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ABSTRACT 

Phylogeography of a Vanishing North American Songbird: 
The Painted Bunting (Passerina ciris) 

 

by 

Connie Ann Herr 

Dr. Brett Riddle, Examination Committee Chair 
Professor of Biological Sciences 
University of Nevada, Las Vegas 

 
Studies of genetic variation within and between species can provide insights into their 

evolutionary history as well as important information for conserving biodiversity. An 

understanding of population processes can assist in the conservation of biodiversity by 

contrasting current versus historical patterns, and the processes that have generated these 

patterns.  Genetic differentiation often coincides with significant geological or climatic 

changes that have shaped the sizes and locations of the species geographic range and 

altered the connectivity between populations over time.  Phylogenetic and population 

genetic analyses can also provide a statistical framework for the investigation of how 

human processes such as habitat loss, population connectivity, overexploitation, and 

species introductions can affect biodiversity.   

Here, I employ a suite of phylogenetic and population genetic analyses to address 

several questions regarding the phylogenetic relationships of the Nearctic – Neotropical 

migratory songbird: the Painted Bunting (Passerina ciris).  The Painted Bunting breeds 

in the southeast and south central United States and winters in the Florida Keys, the 

Caribbean, Mexico and portions of Central America.  The Atlantic Coast population of 

the Painted Bunting is a bird of considerable conservation concern.  The biotic history of 
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this part of North America has been examined using a wide variety of vertebrates.  Many 

species have had their geographic ranges shift repeatedly during Pleistocene glaciations 

and many geographic features have been suggested as possible barriers to gene flow. 

 I begin by reconstructing the phylogeny of the genus Passerina and three members 

of the closely related genus Cyanocompsa to address issues concerning the evolution of 

migration within the Passerina clade and the role, geographical source, and timing of 

range expansions within the Painted Bunting.  Data presented herein support the 

hypotheses that the Painted Bunting split from its sister, the Varied Bunting 

approximately 1.5 – 2.1 million years ago during the Pleistocene and that the evolution of 

migration within the bunting phylogeny evolved independently two times.  Additionally, 

the Painted Bunting is embedded within an otherwise sedentary clade of Mexican birds 

indicating that the Painted Buntings ancestor is of Mexican origin.  Genetic analyses of 

populations within the breeding grounds indicate that the allopatric Painted Bunting 

populations diverged approximately 26,000 – 115,000 years ago and represent incipient 

species and as such the Atlantic Coast and interior populations should be recognized as 

separate management units. Hypotheses concerning the patterns of connection between 

the breeding and overwintering ranges also suggest a general separation between the 

Atlantic Coast breeding and Caribbean wintering areas from the interior breeding and 

Mexican/Central American wintering grounds. 
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CHAPTER 1 

HISTORICAL BIOGEOGRAPHY OF THE GENUS PASSERINA: 

IMPLICATIONS FOR THE EVOLUTION OF THE 

PAINTED BUNTING (PASSERINA CIRIS) 

Introduction 

     Phylogeography is a discipline that focuses on the relationships between geography 

and gene genealogies, typically at the species level and below, incorporating a 

phylogenetic and population genetic perspective into biogeography (Avise et al. 1987).  It 

also incorporates the effects of historical processes on population-level geographical 

patterns (Avise 2000; Avise 2009).  Recent advances in population genetics theory, 

including coalescence (Tavare 1984; Hudson 1990),along with molecular techniques 

allow thorough investigations of the roles of gene flow, colonization, and population 

fragmentation in influencing the evolutionary history of a species (Hey 2005; Peters et al. 

2005; Klicka et al. 2007).  The focus of my dissertation project concerns the 

phylogeography of the Painted Bunting (Passerina ciris), a short to medium distance 

Neotropical migrant within the genus Passerina.  By comparing distributions of genetic 

lineages across populations of  the Painted Bunting (Passerina ciris), I have tested 

hypotheses about the biogeographic factors that may have shaped the current distribution 

and pattern of divergence of populations of a Neotropical migrant bird (Avise 2000; 

Carstens et al. 2005; Spellman and Klicka 2006).  The phylogenies I construct have been 

used to determine whether vicariance or dispersal of Painted Bunting explains present 

day disjunct  breeding and non-breeding distributions, and whether the ancestral range of 
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this migratory species encompasses its present–day breeding or non-breeding geographic 

area (Joseph et al. 1999; Joseph et al. 2003; Outlaw et al. 2003).   

     Increasingly, molecular tools are also being used to address issues such as phylogeny, 

historical biogeography, and population genetics of migratory species in order to address 

issues such as the evolution of migratory routes and the role, geographical source, and 

timing of recent range expansions of migrants (Joseph 2005).  These tools have provided 

a greater understanding into the evolution of migration.  In my research, I assess the 

general hypotheses that migratory birds evolve from ancestors in their present-day non 

breeding range through shifts or displacements of the breeding range, and that the 

seasonal subtropics have been a staging area for the evolution of migration of Painted 

Buntings in the Americas (Keast and Morton 1980; Cox 1985).  Molecular data sets can 

be applied hierarchically, from the study of entire migration systems, to the evolution of 

migration within clades of species, and ultimately down to processes acting within a 

single migratory species (Joseph 2005).   

     Prior to engaging in a detailed discussion about the phylogenetic relationships within 

the Painted Bunting, I find it important to assess the relatedness of the Painted Bunting 

with other members of the genus. In chapter one I provide a brief overview of the 

members of the genus Passerina and its closest relative and reconstruct a phylogeny of 

the genus Passerina to establish hypotheses of an approximate time frame and location in 

which the Painted Bunting diverged from its sister taxon, the Varied Bunting.  

Additionally, I discuss migratory behavior within the genus Passerina with respect to the 

general observation that migratory behavior does not seem to be evolutionarily 

constrained because both residency and long distance migration have evolved repeatedly 
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(Helbig 2003).  Evidence has also shown that a great diversity of migratory strategies, 

both among and within species, also exists (Sutherland 1998; Telleria et al. 2001; Perez-

Tris et al. 2004).   

     The information gathered from this chapter will better inform hypotheses posed in the 

second and third chapters which specifically outline the genetic diversity within the 

Painted Bunting throughout its distribution and will also permit better inferences as to 

potential scenarios into the evolutionary history of the Painted Bunting.   In chapters two 

and three, I use the tools of molecular population genetics to examine the finer details of 

population genetic structure within the Painted Bunting.  Specifically, chapter two looks 

at the degree of genetic diversity within the allopatric Atlantic Coast and interior 

breeding populations and chapter three assesses the degree of connectivity between the 

breeding and wintering grounds of the Painted Bunting. 

Overview of the genus Passerina 

     There have been quite a few studies that have addressed species relationships within 

the genus Passerina.  The first fossil record of an extinct Passerina species was 

documented from Chihuahua, Mexico approximately 4 million years ago (Mya) 

(Steadman and McKitrick 1982).   The fossil fragments identify an extinct Passerina 

species that was intermediate between the Lazuli Bunting (P. amoena) and the Blue 

Grosbeak (P. caerulea) in size, and from a region where they both currently occur.  The 

genus Passerina (Aves: Cardinalidae) had traditionally been composed of six species of 

small (13-20 g), sexually dichromatic songbirds (Lazuli Bunting, Indigo Bunting, Painted 

Bunting, Varied Bunting, Orange Breasted Bunting and Rosita’s Bunting).  The 

collective breeding ranges of these species encompass most of Mexico, the United States 
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and southern Canada.  Within the genus, the Indigo Bunting and Lazuli’s Bunting had 

typically been considered sister species because they are morphologically similar and 

form a well-known hybrid zone where their breeding distributions overlap in the western 

Great Plains and eastern foothills of the Rocky Mountains in North America (Sibley and 

Short Jr. 1959; Emlen et al. 1975; Kroodsma 1975; Baker and Baker 1990; Baker and 

Boylan 1999).  Additionally, some authors placed  the monotypic Blue Grosbeak 

(Guiraca caerulea) within this genus (Phillips et al. 1964; Blake 1969; Mayr and Short 

1970).  Studies of museum skins (Ridgway, 1901) as well as a more recent study utilizing 

numerical phenetic analyses of both skins and skeletons (Hellack and Schnell 1977) 

concluded that the members of Passerina, as defined (Sibley and Monroe 1990, 

American Ornithologists’ Union (AOU) 1998), form a natural group.  Klicka et al. (2001) 

addressed the evolutionary relationships of the traditional six-member genus and closely 

related species, including the Blue Grosbeak and three Cyanocompsa species using 1143 

base pairs of sequence data from the mitochondrial cytochrome b gene.  The results of the 

Klicka et al. (2001) study showed strong support for the sister relationship between the 

Blue Grosbeak and Lazuli’s Bunting, demonstrating that the Blue Grosbeak was derived 

from within the Passerina assemblage.  These results led to a name change to P. caerulea 

(Banks et al. 2002).  Subsequent work by Klicka et al. (2007) looked at members of the 

Cardinalini (cardinal-grosbeaks) tribe and found the reconfigured Cardinalini assemblage 

to be comprised of five well-supported major clades. The genus Passerina formed a 

monophyletic group within one of the five major clades.  The relationships within the 

genus Passerina  were nearly identical in both molecular phylogenies (Klicka et al. 2001; 

Klicka et al. 2007), differing only in the placement of the Indigo Bunting, which was not 
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supported in either study.  In the 2001 study, approximate times of divergence were 

calculated using two independently derived clock calibrations (1.6 and 2% per million 

years).  Results suggested that Cyanocompsa and Passerina buntings diverged from a 

common ancestor approximately 4.1 to 7.3 million years ago (Mya).  This time span 

corresponds with a Late Miocene period of accelerated cooling and drying during which 

forests and woodlands gave way to a variety of grassland habitats in western North 

America (Riddle 1995).  Faunal changes and shifts in carbon-isotope composition of 

herbivore-tooth enamel document this expansion of grasslands in North America during 

the mid to late Miocene (Webb 1984).  Other well-resolved nodes within the phylogeny 

indicated that the Blue Grosbeak and Lazuli’s Bunting diverged from each other 

approximately 2.4 to 3.7 Mya, and that the most recent split within the group took place 

between 1.5 to 2.1 Mya between the Painted Bunting and the Varied Bunting (Klicka et 

al. 2001).  Additional comparative studies involving most or all of the members of 

Passerina have examined many life history characteristics,  including studies on song 

(Thompson 1968), morphology (Hellack and Schnell 1977), ecological niches (Martinez-

Meyer et al. 2004), and the evolution of plumage color (Stoddard and Prum 2008)  

     The Passerina clade is relatively well resolved (Klicka et al. 2001; Klicka et al. 2007), 

however, there have not been any studies dealing with migratory behavior (i.e. 

connectivity and pathways) of members of the genus Passerina or its sister clade.  It has 

long been known that the migration route is a significant part of a species’ range.  Over 

one-half of the approximately 332 migratory bird species that breed in North America 

and winter in the tropics are affected by the obstacle to migratory flight imposed by open 

water across the Gulf of Mexico (Rappole and Ramos 1994).  Migratory routes are 
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subject to continuous modification (i.e. evolution) through natural selection according to 

changes in a variety of pressures (Rappole et al. 1979; Richardson 1979).  Members 

within the genus Passerina differ with respect to their propensity to migrate.  Three 

species are Nearctic-Neotropical migrates, and the remaining members are considered 

sedentary including the closest relative, Cyanocompsa.   

     I reconstructed the bunting phylogeny of Klicka et al. (2001), adding three additional 

mitochondrial genes that yielded 4,169 base pairs of concatenated data.  Coupling this 

phylogenetic hypothesis with divergence time estimates and an ancestral state 

construction of migratory behavior may help provide insights into the diversification of 

this group and a historical framework for a better understanding of various other life-

history traits within the genus Passerina.  An understanding of the historical 

biogeography of the regions in which the Painted Bunting occur is crucial in developing 

hypotheses regarding migratory pathways, ancestral areas, or phylogeographic history of 

this species.   

Analyses of the genus Passerina 

     I examined the phylogenetic patterns in the evolution of migratory behavior and 

estimated divergence times of members within this clade.  The Klicka et al. (2001) study 

examined the group with a single mitochondrial marker cytochrome-b (cyt-b, 1143 base 

pairs).  I obtained sequences (Klicka, unpublished data) of the mitochondrial genes 

NADH subunits 2 (ND2, 1038 base pairs) and 6 (ND6, 519 base pairs), control region 

(cr, 1469 base pairs) and combined them with the original dataset.  Bayesian inference 

(BI) analyses were performed with the combined 4169 base pair dataset.  Bayesian 

inference of phylogeny constructs evolutionary relationships by using a maximum 
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likelihood framework, and posterior probability values are approximated using a Markov 

Chain Monte Carlo (MCMC) algorithm (Huelsenbeck and Ronquist 2001; Huelsenbeck 

and Imennow 2002).  The Akaike information criterion (AIC; Akaike 1973) as 

implemented in MrModeltest v.2.3 (Nylander 2004) with default parameters and 

maximum likelihood optimizations, was used to choose the appropriate models of 

sequence evolution.   I determined the sequence evolution model for the concatenated 

dataset as well as data partitioned by gene.  I used the selected models in MrBayes 3.1.2 

(Ronquist and Huelsenbeck 2003) for BI, incorporating Bayesian posterior probabilities 

as evidence of nodal support.  Nodes having posterior probability values of 95% or 

greater on these trees were deemed significantly supported (after Huelsenbeck and 

Ronquist 2001). MCMC analyses were run for 4 x 106 generations using the default 

parameters of four Markov chains per generation, with random starting trees and 

subsequent trees sampled every 1000 generations.  Diagnostic tests were performed to 

evaluate mixing and convergence of MCMC chains.  The burn-in was determined from 

visual inspection of the likelihood plots in the program Tracer v 1.4 (Drummond and 

Rambaut 2007).   After excluding those trees generated during the “burn-in” period prior 

to stable equilibrium (10,000 trees), a 50% majority-rule consensus tree was generated. 

     I evaluated evolutionary patterns of migratory behavior via parsimony optimization of 

migratory character states onto the topology inferred from the concatenated dataset.  

Optimization was performed with Mesquite v. 2.73 (Maddison and Maddison 2010).  

Migratory behavior was coded as a binary character.  Species were coded as sedentary or 

migratory according to the AOU, Checklist of the Birds of North America (American 
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Ornithologists' Union 1998) and Distribution and Taxonomy of Birds of the World 

(Sibley and Monroe Jr. 1990). 

     To obtain divergence estimates for the Passerina clade, I used a Bayesian approach as 

implemented in the phylogenetic program BEAST v.1.4.8 (Drummond and Rambaut 

2007).  I used the ND2 dataset in this analysis so that a more accurate comparison could 

be made between these estimates and the previously analyzed dataset (using ND2) of the 

allopatric breeding populations of the Painted Bunting (Herr et al., 2011).  

Phylogenetic reconstructions: genus level 

     Ancestral states reconstruction of migratory behavior indicates that migration within 

the group evolved independently two times.  The Painted Bunting (P. ciris) is embedded 

within an otherwise sedentary clade of Mexican birds (Fig. 1).  Migratory behavior 

occurs in one other clade within the Bunting phylogeny.  Members within this clade 

include the Indigo Bunting (P. cyanea), Lazuli Bunting (P. amoena), and the Blue 

Grosbeak (P. caerulea).  Divergence time estimates for this clade occurred much earlier 

than the clade that includes the Painted and Varied Bunting (see Fig. 2). 

     Bayesian analysis of the concatenated dataset of 4169 base pairs yielded species-level 

relationships of Passerina congruent with those presented in the Klicka et al. (2001) 

study. The tree was fully resolved with nodal support of 100% at all nodes with the 

exception of the clade including the Indigo Bunting and its sister, the Lazuli Bunting, and 

the Blue Grosbeak (Fig. 2).  This node was poorly resolved in previous studies as well 

(Klicka et al. 2001; Klicka et al. 2007). 

     Divergence time estimates suggest that the Passerina buntings diverged from their 

common ancestor (Cyanocompsa) between 5.5 to 8 Mya during the late Miocene (Fig. 2). 
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Once diverged from their common ancestor, mean divergence time estimates show that 

genetic diversification of the group occurred rapidly between 6 and 2.2 Mya respectively.  

The most recent split occurring between the Painted Bunting and the Varied Bunting 

during the late Pliocene early Pleistocene; between 1.6 to 2.9 Mya.  The divergence 

estimates are consistent with those reported by Klicka et al. (2001). 

Phylogenetic relationships within the genus Passerina 

     The phylogenetic relationships among members of the genus Passerina and its sister 

group, Cyanocompsa, concur with previous studies (Klicka et al. 2001; Klicka et al. 

2007).  My data indicate that the Passerina clade is most likely derived from a 

Mesoamerican ancestor.  Distribution within the clade and the sister group, are all 

confined to Central America, Mexico, and the United States.  Members of the sister clade 

are sedentary and are distributed throughout Central and South America (Fig. 1).  The 

general pattern suggests that the earliest speciation within the clade was in the southern 

part of its distribution, followed by later expansion toward the north. Specifically, the 

clade that includes the Painted Bunting (Varied Bunting, Orange Breasted Bunting and 

Rosita’s Bunting), are for the most part, sedentary, and are distributed throughout Mexico 

(Fig. 3).  Migratory behavior in the Painted Bunting is independent of other members 

within the genus Passerina. 

       Information gathered from the reconstruction of the Passerina clade will allow for 

better hypothesis testing as to the evolutionary history of the Painted Bunting and 

possible origin of the Painted Bunting ancestor, as addressed in chapter three. 
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Fig. 1 Ancestral states characterization of migratory behavior mapped on Bayesian 

topology.  Characters mapped as discrete. Black lines indicate migratory and white 

indicate sedentary species.  A map of the year round distribution of each species is 

shown next to each tip of the tree. 
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Fig. 2 Bayesian inference tree from ND2 sequences depicting the relationships within genus Passerina and members of the sister 

group.  Numbers below each node represent divergence time estimates (My).  Green bars represent the 95% confidence intervals 

surrounding each estimate.  Numbers above nodes indicate Bayesian posterior probabilities using standard models of evolution. 
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Fig. 3 Distribution of the clade within the genus Passerina that includes the Painted 

 Bunting.  Color highlights on the map correspond to the breeding distribution of the 

 Painted Bunting (pink), wintering distribution (violet), and year round distribution of the  

sedentary members of the clade, the Orange Breasted Bunting (orange), Rosita’s Bunting 

 (yellow) and Varied Bunting (light blue). 
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CHAPTER TWO 

GENETIC DIVERSITY WITHIN THE ALLOPATRIC BREEDING DISTRIBUTION 

OF THE PAINTED BUNTING (PASSERINA CIRIS) 

Abstract 

     The breeding distribution of the Painted Bunting (Passerina ciris) is comprised of two 

allopatric populations separated by a 550-km distributional gap in the southeastern 

United States.  Curiously, the boundary between the two recognized P. ciris subspecies 

does not separate the two allopatric breeding populations but instead runs roughly 

through the center of the interior population. Genetic relationships among these 

subspecies, and the allopatric breeding populations of Painted Bunting, have not been 

assessed.  Given the recent decline in overall abundance of this species, such an 

assessment is warranted.  I sampled birds from 15 localities (138 individuals) and 

identified 35 distinct haplotypes, six belonging to the Atlantic Coast population and 26 to 

the interior population, with three shared by both populations.  AMOVA results showed 

that a significantly greater portion of the total genetic variance is explained when 

grouping birds by the interior and Atlantic Coast populations rather than by subspecies.   

Furthermore, my data indicate that the Atlantic Coast and interior populations represent 

independently evolving taxa, with no measureable gene flow between them.  Although 

recently diverged (26,000 – 115,000 years ago), these isolated bunting populations 

represent incipient species.   For development of conservation strategies, I suggest that 

the Atlantic Coast and interior populations be recognized as separate management units. 
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Introduction 

     The Painted Bunting (Passerina ciris) is a small, brightly colored, songbird that 

breeds in the southeast and south central United States and winters in the Florida Keys, 

the Caribbean, Mexico and portions of Central America (Fig. 4).  Its breeding distribution 

is comprised of two disjunct populations, separated by a 550-km gap.  The interior 

breeding population is mainly distributed throughout Kansas, Oklahoma, Texas, 

Arkansas, and Louisiana while the Atlantic Coast population is limited to coastal portions 

of North Carolina, South Carolina, Georgia, and northeastern Florida (Sykes and 

Holzman 2005).  Two subspecies of Painted Bunting are currently recognized based on 

geographic variation in wing length and plumage color (ciris, pallidior, American 

Ornithologists' Union 1957).   On average, the western subspecies pallidior is paler 

ventrally (both sexes) and has longer wing length (males) than does ciris (Mearns 1911; 

Storer 1951).  The boundary between these  two subspecies does not separate the two 

allopatric breeding populations but instead runs roughly through the center of the interior 

population (Fig. 4), from east Texas northward between 96° and 97° west longitude 

(American Ornithologists' Union 1957).   

     Across their breeding distribution, abundance estimates indicate that Painted Buntings 

are in decline.  Overall numbers recorded on both Breeding Bird Surveys (BBS) and 

Christmas Bird Counts have dropped steeply since the early 1970’s (Cox 1996).  Recent 

BBS results indicated a long-term decline at an average rate of 1.6% per year.  The 

species was listed as a highly ranked “Species at Risk” by Partners in Flight (PIF; Hunter 

et al. 1993) and later placed on watch list as a “Species of Continental Importance” (Rich 

et al. 2004).  The decline in numbers appears to be most severe within the Atlantic Coast 
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population.  BBS data indicate a 3% decline per year in this population while Christmas 

counts show a significant decrease in 12 of 25 counts (Sauer et al. 1997).  As a 

consequence, the Atlantic Coast population of Painted Bunting is recognized as one of 

the most locally occurring, steeply declining, high priority species, within the 

southeastern United States (Hunter et al. 1993).  Presently, no population genetic study 

has been carried out on this species.  Whether genetic differences exist between the 

subspecies pallidior and ciris or between the allopatric coastal and interior birds, are 

unknown.  A genetic assessment of these birds is therefore warranted, to measure the 

degree of differentiation and the level of genetic connectivity that exists between the 

subspecies and the allopatric breeding populations.  

     Studies of genetic variation within and among populations can provide insights into a 

lineage’s evolutionary history (Avise 2004) and information important for conserving 

biodiversity (DeSalle and Amato 2004; Hedrick 2004).  From a conservation perspective, 

accurate assessments of demographic history are important for making informed 

management decisions (DeSalle and Amato 2004). There have been recent major 

advances in assessing population genetic structure using a number of different molecular 

techniques (Smith and Wayne 1996; Emerson et al. 2001; Pearse and Crandall 2004; 

Manel et al. 2005).  These methods allow researchers to use current geographic patterns 

of genetic variation to infer evolutionary history (phylogeography).  This information is 

valuable for studies of conservation because it allows for informed speculation regarding 

the processes that led to current distribution of genetic variation (Johnson et al. 2007). 

Population genetic studies also allow for assessment of contemporary population genetic 

structure, population size, and degree of gene flow among breeding populations.  This 
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study is the first to use molecular genetic techniques to assess the genetic structure within 

the Painted Bunting across its breeding range in order to understand the factors that have 

shaped present day genetic patterns and current distributions. 

     Herein, I use phylogeographic methods and mitochondrial DNA (mtDNA) sequence 

data to characterize and quantify the amount of genetic variation within the Painted 

Bunting.  From a conservation perspective, it is important to discern whether the 

threatened Atlantic Coast bunting population is both geographically and genetically 

separate from other Painted Buntings, and therefore  worthy of recognition as a distinct 

evolutionary unit.  Thus, the specific goal of this study is to test the following alternative 

phylogeographic hypotheses: 1) no genetic structure exists and gene flow within the 

Painted Bunting species  is regular and ongoing; 2) genetic structure exists between the 

subspecies ciris and pallidior and the Atlantic Coast population is not genetically 

distinctive; and, 3) genetic structure exists across the 550-km distributional gap in the 

breeding distribution indicating that the Atlantic Coast population is genetically distinct. 

Methods 

Sampling and Laboratory Methods 

     I sampled 138 individuals from 15 localities with a focus on maximizing geographical 

coverage of the breeding range.  My sampling scheme allowed for the evaluation of 

genetic diversity within and among both subspecies and disjunct breeding populations 

(Fig. 4).  Samples were obtained through scientific collecting and augmented with feather 

and blood material obtained from the Patuxent Wildlife Research Center.  

     I sequenced the protein-coding mitochondrial gene NADH dehydrogenase subunit 2 

(ND2).  I acknowledge recent concerns over studies that are based on a single locus 
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(Edwards et al. 2005, Bazin et al. 2006).  However, my objective is to potentially 

determine the geographic and genetic limits of recently evolved groups.  The high 

variability and rapid coalescence time of mtDNA make it the marker of choice for 

addressing such questions (Zink and Barrowclough 2008).  All 1041 base pairs were 

amplified via polymerase chain reaction (PCR) and sequenced using the primers L5215 

(5'-TATCGGGCCCATACCCCGAATAT-3') (Hackett 1996) and HTrpC (5'-

CGGACTTTACGACAAACTAAGAG-3') (Perez-Eman 2005; DaCosta et al. 2008).   All 

fragments were amplified in 12.5 uL reactions under the following conditions: 

denaturation at 94ºC, followed by 40 cycles of 94ºC for 30s, 54ºC for 45s, and 72ºC for 

one minute.  This was followed by a 10-minute extension at 72º C and 4ºC soak.  

Products were purified with Exosap-IT (USB Corporation, Cambridge, MA) purification 

following the manufacturer’s protocols.  I performed 20 uL BigDye (Applied 

Biosystems, Foster City, CA) sequencing reactions using 20 to 40 ng of purified and 

concentrated PCR product following standard protocols.  Sequencing reactions were 

purified using a magnetic bead clean-up procedure (Clean-Seq, Agencourt Biosciences, 

Beverly, MA) and analyzed on an ABI 3100-Avant (Applied Biosystems) automated 

sequencer.  Complementary strands of each gene were unambiguously aligned using the 

program Sequencher (Gene Codes Corporation, Ann Arbor, MI).   

     Because I used blood as a mtDNA source for some of my samples, I carefully 

examined our data for the presence of pseudogenes (or “numts”, see Bensasson et al. 

2001).  Both light and heavy strands were sequenced for all PCR fragments and no gaps, 

insertions, or deletions were apparent in the aligned sequences.  The ND2 protein coding 

sequences were translated into amino acids using MacClade 4 (Maddison and Maddison 
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2000) and compared to an existing ND2 sequence of Passerina ciris (GenBank accession 

number ABU45623) to insure the correct reading frame and to check for the premature 

presence of stop codons.  

Phylogenetic analyses and population structure 

     I examined the genetic structure within the Painted Bunting using a series of analyses 

that focus on genetic patterns at different temporal scales, thereby employing both 

phylogenetic and population genetic approaches. This combination of techniques 

provides a more thorough exploration of the data, generating statistically rigorous 

phylogeographic conclusions (Knowles and Maddison 2002).  I used a median joining 

network to visualize relationships among haplotypes (program Network 4.1.1.2; Bandelt 

et al. 1999). The Network software reconstructs all shortest maximum parsimony trees 

from a given data set. Median networks provide a useful representation of intraspecific 

data that are characterized by having few base substitutions between sequences.  In 

contrast to standard tree representation, where only the tips of the tree are labeled, nodes 

in a median network represent either sampled haplotypes or inferred intermediates.  

     I used the programs Arlequin (Excoffier et al. 2005) and DnaSP (Rozas et al. 2003) to 

analyze patterns of genetic variation within and among sampling sites.  Population 

genetic parameters were calculated for all sampling sites (14) from which I had ≥ 9 

individuals.  Genetic diversity within each site was characterized by calculating the 

number of unique haplotypes and the number of private haplotypes.  I also performed a 

number of statistical tests used to estimate past demographic processes such as population 

expansion.  Historical events (i.e. population expansion) can leave a genetic “footprint” 

that may be detected in sequence data (Ramos-Onsins and Rozas 2002).  Mismatch 
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distributions (i.e. pairwise differences between haplotypes) were generated to test for 

historical population expansion events within populations by comparing the observed 

frequency distribution of pairwise nucleotide differences among individuals with 

distributions expected from a population expansion (Rogers and Harpending 1992).  

Populations at demographic equilibrium or in decline should exhibit a multimodal 

distribution of pairwise differences, whereas populations that have experienced a sudden 

demographic expansion should display a star-shaped phylogeny and a unimodal 

distribution (Rogers and Harpending 1992; Slatkin and Hudson 1991).  However, 

mismatch analyses employ a number of assumptions (e.g. random mating, an infinite 

alleles model) that may not be met (Wakeley and Hey 1997; Schneider and Excoffier 

1999) in many populations.  Because of these limitations, mismatch analyses  were 

coupled with Tajimas’s D to test for localized population expansion (Tajima 1989) and a 

test of selective neutrality using Fu’s Fs test (Fu 1997).  Significantly negative D or Fs 

values indicate a relative excess of rare haplotype variants, suggesting expansion in 

population size; positive values suggest a relative excess of intermediate-frequency 

alleles, which is expected under a model of population subdivision or balancing selection, 

coincident with stable population size over time.   

     Population variability was estimated as haplotype diversity (h) and nucleotide 

diversity (π). These measures of haplotype and nucleotide diversity are useful in 

examining the demographic history of a lineage (Grant and Bowen 1998).  Centers of 

origin should be more diverse in haplotype and nucleotide diversity than more recently 

founded populations (Althoff and Pellmyr 2002).  I used analysis of molecular variance 

(AMOVA) to determine genetic structure at hierarchical geographic levels.  I performed 
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two nested AMOVA with sequences grouped by region and then by individual population 

within each region (i.e. sampling locality) to explore whether significant genetic variation 

exists at multiple geographic levels.  My first analysis included samples from sampling 

sites separated by currently recognized subspecies boundaries (i.e. morphological 

assignment).  I based the second analysis on the allopatric separation of populations (i.e. 

Atlantic Coast populations vs. interior populations).  Inter-population genetic variation 

and significance was assessed with pairwise population ΦST values. I used the Mantel 

correlation coefficient (Mantel 1967; Smouse et al. 1986) to test the significance of 

isolation by distance for sampling sites on the Atlantic Coast, and in the interior.  The 

significance of the Mantel test was assessed using 1000 random permutations. 

Coalescent analyses/isolation-with-migration 

     A lack of reciprocal monophyly between two genetically structured lineages may be 

due to ongoing gene flow or to incomplete lineage sorting.  Simulations have shown that 

even a single non-recombining genetic locus can provide substantial power to test the 

hypothesis of no ongoing gene flow between two populations (Nielsen and Wakeley 

2001; Hey and Nielsen 2004).  I used the coalescent program Isolation with Migration 

(IM; Hey and Nielsen 2004) to determine if the observed pattern of genetic variation was 

a result of historical divergence or limited contemporary migration between interior and 

Atlantic Coast Painted Buntings.  I also used it to estimate effective populations’ sizes, 

migration rates, divergence time and time to most recent common ancestor (TMRCA).  

IM is a Bayesian Markov chain Monte Carlo (MCMC) method that tests for length of 

genetic isolation and levels of migration.  The assumptions include selective neutrality, a 

sister taxon relationship among study populations, and random sampling from a 
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panmictic population (Hey and Nielsen 2004).  IM estimates 6 parameters, including the 

effective number of females in each daughter population and the ancestral population (θ1, 

θ2, and θa), immigration rates into each daughter population (m1 and m2), and time since 

divergence (t) (Hey and Nielsen 2004).  IM estimate’s parameters are scaled to the 

neutral mutation rate (µ).   

     The program was run for 20,000,000 steps using 20 chains following a 500,000 step 

burn-in.  To verify convergence, multiple IM runs were completed using a different 

random number seed. The program produced similar parameter estimates from each run.  

I report the mode and the 95% highest posterior densities (HPD) for each parameter 

estimate from the run that produced the highest effective sample sizes (ESS; Hey and 

Nielsen 2004) for all parameter estimates. 

     I estimated the mutation rate for mtDNA ND2 by assuming a standard passerine clock 

for cytochrome-b (cyt-b) of 1.9% divergence per million years (R. Fleischer, unpublished 

data) and determining the relative rate of ND2.  Specifically, I compared mutation rate 

between cyt-b and ND2 within six Passerina species (J. Klicka, unpublished data). I 

converted t to real time (t) using t = t/µ, and I calculated effective population size (Ne) 

using θ = 4 Neµ.  θ is scaled to the substitution rate per generation rather than per year; 

therefore, I multiplied my µ by a generation time of 2.2 for Painted Buntings.  This 

generation time was calculated using the equation T = α + [s/ (1-s)] from Lande et al. 

(2003), where α is the age at maturity, and s is the annual adult survival rate.  The 

effective number of female migrants between populations was calculated using M1 = θ1 * 

m/2 and M2 = θ2 * m/2 (Hey and Nielsen 2004). 
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Results 

Phylogenetic analyses 

     I sequenced the complete ND2 gene (1041 base pairs) for 138 individuals, 78 from the 

Atlantic Coast and 60 from the interior.  No insertions or deletions were present.  The 

sequences yielded 40 variable sites of which 18 were phylogenetically informative.  I 

found that ND2 is evolving ~ 1.5 times as fast as cyt-b, suggesting a divergence rate for 

ND2 of approximately 3.0% per million years.  A number of studies have shown that the 

methodology of phylogenetics often lacks resolving power and may obscure the 

evolutionary relationships of lineages that are relatively recent (Crandall 1994; Crandall 

and Templeton 1996; Smouse 1998).  The use of a bifurcating tree, may be misleading, 

especially when the ancestral haplotypes are extant (Althoff and Pellmyr 2002), and the 

use of a haplotype network may more accurately portray the true evolutionary history of a 

lineage (Smouse 1998; Posada and Crandall 2001).  I therefore displayed the data with a 

haplotype network instead of a phenogram.  The median joining network contained 35 

haplotypes, six belonging to the Atlantic Coast population, 26 to the interior population, 

and three shared by both populations (Fig. 5).  Two of the three shared haplotypes were 

common and widespread. The most common haplotype was shared by 38 individuals, 36 

of which occurred in the Atlantic Coast population.  The second most common haplotype 

was found in 28 individuals, 24 of which were from the interior population.  The third 

shared haplotype occurred in only two individuals, one from Louisiana and the other 

from Georgia.  An additional common haplotype (20 individuals) occurred exclusively in 

the Atlantic Coast population.   Of the remaining haplotypes, 23 were unique to single 

individuals found in the interior.  The remaining eight haplotypes were shared among 
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individuals, three among only interior birds and five among birds of the Atlantic Coast.  

The most divergent haplotypes were found in the interior population.   

     The data on the genetic diversity within sampling sites from the Atlantic Coast and the 

interior are presented in Table 1.  Nucleotide diversity was low in all samples relative to 

levels seen in other songbird studies (see Spellman et al. 2007; Zink et al. 2008), ranging 

from a low of 0.001 to a high of 0.003 (Table 1).  All unique haplotypes (private alleles) 

were restricted to the interior population, with each sampling locality in the interior 

having at least one private haplotype (range one-seven).  Haplotype diversity was high in 

all populations ranging from 0.667 to 0.978 (Table 1).  Mismatch distributions (not 

shown) for all sampled sites were unimodal and with the exception of Louisiana 

(p<0.01), and did not differ from that expected of an expanding population.  In contrast, 

the less conservative Tajima’s D and Fu’s Fs tests suggest different histories for the 

interior and Atlantic Coast populations.  Tajima’s D values were significant in five of the 

six interior sampling localities and in only one from the Atlantic Coast.  Significant Fu’s 

Fs values were obtained for the same four interior localities while only one was obtained 

for any sampling locality in the Atlantic Coast.  Fu’s Fs has been shown to be the most 

powerful of these three tests for detecting population growth (Table 1; Ramos-Onsins and 

Rozas 2002). 

     Although most of the variation was found within populations in both analyses 

(subspecies groupings, Atlantic vs. interior groupings; 70% and 71% respectively), 

hierarchical AMOVA indicated a significant portion of the total genetic variance is due to 

differences among populations (Table 2).  Approximately 20% of the variation is 

explained when the recognized subspecies groups are compared whereas 28% of the 
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variation is explained when the data were partitioned into Atlantic Coast and interior 

populations.   A Mantel test failed to find a correlation between geographic distance and 

genetic distance among all Atlantic Coast sampling sites ((r = -0.043, p = 0.49) Fig. 6).  

However, genetic and geographic distance was positively correlated when comparing all 

interior sites (r = 0.686, p = 0.001).  Because of its distance from all other interior sites, 

TX3 could be driving the positive correlation between genetic and geographic distances. 

To explore this possibility, I performed an additional Mantel test omitting this site and a 

positive correlation was still obtained (r = 0.855, p = 0.006). 

     I partitioned the molecular variation in pairwise comparisons of populations into 

within-population and total-variance components to obtain pairwise Φ ST values (Table 

3). The majority of the ΦST values found to be significant were when comparing Atlantic 

Coast sampling sites to interior sites.  The highest ΦST values of 0.576, 0.571, and 0.532 

were observed in comparisons of GA2 with TX1, OK, and TX2 respectively.  There were 

no significant differences between interior sampling sites (where the subspecies boundary 

is located) and only two significant ΦST values in pairwise comparisons of Atlantic Coast 

sites.  The two significant pairwise comparisons of Atlantic Coast sites involved GA2 

with another Atlantic Coast population.  The first significant comparison was between 

GA2 and GA1 with a ΦST value of 0.322.  A second significant pairwise comparison 

involved GA2 with SC1; with a ΦST value of 0.193. 

Coalescent analysis 

     IM analyses estimated θAtlantic  (scaled effective size of the Atlantic Coast population) 

to be 5.6, θInterior (scaled effective size of the interior population) to be 200, θAncestral 

(scaled effective size of the hypothesized ancestral population) to be 5.8, m1 to be 0.323, 
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m2 to be 0, t to be 0.6 and TMRCA to be 2.6.  Estimated posterior distributions for these 

model parameters are shown in Figure 7.  My coalescent analyses (IM; Hey and Nielsen 

2004) indicate that my parameter estimates had strongly unimodal posterior distributions 

(Fig. 7), however, the tail of the posterior distribution of θinterior did not reach zero on the 

x-axis, which is common when sample sizes are small or the data are not able to identify 

the model (Hey, 2005; Hey and Nielsen 2007), and therefore the 95% HPDs were not 

calculated.  The model parameters, parameter values, demographic parameter estimates 

and 95% confidence intervals calculated using these estimates are listed in Table 4.  

Effective population sizes (Ne) calculated indicate that the interior population seems to 

have grown substantially following divergence, with a current estimate of 1,500,000, 

while the Atlantic Coast population has remained relatively small (41,000, range 18,000 

to 106,000) relative to the estimated ancestral population size (43,000, range 4,000 to 

230,000; Table 4).    Confidence intervals surrounding all these estimates are large (see 

Table 4) because the estimates are based on a single marker.  I examined the posterior 

distributions of migration rates to determine whether ongoing gene flow might explain 

the observed phylogenetic patterns.  The posterior distribution of m1 (scaled rate of 

migration rate into the Atlantic Coast population from the interior population) peaked at 

0.323 (95% HPD = 0 to 2.5), and the posterior distribution of m2 (scaled rate of migration 

rate into the interior population from the Atlantic Coast population) peaked at 0 (95% 

HPD = 0 to 5), indicating that there is no detectable gene flow between these allopatric 

populations.  The posterior distributions of t (scaled divergence time) peaked at 0.6 (95% 

HPD 0.4 to 1.8).  Estimates of t were converted to actual values of time using the 

equation t = t/μ (Hey and Nielsen 2004), where μ is the locus specific neutral mutation 
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rate and t is the estimate provided by IM.  When converted to time in years, this analysis 

suggests that Atlantic Coast and interior Painted Buntings began diverging about 38,000 

years before present (BP);  95% HPD 26,000 to 115,000 BP.  Posterior probabilities of 

TMRCA peaked at 2.6 (95% HPD = 1 to 5), indicating that all sampled haplotypes 

coalesce at approximately 166,000 BP (range = 64,000 – 320,000 BP).   

Discussion 

Overall phylogeography and population structure patterns 

     Nearly all Atlantic Coast sampling sites differ significantly from interior sampling 

sites (see ΦST values, Table 3). In contrast; I found no significant differences between 

interior buntings presumed to belong to different subspecies (western pallidior and 

interior forms of ciris), an indication that the morphological differences, as presently 

defined, are not concordant with the genetic differences.  My analyses indicate that 

significant genetic structuring is apparent between the allopatric Atlantic Coast and 

interior breeding populations of the Painted Bunting (Fig. 3) and these lineages appear to 

have diverged  recently (~ 38,000 years ago, Table 4).  Taken together, these findings 

suggest that Painted Buntings are genetically partitioned into interior and coastal 

populations (Fig. 3).   

     Studying genetic differentiation between separated populations is important for 

understanding population divergence and speciation processes, and for defining 

conservation priorities.  Once populations diverge, it is important to understand how 

much connectivity is maintained through gene flow and determining the intensity and 

directions of gene flow is critical for species management (Omland et al. 2006).  A 

shallow genealogy that lacks distinct clades, such as seen in my data, may indicate either 
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that the suggested divergence has occurred too recently for mtDNA to have sorted to 

monophyly (Baker et al. 2003; Klicka et al. 1999) or that the populations remain 

connected by gene flow.  IM results revealed little to no gene flow into the Atlantic Coast 

population from the interior or vice versa, an indication that the lack of reciprocal 

monophyly is due to incomplete lineage sorting, a consequence of a relatively recent 

divergence.  Coalescent analyses placed TMRCA for all haplotypes during the 

Pleistocene, approximately 320,000 – 64,000 years ago (Table 4), an estimate consistent 

with one suggested in a previous molecular study that included all members of the 

Passerina clade (Klicka et al. 2001). 

      Phylogeographic analyses that included all samples revealed a structured haplotype 

network (Fig. 5), unimodal mismatch distribution, high haplotype diversity, and low 

nucleotide diversity (Table 1); all indicative of a recent population expansion from an 

ancestral population with a small Ne (Avise 2000).  The estimate of the hypothesized 

ancestral population (43,000) represents a relatively small ancestral population size when 

compared to the current estimate of 1,500,000 for the interior population.  This scenario 

of a small ancestral population size, high haplotype and low nucleotide diversity also 

suggests that the divergence between Atlantic and interior populations of buntings 

occurred long enough ago to allow for the recovery of haplotype variation by mutation 

but not so long ago as to allow for an accumulation of large sequence differences (Avise 

2000; Rogers and Harpending 1992). 

     The results presented here demonstrate that genetic differentiation between the 

Atlantic Coast and interior populations of the Painted Bunting exists despite the relatively 

shallow evolutionary history of the taxon (Table 1).  The structure recovered is not 
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consistent with the current subspecific geographic limits based on morphological 

variation (Mearns 1911; Storer 1951). The Atlantic Coast and interior populations that I 

have defined (see Fig. 3) do correspond with Painted Buntings known to differ with 

respect to the timing and pattern of molt and migration.  All Painted Buntings are short to 

medium distance Neotropical migrants; however, a portion of the individuals in the 

interior population migrate to staging areas in southern Arizona and northern Sonora in 

Mexico to molt before continuing on to their wintering ranges.  In contrast, the Atlantic 

Coast population molt on the breeding grounds prior to fall migration (Thompson 1991b).  

Additionally, members of the interior population initiate fall migration at least two 

months later than the Atlantic Coast population (Thompson 1991a).  

Evolutionary history and population structure 

     The IM results suggest that the effective population size of the interior birds 

(1,500,000) is thirty times greater than that of the Atlantic Coast population (41,000).  

The low effective population size of the Atlantic Coast birds is in part a reflection of a 

smaller overall distribution but it may also reflect historical population demographic 

factors.  Populations can experience population bottlenecks in response to challenges in 

the biotic or physical environment (Avise 2000).  It seems probable that a loss of habitat 

on both breeding and wintering areas, and at critical migratory stopover sites, has played 

a role in population declines. The Atlantic Coast population, because of its limited and 

narrow coastal distribution, is likely to have been more severely impacted than the 

interior population.  Urban development and anthropogenic disturbance along the coast 

and coastal islands and woodland edges has greatly reduced its prime habitat (Sykes and 

Holzman 2005).  The patterns of haplotype and nucleotide diversity support the 
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hypothesis that the interior population was a center of origin for this species with 

subsequent dispersal to the Atlantic Coast.  Such an interpretation is in agreement with 

the results of a molecular study of the entire genus (Klicka et al., 2001) in which Mexico 

was identified as the ancestral area for the Passerina sub-clade that includes the Painted 

Bunting.   How this dispersal event occurred is still unknown.  It could be that the 

ancestral population expanded eastward, reaching the coast, with a subsequent range 

reduction that left the observed gap in their distribution.  Alternatively, it is also possible 

that the Atlantic Coast population was founded via a true founder event, when a group of 

migrating buntings was blown off course, establishing either a new breeding (or 

wintering) area.    

     Highly mobile species are capable of adjusting their migratory pathways (Alderstam 

and Hedenstrom 1998) and novel migratory routes can arise very rapidly (Able and 

Belthoff 1998; Berthold 1996).  Knowing the extent to which breeding populations are 

differentiated and how their use of migratory pathways and wintering sites vary, are 

important for the conservation of migratory birds (Gauthreaux 1996; Haig and Avise 

1995).  It will also be important to determine levels of connectivity that may occur on the 

wintering grounds because factors that affect population structure (i.e. gene flow) can 

conceivably occur at any time during the annual cycle of a migratory bird (Smith et al. 

2004).  I do not yet know whether Atlantic Coast and interior birds are also isolated 

during migration and on the wintering grounds. Painted Buntings winter in south Florida 

(Robertson and Woolfenden 1992), the Bahamas and Cuba (Raffaele et al. 1998), on both 

coasts of Mexico, and throughout most of Central America (Howell and Webb 1995, 

Land 1970; Fig. 3).  I am currently assessing the genetic connectedness of birds on the 



30 

 

wintering grounds. Individuals migrating from the Atlantic Coast may winter only in 

south Florida, the Bahamas, and Cuba or, they could continue on to wintering 

destinations in the Yucatan or beyond (as suggested by Sykes et al. 2007).  If the former, 

Atlantic Coast and interior population segregated on both breeding and wintering 

grounds, would facilitate a faster divergence of these birds on their own evolutionary 

trajectories.   

Conservation implications 

     One factor contributing to the overall decline of the Painted Bunting is loss of habitat.  

On the breeding grounds, through urban development, roads, and agricultural 

intensification, significant habitat losses have occurred (Lowther et al. 1999; Sykes and 

Holzman 2005).  The effects of this loss are most acute along the Atlantic Coast where 

this buntings’ distribution is limited.  Loss of riparian habitats in the southwestern United 

States and northwest Mexico, used during migration by the interior population, may also 

be influencing population levels in this species (Lowther et al. 1999; Sykes and Holzman 

2005).  Wintering habitats in Central America also continue to be degraded.  The 

importance of wintering areas for Nearctic-Neotropical migrants has been widely 

discussed in the past (Webster et al. 2002). 

      It is likely that the cage bird trade (wintering grounds) also plays an important role in 

the decline of the Painted Bunting.  The colorful adult male has been in the commercial 

trade for a very long time, with thousands of live birds being shipped to Europe for sale 

in the early 19th century (Inigo-Elias et al. 2002).  This trade was banned in the United 

States in the early 20th century, but continues to be legal in other countries (Inigo-Elias et 

al. 2002). Caged birds are routinely sold in domestic markets in Cuba (Sykes et al. 2007).  
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An estimated 700 buntings were trapped for the cage bird trade at a single location in 

Cuba during several days in May 2003 (Sykes et al. 2007).  Some estimates suggest that 

at least 100,000 Painted Buntings were trapped in Mexico between 1984 and 2000.  

International trade in wild-caught birds was banned in Mexico from 1982 to 1999, but 

resumed quickly after the ban was lifted.  It is estimated that about 6,000 birds per year 

were exported from Mexico to Europe in 2000 and 2001 (Inigo-Elias et al. 2002).  

Whether these Mexican exports represent only the more abundant interior form, or also 

include representatives of the rapidly declining Atlantic Coast form, remains unknown.  

All of these factors (occurring on breeding and/or wintering grounds) contribute to the 

decline of Painted Bunting. 

     Despite uncertainty about the mechanism or timing of divergence of the Painted 

Bunting, it is apparent that all birds from the interior are more genetically related to each 

other than to any Atlantic Coast bird.  All data support the current recognition of two 

allopatric and genetically isolated breeding populations in the southern United States.  

Importantly, my data did not detect any genetic structuring across the putative boundary 

between the two subspecies of P. ciris in Texas and Oklahoma.  It may be that genetic 

differences do separate these two forms within the interior population but the level of 

resolution provided by mtDNA sequence data is not sufficient to detect them.  Further 

study using different molecular markers is warranted. 

     The results of this study, taken with the relatively small population size and 

decreasing population trends, suggest that the Atlantic Coast Painted Bunting should be 

recognized as an independently evolving taxonomic unit.  Relevant criteria for defining 

evolutionarily significant units (ESUs) for biological conservation have been much 
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discussed (Moritz 1994).  Some authors have argued that ESU designation should be 

based on significant genetic differentiation at neutral genetic markers (Moritz 1994) 

while others have suggested using ecological information, as well as genetic 

differentiation, to delineate ESU’s for conservation efforts (Crandall et al. 2000).  

Ultimately, a comparison and inclusion of multiple sources of data such as molecular 

markers (mtDNA and nuclear DNA), morphology, behavior, cytology and ecology 

should permit the most effective way to understand the evolutionary history of a group 

(Funk and Omland 2003; Rubinoff and Splerling 2004; Bowen et al. 2005).  Given my 

findings of genetic differentiation along with the previously identified information on 

differential timing and pattern of molt and migration (Thompson 1991a; Thompson 

1991b), the interior and Atlantic Coast populations of Painted Buntings should be 

recognized as distinct ESUs by any definition.  Any subsequent conservation efforts or 

recovery goals should treat these allopatric populations as separate management units. I 

hope that this study will contribute to the development of conservation strategies that can 

reverse Painted Bunting population declines. 
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Chapter 2, Table 1  The genetic diversity within the breeding populations and the values in the columns correspond to sample size 

(N), number of unique haplotypes (H),  number of private haplotypes (Pri.), haplotype diversity (h), nucleotide diversity (π), 

significance of the mismatch distribution (MM; ns = not significantly different from the expectation under exponential growth), 

Tajima’s D, and Fu’s Fs (significant values in bold). 

   N H Pri. h π MM D Fs 

Atlantic 

Coast 

          

NC1 10 6 0 0.844 0.002 ns -0.127 -1.363 

 NC2  10 5 0 0.800 0.001 ns -1.262 -1.320 

 SC1  9 5 0 0.861 0.002 ns 0.241 -0.911 

 SC2  10 3 0 0.689 0.002 ns 0.927 1.667 

 GA1  9 4 0 0.778 0.002 ns 1.612 0.450 

 GA2  10 5 0 0.667 0.001 ns -1.741 -2.260 

 GA3  9 4 0 0.806 0.001 ns 0.497 -0.787 

 FL  9 4 0 0.806 0.002 ns 0.881 0.617 
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Table 1 continued 

Interior           

AR 10 7 2 0.867 0.003 ns -1.944 -2.968 

 OK  11 7 4 0.778 0.002 ns -1.873 -2.442 

 LA  10 5 1 0.822 0.002 <0.01 -0.586 -0.815 

 TX1  9 7 5 0.917 0.002 ns -1.823 -3.797 

 TX2  9 5 1 0.893 0.002 ns -1.640 -1.802 

 TX3  10 9 7 0.978 0.003 ns -1.586 -6.320 
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Table 2 Analysis of Molecular Variance (AMOVA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Group 

 Source of 
Variation 

% 
Variation 

Φ 
Statistic 

 
p 
 

P.c. ciris vs. P.c. pallidior Among groups 20 0.20 <0.0001 
 
 

 Among populations 
within groups 

9.9 0.12 <0.0001 
 

  
Within populations 

 
70 

 
0.30 

 
<0.0001 
 
 

Atlantic Coast vs. Interior Among groups 28 0.28 <0.0001 
 
 

 
 

Among populations 
within groups 

1.9 0.03 <0.0001 
 
 

 Within populations 71 0.29 <0.0001 
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Table 3 Population pair-wise ΦST values.  Significance of ΦST values determined by 1000 random permutations of individuals  
 
among populations in a comparison. Values shown in bold significant at α = 0.05 after a false discovery rate correction. 
 

 NC1 NC2 SC1 SC2 FL GA1 GA2 GA3 AR OK LA TX1 TX2 TX3 

NC1 ─              

NC2 0.079 ─             

SC1 -0.075 0.077 ─            

SC2 -0.071 -0.007 -0.074 ─           

FL -0.030 0.070 -0.023 -0.022 ─          

GA1 -0.045 0.210 -0.038 0.021 -0.050 ─         

GA2 0.190 0.021 0.193 0.139 0.138 0.322 ─        

GA3 -0.079 0.122 -0.102 -0.051 -0.031 -0.061 0.211 ─       

AR 0.181 0.398 0.133 0.256 0.232 0.128 0.482 0.155 ─      

OK 0.267 0.490 0.228 0.352 0.320 0.207 0.571 0.249 -0.019 ─     

LA 0.156 0.372 0.103 0.226 0.208 0.114 0.456 0.127 -0.040 0.024 ─    

TX1 0.260 0.493 0.225 0.354 0.321 0.207 0.576 0.246 -0.017 0.000 0.011 ─   

TX2 0.188 0.434 0.141 0.277 0.049 0.137 0.532 0.167 -0.058 -0.015 -0.064 -0.016 ─  

TX3 0.201 0.420 0.166 0.280 0.253 0.140 0.499 0.179 -0.009 0.002 0.022 -0.011 -0.008 ─ 

36 
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Table 4 Estimates of demographic parameters calculated using model parameter 

estimates from the output of IM analyses.  Population parameters as described in text in 

column 1. Rows correspond to each of the six estimated parameters.  Parameters values 

(column 2) estimated in IM, converted to demographic value (column 3) using formulas 

provided in text.  Bold values have the highest posterior probability and are provided 

with 95% low and high confidence interval estimates. 

 

Parameter Parameter Value Demographic Value 

ΘAtlantic 

 

5.6 (2.4 – 14.4) 41,000 (18,000 – 106,000) 

ΘInterior 

 

200 (N/A)* 1,500,000 (N/A)* 

ΘAncestral 

 

5.8 (0.6 – 33) 43,000 (4,000 – 230,000) 

Years since divergence 

 

0.6 (0.4 – 1.8) 38,000 (26,000 – 115,000) 

m1 
 
 

0.323 (0 – 2.5) 0 (0 – 5) 

m2 
 
 

0 (N/A)* 0 (N/A)* 

TMRCA 

 

2.6 (1 – 5) 166,000 (64,000 – 320,000) 

 

* Posterior distributions of ΘInterior (effective population size of interior Painted Buntings 

scaled to the neutral mutation rate) were large across a broad range of values, and unlike 

the remaining parameter estimates, the tail of the posterior distribution did not approach 

zero and therefore the 95% HPDs were not calculated.   Since the formula for calculating 

the demographic value of m2 uses Θ, 95% confidence intervals were not calculated for m2 

. 
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Fig. 4. Map highlighting the breeding and wintering range of the Painted Bunting 

(Passerina ciris).  A solid curved line through eastern Kansas, Oklahoma, and Texas 

indicates the boundary on the breeding grounds between the recognized ranges of the 

western subspecies pallidior, and the eastern subspecies ciris.  A 550- km gap separates 

subspecies ciris’ two breeding populations.  Blue dots indicate sampling locations.  

Boxes highlight sampling sites included as part of the Atlantic Coast (red) or interior 

(blue) breeding population.  Eight sampling sites (FL, GA1, GA2, GA3, NC1, NC2, SC1, 

and SC2) are included in the Atlantic Coast population and six sampling sites (LA, AR, 

OK, TX1, TX2, and TX3) are included in the interior population.  Members of the 

interior breeding population of subspecies ciris are from the sampling sites TX2, AR, and 

LA.  All individuals and specific locations are listed in Table 10. 

 

 

  

pallidior 
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Fig. 5. Median-joining network of Painted Bunting haplotypes (n=138).  Circles represent one of the 35 unique haplotypes sized 

proportionally to the number of individuals sharing the haplotype.  Hash marks represent single base pair differences between 

haplotypes.  Small black circles represent median vectors.  Circle colors correspond to geographic locations: P.c. pallidior, interior 

(black), P.c. ciris, interior (gray), P.c. ciris, Atlantic Coast (white). 
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 Fig. 6 A mantel test of genetic vs. geographic distance using (a) all Atlantic Coast 

pairwise ΦST values, (b) all interior pairwise ΦST values, and (c) interior minus TX3 

pairwise ΦST values. 

                

 

 

 

Distance (miles) 

 

r = -0.0428  

p = 0.49 

r = 0.6856 

p = 0.001 

ΦST 

r = 0.8554 

p = 0.006 
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Fig. 7 Posterior distributions of parameter estimates from the IM program scaled to the 

mutation rate μ.  θAtlantic,  θInterior, and θA are effective sizes of the Atlantic, interior, and 

ancestral populations, m1and m2 are migration rates; t is the time since population 

divergence, and TMRCA is the time to most recent common ancestor of the haplotypes.   

 

  

t 

ΘAtlant ΘInterior 

ΘAncestr

m2 m1 

TMRCA 
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CHAPTER 3 

PHYLOGEOGRAPHY OF THE PAINTED BUNTING (PASSERINA CIRIS): 

IMPLICATIONS FOR CONSERVATION AND EVOLUTION 

Abstract 

     The Painted Bunting (Passerina ciris) is a small migratory songbird of conservation 

concern that breeds in two geographically separate grounds in the southeast and south 

central United States, and winters in the Florida Keys, the Caribbean, Mexico and 

portions of Central America. An initial assessment of the breeding grounds suggests that 

the most significant genetic break within the breeding population is concordant with the 

550-km distributional gap that separates the two allopatric breeding populations.  For 

migratory birds, an important aspect of habitat conservation is not only knowledge of the 

extent to which breeding populations are differentiated but also how these populations 

vary in their use of migratory pathways and wintering sites. Like many other migratory 

birds, the Painted Bunting shows differences in molt/migratory strategies between 

disjunct breeding populations.  Birds along the Atlantic Coast molt on the breeding 

grounds prior to migrating to the wintering grounds, while some birds within the interior 

population migrate to staging areas in southern Arizona and northern Sonora to molt 

before continuing on to the wintering grounds.  I examined the patterns of connection 

between breeding and overwintering ranges of this species by evaluating a set of 

hypotheses related to whether allopatric Atlantic Coast and interior populations use 

different wintering grounds. Phylogenetic analyses produced a network tree that indicated 

a separation between the Atlantic Coast breeding and wintering areas (Florida Keys, 
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Bahamas, and Cuba) and the interior breeding and wintering areas, a result similar to 

findings of a previous study conducted only on breeding birds.   

Introduction 

Phylogeography and population structure within the Painted Bunting 

     The geographical diversity of mitochondrial DNA (mtDNA) haplotypes in populations 

reflects patterns of historical fragmentation, changes in population size and distribution, 

and taxon specific dispersal characteristics (Avise 1989), and the use of mtDNA as a 

marker for phylogeographic studies has provided insights into population histories within 

the context of evolutionary and biogeographic models (Avise 2000).  Molecular 

population genetics permits description and measurement of how much genetic diversity 

is present within a species and how much of it is distributed within and among 

populations.  Molecular analyses can be used to describe the present-day geographical 

distribution of genetic diversity within a species and the phylogenetic relationships 

among the populations.     

     The Painted Bunting (Passerina ciris) is a small migratory songbird that breeds in the 

southeast and south central United States, and winters in the Florida Keys, the Caribbean, 

Mexico and portions of Central America (Fig.8).  Two subspecies of the Painted Bunting 

have been named: Passerina ciris ciris and Passerina ciris pallidior (Mearns 1911) and 

the boundary between them runs from east Texas northward between 96° and 97° west 

longitude (American Ornithologists' Union 1957; Paynter 1970), but may be farther east 

(Storer 1951; Robbins and Easteria 1992).  Passerina ciris ciris occurs east of this line 

and is described as darker red in adult males and darker yellow-green in adult females, 

and with a smaller mean wing length than that of P.c. pallidior (Mearns 1911), which 
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occurs west of this boundary.  Passerina ciris pallidior is characterized by “pinker and 

less orange hue” on red underparts of males (Storer 1951). 

     The Painted Bunting breeds in two geographically separate Atlantic Coast and interior 

ranges separated by a 550-km gap at their closet point (Fig. 8).  As presently defined, the 

breeding range of P. c. ciris comprises the entire Atlantic Coast breeding population as 

well as the easternmost portion of the interior population.  Along the Atlantic Coast, 

habitat is primarily shrub, grassland and upland maritime shrub-scrub (American 

Ornithologists' Union 1998). The breeding range of P. c. pallidior comprises the 

remainder of the interior population.   Painted Buntings within the interior breeding 

population utilize a variety of habitats including open areas with scattered brush and 

trees, riparian thickets, and, weedy areas (American Ornithologists' Union 1957; 

Thompson 1991a; American Ornithologists' Union 1998).   

     Painted Buntings are short to medium distance Neotropical migrants.  Neotropical 

migrants exhibit many different molt/migration strategies.  Studies have demonstrated 

that more than 50% of Neotropical migrant passerine species breeding in western North 

America migrate to the region of the Mexican Monsoon immediately after breeding, 

exploiting the seasonal pulse of food generated by the monsoon and undergoing post-

breeding molt before migrating to their Neotropical wintering areas (Rohwer et al. 2005; 

Rohwer et al. 2007; Rohwer et al. 2009).  In contrast, more than 95% of Neotropical 

migrant passerines breeding in eastern North America molt on their breeding grounds 

before migrating to their Neotropical winter range (Rohwer et al. 2005; Rohwer et al. 

2007; Rohwer et al. 2009).  The geographically disjunct breeding populations of the 

Painted Bunting (Atlantic Coast and interior), like many other Neotropical migrants, 
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exhibit similar patterns of molt and migration. A portion of the interior breeding 

populations migrate to staging areas in southern Arizona and northern Sonora (an area 

that is not part of either this bird’s breeding or overwintering area) to molt before 

continuing to wintering ranges, while Atlantic Coast populations’ molt on the breeding 

grounds prior to fall migration (Thompson 1991b). 

    The conservation of North American migratory songbirds has been the focus of 

extensive recent research, motivated largely by evidence of long-term decline in 

populations of numerous species (reviewed by Rappole and Mcdonald 1994; Martin and 

Finch 1995).  Importantly, precipitous declines of the Painted Bunting have made it a bird 

of considerable conservation concern.  Various surveys have indicated dramatic declines 

in the distribution and abundance of this bird over the past 30 years; the decline in 

numbers appears to be most severe within the Atlantic Coast breeding population (Hunter 

et al. 1993; Cox 1996; Sauer et al. 1997; Rich et al. 2004).  Factors contributing to the 

decline are attributed to activities occurring on both the breeding and wintering grounds 

(Lowther et al. 1999; Inigo-Elias et al. 2002; Sykes and Holzman 2005).  Conservation of 

this species will benefit from an understanding of the major energy-demanding events 

(breeding, molt, and migration) within its annual cycle.  The timing and sequence in 

which these events occur, and extent to which they overlap with one another, are linked 

with biological and ecological features of the species themselves (Newton 2008).  An 

initial assessment (Herr et al., 2011) indicates that the most significant genetic break 

within this species is concordant with 550-km distributional gap that separates the two 

allopatric breeding populations rather than with recognized subspecies boundaries 

(Mearns 1911; Storer 1951).  The data from this study indicate that the allopatric 
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breeding populations are recently derived and evolving independently of one another 

(Herr et al., 2011).  Here I incorporate these data with wintering ground data to address 

alternative questions concerning the migratory patterns that may affect phylogeographic 

structure and the evolutionary history and conservation of the Painted Bunting. 

     Relatively few studies have examined the importance of both the seasonal migratory 

pathway and the timing of molt, as important events in avian speciation (Rohwer and 

Irwin, in press).  Within the Painted Bunting, there is disagreement regarding migratory 

routes and wintering grounds inhabited by the allopatric breeding populations.  Some 

researchers have suggested that some of the Atlantic Coast breeding populations may 

cross from Cuba to the Yucatan Peninsula of Mexico during fall migration and possibly 

winter somewhere in Mexico or Central America (Thompson 1991a; Sykes et al. 2007).  

Other studies of the Painted Bunting have led to the hypothesis that birds from the 

Mississippi Valley and the Gulf Coast of Alabama, Mississippi, and Louisiana winter in 

the Yucatan and that these birds migrate directly across the Gulf of Mexico to their 

wintering grounds in the Yucatan (Storer 1951; trans-Gulf migration).  There is also 

strong evidence, based on morphological data, that virtually all of the wintering Painted 

Buntings of Mexico (exclusive of Yucatan) and most of the birds from Central America 

belong to the populations that breed in Kansas, Oklahoma, and Texas (Storer 1951).  In 

order to address these alternative hypotheses, I will characterize patterns of connection 

between the populations throughout their annual cycle. Webster et al. (2002) proposed 

the concept of connectivity for understanding the degree to which breeding individuals 

from a given demographic unit are shared by various winter locations and vice versa.  I 

will assess the amount of genetic divergence among populations across the distribution, 



47 

 

and the degree of connectivity between the breeding and wintering populations.  A 

pattern of “weak” connectivity suggests that the allopatric breeding birds mix widely on 

the wintering grounds (Fig. 9a; adapted from Webster et al., 2004), while “strong” 

connectivity suggests that breeding and wintering grounds are tightly linked (Fig. 9b; 

adapted from Webster et al. 2004), and lend support to the hypothesis that predicts that 

the Atlantic Coast breeding populations winter in South Florida, the Bahamas and Cuba 

and do not cross the Gulf of Mexico into the Yucatan (see Storer 1951).   

     The molecular analyses will be used to describe the present-day geographical 

distribution of genetic diversity within the species and the phylogenetic relationships 

among the populations.  A comparison of genetic lineages across the distribution of the 

Painted Bunting will enable well-informed decisions to be made on how to best conserve 

and manage declining populations of this migratory bird.  The presence of two allopatric 

breeding populations, along with the utilization of different molt and migration strategies 

both within the interior breeding populations and between the Atlantic Coast and interior 

breeding populations, as well as different wintering grounds, could promote further 

isolation of these populations and may contribute further to the separate evolutionary 

trajectories of the subspecies. 

     Specifically, my objectives are to test alternative hypotheses as to the genetic structure 

between the previously identified Atlantic Coast and interior breeding populations with 

that of the wintering populations.  The allopatric Atlantic Coast and interior populations 

may overwinter throughout the wintering range of this species, a pattern of “weak” 

connectivity (Fig. 9a).  A pattern of “weak” connectivity may be common in migratory 

species and may have important consequences at the population level.  For example, the 
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strength of migratory connectivity may affect the ability of migratory species to evolve in 

response to changing selective pressures, such as those that might result from climate 

change (Webster et al. 2002). An alternative hypothesis would be a pattern of “strong” 

connectivity in which the allopatric breeding populations of the Painted Bunting 

overwinter in separate wintering ranges. Breeding and wintering ranges were compared 

in five Neotropical migrants and the distribution of eastern and western lineages on the 

wintering grounds differed among species and ranged from complete segregation to some 

geographic mixing of eastern and western groups at locations on the wintering ground 

(Smith et al. 2004).  I will address the degree of connectivity between the interior 

breeding and Mexican/Central American wintering populations and compare that to the 

Atlantic Coast breeding and Caribbean wintering populations (see Table 5). 

Evolutionary History Painted Bunting 

     In order to address hypotheses regarding the evolutionary history of the Painted 

Bunting, I will use a combination of analyses that focus on genetic patterns at different 

temporal scales.  I will propose alternative scenarios as to which processes, and the 

relative timing of the processes, that may have led to the present day distribution of the 

Painted Bunting.  Genetic differentiation within the Painted Bunting may coincide with 

the geological or climatic changes that have shaped the geographic range of this species, 

and, as a result, altered the connectivity between the populations over time.   The 

evolution of different migratory strategies involves changes in a complex combination of 

behavioral, ecological, and life-history traits (Berthold et al. 2003), and from an 

evolutionary perspective, it will be important to discern where and when these complex 

combinations of traits evolve.  Numerous models can be proposed to explain the interplay 
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between evolutionary history, patterns of migration, and patterns of molt which all serve 

to promote longevity and increase reproductive success within the Painted Bunting.  The 

mechanisms by which expansions may occur are not always well known, especially in 

species that are not restricted to a specific habitat, such as migratory birds (Boulet and 

Gibbs 2006).   

     It has been proposed that in birds, migratory species will show less genetic structure 

along the main migration route than away from it because gene flow is facilitated by 

migration (Helbig 2003).  Support for this hypothesis was found in the northern Yellow 

Warbler (Dendroica petechia, group aestiva), a Neotropical migrant with an extremely 

wide breeding distribution.  In this species, gene flow is restricted longitudinally (i.e. 

along an east-west axis) but not latitudinally (i.e. along the north-south axis) and the 

latitudinal gene flow axis parallels the migration axis (Boulet and Gibbs 2006).  It has 

also been suggested that latitudinal gene flow may be facilitated by the general wind 

patterns occurring in North America and by strong flows of maritime tropical air masses 

in spring, and that migration may have facilitated range expansion during colonization of 

lands after ice sheet retreat (Gauthreaux Jr. 1980).  There are other migratory species that 

exhibit longitudinal differentiation in North America and the shaping of the east-west 

differentiation has been attributed to both latitudinal gene flow and the glaciation events 

of the Pleistocene (Smith et al. 2004).  Incorporating information about migratory 

patterns in general, previous studies of migratory species in North America, and 

information gained on the degree of connectivity within the Painted Bunting, I will 

inform models that could explain the evolution of the disjunct breeding and wintering 

ranges of present day.   
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     In this paper I investigate phylogeography and demographic changes of the Painted 

Bunting using mtDNA sequence data.  I address several questions regarding the genetic 

structure and evolutionary history of this species.  I first describe mtDNA sequence 

variation within and among local populations throughout their distribution in order to test 

the hypothesis that the allopatric breeding populations overwinter in separate populations 

as well (i.e. connectivity).  An assessment of the degree of connectivity within the species 

will play an important role in the development of an effective conservation measure to 

help reverse the declining populations.  Additionally, information gained from these 

hypotheses will then be used to inform hypotheses as to how different molt/migratory 

routes may have evolved within this species (as addressed above).  

Methods 

Sampling and Laboratory Methods 

     I obtained 67 new samples from 7 sites across the wintering ground distribution of the 

Painted Bunting to add to the 138 samples available from breeding grounds populations 

(Herr et al., in press; Appendix I).  Total genomic DNA was extracted from tissue, blood 

and feathers using the DNeasy tissue extraction kit (Qiagen, Valenica, CA). A 

phylogenetic tree developed using a mitochondrial marker should have a better chance of 

accurately recovering recent splitting events because its effective population size is one-

fourth that of a nuclear gene (Moore 1995). I therefore, sequenced the protein-coding 

mitochondrial gene NADH dehydrogenase subunit 2 (ND2).  I amplified ND2 via 

polymerase chain reaction (PCR) using the primers L5215 (Hackett 1996) and HTrpc 

(STRI) in 12.5 μl reactions using the following protocol: denaturation at 94 °C for 10 

min, 40 cycles of 94 °C for 30 s, 54 °C for 45 s, and 72 °C for 2 min, followed by 10 min 
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elongation at 72 °C and 4 °C soak. Products were purified using ExoSAP-IT (USB 

Corporation, Cambridge, MA) and PCR products were sent to High-Throughput 

Genomics Unit (University of Washington) for all subsequent steps. Light and heavy 

strands were aligned in Sequencher 4.9 (GeneCodes Corporation, Ann Arbor, MI). 

Sequences were translated into amino acids to check for premature stop codons.  

Complementary strands of each gene were unambiguously aligned using the program 

Sequencher (Gene Codes Corporation, Ann Arbor, MI).  Both light and heavy strands 

were sequenced for all PCR fragments and no gaps, insertions, or deletions were apparent 

in the aligned sequence.  All sequences were translated without problem into amino acid 

form. 

Phylogenetic Analyses and Population Structure 

     It is becoming clear that maximizing inferences from any phylogeographic study 

requires a combination of approaches that examine haplotype relatedness and 

demographic history, and the use of this combination of approaches has been shown to 

elucidate geographic structure as well as the evolutionary history producing the structure 

(Bernatchez 2001; Althoff  and Pellmyr 2002; Pfenninger and Posada 2002). The use of 

multiple approaches has been shown to narrow the range of plausible hypotheses about 

mechanisms and processes of divergence (Pfenninger and Posada 2002; Morando et al. 

2004). 

     I therefore examined the genetic structure within the Painted Bunting using a series of 

analyses that focus on genetic patterns at different temporal scales, thereby employing 

both phylogenetic and population genetic approaches.    All analyses were performed 

using a dataset (n = 205) which included information from both breeding (see Herr et al, 
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in press) and wintering ground data.  The use of a bifurcating tree, may be misleading, 

especially when the ancestral haplotypes are extant (Althoff and Pellmyr 2002), and the 

use of a haplotype network may more accurately portray the true evolutionary history of a 

lineage (Smouse 1998; Posada and Crandall 2001).  I therefore used a median-joining 

network to visualize relationships among haplotypes (program Network 4.1.1.2; Bandelt 

et al. 1999). Instead of a series of bifurcations, the Network software reconstructs all 

shortest maximum parsimony trees from a given data set. Median networks provide a 

useful representation of intraspecific data that are characterized by having few base 

substitutions between sequences.  In contrast to standard tree representation, where only 

the tips of the tree are labeled, nodes in a median network represent either sampled 

haplotypes or inferred intermediates.  Relationships among the haplotypes was also 

inferred using a method of statistical parsimony and 95% probability criterion for 

connections (Templeton et al. 1992) as implemented in the software package TCS, 

version 1.21 (Clement et al. 2000).  TCS was performed as an alternative means of 

analysis because it can infer ancestral or intermediate haplotypes (as opposed to assuming 

that these haplotypes are extinct).   Statistical parsimony has been demonstrated to exhibit 

its highest resolving power and significantly out perform traditional phylogenetic 

approaches when the level of divergence among sequences is low (see: Crandall 1995, 

1996; Posada and Crandall 2001).  I used the same sequence alignment that I used in the 

median network analysis described above. 

Phylogenetic analyses and population structure 

     I examined demographic history of populations using the programs Arlequin v. 3.11 

(Excoffier et al. 2005) and DnaSP (Rozas et al. 2003) to evaluate departures from 
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expectations of neutral equilibrium dynamics in the genetic structures of populations, and 

to analyze patterns of genetic variation within and among populations.  Population 

genetic parameters were calculated for all populations (20) from which we had ≥ 6 

individuals (Weir and Cockerham 1984; Excoffier et al. 1992).  Genetic diversity within 

populations was characterized by the number of unique haplotypes per population and the 

number of private haplotypes per population.  Population variability was estimated as 

haplotype diversity (H) and nucleotide diversity (π). Measures of haplotype and 

nucleotide diversity are useful in examining the demographic history of a lineage (Grant 

and Bowen 1998).    Centers of origin should be more diverse in haplotype and 

nucleotide diversity than more recently founded populations (Althoff and Pellmyr 2002), 

and a large amount of haplotype diversity, but low nucleotide diversity, is consistent with 

a population bottleneck and rapid population growth (Emerson et al. 2001). 

     I also performed a number of statistical tests used to estimate past demographic 

processes such as population expansion.  Historical events (i.e. population expansion) can 

leave a genetic “footprint” that may be detected in sequence data (Ramos-Onsins & 

Rozas 2002).  Analysis of mismatch distribution provide a statistical means to confirm 

that a proliferation of haplotypes is recent and due to population genetic bottlenecks 

and/or population expansions (Emerson et al. 2001).  Mismatch distributions (i.e. 

pairwise differences between haplotypes) were generated to test for historical population 

expansion events within populations by comparing the observed frequency distribution of 

pairwise nucleotide differences among individuals with distributions expected from a 

population expansion (Rogers and Harpending 1992).  Populations at demographic 

equilibrium or in decline should exhibit a multimodal distribution of pairwise differences, 



54 

 

whereas populations that have experienced a sudden demographic expansion should 

display a star-shaped phylogeny and a unimodal distribution (Slatkin and Hudson 1991; 

Rogers and Harpending 1992).  However, mismatch analyses employ a number of 

assumptions (e.g. random mating, and infinite allele’s model) that may not be met in 

many populations (Wakeley and Hey 1997; Schneider and Excoffier 1999).  Because of 

these limitations, mismatch analyses  were coupled with Tajimas’s D to test for localized 

population expansion (Tajima 1989) and a test of selective neutrality using Fu’s Fs test 

(Fu 1997).  Significantly negative D or Fs values indicate a relative excess of rare 

haplotype variants, suggesting expansion in population size or population bottleneck; 

positive values suggest a relative excess of intermediate-frequency alleles, which is 

expected under a model of population subdivision or balancing selection, coincident with 

stable population size over time (Tajima 1989; Fu 1997).  Critical values for the D 

statistics were determined assuming the beta-distribution as implemented in Arlequin 

(Excoffier 2005).  For the Fs tests, p ≤ 0.02 were assumed to be significant (Excoffier 

2005). 

     I then incorporated population genetic analyses that examine recent population 

structure.  For sequence data, analyses that use both haplotype divergence and the 

frequency of haplotypes within and among populations should be favored; and even in 

the case of limited sequence divergence, the distribution of the divergence within and 

among populations can provide insights into the genetic structure (Excoffier et al. 1992).  

Analyses, such as analysis of molecular variance (AMOVA) are useful for examining 

recent geographic structure and permit the testing of a priori hierarchical patterns of 

geographic structure and provide a way to determine the geographic scale of genetic 
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structure (Excoffier et al. 1992).  To estimate population structure at various levels of 

geographic organization, I used a hierarchical AMOVA in a series of nested procedures. 

Genetic structure was assessed at three hierarchical scales: within populations, among 

populations within groups, and among groups.  Haplotypic correlation measures, Φ-

statistics, were generated with the AMOVA analyses and the following relationships for 

these statistics are used in the paper: ΦCT = among groups, ΦSC= among populations 

within groups, and ΦST = among individuals within populations.  This method provides 

Φ-statistics that are analogous to Wright’s FST (Excoffier et al. 1992).  In all analyses a 

sampling site is equivalent to a population.  Significance of variance components was 

tested using 1000 permutations of the original distance matrix.  To identify larger-scale 

genetic populations, I grouped populations to maximize among group variance (ΦCT 

values).    I performed two nested AMOVAs with sequences grouped by region and then 

by individual population within each region (i.e. sampling locality) to explore whether 

significant genetic variation exists at multiple geographic levels.  I used an a priori 

expectation of a genetic division between breeding populations (sampling sites) in the 

interior and Atlantic Coast to form two breeding ground regions (Herr et al., in press).  I 

then separated the wintering birds considering two separate scenarios.  As previously 

stated, it has been suggested that some of the Atlantic Coast breeding populations may 

cross from Cuba to the Yucatan Peninsula of Mexico during migration and possibly 

winter somewhere in Mexico or Central America (Thompson 1991a; Sykes et al. 2007).  

In order to address this hypothesis, I performed the first analysis by including populations 

from South Florida, Bahamas, Cuba, Cozumel, and the Yucatan (representing 1 wintering 

group, as suggested in hypothesis) combined with the Atlantic Coast breeding population.  
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This region was compared with the remaining wintering populations in Mexico and 

Central America (GUA, OAX, and VER), combined with the interior breeding population 

(Fig 10a).  In the second scenario, I defined a different configuration of the wintering 

populations. In this analysis, all wintering populations from Mexico and Central America 

were combined with the interior breeding population to form a group.  This group was 

compared with the Atlantic Coast breeding population and wintering populations from 

South Florida, the Bahamas, and Cuba (Fig. 10b).    The analysis that maximized values 

of ΦCT after 1000 random permutations of the DNA sequences was assumed to reflect the 

most probable geographical subdivision (Excoffier et al. 1992), and lend support to or 

reject a hypothesis that birds from the Atlantic Coast population overwinter in South 

Florida, the Bahamas, and Cuba, or whether they continue across the Gulf of Mexico to 

the Yucatan or elsewhere to overwinter (see: Sykes et al. 2007).  If the second scenario is 

true, this would have a large impact on the preservation of genetic diversity within the 

small, declining Atlantic Coast breeding population.  It has been demonstrated that small, 

isolated populations in particular, are subject to inbreeding and genetic drift and their 

genetic variation is consequently expected to be low compared to that of larger 

populations (Karron 1997).  Loss of genetic variation is thought, potentially, to lead to a 

decrease in a species’ ability to survive environmental changes and demographic 

fluctuations (Milligan et al. 1994).  Many times it is uncertain as to what constitutes a 

high or low level of genetic variation within a species; however, the maintenance of at 

least a constant level of genetic variation is generally considered essential for long-term 

protection of a taxon (Simberloff 1988). 
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     To further assess genetic structure among groups (as defined by addressing alternative 

hypotheses and listed in Table 5), a stepping-stone model among the groups was 

assumed, and AMOVAs were performed on each of the possible connections.  These 

pairwise AMOVAs provided Φ-statistics (pairwise ΦCT) between pairs of groups. To 

measure the degree of genetic differentiation among populations, pairwise ΦST values 

were calculated for all populations of sample sizes greater than or equal to six (Weir and 

Cockerham 1984).  Pairwise ΦST values were computed in Arlequin (Excoffier 2005) 

using a distance matrix between haplotypes.  A sequential Bonferroni correction (Rice 

1989) was applied table-wide. 

Results 

Phylogenetic analyses 

     DNA sequencing yielded 1,041 base pairs of ND2 for 205 individuals, 138 from the 

breeding grounds and 67 from the wintering grounds.  No insertions or deletions were 

present.   Of the 1,041 base pairs, 954 were constant with 87 variable sites, 29 of which 

were parsimony informative.   

     The median-joining network contained 54 haplotypes, 24 haplotypes belonging 

exclusively to individuals from one of the breeding ground populations, 19 from an 

exclusively wintering ground population, and 11 haplotypes shared by both (Fig. 11, 

Table 6).  One of the two most common haplotypes (48 individuals) was also widespread 

and was comprised of at- least one individual from each population.  Forty of the 

individuals of this haplotype were members of one of the interior breeding or wintering 

populations. The remaining eight individuals of this haplotype were from Atlantic Coast 

populations.  A second common haplotype (48 individuals) was composed of individuals 
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found primarily on the Atlantic Coast (43 breeding/wintering individuals), with only five 

individuals from interior breeding (two), and wintering (three) populations.  An 

additional common haplotype (24 individuals) occurred exclusively in Atlantic Coast 

populations.   Twenty of these were Atlantic Coast breeding individuals, and four 

belonged to Atlantic Coast wintering individuals.  Of the remaining haplotypes, 39 were 

unique to single individuals.  Thirty-four of the haplotypes were from interior breeding or 

wintering populations, with only five unique haplotypes found among Atlantic Coast 

breeding or wintering populations. The remaining eleven haplotypes were shared among 

individuals.  There was only one haplotype shared among individuals found on both 

interior and Atlantic Coast populations (one individual from interior breeding and one 

individual from Atlantic Coast breeding population).  The most divergent haplotypes 

were found in the interior populations. 

     The topology of the network generated with TCS (not shown), is consistent with the 

network generated in Network.  Fifty-four haplotypes were again identified.  The 

haplotype identified as the one with the highest outgroup probability was the haplotype 

that contained 48 individuals, at-least one individual from each of the 22 localities, as 

seen in the median-joining network produced by the program Network (see Fig. 11, Table 

6).   

     The data on the genetic diversity within populations from the breeding and wintering 

grounds are presented in Table 7.  Mismatch distributions (not shown) for all sampled 

populations were unimodal and, with the exception of the population from Louisiana 

(p<0.01), did not differ from that expected of an expanding population.  Nucleotide 

diversity was low in all populations and comparable to levels seen in other songbird 
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studies (see: Milot et al. 2000; Zink et al. 2001; Spellman et al. 2007; Zink et al. 2008), 

ranging from a low of 0.001 in GA2 to a high of 0.003 in AR (Table 7).  Almost all 

unique haplotypes (private alleles) were restricted to interior populations 

(breeding/wintering), with each population in the interior having at least one private 

haplotype (range one-eight).  Two populations had very many private alleles, TX3 with 

seven and GUA with eight.  There were no private alleles found on the Atlantic Coast 

breeding grounds and only two on the Atlantic Coast wintering grounds (FLWN and 

BAH, each with one).  Tajima’s D values were significant in five of the six interior 

breeding populations (AR, OK, TX1, TX2, and TX3), and in only one from the Atlantic 

Coast breeding populations (GA2).   GUA also had a significant Tajima’s D value.  

Significant Fu’s Fs values were obtained for four of the same interior breeding 

populations (AR, OK, TX1, and TX3), with only one from the Atlantic Coast breeding 

populations (GA2).  Fu’s Fs values were significant in three wintering populations, two 

from the interior, and one from the Atlantic Coast (YUC, GUA, and FLWN).  Fu’s Fs 

values for GUA and TX3 were very low (-6.76 and -6.32 respectively).  These values, as 

well as the number of private haplotypes in these two populations, may be an artifact of 

incomplete sampling on the breeding ground.  There were no samples collected from the 

most southerly portion of the breeding range, in Mexico (see Fig. 8).   

     Although most of the variation was found within populations in both AMOVA 

analyses (71% and 70% respectively), a significant portion of the total genetic variance is 

due to differences among groups (Table 8).  Approximately 24% of the variation is 

explained when Atlantic Coast vs. interior groups are compared (scenario 1, Fig 10a), 

whereas 28% of the variation is explained when the data were partitioned as suggested in 
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the second scenario (see Fig. 10b).  In pairwise AMOVAs among groups adjacent to each 

other (Fig.9), significant genetic variation was indicated between Atlantic Coast breeding 

and interior breeding groups (ΦCT = 0.29, p < 0.00003), interior wintering and Atlantic 

Coast wintering groups (ΦCT = 0.21, p < 0.02), interior wintering and Atlantic Coast 

breeding groups (ΦCT = 0.29, p < 0.0003), and interior breeding and Atlantic Coast 

wintering groups (ΦCT = 0.21, p < 0.01).  Comparisons of Atlantic Coast breeding and 

Atlantic Coast wintering groups and interior breeding and interior wintering groups were 

not significant (ΦCT = -0.002, p < 0.06, and ΦCT = -0.40, p < 0.2 respectively).  Negative 

values of ΦCT are an artifact of the statistical method and are equivalent to zero (Long 

1986; Tansley and Brown 2000; Jonsdottir et al. 2001). 

     I partitioned the molecular variation in pairwise comparisons of populations into 

within-population and total-variance components to obtain pairwise Φ ST values (Table 

9). The majority of the ΦST values found to be significant were those comparing Atlantic 

coast populations (breeding/wintering) to interior populations (breeding/wintering).  The 

highest ΦST values of 0.607, 0.606, and 0.601 were observed in comparisons of GA2 with 

OAX, OK, and VER respectively.  There were only three significant differences between 

any pair of interior breeding and wintering populations and only five significant ΦST 

values in pairwise comparisons of Atlantic Coast breeding and wintering populations.  

Three of those comparisons involved the breeding population GA2, with ΦST values of 

0.322 with GA1, 0.138 with FL and 0.193 with SC1. 
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Discussion 

Phylogeography and Population Structure:  Painted Bunting 

     Genetic diversity within populations from across the entire distribution provide 

evidence of a recent range expansion; including unimodal mismatch distributions, high 

haplotype diversity, and low nucleotide diversity (Table 7; Rogers and Harpending 1992; 

Grant and Bowen 1998; Avise 2000).  Pairwise AMOVA analyses among geographically 

separate groups (Fig. 12) indicate significant genetic differentiation between Atlantic 

Coast and interior regions suggesting that gene flow is limited and support the hypothesis 

that the allopatric Atlantic Coast and interior breeding populations overwinter in separate 

areas as well.   

     The relative abundances of ancestral and derived haplotypes can provide insight into 

the relative ages of populations (Templeton et al. 1995).  Common haplotypes are most 

likely to be involved in a range expansion or dispersal.  With reduced gene flow between 

the ancestral and colonized populations, derived haplotypes arising within the colonized 

population will remain geographically confined and should be closely related to one 

another, separated by few mutational steps (Templeton et al. 1995; Hewitt 1996; Hewitt 

2000).  The network tree shows a much more complex interior lineage with two centers 

of differentiation and supports the hypothesis that the Atlantic Coast population is 

derived from a more ancestral interior population (Fig 11).  

     Summary statistics also support this conclusion.  Members within the interior 

population have greater haplotype diversity.   Private haplotypes are restricted to interior 

breeding ground populations, another indication that the Atlantic Coast population is a 

more recently founded population (Table 7).  The reduced genetic diversity and low 
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effective population size within the Atlantic Coast population may have resulted from 

genetic drift of a small founding population along the Atlantic Coast following dispersal 

from the interior population.  The pattern of lower genetic variation within the Atlantic 

Coast breeding population is similar to that seen in comparisons of Western and Florida 

scrub-jays (McDonald et al. 1999) and different forms of the North American Burrowing 

Owl (Korfanta et al. 2005).  

     Coalescent analyses indicate that the Painted Bunting diverged from the Varied 

Bunting during the Pleistocene (~2.2 Mya, see Fig. 2).  A previous study conducted on 

the breeding grounds (Herr et al., in press) demonstrated that the allopatric Atlantic Coast 

and interior breeding populations diverged ~ 38,000 years ago.  These estimates must be 

interpreted with caution for reasons including assumptions about historical population 

sizes, and errors associated with the stochastic nature of single locus nucleotide 

differentiation (Edwards and Beerli 2000).  Nonetheless, even allowing for a 10-fold 

error in my estimate, the divergence in Painted Bunting populations falls within the 

Pleistocene time period.  Our results add to a growing body of evidence implying that the 

Pleistocene was an important period for intraspecific differentiation (e.g., Avise and 

Walker 1998). Many studies have highlighted the historical impact of the Pleistocene 

epoch on phylogeographical patterns of biota throughout the world (Hewitt, 2000; 

Hewitt, 1996).  The Pleistocene epoch was a roughly two million-year period of cyclical 

glacial advances and retreats that ended about 10,000 years ago.  Global temperatures 

have fluctuated many times between cold and warm conditions during the Quaternary.   

These major climatic reversals have caused great changes in the distribution of species as 

evidenced in the fossil record. These range shifts had effects on the distribution of genetic 
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variation within species (Hewitt, 2004).  At the height of the last ice age in North 

America (Wisconsin) the Laurentide ice sheet extended south of the Great Lakes to 

approximately 40°N (Hewitt, 2000).  Although glaciers never advanced beyond the 

middle latitudes of the United States, climatic fluctuations associated with these events 

had considerable effects upon the biota throughout unglaciated regions of North America 

(Mila et al., 2006; Riddle et al., 2000). 

     The historical biogeography of the Gulf Coast and the southeastern United States is 

relatively well studied. Various factors have affected species distributions and population 

structures in this region. Fluctuations in sea level as a result of glacial and interglacial 

periods affected habitat availability.  During glacial maxima, the Florida peninsula was 

enlarged due to lower sea levels and was roughly 100 to 150% larger than present day, 

with most of the increase in size occurring along the Gulf Coast due to a much higher 

continental shelf (Watts and Hansen, 1994).  This newly exposed land was part of a 

feature that has come to be known as the Gulf Coast Corridor (Emslie, 1998).  It is 

thought to have connected the arid lands of the southwest US and Mexico to Florida. This 

corridor consisted primarily of dry, open scrubland and savannah although patches of 

other habitat types such as wetlands and hammocks also occurred (Webb, 1990).  During 

the mid-Pleistocene, this corridor was broken by changes in sea levels as a result of 

glacial cycles, and the expansion of the Mississippi wetlands resulting in the loss of 

semiarid habitats along the Gulf Coast (Graham 1999; Webb 1990).  Important 

physiographic features in this region include the Appalachian Mountains, the Mississippi 

River, and the Apalachicola and Savannah River drainages.  These geographic features 

have been suggested as possible barriers to gene flow in many organisms including 
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freshwater fish, terrestrial and freshwater tetrapods, coastal vertebrates and invertebrates, 

as well as many plants (Howes et al., 2006; Joly and Bruneau 2004; Zamudio and 

Savage, 2003).  

Connectivity: breeding and overwintering distributions 

     There have been relatively few demographic studies, however, that have characterized 

levels of population connectivity between breeding and overwintering areas of 

Neotropical migrant songbirds (but see: Smith et al. 2004); limited by the ability to 

follow a songbird through a complete annual cycle.  For example, the strength of 

connectivity may affect the ability of migratory species to evolve in response to changing 

selective pressures, such as those that might result from climate change (Webster et al. 

2002).  Some migratory songbird species show “strong” connectivity patterns.  The 

Black-throated Blue Warbler (Dendroica caerulescens) does not have a disjunct breeding 

range, but most birds wintering on western Caribbean islands come from the northern 

portion of the species’ breeding range, while those on more easterly islands are primarily 

from southern breeding areas (Rubenstein et al. 2002). Swainson’s Thrush (Catharus 

ustulatus) show nearly complete segregation of migratory routes and of over-wintering 

sites (Ruegg and Smith 2002).  

     The results obtained from the breeding ground study (Herr et al. in press) indicated a 

genetic break between the Atlantic Coast and interior populations.  I used this 

information to explore patterns of connectivity between breeding and overwintering 

ranges for this species. It has been suggested that Atlantic Coast Painted Buntings may 

cross the Gulf of Mexico from Cuba to the Yucatan Peninsula of Mexico during 

migration and possibly winter somewhere in Mexico or Central America (Sykes et al. 
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2007).  The present study indicates that this is not the case.  Eight of the 15 individuals 

collected in the Yucatan are part of the most common and widespread haplotype (Table 

6).   Three others are shared among individuals found in the interior population.  There is 

only one unique haplotype and the remaining three haplotypes are part of the second 

common haplotype.    

     My results lend support that these two allopatric breeding populations overwinter in 

separate locations.  Pairwise ΦST analyses of almost all Atlantic Coast breeding 

populations are not significantly different from any Atlantic Coast wintering population 

(as defined in Table 5). Almost all comparisons of Atlantic Coast breeding populations 

with interior wintering populations are significant (Table 7). Additionally, there was no 

significant variation of pairwise AMOVAs among groups (ΦCT) when Atlantic Coast 

breeding and Atlantic Coast wintering, or interior breeding and interior wintering were 

analyzed.  Results of both of these analyses support the hypothesis that the Atlantic Coast 

breeding population winters primarily in South Florida, the Bahamas and Cuba, while 

birds from the interior breeding populations’ winter in Mexico and Central America. 

     These patterns suggest that when viewed at a broad scale, connectivity is strong.  

However, with the use of a single mtDNA marker, I was unable to resolve whether there 

are also within region patterns of connectivity.  There has been some success in 

combining mtDNA data with other intrinsic markers (e.g. isotope data and genetic data 

such as amplified fragment length polymorphisms (Bensch et al. 2002; Lovette et al. 

2004) to increase resolution in order to address finer scale connectivity of populations, 

and additional analyses, combining my results with other markers, is warranted. 
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Conservation implications 

     Understanding linkages between areas used by animals throughout their life history is 

critical to their effective conservation since efforts can be directed more appropriately at 

breeding, wintering, and stopover sites (e.g., Myers et al., 1987).  Effective conservation 

and management of migratory bird species requires an understanding of when, where, 

and how populations are limited (Sillett and Holmes 2005).   Demographic studies 

indicate that populations of many Neotropical migrant songbirds are limited at least 

partly by their winter habitats (Sherry and Holmes, 1996).  Conservation efforts need to 

integrate explicitly the effects of local ecological factors over large spatial scales and to 

integrate effects of winter survival with reproduction and survival at other times of year.  

My attempt to link breeding and overwintering populations is of conservation relevance.  

Given my findings of genetic differentiation of Painted Buntings within the breeding and 

wintering populations, along with the previously identified information on molt and 

migration (Thompson 1991b), the interior and Atlantic Coast populations should be 

recognized as distinct.  Conservation efforts should treat these allopatric populations as 

separate lineages.  It may be that the interior population should be treated as separate 

entities as well (as discussed above). 

     Although there is genetic differentiation between the Atlantic Coast and interior 

populations, no significant differences exist within the interior populations as 

demonstrated by the lack of significant population pairwise ΦST values between interior 

populations.  Differences between the interior populations may have arisen relatively 

recently, and possibly in the presence of ongoing gene flow.  Studies have shown that 

migratory routes can arise very rapidly (Berthold 1996; Able and Belthoff 1998).  The 
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rapid appearance of a new migratory route may be facilitated by nongenetic factors such 

as learning or cultural change; however studies on a variety of taxa have demonstrated 

that genetic differences often underlie migratory differences among populations (Raleigh 

1971; Berthold et al. 1992; Dingle 1994; Berthold 1996). Rapid evolutionary change is 

thought to be driven by strong natural selection (Fraser and Bernatchez 2005) and 

perhaps facilitated by assortative mating (Webster and Marra 2004). 

     The genetic similarity between the P. c. pallidior and P.c. ciris subspecies within the 

interior breeding distribution contrasts with the phenotypic differences between these 

forms.  The results presented here demonstrate that migratory divergence exists within 

the interior population and apparently in the face of ongoing gene flow, the specific 

evolutionary mechanisms responsible are not known.  This migratory divergence may be 

consistent with the migratory divide in interior populations of Painted Buntings that move 

to the staging area for their fall molts (Thompson 1991b; Young 1991) or perhaps the 

divide is consistent with the presently defined subspecies boundaries {see Fig. 3; 

American Ornithologists' Union, 1957).  Additionally, sub-specific delineation in bird 

taxonomy has traditionally been based on recognizable differences in morphological 

character variation in populations in different geographical regions. The two subspecies 

of Painted Buntings have been described based on variation in plumage color and wing 

length and the genetic diversity may be concordant with their morphological separation. 

The recognized boundary that separates the two subspecies runs through Texas at about 

96°/97° west longitude.  This is a dividing line between different ecoregions in Texas and 

these regions have very different environmental characteristics including habitat, amount 

of rainfall, elevation, and soil conditions.  These different environmental or nongenetic 
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influences may have effected phenotypic change in these birds.  Geographic character 

variation in birds is many times attributed to natural selection for phenotypes that reflect 

locally adapted genetic differences (James, 1983). This geographical variation may have 

arisen and may be maintained by local selection pressures acting to maintain adaptive 

differences in plumage variation (Zink R and Remsen Jr., 1986) or the phenotypic 

differences may reflect plastic responses to environmental cues however this seems 

unlikely, as other studies have shown that heritable variation exists in plumage color 

variation (Theron et al., 2001).  In addition, there is circumstantial evidence for 

geographically varying selection pressures on plumage variation in birds (Price, 1998).  

     Migratory divides have been suggested as a driver of speciation within birds 

(Thompson 1991b), but I find no evidence of genetic divergence in the interior breeding 

populations.  The lack of genetic divergence could be due to ongoing gene flow, the 

relatively young age of this species, or my inability to detect signatures of genetic 

divergence with the marker utilized in this project.  I hypothesize that geographical 

variation in local selection pressures act to maintain adaptive differences in migratory 

behavior, molt strategy, and possibly plumage variation.  Alternatively, the phenotypic 

differences may reflect plastic responses to environmental cues (Lessells 2008).  This 

does not seem likely, as other studies have shown that heritable variation exists for 

migratory behavior (Berthold and Helbig 1992) as well as plumage traits (Theron et al. 

2001) in birds.  Differences in wing length may be the result of pressures arising from the 

differing migratory pathways used by the populations.  There have been several recent 

studies involving migratory divides and their relative importance in speciation, hybrid 

zones, and rapid evolution of morphological traits (Sutherland 1998; Ruegg 2007; Ryan 
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et al. 2007; Brelsford and Irwin 2009; Rolshausen et al. 2009).  For example, a recent 

establishment of a migratory divide within Central European blackcaps (Sylvia 

atricapilla) has been shown to develop within 30 generations.  It was shown that 

differential migratory orientation facilitated reproductive isolation of sympatric 

populations.  The genetic divergence in sympatry was shown to exceed that of allopatric 

populations and was associated with phenotypic differences in wing morphology.  It was 

hypothesized that restricted gene flow accelerated the evolution of adaptive phenotypic 

divergence toward different selection regimes (Rolshausen et al. 2009).  There is also 

evidence that similar adaptive processes can occur in more than 50 bird species that have 

recently changed their migratory behavior (Sutherland 1998; Fiedler 2003). 

     The data presented here demonstrate that differences exist between Atlantic Coast and 

interior populations of the Painted Bunting that show little genetic differentiation from 

one another at neutral markers and without being reciprocally monophyletic.  Similar 

results have been reported in other migratory taxa (Bensch et al. 1999; Buerkle 1999; 

Brower and Jeansonne 2004; Davis et al. 2006), an indication that changes in complex 

ecological traits can occur rapidly and often precede divergence at neutral markers.   

Differences in morphology, migratory pathway, and molting strategies also exist among 

populations of the interior birds.  It is essential, that further work, aimed at determining 

the exact location of the migratory divide within the interior, be done.  Understanding the 

dynamics of gene flow between the closely related forms may provide insight into the 

process of speciation.  Hybrid zones have sometimes been correlated with migratory 

divides and there is evidence suggesting that differences in migration-related traits may 

promote reproductive isolation (Rohwer and Manning 1990; Helbig 1991; Bensch et al. 
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1999; Webster et al. 2002; Irwin and Irwin 2004; Bearhop et al. 2005; Webster and Marra 

2004). A more comprehensive understanding of the contemporary processes involved in 

the present day Painted Bunting will allow for a much greater understanding of the 

evolutionary history of this bird. 

Conclusions 

      In this paper, I have provided evidence about processes affecting the genetic structure 

and present-day distribution of the Painted Bunting. While my results are statistically 

significant and geographically explicable, further research, employing additional 

markers, using stable isotope analyses, or satellite telemetry will refine and augment my 

conclusions.  Additional studies will further augment my conclusions and provide 

stronger evidence about the forces that have shaped the genetic structure of the Painted 

Bunting.  My data is not sufficient to determine whether the interior populations represent 

two separate independently evolving entities, or incomplete lineage sorting as 

hypothesized for the Atlantic Coast and interior populations, or whether the 

morphological differences remain despite ongoing gene flow.  I believe, however, that 

the data presented here will have important consequences in any conservation strategy 

aimed at reversing the declines of the Atlantic Coast population. 

     Ultimately, evolutionary biologists attempt to understand how selection pressures may 

favor one particular life history over another, in order to provide evolutionary 

explanations for the diversity of life histories in the living world.   This is especially 

important in order to have an understanding of how life histories might respond to 

changes in selection pressures, including the changes caused by anthropogenic 

environmental change.  Increased sampling and additional markers will allow for more 
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accurate hypothesis testing involving molt/migration strategies employed by different 

populations of the Painted Bunting and provide better solutions in how to protect species 

in changing climates; especially in light of global warming. 
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Chapter 3, Table 5 Sampling sites (i.e. populations) included in one of four regional 
populations as described in paper. (Specific locality and GPS coordinates in Appendix 1). 
 

Interior Breeding Population: 
Arkansas (AR) 
Louisiana (LA) 
Oklahoma (OK) 
Texas 1 (TX1) 
Texas 2 (TX2) 
Texas 3 (TX3) 
 
Interior Wintering Population: 
Cozumel (COZ) 
Guatemala (GUA) 
Oaxaca (OAX) 
Veracruz (VER) 
Yucatan (YUC) 
 
Atlantic Coast Breeding Population: 
Florida (FL) 
Georgia 1 (GA1) 
Georgia 2 (GA2) 
Georgia 3 (GA3) 
North Carolina 1 (NC1) 
North Carolina 2 (NC2) 
South Carolina 1 (SC1) 
South Carolina 2 (SC2) 
 
Atlantic Coast Wintering Population: 
Florida Wintering (FLWN) 
Bahamas (BAH) 
Cuba (CUY) 
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Table 6 Haplotype frequency by geographic location as seen in  median-joining network as constructed in Network (Bandelt et al.,  
 
1999). Outgroup probabilities as estimated in program TCS (Clement et al., 2000).  * indicates haplotype with greatest ancestral probability. 

Hap. 
# # Ind. 

Interior 
Breeding 

(P.c. 
pallidior) 

Interior 
Breeding 

(P.c. 
ciris) 

Atlantic 
Coast 

Breeding 
(P.c. 
ciris) 

Bahamas 
Winter 

Cozumel 
Winter 

Cuba 
Winter 

Florida 
Winter 

Guatemala 
Winter 

Oaxaca 
Winter 

Veracruz 
Winter 

Yucatan 
Winter 

Haplotype 
outgroup 

probabilities 
as estimated 

in TCS 

1 48 10 14 4 1 1 1 1 5 2 1 8 0.12* 

2 48 0 2 34 2 0 5 2 0 0 0 3 0.08 

3 24 0 0 20 1 0 3 0 0 0 0 0 0.08 

4 10 0 0 7 3 0 0 0 0 0 0 0 0.01 

5 5 1 4 0 0 0 0 0 0 0 0 0 0.06 

6 5 0 0 5 0 0 0 0 0 0 0 0 0.01 

7 5 0 0 3 0 0 0 2 0 0 0 0 0.06 

8 5 1 3 0 0 0 0 0 0 0 0 1 0.06 

9 3 1 1 0 0 0 0 0 0 0 0 1 0 

10 3 0 0 2 1 0 0 0 0 0 0 0 0 

11 2 0 1 0 0 0 0 0 0 0 0 1 0.06 

12 2 0 1 1 0 0 0 0 0 0 0 0 0 

13 2 0 0 2 0 0 0 0 0 0 0 0 0 

14 2 0 0 0 0 0 0 0 2 0 0 0 0 

73 
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15 2 1 0 0 0 0 0 0 0 0 1 0 0 

16 1 0 1 0 0 0 0 0 0 0 0 0 0 

17 1 0 1 0 0 0 0 0 0 0 0 0 0 

18 1 0 0 0 1 0 0 0 0 0 0 0 0 

19 1 0 0 0 0 1 0 0 0 0 0 0 0 

20 1 0 0 0 0 0 0 1 0 0 0 0 0 

21 1 0 0 0 0 0 0 1 0 0 0 0 0 

22 1 0 0 0 0 0 0 1 0 0 0 0 0.01 

23 1 0 0 0 0 0 0 1 0 0 0 0 0.03 

24 1 0 0 0 0 0 0 0 1 0 0 0 0.06 

25 1 0 0 0 0 0 0 0 1 0 0 0 0.06 

26 1 0 0 0 0 0 0 0 1 0 0 0 0 

27 1 0 0 0 0 0 0 0 1 0 0 0 0 

28 1 0 0 0 0 0 0 0 1 0 0 0 0 

29 1 0 0 0 0 0 0 0 1 0 0 0 0 

30 1 0 0 0 0 0 0 0 1 0 0 0 0 

31 1 0 0 0 0 0 0 0 1 0 0 0 0 

32 1 0 1 0 0 0 0 0 0 0 0 0 0 

33 1 0 0 0 0 0 0 0 0 1 0 0 0 
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34 1 0 0 0 0 0 0 0 0 1 0 0 0 

35 1 1 0 0 0 0 0 0 0 0 0 0 0 

36 1 1 0 0 0 0 0 0 0 0 0 0 0 

37 1 1 0 0 0 0 0 0 0 0 0 0 0 

38 1 1 0 0 0 0 0 0 0 0 0 0 0.06 

39 1 1 0 0 0 0 0 0 0 0 0 0 0.06 

40 1 1 0 0 0 0 0 0 0 0 0 0 0.06 

41 1 1 0 0 0 0 0 0 0 0 0 0 0 

42 1 1 0 0 0 0 0 0 0 0 0 0 0 

43 1 1 0 0 0 0 0 0 0 0 0 0 0 

44 1 1 0 0 0 0 0 0 0 0 0 0 0 

45 1 1 0 0 0 0 0 0 0 0 0 0 0 

46 1 1 0 0 0 0 0 0 0 0 0 0 0 

47 1 1 0 0 0 0 0 0 0 0 0 0 0 

48 1 1 0 0 0 0 0 0 0 0 0 0 0 

49 1 1 0 0 0 0 0 0 0 0 0 0 0 

50 1 1 0 0 0 0 0 0 0 0 0 0 0 

51 1 0 1 0 0 0 0 0 0 0 0 0 0 

52 1 0 0 0 0 0 0 0 0 0 1 0 0 
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53 1 0 0 0 0 0 0 0 0 0 1 0 0 

54 1 0 0 0 0 0 0 0 0 0 0 1 0 

Total 205 30 30 78 9 2 9 9 15 4 4 15 0.76 
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Table 7. Genetic diversity within populations.  The values in the columns correspond to sample size (N), number of unique haplotypes (H), number  
 
of private haplotypes (Pri.), haplotype diversity (Hd), nucleotide diversity (π), the significance of the mismatch distribution (MM; ns = not significantly 
 
 different from the expectation under exponential growth), Tajima’s D (D), and Fu’s Fs (Fs).  Significant values shown in bold. 
 
 

BREEDING   N H Pri. Hd π MM D Fs 

Atlantic Coast NC1 10 6 0 0.844 0.002 ns -0.127 -1.363 

 NC2 10 5 0 0.800 0.001 ns -1.262 -1.320 

 SC1 9 5 0 0.861 0.002 ns 0.241 0.911 

 SC2 10 3 0 0.689 0.002 ns 0.927 1.667 

 GA1 9 4 0 0.778 0.002 ns 1.612 0.450 

 GA2 10 5 0 0.667 0.001 ns -1.741 -2.260 

 GA3 9 5 0 0.806 0.001 ns 0.497 -0.787 

 FL 9 4 0 0.806 0.002 ns 0.881 0.617 

Interior AR 10 7 2 0.867 0.003 ns -1.944 -2.968 

 OK 11 7 4 0.778 0.002 ns -1.873 -2.442 

 LA 10 5 1 0.822 0.002 <0.01 -0.586 -0.815 

 TX1 9 7 5 0.917 0.002 ns -1.823 -3.797 

 TX2 9 5 1 0.893 0.002 ns -1.640 -1.802 

  TX3 10 9 7 0.978 0.003 ns -1.586 -6.320 
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WINTERING                   

Atlantic Coast FLWN 9 6 1 0.917 0.002 ns 0.518 -6.212 

 BAH 9 6 1 0.889 0.003 ns -0.345 -4.774 

 CUY 9 4 0 0.694 0.002 ns 0.497 -8.726 

Interior YUC 15 6 1 0.705 0.001 ns -1.580 -18.839 

 GUA 15 10 8 0.895 0.002 ns -1.865 -20.673 

 OAX 4 3 2 0.883 0.002 ns -0.797 -1.513 

  
VER 4 4 2 1.000 0.002 ns -0.797 -1.514 
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Table 8 Analysis of molecular variance (AMOVA).  Analyses were performed  
 
separately for populations in each group. 
 

Group Source of Variation % 
Variation 

Φ 
Statistic P 

Scenario 1: 
A Among Groups 24.3 0.24 <  0.0001  

Interior 
Breeding/GUA, 
VER, OAX 
Wintering vs. 
Atlantic Coast 
Breeding/FLWN, 
CUY, BAH, COZ, 
and YUC Wintering 

Among populations 
within groups 4.9 0.06 <  0.001 

 Within populations 70.8 0.29 < 0.0001 

     

Scenario 2: 
B Among Groups 27.7 0.28 < 0.0001 

Interior 
Breeding/GUA, 
VER, OAX, COZ, 
and YUC Wintering 
vs. Atlantic Coast 
Breeding/FLWN, 
BAH, and CUY 
Wintering 

Among populations 
within groups 2.4 0.03 < 0.03 

  Within populations 69.9 0.30 < 0.0001 



80 

 

Table 9 Population pair-wise ΦST values.  Significance of ΦST values determined by 1000 random permutations of  
 
individuals among populations in a comparison.  Values shown in bold significant at α = 0.05 after a false discovery  
 
rate correction.  Table A: Interior breeding vs. Interior wintering.  Table B: Atlantic Coast breeding vs. Atlantic Coast wintering. 
 
 Table C: Interior wintering vs. Atlantic Coast wintering.  Table D: Atlantic Coast breeding vs. interior breeding. 

Table A           

  YUC GUA OAX VER AR OK LA TX1 TX2 TX3 

YUC *          

GUA 0.057 *         

OAX 0.093 0.045 *        

VER 0.112 0.021 -0.053 *       

AR -0.029 0.019 -0.011 0.011 *      

OK 0.036 0.005 0.013 -0.015 -0.022 *     

LA -0.021 0.060 0.067 0.045 -0.037 0.028 *    

TX1 0.034 0.015 0.005 -0.008 -0.016 0.001 0.012 *   

TX2 -0.040 0.017 0.037 0.037 -0.061 -0.017 -0.074 -0.018 *  

TX3 0.032 0.032 -0.044 -0.003 -0.007 0.002 0.024 -0.011 -0.009 * 
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Table 9B            

  NC1 NC2 SC1 SC2 FL GA1 GA2 GA3 BAH FLWN CUY 

NC1 *           

NC2 0.079 *          

SC1 -0.075 0.077 *         

SC2 -0.071 -0.007 -0.074 *        
            

GA1 -0.045 0.210 -0.038 0.021 -0.050 *      

GA2 0.190 0.021 0.193 0.139 0.138 0.322 *     

GA3 -0.079 0.122 -0.102 -0.051 -0.031 -0.061 0.211 *    

BAH -0.042 -0.025 -0.060 -0.082 -0.035 0.017 0.123 -0.020 *   

FLWN 0.147 0.302 0.067 0.189 0.183 0.171 0.345 0.079 0.162 *  

CUY -0.084 0.128 -0.093 -0.055 -0.033 -0.064 0.232 -0.101 -0.022 0.147 * 
 
 
 
 
 

80 
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Table 9C        

  YUC GUA OAX VER BAH FLWN CUY 

YUC *       

GUA 0.057 *      

OAX 0.093 0.045 *     

VER 0.112 0.021 -0.053 *    

BAH 0.227 0.323 0.270 0.270 *   

FLWN 0.270 0.333 0.311 0.311 0.162 *  

CUY 0.156 0.273 0.255 0.255 -0.022 0.147 * 
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Table 9D               

  AR OK LA TX1 TX2 TX3 NC1 NC2 SC1 SC2 FL GA1 GA2 GA3 

AR *              

OK -0.022 *             

LA -0.037 0.028 *            

TX1 -0.017 0.001 0.012 *           

TX2 -0.061 -0.017 -0.074 -0.018 *          

TX3 -0.007 0.002 0.024 -0.011 -0.009 *         

NC1 0.196 0.286 0.162 0.265 0.196 0.208 *        

NC2 0.416 0.521 0.386 0.493 0.451 0.432 0.079 *       

SC1 0.147 0.249 0.108 0.228 0.148 0.173 -0.075 0.077 *      

SC2 0.273 0.379 0.236 0.354 0.289 0.289 -0.071 -0.007 -0.074 *     

FL 0.249 0.347 0.217 0.321 0.260 0.262 -0.030 0.070 -0.023 -0.022 *    

GA1 0.141 0.226 0.120 0.207 0.144 0.146 -0.045 0.210 -0.038 0.021 -0.050 *   

GA2 0.500 0.606 0.473 0.577 0.553 0.512 0.190 0.021 0.193 0.139 0.138 0.322 *  

GA3 0.163 0.261 0.128 0.240 0.166 0.180 -0.079 0.122 -0.102 -0.051 -0.031 -0.061 0.211 * 
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Fig.8 Distribution of the Painted Bunting.  Light green indicates breeding range, dark 

green wintering range.  A 550-km gap separates subspecies ciris’ two breeding 

populations.  Blue dots indicate sampling locations on breeding and wintering grounds. 

Group defined in text as interior breeding population highlighted dark blue box; group 

defined as Atlantic Coast breeding population highlighted in red. 
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Fig. 9a and b “Weak” connectivity pattern in which allopatric breeding populations (interior and Atlantic Coast) overwinter 

throughout the wintering range (adapted from Webster and Marra, 2004).  “Strong connectivity pattern in which allopatric breeding 

populations overwinter in specific wintering range (adapted from Webster and Marra, 2004). 
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Fig. 10a Scenario 1 Distribution map highlighting groups based on hypothesized wintering ranges (see Sykes et al., 2007).  Groups 

defined as interior breeding population, interior wintering population (GUA, OAX, and VER), Atlantic Coast breeding population, 

and Atlantic Coast wintering population (FLWN, BAH, CUY, COZ, and YUC). 
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Fig. 10b Scenario 2. Distribution map highlighting groups based on geographic isolation (alternative hypothesis).  Groups defined as 

interior breeding population, Atlantic Coast breeding population, interior wintering population (GUA, OAX, VER, COZ, and YUC), 

and Atlantic Coast wintering population (FLWN, BAH, and CUY). 
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Fig. 11 Median-joining network of Painted Bunting haplotypes (n=205).  Circles represent one of the 54 unique haplotypes sized 

proportionally to the number of individuals sharing the haplotype.  Hash marks represent single base pair differences between 

haplotypes.  Small red circles represent median vectors.  
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Fig. 12 Distribution of the Painted Buntings year round range; arrows indicate possible 

stepping-stone dispersal.  Pairwise ΦCT statistics performed on six possible stepping-

stone scenarios. 
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Table 10 Specimen Data 

Genus Species  Catalog1/Band Prep County/State County/Parish Specific Locality2 Coordinates  

       in Decimal 

  Number Number Province     Degrees 

Passerina ciris MBM 16263 cah163 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM 16263 cah165 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM 16265 cah156 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM 16086 cah148 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM 16085 cah154 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM 16080 cah142 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM16081 cah144 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM 16082 cah143 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM 16083 cah147 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris MBM 16084 cah152 Arkansas Hempstead Rick Evans WMA 35.80, -93.81 

Passerina ciris PWRC-JM1 cahjm1 Bahamas  Eleuthera 24.93, -76.17 

Passerina ciris PWRC-JM2 cahjm2 Bahamas  Eleuthera 24.93, -76.17 
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Passerina ciris PWRC-JM4 cahjm3 Bahamas   Eleuthera 24.93, -76.17 

Passerina ciris PWRC-JM5 cahjm4 Bahamas   Eleuthera 24.93, -76.17 

Passerina ciris PWRC-JM6 cahjm5 Bahamas  Eleuthera 24.93, -76.17 

Passerina ciris PWRC-JM7 cahjm6 Bahamas  Eleuthera 24.93, -76.17 

Passerina ciris PWRC-JM8 cahjm7 Bahamas  Eleuthera 24.93, -76.17 

Passerina ciris PWRC-YR1 cahjm8 Cuba  Ciego de Avila 21.83, -78.75 

Passerina ciris PWRC-YR2 cahjm9 Cuba  Guayancones 21.90, -78.90 

Passerina ciris PWRC-YR3 cahjm10 Cuba  Ciego de Avila 21.83, -78.75 

Passerina ciris PWRC-YR4 cahjm11 Cuba  Ciego de Avila 21.83, -78.75 

Passerina ciris PWRC-YR5 cahjm12 Cuba  Ciego de Avila 21.83, -78.75 

Passerina ciris PWRC-YR6 cahjm13 Cuba  Guayancones 21.90, -78.90 

Passerina ciris PWRC-YR7 cahjm14 Cuba  Ciego de Avila 21.83, -78.75 

Passerina ciris PWRC-YR8 cahjm15 Cuba  Ciego de Avila 21.83, -78.75 

Passerina ciris PWRC-YR9 cahjm16 Cuba  Ciego de Avila 21.83, -78.75 

Passerina ciris PWRC 2020-52283 52283 Florida Duvall 1A-FL 30.39, -81.50 

Passerina ciris PWRC 2020-52287 52287 Florida Duvall 1A-FL 30.39, -81.50 
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Passerina ciris PWRC 2020-52307 52307 Florida Duvall 3B-FL 30.44, -81.44 

Passerina ciris PWRC 2020-52314 52314 Florida Duvall 3B-FL 30.44, -81.44 

Passerina ciris PWRC 2020-52315 52315 Florida Duvall 3B-FL 30.44, -81.44 

Passerina ciris PWRC 2020-52327 52327 Florida Duvall 3C-FL 30.41, -81.43 

Passerina ciris PWRC 2020-52329 52329 Florida Duvall 3C-FL 30.41, -81.43 

Passerina ciris PWRC 2020-52330 52330 Florida Duvall 3C-FL 30.41, -81.43 

Passerina ciris PWRC 2020-52335 52335 Florida Duvall 5B-FL 30.44, -81.47 

Passerina ciris PWRC 2020-52641 52641 Georgia Chatham 12A-GA3 31.89, -80.97 

Passerina ciris PWRC 2020-52657 52657 Georgia Chatham 12A-GA3 31.89, -80.97 

Passerina ciris PWRC 2020-52662 52662 Georgia Chatham 12A-GA3 31.89, -80.97 

Passerina ciris PWRC 2020-52666 52666 Georgia Chatham 12A-GA3 31.89, -80.97 

Passerina ciris PWRC 2020-52679 52679 Georgia Chatham 12A-GA3 31.89, -80.97 

Passerina ciris PWRC 2020-52683 52683 Georgia Chatham 12B-GA3 31.89, -80.97 

Passerina ciris PWRC 2020-52689 52689 Georgia Chatham 12B-GA3 31.89, -80.97 

Passerina ciris PWRC 2020-52694 52694 Georgia Chatham 12B-GA3 31.89, -80.97 

Passerina ciris PWRC 2020-52706 52706 Georgia Chatham 12B-GA3 31.89, -80.97 
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Passerina ciris PWRC 2020-52347 52347 Georgia McIntosh 7A-GA1 31.45, -81.37 

Passerina ciris PWRC 2020-52350 52350 Georgia McIntosh 7A-GA1 31.45, -81.37 

Passerina ciris PWRC 2020-52354 52354 Georgia McIntosh 7B-GA1 31.37, -81.40 

Passerina ciris PWRC 2020-52362 52362 Georgia McIntosh 7B-GA1 31.37, -81.40 

Passerina ciris PWRC 2020-52369 52369 Georgia McIntosh 7B-GA1 31.37, -81.40 

Passerina ciris PWRC 2020-52371 52371 Georgia McIntosh 7B-GA1 31.37, -81.40 

Passerina ciris PWRC 2020-52384 52384 Georgia McIntosh 7B-GA1 31.37, -81.40 

Passerina ciris PWRC 2020-52387 52387 Georgia McIntosh 7B-GA1 31.37, -81.40 

Passerina ciris PWRC 2020-52388 52388 Georgia McIntosh 7B-GA1 31.37, -81.40 

Passerina ciris PWRC 2020-52394 52394 Georgia McIntosh 9A-GA2 31.63, -81.29 

Passerina ciris PWRC 2020-52398 52398 Georgia McIntosh 9A-GA2 31.63, -81.29 

Passerina ciris PWRC 2020-52399 52399 Georgia McIntosh 9A-GA2 31.63, -81.29 

Passerina ciris PWRC 2020-52401 52401 Georgia McIntosh 9A-GA2 31.63, -81.29 

Passerina ciris PWRC 2020-52402 52402 Georgia McIntosh 9A-GA2 31.63, -81.29 

Passerina ciris PWRC 2020-52410 52410 Georgia McIntosh 9A-GA2 31.63, -81.29 

Passerina ciris PWRC 2020-52411 52411 Georgia McIntosh 9A-GA2 31.63, -81.29 
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Passerina ciris PWRC 2020-52415 52415 Georgia McIntosh 9A-GA2 31.63, -81.29 

Passerina ciris PWRC 2020-52426 52426 Georgia McIntosh 9C-GA2 31.65, -81.27 

Passerina ciris PWRC 2020-52434 52434 Georgia McIntosh 9C-GA2 31.65, -81.27 

Passerina ciris PWRC 2020-52440 52440 Georgia McIntosh 9C-GA2 31.65, -81.27 

Passerina ciris MBM-10589 dhb4507 Guatemala   Retalhuleu 14.60, -95.33 

Passerina ciris MBM-10767 dhb4551 Guatemala  Retalhuleu 14.60, -95.33 

Passerina ciris MBM-10875 dhb4620 Guatemala  Retalhuleu 14.60, -95.33 

Passerina ciris MBM-10479 dhb4348 Guatemala  Retalhuleu 14.60, -95.33 

Passerina ciris MBM-10876 jk02015 Guatemala  Retalhuleu 14.60, -95.33 

Passerina ciris MBM-10653 dhb4530 Guatemala  San Marcos 14.60, -95.33 

Passerina ciris MBM-10654 dhb4531 Guatemala  San Marcos 14.60, -95.33 

Passerina ciris MBM-10933 gav2406 Guatemala  San Marcos 14.60, -95.33 

Passerina ciris MBM-10934 gav2405 Guatemala  San Marcos 14.60, -95.33 

Passerina ciris MBM-10935 jk02-087 Guatemala  San Marcos 14.60, -95.33 

Passerina ciris MBM-10503 dhb4521 Guatemala  Quetzaltenango 14.66, -95.33 

Passerina ciris MBM-10504 dbh4524 Guatemala  Quetzaltenango 14.66, -95.33 
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Passerina ciris MBM-10588 dhb4503 Guatemala  Retalhuleu 14.66, -95.33 

Passerina ciris MBM-11021 jk02010 Guatemala  Retalhuleu 14.66, -95.33 

Passerina ciris MBM-11022 jk02017 Guatemala  Retalhuleu 14.66, -95.33 

Passerina ciris MBM-193 dbh4349 Guatemala  Retalhuleu 14.66, -95.33 

Passerina ciris MBM-14029 jmd069 Mexico   Oaxaca 15.92, -96.62 

Passerina ciris MBM-14030 dbh5557 Mexico   Oaxaca 15.92, -96.62 

Passerina ciris MBM-14037 dbh5582 Mexico  Oaxaca 15.92, -96.62 

Passerina ciris MBM-14028 dbh5578 Mexico  Oaxaca 15.92, -96.62 

Passerina ciris  gls10 Mexico Quint. Roo Cozumel 20.43, -86.90 

Passerina ciris  gls23 Mexico Quint. Roo Cozumel 20.43, -86.90 

Passerina ciris  tux67 Mexico Vera Cruz Los Tuxtlas 19.17, -96.15 

Passerina ciris  tux77 Mexico Vera Cruz Los Tuxtlas 19.17, -96.15 

Passerina ciris  tux1094 Mexico Vera Cruz Los Tuxtlas 19.17, -96.15 

Passerina ciris  tux1107 Mexico Vera Cruz Los Tuxtlas 19.17, -96.15 

Passerina ciris MBM 20539 BRB 902 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20540 BRB 942 Mexico Yucatan El Cuyo 21.52, -87.70 
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Passerina ciris MBM 20541 BRB 941 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20542 BRB 928 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20543 BRB 877 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20544 BRB 849 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20548 BRB 876 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20549 BRB 850 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20550 BRB 885 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20551 BRB 893 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20557 BRB 883 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 20553 BRB 878 Mexico Yucatan El Cuyo 21.52, -87.70 

Passerina ciris MBM 14571 jk04545 Kansas Chautauqua Hulah WMA 37.02, -96.26 

Passerina ciris MBM 14519 cah097 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris MBM 14520 cah098 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris MBM 14521 cah099 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris MBM 14522 cah100 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris MBM 14523 jk04540 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 
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Passerina ciris MBM 16075 cah137 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris MBM 16076 cah138 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris MBM 16077 cah139 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris MBM 16078 cah140 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris MBM 16079 cah141 Louisiana Ouachita Russell Sage WMA 32.48, -91.97 

Passerina ciris PWRC 2020-65622 65622 North Carolina Brunswick 19C-NC2 33.86, -77.99 

Passerina ciris PWRC 2020-65625 65625 North Carolina Brunswick 19C-NC2 33.86, -77.99 

Passerina ciris PWRC 2020-65632 65632 North Carolina Brunswick 19C-NC2 33.86, -77.99 

Passerina ciris PWRC 2020-65637 65637 North Carolina Brunswick 19C-NC2 33.86, -77.99 

Passerina ciris PWRC 2020-65639 65639 North Carolina Brunswick 19C-NC2 33.86, -77.99 

Passerina ciris PWRC 2020-65645 65645 North Carolina Brunswick 19C-NC2 33.86, -77.99 

Passerina ciris PWRC 2020-65648 65648 North Carolina Brunswick 19A-NC2 33.87, -78.00 

Passerina ciris PWRC 2020-65655 65655 North Carolina Brunswick 19A-NC2 33.87, -78.00 

Passerina ciris PWRC 2020-65658 65658 North Carolina Brunswick 19A-NC2 33.87, -78.00 

Passerina ciris PWRC 2020-65586 65586 North Carolina New Hanover 21B-NC2 34.05, -77.92 

Passerina ciris PWRC 2020-52229 52229 North Carolina Onslow 24C-NC1 34.57, -77.27 
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Passerina ciris PWRC 2020-65593 65593 North Carolina Onslow 23A-NC1 34.05, -77.92 

Passerina ciris PWRC 2020-52790 52790 North Carolina Onslow 24B-NC1 34.58, -77.26 

Passerina ciris PWRC 2020-52797 52797 North Carolina Onslow 24B-NC1 34.58, -77.26 

Passerina ciris PWRC 2020-52800 52800 North Carolina Onslow 24B-NC1 34.58, -77.26 

Passerina ciris PWRC 2020-52803 52803 North Carolina Onslow 24B-NC1 34.58, -77.26 

Passerina ciris PWRC 2020-52804 52804 North Carolina Onslow 24B-NC1 34.58, -77.26 

Passerina ciris PWRC 2020-52808 52808 North Carolina Onslow 24B-NC1 34.58, -77.26 

Passerina ciris PWRC 2020-52817 52817 North Carolina Onslow 24B-NC1 34.58, -77.26 

Passerina ciris MBM 14305 jmd369 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 14307 cah090 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 14306 cah091 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 14313 dhb5702 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 14312 dhb5703 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 14308 dhb5713 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 14309 dhb5714 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 14310 dhb5715 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

98 



99 

 

Passerina ciris MBM 14311 dhb5716 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 523 cah081 Oklahoma Caddo Fort Cobb WMA 35.21, -98.48 

Passerina ciris MBM 14564 jk04554 Oklahoma Muskogee Gruber WMA 35.72, -95.20 

Passerina ciris PWRC 2020-65507 65507 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65510 65510 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65511 65511 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65516 65516 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65520 65520 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65521 65521 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65523 65523 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65524 65524 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65529 65529 South Carolina Beaufort 15C-SC2 32.35, -80.84 

Passerina ciris PWRC 2020-65537 65537 South Carolina Charleston 17C-SC1 32.72, -79.99 

Passerina ciris PWRC 2020-65545 65545 South Carolina Charleston 17C-SC1 32.72, -79.99 

Passerina ciris PWRC 2020-65549 65549 South Carolina Charleston 17C-SC1 32.72, -79.99 

Passerina ciris PWRC 2020-65556 65556 South Carolina Charleston 17C-SC1 32.72, -79.99 
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Passerina ciris PWRC 2020-65557 65557 South Carolina Charleston 17C-SC1 32.72, -79.99 

Passerina ciris PWRC 2020-65564 65564 South Carolina Charleston 17C-SC1 32.72, -79.99 

Passerina ciris PWRC 2020-52467 52467 South Carolina Jasper 13C-SC1 32.08, -80.96 

Passerina ciris PWRC 2020-52477 52477 South Carolina Jasper 13C-SC1 32.08, -80.96 

Passerina ciris PWRC 2020-52478 52478 South Carolina Jasper 13C-SC1 32.08, -80.96 

Passerina ciris PWRC 2020-52499 52499 South Carolina Jasper 13A-SC1 32.09, -81.03 

Passerina ciris MBM 14548 mm133 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 14685 mm141 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 16091 cah150 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 16268 cah159 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 16434 cah170 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 16601 bts05071 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 16795 cah177 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 862 cah155 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 16271 cah160 Texas Brewster Black Gap WMA 29.59, -103.00 

Passerina ciris MBM 863 cah157 Texas Brewster Black Gap WMA 29.59, -103.00 
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Passerina ciris MBM 14870 jsb111 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 14871 jsb113 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 14686 cah105 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 16088 cah146 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 16089 cah149 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 16090 cah153 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 16087 cah145 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 16273 cah162 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 16272 cah161 Texas Nacogdoches Alazon Bayou WMA 31.48, -94.75 

Passerina ciris MBM 14683 cah108 Texas Williamson Granger WMA 30.66, -97.38 

Passerina ciris MBM 14517 cah086 Texas Williamson Granger WMA 30.66, -97.38 

Passerina ciris MBM 14515 cah087 Texas Williamson Granger WMA 30.66, -97.38 

Passerina ciris MBM 14516 dhb5734 Texas Williamson Granger WMA 30.66, -97.38 

Passerina ciris MBM 14566 jk04518 Texas Williamson Granger WMA 30.66, -97.38 

Passerina ciris MBM 14567 jk04519 Texas Williamson Granger WMA 30.66, -97.38 

Passerina ciris MBM 14688 jk04561 Texas Williamson Granger WMA 30.66, -97.38 
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Passerina ciris MBM 14689 jk04562 Texas Williamson Granger WMA 30.66, -97.38 

Passerina ciris MBM 14687 jk04563 Texas Williamson Granger WMA 30.66, -97.38 

1MBM = Marjorie Barrick Museum of Natural History, PWRC = Patuxent Wildlife Research Center 
2WMA = Wildlife Management Area 
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