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ABSTRACT 
 
 

Transcriptional Regulation of the Shigella flexneri promoter: 
Silencing and Anti-silencing by H-NS and VirB 

 
 

by 
 
 

Lieutenant Dustin John Harrison  
Medical Service Corps  

U.S. Navy 
 

Dr. Helen J Wing, Examination Committee Chair 
Assistant Professor of Science 

University of Nevada, Las Vegas 
 

 Shigella species are gram-negative intracellular pathogens that cause bacillary 

dysentery in humans.  Many genes required for virulence of Shigella are carried on a 

large 230 kb plasmid and many of these are under the transcriptional control of the 

histone-like nucleoid structuring protein (H-NS) and by the major virulence regulator 

VirB.  At the non-permissive temperature of 30⁰C, H-NS represses transcription, while at 

37⁰C VirB alleviates this repression. This mechanism of gene regulation has been coined 

“silencing/anti-silencing” and is commonly found in many important bacterial pathogens 

including Salmonella spp. and Yersinia spp. The icsP gene, encoded by the Shigella 

virulence plasmid, is positively controlled by VirB and negatively by H-NS.  The icsP 

gene encodes an outermembrane protease respsonsible for maintaining the tight polar cap 

of the actin polymerization protein IcsA, which is involved in the inter-, and intracellular 

spread of Shigella.   

 Our work has revealed that sequences located over 1 kb upstream of the icsP 

annotated transcription start site (+1) are needed for the VirB-dependent regulation of the 
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icsP promoter.  Using site directed mutagenesis we identified two DNA sequences that 

are required for the VirB dependent regulation of the icsP promoter, both of which 

display good matches to the reported consensus VirB binding site.  We demonstrate that 

sequences located upstream of position -665 relative to the annotated transcription start 

site are needed for complete H-NS-mediated silencing of the icsP promoter.   

 Using electrophoretic mobility shift assays (EMSAs), and DNase I footprint analysis 

we show that VirB and H-NS bind directly to DNA sequences located both upstream of -

665 and downstream of -213 by and that these regions are predicted to display high levels 

of intrinsic curvature.  While we demonstrate that VirB functions to solely de-repress the 

icsP promoter, our EMSA data indicate that VirB and H-NS are capable of binding to the 

full upstream intergenic region (1232 bp) of the icsP gene simultaneously.  These in vitro 

data suggest that VirB may function to relocate H-NS bound to the region immediately 

upstream of the icsP gene, rather than displacing H-NS from the DNA.   

 Our data also suggest that disruption of single regions of predicted curvature, 

contained within the upstream intergenic region of icsP, does not have an effect on either 

the ability of H-NS to silence the promoter or the ability of VirB to alleviate the H-NS 

induced repression. 

 Taken together our data suggest that remote regulation of the icsP promoter requires 

promoter proximal sequences that act in concert with upstream sequences. Our findings 

raise the possibility that other bacterial promoters may be regulated by DNA-binding 

proteins binding to remote DNA sequence elements.  My work improves our 

understanding of transcriptional silencing and anti-silencing, a regulatory event that 

controls the expression of many virulence genes in many important enteric pathogens. 



 

v 

Harrison, Dustin John, is a LT, MSC, USN, Microbiologist, NAVMED MPT&E. 

“The views expressed in this article are those of the author and do not necessarily reflect 

the official policy or position of the Department of the Navy, Department of Defense, nor 

the U.S. Government.”



 

vi 

ACKNOWLEDGMENTS  

 I would like to like the United States Navy, and the Navy Medicine Manpower, 

Personnel, Training & Education Command (NM MPT&E) for the opportunity to pursue 

a PhD and the funding for the last three years.  

 I would like to thank my advisor, Dr. Helen Wing for her guidance and knowledge 

throughout these past three years.  I would also like to thank my committee Dr. Eduardo 

Robleto, Dr. Dennis Bazylinski, and Dr. Patricia Cruz for their much needed advice and 

support.   I would like to give a special thanks to CDR Marshall Monteville, PhD, for his 

inspiration, support, and guidance.  I would also like to thank Dr. Martin Roop and Dr. 

Eric Anderson, from East Carolina University, for all their help and useful discussions, 

especially with the gel shifts.   

 I would like to thank the members of the Wing Lab both past and present, including: 

Eun-Hae Kim, Maria Castellanos, Chris Hensley, Lia Africa, Jensara Clay, Krystle Pew, 

and everyone else I have forgotten.  In particular I would like to thank Stephanie Labahn 

for all her help and support.  A very special acknowledgment goes to Amber Howerton 

who has been a great friend and who has helped me through this degree. 

 I want to thank my family even though they have hardly heard from me or seen me in 

the last three years I couldn’t have done it without their support. 

 And most importantly I want to thank my beautiful wife Sara without whom I don’t 

think I would have finished this.  I love you.   

 



 

vii 

TABLE OF CONTENTS 
 

ABSTRACT....................................................................................................................... iii 

ACKNOWLEDGMENTS .................................................................................................. v      

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES.............................................................................................................. x 

CHAPTER 1      INTRODUCTION .................................................................................. 1 
 1.1 Transcriptional silencing......................................................................................... 2 
       The histone-like nucleoid structuring protein ......................................................... 2 
        Interaction of H-NS with DNA.............................................................................. 4 
        Structure of H-NS .................................................................................................. 5 
        H-NS silences transcription by altering DNA topology ........................................ 7 
        H-NS interaction with other nucleoid structuring proteins.................................. 10 
        H-NS silences genes acquired by horizontal gene transfer.................................. 12 
 1.2 Transcriptional anti-silencing ............................................................................... 13 
       Protein independent anti-silening ......................................................................... 14 
       Protein dependent anti-silencing: direct competition ........................................... 15 
       Protein dependent anti-silencing: altering topology ............................................. 16 
       Protein dependent anti-silencing: destabilization ................................................. 18 
 1.3 Shigella, the bacterial pathogen ............................................................................ 18 
       Shigella pathogenicity........................................................................................... 19 
       The cascade controlling Shigella virulence .......................................................... 20 
       The major transcriptional activator VirF .............................................................. 21 
       The major transcriptional activator VirB: an unusual transcriptional regulator ... 22 
       VirB shows homology to partition proteins SopB/ParB....................................... 23 
       VirB function ........................................................................................................ 27 
 1.4 Objectives of this study......................................................................................... 28 
 
CHAPTER 2      VIRB ALLEVIATES H-NS REPRESSION OF THE ICSP 

PROMOTER IN SHIGELLA FLEXNERI FROM SITES MORE THAN 
ONE KILOBASE UPSTREAM OF THE TRANSCRIPTION START 
SITE ....................................................................................................... 30 

 2.1 Introduction........................................................................................................... 31 
 2.2 Materials and Methods.......................................................................................... 32 
 2.3 Results and Discussion ......................................................................................... 36 
  
CHAPTER 3      TRANSCRIPTIONAL SILENCING AND ANTI-SILENCING OF THE 

ICSP PROMOTER OF SHIGELLA FLEXNERI: REMOTE 
REGULATION BY H-NS AND VIRB................................................. 43 

3.1 Introduction................................................................................................................. 44 
3.2 Materials and Methods................................................................................................ 48 
3.3 Results......................................................................................................................... 52 



 

viii 

3.4 Discussion................................................................................................................... 64 
 
CHAPTER 4      VIRB AND H-NS BIND THE ICSP PROMOTER OF SHIGELLA 

FLEXNERI AND THE ROLE OF STATIC CURVATURE IN THE 
REGULATION OF ICSP ...................................................................... 70 

 4.1 Introduction........................................................................................................... 71 
 4.2 Materials and Methods.......................................................................................... 75 
 4.3 Results and Discussion ......................................................................................... 80 
 4.4 Conclusion ............................................................................................................ 97 
 
CHAPTER 5      CONCLUSIONS ................................................................................... 99 
 
APPENDIX 1     LIST OF BACTERIAL STRAINS, PLASMIDS AND PRIMERS ... 107 
 
APPENDIX 2     PRELIMINARY EXAMINATION OF IHF IN THE REGULATION 
                       OF ICSP .............................................................................................. 117 
 
BIBLIOGRAPHY........................................................................................................... 120  
 
VITA............................................................................................................................... 134 



 

ix 

LIST OF FIGURES 

Figure 1 Logo representation of the high affinity H-NS binding motif .......................... 4 
Figure 2 Two views of H-NS-mediated DNA bridging.................................................. 7 
Figure 3 H-NS induced plectonemes .............................................................................. 8 
Figure 4 Illustration of the ways in which a repressive H-NS promoter complex can be 
 modified to permit transcription ..................................................................... 18 
Figure 5 H-NS mediated repression of the virF virulence-gene promoter in Shigella 
 flexneri ............................................................................................................ 21 
Figure 6 Shigella virulence gene regulatory cascade .................................................... 22 
Figure 7 Model of VirBs functional and structural domains ........................................ 23 
Figure 8 The parS site ................................................................................................... 24 
Figure 9 Comparison of the putative InvE binding regions in S. sonnei ...................... 26 
Figure 10 Comparison of icsB and parS ......................................................................... 27 
Figure 11 Promoter elements of the icsP promoter and schematic representation of the 
 truncated promoter series................................................................................ 37 
Figure 12 Activities of the truncated icsP promoter series in Shigella ........................... 38 
Figure 13 Schematic of the 1.2 kb region located upstream of the icsP gene ................ 52 
Figure 14 Activities of the truncated icsP promoter fragments in the presence and 
 absence of H-NS and /or VirB........................................................................ 54 
Figure 15 Schematic showing the 6 target fragments used in the EMSAs ..................... 55 
Figure 16 H-NS binding to discrete regions within the icsP intergenic region .............. 56 
Figure 17 VirB and H-NS binding of the full length icsP intergenic region .................. 60 
Figure 18 VirB and H-NS binding of the icsP intergenic region in vitro ....................... 63 
Figure 19 Schematic showing the 6 target fragments used in the EMSAs ..................... 81 
Figure 20 VirB binding within the icsP intergenic region .............................................. 82 
Figure 21 VirB binds the intergenic region of icsP ........................................................ 86 
Figure 22 H-NS binds the intergenic region of icsP ....................................................... 91 
Figure 23 In silico analysis of the static curvature of the DNA in the intergenic region of 
 icsP.................................................................................................................. 93 
Figure 24 Activities of the curve disrupted icsP promoter fragments ............................ 96 
Figure 25 Proposed model for the regulation of icsP by H-NS and VirB .................... 103 
Figure 26 In silico analysis of the icsB-ipgD promoter region ..................................... 105 
Figure 27 Comparison of P1 parS and icsP .................................................................. 117 
Figure 28 IHF does not regulate icsP promoter activity ............................................... 119 
 
 
 
 
 
 
 
 
 
 
 



 

x 

LIST OF TABLES 

Table 1 Summary of mutations introduced into the two boxes that form the upstream 
inverted repeat and activities of wild type and mutated icsP promoter  

 fragments ............................................................................................................. 40 
Table 2 Summary of VirB DNase I footprints ................................................................. 85 
Table 3 Summary of H-NS DNase I footprints ................................................................ 89 
Table 4 Substitutions to disrupt curvature........................................................................ 94 
Table 5 Substitutions to restore curvature ........................................................................ 95  



 

1 

CHAPTER 1 
 

INTRODUCTION 

 The choreography of cellular processes is quite possibly one of the least understood, 

and most interesting, challenges facing molecular biologists.  These processes, e.g. 

transcription, translation, replication, trafficking, and the myriad of mechanisms that 

control and regulate them are central to understanding life, not only in eukaryotes but 

prokaryotes as well.  The regulation of just one of these processes, transcription, contains 

multiple pathways designed to effectively control gene expression by down-regulating 

the amount of gene products produced.  At any one time, an organism only expresses a 

fraction of its total potential, the rest is “turned off” (Yarmolinsky, 2000).  There are two 

ways in which a gene may be “turned off.”  One way is repression, which is defined as 

the binding of a protein at a promoter specific binding-site, which interferes locally with 

RNA polymerase (RNAP) function (Yarmolinsky, 2000).  The other way is by a process 

termed transcriptional silencing, which can be defined as a process that renders 

appreciable regions of DNA inaccessible to proteins such as RNA polymerase, DNA 

modifying enzymes, etc., to which it would otherwise be able (Dorman et al, 1999, 

Yarmolinsky, 2000).  However, the distinction between repression and silencing seems 

arbitrary and it is often difficult to distinguish the two, e.g. a silencing protein can 

interfere with RNAP function but perhaps the specific binding site is not yet known. 

Transcriptional regulation is a critical process that allows prokaryotic cells to quickly 

adapt to constantly changing environmental conditions, nutrient concentrations, stress, 

and antibiotics in order to exploite its desired niche.   
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1.1 Transcriptional silencing 
 
 Gram-negative bacteria, like E. coli, contain at least 12 distinct types of nucleoid-

associated proteins, each with its own expression pattern and DNA-binding differences 

(Ali Azam et al, 1999, Dorman, 2004).  These nucleoid-associated proteins (NAPs) are 

direct DNA binding proteins that often have global influences on transcriptional 

expression.  Many NAPs are involved in down-regulating transcription while others are 

involved in up-regulating transcription, and still others have the ability to do both.  They 

are often referred to as histone-like, however, this is based on the functional similarity to 

eukaryotic histones and is not based on sequence or amino-acid similarity (Dorman, 

2004).  Like eukaryotic histones, many of these proteins have been shown to condense 

DNA in vitro and in vivo.  Although many types of NAPs exist the most extensively 

studied is the histone-like nucleoid structuring protein, H-NS, its paralogue StpA, the 

factor for inversion stimulation (Fis), the heat-unstable protein (HU), and the integration 

host factor protein (IHF). My research has focused mainly on H-NS and its regulation of 

the Shigella flexneri gene icsP. 

The histone-like nucleoid structuring protein 

 H-NS is a small, 15 kDa, chromosomally encoded, protein with an intracellular 

concentration of ~20 µM (Ali Azam et al., 1999, Bouffartigues et al, 2007, Spassky et al, 

1984).  The protein is expressed at a relatively constant level throughout the growth cycle 

(Dersch et al, 1993).  H-NS functions as a global repressor of gene transcription and is 

responsible for the organization and higher-order structure of the bacterial chromosome 

(Ali Azam et al., 1999, Dorman, 2004).   The concept of transcriptional silencing by H-

NS arises from the observations that certain operons in E. coli and Salmonella are under 
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the negative control of this protein, with the important H-NS binding regions being 

located outside of the canonical promoter sequences (Goransson et al, 1990, Higgins et 

al, 1988).  It was shown that the presence of H-NS formed a barrier to gene expression 

that was not easily overcome by either point mutations or small insertions into the regions 

to which H-NS was shown to bind (Schnetz, 1995, Yarmolinsky, 2000).  Furthermore it 

was suggested that silencing occurred as a result of H-NS interacting with sequences 

located both upstream and downstream of the genes studied, and then interacting with 

itself to form looped structures (Schnetz, 1995).  Also, it has been proposed that binding 

of H-NS to DNA affects the superhelicity of bacterial promoters, thereby modulating 

transcription.  H-NS has also been proposed to be an environmental sensing molecule 

modulating gene expression in response to changes in DNA superhelicity as a result of 

temperature, pH, osmolarity, and growth phase (Atlung & Ingmer, 1997, Fang & Rimsky, 

2008, Dorman, 2004,).  While evidence suggests that the relationship between H-NS and 

changes in environmental conditions is complex, it is clear that H-NS is not simply a 

temperature or osmolarity sensor (Fang & Rimsky, 2008).   

 While numerous examples of H-NS induced silencing exist, it is unclear if H-NS can 

act directly as a transcriptional activator.  Accounts of H-NS functioning as an activator 

have been described, for example, in E. coli H-NS has been shown to positively affect 

flagellum biosynthesis (Bertin et al, 1994, Soutourina et al, 1999) and H-NS has been 

shown to act as a positive regulator of pectate-lyase synthesis in the plant pathogen 

Erwinia chrysanthemi (Nasser & Reverchon, 2002).  However in both instances, H-NS is 

functioning indirectly as an activator by directly repressing a repressor, thus eliciting a 

net positive effect.  
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Interaction of H-NS with DNA 

 The ability of H-NS to function at the multitude of promoters as it does, arises from 

the fact that H-NS does seem to bind to just one consensus binding sequence, but rather 

H-NS displays binding affinity for a particular DNA structure; curved DNA (Dame et al., 

2000, Lang et al., 2007, Bouffatrigues et al., 2007, Dorman, 2004, Spassky et al., 1984, 

Zhang et al, 1996, Zuber et al, 1994). Curved DNA is commonly found in promoter 

regions regulated by H-NS (Yamada, 1990, Bracco et al., 1989, Jauregi et al., 2003).   

The intrinsic curvature of promoters can be specified by a variety of DNA sequences 

(Pedersen et al., 2000, Barbic et al., 

2003a), which allows DNA binding 

proteins that recognize such structures 

the ability to interact with a variety of 

promoters, but are often caused by AT 

rich regions of DNA.  DNase I footprint analysis of H-NS binding has demonstrated H-

NS interaction with AT rich DNA time and again (Dame et al, 2005, Dame et al, 2006, 

De la Cruz et al, 2007, De la Cruz et al, 2009, Dorman et al, 1999, Dorman & Deighan, 

2003, Dorman, 2004, Dorman, 2009, Porter & Dorman, 1994, Rimsky et al, 2001, 

Rimsky, 2004, Shi et al, 2004, Stoebel et al, 2008, Williams et al, 1996, Turner & 

Dorman, 2007).  New insights into the transcriptional regulation by H-NS have yielded a 

10 base pair (bp) consensus binding site (Fig. 1) at the osmoregulated E. coli proU 

promoter, which regulates an osmoprotectant uptake locus (Lang et al, 2007).  This site is 

found in two positions downstream of the proU promoter, termed the negative regulatory 

element (NRE).  This binding motif has been proposed to be a nucleation site for H-NS 
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binding.  Upon binding by H-NS, these high-affinity sites are thought to act 

synergistically with lower affinity sites located in the promoter which allows the 

formation of a specific nucleoprotein complex that results in the repression of 

transcription (Fang & Rimsky, 2008, Bouffartigues et al., 2007, Lang et al., 2007).  

While promoters such as the E. coli bgl promoter contains 10 potential such binding sites, 

others like the E. coli nir promoter contain less (Fang & Rimsky 2008), and still some 

promoters contain no such sequence yet bind H-NS in vitro.  Whether the high-affinity 

binding site is present or not, it is clear that upon H-NS binding to DNA, it spreads, or 

oligomerizes, along the DNA, coating it. 

Structure of H-NS 

 To understand how H-NS oligomerizes on DNA one must first understand its 

structure.  While the complete crystal structure of H-NS has not been resolved, proteomic 

analysis (primarily Nuclear Magnetic Resonance [NMR]) has revealed some interesting 

findings regarding H-NS.  The H-NS protein is 137 amino acids in length and is 

comprised of three structural components: an N-terminal oligomerization domain; a C-

terminal DNA binding domain; and a flexible linker that connects the two (Rimsky 2004, 

Dorman 2003, Dorman 2004).  A 46-residue segment of the N-terminal domain was 

found to be required for dimerization (Bloch et al, 2003).  NMR analysis of the E. coli H-

NS protein showed that the resulting structure was an intertwined anti-parallel structure 

that resembled a “handshake” (Bloch et al, 2003).  Interestingly, the same structure from 

the corresponding region of the protein from Salmonella typhimurium showed a parallel 

arrangement (Esposito et al., 2002).  It should be noted that both proteins have identical 

amino-acid sequences, and remains unclear as why both proteins adopt different 
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structural configurations (Esposito et al., 2002, Rimsky, 2004, Dorman, 2000).  The N-

terminal structure of VicH, the H-NS-like protein from Vibrio cholerae, shows similar 

structural features to that derived from E. coli, which highlights the conserved function of 

this region (Cerdan et al, 2003). 

 Unlike differences in the N-terminal domain, the C-terminal nucleic acid binding 

domain remains highly conserved among members of the H-NS family (Tendeng & 

Bertin, 2003).  Mutations in the C-terminal, DNA binding, domain do not impair the 

proteins ability to dimerize, but instead impairs the ability to recognize curved DNA 

(Bloch et al., 2003).  This indicates a role for the C-terminal domain in DNA binding but 

shows that DNA binding activity is dependent upon the N-terminal domain, which allows 

dimerization, initiating the DNA binding event (Dorman, 2004, Ueguchi et al, 1996).  

Experiments using modified H-NS proteins lacking oligomerization properties lack the 

ability to bind DNA, and therefore lack the ability to induce repression.  This supports the 

findings that oligomerization of the protein is required for full activity of H-NS (Rimsky 

et al., 2001, Badaut et al., 2002).  In solution H-NS forms a dimer, although higher 

oligomeric states have been observed dependening upon the concentration of H-NS 

(Smyth et al, 2000, Rimsky, 2004).  The higher-order oligomerization, which is an 

essential function of H-NS, is a function of the flexible linker region of the protein (Bloch 

et al., 2003).  Disruption of the flexible linker region impairs the ability of H-NS to form 

higher-order oligomers, implicating this region in higher-order structure formation 

(Esposito et al., 2002).  
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 H-NS silences transcription by altering DNA topology  

 Based on the structural data available two proposals have been made regarding the 

mechanism of H-NS function. The first proposal, based on the Salmonella typhimurium 

H-NS protein, suggests a role for head-to-tail dimers, where the unstructured flexible 

linker region allows the cross-linking of separate DNA duplexes or different parts of the 

same duplex (Esposito et al., 2002, Dorman 2004) (Fig. 2a).  The second proposal, based 

on the E. coli H-NS protein, suggests that the N-terminal and C-terminal interaction with 

Fig. 2.  From Dorman, 2004, showing two views of H-NS-mediated DNA bridging.  a) H-NS dimer 
interacts simultaneously with two DNA duplexes or different parts of the same duplex through its C-
terminal domains, based on the model by Esposito et al. (2002) for the Salmonella protein showing the N 
terminus lies parallel to the C terminus. b) Two H-NS dimers, each bound to separate DNA duplexes (or 
separate parts of the same duplex) interact with each other via their extended flexible linker regions.  It is 
proposed that extension of the linker region is brought about by simultaneous involvement of the N-
terminal and C-terminal domains in DNA binding.  This model is based on analysis of the E. coli protein 
(Rimsky, 2004).  The promoters within the dimers are shown in dark green and light green.  N = amino-
terminus, C = carboxy-terminus. 
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DNA imposes a more stable structure on the flexible linker, which allows it to interact 

with the flexible linker region of other bound H-NS molecules which results in a higher-

order, cross-linked, nucleoprotein complex being formed (Esposito et al., 2002, Dorman 

2004)(Fig. 2b).  Atomic force microscopic analysis supports this second proposal that H-

NS can cross-link DNA in this manner (Dame et al., 2000).   

 Either mechanism could contribute to the H-NS condensation of DNA.  H-NS has 

also been shown to bind at a region of curvature to which it nucleates, followed by 

oligomerization along the DNA (Amit et al, 2003).  In this model of transcriptional 

silencing the curved sequence to which H-NS binds is located upstream or downstream of 

the promoter, which acts as a nucleating site 

(Rimsky et al., 2001).  The initial 

protein:DNA interaction at a bent region 

induces an intramolecular bridge.  The 

formation of the intramolecular bridge 

further stimulates H-NS mediated bridging of 

the flanking sites resulting in oligomerization 

(Dame et al., 2000).  H-NS oligomerization 

along the DNA in either direction from 

nucleating sites is not in conflict with the 

previously described modes of action for H-

NS, as additional higher-order nucleoprotein complexes could form between multiple 

regions of DNA bound by H-NS separated by un-bound, intervening DNA (Kim & 

Wang, 1999).  Interaction of two sites of H-NS bound DNA has been shown to trap RNA 

Fig. 3. From Mauer et al., 2009. H-NS induced 
plectonemes.  H-NS bound to lambda DNA at a 
ratio of 1 H-NS molecule per 1539 bp.  The two 
DNA duplexes in the H-NS “filament” adopt a 
tightly interwound plectonemic form. 
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polymerase at the promoter, preventing transcription (Dame et al., 2002).  Therefore, the 

regulation of promoter activity is much more complicated involving the arrangement and 

multiplicity of nucleation and propagation sites (Rimsky, 2004), followed by bridging of 

two DNA helices and subsequently, condensation (Dame et al., 2000, Maurer et al, 

2009).   

 The alignment of the H-NS dimers effectively “zippers” the DNA, constraining 

negative supercoils, thus changing DNA topology, which results in transcriptional 

silencing (Rimsky et al., 2001, Tupper et al, 1994).  Nucleoid-associated proteins binding 

to DNA can alter the topology of the DNA into two basic types of coils: either 

plectonemic (interwound) or toroidal (solenoidal) (Maurer et al., 2009).  Binding by H-

NS results in plectonemic (interwound) structures that are capable of covering at least 

1.65 kb (Maurer et al., 2009) (Fig. 3).  Atomic force microscopic analysis of H-NS bound 

DNA, showed that H-NS-DNA complexes were organized into consistent structures and 

that the periodicity of H-NS binding induced structures was approximately every 60 bp of 

DNA (winding two DNA duplexes together, onto themselves) (Maurer et al., 2009).  The 

heat-unstable protein (HU), another NAP, that exists as an octamer, and which has been 

shown to antagonize H-NS, has been measured to bind to approximately 64-68 bp 

(Broyles & Pettijohn, 1986).  This suggests that one conformation (e.g. plectonemic) 

could be easily converted into another (e.g. toroidal) simply by reorganizing the 

nucleoprotein complex by the interaction of a competing protein.  This explains how a 

competing DNA binding protein might function to relieve H-NS induced repression, at a 

mechanistic level.  These tight plectonemic structures stabilized by H-NS are consistent 

with gene silencing and repression (Maurer et al., 2009), therefore, the promoters of the 
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regulated genes should then be located at the nodes where they would remain accessible 

to transcriptional machinery, however, direct evidence for this is lacking (Rimsky, 2004).  

In these topologically closed domains, the plectonemic conformations of the DNA can be 

easily overcome by other NAPs or RNA polymerase (RNAP), as the force with which H-

NS constrains DNA is relatively weak, ~ 7pN while the force generated by RNAP is up 

to 25 pN (Dame et al., 2006, Maurer et al., 2009).  The ease with which these structures 

can be overcome ultimately results in transcription.     

 A plectonemic structure constrained by H-NS, and a simple conversion to a toroidal 

or open conformation, by another DNA binding protein, or a change in DNA 

superhelicity subsequent to changes in osmolarity or temperature (Adler et al, 1989), 

satisfies the requirements that the DNA i) remain accessible to transcriptional machinery 

and ii) maintains the bacterial nucleoid by compacting the DNA (Dame et al., 2006, 

Maurer et al., 2009).  We are beginning to build a more complete mechanistic picture of 

the way in which silencing is achieved.       

H-NS interaction with other nucleoid-associated proteins 

 The oligomerization domain of H-NS is not only important for H-NS:H-NS 

interactions, but also facilitates binding with heterologous proteins that share the same 

domain (Dorman, 2004).  Studies have shown that H-NS can oligomerize with up to five 

different protein species in the H-NS family (Rimsky, 2004, Dorman, 2004).  

Oligomerization by H-NS to other related proteins raise the possibility that the activity of 

these heteromers is altered resulting in additional levels of complexity in gene regulation 

((Dorman & Deighan, 2003), Rimsky, 2004).  The most common of these other 

heterologous proteins is the paralogue StpA (Rimsky, 2004, Dorman, 2004).  StpA has 
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been described as a molecular back up for H-NS, however, it does not always provide 

this function (Dorman & Deighan, 2003).  StpA shares many properties with H-NS 

including, 52% homology, the DNA binding domain, oligomerization domain and a 

flexible linker connecting the two (Zhang et al., 1996, Ueguchi et al., 1996, Williams et 

al., 1996, Spurio et al, 1997, Dorman et al., 2000, Smyth et al., 2000).  Each protein can 

inhibit its own expression as well as the expression of the other protein (cross and 

autoregulation) (Zhang et al., 1996).  It has been proposed that StpA acts as a molecular 

adapter facilitating targeting of H-NS to DNA by multiple protein:protein interactions 

(Free et al, 2001).  Some bacteria express more than one member of the H-NS family, an 

example is Shigella flexneri that expresses 3 members: H-NS, StpA, and Sfh, and all 

three proteins can form oligomeric complexes with each other (Deighan et. al., 2003).  Of 

the H-NS-like proteins studied thus far, all have the ability to form protein:DNA bridges 

(Dame et al., 2005).  The resulting complexes in all theses previously described situations 

leads to transcriptional silencing.   

 H-NS has also been shown to interact with other, more distantly related proteins.  H-

NS interaction has been described with the: FliG flagellar motor protein, Hfq which binds 

RNA and modulates translation of mRNA, Hha a thermo-osmoregulator of the E. coli α-

haemolysin toxin, and the Yersinia enterocolitica Hha homologue YmoA (Donato & 

Kawula, 1998, Dorman, 2004, Nogueira & Springer, 2000, Ellison & Miller, 2006a, 

Ellison & Miller, 2006b, Stoebel et al., 2008).  

 Together, these findings suggest that protein-protein interactions of this nature are 

widespread in gram-negative bacteria.  Interestingly, the genes that encode H-NS-like 

proteins and the Hha-like proteins are found on plasmids acquired by horizontal gene 
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transfer (Dorman, 2004).  One hypothesis for why a plasmid would carry its own H-NS-

like protein is that it appears to protect the recipient cell from the deleterious effects of H-

NS titration by AT-rich sequences and allows the cell to tolerate the plasmid (Doyle et al, 

2007).   

H-NS silences genes acquired by horizontal gene transfer 

 Horizontal gene transfer has been described as one of the primary sources of genetic 

diversity in microorganisms (Jain et al, 2002) and has been most extensively studied in 

the human bacterial pathogens where many virulence factors have been acquired in this 

manner (Hacker & Kaper, 2000).  Acquiring genes through horizontal transfer raises 

some very important regulatory issues, e.g. will the new gene be incorporated 

immediately into existing regulatory circuits?  Will the gene operate independently?  

Foreign sequences are more likely to decrease the fitness of the host rather than 

increasing it (Navarre et al, 2006).  Therefore, incoming, newly acquired sequences must 

be brought under the control of existing cellular regulators, and it is the proteins that 

show the highest degree of promiscuity for promoters that are best adapted to this 

function, e.g. H-NS (Dorman, 2004, Navarre et al., 2006).  The silencing of newly 

acquired genes by H-NS is thought to protect the bacterium from potentially deleterious 

effects of transcribing genes that may compromise their fitness (Navarre et al., 2006).  

Many examples exist in the literature of H-NS mediated silencing of genes acquired by 

horizontal gene transfer, for example the large, 230 kb, virulence plasmid of Shigella and 

enteroinvasive E. coli which carries many of the genes required for virulence, like a type 

III secretion system (t3ss) and genes required for invasion and adhesion (Adler et al., 

1989, Beloin & Dorman, 2003, Beloin et al, 2003, Hromockyj & Maurelli, 1989, 
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Hromockyj et al, 1992, Porter & Dorman, 1994).  Similarly H-NS has been shown to be a 

repressor of the virulence genes associated with the Salmonella SPI-1 pathogenicity 

island, the virulence regulon in Vibrio cholerae, the invasion gene invA of Yersinia, and 

the locus of enterocyte effacement (LEE) pathogenicity island of enteropathogenic E. coli 

(Tupper et al., 1994, Porter & Dorman, 1994, Heroven et al, 2004, Cerdan et al., 2003, 

Nye & Taylor, 2003, Navarre et al., 2006).  It is interesting to note that foreign sequences 

inherited by horizontal gene transfer are rich in adenine and thymine (AT-rich) compared 

to that of their host.  AT-rich sequences are more intrinsically curved (Zuber et al, 1994), 

providing an explanation of how these regulatory circuits have evolved using H-NS, and 

H-NS-like proteins as silencers of transcription (Lucchini et al, 2006, Oshima et al, 2006, 

Navarre et al., 2006).  Although this explains how foreign genes are selectively targeted 

for silencing, the question still remains as to how H-NS silenced genes are to be 

integrated into existing regulatory networks and expressed under appropriate conditions.   

 

1.2 Transcriptional anti-silencing 
 
 Since transcriptional silencing, is a process that renders appreciable regions of DNA 

inaccessible to proteins such as RNA polymerase (RNAP), DNA modifying enzymes, 

etc., to which it would otherwise be able (Dorman et al., 1999, Yarmolinsky, 2000), the 

mechanism that counters this makes previously inaccessible regions of DNA accessible 

and has been coined anti-silencing.  Anti-silencing differs from true activation in that 

RNAP is not actively recruited to the DNA, with few exceptions e.g. ToxT of V. cholerae 

(Nye et al, 2000).  Anti-silencing can occur through a protein independent, or a protein 

dependent mechanism and often a combination of the two is required for optimal 
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performance.  Therefore, in a protein dependent anti-silencing mechanism, the anti-

silencing protein can be any DNA binding protein that antagonizes, interferes with, or 

alters, the action of a silencing protein, e.g. H-NS.  Protein dependent anti-silencing 

mechanisms generally occur in 3 ways (however, subtle variations in these themes exist, 

and a anti-silencing proteins may function through more than one mechanism): through 

direct competition with the silencing protein (this can include blocking the silencing 

proteins polymerization), through altering the DNA in a way that transcription is allowed 

to occur, and by de-stabilizing the repressive, silenced, DNA structure.   

Protein independent anti-silencing  

 The simplest form of anti-silencing is a protein-independent mechanism which relies 

on the static curvature of the DNA.  The dimerization and bridging characteristic of H-

NS makes the protein uniquely sensitive to DNA structure.  The static curvature of DNA 

can facilitate H-NS cross-linking, but the curvature is also sensitive to environmental 

conditions (De la Cruz et al, 2009, Falconi et al, 1998, Prosseda et al, 2004, Stoebel et al, 

2008).  Any condition that could alter the DNA structure would then antagonize the H-

NS induced bridging.  Conditions that are known to alter the curvature of DNA are 

temperature and osmolarity.  An increase in temperature can reduce the degree of 

curvature thereby reducing the ability of H-NS to constrain the bridged structure (Rohde 

et al, 1999, Ussery et al, 1999), as observed in the case of the promoter of the virF 

virulence gene in Shigella flexneri (Prosseda et al., 2004).  Likewise a change in 

osmolarity can also affect DNA curvature. The E. coli proU promoter, which is 

negatively regulated by H-NS, is sensitive to changes in DNA superhelicity following 

osmotic shock, which effects H-NS binding to its regulatory regions (Bouffartigues et al., 
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2007).  Environmentally induced changes in DNA curvature might represent the most 

fundamental mechanism of transcriptional anti-silencing, but more complex mechanisms 

of anti-silencing exist in the literature.      

 Many horizontally acquired elements encode genes for protein antagonists of H-NS, 

including Ler, Lrp, Fis, IHF, HU etc., and many of them share degenerate target 

specificities, as H-NS does, making them ideal regulators involved in either, competition 

for binding sites in DNA, or remodeling the architecture of the DNA that has a positive 

effect on transcription (Dorman, 2004, Fang & Rimsky, 2008, Navarre et al, 2007, 

Stoebel et al., 2008).          

Protein dependent anti-silencing: direct competition 

 The protein dependent mechanism underlying transcriptional silencing/anti-silencing 

has been proposed to be a straightforward molecular antagonism involving direct 

competition between H-NS and other sequence specific DNA binding proteins for their 

overlapping cognate DNA binding sequences (Fang & Rimsky, 2008, Navarre et al., 

2007).  Examples of anti-silencing being a straightforward antagonism exist at a variety 

of bacterial promoters, e.g. SlyA counters H-NS silencing of the hemolysin gene hlyE in 

E. coli through direct competition, similarly RovA from Yersinia counters H-NS 

silencing of the invasin inv, and the urease gene activator UreR of Proteus mirabilis 

displaces H-NS by directly competing for essential binding sites (Coker et al, 2000, 

Ellison & Miller, 2006a, Ellison & Miller, 2006b, Westermark et al, 2000, Heroven et al, 

2004, Heroven et al, 2007, Lithgow et al, 2007, Poore & Mobley, 2003).  The ToxT 

transcription factor from Vibrio cholerae antagonizes H-NS at two promoters by direct 

competition (Nye et al., 2000).  In Salmonella, many of the genes regulated by SlyA are 
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likely to have been acquired by horizontal gene transfer, and all but one of these is 

repressed by H-NS (Navarre et al., 2005, Navarre et al., 2006).  A mutual antagonism 

exists between SlyA and H-NS where one protein is able to displace the other depending 

on relative concentrations of the two proteins.  This could represent one mechanism for 

the re-establishment of H-NS mediated repression by allowing both proteins to utilize 

similar mechanisms, allows fine-tuning of transcription in the cell (Lithgow et al., 2007).  

This mechanism may be more common among silencing and anti-silencing proteins and 

is unlikely restricted to SlyA and H-NS.  Still another mechanism of counter-silencing by 

direct competition has been observed where two proteins of E. coli, PapB and CRP, 

appear to work in tandem to antagonize H-NS mediated silencing of the pap promoters 

(Forsman et al, 1992).  

Protein dependent anti-silencing: alteration of topology 

 In contrast, at some bacterial promoters the anti-silencing proteins function to alter 

the DNA topology in a way that no longer allows H-NS to constrain transcription.  For 

example, LeuO counters silencing of the quiescent porin ompS1 in Salmonella by altering 

the topology of the ompS1 promoter region (De la Cruz et al, 2007, De la Cruz et al, 

2009) and in Shigella flexneri, VirB antagonizes H-NS by affecting the structure of the 

icsB promoter (Turner & Dorman, 2007).  The mechanism by which this is achieved 

involves protein binding to specific binding sites followed by propagation of the protein 

along the DNA with associated wrapping of the DNA.  H-NS is no longer able to 

maintain the repression complex, which allows RNAP to access the DNA and initiate 

transcription (Beloin & Dorman, 2003, De la Cruz et al., 2009).  Interestingly, the SlyA 

protein of Salmonella, which directly competes with H-NS at the hlyE promoter, 
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functions to remodel the architecture of the DNA at the ugtL and pagC promoters (Kong 

et al, 2008, Perez et al, 2008, Shi et al, 2004).  LeuO has also been shown to block H-NS 

propagation by binding between the H-NS upstream and downstream binding sites, 

functioning as a boundary element (Chen & Wu, 2005, Chen et al, 2005).  These results 

show that a single H-NS antagonist can function via two distinct mechanisms: by direct 

Fig. 4. Adapted from Stoebel et al., 2008.  Illustration of the ways in which a repressive H-NS 
promoter complex (a) can be modified to permit transcription.  At certain promoters (b), specific 
de-repression occurs via a protein-independent mechanism involving environmentally induced changes 
in DNA bending or supercoiling (colored arrow).  Many promoters are de-repressed via promoter-
specific DNA-binding proteins (black arrows), which can work by preventing H-NS oligomerization 
along the DNA (c), displacing H-NS, or modifying the conformation of the promoter, or both while 
some H-NS remains bound (d), or displacing H-NS, by direct competition for H-NS binding regions 
(e).  Other de-repression mechanisms are general for many H-NS repressed promoters (grey arrows).  
These include weakening the H-NS-promoter complex (H-NST)(f), or expression of an H-NS 
paralogue (discussed in “silencing;” see above) that may enhance repression or alter its sensitivity to 
other de-repression mechanisms dependent upon the exact properties of the protein-DNA complex (g).    
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competition, and remodeling the nucleoprotein complex (Stoebel et al., 2008).  The 

common feature that is shared by the H-NS antagonizing proteins is that most, if not all, 

bind to AT-rich sequences, which may explain why these proteins have evolved to 

function as anti-silencers (Navarre et al., 2006).  

Protein dependent anti-silencing: destabilization 

 A third mechanism of counter-silencing, that is not often described, is the use of 

truncated H-NS molecules (H-NST).  The genes encoding these molecules have been 

found in pathogenicity islands of pathogenic E. coli strains (Williamson & Free, 2005).  

H-NST molecules show homology to the H-NS oligomerization domain, but lack nucleic 

acid binding and linker regions (Willamson & Free, 2005).  As opposed to the sequence-

specific proteins directly competing with H-NS for binding to DNA, or remodeling the 

nucleoprotein complex, H-NST molecules interfere with H-NS oligomerization and is 

thought to weaken the ability of H-NS to form bridges by replacing full length H-NS.  

However, the biologic significance of H-NST molecules remains unclear and examples 

have not been demonstrated outside of the pathogenic E. coli strains (Navarre et al., 

2006, Stoebel et al., 2008, Williamson & Free, 2005). 

  

1.3 Shigella, the bacterial pathogen 
 
 Shigella species are gram-negative intracellular pathogens that cause bacillary 

dysentery in humans.  Shigella infections are responsible for approximately 164 million 

infections each year resulting in 1.1 million deaths, most of these occur in developing 

countries and in children less than 5 years old (Kotloff et al, 1999, Lee et al, 2005, Li et 

al, 2009).   The genus is divided into 4 species, Shigella flexneri, Shigella boydii, Shigella 
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sonnei, and Shigella dysenteriae.  The species are further divided into serotypes based on 

biochemical differences and variations in their O-antigens, such that, Shigella flexneri is 

further divided into 13 serotypes.  Shigella flexneri is endemic in most developing 

countries and causes more mortality than any of the other Shigella species (Bennish & 

Wojtyniak, 1991).  Of the 13 serotypes of S. flexneri serotypes 1b, 2a, 3a, 4a, and 6 are 

predominant in developing countries, while 2a is predominant in industrialized countries 

including the United States (Kotloff et al., 1999).   

Shigella pathogenicity 

 The mechanism of pathogenicity of Shigella flexneri is based on the capacity of the 

organism, once ingested, to reach the colonic mucosa and to invade the colonic epithelial 

cells.  Invasion of the epithelial cells leads to intracellular bacterial multiplication, spread 

to adjacent cells, cell death, and eventually inflammation and ulceration of the colonic 

mucosa (Hale, 1991).  This pathogenicity is a complex phenomenon, which relies on the 

coordinated expression of a suite of genes, many of which are found on the large (230 

kbp) virulence plasmid. The structural genes required for invasion, including a type III 

secretion system (t3ss), and the intracellular spread of Shigella in host cells are encoded 

by separate regions of the virulence plasmid: the ipa-mxi-spa locus and the icsA gene 

(Dorman & Porter, 1998).  The large virulence plasmid carries genes encoding key 

virulence gene regulators. Further regulators of virulence gene expression in Shigella are 

located on the chromosome: the plasmid-located positive transcriptional regulators virF 

and virB and the chromosomally encoded negative regulator hns (Adler et al., 1989, 

Dagberg & Uhlin, 1992).   
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The regulatory cascade controlling Shigella virulence 

 The VirF and VirB proteins act in a cascade to activate virulence gene promoters in 

response to environmental stimuli that indicate the bacterium is in the appropriate 

location in the host.  Temperature is a key regulatory factor of virulence gene 

transcription, since virulence gene transcription is repressed at temperatures below 37 ℃.  

H-NS has been shown to direct the temperature-regulated expression of virulence genes 

by repressing their transcription during growth at 30 ℃ (Dorman et al., 1990, Hromockyj 

et al., 1992).  At the non-permissive temperature of 30 ℃, H-NS binds to two sites 

within the virF promoter (Fig.5). The two regions of bound H-NS interact in the 

formation of a nucleoprotein complex that results in repression of virF transcription.  An 

increase in temperature to 37°C, antagonizes the DNA topology resulting in the loss of 

contact between the H-NS regions and this is thought to de-stabilize the nucleo-repressive 

complex resulting in de-repression and subsequent transcription of the virF gene   

(Falconi et al., 1998, Prosseda et al., 2004). 

Fig. 5. From Dorman, 2004.  H-NS mediated repression of the virF virulence-gene promoter 
in Shigella flexneri.  At the S. flexneri virF promoter, there are two binding sites for the H-NS 
protein centered at -1 and -250 with respect to the transcriptional start site, which is shown with an 
angled arrow.  Formation of the repression complex at low temperatures requires looping of the 
intervening DNA.  The formation of a DNA topology that is conducive to repression is antagonized 
by increased temperature.  The resulting loss of contact between the bound H-NS proteins is 
thought to result in the instability of the nucleoprotein complex at the virF promoter, leading to 
derepression of transcription (Falconi et al., 1998)   
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The major transcriptional activator VirF   

 Once expressed, VirF, an AraC-like transcription activator, binds directly to the virB 

promoter.  Tobe et al. (1995) have shown that VirF is present in vivo at both permissive 

and non-permissive temperatures (although transcription of virF at 30 ℃ is one quarter 

of that at 37 ℃ at which maximal transcription occurs) and that it can that it can bind in 

vitro to the virB promoter at both temperatures.  Therefore, the thermal activation signal 

is not just production of VirF.  These findings suggest that an increase in temperature 

results in a change in DNA supercoiling that is responsible for the VirF dependent 

activation of the virB promoter.  Porter & Dorman (1997) also showed that virB DNA 

topology was affected by changes in osmolarity and pH resulting in increased negative 

supercoiling.  Therefore, the alteration in DNA topology facilitates a productive 

interaction between bound VirF and RNA polymerase and also raises the possibility that 

a change in supercoiling may promote VirF oligomerization on the DNA, which results in 

the antagonism of H-NS leading to transcription of virB (Fig. 5)(Dorman & Porter, 

1998).     

Fig. 6.  The regulatory cascade controlling Shigella virulence.  At the non-permissive temp of 30 ℃ 
H-NS causes repression of the major transcription factors virF and virB.  Upon a shift in temperature to 
the permissive temp of 37 ℃ a change in DNA topology relieves the H-NS induced repression of virF.  
VirF antagonizes the H-NS induced repression of the virB promoter and subsequently VirB alleviates the 
H-NS dependent repression of many virulence plasmid genes including those of the invasion locus; the 
type III secretion system shown here is representative.  
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 Subsequently, VirB alleviates H-NS dependent repression of many virulence plasmid 

genes, including those of the invasion locus ipa, mxi, and spa; virA, ospB and phoN2 

(Beloin & Dorman, 2003, Berlutti et al, 1998, Maurelli et al, 1984a, Maurelli et al, 

1984b, Maurelli & Sansonetti, 1988, Nicoletti et al, 2008, Prosseda et al, 1998, Sasakawa 

et al, 1993, Tobe et al, 1991, Tobe et al, 1993, Tobe et al, 1995, Dorman, 2006, 

Hromockyj et al., 1992, Porter & Dorman, 1994, Porter et al., 1998, Prosseda et al., 

1998). 

The major transcriptional activator VirB: an unusual transcriptional regulator 

 The VirB protein 

was first identified 

through transposon 

mutagenesis of the 

large virulence 

plasmid, when it was 

shown to be essential 

for the expression of 

almost all the 

structural virulence 

genes (Watanabe et al, 1990).  VirB is an unusual candidate for a transcriptional activator 

sharing no homology to previously described conventional transcriptional activators.  

Instead, VirB shares considerable homology with a family of plasmid partition proteins, 

including ParB and SopB, proteins that are involved in the plasmid partition and 

maintenance of stable plasmid copy number in P1/P7 and F plasmids, respectively (Fig. 

Fig. 7. From  Beloin et al.,2002.  Model of VirBs functional 
and structural domains.  A structural model of VirB deduced 
from experiments performed in Beloin et al., 2002.  Below is the 
structural model of the ParB protein based on the work of 
Surtees & Funnell, 1999,2001. In ParB, DRS, represents 
“discriminator recognition sequence,” implicated in the DNA 
binding activity of ParB.  
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7)(Watanabe et al., 1990, Abeles et al, 1985, Bignell & Thomas, 2001).  VirB is small, 

32 kDa, and basic and has been shown to form dimers, trimers, and higher order 

oligomers in vitro and in vivo (Beloin et al, 2002).  VirB can oligomerize independent of 

DNA binding and occurs through two domains, a leucine zipper, and a C-terminal 

domain predicted to form a triple coil structure (Beloin et al., 2002).  

VirB shows homology to the partition proteins SopB/ParBVirB interacts with DNA in 

vivo and is dependent on the presence of the N-terminus and the integrity of the helix-

turn-helix (HTH) binding motif.  The HTH was found to be essential for structural gene 

activation (Beloin et al., 2002).  The HTH DNA-binding motif in VirB is 80% identical 

to the HTH in the homologous ParB protein, which mediates the binding of ParB to parS 

which leads to plasmid partitioning (Beloin et al., 2002, Lobocka & Yarmolinsky, 1996, 

Surtees & Funnell, 2001).      

 Beloin et al. (2002) showed that the leucine zipper (LZ) motif was essential for VirB 

to form oligomers, and that oligomerization was essential for the VirB dependent 

activation of a mxiC-lacZ fusion.  Complete loss of the LZ resulted in complete loss of 

the ability of VirB to activate gene expression and reduces its ability to bind DNA 

Fig. 8. From Surtees & Funnell, 2001. The parS site.  tall and short boxes outline the box A and box 
B sequences respectively, and the black line shows the IHF binding site. 
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(Beloin et al., 2002).  However, the LZ cannot promote protein:protein interactions in 

isolation, instead it requires the C-terminal domain (Beloin et al., 2002).  Therefore, the 

LZ most likely functions to promote oligomerization, which is then stabilized by the C-

terminal coiled-coil 

structure, making both 

regions mutually dependent 

on one another  

(Boss et al, 1999, Beloin et 

al., 2002).  Also, the HTH 

motif was found to be 

essential in DNA binding 

but did not contribute 

significantly to VirB oligomerization (Beloin et al., 2002, (McKenna et al, 2003).  The 

work of Beloin et al.(2002), and later McKenna et al. (2003), demonstrated that VirB is a 

direct DNA binding protein that interacted specifically with the promoters of the 

virulence genes its known to regulate.  They also demonstrated the necessity of VirB 

oligomerization in the activation of the structural genes, a situation that resembles the 

homologous ParB and SopB functions (Beloin et al., 2002, McKenna et al., 2003).  ParB 

oligomerization, which ultimately leads to protein:DNA bridges via protein:DNA and 

protein:protein interactions, is an essential step in the formation of the partition complex 

to effectively segregate plasmids (Bouet et al, 2000, Schumacher & Funnell, 2005, 

Schumacher et al, 2007).  Even though VirB shows homology to ParB and SopB there is 

no data to support that VirB is involved in plasmid partitioning or maintenance of the 

Fig. 9.  From Taniya et al., 2003.  Comparison of the putative 
InvE binding regions in S. sonnei.  Beloin et al., (2002) 
revealed that InvE (VirB) binds to the regions upstream of these 
genes (icsB, spa-15, and virA) specifically.  The numbers 
indicate the positions of these regions (translation start site of 
each gene as nucleotide +1).  The boxes indicate the position of 
the ParB BoxA-like sequence.  The solid arrows indicate the 
direction of each gene transcription. 
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modern virulence plasmid (McKenna et al., 2003, Harrison et al., unpub. data). While 

there is structural homology between VirB and ParB/SopB, there are functional 

differences. Firstly, ParB represses transcription (by spreading along the DNA for great 

distances eg. 2 kb)(Lobocka & Yarmolinsky, 1996, Rodionov et al., 1999), while VirB 

activates transcription by alleviating transcriptional repression (Beloin et al., 2002). 

Secondly, ParB binds to a well defined parS site of plasmid P1 (Fig. 8) which consists of 

4 box A sequences (heptameric) and 2 box B sequences (hexameric) imperfect repeats, 

separated by an integration host factor (IHF) binding site (Surtees & Funnell, 2001), in 

contrast VirB binds to a sequence that is homologous to the box A motif in the parS site, 

and this site in the S. sonnei icsB promoter is essential for the expression of the ipa 

operon.  Based on a previous study in S. flexneri (Beloin et al., 2002) which showed VirB 

(InvE) binding to various promoter sequences, Taniya et al. (2003) also found this 7 bp 

ParB box A-like sequence [5’-(A/G)(A/T)G(G)AAAT-3’] in 2 additional promoter 

sequences (Fig. 9).  In fact this sequence was shown by gel shift assay to be required for 

InvE binding (Taniya, et al., 2003).  This work was further corroborated by Turner & 

Dorman (2007) which showed that VirB bound to a regulatory region within the 

divergently transcribed S. flexneri icsB-ipgD promoter that contained a near-perfect, 

inverted repeat, which is homologous to the parS box A sequence (labeled box 1 and box 

2) (Fig. 10).  However, in Turner & Dorman (2007), only the promoter distal binding site 

(box 2) was found to be critical for the VirB-mediated activation of the promoter.  

Interestingly, the icsB regulatory region shows DNA sequence homology to the parS site 

of plasmid P1 and P7, and furthermore, icsB shares a dependency, as does parS, on the 

IHF protein (IHF has been shown to bind and enhance activity of the icsB promoter; IHF 
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is required for full activation of virF and virB) (Turner & Dorman, 2007, Porter & 

Dorman, 1997).  Together, these findings suggest that VirB is likely to be specific for the 

promoters that contain this box 2 element, or at least close matches to it.  The 

significance of this finding suggests that VirB is a former plasmid partitioning protein 

that has been conscripted to perform a new function, that of an anti-silencer, antagonizing 

the H-NS mediated repression of promoters (Turner & Dorman, 2007).  Unlike the 

ParB/parS system, the virulence plasmid of Shigella does not encode for a partner protein 

for VirB that is equivalent to ParA.  The ParA protein is an accessory ATPase that 

interacts directly with ParB bound at parS and is required for the proper localization of 

Fig. 10. From Turner & Dorman, 2007. Comparison of icsB  and parS.  A) alignment of the icsB 
regulatory region with the parS sequences of phages/plasmids P1 and P7.  The DNA sequence of the 
promoter-distal portion of the icsB regulatory region that contains boxes 1 and 2 is aligned with the 
parS sequences of phages/plasmids P1 and P7.  The converging horizontal arrows show the inverted 
repeats associated with boxes 1 and 2.  The four heptameric and two hexameric parS motifs involved 
in ParB protein interaction are boxed by solid- and dotted-line rectangles, respectively.  Downward-
pointing arrowheads indicate residues within the hexamers that allow ParB proteins to distinguish 
different parS sequences.  The asterisks indicate residues that are conserved between the icsB 
regulatory region and the parS sequences.  B) Genetic map of the portion of the large virulence 
plasmid showing the relative locations of the virB gene and the regulatory sequences of the icsB-ipg-
ipa-acp operon.  The angled arrows represent promoters.  The relative positions of the box 1 and box 
2 motifs upstream of the icsB promoter are shown.  The diagram is not drawn to scale. 
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the ParB-parS complexes, although it is not known how this positioning is accomplished 

(Bouet & Funnell, 1999).  Although, it is possible that another protein interacts with 

VirB, by binding the N-terminal domain of VirB, as proposed in the work of Beloin et al. 

(2002) to date no such co-factor has been found.  Future investigations may one day find 

an accessory protein for VirB. 

VirB function 

 The mechanism by which VirB activates transcription is not completely understood.  

At the icsB promoter, VirB has been reported to bind and oligomerize on DNA to a short 

sequence [5’-(A/G)(A/T)G(G)AAAT-3’] located upstream of the promoter, and this 

binding is required for activity of this promoter (Beloin et al., 2002, McKenna et al., 

2003, Taniya et al., 2003).  However, this sequences occurs 56 times on pWR100 of 

Shigella flexneri, including within numerous insertion sequences scattered along the 

plasmid, and many more (more than 1000 times) with one mismatch, suggesting that this 

sequence alone does not define the VirB target (Le Gall et al, 2005).  An examination of 

all the genes under the control of VirB show a lower G+C content, compared to the host, 

therefore, bending might be an essential part of the VirB recognition motif (it should be 

noted that not all promoters with low G+C content are under the control of VirB) (Le 

Gall et al., 2005).  It has been shown that the promoters under the positive transcriptional 

control of VirB are also under the negative transcriptional control of H-NS, and that VirB 

has been shown to displace H-NS from these promoters (Turner & Dorman, 2007, Beloin 

et al., 2003).  This further strengthens the case for curvature of DNA playing an 

important role in the VirB dependent activation of the promoters for which it regulates.   
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 These studies, and many more, all point to a finely tuned mechanism of regulation 

involving the H-NS mediated repression of the virulence system in S. flexneri, that would 

not be permitted to be expressed until the appropriate environmental signals initiate a 

regulatory cascade involving VirF and VirB, that would limit the wasteful expression of 

the type III secretion system, its effector proteins and additional factors until authentic 

contact with host.  However, many more questions remain to be answered, e.g.; What are 

the full repertoire of genes under the control of VirB?  How does VirB alleviate H-NS 

mediated repression of promoters?  Does VirB have more than one mechanism, which 

can be employed to alleviate H-NS repression?  Is there a better-defined VirB binding 

motif?  An enhanced understanding of the silencing/anti-silencing mechanisms that 

control expression of virulence genes in Shigella, and many other bacteria, is central to 

understanding pathogenesis. 

             

1.4 Objectives of this study 

 The aim of this work is to determine the role that H-NS and VirB play in the 

regulation of the icsP promoter and to examine the molecular mechanism of silencing 

and anti-silencing.  This dissertation is divided into three main chapters encompassing 

five objectives. 

 

Objective 1: To determine regions of the icsP promoter needed for H-NS induced 

repression and regions required for VirB dependent de-repression.  This objective  is    

addressed in chapters 2 and 3. 
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 Objective 2: To demonstrate H-NS and VirB bind directly to the icsP promoter.  

 This objective is addressed in chapters 3 and 4. 

 Objective 3: To determine the sequences to which H-NS and VirB bind.  This 

 objective is addressed in chapters 3 and 4. 

 

Objective 4: To examine the effect that icsP static DNA curvature plays in the ability 

of H-NS and VirB to regulate promoter activity.  This objective is addressed in 

addressed in chapter 4.     

 

Objective 5: To propose a mechanism for the H-NS and VirB regulation of the icsP 

promoter.  This objective is addressed in all chapters and model is presented in 

chapter 5. 
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CHAPTER 2 

VIRB ALLEVIATES H-NS REPRESSION OF THE ICSP PROMOTER IN SHIGELLA 

FLEXNERI FROM SITES OVER 1 KB UPSTREAM OF THE TRANSCRIPTION 

START SITE 

Abstract  

The icsP promoter of Shigella spp. is repressed by H-NS and derepressed by the VirB. 

An inverted repeat located between -1144 and -1130 relative to the transcription start is 

required for VirB dependent de-repression of the icsP promoter. The atypical location of 

this cis-acting site relative to the promoter is discussed. 
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2.1 Introduction  

Shigella species are gram-negative intracellular pathogens that invade cells of the 

lower intestinal epithelia of humans and primates, causing bacillary dysentery.  All 

Shigella species carry a large virulence plasmid, and many genes carried by these 

plasmids are thermo-regulated.  At a non-permissive temperature of 30°C, the global 

regulator H-NS (histone-like nucleoid structuring protein) represses transcription of 

many virulence plasmid genes (Beloin & Dorman, 2003, Porter & Dorman, 1994, 

Hromockyj et al, 1992).   At the permissive temperature of 37°C, H-NS dependent 

repression is relieved by temperature induced changes in DNA topology (Falconi et al., 

1998, Prosseda et al., 1998), VirF, or its subordinate regulator VirB (InvE) (reviewed in 

reference Porter & Dorman, 1997).  The mechanism that leads to the alleviation of 

transcriptional repression by H-NS has been coined “anti-silencing.”  Anti-silencing is 

thought top play an important role in controlling the expression of genes acquired 

through horizontal gene transfer and is common in bacterial pathogens in which a 

variety of transcription factors function to relieve repression by H-NS (reviewed in 

reference Stoebel et al., 2008). 

The icsP (sopA) gene is carried on the large virulence plasmid in all Shigella species 

(Egile et al, 1997, Shere et al., 1997) and encodes an outer membrane protease, which 

belongs to the omptin protease family (Hritonenko & Stathopoulous, 2007, Kukkonen & 

Korhonen, 2004) and cleaves the actin-tail assembly protein IcsA from the surface of 

Shigella (Egile et al, 1999, Shere et al., 1997, Steinhauer et al., 1999).  Previous studies 

have revealed that icsP, like other Shigella virulence plasmid genes, including  virA, 

ospB and phoN2 and those of the invasion locus ipa, mxi, and spa (Adler et al, 1989, 
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Berlutti et al, 1998, Beloin et al., 2002, Sakai et al., 1988, Santapaola et al., 2006, 

Taniya  et al., 2003, Tobe et al., 1991, Uchiya et al., 1995) is repressed by H-NS and de-

repressed by VirB (Wing et al., 2004).  In this study, we identify sequences upstream of 

the icsP gene necessary for de-repression by VirB, with a view to improve our 

understanding of the mechanism of transcriptional anti-silencing at the icsP promoter.  

2.2 Materials and Methods  

Bacterial strains, plasmids and media.  

 The bacterial strains and plasmids used in the present study are listed in Appendix 1. 

Bacteria were grown routinely at 37°C in Luria-Bertani (LB) broth with aeration or on 

LB agar (LB broth containing 1.5% [wt/vol] agar).  Antibiotics, as needed, were added to 

achieve the following final concentrations: ampicillin, 100 µg/ml; chloramphenicol, 25 

µg/ml; kanamycin, 50 µg/ml; and tetracycline, 12.5 µg/ml.  Where appropriate, to ensure 

that Shigella strains had maintained the large virulence plasmid during manipulation, 

Congo Red binding was tested on Trypticase Soy Agar (TSA) plates containing 0.01% 

(wt/vol) Congo Red (Sigma Chemical Co., St. Louis, Mo.).   

Construction of the PicsP-lacZ reporter plasmid and truncated promoter fragments. 

 The starting point for this work was the PicsP-lacZ reporter plasmid pHJW7 

(described in Wing et al, 2004; Table 1).  pHJW7 carries a PstI XbaI DNA fragment that 

contains 1232 bp upstream of the transcription start site of the icsP promoter and the first 

48 bp of the icsP coding region.  This fragment is cloned upstream of a translation stop 

site and a promoterless lacZ gene, so that expression of lacZ is directly regulated by the 

icsP promoter.  To facilitate the construction of a series of PicsP-lacZ fusion plasmids, a 

second XbaI restriction site located downstream of the lacZ gene in pHJW7 was removed 
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using the ‘mega’-primer PCR method (Perrin & Gilliland, 1990) with oligonucleotides 

W1016-1018 (Appendix 1).  The resulting plasmid, pHJW20 (Table 1), contains a unique 

XbaI site upstream of the lacZ gene. icsP promoter fragments were PCR amplified from 

pHJW20 using oligonucleotide W89 in combination with each of the following 

oligonucleotides: W44, 45, 46, 47, 528, 529 or 530 (Appendix 1).  PCR products were 

digested with PstI and XbaI, and were ligated into pHJW20 that had also been digested 

with PstI and XbaI.  This created a series of PicsP-lacZ fusion plasmids containing 

promoter fragments lengths of 1056 bp, 893 bp, 665 bp, 351 bp, 254 bp, 150 bp, and 92 

bp, respectively.  These plasmids were called pJS01, pJS02, pDH01, pJS04, pHJW34, 

pHJW35 and pHJW36, respectively (Appendix 1).  

To create pMIC01, pHJW20 was digested with SalI and PstI, treated with T4 DNA 

polymerase and self-ligated using the blunt-ended ligation protocol supplied with T4 

DNA ligase (Promega).  To create pMIC02, a 200 bp fragment was amplified by PCR 

from the virulence plasmid of the S. flexneri strain 2457T using oligonucleotides W81 

and W82 (Appendix 1).  The product was digested with SalI and PstI and the resulting 

fragment was ligated with pHJW20 that had also been digested with SalI and PstI.  This 

created a PicsP-lacZ fusion carrying 1473 bp of sequence naturally found upstream of the 

icsP transcription start site.  The promoterless reporter plasmid pMIC21 was created by 

removing the entire icsP promoter from pHJW20.  To do this, pHJW20 was digested with 

PstI and XbaI, the resulting DNA was treated with T4 DNA polymerase and self-ligated 

using the blunt-ended ligation protocol supplied with T4 DNA ligase (Promega).  The 

sequence of all truncated promoters fragments was confirmed after cloning.  All plasmids 

are described in Appendix 1.   
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In silico analyses of the icsP promoter and upstream sequences.  

 Curvature predictions of the icsP promoter and upstream sequences were performed 

using the bend.it® program (http://www.icgeb.org/dna/bend_it.html.  The curvature is 

calculated as a vector sum of dinucleotide geometries (roll, tilt and twist angles) using the 

BEND algorithm (Goodsell & Dickerson, 1994) and expressed as degrees per helical turn 

(10.5°/helical turn = 1°/bp). Experimentally tested curved motifs produce curvature 

values of 5–25°/helical turn, whereas straight motifs give values below 5°/helical turn.  

To analyze sequences upstream of the icsP tss, the program “Clone Manager 9, Basic 

Edition” (Scientific and Educational Software) was used.  Open reading frames (ORFs) 

greater than 50 amino acids were identified using the “ORF search” feature and the 

“Open Reading Frame analysis” feature was used to predict whether ORFs were coding 

regions.  The “Open Reading Frame analysis” feature uses Fickett's TESTCODE 

algorithm (Fickett, 1982) to generate a score that can help to determine whether or not 

an ORF is likely to be a protein coding region and is based on the observed asymmetry 

of base utilization within coding regions.  ORFs with scores over 0.95 are predicted to 

be coding regions.  To predict whether predicted coding regions identified by our search 

were linked to possible promoter sequences, the BPROM program (Softberry) was used.  

This algorithm predicts potential transcription start positions of bacterial genes regulated 

by sigma70 promoters (major E. coli promoter class).  Linear discriminant function 

combines characteristics describing functional motifs and oligonucleotide composition 

of these sites.  BPROM has an accuracy of E. coli promoter recognition of about 80%. 

 

 



 

35 

Site-directed mutagenesis of upstream putative VirB-binding sites.  

 The two upstream putative VirB-binding sites were mutated using site-directed 

mutagenesis by PCR using a two step procedure, as described previously (Lie & Leigh, 

2007) using primers listed in Table 2.  In the first step, the 5’ binding site and the 3’ 

binding site were amplified in two separate PCRs. To amplify the 5’ binding site, a 

reverse oligonucleotide, either mutagenic (W100) or complementary to the wild-type 

sequence of the putative VirB-binding site (W99), was used with a forward primer 

(W98).  To amplify the 3’ binding site a forward primer, either mutagenic (W110) or 

complementary to the natural sequence of the putative VirB-binding site (W101), was 

used with a reverse primer (W89).  These reactions created four products: a 5’ binding 

site with wild-type sequence; a mutated 5’ binding site; a 3’ binding site with wild-type 

sequence and a 3’ mutated binding site.  All PCR products were gel purified and treated 

with Promega T4 DNA polymerase (as per manufacturer’s instructions) to remove 3’ 

overhanging nucleotides.  In the second stage of the procedure, the PCR products were 

ligated together in three different combinations using Promega T4 DNA ligase (as per 

manufacturer’s instructions): wild-type 5’ sequences were ligated to mutagenic 3’ 

sequences, mutated 5’ sequences were ligated to wild-type 3’ sequences, and mutated 5’ 

sequences were ligated to mutated 3’ sequences.  Where necessary, 5' phosphates were 

incorporated during oligonucleotide synthesis (Appendix 1).  The resulting ligations 

were used as template in a second round of PCR using oligonucleotides W89 and W98. 

This PCR allowed the amplification of correctly oriented promoter fragments.  Correctly 

sized PCR products were then gel purified and digested with PstI and BglII.  The 

resulting DNA fragments were cloned into a pHJW20 PstI BglII vector to give pMIC13, 
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pMIC17 and pMIC18.  The sequence of all mutated promoters fragments was confirmed 

after cloning.   

Quantification of icsP promoter activity using the PicsP-lacZ reporter and 

derivatives.  

 To measure promoter activities the PicsP-lacZ fusion plasmids described in this work 

were introduced into S. flexneri and E. coli strains by electroporation.  Activities of the 

icsP promoter constructs were determined by measuring β-galactosidase activity as 

described previously (Wing et al, 2004), using the Miller protocol (Miller, 1972).  

Overnight cultures were diluted 1:100 and grown for 4 to 5 h in either TSB medium (S. 

flexneri) or LB (E. coli) at 37°C, prior to cell lysis.  Routinely, β-galactosidase levels 

were measured in early stationary phase cultures grown from three independent 

transformants because experiments had shown that icsP expression significantly 

increases under these conditions (data not shown).  

2.3 Results and Discussion  

 Identification of sequences required for VirB dependent regulation of icsP 

promoter 

Previous work has demonstrated that VirB regulates an PicsP-lacZ fusion integrated 

into the icsP locus on the Shigella virulence plasmid (Wing et al., 2004).  To identify 

regions upstream of the icsP gene that mediate VirB dependent de-repression, a nested 

set of promoter deletions was created (Fig. 2A) and cloned into a medium-copy-number 

lacZ reporter pHJW20 (Appendix 1) to replace the existing 1,232 bp icsP promoter 

fragment.  This created a set of eight PicsP-lacZ fusions whose upstream limits varied 
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from -1232 to -92 relative to the previously annotated transcription start site of the icsP 

gene (Egile et al, 1997) (Fig. 11A; Appendix 1).  

 Each promoter construct was introduced into wild-type Shigella 2457T and a mutant 

derivative, AWY3 (virB::Tn5), and β-galactosidase production was measured using the 

Miller protocol (Miller, 1972).  Of the eight promoter fragments tested, only one 

displayed a >2-fold increase in the presence of VirB (Fig. 12).  Surprisingly, this was the 

longest promoter fragment (found in pHJW20).  The activity of this promoter fragment 

was 17-fold higher in the presence of VirB than its absence.  This increase was unlikely 

to be caused by sequences in the pACYC184 plasmid backbone, because these  

 

Fig. 11.  Promoter elements of the icsP promoter and schematic representation of the truncated 
promoter series.  (A) Angled arrows represent the icsP transcriptional start site (+1), determined 
previously (Egile et al., 1997). The -10 and -35 hexamers are boxed and shown in bold. The 
translational start site is represented by an open arrow. The truncated promoters are drawn to scale 
and numbers represent the upstream boundary of the icsP promoter, relative to the tss (+1). The 
promoter fragments represented are found in pHJW20, pJS01, pJS02, pDH01, pJS03, pHJW34, 
pHJW35 and pHJW36, respectively. (B) Solid black arrows represent the relative position and 
orientation of the nine putative VirB binding sites identified within the promoter fragments used in 
this work.  In each case, the match to the consensus sequence 5’-(A/G)(A/T)G(G)AAAT-3’ (Tobe et 
al., 1993, Watanabe et al., 1990) is given. 
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sequences would also influence the activity of the other promoter fragments.  

Furthermore, the increase in promoter activity was unlikely to be caused by the creation 

of a new VirB binding site at the boundary of the plasmid backbone and the promoter 

region, because two additional constructs with altered plasmid-promoter boundaries 

(pMIC01 and pMIC02 [Table 1]) were found to have similar activities to those displayed 

by pHJW20.  

The simplest interpretation of these data was that DNA sequences located between 

positions 1232 and 1056 upstream of the icsP transcription start site are required for 

VirB dependent regulation of the icsP promoter.  

 

 

Fig. 12.  Activities of the truncated icsP promoter series in Shigella.  Bars indicate β-
galactosidase expression of the PicsP-lacZ fusions in wild-type S. flexneri (2457T) and an isogenic 
strain lacking virB (AWY3). β-galactosidase activities are expressed in Miller units. Assays were 
run in triplicate and the mean and standard deviations are shown. 
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Identification and site-directed mutagenesis of putative VirB binding sites 

responsible for VirB-dependent regulation of the icsP promoter.  

 Previous analysis of the icsB, spa15 and virA promoters of Shigella sonnei 

established a consensus binding site for VirB (Taniya et al, 2003).  Our analysis of 

sequences upstream of the icsP gene identified nine sites with greater than a 6/7 match 

to the consensus, 5’-(A/G)(A/T)G(G)AAAT-3’ (Fig. 12B; Turner & Dorman, 2007).  

Three of these sites are located between -665 to -351. The location of these sites may 

explain why small and yet significant increases in VirB dependent promoter activity 

were observed in wild-type Shigella flexneri carrying promoter constructs with upstream 

boundaries of -665, -883 and -1056 relative to the icsP transcription start site (+1) (Fig. 

11).  Two other putative VirB binding sites are located immediately downstream of the 

transcription start site.  Although the location of these sites may explain the small 

increase in VirB dependent promoter activity associated with the shortest promoter 

fragment used in our studies, our data suggest that these sites alone play no significant 

role in the presence of upstream promoter sequences. 

 Interestingly, two of the nine sites identified upstream of the icsP gene are located 

between positions -1144 and -1130 and are organized as an inverted repeat (Fig. 11B). 

Since our truncation analysis indicates that sequences between -1232 and -1063 are 

essential for a 17-fold increase in promoter activity in the presence of VirB (Fig. 12), we 

chose to analyze these sites further.  Seven base pair substitutions were made in either,  

 the upstream site (box 2), the downstream site (box 1) or both, using a PCR site-

directed mutagenesis method described by Lie & Leigh (2007) (Appendix 1; Table 1).   
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Each mutated promoter fragment was then introduced into the lacZ reporter plasmid 

pHJW20 to replace the existing wild-type sites the resulting plasmids pMIC13, pMIC17, 

pMIC18, and pHJW20 and a promoterless control, pMIC21 (Table 1) were introduced 

into wild-type Shigella (2457T) and the virB mutant (AWY3) and β-galactosidase levels 

were measured (Table 1). 

 Our data revealed that complete mutagenesis of the upstream binding site (box 2), the 

downstream binding site (box 1) or both, resulted in complete loss of VirB dependent 

regulation of the icsP promoter.  Further more, these results were not an artifact of the 

lacZ reporter constructs, because similar patterns of expression were observed when the 

icsP gene was fused to each of our promoter constructs and IcsP levels were measured 

by Western blotting (data not shown).  These data strongly suggest that VirB regulates 

the icsP promoter from sequences located more than 1 kb upstream of the icsP 

Table 1. Summary of mutations introduced into the two boxes that form the upstream 
inverted repeat and activities of wild-type and mutated icsP promoter fragments 

Fragment description Sequencea β-galactosidase activity b  
  virB+ virB mutant 

 
     WT Box 1 & 2 
 

 
 CGGGGATTTCAGTATGAAATGAAGTA 

 
4291 ± 453 

 
397 ± 12 

     Mutated Box 1 
  CGGGGATTTCAGTCGACCCGGAAGTA 

345 ± 46 378 ± 29 

     Mutated Box 2 
  CGGGGGCCCAGCTATGAAATGAAGTA 

370 ± 65 359 ± 29 

     Mutated Box 1 & 2 
  CGGGGGCCCAGCTCGACCCGGAAGTA 

360 ± 57 371 ± 26 

     Promoterless lacZ  346 ± 70 415 ± 33 
a 5’-3’ DNA sequences of the wild-type and mutated boxes that form the upstream inverted repeat. 
Sequences lie between -1144 and -1130 relative to the annotated tss of icsP (+1;(Egile et al., 1997)). 
Bases in bold indicate those mutated by site-directed mutagenesis.  
b All promoter fragments were fused to lacZ and β-galactosidase activities were measured in wild-type S. 
flexneri (2457T) and the isogenic strain that lacks virB (AWY3).  The parent cloning vector with a 
promoterless lacZ gene was included as a negative control.  β-galactosidase activities are expressed in 
Miller units. Assays were run in triplicate and the mean and standard deviations are shown. 
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transcription start site. To our knowledge, this is the first evidence that VirB can 

influence promoter activity from such distal sites.  

Conserved sequence and location of the two distal VirB binding sites in all known 

Shigella sequences and in EIEC strain HN280.   

 To examine how well conserved DNA sequences located upstream of the icsP 

promoter are among other Shigella strains, species and other enterics, a 2 kb sequence 

upstream of the icsP gene in Shigella flexneri 2457T was subjected to BLAST analysis. 

All known Shigella virulence plasmid sequences and the virulence plasmid of the 

enteroinvasive Escherichia coli (EIEC) strain HN280 contain nearly identical sequences 

(99-100% identity) over the entire 2 kb sequence upstream of the icsP gene.  

Furthermore, the upstream inverted repeat identified by our studies was 100% identical in 

all strains and located in exactly the same position relative to the annotated transcription 

start site identified in S. flexneri.  These findings strongly suggest that icsP genes found 

in all Shigella spp. and the EIEC strain HN280 are likely to be regulated by VirB from a 

biding site located more than 1 kb upstream of the gene. 

VirB is structurally homologous to plasmid partitioning proteins, which can 

influence transcription from distances of several kilobases. 

While it is unusual for transcription factors to influence transcription from 

distances greater than 200 bp upstream or downstream of the transcription start site in 

bacteria (Balleza et al., 2009, Collado-Vides et al, 1991), some examples exist.  For 

example, the enhancer of the Bacillus subtilis rocG gene is located 1.5 kb downstream 

of the promoter and, beyond the end of the rocG coding region (Belitsky et al., 1999) 

and the two NtrC binding sites required for transcriptional activation of E. coli σ54-
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regulated glnA promoter can still function when placed as far as 3 kb from the promoter 

(Reitzer & Magasanik, 1986).  Furthermore, bacterial plasmid partitioning factors, while 

not typically considered transcription factors, have also been shown to silence the 

promoters of genes in the vicinity of their cis-acting binding sites from over distances of 

several kilobase pairs (Kim & Wang, 1999, Rine, 1999, Rodionov et al, 1999, Rodionov 

& Yarmolinsky, 2004).  One of these proteins, the P1 ParB protein, displays structural 

homology to VirB and has bridging capabilities: the ability to interact with other ParB 

monomers located at binding sites further up or downstream. It is therefore possible that 

the other seven sites with close matches to the VirB consensus binding site play an 

important role in bridging by VirB and the resulting DNA topology is central to the 

alleviation of H-NS dependent repression of the icsP promoter, although this needs to be 

tested. 

In summary, although transcription factors typically bind to sequences located 

within 200 bp upstream or downstream of the transcription start site (Balleza et al, 2009, 

Collado-Vides et al, 1991), here we provide strong evidence that VirB has the capacity 

to alleviate H-NS dependent repression of the icsP promoter from sites located over 1 kb 

upstream of the transcription start site.  This raises two important questions.  (i) Are 

other Shigella virulence plasmid genes regulated from remote VirB binding sites?  (ii) Is 

it common for transcriptional anti-silencing mechanisms to employ distal regulator 

binding sites?  Future studies will address these questions and elucidate the molecular 

mechanism of H-NS dependent repression and VirB dependent de-repression of the icsP 

promoter.  
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CHAPTER 3 

TRANSCRIPTIONAL SILENCING AND ANTI-SILENCING OF THE ICSP 

PROMOTER OF SHIGELLA FLEXNERI: REMOTE REGULATION  

BY H-NS AND VIRB 

Abstract 

 In the bacterial pathogen Shigella flexneri, many genes encoded by the large 

virulence plasmid are repressed by the nucleoid structuring protein H-NS and de-

repressed by the major virulence gene activator VirB.  One example is the icsP gene, 

which encodes an outer membrane protease.   In this study, we demonstrate that 

sequences located over 665 bp upstream of the annotated transcription start site (+1) are 

needed for complete H-NS-mediated repression of the icsP promoter.  Using 

electrophoretic mobility shift assays (EMSAs), we show that H-NS binds directly to 

DNA sequences located both upstream of -665 and downstream of -213 and that both of 

these regions contain sequences predicted to display high levels of intrinsic curvature.  

These data support a model where H-NS docked at remote sites may act in concert with 

H-NS docked at promoter proximal sequences to mediate H-NS-dependent repression of 

the icsP promoter. While we again demonstrate that VirB functions solely to de-repress 

the promoter, our EMSA data indicate that VirB and H-NS are capable of binding 

simultaneously to the full intergenic region (1232 bp) that lies immediately upstream of 

the icsP gene.  This suggests that VirB may function to relocate H-NS, rather than 

causing H-NS to dissociate from the DNA upstream of the icsP gene. Our findings 

contribute to our understanding of transcriptional silencing and anti-silencing 

mechanisms that control virulence gene expression in Shigella and other enteric 
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pathogens and raise the possibility that other bacterial promoters may be regulated from 

remote transcription factor binding sites. 

 Authors: Dustin J. Harrison, Karen M. Levy, Amber J. Howerton, Christopher T. 

Hensley and Helen J. Wing 

 We thank Dr. Eric Anderson and Dr. Martin Roop from East Carolina University for 
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3.1 Introduction 

Shigella species are gram-negative intracellular pathogens that cause bacillary 

dysentery in humans.  Shigella infections are responsible for approximately 164 million 

infections each year resulting in 1.1 million deaths, most of these occur in developing 

countries and in children less than 5 years old (Kotloff et al., 1999, Lee et al., 2005, Li et 

al., 2009).  All four Shigella species carry a large (230 kbp) virulence plasmid. Many 

genes encoded by these plasmids are under the transcriptional control of the histone-like 

nucleoid structuring protein (H-NS) and the major virulence gene activator VirB (Adler 

et al., 1989, Berlutti et al., 1998). 

 H-NS is a nucleoid structuring protein that is well characterized as a silencer of 

bacterial transcription (Ali Azam et al., 1999, Dorman, 2004).  In enteric pathogens, H-

NS silences the transcription of many virulence genes, which have been acquired by 

horizontal gene transfer (Dorman, 2009a).  Silencing of newly acquired genes by H-NS is 

thought to protect the bacterium from potentially deleterious effects of transcribing genes 

that may compromise their fitness (Navarre et al., 2006) until they can be integrated into 
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existing regulatory networks (Navarre et al., 2007, Dorman, 2009b).  Among the enterics, 

horizontally acquired genes are frequently AT rich. Such sequences typically display high 

levels of intrinsic curvature. Previous investigations indicated that H-NS is a direct, non-

specific DNA binding protein with an affinity for DNA with high intrinsic curvature 

(Spassky et al., 1984, Zhang et al., 1996, Zuber et al., 1994, Williams et al., 1996, 

Williams & Rimsky, 1997, Yamada et al., 1991, Zuber et al., 1994) which may explain, 

at least in part, why H-NS is the protein of choice for transcriptional silencing in these 

bacteria. More recent work at the E. coli proU promoter (Lang et al., 2007) has led to the 

description of a high affinity H-NS binding site, however it remains unclear whether this 

sequence is found in all H-NS regulated promoters, or whether other sequences can 

contribute to H-NS binding. Regardless, DNase I protection assays have demonstrated 

that H-NS oligomerizes along AT rich sections of bacterial promoters (Rimsky et al., 

2001, Turner & Dorman, 2007). This can lead to the formation of H-NS-DNA-H-NS 

bridges, which have been visualized using atomic force microscopy as looped DNA 

structures constrained by H-NS (Maurer et al., 2009).  These structures may involve long 

stretches of DNA, extending over 1 kb (Dame et al., 2000, Dame et al., 2005, Dame et 

al., 2006, Maurer et al., 2009), and have been documented as playing important roles in 

promoter silencing (Bouffartigues et al., 2007, De la Cruz et al., 2009, Dorman, 2004, 

Dorman, 2009a, Fang & Rimsky, 2008, Navarre et al., 2006, Stoebel et al., 2008). 

Disruption of these H-NS:DNA complexes by other DNA-binding proteins can allow 

transcriptional de-repression; a process coined anti-silencing (Fang & Rimsky, 2008, 

Navarre et al., 2007, Stoebel et al., 2008).  
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 The virulence gene activator VirB is encoded by the Shigella virulence plasmid and 

its expression is regulated by another transcription factor VirF (Adler et al., 1989).  At 

the non-permissive temperature of 30 ˚C many genes encoded by the virulence plasmid 

are repressed by H-NS (Beloin & Dorman, 2003, Hromockyj et al., 1992, Porter & 

Dorman, 1994).  Upon a switch to 37 °C, H-NS dissociates from the virF promoter 

leading to the production of the virulence gene regulator, VirF (Adler et al., 1989).  VirF 

relieves H-NS-dependent repression of the virB promoter (Tobe et al., 1993, Watanabe et 

al., 1990) and subsequently VirB alleviates H-NS dependent repression of many 

virulence plasmid genes, including virA, icsP, ospB, phoN2 and those encoding the type 

III secretion system that mediate host cell invasion; ipa, mxi and spa (Beloin & Dorman, 

2003, Berlutti et al., 1998, Dorman, 2006, Hromockyj et al., 1992, Maurelli et al., 1984a, 

Maurelli et al., 1984b, Nicoletti et al., 2008, Porter & Dorman, 1994, Porter et al., 1998, 

Prosseda et al., 1998, Sasakawa et al., 1993, Tobe et al., 1991, Tobe et al., 1993, Tobe et 

al., 1995).  Consequently, transcriptional de-repression of virulence genes by VirF and 

VirB is central to the pathogenicity of Shigella. Since VirF and VirB both function to 

antagonize H-NS mediated repression of virulence genes, both proteins can be considered 

transcriptional anti-silencing proteins.   

 The mechanism underlying transcriptional silencing/anti-silencing has been proposed 

to be a straightforward molecular antagonism involving competition between the 

silencing protein and the anti-silencing protein for their overlapping cognate DNA 

binding sequences, which are usually located in the immediate vicinity of the promoter. 

Typically this competition results in the dissociation of the silencing molecule from the 

DNA (Fang & Rimsky, 2008, Navarre et al., 2007). Examples of this kind of 



 

47 

straightforward transcriptional silencing/anti-silencing exist at a variety of bacterial 

promoters, e.g. SlyA counters H-NS silencing of the hemolysin gene hlyE in E. coli 

through direct competition for the DNA, RovA from Yersinia counters silencing of the 

invasin inv, and the urease gene activator UreR of Proteus mirabilis causes H-NS to 

dissociate from DNA located between the divergently transcribed ureR and ureD genes 

(Coker et al., 2000, Ellison & Miller, 2006a, Ellison & Miller, 2006b, Heroven et al., 

2004, Heroven et al., 2007, Lithgow et al., 2007, Poore & Mobley, 2003).  In contrast, at 

some bacterial promoters the anti-silencing proteins function to alter the DNA topology 

in a way that no longer allows H-NS to constrain transcription.  For example, LeuO 

counters silencing of the quiescent porin ompS1 in Salmonella by altering the topology of 

the ompS1 promoter region (De la Cruz et al., 2007, De la Cruz et al., 2009) and in 

Shigella flexneri, VirB antagonizes H-NS by affecting the structure of the icsB promoter 

(Turner & Dorman, 2007).  

 Our previous work shows that the horizontally acquired, monocistronic icsP gene, 

located on the Shigella virulence plasmid, is repressed by H-NS and de-repressed by 

VirB. We have demonstrated that the role of VirB is to solely alleviate transcriptional 

repression of the icsP promoter, which is mediated by H-NS (Castellanos et al, 2009, 

Wing et al., 2004).  Surprisingly, two putative VirB binding sites, organized as an 

inverted repeat and located over 1 kb upstream of the annotated transcription start site are 

indispensible for the de-repression of the promoter (Castellanos et al., 2009).  These sites 

lie in a designated 1.2 kb intergenic region (Jin et al, 2002); Reference Sequence: 

NC_004851.1). Currently, it remains unclear which DNA sequences are required for the 

H-NS dependent repression of icsP.  Furthermore, although our previous work strongly 
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suggests VirB binds directly to this upstream intergenic region, this has never been 

categorically demonstrated.   

 In this study, we further examine the role that H-NS and VirB play in the regulation 

of the icsP promoter in an attempt to discern the molecular mechanism responsible.  Our 

results suggest that both H-NS and VirB regulate the activity of the icsP promoter from 

remotely located sequences. We propose a model to explain how silencing and anti-

silencing of the icsP promoter is achieved by DNA binding-proteins binding to remote 

sequence elements. We envisage that an improved understanding of H-NS and VirB 

dependent regulation of the icsP promoter will provide insight into bacterial regulation of 

transcription from remote sites.   

3.2 Materials and Methods 

Bacterial strains and plasmids.   

 The bacterial strains and plasmids used in the present study are given in Appendix 1.  

Bacteria were grown routinely at 37 °C in Luria-Bertani broth, with aeration, or on LB 

agar (LB broth containing 1.5 % [wt/vol] agar). Antibiotics were added at the following 

final concentrations: ampicillin, 100 µg ml-1; chloramphenicol, 25 µg ml-1; kanamycin, 

50 µg ml-1; and tetracycline, 12.5 µg ml-1. 

Construction of the PicsP-lacZ reporter plasmid and truncated promoter fragments.  

 The PicsP-lacZ reporter plasmid pHJW20 was used as the basis for this work 

(Castellanos et al., 2009, Wing et al., 2004); Table 1).  pHJW20 carries 1232 bp 

upstream of the annotated transcription start site of the icsP promoter, the first 48 bp of 

the icsP coding region cloned upstream of a translation stop site, and a promoterless lacZ 

gene, so that expression of lacZ is directly regulated by the icsP promoter. Promoter 
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fragments of 1056 bp, 893 bp, 665 bp, 351 bp, 254 bp, 150 bp, and 92 bp, were PCR 

amplified and cloned into pHJW20 to replace the 1232 bp icsP promoter (Castellanos et 

al., 2009).  This created a nested set of PicsP-lacZ fusion plasmids that could be used to 

identify regions of the icsP promoter needed for H-NS and VirB-dependent regulation. 

All cloned promoters have been sequenced and are identical to the sequence reported for 

pCP301 (S. flexneri serotype 2a: NCBI Reference Sequence: NC_004851.1). All 

plasmids are described in Appendix 1.   

Quantification of icsP promoter activity using the PicsP-lacZ reporter and 

derivatives.  

 Activity of the icsP promoter was determined by measuring β-galactosidase activity 

as described previously (Wing et al., 2004) using the Miller protocol (Miller, 1972), in 

strains carrying pHJW20 or derivatives. Freshly transformed cells were back-diluted 

1:100 in LB and grown at 37 °C for 4 to 5 h to early stationary phase prior to cell lysis, 

because icsP expression is maximal under these conditions (Wing et al., 2004).  When 

appropriate, to examine the effect of expressing virB from the pBAD vectors, cells were 

instead back-diluted 1:100 in 5 ml of LB medium containing 0.2% (wt/vol) glucose and, 

after 4 to 5 h were harvested, washed with an equivalent volume of LB medium and 

diluted 5-fold into LB medium containing either 0.08% (wt/vol) L-arabinose.  Cultures 

were then grown for an additional 2 h before being harvested. All assays were performed 

in triplicate on three separate occasions.   

In silico analyses of the icsP promoter and upstream sequences.   

 The MUTACURVE server (http://132.248.32.45/cgi-bin/mutacurv.cgi) was used to 

predict regions of intrinsic DNA curvature.  This program evaluates the amplitude of 
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intrinsic curvature for every nucleotide in a given sequence using the algorithm of 

Goodsell & Dickerson (1994), with the addition of Satchwell’s contribution matrices for 

rotational and spatial displacements (Satchwell et al., 1986).  These algorithms have been 

routinely used by other investigators to identify putative HNS binding sites in DNA 

(Beloin & Dorman, 2003, De la Cruz et al., 2009, Flores-Valdez et al, 2003,Will & Frost, 

2006). 

Construction of inducible plasmids and purification of the VirB and H-NS proteins.  

 The virB gene was digested from pATM324 using HindIII and NcoI restriction 

enzymes and gel purified.  The primers W38 and W39 were used to amplify the virB 

gene which was then ligated into pQE-60 (Qiagen) before electroporation into E. coli 

M15 pREP4 creating a C-terminal His-tagged VirB in an inducible plasmid, pAJH01.  A 

similar strategy was used to create a C-terminal His-tagged H-NS in an inducible 

plasmid, pCTH01.  Briefly, the primers W134 and W137 (Appendix 1) were used to 

amplify the hns gene from Shigella flexneri serotype 2a with NcoI and BglII sites for 

cloning into pQE-60.   

 His-tagged-VirB and His-tagged-H-NS proteins were overproduced from plasmid 

pAJH01, and pCTH01 respectively.  Proteins were expressed in the E. coli strain M15 

carrying the plasmid pREP4.  The expression of the C-terminally His-tagged proteins 

were induced in 500 ml cultures growing exponentially with 1mM IPTG (isopropyl-β-

thiogalactopyranoside). Two hours post-induction, the cells were harvested and frozen at 

80 °C overnight.  The cell pellet was thawed on ice and resuspended in lysis buffer (40 

mM Tris-base [pH 8.93], and 80 mM NaCl). Cells were lysed by sonication, and cellular 

debris was pelleted by centrifugation at 10 000 x g at 4 °C.  Cell lysates were applied to 
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Ni-NTA columns (Qiagen) pre-equilibrated with equilibration buffer (40 mM Tris-base 

[pH 8.93], 80 mM NaCl, 10 mM imidazole).  The columns were then washed with 10 bed 

volumes of wash buffer (equilibration buffer with 20 mM imidazole) prior to elution of 

the proteins by the addition of 2.5 bed volume of elution buffer (equilibration buffer with 

250 mM imidazole).  Eluates were analyzed by SDS-PAGE followed by Coomassie 

staining. Purified proteins were dialyzed in equilibration buffer overnight at room 

temperature. Protein concentrations were determined using Bradford Assays.  The hexa-

his tag was not found interfere with VirB expression or activity, because His-tagged VirB 

was observed to restore IcsP expression to wild type levels in a strain lacking virB in vivo 

(data not shown). Furthermore, previous studies using an identical His-tag H-NS fusion 

protein, produced in a manner similar to that described above, was shown to retain 

normal function of H-NS in assays (Williams & Rimsky, 1997).  

Electrophoretic Mobility Shift Assays (EMSAs).   

 The upstream intergenic region of the icsP promoter (1232 bp) was used as a template 

to amplify six, overlapping smaller fragments, ranging from 252 bp to 358 bp by PCR 

(Appendix 1).  A positive control promoter fragment, icsB, was amplified by PCR using 

the Shigella flexneri virulence plasmid as a template, a negative control fragment, pstS, 

was amplified from the E. coli genome (Appendix 1) and a non-specific competitor, a 

147 bp fragment of DNA from pACYC184 was amplified from pACYC184 by PCR. The 

full-length upstream intergenic region of the icsP promoter (icsP’) was also used in 

EMSA (generated using primers W63 and W149), as well as a 1011 bp negative control 

fragment of the E. coli pstS gene (pstS’) (Appendix 1). 100 nM of each DNA fragment 

was incubated with increasing concentrations of purified protein, VirB, H-NS, or both (0 
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to 920 nM) for 30 minutes at 30 °C for both VirB and H-NS, in a 20 µl reaction mixture 

containing 40 mM Tris-base (pH 8.93), 80 mM NaCl, 1 mM EDTA, 1 mM DTT, 

200 ng ml-1 bovine serum albumin (BSA), 200 nM of competitor p184 DNA and 10 % 

glycerol.  DNA concentrations were measured using the NanoView (GE).  The protein-

DNA complexes were resolved by electrophoresis in 1.5 % TBE agarose gels for 4 h at 

room temperature at 60 V constant.  Following electrophoresis, the agarose gels were 

stained with ethidium bromide (1 µg ml-1) and visualized using a Typhoon 9410 

(Amersham) variable mode imager.  EMSAs were performed a minimum of three times 

and representative results are shown. 

3.3 Results 

Identification of regions necessary for the H-NS dependent repression of the icsP 

promoter 

 Although we have demonstrated that DNA sequences located over 1 kb upstream of 

the annotated icsP transcription start site are required for VirB-dependent de-repression 

Fig. 13.  Schematic of the 1.2 kb region located upstream of the icsP gene. Relative positions and 
orientation of putative VirB-binding sites are shown (Castellanos et al., 2009). Fragments of 
different lengths represents regions DNA cloned upstream of our lacZ reporter in our truncation 
series.  Coordinates are given in bp and relative to the annotated transcription start site 
(characterized by Egile et al., 1997). 
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of the icsP promoter (Castellanos et al., 2009), little is known about the sequences 

required for H-NS-dependent repression of the icsP promoter.  To identify regions of the 

icsP promoter required for H-NS-dependent repression we used a nested set of PicsP-

lacZ fusion plasmids (constructed previously in Castellanos et al., 2009).  The promoters 

contained within this PicsP-lacZ fusion series share the same downstream boundary, but 

their upstream boundaries differ, ranging from -1232 to -351 with respect to the 

annotated transcription start site (+1) (Egile et al., 1997) (Fig.13). 

 Each reporter plasmid was transformed into the E. coli strain MC4100 and an 

isogenic strain lacking hns (MC4100 hns).  These strains were used to avoid interference 

arising from the fact that in Shigella virB is directly regulated by H-NS and the fact that 

Shigella hns mutants are notoriously unstable (Maurelli, personal comm.).  A similar 

strategy has been used by others to study the regulation of other Shigella promoters by H-

NS (Beloin & Dorman, 2003).  A plasmid carrying an inducible copy of the virB gene 

was next introduced into each of the E. coli strains (neither strain expresses virB 

naturally) so that the effect of H-NS on the icsP promoter could be measured in the 

presence and absence of VirB.   

 The results of the β-galactosidase assay are shown in Fig. 14.   In the wild type 

background, the four longest promoter fragments had significantly lower activity than in 

the hns mutant. These data suggest sequences upstream of -351 are sufficient for H-NS-

dependent repression, although sequences upstream of -665 are required for full 

repression. Induction of VirB in the wild-type background increased the activity of the 

longest promoter by 10 fold.  This is consistent with data obtained in a Shigella 

background (Castellanos et al., 2009) and demonstrates that VirB alleviates H-NS 
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dependent repression of the icsP promoter when sequences located over 1 kb upstream of 

the annotated transcription start site are present. In the hns mutant background, all 

constructs displayed activity higher than 1000 units, regardless of the whether virB was 

induced or not. This indicates that H-NS mediates repression of the four longest 

constructs in our promoter series and that VirB functions solely to relieve H-NS 

dependent repression at the longest construct. Similar observations were made in 

previous studies (Wing et al., 2004, Castellanos et al., 2009). 

 

 Surprisingly, induction of VirB in the wild type background has a repressive effect on 

the activity of the two shortest promoter constructs examined, -665 bp and -351 bp. It is 

not clear whether VirB mediates this effect directly, although putative VirB binding sites 

have been identified within these fragments (Fig. 4; Castellanos et al., 2009).  

Fig. 14.  Activities of the truncated icsP promoter fragments in the presence and absence of H-NS 
and /or VirB.  Constructs are labeled according to the upstream boundary from the transcription start 
site.  Bars indicate β-galactosidase expression of the PicsP-lacZ fusions in wild type E. coli MC4100 and 
an isogenic strain lacking hns (MC4100 hns::Knr) under inducing and non-inducing conditions for virB 
which is included on an inducible plasmid.  β -galactosidase activities are expressed in Miller units.  
Assays were run in triplicate and error bars represent the mean and standard deviations. 
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Furthermore, in the context of the shortest promoter construct (-351), the typical role of 

H-NS and VirB is reversed; VirB still functions to antagonize H-NS, but now functions 

to alleviate H-NS-dependent activation. These data demonstrate that H-NS and VirB are 

true molecular antagonists, which, under the right circumstances, can reverse their roles. 

This finding provides valuable insight into the molecular mechanisms of transcriptional 

silencing and anti-silencing in bacteria.  In vitro transcription assays will be performed to 

test the hypothesis that H-NS increases the activity of the short promoter constructs.  

 Taken together, these data demonstrate that sequences located upstream of -351 are 

needed for H-NS-dependent repression of the icsP promoter. In the absence of these 

upstream sequences, sequences downstream of 351 permit the H-NS-dependent 

activation of the icsP promoter. Although H-NS-dependent repression and activation of 

these truncated icsP promoter fragments is likely mediated by H-NS binding directly to 

DNA sequences located upstream of -351 and downstream of -351, respectively, this 

needed testing. 

H-NS binds to two 

discrete regions upstream 

of the icsP gene 

 In order to determine 

whether H-NS binds to 

DNA located upstream of 

the icsP gene, 

electrophoretic mobility 

shift assays (EMSAs) were 

Fig. 15.  Schematic showing the 6 target fragments used in the 
EMSAs.  Coordinates of each target fragment are given relative 
to the transcription start site.  Inverted triangles denote the 
position of a peak of high intrinsic curvature predicted using the 
MUTACURVE program. 
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used. The full intergenic region that lies upstream of the icsP gene (1232 bp) was divided 

up into six near equal length fragments and each of these fragments were used in EMSAs 

with purified His-tagged H-NS (Fig. 15).  

For these experiments, a DNA fragment containing sequences that lie between the 

divergent icsB and ipgD genes of Shigella flexneri was used as a positive control (icsB), 

because H-NS has been shown to bind to this promoter region by others (Turner & 

Dorman, 2007) and an internal fragment of the E .coli pstS gene was used as a negative 

control (pstS). Each DNA fragment was incubated with increasing concentrations of 

purified His-tagged H-NS in the presence of a 147 bp fragment, which had been 

amplified from the plasmid pACYC184 and which served as non-specific competitor 

DNA (200 nM). DNA and DNA:protein complexes were then resolved by agarose gel 

electrophoresis.   

Fig. 16.  H-NS binding to discrete regions within the icsP upstream intergenic region.  EMSAs were 
conducted using 100 nM of each fragment shown in Fig. 3 and increasing concentrations of purified His-
tagged H-NS.  The concentrations of purified protein as well as the target fragment used are given above 
each lane.  In all cases, the lower band is 200 nM of competitor DNA generated from pACYC184.  
Positive control, and negative controls are labeled icsB and  pstS respectively. 0=no protein, 1=120 nM, 
2=230 nM, 3=460 nM,4=920 nM protein.  
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Based on previous in vitro studies with H-NS and H-NS-regulated promoters, and due to 

the ability of H-NS to oligomerize along DNA, EMSAs performed with H-NS often do 

not appear as discrete shifted bands, but are more diffuse (Azam & Ishihama, 1999, 

Doyle et al., 2007).  Despite this, we fully expected that some of the six DNA fragments 

would harbor regions that would interact with H-NS at lower concentrations than others. 

Our results show that H-NS binds to target fragments, T6, T5, T4, T3 and T1, with T5 

and T4 shifting at the lowest concentration of protein, 120 nM (Fig. 16).  The shift of T1 

is apparent after incubation with 230 nM of protein while T6 and T3 only shift after 

incubation with H-NS concentrations of 460 nM.  In contrast, T2 fails to shift in the 

presence of H-NS even at high concentrations of H-NS protein (920 nM).  In each case, 

H-NS binding to the icsP promoter is specific as evidenced by the uniform presence of 

free non-specific competitor DNA in all lanes.   

 The DNA fragments that shift with the lowest concentration of H-NS protein, T5 and 

T4, contain sequences located between -1058 to -523 relative to the transcription start 

site. This region is present in all constructs that displayed full H-NS-dependent repression 

of the icsP promoter in our previous in vivo experiments (Fig 15; promoters with 

upstream boundaries of -1056, -893, and -665 all contain sequences contained within 

target T5 and T4).  These data support our hypothesis that H-NS directly binds to the icsP 

upstream intergenic region to mediate H-NS dependent repression. Furthermore, T1 also 

shifted with relatively low concentration of H-NS. This fragment contains sequences 

located between 213 and +24 relative to the transcription start site. The binding of H-NS 

to this region of DNA may explain the H-NS-dependent increase in icsP promoter 

activity observed at the shortest promoter construct in our in vivo assays, although this 
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still needs to be tested.  Also, future studies using DNase I footprint analyses, described 

in Chapter 4, will enhance our understanding of the nature of H-NS binding to these 

DNA target sequences.   

Regions bound by H-NS are predicted to display high levels of intrinsic curvature 

 H-NS is well documented to bind preferentially to DNA that displays high intrinsic 

curvature (Dame et al., 2000, Dorman, 2006, Rimsky et al., 2001). To determine whether 

regions lying upstream of the icsP gene are likely to be intrinsically curved, in silico 

analysis of the icsP promoter was performed using the MUTACURVE program.  Based 

on these analyses, five regions were found to display curvature values ≥7°/helical turn. 

Since experimentally tested curved motifs produce curvature values of 5–25°/helical turn, 

whereas straight motifs give values below 5°/helical turn, our findings are consistent with 

these five regions being curved and potentially binding H-NS.  

 Four of the regions predicted to be intrinsically curved lie upstream of -351 (at 

positions -935, -842, -663, -435; data not shown; inverted triangles Fig. 15).  In our in 

vivo assays this DNA was required for the H-NS dependent repression of the icsP 

promoter (Fig. 15).  Furthermore, H-NS bound specifically to this DNA in our EMSAs 

(Fig. 16).  A fifth region of predicted curvature was found to lie around the transcription 

start site itself.  This may explain why H-NS interacts directly with target 1 in our 

EMSAs (Fig. 16) and why this region mediates H-NS dependent activation of the icsP 

promoter in our β-galactosidase assays (Fig 14).  

 The finding that H-NS binds specifically to regions upstream of the icsP gene that are 

predicted to be intrinsically curved is consistent with the previously reports that H-NS 

display affinity for DNA sequences with high intrinsic curvature (Azam & Ishihama, 
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1999, Badaut et al, 2002, Beloin & Dorman, 2003, Berlutti et al., 1998, Bloch et al., 

2003, Bouffartigues et al., 2007, Corcoran & Dorman, 2009, Dorman & Kane, 2009, 

Noom et al, 2007, Dame et al., 2000, Dame et al., 2005, Dame et al., 2006, De la Cruz et 

al., 2007, De la Cruz et al., 2009, Rimsky et al., 2001, Rimsky, 2004, Turner & Dorman, 

2007). Although, more recent work at the proU promoter of E. coli has identified a 10 bp 

sequence which binds H-NS with high-affinity (Lang et al., 2007), a rudimentary search 

for such a sequence, within the upstream intergenic region of icsP to 100 bp downstream 

of the tss, yielded no good matches.   

 Preliminary experiments designed to test the curvature of these 5 regions, by 

electrophoresis in acrylamide gels at room temperature and 4 °C (curved DNA displays 

anomalous migration at 4 °C), suggest that these regions are indeed curved (k values all 

greater than 1 [k value = ratio of the apparent size of a DNA fragment/ true size of a 

DNA fragment; k ≥1 = curved DNA]), however, this needs repeated (data not shown; De 

la Cruz et al., 2009, Prosseda et al., 2004). 

VirB binds to the intergenic region that lies upstream of the icsP gene  

 Our previous studies revealed that sequences located 1 kb away from the annotated 

transcription start site are absolutely required for the VirB dependent regulation of icsP 

activity (Castellanos et al., 2009). It remains unclear, however whether VirB binds 

directly to the icsP promoter or mediates is effect indirectly through another VirB-

regulated protein.  To test this, EMSAs using purified His-tagged VirB protein were used.  
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 The full upstream intergenic region of the icsP promoter (icsP’; 1232 bp) was 

incubated with increasing concentrations of purified His-tagged VirB.  Again, an internal 

fragment of the E. coli pstS gene was used as a negative control for these experiments, 

but a longer fragment (1011 bp) was used to mirror the increased length of the fragment 

of interest.  As previously described, a 147 bp fragment amplified from the plasmid 

pACYC184 (p184; 200 nM) was included in each reaction as a non-specific competitor 

DNA and DNA:protein complexes were resolved by agarose gel electrophoresis.  

 Our data show that a DNA fragment amplified from the entire intergenic region (1232 

bp) located upstream of the icsP gene, was retarded by 230 nM of VirB, with complete 

retardation after incubation with 460 nM of VirB (Fig. 17a).  The binding of VirB to this 

DNA was specific at concentrations between 230-460 nM, because VirB does not bind to 

the non-specific competitor DNA p184 nor the negative control fragment pstS’ at these 

Fig. 17. VirB and H-NS binding of the full length icsP upstream intergenic region.  EMSA results of 
the long, >1 kb, DNA fragments.  a) shows the shift the full length icsP upstream intergenic region 
(icsP’), compared to the negative control, the 1011 bp fragment of the E. coli pstS (pstS’),  b) shows H-
NS the shift of the full length icsP upstream intergenic region (icsP’), compared to the negative control.  
The concentrations (nM) of purified protein are given above each lane with the identity of the target given 
below.  In all cases the lower band represents 200 nM of non-specific competitor DNA derived from 
pACYC184. 
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concentrations. Some non-specific binding to the pstS’ fragment was observed at VirB 

concentrations above 460 nM, however.   

 Although the VirB-dependent shift of the upstream intergenic region appears as a 

smear in these EMSAs, this appears to be a characteristic of VirB:DNA interaction in 

vitro, because Turner & Dorman (2007) reported similar observations when studying 

VirB:DNA  interactions with the Shigella icsB promoter by EMSAs.  Furthermore, 

although the magnitude of the shift is not as dramatic as commonly seen in EMSAs using 

DNA fragment of approximately 100-300 bp, it should be remembered that the DNA 

probe in these experiments much larger.  It is likely that this accounts for the moderate 

shift observed.  Regardless, there is a specific loss of free icsP’ probe DNA with 

increasing concentrations of protein.  We therefore conclude that VirB binds directly to 

the 1.2 kb region that lies immediately upstream of the icsP promoter, and this binding is 

likely required for the VirB-dependent regulation of the icsP promoter.   

H-NS does not bind to discrete regions upstream of the icsP gene cooperatively  

 Both our in vivo and in vitro data strongly suggests that H-NS binds to two discrete 

regions upstream of the icsP gene (upstream of -351 and downstream of -213). We next 

wanted to determine whether H-NS binds cooperatively to these regions when these 

regions are juxtaposed in the context of the whole upstream intergenic region. If so, we 

predicted that lower concentrations of H-NS would be required to bind the whole region 

upstream of the icsP gene than fragments of it.  

 To test this the full length upstream intergenic region (1232 bp; icsP’) and the 

negative control fragment (1011 bp internal to the pstS gene; pstS’) were incubated with 

increasing concentrations of purified His-tagged H-NS protein and then resolved by 
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agarose gel electrophoresis.  Our results show that again H-NS binds to the upstream 

intergenic region and not to the negative control or the non-specific competitor (Fig. 

17b).  The H-NS dependent shift of the icsP’ fragment begins at 230 nM of protein with 

near complete retardation of the DNA probe by 920 nM.  Furthermore the shift observed 

with the full upstream intergenic region, occurs at approximately the same concentration 

(230 nM) as the shift observed when some of the short DNA fragments were incubated 

with H-NS (Fig. 16).  These data suggest that H-NS binds to the full length icsP upstream 

intergenic region as efficiently as it binds to some of the smaller DNA fragments used in 

our previous EMSA experiment, but not better.  This indicates that H-NS binding to the 

entire intergenic region upstream of the icsP gene does not occur cooperatively, at least 

in vitro. 

H-NS and VirB bind simultaneously to DNA located upstream of the icsP gene in 

vitro 

 Our current understanding of the mechanism of silencing/anti-silencing at the icsP 

promoter involves H-NS binding to regions of DNA with high intrinsic curvature and 

VirB antagonizing H-NS-DNA-H-NS bridges, allowing transcription to occur.  This 

understanding is based on work conducted by others, which has examined the interaction 

of H-NS with other DNA binding proteins (De la Cruz et al., 2007, Hulbert & Taylor, 

2002, Huo et al, 2009).  What remains unclear about this mechanism of transcriptional 

regulation is whether VirB causes H-NS to dissociate from the DNA, or whether VirB 

simply displaces H-NS, resulting in both proteins binding simultaneously to the DNA.  

To shed light on the mechanism of transcriptional silencing and anti-silencing at the icsP 
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promoter, we chose to study whether VirB and H-NS interacts simultaneously with the 

DNA using EMSAs.   

 The full upstream intergenic region (icsP’; 1232 bp) and our negative control (1011 

bp; pstS’) were first incubated with VirB alone (460 nM) or H-NS alone (1.8 µM). In the 

second part of the experiment, the icsP’ DNA fragment and the negative control pstS’ 

was pre-incubated with 1.8 µM of H-NS before the addition of increasing concentrations 

of VirB (120, 240 & 460 nM).  

Fig. 18.  VirB and H-NS binding of the icsP upstream intergenic region in vitro.  EMSA results 
using the full length icsP’ and pstS’ are shown.  Lanes 2 and 8 contain 460 nM purified VirB. Lanes 3 
and 9 contain 1.8 µM purified H-NS.  Lanes 4-6 and 10-12 were pre-loaded with 1.8 µM H-NS before 
increasing concentrations of VirB, 120 nM, 230 nM, and 460 nM, were added.  The lower band is 200 
nM of competitor DNA generated from pACYC184. 
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 As predicted, when VirB or H-NS were incubated independently with the DNA 

fragments (Fig. 18; lanes 2 & 8, 3 & 9), the icsP’ fragment alone was retarded in the gel 

matrix indicating the formation of specific nucleoprotein complex.  This is consistent 

with our previous observations (Fig. 17a & b).  Interestingly though, when DNA 

fragments were pre-loaded with H-NS and then incubated with 460 nM of VirB (Fig. 9, 

lanes 6 & 9), DNA-protein complexes formed on the icsP’ fragment that migrate slower  

than complexes formed by each protein individually. These data suggest that under these 

experimental conditions, VirB and H-NS simultaneously bind to the icsP’ DNA 

fragment. This could occur if VirB is displacing H-NS along the DNA or reorganizing 

the nucleoprotein complex, rather than causing the dissociation of H-NS from the DNA.  

Although it is likely that both proteins have remained associated with the DNA, future 

experiments will detect whether both protein species are present in the higher molecular 

weight complex by using mass spectroscopy, and immunodetection.  

3.4 Discussion 

 Nucleoid structuring proteins play important roles in gene silencing in many bacterial 

species (Azam & Ishihama, 1999).  Gene silencing in bacteria usually involves the 

formation of a nucleoprotein complex that renders the DNA inaccessible to DNA-binding 

proteins that are required for transcription (Azam & Ishihama, 1999, Dorman & Deighan, 

2003, Yarmolinsky, 2000).  Transcription factors that alleviate this silencing are central 

to bacterial physiology and regulate a variety of bacterial processes including virulence 

gene expression, biofilm formation, and bacterial adaptation to stress (Stoebel et al., 

2009).  The mechanisms of silencing and anti-silencing, however, are still being 

elucidated.   
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 While it has been established that H-NS is a global repressor of horizontally acquired 

genes what remains elusive is a complete picture of how H-NS represses transcription 

and how it is alleviated by other transcription factors.  In this work, we have focused on 

the regulation of the icsP gene encoded by the Shigella virulence plasmid. We describe 

regions necessary for the H-NS dependent repression of the icsP promoter and regions 

responsible for the binding of the global repressor H-NS and the major virulence factor 

VirB.  

 Our data show that H-NS represses icsP promoter activity and that VirB alleviates 

this repression (Castellanos et al., 2009).  Through deletion analysis of the icsP upstream 

intergenic region and in vivo assays, we have identified that sequences upstream of -665 

(with respect to the icsP annotated transcription start site [tss]) are needed for full 

repression of activity the promoter, although sequences between -665 and -351 appear 

sufficient for partial repression.  Although it is unusual for H-NS to impart its effects 

from so far upstream of the transcription start site, our truncation analysis of the icsP 

upstream intergenic region has shed light on how this remote regulation might occur.   

 We observed that the removal of DNA sequences upstream of -351 resulted in an H-

NS-dependent increase in promoter activity.  The simplest interpretation of these data is 

that H-NS interacts directly with sequences downstream of -351 leading to an increase in 

the activity of the promoter.  This is corroborated by our EMSA data, which shows 

specific binding of H-NS to sequences between –213 and +24 with relatively high 

affinity. Taken together, our data strongly suggests that H-NS binds to two discrete 

regions (upstream of -351 and downstream of -213) that lie upstream of the icsP gene and 
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that these two regions are separated by a region with little to no affinity for HNS (regions 

contained within T2 in Fig. 13).  

 H-NS has been demonstrated to oligomerize along DNA (Rimsky et al., 2001, Turner 

& Dorman, 2007), and form H-NS-DNA-H-NS bridges, which are described as looped 

DNA structures constrained by H-NS (Maurer et al., 2009, Stoebel et al., 2009).  Based 

on this work, it is tantalizing to imagine H-NS docked to upstream sites interacting with 

H-NS docked to downstream sites to mediate repression of the icsP promoter. Although, 

it is unusual for “classical” transcription factors to influence transcription from DNA 

binding sites located over 500 bp away, atomic force microscopy has revealed that H-NS: 

DNA: HNS bridges may involve long stretches of DNA, extending over 1 kb (Maurer et 

al., 2009), and these structures have been documented to play important roles in promoter 

silencing (Dame et al., 2000, Dame et al., 2005, Dame et al., 2006). Although we have 

no evidence to support the involvement of downstream sites in the H-NS mediated 

repression of the icsP promoter so far, this is currently being tested.  

 H-NS is well documented as displaying a binding preference for regions of DNA that 

are AT rich (Dame et al., 2005, Dame et al., 2006, De la Cruz et al., 2009, Dorman, 

2009a, Dorman, 2009c, Porter & Dorman, 1994, Rimsky et al., 2001, Shin et al., 2005, 

Stoebel et al., 2008, Turner & Dorman, 2007, Williams et al., 1996, Williams & Rimsky, 

1997, Zhang et al., 1996). These sequences typically display high levels of intrinsic 

curvature (Zuber et al., 1994).  The work presented here demonstrates that regions 

upstream of the icsP gene, which bind H-NS, coincide with regions predicted to be 

intrinsically curved, as determined by the MUTACURVE server 

(http://132.248.32.45/cgi-bin/mutacurv.cgi).  Although more recent work has revealed the 
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presence of a high affinity binding sequence for H-NS at the E. coli proU promoter 

(Bouffartigues et al. 2007, Lang et al., 2007) this 10 bp sequence was not found within 

the full-length fragment, which constitutes the intergenic region upstream of the icsP 

gene.  This suggests that H-NS recognizes sequences other than those proposed by 

Bouffartigues et al. (2007) and Lang et al., (2007).  It is possible that future 

investigations, using DNase I footprinting, may identify other sequences with high 

affinity for H-NS, which would initiate H-NS binding and oligomerization along the 

DNA.   

 Our previous studies revealed that VirB functions to derepress the icsP promoter and 

that two VirB-binding sites organized as inverted repeat and located over 1 kb upstream 

of the annotated icsP transcription start site are required for VirB-mediated derepression 

(Castellanos et al., 2009). This work is corroborated by the β-galactosidase data 

presented here.  Using EMSAs we demonstrate that VirB binds to the full upstream 

intergenic region of the icsP promoter.  This is the first indication that VirB interacts 

directly with the icsP promoter, and we hypothesize that this binding is important for de-

repression of the full-length promoter.  

 While our previous work strongly suggests that VirB interacts directly with the two 

VirB-binding sites located over 1 kb upstream of the icsP tss (Castellanos et al., 2009), 

our in vivo assays suggests that VirB may also interact with promoter proximal 

sequences.  In these experiments VirB was found to antagonize H-NS dependent 

“activation” of the icsP promoter in the shortest construct tested.  Although, this effect 

has the potential to be mediated by a VirB-regulated protein, the simplest interpretation 

of these results is that VirB interacts directly with sequence downstream of -351 to 
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mediate this effect.  Four putative VirB binding sites have been identified in this region, 

although none of these are organized as inverted repeats.  It remains unclear whether any 

of these, or other sites, mediates this VirB-dependent repression of the short fragments or, 

indeed, what they play in derepression of promoter in the context of the full upstream 

intergenic region.  Future investigations will assess the role that these downstream 

putative VirB-binding sites play in the regulation of the promoter. 

  The results obtained with the shortest construct in our truncation series are 

interesting for another reason; in the context of this construct, both H-NS and VirB 

reverse their “typical” roles, H-NS leads to an increase in promoter activity and VirB 

dampens this effect.  Although, it is well established that DNA binding proteins can serve 

dual roles, usually this phenomenon is dependent upon the location of the protein binding 

site (Corcoran & Dorman, 2009, Browning et al, 2000).  Our data suggest, at least in the 

case of the icsP upstream intergenic region, the context each protein finds itself in with 

respect to the transcription start site and to the other protein, may determine whether the 

protein serves as an activator or repressor.  These findings provide valuable insight into 

the plasticity of the molecular mechanisms that leads to transcriptional silencing and anti-

silencing in bacteria.  

 Based on our findings, we are able to propose a model of transcriptional silencing and 

anti-silencing at the icsP promoter which involves the use of remotely located binding 

sites.  At the non-permissive temperature of 30 ˚C, H-NS binds to upstream and 

downstream region in the intergenic region that lies upstream of the icsP promoter.  This 

allows the formation of an H-NS-DNA-H-NS loops or bridges between promoter distal 

(upstream of -665) and promoter proximal sequences (downstream of -213).  At the 
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permissive temperature of 37˚C, the temperature at which VirB is maximally expressed, 

VirB binds to the essential VirB-binding sites organized as an inverted repeat and located 

at position - 1144 with respect to the tss.  Although, the distance over which VirB 

mediates its effect is unusual, if this protein functions to solely antagonize H-NS-

mediated repression of the promoter, VirB may not need to bind to sites located in the 

vicinity to the icsP promoter in order to mediate transcriptional de-repression, 

eventhough putative binding sites have been found.  Regardless of which sites are 

engaged by VirB, our EMSAs suggest that the interaction of VirB with the full upstream 

intergenic region does not cause H-NS to dissociate from the DNA.  Instead, it seems 

more likely that VirB functions to reorganizes the nucleoprotein complex, which 

ultimately leads to the formation of a complex that is permissive for transcription to occur 

at the icsP promoter.  This model will be used to frame our future studies of the icsP 

promoter region and transcriptional silencing and anti-silencing mechanisms. 

 In conclusion, this study raises several questions that are central to virulence gene 

expression in Shigella and other enteric pathogens and which lie at the heart of bacterial 

physiology.  How does VirB function to alleviate H-NS dependent repression of the icsP 

promoter from such distances? Does VirB function from remote sites to regulate the 

expression of other Shigella virulence genes? Can transcription factors found in other 

bacteria function from remote sites to alleviate transcriptional repression by nucleoid 

structuring proteins? If so, how widespread is this phenomenon? We anticipate that these 

questions will be answered as transcriptional silencing and anti-silencing mechanisms in 

bacteria continue to be studied.  
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CHAPTER 4 

VIRB AND H-NS BIND TO THE ICSP PROMOTER OF SHIGELLA FLEXNERI 

AND THE ROLE OF STATIC DNA CURVATURE IN THE  

REGULATION OF ICSP  

Abstract 

 In the bacterial pathogen Shigella flexneri, many genes encoded by the large 

virulence plasmid are repressed by the nucleoid structuring protein H-NS and de-

repressed by the major virulence gene activator VirB.  One example is the icsP gene, 

which encodes an outer membrane protease.  Using electrophoretic mobility shift assays 

(EMSAs), and DNase I footprinting analysis we show that VirB binds directly to the 

upstream intergenic region of icsP and demonstrate that VirB binds to DNA sequences 

located promoter distally and proximally.  These data support a model where VirB bound 

to remote sites may act in concert with VirB bound to promoter proximal sequences to 

mediate VirB dependent de-repression of the icsP promoter. We show that the disruption 

of regions displaying high intrinsic curvature do not have an effect on either the ability of 

H-NS to repress promoter activity or VirB to alleviate this repression, at least in the 

context of the full upstream intergenic region.  Our findings enhance our understanding 

of the mechanism of transcriptional silencing and anti-silencing that control virulence 

gene expression in Shigella and raise the possibility that other bacterial promoters may be 

regulated from remote transcription factor binding sites. 

Authors: Dustin J Harrison and Helen J Wing 

We thank Dr. Eric Anderson and Dr. Martin Roop from East Carolina University for all 

their help and guidance with the EMSAs, and Stephanie Labahn for technical support. 
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4.1 Introduction 

Shigella species are gram-negative intracellular pathogens that cause bacillary 

dysentery in humans.  Shigella infections are responsible for approximately 164 million 

infections each year resulting in 1.1 million deaths, most of these occur in developing 

countries and in children less than 5 years old (Kotloff et al., 1999, Lee et al., 2005, Li et 

al., 2009).  All four Shigella species carry a large (230 kbp) virulence plasmid. Many 

genes encoded by these plasmids are under the transcriptional control of the histone-like 

nucleoid structuring protein (H-NS) and the major virulence gene activator VirB (Adler 

et al., 1989, Berlutti et al., 1998). 

H-NS is a nucleoid structuring protein that is well characterized as a silencer of 

bacterial transcription (Ali Azam et al., 1999, Dorman, 2004).  H-NS has been shown to 

oligomerize on DNA (Rimsky et al., 2001, Turner & Dorman, 2007) and this 

oligomerization can lead to the formation of H-NS-DNA-H-NS bridges, which have been 

visualized using atomic force microscopy as looped DNA structures constrained by H-NS 

(Maurer et al., 2009).  These structures may involve long stretches of DNA, extending 

over 1 kb (Dame et al., 2000, Dame et al., 2005, Dame et al., 2006, Maurer et al., 2009), 

and have been documented as playing important roles in promoter silencing 

(Bouffartigues et al., 2007, De la Cruz et al., 2009, Dorman, 2004, Dorman, 2009a, Fang 

& Rimsky, 2008, Navarre et al., 2006, Stoebel et al., 2008).  Disruption of these H-

NS:DNA complexes by other DNA-binding proteins can allow transcriptional de-

repression; a process coined anti-silencing (Fang & Rimsky, 2008, Navarre et al., 2007, 

Stoebel et al., 2008).  
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The virulence gene activator VirB is encoded by the Shigella virulence plasmid and 

its expression is regulated by another transcription factor VirF (Adler et al., 1989).  At 

the non-permissive temperature of 30 ˚C many genes encoded by the virulence plasmid 

are repressed by H-NS (Beloin & Dorman, 2003, Hromockyj et al., 1992, Porter & 

Dorman, 1994).  Upon a switch to 37 °C, a change in DNA superhelicity causes H-NS to 

dissociate from the virF promoter leading to the production of the virulence gene 

regulator, VirF (Adler et al., 1989).  VirF relieves H-NS-dependent repression of the virB 

promoter (Tobe et al., 1993, Watanabe et al., 1990) and subsequently VirB alleviates H-

NS dependent repression of many virulence plasmid genes, including icsA and those 

encoding the type III secretion system that mediate host cell invasion; ipa, mxi and spa 

(Beloin & Dorman, 2003, Berlutti et al., 1998, Dorman, 2006, Hromockyj et al., 1992, 

Maurelli et al., 1984a, Maurelli et al., 1984b, Nicoletti et al., 2008, Porter & Dorman, 

1994, Porter et al., 1998, Prosseda et al., 1998, Sasakawa et al., 1993, Tobe et al., 1991, 

Tobe et al., 1993, Tobe et al., 1995).  Transcriptional de-repression (anti-silencing) of 

virulence genes by VirF and VirB is central to the pathogenicity of Shigella. 

The mechanism underlying transcriptional silencing/anti-silencing has been proposed 

to be a straightforward molecular antagonism involving competition between the 

silencing protein and the anti-silencing protein for their overlapping cognate DNA 

binding sequences, which are usually located in the immediate vicinity of the promoter. 

Typically this competition results in the dissociation of the silencing molecule from the 

DNA (Fang & Rimsky, 2008, Navarre et al., 2007).  In contrast, at some bacterial 

promoters the anti-silencing proteins function to alter the DNA topology in a way that no 

longer allows H-NS to constrain transcription.  For example, LeuO counters silencing of 
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the quiescent porin ompS1 in Salmonella by altering the topology of the ompS1 promoter 

region (De la Cruz et al., 2007, De la Cruz et al., 2009) and in Shigella flexneri, VirB 

antagonizes H-NS by affecting the structure of the icsB promoter (Turner & Dorman, 

2007).  Previous analysis of the icsB, spa15 and virA promoters of Shigella sonnei, and 

icsB from S. flexneri, established a consensus binding site for VirB.  Our analysis of 

sequences upstream of the icsP gene identified nine sites with greater than a 6/7 match to 

the consensus, 5’-(A/G)(A/T)G(G)AAAT-3’ (Fig. 12B; Taniya et al, 2003, Turner & 

Dorman, 2007).  

Genome-wide studies have revealed that intrinsically curved DNA in the promoter 

regions of a large proportion of many important bacteria may constitute one of the most 

conserved and primitive forms of transcriptional regulation before the co-evolution of 

trans-acting factors that recognize bent DNA, e.g. DNA binding proteins (Kozobay-

Avraham et al, 2004, Prosseda et al, 2010). Static curvature of DNA has been shown to 

activate transcription, by facilitating RNA polymerase (RNAP) binding to promoters, as 

well as the nucleoid proteins IHF, and Fis which both recognize curved DNA and allow 

enhanced transcription initiation (Prosseda et al, 2004, Prosseda et al., 2010, Falconi et 

al, 1998, Falconi et al, 2001, Olivares-Zavaleta et al, 2006, Dorman & Deighan, 2003, 

Luijsterburg et al, 2006).  On the other hand, the static curvature of DNA can play an 

indirect role in the transcriptional repression allowing silencers like H-NS to engage 

DNA to stabilize or enhance a preexisting DNA loop that blocks transcription (Prosseda 

et al., 2004, Falconi et al., 1998).  Therefore, curvature is an important determinant in the 

regulation of promoter activity.  Many related bacterial species including E. coli, 

Salmonella, and Yersinia have global transcription factors, as well as specific regulators, 
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that regulate promoters with curved DNA, and we anticipate that the Shigella icsP 

promoter is no exception.  In Prosseda et al. (2004), De la Cruz et al. (2009), and Falconi 

et al. (1998) disruption of a region of curved DNA had significant effects on the ability of 

transcriptional regulators to exert their effects highlighting the importance that curved 

sequences have on transcriptional regulation. 

Our previous work shows that the icsP gene, located on the Shigella virulence 

plasmid, is repressed by H-NS and de-repressed by VirB.  We have demonstrated that the 

role of VirB is to solely alleviate transcriptional repression of the icsP promoter mediated 

by H-NS from sites over 1 kb upstream of the annotated transcription start site (Harrison 

et al., under revision, Castellanos et al., 2009, Wing et al., 2004).  Surprisingly, two 

putative VirB binding sites, organized as a perfect inverted repeat, are found in the 

extreme distal region of the icsP upstream intergenic region and are essential for the VirB 

dependent regulation of icsP in vivo (Castellanos et al., 2009).  Although our previous 

work strongly suggests VirB binds directly to this upstream intergenic region, this has 

never been categorically demonstrated.   

In this study, we examine further the role that VirB plays in the regulation of the icsP 

promoter in an attempt to discern the molecular mechanism responsible, as well as 

examining the effect that regions of intrinsic curvature have on promoter activity in the 

presence and absence of both H-NS and VirB.  Our results suggest that VirB regulates the 

activity of the icsP promoter by binding directly to the upstream intergenic region of 

icsP.  Our data also suggest that disruption of a single peak of intrinsic curvature in the 

context of the full upstream intergenic region does not have an effect on the H-NS 

mediated repression, or the VirB dependent de-repression of the promoter.  We propose a 
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model to explain how silencing and anti-silencing of the icsP promoter is achieved by 

DNA binding-proteins binding to remote sequence elements.  An improved 

understanding of the H-NS and VirB dependent regulation of the icsP promoter will 

provide insight into bacterial regulation of transcription from remote sites. 

4.2 Materials and Methods 

Bacterial strains, plasmids and media.  

 The bacterial strains and plasmids used in the present study are listed in Appendix 1. 

Bacteria were grown routinely at 37°C in Luria-Bertani (LB) broth with aeration or on 

LB agar (LB broth containing 1.5% [wt/vol] agar). Antibiotics were added at the 

following final concentrations: ampicillin, 100 µg/ml; chloramphenicol, 25 µg/ml; 

kanamycin, 50 µg/ml; and tetracycline, 12.5 µg/ml. Where appropriate, to ensure that 

Shigella strains had maintained the large virulence plasmid during manipulation, Congo 

red binding was tested on Trypticase soy broth agar plates containing 0.01% (wt/vol) 

Congo red (Sigma Chemical Co., St. Louis, Mo.). 

Construction of the PicsP-lacZ reporter plasmid and site directed mutagenesis of 

PicsP.   

 The PicsP-lacZ reporter plasmid pHJW20 was used as the basis for this work 

(Castellanos et al., 2009, Wing et al., 2004; Appendix 1).  pHJW20 carries 1232 bp 

upstream of the annotated transcription start site of the icsP promoter, the first 48 bp of 

the icsP coding region cloned upstream of a translation stop site, and a promoterless lacZ 

gene, so that expression of lacZ is directly regulated by the icsP promoter.  

 Site-directed mutagenesis was performed using the Quick Change Lightning II kit 

(Stratagene) according to manufacturer instructions.  Complimentary oligonucleotides 
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containing the mutations predicted by MUTACURVE were used to disrupt/restore the 

curvature of the icsP promoter in the template plasmid pNEO1 (Appendix 1).     

Following mutation, the 1232 bp insert was digested using PstI, PacI and cloned into 

pDH01 creating 4 plasmids designed to disrupt (D) curvature and 4 plasmids designed to 

restore (R) curvature around the predicted peaks of highest intrinsic curvature: pMut1 

D/R (-842), pMut 2 D/R (-935), pMut 3 D/R (-663), pMut 4 D/R (-435) (Appendix 1; 

Table 4 and 5).  All promoters have been sequenced.  All primers and plasmids are 

described in Appendix 1.   

Quantification of icsP promoter activity using the PicsP-lacZ reporter and 

derivatives.  

 Activity of the icsP promoter was determined by measuring β-galactosidase activity 

(Wing et al., 2004) by using the Miller protocol (Miller, 1972) in strains carrying 

pHJW20 or derivatives.  Freshly transformed cells were back-diluted 1:100 and grown 

for 4 to 5 h in either TSB medium (S. flexneri) or LB (E. coli) at 37°C prior to cell lysis 

because icsP expression significantly increases under these conditions (Wing et al., 

2004).  Assays were performed in triplicate on three separate occasions.   

In silico analyses of the icsP promoter and upstream sequences.   

 Prediction of intrinsic DNA curvature was done using MUTACURVE 

(http://132.248.32.45/cgi-bin/mutacurv.cgi).  The MUTACURVE program evaluates the 

amplitude of intrinsic curvature for every nucleotide in a given sequence using the 

algorithm of Goodsell & Dickerson (1994), with the addition of Satchwell’s contribution 

matrices for rotational and spatial displacements (Satchwell et al., 1986).  These 

algorithms have been routinely used by other investigators to identify putative H-NS 
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binding sites in DNA (Beloin & Dorman, 2003, De la Cruz et al., 2009, Flores-Valdez et 

al., 2003, Will & Frost, 2006). 

Construction of inducible plasmids and purification of the VirB and H-NS proteins.  

 The virB gene was digested from pATM324 using HindIII and NcoI restriction 

enzymes and gel purified.  The primers W38 and W39 were used to amplify the virB 

gene, which was then ligated into pQE-60 (Qiagen) before electroporation into E. coli 

M15 pREP4 creating a C-terminal His-tagged VirB in an inducible plasmid, pAJH01.  A 

similar strategy was used to create a C-terminal His-tagged H-NS in an inducible 

plasmid, pCTH01.  Briefly, the primers W134 and W137 (Appendix 1) were used to 

amplify the hns gene from Shigella flexneri serotype 2a with NcoI and BglII sites for 

cloning into pQE-60.   

 His-tagged-VirB and His-tagged-H-NS proteins were overproduced from plasmid 

pAJH01, and pCTH01 respectively.  Proteins were expressed in the E. coli strain M15 

carrying the plasmid pREP4.  The expression of C-terminally His-tagged proteins was 

induced in 500 ml cultures growing exponentially with 1mM IPTG (isopropyl-β-

thiogalactopyranoside). Two hours post-induction, the cells were harvested and frozen at 

80 °C overnight.  The cell pellet was thawed on ice and resuspended in lysis buffer (40 

mM Tris-base [pH 8.93], and 80 mM NaCl). Cells were lysed by sonication, and cellular 

debris was pelleted by centrifugation at 10 000 x g at 4 °C.  Cell lysates were applied to 

Ni-NTA columns (Qiagen) pre-equilibrated with equilibration buffer (40 mM Tris-base 

[pH 8.93], 80 mM NaCl, 10 mM imidazole).  The columns were then washed with 10 bed 

volumes of wash buffer (equilibration buffer with 20 mM imidazole) prior to elution of 

the proteins by the addition of 2.5 bed volume of elution buffer (equilibration buffer with 
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250 mM imidazole).  Eluates were analyzed by SDS-PAGE followed by Coomassie 

staining. Purified proteins were dialyzed in equilibration buffer overnight at room 

temperature. Protein concentrations were determined using Bradford Assays.  The hexa-

his tag was not found interfere with VirB expression or activity, because His-tagged VirB 

was observed to restore IcsP expression to wild type levels in a strain lacking virB in vivo 

(data not shown). Furthermore, previous studies using an identical His-tag H-NS fusion 

protein, produced in a manner similar to that described above, was shown to retain 

normal function of H-NS in assays (Williams & Rimsky, 1997).   

Electrophoretic Mobility Shift Assays (EMSAs).   

 The upstream intergenic region of the icsP promoter (1232 bp) was used as a template 

to construct six, overlapping smaller fragments, ranging from 252 bp to 358 bp by PCR 

(Appendix 1).  A positive control fragment, icsB, was made by PCR using the Shigella 

flexneri virulence plasmid as a template and the negative control, an internal fragment of 

pstS, was made using E. coli genomic DNA as the template (Appendix 1).  As a non-

specific competitor, a 147 bp fragment of DNA from pACYC184 was generated by PCR.    

The PCR probe fragments were incubated with increasing concentrations of purified 

protein, VirB (0 to 920 nM) for 30 minutes at 30°C in a 20 µl reaction mixture containing 

40 mM Tris-base (pH 8.93), 80 mM NaCl, 1 mM EDTA, 1 mM DTT, 200 ng/ml bovine 

serum albumin (BSA), 200 nM of competitor p184 DNA and 10% glycerol.  Each 

reaction mixture contained approximately 100 nM of DNA, measured using the 

NanoView (GE).  The protein-DNA complexes were resolved by electrophoresis in 1.5% 

TBE agarose gels for 4 hours at room temperature at 60 V constant.  Following 

electrophoresis the agarose gels were stained with ethidium bromide (1 µg/ml), and 
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visualized using a Typhoon 9410 (Amersham) variable mode imager.  EMSAs were 

performed a minimum of three times with representative results shown. 

DNase I footprinting.   

 Fragments of the icsP promoter were amplified by PCR (Appendix 1) before being 

restriction digested using SalI and EcoRI, and ligated into a pBluescript (Stratagene) 

vector.  The ligated plasmids were transformed by electroporation into E. coli DH10B 

cells and plated to media containing ampicillin (100 µg/ml).  Sequence analysis 

confirmed the presence of the correct icsP target sequence.  Overnight cultures of DH10B 

with the holding vector plasmids were grown overnight and back diluted 1/100 into 500 

ml cultures of LB containing ampicillin.  The cells were harvested by centrifugation and 

plasmids purified by Qiagen Mega-prep (Qiagen).  Aliquots of Mega-preps were then 

digested with SalI, or EcoR1, followed by calf intestinal alkaline phosphate (CIAP) 

digestion to remove the terminal phosphate.  Phenol:chloroform extraction removed the 

CIAP followed by ethanol precipitation.  Plasmids were next digested with SalI, or 

EcoR1, before being purified by native acrylamide gel electrophoresis.  Excised bands 

were extracted from the acrylamide and a PCR clean-up kit was used (Qiagen) before T4 

kinase end labeling with [γ32P]ATP.  End labeled products were cleaned using illustra 

ProbeQuant G-50 Micro Columns (GE Healthcare) to remove unincorporated 

radionucleotides.   

Increasing amounts of VirB or H-NS protein were incubated for 30 min at 30° C 

with a labeled probe (~200 nM of DNA) in binding buffer (40 mM Tris-base [pH 8.93], 

80 mM NaCl, 1 mM EDTA, 1 mM DTT, 200 ng/ml bovine serum albumin [BSA], 25 

µg/ml sonicated Herring sperm DNA, 200 nM of competitor p184 DNA, and 10% 
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glycerol) with protein buffer (40 mM Tris-base [pH 8.93], 80 mM NaCl, 1 mM EDTA, 1 

mM DTT, and 10% glycerol) to a final volume of 20 µl.  DNase I diluted 1:100 in 4 mM 

Tris-base (pH 8.93), 8 mM NaCl, 0.5 mM CaCl2, and 40 mM Mg Cl2, was added to the 

reaction mixtures at 30° C and incubated for 40 seconds.  The addition of stop solution 

(0.3M sodium acetate, and 5 mM EDTA) stopped the reactions.  DNA was extracted with 

200 µl of phenol:chloroform followed by ethanol precipitation.  DNA was 

electrophoresed through a 6% polyacrylamide sequencing gel run at 60 Watts constant 

until the bromophenol blue dye front migrated out of the gel.  Following completion of 

the electrophoresis the gel was dried and exposed to a phosphor-imaging screen and 

viewed on a Typhoon 9410 variable mode imager.  Protected bands were identified by 

comparison to a DNA sequencing ladder generated using the method of Maxam and 

Gilbert (Maxam & Gilbert, 1986).  Experiments were conducted a minimum of three 

times with representative images shown. 

4.3 Results and Discussion 

VirB binds the upstream intergenic region of icsP. 

 Our previous work has demonstrated the VirB dependent regulation of icsP and that 

VirB functions solely to alleviate the H-NS dependent repression of promoter activity 

(Castellanos et al., 2009, Harrison et al., under revision).  Harrison et al., (under revision; 

CH 3) showed VirB binds to the full upstream intergenic region upstream of the icsP 

gene.  However, to determine which sequences are required for VirB to bind, we again 

used electrophoretic mobility shift assays (EMSAs).  The full upstream intergenic region 

that lies upstream of the icsP gene (1232 bp) was divided up into six near equal length 
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fragments and each of these fragments were used in EMSAs with purified His-tagged 

VirB (Fig. 19).  

 For these 

experiments, a DNA 

fragment containing 

sequences that lie 

between the divergent 

icsB and ipgD genes of 

Shigella flexneri was 

used as a positive control 

(icsB), because VirB has been shown to bind to this promoter region by others (Turner & 

Dorman, 2007) and an internal fragment of the E .coli pstS gene was used as a negative 

control (pstS). Each DNA fragment (100 nM) was incubated with increasing 

concentrations of purified His-tagged VirB in the presence of a 147 bp fragment, which 

had been amplified from the plasmid pACYC184 and which served as non-specific 

competitor DNA (200 nM). DNA and DNA:protein complexes were then resolved by 

agarose gel electrophoresis. 

 Previous in vitro studies with VirB and VirB-regulated promoters have shown that the 

DNA band in EMSAs performed with VirB often do not appear as discrete shifts but are 

more diffuse which has been proposed to be evidence of protein oligomerization (Turner 

& Dorman, 2007).  Despite this, we anticipated that VirB would interact with with some 

of the DNA fragments at lower concentrations than others, in particular T6 which 

contains putative VirB binding sites that were absolutely required for the VirB dependent 

Fig. 19.  From Harrison, et al., under revision, CH 3, schematic 
showing the 6 target fragments used in the EMSAs.  Coordinates 
of each target fragment are given relative to the transcription start 
site.  Inverted triangles denote the position of a peak of high 
intrinsic curvature predicted using the MUTACURVE program. 
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de-repression of icsP promoter activity (Castellanos et al., 2009).  Included in this assay 

is T6- which is identical to T6 except that it contains the mutated VirB binding sites from 

Castellanos et al., (2009) which were shown to eliminate the VirB dependent activity of 

the promoter.  Our results show that VirB binds to target fragments T6 and T1 beginning 

at 120 nM of VirB with complete sequestration of free DNA at 230 nM.  VirB also binds 

T6-, T5, T4, and T3 but at a higher concentration of 230 nM VirB.  In contrast, T2 only 

shifts at 460 nM, the highest concentration of VirB used, but it should be noted that even 

VirB binds to the pstS negative control at this concentration.  In all but this case, VirB 

binding to the icsP promoter appears to be specific as evidenced by the uniform presence 

of free non-specific competitor DNA in all lanes and does not shift. 

Fig. 20. VirB binding within the icsP upstream intergenic region.  EMSAs were conducted using 100 
nM of each fragment shown in Fig. , as well as T6 - (mutated VirB binding site, from Castellanos et al., 
2009) and increasing concentrations of purified His-tagged VirB.  The concentrations of purified protein as 
well as the target fragment used are given above each lane.  In all cases, the lower band is 200 nM of 
competitor DNA generated from pACYC184.  Positive control, and negative controls are labeled icsB and  
pstS respectively. 0=no protein, 1 = 120 nM, 2 =230, 3=460 nM protein.  
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 The T6- fragment, which contains the mutated essential VirB binding sites identified 

in our in vivo studies (Table 1), shows a defect in the ability to bind VirB when compared 

to the wild type T6 (the shift with T6 starts at 120 nM of VirB, while T6- shows a 

moderate shift with 230 nM VirB).  These data suggest VirB may have some affinity to 

other sequences contained within this fragment, at least in vitro and under the conditions 

used.  Nevertheless, these results support our hypothesis that VirB interacts directly with 

the upstream intergenic region of icsP and supports our observation that sequences 

located over 1 kb upstream of the annotated transcription start site are required for the 

VirB dependent de-repression of the icsP promoter.  

 Target T1, which contains sequences located between 213 and +24 relative to the 

transcription start site, also shifted with low concentrations of protein.  The binding of 

VirB to this region of DNA may explain the VirB dependent decrease in icsP promoter 

activity observed at the shortest promoter construct in our in vivo assays.  The binding of 

VirB to sequences contained within this region may have disrupted an H-NS induced 

structure that increased promoter activity (Harrison et al., under revision; Fig. 14).  

Putative VirB binding sites have been found in this region, and these EMSA data, 

combined with the observations made in vivo, suggest VirB binds to these binding sites to 

antagonize H-NS in vivo, although this still needs to be tested.  Interestingly, VirB binds 

to similar fragments of the icsP upstream intergenic region as H-NS (Harrison et al., 

under revision).          
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VirB binds sequences within the intergenic region upstream of the annotated icsP 

transcription start site. 

 DNase I footprints were used to test the hypothesis that VirB binds to the upstream 

intergenic region of icsP.  The same 6 fragments of the icsP upstream intergenic region 

used in the EMSA were incubated with increasing concentrations of purified VirB (250 

nM, 500 nM, and 1 µM).  We predicted that VirB would clearly bind the DNA fragments 

identified in the EMSAs, in particular T6, and T1.  Consistent with our previous in vitro 

experiments, (Fig. 20), VirB bound to all 6 targets (Fig. 21), however, protection was 

observed with the lowest concentration of VirB (250 nM, lane 1) in targets T1, T5 and T6 

suggesting that VirB binds more efficiently to sequences contained in these fragments 

(results are summarized in Table 2). 

Target T1 shows VirB-dependent protection at a concentration of 500 nM VirB, 

before the complete protection of DNA at 1 µM.  Interestingly, no hypersensitive bands 

were observed when T1 was incubated with VirB, which would be indicative of a 

discrete DNA-protein interaction.  Instead large regions of DNase I protection are 

observed in T1, strongly suggesting VirB oligomerizes along the DNA, preventing 

DNase I access. VirB was observed to bind to sequences in T1 between +10 and -33 with 

respect to the tss.  Contained within this region are two sequences that display good 

matches to the consensus VirB binding site 5’-(A/G)(A/T)G(G)AAAT-3’ (Turner & 

Dorman, 2007, Taniya et al., 2003).  One surrounds the transcription start site (+1) and 

the other lies between -15 to -21 (although in this case the matching sequence lies in the 

opposite orientation (3’-5’) to the reported consensus).  
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Target Result 

T1 VirB bound at 500 nM; full protection at 1 µM; no hypersensitive sites 

T2 

Bands fade with 500 nM VirB, but not much more with 1 µM; no 

hypersensitive sites; VirB bound to 3 regions (-201 to -274; -296 to -337; 

and upstream of -347) 

T3 
VirB binds 2 regions; intensity of upper region remains same while lower 

region changes between 250 µM and 500 µM 

T4 Small regions of protection with VirB; no hypersensitive sites 

T5 

Protection of bands lower in the gel at 250 nM; top arrow fades out (*-829), 

while bottom arrow fades in (-896; hypersensitive) indicating a protein 

induced structural distortion 

T6 
Footprint changes at 1 µM VirB compared to 250 nM and 500 nM, with 

bands shifting up and fading out 

Table 2. Summary of VirB DNase I footprints  



 

86 
  

Fig. 21.  VirB binds the intergenic region of icsP.  DNase I footprints were conducted using 
approx. 200 nM of each fragment shown in Fig.19, and increasing concentrations of purified His-
tagged VirB.  The concentrations of purified protein as well as the target fragment used are given 
above each lane.  A Maxam-Gilbert G+A ladder is included as well as position of relevant bp given 
relative to the tss.  The most distal (-1130 to -1145) VirB binding sites are given labeled Box 2, Box 
1.  Red bars indicate regions of protection. * = bands protected by increasing protein concentration. 
Black arrow -896 indicates hypercleavable site. 1=250 nM VirB; 2=500 nM VirB; 3=1 µM VirB.  
 



 

87 

Our data strongly suggest that these sites are true VirB binding sites, although site 

directed mutagenesis of these sites will be needed to confirm this.  

 A second long region of protection can be observed extending upstream of position 

-48.  This is indicative of oligomerization.  Strikingly, the protection observed in T1 is 

more pronounced compared to the other targets, which could help explain why this target 

shifts so well with low concentrations of VirB in our EMSAs (Fig. 20).  

 In target T5, VirB bound at low concentrations (250 nM) to sequences -829 to -896, 

and to sequences upstream of -903 (sites marked with * indicate specific bases of interest 

as being protected by VirB at low concentrations).  Increasing concentrations of VirB 

resulted in a single hypercleavable site, which indicative of a protein induced structural 

distortion (-896).  This is consistent with the wrapping of the DNA around the protein, 

leading to increased sensitivity of the DNA to the DNase I enzyme.   

 In target T6, VirB bound at the low concentration of 250 nM.  Protection of 

sequences upstream of -1095 can be visualized.  Contained within T6 are the two most 

distal VirB binding sites (-1130 to -1145), which we have shown to be essential in the 

regulation of icsP (Castellanos et al., 2009).  The footprint in T6 is unusual in that, at 

high concentrations of VirB (1µM) it is possible to see protein induced distortion of the 

DNA, bands are shifted up as well as fading out.  The exact significance of this finding is 

unknown, but the unusual appearance of this footprint suggests VirB interacted with 

sequences contained within this fragment in a manner that is distinct compared to the 

other target fragments, this phenomenon was observed regularly.   

 These data suggest that VirB binds directly to the upstream intergenic region of icsP  

(both promoter distally and promoter proximally), and that VirB oligomerizes along the 
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DNA, which is consistent with previous finding regarding VirB binding (Turner & 

Dorman, 2007).  Our findings demonstrate that VirB bound to target fragments that were 

predicted to contain VirB binding sites, as well as sequences that do not contain any 

matches to the previously described VirB binding consensus sequence (e.g. T5).  This 

raises the possibility that VirB binds to sequences other than its consensus site, at least in 

vitro, and under these conditions.  Interestingly, but not surprisingly, the regions 

displaying VirB binding overlap with those shown to be protected by H-NS (Fig. 22).  

Overlapping, or similar, protein binding regions is a common feature among silencing 

and anti-silencing proteins (Navarre et al., 2006).  Taken together these data support our 

model for the regulation of icsP involving the interaction of VirB with sequences located 

both, promoter distally and promoter proximally, which likely displaces H-NS, resulting 

in a permissive structure for transcription, possibly a loop structure.  DNA looping has 

been established as a mechanism of regulation at promoters where interactions involving 

upstream and downstream regions bound by protein have been observed, and it is likely 

that icsP is no different (De la Cruz et al., 2009, Prosseda et al., 2004).  It should be 

remembered that these in vitro data, with short, linear fragments of DNA, may or may not 

adequately reflect the action of VirB in vivo.    
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H-NS binds sequences within the intergenic region upstream of the annotated icsP 

transcription start site. 

   We also predicted that H-NS would bind the regions identified in Harrison et al., 

(under revision), by EMSAs, in particular, to sites located within targets T5, T4 and T1.  

Our results demonstrate H-NS bound to all 6 targets (Fig. 22); however, protection was 

observed with the lowest concentration of H-NS (250 nM, lane 1) in targets T1, T4, T5, 

and T6 (results are summarized in Table 3).   

 T1 shows H-NS-dependent protection within 2 regions at a concentration of 250 nM 

H-NS, before the complete protection of DNA at 1 µM.  H-NS bound to sequences in T1 

between +10 upstream of the transcription start site and -33 bp downstream of the tss 

before complete oligomerization and protection of the entire region upstream of -48.  

Table 3. Summary of H-NS DNase I footprints 

Target Results 

T1 H-NS bound at low concentration (250 nM); no hypersensitive sites 

T2 H-NS binds 4 regions; Bands fade at 500 nM H-NS 

T3 Bands fade at low concentration; bands fade faster in bottom part of gel 

T4 H-NS binds 5 regions at low concentration (250 nM); 1 hypersensitive site 

upstream of -618 indicating a protein induced structural distortion 

T5 H-NS binds at low concentration (250 nM); 2 hypersensitive sites (-829 

and -896) indicating a protein induced structural distortion 

T6 Protected bands fade out at the bottom of the gel; distortion of protected 

bands similar to VirB 
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 In T4, H-NS bound to 5 regions within the fragment at low concentrations, 

corroborating our EMSA data (Fig. 16).  There is the presence of a hypercleavable site 

upstream of -618 indicating a protein induced structural distortion consistent with the 

wrapping of the DNA around the protein.  Two hypercleavable sites are also present in 

T5. 

 In target T5, H-NS bound at the low concentration of 250 nM to a region upstream of 

-903.  Surprisingly, the sites (-829 and -896; black arrows in Fig. 21) which were 

observed in T5 using VirB are again present with the H-NS protein (however with H-NS 

both are hypercleavable) indicating a protein induced structural distortion leading to 

increased sensitivity of the DNA to DNase I. 
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Fig. 22.  H-NS binds the upstream intergenic region of icsP.  DNase I footprints were conducted using 
approx. 200 nM of each fragment shown in Fig.19, and increasing concentrations of purified His-tagged H-
NS.  The concentrations of purified protein as well as the target fragment used are given above each lane.  A 
Maxam-Gilbert G+A ladder is included as well as position of relevant bp given relative to the transcription 
start site.  The most distal VirB binding sites (-1130 to -1145) are given labeled Box 2, Box 1.  Red bars 
indicate regions of protection. Black arrows indicate hypercleavable sites. 1=250 nM H-NS; 2=500 nM H-NS; 
3=1 µM H-NS. 
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 In target T6 H-NS bound to the same region as did VirB.  Again, at high protein 

concentration (1 µM) a distortion of the DNA is visible, similar to VirB.  Despite the 

striking similarities between VirB and H-NS protection signals in all the targets 

examined, there are many subtle differences in the footprints with both proteins, e.g. 

extended region of binding by H-NS in T4 compared to VirB.   

 In summary, these results demonstrate that H-NS binds directly to the upstream 

intergenic region of icsP and demonstrates the ability of H-NS to oligomerize along 

DNA, which is consistent with previous findings regarding H-NS function (Bouffartigues 

et al., 2007, De la Cruz et al., 2009, Dorman, 2004, Dorman, 2009a, Fang & Rimsky, 

2008, Navarre et al., 2006, Stoebel et al., 2008).  The hypercleavable sites in T4 and T5 

suggest that H-NS binding produces a conformational change in the DNA that is 

responsible for the H-NS induced repression.  Our data also show that H-NS binds to 

promoter proximal sequences and further supports our model for the regulation of icsP 

involving DNA looping and interaction with promoter distal and promoter proximal 

sequences being bound by H-NS (Chapter 3, Discussion).  Again H-NS bound to 

sequences that overlap regions occupied by VirB highlighting the molecular antagonism 

that exists between the two.    
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Alteration of curvature does not effect the ability of H-NS to repress promoter 

activity nor does it effect the ability of VirB to alleviate repression.   

 H-NS has been shown previously to bind to DNA with high intrinsic curvature and  

our previous findings demonstrate that both H-NS and VirB bind to similar regions 

within the icsP upstream intergenic region.  Using MUTACURVE 

(http://132.248.32.45/cgi-bin/mutacurv.cgi) to profile and predict the intrinsic curvature 

of the icsP upstream intergenic region, we have found 5 peaks displaying curvature 

values greater than 5 degrees/helical turn indicating a high degree of curvature (shown in 

Fig. 23).  The advantage of using MUTACURVE is that it allows the in silico evaluation 

of the effect that double point mutations have on the effect of curvature; to either 

disrupt/reduce or to restore curvature.  In order to examine the effect that this curvature 

Fig. 23.  In silico analysis of the static curvature of the DNA in the intergenic region of icsP. 
MUTACURVE predictions of curvature showing the 5 peaks with the highest predicted intrinsic curvature 
labeled below. >5 degrees/helical turn = curved (red line)  marks the peaks of highest intrinsic 
curvature.  Numbers below give positions of curvature relative to the tss (+1).   
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has on the regulation of icsP we adopted a strategy similar to that of De la cruz et al. 

(2009), making double point mutations to disrupt/reduce the curvature surrounding the 

peaks identified previously (Harrison et al., under revision; Fig. 19; Fig. 23).   

 

 The mutations that were predicted to affect DNA curvature in silico were introduced 

into the wild type icsP upstream intergenic region upstream of +1.  Each of the predicted 

peaks of curvature were disrupted separately by site directed mutagenesis before a second 

round of mutations was introduced to restore the predicted curvature without restoring the 

DNA to the original, wild type, sequence Table 2 and 3 (the predicted curvature 

surrounding the tss was not mutated).  The mutated sequences were cloned into the lacZ 

reporter plasmid used previously (Appendix 1) and transformed into either E. coli (wild 

type and a strain lacking hns) or Shigella (wild type and a strain lacking virB).  We 

expected that mutation of one of the regions of curvature would affect the ability of H-NS  

Table 4.  Substitutions to disrupt curvature 
Postition of 

curved 
region 

Predicted curvature 
value (deg/helix turn) 
prior to substitution 

Predicted curvature 
value (deg/helix turn) 
following substitution 

Base pair 
substitutions 
responsible 

-842 9.65 4.82 A>C at -876 & 
C>A at -880 

-935 9.36 5.19 G>T at -968 & 
A>C at -874 

-663 8.09 2.67 C>A at -961 & 
T>G at -696 

-435 7.88 2.99 T>G at -454 & 
A>C at -463 
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to silence, and VirB to anti-silence, promoter activity, thereby revealing the sequences 

required for the regulation of the promoter. 

 Results of the β-galactosidase assay are given in Fig. 24.  Surprisingly, comparing 

wild type (WT) to both, mutated and restored constructs, it is clear that substitutions 

predicted to disrupt curvature in each of the 4 regions had no effect on either: 1) promoter 

activity in the presence or absence of H-NS or 2) promoter activity in the presence and 

absence of VirB.  

  

 

Table 5. Substitutions to restore curvature 

Position 
of curved 

region 

Predicted 
curvature value 
(deg/helix turn) 

prior to 
substitution 

Predicted 
curvature value 
(deg/helix turn) 

following 
substitution 

Predicted 
curvature value 
(deg/helix turn) 

following 
substitution 

Base pair 
substitutions 
responsible 

-842 9.65 4.82 7.86 C>T at -876 & 
A>G at -880 

-935 9.36 5.19 7.05 T>C at -968 & 
C>T at -974 

-663 8.09 2.67 6.63 A>G at -691 & 
G>A at -696 

-435 7.88 2.99 5.18 G>A at -454 & 
C>T at -463 
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Fig. 24.  Activities of the curve disrupted icsP promoter fragments.  Activities of the curve disrupted 
promoter fragments in the presence and absence of a) H-NS or b) VirB.  Constructs are labeled 
according to the predicted position of curvature upstream of the transcription start site in order from 
highest to lowest predicted curvature.  Bars indicate β-galactosidase expression of the PicsP-lacZ 
fusions in either a) wild type E. coli MC4100 and an isogenic strain lacking hns (MC4100 hns::Knr) b) 
wild type S. flexneri 2457T and an isogenic strain lacking virB (AWY3 virB::Knr). WT icsP (pHJW20) 
is included in each lane for comparison.  β -galactosidase activities are expressed in Miller units.  This is 
a representative assay and error bars represent the mean and standard deviations. 
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 It is possible that double point mutations intended to disrupt the curvature of one 

single peak have no effect given the overall length of the upstream intergenic region 

(1232 bp), where another curved region may compensate for the reduced curvature of an 

adjoining region simply because of the plasticity of such a large A-T rich fragment of 

DNA.  It is also possible that computer software might not be able to accurately predict 

the curvature of DNA.   We are following up these experiments to test whether these 

regions are curved using biochemical tests, as described by Prosseda et al. (2004).   

 It is possible that mutations made to disrupt multiple curved regions may have a 

greater effect on H-NS and VirB function by:  i) possibly reducing the ability of the 

proteins to bind to icsP, ii) by reducing the ability of the upstream regions to interact with 

downstream regions, iii) or a combination of the two.  Future studies will address this 

concern, by disrupting multiple regions of curvature in combination, to elucidate a 

complete model of transcriptional regulation involving icsP, and these studies will frame 

the basis for future work. 

4.4 Conclusion 

 In conclusion, this study furthers our understanding of the mechanism of 

transcriptional regulation with the Shigella icsP gene, and raises several questions that 

are central to virulence gene expression in Shigella and other enteric pathogens and 

which lie at the heart of bacterial physiology.  How do VirB and H-NS interact in the full 

context of the upstream intergenic region of icsP?  In the absence of a consensus 

sequence, how is H-NS able to recognize DNA?  What effect does curvature play on the 

H-NS dependent silencing and VirB dependent anti-silencing of icsP?  These questions, 
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and many more, will need to be answered in order to achieve a complete picture of the 

mechanism of transcriptional silencing and anti-silencing.   
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CHAPTER 5 
 

CONCLUSION 

 In this work I have focused on the regulation of the icsP gene, and examined the roles 

that H-NS and VirB play in the mechanism of silencing and anti-silencing at this 

promoter.  This chapter addresses experiments that focus on five objectives.  The first 

objective was to identify regions of the icsP promoter required for H-NS mediated 

repression and VirB dependent de-repression of the promoter.  As a starting point for this 

work I conducted a promoter deletion analysis. While these experiments do not prove that 

either protein interacts directly with the icsP promoter, they allowed me to identify 

regions of the promoter needed for the VirB and, to some extent H-NS, dependent 

regulation of the icsP promoter.  These regions could then be further interrogated using 

Electrophoretic Mobility Shift Assays (EMSAs), the second objective.  The third 

objective was to determine the sequences to which H-NS and VirB bound in vitro.  The 

fourth objective was to examine the effect that icsP static DNA curvature plays in the 

ability of H-NS and VirB to regulate promoter activity.  Finally, the fifth objective was to 

propose a mechanism for the H-NS and VirB regulation of the icsP promoter.   

 In Chapter 2, my data show that H-NS represses icsP promoter activity and that VirB 

alleviates this repression from sites located over 1 kb upstream of the annotated 

transcription start site (Castellanos et al., 2009).  Through deletion analysis we have also 

identified a region located promoter distally, -1130 to -1144, that is required for the de-

repression of promoter activity.  Located in this distal region are two VirB binding sites, 

organized as an inverted repeat, 5’-CGGGGATTTCAGTATGAAATGAAGTA-3’(wild type 

VirB boxes shown here; Table 1), that were identified in an in silico analysis, and shown 
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to be absolutely required for the VirB dependent de-repression of the promoter.  Our data 

revealed that complete mutagenesis of the upstream binding site (box 2), the downstream 

binding site (box 1) or both, resulted in complete loss of VirB dependent regulation of the 

icsP promoter (Table 1).  To our knowledge, this is the first evidence that VirB can 

influence promoter activity from such distal sites.  Although it is unusual for H-NS and 

VirB to impart its effects from so far upstream of the transcription start site, our 

truncation analysis of the icsP upstream intergenic region has shed light on how this 

remote regulation might occur, but raises some very important questions: (i) Are other 

Shigella virulence plasmid genes regulated from remote VirB binding sites?  (ii) Is it 

common for transcriptional silencing and anti-silencing mechanisms to employ distal 

regulator binding sites? 

 The experiments described in Chapter 3, focus on the regulation of the icsP promoter 

by H-NS.  Through deletion analysis of the icsP upstream intergenic region and in vivo 

assays, I, and others in the Wing lab, identified that sequences upstream of -665 (with 

respect to the icsP annotated transcription start site [tss]) are needed for full H-NS 

induced repression of activity the promoter, although sequences between -665 and -351 

appear sufficient for partial repression.  Furthermore, our data strongly suggests that H-

NS binds to two discrete regions (upstream of -351 and downstream of -213) in vivo, that 

lie upstream of the icsP gene. This observation is backed up by in vitro EMSAs and 

based on our assays it seems that these two regions are separated by a region with little to 

no affinity for HNS (regions contained within T2 in Fig. 16).  Both regions to which H-

NS binds, contain sequences predicted to display high levels of intrinsic curvature. These 

data support a model where H-NS docked at remote sites may act in concert with H-NS 
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docked at promoter proximal sequences to mediate H-NS-dependent repression of the 

icsP promoter. While we again demonstrate that VirB functions solely to de-repress the 

promoter, our EMSA data indicate that VirB and H-NS are capable of binding 

simultaneously to the full intergenic region (1232 bp) that lies immediately upstream of 

the icsP gene.  This suggests that VirB may function to relocate H-NS, rather than 

causing H-NS to dissociate from the DNA upstream of the icsP gene.   

 In Chapter 4, my work has demonstrated that VirB binds the upstream intergenic 

region of icsP, and I have shown that both VirB and H-NS oligomerize along the DNA.  I 

have also investigated the role that DNA intrinsic curvature plays in the regulation of 

icsP.  Using electrophoretic mobility shift assays (EMSAs), and DNase I footprinting 

analysis I show that VirB binds directly to the upstream intergenic region of icsP and 

demonstrate that VirB and H-NS bind and oligomerize to DNA sequences located 

promoter distally and proximally.  From these results we conclude that both H-NS and 

VirB interact directly with the icsP promoter and confirm our in vivo results 

demonstrating that sequences located over 1 kb upstream of the annotated tss are required 

for the H-NS dependent silencing and the VirB dependent anti-silencing of the icsP 

promoter.  These data support a model where VirB bound to remote sites may act in 

concert with VirB bound to promoter proximal sequences to mediate VirB dependent 

anti-silencing of the icsP promoter.  

 In Chapter 4, I also show that the disruption of single regions displaying high intrinsic 

curvature do not have an effect on icsP promoter activity.  These regions of predicted 

curvature were mutated using site directed mutagenesis to disrupt and ultimately restore 

the curvature.  Surprisingly, disruption of these regions of predicted curvature did not 
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have an effect on either the ability of H-NS to silence the promoter or the ability of VirB 

to alleviate the H-NS induced repression.  Likewise, mutations to restore the predicted 

curvature had no effect.  It is likely that disruption of a single peak within the context of 

1.2 kb is not sufficient to elicit an effect. 

 Taken together, these data have allowed us to propose a model for the regulation of 

icsP.  At the non-permissive temperature of 30 ˚C H-NS binds and induces H-NS-DNA-

H-NS loops or bridges between promoter distal and promoter proximal sequences.  At the 

permissive temperature of 37 ˚C, the temperature at which VirB is maximally expressed, 

VirB binds to its consensus site (Taniya et al., 2003, Tobe et al., 1991, Turner & 

Dorman, 2007), which is AT rich and frequently lies in AT rich stretches of DNA.  These 

sequences likely are already bound by H-NS.  We hypothesize that VirB does not 

completely remove H-NS from the DNA, but instead binds simultaneously and possibly 

re-organizes the DNA:protein complex by binding to promoter distal VirB binding sites 

in conjunction with promoter proximal sequences bound by VirB.  The nucleoprotein 

complex might be stabilized through the interaction of VirB bound to sites located 

internally.  This multi-region DNA:protein interaction then possibly leads to a re-

organization of the topology of the upstream intergenic region that is permissive for icsP 

promoter activity (Fig. 25).  This model should frame our future investigations. 



 

103 

 

 While the work containd herein contributes to our knowledge, much more work is 

required to build a complete picture of transcriptional silencing and anti-silencing at the 

icsP promoter.  It would be interesting to asses the contribution of all the VirB binding 

sites identified in Castellanos et al. (2009) in the regulation of the icsP promoter, and to 

examine whether a VirB:DNA:VirB loop is responsible for the observed effects 

presented in this work.  Site directed mutagenesis of combinations of putative VirB 

binding sites would indicate which sequences are essential, and could be combined with 

Fig. 25. Proposed model for the regulation of icsP by H-NS and VirB. The upstream intergenic region of 
icsP (a) showing the two distal, essential, VirB binding sites (black arrows under the red box).  At the non-
permissive temp of 30 °C H-NS induces repression of promoter activity by binding to sequences located 
distally and proximally, resulting in a plectonemic structure stabilized by oligomerization of H-NS (b).  
Upon a shift in temperature, to the permissive temperature of 37 °C, VirB is expressed and binds to icsP.  
Instead of displacing H-NS, VirB binds simultaneously causing the reorganization in the topology of the 
promoter, interacting with the 2 most distal VirB binding sites and promoter proximal sites.  The resulting 
structure is stabilized through VirB bound to internal sequences.  The altered architecture of the promoter is 
permissive for transcription (c). Shown is a VirB monomer; H-NS in dimeric form; bent arrow = tss.     
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KMNO3 footprinting to demonstrate a loop(s) is/are being formed.  The intergenic region 

that lies upstream of icsP is very AT rich, and typically such sequences have high 

intrinsic curvature.  While our initial results suggest that no single region of predicted 

curvature is required it could be that disruption of multiple peaks in combination will 

produce an observable effect.  Therefore, it would also be interesting to assess the effect 

of combinations of disrupted peaks on the ability of H-NS and VirB to regulate promoter 

activity.  

 It would be beneficial to investigate the possibility that a multi-protein complex is 

involved in icsP regulation, similar to situations described in other promoters (Browning 

et al., 2000).  The VirB protein is homologous to the P1 protein ParB, and the ParB 

binding site, parS, shows a high degree of similarity to the icsB binding site described by 

Turner & Dorman (2007) and Taniya et al. (2003) (Beloin et al., 2002, Taniya et al., 

2003, Surtees & Funnell, 2001).  We have shown that the essential distal VirB binding 

site in icsP shows sequence homology with both these sites (parS and icsB).  An in silico 

analysis of this region using the Softberry software BPROM, which analyzes bacterial 

promoters, predicts an integration host factor (IHF) binding site oriented in a similar 

position to that found in parS.  In the parS system, IHF bends the parS site which allows 

ParB to contact its specific binding motifs located on either side of the bend resulting in a 

high affinity protein:DNA complex.  Therefore, I have made an IHF mutant in Shigella 

and preliminary data suggests the possible involvement of IHF in the regulation of 

promoter activity and should be followed up (See Appendix 2 for full description).  To 

find other potential candidates, chemical cross-linking of proteins, followed by co-
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immunoprecipitation should be able to pull out any proteins associating with VirB, and 

likewise icsP.   

 Finally, a closer examination of the sequences to which VirB is able to bind might 

elucidate a more complete description of a VirB binding site.  Evidence for this comes 

from the observation that VirB bound very well to T5 by DNase I footprint analysis, and 

is worthy of further study.   

 In conclusion, this work has focused on the regulation of icsP and has examined the 

roles that H-NS and VirB play in the mechanism of silencing and anti-silencing.  This 

work has shed light on the phenomenon of regulation from remote sites, yet it raises 

many more questions.  Does VirB function from remote sites to regulate the expression 

of other Shigella virulence genes? An in silico analysis of another H-NS and VirB-

regulated promoter located on the Shigella virulence plasmid, icsB-ipgD (Turner & 

Dorman, 2007), reveals the presence of additional putative VirB binding sites with the 

most distal located at -1615, and -1464 upstream of the ipgD tss, and one located at -1625 

Fig. 26.  In silico analysis of the icsB-ipgD promoter region.  In silico analysis reveals the presence 
of additional putative VirB binding sites that show consensus sequence matches to the reported VirB 
binding site.  The binding sites in icsB are located at: -1625, -390, and -361 upstream of the tss.  The 
binding sites in ipgD are located at: -1615, -1464, and -289 upstream of the tss.  Arrows show direction 
of the binding site 5’ - 3.’  Binding site sequence is given below the figure.  Figure is drawn to scale.   
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upstream of the icsB tss, respectively (Fig. 26).  Is it possible that these divergently 

transcribed genes are regulated from remote sites? 

 Can transcription factors found in other bacteria function from remote sites to 

alleviate transcriptional repression by nucleoid structuring proteins? If so, how 

widespread is this phenomenon?  Silencing and anti-silencing mechanisms that control 

expression of virulence genes in Shigella and many other bacteria, is central to 

understanding pathogenesis.  However, these mechanisms are not restricted to the human 

pathogens but may be more wide spread, we need only look.     
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APPENDIX 1 

BACTERIAL STRAINS, PLASMIDS, AND PRIMERS 
 
 

Table 1 Bacterial strains and plasmids 
Strain or 
Plasmid 

Descriptiona Source or 
Reference 

Strains   
E. coli   

MC4100  E. coli strain K-12 with araD and lacZ deletion (Pogliano & 
Beckwith, 1994) 

MC4100 hns MC4100 hns::Knr (Yamada et al., 1991) 

S. flexneri   

2457T S. flexneri  serotype 2a (Formal et al., 1958) 

   AWY3 2457T virB::Tn5; Knr (Wing et al., 2004) 

   
Plasmids   

pACYC184 Cloning vector; p15A replicon Tetr/Cmr/source of 
non-specific competitor DNA 

(Rose, 1988) 

pHJW7 icsP promoter region transcriptionally fused to lacZ 
in pACYC184 Cmr.  

(Wing et al., 2004) 

pBluescript Cloning vector Stratagene 

pQE-60 Cloning vector for production of C-terminally His-
tagged proteins 

Qiagen 

pHJW20 pHJW7 lacking XbaI site downstream of lacZ gene. 
Carries 1232 bp of native sequence upstream of the 
icsP transcription start site  

(Wing et al., 2004) 

pJS01 pHJW20 carrying 1056 bp of native sequence 
upstream of the icsP transcription start site.  

(Castellanos et al., 
2009) 

pJS02 pHJW20 carrying 891 bp of native sequence 
upstream of the icsP transcription start site. 

(Castellanos et al., 
2009) 
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pDH01 pHJW20 carrying 663 bp of native sequence 
upstream of the icsP transcription start site. 

(Castellanos et al., 
2009) 

pJS04 pHJW20 carrying 351 bp of native sequence 
upstream of the icsP transcription start site. 

(Castellanos et al., 
2009) 

pHJW34 pHJW20 carrying 254 bp of native sequence upstream of 
the icsP transcription start site. 

(Castellanos et al., 
2009) 

pHJW35 pHJW20 carrying 150bp of native sequence upstream of 
the icsP transcription start site. 

(Castellanos et al., 
2009) 

pHJW36 pHJW20 carrying 92 bp of native sequence upstream of 
the icsP transcription start site. 

(Castellanos et al., 
2009) 

pMIC01 pHJW20 with 33bp deleted between SalI and PstI sites in 
the multiple cloning site of pACYC184 this changes the 
context of the upstream icsP promoter sequences.  

(Castellanos et al., 
2009) 

pMIC02 pHJW20 carrying 1437 bp of native sequence upstream 
of the icsP transcription start site. 

(Castellanos et al., 
2009) 

pMIC13 pHJW20 with all 7 bps substituted in promoter proximal 
upstream VirB binding site  

(Castellanos et al., 
2009) 

pMIC17 pHJW20 with all 7 bps substituted in distal upstream 
VirB binding site 

(Castellanos et al., 
2009) 

pMIC18 pHJW20 with all 7bps substituted in both upstream VirB 
binding sites 

(Castellanos et al., 
2009) 

pShfT1 EMSA/DNase I footprint Target#1 in pBluescript This work 

pShfT2 EMSA/DNase I footprint Target#2 in pBluescript This work 

pShfT3 EMSA/DNase I footprint Target#3 in pBluescript This work 

pShfT4 EMSA/DNase I footprint Target#4 in pBluescript This work 
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pShfT5 EMSA/DNase I footprint Target#5 in pBluescript This work 

pShfT6 EMSA/DNase I footprint Target#6 in pBluescript This work 

pAJH01 IPTG inducible vector carrying his-virB This work 

pCTH01 IPTG inducible vector carrying his-hns  This work 

pBAD18 L-arabinose inducible pBAD expression vector, pBR 
ori; Ampr  

(Guzman et al., 
1995) 

pATM324 pBAD18-virB; Ampr ((Schuch et al, 1999) 

pNEO1 PstI, XbaI insert of icsP cloned into pBluescript.  
Carries 1232 bp of native sequence upstream of the 
icsP transcription start site. Used as template for site-
directed mutagenesis 

This work 

pMut1 D pHJW20 with 2bp substitution to disrupt curvature at -
842 
A>C at -876 & C>A at -880 relative to icsP tss. 

This work 

pMut2 D pHJW20 with 2bp substitution to disrupt curvature at -
935 
G>T at -968 & A>C at -974 relative to icsP tss. 

This work 

pMut3 D pHJW20 with 2bp substitution to disrupt curvature at -
663 
C>A at -691 & T>G at -696 relative to icsP tss. 

This work 

pMut4 D pHJW20 with 2bp substitution to disrupt curvature at -
435 
T>G at -454 & A>C at -463 relative to icsP tss. 

This work 

pMut1 R pHJW20 with 2bp substitution to restore curvature at -
842 
C>T at -876 & A>G at -880 relative to icsP tss. 

This work 

pMut2 R pHJW20 with 2bp substitution to restore curvature at -
935 
T>C at -968 & C>T at -974 relative to icsP tss. 

This work 

pMut3 R pHJW20 with 2bp substitution to restore curvature at -
663 
A>G at -691 & G>A at -696 relative to icsP tss. 

This work 
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pMut4 R pHJW20 with 2bp substitution to restore curvature at -
435 
G>A at -454 & C>T at -463 relative to icsP tss. 

This work 

a Ampr, ampicillin resistance; Tetr, tetracycline resistance; Cmr, chloramphenicol 
resistance; Knr, kanamycin resistance 
 
 
Table 2 Oligonucleotide Primers 

Primer Sequencea 5'-3' Description or 
useb 

W1016 CAGATAAAATATTTCAAGATTTCAGTGC 

Mutation of XbaI 
binding site 

downstream of the 
lacZ gene. 

W1017 CCCGCATCCACAGGACGGGTGTGGTCG 

Used with W1016 
to create ‘mega’-
primer lacking 

XbaI site. 

W1018 GTGAGAGGGCCGCGGCAAAGCC 

Used with 
‘mega’-primer to 
create fragment 

lacking  XbaI site. 

W530 GGGTACCTGCAGTAAAAGATATGTTCTTGG 

Binds to 
sequences -92 to -
75 relative to the 

icsP tss. Used 
with W48 to make 

pHJW36.  

W44 GGGTACCTGCAGGCCTCTTTATTATAAGTAAGATCTGGC 

Binds to 
sequences -1056 
to -1030 relative 
to the icsP tss. 

Used with W48 to 
make pJS01. 

W45 GGGTACCTGCAGAGTGAACTCTCGCCCTATACGGCG 

Binds to 
sequences -891 to 

-868 relative to 
the icsP tss. Used 
with W48 to make 

pJS02. 

W46 GGGTACCTGCAGTTTGGTCACTTTAACTGTATTAGTCGC 

Binds to 
sequences -663 to 

-637 relative to 
the icsP tss. Used 
with W48 to make 

pDH01. 

W47 GGGTACCTGCAGGTTGGTACTGAAAGGCACGTTGGC 

Binds to 
sequences -351 to 

-328 relative to 
the icsP tss. Used 
with W48 to make 

pJS04. 
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W528  GGGTACCTGCAGGGCGAGAGAACAAGAAGGTGAGTAG 

Binds to sequences -
254 to -241 relative to 
the icsP tss. Used with 

W48 to make 
pHJW34.  

W529  
 GGGTACCTGCAGCTTTATTCGCACAATGAGG 

Binds to sequences -
150 to -132 relative to 
the icsP tss. Used with 

W48 to make 
pHJW35.  

W530 
 GGGTACCTGCAGTAAAAGATATGTTCTTGG 

Binds to sequences -92 
to -75 relative to the 
icsP tss. Used with 

W48 to make 
pHJW36.  

W63 TGAGACGTCGACAGAACTCTACTTTTTTGGTTGAAATGTCC 

Binds to sequences -3 
to +24. Used to make 
icsP promoter 
Target#1 Reverse 

W144 CCGGGAATTCTTGTCGCGGAATCCTGAAACTATCAGCC 

Binds to sequences -
227 to -200. Used to 
make icsP promoter 
Target#1 Forward 

W65 TGAGACGTCGACTCATTGTGCGAATAAAGTAACGGGGGC 

Binds to sequences -
160 to -134. Used to 
make icsP promoter 
Target#2 Reverse 

W145 CCGGGAATTCAGGTTGTCATGTTGTGACTGAAAGGC 

Binds to sequences -
361 to -336 . Used to 
make icsP promoter 
Target#2 Forward 

W67 TGAGACGTCGACCGATAAGACAATAAATTGTCATCACGGC 

Binds to sequences -
320 to -293. Used to 
make icsP promoter 
Target#3 Reverse 

W157 CCGGGGATCCTCTGACTCTCGACTTTAAAAGGATGGG 

Binds to sequences -
635 to -608 . Used to 
make icsP promoter 
Target#3 Forward 
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W69 TGAGACGTCGACGGGCACCTCACTTTAGCACTGAAGCC 

Binds to sequences -
548 to -523 . Used to 
make icsP promoter 
Target#4 Reverse 

W147 CCGGGAATTCGCGTTTTCAAGGATTAGTCCTTAATCGG 

Binds to sequences -
870 to -843 . Used to 
make icsP promoter 
Target#4 Forward 

W71 TGAGACGTCGACAATAAATATTCTACTAATTTAATGCATCAC 

Binds to sequences -
759 to -730 . Used to 
make icsP promoter 
Target#5 Reverse 

W148 CCGGGAATTCAAGCCTCTTTATTATAAGTAAGATCTGGC 

Binds to sequences -
1058 to -1030 . Used 
to make icsP 
promoter Target#5 
Forward 

W73 TGAGACGTCGACCAATAAAATGGTTGGTTGAAGGTCGTG 

Binds to sequences -
995 to -969. Used to 
make icsP promoter 
Target#6 Reverse 

W149 CCGGGAATTCATGCTTGATAACTTAATTGGGGCTCCC 

Binds to sequences -
1214 to -1188. Used 
to make icsP 
promoter Target#6 
Forward 

W81 ATGTTTATGATACCTGCAGG 

Binds to sequences -
1219 to -1232 relative 
to the icsP tss. Used to 

amplify sequences 
contained in pMIC02. 

W82 AGGACTTCCGTCGACCAGGAAATAGTGCGGGCAAC 

Binds to sequences -
1473 to -1454 relative 
to the icsP tss. Used to 

amplify sequences 
contained in pMIC02. 

W89 CAAATTATCTAGAAAAGATCGCAGG 

Binds downstream of 
the transcription start 

site in icsP gene. Used 
in the construction of 

pMIC13, 17 & 18. 
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W98 CCCGTTCCATGTGCTCGCC 

Binds to pACYC184 
upstream of cloned 

sequences. Used in the 
construction of 

pMIC13, 17 & 18. 

W99 /5Phos/ACTGAAATCCCCGGAAGTATTCAATC 

Binds to promoter 
proximal upstream 

VirB binding site; wild 
type sequence. Used in 

the construction of 
pMIC17. 

W100 /5Phos/AGCTGGGCCCCCGGAAGTATTCAATC 

Binds close to 
promoter proximal 

upstream VirB binding 
site used to mutate this 
sequence. Used in the 

construction of 
pMIC13 & 18. 

W101 /5Phos/ATGAAATGAAGTATATTTAATATACTTTAC 

Binds to distal 
upstream VirB binding 

site; wild type 
sequence. Used in the 

construction of 
pMIC13. 

W110 /5Phos/CGACCCGGAAGTATATTTAATATACTTTAC 

Binds close to distal 
upstream VirB binding 
site used to mutate this 
sequence. Used in the 

construction of 
pMIC17 & 18. 

W149 CCGGGAATTCATGCTTGATAACTTAATTGGGGCTCCC 

Binds to 
sequences -1214 
to -1188. Used to 

make icsP 
promoter 

Target#6 Forward 

W75 CCGGGAATTCTCAATGAAATTGCTAATT 

icsB positive control 
Reverse (Turner & 

Dorman, 2007)  

W76 CCGGGAATTCATGCAATCCCAAATTAGT 

icsB positive control 
Forward (Turner & 

Dorman, 2007) 

W77 TGAGACGTCGACCCACTCTTCGTTCACTTTCGCC 

pstS negative 
control Forward 
binds internal to 
translation start 

site 



 

114 

W78 GTGTCAGTCGACCTCAGGAAGGTCTGTTCCAGTTCCC 

pstS negative 
control Reverse 
binds internal to 
translation start 

site 

W108 GTGTCAGTCGACTATTGGTCTTCCACGCAGCGC 
pstS' negative 

control Reverse 
orf 

W109 GTGTCAGTCGACTTATGAAAGTTATGCGTACCACCG 
pstS' negative 

control Forward 
orf 

W38 CAGGGTGTGCCATGGTGGATTTGTGC Used to clone 
virB into pQE60  

W39 
CAGCTAATTAAGCTTAGTGATGGTGATGGTGATGTCCTGAAGAC

GATAGATGGC 
Used to clone 

virB into pQE60 

W134 TCATTCCCATGGCCGAAGCACTTAAAATTCTGAAC Used to clone hns 
into pQE60   

W135 TCATTCAGATCTTTGCTTGATCAGGAAATCGTCG Used to clone hns 
into pQE60 

W112 CGCATTGTTAGATTTCATACACGG 

Reverse primer 
binds downstream 

of ClaI in 
pACYC184 used 

to make non-
specific 

competitor DNA. 

W113.1 AAATGTAGCACCTGAAGTCAGCC 

Forward primer 
binds upstream of 

ClaI in 
pACYC184 used 

to make non-
specific 

competitor DNA. 

W206 TCCTTGAAAACGCCGTATCGGGAGAGAGTTCACTCTATTG 

Forward primer 
to disrupt 

curvature at -
842 relative to the 

icsP tss  

W207 CAATAGAGTGAACTCTCTCCCGATACGGCGTTTTCAAGGA 

Reverse primer 
to disrupt 

curvature at -
842 relative to the 

icsP tss 

W208 CCACTACTGAACTATTCTGGGATTTAAATTCAATACAATGGTTG
GTTGAAGGTC 

Forward primer 
to disrupt 

curvature at -
935 relative to the 

icsP tss 
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W209 GACCTTCAACCAACCATTGTATTGAATTTAAATCCCAGAATAGT
TCAGTAGTGG 

Reverse primer 
to disrupt 

curvature at -
935 relative to the 

icsP tss 

W210 GTTATCCTCTACACATTTTATCTAATGTGTACTTGGACAATTCA
TTGGTGC 

Forward primer 
to disrupt 

curvature at -
663 relative to the 

icsP tss 

W211 GCACCAATGAATTGTCCAAGTACACATTAGATAAAATGTGTAGA
GGATAAC 

Reverse primer 
to disrupt 

curvature at -
663 relative to the 

icsP tss 

W212 GTATAGTTTTTCAGATTTTGTTTGTCCCGTGACATATTATGGAA
ATGGCAGAAGCA 

Forward primer 
to disrupt 

curvature at -
435 relative to the 

icsP tss 

W213 TGCTTCTGCCATTTCCATAATATGTCACGGGACAAACAAAATCT
GAAAAACTATAC 

Reverse primer 
to disrupt 

curvature at -
435 relative to the 

icsP tss 

W214 TCCTTGAAAACGCCGTATTGGGGGAGAGTTCACTCTATTG 

Forward primer 
to restore 

curvature at -
842 relative to the 

icsP tss 

W215 CAATAGAGTGAACTCTCCCCCAATACGGCGTTTTCAAGGA 

Reverse primer 
to restore 

curvature at -
842 relative to the 

icsP tss 

W216 ACTACTGAACTATTCTGGGATTTAAATCCAATATAATGGTTGGT
TGAAGGT 

Forward primer 
to restore 

curvature at -
935 relative to the 

icsP tss 

W217 ACCTTCAACCAACCATTATATTGGATTTAAATCCCAGAATAGTT
CAGTAGT 

Reverse primer 
to restore 

curvature at -
935 relative to the 

icsP tss 

W218 GTTATCCTCTACACATTTTATCTGATGTATACTTGGACAATTCA
TTGGTGC 

Forward primer 
to restore 

curvature at -
663 relative to the 

icsP tss 
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W219 GCACCAATGAATTGTCCAAGTATACATCAGATAAAATGTGTAGA
GGATAAC 

Reverse primer 
to restore 

curvature at -
663 relative to the 

icsP tss 

W220 GTATAGTTTTTCAGATTTTGTTTATCCCGTGATATATTATGGAA
ATGGCAGAAGCA 

Forward primer 
to restore 

curvature at -
435 relative to the 

icsP tss 

W221 TGCTTCTGCCATTTCCATAATATATCACGGGATAAACAAAATCT
GAAAAACTATAC 

Reverse primer 
to restore 

curvature at -
435 relative to the 

icsP tss 
 

a Restriction sites underlined.  
b tss, transcription start site. 
c Bold indicates bases mutated by site directed mutagenesis 
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APPENDIX 2 
 

PRELIMINARY EXAMINATION OF THE INVOLVEMENT OF IHF IN THE 

REGULATION OF THE ICSP PROMOTER 

 
 

 The VirB protein is homologous to the P1 protein ParB, and the ParB binding site, 

parS, shows a high degree of similarity to the icsB binding site described by Turner & 

Dorman (2007) and Taniya et al. (2003) (Beloin et al., 2002, Taniya et al., 2003, Surtees 

& Funnell, 2001).  We have shown that the essential distal VirB binding site in icsP 

shows sequence homology with both these sites (parS and icsB).  An in silico analysis of 

this region using the Softberry software BROM, which analyzes bacterial promoters, 

predicts an integration host factor (IHF) binding site oriented in a similar position to that 

found in parS (Fig. 27).   

 

 Based on this finding, I conducted a preliminary experiment to assess the potential 

contribution that IHF makes in the regulation of icsP promoter.  IHF exists as a 

Fig. 27.  Comparison of P1 parS and icsP.  Comparison of the P1 parS and icsP sites showing the ParB 
binding sites in parS (upper) and the VirB binding sites in icsP (lower).  The IHF binding site is shown for 
parS and the BPROM predicted IHF site is shown in icsP.  parS (Surtees & Funnell, 2001). 
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heterodimeric sequence specific DNA binding protein and functions as both a structural 

element in the cell and as a conventional regulator of gene expression.  The two subunits 

of the protein are encoded by the chromosomal genes himA and himB (also seen in the 

literature as ihfA and ihfB) (Funnell, 1988).  Its role is to bend DNA up to 180° which 

facilitates the formation of nucleoprotein complexes.  IHF is a positive regulator of both 

virF and virB (Porter & Dorman, 1997).   

 Through P1 transduction I introduced a tetracycline resistance cassette into the himA 

gene of Shigella flexneri 2a, wild type and an isogenic strain lacking virB, to ablate the 

function of the IHF protein.  Similar strategies have been used to disrupt IHF function 

since IHF exists as a heterodimeric protein; disruption of either gene is sufficient to 

destroy function (Funnell, 1988).  These cells were transformed with our reporter plasmid 

containing the full upstream intergenic region of icsP::lacZ and assayed in the β-

galactosidase assay (described in materials and methods, chapters 2, 3 and 4).  The results 

in Fig. 28 suggest that IHF does not play a role in the VirB dependent regulation of icsP 

promoter activity.   

 In the parS system, IHF bends the parS site which allows ParB to contact its specific 

binding motifs located on either side of the bend resulting in a high affinity protein:DNA 

complex.  However, in the absence of IHF, ParB binds specifically, but more weakly to 

parS and only requires the right half of the parS site for activity (Vecchiarelli et al, 

2007).  Therefore, it could be possible that in our reporter system the absence of IHF is 

not sufficient to produce a defect in the ability of VirB to regulate promoter activity, in 

fact, the data suggests that in the absence of himA- the presence of VirB increases 

promoter activity above what is seen in the wild type.  Could this be evidence for IHF 



 

119 

participation in promoter regulation?  It is an interesting finding that bears further 

investigation. It would be interesting to investigate the interaction between VirB, H-NS, 

and IHF.  An E. coli MC4100 himA- construct has been made, however, the hns-, himA- 

double knock out has been difficult to create as this is likely deleterious to the cell, but 

the potential information that could be gained from demonstrating a mulit-nucleoprotein 

complex in the regulation of icsP would be worth the effort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28. IHF does not regulate icsP promoter activity.  β-galactosidase assay of the full upstream 
intergenic region of icsP::lacZ (pHJW20).  Bars indicate β-galactosidase expression in the presence and 
absence of virB, himA and the double mutant lacking both.  β-galactosidase activities are expressed in 
Miller units and mean and standard deviations are shown.  This graph is a representative sample. 



 

120 

BIBLIOGRAPHY 

Abeles A. L., Friedman S. A., Austin S. J. (1985). Partition of unit-copy miniplasmids 
to daughter cells. III. the DNA sequence and functional organization of the P1 partition 
region. J Mol Biol 185, 261-272. 
 
Adler B., Sasakawa C., Tobe T., Makino S., Komatsu K., Yoshikawa M. (1989). A 
dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-
associated antigens of Shigella flexneri. Mol Microbiol 3, 627-635. 
 
Ali Azam T., Iwata A., Nishimura A., Ueda S., Ishihama A. (1999). Growth phase-
dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 
181, 6361-6370. 
 
Amit R., Oppenheim A. B., Stavans J. (2003). Increased bending rigidity of single 
DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys J 84, 2467-
2473. 
 
Atlung T. & Ingmer H. (1997). H-NS: A modulator of environmentally regulated gene 
expression. Mol Microbiol 24, 7-17. 
 
Azam T. A. & Ishihama A. (1999). Twelve species of the nucleoid-associated protein 
from Escherichia coli. sequence recognition specificity and DNA binding affinity. J Biol 
Chem 274, 33105-33113. 
 
Badaut C., Williams R., Arluison V., Bouffartigues E., Robert B., Buc H., Rimsky S. 
(2002). The degree of oligomerization of the H-NS nucleoid structuring protein is related 
to specific binding to DNA. J Biol Chem 277, 41657-41666. 
 
Balleza E., Lopez-Bojorquez L. N., Martinez-Antonio A., Resendis-Antonio O., 
Lozada-Chavez I., Balderas-Martinez Y. I., Encarnacion S., Collado-Vides J. (2009). 
Regulation by transcription factors in bacteria: Beyond description. FEMS Microbiol Rev 
33, 133-151. 
 
Barbic A. & Crothers D. M. (2003). Comparison of analyses of DNA curvature. J 
Biomol Struct Dyn 21, 89-97. 
 
Barbic A., Zimmer D. P., Crothers D. M. (2003). Structural origins of adenine-tract 
bending. Proc Natl Acad Sci U S A 100, 2369-2373. 
 
Belitsky B. R. & Sonenshein A. L. (1999). An enhancer element located downstream of 
the major glutamate dehydrogenase gene of Bacillus subtilis. Proc Natl Acad Sci U S A 
96, 10290-10295. 
 
Beloin C. & Dorman C. J. (2003). An extended role for the nucleoid structuring protein 
H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol Microbiol 47, 



 

121 

825-838. 
 
Beloin C., McKenna S., Dorman C. J. (2002). Molecular dissection of VirB, a key 
regulator of the virulence cascade of Shigella flexneri. J Biol Chem 277, 15333-15344. 
 
Beloin C., Deighan P., Doyle M., Dorman C. J. (2003). Shigella flexneri 2a strain 
2457T expresses three members of the H-NS-like protein family: Characterization of the 
sfh protein. Mol Genet Genomics 270, 66-77. 
 
Bennish M. L. & Wojtyniak B. J. (1991). Mortality due to shigellosis: Community and 
hospital data. Rev Infect Dis 13 Suppl 4, S245-51. 
 
Berlutti F., Casalino M., Zagaglia C., Fradiani P. A., Visca P., Nicoletti M. (1998). 
Expression of the virulence plasmid-carried apyrase gene (apy) of enteroinvasive 
Escherichia coli and Shigella flexneri is under the control of H-NS and the VirF and VirB 
regulatory cascade. Infect Immun 66, 4957-4964. 
 
Bertin P., Terao E., Lee E. H., Lejeune P., Colson C., Danchin A., Collatz E. (1994). 
The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 
176, 5537-5540. 
 
Bignell C. & Thomas C. M. (2001). The bacterial ParA-ParB partitioning proteins. J 
Biotechnol 91, 1-34. 
 
Bloch V., Yang Y., Margeat E., Chavanieu A., Auge M. T., Robert B., Arold S., 
Rimsky S., Kochoyan M. (2003). The H-NS dimerization domain defines a new fold 
contributing to DNA recognition. Nat Struct Biol 10, 212-218. 
 
Boss A., Nussbaum-Shochat A., Amster-Choder O. (1999). Characterization of the 
dimerization domain in BglG, an RNA-binding transcriptional antiterminator from 
Escherichia coli. J Bacteriol 181, 1755-1766. 
 
Bouet J. Y. & Funnell B. E. (1999). P1 ParA interacts with the P1 partition complex at 
parS and an ATP-ADP switch controls ParA activities. EMBO J 18, 1415-1424. 
 
Bouet J. Y., Surtees J. A., Funnell B. E. (2000). Stoichiometry of P1 plasmid partition 
complexes. J Biol Chem 275, 8213-8219. 
 
Bouffartigues E., Buckle M., Badaut C., Travers A., Rimsky S. (2007). H-NS 
cooperative binding to high-affinity sites in a regulatory element results in transcriptional 
silencing. Nat Struct Mol Biol 14, 441-448. 
 
Bracco L., Kotlarz D., Kolb A., Diekmann S., Buc H. (1989). Synthetic curved DNA 
sequences can act as transcriptional activators in Escherichia coli. EMBO J 8, 4289-4296. 
 



 

122 

Browning D. F., Cole J. A., Busby S. J. (2000). Suppression of FNR-dependent 
transcription activation at the Escherichia coli nir promoter by fis, IHF and H-NS: 
Modulation of transcription initiation by a complex nucleo-protein assembly. Mol 
Microbiol 37, 1258-1269. 
 
Broyles S. S. & Pettijohn D. E. (1986). Interaction of the Escherichia coli HU protein 
with DNA. evidence for formation of nucleosome-like structures with altered DNA 
helical pitch. J Mol Biol 187, 47-60. 
 
Castellanos M. I., Harrison D. J., Smith J. M., Labahn S. K., Levy K. M., Wing H. J. 
(2009). VirB alleviates H-NS repression of the icsP promoter in Shigella flexneri from 
sites more than one kilobase upstream of the transcription start site. J Bacteriol 191, 
4047-4050. 
 
Cerdan R., Bloch V., Yang Y., Bertin P., Dumas C., Rimsky S., Kochoyan M., Arold 
S. T. (2003). Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS-
like protein of vibrio cholerae. J Mol Biol 334, 179-185. 
 
Chen C. C. & Wu H. Y. (2005). LeuO protein delimits the transcriptionally active and 
repressive domains on the bacterial chromosome. J Biol Chem 280, 15111-15121. 
 
Chen C. C., Chou M. Y., Huang C. H., Majumder A., Wu H. Y. (2005). A cis-
spreading nucleoprotein filament is responsible for the gene silencing activity found in 
the promoter relay mechanism. J Biol Chem 280, 5101-5112. 
 
Coker C., Bakare O. O., Mobley H. L. (2000). H-NS is a repressor of the Proteus 
mirabilis urease transcriptional activator gene ureR. J Bacteriol 182, 2649-2653. 
 
Collado-Vides J., Magasanik B., Gralla J. D. (1991). Control site location and 
transcriptional regulation in Escherichia coli. Microbiol Rev 55, 371-394. 
 
Corcoran C. P. & Dorman C. J. (2009). DNA relaxation-dependent phase biasing of 
the fim genetic switch in Escherichia coli depends on the interplay of H-NS, IHF and 
LRP. Mol Microbiol . 
 
Dagberg B. & Uhlin B. E. (1992). Regulation of virulence-associated plasmid genes in 
enteroinvasive Escherichia coli. J Bacteriol 174, 7606-7612. 
 
Dame R. T., Noom M. C., Wuite G. J. (2006). Bacterial chromatin organization by H-
NS protein unravelled using dual DNA manipulation. Nature 444, 387-390. 
 
Dame R. T., Wyman C., Goosen N. (2000). H-NS mediated compaction of DNA 
visualised by atomic force microscopy. Nucleic Acids Res 28, 3504-3510. 
 
Dame R. T., Luijsterburg M. S., Krin E., Bertin P. N., Wagner R., Wuite G. J. 
(2005). DNA bridging: A property shared among H-NS-like proteins. J Bacteriol 187, 



 

123 

1845-1848. 
 
De la Cruz M. A., Merino E., Oropeza R., Tellez J., Calva E. (2009). The DNA static 
curvature has a role in the regulation of the ompS1 porin gene in Salmonella enterica 
serovar Typhi. Microbiology 155, 2127-2136. 
 
De la Cruz M. A., Fernandez-Mora M., Guadarrama C., Flores-Valdez M. A., 
Bustamante V. H., Vazquez A., Calva E. (2007). LeuO antagonizes H-NS and StpA-
dependent repression in Salmonella enterica ompS1. Mol Microbiol 66, 727-743. 
 
Dersch P., Schmidt K., Bremer E. (1993). Synthesis of the Escherichia coli K-12 
nucleoid-associated DNA-binding protein H-NS is subjected to growth-phase control and 
autoregulation. Mol Microbiol 8, 875-889. 
 
Donato G. M. & Kawula T. H. (1998). Enhanced binding of altered H-NS protein to 
flagellar rotor protein FliG causes increased flagellar rotational speed and hypermotility 
in Escherichia coli. J Biol Chem 273, 24030-24036. 
 
Dorman C. J. (2009). H-NS and genomic bridge building: Lessons from the human 
pathogen salmonella typhi. Microbiology 155, 2114-2115. 
 
Dorman C. J. (2004). H-NS: A universal regulator for a dynamic genome. Nat Rev 
Microbiol 2, 391-400. 
 
Dorman C. J. & Kane K. A. (2009). DNA bridging and antibridging: A role for 
bacterial nucleoid-associated proteins in regulating the expression of laterally acquired 
genes. FEMS Microbiol Rev 33, 587-592. 
 
Dorman C. J. & Deighan P. (2003). Regulation of gene expression by histone-like 
proteins in bacteria. Curr Opin Genet Dev 13, 179-184. 
 
Dorman C. J., Hinton J. C., Free A. (1999). Domain organization and oligomerization 
among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 7, 124-128. 
 
Doyle M., Fookes M., Ivens A., Mangan M. W., Wain J., Dorman C. J. (2007). An H-
NS-like stealth protein aids horizontal DNA transmission in bacteria. Science 315, 251-
252. 
 
Egile C., d'Hauteville H., Parsot C., Sansonetti P. J. (1997). SopA, the outer 
membrane protease responsible for polar localization of IcsA in Shigella flexneri. Mol 
Microbiol 23, 1063-1073. 
 
Egile C., Loisel T. P., Laurent V., Li R., Pantaloni D., Sansonetti P. J., Carlier M. F. 
(1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein 
promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell 



 

124 

Biol 146, 1319-1332. 
 
Ellison D. W. & Miller V. L. (2006a). H-NS represses inv transcription in Yersinia 
enterocolitica through competition with RovA and interaction with YmoA. J Bacteriol 
188, 5101-5112. 
 
Ellison D. W. & Miller V. L. (2006b). Regulation of virulence by members of the 
MarR/SlyA family. Curr Opin Microbiol 9, 153-159. 
 
Esposito D., Petrovic A., Harris R., Ono S., Eccleston J. F., Mbabaali A., Haq I., 
Higgins C. F., Hinton J. C., Driscoll P. C., Ladbury J. E. (2002). H-NS 
oligomerization domain structure reveals the mechanism for high order self-association 
of the intact protein. J Mol Biol 324, 841-850. 
 
Falconi M., Prosseda G., Giangrossi M., Beghetto E., Colonna B. (2001). Involvement 
of FIS in the H-NS-mediated regulation of virF gene of Shigella and enteroinvasive 
Escherichia coli. Mol Microbiol 42, 439-452. 
 
Falconi M., Colonna B., Prosseda G., Micheli G., Gualerzi C. O. (1998). 
Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-
dependent structural transition of DNA modulates accessibility of virF promoter to 
transcriptional repressor H-NS. EMBO J 17, 7033-7043. 
 
Fang F. C. & Rimsky S. (2008). New insights into transcriptional regulation by H-NS. 
Curr Opin Microbiol 11, 113-120. 
 
Fickett J. W. (1982). Recognition of protein coding regions in DNA sequences. Nucleic 
Acids Res 10, 5303-5318. 
 
Flores-Valdez M. A., Puente J. L., Calva E. (2003). Negative osmoregulation of the 
Salmonella ompS1 porin gene independently of OmpR in an hns background. J Bacteriol 
185, 6497-6506. 
 
Forsman K., Sonden B., Goransson M., Uhlin B. E. (1992). Antirepression function in 
Escherichia coli for the cAMP-cAMP receptor protein transcriptional activator. Proc 
Natl Acad Sci U S A 89, 9880-9884. 
 
Fozo E. M., Hemm M. R., Storz G. (2008). Small toxic proteins and the antisense 
RNAs that repress them. Microbiol Mol Biol Rev 72, 579-89, Table of Contents. 
 
Free A., Porter M. E., Deighan P., Dorman C. J. (2001). Requirement for the 
molecular adapter function of StpA at the Escherichia coli bgl promoter depends upon 
the level of truncated H-NS protein. Mol Microbiol 42, 903-917. 
 
Fukuda I., Suzuki T., Munakata H., Hayashi N., Katayama E., Yoshikawa M., 
Sasakawa C. (1995). Cleavage of Shigella surface protein VirG occurs at a specific site, 



 

125 

but the secretion is not essential for intracellular spreading. J Bacteriol 177, 1719-1726. 
 
Funnell B. E. (1988). Participation of Escherichia coli integration host factor in the P1 
plasmid partition system. Proc Natl Acad Sci U S A 85, 6657-6661. 
 
Goldberg M. B., Barzu O., Parsot C., Sansonetti P. J. (1993). Unipolar localization 
and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular 
movement. J Bacteriol 175, 2189-2196. 
 
Goransson M., Sonden B., Nilsson P., Dagberg B., Forsman K., Emanuelsson K., 
Uhlin B. E. (1990). Transcriptional silencing and thermoregulation of gene expression in 
Escherichia coli. Nature 344, 682-685. 
 
Guzman L. M., Belin D., Carson M. J., Beckwith J. (1995). Tight regulation, 
modulation, and high-level expression by vectors containing the arabinose PBAD 
promoter. J Bacteriol 177, 4121-4130. 
 
Hacker J. & Kaper J. B. (2000). Pathogenicity islands and the evolution of microbes. 
Annu Rev Microbiol 54, 641-679. 
 
Hale T. L. (1991). Genetic basis of virulence in Shigella species. Microbiol Rev 55, 206-
224. 
 
Heroven A. K., Bohme K., Tran-Winkler H., Dersch P. (2007). Regulatory elements 
implicated in the environmental control of invasin expression in enteropathogenic 
Yersinia. Adv Exp Med Biol 603, 156-166. 
 
Heroven A. K., Nagel G., Tran H. J., Parr S., Dersch P. (2004). RovA is autoregulated 
and antagonizes H-NS-mediated silencing of invasin and rovA expression in Yersinia 
pseudotuberculosis. Mol Microbiol 53, 871-888. 
 
Higgins C. F., Dorman C. J., Stirling D. A., Waddell L., Booth I. R., May G., Bremer 
E. (1988). A physiological role for DNA supercoiling in the osmotic regulation of gene 
expression in S. typhimurium and E. coli. Cell 52, 569-584. 
 
Hritonenko V. & Stathopoulos C. (2007). Omptin proteins: An expanding family of 
outer membrane proteases in gram-negative enterobacteriaceae. Mol Membr Biol 24, 395-
406. 
 
Hromockyj A. E. & Maurelli A. T. (1989). Identification of an Escherichia coli gene 
homologous to virR, a regulator of Shigella virulence. J Bacteriol 171, 2879-2881. 
 
Hromockyj A. E., Tucker S. C., Maurelli A. T. (1992). Temperature regulation of 
Shigella virulence: Identification of the repressor gene virR, an analogue of hns, and 
partial complementation by tyrosyl transfer RNA (tRNA1(tyr)). Mol Microbiol 6, 2113-



 

126 

2124. 
 
Hulbert R. R. & Taylor R. K. (2002). Mechanism of ToxT-dependent transcriptional 
activation at the Vibrio cholerae tcpA promoter. J Bacteriol 184, 5533-5544. 
 
Huo Y. X., Zhang Y. T., Xiao Y., Zhang X., Buck M., Kolb A., Wang Y. P. (2009). 
IHF-binding sites inhibit DNA loop formation and transcription initiation. Nucleic Acids 
Res 37, 3878-3886. 
 
Jain R., Rivera M. C., Moore J. E., Lake J. A. (2002). Horizontal gene transfer in 
microbial genome evolution. Theor Popul Biol 61, 489-495. 
 
Jauregui R., Abreu-Goodger C., Moreno-Hagelsieb G., Collado-Vides J., Merino E. 
(2003). Conservation of DNA curvature signals in regulatory regions of prokaryotic 
genes. Nucleic Acids Res 31, 6770-6777. 
 
Jin Q., Yuan Z., Xu J., Wang Y., Shen Y., Lu W., Wang J., Liu H., Yang J.& other 
authors. (2002). Genome sequence of Shigella flexneri 2a: Insights into pathogenicity 
through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 
30, 4432-4441. 
 
Kim S. K. & Wang J. C. (1999). Gene silencing via protein-mediated subcellular 
localization of DNA. Proc Natl Acad Sci U S A 96, 8557-8561. 
 
Kong W., Weatherspoon N., Shi Y. (2008). Molecular mechanism for establishment of 
signal-dependent regulation in the PhoP/PhoQ system. J Biol Chem 283, 16612-16621. 
 
Kotloff K. L., Winickoff J. P., Ivanoff B., Clemens J. D., Swerdlow D. L., Sansonetti 
P. J., Adak G. K., Levine M. M. (1999). Global burden of Shigella infections: 
Implications for vaccine development and implementation of control strategies. Bull 
World Health Organ 77, 651-666. 
 
Kozobay-Avraham L., Hosid S., Bolshoy A. (2004). Curvature distribution in 
prokaryotic genomes. In Silico Biol 4, 361-375. 
 
Kukkonen, M., and T. K. Korhonen. 2004. The omptin family of enterobacterial 
surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of 
Yersinia pestis. Int J Med Microbiol 294:7-14. 
 
Lang B., Blot N., Bouffartigues E., Buckle M., Geertz M., Gualerzi C. O., Mavathur 
R., Muskhelishvili G., Pon C. L.& other authors. (2007). High-affinity DNA binding 
sites for H-NS provide a molecular basis for selective silencing within proteobacterial 
genomes. Nucleic Acids Res 35, 6330-6337. 
 
Le Gall T., Mavris M., Martino M. C., Bernardini M. L., Denamur E., Parsot C. 
(2005). Analysis of virulence plasmid gene expression defines three classes of effectors 



 

127 

in the type III secretion system of Shigella flexneri. Microbiology 151, 951-962. 
 
Lee H., Kotloff K., Chukaserm P., Samosornsuk S., Chompook P., Deen J. L., Von 
Seidlein L., Clemens J. D., Wanpen C. (2005). Shigellosis remains an important 
problem in children less than 5 years of age in Thailand. Epidemiol Infect 133, 469-474. 
 
Li Y., Cao B., Liu B., Liu D., Gao Q., Peng X., Wu J., Bastin D. A., Feng L., Wang 
L. (2009). Molecular detection of all 34 distinct O-antigen forms of Shigella. J Med 
Microbiol 58, 69-81. 
 
Lie T. J. & Leigh J. A. (2007). Genetic screen for regulatory mutations in 
Methanococcus maripaludis and its use in identification of induction-deficient mutants of 
the euryarchaeal repressor NrpR. Appl Environ Microbiol 73, 6595-6600. 
 
Lithgow J. K., Haider F., Roberts I. S., Green J. (2007). Alternate SlyA and H-NS 
nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol 
Microbiol 66, 685-698. 
 
Lobocka M. & Yarmolinsky M. (1996). P1 plasmid partition: A mutational analysis of 
ParB. J Mol Biol 259, 366-382. 
 
Lucchini S., Rowley G., Goldberg M. D., Hurd D., Harrison M., Hinton J. C. (2006). 
H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2, e81. 
 
Luijsterburg M. S., Noom M. C., Wuite G. J., Dame R. T. (2006). The architectural 
role of nucleoid-associated proteins in the organization of bacterial chromatin: A 
molecular perspective. J Struct Biol 156, 262-272. 
 
Maurelli A. T. & Sansonetti P. J. (1988). Identification of a chromosomal gene 
controlling temperature-regulated expression of Shigella virulence. Proc Natl Acad Sci U 
S A 85, 2820-2824. 
 
Maurelli A. T., Blackmon B., Curtiss R.,3rd. (1984a). Loss of pigmentation in Shigella 
flexneri 2a is correlated with loss of virulence and virulence-associated plasmid. Infect 
Immun 43, 397-401. 
 
Maurelli A. T., Blackmon B., Curtiss R.,3rd. (1984b). Temperature-dependent 
expression of virulence genes in Shigella species. Infect Immun 43, 195-201. 
 
Maurer S., Fritz J., Muskhelishvili G. (2009). A systematic in vitro study of 
nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing 
novel types of DNA organization. J Mol Biol 387, 1261-1276. 
 
McKenna S., Beloin C., Dorman C. J. (2003). In vitro DNA-binding properties of 
VirB, the Shigella flexneri virulence regulatory protein. FEBS Lett 545, 183-187. 
 



 

128 

Miller J., editor. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: 
Cold Spring Harbor Laboratory Press. 
 
Nasser W. & Reverchon S. (2002). H-NS-dependent activation of pectate lyases 
synthesis in the phytopathogenic bacterium Erwinia chrysanthemi is mediated by the 
PecT repressor. Mol Microbiol 43, 733-748. 
 
Navarre W. W., McClelland M., Libby S. J., Fang F. C. (2007). Silencing of 
xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense 
system that recognizes foreign DNA. Genes Dev 21, 1456-1471. 
 
Navarre W. W., Porwollik S., Wang Y., McClelland M., Rosen H., Libby S. J., Fang 
F. C. (2006). Selective silencing of foreign DNA with low GC content by the H-NS 
protein in Salmonella. Science 313, 236-238. 
 
Nicoletti M., Santino I., Petrucca A., Del Chierico F., Cannavacciuolo S., Casalino 
M., Sessa R., Cipriani P. (2008). Evaluation by real-time PCR of the expression of S. 
flexneri virulence-associated genes ospB and phoN2 under different genetical 
backgrounds. Int J Immunopathol Pharmacol 21, 707-714. 
 
Nogueira T. & Springer M. (2000). Post-transcriptional control by global regulators of 
gene expression in bacteria. Curr Opin Microbiol 3, 154-158. 
 
Noom M. C., Navarre W. W., Oshima T., Wuite G. J., Dame R. T. (2007). H-NS 
promotes looped domain formation in the bacterial chromosome. Curr Biol 17, R913-4. 
 
Nye M. B. & Taylor R. K. (2003). Vibrio cholerae H-NS domain structure and function 
with respect to transcriptional repression of ToxR regulon genes reveals differences 
among H-NS family members. Mol Microbiol 50, 427-444. 
 
Nye M. B., Pfau J. D., Skorupski K., Taylor R. K. (2000). Vibrio cholerae H-NS 
silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J 
Bacteriol 182, 4295-4303. 
 
Olivares-Zavaleta N., Jauregui R., Merino E. (2006). Genome analysis of Escherichia 
coli promoter sequences evidences that DNA static curvature plays a more important role 
in gene transcription than has previously been anticipated. Genomics 87, 329-337. 
 
Oshima T., Ishikawa S., Kurokawa K., Aiba H., Ogasawara N. (2006). Escherichia 
coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in 
association with RNA polymerase. DNA Res 13, 141-153. 
 
Pedersen A. G., Jensen L. J., Brunak S., Staerfeldt H. H., Ussery D. W. (2000). A 
DNA structural atlas for Escherichia coli. J Mol Biol 299, 907-930. 
 



 

129 

Perez J. C., Latifi T., Groisman E. A. (2008). Overcoming H-NS-mediated 
transcriptional silencing of horizontally acquired genes by the PhoP and SlyA proteins in 
Salmonella enterica. J Biol Chem 283, 10773-10783. 
 
Perrin S. & Gilliland G. (1990). Site-specific mutagenesis using asymmetric 
polymerase chain reaction and a single mutant primer. Nucleic Acids Res 18, 7433-7438. 
 
Peschel A. (2002). How do bacteria resist human antimicrobial peptides? Trends 
Microbiol 10, 179-186. 
 
Pogliano J. A. & Beckwith J. (1994). SecD and SecF facilitate protein export in 
Escherichia coli. EMBO J 13, 554-561. 
 
Poore C. A. & Mobley H. L. (2003). Differential regulation of the Proteus mirabilis 
urease gene cluster by UreR and H-NS. Microbiology 149, 3383-3394. 
 
Porter M. E. & Dorman C. J. (1994). A role for H-NS in the thermo-osmotic regulation 
of virulence gene expression in Shigella flexneri. J Bacteriol 176, 4187-4191. 
 
Porter M. E., Smith S. G., Dorman C. J. (1998). Two highly related regulatory 
proteins, Shigella flexneri VirF and enterotoxigenic Escherichia coli rns, have common 
and distinct regulatory properties. FEMS Microbiol Lett 162, 303-309. 
 
Prosseda G., Mazzola A., Di Martino M. L., Tielker D., Micheli G., Colonna B. 
(2010). A temperature-induced narrow DNA curvature range sustains the maximum 
activity of a bacterial promoter in vitro. Biochemistry 49, 2778-2785. 
 
Prosseda G., Falconi M., Giangrossi M., Gualerzi C. O., Micheli G., Colonna B. 
(2004). The virF promoter in Shigella: More than just a curved DNA stretch. Mol 
Microbiol 51, 523-537. 
 
Prosseda G., Fradiani P. A., Di Lorenzo M., Falconi M., Micheli G., Casalino M., 
Nicoletti M., Colonna B. (1998). A role for H-NS in the regulation of the virF gene of 
Shigella and enteroinvasive Escherichia coli. Res Microbiol 149, 15-25. 
 
Reitzer L. J. & Magasanik B. (1986). Transcription of glnA in E. coli is stimulated by 
activator bound to sites far from the promoter. Cell 45, 785-792. 
 
Rimsky S. (2004). Structure of the histone-like protein H-NS and its role in regulation 
and genome superstructure. Curr Opin Microbiol 7, 109-114. 
 
Rimsky S., Zuber F., Buckle M., Buc H. (2001). A molecular mechanism for the 
repression of transcription by the H-NS protein. Mol Microbiol 42, 1311-1323. 
 



 

130 

Rine J. (1999). On the mechanism of silencing in Escherichia coli. Proc Natl Acad Sci U 
S A 96, 8309-8311. 
 
Rodionov O. & Yarmolinsky M. (2004). Plasmid partitioning and the spreading of P1 
partition protein ParB. Mol Microbiol 52, 1215-1223. 
 
Rodionov O., Lobocka M., Yarmolinsky M. (1999). Silencing of genes flanking the P1 
plasmid centromere. Science 283, 546-549. 
 
Rohde J. R., Luan X. S., Rohde H., Fox J. M., Minnich S. A. (1999). The Yersinia 
enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt 
at 37 degrees C. J Bacteriol 181, 4198-4204. 
 
Sakai, T., C. Sasakawa, and M. Yoshikawa. (1988). Expression of four virulence 
antigens of Shigella flexneri is positively regulated at the transcriptional level by the 30 
kiloDalton virF protein. Mol Microbiol 2:589-97. 
 
Sasakawa C., Komatsu K., Tobe T., Suzuki T., Yoshikawa M. (1993). Eight genes in 
region 5 that form an operon are essential for invasion of epithelial cells by Shigella 
flexneri 2a. J Bacteriol 175, 2334-2346. 
 
Schnetz K. (1995). Silencing of Escherichia coli bgl promoter by flanking sequence 
elements. EMBO J 14, 2545-2550. 
 
Schuch R., Sandlin R. C., Maurelli A. T. (1999). A system for identifying post-
invasion functions of invasion genes: Requirements for the mxi-spa type III secretion 
pathway of Shigella flexneri in intercellular dissemination. Mol Microbiol 34, 675-689. 
 
Schumacher M. A. & Funnell B. E. (2005). Structures of ParB bound to DNA reveal 
mechanism of partition complex formation. Nature 438, 516-519. 
 
Schumacher M. A., Mansoor A., Funnell B. E. (2007). Structure of a four-way bridged 
ParB-DNA complex provides insight into P1 segrosome assembly. J Biol Chem 282, 
10456-10464. 
 
Shere, K. D., S. Sallustio, A. Manessis, T. G. D'Aversa, and M. B. Goldberg. (1997). 
Disruption of IcsP, the major Shigella protease that cleaves IcsA, accelerates actin-based 
motility. Mol Microbiol 25:451-62. 
 
Shi Y., Latifi T., Cromie M. J., Groisman E. A. (2004). Transcriptional control of the 
antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory 
proteins. J Biol Chem 279, 38618-38625. 
 
Smyth C. P., Lundback T., Renzoni D., Siligardi G., Beavil R., Layton M., 
Sidebotham J. M., Hinton J. C., Driscoll P. C., Higgins C. F., Ladbury J. E. (2000). 



 

131 

Oligomerization of the chromatin-structuring protein H-NS. Mol Microbiol 36, 962-972. 
 
Steinhauer, J., R. Agha, T. Pham, A. W. Varga, and M. B. Goldberg. (1999). The 
unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP 
cleavage of IcsA occurs over the entire bacterial surface. Mol Microbiol 32:367-77. 
 
Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin 
P. (1999). Multiple control of flagellum biosynthesis in Escherichia coli: Role of H-NS 
protein and the cyclic AMP-catabolite activator protein complex in transcription of the 
flhDC master operon. J Bacteriol 181, 7500-7508. 
 
Spassky A., Rimsky S., Garreau H., Buc H. (1984). H1a, an E. coli DNA-binding 
protein which accumulates in stationary phase, strongly compacts DNA in vitro. Nucleic 
Acids Res 12, 5321-5340. 
 
Spurio R., Falconi M., Brandi A., Pon C. L., Gualerzi C. O. (1997). The oligomeric 
structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved 
DNA and for DNA bending. EMBO J 16, 1795-1805. 
 
Stapleton M. R., Norte V. A., Read R. C., Green J. (2002). Interaction of the 
Salmonella typhimurium transcription and virulence factor SlyA with target DNA and 
identification of members of the SlyA regulon. J Biol Chem 277, 17630-17637. 
 
Stoebel D. M., Free A., Dorman C. J. (2008). Anti-silencing: Overcoming H-NS-
mediated repression of transcription in gram-negative enteric bacteria. Microbiology 154, 
2533-2545. 
 
Surtees J. A. & Funnell B. E. (2001). The DNA binding domains of P1 ParB and the 
architecture of the P1 plasmid partition complex. J Biol Chem 276, 12385-12394. 
 
Taniya T., Mitobe J., Nakayama S., Mingshan Q., Okuda K., Watanabe H. (2003). 
Determination of the InvE binding site required for expression of IpaB of the Shigella 
sonnei virulence plasmid: Involvement of a ParB boxA-like sequence. J Bacteriol 185, 
5158-5165. 
 
Tendeng C. & Bertin P. N. (2003). H-NS in gram-negative bacteria: A family of 
multifaceted proteins. Trends Microbiol 11, 511-518. 
 
Tobe T., Yoshikawa M., Sasakawa C. (1995). Thermoregulation of virB transcription in 
Shigella flexneri by sensing of changes in local DNA superhelicity. J Bacteriol 177, 
1094-1097. 
 
Tobe T., Yoshikawa M., Mizuno T., Sasakawa C. (1993). Transcriptional control of 
the invasion regulatory gene virB of Shigella flexneri: Activation by virF and repression 
by H-NS. J Bacteriol 175, 6142-6149. 
 



 

132 

Tobe T., Nagai S., Okada N., Adler B., Yoshikawa M., Sasakawa C. (1991). 
Temperature-regulated expression of invasion genes in Shigella flexneri is controlled 
through the transcriptional activation of the virB gene on the large plasmid. Mol 
Microbiol 5, 887-893. 
 
Tupper A. E., Owen-Hughes T. A., Ussery D. W., Santos D. S., Ferguson D. J., 
Sidebotham J. M., Hinton J. C., Higgins C. F. (1994). The chromatin-associated 
protein H-NS alters DNA topology in vitro. EMBO J 13, 258-268. 
 
Turner E. C. & Dorman C. J. (2007). H-NS antagonism in Shigella flexneri by VirB, a 
virulence gene transcription regulator that is closely related to plasmid partition factors. J 
Bacteriol 189, 3403-3413. 
 
Ueguchi C., Suzuki T., Yoshida T., Tanaka K., Mizuno T. (1996). Systematic 
mutational analysis revealing the functional domain organization of Escherichia coli 
nucleoid protein H-NS. J Mol Biol 263, 149-162. 
 
Ussery D. W., Higgins C. F., Bolshoy A. (1999). Environmental influences on DNA 
curvature. J Biomol Struct Dyn 16, 811-823. 
 
Vecchiarelli A. G., Schumacher M. A., Funnell B. E. (2007). P1 partition complex 
assembly involves several modes of protein-DNA recognition. J Biol Chem 282, 10944-
10952. 
 
Watanabe H., Arakawa E., Ito K., Kato J., Nakamura A. (1990). Genetic analysis of 
an invasion region by use of a Tn3-lac transposon and identification of a second positive 
regulator gene, invE, for cell invasion of Shigella sonnei: Significant homology of invE 
with ParB of plasmid P1. J Bacteriol 172, 619-629. 
 
Westermark M., Oscarsson J., Mizunoe Y., Urbonaviciene J., Uhlin B. E. (2000). 
Silencing and activation of ClyA cytotoxin expression in Escherichia coli. J Bacteriol 
182, 6347-6357. 
 
Will W. R. & Frost L. S. (2006). Characterization of the opposing roles of H-NS and 
TraJ in transcriptional regulation of the F-plasmid tra operon. J Bacteriol 188, 507-514. 
 
Williams R. M. & Rimsky S. (1997). Molecular aspects of the E. coli nucleoid protein, 
H-NS: A central controller of gene regulatory networks. FEMS Microbiol Lett 156, 175-
185. 
 
Williams R. M., Rimsky S., Buc H. (1996). Probing the structure, function, and 
interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative 
derivatives. J Bacteriol 178, 4335-4343. 
 
Williamson H. S. & Free A. (2005). A truncated H-NS-like protein from 
enteropathogenic Escherichia coli acts as an H-NS antagonist. Mol Microbiol 55, 808-



 

133 

827. 
 
Wing H. J., Yan A. W., Goldman S. R., Goldberg M. B. (2004). Regulation of IcsP, 
the outer membrane protease of the Shigella actin tail assembly protein IcsA, by 
virulence plasmid regulators VirF and VirB. J Bacteriol 186, 699-705. 
 
Yamada H., Muramatsu S., Mizuno T. (1990). An Escherichia coli protein that 
preferentially binds to sharply curved DNA. J Biochem 108, 420-425. 
 
Yarmolinsky M. (2000). Transcriptional silencing in bacteria. Curr Opin Microbiol 3, 
138-143. 
 
Zhang A., Rimsky S., Reaban M. E., Buc H., Belfort M. (1996). Escherichia coli 
protein analogs StpA and H-NS: Regulatory loops, similar and disparate effects on 
nucleic acid dynamics. EMBO J 15, 1340-1349. 
 
Zuber F., Kotlarz D., Rimsky S., Buc H. (1994). Modulated expression of promoters 
containing upstream curved DNA sequences by the Escherichia coli nucleoid protein H-
NS. Mol Microbiol 12, 231-240. 
 



 

134 

VITA 
 

Graduate College 
University of Nevada, Las Vegas 

 
Lieutenant Dustin John Harrison 

Medical Service Corps 
U.S. Navy 

 
 
Degrees: 
 Bachelor of Science, Biology, 1997 
 Marycrest International University 
 
 Master of Science, Pathobiology, 2000 
 University of Wyoming 
 
Publications: Castellanos M. I., Harrison D. J., Smith J. M., Labahn S. K., Levy K. M.,  

Wing H. J. (2009). VirB alleviates H-NS repression of the icsP promoter in Shigella 
 flexneri from sites more than one kilobase upstream of the transcription start site. J 
 Bacteriol 191, 4047-4050. 

 
Dissertation Title: Transcriptional Regulation of the Shigella flexneri icsp Promoter:  

Silencing and Anti-silencing by H-NS and VirB  
 
Dissertation Examination Committee: 
 Chairperson, Helen Wing, Ph.D. 
 Committee Member Dennis Bazylinski, Ph.D. 
 Committee Member Eduardo Robleto, Ph.D. 
 Graduate Faculty Representative Patricia Cruz, Ph.D. 
 Outside Committee Member CDR Marshall Monteville, USN, Ph.D. 


