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ABSTRACT 

Characterization and Regulation of the icsP and ospZ locus in Shigella flexneri 

 

by 

 

Krystle Lashell Pew 

 

Dr. Helen Wing, Examination Committee Chair 

Associate Professor of Biological Sciences 

University of Nevada, Las Vegas 

Shigella flexneri is a gram negative, rod shaped bacterium that is the causative 

agent of bacillary dysentery, which is characterized by fever, abdominal pain, and bloody 

diarrhea. Genes essential to the pathogenicity of S. flexneri are encoded by a virulence 

plasmid. Shigella has evolved a complex regulatory system to regulate transcription of 

virulence genes. This involves two regulators, VirF and VirB, which allow the bacterium 

to respond to environmental stimuli and maximally exploit host niches. An additional 

factor impacting virulence gene regulation is H-NS, a histone nucleoid structuring protein 

that globally represses transcription. This work addresses the transcriptional regulation of 

icsP and ospZ, divergent virulence plasmid encoded genes. Analysis of the intergenic 

region shared by icsP and ospZ has identified remote VirB binding sites essential to icsP 

promoter activity. Analyses of the requirements for VirB-dependent regulation of icsP 

promoter activity identified the VirB binding sites as a cis-acting element with small 

spacing requirements. In addition, analyses of H-NS-dependent regulation of the icsP 

promoter showed that intrinsic curvature does not have a role in H-NS mediated 

repression. Together, these data indicate that the VirB and H-NS interact to modulate 

icsP promoter activity, demonstrating that transcriptional regulation is an intricate 

process. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

 

1.1 The genus Shigella 

 

Shigella spp. are gram-negative, non-motile, non-sporulating, rod shaped bacteria 

that are members of the Enterobacteriaceae family. Shigella was first isolated and 

characterized by Japanese scientist, Kiyoshi Shiga, in 1896. The Shigella genus contains 

four species: S. sonnei, S. flexneri, S. boydii, and S. dysenteriae (Ewing, 1949). These 

species are further divided into serotypes according to differences in biochemistry and O-

antigen variability; S. flexneri has 13 serotypes (Jennison & Verma, 2004).  

This genus shows high sequence similarity with Escherichia coli, in fact the two 

cannot be distinguished in DNA hybridization studies. S. flexneri and E. coli genome 

sequences only differ by 1.5% (Lan & Reeves, 2002).  Multiple studies using various 

techniques have collected data indicating that Shigella flexneri should be included in the 

species Escherichia coli (Fukushima, Kakinuma, & Kawaguchi, 2002; Ochman, 

Whittam, Caugant, & Selander, 1983; Pupo, Karaolis, Lan, & Reeves, 1997; Rolland, 

Lambert-Zechovsky, Picard, & Denamur, 1998). Interestingly, Shigella flexneri and E. 

coli have distinct phenotypes.  

 

 

1.2 Prevalence of Shigella  

 

Shigella species are facultative, intracellular pathogens of human and primate 

hosts. Shigella is one of the most prevalent causes of bacillary dysentery. It is a 

communicable disease spread by the fecal-oral route through contaminated food, water, 
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and poor hygiene. Although, the previous mentioned routes are most common, Shigella 

has also been shown to be transmitted via an insect vector, Musca domestica (the 

common house fly), which transmits Shigella in areas where improper disposal of human 

feces is common practice. It is estimated that there are 163.2 million episodes of endemic 

shigellosis in developing countries and 1.5 million episodes in industrialized countries 

per year. Of these cases, children comprise an overwhelming majority with 69% of all 

cases and 61% of the approximately 1.1 million deaths caused by shigellosis each year in 

both developed and developing countries (Kotloff et al., 1999).  More recently, the global 

burden of shigellosis is reported to be higher than the aforementioned estimates, 

especially in resource-poor areas (von Seidlein et al., 2006). 

 

1.3 Shigellosis 

 

Shigellosis, bacillary dysentery, is an acute inflammation of the human colon 

resulting from infection with Shigella spp. The incubation period ranges from 1-4 days up 

to 8 days. The clinical manifestations of shigellosis include painful abdominal cramps, 

nausea, fever, and the hallmark of this disease, mild to severe bloody diarrhea. These 

manifestations are reflective of the invasive nature of Shigella infection. Those presenting 

with shigellosis can have mild infections characterized by watery diarrhea or severe 

dysentery typified by acute inflammatory colitis with the passing of bloody, mucoid 

diarrhea. Shigellosis is diagnosed through the isolation and identification of shigellae 

from the feces using differential/selective media such as MacConkey or Shigella-

Salmonella agar (Niyogi, 2005).  
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1.4 Pathogenesis of Shigella  

 

The hallmark of S. flexneri pathogenesis is the invasion of colonic epithelium 

(Fig.1). This invasion triggers the inflammatory response and severe cramping 

characterized by Shigella infections. The gene products involved in the pathogenesis of S. 

flexneri are encoded within a 30 kb fragment of the virulence plasmid, known as the entry 

region. This region codes for a type III secretion system which is a needle-like projection 

from the bacterial cell that mediates bacteria-host cell contacts and facilitates the delivery 

of bacterial proteins to host cells. 

Once ingested, S. flexneri gains access to the intestinal mucosa by triggering its 

uptake into microfold cells (M cells) present in the mucosal layer of the human gut. 

Shigellae trigger this uptake via a membrane ruffling process (Sansonetti & Phalipon, 

1999). M cells are specialized epithelial cells that continuously sample the gut lumen, 

delivering particles to lymphoid mucosal tissue and subsequently, the host immune 

system (Man, Prieto-Garcia, & Nicoletti, 2004). M cells deliver sampled material to an 

intraepithelial pocket formed by the basolateral membrane. The intraepithelial pocket 

contains macrophages and lymphocytes that are capable of activating the immune system 

in response to presented antigens (Neutra, Pringault, & Kraehenbuhl, 1996).   

Shigella is endocytosed by macrophages where it escapes the phagocytic vacuole 

gaining access to the macrophage cytoplasm (Fig. 1). A secreted protein, IpaB, then 

initiates an apoptotic pathway via caspase-I activation (Chen, Smith, Thirumalai, & 

Zychlinsky, 1996); following apoptosis of the host cell the bacterium gains access to the 

basolateral membrane. Macrophage cell death has additional consequences. The death of 

the host cell releases the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 
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(Sansonetti et al., 2000). IL-1β and IL-18 mediate the acute inflammatory response 

consistent with infection by S. flexneri. IL-1β triggers inflammation of the intestines. IL-

18 functions to generate an antimicrobial response by activating natural killer cells and 

facilitating the production and release of gamma interferon (IFN-γ), leading to the overall 

amplification of the immune response (Le-Barillec et al., 2005; Way, Borczuk, Dominitz, 

& Goldberg, 1998). 

The uptake of Shigella into M cells and presentation to macrophages serves two 

purposes: first, it allows the bacterium access to the basolateral membrane of colonic 

epithelial cells by providing a route across the impermeable layer of epithelial lining 

(Wassef, Keren, & Mailloux, 1989), and secondly, it induces inflammation and recruits 

PMN cells which compromises the integrity of the mucosal layer, allowing Shigella 

within the lumen access to the sub-mucosa (Perdomo, Gounon, & Sansonetti, 1994).  

Shigellae enter epithelial cells by inducing membrane ruffling. S. flexneri induces 

rearrangements in the host cell cytoskeleton which engulfs the bacterial cell forming a 

vacuole. It is important to note that this process is not mediated by adhesion factors or 

flagellum, as Shigella has no known adhesion factors nor are genes encoding a flagellum 

expressed. Following uptake into the host cell the secreted protein IpaB lyses the vacuole 

containing the bacterium, similarly to the mechanisms used to escape the phagocytic 

vacuole. IpaB is an effector molecule secreted by the type III secretion system.  

Additional factors critical to Shigella pathogenesis include effector molecules 

delivered to the host cell cytoplasm via the type III secretion apparatus. Virulence 

plasmid genes encode this type III secretion system and the effector proteins crucial to 

the invasive phenotype. The ipa operon encodes the invasion plasmid antigens IpaA, 
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IpaB, IpaC, and IpaD. Complementing the ipa operon is the mxi-spa operon which 

encodes the type III secretion needle which delivers the effectors to the host cell 

cytoplasm, including the Ipa invasion antigens (Menard, Sansonetti, & Parsot, 1993; 

Sasakawa et al., 1988).  

Once within the cytoplasm Shigella continues to exploit the host cell cytoskeleton 

by forming an actin tail that is crucial for intracellular mobility and intercellular spread. 

The actin tail localization at one bacterial pole generates a propulsive force allowing the 

invading Shigella to propel themselves throughout the host cell and into adjacent cells. 

Furthermore, actin tails allow the organism to take advantage of replicative niches 

(Gouin, Welch, & Cossart, 2005; Stevens, Galyov, & Stevens, 2006). 

The outer membrane protein IcsA (VirG) mediates the actin mobility of S. 

flexneri. It is localized to the old bacterial pole by two internal regions (Charles, Perez, 

Kobil, & Goldberg, 2001). IcsA maintenance within the outer membrane is essential for 

motility as mutant strains lacking IcsA display non-localization of the protein and lack 

intercellular movement (Bernardini, Mounier, d'Hauteville, Coquis-Rondon, & 

Sansonetti, 1989; d'Hauteville & Sansonetti, 1992; Lett et al., 1989; Sansonetti, Arondel, 

Fontaine, d'Hauteville, & Bernardini, 1991). The outer membrane protease IcsP is critical 

to the polar localization of IcsA within the outer membrane. IcsP cleaves IcsA at specific 

arginine residues, releasing the α domain from the bacterial surface (Fukuda et al., 1995). 

In IcsP mutant strains, bacteria remained trapped within microcolonies in the host cell 

cytoplasm, actin polymerization occurred over the entire surface of the bacterial cell, and 

actin tails were abnormal in shape and length as compared to the wild-type (Egile, 

d'Hauteville, Parsot, & Sansonetti, 1997). In contrast, when IcsP is over-expressed, actin-
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tail assembly is less efficient, formed actin-tails are stunted, and there is a marked 

decrease in intracellular spread of the bacterium (Wing, Goldman, Ally, & Goldberg, 

2005). These findings indicate the important role of the IcsP protease in Shigella 

pathogenesis.  

It should be noted that the intracellular lifestyle of Shigella within the host 

provides a form of seclusion from the host immune system and other mechanisms aimed 

at recognizing, responding, and clearing foreign invaders such as bacteria. Rather it is the 

cellular disruption caused by Shigella cell invasion and cell-to-cell spread that recruits the 

host immune response, resulting in the severity of symptoms. Despite this robust 

inflammatory response, Shigella infections trigger symptoms of disease, such as bloody 

diarrhea.  

 
FIGURE 1:  Shigella Pathogenesis. Shigella invades the colonic epithelium by utilizing 

M cells to access the basolateral membrane. M cells present sampled Shigella to 

macrophages, within which Shigella induces apoptosis and escapes. The induction of 

apoptosis leads to the secretion of chemokines and cytokines that activate natural killer 

cells, and thus the host immune sysyem. Once free to access the basolateral membrane 
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Shigella induces membrane ruffling of epithelial cells and is engulfed by endocytosis. 

Once within the cytoplasm, Shigella replicates and moves laterally intra and 

intercellularlly by use of an actin tail.  

 

 

1.5 The Shigella Regulatory Cascade 

 

The genes encoded by the Shigella virulence plasmid are regulated at the level of 

transcription by environmental cues such as temperature, osmolarity, and pH (Beloin & 

Dorman, 2003). Regulatory proteins that regulate expression of virulence genes are 

encoded both chromosomally and on the virulence plasmid. S. flexneri has an intricate 

regulatory mechanism that involves two regulatory proteins, VirF and VirB (Fig. 2).  

The Shigella virulence plasmid encodes approximately 100 genes alongside 

numerous insertion sequences. The sequences encoding these genes have a G + C content 

ranging from 30% to 60% indicating that their sources vary (Jin et al., 2002). A 30 kb 

pathogenicity island exhibits a G+C content of 34%. This cluster of genes is known as 

the entry region and encodes a type III secretion system, its effector proteins, and 

transcriptional regulators. The secreted Ipa invasion effectors and the Mxi-Spa type III 

secretion apparatus are divergently transcribed within the entry region (Sasakawa et al., 

1988). 

 A temperature shift from the non-permissive temperature of 30 °C to the 

permissive temperature of 37 °C is the primary environmental signal in activation of 

genes located within the pathogenicity island of the Shigella virulence plasmid 

(Hromockyj & Maurelli, 1989; Maurelli, Blackmon, & Curtiss, 1984). virF encodes a 30 

kDa protein, VirF,  that is critical to positive regulation of the virulence cascade. VirF is 

required to activate virB; VirB then activates structural gene promoters (Tobe et al., 
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1991; Tobe, Yoshikawa, Mizuno, & Sasakawa, 1993). VirB has been found to function 

mainly as an antagonist of H-NS, a global repressor of transcription. H-NS binds to 

promoters at the non-permissive temperature of 30 °C.  Such a complex regulatory 

mechanism could allow the bacterium to tightly regulate responses to environmental 

stimuli and also maintain virulence gene repression under conditions where virulence 

gene products are not needed. Invasion gene products are only necessary inside the host 

and, specifically within the lower digestive tract (Porter & Dorman, 1994).  

 
FIGURE 2: Schematic of Shigella virulence cascade. Genes encoded on the virulence 

plasmid are thermo-regulated. Upon a switch from the non-permissive temperature of  

30 °C to 37 °C, H-NS mediated repression of virF is alleviated, allowing the transcription 

factor VirF to initiate transcription of virB, whose gene product in turn activates 

structural genes present on the Shigella virulence plasmid.  
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1.6 Aims of Work 

 

The aim of this study is to improve understanding of mechanisms of virulence 

gene regulation in Shigella flexneri, with specific focus on the transcriptional regulation 

of the icsP gene. Furthermore, this work also seeks to characterize the promoter of a 

divergent gene, ospZ. This thesis is divided into two main chapters (chapters 2 and 3) 

encompassing four major objectives: 

 

Aim 1: To determine the helical orientation and spacing requirements for VirB-

dependent regulation of the icsP promoter from the most distal VirB binding sites. 

 

Aim 2: To determine the role of intrinsic curvature in the regulation of the icsP  

             promoter. 

 

Aim 3: To determine H-NS binding sites in the icsP promoter region. 

 

Aim 4: To determine the transcription start site of ospZ. 
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 CHAPTER 2 

 

 

ROLE OF TRANSCRIPTION FACTOR BINDING SITES AND INTRINSIC 

CURVATURE OF DNA IN ICSP PROMOTER REGULATION 

 

 

 

2.1 Introduction 

 

 

2.1.1 Bacterial Transcription Overview 

 Transcription is the process of transcribing a DNA sequence into RNA. This 

process is carried out by RNA polymerase (RNAP). RNA polymerase has a multi-subunit 

structure that is the catalytic unit of transcription. It consists of ββ’α2 and ω subunits. The 

β and β’ subunits form a claw structure that clamps DNA in addition to forming the 

RNAP active site (Korzheva et al., 2000). The two identical α subunits are joined by a 

polypeptide linker and contain a domain that facilitates the assembly of the β and β’ 

subunits. The ω subunit is required to stabilize the β’ subunit in non-aggregated forms 

and recruit the α2β assembly to the promoter (Ghosh, Ishihama, & Chatterji, 2001). 

Together these units form the apoenzyme. An additional subunit, σ, interacts with RNAP 

to form the holoenzyme. σ has three main functions when in complex with the RNAP 

holoenzyme: recognizing specific promoter sequences; the correct positioning of RNAP 

at target promoters; and facilitating the unwinding of  the DNA duplex near the 

transcription start site (Gross et al., 1998). 

 The canonical bacterial promoter consists of a transcription start site, and -10 and 

-35 sequences (Fig. 3). The -10 and -35 hexamers are conserved sequences located 

approximately -10 bp and -35 bp upstream of transcription start site, respectively.  These 
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sites are recognized by domains 2 and 4 of the σ subunit of RNAP, serving as docking 

points (Gross et al., 1998).  

 Additional promoter elements include the extended -10 and UP elements (Fig. 3). 

An extended -10 region is a 3-4 bp motif adjacent upstream of the -10 hexamer and is 

recognized by the σ subunit (Murakami, Masuda, Campbell, Muzzin, & Darst, 2002; 

Sanderson, Mitchell, Minchin, & Busby, 2003). UP elements are approximately 20 bp 

sequences further upstream of the -35 hexamer and it is recognized by the C-terminal 

domains of the RNAP α subunits (Ross, Ernst, & Gourse, 2001). Both the extended -10 

and UP elements contribute to the initial binding of RNAP to the target promoter. The 

intrinsic strength of a promoter is dependent on the extent to which the -10 and -35 

sequences match the consensus sequences (Kobayashi, Nagata, & Ishihama, 1990; Szoke, 

Allen, & deHaseth, 1987). It is important to note that not all promoters possess a UP 

element or extended -10 site, these sequences function to enhance the binding affinity of 

RNAP in the absence of -10 and -35 sequences that display high sequence similarity to 

the consensus sequences.  

 

 

FIGURE 3: Schematic demonstrating the organization of a bacterial promoter. 
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 The process of transcription can be summarized as the binding of RNA 

polymerase, open complex formation, transcription initiation, elongation of mRNA, 

promoter clearance, and termination. The binding of RNA polymerase is contingent upon 

the presence of -10, -35, extended -10, and/or UP element promoter sequences. At this 

point in transcription, the RNAP and bound DNA are in a closed complex. The DNA is 

unwound and becomes single-stranded in the region of the transcription start site, +1, 

forming the open complex. RNAP begins to transcribe the DNA, producing several 

abortive transcripts before elongation proceeds. The σ dissociates, leaving the exit 

channel clear for the transcribed mRNA to exit the RNA polymerase. Termination of 

transcription can be achieved via two mechanisms: Rho-independent transcription 

termination and Rho-dependent termination. Rho-independent termination involves 

palindromic terminator sequences within the mRNA that signal the RNA polymerase to 

stop. This sequence forms a stem-loop hairpin structure, promoting the dissociation of 

RNAP from the DNA template. Rho-dependent termination requires the ρ (rho) factor 

protein. It functions to inhibit mRNA synthesis by binding to specific sites on the nascent 

RNA strand and then moving along the mRNA towards RNAP. RNAP is paused by a 

stem-loop structure upstream. Once the ρ (rho) factor protein reaches the RNAP it causes 

RNAP to dissociate, effectively terminating transcription (reviewed in Madigan, 

Madigan, & Brock, 2009). 

 As the amount of RNA polymerase present in the cell is limited, in conjunction 

with a limited supply of σ factors, the sequence of the promoter becomes important in the 

recruitment of RNAP for transcription. To counter these limitations, there are several 

mechanisms that have evolved to ensure the recruitment and distribution of RNAP to 
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promoters of varying strength. Various promoter architectures, different σ factors, small 

ligands, DNA conformations, and transcription factors all have a role altering gene 

expression in response to environmental stimuli (Browning & Busby, 2004). 

 

2.1.2 Regulation by Transcription Factors 

The E. coli genome has more than 300 genes predicted to encode transcription 

factors that bind to promoter sequences (Madan Babu & Teichmann, 2003; Perez-Rueda 

& Collado-Vides, 2000). The majority of transcription factor proteins are sequence 

specific DNA-binding proteins that can influence transcription at one or multiple 

promoters. Transcription factors can be grouped into families based on sequence analysis 

and function (Perez-Rueda & Collado-Vides, 2000). Examples include the LacI, CRP, 

OmpR, and AraC families of transcription factors.  Regulation of promoters by 

transcription factors occurs in response to environmental stimuli. Transcriptional 

regulation often requires transcription factor binding to DNA and interacting with RNAP 

or promoting sigma factor binding (van Hijum, Medema, & Kuipers, 2009a). 

Approximately 65% of annotated E. coli K-12 operons and genes are described as being 

regulated by at least one of these encoded transcription factors, with many genes being 

regulated by multiple transcription factor binding sites for that particular transcription 

factor (van Hijum, Medema, & Kuipers, 2009a). 

Transcription factors themselves are regulated either by controlling their activity 

or their gene expression. Mechanisms to regulate transcription factor activity include 

modulation of DNA-binding affinity by small ligands, covalent modification, 
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transcription factor concentration regulation, and finally, transcription factor 

sequestration by a regulatory protein (Browning & Busby, 2004).  

The typical transcription factor binding site is between 12 and 10 bp long 

appearing as a direct repeat or inverted repeat (Rodionov, 2007). The location of these 

sites within the promoter has the ability to influence whether the transcription factor 

functions as an activator or repressor of transcription. More specifically, repression or 

activation of transcription by a transcription factor is dependent on the sequence of the 

transcription factor binding site, its proximity to the sigma-factor binding site or its 

position with respect to the transcription start site (Perez-Rueda & Collado-Vides, 2000). 

Additionally, the repression or activation effects of transcription factor binding sites are 

influenced by site orientation on the DNA helix. Commonly, in order for a transcription 

factor (TF) to exert an effect both the transcription factor binding site and RNAP site 

have to be on the same face of the DNA helix (van Hijum, Medema, & Kuipers, 2009a).  

Transcriptional activators typically bind upstream of transcription start site 

sequences of target promoters, mediating transcription via several mechanisms. 

Transcription factor mediated activation can occur via transcription factor binding 

upstream of the core promoter and interacting with the alpha subunit of RNAP; TF 

binding adjacent to core promoter and facilitating sigma factor of holoenzyme binding; 

or, TF binding initiating a DNA conformational change facilitating holoenzyme binding 

(Barnard, Wolfe, & Busby, 2004; Browning & Busby, 2004; Lloyd, Landini, & Busby, 

2001; Rodionov, 2007; Smits, Hoa, Hamoen, Kuipers, & Dubnau, 2007) .  

Alternatively, transcription factors can function to repress transcription instead of 

functioning as activators.  Transcription factors repress transcription by binding to core 
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promoter elements such as -10 or -35 sequences, effectively preventing RNAP 

association with the promoter. TF binding at the beginning of coding region blocks the 

process of elongation. Other mechanisms include TF binding mediating DNA looping by 

binding regions both upstream and downstream of the core promoter, or by modulating 

the activity of a transcriptional activator (van Hijum, Medema, & Kuipers, 2009b). 

Repressor sites are typically located -60 to +60 with regards to transcription start site 

(Collado-Vides, Magasanik, & Gralla, 1991; Espinosa, Gonzalez, Vasconcelos, Huerta, 

& Collado-Vides, 2005; Madan Babu & Teichmann, 2003; Moreno-Campuzano, Janga, 

& Perez-Rueda, 2006). There are exceptions, as transcription factors that function as 

repressors have been found to bind to sites further upstream of the transcription start site 

(Lanzer & Bujard, 1988).   

 

2.1.3 Role of H-NS in Shigella Virulence 

 

Nucleoid structuring proteins aid in the packing of bacterial chromosomal DNA 

into the nucleoid region of the cell. These proteins are abundant in bacterial cells and are 

indiscriminate in which DNA sequences they bind, thus nucleoid structuring proteins 

have the potential to influence transcription of the bacterial genome. These proteins not 

only can bind DNA, but can alter DNA architecture by looping and bridging DNA or 

changing DNA supercoiling.  One such protein, H-NS, regulates Shigella virulence by 

mediating repression of virulence genes. 

H-NS is a chromosomally encoded histone nucleoid-structuring protein that 

typically functions as a global repressor of transcription. H-NS can recognize, bind, and 

influence the DNA topology of bacterial promoters. H-NS can be present in the cell as 
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monomers (approximately 10
5
 per cell) (Williams & Rimsky, 1997) or as dimers at low 

concentrations within the cell (Smyth et al., 2000). It has been found to bind to DNA in 

two ways: specifically, by binding to A-T rich sequences or intrinsically curved DNA, or 

non-specifically (Tupper et al., 1994). Upon binding to DNA, H-NS can function to 

silence transcription by several mechanisms (Fig. 4). It has been proposed that H-NS 

nucleoprotein complexes prevent open complex formation (Nagarajavel, Madhusudan, 

Dole, Rahmouni, & Schnetz, 2007) or traps open complexes once formed (Shin et al., 

2005).   
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FIGURE 4: Schematics of H-NS mediated repression of transcription, in panel A 

the binding of H-NS to DNA prevents RNA polymerase (RNAP) association with 

promoter sequences, B, H-NS binding to promoter sequences traps the open complex, 

preventing RNAP from proceeding, or, C, H-NS mediates repression  of transcription by 

binding an upstream and downstream region of DNA within the promoter, forming DNA 

loops.  
 

H-NS is a ~15 kDa protein (Atlung & Ingmer, 1997) with a DNA-binding motif 

within the carboxyl-terminus and an oligomerization domain within the amino-terminus 

(Ueguchi, Suzuki, Yoshida, Tanaka, & Mizuno, 1996; Williams, Rimsky, & Buc, 1996); 

these functional domains are connected through a flexible linker (Smyth et al., 2000). H-
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NS preferentially binds planar curves within DNA sequences, which are often A-T rich 

sequences. It is commonly reported that H-NS has no consensus binding site, but one 

group has identified an H-NS DNA binding motif with high sequence specificity. This 

motif was identified within the E. coli proU operon by footprinting analysis and H-NS-

DNA ChIP-on-chip experiments (Lang et al., 2007). Therefore the role of H-NS as a 

repressor is feasible given that A-T rich DNA sequences and planar curved DNA are 

characteristic of bacterial promoters (Pedersen, Jensen, Brunak, Staerfeldt, & Ussery, 

2000).   

The presence of curved DNA in bacterial promoters and its role in gene 

expression has been investigated for several genes present in E. coli. Although the 

specific mechanisms that allow curved DNA to influence biological processes is 

unknown, its role in transcription initiation has been documented and several possible 

routes proposed. Firstly, intrinsically curved DNA could potentially form large loops 

around RNA polymerase, enhancing the affinity of the complex for promoter DNA 

sequences (Matthews, 1992; Perez-Martin, Rojo, & de Lorenzo, 1994). Secondly, it has 

been demonstrated that minimal intrinsic curvature may enhance the affinity of protein-

DNA contacts (Suzuki & Yagi, 1995). Furthermore, there is evidence to suggest that 

DNA curvature and/or looping can place distant transcriptional components in close 

proximity (Matthews, 1992). 

 

 

 

 



 

 

23 

 

2.1.4 VirB: Transcription Factor or H-NS Antagonist? 

 

lym use to propel itself within the host cell cytoplasm and laterally into adjacent 

host cells.  IcsP cleaves IcsA, maintaining a tight polar cap of IcsA on the bacterial 

surface that allows for directed movement of the bacterium. Proteolytic modification of 

IcsA by IcsP therefore has the potential to control Shigella virulence.   

IcsP protein production requires VirB, which regulates icsP at the level of 

transcription (Wing, Yan, Goldman, & Goldberg, 2004). Analysis of the region upstream 

of the icsP promoter has identified 9 putative VirB-binding sites (Fig. 4). Previous work 

has shown that mutagenesis of the two most distal VirB-binding sites, located -1144 and -

1130 relative to the transcription start site, results in the complete loss of VirB-dependent 

regulation of the icsP promoter (Castellanos, 2009). This suggests that these two sites are 

indispensible for the VirB-dependent regulation of the icsP promoter.   
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FIGURE 5: Graphical representation of the icsP promoter. The gray arrows represent the 

location of a VirB binding site. The match to consensus sequence     

5′-(A/G)(A/T)G(G)AAAT-3′  is given (Castellanos et al., 2009; Taniya et al., 2003; 

Turner & Dorman, 2007b) . The white arrows indicate a center of intrinsic curvature as 

predicted by MUTACURVE software. 

Considering classical transcriptional activators typically function at sites within 

200 bp of transcription start site, it is unusual that VirB binding sites located over 1 kb 

upstream of icsP are required for icsP expression.  Thus, we chose to further analyze the 

role of remote VirB binding sites in VirB-dependent regulation of the icsP promoter. To 

accomplish this, we sought to determine the spacing and helical orientation requirements 

of the VirB binding sites, to establish if the binding sites are required in cis with respect 

to downstream promoter elements, and to elucidate binding site organization necessary to 

mediate possible VirB DNA binding at these sites. Our experiments address the 

mechanism of VirB influence from these sites by providing insight into whether VirB can 

function in trans to mediate VirB-dependent regulation; if the distal location or helical 

orientation of VirB binding sites is a critical component to VirB-dependent regulation; 
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and finally, determine the relative spacing requirements between the most distal VirB 

binding sites that are organized as an inverted repeat. Our experiments also address the 

mechanism of H-NS mediated repression of icsP promoter activity by examining the role 

of intrinsic curvature and the contribution of H-NS binding sites to the transcriptional 

regulation of icsP. 

 

 

2.2 Materials and Methods 

 

2.2.1 Bacterial Strains and Media 

 

S. flexneri serotype 2a strain 2457T was isolated by Lt. Col. Oscar Felsenfeld in 

Tokyo, Japan, and is both serologically and biochemically a typical culture of S. flexneri 

(Formal et al., 1958). The isogenic virB mutant strain AWY3 was created by moving the 

kanamycin-resistant locus from YSH6000 virB::Tn5 into the S. flexneri wild-type strain 

2457T by P1 transduction (Adler et al., 1989; Wing et al., 2004). Strain BS103 is a 

derivative of 2457T lacking the virulence-associated plasmid, pSf2a140 (Maurelli, 

Blackmon, & Curtiss, 1984).  

S. flexneri 2a strains were routinely grown at 37 ˚C in Trypticase Soy Broth 

(TSB) with aeration or on Trypticase Soy Agar (TSA) (TSB containing 1.5% [wt/vol] 

agar). To verify the virulence phenotype, Shigella strains were streaked on TSA plates 

containing 0.01% (wt/vol) Congo red (Sigma Chemical Co., St. Louis, Mo.) E. coli 

strains were grown at 37 ˚C in Luria-Bertani broth with aeration or on LB agar (LB broth 

containing 1.5% [wt/vol] agar). Where appropriate, antibiotics were used in the following 

concentrations in Shigella and E. coli strains, chloramphenicol 25 μg ml
-1

, ampicillin 100 

μg ml
-1

, tetracycline 20 μg ml
-1

.  
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2.2.2 Plasmid Constructions 

The starting point for this work was pHJW20, which carries the icsP promoter 

region transcriptionally fused to lacZ in pACYC184 (Castellanos et al., 2009).  Briefly, 

pHJW20 carries 1,232 bp of wild-type DNA sequence upstream of the icsP transcription 

start site with a unique XbaI site upstream of lacZ gene. 

 

FIGURE 6: Schematic of the icsP-lacZ transcriptional fusion pHJW20. 

 

pMIC21 is a pHJW20 derivative lacking all icsP promoter sequences, resulting in 

a promoter-less lacZ reporter plasmid (Castellanos et al., 2009). 

 

Description of Constructions Relocating VirB Binding Sites 

The following PicsP-lacZ transcription fusion constructs contain 5, 10, or a 50 bp 

deletion within the icsP promoter, relocating the VirB binding sites closer to icsP 

transcription start site.   

The starting point for these constructs was pJS01, a pHJW20 derivative that 

carries 1040 bp of the icsP promoter region, cloned upstream of the icsP transcription 

start site using PstI and PacI.  
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pKLP03 is a pJS01 derivative carrying the icsP promoter with a 5 bp deletion    

92 bp downstream of the most distal VirB binding sites. The icsP promoter fragment was 

PCR amplified using oligonucleotidesWing 98 and Wing 226, the resulting product was 

digested with NruI and BglII, and ligated into NruI and BglII digested pJS01. 

pKLP04 is a pJS01 derivative carrying the icsP promoter with a 10 bp deletion 82 

bp downstream of the most distal VirB binding sites. The icsP promoter fragment was 

PCR amplified using oligonucleotides Wing 98 and Wing 227, the resulting product was 

digested with NruI and BglII, and ligated into NruI and BglII digested pJS01. 

pKLP05 is a pJS01 derivative carrying the icsP promoter with a 50 bp deletion 42 

bp downstream of the most distal VirB binding. The icsP promoter fragment was PCR 

amplified using oligonucleotides Wing 98 and Wing 228, the resulting product was 

digested with NruI and BglII, and ligated into NruI and BglII digested pJS01. 

Sequences of oligonucleotides used in plasmid construction are listed in Table. 2. 

 

Description of Constructions Carrying VirB Binding Sites in trans 

The following plasmids were created to clone the most distal VirB binding sites in 

trans to the downstream icsP promoter sequence.  

pBR322 is a commonly used plasmid cloning vector in E. coli, conferring 

resistance to ampicillin and tetracycline.  

pKLP09 is a pBR322 derivative carrying sequences -1232 to -664 of the icsP 

promoter. The icsP promoter sequence was PCR amplified using oligonucleotides Wing 

93 and Wing 234, the resulting product was digested with SalI and BamHI, and ligated 
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into SalI and BamHI digested pBR322. This construct does not contain a reporter 

transcriptional fusion. 

pDH01 is a pHJW20 derivative carrying 663 bp of the icsP promoter upstream of 

transcription start site fused to the lacZ gene (Castellanos et al., 2009). 

Sequences of oligonucleotides used in plasmid construction are listed in Table. 2. 

 

Description of Constructions Carrying Insertions between Most Distal VirB Binding Sites 

The following constructs were created to introduce base pair insertions between 

the most distal VirB binding sites using site-directed mutagenesis (Stratagene).  

The starting point for this work was the high-copy plasmid pNE01, a pBluescript 

derivative carrying the full length icsP promoter. To create pNE01 icsP promoter 

fragment was isolated from pHJW20 using PstI and XbaI, and ligated into PstI and XbaI 

digested pBluescript/KSII+.  

pKLP11 carries the icsP promoter with a 2 bp insertion between the most distal 

VirB binding sites. Insertions were introduced into pNEO1 using oligonucleotides Wing 

265 and 266, the resulting plasmid was digested with PstI and PacI and ligated into PstI 

and PacI digested pHJW20.  

pKLP12 carries the icsP promoter with a 3 bp insertion between the most distal 

VirB binding sites. Insertions were introduced into pNEO1 using oligonucleotides Wing 

263 and 264, the resulting plasmid was digested with PstI and PacI and ligated into PstI 

and PacI digested pHJW20.  

pKLP13 carries the icsP promoter with a 4 bp insertion between the most distal 

VirB binding sites. Insertions were introduced into pNEO1 using oligonucleotides Wing 
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261 and 262, the resulting plasmid was digested with PstI and PacI and ligated into PstI 

and PacI digested pHJW20.  

 Sequences of oligonucleotides used in plasmid construction are listed in Table. 2. 

 

In silico analysis of icsP promoter 

 

The MUTACURVE program was used to i) evaluate the amplitude of the intrinsic 

DNA curvature of every nucleotide in the sequence immediately upstream of the icsP 

transcription start site, and ii) predict the effect of double point mutations on the intrinsic 

curvature of the DNA. The MUTACURE program predicts DNA curvature using the 

algorithm of Goodsell & Dickerson (Goodsell & Dickerson, 1994), with the addition of 

Satchwell’s contribution matrixes for rotational and spatial displacements (Satchwell, 

Drew, & Travers, 1986). It also generates curvature profiles of the original and mutated 

sequences for comparative analysis (Olivares-Zavaleta, Jauregui, & Merino, 2006).  

Centers of curvature were identified at regions -435, -663, -842, and -935 with 

respect to the transcription start site of icsP. To evaluate the effect of curvature on icsP 

promoter activity, a series of constructs were created carrying base pair substitutions in 

regions predicted to disrupt or restore curvature respectively.  

 

Description of constructs carrying base-pair substitutions in regions of predicted DNA 

curvature 

The following constructs are PicsP-lacZ fusions that contain base-pair 

substitutions in regions of predicated DNA curvature within the icsP promoter, with a 

copy number of 10-12 plasmids per cell. Substitutions were introduced using site-directed 
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mutagenesis. The starting point for this work was the high-copy plasmid pNEO1 a 

pBluescript derivative carrying the full length icsP promoter. The following table outlines 

the identified regions and base pair substitutions predicted to disrupt or restore curvature.  

 

Base Pair Substitutions Introduced to Reduce Curvature 

Position of 

curved region 

Predicted curvature 

value (deg/helix 

turn) prior to 

substitution 

Predicted 

curvature value 

(deg/helix turn) 

following 

substitution 

Base pair 

substitutions 

responsible 

-842 9.65 4.82 A>C at -876 

C>A at -880 

 

-935 9.36 5.19 G>T at -968 

A>C at -874 

 

-663 8.09 2.67 C>A at -961 

T>G at -696 

 

-435 7.88 2.99 T>G at -454 

A>C at -463 

TABLE 1: Table of the identified MUTACURVE predicted regions of intrinsic curvature 

within the icsP promoter and base pair substitutions predicted to disrupt curvature 

(Harrison, 2010).  
 

 

pMUT1 is a pHJW20 derivative carrying a 2 bp substitution made by site directed 

mutagenesis in the -842 region of the icsP promoter. Mutation 1 is located at -876 (T  

G) and mutation 2 is located at -880 (G   T) with respect to the icsP transcription start 

site. Mutations were introduced into pNEO1 using Wing 206 and Wing 207. 

pJC04 is a pMUT1D derivative carrying 4 bp substitutions in the icsP promoter, 

present at -876 (T  G), -880 (G   T), -968 (C  A), and -974 (T   G) with respect 

to the icsP transcription start site. Mutations were introduced using Wing 208 and Wing 

209. 
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pKLP14 is a pDH01 derivative carrying the icsP promoter sequence present in 

pJC04. The icsP promoter insert was created by digesting pJC04 with PstI and PacI, and 

ligated into PstI and PacI digested pDH01. 

 pMUT3D is a pHJW20 derivative, carrying a 2 bp substitution made by site 

directed mutagenesis in the -663 region of the icsP promoter. Mutation 1 is located at -

691 (G T) and mutation 2 is located at -696 (A   C) with respect to the icsP 

transcription start site. Mutations were introduced into pNEO1 using Wing 210 and Wing 

211. 

pJC05 is a pMUT3D derivative carrying 4 bp substitutions in the icsP promoter. 

Mutations are present at -691 (G T), at -696 (A   C), at -455 (C  A), and at -464 (G 

  T) with respect to icsP transcription start site. Mutations were introduced into 

pMUT3D using oligonucleotides Wing 212 and Wing 213. 

pKLP15 is a pDH01 derivative carrying the icsP promoter sequence present in 

pJC05. The icsP promoter insert was created by digesting pJC04 with PstI and PacI, and 

ligated into PstI and PacI digested pDH01. 

pJC06 carries all base pair substitutions to reduce MUTACURVE predicted 

intrinsic curvature. The icsP promoter fragment insert was created by digesting pJC05 

with NsiI and PstI, and ligated into NsiI and PstI digested pJC04. 

pKLP16 is a pDH01 derivative carrying the icsP promoter sequence present in 

pJC05. The icsP promoter insert was created by digesting pJC04 with PstI and PacI, and 

ligated into PstI and PacI digested pDH01. 

 Sequences of oligonucleotides used in plasmid construction are listed in Table. 2.  
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Description of constructs carrying deletions in the icsP promoter to rotate H-NS binding 

sites 

The following PicsP-lacZ transcription fusion constructs contain 5 or 10 bp 

deletion within the icsP promoter, rotating the H-NS binding sites with respect to each 

other. The starting point for this work was the high-copy plasmid pNEO1 a pBluescript 

derivative carrying the full length icsP promoter. Deletions were introduced using site-

directed mutagenesis (Stratagene). 

pKLP23 carries the icsP promoter with a 5 bp deletion centered at -310. Deletions 

were introduced into pNEO1 using oligonucleotides Wing 286 and 287, the resulting 

plasmid was digested with PstI and PacI and ligated into PstI and PacI digested 

pHJW20.  

pKLP24 carries the icsP promoter with a 10 bp deletion centered at -310. 

Deletions were introduced into pNEO1 using oligonucleotides Wing 296 and 297, the 

resulting plasmid was digested with PstI and PacI and ligated into PstI and PacI digested 

pHJW20.  

Sequences of oligonucleotides used in plasmid construction are listed in Table. 2. 

All plasmids were sequenced at the Nevada Genomics Center using the ABI 

BigDye Terminator Cycle Sequencing Ready Reaction Kit v3.1, and plasmids with 

correct sequence were used. 

 Oligonucleotides Used In Plasmid Construction 

Primer Sequence 5'-3' 

WING 93 TGGGTTGAAGGCTCTCAAGGGC 

WING 98 CCCGTTCCATGTGCTCGCC 

WING 206 CCTTGAAAACGCCGTATCGGGAGAGAGTTCACTCTATTG 

WING 207 CAATAGAGTGAACTCTCTCCCGATACGGCGTTTTCAAGG 

WING 208 CCACTACTGAACTATTCTGGGATTTAAATTCAATACAATGGTTGGTTGAAGGTC 

WING 209 GACCTTCAACCAACCATTGTATTGAATTTAAATCCCAGAATAGTTCAGTAGTGG 
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WING 210 GTTATCCTCTACACATTTTATCTAATGTGTACTTGGACAATTCATTGGTGC 

WING 211 GCACCAATGAATTGTCCAAGTACACATTAGATAAAATGTGTAGAGGATAAC 

WING 212 GTATAGTTTTTCAGATTTTGTTTGTCCCGTGACATATTATGGAAATGGCAGAAGC 

WING 213 GCTTCTGCCATTTCCATAATATGTCACGGGACAAACAAAATCTGAAAAACTATAC 

WING 214 CCTTGAAAACGCCGTATTGGGGGAGAGTTCACTCTATTG 

WING 215 CAATAGAGTGAACTCTCCCCCAATACGGCGTTTTCAAGG 

WING 216 CCACTACTGAACTATTCTGGGATTTAAATCCAATATAATGGTTGGTTGAAGGTC 

WING 217 GACCTTCAACCAACCATTATATTGGATTTAAATCCCAGAATAGTTCAGTAGTGG 

WING 218 GTTATCCTCTACACATTTTATCTGATGTATACTTGGACAATTCATTGGTGC 

WING 219 GCACCAATGAATTGTCCAAGTATACATCAGATAAAATGTGTAGAGGATAAC 

WING 220 GTATAGTTTTTCAGATTTTGTTTATCCCGTGATATATTATGGAAATGGCAGAAGC 

WING 221 GCTTCTGCCATTTCCATAATATATCACGGGATAAACAAAATCTGAAAAACTATAC 

WING 227 TGAGAGATCTAAAGAGGCTTGGCAGTTTGG 

WING 228 TGAGAGATCTCACTAATACAAACTTTTTGTAAAG 

WING 234 CCGGGGATCCTCAGTTATCCTCTACACATTTTATCTC 

WING 261 TGATTGAATACTTCCGGGGATTTCAGAGACTATGAAATGAAGTATATTTAATATACT 

WING 262 AGTATATTAAATATACTTCATTTCATAGTCTCTGAAATCCCCGGAAGTATTCAATCA 

WING 263 GATTGAATACTTCCGGGGATTTCAGAGATATGAAATTGAAGTATATTTAATATACT 

WING 264 AGTATATTAAATATACTTCATTTCATATCTCTGAAATCCCCGGAAGTATTCAATCA 

WING 265 TGATTGAATACTTCCGGGGATTTCAGAGTATGAAATGAAGTATATTTAATATACT 

WING 266 AGTATATTAAATATACTTCATTTCATACTCTGAAATCCCCGGAAGTATTCAATCA 

WING 287 GCTATTGCAGCCGTGATGATATTGTCTTATCGTTGTTC 

WING 288 GAACAACGATAAGACAATATCATCACGGCTGCAATAGC 

WING 296 GGCTATTGCAGCCGTGATGATCTTATCGTTGTTCT 

WING 297 AGAACAACGATAAGATCATCACGGCTGCAATAGCC 

TABLE 2: Oligonucleotides 

 

 

 

 

 

2.2.3 Promoter Activity of PicsP-lacZ Transcriptional Fusions 

Activity of the icsP promoters were determined by measuring β-galactosidase 

activity using the Miller protocol in strains carrying pHJW20 or derivatives. Routinely, 

transcription was analyzed in three independent transformants in early stationary phase 

cultures. Cells were routinely back-diluted 1:100 from 5ml overnight cultures grown with 

shaking at 30 C.  Freshly inoculated cultures were subsequently grown for 5 h in TSB at 

37 C. 
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2.3 Results and Discussion 

 

2.3.1 VirB binding sites in trans do not influence transcription at the icsP promoter 

 

Remote VirB binding sites are essential for VirB-dependent regulation of the icsP 

promoter. These sites named Box 1 and Box 2, are located between positions −1144 and 

−1130 with respect to icsP transcription start site, and are organized as an inverted repeat. 

Mutagenesis of Box 1 and Box 2 results in a complete loss of VirB-dependent icsP 

promoter activity (Castellanos et al., 2009). In the presence of VirB, promoter activity of 

a PicsP-lacZ fusion increases 17-fold for the full length promoter. Considering the 

contribution of the remote location of the VirB binding sites to this significant increase in 

icsP promoter activity, we sought to determine if VirB directly regulates icsP expression. 

Specifically, we wanted to establish if VirB can function in trans to mediate VirB-

dependent regulation and if VirB regulates another factor, such as a small RNA produced 

from this intergenic region, that directly controls icsP expression.  

To test this, we cloned the VirB binding sites into a separate DNA molecule, 

pKLP09. This allowed us to place the VirB binding sites in trans to the icsP promoter 

carried by pDH01 (Fig. 7). pDH01 is a PicsP-lacZ fusion extending to -664 lacking the 

VirB binding sites. As a positive control, pHJW20 was used which carries the full length 

icsP promoter fused to lacZ, and pMIC21 served as a negative promoter-less control.  
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FIGURE 7: Graphical representation of the icsP promoter region with VirB 

binding sites annotated. DNA sequences cloned in trans are marked by brackets 

with the respective plasmid labeled below. 

 

 

Constructs carrying icsP promoter fragments were introduced into wild-type 

Shigella flexneri strain 2457T and virB mutant S. flexneri strain AWY3 to determine 

promoter activity using the β-galactosidase assay. 
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FIGURE 8: The wild-type icsP promoter containing the VirB binding sites in cis 

was introduced into Shigella cells (A),. The icsP promoter was cloned in trans to the 

VirB binding sites (B), or the promoter was cloned in trans to the empty cloning vector 

(C) as a control. Additionally, the VirB binding sites alone (D) or the empty cloning 

vector (E) was introduced into Shigella cells as further controls. 

 
 

In the presence of VirB the full-length icsP promoter showed a significant 

increase in promoter activity (Fig. 9), confirming previously published results 

(Castellanos et al., 2009). For strains carrying the VirB binding sites in trans to the icsP 

promoter, there was a loss of VirB dependency because promoter activity was 

comparable in both wild-type and virB mutant Shigella strains. This same trend was 
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mirrored in strains carrying the empty cloning vector and the PicsP-lacZ reporter bearing 

sequences downstream of -665. Both wild-type and virB mutant strains carrying the 

empty cloning vector or the VirB binding sites alone displayed no promoter activity.  

Based on these findings we conclude that VirB binding sites Box 1 and Box 2 are 

required in cis for VirB-dependent regulation of the icsP promoter, which strongly 

suggests that VirB directly regulates icsP promoter activity rather than modulating the 

activity of another factor which in turn regulates the icsP promoter.  
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FIGURE 9: Activities of wild-type icsP promoter, most distal VirB binding sites in trans 

with respect to downstream promoter elements, icsP promoter sequences downstream of 

the most distal binding sites in trans with the cloning vector, the distal sites alone, the 

cloning vector, or the promoter-less control in wild-type S. flexneri 2a (2457T) and the 

virB mutant (AWY3). Assays were run in triplicate and the means and deviations are 

shown. 
 

 

2.3.2 Minor Helical Orientation and Spacing Requirements for VirB-dependent 

Regulation of the icsP Promoter From Distal VirB Binding Sites 

 

Considering the organization of the icsP promoter, we sought to determine if the 

location of VirB binding sites Box 1 and Box 2 within the icsP promoter is important for 

VirB-dependent regulation. The required VirB binding sites are located over 1 kb 

upstream of the transcription start site, which is unusual, as classically binding sites for 
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transcription factors are considered to be within 200 bp of +1.  In addition to establishing 

spacing requirements, we also sought to determine the helical orientation requirements of 

these sites. Typically, DNA-binding proteins are able to recognize and bind specific DNA 

sequences located on a precise face of the DNA helix.  To determine the spacing and 

helical-orientation requirements for VirB-dependent regulation from the distal VirB 

binding sites, a series of deletions were created downstream of these sites within the icsP 

promoter, relocating them progressively closer to the icsP transcription start site (Fig. 

10). PicsP-lacZ fusions were created with the icsP promoter carrying a 5 bp, 10 bp, or 50 

bp deletion. By deleting 5 bp downstream of the VirB binding sites, the sites were placed 

on the opposite face of the DNA helix. A 10 bp deletion places the sites on the same 

DNA face as in the wild-type promoter, and a 50 bp deletion brings the sites within closer 

proximity to icsP transcription start site. 

 
FIGURE 10: Schematic of deletions created downstream of most distal VirB binding 

sites in the icsP promoter. 

  

 

Constructs carrying PicsP-lacZ transcription fusions with deletions in the icsP promoter 

downstream of the VirB binding sites were introduced into wild-type Shigella flexneri 
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strain 2457T and virB mutant S. flexneri strain AWY3 to determine promoter activity 

using the β-galactosidase assay.  

 Our data show that deletions of 5 bp or 10 bp downstream of the most distal VirB 

binding sites do not significantly alter transcriptional activity of the icsP promoter (Fig. 

11).  Promoter activity for these constructs in wild-type Shigella strains is comparable to 

promoter activity for the full-length icsP promoter. In the presence of VirB, icsP 

promoter sequences with relocated distal VirB binding sites show a significant increase in 

promoter activity, indicating that icsP expression is VirB-dependent. Similarly, icsP 

promoter sequences carrying a 50 bp deletion downstream of the most distal VirB 

binding sites demonstrate a VirB-dependency for icsP expression. However, there is a 

small but statistically significant decrease in promoter activity of icsP promoter 

sequences carrying a 50 bp deletion when compared to wild-type icsP promoter activity 

(Fig. 11). All constructs displayed similar levels of activity in virB mutant strains, 

demonstrating that the introduction of deletions within the promoter has no effect on 

VirB-independent promoter activity. These data indicate that there is a small spacing 

requirement for VirB-dependent regulation from these sites, yet there is not a face of 

helix dependency. Interestingly, relocating the VirB binding sites to the opposite face of 

the helix has no significant effect on icsP promoter levels.  
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FIGURE 11: Activities of wild-type icsP promoter or icsP promoter carrying deletions 

downstream of the most distal VirB binding sites with respect to transcription start site in 

wild-type S. flexneri 2a (2457T) and the virB mutant (AWY3). Assays were run in 

triplicate and the means and deviations are shown. 

 

 

 

2.3.3 Strict Spacing Requirements of Box 1 and Box 2 VirB Binding Sites with Respect 

to Each Other 

 

In the wild-type icsP promoter, the most distal VirB binding sites, Box 1 and Box 

2 are organized as an inverted repeat that is separated by 1 nucleotide, representing a 

space of 3.3 Å (Mandelkern, Elias, Eden, & Crothers, 1981). The VirB protein contains a 

helix-turn-helix motif, which in conjunction with the N-terminus, mediates DNA-

binding. VirB has been shown to form dimers in vivo and in vitro, independent of DNA 

binding. It is been proposed that VirB dimerization and oligomerization has a role in 

DNA binding (Beloin, 2002). 
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 We sought to determine the tolerance of base pair insertions between the 

essential VirB sites.  Insertions of 2, 3, or 4 bp were placed between Box 1 and Box 2 

using site-directed mutagenesis, for a total spacing between the sites of 3 bp, 4 bp, and 5 

bp respectively (Table 3). PicsP-lacZ transcription fusions with base pair insertions 

between the VirB binding sites were introduced into wild-type Shigella flexneri strain 

2457T and virB mutant S. flexneri strain AWY3 to determine promoter activity using the 

β-galactosidase assay.  

 

icsP Promoter 

Fragment     Sequence  

 

Wild-type    5'- ATTTCAGTATGAAAT -3' 

2 bp Insertion 5'- ATTTCAGTCGATGAAAT -3' 

3 bp Insertion 5'- ATTTCAGTCGAATGAAAT -3' 

4 bp Insertion 5'- ATTTCAGTCGATATGAAAT -3' 

    

TABLE 3: Base pair insertions made between Box 1 and Box 2. Sequence of Box 1 and 

Box 2 is underlined; base pair insertions are in bold font.  
 

 

Our data show that there is no tolerance for base pair insertions between the 

remote VirB binding sites. (Fig.  12). The wild-type icsP promoter displays VirB-

dependent promoter activity. Constructs carrying base pair insertions between the distal 

VirB binding sites display extremely low levels of icsP promoter activity that are similar 

to those seen in the virB mutant. These data indicate that there is a 1 bp requirement 

between the VirB binding sites for VirB-dependent regulation of the icsP promoter, and 

these data suggest that VirB binds as a dimer to Box 1 and Box 2.  
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FIGURE 12: Activities of wild-type icsP promoter or icsP promoter carrying base-pair 

insertions between the most distal VirB binding sites in wild-type S. flexneri 2a (2457T) 

and the virB mutant (AWY3). Assays were run in triplicate and the means and deviations 

are shown. 

 

 

2.3.4 Predicted Intrinsic Curvature of DNA at the icsP Promoter Does Not 

Contribute to VirB-Dependent Regulation 

 

Histone nucleoid structuring protein H-NS is a well-established repressor of 

transcription that recognizes intrinsically curved DNA sequences. H-NS mediates 

repression of the icsP promoter (Castellanos et al., 2009). VirB functions to antagonize 

H-NS, alleviating repression and facilitating transcription at the icsP promoter 

(Castellanos et al., 2009). In silico analysis of the icsP intergenic region identified four 

regions of predicted curvature within the icsP promoter (Harrison, 2010). Base pair 

mutations were introduced into predicted regions of curvature in the icsP promoter to 
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disrupt or reduce the curvature at those positions in order to determine the role of 

intrinsic curvature in the regulation of icsP expression. Promoter activity was measured 

using β-galactosidase assays. Previous data collected show that promoter activity in the 

presence of mutations in single regions of predicted curvature is comparable to wild-type 

icsP in both a wild-type Shigella background and a virB mutant (Harrison, 2010). We 

therefore chose to further analyze the role of predicted intrinsic curvature in the 

transcriptional regulation of the icsP promoter by combining these mutations. Mutations 

in predicted regions of curvature were combined in the two most promoter proximal 

curves centered at -435 and -663, the most distal curves centered at -842 and -935, and 

lastly, all curves (Fig. 13). PicsP-lacZ transcription fusions with base pair substitutions in 

regions of predicated curvature were introduced into wild-type Shigella flexneri strain 

2457T and virB mutant S. flexneri strain AWY3 or wild-type E. coli strain MC4100 and 

an isogenic h-ns mutant strain to determine promoter activity using the β-galactosidase 

assay.  
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FIGURE 13: Graphical representation of the icsP promoter region with VirB binding 

sites annotated. White arrows indicate center position of regions of curvature within icsP 

promoter.  Slash symbols indicate regions of curvature containing base pair mutations 

predicted to reduce curvature. 

 

 

  In a Shigella background, constructs carrying mutations that disrupt regions of 

predicted curvature that are promoter proximal, promoter distal, or within all regions of 

curvature, display VirB-dependent promoter activity that is comparable to wild-type icsP 

promoter activity (Fig. 14A). These data suggest that the predicted curvature does not 

play a role in the VirB-dependent regulation of icsP. This is interesting given that the role 

of VirB is to de-repress H-NS mediated repression of the icsP promoter. In the context of 
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more linear DNA, VirB binding is still required for DNA remodeling into a conformation 

conducive to transcription.  These data suggest that in the presence of more linear 

promoter DNA, H-NS maintains the ability to mediate repression of icsP promoter 

activity. Therefore, we chose to assay promoter activity of constructs carrying mutations 

to disrupt curvature within the icsP promoter in the presence and absence of H-NS.  

In wild-type E. coli strains carrying constructs with mutations that disrupt regions 

of predicted curvature that are promoter proximal, promoter distal, or within all regions 

of predicted curvature, display promoter activity comparable to wild-type icsP promoter 

levels (Fig. 14B). In hns mutant strains, these constructs show an increase an icsP 

promoter activity to levels similar to the wild-type icsP promoter. From these data we 

conclude that in the presence of reduced curvature, H-NS retains the ability to repress the 

icsP promoter.  
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FIGURE 14: Activities of wild-type icsP promoter, icsP promoter with base pair 

mutations centered at -842 and -935, icsP promoter with base pair mutations centered at  

-435 and -663, icsP promoter with base pair mutations present in all regions of curvature, 

and promoter-less control in A) wild-type S. flexneri 2a (2457T), the virB mutant 

(AWY3), and plasmid cured strain (BS103) or B) wild-type E. coli (MC4100) and the  

h-ns mutant. Assays were run in triplicate and the means and deviations are shown. 
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The ability of H-NS to mediate repression of icsP in the presence of more linear 

DNA sequences is striking because H-NS has been shown to bind intrinsically curved 

DNA. These data indicate that curvature of the icsP promoter does not have a role in H-

NS mediated repression of the icsP promoter. It has been shown that H-NS not only 

recognizes intrinsically curved DNA, but also binds to A-T rich DNA tracts and mediates 

DNA looping. Perhaps H-NS mediates repression of icsP by altering the topology of the 

DNA and looping the icsP promoter.  

It is understood that our analysis of the predicted regions of curvature within the 

icsP promoter has limitations. Our experimental design introduced mutations to reduce 

areas of curvature predicted by computer software, however, so far, we have not used a 

biochemical approach to analyze the intrinsic curvature of the promoter or to further 

investigate the specific regions of predicted curvature. 

 

 

2.3.5 Rotation of H-NS Binding Sites at the icsP Promoter Does Not Alleviate H-

NS Mediated Repression 

 

 

Previous data have identified two distinct regions of the icsP promoter that are 

bound by H-NS. Electrophoretic mobility shift assays with purified His-tagged H-NS 

identified DNA sequences upstream of the icsP gene bound by H-NS, sequences 

designated targets 1, 4, and 5 (Harrison, 2010). Target 1 extends from +24 to 

 -213 relative to icsP transcription start site, and targets 4 and 5 overlap, extending from  

-523 to -1058 relative to icsP transcription start site. It should be noted that the upstream 

H-NS binding site contains 3 of the predicted regions of curvature, but does not include 

the most distal VirB binding sites (Fig. 15).   
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FIGURE 15: Schematic depicting the H-NS binding sites present in the icsP promoter. 

Target 1, 4, and 5 identify regions of H-NS binding in the icsP promoter region. 

Associated VirB binding sites and regions of predicted curvature are denoted by arrows. 

 

 

Similar to icsP, published studies on the H-NS dependent repression of the virF 

promoter reported two distinct regions of H-NS binding within the virF promoter. These 

studies demonstrated that rotating the DNA helix between the two H-NS binding sites 

negatively impacted thermoregulation of virF and reduced H-NS mediated repression of 

virF (Prosseda et al., 2004). These findings provide evidence for the idea that two H-NS 

binding sites are not independent and that H-NS dimers can form extensive protein-

protein interactions over long distances (Esposito et al., 2002; Falconi, Colonna, 

Prosseda, Micheli, & Gualerzi, 1998; Schneider et al., 2001; Spurio, Falconi, Brandi, 

Pon, & Gualerzi, 1997). We sought to determine if the H-NS sites have helical 

orientation requirements for H-NS mediated repression of the icsP promoter. 

To do this, we created PicsP-lacZ fusions carrying a 5 bp deletion, pKLP23, or a 

10 bp deletion, pKLP24, in between the identified H-NS binding regions within the icsP 



 

 

50 

 

promoter, rotating the sites on the DNA helix with respect to each other. These constructs 

were introduced into wild-type E.coli strain MC4100 and an isogenic h-ns mutant strain 

or into wild-type Shigella flexneri strain 2457T and virB mutant S. flexneri strain AWY3; 

promoter activity was measured using the β-galactosidase assay.  

In an E. coli background, in the presence of either a 5 bp or a 10 bp deletion, H-

NS is able to mediate repression of the icsP promoter (Fig. 16). However, in the absence 

of H-NS, icsP promoter activity of pKLP23 increases with respect to wild-type icsP 

promoter activity and promoter activity of pKLP24 is slightly higher than the wild-type. 

Our data indicate that the rotation of the DNA helix between the H-NS sites does not 

reduce H-NS mediated repression of the icsP promoter.  

 

 
FIGURE 16: Activities of wild-type icsP promoter, icsP promoter with 5 bp deletion 

between H-NS binding sites (pKLP23), icsP promoter with 10 bp deletion between H-NS 

binding sites (pKLP24), and promoter-less control in wild-type E. coli (MC4100) and the 

h-ns mutant. Assays were run in triplicate and the means and deviations are shown. 
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In a Shigella background, the presence of either a 5 bp or a 10 bp deletion 

between the H-NS binding sites does not alter VirB-dependent regulation of icsP 

promoter activity (Fig.17). Furthermore, these deletions relocate the most distal VirB 

binding sites in closer proximity to the icsP transcription start site. In either construct 

carrying a deletion between the H-NS binding sites, there is an increase in icsP promoter 

activity as compared to wild-type icsP promoter activity. This effect is remarkable, given 

that in constructs carrying similar deletions, but in a different region downstream of the 

VirB binding sites within the icsP promoter, the introduction of deletions reduced icsP 

promoter activity. These findings emphasize that the location of the sites within the 

promoter is important to VirB dependent regulation; perhaps shifting the binding sites 

modulates the extent of VirB-dependent icsP promoter activity.  

 
FIGURE 17: Activities of wild-type icsP promoter, icsP promoter with 5 bp deletion 

between H-NS binding sites (pKLP23), icsP promoter with 10 bp deletion between H-NS 

binding sites (pKLP24), and promoter-less control in wild-type Shigella (2457T) and the 

virB mutant (AWY3). Assays were run in triplicate and the means and deviations are 

shown. 
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We show that rotation of the DNA helix between the H-NS binding sites in the 

icsP promoter does not alter the ability of H-NS to repress the icsP promoter. In fact, our 

data indicates that placing these sites on the opposite face of the DNA helix actually 

increases basal promoter activity in the absence of H-NS. These findings are in contrast 

to studies of H-NS mediated repression of transcription that underscore the 

interdependence of H-NS binding sites as a mechanism to regulate promoter activity. 

From our data it is unclear what accounts for these observations, but perhaps this rotation 

allows for a more stable DNA conformation that is permissive to transcription of the icsP 

gene. The formation of a more stable structure as a result of rotating the DNA helix has 

the potential to stabilize DNA-H-NS interactions and to stabilize any DNA looping or 

long distance H-NS-H-NS interactions as well.  

 

 

2.4 Conclusion 

 

The remote regulation of the icsP promoter by VirB binding to sites located over 

1 kb upstream of the icsP transcription start site is reminiscent of enhancer sequences 

present in eukaryotic cells. Eukaryotic enhancer sequences are distally located DNA 

sequences specifically bound by transcription factors that either activate or repress 

transcription. Enhancer sequences have been found to function upstream or downstream 

of promoters and in either orientation. Studies have shown that the presence of an 

enhancer cannot direct RNA Pol II, the transcribing enzyme of eukaryotes, to a specific 

promoter, but it functions by working in conjunction with other factors assembled at the 

promoter. The removal of an enhancer sequence does not prevent transcription initiation 
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from targeted eukaryotic promoters; binding of transcription factors to enhancer 

sequences up-regulate the rate of open-complex formation (reviewed in (Blackwood & 

Kadonaga, 1998). 

Although enhancers are typically associated with eukaryotic promoters, there 

have been examples of enhancers reported for bacterial promoters. A common example is 

the interaction between alternative RNAP σ
54

-holoenzymes and enhancer-binding 

proteins such as NtrC. This system of transcriptional regulation has been found in a 

variety of species including NtrC from enteric bacteria and NifA of Klebsiella 

pneumonia. The most well studied bacterial enhancer binding protein, NtrC, does not 

function by facilitating binding of RNAP to the promoter, but rather induces a DNA 

conformational change once RNAP is bound, initiating transcription by contacting RNAP 

via DNA looping, and consequently allowing the formation of an open complex (Porter, 

North, Wedel, & Kustu, 1993; Su, Porter, Kustu, & Echols, 1990; Weiss, Batut, Klose, 

Keener, & Kustu, 1991).  

This is in contrast to the role of VirB as a transcription factor, and more 

specifically, the role of the remote VirB binding sites. VirB does not contact RNAP nor 

has it been shown to recruit RNAP to promoters of Shigella virulence genes (Turner & 

Dorman, 2007). Mutagenesis of the most distal VirB binding sites abolishes icsP 

promoter activity, demonstrating that VirB is essential to transcription at the icsP 

promoter and is not merely a facilitator up-regulating transcription.  

Our studies show that VirB-dependent regulation from the most distal VirB 

binding sites is a unique system. We have shown that VirB functions to facilitate 

transcription of icsP by antagonizing H-NS mediated repression (Castellanos et al., 
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2009). How VirB mediates VirB-dependent regulation from these sites was intriguing not 

only because of their location within the promoter, but the profound negative effect of 

mutagenesis of these sites on icsP promoter activity. In this work we have focused on the 

determining the spatial and helical orientation requirements for VirB-dependent 

regulation from these sites. 

We have demonstrated that VirB directly regulates promoter activity of a PicsP-

lacZ fusion, and have provided evidence suggesting that VirB binds as a dimer to the 

distal VirB binding sites. We have also shown through deletion analysis that while there 

is not a helical orientation requirement, there is a small spacing requirement for VirB-

dependent regulation of icsP. These data implicate the importance of the location of the 

VirB binding sites in the promoter.  The necessity of the VirB binding sites to lie in cis 

with the icsP promoter elements and the seemingly fluid spacing and helical 

requirements, emphasize the role of VirB as an antagonizer of H-NS, and not as a 

enhancer nor as a classic transcription factor. 

 H-NS, a known global repressor of bacterial transcription, mediates repression of 

the icsP promoter. We have identified four regions of predicted curvature within the icsP 

promoter, and disruption of these curves does not alter H-NS mediated repression or 

thermoregulation of icsP expression. Furthermore, rotation of the DNA helix between 

these H-NS sites does not interfere with H-NS mediated repression of icsP. This indicates 

that H-NS does not solely recognize intrinsic curvature present in the icsP promoter to 

mediate repression, but perhaps via another mechanism such as DNA looping or 

modulation of DNA supercoiling. 
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Our studies of the silencing-anti-silencing of icsP transcription by VirB and H-NS 

are important to further our understanding of mechanisms regulating bacterial gene 

expression. We have gathered evidence that supports our model of silencing-anti-

silencing at the icsP promoter by demonstrating that there is no absolute on-off switch for 

transcription. Rather instead, our data suggest that VirB and H-NS interactions with the 

DNA reconfigure its conformation allowing for transcription, and modulations in the 

DNA sequence alter the nascent stability of the DNA.  

In conclusion, our studies have provided insight into how VirB influences icsP 

expression from remote distances and also increase our understanding of how H-NS 

mediates repression of icsP expression. Our work also demonstrates the role of DNA 

topology in gene regulation and the complexity of systems evolved to regulate 

transcription of virulence genes. Our work contributes to our understanding of silencing-

anti-silencing regulatory systems in Shigella and other enteric pathogens. 
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CHAPTER 3 

 

 

TRANSCRIPTION START SITE MAPPING OF OSPZ PROMOTER 

 

 

3.1 Introduction 

 

3.1.1 Type III Secretion Systems 

The type III secretion systems (T3SSs) have been identified in many pathogenic 

and commensal gram-negative bacteria that live in close association with mammals, 

plants, and insects (Troisfontaines & Cornelis, 2005). These complex bacterial 

nanostructures are primarily used to deliver bacterial effector proteins directly into the 

cytoplasm of host cells, to manipulate the host cell’s physiology. T3SSs are on average 

comprised of 20 different proteins that form a two ring structure and a protruding needle 

that typically makes contact with the target cell (Fig. 18). Some bacteria possessing a 

T3SS, such as E. coli, have been shown to have filaments extending from the needle, 

purportedly to mediate attachment to host cells through the glycocalyx layer (Coburn, 

Sekirov, & Finlay, 2007).  

The T3SS system is composed of three classes of proteins: structural proteins, 

translocators, and effectors. The structural proteins actually comprise the apparatus, the 

two rings and the needle. Translocators are proteins that facilitate the transfer of effector 

proteins into the host cell. Translocators are conserved among pathogens possessing a 

T3SS, while the effectors are more distinct. The effectors are the proteins that affect the 

host cell, facilitating colonization by the invading bacterium.  
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FIGURE 18: Schematic depicting the type III secretion system in a gram negative 

bacterium.  

 

 
 

 An important distinction between effectors and toxins is critical to understanding 

their role and their benefit to bacteria.  Although both are secreted proteins, the functions, 

and resultant outcomes are different. Toxins can exert effects on host cells without the 

presence of the bacterial source. Furthermore, toxins are more specific, displaying 

singular biochemical activity and targets. Effectors, on the other hand, are not effective in 

the absence of the bacterial source. Proteins delivered to host cells via T3SSs often exert 

effects in concert with other effectors and have a more modular effect on host cell 

processes, rather than radically altering cellular homeostasis (Galan, 2009). 
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3.1.2 Type III Secretion Effector Proteins 

Effector proteins and their roles are of particular interest as they are typically 

encoded and secreted by pathogenic bacteria such as Shigella spp., Yersinia spp., 

Chlamydia spp., Pseudomonas spp., Vibrio spp., Bordetella spp., and pathogenic strains 

of E. coli (Galan & Wolf-Watz, 2006). Escherichia coli and Shigella flexneri are enteric 

bacterial pathogens that cause diarrheal disease. Both of these bacteria possess T3SSs. 

Enteropathogenic E. coli (EPEC) delivers effector proteins to host intestinal epithelium 

that mediate attaching and effacing lesion (A/E) lesion formation. A/E lesions are 

characterized by bacterial attachment, effacement of the brush border microvilli and actin 

pedestal formation (Frankel & Phillips, 2008).  S. flexneri delivers effector proteins that 

play many roles in virulence including invasion, intracellular survival and the inhibition 

of innate immune responses by targeting host signaling pathways (Coburn et al., 2007). 

 

3.1.3 Nle and OspZ Effector Proteins 

Although both Enteropathogenic E. coli and S. flexneri are pathogenic and have 

similar disease consequences, they have evolved different strategies to invade and 

colonize the human gut. EPEC is an extracellular pathogen, while S. flexneri is an 

intracellular pathogen that has the ability to invade the host cell cytoplasm and spread to 

neighboring intestinal epithelial cells (Newton et al., 2010). Shigella is distinct in that it 

occupies the host cell cytoplasm differing from intracellular bacteria that remain inside 

the phagolysosomal compartment. Both encode a type III secretion system that allows for 
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“injection” of effector proteins into host cells. EPEC and Shigella both encode 

homologous effector molecules, NleE and OspZ respectively.  

NleE is a highly conserved 27 kDa T3SS effector protein of A/E pathogens such 

as EPEC (Newton et al., 2010). It has been shown that NleE was required for EPEC-

induced polymorphonuclear (PMN) migration (Zurawski et al., 2008). Additionally, 

infection of mice with an nleE mutant of C. rodentium results in a reduction of both 

bacterial load and colonic hyperplasia, suggesting that nleE plays a role in bacterial 

colonization and the resulting disease (Wickham et al., 2007).   

OspZ of Shigella is a homologue of NleE. There are two forms of the OspZ 

protein. The full length gene product encoded by S. boydii and S. flexneri serogroup 6, 

and the truncated form encoded by S. flexneri serotype 2a. The latter carries a 36 amino 

acid truncation at the C-terminus (Newton et al., 2010). Mutant strains lacking ospZ 

display no discernable difference in their ability to invade, replicate and spread cell-to-

cell in invasion assays. Despite the inflammatory response being equally robust in wild-

type and ospZ mutant strains, there was a marked decrease in the migration of PMNs to 

the site of infection of polarized epithelium, providing evidence for the role of ospZ in 

pathogenicity. It was concluded that OspZ has a role in virulence and more than likely, 

along with effectors OspF and OspC1, has a role in mediating the PMN migration 

phenotype (Zurawski et al.,  2006). 

As NleE and full-length OspZ localize to the host nucleus during infection, it is 

possible that their function is in subverting host immune signaling. To determine NleE 

and OspZ function, Hartland et al. investigated the effect of NleE on NF-kB activation 
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during EPEC infection and the effect of OspZ on NF-kB activation during Shigella 

infection.  

 

3.1.4 Role of NleE and OspZ in the NF-kB Pathway 

NF-κB tightly regulates activation of gene expression during inflammation. The 

most abundant form of NF-κB in mammalian tissues is a p65/p50 dimer that activates the 

expression of multiple cytokine genes in response to inflammatory signals (Perkins, 

2007). Studies have shown that NleE from EPEC prevented nuclear translocation of the 

p65 NF-κB subunit, leading to diminished IL8 expression and a compromised IL-8 

response. Additional data indicates that NleE obstructs nuclear translocation of Rel 

family transcriptional activators and allows nuclear import of transcriptional repressors 

(Newton et al., 2010). The full length OspZ from Shigella flexneri 6 and Shigella boydi 

were also able to inhibit NF-κB activation and p65 nuclear import. The truncated OspZ 

homologue from S. flexneri 2a and a C-terminal 36 amino acid deletion mutant of NleE 

were inactive. Inactivity suggests that the C-terminus is critical to immunosuppressive 

functions; however this sole region was not sufficient for inhibition of p65 nuclear 

translocation or prevention of NF-kB activation (Newton et al., 2010). The absence of a 

functional OspZ protein in S. flexneri 2a is interesting and indicates that OspZ from S. 

flexneri 2a potentially enhances inflammation by inducing polymorphonuclear migration 

across a polarized epithelium via a different mechanism. 
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3.1.5 Transcriptional Regulation of ospZ 

While the activity of the OspZ protein has been characterized (Newton et al., 

2010; Zurawski et al., 2008), the ospZ promoter region remains largely uncharacterized. 

Interestingly, it lies within an unusually long intergenic region on the large Shigella 

virulence plasmid that also contains the promoter of the divergent gene icsP (Fig. 19).  

 

FIGURE 19: Schematic diagramming the location of ospZ and icsP on the S. flexneri 2a 

virulence plasmid. The VirB binding sites are annotated as open arrows. The gray arrow 

represents ORF-2. The line denotes the shared promoter region.  

 

 

IcsP is an outer membrane protease which cleaves the actin-tail assembly protein 

IcsA from the bacterial surface (Egile, d'Hauteville, Parsot, & Sansonetti, 1997; Shere et 

al.,1997). This proteolytic activity has been demonstrated to modulate actin-based 

motility in the host cell cytoplasm and to facilitate efficient intercellular spread of 

Shigella (Egile et al., 1997; Shere et al., 1997; Steinhauer, Agha, Pham, Varga, & 

Goldberg, 1999). Within the intergenic region, shared by icsP and ospZ, lies binding sites 

for the virulence cascade regulator VirB. VirB has been shown to regulate icsP promoter 

activity from these remote sites, which are located over 1 kb upstream of the icsP 

transcription start site. Mutation of these sites by site-directed mutagenesis reduces 
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promoter activity to basal levels. In the presence of VirB, expression levels of a low-copy 

plasmid-borne PicsP-lacZ fusion increase 17 fold, demonstrating that icsP expression is 

VirB-dependent. With respect to ospZ, the VirB binding sites that are required for VirB-

dependent regulation of icsP are located 425 bp upstream of the ospZ open reading 

frame. Considering that these sites are closer in proximity to ospZ, we sought to 

determine if VirB has a role in the regulation of ospZ. In addition to investigating the 

regulation of ospZ, we also chose to identify the ospZ transcription start site and its 

promoter elements. This will be critical to continued studies of ospZ and its 

transcriptional regulation.  

 

3.2 Materials and Methods 

 

 

3.2.1 Bacterial Strains and Media 

 

S. flexneri serotype 2a strain 2457T was isolated by Lt. Col. Oscar Felsenfeld in 

Tokyo, Japan, and is both serologically and biochemically a typical culture of S. flexneri 

(Formal et al., 1958). The isogenic virB mutant strain AWY3 was created by moving the 

kanamycin-resistant locus from YSH6000 virB::Tn5 into the S. flexneri wild-type strain 

2457T by P1 transduction (Adler et al., 1989; Wing, Yan, Goldman, & Goldberg, 2004). 

Strain BS103 is a derivative of 2457T lacking the virulence-associated plasmid, pSf2a140 

(Maurelli, Blackmon, & Curtiss, 1984).  

S. flexneri 2a strains were routinely grown at 37 ˚C in Trypticase Soy Broth 

(TSB) with aeration or on Trypticase Soy Agar (TSA) (TSB containing 1.5% [wt/vol] 

agar). To verify virulence phenotype, Shigella strains were streaked on TSA plates 

containing 0.01% (wt/vol) Congo red (Sigma Chemical Co., St. Louis, Mo.) E. coli 
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strains were grown at 37 ˚C in Luria-Bertani broth with aeration or on LB agar (LB broth 

containing 1.5% [wt/vol] agar). Where appropriate, antibiotics were used in the following 

concentrations in Shigella and E. coli strains, chloramphenicol 25 μg ml
-1

, ampicillin 100 

μg ml
-1

, tetracycline 20 μg ml
-1

.  

 

 

 

3.2.2 Plasmid Constructions 

 

The starting point for this work was pHJW20, which carries the icsP promoter 

region transcriptionally fused to lacZ in pACYC184.  This construct carries 1,232 bp of 

wild-type sequence upstream of the icsP transcription start site with a unique XbaI site 

upstream of the lacZ gene.  

pMIC21 is a pHJW20 derivative lacking all icsP promoter sequences, resulting in 

a promoterless lacZ reporter plasmid (Castellanos et al., 2009). 

pDB05 is a pHJW20 derivative that lacks the icsP promoter region and carries the 

ospZ promoter region. The ospZ promoter region was PCR amplified from the virulence 

plasmid of S. flexneri strain 2457T 2a, using oligonucleotides W152 and W153. The 

resulting product was digested with restriction enzymes SalI and XbaI. pDB05 carries 

sequences 1,613 bp upstream to 32 bp downstream of the ospZ translation start site.  

pDB02 is pDB05 derivative that carries a 3’ truncation of the ospZ promoter 

region. The 3’ promoter insert was PCR amplified using oligonucleotides W152 and 

W154, the resulting product was digested with SalI and XbaI, and ligated into SalI and 

XbaI digested pDB05. 
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The following PospZ-lacZ transcription fusion constructs are 3’ truncations of 

ospZ with 21 bp, 45 bp, and 82 bp removed with respect to the full length ospZ promoter 

region present in pDB05. 

pKLP17 is pDB05 derivative that carries a 3’ truncation of the ospZ promoter 

region. The 3’ promoter truncation insert was PCR amplified using oligonucleotides 

W152 and W201, the resulting product was digested with SalI and XbaI, and ligated into 

SalI and XbaI digested pDB05. 

pKLP18 is pDB05 derivative that carries a 3’ truncation of the ospZ promoter 

region. The 3’ promoter truncation insert was PCR amplified using oligonucleotides 

W152 and W202, the resulting product was digested with SalI and XbaI, and ligated into 

SalI and XbaI digested pDB05. 

pKLP19 is pDB05 derivative that carries a 3’ truncation of the ospZ promoter 

region. The 3’ promoter truncation insert was PCR amplified using oligonucleotides 

W152 and W203, the resulting product was digested with SalI and XbaI, and ligated into 

SalI and XbaI digested pDB05. 

Sequences of oligonucleotides used in plasmid constructions are listed in Table. 4. 

All plasmids were sequenced at the Nevada Genomics Center using the ABI 

BigDye Terminator Cycle Sequencing Ready Reaction Kit v3.1, and plasmids with 

correct sequence were used. 
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Oligonucleotide Sequence 

Wing 152 5'- CCGAGTCGACCAAGTACAAAGAATTTTAATTTCATCG -3' 

Wing 153 5'- CCGATCTAGAACGTTCTTAATATTCTTGATGGGAC -3' 

Wing 154 5'- CCGATCTAGAAAACCAGAACCTCGCTTAGGCC -3' 

Wing 160 5'- TTTGCGCTCCTTCAACTGGGCA -3' 

Wing 201 5'- TTACTTCTAGACCTAAGTGGAATGTCTCCACGG -3' 

Wing 202 5'- TTACTTCTAGACTCAAATATAAACATTACCATGAAC -3' 

Wing 203 5'- TTACTTCTAGAGGACTAATCATTTTAATCTCTATACTC -3' 

M13 5’-GAGCGGATAACAATTTCACACAGG-3’ 

 

TABLE 4: Table of oligonucelotides used to create PospZ-lacZ transcriptional fusion 

plasmids and in primer extension.  

 
 

 

3.2.3 Promoter Activity of PospZ-lacZ Transcriptional Fusions 

Activity of the ospZ promoters were determined by measuring β-galactosidase 

activity using the Miller protocol in strains carrying pDB05 or derivatives. Routinely, 

transcription was analyzed in three independent transformants in early stationary phase 

cultures. Cells were routinely back-diluted 1:100 from 5ml overnight cultures grown with 

shaking at 30 C. Freshly inoculated cultures were subsequently grown for 5 h in TSB at 

37 C. 

 

3.2.4 In silico Analysis of Sequences Upstream of ospZ Open Reading Frame to 

Determine Transcription Start Site 

 

The BPROM program was used to predict the ospZ transcription start site 

(http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfin

db). The BPROM algorithm predicts potential transcription start positions regulated by 

σ
70

 promoters (major E. coli promoter class). BPROM has 80% accuracy for E. coli σ
70

-

dependent promoter recognition.  
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3.2.5 Transcription Start Site Mapping of ospZ 

The ospZ gene transcription start site was identified through RNA extraction as 

described recently (Hensley et al., 2011) using a protocol adapted from (Aiba, Adhya, & 

de Crombrugghe, 1981). Total cellular RNA was extracted using the hot-phenol method 

from 10
9 

cells harvested from early stationary phase cultures (Aiba et al., 1981).  Samples 

were digested with DNase I (Invitrogen) at 37 ˚C for 1 h in DNase I buffer (Ambion) and 

total RNA integrity was verified by formaldehyde gel electrophoresis and ethidium 

bromide staining. Oligonucleotides W153 and W160 were 5’-end-labeled with [γ-
32

P] 

ATP using T4 polynucleotide kinase (Promega). One picomole of 
32

P-labeled primer and 

5 μg of total RNA were dissolved in 30 μl of hybridization buffer (Aiba et al., 1981). The 

annealing reaction was heated at 50 °C for 5 min, incubated at 75 ˚C for 15 min, and 

maintained at 45 °C for a total of 3 h. Samples were ethanol precipitated and cDNA 

generated using Superscript II reverse transcriptase (Invitrogen) for 50 min at 37 °C. 

Reactions were aborted by heating samples to 70 °C for 10 min and RNA was removed 

by digesting with 10 mg/ml RNase A (Sigma) for 30 min at 37 ˚C. Samples were ethanol 

precipitated and finally dissoleved in 5 μl of loading dye [95% formamide, 20mM EDTA, 

0.05% bromophenol blue, 0.05% xylene, Sequenase 2.0 kit (Affymetrix)] prior to 

separation by electrophoreseis on a 6% glycerol tolerant polyacrylamide gel (PAGE) 

containing 7M urea. PAGE gels were transferred to Whatmann paper and vacuum dried. 

Dried gels were exposed to a phosphor screen overnight and visualized using a Typhoon 

9410 variable mode imager (Amersham). A sequencing ladder generated from 

pBluescript KSII+ (Stratagene) and a M13 reverse primer with the Sequenase 2.0 DNA 
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Sequencing Kit (Affymetrix) was routinely used to determine the size of primer extension 

products. 

 

 

3.3 Results and Discussion 

 

3.3.1 In silico analysis of ospZ transcription start site 

 

The BPROM software program was used to determine the transcription start site 

of the ospZ gene. Sequences between the XbaI and SalI restriction sites upstream of the 

ospZ translation start site were analyzed by BPROM. A promoter was predicted to be 

located -110 upstream of the ospZ translation start site. This transcription start site lies 

within orf-2. (Fig. 20). An additional transcription start site was predicted at +10 bp 

downstream of the ospZ translation start site.  

 

 

3.3.2 3’ Truncations to map ospZ transcription start site 

 

In order to test the BROM predicted transcription start site located 110 base pairs 

upstream of the ospZ translation start site, a series of truncations were constructed (Fig. 

17). 3’ truncations were created in order to serially remove BPROM predicted promoter 

elements of the predicted promoter located at 10 bp downstream of the ospZ translation 

start site. The first construct is truncated to the BPROM predicted   TSS that lies within 

the ospZ open reading frame. The second construct is truncated 13 bp upstream of the 

ospZ translation start site, removing the BPROM predicted TSS and -10 sequences. The 

third construct is truncated 50 bp with respect to the ospZ translation start site, removing 

all BPROM predicted promoter elements (Fig. 20).  
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FIGURE 20: Schematic depicting the 3’ truncations of the ospZ promoter used to identify 

the transcription start site of ospZ.  
 

The 3’ truncations of the ospZ promoter were fused to the reporter lacZ gene. 

Constructs carrying ospZ promoter fragments were introduced into wild-type Shigella 

flexneri strain 2457T to determine promoter activity using the β-galactosidase assay. Our 

data show (Fig. 21) that constructs pDB05, pKLP19 and pKLP18 display -galactosidase 

activity. From these data we can conclude that these constructs contain an active 

promoter. The increased activity of pKLP18 relative to pKLP19 and pDB05 is likely due 

to an alteration of the 5’ end of the mRNA transcript in this construct, which could lead 

to enhanced mRNA stability or translation. Constructs pKLP17 and pDB02 have a lack 

of activity, indicating that there is not an active promoter in these constructs. 

Furthermore, these data indicate that the BPROM prediction was incorrect, and that the 
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ospZ promoter lies downstream of this truncation within 50 bp upstream of the translation 

start site.  

 

 

 
FIGURE 21: Activities of wild-type ospZ promoter, 3’ truncations of ospZ, or the 

promoter-less control in wild-type S. flexneri 2a (2457T) and the virB mutant (AWY3). 

Assays were run in triplicate and the means and deviations are shown. 

 

 

 

3.3.3 Transcription Start Site Mapping of ospZ using Primer Extension 

 

As a method to specifically locate the single nucleotide transcription start site of 

the ospZ promoter, and further experimentally test the BPROM predicted promoter, we 

used primer extension analysis. mRNA isolated from the wild-type S. flexneri 2a strain, 

and the same strain carrying the PospZ-lacZ fusion plasmid, pDB05. To reverse 

transcribe mRNA, one of two primers was used. W153 is complementary to the 
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beginning of the ospZ transcript and W160 is complementary to the beginning of the lacZ 

transcript. By selecting two different primers, we could determine if the PospZ-lacZ 

transcriptional fusion affects the point of transcript initiation.  

Using the primer internal to the ospZ open reading frame, W153, a single 66 bp 

product was obtained whether the ospZ promoter was carried by the virulence plasmid or 

the low copy lacZ reporter, indicating that the same TSS is used regardless of the 

sequence background. Using W160, the primer internal to lacZ that binds downstream of 

W153, a single 138 bp fragment was obtained, mapping exactly to the position of the 

TSS identified by primer W153: 28 nt upstream of the ospZ translation start site (Fig. 22).   

These data are consistent with the 3’ truncation analyses of the ospZ promoter 

(Fig. 16), which indicate that the ospZ TSS lies within 50 bp upstream of the ospZ gene. 

In addition, we were able to identify the -10 and -35 sequences (Fig. 19) as a result of 

these experiments. These data indicate that the BPROM predictions were incorrect as 

neither the promoter was predicted to be located -110 upstream of the ospZ translation 

start site or the additional promoter  predicted at +10 bp downstream of the translation 

start site were identified by primer extension analysis.  
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FIGURE 22: Primer extension analysis of the ospZ promoter. The plasmid pDB05 was 

used in conjunction with primers W153 which binds within the ospZ open reading frame 

or Wing 160, which binds within the lacZ gene. Arrows indicate identified transcription 

start site (+1). The sequence identifies the +1 transcription start site of ospZ and 

associated -10 and -35 sequences in bold typeface and underlined. 
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3.3.4 PospZ-lacZ Expression is VirB-dependent 

 

Considering the VirB binding sites are in closer proximity to the ospZ gene than 

to the icsP gene, we sought to determine if ospZ expression was VirB regulated as well. 

Additionally, we sought to establish if there was promoter activity from orf-2. pDB02 is a 

3’ truncation of the ospZ promoter region that truncates to the predicted translation start 

site of orf-2.  

Constructs pDB02 and pDB05 carrying ospZ promoter fragments were introduced 

into wild-type Shigella flexneri strain 2457T or virB mutant S. flexneri strain AWY3 to 

determine promoter activity using the β-galactosidase assay. The wild-type promoter 

present in pDB05 displayed VirB-dependent expression (Fig. 23). In the presence of VirB 

there is a 2-fold increase in the ospZ promoter activity. In pDB02, there is minimal 

promoter activity, as levels are below those of our promoter-less control. These data 

indicate that ospZ expression is VirB-dependent. 

 
FIGURE 23: Activities of wild-type ospZ promoter, 3’ truncation to orf-2, or the 

promoter-less control in wild-type S. flexneri 2a (2457T) and the virB mutant (AWY3). 

Assays were run in triplicate and the means and deviations are shown. 

 
 

 



 

 

79 

 

 

3.4 Conclusions 

 

 

In summary, our data have identified the transcription start site of the ospZ gene 

of Shigella flexneri. We achieved this via several experimental approaches. In silico 

analysis was used to locate potential transcription start sites and their associated -10 and -

35 using the BPROM software which identified two potential promoters. Via 3’ 

truncation of the ospZ promoter region, we were able to narrow down the region that 

possibly contained the transcription start site. Using the β-galactosidase assay, PospZ-

lacZ fusions were used to assay 3’ truncations of ospZ, which indicated that the predicted 

promoters by BPROM were in fact incorrect. Primer extension was used to identify the 

transcription start site of ospZ. The identified transcript maps to 28 nt upstream of the 

translation start site of ospZ. We have determined that an orf-2 transcriptional fusion does 

not display associated promoter activity, suggesting that orf-2 is not a gene. Furthermore, 

ospZ expression is VirB-dependent.  

Overall, this work has characterized the ospZ promoter, which is critical to further 

studies into its transcriptional regulation. It has also demonstrated that ospZ is regulated 

by VirB. Although this study has only addressed promoter activity and not analyzed 

effects of VirB on mRNA or protein levels of ospZ, it can be speculated that the 

difference in VirB-dependent regulation of the icsP and ospZ promoters attests to the 

different roles of these proteins in Shigella pathogenesis. IcsP is a protease that modulates 

the location of outer membrane protein IcsA in the bacterial membrane, forming a polar 

cap. The cleavage of IcsA by IcsP facilitates directed actin-tail formation and cell-to-cell 

spread. In contrast, OspZ of the strain studied (S. flexneri 2a) has been implicated in the 



 

 

80 

 

recruitment of PMNs during Shigella infection of the colonic epithelium.  Other isoforms 

of OspZ modulate host cell processes, having been shown to be immunosuppressive by 

inhibiting NF-kB activation and p65 nuclear import.  

Furthermore, it is interesting that although the VirB binding sites are in closer 

proximity to the ospZ promoter in comparison to the icsP promoter, VirB does not have 

as profound an effect on the expression of ospZ. Whereas in the presence of VirB 

expression levels of a PicsP-lacZ fusion increase 17 fold, there is only a 2-fold increase 

in the promoter activity of ospZ. These observations are a reminder that the canonical 

promoter is not associated with all bacterial promoters, and that the location of 

transcription factor binding sites does not necessarily have a negative correlation with its 

influence on the expression of the targeted gene.  
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CHAPTER 4 

 

 

CONCLUSION 

 

 

 

4.1 Conclusions 

 

Shigellosis is a world-wide health burden that affects millions of people annually. 

Endemic to many parts of the world, Shigella outbreaks have plagued populations 

affected by natural disasters, political upheaval, and recurrent poverty. Considering the 

large monetary and intangible costs of Shigella infections, better insight is needed into 

the mechanisms of Shigella infection and virulence. Studies such as this that address the 

transcriptional regulation of important Shigella virulence factors not only progress the 

overall body of knowledge regarding Shigella pathogenesis and the resulting disease,  

shigellosis, but also furthers understanding of virulence gene regulation. Furthermore, 

such work relates to gene regulation in other enteric bacteria which possess similar 

regulatory systems. 

 

4.1.1 Transcriptional Regulation of icsP: Repression by H-NS and De-Repression 

by VirB-dependent 

 

Transcriptional regulation is one of the key means that bacterial pathogens use to 

respond to environmental stimuli and adapt to host niches. The aim of this work was to 

further characterize the unusual mechanism of VirB-dependent regulation of icsP 

promoter activity from sites over 1 kb upstream of icsP. We sought to better understand 

how icsP expression is controlled by VirB and understand this regulation in the context 
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of H-NS mediated repression. Our studies have demonstrated that there is moderate 

elasticity in the spacing and helical requirements for VirB-dependent regulation from 

remote VirB binding sites. Deletions of 5 or 10 bp did not alter icsP promoter activity, 

however, there was a decrease in icsP promoter activity with the introduction of a 50 bp 

deletion. These VirB binding sites are organized as an inverted repeat, and our work 

shows that there is a natural 1 bp requirement between these sites, as additional base pair 

insertions between the two lead to a loss of VirB-dependent regulation. 

Moreover, our studies addressing the role of intrinsic curvature in the regulation 

of icsP indicate intrinsic curvature does not have a role in VirB-dependent regulation or 

H-NS mediated repression. Base pair substitutions introduced into predicted regions of 

curvature do not abolish VirB-dependent regulation or H-NS mediated repression of icsP 

promoter activity. Furthermore, rotating the H-NS binding sites with respect to each other 

does not reduce H-NS mediated repression. 

Our findings reported here add to our understanding of transcriptional regulation 

of icsP by VirB, contributing to the knowledge of VirB-dependent regulation of virulence 

genes in Shigella species. Furthermore, the characterization of this remote VirB-

dependent regulation improves our understanding of mechanisms transcription factors 

use to regulation gene expression.  

 

4.1.4 Identification of the ospZ promoter and Characterization of ospZ 

Transcriptional Regulation  

 

 

OspZ is a recently characterized effector protein secreted by the Shigella type II 

secretion system. Studies have identified a role of ospZ in the recruitment of 
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polymorphonuclear cells to the site of Shigella infection in the colonic epithelium and in 

the modulation of the host cell inflammatory response (Newton et al., 2010; Zurawski et 

al., 2008). Our studies were aimed at characterizing the ospZ promoter and understanding 

the transcriptional regulation of the ospZ gene. We have identified the transcription start 

and the associated -10 and -35 sequences. Preliminary work into the transcriptional 

regulation of ospZ has shown that promoter activity of a PospZ-lacZ fusion increases 2-

fold in the presence of VirB. Additional work with collaborators analyzed the ospZ 

promoter region in other Shigella species. 57 DNA sequences were analyzed with 25 

sequences were highly conserved at approximately the 97% level.  The promoter 

architecture reported here is represented by all Shigella species in sequences analyzed:  S. 

flexneri, S. boydii, S. dysenteriae, and S. sonnei.  This has provided a foundation for 

future studies of the transcriptional regulation of ospZ and contributed to the overall 

understanding of Shigella virulence gene regulation.  

 

4.1.5 Future Directions 

Here we have provided insight into the VirB-dependent regulation of the icsP 

promoter. To continue this work, future studies should further address the importance of 

the VirB binding site organization to regulation of icsP promoter activity. We have 

established that there is a small spacing requirement for VirB-dependent regulation from 

these sites, but is the organization of the sites suffice to mediate this effect? By placing 

VirB binding sites in closer proximity to the icsP transcription start site, we can begin to 

understand the contribution of binding site organization, in the context of location within 
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the promoter, to transcriptional regulation. Furthermore, the contribution, if any, of other 

VirB binding sites within the promoter should be explored.  

Similarly, additional experiments to address the mechanism of H-NS mediated 

repression should aim to further characterize the interactions of the two H-NS binding 

sites. We see that placing H-NS binding sites in opposite helical orientations has a 

positive effect on icsP promoter activity, are there spacing requirements or other 

limitations? Does altering the H-NS binding sites affect the thermoregulation of icsP 

promoter activity? Additionally, more specific experiments are needed to determine 

which, if any, of the previously described mechanism of H-NS-mediated repression are 

represented at the icsP promoter.  

This work has provided a solid foundation for further studies into the 

transcriptional regulation of icsP by VirB and the transcriptional regulation of ospZ. Our 

work has raised several questions regarding the mechanism of VirB-dependent regulation 

of other Shigella virulence genes and whether transcriptional regulation of bacterial 

promoters from remote distances is found in other systems. 
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