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ABSTRACT 
 
 

Comparative Phylogeography of Three Heteromyid Taxa: Insights on the 
Biogeography of North American Arid Grasslands 

 
by 
 

Sean Adam Neiswenter 
 

Dr. Brett R. Riddle, Examination Committee Chair 
Professor of Biology 

University of Nevada, Las Vegas 
 

 Revealing how communities are shaped by abiotic and biotic factors plays a 

central role in biogeographic and comparative phylogeographic studies. The 

biogeography of North American arid grasslands is explored using nuclear and 

mitochondrial DNA from three groups of heteromyid rodents that are broadly sympatric 

in aridlands across western North America. Phylogenetic and molecular clock analyses 

are used to estimate the timing of divergences within each group. A general pattern of 

late Miocene divergence and expansion of lineages in each of the groups that is 

coincident with the rapid expansion of arid grasslands at the time. The initial divergence 

is followed by temporally and spatially concordant geographic diversification in 

recognized biogeographic and physiographic regions that corresponds to major climatic 

and tectonic events during the Pliocene and Pleistocene.  The similarities and differences 

in the response of each taxon to proposed phylogeographic barriers are discussed. 
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CHAPTER 1 
 

INTRODUCTION 
 

 Phylogeography is a relatively new field of biology that focuses on documenting 

patterns of genetic diversity across landscapes and attempts to identify processes that 

have lead to the current distribution of gene lineages within species or closely related 

species groups. The timeframe of phylogeographic studies is generally the late Neogene. 

Phylogeographic studies are increasingly documenting cryptic diversity within species 

and species groups. Much of the diversity is often attributed to climate change and 

topography isolating populations. These factors interact through time to isolate 

populations and ultimately drive speciation and the evolution of new genetic lineages. By 

comparing multiple co-distributed species it is possible to identify congruencies in the 

patterns of the geographic distribution of gene lineages. Only by comparing multiple co-

distributed taxa, termed comparative phylogeography, can common mechanisms driving 

biodiversity be sorted from the unique evolutionary histories of single species.  

The following three chapters focus on two genera of North American rodents 

constituting at least 7 species that are sympatric over much of their range. They occur 

principally in arid grassland and shrubland communities which collectively span the 

Great Plains in Canada and the United States, east to the Great Basin, and south to the 

trans-Mexican volcanic belt in central Mexico. The second chapter was published 

previously and explores the relationships of mitochondrial and nuclear gene lineages in 

the Perognathus flavus species group, a complex of species and subspecies of silky 

pocket mice. It hypothesizes a late Miocene divergence within the group, followed by 

Pliocene geographic diversification associated with major biogeographic and climatic 
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regions in North America, and finally postulates Pleistocene population structuring in 

refugia within those biogeographic regions. The third chapter focuses on an 

evolutionarily distinct group within the same genus as the second chapter, the 

Perognathus fasciatus species group. This species group is currently composed of 3 

recognized species. The study tests a previously hypothesized Pleistocene divergence 

between two species in the group and shows that the timing of major divergences are 

complimentary to those reported in the second chapter. The fourth chapter introduces a 

new genus, Dipodomys, which co-occurs across the ranges of the two Perognathus 

species groups in the preceding chapters. Using molecular dating with independent fossil 

calibrations it is shown that the mitochondrial divergences within all three groups have 

similarities in the timing of diversification of phylogroups. There are also independent 

and concerted responses to biogeographic barriers among the groups. The area 

relationships remain largely unresolved. In total the following three chapters address the 

late Neogene evolution of 3 groups of arid grassland rodents and provide a sequence of 

temporal and spatial historical events that can be tested using a comparative 

phylogeographic framework. 
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CHAPTER 2 
 

DIVERSIFICATION OF SILKY POCKET MICE IN THE PEROGNATHUS FLAVUS  
 

SPECIES GROUP: DIVERSIFICATION IN EMERGING ARID GRASSLANDS IN  
 

WESTERN NORTH AMERICA 
 

S. A. Neiswenter and B. R. Riddle 
 

Abstract 
 

We investigated the evolutionary history of a group of silky pocket mice (Heteromyidae: 

Perognathinae: Perognathus flavus species group) composed of the species P. flavus and 

P. merriami to determine patterns and postulate causes of geographical diversification 

across arid grasslands and intermontane basins in western North America. The region 

represents a topographically complex landscape with a Neogene history of dramatic 

geological and climatic transformations.  Phylogenetic and dating analyses of 

mitochondrial DNA support an initial split among 4 major lineages during the late 

Miocene, and this hypothesis receives further support from analysis of a portion of the 

nuclear IRBP gene.  Two of these lineages have a restricted geographic distribution in the 

Chihuahuan Desert, and 2 have distributions ranging across large portions of the 

Chihuahuan Desert, Colorado Plateau, Great Plains, and Tamaulipan Plain. Within the 2 

widespread lineages further geographical diversification likely was concentrated in the 

Pliocene, which coincided with the origin of several hypothesized geographic barriers.  

These results are consistent with models of allopatric divergence driven by pre-

Pleistocene geological and climatic events, particularly the late Miocene expansion of 

interior grasslands and Miocene-Pliocene evolution of Basin and Range geomorphology. 
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Therefore, the biogeographic structure displayed in the flavus species group may be 

predictive for a range of sympatric taxa. 

S. A. Neiswenter was first author, contributed significant intellectual input, 

generated the DNA sequences, analyzed the data, prepared the manuscript for 

publication, and collected some of the samples in this collaborative work. 

 

Introduction 

 Ecology, landscape attributes, and climate interact across space and time to shape 

taxonomic and genetic diversity within and among mammal species (Badgley and Fox 

2000; Coblentz and Ritters 2004; Kohn and Fremd 2008; Simpson 1964).  Evolutionary 

and biogeographic patterns resulting from these interactions are likely to be especially 

pronounced in the North American cordillera, the vast group of mountain ranges 

interleaved with plateaus and canyons extending from Alaska to Guatemala (Pidwirny 

2006).  Because of extreme topographic and climatic complexity resulting largely from a 

long Mesozoic and Cenozoic history of geological activity (English and Johnston 2004), 

the North American cordillera encompasses one of the most heterogeneous assemblages 

of habitats and ecoregions on Earth (Commission for Environmental Cooperation 1997).  

As such, the western regions of North America have long been the subject of extensive 

ecological and biogeographic analysis, most recently focusing on topics as diverse as 

latitudinal, elevational, environmental, and regional species diversity gradients (Badgley 

and Fox 2000; Coblentz and Ritters 2004; Rickart 2001), phylogenetic and 

phylogeographic architectures (Carstens et al. 2005; Riddle et al., 2000b; Spellman and 
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Klicka 2006; Spellman et al. 2007), and macroecological patterns and processes (Brown 

1995, Davis 2005).  

 The last few decades have seen an increase in the application of genetic 

techniques to address biogeographic questions (Riddle et al. 2008), including the 

explosive rise in popularity of phylogeographic approaches (Avise 2009) to examine 

geographic histories and processes and elucidate morphologically cryptic evolutionary 

lineages within and across closely related species (Riddle and Hafner 2004, 2006).  A 

central theme of molecular biogeography and phylogeography has been to examine the 

roles of landscape structure and geographic isolation in the evolutionary histories of 

populations and taxa.  For example, in western North America investigators have used 

molecular approaches to explore the influence of alternating cycles of population 

fragmentation and coalescence in a wide range of taxa, including lepidopterans 

(DeChaine and Martin 2006; Knowles and Carstens 2007), birds (Spellman and Klicka 

2006; Spellman et al. 2007), and mammals (Floyd et al. 2005) across forested, montane 

“sky islands” during the climatic oscillations of the cooler and wetter Pleistocene glacial 

periods and the warmer and drier interglacial periods.   

 In contrast to the sky islands, the intervening expansive deserts and grasslands 

contain many species that are widely distributed geographically within the Holocene 

interglacial climatic regime of the most recent 10,000 years.  Major genetic breaks in 

desert and grassland taxa often are associated with the mountains, plateaus, and rivers 

that create temporally stable and long-term barriers to dispersal.  These physical features 

have been associated causally with geographic genetic architecture in a variety of taxa 

inhabiting primarily desert, semidesert, or shrub-steppe ecoregions, including reptiles 
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(Castoe et al. 2007; McGuire et al. 2007; Zamudio et al. 1997), rodents (Lee et al. 1996; 

Riddle 1995; Riddle et al. 2000a, 2000b, 2000c), amphibians (Jaeger et al. 2007), and 

spiders (Crews and Hedin 2006).   

The rodent family Heteromyidae comprises an almost entirely North American 

radiation (Hafner et al. 2007), and although heteromyid rodents have served as model 

organisms for studies ranging from physiological ecology to macroevolution (Genoways 

and Brown 1993), robust molecular-based phylogenetic hypotheses that span the entire 

family or particular clades have become available only recently.  For example, Alexander 

and Riddle (2005) and Hafner et al. (2007) clarified relationships and the timing of major 

diversification events across subfamilies, genera, and species groups of heteromyid 

rodents. Beginning in the middle Miocene about 27–23 million years ago (mya) a rapid 

radiation within the Heteromyidae produced distinct bipedal (Dipodomyinae) and 

quadrupedal (Perognathinae + Heteromyinae) body forms (Hafner et al. 2007).  Shortly 

thereafter an ecological split within the quadrupedal forms occurred between the arid-

adapted Perognathinae and tropical Heteromyinae.  The Perognathinae diversified further 

approximately 15 mya into a clade of larger, coarse-haired species (Chaetodipus) and a 

clade of smaller, silky-haired species (Perognathus—Hafner et al. 2007).  Both 

Alexander and Riddle (2005) and Hafner et al. (2007) recovered Perognathus as a 

monophyletic genus composed of 4 previously postulated (Williams 1978) species groups 

– flavus, flavescens, longimembris, and parvus. 

Divergence in Perognathus that produced the modern species groups might have 

begun as early as the late Miocene (Hafner et al. 2007).  Osgood (1900) placed extant 

species of Perognathus into 1 of 3 species groups, but 1 of his groups later was separated 
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into the fasciatus and flavus groups by Williams (1978).  Williams (1978) further 

proposed that ancestral Perognathus split initially into northern (parvus and fasciatus) 

and southern (flavus and longimembris) clades.  Both Alexander and Riddle (2005) and 

Hafner et al. (2007) supported Williams’ hypothesis uniting the flavus and longimembris 

species groups as sister clades, but neither of these studies was able to resolve a sister-

clade relationship between the flavescens and parvus species groups with robust 

statistical support. 

 The foci of our study are 2 nominal species of silky pocket mice that comprise the 

Perognathus flavus species group, P. flavus and P. merriami (Fig. 2.1).  Perognathus 

flavus (Baird 1855) is a small rodent (body mass 6–10 g) associated with sandy to 

gravelly soils in a wide range of semiarid and desert grassland habitats, sometimes in 

association with xeric shrub and woodland species.  Although ambient temperatures in 

these habitats can range seasonally between highs of 40°C and lows of -15°C, P. flavus 

can enter short bouts of torpor at lower temperature extremes to conserve energy (Best 

and Skupski 1994a).  P. merriami (Allen 1892) occupies a similar range of habitats (Best 

and Skupski 1994b), but as understood prior to this study, the distribution of P. merriami 

extended to the east of, but not as far north or south as, that of P. flavus (Fig. 2.1).  The 

flavus species group is distributed throughout several ecoregions in North America, 

including the Colorado Plateau shrublands, western short grasslands, central and southern 

mixed grasslands, Chihuahuan desert, meseta central, central Mexican matorral, and 

Tamaulipan Mezquital (Fig. 2.1).  

The flavus species group has been the subject of numerous taxonomic revisions 

over the last century, primarily revolving around the systematic status of P. merriami 
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(Allen 1892; Lee and Engstrom 1991; Wilson 1973).  Recent evidence suggests that 

external morphology alone is not sufficient to distinguish P. merriami from P. flavus, but 

skeletal morphology can be used to assign specimens to nominal species (Brant and Lee 

2006; but see Wilson 1973).  The 2 species historically have been considered largely 

allopatric in distribution, and in the few cases where they occur sympatrically, allozyme 

data indicate that they act as biological species (Lee and Engstrom 1991).  However, the 

2 most recent of these studies have been restricted geographically to western Texas and 

eastern New Mexico, and no study to date has addressed the molecular evolution of the 

flavus species group within a modern phylogeographic framework using samples drawn 

from across its expansive geographic range (Fig. 2.1). 

The biogeographic regions over which the flavus species group is distributed have 

experienced extensive geological and climatic variation over the last several million years 

(Kohn and Fremd 2008).  Given the generally deep divergence between species groups 

within the Heteromyidae (Alexander and Riddle 2005; Hafner et al. 2007), it seems 

plausible that a certain degree of cryptic divergence, not necessarily coincident with 

current (and still controversial) taxonomic entities, could be embedded within the flavus 

species group, similar to what has been discovered in other heteromyid rodents using a 

phylogeographic sampling design and molecular genetic data (e.g., the C. penicillatus 

species group—Lee et al. 1996;  Jezkova et al. 2009; the C. baileyi species group—

Riddle et al. 2000b; the P. longimembris species group—McKnight 2005; and 

Microdipodops pallidus—Hafner et al. 2006).  

 Herein, we address regional genetic structuring of the flavus species group within 

the tapestry of Late Neogene geologic events and climatic shifts.  In doing so we provide 
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a more generalized biogeographic insight into the Late Neogene origins and expansion of 

the arid grasslands biome in western North America when interpreted in concert with 

paleontological records and geological evidence (Axelrod 1985; Cerling et al. 1997; 

Kohn and Fremd 2008; Retallack 1997, 2001; Stromberg 2002, 2005).  Given the broad 

temporal span over which we examine components of biogeographic structure within and 

among species, we reconstruct phylogenetic histories using sequences from 2 

mitochondrial gene regions with different evolutionary rates in mammals – the protein-

coding gene cytochrome oxidase III (COIII) and a noncoding portion of the control 

region (CR).  We then use a fossil-calibrated molecular clock to estimate times of 

diversification of the major clades within this group.  We also use an exon from the 

nuclear-encoded gene interphotoreceptor retinoid-binding protein (IRBP), which, because 

it is more slowly evolving than the mitochondrial sequences, we would  expect to be 

informative at deeper levels of divergence and therefore of some value in assessing the 

robustness of the phylogenetic and molecular clock results from the mitochondrial data.  

Specifically, we examine detailed mtDNA phylogenetic and geographic structure within 

the flavus species group to determine whether the estimated divergence times of major 

mtDNA lineages are coincident with a Pleistocene or pre-Pleistocene time frame and 

whether geographically definable monophyletic clades are consistent with divergence 

associated causally with certain features of landscape and biome evolution in western 

North America.  
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Materials and Methods 

Sample collection and sequencing 

Specimens were gathered from throughout the range of the flavus species group 

(Appendix 1).  Those that were field-collected for this study were handled in accordance 

with the guidelines established by the American Society of Mammalogists (Gannon et al. 

2007).  Voucher skin and skeleton specimens were deposited in the New Mexico 

Museum of Natural History (NMMNH) collections.  Other specimens included preserved 

tissues obtained from museum collections or ear clips obtained from private collections 

(Appendix 1).  

We sequenced 644 bp of COIII and 440 bp of CR from up to 10 individuals per 

locality for a total of 132 specimens (Appendix 1; Fig. 2.1).  To assess the robustness of 

our mitochondria-based trees, particularly at deeper times where mtDNA can become 

uninformative due to saturation, we arbitrarily selected representatives from each of the 

major recovered mtDNA lineages and sequenced 1,133 bp of an exon from the nuclear 

IRBP gene (Jansa and Voss 2000).   

DNA was extracted from preserved tissues using DNeasy kits (Qiagen Inc., 

Germantown, Maryland).  PCR conditions for COIII and CR were 95°C for 1 min, 55°C 

for 1 min, and 72°C for 1 min, for 30 cycles; and for IRBP were 95°C for 30 s, 55°C for 

30 s, and 72°C for 45 s, for 38 cycles.  Genes were amplified and sequenced using 

published PCR primers: COIII, H8618 and L9232 (Riddle 1995); CR, 16007 and 16498 

(Kocher et al. 1989; Meyer et al. 1990); IRBP, H651 and 1297D (Jansa and Voss 2000).  

Internal primers 761E and 878F (Jansa and Voss 2000) also were used for sequencing 

IRBP.  Sequences were run on an ABI 3130 automated sequencer (Applied Biosystems, 
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Foster City, California), checked for ambiguous base calls in Sequencher 4.8 (Gene 

Codes Corporation, Ann Arbor, Michigan), and aligned in MEGA 4 (Tamura et al. 2007) 

with final corrections by eye for alignment integrity.  Protein-coding genes were 

converted to amino acids to ensure no stop codons were present, an indication of a 

possible nuclear copy of the mitochondrial gene.  All sequences were deposited in 

GenBank under accession numbers GQ469647-GQ469777, GQ470232-GQ470359, and 

GQ480797-GQ480822. 

Phylogenetic analyses 

Phylogenetic trees were constructed using a combination of Bayesian and 

maximum-likelihood (ML) analyses performed separately on each mtDNA sequence, and 

on a COIII + CR combined data set.  The IRBP sequence was analyzed separately, first, 

because we believed that much of the genetic signal within the highly conserved IRBP 

would be swamped by the highly variable mtDNA (see Results) should they be combined 

into a “total evidence” data set, and second, because by combining the 2 we could lose 

information about the independent history of 1 of the genomes.  Perognathus 

longimembris, a member of the sister clade to the flavus species group, was used as the 

outgroup for all phylogenetic analyses.  Before combining data sets, we performed a 

partition homogeneity test in PAUP* (Swofford 2002) to test for significant differences 

between the mtDNA partitions.   

 Bayesian analyses were implemented in MrBayes 3.1 (Huelsenbeck and Ronquist 

2001) using the model of evolution selected from ModelTest 3.04 (Posada and Crandall 

1998).  The GTR+G model was chosen for the combined mtDNA data set, and the 

HKY+G model was chosen for the IRBP data set.  Each Bayesian analysis was run 
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multiple times to confirm convergence.  Convergence was assumed when no apparent 

pattern was detected in the log probability plots, the average standard deviation of split 

frequencies dropped to <0.01, and convergence of harmonic means resulted from 

independent runs.  We performed several runs for each data set with different initial chain 

temperatures and branch length priors to confirm good mixing and convergence.  The 

final run for the combined mtDNA data set was conducted with temperature = 0.05 and 

branch length = 50, whereas the IRBP data set was run with default values (temperature = 

0.2 and branch length = 10).  For each analysis we performed 2 independent runs with 4 

chains each (1 hot and 3 cold).  We ran these analyses for 4,000,000 generations and 

summarized the last 10,000 trees of each run (20,000 trees total) using a 50% majority 

rule consensus tree employing the posterior probabilities for clade support.  The 

parameters for the final samples were summarized to ensure they conformed to our 

assumption of convergence defined above. 

 Maximum-likelihood (ML) analyses were performed using the program 

Treefinder (Jobb 2008) and the same models of evolution used in the Bayesian analyses.  

Node support for the ML analysis was assessed using 100 bootstrap replicates for each of 

the data sets described above.  With the exception of the model of evolution, default 

values were used in all ML analyses. 

Molecular clock estimates 

In the molecular clock analyses we included sequences for several heteromyid 

genera and species outside of the flavus species group, including Dipodomys nelsoni, C. 

formosus, P. longimembris, P. amplus, P. parvus, P. fasciatus, and P. flavescens 

(Appendix 4).  COIII gene sequences for these taxa were downloaded from Genbank, and 
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IRBP was sequenced as described above.  This sampling strategy allowed use of 

published fossil data for calibration of a node outside of the flavus species group (Hafner 

et al. 2007).  We used the same 26 individuals (18 ingroup, 8 outgroup; Appendix 1) for 

independent IRBP and COIII molecular clock estimates of the diversification of major 

lineages in the flavus species group.  The CR gene was not used in the molecular clock 

estimates because we believe that the high rate of evolution in this sequence would likely 

lead to greater phylogenetic noise at deeper subfamilial nodes.   

 Errors associated with the incorrect placement of a fossil in a phylogeny or 

incorrect estimate of divergence time can have dramatic affects on the outcome of 

molecular dating (Benton and Ayala 2003).  The paucity of fossils diagnosed to an 

appropriate level of taxonomic resolution, and the ambiguities that surround 

morphological identification of Perognathinae in the fossil record (Wahlert 1993) 

preclude use of fossils specific to the flavus species group. Therefore, fossil calibration 

was based on the oldest known fossil that is a taxonomically reliable representative of the 

subfamily Perognathinae, estimated at 20-22 mya (Hafner et al. 2007), from the John 

Day Formation in Oregon (James 1963).  We conservatively placed this fossil basal to the 

Perognathinae clade that includes the genera Chaetodipus + Perognathus, as was done by 

Hafner et al. (2007) because the fossil record does not differentiate between these 2 

genera (Wahlert 1993).   

 Prior to estimating divergence times, we tested our data for clock-like evolution 

using a likelihood ratio test.  ML scores were compared in PAUP* 4.0b10 (Swofford 

2002) for a tree generated under a molecular clock constraint and one that was 

unconstrained.  A significant difference was found between the constrained and 
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unconstrained trees for both the COIII and IRBP data, so methods that relax the 

assumption of a strict clock were used for our data. We used the uncorrelated lognormal 

relaxed molecular clock analysis implemented in BEAST 1.4.6 (Drummond and Rambaut 

2007).  The HKY model for the COIII and the HKY+G model for IRBP were selected 

from ModelTest.  Because of the large genetic divergence within the flavus species group 

(see Results) and the family-level diversity used in calibrating the molecular clock 

estimates, we assumed a Yule process for the tree prior.  The time to most recent 

common ancestor (tMRCA) for Perognathinae was calibrated as a normal distribution 

with a mean (+ SD) of 21 + 0.5 mya.  This is equivalent to a 95% confidence interval 

from approximately 20–22 mya, the estimated time of the oldest Perognathus fossil 

(Hafner et al. 2007).  Chain lengths were 10,000,000 generations long with sampling 

every 1,000 generations, and results were summarized after a 10% burn-in. 

 

Results 

Phylogenetic analyses 

Of 132 individuals sequenced for the COIII and CR genes, based on resulting 

phylogenetic trees, 19 were selected to represent major mtDNA clades for the IRBP 

analysis.  The COIII and CR data sets, run separately, resulted in similar topologies and 

support values with respect to major clades; therefore we report only the combined 

mtDNA analyses.  The nuclear and mitochondrial data differed considerably in their 

variability, as was expected.  Mitochondrial diversity was high with respect to the 

number of variable sites (367), parsimony informative sites (307), and genetic distance 

between major clades (5.6% to 19.6% divergence; Table 2.1).  Conversely, the IRBP data 
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set displayed low variability (50 variable sites of which 12 were parsimony informative).  

No insertions/deletions (indels) or stop codons were present in either of the protein-

coding data sets, but multiple indels of varying length were noted in the CR data set.  

Sites with indels and missing data were omitted in all phylogenetic analyses.   

 Four deep clades were recovered in the mtDNA tree (Fig. 2.2).  For clarity, and 

not necessarily in accord with current species-level taxonomy, we refer to each major 

clade using the following naming system: 1) merriami clade, a deep lineage that includes 

individuals that historically have been considered P. merriami, although this clade also 

includes individuals that currently are not considered part of this species; 2) flavus clade, 

a 2nd deep clade that contains most of the individuals currently recognized as P. flavus; 

3) Meseta Central Matorral clade, a newly recognized lineage with known distribution 

restricted to the Meseta Central Matorral ecoregion; and 4) the Southern Chihuahuan 

Desert clade, also a newly recognized lineage currently known only from the southern 

Chihuahuan Desert.  The Southern Chihuahuan Desert clade forms a trichotomy with the 

flavus and merriami clades (Fig. 2.2). 

Two of the major clades contain multiple, well-supported phylogroups.  A basal 

near-simultaneous diversification within the merriami clade (Fig. 2.3) resulted in 3 extant 

clades now distributed across 3 distinct geographic areas: southern and central Great 

Plains; Tamaulipan Mezquital ecoregions; and northern Chihuahuan Desert.  Within the 

flavus clade (Fig. 2.4), basal and near-simultaneous divergence events distinguished 

separate phylogroups from the central Great Plains, the Tehuacan Valley, the southern 

Chihuahuan Desert south of the Rio Conchos, and the common ancestor to the northern 

Chihuahuan Desert-Colorado Plateau phylogroups.  



 

16 
 

 Several relationships recovered in the mtDNA analysis (Fig. 2.2) were supported 

by the IRBP analysis (Fig. 2.5), including separation of the flavus, merriami, Meseta 

Central Matorral, and Southern Chihuahua Desert clades.  The sister-clade relationship 

between the Meseta Central Matorral clade and the flavus clade depicted in the mtDNA 

tree (Fig. 2.2) is replaced by a sister relationship between the Meseta Central Matorral 

and Southern Chihuahua Desert clades in the IRBP tree (Fig. 2.5).  

Estimates of divergence dates 

Fossils always will postdate the origin of the clade to which they belong, so to the 

degree that taxonomy is correct, fossil calibration of a molecular phylogeny should be 

considered an underestimate of the age of the clade (Benton and Ayala 2003).  Here, we 

set the Perognathus fossil from the John Day formation, with an estimated age of 20-22 

mya, at the base of the Perognathinae, which might counter the underestimate bias if this 

fossil represents a basal taxon of Perognathus after its split from Chaetodipus. Based on 

the fossil-calibrated molecular clock analyses for both the COIII and IRBP data sets, the 

4 deep clades recovered within the flavus species group (Fig. 2.4) might have begun 

diverging as early as the late Miocene, although some discrepancy exists between the 

mitochondrial and nuclear genes (Table 2.2).  All estimates had large confidence 

intervals, but in both data sets the estimates for the time to most recent common ancestor 

of the flavus species group excluded the Pleistocene and placed the divergence time 

somewhere in the latest Miocene or Pliocene.  The estimates are similar for the merriami 

clade, although the confidence interval of the nuclear data set includes the early 

Pleistocene. All estimates exclude the more extreme glacial cycles that began about 

700,000 years ago (Table 2.2).   
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Discussion 

Phylogenetic history of the flavus species group 

The flavus species group displays a pattern of deep divergences giving rise to 4 

clades with very different patterns of geographic distribution.  The Meseta Central 

Matorral and Southern Chihuahua Desert clades appear to be narrowly distributed, 

whereas the merriami and flavus lineages are more broadly distributed and genetically 

diverse (Table 2.1 and Fig. 2.2).  Geographic expansion of the merriami and flavus 

lineages was accompanied by diversification of several geographically localized 

phylogroups within each (Figs. 3 and 4).  

Despite considerable genetic divergence within the flavus species group (5.6% to 

19.6%; Table 2.1), only 2 species currently are recognized in the group.  Other 

heteromyid rodents typically show genetic distances between sister species similar to the 

divergence between phylogroups in our study.  For example, Riddle et al. (2000b) 

measured 10-11% sequence divergence between Chaetodipus baileyi and C. rudinoris 

based on combined COIII and cytochrome b (Cytb) gene sequences.  McKnight (2005) 

measured up to 19.8% divergence at the Cytb gene between species in the Perognathus 

longimembris species group.  Under their proposed genetic species concept Bradley and 

Baker (2001) suggested that  > 11% of sequence divergence at Cytb usually indicated 

species-level distinction in mammals, whereas lower levels of divergence (2-11%) 

required a more detailed study of the organisms involved to determine species 

boundaries.  Although COIII may evolve at a different rate than Cytb in small-bodied 

rodents (Pesole et al. 1999), the initial divergence between the merriami, flavus, Meseta 

Central Matorral, and Southern Chihuahua Desert clades (Fig. 2.2), and phylogroup 
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divergences within the merriami and flavus lineages (Table 2.1), are certainly large and 

may signal as many as 4 species-level lineages and several subspecies-level clades within 

the flavus species group.  However, use of a genetic yardstick for delimiting species has 

several potential downfalls (Ferguson 2002), and we recognize the need for a broader 

range of evidence, including more comprehensive multigene data sets and more detailed 

geographic sampling within and among populations, before proposing formal taxonomic 

revisions. 

  The general phylogenetic and biogeographic agreement between the mtDNA and 

nuclear DNA data sets in this study provides provisional support for the hypothesis that 

the 4 main lineages in the flavus species group are the result of independent evolutionary 

histories rather than idiosyncratic transfer of maternally inherited genomes across species 

boundaries.  We found mice with phylogenetically congruent merriami mitochondrial 

and nuclear genomes as far west as the Arizona–New Mexico border, and all 5 

individuals sampled for both mitochondrial and nuclear genes in the vicinity of the 

previously postulated zone of introgression in eastern New Mexico into western Texas 

(P. flavus gilvus—Lee and Engstrom 1991; Wilson 1973;) had congruent genomes.  

Wilson (1973) suggested the gilvus subspecies was likely interbreeding with P. flavus to 

the west and P. merriami to the south east.  In contrast, our results suggest that Wilson’s 

morphologically and geographically intermediate gilvus subspecies, still recognized by 

Brant and Lee (2006), might simply represent a mixture of sympatric flavus and merriami 

specimens.  

 The geographic distributions of phylogroups within the merriami and flavus 

clades (Fig. 2.2) clearly are not consistent with the currently accepted distribution of P. 
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flavus and P. merriami (Brant and Lee 2006; Lee and Engstrom 1991; Fig. 2.1).  

Although our data suggest a general east-west pattern of 2 deeply divergent lineages (the 

merriami and flavus clades), the merriami clade extends much further to the north 

(approximately 400 km) and west (approximately 600 km) than previously thought.  

Biome evolution and biogeographic history of the flavus species group 

Retallack (1997, 2001) has marshaled evidence from paleosols, fossils, and stable 

isotopes to reconstruct 3 stages in the Cenozoic origination and expansion of grasslands 

in western North America.  First, a major cooling and drying event at the Eocene–

Oligocene boundary (33.5 mya) led to replacement of dry tropical forests with seasonally 

dry woodlands and savannas that included bunchgrasses and desert shrub, which 

themselves might have originated earlier in discontinuous pockets of habitat throughout a 

tropic and subtropic belt in western North America (Axelrod 1985).  Retallack’s (1997) 

model postulates the origination of desert shrub and desert (bunch) grassland prior to sod-

forming shortgrass and tallgrass prairie ecosystems.  Next, geographic expansion of 

various arid or semiarid ecosystems, including sod-forming shortgrass prairie, occurred 

during the early to mid-Miocene (approximately 15 mya) in concert with another large 

episode of global cooling and drying, possibly associated with the rise of the North 

American cordillera and the Tibetan Plateau (Raymo and Ruddiman 1992).  Finally, tall 

C4 grasslands, desert shrub, and C4 desert grasslands expanded during the late Miocene 

(about 5-7 mya) in concert with another episode of global cooling and increased aridity, 

driven perhaps by either global lowering of atmospheric CO2 concentrations (Retallack 

2001) or increased seasonality of precipitation and fire (Osborne 2008).  
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Although there is a 4 million-year discrepancy between the divergence estimates 

based on COIII and IRBP (Table 2.2), molecular clock analyses of both genes suggest a 

late Miocene divergence within the flavus species group.  The discrepancy between the 2 

estimates may result from saturation of informative sites in the COIII gene or relative 

scarcity of informative characters in the IRBP data set.  Current ecological restriction of 

flavus species group members to arid grasslands and xeric shrub habitats (Best and 

Skupski 1994a, 1994b) is consistent with the hypothesis that the flavus species group 

evolved in the late Miocene (or early Pliocene), coincident with expansion of C4 desert 

shrub and grasslands.  During the middle to late Miocene multiple lineages within the 

flavus species group might have existed in pockets of desert shrub and bunch grassland 

habitats ranging from the Mexican Plateau northward onto the Great Plains, as evidenced 

by presence of xeric bunch grassland as far north as South Dakota and sod-forming short 

grasslands as far north as Nebraska (Retallack 1997).  This broad geographic distribution 

would be consistent with the basal trichotomy involving the flavus, merriami, and 

Southern Chihuahuan Desert lineages (Fig. 2.2).  

 The 2 more geographically restricted lineages, the Meseta Central Matorral and 

Southern Chihuahuan Desert clades, are distributed narrowly on the Mexican Plateau in 

northern Mexico and might represent paleoendemics.  Presumed paleoendemics restricted 

to the Mexican Plateau are known in other animal and plant taxa.  For example, the 

ocotillo species Fouquieria shrevei, a sister lineage to the widespread warm desert 

species F. splendens (Schultheis and Baldwin 1999), is restricted to gypsum soils within 

the Bolson de Mapimi.  The xantusiid lizards Xantusia bolsonae, X. extorris, and X. 

sanchenzi form a deeply divergent clade (also including X. gilberti from the Cape Region 
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of the Baja California Peninsula) restricted to rock and plant habitats within the Bolson 

de Mapimi or trans-Mexican Volcanic Belt (Sinclair et al. 2004).  Within crotaphytid 

lizards, the basal species Crotaphytus antiquus (McGuire et al. 2007) is restricted to rock 

outcrops in southern Coahuila.  Our data do not exclude the possibility that additional 

geographically restricted lineages remain cryptically embedded within the P. flavus 

species group, although recovering them will require a better sampling of the Mexican 

Plateau and southward into the trans-Mexican Volcanic Belt.  

 The flavus and merriami clades likely reached their maximum distributions in the 

early Pliocene, which was the driest part of the North American Tertiary (Axelrod 1985).  

Increased seasonality during this period and wildfires resulting from extended dry 

seasons would have facilitated expansion of grasslands at the expense of woodlands in 

lowland areas (Keeley and Rundel 2005).  Geographic diversification within the flavus 

species group coincident with development of major biogeographic regions in North 

America probably began in the early to middle Pliocene.  Although our molecular clock 

analyses provide only rough time estimates, it seems clear that diversification within the 

merriami and flavus clades occurred prior to the large glacial–interglacial cycles of the 

Pleistocene (Table 2.2). 

Divergence within the merriami clade 

The 3 phylogroups recovered within the merriami lineage (Fig. 2.3) appear to 

have diverged coincidentally during the Pliocene (Table 2.2).  Currently, these 3 

phylogroups appear to be distributed largely allopatrically, although additional 

geographic sampling could reveal overlap between the Great Plains and northern 

Chihuahuan Desert phylogroups in the trans-Pecos of western Texas along the Rio 
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Grande corridor (Fig. 2.3).  Although our current sampling in the Tamaulipan Mezquital 

ecoregion is restricted to 2 populations in south Texas, we suspect that the Tamaulipan 

Mezquital phylogroup extends south into the Mexican states of Tamaulipas and Nuevo 

Leon along the Tamaulipan Plain east of the Sierra Madre Oriental.  The northern limit of 

this clade is consistent with the Balcones Escarpment along the Edwards Plateau, which 

may be a barrier to northward movement (Fig. 2.3).  

The pattern of divergence between merriami populations in the northern 

Chihuahuan Desert and populations to the east of the trans-Pecos (Tamaulipan Mezquital 

and Great Plains phylogroups) is consistent with the culmination of faulting and 

beginning of epeiric uplift along the Rio Grande Valley (Axelrod and Bailey 1976; 

McMillan et al. 2002; Morgan et al. 1986).  Geological activity along the Rio Grande 

resulted in the closing of the savanna corridor that once connected populations across this 

region and could have had a significant effect on many species distributed across this 

region.  For example, the grasshopper mouse, Onychomys leucogaster longipes, a taxon 

distributed within the Tamaulipan Mezquital ecoregion, represents a basal splitting of 

mtDNA lineages within the widely distributed grassland species O. leucogaster (Riddle 

and Honeycutt 1990).  A general vicariant event across the Sierra Madre Oriental might 

have influenced divergence between the woodrats Neotoma leucodon (Chihuahuan 

Desert) and N. micropus (Tamaulipan Mezquital and Great Plains—Edwards et al. 2001; 

Matocq et al. 2007), the kangaroo rats Dipodomys ordii (Chihuahuan Desert and 

elsewhere) and Dipodomys compactus (Tamaulipan Mezquital—Alexander and Riddle 

2005; Hafner et al. 2007), and the aforementioned collared lizards, C. antiquus 

(Chihuahuan Desert) and C. reticulatus (Tamaulipan Mezquital—McGuire et al. 2007).  
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 Current geographic restriction of the northern Chihuahuan Desert phylogroup of 

the merriami clade to northernmost portions of the Chihuahuan ecoregion, with a 

southern extension into xeric grasslands along the western flank of the Sierra Madre 

Oriental, could indicate a stronger affiliation with grassland rather than xeric shrubland 

habitats in the merriami lineage relative to the flavus lineage.  For example, this 

phylogroup is geographically (and probably ecologically) overlapping with the Mexican 

prairie dog (Cynomys mexicanus), a known denizen of xeric grassland habitats (Scott-

Morales et al. 2004).  An ecological difference of this sort between the merriami and 

flavus lineages also is supported by the newly revealed distributional differences between 

these 2 lineages on the Great Plains (Figs. 3 and 4), with apparent west–east geographic 

separation congruent with the transition between the more xeric Western Short 

Grasslands and the more mesic Central and Southern Mixed Grasslands ecoregions.  

 With 1 exception, haplotypes within each of the 3 merriami phylogroups coalesce 

to common ancestry at ≤2% divergence.  This pattern is indicative of recent decreases in 

population size, perhaps caused by isolation in refugia during late-Pleistocene glacial 

cycles. The 1 exception occurs within the northern Chihuahuan Desert phylogroup, which 

shows a coalescence of 2 nested phylogroups at about 5.5% divergence.  Although these 

nested phylogroups appear to be distributed generally west and east of the Rio Grande 

River (Fig. 2.3), presence of the eastern group south into Coahuila (Fig. 2.1, locality 13) 

suggests that the river itself has not acted as a continuous barrier leading to isolation and 

diversification. 
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Divergence within the flavus clade 

Basal divergence of the flavus clade into 3 geographically distinct phylogroups 

suggests a history of sustained widespread distribution, albeit with substantial isolation of 

populations within areas of suitable habitat.  Distribution of the flavus phylogroups 

appears to be associated with the widespread Pliocene distribution of  xeric scrub and 

bunch grasslands through the Mexican Plateau and trans-Mexican Volcanic Belt regions 

and sod-forming short grasslands across the Great Plains (Retallack 1997),  

 Divergence of flavus phylogroups within the Chihuahuan Desert coincides with a 

previously postulated barrier across the Rio Conchos. For example, this river appears to 

be associated with current distributional limits between the woodrat species Neotoma 

albigula and N. leucodon (Edwards et al. 2001) and between western and eastern 

phylogroups of the cactus mouse Peromyscus eremicus (Riddle et al. 2000a).  Our 

estimated divergence time for separation of the northern and southern Chihuahuan Desert 

phylogroups suggests a middle- to late-Pliocene split that is temporally congruent with 

that proposed between N. albigula and N. leucodon (Edwards et al. 2001).   

 The Southern Coahuila Filter Barrier, composed of the Rio Nazas, Rio 

Aguanaval, and western extensions of the Sierra Madre Oriental, is another putative 

barrier that may be important to the distribution of silky pocket mice.  The Southern 

Chihuahuan Desert clade (Fig. 2.2) is restricted to the area north of the Southern Coahuila 

Filter Barrier and south of the Rio Conchos, whereas the southern Chihuahuan Desert 

phylogroup of flavus (Fig. 2.4) is distributed across the Southern Coahuila Filter Barrier.  

That the barrier has no apparent influence on the distribution of the southern Chihuahuan 
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Desert phylogroup of flavus suggests ecological differences between this group and the 

Southern Chihuahuan Desert clade. 

 The most recent divergence in the flavus clade is between animals of the Southern 

Rockies/Colorado Plateau phylogroup and those of the northern Chihuahuan Desert 

phylogroup (Fig. 2.4 and Table 2.1), which may have occurred at the end of the Pliocene 

or early Pleistocene.  The intermontane area occupied by the northern Chihuahuan Desert 

phylogroup experienced extensive geological uplift and volcanism in the Pliocene and 

Pleistocene (Raymo and Ruddiman 1992; Sahagian et al. 2002), which physically could 

have isolated populations north and south of the Mogollon Rim and southern Rockies.  

However, divergence between these clades also could have resulted from habitat 

fragmentation during the Pleistocene glacial cycles on a more geologically stable 

landscape.  Current sympatry of haplotypes from both phylogroups along the Rio Grande 

corridor in central New Mexico (Fig. 2.4) suggests subsequent erosion of the original 

physical or ecological barrier.  If these clades only recently are coming into contact from 

Pleistocene refugia, these phylogroups could be introgressing along their contact zone.  

Implications and future directions 

This study clarifies the geographic component of genetic history of the P. flavus 

species group and by doing so opens the door to new directions for research.  Research 

into the influences of Pleistocene glacial cycles on introgressive hybridization will 

benefit from access to the hierarchical spatiotemporal framework for the flavus species 

group, including elucidation of cryptic evolutionary lineages.  The pattern of 

diversification in the flavus species group establishes a baseline hypothesis of 

diversification for exploring the evolution of sympatric arid grassland and shrubland taxa.  
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The temporal and spatial pattern described here needs to be explored further, both within 

the flavus species group and across sympatric taxa, using an integrative approach 

including fossils, geology, and multigene phylogeography and historical biogeography.  
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Table 2.1. Uncorrected pairwise divergence values between major mtDNA clades and phylogroups in the Perognathus flavus species 

group and the outgroup, P. longimembris, based on concatenated sequences from a portion of the control region and cytochrome 

oxidase III mitochondrial genes.  

 

 2 3 4 5 6 7 8 9 10 P. longimembris 

1. flavus Colorado Plateau 0.056 0.084 0.085 0.092 0.169 0.175 0.181 0.177 0.177 0.225 

2. flavus Northern Chihuahuan Desert   0.092 0.097 0.100 0.169 0.174 0.183 0.175 0.178 0.227 

3. flavus Southern Chihuahuan Desert    0.097 0.106 0.170 0.178 0.171 0.174 0.176 0.221 

4. flavus Great Plains    0.106 0.167 0.176 0.175 0.174 0.180 0.223 

5. flavus Tehuacan Valley     0.178 0.177 0.185 0.176 0.190 0.229 

6. Meseta Central Matorral      0.190 0.190 0.180 0.196 0.227 

7. merriami Tamaulipan Mezquital       0.101 0.116 0.171 0.215 

8. merriami Great Plains        0.100 0.173 0.217 

9. merriami Northern Chihuahuan Desert          0.177 0.214 

10. Southern Chihuahuan Desert          0.218 
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Table 2.2. Time to most recent common ancestor for select clades in the P. flavus species 

group for the nuclear IRBP and mitochondrial COIII genes based on fossil-calibrated 

divergence estimates in BEAST.  

 

 
 
 
 
 
 

Most recent common 

ancestor 

COIII 

mya (95% CI) 

IRBP 

mya (95% CI) 

flavus species group 10.4 (8.4-12.5) 6.3 (3.0-10.5) 

flavus clade 4.5 (3.4-6.6) 4.5 (2.0-8.0) 

merriami clade 4.8 (3.3-6.0) 3.9 (1.5-7.3) 
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Figure 2.1. Geographic ranges of the 2 species in the Perognathus flavus species group 

redrawn from Hall (1981), with species boundaries estimated from Lee and Engstrom 

(1991) and Brant and Lee (2006).  Light shading reflects the geographic range of P. 

flavus and dark shading the range of P. merriami.  Locality numbers as per Appendix 1.  

Hatched areas indicate major mountain ranges, and dashed polygons show approximate 

location of ecoregions from 

http://www.nationalgeographic.com/wildworld/terrestrial.html.  The area labeled Great 

Plains includes the Western Short Grasslands and Central and Southern Mixed 

Grasslands ecoregions.  The area labeled Central Matorral includes the Meseta Central 

Matorral and Central Mexican Matorral ecoregions. 

 

Figure 2.2. Majority rule consensus tree (50%) generated from Bayesian analysis of 

concatenated mtDNA sequences from representatives of the Perognathus flavus species 

group, and map showing the distribution of each clade.  Hatched areas indicate major 

mountain ranges.  Posterior probability values followed by ML bootstrap values are 

shown for supported nodes.  Scale represents expected changes per site from Bayesian 

analysis. 

 

Figure 2.3. Linearized phylogram of 50% majority rule consensus tree generated from 

Bayesian analysis of concatenated mtDNA sequences from representatives of the 

Perognathus merriami lineage, and map showing distribution of phylogroups.  Hatched 

areas indicate major mountain ranges.  Posterior probability values followed by ML 

bootstrap values are shown for supported nodes.    



 

30 
 

 

Figure 2.4. Linearized phylogram of 50% majority rule consensus tree generated from 

Bayesian analysis of concatenated mtDNA sequences from representatives of the 

Perognathus flavus clade, and map showing distribution of phylogroups.  Hatched areas 

indicate major mountain ranges.  Posterior probability values followed by ML bootstrap 

values are shown for supported nodes.  

 

Figure 2.5. Cladogram generated from 50% majority rule consensus from Bayesian 

analysis of nuclear IRBP gene sequences from representatives of the Perognathus flavus 

species group.  Posterior probability values followed by ML bootstrap values are shown 

for supported nodes.  Numbers at the end of branches are mtDNA haplotype numbers 

(Appendix 1).  
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Figure 2.2 
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Figure 2.4 
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CHAPTER 3 
 

LANDSCAPE AND CLIMATIC EFFECTS ON THE EVOLUTIONARY  
 

DIVERSIFICATION OF THE PEROGNATHUS FASCIATUS  
 

SPECIES GROUP 
 

Abstract 
 

We evaluated evolutionary relationships of taxa within silky pocket mice of the 

Perognathus fasciatus species group, composed of three species P. fasciatus, P. 

flavescens, and P. apache. These species are distributed throughout the Great Plains, 

Wyoming Basin, Colorado Plateau, and northern Chihuahuan Desert biogeographic 

regions in North America. We test a previously postulated hypothesis of Pleistocene 

species divergence and introgression by analyzing mitochondrial (mtDNA) and amplified 

fragment length polymorphisms (AFLP). Both mtDNA and AFLP data support several 

genetic lineages in the fasciatus species group that are geographically structured. 

Molecular clock estimates reject a Pleistocene speciation hypothesis in favor of a deeper, 

more complex evolutionary history of initial divergence in the Miocene followed by 

secondary diversification beginning in the mid-Pliocene and progressing through the 

Pleistocene. Results support recognition of an additional species within the group.  

Temporal and spatial congruence between the mtDNA clades in the fasciatus species 

group and other co-distributed species of Perognathus appear to support an hypothesis of 

concerted diversification throughout the Chihuahuan Desert, Colorado Plateau, and Great 

Plains.  
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Introduction 

 Understanding the geography of genetic variation across closely-related species 

and among populations within species is a central focus of phylogeography (Avise 2009). 

Many phylogeographic studies have focused on diversification driven by the geological 

and climatic dynamics associated with the North American cordillera. This system of 

mountain ranges and intervening basins spans the western half of North America from 

Alaska to southern Mexico, which is one of the most topographically and climatically 

diverse areas of the world. These studies have invoked both climate change associated 

with Pleistocene glacial cycles and geological transformations throughout the Neogene, a 

time period that includes the Miocene and Pliocene epochs, as drivers of diversification 

in taxa ranging from invertebrates (Crews and Hedin 2006; Knowles and Carstens 2007; 

DeChaine and Martin 2010) to birds (Spellman et al. 2007; Hull et al. 2010) and 

mammals (Carstens et al. 2005; Riddle et al. 2000 a,b,c; Galbreath et al. 2010).  

Mountain building throughout the Cenozoic molded a landscape that interacted with 

global cooling and drying trends to facilitate a remarkable change in mammalian 

diversity (Blois and Hadley 2009).  Heteromyid rodents appear to be a good example of 

this trend, having diversified in the newly emerging and rapidly expanding arid biomes of 

western North America (Riddle 1995; Riddle 2000 a,b,c; Alexander and Riddle 2007; 

Hafner et al. 2007; Neiswenter and Riddle 2010), This diversification chronicles a 

transformation from more mesic subtropical to shrub-steppe, arid grassland, and 

ultimately desert biomes (Axelrod 1985; Retallack 1997, 2001).  

 The focus of this study is on the phylogeographic diversification of the 

Perognathus fasciatus species group of silky pocket mice, which is distributed 
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throughout the North American arid grasslands (Fig. 3.1), and is one of four 

phylogenetically well-delineated species groups (along with the parvus, longimembris, 

and flavus groups) that comprise the genus Perognathus.  Osgood (1900), in his 

taxonomic revision of pocket mice, grouped the species of Perognathus into species 

groups primarily for convenience, although he recognized the close relationships of the 

species within each group.  Williams (1978a) supported the close evolutionary 

relationships within Osgood’s species groups based on karyotype diploid number and 

separated the flavus species group from the fasciatus species group (sensu Osgood 1900). 

Osgood suggested a close relationship between the flavus and longimembris species 

groups, a view upheld by recent mitochondrial DNA evidence (Alexander and Riddle 

2005; Hafner et al. 2007). Williams (1978a) further suggested a close relationship 

between the fasciatus and parvus species groups, but this relationship is yet to be robustly 

supported in recent studies.  

 The fasciatus species group currently includes at least two recognized species of 

pocket mice, P. fasciatus and P. flavescens. Although Williams (1978b) subsumed P. 

apache under P. flavescens, proposing that detailed morphological and karyotypic data 

did not support the recognition of two species, Hoffmeister (1986) continued to recognize 

P. apache as a separate species, suggesting that Williams’ (1978b) data were not 

conclusive. For clarity, we follow Hoffmeister in referring to populations within the 

intermountain basins of the North American cordillera as P. apache, and populations east 

of the Front Range of the Rocky Mountains in the central and southern Great Plains as P. 

flavescens (Fig 1), except when noted. 
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 Williams (1978b) proposed that the ancestral species giving rise to the extant 

fasciatus species group was distributed across the northern and central Great Plains 

during the penultimate Pleistocene interglacial period. Under this model, as climates 

cooled during the latest glacial period, this species tracked habitats to the south, where 

the range was fragmented across the trans-Pecos region of west Texas. He envisioned this 

region as a transition zone: to the east, P. fasciatus originated in the higher elevation 

habitats of the Edwards Plateau of central Texas; and to the west, P. flavescens (including 

apache) originated in the Chihuahuan Desert of northern Chihuahua and southern New 

Mexico. As climates warmed again, P. fasciatus tracked expanding shrub and grassland 

habitats into the northern Great Plains, while P. flavescens remained in the northern 

Chihuahuan Desert, later also expanding northward onto the Colorado Plateau and into 

the Great Plains, less far to the north as P. fasciatus. This model predicts a Late 

Pleistocene diversification between P. flavescens and P. fasciatus. Furthermore, the 

model predicts little genetic diversity between populations of P. flavescens in the Great 

Plains and P. apache in the intermountain basins given the predicted recent coalescence 

of these lineages and predicted introgression near their contact zone (Williams 1978b).  

 An alternative hypothesis for biotic diversification across western North 

American arid lands is gaining support, in part from recent studies of a variety of 

heteromyid taxa. This hypothesis portrays a deeper history of geographic evolution in 

western North American arid lands, with diversification of species groups rooted in the 

Late Miocene, and species diversification continuing through the Pliocene and the 

Pleistocene (e.g. Riddle et al. 2002a,b,c; McKnight 2005; Hafner et al. 2007,2008; 

Jezkova et al. 2009).  A study of particular relevance to developing plausible hypotheses 
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for geographic evolution of the fasciatus species group traced geographic evolution of the 

flavus species group using molecular clock analyses with both mitochondrial and nuclear 

data (Neiswenter and Riddle 2010). That study proposed a causal association between the 

diversification of basal lineages within the flavus species group and the initial 

development and expansion of arid grasslands. The authors identified several 

geographically distinct and reciprocally monophyletic phylogroups that were 

hypothesized to have arisen by vicariance between the Chihuahuan Desert, Great Plains, 

and Colorado Plateau biogeographic regions. This distribution and set of postulated 

biogeographic events include a broad area of sympatry between the fasciatus and flavus 

species groups (Fig. 3.2), which provides rationale for developing a hypothesis for 

divergence within the fasciatus species group. First, we postulate that basal species group 

divergence began in the Late Miocene coincident with the initial rapid spread of arid 

grasslands (Retallack 2001) and associated biota (see Neiswenter and Riddle 2010). 

Second, we hypothesize a later bout of diversification as lineages comprising separate 

geographic isolates on the Colorado Plateau (including the southern Rocky Mountains), 

and in the northern Chihuahuan Desert and Great Plains began diverging during the 

Pliocene or possibly early Pleistocene. 

 We test the above hypotheses, which outline specific spatial and temporal 

relationships within the fasciatus species group, within a modern molecular 

phylogeographic framework. We use mitochondrial DNA (mtDNA) and amplified 

fragment length polymorphisms (AFLP) to infer the distribution of evolutionary lineages 

across the topographically complex shrub-steppe and grassland communities over which 

the group is distributed (Fig. 3.1). Specifically we develop mitochondrial phylogenetic 
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hypotheses, estimate the timing of major divergences, and correlate the lineages with 

geologic and climatic events.  We use a molecular clock to estimate divergence times for 

the major lineages within the fasciatus species group and evaluate the Pleistocene 

timeframe of diversification between P. fasciatus and P. flavescens postulated by 

Williams (1978b).  We also evaluate the extent to which mtDNA provides evidence of 

sex-biased gene flow between populations of P. apache and P. flavescens by testing for 

concordance between the mtDNA and AFLP data. Finally, we compare the evolution of 

two arid grassland rodent groups that co-occur across several biogeographic regions, the 

fasciatus and flavus species groups (Fig. 3.2), to evaluate whether diversification in each 

group may have been influenced by a similar suite of historical geologic or climatic 

events.  

 

Materials and Methods 

 Specimens were sampled throughout the range of the fasciatus species group (Fig 

1). Samples field collected for this study were handled according to standards set forth by 

the American Society of Mammalogists (Gannon et al. 2009). Voucher skins and 

skeletons were collected when possible; however, in several instances samples where 

provided from other researchers or state permits allowed only the collection of non-

destructive ear clips. Sampling was supplemented with tissues loaned from various 

natural history museums and personal collections (Appendix 2). 

Sequencing 

We sequenced the protein coding cytochrome oxidase III mitochondrial gene 

(COIII) from 1-5 individuals per locality. The primers, 8618 and 9323 (Riddle 1995), and 
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in some cases a primer specific to samples of P. apache (Table 3.1), were used for PCR 

amplification using the following protocol: 95°C for 1 min, 55°C for 1 min, and 70°C for 

1 min repeated 30 times. Sequencing was performed in one of two ways. Several of the 

mtDNA sequences included in the analyses originated in Nickle (1994) and were 

sequenced using the protocol of Allard et al. (1991). All others were sequenced on an 

ABI 3130 (Applied Biosystems, Foster City, California) following the manufacturer’s 

protocol. These sequences were checked for arbitrary base calls in SEQUENCHER 4.8 

(Gene Codes Corporation, Ann Arbor, Michigan). Sequences were aligned using 

MEGA4 (Tamura et al. 2007).  

 Phylogenetic trees were constructed using Bayesian analysis in MRBAYES (ver. 

3.1.2, Huelsenbeck and Ronquest 2001). We performed several initial runs for each 

dataset with different chain temperatures and branch length priors to confirm good 

mixing and convergence. The final analysis was run with a temperature of 0.05 and 

branch lengths set to 10. The GTR+G model was chosen based on likelihood ratio test 

results from MODELTEST (Posada and Crandall 1998). For each analysis we performed 

2 independent runs with four chains each (one hot and 3 cold), ran analyses for 4,000,000 

generations, and summarized the last 10,000 trees of each run (20,000 trees total) using a 

50% majority rule consensus tree employing the posterior probabilities for clade support.   

 Maximum likelihood (ML) analyses were performed using the program 

TREEFINDER (Jobb 2008) and the GTR+G model of evolution.  Node support for the 

ML analysis was assessed using 100 bootstrap replicates. With the exception of the 

model of evolution, default values were used in all ML analyses. 
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 In the molecular clock analyses we included COIII sequences downloaded from 

GenBank for several heteromyid genera and species outside of the fasciatus species 

group, including: Dipodomys merriami, Chaetodipus bailyei, C. formosus, C. hispidus, C. 

eremicus, P. longimembris, P. parvus, P. flavus, and P. merriami (Appendix 4). We used 

published fossil data (see Hafner et al. 2007 for summary) to calibrate the molecular 

clock at a node outside of the fasciatus species group.  We selected a representative from 

each of the mtDNA clades (see Results) and conducted a relaxed uncorrelated log-normal 

molecular clock analysis in BEAST v.1.4.7 (Drummond and Rambaut 2007). Fossil 

calibration was based on the oldest know fossil that is a taxonomically reliable 

representative of the subfamily Perognathinae, estimated at 20-22 mya (James 1963; 

Hafner et al. 2007). We conservatively placed this date at the base of the clade that 

includes Chaetodipus + Perognathus, as was done by Hafner et al. (2007), because the 

fossil record does not distinguish between these two genera. We used the HKY+I+G 

model and constrained the Perognathinae and the fasciatus species group clades to be 

monophyletic. Several runs were conducted to ensure stationarity. The final analysis was 

10 million generations sampling every 1,000 generations and results were summarized 

after a 10% burn-in in TRACER v1.4 and FIGTREE v1.1.2. 

Fragment analyses 

We followed the protocol designed by Vos (1995) for AFLP amplification. 

Briefly, total genomic DNA was restricted using EcoRI and MSEI enzymes and known 

sequences were ligated to the restriction cut sites (Table 3.1).  Restriction-ligated DNA 

fragments were amplified first in a pre-selective amplification and then used for 

subsequent selective amplifications using combinations of fluorescently labeled primers 
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for the EcoRI primer and unlabeled MSEI primers (Table 3.1).  Selective amplifications 

were sequenced at the genomics facility at the University of Nevada Reno on an ABI 

3430 (Applied Biosystems, Foster City, California). Selective amplification reactions 

were conducted twice to confirm the recovery of identical peak profiles. AFLP profiles 

were scored automatically in GeneMapper (Applied Biosystems, Foster City, California) 

using a peak height threshold of 100 for peaks between 100 and 500 base pairs (bp). Final 

calls were confirmed by eye and only unambiguous peaks were used in final analyses. 

Selective primers screened but not used are available from the authors.  

 To assess potential gene flow between P. apache and P. flavescens we used the 

clustering program Structure 2.2.3 (Falush et al. 2007). We first ran exploratory analyses 

for a range of genetic groups (k), burn-in, and chain length. Initial runs were used to 

confirm good mixing and stationarity, and to determine appropriate burn-in and chain 

length. We followed the guidelines in the user’s manual for determining k qualitatively. 

Exploratory results suggested that there was strong evidence for population structuring in 

the AFLP dataset that was qualitatively similar to the mtDNA results.  

  We used the following methodology to assess nuclear gene flow between 

mtDNA populations of P. flavescens and P. apache. We a priori assigned each individual 

of either P. flavescens or P. apache to 1 of 3 populations based on the results of the 

mtDNA analyses (see Results) to test for introgression of the nuclear genome among the 

mtDNA clades. Final analyses were run using prior population information 

(USEPOPINFO = 1) to identify possible hybrids. The RECESSIVEALLELES option 

was set to 1, burn-in was 105, and chain lengths were 106 generations. To determine the 

extent of introgression we defined two additional parameters, the probability that an 
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individual is an immigrant (v) or has an immigrant ancestor in the last G generations. We 

set GENSBACK = 2 to assess immigration back to an individual’s grandparents (2 

generations) and ran the analyses for multiple values of v (MIGRPRIOR = 0.01, 0.05, 

and 0.1) to cover a range of plausible migration scenarios (Pritchard et al. 2000).  

 

Results 

Sequencing analyses 

Seventy nine samples from the Perognathus fasciatus species group from 29 

general localities were sequenced for COIII. The resulting alignment consisted of 576 

basepairs (bp) of which 178 sites were parsimony informative. No gaps, insertions, or 

deletions were detected. Sequences are deposited in GenBank. 

 Results of the Bayesian and ML phylogenetic analyses were congruent and 

supported four major lineages (Fig. 3.3) with considerable uncorrected pair-wise percent 

divergence between them (Table 3.2). The basal node of the tree corresponds to 

approximately 18% divergence between P. fasciatus and the rest of the group.  Two of 

the major clades correspond with P. apache. The apache North clade is distributed in the 

northern Colorado Plateau north of the San Juan River in Utah and the apache South 

clade is distributed in the southern Colorado Plateau/northern Chihuahuan Desert. The 

two apache clades do not collectively form a single monophyletic clade; rather, the fourth 

major clade is sister to the apache South clade and corresponds with the distribution of P. 

flavescens.  

 Three of the major clades have further structuring within them. The fasciatus 

clade contains three well-supported subclades: one currently restricted to the Wyoming 
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Basin, a second from the front range of the Rocky Mountains, and the third widely 

distributed across the northern Great Plains and Wyoming Basin (Fig. 3.4a). The apache 

North clade is further divided north and south of the Colorado River in eastern Utah, and 

the apache South clade is divided east and west of the Chuska Mountains along the 

northern Arizona-New Mexico border (Fig. 3.4b). 

 Under the fossil-calibrated molecular clock the divergence between P. fasciatus 

and the ancestor to the other taxa in the group is estimated to have occurred in the late 

Miocene, approximately 7.4 mya (95% highest posterior density interval (HDP) = 4.8-9.9 

mya; Fig. 3.5). The mean time to most recent common ancestor (tMRCA) for the 

apache/flavescens clade is 3.6 mya (95% HDP = 2.3-5.0 mya) and the divergence 

between the flavescens clade and apache South is estimated at 2.5 mya (95% HDP = 1.5-

3.5 mya). Within the major clades further diversification is estimated to have occurred 

during the middle Pleistocene. The estimated mean mutation rate under the fossil 

calibrated clock is 0.034 ± 2.5 x10-4 substitutions/site/million years and the likelihood 

estimate is -4684.78 ± 0.1.   

Fragment analyses 

AFLP profiles for two primer combinations were developed for 68 individuals 

from the fasciatus species group. Some individuals were not included because DNA or 

tissue was no longer available for some of the samples obtained from Nickle (1995).  A 

total of 189 variable sites were scored for the Mse+AGC primer with an average of 59 

alleles present per individual. The Mse+ATC primer resulted in a total of 157 variable 

sites being scored with an average of 53 alleles present per individual. Exploratory 
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analyses suggested there were 4 groups (mean ln likelihood = -9560), with membership 

corresponding closely to the 4 major mtDNA clades reported above (Fig. 3.3) 

 The results of the gene flow analysis suggest a few individuals may have had 

immigrant ancestry in the past 2 generations (Table 3.3). With the highest probability of 

migration, v = 0.1, 3 individuals show a high probability of having an immigrant 

grandparent and 1 individual is not strongly assigned to any group. When migration is 

assumed to be low, v = 0.01, only 2 of these individuals were shown to have a high 

probability of immigrant ancestry.  All other individuals were assigned to their respective 

mtDNA clades with a probability > 0.9 in all analyses. 

 

Discussion 

Phylogeography of the Perognathus fasciatus species group 

The biogeographic hypothesis (and resulting taxonomy) suggested by Williams 

(1978b), largely based on morphology, underestimates the evolutionary diversity within 

the fasciatus species group that is revealed by the molecular sequence divergence. We 

identified four major mtDNA clades within the fasciatus species group that are also 

recovered using nuclear DNA. Additionally, within the four mtDNA clades there is 

further geographic and genetic structuring. Using the fossil calibrated molecular clock, 

diversification within the fasciatus species group began during the latter half of the 

Miocene and continued into the Pleistocene (Fig. 3.3). 

 Fossil and molecular evidence suggest massive alteration of mammalian diversity 

throughout the Cenozoic (Webb 1977; Riddle 1995; Kohn and Fremd 2008; Blois and 

Hadley 2009). Widespread changes in the distribution of arid biomes, including the 
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expansion of arid grasslands and shrublands throughout the western North American 

lowlands, occurred in concert with several bouts of global cooling and drying (Axelrod 

1978; Retallack 1997, 2001). Retallack (1997) used paleosols, stable isotopes, and fossil 

evidence to develop a model of the evolution of the grassland biomes which depicts 3 

stages of successive drying and cooling beginning with the shift from dry tropical forest 

to savannas with desert shrub and bunchgrasses around the Eocene-Oligocene boundary. 

The second stage includes the expansion of sod-forming short-grass prairies during the 

mid-Miocene (15 mya). The latest bout of cooling and increased aridity, beginning 

around the late Miocene (5-7 mya), involved the expansion of C4 grasslands and desert 

scrub.   

 Molecular clock analyses suggest the major lineages of the fasciatus species 

group initially began diverging during the third climatic episode of the late Miocene, 

coincident with expanding arid grasslands throughout North America. The timing of 

diversification and habitat use (Williams 1978b; Manning and Jones 1988; Monk and 

Jones 1996) of the species in the fasciatus species group is consistent with an hypothesis 

outlined for the flavus species group (Neiswenter and Riddle 2010), which is co-

distributed with the fasciatus species group across parts of the Colorado Plateau, northern 

Chihuahuan Desert, and Great Plains (Fig. 3.2). The expansion of the fasciatus species 

group throughout the northern latitudes of North America may have began in the late 

Miocene as the ancestor to the group followed the expanding arid adapted C4 grasslands. 

This expansion was likely caused by the decrease in carbon dioxide concentrations 

(Retallack 2001), increased seasonality of precipitation and wildfires (Osborne 2008), or 

some combination of these and possibly other factors (Kohn and Fremd 2008). The initial 
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divergence within the fasciatus species group may have arisen as northern and southern 

isolates in the Wyoming Basin/Northern Great Plains and Colorado Plateau/Southern 

Great Plains. Perognathus fasciatus is found only in higher elevation grasslands in the 

southern portions of its geographic distribution along the Front Range of the Rocky 

Mountains, suggesting it is adapted to cooler climates compared with P. flavescens or P. 

apache.  

 Following the north-south split within the fasciatus species group regional 

diversification continued throughout the Pliocene and Pleistocene. The apache North 

clade is estimated to have diverged during the middle Pliocene, coincident with extensive 

geological uplift and volcanism in the Colorado Plateau region throughout the Pliocene 

(Raymo and Ruddiman 1992; Sahagian et al. 2002). The molecular clock analysis points 

to a late Pliocene/Pleistocene time for the most recent common ancestor between the 

flavescens clade and apache South clade across the southern Rocky Mountains (Fig. 3.5). 

A similar estimated timing of the Great Plains divergence within the co-distributed flavus 

species group (merriami Chihuahuan desert vs. Great Plains, 3.3-6.0 mya) may represent 

the response of these taxa to a common event; the culmination of faulting and beginning 

of epeiric uplift along the Rio Grande Rift which resulted in the closing of a savanna 

corridor that connected populations to the east and west (Axelrod and Bailey 1976; 

McMillan et al. 2002; Morgan et al. 1986). In conjunction with the geologic activity, the 

late Pliocene transition (ca. 2.7 – 3.2 mya) marks a distinct period of cooling in the 

Northern Hemisphere (Sosdian and Rosenthal 2009) that may have promoted regional 

adaptations of the local biota to the changing environmental conditions within each of 

these biogeographic regions, further contributing to diversification of the associated 
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biota. These results are consistent with the hypothesis of Neiswenter and Riddle (2010) 

that a large portion of the phylogeographic diversity in these arid grassland species is a 

result of lineage diversification from geologic and climatic phenomena prior to the major 

glacial cycles of the Pleistocene, laying the foundation for within-region population 

structuring beginning in the mid-Pleistocene. 

 Several of the major clades have further geographic structuring that is consistent 

with a scenario of persistence of discrete lineages in separate Pleistocene refugia. Each of 

the major clades has further structuring that is estimated to have begun in the mid-

Pleistocene. The mid-Pleistocene transition, ~1.2 – 0.7 mya, is marked by Milankovich 

cycles shifting from the dominant 41ky obliquity cycles of the early Pleistocene to longer 

more extreme 100ky cycles (Sosdian and Rosenthal 2009). The longer more extreme 

cycles may have further isolated populations of each of the clades in the fasciatus species 

group as they shifted their distribution tracking their preferred habitat in response to the 

ever-changing climate.  In North America, much of the northern Great Plains was 

covered by glaciers during the colder climate cycles so the habitable area available to P. 

fasciatus was likely reduced to areas along the Front Range of the Rocky Mountains and 

within the Wyoming Basin which could have served as refugia during the Pleistocene, 

resulting in the current genetic structure recovered within this clade (Fig. 3.4a).  The 

Front Range and Wyoming Basin may have served as refugia for other co-distributed 

lowland taxa, such as grasshopper mice (Onychomys leucogaster; Riddle and Honeycutt 

1990; 1993), as these regions could have been buffered from severe climate changes due 

to their topographic complexity. Additionally, within both apache South and apache 

North there are clades whose diversification may be explained by the persistence of 
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multiple Pleistocene refugia throughout the basins of the Colorado Plateau (Fig. 3.4b).  

Because the Great Plains is topographically less complex than the intermountain basins it 

is plausible that there was only a single refugium available to the flavescens clade during 

the Pleistocene, which would explain the lack of similar substructure within this clade 

(Fig. 3.3). A population genetic approach with more detailed sampling of individuals and 

genes for each of these species and other sympatric taxa is necessary to evaluate further 

details for presence, size, and locations of each of these postulated refugia.  

Nuclear introgression 

Our nuclear data support the mtDNA groupings and lend credibility to the 

evolutionary history documented with the maternally inherited mtDNA, although a small 

number of individuals were identified as having immigrant ancestry. Using nuclear data 

all but 4 individuals were assigned to their respective mtDNA clades with high 

probability in the STRUCTURE analysis, even when assuming the highest migration 

rate.  Williams (1978b) suggested that P. flavescens and P. apache were probably 

introgressing across the trans-Pecos region of west Texas and southeast New Mexico, an 

area where both species are fairly uncommon. There is some indication of local 

introgression at each of the contact zones between the 3 mtDNA clades that comprise P. 

apache and P. flavescens under the assumed migration probabilities. To the extent that 

the range of migration priors used in these analyses reflect the true range of dispersal 

probability in these species we can identify the probability of nuclear immigration among 

the mtDNA clades identified.  For example, 2 individuals (NMMNH 3259 and NMMNH 

3258) with flavescens mtDNA located near the trans-Pecos and southern Rocky 

Mountains at localities 13 and 15 (Fig. 3.1, Appendix 2) have a high probability of 
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having an immigrant grandparent, particularly under the higher migration scenarios. 

Additionally, 1 of the individuals with apache North mtDNA (MSB 76895; Appendix 2) 

is predicted to have an apache South nuclear DNA component. This individual is from 

near the San Juan River (locality 25; Fig. 3.1, Appendix 2) in Utah, close to the probable 

contact zone between apache North and apache South mtDNA clades. One of the 

samples with apache North mtDNA (LVT 9907) shows a possible immigration ancestry 

with flavescens but only under the highest migration prior. This sample is not near a 

contact zone with flavescens populations making an introgression hypothesis less likely. 

Furthermore, the individual does not have a high probability of coming from any 

population under the highest migration prior. This individual may retain some ancestral 

polymorphisms and/or homoplasies that make it more difficult to assign to its respective 

mtDNA population under a high migration scenario. 

 If nuclear introgression is occurring between mtDNA populations, it is 

geographically limited and uncommon. Perognathus are relatively small rodents that 

likely have restricted dispersal abilities (Williams 1978b; Manning and Jones 1988; 

Monk and Jones 1996) making the lower value assumed for the migration prior (0.01) a 

more likely representation of the true value. Only two individuals are predicted to have 

immigrant ancestry under this assumption, although only 3 individuals have a high 

probability of immigrant ancestry under the highest migration prior. Regardless, in each 

instance the introgression of nuclear DNA to mtDNA populations is predicted to have 

occurred at least 2 generations ago (i.e., no F1 hybrids were found). Moreover, the same 

localities have other individuals that are not predicted to have immigrant ancestry. There 

are also other localities in the same general area of the localities with predicted 
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immigrants and within Williams’ (1978b) proposed area of introgression (e.g., locality 

20) with multiple individuals that have no immigrant ancestry. In light of this, we 

propose that the congruent mtDNA and AFLP groups are maintaining their genetic 

distinctness but suggest further investigation in each of the potential hybrid areas to better 

describe the nature and extent of the contact zones. 

Implications for Perognathus systematics 

Morphologically-based taxonomy may not be appropriate for delineating species 

diversity in Perognathus. We identified at least 4 genetic lineages that likely satisfy the 

requisites of a variety of species concepts, for example the Genetic Species Concept (as it 

applies to mammals; Baker and Bradley 2002) and Genealogical Concordance Concept 

(Avise and Ball 1990). Species designation was not an objective of this study and we 

acknowledge that a more detailed analysis of clade boundaries with the inclusion of all 

recognized subspecies is necessary to fully evaluate the specific status of members in this 

group. However, several studies to date have shown that current taxonomy (largely based 

on skeletal morphology) grossly underestimates the molecular diversity within the genus 

Perognathus (McKnight 1995; Alexander and Riddle 2005; Neiswenter and Riddle 

2010). Species of Perognathus exhibit extensive plasticity in external morphology that 

can be causally or directly linked to environmental conditions experienced by the 

individual. This is evidenced by extreme intraspecific color variation depending on the 

color of substrate on which an individual is found (e.g., P. apache melanotis), as well as 

skeletal variation associated with climatic conditions. Williams (1978b) showed 

morphological variation tended to follow basic ecogeographic rules in Perognathus: mice 
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from colder environments are larger and the variation in relative measurements of 

auditory bullae and rostral size are associated with wetter environments. 

 We hypothesize that the apparent introgression between P. flavescens and P. 

apache across the trans-Pecos region is due to the convergence of morphology within 

similar environments: warmer, drier deserts and grasslands in the southern portions of the 

ranges of both species contain mice that have converged morphologically. This pattern 

may be more widespread within the genus Perognathus than previously recognized, 

being apparent in different species and in different supposed transition zones. For 

example, across the same region P. flavus and P. merriami were thought previously to 

hybridize (based on intermediate morphology) through P. m. gilvus (Wilson 1973), but 

probably coexist as separate species that are morphologically similar based on levels of 

molecular divergence (Brant and Lee 2006; Neiswenter and Riddle 2010). Additionally, 

Osgood (1900) believed P. callistus (currently synonymized with P. fasciatus) from the 

Wyoming Basin was intermediate between P. fasciatus and P. apache, resembling P. 

apache from the Uinta Basin in skull characteristics (presumably due to intermediate 

climate) but similar in color to P. fasciatus from the Great Plains. A reanalysis of 

Williams’ (1978b) morphological data in light of the molecular results reported here is 

warranted to evaluate this hypothesis 

Conclusions and future directions 

A general model for the evolution and diversification of a North American arid 

grasslands biota is beginning to emerge. This study tested hypotheses regarding the 

diversification of arid grasslands and shrublands across several ecoregions in western 

North America. Although no formal statistical comparative phylogeographic analysis was 
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used, we found congruence with previous results from the flavus species group that 

indicate these two independent lineages of small-bodied pocket mice likely followed 

expanding arid grassland habitat as it emerged in the late Miocene and diversified 

throughout the Pliocene and Pleistocene across the topographically complex North 

American cordillera. We recognize the need to include multi-gene datasets and more co-

distributed species within a comparative phylogeographic framework within this system, 

as well as the need for a more detailed sampling and statistical approach to evaluate the 

Pleistocene refugial hypotheses outlined above. Finally, species limits within the 

fasciatus species group should be reevaluated by incorporating all available evidence 

from every subspecies along with a denser sampling at each of the clade boundaries.  
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Table 3.1. Primers used for Amplified Fragment Length Polymorphisms and sequencing. 

Asterisk denotes 56-FAM dye-labeled primer. 

 

Name Sequence (5’-3’) 

ECO-F CTCGTAGACTGCGTACC 

ECO-R AATGGTACGCAGTCTAC 

ECO+C GACTGCGTACCAATTCC 

ECO+CAC* ACTGCGTACCAATTCCAC 

MSE-F GACGATGAGTCCTGAG 

MSE-R TACTCAGGACTCAT 

MSE+A GATGAGTCCTGAGTAAA 

MSE+AGC GATGAGTCCTGAGTAAAGC 

MSE+ATC GATGAGTCCTGAGTAAATC 

9323apache ACGAATTATACAAACTAGA 
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Table 3.2. Uncorrected pair-wise differences between mitochondrial clades of the 

Perognathus fasciatus species group. 

 

 apache North apache South flavescens parvus 

fasciatus 0.182 0.177 0.163 0.221 

apache North  0.112 0.113 0.205 

apache South   0.103 0.225 

flavescens    0.216 
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Table 3.3. Results from the STRUCTURE analysis showing the possible source population and ancestry in individuals with less than 

0.9 probability of no immigrant ancestry under different migration priors. Individuals are labeled by their museum numbers or other 

number if no museum voucher is available; see Appendix 2 for more information. No immigrant ancestry is the probability that the 

nuclear genomic ancestry of the individual is from the same region as the mtDNA from that individual. The other immigrant columns 

show the probability that the individual has ancestry from the possible immigrant source up to 2 generations ago.  Rows do not add to 

1 because there is a small probability of ancestry from other populations. Bold numbers are probabilities greater than 0.5. 

 

Individual mtDNA 
population 

Possible 
immigrant 
source 

v No 
immigrant 
ancestry 

Immigrant Immigrant 
parent 

Immigrant 
grandparent 

NMMNH 
3258 

flavescens apache 
South 

0.01 
0.05 
0.1 

0.263 
0.019 
0.005 

0.001  
0.000  
0.000  

0.001  
0.002  
0.002 

0.731 
0.974   
0.989 

NMMNH
3259 

flavescens apache 
South 

0.01 
0.05 
0.1 

0.533 
0.104 
0.043 

0.000 
0.000 
0.000 

0.000 
0.000 
0.001 

0.453   
0.867   
0.928   

MSB 
76895 

apache 
North 

apache 
South 

0.01 
0.05 
0.1 

0.161 
0.025 
0.010 

0.000 
0.000 
0.000 

0.008 
0.010 
0.012 

0.831   
0.964   
0.978   

LVT 9907 apache 
North 

flavescens 0.01 
0.05 
0.1 

0.916 
0.701 
0.409 

0.000 
0.000 
0.000 

0.000 
0.000 
0.000 

0.072   
0.234   
0.496   
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Figure 3.1.  Geographic ranges of species in the fasciatus species group following 

taxonomy of Hoffmeister 1986: Light shaded = P. fasciatus, Dark shaded = P. apache, 

Stippled = P. flavescens. Lined areas represent major mountain ranges. Black dots show 

approximate collecting localities of specimens examined. Numbers refer to localities 

listed in Appendix 2. 

 

Figure 3.2. Distribution of fasciatus species group (grey) and flavus species group 

(stippled) showing the area of sympatry in three regions. 

 

Figure 3.3. The distribution of major mtDNA clades and AFLP groups in the fasciatus 

species group are shown in relation to the major mountain chains (lined area on map). 

The phylogenetic tree at left is the consensus tree from the Bayesian analyses, and is 

identical in supported topology to the ML tree (not shown). Numbers at nodes represent 

Bayesian posterior probability and ML bootstrap values respectively. The bar graph 

shows the results of the exploratory AFLP analysis in STRUCTURE 2.2.3 for k=4. Each 

bar represents the probability of a single individual belonging to one of the four groups. 

Color of the bars corresponds to the color of the symbols for each of the four mtDNA 

clades to show general congruence of mtDNA and AFLP groupings.   

 

Figure 3.4.  Phylogenetic results of the mtDNA Baysian analysis showing further 

geographic structuring within A) P. fasciatus in the Wyoming Basin and northern Great 

Plains and B) the two apache clades in relation to the Colorado and San Juan rivers on 
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the Colorado Plateau. Numbers at nodes are posterior probabilities and maximum 

likelihood bootstrap support, respectively. Lined areas represent major mountain ranges.  

 

Figure 3.5. Cronogram from relaxed molecular clock analyses showing molecular dating 

of major lineages in the fasciatus species group. Numbers at nodes are median values in 

millions of years and dark bars represent 95% intervals. Time scale is estimated for visual 

purposes. 
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CHAPTER 4 
 

PHYLOGEOGRAPHY OF ORD’S KANGAROO RAT (DIPODOMYS ORDII) IN  
 

WESTERN NORTH AMERICA. 
 

Abstract 
 

Dipodomys ordii (Ord’s Kangaroo Rat) is distributed in western North american 

arid grasslands throughout the Chihuahuan Desert, Colorado Plateau, Great Basin, and 

Great Plains. The phylogeographic history of D. ordii is examined using Bayesian and 

maximum likelihood phylogenetic analyses of the cytochrome oxidase III mitochondrial 

gene. A fossil calibrated relaxed molecular clock along with the credible intervals is used 

to apply a range of dates to each of the major nodes in the phylogeny. The divergence 

between D. ordii and the closest know sister species D. compactus, which is limited in 

geographic range to the Tamaulipan Mezquital in southern Texas, is estimated to have 

occurred in the late Miocene or possibly the early Pliocene. There are several 

phylogroups, geographically distinct monophyletic clades, that occur in recognized 

biogeographic regions including, the Great Basin, Colorado Plateau, Chihuahuan Desert, 

Central Matorral,and Great Plains. The timing of the divergence among phylogroups is 

estimated to have begun in the Pliocene and continued through the Pleistocene. The 

diversification of D. ordii is similar to the sympatric Perognathus species groups with 

respect to timing of divergence and geographic distribution of mtDNA clades when 

compared, although concerted and independent responses to geographic barriers and 

climatic events are revealed.  
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Introduction 

Comparative phylogeography seeks to understand how historical processes, such 

as climate change and geological events, have shaped regional biodiversity by inferring 

signatures of concordant phylogenetic divergence across co-distributed species 

(Bermingham and Moritz 1998; Avise 2000; Zink 2002). Comparative phylogeographic 

analyses can provide a robust understanding of the effects of broad scale historical events 

on communities and ecosystems as a whole by going beyond the individualistic nature of 

single species phylogenies (Riddle et al. 2000; Arbogast and Kenagy 2001; Riddle and 

Hafner 2006; Castoe et al. 2009). Identifying a single mechanism for the shared 

diversification of co-distributed taxa can be difficult because climate change and 

geological processes tend to occur over long periods of time and are often not mutually 

exclusive (Molnar and England 1990; McMillan et al. 2006; Kohn and Fremd 2008; 

Hoorn et al. 2010). Major geological events can redirect global weather patterns (e.g 

Molnar et al. 2010), while on a local scale, rainshadows and seasonality of precipitation 

can influence local fauna which in turn can impact fluvial processes (McMillan et al 

2002). To compound the issue further, species diversity in a given area may reflect 

responses to both factors acting at different points in time (Hoorn et al 2010). These 

processes should have the greatest effect on biotic diversity in areas of high topographic 

relief during times of rapid climate change, where complex landscapes and changing 

climates together promote divergence of lineages (Badgley 2010).  

 One of the most topographically complex regions in the world is a massive 

assortment of mountain ranges and basins spanning the western half of North America, 

collectively known as the North American Cordillera (NAC). The history of geophysical 
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and climatic changes in the NAC throughout the Cenozoic is complex and while research 

in this area offers little consensus on the timing of geologic events, some general 

conclusions can be ascertained (Wilson and Pitts 2010). The Laramide orogeny finalized 

in the early Cenozoic (55mya) and gave rise to the block uplifts and fold-and-thrust belts 

that are currently known as the Rocky Mountains, Sierra Madre Oriental, and areas 

surrounding the Colorado Plateau. During the late Miocene a second bout of uplift may 

have occurred, beginning 15 mya with most of the uplift less than 7 million years old. 

The second bout of uplift has been considered responsible for the aridification of the 

NAC (reviewed in Wilson and Pitts 2010) although the nature and extent of the uplift is 

still actively debated (Molnar and England 1990; Hay et al. 2002; McMillan et al 2006). 

Since the end of the Miocene, incision, rifting, and localized geologic events continued to 

shape the topography of the Rocky Mountains and Colorado Plateau (Axelrod and Bailey 

1976; Morgan et al. 1986; McMillan et al. 2002; McMillan et al. 2006; Wilson and Pitts 

2010). 

 Along with the tectonics of the Cenozoic, the global climate was cooling. The 

overall gradual cooling was punctuated by periods of rapid climate change. Some notable 

cooling events occurred at the Oligocene/Eocene boundary (34 mya) and again in the late 

Miocene (beginning 14 mya) coincident with the second uplift of the NAC. Near the end 

of the Pliocene rapid cooling between 3.2-2.7 mya marks the transition from an 

unglaciated to glaciated Northern Hemisphere and increased 41ky obliquity cycles 

(Sosdian and Rosenthal 2009). During the mid-Pleistocene 1.2-0.7 mya the Milankovitch 

cycles shifted from 41ky to 100ky larger amplitude cycles and marked the beginning of 
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the extreme glacial cycles that would characterize the Northern Hemisphere to the present 

day (Sosdian and Rosenthal 2009).  

 The NAC harbors an impressive amount of mammalian biodiversity (Kays and 

Wilson 2009) which can be directly or indirectly associated with the complex climate and 

topographic changes the area experienced throughout the Cenozoic. Climate change and 

orogeny has been causally associated with the diversification of numerous mammalian 

lineages including ungulates, carnivores, primates, and rodents (Webb 1983; MacFadden 

1997; Kohn and Fremd 2008; Blois and Hadley 2009; Badgley 2010, but see Alroy et al. 

2000 for an alternative view). The Miocene was a particularly active time in the evolution 

of many rodent lineages in North America (Riddle 1995; Alexander and Riddle 2007; 

Hafner et al. 2007; Finarelli and Badgley 2010). Comparative phylogeographic analyses 

of rodent fauna in the North American desert southwest have associated much of the 

assembly of these communities with the aridification and provinciality of lowland desert 

regions due to the final uplift of mountains and general cooling during the Pliocene and 

Pleistocene (Riddle et al. 2000; Riddle and Hafner 2006). A full understanding of the 

geographic evolution of biota across an area as diverse as the NAC will necessarily 

involve a combination of tectonic and climatic factors, and perhaps other factors, acting 

alone and in concert, through time. 

 The Heteromyidae is a family of rodents which contains four genera that are 

endemic to North America (Hall 1981) and one that is found throughout Central and 

northern South America. The Heteromyidae probably evolved in North America at the 

beginning of the Neogene (Alexander and Riddle 2005, Hafner et al. 2007) and have 

since become the most diverse lineage of rodents in the lowlands of western North 
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America. They occupy a wide variety of mid to low elevation ecosystems including 

desert, grassland, and shrub-steppe habitat (Genoways and Brown 1993). Many of the 

species and species groups are wide spread and co-distributed across several 

biogeographic regions, making the family ideal for addressing North American aridlands 

diversification.  

 The central goal of this study is to examine the phylogeographic history of D. 

ordii by documenting the spatial patterns and temporal diversification of mtDNA clades 

throughout the entire distribution of the species. A secondary objective of this study is to 

compare and contrast the phylogenetic results of D. ordii with previous results on two co-

distributed species groups in the genus Perognathus (silky-haired pocket mice), the 

Perognathus flavus species group (Neiswenter and Riddle 2010) and the P. fasciatus 

species group (Chapter 3).  These taxa inhabit similar ecosystems throughout their 

respective ranges, including arid grasslands and shrublands with sandy substrate, across a 

broad geographic distribution (Fig. 1 and 2). The Perognathus flavus species group is 

composed of 2 recognized species that are found throughout arid grasslands from the 

trans-Mexican volcanic belt east of the Sierra Mandre Occidental to the central Great 

Plains of Nebraska. The P. fasciatus species group is sympatric with the P. flavus species 

group across the southern and central Great Plains and portions of the northern 

Chihuahuan Desert and southern Colorado Plateau (Fig 2). When in sympatry some 

evidence suggests that the P. fasciatus species group occupies a narrower range of 

habitats (generally restricted to extremely sandy soils) than the P. flavus species group, 

although they are found in syntopy (Williams 1978, and pers obs). Dipodomys ordii 

occupies the same sandy soil grassland and shrub-steppe habitat and is distributed similar 
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to the composite distribution of the two Perognathus species groups, but also occurs 

throughout the Great Basin (Fig. 4.1). Although ecologically similar, the two genera 

differ with respect to size and locomotor performance, with Perognathus being small and 

quadrupedal (scansorial) and Dipodomys being much larger and bipedal (ricochetal).  

 The Perognathus flavus species group displays a high level of cryptic diversity in 

both mitochondrial and nuclear DNA that has been attributed to climatic and geologic 

events that occurred since the late Miocene. Neiswenter and Riddle (2010) suggested that 

the divergence and current widespread distribution of two lineages in the P. flavus 

species group, merriami and flavus, coincided with the rapid spread of C4 grasses 

throughout North America near the end of the Miocene (Retallack 2001). Following the 

geographic expansion, futher diversification within the two lineages began in the 

Pliocene and continuing into the early Pleistocene. The second bout of diversification 

occurred in concert with a general global cooling trend and local geologic events which 

were hypothesized to have isolated lowland populations in major biogeographic regions 

throughout the NAC.  Finally, regional population structuring within biogeographic 

regions was attributed to the mid-Pleistocene shift to extreme glacial-interglacial cycles 

isolating populations into refugia. 

 In the current study, the overall pattern, timing, and distribution of mtDNA 

haplotypes in D. ordii is explored using Bayesian and maximum likelihood phylogenetic 

methods. Phylogroups, monophyletic clades that are geographically defined, are 

identified by mapping the geographic location of mtDNA clades from the phylogenetic 

results. The pattern and timing of diversification within D. ordii is discussed in the 

context of hypothesized phylogeographic barriers from the two species groups of 
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Perognathus (Fig. 4.1 and Fig 4.2). To test for concordance in timing of major mtDNA 

genetic lineages between the Perognathus species groups and D. ordii, fossils specific to 

each genus are used to calibrate the respective molecular clocks. Concerted and 

independent responses to phylogeographic barriers are also discussed. 

 

Materials and Methods 

Sample collection and sequencing 

Ninety six specimens from D. ordii were sampled from throughout their range 

(Appendix 3).  Those that were field-collected for this study were handled in accordance 

with the guidelines established by the American Society of Mammalogists (Gannon et al. 

2007).  Other specimens included preserved tissues obtained from museum collections or 

ear clips obtained from private collections.  

DNA was extracted from preserved tissues using DNeasy kits (Qiagen Inc., 

Germantown, Maryland).  Genes were amplified and sequenced using published PCR 

primers, 8618 and 9232 (Riddle 1995) and the following PCR conditions: 95°C for 1 

min, 55°C for 1 min, and 72°C for 1 min, for 30 cycles. Sequences were run on an ABI 

3130 automated sequencer (Applied Biosystems, Foster City, California), checked for 

ambiguous base calls in Sequencher 4.8 (Gene Codes Corporation, Ann Arbor, 

Michigan), and aligned in MEGA 4 (Tamura et al. 2007) with final corrections by eye for 

alignment integrity.  Protein-coding genes were converted to amino acids to ensure no 

stop codons were present, an indication of a possible nuclear copy of the mitochondrial 

gene. 
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Phylogenetic analyses 

Detailed methodology for the phylogenetic analyses conducted for the two 

Perognathus species groups can be found elsewhere and are largely similar to those used 

for D. ordii (Neiswenter and Riddle 2010 and Chapter 3). Phylogenetic trees were 

constructed using a combination of Bayesian and maximum likelihood (ML) analyses. 

We chose the following taxa as outgroups for phylogenetic analyses to confirm the sister 

relationship between D. ordii and D. compactus: D californicus, D. spectabilis, D. 

desertii, D. merriami, Microdipodops pallidus, and M. megacephalus. Analyses with just 

ingroup taxa, D. ordii and D. compactus, were also run to avoid the potential of long-

branch attraction from including distantly related taxa (Kolaczkowski and Thornton 

2009) and to confirm the relationships and support for phylogroups within D. ordii.  

Bayesian analyses were implemented in MrBayes 3.1 (Huelsenbeck and Ronquist 2001) 

using the GTR+G model of evolution selected based on likelihood ratio tests from 

ModelTest 3.04 (Posada and Crandall 1998).  We performed several runs with different 

initial chain temperatures and branch length priors to confirm good mixing and 

convergence.  The final run for the D. ordii COIII dataset was conducted with 

temperature = 0.05 and branch length = 50.  For each analysis we performed 2 

independent runs with 4 chains each (1 hot and 3 cold).  We ran these analyses for 

4,000,000 generations and summarized the last 10,000 trees of each run (20,000 trees 

total) using a 50% majority rule consensus tree employing the posterior probabilities for 

clade support.   

Maximum likelihood analyses were performed using the program Treefinder 

(Jobb 2008) and the GTR+G model of evolution.  Node support for the ML analysis was 
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assessed using 100 bootstrap replicates.  With the exception of the model of evolution, 

default values were used in all maximum likelihood analyses. 

Molecular clock estimates 

In the molecular clock analyses we included sequences for several heteromyid 

species, including D californicus, D. spectabilis, D. desertii, D. merriami, Microdipodops 

pallidus, and M. megacephalus (Appendix 4).  Gene sequences for these taxa were 

downloaded from Genbank.  This sampling strategy allowed use of published fossil data 

for the Dipodomys molecular clock calibration by incorporating diversity from different 

clades within Dipodomys and its sister taxon Microdipodops (Hafner et al. 2007). We 

conservatively calibrated the basal node of the Dipodomys clade to between 12.5-15.9 

mya, as was done by Hafner et al. (2007).   

 We used the uncorrelated lognormal relaxed molecular clock analysis 

implemented in BEAST 1.4.6 to estimate divergence times for major clades (Drummond 

and Rambaut 2007).  The HKY model was selected with assistance of ModelTest.  

Because of the family-level diversity used in calibrating the molecular clock estimates, 

we assumed a Yule process for the tree prior. The time to most recent common ancestor 

(tMRCA) for the Dipodomyinae clade was calibrated as a normal distribution with a 

mean (+ SD) of 14. + 0.9 mya.  This is equivalent to a 95% confidence interval from 

approximately 12.5 – 15.9 mya, the estimated time of the oldest Dipodomys fossil 

(Hafner et al. 2007).  Chain lengths were 10,000,000 generations long with sampling 

every 1,000 generations, and results were summarized after a 10% burn-in. 
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Results 

 A total of 96 individuals of D.ordii and 1 D. compactus from 47 general localities 

(Appendix 3) were sequenced and used in analyses. The final alignment consisted of 679 

base pairs of the COIII gene. No gaps, insertions, deletions, or stop codons where 

detected.  

 Results of the maximum likelihood and Bayesian phylogenetic analyses within 

the Dipodomys species provided support for the current species taxonomy with additional 

structuring within D. ordii (Fig. 4.3). Dipodomys ordii and D. compactus were confirmed 

as sister taxa so phylogenetic results focus on the analyses involving ingroup taxa only. 

There was substantial uncorrected pairwise divergence between D. ordii and D. 

compactus (Table 4.1). Within D. ordii 6 mtDNA phylogroups, geographically structured 

mtDNA clades, are distributed within biogeographic regions previously identified in the 

Perognathus groups (Neiswenter and Riddle 2010 and Chapter 3) and range in 

uncorrected pairwise difference froom 0.02-0.053 (Fig. 4.3 and Table 4.1). The Great 

Plains phylogroup is distributed across the northern, central, and southern Great Plains 

and Wyoming Basin from Canada to eastern New Mexico. Within the intermountain 

basins, there is a phylogroup distributed within the Great Basin and Colorado Plateau 

regions. The Chihuahuan Desert contains two phylogroups, Northern Chihuahuan Desert 

and Southern Chihuahuan Desert, distributed roughly north and south of the Rio 

Conchos. The Central Matorral phylogroup is distributed south of the Chihuahuan Desert 

but extends north east toward the Tamaulipan Mezquital ecoregion in southern Texas.  

Three exceptions to the distinct distribution of phylogroup haplotypes within 

respective regions exist. Haplotypes from the Colorado Plateau phylogroup are found 
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within the Great Basin at one locality (Fig. 4.3 and Fig. 4.1, locality 24). North of the Rio 

Conchos, a Southern Chihuahuan Desert haplotype occurs at locality 2. Haplotypes from 

the Southern Chihuahuan Desert and Central Matorral co-occur at a single locality, also 

(Fig. 4.3 and Fig. 4.1, locality 3).  

 The relationships among many of the D. ordii phylogroups remain unresolved and 

collapse to a polytomy at the base of the D. ordii clade (Fig. 4.3). The Great Basin and 

Colorado Plateau phylogroups are rendered sister to one another but have no support for 

the relationship from posterior probabilities (<90) and only weak bootstrap support. The 

two Chihuahuan Desert phylogroups are robustly supported as sister clades with both 

posterior probabilities (>90) and bootstrap support (>70). The Central Matorral 

phylogroup tends to group sister to the Northern + Southern Chihuahuan Desert but there 

is no support for this relationship.  

The initial diversification between D. ordii and D. compactus is estimated to have 

begun in the late Miocene (Fig. 4.4), similar to the initial divergence within the 2 

Perognathus groups. The D. ordii phylogroups are estimated to have begun diverging in 

the late Pliocene and continued throughout the Pleistocene. The overlapping 95% 

intervals around the median estimated tMRCA between each phylogroup do not allow us 

to reject the hypothesis that the phylogroups within D. ordii all diverged 

contemporaneously. Within-phylogroup divergence is estimated to have occurred during 

the late Pleistocene.  
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Discussion 

D. ordii mtDNA phylogeography 

Although the species are rather divergent, D. compactus was found to be the 

closest known extant species to D. ordii using Bayesian and maximum likelihood 

analyses (Hafner et al. 2007). Alexander and Riddle (2005) did not find support for a 

sister relationship between these two taxa in either their parsimony or maximum 

likelihood analyses but did show robust support with Bayesian posterior probabilities. We 

did not include all species of Dipodomys in our analyses; however, D. compactus and D. 

ordii were well resolved as sister taxa in the current study, as well (Fig. 4.3). 

Furthermore, both Alexander and Riddle (2005) and Hafner et al. (2007) suggest a rather 

divergent relationship between the two taxa. This may explain the discrepancy in the 

placement of these taxa on a broad phylogeny. Our analyses confirm the relatively deep 

relationship and place the divergence between these two taxa in the late Miocene (Fig 4) 

similar to Hafner et al. (2007).  

Following the species level divergence geographic diversification occurred within 

D. ordii. We did not have a detailed geographic sampling of D. compactus although 

given the small range it is likely there is little genetic diversity within the species; the 

exception perhaps being among the mainland and the three islands forms in the Gulf of 

Mexico (Baumgardner and Schmidly 1981). In contrast, within the wide spread D. ordii 

there is considerable geographic diversification estimated to have occurred throughout 

the Pliocene and Pleistocene; the general pattern and timing of which is broadly 

consistent with the previously hypothesized evolution of co-distributed arid grassland 

taxa (Neiswenter and Riddle 2010 and Chapter 3). 
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Regional phylogeographic barriers 

The divergence between the Great Plains and intermountain basins in the P. 

fasciatus species group and the merriami lineage of the P. flavus species group was 

hypothesized (Neiswenter and Riddle 2010 and Chapter 3) to be due to the closing of the 

savanna corridor between the Great Plains and northern Chihuahuan Desert as rifting 

along the Rio Grande progressed northward (Axelrod and Bailey 1976; McMillan et al. 

2002; Morgan et al. 1986). Coincident with the rifting, the rapid climatic cooling during 

the mid-Pliocene transition may have reinforced regional adaptations to the diverging 

climates in each of the biogeographic regions (chapter 3). There is considerable variation 

in the median estimated time for this divergence among the different taxa; however, the 

coincident timing of each of these events cannot be rejected based on overlapping 95% 

credible intervals from the molecular clock analyses (Fig. 4.4).   

The only well supported sister relationship among the phylogroups within D. ordii 

is between the Northern and Southern Chihuahuan Desert.  The Rio Conchos has been 

hypothesized as the barrier between Northern and Southern Chihuahuan Desert 

phylogroups in P. flavus (Neiswenter and Riddle 2010), eastern and western phylogroups 

in Peromyscus eremicus (Riddle et al. 2002), and between Neotoma albigula and N. 

leucodon (Edwards et al. 2001). The Rio Conchos is the approximate location between 

the subspecies D. o. ordii and D. o. obscurus (Baumgardner and Schmidley 1981). 

Within mtDNA, there is approximately 2% uncorrected pairwise divergence between the 

Northern and Southern Chiahuahuan Desert phylogroups across this region providing 

further support for the subspecific designations; however there is not an exclusive north 

and south distribution of haplotypes at the Rio Conchos (Fig. 4.3).  
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The Southern Coahuila Filter Barrier, a geographic barrier composed of rivers, 

alkali flats, and mountains, has variable effects on numerous mammalian taxa (Peterson 

1976). It has been cited as important in defining the distribution of arid grassland taxa 

such as pocket gophers in the genus Cratogeomys (Hafner et al 2007) and a presumed 

paleoendemic lineage in the Perognathus flavus species group, although it has no 

apparent effect on the distribution of another flavus phylogroup (Neiswenter and Riddle 

2010). A phylogenetic break roughly coincident with the Southern Coahuila Filter Barrier 

is evident in D. ordii (Southern Chihuahuan Desert and Central Matorral phylogroups) 

but there is some overlap between phylogroups across the eastern edge of the barrier 

which is composed of the Sierra Madre Oriental. This phylogenetic break is coincident 

with the taxonomic designation of two subspecies, D. o. obscurus north of the Rio Nazas 

and D. o. palmeri distributed throughout the Central Matorral region.  

Dipodomys ordii may not be as restricted by the proposed phylogeographic 

barriers as many of the other species that show similar breaks, such as the Perognathus 

species studied here. In addition to the above situations where D. ordii mtDNA clades are 

not distinctly separated into geographic regions, there is overlap between the Colorado 

Plateau and Great Basin phylogroups in the Great Basin in northeastern Nevada (Fig.3). 

In each of the cases, the proposed geographic barrier is a mountain range (Wasatch 

Range between the Great Basin and Colorado Plateau), river (Rio Conchos), or 

combination of both (Southern Coahuila Filter Barrier) that is thought to provide an 

unfavorable habitat matrix through which dispersal is limited. Given its size, ricochetal 

locomotion, and possibly more general habitat preferences, D. ordii may be capable of 

dispersing across less favorable areas when compared to Perognathus. This could explain 
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the lack of distinct geographic separation of phylogroups in D. ordii when compared to 

Perognathus. Alternatively, the localities with haplotypes from two different regions 

could represent the failure of the mtDNA lineages to completely sort. Nuclear markers 

and denser sampling at contact zones could differentiate between these hypotheses. 

Within D. ordii, significant structuring of haplotypes appears to coincide with the 

mid-Pleistocene transition between 41 ky Milankovich cycles to the longer more extreme 

100ky cycles (Sosdian and Rosenthal 2009). There are two clades within the Great Plains 

phylogroup of D. ordii, one distributed in the Wyoming Basin and further north and one 

in the southern and Central Great Plains (Fig. 4.2). The Wyoming Basin may have served 

as a Pleistocene refugium for some populations of the Great Plains phylogroup, as was 

suggested for other arid grassland rodents, including Perognathus fasciatus (Chapter 3) 

and Onychomys leucogaster (Riddle and Honeycutt 1990). A much more detailed 

sampling of each of the phylogroups is needed to fully evaluate the effects of Pleistocene 

glaciations on the population structure of this species. 

Temporal diversification within D. ordii 

 The results presented here are based on a single mtDNA lineage calibrated with a 

single fossil outside of the group of interest, which together with the uncertainty in the 

fossil record prevents robust estimates of divergence times and therefore the results 

should be interpreted with caution.  There is however an interesting insight that is worth 

mentioning and deserves considerably more attention than can be given here. The late 

Pliocene and predominantly Pleistocene timing of geographic diversification of 

phylogroups within D. ordii appears to have occurred after the geographic diversification 

in both of the Perognathus species groups examined previously (Neiswenter and Riddle 
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2010 and Chapter 3); This is also reflected in the uncorrected pairwise divergence among 

D. ordii phylogroups (Table 4.1) being considerably less than within either Perognathus 

species group.  While Perognathus appears to be composed of very old lineages within 

the North American arid grasslands it would appear D. ordii may have entered the 

ecosystem and diversified later near the end of the Pliocene and predominantly during the 

Pleistocene. More research is warranted on this subject.
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Table. 4.1. Pairwise uncorrected genetic distances between phylogroups of Dipodomys ordii and D. compactus. 

 

 

 2 3 4 5 6 D. compactus 

1. Northern Chihuahuan Desert 0.024 0.047 0.052 0.049 0.04 0.156 

2. Southern Chihuahuan Desert 0.047 0.05 0.047 0.04 0.155 

3. Colorado Plateau  0.031 0.046 0.045 0.145 

4. Great Basin   0.052 0.051 0.157 

5. Great Plains    0.053 0.153 

6. Central Matorral   0.157 
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Figure 4.1. Distribution and collection localities of D. ordii (dark shading) and D. 

compactus (light shading). Numbers refer to specific localities labeled in Appendix 3. 

Hatched areas indicate major mountain ranges, and dashed polygons show approximate 

location of biogeographic regions based on The Nature Conservancy terrestrial 

ecoregions: http://gis.tnc.org/.  The area labeled Great Plains includes the Southern and 

Central Short Grass Praire, Central Mixed Grass Praire, and Northern Great Plains steppe 

ecoregions.  The area labeled Central Matorral includes the Meseta Central Matorral and 

Central Mexican Matorral ecoregions. The area labeled Great Basin also includes 

portions of the Columbian Plateau ecoregion south of the Middle Rocky Mountain-Blue 

Mountain ecoregion.  

 

Figure 4.2. Geographic ranges of the three taxon groups examined. A) Dipodomys ordii 

and D. compactus B) Perognathus flavus species group and C) P. fasciatus species group. 

Lined areas are major mountain ranges. 

 

Figure 4.3. Bayesian phylogenetic tree for the cytochrome oxidase III mitochondrial gene 

of D. ordii showing support values for phylogroups. Node support is shown using the 

posterior probability values and bootstrapped maximum likelihood support, respectively. 

The distribution of each clade is displayed with respect to major mountain ranges (lined 

areas) and the Rio Conchos, Rio Grande, and Southern Coahuila Filter Barrier are shown 

in dark black lines. 
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Figure 4.4. Chronogram from the BEAST molecular clock analyses. Numbers and thick 

black bars at nodes are median estimates of divergence times and associated 95% 

credible intervals of major divergences, respectively. Perognathus flavus species group 

tree was pruned to show only the merriami and flavus lineages. See text for more details 

regarding phylogroup regions. Grey highlighted area shows approximate time frame for 

the rapid expansion of C4 grasses. Geological timescale scale is approximated for 

reference only.
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APPENDIX 1 

SPECIMENS EXAMINED - PEROGNATHUS FLAVUS SPECIES GROUP 

 The 1st column of numbers refers to localities displayed in Fig. 2.1 (some numbers refer to more than 1 specific locality).  

Voucher acronyms are as follows: ASNHC and ASK, Angelo State Natural History Collection; CNMA, Universidad Nacional 

Autonoma de Mexico; DTZM and ZM, Denver Museum of Nature and Science; LSUMZ and M, Louisiana State University Museum 

of Natural Science; LVT, University of Nevada, Las Vegas tissue collection; MHP, Sternberg Museum; MSB and NK, Museum of 

Southwestern Biology; MVZ, Museum of Vertebrate Zoology; NMMNH, New Mexico Museum of Natural History; PF, personal 

catalogue of P. Stapp; TLB, sample provided by T. L. Best; TTU and TK, the Museum of Texas Tech University; UAMI, Universidad 

Autonoma Metropolitana-Iztapalapa.  PF specimens are represented by ear clips only.  Samples marked B in the Clock column 

represent individuals used from the COIII and IRBP data sets for divergence estimates in BEAST.  

Locality Museum number Other number Clock 
1 Arizona, Navajo County, 2 mi E, 3 mi N Winslow NMMNH 5722 LVT 9261  
  NMMNH 5733 LVT 9275  
  NMMNH 5734 LVT 9276  
  NMMNH 5735 LVT 9277 B 
2 Arizona, Pima County, Sonoita NMMNH 5805 LVT 9339 B 
  NMMNH 5807 LVT 9346  
3 Texas, Brewster County, Elephant Mountain NMMNH 4619 LVT 6545  
  NMMNH 4626 LVT 6559 B 
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  NMMNH 4631 LVT 6569  
4 Chihuahua, Mexico, 1mi E El Mesquite NMMNH 4554 LVT 6422 B 
  NMMNH 4470 LVT 6423  
  NMMNH 4555 LVT 6424  
  NMMNH 4471 LVT 6425  
5 Chihuahua, Mexico, 30 km W Coyame NMMNH 5256 LVT 7584  
  NMMNH 5258 LVT 7585  
  NMMNH 5257 LVT 7586  
  NMMNH 5254 LVT 7587  
  NMMNH 5255 LVT 7588  
6 Chihuahua, Mexico, 35 km SW Hercules NMMNH 5277 LVT 7627  
7 Chihuahua, Mexico, 4 km SW Parrita NMMNH 2442 LVT 1050  
  NMMNH 2443 LVT 1051  
  NMMNH 2521 LVT 1052  
  NMMNH 2444 LVT 1053  
  NMMNH 2525 LVT 1054  
  NMMNH 2445 LVT 1055  
  NMMNH 2522 LVT 1056  
  NMMNH 2446 LVT 1057  
  NMMNH 2523 LVT 1058  
  NMMNH 2447 LVT 1059  
  NMMNH 2524 LVT 1060  
8 Chihuahua, Mexico, 6 km E El Sueco NMMNH 5181 LVT 8726  
9 Chihuahua, Mexico, 6 km NW Manuel Benavides NMMNH 5211 LVT 7596  
  NMMNH 5263 LVT 7597  
  NMMNH 5212 LVT 7598  
  NMMNH 5264 LVT 7599  
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  NMMNH 5213 LVT 7600  

10 
Chihuahua, Mexico, 6 mi NW Ricardo Flores 
Magon NMMNH 4459 LVT 6401  

  NMMNH 4460 LVT 6403  
11 Colorado, Pueblo County, Fort Carson, Niobrabra ZM.11527 DTZM 118  

12 
Colorado, Ward County, Pawnee National Grass 
Land Tissue only PF 0061 B 

  Tissue only PF 1162 B 
  Tissue only PF 0028  
  Tissue only PF 1218  
  Tissue only PF 1331  
  Tissue only PF 1358  
  Tissue only PF 1585  
13 Coahuila, Mexico, 1 mi SE Hundido NMMNH 2586 LVT 1171  
14 Coahuila, Mexico, 2 mi E Agua Nueva NMMNH 4668 LVT 6634  
15 Coahuila, Mexico, 2 km S Santa Teresa NMMNH 4684 LVT 6676  
  NMMNH 4685 LVT 6677 B 
15 Coahuila, Mexico, Plan de Guadalupe NMMNH 4674 LVT 6648 B 
  NMMNH 4728 LVT 6649  
  NMMNH 4675 LVT 6650  
  NMMNH 4676 LVT 6651  
16 Durango, Mexico, 4 km SSE La Zarca  CNMA 41886   
16 Durango, Mexico, 7 mi NNW La Zarca NMMNH 2473 LVT 1109  
  NMMNH 2550 LVT 1110  

17 
Durango, Mexico, 20 km S, 10 km E Torreon de 
Canas NMMNH 3611 LVT 4834  

  NMMNH 3612 LVT 4835 B 
18 Durango, Mexico, 5 km NW La Union NMMNH 5412 LVT 8864  
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19 Durango, Mexico, Hidalgo Atotonilco NMMNH 4580 LVT 6467  

20 
New Mexico, Eddy County, 4 mi S, 2 mi W Whites 
City NMMNH 4245 LVT 5882  

21 
Kansas, Logan County, 2.5 mi S, 7.5 mi W Russell 
Springs MHP 37500   

21 Kansas, Scott County, 12 mi N, 1 mi W Scott City MHP 37501   

22 
Kansas, Wallace County, 2.5 mi N, 9.75 mi W 
Russell Springs MHP 37502   

23 Arizona, Navajo County, 3 mi S Kayenta NMMNH 3226 LVT 702 B 

24 
New Mexico, Bernalillo County, 3 mi N, 5.5 mi W 
Albuquerque NMMNH 1907   

24 
New Mexico, Bernalillo County, 5.5 mi N, 4.5 mi 
W Albuquerque NMMNH 1869  B 

25 
New Mexico, Catron County, Quemado, Zuni Salt 
Lake MSB 88073 NK 78038  

  MSB 88074 NK 78039  
  MSB 88075 NK 78040  
  MSB 87776 NK 78043  
  MSB 88099 NK 78063  

26 
New Mexico, Chaves County, Bottomless Lakes 
State Park MSB 74134 NK 65570  

26 
New Mexico, Chaves County, Bitter Lake NWR, 
T10S R25E Sec 21 NMMNH 2366   

26 
New Mexico, Chaves County, Dexter Fish 
Hatchery, T13S R26E Sec 16 NMMNH 2368   

27 
New Mexico, Cibola County, 4 mi S, 1.5 mi W 
Correo NMMNH 3943   

  NMMNH 3944   
  NMMNH 3945   
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28 
New Mexico, Hidalgo County, 2 mi NW 
Cloverdale NMMNH 5810 LVT 9869  

29 
New Mexico, Hidalgo County, Doubtful Canyon, 8 
mi N, 0.5 mi W Steins NMMNH 4417 LVT 6162  

  NMMNH 4418 LVT 6163  
  NMMNH 4423 LVT 6168 B 
  NMMNH 4424 LVT 6169  
  NMMNH 4425 LVT 6170  
  NMMNH 4428 LVT 6173  

30 
New Mexico, Lincoln County, Valley of Fires 
Camp Ground MSB 146017 NK 133625  

  MSB 146182 NK 133710  
  MSB 146184 NK 133712  
31 New Mexico, Sandoval County, Placitas Web MSB 90727 NK 86776  
31 New Mexico, Sandoval County, Star Lake NMMNH 4161   

32 
New Mexico, McKinley County, 15 mi N 
Crownpoint of Hwy 371 MSB 88136 NK 78017  

  MSB 88137 NK 78018  

32 
New Mexico, San Juan County, 57 km S of 
Farmington MSB 90210 NK 86410  

  MSB 90214 NK 86414  
  MSB 90215 NK 86415  
  MSB 90218 NK 86418  
  MSB 90221 NK 86421  

33 
New Mexico , Otero County, White Sands Missle 
Range MSB 85857 NK 40934  

34 
New Mexico, Soccoro Co, 10 mi S, 20 mi W San 
Marcial NMMNH 3953   

  NMMNH 3954   
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  NMMNH 3955   
35 Puebla, Mexico, 1.4 km E San Miguel Zozutla UAMI 16220   
35 Puebla, Mexico, 3 km S Ciudad Serdan LSUMZ 36684 M 8609 B 
36 San Luis Potosi, Mexico, 3 mi S Matehuala NMMNH2514 LVT 1198  
37 San Luis Potosi, Mexico, 13 km NE Villa de Reyes CNMA 43018   
38 San Luis Potosi, Mexico, 10 mi S Villa de Ramos NMMNH 3705 LVT 4912  
38 San Luis Potosi, Mexico, 10 mi W Salinas NMMNH 3669 LVT 4889 B 

39 
Texas, Dimmit County, Chaparral Wildlife 
Management Area TTU 98021 TK 98098  

  TTU 98132 TK 98101  
  TTU 98137 TK 98154 B 
  TTU 98172 TK 98174  

40 
Texas, La Salle County, Chaparral Wildlife 
Management Area TTU 80785 TK 84610  

  TTU 80898 TK 84686  
  TTU 98474 TK 98046  
  TTU 98501 TK 98235  

41 
Texas, Kerr County, Kerr Wildlife Management 
Area TTU 98346 TK 111603  

  TTU 102269 TK 115305  

41 
Texas, Kimble County, Texas Tech University 
Center at Junction TTU 77847 TK 78167 B 

42 Texas, Lynn County, 2 mi S, 5 mi E Tahoka TTU 77563 TK 51911  
  TTU 77565 TK 51914  
43 Texas, Tom Green County, San Angelo State Park ASNHC 11852 ASK 4480  
  ASNHC 11858 ASK 5720  
44 Texas, Val Verde County, 12.8 mi W Del Rio ASNHC 3901 ASK 1074  
44 Texas, Val Verde County, Devil's River SNA ASNHC 11004 ASK 4973 B 
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  ASNHC 11006 ASK 4979  
  ASNHC 11008 ASK 4982  
45 Texas, Wilbarger County, 2 mi W Harrold TLB 10568 LVT 2063 B 
46 Zacatecas, Mexico, 1 mi SE Banon NMMNH 4601 LVT 6509  
47 Zacatecas, Mexico, 2 mi E San Jeronimo NMMNH 4497 LVT 6479  
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APPENDIX 2 

SPECIMENS EXAMINED - PEROGNATHUS FASCIATUS SPECIES GROUP 

The first column corresponds to numbered localities in Fig 3.1 (some numbers refer to more than one specific locality). 

Abbreviations are as follows: ASNHC and ASK – Angelo State Natural History Collection, LVT – University of Nevada, Las Vegas 

tissue collection, MHP – Sternberg Museum, MSB and NK – Museum of Southwestern Biology, NMMNH – New Mexico Museum of 

Natural History, PF – personal collection of Paul Stapp, TTU and TK – The Museum Texas Tech, RAM – Royal Alberta Museum, 

ZM – Denver Museum of Nature and Science. Samples used in the BEAST analysis are labeled with B under Clock column. 

 Locality  Museum number other number Clock 
1 Canada, Alberta, 7.5 miles S, 5 miles E of Cavendish RAM01.16.8   
1 Canada, Alberta, 7 miles S, 2 miles E of Cavendish RAM01.16.9   
1 Canada, Alberta, 1mile S, 2 miles E of Cavendish RAM01.16.10   
1 Canada, Alberta, 0.75 miles S, 2 miles E of Cavendish RAM01.16.11   
1 Canada, Alberta, Canadian Forces Base Suffield, near 

Medicine Hat 
RAM95.30.3   

  RAM95.30.4   
  RAM95.30.5   
2 Arizona, Coconino County, 7 miles N Cameron NMMNH3221 LVT694  
3 Arizona, Navajo County, Petrified Forerst National Park, 1.0 

miles S, 0.4 miles E Rainbow Forest Museum 
MSB123108 NK39511  

4 Colorado, Custer County, 9 miles NE Silver Cliff ZM.12004 LVT9897  
  ZM.12005 LVT9898 B 
5 Colorado, Moffat County MSB76580 NK56312  
  MSB76579 NK56327  
6 Colorado, Ward County, Pawnee NGL tissue only PF1357  
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7 Colorado, Weld County, 4 miles S Roggen NMMNH3249 LVT2534  
8 Kansas, Dickinson County, 2 miles N, 3 miles W Abilene MHP37499   
9 Kansas, Finney County, 4 miles S Holcomb NMMNH3251 LVT2536  
  NMMNH3253 LVT2538  
  NMMNH3254 LVT2539  
10 Montana, Roosevelt County 9 miles SE Bainville NMMNH3264 LVT2549  
  NMMNH3265 LVT2550  
11 North Dakota, Ransom County, Sheyenne NGL tissue only LVT9940  
  tissue only LVT9941  
  tissue only LVT9942 B 
  tissue only LVT9943  
  tissue only LVT9944  
  tissue only LVT9945  
12 Nebraska, Sheridan County, 27 miles N Lakeside NMMNH3241 LVT2526  
  NMMNH3242 LVT2527  
13 New Mexico, Chaves County, 5 miles W Kenna NMMNH3259 LVT2544  
  NMMNH3260 LVT2545  
14 New Mexico, De Baca County, 16 miles S, 3 miles E. Taiban ASNHC3658 ASK1091  
15 New Mexico, Lea County, 20 miles W Hobbs NMMNH3258 LVT2543  
16 New Mexico, McKinley Co, 1 miles N NM HWY 53 on Zuni MSB86409 NK76125  
  MSB88493 NK83440 B 
17 New Mexico, Mora County, 6 miles N Logan NMMNH3255 LVT2540  
18 New Mexico, San Juan County, 38 miles S Farmington NMMNH3267 LVT2307  
  NMMNH3268 LVT2308  
19 New Mexico, Socorro County, Sevilleta National Wildlife 

Refuge, Rio Salado GL 
MSB67861 NK19796  

  MSB140993 NK45148 B 
  MSB140978 NK47056  
  MSB67865 NK24305  
20 Texas, Ward County, Monahans Sandhills State Park, 1 mile N 

headquarters building 
TTU100239 TK69523  
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  TTU100241 TK69570  
  TTU100240 TK69602 B 
21 Utah, San Juan County, 16 miles N Monticello tissue only LVT9905 B 
  tissue only LVT9906  
  tissue only LVT9907  
  tissue only LVT9908  
  tissue only LVT9909  
  tissue only LVT9910  
22 Utah, Uintah County, 6 miles S Bonanza tissue only LVT9920  
  tissue only LVT9921  
  tissue only LVT9922  
23 Utah, Emery County, 7 miles S Green River tissue only LVT9913  
  tissue only LVT9914  
  tissue only LVT9915  
  tissue only LVT9916  
  tissue only LVT9917  
  tissue only LVT9918 B 
24 Utah, Grand County, 10 miles N Moab NMMNH3222 LVT698  
  NMMNH3223 LVT699  
  NMMNH3224 LVT700  
  NMMNH3225 LVT701  
25 Utah, San Juan County, Mexican Hat MSB76896 NK55146  
  MSB76894 NK55134  
  MSB76895 NK55142  
26 Wyoming, Carbon Co, 10 miles S Seminoe Dam NMMNH3240 LVT2525  
27 Wyoming, Natrona County, 25 miles NW Independence Rock NMMNH5792 LVT9314 B 
  NMMNH5793 LVT9315  
  NMMNH5794 LVT9316  
28 Wyoming, Sweetwater Co, 10 miles SE Eden NMMNH3266 LVT2551  
28 Wyoming, Sweetwater County, 28 miles N Green River on 

CR5 
NMMNH5801 LVT9331  
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  NMMNH5802 LVT9332 B 
  NMMNH5803 LVT9333  
29 Wyoming, Sweetwater Co, 18.1 miles S Bitter Creek NMMNH5774 LVT9287  
29 Wyoming, Sweetwater Co, 25 miles S Bitter Creek NMMNH5769 LVT9282  
  NMMNH5770 LVT9283  
  NMMNH5771 LVT9284  
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APPENDIX 3 

SPECIMENS EXAMINED - DIPODOMYS ORDII AND D. COMPACTUS 

 The first column corresponds to numbered localities in Figure 4.1 (some numbers refer to more than one specific 

locality). Abbreviations are as follows: ASNHC and ASK – Angelo State Natural History Collection, LVT – University of Nevada, 

Las Vegas tissue collection, MHP – Sternberg Museum, NMMNH – New Mexico Museum of Natural History, RAM – Royal Alberta 

Museum. Samples used in the BEAST analysis are labeled with B under Clock column. 

Locality Museum number Tissue number Clock 
1 Canada, Alberta, 13.5 miles north, 4 miles west of Burstall  RAM 04.7.1   

 Canada, Alberta, 1 mile north, .5 miles east of Social Plains  RAM 04.3.1  B 
2 Mexico, Chihuahua,27 km S, 12 km E El Sueco  LVT 8730  

 Mexico, Chihuahua,27 km S, 12 km E El Sueco  LVT 8731  
 Mexico, Chihuahua,27 km S, 12 km E El Sueco  LVT 8732  
 Mexico, Chihuahua,27 km S, 12 km E El Sueco  LVT 8733  
 Mexico, Chihuahua,27 km S, 12 km E El Sueco  LVT 8734  

3 Mexico, Coahuila, 2 mi E Agua Nueva  LVT 6619  
 Mexico, Coahuila, 2 mi E Agua Nueva  LVT 6620  
 Mexico, Coahuila, 2 mi E Agua Nueva  LVT 6621  
 Mexico, Coahuila, 2 mi E Agua Nueva  LVT 6622  
 Mexico, Coahuila, 2 mi E Agua Nueva  LVT 6623  

4 Mexico, Coahuila, 5 km E San Francisco  LVT 7641  
 Mexico, Coahuila, 5 km E San Francisco  LVT 7643  

5 Mexico, Durango, 7 mi NNW La Zarca  LVT 1108  
6 Mexico, Durango, 20 km S, 10 km E Torreon de Cana  LVT 4827  

 Mexico, Durango, 20 km S, 10 km E Torreon de Cana  LVT 4831  
 Mexico, Durango, 20 km S, 10 km E Torreon de Cana  LVT 4832  
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 Mexico, Durango, 20 km S, 10 km E Torreon de Cana  LVT 4833  
 Mexico, Durango, 20 km S, 10 km E Torreon de Cana  LVT 4837  

7 Mexico,Durango, Hidalgo Atotonilco  LVT 6463 B 
8 Mexico, Zacatecas, 2 mi E San Jeronimo  LVT 6473 B 
9 Mexico, Zacatecas, 1 mi SE Banon  LVT 6510  

 Mexico, Zacatecas, 1 mi SE Banon  LVT 6511  
 Mexico, Zacatecas, 1 mi SE Banon  LVT 6512  
 Mexico, Zacatecas, 1 mi SE Banon  LVT 6514  
 Mexico, Zacatecas, 2 mi SE Banon  LVT 6515  

10 
USA, Arizona, Cochise County, 6 mi SW Apache, jct. Price 
Canyo  LVT 5860 

B 

11 USA, Arizona, Coconino County, House Rock Valley  LVT 9362 B 
12 USA, Arizona, Pima County,10 miles NE Sonoita  LVT 9864  
13 USA, California, ModocCounty, 5 mi E Eagleville  LVT 8907  
14 USA, Colorado, Baca County, 5 miles E. Campo  LVT 9272  

 USA, Colorado, Baca County, 5 miles E. Campo  LVT 9273  
15 USA, Colorado, Moffat County, 40 mi NW Craig  LVT 9892  

 USA, Colorado, Moffat County,19 mi NW Craig  LVT 9893  
16 USA, Colorado, Saquache County,1mile S, 2 miles W. Moffat  LVT 9269  

 USA, Colorado, Saquache County,1mile S, 2 miles W. Moffat  LVT 9270  
17 USA, Idaho, Owyhee County, 5 mi W Murphy  LVT 8984  
18 USA, Kansas, Gove County,  KK 1981  
19 USA, Kansas, Meade County,  KK 1638  

 USA, Kansas, Seward County,  KK 1219  
 USA, Kansas, Seward County,  KK 1260  
 USA, Kansas, Seward County,  KK 1265  
 USA, Kansas, Seward County,  KK 1310  

20 USA, Kansas, Morton County,  KK 863  
21 USA, Kansas, Osborne County,  KK 1581  
22 USA, Kansas, Rawlins County,  KK 1030  

 USA, Kansas, Rawlins County,  KK 1909  
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 USA, Kansas, Rawlins County,  KK 1910  
 USA, Kansas, Rawlins County,  KK 1911  

23 USA, Nevada, Churchill County, 10 mi W Fallon  LVT 9577  
 USA, Nevada, Churchill County, 10 mi W Fallon  LVT 9578  

24 USA, Nevada, Elko County, Tecoma  LVT 9654  
 USA, Nevada, Elko County, Montello  LVT 9268 B 
 USA, Nevada, Elko County, Montello  LVT 9663  

25 USA, Nevada, Eureka County, 5 mi SSW Beowawe  LVT 9637  
 USA, Nevada, Eureka County, 5 mi SSW Beowawe  LVT 9643  
 USA, Nevada, Eureka County, 3 mi SSW Beowawe  LVT 9647  

26 USA, Nevada, Lincoln County, Lake Valley 3  LVT 7820  
 USA, Nevada, Lincoln County, Lake Valley 3  LVT 7828  
 USA, Nevada, White Pine County, Spring Valley 4  LVT 7897  

27 
USA, New Mexico, Bernalillo County,3 mi N, 4.5 mi W 
Albuquerque NMMNH 2276  

 

28 
USA, New Mexico, Dona Ana County, Abondoned Ranch, 25 
mi. W. El Paso  LVT 0381 

 

29 USA, New Mexico, Grant County, 2.6 mi N, 1.8 mi E Redrock  LVT 6121  
 USA, New Mexico, Grant County, 2.6 mi N, 1.8 mi E Redrock  LVT 6122  

30 USA, New Mexico, Lea County, 4 mi. S, 3 mi. W Maljamar NMMNH 3858  B 

31 
USA, New Mexico, Taos County, Urraca State Wildlife Area, 
14 mi. NMMNH 1864  

 

 
USA, New Mexico, Taos County, Urraca State Wildlife Area, 
14 mi. NMMNH 2311  

 

32 USA, Oregon, Harney County, Fields  LVT 8964  
33 USA, Oregon, Lake County, Alkali Lake  LVT 8935 B 
34 USA, Texas, Brewster County, Elephant Mountain WMA  LVT 6549 B 

 USA, Texas, Brewster County, Elephant Mountain WMA  LVT 6553  
 USA, Texas, Brewster County, Elephant Mountain WMA  LVT 6554  
 USA, Texas, Brewster County, Elephant Mountain WMA  LVT 6556  

35 USA, Texas, Dimmit County,  ASK 5013 B 
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 USA, Texas, Dimmit County,  ASK 5015  
 USA, Texas, Dimmit County,  ASK 5016  

36 USA, Utah, Millard County, 16 mi S Delta  LVT 8595 B 
 USA, Utah, Millard County, 16 mi S Delta  LVT 8604  

37 USA, Utah, Tooele County, Rush Valley  LVT 8605  
 USA, Utah, Tooele County, Rush Valley  LVT 8607  

38 USA, Utah, San Juan County, 1 mile N Mexican Hat  LVT 9900  
 USA, Utah, San Juan County, 1 mile N Mexican Hat  LVT 9901  

39 USA, Utah, San Juan County, 16 miles N Monicello  LVT 9904  
 USA, Utah, San Juan County, 16 miles N Monicello  LVT 9912  

40 USA, Utah, Emery County, 7 miles S Green River  LVT 9919 B 
41 USA, Wyoming, Carbon County, 23 mi N Sinclair  LVT 9290  

 USA, Wyoming, Carbon County, 23 mi N Sinclair  LVT 9291  

41 
USA, Wyoming, Natrona County, 25 mi NW Independence 
Rock  LVT 9324 

 

42 
USA, Wyoming, Sweetwater County, 27 mi N 37 mi E Rock 
Springs  LVT 9293 

 

43 
USA, Wyoming, Sweetwater County, Seedskadee National 
Wildlife Refuge  LVT 9294 

 

 
USA, Wyoming, Sweetwater County, Seedskadee National 
Wildlife Refuge  LVT 9295 

 

43 
USA, Wyoming, Sweetwater County, 28 mi N Green River on 
CR5  LVT 9334 

 

44 USA, Wyoming, Sweetwater County, 51 mi S Rock Springs  LVT 9889  
45 USA, Wyoming, Weston County, 24 mi SW Newcastle  LVT 9301  
45 USA, Wyoming, Weston County, 19 mi SW Newcastle  LVT 9302  
46 USA, Texas, Klegberg County, Padre Island National Seashore  LVT 2060 B 
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APPENDIX 4 
 

SPECIMENS EXAMINED - OUTGROUP TAXA 
 

 Outgroup taxa used in molecular clock analyses. Abbreviations are as follows: NMMNH – New Mexico Museum of Natural 
History, LVT – University of Nevada, Las Vegas tissue collection, TLB – sample from Troy L. Best. 
 
 
Species Locality Museum number Other 

number 
COIII GenBank 
number 

Chaetodipus 
formosus 

California, Riverside County, 9 miles W, 1 
miles S Quien Sabe 

NMMNH 2395 LVT 987 AY926424 

Dipodomys 
californicus 

California, Tehama County, 6 miles NE 
Dales 

 LVT 2037/ 
TLB 10357 

AY926435 

D. deserti Nevada, Clark County, St. Thomas Gap  LVT 2083 AY926448 
D. nelsoni Mexico, Durango, 7 miles NNW La Zarca NMMNH 2472 LVT 1107 AY926431 
D. spectabilis New Mexico, Socorro County, San Mateo 

Mountains, Nogal Canyon 
 LVT 2470 AY926449 

Microdipodops 
megacephalus 

Nevada, Lincoln County, 6 miles N, 31 
miles W Hiko 

 LVT 5155 AY926429 

M. pallidus Nevada, Lincoln County, 7 miles N, 6.45 
miles Tempiute 

 LVT 1573 AY926428 

P. amplus Arizona, Pima County, 0.5 miles N Organ 
Pipe Cactus National Monument 

NMMNH 3297 LVT 403 AY926414 

P. fasciatus Wyoming, Carbon County, 10 miles S 
Semilesnoe 

NMMNH 3240 LVT 2525 AY926421 

P. flavescens Nebraska, Sheridan County, 27 miles N 
Lakeside 

NMMNH 3242 LVT 2527 AY926422 

P. flavus Chihuahua, Mexico, 4 km SW Parrita NMMNH 2442 LVT 1050 GQ470299 
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P. longimembris Mexico, Baja California, 27 km S Punta 
Prieta 

NMMNH 2978 LVT 2191 AY926420 

P. merriami Texas, Val Verde County, Devil's River 
SNA 

ASNHC 11006 ASK 4979 GQ470343 
 

P. parvus Utah, Wayne County, 9 miles S, 2 miles W 
Hanksville 

NMMNH 3186 LVT 1816 AY926418 

P. parvus Washington, Adams County, 4 miles S, 6 
miles E Ritzville 

NMMNH 3198 LVT 1920 AY926419  
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