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ABSTRACT 

Phylogeography of Two Closely Related Anurans, the Relict Leopard Frog 
(Rana onca) and Lowland Leopard Frog (Rana yavapaiensis) 

 
by 
 

Viktória Hemmings 
 

Dr. Brett R. Riddle, Examination Committee Co-chair 
Professor of Biology 

University of Nevada, Las Vegas 
 

Dr. Jef R. Jaeger, Examination Committee Co-chair 
Research Assistant Professor of Biology 

University of Nevada, Las Vegas 
 

Climate changes during the Quaternary have had dramatic effects on the distributions 

of organisms and communities in the Mojave and Sonoran deserts of North America.  

Herein, I evaluate the phylogeography of two amphibian species inhabiting these regions 

that have undergone substantial population declines in recent decades, the relict leopard 

frog, Rana onca (= Lithobates onca) and the lowland leopard frog, R. yavapaiensis (= L. 

yavapaiensis).  This thesis comprises two chapters.  In the first chapter, I summarize 

literature describing taxonomy, phylogenetics, and conservation status for these two 

species.  I then explore the possible effects of Quaternary climate changes on distribution 

of these frogs within regions.  I also provide examples of phylogeographic patterns from 

other generally co-distributed organisms to develop background for interpreting the 

phylogeographic structure of R. onca and R. yavapaiensis that I describe in Chapter 2.  

This chapter investigates the phylogeography of R. onca and R. yavapaiensis using 

sequence data from mitochondrial DNA (mtDNA) to assess 276 individuals representing 

30 sites from across current distributions.  Chapter 2 represents an article (Oláh-

Hemmings et al. 2010) in press (Journal of Zoology), co-authored with Jef R. Jaeger, 
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Michael J. Sredl, Martin A. Schlaepfer, Randy D. Jennings, Charles A. Drost, David F. 

Bradford, and Brett R. Riddle.  Therefore, I use plural pronouns throughout this chapter 

to be consistent with the article.  The analysis supported a previously determined 

phylogenetic break between taxa, with no admixing of R. onca and R. yavapaiensis 

haplotypes within sites.  The phylogeographic assessment, however, further divided R. 

yavapaiensis into two distinct mtDNA lineages, one representing populations across 

Arizona and northern Mexico and the other a newly discovered population within the 

western Grand Canyon (Arizona).  Estimates of sequence evolution indicate a possible 

Early Pleistocene divergence of R. onca and R. yavapaiensis, followed by a Middle 

Pleistocene separation of the western Grand Canyon population of R. yavapaiensis from 

the main R. yavapaiensis clade.  Phylogeographic and demographic analyses indicate 

population or range expansion for R. yavapaiensis within its core distribution that appears 

to predate the latest glacial maximum.  Species distribution models under current and 

latest glacial climatic conditions suggest that R. onca and R. yavapaiensis may not have 

greatly shifted ranges since the last glacial maximum. 
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CHAPTER 1  

A REVIEW OF THE PHYLOGENY OF RELICT AND LOWLAND LEOPARD 

FROGS AND THE POSSIBLE EFFECTS OF QUATERNARY 

CLIMATE CHANGE ON SPECIES DISTRIBUTIONS 

Taxonomy, Population Status, and Evolutionary Relationships of  

Rana onca and R. yavapaiensis 

Attempts to define the taxonomy and evolutionary relationships among North 

American true frogs (Rana) have used a variety of data (albumin, Wallace et al. 1973; 

albumin and electrophoretic, Case 1978; allozyme, Hillis et al. 1983, Hillis 1988; nuclear 

ribosomal DNA, Hillis & Davis 1986), with the most recent study (Hillis & Wilcox 2005) 

based on mitochondrial DNA (mtDNA) including most of the known taxa (~ 60).  One of 

five groups of North American true frogs, the Rana pipiens complex (recognized in the 

Hillis and Wilcox 2005 revision as the Pantherana clade), comprises several taxa that 

occur in North, Central and South America.  My study taxa, the relict leopard frog (Rana 

onca) and the lowland leopard frog (R. yavapaiensis) belong to the R. berlandieri 

subgroup (Scurrilirana subclade; Hillis & Wilcox 2005) within the R. pipiens complex.  

A current debate exists about the nomenclature of several North American ranid frogs 

(e.g. Dubois 2006; Frost et al. 2006, 2008; Hillis 2007; Wiens 2007, Pauly et al. 2009), 

and there are some scientists who recognize these frogs as Lithobates onca and L. 

yavapaiensis, respectively; however, I retain the historical nomenclature throughout this 

document. 

Both lowland and relict leopard frogs suffer from recent population declines 

attributed to a number of potential causes including: the introduction of exotic predators 
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and competitors, habitat modification and fragmentation (Jennings 1985; Hayes & 

Jennings 1986; Jennings 1988; Clarkson & Rorabaugh 1989; Jennings & Hayes 1994; 

Bradford et al. 2004; Sredl 2005); and the emerging fungal disease, chytridiomycosis, 

that has negatively impacted R. yavapaiensis (Bradley et al. 2002; Sredl et al. 2003; 

Schlaepfer et al. 2007; Witte et al. 2008).  Rana onca appears to have suffered the worst, 

and it is currently listed as a candidate species under the U.S. Endangered Species Act 

and managed under a voluntary conservation agreement and strategy by the Relict 

Leopard Frog Conservation Team (RLFCT 2005).  Rana yavapaiensis was once listed as 

a ‘Category 2’ candidate species (a designation no longer in use, however implying 

conservation concern) by the U.S. Fish and Wildlife Service (1991), but was dropped 

from consideration as a candidate from federal listing in 1996 (Sredl 2005).  Both species 

are covered under various state (Arizona, California, New Mexico, Nevada, and Utah) 

laws. 

Rana onca once occupied springs, streams, and wetlands along the drainages of the 

Virgin and Muddy rivers, and portions of the Colorado River within the region of 

southwestern Utah, southern Nevada, and northwestern Arizona (Bradford et al. 2004; 

Fig.1.1).  This frog currently occurs naturally at only a few spring sites within two 

general areas of southern Nevada near the north shore of the Overton Arm of Lake Mead 

and in the Black Canyon below Hoover Dam (Jaeger et al. 2001; Bradford et al. 2004; 

Fig.1.1); however, conservation efforts have established several additional sites within 

the region (RLFCT 2005).  The historical distribution of R. onca along the Lower 

Colorado River (i.e., downriver from Hoover Dam, Nevada) has not been determined 

(Bradford et al. 2004), but populations downriver from Black Canyon within the Bill 
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Williams River drainage (Arizona) and in the vicinity of the Imperial Valley (California) 

have been identified as R. yavapaiensis (Vitt & Ohmart 1978; Platz & Frost 1984; Platz 

1988; Clarkson & Rorabaugh 1989; Jennings & Hayes 1994; Jaeger et al. 2001; Benedict 

2002; Fig.1.1). 

The historical distribution of R. yavapaiensis was considered to include most of 

Arizona, southeastern California, southwestern New Mexico, and the Sonoran region of 

northern Mexico (Vitt & Ohmart 1978; Platz & Frost 1984; Platz 1988; Clarkson & 

Rorabaugh 1989; Jennings & Hayes 1994; Sredl 2005).  This species has suffered 

regional declines, except in central Arizona and possibly Mexico, although little is known 

about the status of populations in the latter (Sredl 2005).  Populations of purported R. 

yavapaiensis in California from along the Lower Colorado River and areas in the vicinity 

of the Imperial Valley (Fig. 1.1) are believed to be extinct (e.g. Vitt & Ohmart 1978; 

Clarkson & Rorabaugh 1989; Jennings & Hayes 1994), and populations in New Mexico 

are nearly extirpated (Jennings et al. 1985; Jennings & Hayes 1994). 

All leopard frog species are physically very similar (e.g. Jennings & Hayes 1994), 

which has led to much taxonomic confusion.  Rana onca was initially described from a 

specimen collected along the Virgin River in Washington County, Utah (Cope 1875).  

Later, the Vegas Valley leopard frog (R. fisheri, Stejneger 1893) was described from 

springs within the Las Vegas Valley in Nevada, but these populations are now extinct 

(Stebbins 1951).  Taxonomic confusion pervades the early literature (described in Jaeger 

et al. 2001); however, preliminary unpublished research based on morphology indicated 

that these two species are not closely related (Jennings et al. 1995). 
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Rana yavapaiensis was first described from a specimen collected at Tule Creek, 

Yavapai County, Arizona (Platz & Frost 1984), and at that time a population along the 

Virgin River in northwestern Arizona (Littlefield, Mohave County) was also identified as 

R. yavapaiensis by the same authors and reiterated in several publications (Jennings 

1988; Platz 1988; Clarkson & Rorabaugh 1989; Jennings & Hayes 1994; Stebbins 2003).  

Ranid frogs from this site were later defined as R. onca by Jaeger et al. (2001) in a 

phylogenetic analysis based on mtDNA restriction fragment length polymorphism (COI 

through ND2) and control region (CR) sequence data.  In that analysis, no variation was 

detected among individuals from extant northern populations (defined as R. onca) 

including samples from the Littlefield area however, these frogs were genetically distinct 

from R. yavapaiensis samples representing four populations from the core distribution of 

that species in Arizona and northern Mexico (0.042 p-distance, CR sequence data).  The 

genetic break between R. onca and R. yavapaiensis was also confirmed by the same 

authors based on nuclear randomly amplified polymorphic DNA.  Multivariate analysis 

of morphological characters from museum specimens, although less definitive, also 

revealed differences among samples representing these two frogs, and placing the 

Imperial Valley frogs generally intermediate between R. onca and R. yavapaiensis 

(Jaeger et al. 2001).  Genetic data would be necessary to further evaluate the taxonomic 

status of the extinct frog populations in California; however, currently such data are not 

available from museum specimens. 

Based on these genetic and morphological differences, Jaeger et al. (2001) argued for 

recognizing R. onca as an Evolutionarily Significant Unit (ESU; Moritz, 1994a,b) and 

retention of the existing taxonomy.  These authors, however, suggested that the very 



 

5 
 

recent divergence between R. onca and R. yavapaiensis “probably” occurred during the 

Late Pleistocene-Holocene.  Later, in a broad phylogenetic analysis of North American 

ranid frogs, Hillis and Wilcox (2005) showed only low levels of sequence divergence 

(0.012 p-distance) between these species based on slowly evolving 12S-16S mtDNA and 

suggested that this genetic difference was less than that observed for most recognized 

ranid species.  

Recently a population of frogs physically similar to R. onca was found in Surprise 

Canyon within the western Grand Canyon (Arizona) upriver of existing R. onca sites 

along the Colorado River (Gelczis & Drost 2004; Fig.1.1).  A preliminary analysis of 

mtDNA sequence data from one specimen showed this frog to be more closely related to 

R. yavapaiensis than to R. onca.  That observation raised questions regarding the 

conclusion from Jaeger et al. (2001) that R. yavapaiensis did not occur within the region 

occupied by R. onca.  Further, it generally put on hold options for potential translocations 

of R. onca into the western Grand Canyon until further information could be gathered.  

Introduction of R. onca to the canyon and its tributaries should be treated with care as 

hybridization between R. onca and R. yavapaiensis is a good possibility and such an 

event would likely cause the degradation of these genetically different lineages. 

 

The Effects of Quaternary Climate Change on the Distribution of Species 

The genetic and phylogeographic structure of R. onca and R. yavapaiensis appears to 

have been formed, to a great extent, under different climatic and hydrological conditions 

than today.  Previously, Jaeger et al. (2001) suggested a possible Late Pleistocene-

Holocene divergence between R. onca and R. yavapaiensis, but the genetic patterns I 
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describe in Chapter 2 indicate a possible divergence for these frogs dating to the Early 

Pleistocene.  Ranid frogs, like many other amphibians, are restricted by water and 

temperature; therefore the separation of ancestral R. onca and R. yavapaiensis lineages 

and diversification of R. yavapaiensis may have been induced by habitat shifts arising 

from Quaternary glacial-interglacial cycles – a process implicated in the diversification of 

numerous taxa occupying the arid Southwest (e.g. Hafner & Riddle 2005; Jaeger et al. 

2005; Riddle & Hafner 2006, Bell et al. 2010). 

Reconstructions of very early climatic patterns (pre-Late Wisconsin) and associated 

ecological transformations have mostly been described in generalized terms (see Hafner 

& Riddle 2005; Riddle & Hafner 2006), as early paleorecords from the Southwest are 

limited (Betancourt et al. 1990a), thus reducing the detail of climate and environmental 

reconstructions from pre-last glacial maximum (LGM) times.  Better developed are 

reconstructions dating back to the LGM, some 21,000 years ago (Kya).  Many of the 

biotic patterns within the Southwest are from pre-Late Wisconsin times; nevertheless, 

models dating to the LGM often are used as surrogates for the older patterns of glacial-

interglacial changes at least through the most recent major cycles.  Furthermore, the 

climates of the LGM through the Holocene likely represent conditions close to the 

coldest and warmest extremes of the Quaternary and therefore could imply extreme 

distributional shifts in R. onca and R. yavapaiensis throughout this time period.  I 

recognize that these are large assumptions, but consider that such an exercise could 

provide insights to potential distributional responses of these ranids to earlier climatic 

oscillations. 
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Within the regions occupied by R. onca and R. yavapaiensis, paleovegetation data 

have been predominately derived from pollen and plant macrofossil records mostly 

obtained from packrat (Neotoma spp.) middens (e.g. Betancourt et al. 1990a; Thompson 

& Anderson 2000).  Paleoclimate can be reconstructed by comparing ancient and modern 

plant distributions at particular sites, given species-specific climatic requirements 

(Betancourt et al. 1990a; Thompson & Anderson 2000).  These reconstructions provide 

evidence that climate within the Mojave and Sonoran deserts has changed throughout the 

Quaternary (e.g. Van Devender & Spaulding 1979; Spaulding 1990; Van Devender 1990; 

Thompson & Anderson 2000).  In Chapter 2, I provide evidence based on mtDNA data 

and species distribution modeling (SDM) of the possible impacts of Quaternary climate 

change on the population structure of R. onca and R. yavapaiensis.  Below, I explore 

possible scenarios that could have influenced the distribution of these frogs within 

regions to better inform the research I present in the following chapter.  I also provide 

examples of phylogeographic patterns from other generally co-distributed organisms to 

develop background for interpreting the phylogeographic structure of R. onca and R. 

yavapaiensis.  

The Virgin, Muddy and Adjacent Colorado Rivers 

Rana onca appears to be endemic to the eastern Mojave Desert, and restricted to areas 

downriver from the Grand Canyon along the Colorado River, and adjacent Virgin and 

Muddy rivers (Bradford et al. 2004; Fig.1.1).  At present, this region is dominated by 

Mojave desertscrub (Shreve 1942), and the climate is characterized by hot summers with 

monsoons coming from the Gulfs of Mexico and California; winters are cool with 

occasional freezes, and storms arriving from the Pacific Ocean (Lowe 1964).  
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Paleoclimate reconstruction suggests that in southern Nevada, during the Late Wisconsin, 

the climate was relatively cooler with winter precipitation higher than today (Spaulding 

1985).  This is supported by lake sediment data, which indicate the presence of shallow 

pluvial lakes in the northern Las Vegas Valley (Haynes 1967; Quade 1986).  Sites once 

likely occupied by R. onca along the Colorado River (now under the reservoirs of Lakes 

Mead and Mohave) are quite low in elevation. 

A full-glacial vegetation map based on pollen data (Martin & Mehringer 1965, in 

Betancourt et al. 1990b) portrays the region currently occupied by R. onca as sagebrush 

and chaparral.  Just south of this region, areas along the Lower Colorado River are 

depicted as desertscrub, indicating relatively warm climatic conditions.  Similarly, 

another paleomap (Latest Wisconsin, 11 Kya) derived from macrofossil data (Betancourt 

et al. 1990c) depicts the region along the Lower Colorado River south of current R. onca 

locations as occupied by desertscrub, also indicating a warm climate.  This map portrays 

areas currently occupied by R. onca as covered by pygmy conifer woodland (Betancourt 

et al. 1990c) implying that the paleoclimate was somewhat cooler than at present.  

Warmer microhabitats, however, could have existed within the region as Van Devender 

and Spaulding (1979) speculated that desertscrub most likely persisted below 400 m 

during the Late Wisconsin (~ 25-11 Kya), even though no lower elevation midden 

macrofossil data exist older than 11 Kya.  Retention of warm paleomicrohabitats within 

some lower elevation areas of the Mojave Desert have also been suggested (Spaulding 

1990).  The eastern Mojave Desert along the Colorado River and its tributaries contains 

numerous thermal springs that have persisted through time, and their microhabitats could 

have served as refugia for these frogs despite the Quaternary climate and habitat change.  
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Based on these interpretations, it seems reasonable to assume that suitable habitats may 

have been retained though the LGM at low elevation sites within the region currently 

occupied by R. onca.  A scenario of long-term stability of suitable habitat for this species 

is supported by genetic and modeling data that I present in Chapter 2. 

A north-south genetic break between R. onca and its close relative R. yavapaiensis 

along the Lower Colorado River (suggested by Jaeger et al. 2001) may seem unlikely.  

Similar phylogeographic breaks within this region, however, have been described for 

some taxa (summarized in Bell et al. 2010).  The north-south phylogenetic break is also 

represented by the speckled dace (Rhinichthys osculus).  This species shows high mtDNA 

haplotype diversity in lower-elevation drainages of the Lower Colorado River (below 

Grand Canyon) compared to high-elevation drainages along the Upper Colorado River, 

implying that hydrographic events induced by climatic oscillations could have isolated 

the populations for periods of time along the upper and lower portions of the Colorado 

River (Oakey et al. 2004; Smith & Dowling 2008).  It is speculated that cold 

temperatures during glacial periods forced Rhinichthys populations to lower elevation 

areas within the lower portions of the Colorado River and subsequently, as climate 

warmed, populations colonized or re-colonized areas within the upper portion of the 

river.  Further, a north-south divergence in mtDNA has been described between 

populations of the desert pocket mouse (Chaetodipus penicillatus) within the Mojave 

Desert and those in the Sonoran Desert, with a broad secondary contact zone along the 

upper reaches of the Lower Colorado River valley (Jezkova et al. 2009).  This 

phylogenetic break probably dates to the Middle Pleistocene, but populations of C. 

penicillatus in the northern Mojave Desert, including the general area occupied by R. 
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onca, show low levels of genetic diversity and clade structuring suggested by the authors 

to be associated with the most recent glacial period.  Given these observed 

phylogeographic patterns in co-distributed species, a substantial genetic break along the 

Colorado River between R. onca and R. yavapaiensis seems quite possible, although the 

mechanism that specifically caused the divergence is not entirely clear.  

Western Grand Canyon 

As described above, the western Grand Canyon contains a disjunct population of R. 

yavapaiensis (Gelczis & Drost 2004), and I provide evidence in Chapter 2 that this 

population has been isolated for some time, rather than representing a recent, Late 

Pleistocene-Holocene colonization into the canyon.  My estimate of the divergence time 

(based on genetic data) of the Surprise Canyon population from core populations of R. 

yavapaiensis to the south supports the idea of persistence of this taxon in the western 

Grand Canyon at least through the latest glacial period. 

Lower elevations within the western Grand Canyon represent essentially eastern 

Mojave Desert climate and vegetation extending east into the Colorado Plateau (e.g. Van 

Devender & Mead 1976).  The current climate within the canyon is characterized by hot 

summers, relatively cold winters with occasional freezes, and dominated by summer and 

winter rainfall (e.g. Spaulding 1990; Koehler et al. 2005).  Paleovegetation 

reconstructions indicate that during the Late Pleistocene a mixture of open-juniper 

woodland and desert plant species, such as desert mallow (Sphaeralcea ambigua), ragged 

rockflower (Crossosoma bigelovii), and beavertail cactus (Opuntia basilaris) existed in 

the lower elevation reaches of the canyon (Phillips 1977; Mead & Phillips 1981).  

Climate reconstructions based on vegetation data indicate that the Late Pleistocene was 
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likely wetter, with cooler summers, and with winters possibly only mildly colder than 

today (Phillips 1977).  As such, microhabitats within the lower reaches of the canyon 

might have served as glacial refugia for R. yavapaiensis. 

Other researchers (Cole & Arundel 2005), however, have deduced from examinations 

of agave fossils that winters in the canyon during the LGM and during the subsequent 

cooling period called Younger Dryas (12.9-11.6 Kya) were approximately 8 oC colder 

than those at present.  Considering the current average winter temperature (December-

February) within the canyon (about 5 oC measured at Pierce Ferry, Truxton Canyon, and 

Tuweep in Arizona, the closest weather stations from which data are available; 

www.wrcc.dri.edu), an 8 oC drop in temperature might have resulted in unsuitably cold 

conditions for R. yavapaiensis, which currently exists along the fringes of the Sonoran 

Desert where freezing temperature are uncommon (Lowe 1964).  If this scenario is 

correct, then the population within the canyon must have subsequently colonized from 

some unidentified region.  Rana yavapaiensis could have colonized the western Grand 

Canyon from a source population located to the south within the core distribution of the 

species, which seems likely as a population of R. yavapaiensis currently exists in a stream 

system only about 85 km away from a sampled location (see Chapter 2).  The other 

possibility is that R. yavapaiensis in the canyon may represent the remnant of a much 

broader distributed population that extended west and south along the Colorado River 

(Jaeger et al. 2001).  This possibility, however, seems less likely given that populations of 

the sister-taxon, R. onca occupy the Colorado River corridor between the western Grand 

Canyon and purported historical populations of R. yavapaiensis further south along the 

Lower Colorado River.  Nevertheless, recent, possible post-Pleistocene range expansion 
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into the western Grand Canyon from more stable populations to the south has been 

suggested for other Sonoran Desert taxa, including brittlebush (Encelia farinosa; 

Fehlberg & Ranker 2009) and the southwestern speckled rattlesnake (Crotalus michellii 

pyrrhus; Douglas et al. 2006).  Interestingly, post-Pleistocene range expansion of the 

arid-dwelling red-spotted toad (Bufo punctatus) into the western Grand Canyon has also 

been implicated, but from populations within the Chihuahuan Desert (Jaeger et al. 2005).  

These authors speculated that B. punctatus may have entered the Colorado River system 

from the east by crossing over the continental divide at low elevation areas, possibly into 

the headwaters of the Little Colorado River.  Rana yavapaiensis is known from the upper 

Gila and San Francisco rivers (although currently in areas further south) and it seems 

reasonable to speculate that this frog could have entered the Colorado River system 

following a similar path. 

The phylogeographic patterns indicate that populations of several warm-adapted taxa 

are fairly new to the Grand Canyon, apparently arriving during post-Pleistocene times.  

This creates some perplexity, as the genetic data I present in Chapter 2 indicate long-term 

isolation of the population of R. yavapaiensis currently found in the western Grand 

Canyon, and yet there is some evidence to suggest that conditions in the canyon may not 

have been favorable to these frogs during the last glacial period.  If the latter scenario is 

true, than R. yavapaiensis must have migrated into the canyon after the LGM from some 

unknown area, and from some already divergent population. 

Sonoran Desert and the Apache Highlands 

The core distribution of R. yavapaiensis appears to exist within areas of the Arizona 

Upland subdivision of the Sonoran Desert and the adjacent Apache Highlands in Arizona 
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and northern Sonora, Mexico (Fig.1.1).  In general, the Sonoran Desert is characterized 

by hot summers and mild, virtually freeze-free winters (Lowe 1964; Van Devender 1990; 

Sheppard et al. 2002).  Rainfall is bimodal, dominated by summer monsoons originating 

from the Gulfs of Mexico and California, as well as the eastern tropical Pacific Ocean, 

and less severe winter storms coming from the Pacific Ocean (Sheppard et al. 2002). 

To compare the climate within the Sonoran Desert and adjacent highlands occupied 

by R. yavapaiensis, I obtained climatic information from the WorldClim database v. 1.4 

with resolution of 2.5 minutes (~ 5 km; www.worldclim.org, Hijmans et al. 2005) for 425 

R. yavapaiensis locations that were used for modeling in Chapter 2.  The climate data 

indicate that occupied sites in the uplands and highlands are relatively cooler and receive 

more precipitation than sites at lower elevations in the Lower Colorado Valley where 

fewer sites are known (Table 1.1).  The hot and dry lower elevation areas of the Lower 

Colorado Valley are predominantly inhabited by desertscrub communities (Shreve 1942).  

Upland areas are dominated by palo verde communities mixed with succulents and 

shrubs (Lowe 1964; Van Devender 1990), but populations of R. yavapaiensis also extend 

from the margins of the Arizona Upland into various biotic communities within the 

Apache Highlands (i.e., Chihuahuan desertscrub, interior chaparral, semi-desert 

grassland, Madrean evergreen woodland, Great Basin conifer woodland).  Only a few 

known R. yavapaiensis exist at the edges of the Colorado Plateau (Petran montane conifer 

forest), Transitional dry forest (Sinaloan thornscrub), and Sierra Madre Occidental 

(Madrean evergreen woodland) ecoregions (Brown & Lowe 1980; Brennan & Holycross 

2006).  
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Pollen records indicate that during the full-glacial (~21-15 Kya) the Arizona Upland 

was occupied by sagebrush, chaparral, and at higher elevations by pinyon-juniper 

woodland, while the Apache Highlands were dominated by the latter vegetation and 

ponderosa pine woodland (Martin & Mehringer 1965).  Macrofossil data show that 

during the latest Wisconsin (~11 Kya) the Arizona Upland and lower elevation areas of 

the Apache Highlands supported pygmy conifer woodlands (Betancourt et al. 1990c); 

while higher elevations were predominantly inhabited by montane conifer forests 

(Betancourt et al. 1990c).  Within these regions, both reconstructions suggest a colder and 

wetter paleoclimate than present (Table 1.1) and support a hypothesis (detailed in 

Chapter 2) that during the last glacial period colder climate induced a range shift of R. 

yavapaiensis from upland areas towards lower elevations generally within the Sonoran 

Desert. 

Paleoreconstructions suggest that the lowlands of the Sonoran Desert were dominated 

by Mojave desertscrub during the Late Wisconsin (e.g. Van Devender 1977; Cole 1986; 

Van Devender et al. 1987), indicating the persistence of relatively warm climatic 

conditions (Cole 1986, 1990; Van Devender 1990; Table 1.1).  The paleoclimate appears 

to have been somewhat cooler during summers, but with winter temperatures similar to 

current conditions and greater winter precipitation (Van Devender 1977; Table 1.1).  The 

generally warm and potentially wetter paleoconditions within the lowlands suggest the 

possibility of more widespread wetland habitats and riparian corridors during glacial 

periods.  These conditions may have been more favorable to R. yavapaiensis, allowing 

extensive dispersal within the region. 



 

15 
 

Numerous warm desert taxa show Pleistocene persistence within lower elevation 

areas within the Lower Colorado Valley , such as flat-tailed horned lizard (Phrynosoma 

mcallii, Mulcahy et al. 2006), western diamondback rattlesnake (C. atrox, Castoe et al. 

2007), creosote bush (Larrea tridentata, Hunter et al. 2001), E. farinosa (Fehlberg & 

Ranker 2009), and C. penicillatus (Jezkova et al. 2009).  Several other taxa show recent 

(Late Pleistocene-Holocene) range expansion into, or within, areas occupied by R. 

yavapaiensis potentially following habitat changes (e.g. Barber 1999; Jaeger et al. 2005; 

Douglas et al. 2006).  For instance, B. punctatus shows low mtDNA diversity within the 

northeastern Sonoran Desert (south of the Gila River), which was interpreted as probable 

expansion into this region from the Lower Colorado Valley following the development of 

warmer climatic conditions in the Middle to Late Holocene (Jaeger et al. 2005).  

Similarly, the canyon treefrog (Hyla arenicolor) demonstrates low genetic variation 

within the highlands of Arizona and New Mexico, indicative of recent range expansion 

suspected to have occurred from persistent populations in the Chihuahuan Desert (Barber 

1999).  A shallow phylogenetic pattern and recent range expansion has also been 

indicated for the tiger rattlesnake (Crotalus tigris) within the Arizona Upland, probably 

from populations that persisted in low lying areas east of the Sea of Cortez (Douglas et al. 

2006).  The range shift of plant and animal taxa from higher elevation areas to adjacent 

lower regions during the LGM is consistent with patterns I predict from modeling of R. 

yavapaiensis presented in the following chapter.  An important point to make here, 

however, is that the range expansion for R. yavapaiensis, that I describe in the next 

chapter from genetic interpretation, appears to pre-date the LGM.  
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Conclusions 

Even though Pleistocene glacial ice sheets never covered the present area of the 

desert southwest, climate within the region was greatly affected (e.g. Axelrod 1979; 

Betancourt et al. 1990a; Thompson & Anderson 2000), as were the histories of species 

(Avise 2000) and regional biota (Hafner & Riddle 2005; Riddle & Hafner 2006).  

Climatic oscillations could have induced habitat shifts and regional isolation of the 

ancestor of R. onca and R. yavapaiensis, ultimately causing ancestral lineages to diverge 

and evolve on separate trajectories within different ecoregions.  Rana onca appears to be 

a local endemic of the eastern Mojave Desert (Bradford et al. 2004) restricted to a very 

narrow portion of the Colorado River and adjacent tributaries.  Paleoreconstructions 

suggest that climatic conditions may have been suitable for R. onca to allow persistence 

generally in place through at least the most recent glacial period.  On the other hand, 

distributions of R. yavapaiensis, predominately along the higher elevation edges of the 

Sonoran Desert, may not have been stable as the colder paleoclimate likely resulted in 

unfavorable transitions of upland habitats in the region.  A range shift towards lower 

elevations within the Lower Colorado Valley seems reasonable as this region probably 

retained warmer climate.  It is even possible that conditions within this region were more 

favorable to this species allowing broader distributions and interconnectivity during 

glacial times.  Such patterns may also explain the historical distribution of this species 

along the southern portion of the Lower Colorado River.  Occupation and isolation of R. 

yavapaiensis within the lower elevation reaches of the western Grand Canyon through the 

latest glacial period is less convincing; nevertheless, the genetic data I present in the next 
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chapter clearly implicate some type of interesting and unusual history for this remnant 

population.
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Table 1.1.  Current and last glacial maximum (CCSM and MIROC) temperature and precipitation variables of Rana onca and R. 
yavapaiensis locations (n) extracted from WorldClim bioclimatic layers BIO1 = annual mean temperature (oC), and BIO12 = annual 
mean precipitation (mm).  Rana onca sites are located within the area of the Virgin and Muddy rivers, and Black Canyon.  Rana 
yavapaiensis sites are located within the rest of the areas listed.  
 

Area                                                          BIO1 Current  Mean CCSM  Mean MIROC  Mean n 
Virgin and Muddy rivers / Black Canyon  13.9 - 21.0 18.7 2.5 - 11.8 8.0 6.2 - 14.8 11.5 47 
Apache Highlands  10.3 - 20.4 15.6 -2.1 - 13.6 4.9 4.1 - 16.6 10.4 204 
Arizona Upland  14.4 - 21.6 18.6 3.1 - 11.6 8.0 8.3 - 16.7 13.2 118 
Lower Colorado Valley-Arizona  17.5 - 21.9 20.3 8.7 - 13.9 11.9 12.4 - 16.9 15.2 7 
Lower Colorado Valley-California   22.2 - 23.2 22.6 15.7 - 18.1 17.5 18.0 - 19.3 18.7 20 
Lower Colorado Valley-Arizona / California  17.5 - 23.2 22.0 8.7 - 18.1 16.0 12.4 - 19.3 17.8 27 
         
Area                                                       BIO12 Current  Mean CCSM  Mean MIROC  Mean n 
Virgin and Muddy rivers / Black Canyon  101 - 287 161.3 182 - 429 261.8 275 - 400 399.2 47 
Apache Highlands  208 - 617 464.8 248 - 874 584.9 531 - 1856 1142.3 204 
Arizona Upland  212 - 549 369.3 285 - 736 512.3 497 - 1641 878.6 118 
Lower Colorado Valley-Arizona  146 - 320 204.7 243 - 488 325.7 375 - 788 513.7 7 
Lower Colorado Valley-California   60 - 101 79.4 104 - 168 130.2 179 - 268 222.1 20 
Lower Colorado Valley-Arizona / California  60 - 320 111.9 104 - 488 180.9 179 - 788 297.7 27 
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   Figure 1.1.  Map showing areas of the eastern Mojave Desert, the Sonoran Desert, and 
   the Apache Highlands discussed in text. 
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CHAPTER 2 

PHYLOGEOGRAPHY OF DECLINING RELICT AND LOWLAND LEOPARD 

FROGS IN THE DESERT SOUTHWEST OF NORTH AMERICA 

Introduction 

The relict leopard frog, Rana onca (= Lithobates onca) and the lowland leopard frog, 

R. yavapaiensis (= L. yavapaiensis), occupy springs, streams, and wetlands within warm-

desert regions of southwestern North America.  In recent years, both of these closely 

related frogs have experienced population declines and broad range contractions 

(Clarkson & Rorabaugh 1989; Bradford, Jaeger & Jennings 2004; Sredl 2005).  As an 

apparent regional endemic, R. onca has suffered the worst and is currently managed 

under a federally reviewed conservation agreement and strategy.  Previous phylogenetic 

analysis based on mitochondrial DNA (mtDNA), nuclear DNA markers, and morphology 

revealed that these frogs were distinct taxa but at a shallow level of divergence, which led 

to the speculation that this level of difference “probably” represents relatively recent, 

Late Pleistocene-Holocene isolation (Jaeger et al. 2001).  Further evidence that these taxa 

are closely related was subsequently provided in a broader phylogenetic analysis of ranid 

frogs in which a lower than species-level distinction was implied (Hillis & Wilcox 2005). 

The “minimum historical range” of R. onca included the eastern fringe of the Mojave 

Desert within the drainages of the Virgin and Muddy rivers and adjacent portions of the 

Colorado River in the region of southwestern Utah, northwestern Arizona, and southern 

Nevada (Bradford et al. 2004).  It now occurs naturally only at a few sites along the 

Colorado River in Nevada (Jaeger et al. 2001; Bradford et al. 2004).  Whether R. onca 

once occurred further south on the Lower Colorado River is not clear (Bradford et al. 
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2004), but the Bill Williams drainage which joins the Lower Colorado River below sites 

occupied by R. onca (Fig. 2.1a) contains R. yavapaiensis populations (Jaeger et al. 2001).  

Rana yavapaiensis is more widespread and primarily occurs in the higher elevation 

uplands of the Sonoran Desert in Arizona extending south into northern Sonora, Mexico 

and east into New Mexico where this frog is nearly extirpated (Platz & Frost 1984; 

Jennings & Hayes 1994; Jennings 1995; Sredl 2005).  Populations of purported R. 

yavapaiensis from more southern reaches of the Lower Colorado River and the adjacent 

Imperial and Mexicali valleys of southern California and northern Baja are believed to be 

extinct (Vitt & Ohmart 1978; Clarkson & Rorabaugh 1989, Jennings & Hayes 1994). 

Previously, Jaeger et al. (2001) had rejected the hypothesis that R. yavapaiensis 

occurred within the current range of R. onca, including in their analysis samples from a 

now extinct population on the Virgin River (site LF in Fig. 2.1a) formerly identified as 

containing R. yavapaiensis (Platz & Frost 1984).  Provokingly, a recent discovery of an 

isolated population of related leopard frogs from a tributary to the Colorado River 

(Surprise Canyon; site SU in Fig. 2.1a) in the western Grand Canyon has raised further 

questions about the history of the R. onca-yavapaiensis group in that a tentative mtDNA 

assessment of a single sample from this newly discovered population showed that it 

grouped more closely with R. yavapaiensis (Gelczis & Drost 2004). 

The Southwest deserts have complex biogeographic histories, and desert biotas show 

the genetic influence of major historical events, some of which implicate pre-Pleistocene 

vicariance (Hafner & Riddle 2005).  Quaternary climatic oscillations, however, have 

greatly affected environmental conditions in these deserts (e.g. Betancourt et al. 1990; 

Thompson & Anderson 2000), and several warm-desert taxa with distributions in the 
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regions occupied by R. onca and R. yavapaiensis display genetic structures impacted by 

the most recent (Late Pleistocene - Holocene) climatic changes (e.g. Riddle et al. 2000; 

Douglas et al. 2006; Fehlberg & Ranker 2009).  For example, low mtDNA diversity in 

populations of the red-spotted toad (Bufo punctatus) within the northeastern Sonoran 

Desert was interpreted as evidence of range expansion into this region following the 

development of warmer climatic conditions in the Middle to Late Holocene (Jaeger et al. 

2005).  Anurans, in general, may be especially susceptible to changes in climatic factors 

because they are exothermic, have permeable skins, and many lay unshelled eggs 

dependent on surface waters (Blaustein et al. 2001). 

Both R. onca and R. yavapaiensis show affinities for warmer climatic conditions, 

although R. yavapaiensis does not generally occur in the warm lowlands of the Sonoran 

Desert.  The stream and wetland habitats occupied by these frogs have undergone 

substantial changes throughout modern times (Bradford et al. 2004; Sredl 2005) and 

presumably dramatic changes have occurred during Quaternary climatic oscillations.  

These fluctuations likely caused periods when aquatic habitats were broader and better 

connected allowing dispersal among populations and regions, and periods of isolation 

when habitats were reduced and fragmented.  The climatic conditions that favor these 

frogs, however, may be more subtle than glacial-interglacial (pluvial-interpluvial) 

patterns.  

The purpose of our study was to gain further insight into the evolutionary history of 

R. onca and R. yavapaiensis in light of the recent discovery of the purported population 

of R. yavapaiensis in the western Grand Canyon.  We expand on the analysis of Jaeger et 

al. (2001) by obtaining samples from numerous sites across the extant ranges of these 
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species, and define lineages of mtDNA genes through phylogeographic analyses.  To 

corroborate genetic signals, we evaluate sequence data using demographic analyses (i.e. 

mismatch distribution and neutrality tests).  We also explore independent scenarios of 

late Quaternary population histories using species distribution models (SDMs, e.g. 

Peterson 2001; also known as ecological niche models) and project these models onto 

reconstructions of climatic conditions during the latest glacial maximum (e.g. Carstens & 

Richards 2007; Waltari et al. 2007). 

 

Materials and Methods 

Sampling 

We collected or acquired tissue samples predominantly from animals captured and 

released, and assessed 276 samples of our target species from 30 sites (Fig. 2.1a; Table 

2.1, Table 2.2).  These samples included: 51 R. onca from five sites in southern Nevada 

and one site in northwestern Arizona (the LF site in Fig. 2.1a); 202 R. yavapaiensis 

samples from 23 sites in Arizona and northern Mexico; and 23 samples from the 

population in Surprise Canyon, Arizona.  We included an additional 36 samples from 

four sites in southern Sonora collected at locations thought to represent R. yavapaiensis 

sites but that revealed divergent mtDNA we interpret tentatively as representing R. 

magnaocularis (Frost & Bagnara 1976; see below).  We used samples of R. forreri and 

an undescribed ranid species (Rana ‘species 8’) as outgroups based on their close 

phylogenetic relationship to our target taxa (Hillis & Wilcox 2005).  
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Laboratory Methods 

We isolated total genomic DNA using phenol-chloroform extraction, and assessed the 

entire 1035 base pairs (bp) of NADH dehydrogenase subunit 2 (ND2) for all samples.  

For phylogenetic analysis we sequenced exemplars of each ND2 haplotype (n = 23) for 

an additional 916 bp segment of cytochrome b (Cytb).  We used primers L3880 and 

H6033 (Riddle et al. 1993) to amplify the ND2 gene, and for sequencing replaced the 

reverse primer with two internal primers, H5532 (Macey et al. 2001) and H23C (designed 

for this study; 5`- GAAATTCCTTGA AGGACCTCAGG - 3`).  To amplify and 

sequence Cytb, we used modified primers of MVZ15-L and CytbAR-H (Vences et al. 

2004). 

We conducted amplifications by polymerase chain reaction at annealing temperatures 

between 53-57 °C using Ex Taq Polymerase Premix (Takara Mirus Bio, Inc., Madison, 

WI, USA), and  purified products with ExoSAP-IT (USB Corp., Cleveland, OH, USA).  

We conducted fluorescence-based cycle sequencing using ABI PRISM BigDye 

Terminator Cycle Sequencing Ready Reaction Kit v. 3.1, with electrophoresis on an ABI 

3130 automated sequencer (Applied Biosystems, Inc., Foster City, CA, USA).  We 

aligned sequences using SEQUENCHER v. 4.6 (Gene Codes Corp., Inc., Ann Arbor, MI, 

USA), and verified alignments against those of other ranids accessed from GenBank (Lee 

et al. 1999; Macey et al. 2001). 

Phylogeographic Analyses 

We calculated haplotype and nucleotide diversity using ARLEQUIN v. 3.11 (Excoffier 

et al. 2005) and mean pairwise sequence divergences (uncorrected p-distances) using 

MEGA v. 4 (Tamura et al. 2007).  Prior to phylogenetic analysis of the concatenated (ND2 
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+ Cytb) sequence data of the haplotype exemplars, we applied the partition homogeneity 

test (Farris et al. 1995) in PAUP *v. 4.0b10 (Swofford 2002) which indicated that the two 

genes were congruent (P = 1.00).  We assessed phylogenetic patterns using the 

concatenated data under the criteria of Maximum Parsimony (MP) in PAUP* and Bayesian 

inference (BI) in MRBAYES v. 3.1.2 (Ronquist & Huelsenbeck 2003). 

We generated unweighted MP trees employing 1000 non-parametric bootstrap 

replicates, heuristic search with 10 random stepwise additions, and tree-bisection-

reconnection branch-swapping.  To select appropriate models for BI, we used 

MRMODELTEST v. 2.2 (Nylander 2004) under the Akaike Information Criterion (AIC; 

Posada & Buckley 2004).  We evaluated preliminary runs for best fit partitioning 

schemes using Bayes factors on the harmonic mean marginal likelihood values (Nylander 

et al. 2004).  Final analyses were run with the Hasegawa-Kishino-Yano (HKY) model for 

the combined 1st + 2nd codon positions and the General Time Reversible (GTR) model for 

the 3rd codon position for both genes, with equal rates of substitution between nucleotide 

positions. 

For BI runs, we unlinked model parameters across character partitions and left the 

Metropolis-coupled Markov chain Monte Carlo on default, except we set the heating 

parameter to 0.1 in order to keep state swap frequencies between 10% and 70%.  The 

50% majority-rule consensus tree and associated posterior probabilities used for final 

interpretations were based on 3 runs of 4 million generations each.  Trees were sampled 

every 100 generations with the first 25% of sampled trees discarded as burn-in after 

confirming chain stationarity using the program TRACER v. 1.4 (Rambaut & Drummond 

2007). 
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To assess divergence times, we employed a molecular clock approach, while 

recognizing the potential limitations with these interpretations (e.g. Edwards & Beerli 

2000; Arbogast et al. 2002).  Molecular clock evaluations in anurans have often been 

based on a rate estimated by Macey et al. (1998) for the separation of European and 

Asian bufonids.  This rate of 1.38% sequence divergence between lineages per million 

years, or μ = 6.9 x 10-9 substitutions/site/year (s/s/y), was based on partial ND1, ND2, and 

the intervening tRNAs, but it has been applied widely as an estimate, although probably a 

conservative one, for both Cytb and ND2 (e.g. Jaeger et al. 2005; Austin & Zamudio 

2008).  This clock has been recalculated for only the ND2 gene in the genus 

Eleutherodactylus (Crawford 2003) which resulted in a mutation rate of 1.91% (μ = 9.57 

x 10-9 s/s/y).  A much faster rate of 3.6% (μ = 1.8 x 10-8 s/s/y) has been applied to Cytb in 

European ranid species (e.g. Babik et al. 2004). 

To estimate the time to the most recent common ancestor, we applied the slower and 

faster substitution rates in the coalescence-based program BEAST v. 1.4.8 (Drummond & 

Rambaut 2007).  Prior to estimation, we tested the concatenated (haplotype) data set 

without outgroups for rate heterogeneity using a likelihood ratio test (Huelsenbeck & 

Crandall 1997) in PAUP*, which failed to reject the molecular clock assumption (χ2 = 

14.88, d.f. = 21, P = 0.83).  We evaluated partitioning of the concatenated sequence data 

using Bayes factors, and for analysis, we used a strict clock and partitioned using models 

HKY for the combined 1st + 2nd codon positions and GTR for the 3rd codon position 

obtained from MRMODELTEST.  We also assessed coalescent models of constant 

population size, exponential growth, expansion growth, and Bayesian skyline using 

Bayes factors, and selected constant population size.  For final analysis, we conducted 
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two Markov Chain Monte Carlo (MCMC) runs of 20 million generations each, sampling 

every 2000 generations, with the first 10% discarded as burn-in.  For interpretation, we 

combined runs and used TRACER to examine the estimated sample sizes (ESS) to avoid 

poor estimates of the parameters (ESS < 200) and to depict means and credibility 

intervals (CI). 

Population Analyses 

Given the expected shallow intraspecific genetic structure (Jaeger et al. 2001), we 

evaluated the complete ND2 data set of our taxa using a median-joining network (Bandelt 

et al. 1999) constructed in NETWORK v. 4.2.0.1 (www.fluxus-engineering.com).  We 

evaluated isolation by distance among sites (pairwise Fst -values versus Euclidean 

geographic distances) using a Mantel test in the program AIS (Miller 2005).  We also 

applied a series of demographic genetic approaches to assess the ND2 data of R. 

yavapaiensis, but do not present these analyses for R. onca and the Surprise Canyon 

population as these taxa were limited in geographic scope and genetic variation (see 

Results). 

We used mismatch distributions to test for sudden demographic expansion (Rogers & 

Harpending 1992; Schneider & Excoffier 1999) in R. yavapaiensis using ARLEQUIN, and 

estimated population expansion parameters τ (time since expansion expressed in units of 

mutational time), θ0 = 2μN0, and θ1 = 2μN1 (where N0 and N1 are the estimated number of 

females before and after the expansion).  For sudden expansion, we approximated the 

beginning of the time of expansion using the formula t = τ/2μ, where t is the time 

measured in years since expansion and μ is the per-sequence mutation rate per generation 

(Rogers & Harpending 1992).  We assumed ND2 rates of both 7.1 x 10-6 and 9.9 x 10-6 
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substitutions/locus/year (from above) and a two-year generation time for female R. 

yavapaiensis (Sredl et al. 1997).  For comparison, we conducted neutrality tests of Fu’s 

Fs (Fu 1997) in Arlequin and R2 (Ramos-Onsins & Rozas 2002) in DNASP v. 4 (Rozas et 

al. 2003). 

Species Distribution Modeling 

We used the program MAXENT v. 3.3.1 (Phillips et al. 2006) to develop SDMs based 

on recent occurrence records and 19 bioclimatic layers representing trends, seasonality, 

and extremes of temperature and precipitation.  We assumed in these SDMs that species 

distributions were determined by climate, thus ignoring potentially important features 

limiting frog distributions such as surface hydrology and biotic interactions (other than 

those driven by climate).  Our emphasis, however, was on exploring broad geographic 

shifts in potential habitat based on changes in climate.  We also made the simplifying 

assumption that these frogs did not shift ecological niches in response to climatic changes 

(niche conservatism; Wiens & Graham 2005). 

We used bioclimatic data from the WorldClim database v. 1.4 with resolution of 2.5 

minutes (~ 5 km; www.worldclim.org; Hijmans et al. 2005) and obtained occurrence 

records of R. onca and R. yavapaiensis from museum collections, literature references, 

and a regional database (Table 2.3).  Our genetic sampling, however, revealed frogs with 

divergent mtDNA at four locations purported to be R. yavapaiensis sites in southern 

Sonora (Fig. 2.1a), within the Plains of Sonora and Sinaloan thornscrub biomes.  Because 

of this taxonomic uncertainty, we excluded these four sites, as well as seven other records 

within the boundaries of the same lower elevation biomes within Sonora.  For occurrence 

records that lacked coordinates or associated uncertainty, we derived estimates using the 
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‘Georeferencing Calculator’ (http://herpnet.org).  We also excluded occurrence records 

that lacked acceptable geographic description or had an uncertainty greater than 5 km.  

The final data set included 27 locations of R. onca within its historical distribution 

(Bradford et al. 2004), 270 locations of R. yavapaiensis, and 17 locations of purported R. 

yavapaiensis from southern California. 

For MAXENT runs we used logistic regression under default settings (except for 

random seed) and averaged 20 replicate bootstrap models per species.  We assigned 85% 

of occurrence records for model training and 15% for model testing. The SDMs were 

then projected onto simulated past climate data (Thompson & Anderson 2000) 

representing the latest glacial maximum (approximately 21,000 years before present) 

derived from two climatic models – Community Climate System Model (CCSM; Collins 

et al. 2006) and Model for Interdisciplinary Research on Climate (MIROC; Hasumi & 

Emori 2004).  We explored the impact of various masks on SDMs, including generating 

models using masks based on appropriate ecoregions for each species.  The various 

approaches generally converged on similar overall patterns, and we present models 

developed using restricted rectangular masks for R. onca (NW corner 38.25o, -118.67o; 

SE corner 31.46o, -111.50o) and R. yavapaiensis (NW corner 38.04 o, -118.63o; SE corner 

25.50o, -105.63o).  Habitat suitability was displayed as two categories in ARCGIS v.9.2. 

(ESRI, Inc., Redlands, CA 2007) with the lowest probability habitat defined as the lowest 

training presence threshold.  This threshold presents suitable habitat as having values at 

least as high as that of all the occurrence records (Pearson et al. 2007). 
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Results 

Phylogeographic Analyses 

Our assessment of ND2 resulted in the identification of 2 R. onca and 21 R. 

yavapaiensis haplotypes for which we generated additional Cytb data on exemplars 

(Table 2.1).  The pairwise number of nucleotide differences among the concatenated 

haplotypes was at least 45 (out of 1951) between R. onca and R. yavapaiensis, with an 

uncorrected p-distance of 0.022.  We identified six divergent haplotypes (based on ND2) 

from four locations in Sonora (Fig. 2.1a), and sequenced representative samples for Cytb 

to include in the phylogenetic analysis.  These divergent samples differed from R. onca 

and R. yavapaiensis by a minimum of 142 nucleotides resulting in an uncorrected p-

distance of 0.07 to the nearest ingroup taxa (R. onca).  We tentatively identify these 

samples as representing R. magnaocularis as our sequences were little different from that 

we derived for an adult specimen of R. magnaocularis (data not shown) collected from 

the Rίo Urique in Chihuahua (number MSB 75171, Museum of Southwestern Biology, 

University of New Mexico).  We also sequenced three of our samples for a partial 

segment of mtDNA 12S and compared these with published sequences (see Pfeiler & 

Markow 2008) for species in the R. berlandieri subgroup (Scurrilirana clade of Hillis & 

Wilcox 2005).  Our samples were identical (403 bp) to a sample from Sierra El Aguaje in 

southern Sonora (GenBank: EU728669) and closely related to a R. magnaocularis sample 

from Nayarit (GenBank: AY115131).  As previously noted by Pfeiler and Markow 

(2008), this haplotype was not closely related to a purported R. magnaocularis sample 

from near Nuri, Sonora (GenBank: AY779239).  Within the region of the Rίo Yaqui and 

Rίo Moctezuma, where our samples were acquired, considerable genetic variation among 
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topminnows, genus Poeciliopsis, has been associated with river drainages (Quattro et al. 

1996), and it is possible that leopard frogs may also demonstrate similar phylogeographic 

structure.  As previously suggested by Pfeiler and Markow (2008), further assessments 

are necessary clarifying the phylogenetic and taxonomic relationships among leopard 

frogs in the region. 

Maximum parsimony analysis of the concatenated data set resulted a single tree 

(length = 644, CI = 0.885, RI = 0.929) which showed the same general topology as that 

from BI (Fig. 2.1b).  All major clades were strongly supported (Wilcox et al. 2002) based 

on bootstrap values (= 100) and posterior probabilities (= 1.00; Fig. 2.1b).  These 

analyses supported the phylogenetic break between R. onca and R. yavapaiensis (Jaeger 

et al. 2001), and further divided R. yavapaiensis into two monophyletic clades (with 

uncorrected p-distance = 0.008).  One of these clades (herein called the ‘main R. 

yavapaiensis clade’) represents populations from Arizona and Mexico typically within 

the uplands of the Sonoran Desert.  The other clade represents the single population from 

Surprise Canyon in the western Grand Canyon (herein called the ‘Surprise Canyon 

population’). 

Application of substitution rates in BEAST indicate divergence for R. onca and R. 

yavapaiensis that most likely occurred around the Early Pleistocene; although the array of 

molecular rates for the ND2 and Cytb genes results in a broad range for the potential 

timing of this event (slower rate = 1.95 Mya, 95% CI = 1.42-2.47; faster rate = 0.75 Mya, 

95% CI = 0.56-0.96).  Divergence of the Surprise Canyon population from the main R. 

yavapaiensis clade appears to have followed around the Middle Pleistocene (slower rate 

= 0.74 Mya, 95% CI = 0.46-1.05; faster rate = 0.29 Mya, 95% CI = 0.18-0.40). 
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Population Analyses 

The haplotype network for R. onca and R. yavapaiensis (Fig. 2.2a) depicted three 

main groups consistent with the major clades inferred from the MP and BI trees.  The two 

haplotypes of R. onca were a minimum of 28 mutational steps within the network from 

the nearest R. yavapaiensis sample from the Surprise Canyon population, and the two 

haplotypes from the Surprise Canyon population were separated from the main R. 

yavapaiensis group by an additional seven to eight steps.  Our ND2 data showed low 

haplotype and nucleotide diversity within R. onca (Table 2.4), consistent with the current 

population bottleneck. 

The main R. yavapaiensis clade showed relatively high haplotype diversity (Table 

2.4), but the majority of these haplotypes were only a single bp from the common 

haplotype resulting in a shallow star-shaped pattern (Fig. 2.2a).  The most common 

haplotype (H6) was present at 78% (18/23) of sites (Fig. 2.2b), which affected the 

assessment of isolation by distance (Mantel test) with only a weak correlation determined 

between geographic and genetic distances (r = 0.17, P = 0.001).  Many of the R. 

yavapaiensis sites (9/23) were fixed for particular haplotypes, with most of these fixed 

for the most common haplotype.  Visual inspection of haplotype diversities among R. 

yavapaiensis sites showed nearly equal levels across latitudes and elevations indicating 

no strong correlations with these variables, but this was not surprising given the low 

genetic diversity within sites (the maximum number of haplotypes at any one site was 

only three).  River basins also appeared to explain only low amounts of genetic variation 

(Appendix). 
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The moderately high haplotype diversity coupled with low nucleotide diversity 

observed within the main R. yavapaiensis clade (Table 2.4) indicates the possibility of 

rapid population growth (Grant & Bowen 1998; Avise 2000).  A signature of growth was 

also detected from the mismatch distribution assessment which showed a smooth 

unimodal curve (Fig. 2.3) under the sudden expansion model (SSD = 0.0001, P = 0.949; r 

= 0.0394, P = 0.828) indicating no significant difference between the observed and 

simulated pairwise differences.  The estimated demographic parameters from the 

mismatch distribution all indicated sudden expansion (Excoffier & Schneider 1999) since 

τ was greater than 0 and θ1 > θ0 (τ = 1.25, 95% CI = 0.28-2.33; θ1 = 10.93, 95% CI = 

1.45-99,999; θ0 = 0.035, 95% CI = 0.00-0.55).  The time of expansion was indicated to 

occur around the transition between Middle and Late Pleistocene but with a wide level of 

uncertainty (slower rate = 0.18 Mya, 95% CI = 0.04-0.33; faster rate = 0.13 Mya, 95% CI 

= 0.03-0.24).  Expansion was also detected in the main R. yavapaiensis clade from the 

significantly negative Fu’s FS (-12.0855; P = 0.001) value and low R2 value (0.0316; P = 

0.014) expected from population growth. 

Species Distribution Modeling 

The SDMs for both species produced high training and testing AUC values (Area 

Under the Curve parameter of the Receiver Operating Characteristic plot; all values ≥ 

0.970), indicating that all models performed better than random (Raes & Ter Steege 

2007).  The SDM for R. onca under current climate conditions (Fig. 2.4a) generally 

represented a reasonable prediction of the known historical distribution as defined by 

Bradford et al. (2004).  The projection of this SDM onto the two Pleistocene climate 

simulations of the latest glacial maximum produced very different results.  The CCSM 
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model (Fig. 2.4b) predicted persistence of potential habitat essentially within the area 

predicted under current climate along with an unlikely distribution within Death Valley, 

California.  The MIROC model (Fig. 2.4c), however, predicted an expansion of suitable 

habitat (along with some overpredictions in areas not likely occupied by these frogs), but 

importantly this did not extend very far south along the Lower Colorado River or into the 

Imperial and Mexicali valleys – areas historically occupied by purported R. yavapaiensis.  

Potential habitat was also identified in areas of central Arizona, but this prediction was 

not always stable under alternative masks used for modeling (data not shown). 

For R. yavapaiensis, the SDM under current climatic conditions also depicted a 

reasonable representation of current distribution, but with substantial overprediction of 

lower probability habitat (Fig. 2.4d).  Even with the overprediction, this model did not 

show substantial overlap with areas occupied by R. onca.  The projection of the current 

SDM for R. yavapaiensis onto the two Pleistocene climate simulations also produced 

very different results, although both models predicted a geographic shift towards lower 

elevation areas of the Sonoran Desert.  The model based on CCSM (Fig. 2.4e) predicted a 

reduction of suitable habitat (particularly higher probability habitat) from that depicted 

under current conditions, as well as a possible north-south vicariance.  The model based 

on MIROC (Fig. 2.4f) predicted moderate expansion, mostly of lower probability habitat.  

Importantly, both paleo-SDMs for R. yavapaiensis indicated persistence of habitat along 

the Lower Colorado River extending into the region around the Imperial and Mexicali 

valleys.  Habitat also was predicted in these valleys by SDMs generated for R. 

yavapaiensis that did not include occurrence records from southern California (data not 

shown).  
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Discussion 

Comparison to Previous Assessments 

Our assessment corroborates the previously determined phylogenetic break between 

R. onca and R. yavapaiensis (Jaeger et al. 2001), as we found no admixing of R. onca and 

R. yavapaiensis haplotypes within sites after extensive sampling.  However, our analyses 

indicate a more complex history for these frogs than previously supposed (Jaeger et al. 

2001), and our phylogeographic assessment further divided R. yavapaiensis into two 

distinct mtDNA lineages – one representing populations across the main range in Arizona 

and northern Mexico, and the other representing the disjunct population in the western 

Grand Canyon. 

Jaeger et al. (2001) suggested that the level of mtDNA divergence between R. onca 

and R. yavapaiensis represented Late Pleistocene-Holocene isolation, but our divergence 

estimates indicate the possibility of an older timing for this separation, possibly dating to 

around the Early Pleistocene.  Further, under the assumption that our molecular clocks 

are moderately accurate, the shallow divergence of the Surprise Canyon population from 

the main clade of R. yavapaiensis appears to date to the Middle Pleistocene.  These 

molecular clock interpretations, however, must be viewed speculatively, as demographic 

and selective processes can greatly influence the coalescence of mtDNA, resulting in 

deeper phylogenetic separation than warranted by actual divergence time (Avise 2000).  

One possibility is that the observed patterns could have been caused by an overall decline 

in a highly diverse ancestral (R. onca-yavapaiensis) species that left behind small 

regional populations that retained, and then fixed divergent ancestral polymorphisms.  

This may be more common in organisms, such as these frogs, in which regional dispersal 
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is perhaps limited, population size fluctuates greatly (lowering Ne), and selective sweeps 

may be an important evolutionary factor; for example in anurans (and other ectotherms) 

temperature directly impacts the mitochondria and changes in this climatic feature may 

lead to selection favoring particular genotypes (Ballard & Whitlock 2004). 

Demographic patterns that could have affected interpretations of divergence timing 

are clearly evident in these species.  The Surprise Canyon population of R. yavapaiensis 

currently appears to be isolated in one drainage within the western Grand Canyon (CAD, 

JRJ, and DFB unpublished data), and R. onca has suffered a dramatic, recent decline 

(Bradford et al. 2004).  The low genetic diversity observed in R. onca was expected given 

its overall decline, and was consistent with a previous assessment of nuclear genetic 

diversity based on randomly amplified polymorphic DNA (RAPD) data (Jaeger et al. 

2001).  It is also possible that R. onca may have always been geographically limited (as 

depicted in one paleo-SDM; Fig. 2.4b), and even if it was more broadly distributed our 

genetic sampling represents only the few remaining, closely situated populations. 

For R. yavapaiensis, the genetic data indicate that the main clade has historically 

undergone population expansion.  Moderately high haplotype diversity coupled with low 

nucleotide diversity within the R. yavapaiensis clade indicates the possibility of a 

population bottleneck followed by rapid growth (Grant & Bowen 1998; Avise 2000).  

Support for an interpretation of population expansion comes from the mismatch 

distribution assessment and from the neutrality test results.  This signal of expansion in R. 

yavapaiensis might be attributable to population or range expansion following the latest 

glacial period, as depicted by the difference between the current SDM (Fig. 2.4d) and one 

of the paleo-SDMs (Fig. 2.4e).  However, a rough estimate of the time of this expansion, 
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derived from the assessment of mismatch distribution, suggests a time frame that likely 

predates the recent glacial maximum.  Importantly, genetic diversity across the core R. 

yavapaiensis distribution shows no strong correlation with latitude, thus providing no 

evidence for the commonly envisioned pattern of northward expansions of warm-adapted 

species from glacial refugia in more southern areas of the Sonoran Desert.  Instead, the 

genetic pattern is consistent with an interpretation that R. yavapaiensis responded with 

only moderate shifts in distributions during the last glacial period mostly to adjacent 

areas of lower elevation (Fig. 2.4e, 2.4f). 

Biogeographic Patterns 

A likely scenario for the phylogeographic patterns observed for R. onca and R. 

yavapaiensis, particularly along the Colorado River, is that the ancestral lineage to these 

frogs expanded and contracted multiple times (at least twice) during the Quaternary, 

probably from the core areas identified for R. yavapaiensis within the northern Sonoran 

Desert, essentially allowing connections to the Colorado River.  This was followed by 

contractions of the main population and subsequent isolation and divergence of remnant 

populations within northern, or possibly western, refugia.  Rana onca may have 

subsequently evolved as a local endemic, restricted to a narrow area along the Colorado 

River and its tributaries within the eastern Mojave Desert (Fig. 2.4a).  Rana yavapaiensis, 

on the other hand, is associated with areas identified as Sonoran Desert, including areas 

along the Lower Colorado River and the Imperial and Mexicali valleys (Fig. 2.4d).  

Assuming local adaptation, differences in the climates between these desert regions may 

have contributed to limiting long term contact between these taxa. 
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The disjunct location of the Surprise Canyon population of R. yavapaiensis may seem 

hard to explain, given that R. onca populations occupy the Colorado River corridor 

between Surprise Canyon and populations of R. yavapaiensis along the Lower Colorado 

River.  However, the nearest population of R. yavapaiensis to Surprise Canyon is in 

Willow Creek, about 85 km due south (site WC in Fig. 2.1a), and there is a relatively low 

divide between the headwaters of this drainage and the north-flowing tributaries that feed 

into the Colorado River in the vicinity of Surprise Canyon.  Much of the upper parts of 

these drainages are dry under current climatic conditions, but we suspect that this was a 

likely pathway that once connected the main distribution of R. yavapaiensis with Surprise 

Canyon under a cooler or wetter climate.  What is striking is that the Surprise Canyon 

population shows a level of divergence that indicates longevity to its isolation.  There is, 

however, evidence from paleo-reconstructions that lower elevations of the western Grand 

Canyon retained warmer conditions through the last glacial maximum (e.g. Phillips 

1977).  This could have allowed persistence of these frogs through time within an 

isolated northern refugium in the canyon region (one not depicted by our coarse-scale 

paleo-SDMs). 

 

Conclusions 

The main phylogeographic patterns observed for R. onca and R. yavapaiensis are 

likely robust at the organismal level and expand our understanding of the evolutionary 

history of this group.  Given the observed levels of mtDNA divergence and previous 

research that included nuclear (RAPD) and morphological assessments which supported 

the main divergence (Jaeger et al. 2001), the further application of nuclear genes are not 
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likely to change the interpretation of these patterns, as many of these genes would not be 

expected to track this more recent evolutionary history (e.g. Zink & Barrowclough 2008).  

Of more importance to interpretations of the phylogeography of R. onca and R. 

yavapaiensis would be a genetic assessment of historical (museum) specimens from 

extirpated populations in southern California. 

Our data point to the uniqueness of the northernmost population of R. yavapaiensis 

within Surprise Canyon.  While the level of difference from other R. yavapaiensis 

populations based on mtDNA may not warrant taxonomic recognition at this time, this 

disjunct population merits conservation consideration and further study.  Finally, the 

tentative identification of R. magnaocularis haplotypes at sites in Sonora thought to 

contain R. yavapaiensis indicates a need to refine our understanding of the distributions 

and genetic structure (including the possibility of hybridization) of these species in 

Mexico. 
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Table 2.1.  Exemplar samples of ND2 haplotypes for Rana onca (H1-2), R. yavapaiensis 
(H3-23), and tentatively identified R. magnaocularis (M1-6).  For phylogeographic 
analysis, each sample was also sequenced for Cytb.  Exemplar samples are listed by 
sample number, site, county, state, and country.  Further information on locations is 
available in Table 2.2.  Outgroup samples of R. forreri and R. ‘species 8’ are identified by 
sample number and type locality.  Sequences are available from GenBank under 
accession numbers GU184190-GU184251. 
 

Haplotype 
Number 

Sample 
Number 

Type Locality 

H1 LVT3541 Bighorn Sheep Spring, Clark Co., NV, USA 
H2 LVT3440 Blue Point Spring, Clark Co., NV, USA 
H3 LVT7091 Surprise Canyon, Mohave, Co., AZ, USA 
H4 LVT7095 Surprise Canyon, Mohave, Co., AZ, USA 
H5 LVT4560 Trout Creek, Mohave, Co., AZ, USA  
H6 LVT9531 Río Cocospera, Rancho el Aribabi, SO, MX 
H7 LVT4562 Trout Creek, Mohave, Co., AZ, USA 
H8 LVT4579 Trout Creek, Mohave, Co., AZ, USA 
H9 LVT8814 Santa Maria River, Yavapai Co., AZ, USA 
H10 LVT4567 Cottonwood Creek, Yavapai Co., AZ, USA 
H11 LVT8092 Coon Creek, Gila Co., AZ, USA 
H12 LVT8037 Pinto Creek, Gila Co., AZ, USA 
H13 LVT7395 Aravaipa Creek, Graham Co., AZ, USA 
H14 LVT8181 Markham Creek, Graham Co., AZ, USA 
H15 LVT7190 Muleshoe Hotsprings, Cochise Co., AZ, USA 
H16 LVT7983 Cienega Creek, Santa Cruz Co., AZ, USA 
H17 LVT9548 Alamo Canyon, Santa Cruz Co., AZ, USA 
H18 LVT9534 Río Cocospera, Rancho el Aribabi, SO, MX 
H19 LVT9532 Río Cocospera, Rancho el Aribabi, SO, MX 
H20 NK3927 Canon Bonito, Rancho Nuevo, SO, MX 
H21 NK3929 Canon Bonito, Rancho Nuevo, SO, MX 
H22 LVT9990 Canon el Pulpito, SO, MX 
H23 LVT9015 Río Tutuaca, Rancho el Nogal, CH, MX 
M1 LVT9501 Río Yaqui, SO, MX 
M2 LVT9970 Río Sahuaripa, SO, MX 
M3 LVT9521 Río Sonora, SO, MX 
M4 LVT10354 Arroyo San Ignacio, SO, MX 
M5 LVT9503 Río Yaqui, SO, MX 
M6 LVT10353 Arroyo San Ignacio, SO, MX 
R. forreri KU194581 37.9 km S. of Escuinapa, SI, MX 
R.’species 8’ KU195346 Río Atoyac at Mexico Hwy. 190, PU, MX 
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Table 2.2.  Sample sites for Rana onca and R. yavapaiensis by county, state, country, site labels (referenced in figures), geographic 
coordinates (datum NAD27), and haplotypes observed.  Also shown are sites in Sonora where samples have been tentatively identified 
as R. magnaocularis. 
 

Species, Site, County, State, Country Label Lat. Long. Haplotype (n) 
Rana onca     

Bighorn Sheep Spring, Clark Co., NV, USA BH 35.939 -114.733 H1(10) 
Blue Point Spring, Clark Co., NV, USA  BP 36.389 -114.432 H2(10) 
Boy Scout Canyon, Clark Co., NV, USA BS 35.984 -114.745 H1(10) 
Littlefield, Mohave Co., AZ, USA LF 36.908 -113.896 H1(10) 
Rogers Spring, Clark Co, NV, USA RS 36.378 -114.443 H2(4) 
Salt Cedar Canyon, Clark Co., NV, USA SC 35.965 -114.743 H1(7) 

Rana yavapaiensis     
Alamo Canyon, Santa Cruz Co., AZ, USA AC 31.365 -111.135 H17(8) 
Aliso Spring, Santa Cruz Co., AZ, USA AS 31.581 -111.099 H6(10) 
Aravaipa Creek, Graham Co., AZ, USA  AR 32.878 -110.392 H6(1), H13(9) 
Canon Bonito, Rancho Nuevo, SO, MX RN 31.232 -108.920 H6(1), H20(3), H21(1) 
Canon el Pulpito, SO, MX CP 30.777 -109.005 H20(4), H22(6) 
Cienega Creek, Santa Cruz Co., AZ, USA CN 32.011 -110.623 H16(3), H17(4) 
Coon Creek, Gila Co., AZ, USA CR 33.686 -110.843 H6(9), H11(1) 
Cottonwood Creek, Yavapai Co., AZ, USA  CC 33.903 -112.324 H6(8), H10(2) 
Hassayampa R., Maricopa Co., AZ, USA  HA 33.931 -112.692 H6(10) 
Kayler Spring, Gila Co., AZ, USA KS 33.945 -111.302 H6(8) 
Markham Creek, Graham Co., AZ, USA  MC 33.091 -109.823 H14(10) 
Mineral Creek, Pinal Co., AZ, USA  MN 33.251 -110.983 H6(1), H11(5) 
Muleshoe Hotspr., Cochise Co., AZ, USA  MH 32.338 -110.250 H6(10), H15(2) 
Pinto Creek, Gila Co., AZ, USA  PC 33.457 -111.005 H6(1), H12(9) 
Río Bavispe, near Huachinera, SO, Mexico RB 30.205 -108.957 H6(10) 
Río Cocospera, Rancho el Aribabi, SO, MX RC 30.858 -110.663 H6(2), H18(6), H19(2) 
Río Tutuaca, Rancho el Nogal, CH, MX RE 28.560 -108.356 H6(1), H23(5) 
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Santa Maria River, Yavapai Co., AZ, USA SM 34.368 -113.184 H6(10), H9(1) 
Sheep Wash, Greenlee Co., AZ, USA SW 33.303 -109.404 H6(9) 
Surprise Canyon, Mohave Co., AZ, USA SU 35.908 -113.620 H3(15), H4(8) 
Tonibabi, SO, MX TB 29.833 -109.562 H6(10) 
Trout Creek, Mohave Co., AZ, USA TC 35.000 -113.447 H5(4), H7(2), H8(2) 
Turkey Creek, Greenlee Co., AZ, USA TU 33.288 -109.261 H6(7) 
Willow Creek, Mohave Co., AZ, USA WC 35.144 -113.530 H5(3), H6(2) 

Rana magnaocularis     
Arroyo San Ignacio, SO, MX SI 28.699 -109.085 M1(2), M4(2), M5(1), M6(1) 
Río Sahuaripa, SO, MX SR 29.186 -109.277 M1(5), M2(3), M4(1), M5(1) 
Río Sonora, SO, MX SN 29.331 -110.537 M3(10) 
Río Yaqui, SO, MX RY 28.591 -109.560 M1(7), M5(3) 
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Table 2.3.  Sources for observation records of Rana onca and R. yavapaiensis used in species distribution modeling. 
 

Species Data Type                                      Source 
R. onca Literature Bradford et al., 2004 
 Museum Records California Academy of Sciences, San Francisco 
  Carnegie Museum of Natural History, Pittsburgh 
  Los Angeles County Museum of Natural History, Los Angeles 
  Marjorie Barrick Museum of Natural History, University of Nevada, Las Vegas  
  Monte L. Bean Life Science Museum, Brigham Young University, Provo 
  Museum of Vertebrate Zoology, University of California, Berkeley 
R. yavapaiensis Literature Jennings, 1995 
 Museum Records Museum of Vertebrate Zoology, University of California, Berkeley 
  Museum of Natural History, University of Arizona, Tucson 
 Database Ranid Frog Database – Arizona Game and Fish Department, Phoenix 
California records Literature Jennings & Hayes, 1994 
 Museum Records Louisiana Museum of Natural History, Baton Rouge 
  Smithsonian National Museum of Natural History, Washington, D.C. 



 

44 
 

Table 2.4.  Molecular diversity indices for ND2 sequences of Rana onca, the main clade 
of R. yavapaiensis, the Surprise Canyon population of R. yavapaiensis, and all R. 
yavapaiensis samples combined.  Shown are sample sizes (n), numbers of haplotypes 
(nh), haplotype diversity with standard error (h ± SE), and nucleotide diversity with 
standard error (π ± SE). 
 

Taxon n nh h ± SE π ± SE (/100) 
R. onca 51 2 0.4063±0.0575 0.0393±0.0409 
Main R. yavapaiensis 202 19 0.6905±0.0357 0.1164±0.0826 
Surprise Canyon  23 2 0.4743±0.0668 0.0458±0.0461 
All R. yavapaiensis 225 21 0.7454±0.0302 0.2418±0.1448 
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Figure 2.1.  (a)  Sampled sites for genetic analysis with location abbreviations from 
Table 2.2.  Circle shading reference taxa as follows: Rana onca (black); Surprise Canyon 
population of R. yavapaiensis (dark gray); R. yavapaiensis (light gray); and tentatively 
identified R. magnaocularis from locations originally sampled for R. yavapaiensis 
(white).  Circle size is proportional to sample size (largest = 23, smallest = 4).  (b) 
Depiction of the phylogenetic relationship of R. onca and R. yavapaiensis haplotypes 
based on 50% majority-rule consensus tree (ln L = -5283.75) from Bayesian inference 
runs.  All major nodes are supported by 100% Bayesian inference posterior probabilities 
and Maximum parsimony bootstrap values (shown). 
 
Figure 2.2.  (a)  Median-joining haplotype network of Rana onca and R. yavapaiensis 
with haplotypes coded by number.  Crossbars along connection lines indicate a 
mutational change; the white square represents either an unsampled or an extinct 
common ancestor haplotype.  Haplotypes are identified by shading according to the three 
major clades depicted in Fig. 2.1b.  Circle size reflects the number of sampled individuals 
sharing a haplotype (largest = 110, smallest = 1).  (b)  The geographic distribution of 
ND2 haplotypes of R. onca and R. yavapaiensis.  Haplotypes are referenced by code as 
depicted in the network, and pie size reflects the number of individuals per haplotype at 
each site. 
 
Figure 2.3.  Mismatch distribution analysis of ND2 sequence data from the main Rana 
yavapaiensis clade (excluding the Surprise Canyon samples) under the sudden expansion 
model. 
 
Figure 2.4.  Species distribution models for Rana onca under current climate conditions 
(a) and two glacial models, CCSM (b) and MIROC (c), and R. yavapaiensis under current 
climate (d), CCSM (e) and MIROC (f).  White dots indicate sample locations.  Higher 
(dark gray) and lower (lighter gray) logistic probability values for predicted suitable 
habitats are depicted. 
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Figure 2.1. 
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Figure 2.2. 
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Figure 2.3. 
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Figure 2.4. 
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APPENDIX 

 

Assessment of hierarchical ND2 genetic variation for Rana yavapaiensis 

 

Materials and Methods 

We assessed genetic variation of ND2 among river basins by conducting an analysis 

of molecular variance (AMOVA) in ARLEQUIN (10,000 permutations; pairwise difference 

distances).  Within the USA, we grouped sample sites along the Bill Williams, Gila, 

Upper Gila, Salt, and Santa Cruz rivers by basins using 8 digit Hydrologic Unit Codes 

(HUCs; U.S. Geological Survey).  We grouped sites across HUCs along the Middle Gila 

and San Pedro rivers that shared contiguous stretches of perennial water.  Because no 

system comparable to 8 digit HUCs exists for Mexico, we grouped sites by major river 

basins and proximity based on 1:200,000 maps (Table A1.).  

 

Results 

River basins explained a significant, although low amount of the total genetic 

variation (12.8%).  Most genetic variation (51.8%) occurred among sites within river 

basins, likely because of the relatively high levels of fixation within these sites (fixation 

indices ΦSC = 0.594, ΦST = 0.646, and ΦCT = 0.128, all P ≤ 0.03). 

 

Discussion 

Our assessments of haplotype distribution and diversity suggest that current 

environmental conditions may limit regional dispersal of R. yavapaiensis among river 

basins despite a signal of older expansion.  While little genetic structure was attributable 
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to river basins (consistent with and interpretation of high gene flow), this pattern was 

influenced by the persistence of the most common haplotype in high frequencies across 

the entire range.  Most unique haplotypes are restricted to single or nearby sites and not 

shared among river basins (Fig. 2.2b) suggesting the possibility that the period of 

expansion was followed by more recent restricted levels of migration and gene flow 

among regional populations. 
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Table A1.  Number of Rana yavapaiensis samples (n) grouped by river basins for 
AMOVA.  Site labels reference Fig. 2.1a and Table 2.2. 
 

Group            Basin Sites by Label n 
1 Bill Williams River WC, TC, SM 24 
2 Lower Gila River HA, CC 20 
3 Middle Gila & San Pedro rivers MN, AR, MH 28 
4 Upper Gila River MC, SW, TU 26 
5 Salt River KS, CR, PC 28 
6 Santa Cruz River CN, AS, AC 25 
7 Río Concepcion RC  10 
8 Río Bavispe CP, RN, RB 25 
9 Río Moctezuma TB 10 
10 Río Tutuaca RE 6 
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