be modeled according to the Boltzmann distribution, which comes 

from the thermodynamic expression for chemical potential [Bruus, 2007].  


Tk

ze

Becc



0 or ̂ˆ ec       (2.18) 

where, 
RT

F
 ˆ , 

F

eR
kB  , 1z  and 

0

ˆ
c

c
c 
  . Charge Density thus can be 

expressed as  




cFczFcz iiiiel
ˆ

0     (2.19) 
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Evaluating net charge density form equations 2.16 and 2.19, we get 

2

2

ˆ2

ˆˆ
ˆ

D

cc


        (2.20) 

where, 
0

2

01ˆ
cF

RT

LL

r

cc

D
D


  is the non-dimensional Debye length. The EDL thickness 

usually varies from 1 nm to 100 nm.    

  

Poisson-Nernst-Planck Model 

 The earliest model of EDL is usually attributed to Hermann Von Helmholtz. He 

treated the EDL, mathematically as a simple capacitor, based on a physical model in 

which a single layer of ions is adsorbed at the surface (Helmholtz, 1853). Later Louis 

Georges Gouy and David Chapman introduced a diffuse model of the EDL, in which 

the electric potential decreases exponentially away from the surface to the bulk. This 

model fails for highly charged EDLs. In order to resolve this problem Stern suggested the 

combination of the Helmholtz and Gouy-Chapman models, giving an internal Stern layer 

and an outer diffuse layer (i.e. Gouy-Chapman layer) (Lyklema, 1995).  

 The combined Gouy-Chapman-Stern or Modified Gouy-Chapman or nonlinear 

Poisson-Nernst-Planck (PNP) model is most commonly used. The PNP model makes 

certain assumptions [Conlisk, 2013]: 

 Ions are assumed as point charges. 

 Coulombic interactions dominate in diffuse layer of the EDL. 
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 Dielectric permittivity is assumed constant throughout the EDL. 

 Viscosity is constant beyond the EDL and into the bulk fluid. 

 The PNP model, as the name suggests, consists of coupled Poisson’s Equation 

(equation 2.7) and Nernst Planck equations (equation 2.12). The coupling variables are 

the electrostatic potential   and ionic concentration c . 

 

Electro-osmosis 

 Electro-osmosis (EO) is the bulk motion of fluid caused by an electric field. When 

electric fields are applied across a porous plug, a capillary or a micro channel, bulk fluid 

motion is observed. This motion is linearly proportional to the strength of applied electric 

field and chemical nature of the surfaces and fluid [Kirby, 2009]. It is result of the force 

exerted by the applied electric field on counterions in the fluid inside charged pores, 

capillaries etc. The moving ions drag the liquid along with them causing bulk to flow as 

shown in Figure 6. 

 The electro-osmotic flow is driven by placing the electrodes in upstream and 

downstream section of the flow. The charge separation at the walls leads to the formation 

of EDL. Application of electric field induces a force on EDL, given by EF el , that 

begins to move and then by viscous drag pulls the neutral bulk liquid along. The 

continuation of this process is highly dependent on formation of EDL at the electrodes, 

which would screen the applied electric field. This can be avoided, if electrolysis occurs 
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at the electrodes which prevents charge accumulation and allows electric current to flow 

in the system. The current flow would then move the liquid by viscous drag.  

 The Stokes equation, in combination with Poisson’s equation (2.16), can be used 

to analyze the EO flow, with the Coulomb force included as the body force term of the 

Stokes equation. 

 



elup

t

u 


2)(    (2.21) 

 

 

 

Figure 6 Electro-osmotic flow in a channel. 

 

 To determine electro-osmotic velocity, consider a simple case of a channel, with 

charged surface and tangentially applied electric field. Ideal EO flow is defined by 

following four  conditions: 

1. Applied electric field is homogeneous throughout the system. 

2. Flow is steady state. 
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3.  potential is constant along the surface. 

4. EDL thickness is much smaller than the radius or half-height of the channel. 

 For a zero external pressure gradient, at the leading order, the dominant balance is 

between viscous and electrical forces in the EDL (Ghosal, 2004) 

 02   eleou       (2.22) 

On eliminating el between equations (2.16) and (2.22), integrating the resulting 

differential equation and using the boundary conditions at the inner and outer edges of the 

EDL,   ;0u respectively, the following jump condition across the EDL is derived 

for a limiting case of thin EDL. 





 ru 0

     (2.23) 

 In microfluidic applications where the thin EDL assumption applies, it is evident 

that the velocity of electro-osmosis does not depend on the channel dimensions. This 

unique feature is strikingly different from the pressure-driven flow in which the velocity 

depends strongly on channel dimensions. Consequently, the electro-osmotic pumping has 

long been an efficient and popular technique for fluid transportation in microfluidic 

devices. This flow, however, is sensitive to chemical features at the interface, and the act 

of applying electric fields can also move particles relative to the fluid or cause Joule 

heating (i.e., resistive heating) throughout the fluid. 
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Electrophoresis 

 The term “electrophoresis” describes the phenomenon in which dispersed 

(colloidal) particles move relative to a fluid under the influence of a spatially uniform 

electric field, either DC or very low frequency AC fields. Consider a particularly simple 

case of electrophoresis. A charged spherical particle of radius a and charge q , where q is 

the surface charge, is freely suspended in a stationary liquid of low conductivity, like say 

deionized water, as shown in Figure 7. Lack of ions in the liquid would result in lack of 

charge accumulation on the surface of the particle. Thus, an applied electric field will 

create a Coulombic force,  qFel  acting on the particle. In a short time scale, this 

charged particle will reach a steady state motion or electrophoretic velocity due to 

viscous drag. In this case Stokes drag force epdrag u
a

F


6
 balances the Coulombic 

force, giving electrophoretic velocity as 







a

q
uep

6
      (2.24) 

This dependence of drift velocity on particle charge and size make electrophoresis 

particularly suitable for sorting and separation applications (Hunter, 1989). 
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Figure 7 Electrophoretic force on a particle in absence of EDL. 

 A charged particle freely suspended in an electrolyte solution, will develop an 

EDL. The electro-osmotic velocity, created by the applied electric field, will also give 

rise to electrophoretic velocity opposite to the electro-osmotic velocity. Under the limit of 

the thin double layer, the electrophoretic velocity is given by Smoluchowski equation. 

 



 r

epu 0
      (2.25) 

where, 


 r0 is the electrophoretic mobility. 

 The Smoluchowski equation is only valid for thin EDL and for very low surface 

potential. Henry generalized the Smoluchowski equation for any thickness of EDL by 

inserting a smooth continuous function )(
D

a
f


. The electrophoretic velocity, equation 

2.26, thus obtained is valid for all EDL thicknesses but limitation of small surface 

potential still applies. 
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      (2.26) 

 A more complete description of electrophoresis must account for EDL distortion. 

Figure 8 shows the forces active on a charged spherical particle in an electrolyte solution. 

As discussed above, Electrostatic or Coulombic force arises from charged particles 

response to the applied electric field and Friction force is the viscous drag in the solution. 

The electrophoretic retardation force, accounted by the Henry’s equation above, adds to 

the viscous drag.  The ions in EDL respond to applied field in a manner similar to the 

particle, meaning co-ions tend to migrate in the direction of charged particle whereas 

counterions tend to migrate in opposite direction. Since there is higher concentration of 

counterions in the EDL, their migration adds to the viscous drag. The remaining 

applicable force is called the electrophoretic relaxation force. In the absence of the 

applied electric field, the center of positive and negative charges in the EDL is 

coincident. When the electric field is applied, the charged particle migrates relative to the 

mobile part of the EDL creating a net separation of charges. Conduction and diffusion 

require finite time to restore symmetry ie, relaxation time. As long the field is applied, the 

force separating the charges is present and a steady state separation is reached. The 

resulting dipole exerts an additional drag further inhibiting the particle’s motion in 

response to the applied field. Relaxation is negligible for very thick or very thin EDLs but 

can be a significant effect at intermediate ranges. This implies non-linear dependence of 

electrophoretic mobility at higher surface potentials (Aicart et. al., 2006). 
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Figure 8 Electrophoretic forces on a charged particle in the presence of EDL. 1: 

Electrostatic force; 2: Viscous Drag; 3: Electrophoretic retardation; 4: Electrophoretic 

relaxation. 

 The vast applications of electrophoresis are most evident in the health or medical 

industry. Examples include Antibiotic, vaccine, protein and DNA analysis. 

 

Dielectrophoresis 

 The term dielectrophoresis (DEP) was first introduced by Pohl to describe 

translational motion of particles due to application of non-uniform electric fields. The 

dielectrophoretic motion is determined by the magnitude and polarity of the charges 

induced in a particle by the applied field. Usually DEP is performed under alternating 

current (AC) fields over wide range of frequencies. The DEP force is dependent on 

several parameters: the dielectric properties and size of particle, frequency of the applied 

field and electrical properties of the medium (Pohl, 1978). 
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 To determine dielectrophoretic force or DEP force or DEPF , the first steps involve 

evaluating the polarization of particle in terms of an equivalent induced dipole moment or 

effective dipole moment and the electrical potential arising from it (Jones, 1995). The 

effective dipole moment method can be used to calculate electromechanical forces and 

torques exerted by electric fields on particles. Indeed, it has been popularly used because 

of its simplicity and ability to provide meaningful insights in many important situations 

(Krupke et al., 2003; Morgan & Green, 2003; Dimaki & Bøggild, 2004; Li et al., 2005).  

 The effective dipole moment, effp  of the particle is defined as the moment of an 

equivalent, free-charge, point dipole that, when immersed in the same dielectric liquid 

and positioned at the same location as the center of the original particle, produces the 

same dipolar electrostatic potential (Jones, 1995). As a result of the spherical geometry 

and the lossless nature of the dielectric, this induced dipole moment will be aligned with 

the original external field E. Thus, for all space outside the sphere, the field created by 

this dipole is superposed onto the field E. 

Using the potential form of two equal but opposite charges separated by an infinitesimal 

distance and applying Taylor expansion, the potential can be expressed as a series, 

approximated as: 

2

cos

4

1
),(

r
pr eff

m




      (2.27) 

where   and r  are respectively the polar angle and radial position in spherical 

coordinates (Pethig, 2010). If the dipole is small as compared to the length scale of the 
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non-uniformity of the imposed field then the force acting on the dipole can be 

approximated as: 

EpF effDEP        (2.28) 

Now consider an isotropic, inhomogeneous, dielectric spherical particle of radius a of 

absolute dielectric permittivity 2  and conductivity 2 suspended in an electrolyte of 

absolute dielectric permittivity 1 and conductivity 1  subjected to an external non-

uniform or  AC field tiEe  , as shown in Figure 9. 

Far from the particle; ar    

titi eE
r

A
erE  
 0201

cos
cos     (2.29) 

Where, the second term on the right hand side of equation 2.29, is due to dipole moment 

of particle. 

On the particle surface; ar    

 Electrostatic potential at the surface is continuous; 
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 Conservation of charge in electric current flow; 
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where, 
ii rir EJ  and free surface charge 

21 21 rrf EE    
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Figure 9 Dielectrophoretic force acting on a spherical particle. 

From equations 2.29, 2.30 and 2.31 we can compute coefficient A as: 
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where, 
*

*
** 2




 i

ii i is the complex permittivity. From equation 2.27 we can write 

(Jones, 1995) 

Apeff 14        (2.33) 

Thus dielectrophoretic force can be given as: 

23

14 EKaFDEP         (2.34) 
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K is the Clausius-Mossotti factor. 
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 When the applied electric field polarizes the particle, the poles experience DEP 

force along the field lines, which can be either attractive or repulsive according to the 

orientation on the dipole. Since the field is non-uniform, the pole experiencing the 

greatest electric field will dominate over the other, and the particle will move. The 

orientation of the dipole is dependent on the relative polarizability of the particle and 

medium. Since the direction of the force is dependent on field gradient rather than field 

direction, highly polarizable particle will move in the direction of increasing electric field 

causing positive DEP or pDEP and particles with low polarization will move in direction 

of decreasing field causing negative DEP or  nDEP, shown in Figure 10 (Chang & Yeo, 

2009). 

 Dielectrophoresis can be used to manipulate, transport, separate and sort different 

types of particles. Since biological cells have dielectric properties, dielectrophoresis has 

many medical applications. Prototypes that separate cancer cells from healthy cells have 

been made. Platelets have been separated from whole blood with a DEP-activated cell 

sorter.   
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Figure 10 Positive and Negative Dielectrophoresis. 

 

Streaming Potential 

 Streaming potential and streaming current phenomena are two 

interrelated electrokinetic phenomena. An electric potential or current originates when 
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an electrolyte is driven by a pressure gradient through a channel or porous plug with 

charged walls. The presence of EDL at the solid-liquid interface is the point of origin of 

these phenomena. The counterions in the diffuse layer of the EDL are transported along 

with the pressure driven fluid flow. This will cause a potential gradient to be set up in the 

direction of the flow motion, the magnitude of which will depend upon the rate at which 

charges are transported by the moving liquid and upon the resistance to the flow of an 

electric current in the direction opposite to that of the streaming. This potential gradient is 

known as the streaming potential gradient. The total potential built up in the direction of 

streaming in this manner is the streaming potential (Lauffer & Gortner, 1939). 

 From the governing equations in the direction of flow in the fully developed 

region, the streamwise momentum equation is given by (Conlisk, 2013) 

xel E
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
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


2

2

     (2.35) 

where, el is the volume charge density, xE is the streamwise component of induced 

electric field, and u is the velocity composed of pressure-driven and electrically-driven 

components. The streaming potential corresponds to potential associated with xE  in the 

above equation.  

 Consider a channel that is wide and long compared to its height as shown in 

Figure 11. For sake of simplicity the origin is taken at the center of the channel, so the 

height is h2 , and the pressure driven flow is assumed to be fully developed (Conlisk, 

2013). By applying following boundary conditions and using equation 2.7, we can solve 

the governing equation 2.35, to get velocity 
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Thus, from equations 2.7,2.35,2.36 and 2.37 we get 
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Figure 11 Streaming Potential in a channel (Kirby, 2009). 

Current flux is defined by 
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where, iN
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 is the species flux given by 
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Here, since convection is dominant, we can neglect concentration gradients. Integrating 

the streamwise component of  current density, we can obtain the total current 

   
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We also know that  
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Substituting for xJ at 0I , from equations 2.39, 2.40 and 2.42 we get 
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 is the electrical conductivity of the electrolyte. Now, substituting 

equation 2.38 in equation 2.43 and solving we get electric field per width of channel 
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Under the limit of thin EDL, higher order terms of equation 2.44 can be neglected, giving 
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CHAPTER 3 

THE POLARIZATION OF A DIFFUSE SOFT PARTICLE 

SUBJECTED TO AN ALTERNATING CURRENT FIELD 

 

Introduction 

 There is a strong interest in characterizing electrokinetic properties of colloidal or 

biocolloidal particles including adsorbed polyelectrolytes (Donath et. al., 1980; Donath 

et. al., 1986; Starov et. al., 1993(1); Starov et. al., 1993(2)), bacteria (Bos et.al., 1998; de 

Kerchove et. al., 2005), and environmental colloids like humic substance (Duval et. al., 

2005). The aforementioned particles can be categorized as soft particles in which rigid 

cores are coated with charged polyelectrolytic shells (Cametti, 2011; Dukhin et. al., 2004; 

Dukhin et. al., 2005; Duval et. al., 2006; Hill et. al., 2004; Hill et. al., 2003(1); Hill et. al., 

1993(2); Levine et. al., 1983; Lopez-Garcia et. al., 2003(1); Lopez-Garcia et. al., 2003(2); 

Lopez-Garcia et. al., 2003(3); Ohshima, 1995; Ohshima, 2000; Ohshima, 2005; Saville, 

2000; Sharp, 1985; Wunderlich, 1982). Soft particles can find various applications in 

nanocomposite (Pyung et. al., 2001), catalysis (Jiang et. al., 2009), sensing (Wu et. al., 

2009), self-cleaning materials (Motornov et. al., 2007), and biotechnology (Chanana, 

2009). 

 Since the coated charged polyelectrolytic layer can complicate ions’ transport 

including migration, convection, and diffusion, making the electrokinetic phenomena 

much complex, theoretical understanding of electrokinetic properties of soft particles 

under the action of an electric field becomes necessary and important.  In fact, sophistical 
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theoretical models have been developed to study the electrophoretic mobility of soft 

particles over a broad range of charge densities, coatings, and double layer thicknesses 

(Duval, 2006; Hill et. al., 2003(1); Hill et. al., 2003(2); Hill et. al., 2005; Ohshima, 1993; 

Ohshima, 1994; Ohshima, 2000; Saville, 2000). 

 Compared to extensive investigations on the electrophoretic mobility of soft 

particles, much less attention has been paid to their electrical polarization in response to 

an alternating current (AC) electric field (Cametti, 2011). Nowadays dielectrophoresis 

(DEP) is a promising and popular means to manipulate and control particles in an AC 

field (Jones, 1995; Lei et. al, 2011; Pohl, 1978; Pethig, 2010; Zhao, 2011). Knowledge of 

the dipole moment that characterizes the electrical polarization is the key to implement 

DEP. However, due to intriguing properties of soft particles which lie between rigid 

particles and porous vesicles (Cametti, 2011),
 
the electrical polarization is not yet 

completely understood. Again, the charged soft layer complicates ions’ transport and 

makes the interpretation of dielectric behaviors more difficult.   

 First let us briefly review the dipole moment of bare colloidal particles that has 

been thoroughly investigated (Lopez-Garcia, 2000; Mangelsdorf, 1997; Zhao, 2009; 

Zhou, 2005). A charged rigid particle suspended in an electrolyte solution is surrounded 

by an electric double layer (EDL) (Hunter, 2001; Lyklema, 1995). The imposed electric 

field drives excess counterions inside the EDL to migrate, resulting in an electro-osmotic 

flow. Hence migration and convection of excess ions within the EDL along the particle’s 

surface polarize the EDL and change the dipole moment, leading to the high-frequency 

dispersion (Zhao, 2011). Under the thin double layer limit, migration and convection can 

be approximated as surface conduction. A simple model termed the Maxwell-Wagner-
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O’konski (MWO) theory can be used to calculate the dipole moment induced by the EDL 

polarization (O’konski, 1960). 

 It is recognized that the electric field repels ions into the EDL and attracts ions 

from the EDL at different ends of the particle. This ion-exchange process with the bulk, 

termed concentration polarization outside the EDL, creates a concentration gradient. As 

the time scale is larger than the diffusion time or the frequency is lower than the diffusion 

frequency, bulk diffusion plays a role in determining the dipole moment, creating the 

low-frequency dispersion. Under the assumptions of the thin quasi-equilibrium EDL and 

bulk electroneutrality, a theory named the Dukhin-Shilov (DS) model is developed to 

predict the dipole moment at low frequencies (Dukhin, 1974; Grosse, 1996; Shilov, 

1970). For a rigid particle, the high-frequency and low-frequency dispersions fully 

describe the polarization process.  

 Similar to their rigid counterpart, the polarization of soft particles shall have both 

high-frequency and low-frequency dispersions. But the presence of the soft layer 

complicates the convection and migration inside the EDL. Moreover, excess ions within 

the soft layer also contribute to the polarization, which may be dominant under certain 

conditions. Therefore, the impact of the soft layer needs to be examined and understood. 

 In this manuscript, we will employ a continuum electrokinetic model developed 

by Duval et al. (Duval et. al., 2006; Duval, 2005; Duval et. al., 2004). This model is 

based on the Nernst-Planck equation for ion concentrations across the soft layer, Poisson 

equation for the electric potential, and the Stokes equation that approximates the 

hydrodynamic impact of polymer chains as a distribution of Stokes resistance centers. 

The model adopts a diffuse interface to continuously connect the soft layer with the bulk 
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electrolyte. Within this interfacial zone, the properties gradually change. This model has 

been successfully implemented to study the electrophoresis of soft particles (Duval et. al., 

2006). 

 Lopez-Garcia et al. studied the dielectric properties of suspensions of charged 

spherical hard particles enclosed by permeable membranes in an electrolyte solution 

(Ahualli, 2009). In their work, the focus was on the dielectric spectrum of colloidal 

suspensions of soft particles and they did not explicitly consider the impact of the 

characteristics of the soft layer including the Donnan potential, the thickness and the 

friction coefficient. For example, only two Donnan potentials were investigated and no 

direct comparisons of these two cases were made. Although Hill et al (Hill et. al., 2003). 

examined the impact of the Donnan potential on the polarizability of dilute suspensions 

of spherical colloidal particles with charged coatings, they only investigated the influence 

of the Donnan potential on the low-frequency limit of the polarization that corresponds to 

a DC field and did not examine the impact at higher frequencies which is more relevant 

to DEP techniques. In contrast, here we will provide a full picture of characteristics of the 

soft layer like the Donnan potential or the soft layer thickness on the polarization of a soft 

particle over a broad range of frequency. In addition, we carry out a detailed asymptotic 

analysis on the electrokinetic model and derive simple analytical expressions to compute 

the dipole moment in the limits of thin double layers and thin soft layers. More 

specifically, we extend the standard Maxwell-Wagner-O’konski and Dukhin-Shilov 

theories by accounting for the impact of the soft layer on migration, convection and 

diffusion. Our approximate formulas can be used to verify and validate numerical 
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simulations. Finally, we study the dependence of the dipole moment on the double layer 

thickness, the soft layer thickness and the friction coefficient of the soft layer.  

 

Mathematical Model 

  An uncharged rigid core of radius *a and permittivity *

2  surrounded by an ion-

permeable charged shell with the thickness 
* is submerged in a symmetric, quiescent 

electrolyte solution of permittivity .*

1  An AC electric field is imposed far from the 

particle. The imposed electric field is symmetric with respect to the particle’s axis and 

induces the particle to experience an electrophoretic motion, given by tieUtU *

0

* )( 


 

where *

0U  , the electrophoretic mobility, is not known a priori and will be determined 

during the solution process. Accounting for symmetry, we use a spherical coordinate 

system (r, θ) with its origin at the particle’s center. θ is the angle between the radial 

direction re  and the horizontal direction ze . We fix the origin of the coordinate system at 

the particle’s center. Figure 12 depicts the geometry and the coordinate system. In the 

following, the superscript * denotes the dimensional form of various variables. Variables 

without the superscript * are dimensionless. We use the rigid core radius *a as the length 

scale; 
*

**

F

TR
as the electric potential scale; 

*2*

2*2**

aF

TR




as the velocity scale; 

*

2*

D

a
 as the time 

scale; 
2*2

2*2**

aF

TR
as the pressure scale; 

**

***

aF

TR
 as the electric charge scale.  
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Figure 12  Schematic description of the geometry and the spherical coordinate system. 

 In the presence of an electric field, excess counterions inside both the soft layer 

and electric double layer migrate and drag the solvent with them. This fluid motion 

induces shear forces on the particle and the soft layer surrounding the particle. The 

resistance provided by the soft layer can be modeled within the framework of the Debye-

Beuche model (Debye et. al., 1948). 

 Because the Reynolds number associated with the electrokinetic flow is small, the 

fluid flow is modeled with the Stokes equation: 

 0)()(
2

1
0

2

12
  ukrhuCCp

D


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 (3.1)

   

 

The fluid is incompressible: 
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
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The electric potential of liquid satisfies the Poisson equation and the particle’s electric 

potential obeys the Laplace equation: 

 
21

2

2

))((

D

fix rhCC










 (3.3)  

 02

2    (3.4) 

Ionic concentrations are governed by the Nernst-Planck equations: 

  umCCzDCDN
t

C


 



1


 (3.5) 

In the above, u


is the velocity vector; t is time; p is the pressure; C is the ion’s 

concentration; the subscripts (+) and (-) denote, respectively, the cations and the anions; 

  is the electric potential; and E  is the electric field. Subscripts 1 and 2 denote 

the liquid and the rigid bare core, respectively.
*

0

2*

***

* 2

1

CF

TR

a
D


 

is the dimensionless 

Debye screening length (normalized with the rigid core radius *a ); *

0C  is the solute bulk 

concentration; *R is the ideal gas constant; *F is the Faraday constant;  *T is the 

temperature; 
*

0

*

*

CF

fix

fix


   is the fixed charge density within the soft layer;

 
2***

2*2**

1

FD

TR
m








is the cation mobility; *  is the solvent viscosity; *

D is the cation diffusivity. 

2

*

0

*

0 













a
k

is the hydrodynamic friction coefficient where *

0 is the hydrodynamic penetration length 

of the fluid in the soft layer, commonly known as the “softness parameter” (Duval, 2005), 
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))
)1(

tanh(1(
2

)(





rw
rh  

 
is a function of location that remains constant inside the 

soft layer and is equal to zero outside the soft layer where  is the thickness of the 

transition layer that is connecting the soft layer to the electrolyte. w  is the dimensionless 

parameter given by  

 










1

2

3

))
)1(

tanh(1(3

)1)1((2

drr
r

w






 (3.6) 

which guarantees that the total charge due to fixed charges inside the soft layer remains 

constant when varying   or  . )(rh  has been demonstrated to successfully characterize 

the distribution of the polymer segment within the diffuse layer (Yezek et.al., 2005) and 

yield reasonable agreements with experimental data for biological and environmental 

particles (Duval et.al., 2005). Hence we choose )(rh to approximate the continuous 

interfacial fixed charge density distribution within the soft layer.  

The following boundary conditions are imposed. Far from the particle, 

 
tierE  cos01  , 1C , and z

ti eeUu 
0


,  at r  (3.7) 

On the rigid surface, 

            021 









nn
r





, 021  , and 0 Nn


  ( 1r )   (3.8)         

In the above, 
*

1

*

2 / r  is the relative permittivity, n


 denotes the outer normal vector to 

the surface, and in our case, 025.0r .  
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Perturbation Method 

 Assuming that the imposed electric field is much smaller than that induced by the 

fixed charge, a regular perturbation expansion can be used in terms of the applied electric 

field about the equilibrium EDL:     
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 (3.9) 

Where, the symbol Re indicates the real part of a complex variable. To determine the 

particle’s electrophoretic mobility 0U , we will set the net force including both 

hydrodynamic and electrostatic forces to zero.  

The zeroth order approximation 

Let )0( and )0(

C  be, respectively, the equilibrium electric potential and the equilibrium 

concentrations induced by fixed charges within the soft layer in the absence of an 

external electric field. Since the zeroth order problem is axisymmetric, the zeroth order 

variables are only functions of the radial coordinate (r). At equilibrium, the ions’ 

concentrations )0(

C  obey the Boltzmann distribution: 

 
)0()0( eC   (3.10)  

The electric potential )0( satisfies: 
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The boundary conditions are: 

 0)(
)1( )0(

1

)0(

1 


dr

d
 (3.12) 

The first order approximation 

 The first order equations are linear in the perturbed quantities. In other words, the 

dependent-variables oscillate at the forcing frequency. For mathematical convenience, the 

original problem can be decomposed into two sub problems: (i) the E problem consists of 

the same electric field at infinity as the original problem and zero velocity at infinity and 

(ii) the U problem consists of a zero electric field and a uniform flow field at infinity 

(O’Brien et. al., 1978).The solutions of the first order problem can be written as the 

superposition 

 tiUE eXUXX )( )1(

0

)1()1(   (3.13) 

where X represents any of the dependent variables including velocities, electric potential, 

and ionic concentrations.  E and U denote, respectively, the solutions of the E and U 

problems. Substituting series (3.9) into Eqs. (3.1) – (3.55), retaining terms up to )(O

and replacing the time derivative with i , we obtain      0)1(  u


,     (10) 
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and 

 
 )1()0()0(

1

)1()1(

1

)0()1()1( )( unCCCzDCDCi


     (3.17) 

Consider the axisymmetric nature of the problem. Eqs. (14)-(17) can be further simplified 

to ordinary differential equations (Zhao, 2009), which were solved with the commercial 

finite element software COMSOL 3.5
®
 (Comsol is a product of Comsol

TM
, Boston).  The 

computational domain is defined as ],0[ R . Here R = 10
4
 that is large enough to render the 

computational results reasonably R-independent since a five-fold increase in R resulted in 

variations less than 1%. To resolve the details of the electric double layer and the soft 

layer, non-uniform elements were applied with a dense mesh concentration next the 

particle’s surface and the elements’ size gradually increases as moving away from the 

surface. We refined mesh a few times to assure that the computational results are mesh-

independent.   

The dipole moment coefficient 

 The particle and its adjacent electric double layer perturb the electric field. Far 

from the particle, the perturbed field appears like a field induced by a dipole, and the 

electric potential admits the form cos)(
20

r

f
rE  , where the real part of f is the dipole 

coefficient. The dipole coefficient )Re( f  is a function of the Donnan potential ( dy ) 

characterizing the importance of the impact of the fixed charges inside the soft layer (









 

2
sinh 1 fix

dy


), the double layer thickness, the soft layer thickness, the friction 
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coefficient, and the electric field’s frequency. )Re( f  can be deduced from the behavior 

of the potential )1(  as a function of r sufficiently far from the particle ).1( Rr   

 

Surface Conduction (MWO) Model 

 Often the dipole coefficient of a spherical particle is approximated as (Pohl, 1978)
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where 
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 In the above, *

1 and *

2  are, respectively, the complex permittivities of the 

electrolyte and the soft particle; *

1 and *

2  are, respectively, the conductivities of the 

electrolyte and the particle. The electrolyte’s conductivity is given by
**

*

0

*2*
*

1

2

TR

CDF 

(Lyklema, 1995). The particle’s effective conductivity is ***)(

2

*

2 /2 as

i   , where *)(

2

i

and *

s  are, respectively, the intrinsic conductivity of the particle and the surface 

conduction including both contributions from the soft layer and the double layer.
 

 Here, we assume that 0*)(

2 i  (dielectric core). When the soft layer is thin and the 

double layer thickness is smaller than the soft layer length ( 1  and 1/ D ), we 

can derive the surface conduction (see Appendix A) as 
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where, dy is the Donnan potential defined earlier. In the low-frequency limit ( 0 ),
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is the Dukhin number, characterizing the 

importance of the surface conduction. 

 

The Low-frequency (Dukhin-Shilov) Model 

 It is recognized that under the action of the electric field ions migrate and convect 

into/from the bulk, inducing a concentration gradient (Dukhin et. al., 1974; Grosse et. al., 

1996; Shilov Et. al., 1970).
 
When the frequency is around 

2** / aD  associated with the 

diffusion time, ions have enough time to diffuse in response to the concentration 

polarization. Accordingly, the diffusion changes the dipole coefficient. However, the 

MWO model does not account for diffusion in the electrolyte solution and cannot capture 

the behavior of the dipole moment at low frequencies.  

 To understand the role of the diffusion, Dukhin and Shilov (Dukhin et. al., 1974; 

Grosse et. al., 1996; Shilov Et. al., 1970), used asymptotic analysis to calculate the dipole 

coefficient in the limit of thin double layers, 1D . In the thin EDL limit, Gross and 

Shilov
45

 outlined a detailed procedure to derive the dipole moment for a rigid spherical 

particle.  Briefly, the bulk concentration and the electric potential in the bulk region obey 

diffusion equation and Laplace equation, respectively. To solve the above equations, 

effective boundary conditions outside the EDL are derived by assuming a thin EDL in 
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local equilibrium (i.e., the chemical potential in the EDL is independent of the radial 

coordinate). The electric potential and bulk concentration can be solved analytically with 

the proper boundary conditions.  

 The presence of the soft layer modifies the effective boundary conditions and we 

need to incorporate the contribution from the soft layer into the surface conduction. With 

the proper effective boundary conditions, we can derive the dipole moment of a soft 

particle under the limits of thin soft layers and thin EDLs. The detailed derivation is 

given in Appendix B. Here we only present the final expression of the dipole moment: 

 BAf /  (3.21) 

where 
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At high frequencies ( 1 ) equation (21) reduces to 
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where .DuRR  
 Not surprisingly, the high-frequency limit of the DS model is equal 

to the low-frequency limit of the MWO model. 

In the low-frequency limit ( 0 ) equation (21) becomes 
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(3.28) 

                                                             

 

Results and discussion 

 First, we compared our dipole moments (solid line) to the computational results 

(symbols) reported in Hill et al. (Hill et. al., 2004). Figure 13 plots the dipole coefficient 

(the real part of f) as a function of the frequency where 096.0D  , 99.1dy , 

63.0 , and 8160 k . The parameters in our model are the same as those in Hill et al. 

(Hill et. al., 2004). The good agreement is remarkable since our approximation of the 

structure and permeability of the soft layer is different from that in Hill et al. In other 

words, the agreement indicates that the impact of the detailed treatment of the soft layer 

on the dipole moment may be negligible as long as the fundamental characteristics of the 

soft layer including Donnan potential, the soft layer thickness, and the hydrodynamic 

friction remain the same. Hill et al. focused on the influence of the polarizability of soft 

particles on conductivity and dielectric increments of dilute suspensions. In contrast, here 

we are explicitly interested in the polarization of a single soft particle over a broad range 

frequency which can find applications in dielectrophoresis.       
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Figure 13 The dipole coefficient Re(f) as a function of the frequency  . The solid line 

and symbols correspond, respectively, to the dipole coefficient predicted by our model 

and the one reported in Hill et al. (Hill et. al., 2004). 

 Figure 14a and 14b depict the dipole coefficient Re(f) as a function of the 

frequency   for various Donnan potentials and soft layer thicknesses. The solid lines, the 

dashed lines, and the symbols correspond, respectively, to the predictions from the DS 

model, the MWO model, and the PNP model.  

 Figure 14a studies the impact of the Donnan potential on the dipole coefficient 

when 01.0D  , 05.0 , and  6

0 10k . The various symbols (in ascending order) 

correspond, respectively, to 2dy , 4dy , and 6dy . The increase of the Donnan 

potential (the higher fixed charge density) inside the soft layer leads to a higher 

concentration of excess mobile ions in the soft layer, yielding to a higher polarization or a 
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larger Re(f).  At high frequencies, ions do not have time to respond to the applied electric 

field. The polarization is dominated by the mismatch of dielectric permittivities of the 

medium and the particle. Since the dielectric permittivity of the particle is much smaller 

than that of the electrolyte, the dipole moment is negative. As the frequency decreases, 

ions have time to migrate and convect. The ions’ migration and convection inside the soft 

layer induce surface conduction. Typically, surface conduction is larger than the bulk 

conductivity. The dipole moment arises, resulting in the high-frequency dispersion. When 

the frequency is further decreased around
2** / aD , concentration gradient induced by 

surface conduction starts to trigger the diffusion process. The dipole moment is dictated 

by a balance between surface conduction and diffusion. Consider that the direction of 

diffusion is opposite to that of the surface conduction. The dipole moment decreases as 

the frequency decreases. When the frequency is much smaller than 
2** / aD , the 

polarization is eventually balanced by the diffusion and surface conduction and the dipole 

moment is nearly independent of the frequency.  

 Evidently, the MWO model accounts for surface conduction including migration 

and convection, captures the high-frequency dispersion, and agrees well with the PNP 

model at high frequencies. The DS model takes the diffusion into account. Hence it 

predicts the low-frequency dispersion. Since the DS model is derived under the 

assumption of electroneutrality that is valid when 
2*** / DD    (Shilov et. al., 1970), it 

is not surprising that the DS model fails at high frequencies. In addition, when deriving 

the MWO and DS models, only the surface conduction inside the soft layer is taken into 

account and the contribution from the double layer is neglected. As the Donnan potential 
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increases, the double layer effect becomes important. Therefore, the MWO and DS 

models deviate from the PNP model.  

  

 

 

Figure 14 The dipole coefficient Re(f) as a function of the frequency   for (a) various 

Donnan potentials dy
 
when 01.0D  , 05.0 , and 6

0 10k , (b) various soft layer 

thicknesses   when 01.0D  , 3Dy , and 6

0 10k . 
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 We also observe that the high-frequency dispersion is shifted to the left as the 

Donnan potential increases since a higher Donnan potential leads to a larger surface 

conduction. On the other hand, the Donnan potential has little impact on the low-

frequency dispersion, which stays around
2** / aD .  

 Figure 14b examines the impact of the thickness of the soft layer on the dipole 

moment when 01.0D  , 3Dy  and 6

0 10k . Various symbols correspond, 

respectively, to 04.0 , 06.0  and 1.0 . As the thickness of the soft layer 

increases, the dipole moment increases since there are more excess ions harbored inside 

the soft layer. Since both MWO and DS models are derived assuming that the thickness 

of the soft layer is much smaller than the particle’s radius, the predictions from the MWO 

and DS model do not agree well with the PNP model at larger .  

 For an arbitrary double layer thickness and arbitrary Donnan potential, the MWO 

and DS models are invalid. We have to resort to numerical techniques to solve Eqs. 

(3.10) - (3.17) to obtain the dipole moment.   

 Figure 15 plots the dipole coefficient Re(f) as a function of the frequency for 

different double layer thicknesses and Donnan potentials when 1.0  and 6

0 10k . 

Interestingly, the dipole moment behaves qualitatively differently at different Donnan 

potentials. It can be readily explained: on one hand, the double layer extends the charged 

region further into the bulk. On the other hand, the double layer also sufficiently 

influences the charge distribution of mobile ions inside the soft layer, in particular, at low 

Donnan potentials.  
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Figure 15 The dipole coefficient Re(f) as a function of the frequency    for various 

double layer thicknesses and various dy . 
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Figure 16 The equilibrium charge distribution of mobile ions across the soft layer for 

various double layer thicknesses: (a) 1Dy , (b) 3Dy , (c) 5Dy  where 2.0

and 6

0 10k into the bulk. 
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 Figure 16a plots the equilibrium charge distribution of mobile ions when 1Dy . 

Evidently, the charge density of mobile ions inside the soft layer decreases as the double 

layer thickness increases. Hence, the dipole moment increases as the double layer 

decreases. However, as the Donnan potential increases, the impact of the double layer on 

the charge distribution inside the soft layer diminishes and the fixed charges start to 

dominate the net mobile ions (Figure 16c). Consider that the double layer extends the 

charged region further.  

 At large Donnan potentials, the larger the double layer thickness, the higher the 

dipole moment. Figure 15b shows that around a critical Donnan potential this qualitative 

transition occurs. 

 Finally, we examine the influence of the hydrodynamic friction on the dipole 

moment. Figure 17 plots the dipole moment as a function of the frequency for different 

0k when 2.0 , 1.0D   and 3Dy . As 0k  increases, the convection inside the soft 

layer decreases, leading to a reduction of the dipole moment. Meanwhile, with the 

increase of 0k , the convection becomes weak and its contribution to the dipole moment 

diminishes. Accordingly, the data of large 0k  collapses onto a single curve.  
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Figure 17 The dipole coefficient Re(f) as a function of the frequency  for different 0k

when 1.0D  , ,3Dy  and 2.0 . 

 

Conclusion 

 In this project, we characterized soft particles as a continuous distribution of 

charged polymer segments coated on rigid cores and studied the resulting polarization of 

diffuse spherical soft particles including both the soft layer and double layer under the 

influence of AC electric fields. The electrostatics and hydrodynamics were solved on the 

basis of coupled numerical analysis of the nonlinear Poisson-Nernst-Planck and Stokes 

equations. The dipole moment of a soft particle was computed as a function of its Donnan 

potential, double layer thickness, hydrodynamic resistance, and soft-layer thickness. In 

particular, we focused on the impact of the soft layer characteristics on the dipole 

moment. We found out that at low Donnan potentials, the dipole moment decreases as the 
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double layer thickness increases. On the contrary, at high Donnan potentials, the dipole 

moment increases with the increase of the double layer thickness. This qualitative 

difference is attributed to the impact of the double layer on the charge distribution of 

mobile ions within the soft layer. In addition, we examined the influence of the 

hydrodynamic friction coefficient of the soft layer on the polarization as well. As 

expected, a higher hydrodynamic resistance suppresses the induced electro-osmotic flow 

inside the soft layer, leading to a reduction of convection. In turn, the dipole moment 

decreases.  

 Under the assumption of thin double layers and thin soft layers, we derived the 

approximate dipole moment expressions for high frequencies accounting for the surface 

conduction only and low frequencies considering the diffusion. The predictions from our 

approximations agreed well with the ones predicted by the full model.  

 Consider that microbes like bacteria, viruses, and yeast cells can be approximated 

as particles with soft permeable interphases.
54

 Quantitative understanding of the 

polarization of soft particles under the influence of various electrokinetic parameters can 

make dielectrophoresis a viable technique for sorting, separating, and concentrating 

microbes, which can find broad applications in biotechnology, food-processing industry, 

and water-quality monitoring.  
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CHAPTER 4 

THE INFLUENCES OF PARTICLE SIZE AND RESIDUAL 

CHARGES ON ELECTROSTATIC INTERACTIONS BETWEEN 

CHARGED COLLOIDAL PARTICLES AT AN OIL-WATER 

INTERFACE 

 

Introduction 

 Assembly of colloidal particles can find important technical applications 

including photonic materials, sensors, optical displays, and electronic devices (Painter et. 

al., 1999; Vlasov, 2001; Cheng et. al., 2006; Velev and Kaler, 1999; Jiang et. al., 1999).  

Many methods have been proposed to assemble particles including dielectrophoresis, 

template-directed sedimentation, depletion, solvent evaporation, spin coating et al. 

(Hayward, 2000; Lumsdon,  2004; Mikhael,  2008; van Blaaderen, 1997;   Gates, 1999; 

Prevo and Velev, 2004 ; Mason and Bibette, 1996; Hobbie, 1998;  Denkov, et. al., 1993; 

Kralchevsky and Denkov, 2001; Jiang and McFarland, 2004;  Jiang and McFarland, 

2005).  One popular method is to self-assemble colloidal particles at the oil-water 

interface (Bowden et. al., 1999; Bowden, 1997; Grzybowski, 2001; Aubry et. al., 2008; 

Park and Furst, 2010). The oil-water interface serves as a soft template. Colloidal 

particles are confined at the interface. For particles with a diameter larger than 10 m, the 

gravity deforms the interface locally between the particles (Oettel and Dietrich, 2008) 

The deformed interface results in attractive lateral capillary forces to self-assemble 
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particles into monolayer structures. For particles with a diameter smaller than 1 m, 

similar clustering is observed as well. However, in this case, the precise origin of 

attractive forces is still elusive (Bresme and Oettel, 2007). This method is simple, cost-

effective and scalable. Because the electrostatic repulsion is the key to self-assembly of 

colloidal particles at the oil-water interface, fundamental understanding of this repulsion 

becomes important to make this method be widely implemented.  

 Electrostatic interactions have been thoroughly theoretically and experimental 

studied. It is well known that particles pinned at the water-oil interface experiences long-

range repulsive dipole-dipole interactions (Pieranski, 1980). Such repulsive interactions 

are attributed to the asymmetric counter-ion distribution between water and oil phases. In 

the water phase, the double layer forms near the charged particle surface. Excess 

counterions inside the double layer screen the electric field generated by the surface 

charge. In the oil phase, there are mobile ions and the electric field can be extended much 

further. This asymmetry leads to a dipole normal to the interface. When two particles are 

close to each other, the double layers overlap and the double layer interactions result in 

an additional strong short-range repulsive force which decays exponentially as the 

separation distance increases. To account for both dipole-dipole and double layer 

interactions, Hurd (Hurd, 1985) computed the linearized Poisson-Boltzmann equation of 

a single particle and derived a formula to calculate the repulsive force. The simple 

formula correctly predicts the scaling relationships between the interaction force and the 

separation distance in both the long ranges and short ranges.  However, the predicted 

magnitude of repulsive force has been found to be significantly lower as compared to 

experimental measurements.  



62 
 

 To understand this discrepancy, Aveyard et. al. (Aveyard et. al., 2002) measured 

the long-range interactions using laser tweezers method and suggested that the residual 

charges at oil-particle interface add to the electrostatic repulsion. Later, Masschaele et. al. 

(Masschaele et. al., 2010), using decane as a non-polar medium and water as polar 

medium for their experiment,  proposed that the finite ion size in the compact or Stern 

layer of diffuse double layer adds to electrostatic interactions. Oettel et. al.( Frydel and 

Oettel, 2011; Bleibel et. al., 2013) treated particles as point dipoles and computed the 

electrostatic repulsive force as the dipole-dipole interaction. Similarly, without 

accounting for steric effects and solvent polarization saturation, the predictions are order-

of-magnitude smaller than experimental results. However, consider that the experiments 

were conducted in DI water. The ion concentration is very low. The steric effect or the 

finite ion size is not likely significant (Bazant et. al., 2009).  

 Most theoretical studies treating particles as point dipoles neglected the impact of 

particle size on the interaction force (Aveyard et. al, 2002; Masschaele et al. 2010; Frydel 

and Oettel, 2011; Bleibel et. al., 2013 ).Recognize that the aforementioned long range 

refers to 10/ ** Dd   where *d is the particle-particle separation distance and *

D is the 

double layer thickness. Since *

D is around hundred nanometers, when *d  is around a few 

m  , ** / Dd  can be larger than 10. However, for micrometer-size colloidal particles, *d  

may be comparable to the particle size. In fact, in experiments, 102/ ** ad  where *a is 

the particle’s radius (Masschaele et. al., 2010) In other words, the influence of the particle 

size may be important. In addition, the relation in Hurd predicts the dependence of the 

force on the separation distance for both short and long ranges (Hurd, 1985). But the 
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force value for a distance in between short and long ranges (i.e. 10~/ **

Dd  ) is not given 

by the Hurd’s relation.  

 In contrast, in the present work, we account for the impact of particle size by 

carrying out three-dimensional simulations of two spherical particles pinned at the oil-

water interface via solving the standard Poisson-Nernst-Planck (PNP) model. We also 

compare the predicted magnitude of the short as well as long range repulsive forces with 

experimental results of Masschaele et. al. (Masschaele et. al., 2010). 

 

Mathematical model 

 Here we consider two charged spherical particles of radius *a  with a charge 

density * pinned at the oil-water interface with a contact angle of
0* 90 . Two 

particles are separated with a distance *d . The water and oil (decane) have different 

dielectric permittivities 
)1(

r and 
)2(

r , respectively. Accounting for the symmetrical 

nature of interactions between two particles, appropriate axisymmetry and boundary 

conditions can be applied to significantly simplify the problem. A Cartesian coordinate 

(x, y, z) with its origin at the center of two particles at the oil-water interface is used to 

describe the problem, as shown in Figure 18. 

 To facilitate the analysis, we nondimensionalize the governing equations. We use 

the radius 
*a  as the length scale, 

*** / aFTR as the electrical potential scale, *

0C  as the 

concentration scale, and *****

0

)1(
/ aFTR ar  as the charge scale.  Here, *

0C  is the solute 

bulk concentration; *R is the ideal gas constant; 
*

aF is the Faraday constant; *

0  is the 

permittivity of free space. In the following, to avoid confusion, we use superscript * to 
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denote the dimensional form of various variables and variables without the superscript * 

are dimensionless. In addition, superscripts 
(1), (2)

 denote water and decane medium 

respectively. 
  

 The electric potential of the water satisfies the Poisson equation:  

 
2

)1(2

2 D

CC


    (4.1) 

In contrast, because the decane is a non-polar medium and contains no ions, the 

electric potential satisfies the Laplace’s equation:  

 0)2(2    (4.2) 

Ion concentrations in water are described by Nernst-Planck equations: 
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  is the thickness of electric 

double layer, C  is concentration of cations or anions; and z  is the valence number of 

cations and anions. Here 1z . 

 The following boundary conditions are imposed: 
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Figure 18 Schematic illustration of 3D model for a particle trapped at Decane-Water 

interface. 

 

)0( 0

)0( 0

)0( 0
)1(




















 



z
x

z
x

z
n

Cz
n

C







 at the center (x=0); (4.5) 

 

)0( 0

)0( 1

)0( 0

)2(

)1(









z

zC

z





 at the far field ( RxRz  , );  (4.6) 

and  

 



66 
 

 

)0( 

)0( 0

)0( 

)2(
)2(

)1(

)1(
)1(



























z
n

z
n

Cz
n

C

z
n













 on the particle interface. (4.7) 

In the above,  is the surface charge density. The ionic flux across the oil-water interface 

is assumed to be zero, since most of the simple electrolytes are composed of hydrophilic 

ions that dissolve easily in water rather than in oil, making ion transport difficult across 

the oil-water interface (Verdes et. al, 2004; Kornyshev et. al., 2002). 

 Accounting for the symmetry, only the x-component of the electrostatic force is 

not equal to zero. To compute it, we integrate the Maxwell stress tensor over the entire 

surface of the particle. 

 dAnIEEEEF xx
ˆ))(

2

1
(  


.  (4.8) 

 The model is solved with the commercial finite-element software 4.3b 

COMSOL
®
. Eqs. (4.1)-(4.7) were solved using the generalized minimal residual method. 

The computational domain consisted of a finite domain Rx 0 and RzR   where 

R=50. It is considered to be sufficiently large. To assure that the solutions are 

independent of the domain size R, we further increase R by a factor of 1.5 and the 

discrepancies between these two domains were less than 0.1%. In order to resolve the 

detailed structures of the electric double layer, non-uniform elements were used with 

dense meshes with the maximum element size of 0.004 (approximate twenty elements) 

concentrated next to the particle’s surface inside the electric double layer. The maximum 
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element size in the bulk is set to be 0.08 near the domain edges. The meshes were refined 

a few times as well to guarantee that the results are mesh-independent. 

 

Results and Discussion 

 When a particle is trapped at the decane-water interface, an electric double layer 

(EDL) forms near the charged surface of the particle on the water side by attracting 

counterions and repelling coions, but not on the decane side since the decane contains no 

ions. The presence of EDL on the water side can effectively screen the electric field 

induced by the surface charge. Figure 19 plots the contours of the electric potential 

around the particle at the decane-water interface. Evidently, on the water side, the electric 

potential quickly decreases to zero away from the particle. In contrast, on the decane side, 

the electric field extends much further into the bulk. 

 

Figure 19 Potential gradient for a particle trapped at Decane-Water interface, XZ 

view. 
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 It is well known that at long ranges, the repulsive force between two particles 

behaves like the dipole-dipole repulsion. It was predicted that the interaction force decays 

as
4

~


d . Here the long range typically refers to 10/ Dd   (Aveyard et. al., 2002; 

Masschaele et.al., 2010). To verify our computational algorithm, we first compute the 

electrostatic force as a function of the center-to-center distance between two particles. 

Figure 20 plots the electrostatic force as a function of Dd /  when 3.0;2.0  D . 

The symbols represent the computed force values and the solid line represents the best 

power-law fit
04.4~ dFx . Our numerical results agreed well with the dipole-dipole 

interactions. 

 For short ranges, when the particles are very close to each other, the EDLs of two 

particles overlap, resulting in the double-layer interaction. It is recognized that the 

double-layer interaction is dominate at short ranges, yielding to an exponential scaling 

relationship (Hurd, 1985; Aveyard et. al., 2002; Masschaele et.al., 2010). 

 

Figure 20 Variation of long range horizontal repulsive force as a function of center-

to-center particle distance as
04.4~ dFx at 3.0;2.0  D . 
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 Figure 21 plots the short-range electrostatic force as a function of Dd /)2(   

when 3.0;2.0  D . Symbols and the solid black line represent the computed force 

values and the best exponential fit, 
d

x eF 48.0~ 
, respectively. Once again, the good fitting 

further verifies our computational algorithm.  

 Next we examine the effect of the surface charge density on the electrostatic 

interaction force. Figure 22 plots the repulsive force as a function of the surface charge 

density when 2.0D . The symbols and the solid lines correspond, respectively to the 

computed force and best polynomial fit. Circles and diamonds correspond to the forces at 

05.2d  (short range) and 67.6d (long range), respectively. The quadratic relationship 

between the predicted force and the surface charge density at all ranges can be readily 

explained: the repulsive force is electrostatic in nature, which is directly correlated with 

the surface charges of two neighboring particles.  

 

Figure 21 Variation of short range horizontal repulsive force as a function of center-

to-center particle distance as
d

x eF 48.0~ 
at 3.0;2.0  D . 
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Figure 22 Horizontal force as a function of surface charge density for ;2.0D  

circles represent force at 05.2d ; and squares at 67.16d . In both cases force varies as 

2~xF . 

 Finally, we examine whether the standard PNP model is adequate to describe the 

particle-particle electrostatic interaction at the oil-water interface. Recently Masschaele et 

al. used different methods to measure the interaction forces among polystyrene particles 

at the decane-water interface including optical tweezers, macroscopic rheological 

measurements and strain fluctuations (Masschaele et.al., 2010). Measurements are 

consistent among different techniques. Figure 23 depicts the experimentally measured 

dimensional forces (symbols) by Masschaele et al. (Masschaele et.al., 2010). and our 

computed dimensional forces (lines) from the PNP model as a function of the 

dimensional distance d
*
.  Two sets of numerical simulations with and without the residual 

charge at the particle-oil interface were carried out for the same conditions as in the 

experiments. In the absence of the residual surface charge, we fit the surface charge 

density )1*( at the particle-water interface by matching the force value at md 31.6*  . 
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The corresponding zeta potential is computed to be around -76 mV which is within the 

general range of experimentally measured zeta potentials for polystyrene particles (Ma et. 

al.). Figure 23, suggests that despite the good agreement at short ranges, without 

considering the residual charge, the predictions (the dashed line) are order-of-magnitude 

smaller than the experimental results at long ranges. In contrast, by assuming a small 

residual surface charge )2*( , the predicted forces (the solid line) quantitatively agree 

with experiments over a large range of distances including both small and large 

separation distances. The favorable agreement at long ranges strongly suggests that there 

is the possible presence of residual charges in the oil phase. Indeed, recent experiments 

also indicate that particles have residual charges in the non-polar-medium, which are 

consistent with our findings here (Aveyard et. al., 2002; Law et. al., 2013; Law et. al., 

2011; Ma and Dai, 2009; Hsu et. al., 2005; Briscoe and Horn, 2002; Aveyard et. al., 

2000). 

 Aveyard et al. (Aveyard et. al., 2002; Aveyard et. al., 2000)
 
derived an expression 

for the charged-dipole interaction force between particles assuming that there are residual 

charges at the particle-oil interface:   

 
4*

**
* 3

r

Tka
F bd

x   (4.9) 

where kb is the Boltzmann constant and 
*

da  is the energy scale of the interaction: 
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By inserting our fitted 2)2*( / 41.1 mC  into Eq. (10), we can compute 

315 m 1035.5 da . With ad, Eq. (9) gives the force value around 4104  pN at 

μm 20* d , which is an order-of-magnitude smaller than the experimental data or the 

simulation value. Since Eq. (4.9) assumes point dipoles and does not explicitly take into 

account the impact of particle size on the particle-particle interaction, this discrepancy 

suggests that the impact of particle size is not negligible even at long ranges.    

 

Figure 23 Comparison of the predicted force (lines) and the measured force 

(symbols). The dashed line represents the force values evaluated at nm 300* D ; 

m 55.1* a ; 2)1*( /4.70 mC  and 2)2*( /0 mC  . The solid line represents the 

force values evaluated at 2)1*( /4.70 mC  and 2)2*( / 41.1 mC  . 
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Conclusion 

 To assemble particles at the oil-water interface, knowledge of the electrostatic 

repulsive force is important to control and manipulate particles at liquid-liquid interfaces. 

To understand the particle-particle electrostatic interactions, often the dipole-dipole 

approximation neglecting particle size was used to interpret experimental data. However, 

the dipole-dipole approximation is only capable of qualitatively explaining the long-range 

interaction. When particles are close to each other, the geometry of the particle plays an 

important role in determining the interaction force since the particle can disturb the 

electric field distribution in the oil side which is not screened by the double layer. One 

would expect that the dipole-dipole approximation without considering the impact of the 

particle’s geometry fails.  

 Here we numerically solved the standard Poisson-Nernst-Planck equations for the 

interaction of two spherical particles. The model accounts for the impact of particle size. 

Our model successfully predicted the fourth-power scaling relation at long ranges and the 

exponential relation at short ranges. In addition, since our model does not have any 

assumption on the ranges, our model can bridge the short and long ranges and compute 

the force at any given particle-particle distance.          

 By assuming that the particle in the oil phase has residual charges, our model 

compared favorably with experimental data. The good agreements with experiments 

indicated that the standard PNP model adequately describes particle-particle electrostatic 

interactions without a need to stipulate the presence of additional physics like steric 

effects or solvent polarization saturation.  
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  CHAPTER 5 

CHARACTERIZATION OF STREAMING POTENTIAL IN A 

CAPILLARY  DUE TO DROP DEFORMATION IN A TWO PHASE 

FLOW USING PHASE FIELD METHOD AND ADAPTIVE 

MESHING 

 

Introduction 

 Streaming potentials are generated when fluid flows past a charged surface. 

Convection of electric charges within the charge cloud adjacent to the surface leads to a 

current; if there is no external return path for the current, a potential is established and 

current returns via conduction through the fluid. This phenomenon is well described in 

Chapter 2. Streaming Potential is generally well understood for single phase flows, for 

which there is a linear relationship between the pressure drop and the electrical potential 

difference generated by fluid motion (Lac & Sherwood, 2009). However, streaming 

potentials generated by multiphase flow are less understood (Morgan et al., 1989; 

Antraygues & Aubert, 1993). Such flows are of importance in soil, in which the pore 

space is filled by an air/water mixture, and in petroleum reservoirs (saturated by 

oil/water/gas mixtures). Practical applications include the detection of water approaching 

a production well (Wurmstich & Morgan 1994; Jackson et al. 2005), and the generation 

of electrokinetic signals as seismic waves pass a gas/liquid interface.  
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 Theoretical analysis of the streaming potential, generated by a bubble or drop 

flowing in a fluid-filled capillary for a closely fitting rigid sphere (Sherwood, 2007; 

Sherwood, 2008), and generated by a drop of viscosity )2( moves along the centerline of 

a capillary filled by a second fluid of viscosity )1( (Lac & Sherwood, 2009), has been 

performed. The latter represents an idealized two-phase flow in a porous medium. The 

presence of the drop is known to modify the pressure difference necessary to maintain a 

given flow rate, or equivalently, the flow rate driven by a constant pressure difference 

(Olbricht,1996). Similarly, the drop affects the streaming potential, since both the 

convective current in the electric double layer and the overall electrical resistances of the 

capillary are modified by the presence of the drop. Thus, to develop such sensors, it 

becomes imperative to quantify the influence of a dispersed phase on the relationship 

between pressure drop and streaming potential.  

 For the sake of simplicity, we consider the case of a liquid-liquid phase ie, oil-

droplet-in-water, so that electric currents are present only in the bulk and the surface of 

the drop is uncharged. The EDL at the wall of the capillary is assumed to be thin 

compared to the radius of the capillary and to the width of the gap between the drop and 

the capillary wall. This result in smaller Hartmann number, in the absence of magnetic 

field, given as 



LHa  where,  is the conductivity of bulk medium (Lac & 

Sherwood, 2009). It means that, the electric potential induced by the flow generates 

negligibly small electrohydrodynamic flows in return, compared to the pressure-driven 

flow. This simplifying assumption enables decoupling of the hydrodynamics and the 
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electrokinetics. Hence it is very convenient to solve the flow field first, and then 

determine the induced streaming potential.  

 To solve for the flow field, it is necessary to understand the interfacial parameters 

affecting deformation, if any, of the drop.  In other words, the evolution of interface in 

response to shear rate of the flow, has to be characterized, as this transformation will 

affect the flow field in the bulk. Flows of gas-liquid or liquid-liquid mixed phases are 

familiar from many macroscopic systems. The fluid-dynamical response is commonly 

characterized successfully in terms of the Reynolds and Capillary numbers of the flow.    

 In general, the mathematical treatment of such moving boundary (evolving 

interface, in our case) problems is complicated by the fact that the position of the 

interface is not known a priori. Rather it evolves according to the flow within both fluid 

phases. A conceptually straightforward method for handling moving boundaries is to 

keep track of the motion of material points residing on the interface. Numerically, this 

may be realized by using a moving grid with grid points moving either according to the 

local fluid velocity or a mesh velocity. This Lagrangian approach is often known as 

interface tracking (Yue et.al., 2006). Difficulties arise, however, when interfacial 

deformation becomes severe as to cause mesh entanglement. An alternative to interface 

tracking is to compute the fluid flow of both components on a fixed Eulerian grid, with 

the interface being determined or reconstructed at each time step by using a scalar 

indicator function. Examples of this class of methods are the volume-of-fluid (VoF) 

method, the level-set method and the phase-field method. In recent years, the phase-field 

model has gained popularity in simulating two-phase flows of immiscible fluids (Yue 

et.al., 2006). In this framework, the interface between two immiscible fluids is treated as 
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a thin mixing layer across which physical properties vary steeply but continuously. The 

property and evolution of the interfacial layer is governed by a phase-field 

variable   that obeys a Cahn–Hilliard type of convection-diffusion equation. This 

circumvents the task of directly tracking the interface, and produces the correct interfacial 

tension from the mixing energy density at the interface.  

 Two factors drive the evolution of  : flow and diffusion, which can be described 

by  

Gu
t

2






     (5.1) 

where,   is the mobility and G  is the chemical potential given as 

 







 


2

2 1

t

G



     (5.2) 

where,   is the mixing energy density and t  is the interface thickness. 

 The advantages and limitations of the phase-field method, in relationship to other 

interface-capturing methods, have been discussed before (Feng et.al. 2005).  The 

feasibility of a diffuse-interface approximation for two-phase flows with practically sharp 

interfaces rests on the fact that the bulk components are identified by   = ±1 and the 

interface is well defined at   = 0. Since   takes on constant values in the bulk of each 

component, this further implies conservation of mass for each component provided that 

the interfacial layer is thin. Thus, the difficulty that requires special attention in level-set 

and volume-of-fluid methods appears to be nonexistent for the phase-field method. The 
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greatest challenge of this approach is in resolving the sharp gradients at the interface. 

This is achieved by using an efficient adaptive meshing scheme governed by the phase-

field variable. The finite-element scheme easily accommodates complex flow geometry 

and the adaptive meshing makes it possible to simulate two-phase systems effectively and 

efficiently (Zhou, 2008).  This work, specifically tries to develop understanding of flow 

field variations and associated streaming potential change based on changing interfacial 

tension, for two different drop sizes by using Phase-field model with adaptive mesh 

refinement.  

 

Mathematical Model 

 Here we consider a spherical oil droplet of radius *a , introduced in a stream of 

water flowing inside a capillary of length, *L  and radius, *r . The flow is fully developed 

laminar. Accounting for the symmetrical nature of the geometry, appropriate 

axisymmetry and boundary conditions can be applied to simplify the problem. A 

cylindrical coordinate (r, z) with its origin at (r=0, z=0) is used to describe the problem, 

as shown in Figure 24. In the following, to avoid confusion, we use superscript * to 

denote the dimensional form of various variables and variables without the superscript * 

are dimensionless. In addition, superscripts 
(1), (2)

 denote water and oil medium 

respectively. 
  

 We nondimensionalize the governing equations, using capillary radius 
*r  as the 

length scale, *)1*(

0

* / rut as the time scale, 
)1*(

0u  as the velocity scale, ** / rt as interface 
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thickness scale, 
)1*(

0

)1*(** / urp   as pressure scale, *)1*(

0

)1*(* / ru as the force scale, 

*** / FaTR  as the potential scale, )1*(**2**

0

2* / TRrCFa  as the bulk conductivity scale 

and **  as the mobility scale.  Here, 
*

0u  is the average velocity at the inlet; *p is the 

pressure; * is the viscosity; *

t  is the capillary width; * is the mixing energy density, 

* is the mobility tuning parameter, *R is the universal gas constant, *Fa is the Faraday’s 

constant, *T  is the ambient temperature, and  *  is the absolute permittivity of the 

medium. 

 For a horizontal cylinder, in the absence of external force the NS equation 

becomes:  

 












Gupuu

t

u 2Re  (5.3) 

where, 
)1*(

**

0

)1*(

Re


 Lu
 is the Reynolds number;  is the phase-field variable;  and 

G is the surface tension force, in the absence of free energy, 


f
. Here 

 







 


2

2 1

22

31

t

t
Ca

G



 is the chemical potential, 

**

0

)1*( / stuCa  is the 

Capillary number and
*

*
*

3

22

t

st



  is the surface tension coefficient. The Re

number is very low due to smaller length scales and velocities and hence, 

nonlinearity can be ignored.  

The Phase-field equation is given as:  
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 
 2



u

t
. (5.4) 

where,   is the phase-field help variable. In the absence of free energy it is given by: 

  1222
  t . (5.5) 

The electric potential of the water satisfies the Poisson equation:  

 
2

)1(2 sinh

D

V


  . (5.6) 

Oil is a non-polar medium and contains no ions, the electric potential satisfies the 

Laplace’s equation:  

 0)2(2   . (5.7) 

The streaming potential, a function of bulk fluid velocity, volume charge density v and 

bulk conductivity e , is given as: 

 
e
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dAu

V
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
 0

  (5.8) 
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Figure 24 Schematic illustration of 2D axisymmetric model for a oil drop, in a bulk of 

water, at the centerline of capillary, in a fully developed laminar flow. 

 

The following boundary conditions are imposed: 

 0u , at the walls  1r  ; (5.9) 

 0
dr

du
, at the centerline  0r  ; (5.10) 

 0;0 
dz

du
v , at  10;0  zz ; (5.11) 

                                                          V , at  1r ; (5.12) 

 0V , at  ar  ; (5.13) 

Eqs. (5.1)-(5.13) are solved by the commercial finite-element software COMSOL
®
. The 

mesh was refined a few times as well to guarantee that the results are mesh-independent.  
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Results and Discussion 

 When viscous drops of one fluid are suspended in a second viscous fluid, that is 

caused to shear, the drops will deform, and, if the local shear rate is sufficiently large, 

will break into two or more fragments. The degree and rate of deformation, is controlled 

by the Capillary number of the flow, which gives relative effect of viscous forces versus 

surface tension.  

 As the simplest model, we have a neutrally buoyant oil drop, which undergoes 

deformation when introduced in fully developed laminar flow in a capillary carrying 

water. The ratio of viscosities of oil drop and water is 8. The neutral buoyancy places the 

drop in the centerline of the capillary and is propelled forward. The shear rate associated 

with fully developed flow profile deforms the drop. Although, deformed drop shapes can 

be complicated, it is well known, that the fully developed shear rate of the flow will 

deform the drop at the forward end giving it a ‘bullet’ shape, which would vary based on 

the surface tension at the liquid-liquid interface (Guido &. Perziosi, 2010). 

 As 0Ca , the interfacial forces dominate the viscous forces, and the drop 

retains its spherical shape. As a consequence of reversibility of Stokes equation, the drop 

would not cross channel streamlines, so only steady motion parallel to the capillary walls 

results (Griggs et.al., 2007). Figure 25, below shows drop deformation and motion for 

01.0Ca  and 
510Re   . The drop retains its spherical shape and moves along the 

centerline of the channel, thus qualitatively validating our model. 

 



83 
 

 

Figure 25 Drop deformation at 01.0Ca , 5t  and
510Re  .  

 

 The transient migration of highly deformable drop, ( 1Ca ), which was initially 

undeformed and placed at the centerline of the capillary, is shown in Figure 26. The drop 

initially elongates in the direction of the Poiseuille flow and eventually obtains a steady 

shape that is compact and symmetric about the channel centerline. This type of dynamic 

behavior for drop migration is observed for a wide range of Capillary numbers, as shown 

in Figure 26.  

 

 

Figure 26 Drop deformation at 5t , 1Ca  and 
510Re   (a) 375.0a  (b) 75.0a . 

 A quick literature survey reveals (Griggs et. al.,2007), that over a wide range of 

initial conditions, drops move away from the channel walls, towards the channel center, 



84 
 

and obtain a steady position with the drop center in the channel midplane, regardless of 

the initial placement, size, or Capillary number. 

 Computed translational velocities for nearly spherical drops are given in Figure 

27 for two different drop sizes. The velocities of the drops decrease with increasing drop 

size. The small drops tend to move with the Poiseuille flow rather than lag behind it.  

 

Figure 27 Velocity profile at, 5t , 1Ca  and  
510Re   for 375.0a  (solid line) 

and 75.0a  (dot line).  

 

 Figure 28 gives trends for the longitudinal velocities as the drop travels down the 

channel for nearly spherical and highly deformable drops of same size. For deformable 

drops, in the initial phase, a decrease in the longitudinal velocity is observed (dash line) 

and can be attributed to the onset of shape distortion, which increases the drop resistance 
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to the flow. Following this initial phase of deformation, the longitudinal velocity 

increases, owing to the streamlined shape adopted by the drops and become stable for 

maximum deformation.  

 

 

Figure 28 Longitudinal velocity at drop center for, 375.0a  and 
510Re   at 01.0Ca  

(Solid line), 1Ca  (dash line). cU is the centerline velocity of unperturbed flow.  

 

Conversely, decrease in longitudinal velocity in the initial phase for a nearly spherical 

drop (solid line) is relatively higher owing to higher surface tension and resistance to 

deformation. Following that the drop velocity increase sharply to gain equilibrium with 

bulk velocity indicating a balance between surface tension force and shear rate after 

which the drop velocity becomes stable. 
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 Streaming Potentials, evaluated as a function of velocity flow field, volume 

charge density and electrical conductivity of the electrolyte, given by Eqn. 5.8, are shown 

in Figure 29. The Streaming Potential strmV  increases with increasing drop size and shows 

the same qualitative pattern for the case of highly deformable drop, 1Ca , irrespective 

of the drop size. Variation in streaming potential closely correlates to the changes in drop 

velocity. For deformable drops, the onset of shape distortion increases the drop resistance 

to the flow. This decreases drop velocity and increases streaming potential. After that, the 

drop velocity increases, reducing streaming potential which later, achieves a stable value 

when drop velocity becomes stable. 

 

Conclusion 

 To develop a two-phase flow sensor, knowledge of the electrokinetics is 

important to get precision measurements. To understand the streaming potential and/or 

streaming current phenomena interactions, it becomes necessary to evaluate changes in 

the bulk flow which in turn is dependent on the variations in two-phase flow. 

Electrokinetic phenomena while dependent on the flow field can be decoupled from flow 

field changes due to smaller electric Hartmann numbers. 

Here, we numerically solved the Navier-Stokes and Phase field equations along with 

Poisson’s and Laplace equations under the limit of thin EDL, to characterize oil drop 

deformation and associated streaming potential, respectively. 
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Figure 29 Streaming potential across the capillary, 1Ca  and 
510Re   for (a)

375.0a ; (b) 75.0a  
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 The Phase field method with adaptive meshing predicts the interfacial tension at 

the liquid-liquid interface for a wide range of Capillary numbers with good accuracy. The 

results compare well qualitatively with Griggs et. al. Velocity profile for nearly spherical 

oil drops, taken at the vertical centerline of the drop, remains qualitatively same for 

different drop sizes compared with unperturbed fully developed laminar flow. 

Longitudinal velocity of a deformable oil drop is qualitatively different at different 

capillary numbers during the initial phase. As expected, drop with lower Capillary 

number provides more resistance to the flow reducing its own velocity significantly as 

compared to the drops with higher capillary numbers. Later, the drop experiences sudden 

increase in velocity with onset of deformation. The rate of increase is qualitatively similar 

for a wide range of capillary numbers. 

 Streaming Potentials for deformable oil drops are qualitative similar for different 

drop sizes. A doubling of the drop size increases magnitude of streaming potential 

approximately by a factor of 30. As expected, the streaming potential closely tracks the 

drop velocity. It increases with decrease in drop velocity and vice-versa and reaches a 

stable value, when drop velocity stabilizes. This variation can be easily be measured, 

indicating that streaming potential phenomena can potentially be applied to develop 

sensors to detect and study two phase and multiphase flows. 
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CHAPTER 6 

 SUMMARY AND CONCLUSIONS  

 

 This study aims to increase understanding of complex electrokinetic phenomena 

with applications to microfluidic systems. In that regard three cases, with applications in 

diverse fields as Lab-on-Chip technology, colloidal assembly and petrophysical sensing 

are considered. The electrokinetic behavior is modeled using standard Poisson-Nernst-

Planck model to simulate electric double layer polarization. 

 Polarization of spherical soft particle, characterized as particle having charged 

segments attached to the rigid core, under the influence of AC electric field shows 

surprising findings. The impact of detailed treatment of charged soft layer is negligible if 

the defining parameters of the soft layers remain same. On the other hand, this study has 

quantified the polarization of soft particle over wide range of frequencies which can find 

applications in dielectrophoresis. 

 Finite volume of the particles, trapped at oil-water interface and presence of 

residual surface charges at the oil-particle interface, plays major role in the electrostatic 

interactions of charged particles over a wide range of interparticle separations. The 

predicted repulsion agrees remarkably well with the experimental results. This helps in 

quantifying electrokinetic behavior at any given interparticle separation without 

stipulating additional physics. 
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 Characterization of deformation of oil drop, in a fully developed steady laminar 

flow, within a flowing bulk of water rests heavily on the characteristics of liquid-liquid 

interface. As expected, at 1Ca , the drop almost retains its spherical shape while for 

1Ca , the drop deforms due to shear stress. The degree of deformation increases with 

increasing capillary number. These findings can help quantify the flow field distortion 

and influence on the streaming potential phenomena.  

 

Future Recommendations 

 Quantifying various electrokinetic phenomena is a complex task especially due 

multiscale nature of the phenomena. Simulating a 3D model of a domain in which the 

gradient zone is of a magnitude lower by an order of one or two, becomes 

computationally intensive and time-consuming.  

 Simulation of electrostatic interactions between charged particles at oil-water 

interface under the limit of thin EDL and Evaluation of buoyancy effects on electrostatic 

interactions of particles at oil-water interface, would provide detailed analysis directly 

applicable to colloidal assembly. Similarly, simulation of 3D model of a two-phase flow 

sensor, which includes quantitative validation with experimental data and parametric 

studies influencing streaming potential would be a major step towards developing 

predictive models.  
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Appendix A 

 In Appendix A, we derive the approximate form of the surface conduction used in 

calculating the dipole moment in the MWO model in the limit of thin soft layers ( 1 ) 

and thin double layers ( 1/ D
). When 1/ D

, the electric potential inside the soft 

layer is equal to the Donnan potential
Dy . Based on Eq. (14), the velocities outside the 

double layer within the soft layer become: 
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With Eq. (A1), we can derive the dimensionless surface conduction or Dukhin number 

for a flat soft layer under the limit of thin double layers. Consider a uniform field 

)1(

11 E  applied parallel to the surface. The field drives an ionic surface current sj

through the soft layer, and the surface conduction s is defined as 

 
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0 
1 )( dyjjE bss . (A2) 

In the above, 11Ejb  is the bulk current outside the soft layer and sj  is given by 

  NN  where  
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Substituting (A3) into (A2) yields 

   




















0

2

2

1
4

1)cosh(
k

m
y

D

fix

ds . (A4) 



92 
 

Appendix B 

 In Appendix B, we extended the Dukhin and Shilov’s asymptotic analysis 

(Dukhin et. al., 1974; Grosse et. al., 1996; Shilov Et. al., 1970) to compute the dipole 

coefficient of a soft particle in the limits of thin double layers and thin soft layers. When 

the applied frequency
2*** / DD   ,the bulk electrolyte is close to electroneutrality and 

satisfies  

 )1(2)1( CCi  , (B1) 

where  
2
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CC
C .  Due to neutrality, the electric potential obeys the Laplace 

equation: 
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The solution of Eq. (B1) and B(2) can be integrated: 
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and 
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 In the above, 2/W . To determine cK and f, we need to derive effective boundary 

conditions. We assume that the bulk is at local equilibrium with the soft layer to derive 

the ion conservation equations in terms of the actual and far field variables, respectively. 
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Then we can integrate the difference of two equations over the soft layer to obtain the 

boundary conditions: 

  )1(2)1(2 )1()1(
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where  )1(

1

)1()1(   C  is the perturbed chemical potential. R  and U  are given in the 

main text. The detailed procedure to derive (B5) can be found in Grosse and Shilov 

(Grosse et. al., 1996).
 
Since Fixman demonstrated that the explicit temporal variation of 

ion concentration under the action of an AC electric field inside the double layer is 

negligible when the frequency is smaller than
2*** / DD    (Fixman, 1980) , Eq. (B5) 

does not account for the explicit temporal change of ion concentration inside the soft 

layer which has been considered by Shilov and Dukhin.  
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