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ABSTRACT 
 

Experimental and Natural Variation in Hovering Flight  
Capacity in Bees, Hymenoptera: Apidae 

 
By 

 
Jason Thomas Vance 

 
Dr. Stephen Roberts, Examination Committee Chair 

Associate Professor of Biological Sciences 
University of Nevada, Las Vegas 

 
In honey bees, the capacity for flight underlies many behaviors which impact fitness 

and longevity, such as the ability to forage or evade predators.  However, flight capacity 

is not fixed across bees’ lifespan, which is punctuated by a suite of physiological 

changes that accompany age and the transition from in-hive to foraging behaviors; thus, 

flight capacity may vary during periods of development, senescence, or in response to 

morphological damage such as wing wear.  This dissertation describes the biomechanics 

and aerodynamics which contribute to the scope of honey bee flight performance, and 

investigates how age, behavioral development, and wing-wear affects flight kinematics 

and maximal flight capacity.  Three experiments were performed using high-speed 

(4347-6000 fps) digital videography and variable-density atmospheres, ranging from air 

(79%N2, 21%O2; 1.41 kg m-3) to heliox (79%He, 21%O2; 0.41 kg m-3):  1) the detailed 

kinematics of honey bee foragers during hovering in air, performing simple enhanced-

lift maneuvers, and hovering in heliox were compared;  2) I investigated the effects of 

age and behavioral development on the kinematics and flight capacity of honey bee 
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nurses and foragers; 3) I investigated the effects of symmetric and asymmetric 

experimental wing wear on the kinematics and flight capacity of honey bee foragers.  

Mature foragers vary aerodynamic force production almost exclusively by modulating 

wing stroke amplitude and holding wingbeat frequency constant, which yields greater 

wing angular velocities.  Young (precocious) foragers and over-aged foragers increase 

stroke amplitude when challenged, however they are unable to maintain wingbeat 

frequency.  Thus, their maximal flight capacity is impaired due to decreased wing 

angular velocity, relative to typical-aged foragers.  Nurse bees demonstrate impaired 

kinematics similar to young foragers, but they are constrained by heavier body masses 

which further limits maximal flight capacity.  Bees maintained robust flight in air in 

response to loss of wing area (wing wear), however maximum wingtip velocity and 

maximal flight capacity decreased in direct proportion to wing area.  Bees with 

asymmetric wear produced lower maximum wingtip velocity than non-worn and 

symmetrically-worn groups, and despite less total wing area loss than the symmetric 

group, asymmetric wear caused a greater impairment in maximal flight capacity. 
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PREFACE 

“Tout d'abord pouss'e par ce qui fait en aviation, j'ai applique' aux insectes les 

lois de la resistance del'air, et je suis arrive' avec M. Sainte-Lague a cette conclusion que 

leur vol es impossible.”  August Magnán (1934). 

Translated: “First prompted by the fact of aviation, I have applied the laws of the 

resistance of air to insects, and I arrived, with Mr. Sainte-Lague, at the conclusion that 

their flight is impossible.” 

“Aeronautics in its traditional form is usually presumed to have started as an 

engineering discipline somewhere in historical time between the mythological 

experiments of Daedalus and his ill-fated son, Icarus; and the dreams and schemes of 

Leonardo da Vinci during the Italian Renaissance, which eventually led to the Wright 

brothers’ success a century ago… “aeronautics” has a far richer and longer (though less 

disciplined) history extending over a period of about 300 million year beginning with 

the evolution of the ability of insects to fly. With the advent of the success of the early 

20th Century pioneers, technologists quickly turned their attention from the inspirations 

and lessons provided by natural models of flying machines to a more practical quest for 

increasingly dramatic improvements in speed, range and altitude performance, far 

beyond the limits of what muscles and flapping wings could provide.  Thus a field of 

further productive inquiry was left to a few amateur aeronauts, eccentrics and 

biologists.”  John McMaster (2003). 
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I suppose my interest in ‘how stuff works’ has never been questioned, from my 

earliest experiments with bobby-pins and the electrical-outlet as a young child, to 

dismantling every motorized toy I was ever given, to dismantling almost every car I’ve  

owned (much to the chagrin of my wife and advisor).  And probably because of these 

inclinations, the earlier years of my doctoral studies were challenged by my tendency to 

focus on intricate mechanisms of insect flight rather than the ‘big picture’.  I would like 

to acknowledge those people who facilitated my interests and ultimately guided my 

professional development from that of an eccentric, simply fascinated by the 

mechanisms of flight, to a biologist.  First, I thank John Mercer for offering me the 

opportunity to pursue independent research while I was an undergraduate student at the 

University of Oregon.  You did so even after the department-office warned you about 

my abysmal GPA; for that rare opportunity I am truly grateful.  I thank Douglas 

Altshuler, Will Dickson, and Michael Dickinson for our earlier collaboration which 

contributed greatly to my understanding of insect flight aerodynamics.  Stephen Roberts, 

I’m grateful for the research tools, guidance and mentorship you’ve provided throughout 

these last six years.  However, I’m most thankful that you never accepted “good 

enough”, or what I considered to be my “best” at that moment; you never backed down, 

so thank you for pushing me to meet those greater expectations.  I thank my loving wife, 

Leanne, for her immeasurable patience, support, and sacrifice.  Finally, for Emma and 

Anthony, when you find that question in your life’s journey, I pray you will exhaust all 

efforts in pursuit of its answer. 
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CHAPTER 1 

 

INTRODUCTION 

Purpose 

A central challenge to all animal life is the optimization of those behaviors which 

impact longevity and fitness, such as the ability to forage and hunt, compete for a mate, 

and evade predators.  The efficacy of these behaviors depends upon individual 

locomotor capacity, whether measured as metabolism/energetics, locomotor speed, 

endurance, maneuverability, or burst performance.  However, such capacities are not 

fixed across an animal’s lifespan.  Locomotor capacity typically develops and improves 

early in life (Jayne and Bennett 1989; Vanberkum et al. 1989; Marden et al. 1998; Hale 

1999; Irschick 2000; Domenici 2001; Roberts and Elekonich 2005a), plateaus during a 

middle-aged period (Schippers et al. 2006), and then senesces later in life (Weladji et al. 

2002; Ridgel et al. 2003; Grotewiel et al. 2005; Ridgel and Ritzmann 2005).  

Furthermore, injury or damage to the locomotor apparatus can decrease performance, 

deviating from general, age-related trajectories (Bateman and Fleming, 2006; Cartar, 

1992; Congdon et al., 1974; Fleming and Bateman, 2007; Fleming et al., 2007; Francis 

and Wood, 1989; Higginson and Barnard, 2004; Punzo, 1982; Robinson et al., 1970; 

Smith, 1992).  The study of locomotion and the underlying biomechanics, particularly 

across an animal’s life-history and in the context of ecologically-relevant constraints, 

can identify many mechanisms which explain how certain behaviors are governed.  In 
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this dissertation, I investigated how the flight biomechanics and locomotor capacity of 

the European honey bee (Apis mellifera) is affected by development, senescence, and 

wing damage.   

For the honey bee, flight capacity is a major contributor to the efficacy of foraging 

behavior.  Their ability to fly long distances, evaluate the quality of nectar and pollen 

from several inflorescences during a foraging bout, and return these foraging loads to 

the colony contributes to the overall fitness of the colony.  As such, foraging behavior 

generally appears to be regulated so that colony fitness is optimized.  For example, 

foragers have the capacity to carry large nectar loads, which require a disproportionate 

amount of energy to carry, relative to the energy that quantity of nectar contributes to 

the colony.  Thus, foragers carry small nectar loads and maximize foraging economy 

(energy gained from nectar relative to energy expended during the foraging bout); 

(Schmid-Hempil et al. 1985). Conversely, when pollen stores within the colony are 

depleted (or removed), foragers will increase the number of foraging bouts and load-size 

carried in order to replenish those stores (Fewell and Winston, 1992).  The economy of 

this high foraging intensity is low, and imparts a high cost to the individual forager.  By 

recovering these pollen stores, brood production and colony fitness can be maintained.  

Despite well-described individual- and colony-level dynamics, relatively little is known 

about the biomechanics and flight capacity that underlies foraging behavior.  Even less 

is known about how factors such as development, senescence, or morphological damage 

(wing wear) affect flight capacity.  These factors impose marked locomotor constraints 

throughout the life-histories of many organisms, including, I hypothesized, honey bee 

foragers.  Thus, the purpose of my dissertation is to describe the kinematics of varying 
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aerodynamic force production in honey bee foragers, and investigate how maximal 

flight capacity is affected by age, behavioral development, and wing wear. 

 

The Honey Bee Model System 

The European honey bee is a holometabulous insect that spends its larval and pupal 

life within its cell in the honeycomb, and ecloses from its cell as an adult.  Adult honey 

bees proceed through behaviorally-defined life-history stages as they age, a process of 

behavioral development called ‘temporal polyethism.’  Bees perform in-hive tasks, such 

as nursing and hive maintenance, during the first 2-3 weeks of adult life, after which 

they typically transition to tasks outside the hive such as foraging.  This transition from 

in-hive to foraging behaviors generally occurs in an age-dependent fashion.  However, if 

colony demographics change, the pace of behavioral development can be delayed or 

accelerated.  For example, if a colony lacks a sufficient population of nurses to tend 

brood, young bees will continue to perform nursing behavior and delay their transition 

into foraging behavior (Robinson et al. 1989).  Conversely, if there is a deficiency of 

foragers then young bees will begin to forage precociously, as early as 5-days of age 

(Robinson et al. 1989; Huang and Robinson 1992).  This phenomenon contributes to the 

tractability of this model system, as colony demographics can be manipulated to 

separate the effects of age and behavioral development. 

Honey bee foragers are the superstar athletes of the animal kingdom.  Their mass-

specific metabolic rates (up to 800 W kg-1) are three orders of magnitude greater than 

the best human endurance athlete, and are the highest ever recorded in the animal 

kingdom (Roberts and Harrison, 1999).  Bees can produce aerodynamic forces in excess 
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of 200% of their body weight, such as during undertaking where deceased bees are 

carried away from the colony.  And in a typical day of foraging, bees may contract their 

flight muscle over 5 million times; this foraging routine may persist for 2 weeks or more 

(Winston, 1987; Harrison et al. 1996).  Although these feats highlight bees’ physical 

prowess and the demands necessary for successful foraging behavior, one might 

hypothesize that such a highly-tuned system would be sensitive to the timing of 

development and onset of senescence, or the wear and tear of the wings that accumulates 

with use during flight.  However, before we can evaluate how honey bee flight 

performance is affected by these ecologically-relevant factors, we must first understand 

exactly how bees fly. 

 

Kinematic Mechanisms of Varying  

Aerodynamic Forces 

In 1934, after applying simple, fixed-wing aerodynamic theory to the small wings of 

bees, August Magnan and his colleague Andre Sainte-Lague concluded that the flight of 

bees was impossible (Magnan, 1934).  This claim illustrated the deficiencies in our 

understanding of aerodynamics at the small scales employed by insects, which 

continued throughout much of the 20th century.  Progress was made by Weis-Fogh and 

Jensen (1956) through their ‘quasi-steady’ analysis, where they applied steady-state 

aerodynamic principles to the instantaneous velocity and geometry of the locust wing 

through its wingbeat.  In 1984, Charles Ellington revised the ‘quasi-steady’ model to 

incorporate other ‘unsteady’ aerodynamic mechanisms, which included the unique 

vorticity produced by insect wing strokes (which differs from that of fixed wings).  
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From the early 1990’s through today, Michael Dickinson and his colleagues (Altshuler, 

Birch, Fry, Gotz, Lehmann, Sane, Wang, etc.) have contributed greatly to the revision of 

‘quasi-steady’ and ‘unsteady’ aerodynamic mechanisms, primarily through high-speed 

videography, detailed insect flight kinematics, analytical aerodynamic modeling, and the 

introduction of dynamically-scaled robot modeling.  Dynamically-scaled modeling has 

become a valuable tool for the identification and verification of the aerodynamic 

mechanisms employed by hovering insects, especially by allowing the visualization of 

fluid flow and vorticity, and the measurement of the resulting aerodynamic forces on the 

wings of the robot model. 

In 2005, preliminary data from the honey bee hovering kinematics I present in 

Chapter 2 were analyzed using the dynamically-scaled robot model in the Dickinson 

Lab at the California Institute of Technology (Altshuler, et al. 2005).  We found that, 

similar to the well-studied fruit fly (Drosophila melanogaster), honey bees produce mid-

stroke forces that are associated with the aerodynamic mechanism of ‘delayed stall’, a 

phenomenon that occurs when a vortex forms on the leading edge of the wing as the 

wing translates across its stroke.  However, unlike D. melanogaster, honey bees’ high 

frequency, low amplitude wing strokes produced significant forces towards the ends of 

each wing stroke via wing rotational mechanisms, and after the transitions of each stroke 

through wake capture where the wing encounters the vortices shed by the previous wing 

stroke.  Increases in stroke amplitude, such as those associated with ascending flight or 

hovering in hypodense atmospheres, yields increased wing velocity and mid-stroke 

aerodynamic force production (Altshuler et al. 2005).  This dynamically-scaled robot 

model yielded great insight into honey bee hovering aerodynamics, however it utilized 
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an artificially-generated stroke plane and wing angles of attack.  Here, I address this gap 

in our understanding of honey bee flight kinematics and I describe the precise wing 

kinematics used by honey bees during hovering in air, and compare those kinematics 

used during simple, enhanced-lift maneuvers (ascending and descending) and hovering 

in hypodense heliox, a normoxic gas that is 1/3 the density of air.  The purpose of this 

experiment was to identify the kinematic mechanisms bees use to vary aerodynamic 

force production. 

 

The Effects of Age and Behavioral Development 

on Flight Performance 

The development of locomotor capacity is strictly confined to the adult stage in 

honey bees, in contrast to other animals where development occurs through 

morphological growth during juvenile stages.  However, even as adults, a broad suite of 

biochemical changes facilitate the attainment and development of flight ability. For 

example, 1-day-old bees (e.g. 1-day post-eclosion) are unable to fly, and 2-day old bees 

are limited to hovering flight (Roberts and Harrison, 1999).  Increased thoracic glycogen 

levels, pyruvate kinase and citrate synthase activity facilitate a 200% increase in 

metabolic rate between 1 to 2 days of age (Fewell and Harrison, 2001; Harrison 1986; 

Harrison and Fewell, 2002; Moritz, 1988; Neukirch, 1982).  Cytochrome concentrations 

increase by an order of magnitude from 1 to 20 days of age (Herold 1963), and the 

transition from in-hive to foraging behavior is accompanied by increased thoracic 

glycogen and citrate synthase levels, and increased Troponin T 10a expression (Harrison 

1986; Fewell and Harrison 2001; Schippers et al. 2006).  I predicted that flight capacity 
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should develop concomitant to physiological development.  However, it was unknown 

whether flight capacity develops along a fixed, age-related trajectory, or if the plasticity 

of the honey bee behavioral transitions can accelerate this development. 

The sustained flight which occurs during bouts of foraging is metabolically 

expensive.  In house flies, Musca domestica, prevention of flight behavior greatly 

increases longevity and decelerates age-dependent oxidative stress, including the accrual 

of mitochondrial peroxide, carbonylation of select mitochondrial enzymes, and 

mitochondrial DNA damage (Sohal and Buchan 1981; Agarwal and Sohal 1994; Sohal 

and Dubey 1994; Yan et al. 1997; Yan and Sohal 1998, 2000).  Thus, flight capacity 

cannot be maintained indefinitely and should progressively senesce due in large part to 

accumulation of oxidative stress and reduction in stress resistance (Sun and Tower 1999; 

Vieira et al. 2000; Amdam and Omholt 2002; Golden et al. 2002; Yoon et al. 2002; 

Martin and Grotewiel 2006; Seehuus et al. 2006; Yu and Chung 2006).  To date only a 

small number of laboratory studies have experimentally linked expensive aerobic 

behaviors to longevity and its mechanistic underpinnings, but no research has 

experimentally linked the variation in the onset and duration of natural behaviors to 

development and functional senescence in a free-living organism.  The purpose of this 

experiment was to investigate how age and behavioral development independently 

affects maximal flight capacity in honey bees. 

 

The Effects of Wing Wear on Flight Performance 

Mechanical damage or wear to the locomotor apparatus can result from encounters 

with predators, locomotion in physically heterogenous environments, and aging via 
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prolonged use and senescence. In flying insects any wing damage or functional 

impairment of these airfoils would be permanent.  The loss of wing area, changes in 

mechanical properties such as stiffness, or symmetry of the wing pair can impair flight 

performance and ultimately reduce fitness.  Foraging bees accumulate wing wear and 

damage with flight experience (Higginson and Barnard, 2004), and both natural and 

experimentally induced wing wear reduces longevity (Cartar, 1992).  Wing wear also 

impacts foraging behavior through a reduction in the quantity, quality, and efficiency of 

nectar foraging (Higginson and Barnard, 2004).  Despite increased wingbeat frequency, 

coefficient of lift, and induced aerodynamic power, wing wear does not affect metabolic 

cost (Hedenstrom et al. 2001).  Instead, wing wear may impact maximal flight 

performance, which in turn may affect foraging behavior and the ability to evade 

predators (Cartar, 1992; Hedenstrom et al., 2001).  To date, no research has identified a 

mechanism which unequivocally links wing wear to mortality.  The purpose of this 

experiment was to investigate how variation in the magnitude and type (symmetric vs. 

asymmetric) of artificially-induced wing wear affects the kinematics and flight capacity 

of honey bees.  Here, I present an aerodynamic power budget that describes how the 

reduction in maximal flight capacity impacts the aerodynamic power available for 

carrying foraging loads and the maneuverability necessary for evading predators. 
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CHAPTER 2 

 

KINEMATIC MECHANISMS OF VARYING 

AERODYNAMIC FORCES 

Abstract 

During hovering flight, animals can increase the net aerodynamic force per stroke by 

increasing wing stroke velocity through modulation of wingbeat frequency, wing stroke 

amplitude, or both. However, aerodynamic forces will also vary with other kinematic 

features including angle of attack, timing of wing rotation, wing contact, and the pattern 

of deviation from the primary stroke plane. Most of the kinematic data available for 

flying animals are average values for wing stroke amplitude and wingbeat because these 

features are relatively easy to measure, but it is frequently suggested that the more subtle 

and difficult to measure features of wing kinematics can explain variation in force 

production for different flight behaviors. Here, we tested this hypothesis with high-speed 

(6,000 fps) recording and digitization of honey bee (Apis mellifera) wing kinematics for 

bees hovering in air, a hypodense gas (heliox: 21% O2, 79% He), and during simple, 

enhanced-lift maneuvers in air.  Bees employed low stroke amplitudes (86.7±7.9°) and 

high wingbeat frequencies (226.8±12.8 Hz) when hovering in air.  When performing 

these maneuvers or hovering in heliox, bees increased stroke amplitude by 30-45%, 

which yielded a much higher wing angular velocity relative to that during simple 

hovering in air.  Among the three flight conditions, there were no statistical differences 
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in wing stroke deviation, angle of wing rotation, wing rotation velocity, angle of attack, 

or even in wingbeat frequency. Thus, our data indicate that, at least for honey bees, 

modulation of wing angular velocity is sufficient, and that the overall time course of 

wing angles is highly preserved across a diverse set of flight behaviors. 

Order of authors: Jason Vance, Douglas Altshuler, Will Dickson, Michael 

Dickinson, Stephen Roberts. 

 

Introduction 

Among flying animals only insects and hummingbirds are capable of sustained 

hovering. The reciprocation of their wings at high frequencies affords high 

maneuverability, rapid ascent, and carriage of loads greater than body mass, a feat that is 

routinely accomplished by many insects, such as during undertaking in honey bees, 

blood-feeding in mosquitos and prey carriage in cicada-hunting wasps.  Thus, many 

hoverers possess substantial aerodynamic reserves beyond baseline requirements for 

stationary hovering.  Studies of insects and hummingbirds filmed from single 

perspectives and at low sampling rates suggested that such reserves are realized at least 

in part by modulation of kinematic parameters such as wingbeat frequency (n) and wing 

stroke amplitude (Φ) (Altshuler and Dudley, 2003; Dudley, 1995; Lehmann, 2004; 

Roberts et al., 2004) that contribute to the angular and translational velocity of the wing 

and lift produced via delayed stall (Dickinson et al., 1999; Sane, 2003; Sane and 

Dickinson, 2002). However, several other possible strategies exist for varying hovering 

flight forces, such as changing angle of attack, wing rotation velocity/timing, and ‘clap 

and fling’ (Sane, 2003).  This study tests for such mechanisms via three-dimensional, 
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high speed videography of honey bees hovering in hypodense vs. normodense 

atmospheres and performing simple maneuvers requiring elevated lift.  

Several animals increase wing angular velocity (ω) and translational velocity (Ut) to 

enhance lift during hovering flight, which can be accomplished by modulating Φ and/or 

n.  For example, hummingbirds (Archilochus colubris) and carpenter bees (Xylocopa 

varipuncta) increase both Φ and n to augment lift during load-lifting or flight in 

hypodense heliox (a gas mixture consisting of 79% helium and 21% oxygen that is 

roughly one-third the density of sea-level air),  relative to values for individuals 

hovering in air (Chai, 1997; Chai and Dudley, 1996; Altshuler and Dudley, 2003; 

(Roberts et al., 2004)).  Three species of orchid bees (Apidae: Euglossini) also increase 

Φ by 30-45% during hovering in heliox, however they hold n constant (Dudley 1995).  

When challenged to increase total flight force in a tethered flight simulator, Drosophila 

melanogaster increase both Φ and n up to the point where they reach their ceiling of 

power output, after which further increases in Φ are accomplished only with 

concomitant decreases in n (Lehmann & Dickinson, 1997).  Even during this decrease in 

n, the increase in Φ is sufficient to increase ω and Ut.  Thus, these different strategies all 

increase aerodynamic forces, which scale in proportion to Ut
2.  However, it is not known 

whether other kinematic mechanisms also contributed to the increased aerodynamic 

forces in these studies.   

The range of kinematic mechanisms available to flying insects is especially observed 

during turning maneuvers. For example, Drosophila use transient, bilateral asymmetries 

in Φ  and stroke plane angle to generate torque about the yaw axis during simple turning 

maneuvers (saccades), (Fry et al., 2003).  Dragonflies can vary wing angle of attack to 
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perform more complex roll and yaw turns (Alexander 1986).  Even for hovering with 

pollen loads up to 18% of body mass, honey bees (Apis mellifera) maintain constant Φ 

and n (Feuerbacher et al., 2003), which suggests that honey bees may be capable of 

modulating angle of attack or non-steady mechanisms, such as wing-rotational effects, 

to augment lift for carrying light to moderate pollen loads.  These examples highlight 

basic kinematic strategies used by insects to vary aerodynamic forces, but it is unknown 

whether honey bees or other insects vary multiple kinematic parameters (such as stroke 

plane angle, angle of attack or wing rotation velocities) to control hovering lift forces.  I 

addressed this issue in this study by using high-speed video analysis to describe the 

wing movements of honey bees during hovering flight in air and while accommodating 

the aerodynamic challenges of simple maneuvers in air and hovering in heliox. 

 

Materials and Methods 

Collection and Filming of Bees 

European honey bees (Apis mellifera) were collected as they exited a hive at the 

University of Nevada Las Vegas campus apiary and were immediately transferred to an 

8 liter transparent acrylic flight chamber in an adjacent laboratory.  A sucrose solution 

and pollen grains were placed on a pedestal centrally located within the flight chamber, 

which provided the honey bees with sustenance and created a focal target for video 

recording.  Three high-speed video cameras (Photron Ultima APX; San Diego, Ca, 

USA), oriented orthogonal to each other, recorded honey bee flight at 6000 frames per 

second with a resolution of 512 x 512 pixels.   Two to three bees occupied the flight 

chamber during any given collection run, but only one bee was in flight during any 
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recorded trial.  Bees were monitored until an acceptable sequence of hovering flight 

(e.g. a bee was recorded in focus in all three cameras) was recorded in one or two flight 

conditions, the bees demonstrated lethargy, or 30 minutes elapsed.  Body mass and wing 

morphology for all honey bees were measured after each collection run. 

Flight Conditions 

Bees were filmed during flight in a normodense atmosphere (air; 21% O2/79% N2; 

1.21 kg m-3) under three conditions: sustained hovering (N = 5), ascending flight (N = 

3), and during the decelerations at the end of descending flight (N = 1).  Ascent and 

deceleration from descent represent a class of simple, symmetric maneuvers during 

which we predicted the bees would require kinematic expenditures and flight forces 

above those required for simple hovering in air.  In addition to bees hovering and 

performing enhanced-lift maneuvers in air, we filmed bees while hovering in a 

hypodense atmosphere (heliox; 21% O2/79% He; 0.41 kg m-3; N = 4).  Although heliox 

is approximately 1/3 the density of air, both atmospheres are normoxic.  The gasses 

were mixed using calibrated bi-metal thermo-actuated valves (Tylan FC-460; San 

Diego, Ca, USA), metered by an electronic flow controller (Sable Systems MFC-4; Las 

Vegas, Nv, USA) at a total flow rate of 1 L min-1 during the video acquisition period.  

Video Processing and Kinematic Analysis 

Digital video recordings were processed and analyzed using methods detailed by 

Altshuler et al (2005).  Flight sequences were analyzed as individual bitmap images 

using custom software (Fry et al., 2003) written in Matlab (The Mathworks; Natick, Ma, 

USA).  Prior to the analysis of each trial, the focal space was calibrated using anatomical 

landmarks on the bee that were visible from all three cameras.  The kinematic analysis 
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of each trial utilized six landmarks that were digitized using at least two camera views: 

head, tip of abdomen, left and right wing hinges, and left and right wing tips.  To 

determine the angle of wing rotation (α), I superimposed a wire-frame wing image over 

the bee wing in all three camera views and rotated the wire-frame about the long axis 

(wing hinge to wing tip) until optimal overlap was achieved. The mean stroke plane 

angle (βr) was calculated as the average of the angle of the wing tip vectors across each 

wing stroke (β) relative to the body angle (χ).  Wing position angle (φ) within the stroke 

plane and the deviation angle (θ) from the stroke plane were analyzed using a principle 

component analysis to calculate a rotational adjustment for each bee that would 

standardize the body coordinates; this rotational adjustment yielded φ, θ, and α relative 

to the body.  Wing angular velocity (ω) was calculated from φ, θ, and n.  The geometric 

wing angle of attack (αr) was calculated as the wing rotation angle (α) relative to the 

angle of wing translation.  The rate of change of wing rotation angle was calculated as 

wing rotational velocity (α̇  ).  A cubic spline was used to smooth the data.   

 

Results 

Wing length (9.19 ± 0.11mm; mean ± S.D.; N = 23), area (52.7 ± 1.5 mm2) and 

aspect ratio (6.42 ± 0.17) were consistent across all bees collected for the study, 

however body mass varied greatly (117.5 ± 26.6 mg) and contributed to considerable 

variation in wing loading (21.9 ± 5.0 N m-2).  I did not record individual body mass prior 

to each collection run and the bees were free to consume the sucrose solution and pollen 

grains that were provided in the flight chamber. Therefore, it is unknown how much 

mass each bee gained while inside the flight chamber.  Bees Φ and n during hovering in 
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air and heliox (Table 2.1) are consistent with those kinematics used by mature foragers 

under similar conditions (Vance et al. in press).  Thus, I am confident that the 

kinematics represent the lighter individuals of the 2-3 bees which were present in the 

flight chamber during a given trial, and were likely of lesser body mass at the time of 

video recording than when collected and weighed.     

The kinematics of honey bees hovering in air and heliox, and performing simple, 

enhanced-lift maneuvers are characterized by high frequency wingstrokes (n = 228.6 ± 

17.8 Hz)  that were biased dorsally (Figs 2.1 and 2.2; φ).  The downstroke was planar 

and nearly horizontal, and the upstroke was “U” shaped (θ, Figs 2.2 and 2.3).  The 

combination of these patterns for φ and θ resulted in a wingtip trajectory shaped like 

‘Cheshire cat-like grin’ (Fig 2.3) where ω (Fig 2.4) never reached zero.  Honey bees 

hovered in air with relatively short Φ (86.7 ± 7.9°) and increased Φ by 30% during 

simple, enhanced-lift maneuvers, and by 47% during hovering in heliox.  Despite no 

significant differences in n across the three conditions, the increase in Φ contributed to 

greater ω (Fig 2.4) during simple, enhanced-lift maneuvers and hovering in heliox as 

compared to air.  During enhanced-lift maneuvers, ω was 18% greater during the 

downstroke (ωdown = 749.0 ± 82.7 rad sec-1) and 25% greater during the upstroke (ωup = 

817.3 ± 162.2 rad sec-1) than bees hovering in air.  Likewise, during hovering in heliox 

ω was 46% greater during the downstroke (ωdown = 927.7 ± 160.3 rad s-1) and 45% 

greater during the upstroke (ωup = 949.6 ±153.4 rad s-1) than bees hovering in air.  There 

were no significant differences in the maximum α, α̇  , αr, and αr averaged across the 

wingstroke (αr, avg) across the three conditions; however, αr, avg during the downstroke 

was greater than the during the upstroke for all bees analyzed.  There were also no  
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Table 2.1: Kinematic maxima during hovering in air and heliox, and maneuvering in air. 

 
Air 

(N=5) 
Heliox 
(N=4) 

Maneuver  
(N=4) 

n 226.8±12.8 238.6±11.4 221.1±26.6 
Φtotal 86.7±7.9 127.5±25.6 112.4±17.9 
φdorsal 72.8±5.7  90.3±12.1  84.4±10.0 
φventral 13.9±3.6 37.2±14.3 28.1±8.1 
Θdown 4.8±1.2 5.1±1.9 4.8±0.9 
Θup 16.1±3.0 14.1±4.7 14.1±4.7 
αdown 61.2±4.8 64.6±6.2 64.6±3.5 
αup 68.1±5.7 62.3±1.6 67.9±5.4 
αr, down 26.1±3.2 27.1±2.0 24.1±1.8 
αr, up 27.9±4.7 28.7±5.2 25.9±3.6 
αr, avg down 45.6±3.6 42.8±3.6 42.6±1.0 
αr, avg up 36.6±2.1 40.3±3.5 36.6±2.4 
ωdown 635.5±58.5 927.7±160.3 749.0±82.7 
ω up 653.6±88.4 949.6±153.4 817.3±162.2 
α̇  dorsal 2546±197 2831±298 2827±377 
α̇  ventral 2564±128 2514±219 2483±340 
χ 39.6±3.7 53.3±19.0 38.5±9.6 
βr 44.5±2.8 50.4±10.9 41.8±6.7 
Re 1163±102 526±75 1419±180 
Vvert 0.01±0.04 0.01±0.09 0.11±0.15 

 
Units, mean±S.D.: n, Hz; Φ, Θ, α, χ, βr, degrees; α̇  , rad sec-1; ω, rad sec-1; 

Re (dimensionless); Vvert, m sec-1. 
 

 

Table 2.2:  Results of one-way ANOVA for kinematic response to hovering 

in air and heliox, and maneuvering in air (condition). 
 Condition  

 F2,10 P 

n 1.02 0.397 

Φtotal 6.08 0.019* 

φdorsal 4.13 0.049* 

φventral 7.26 0.011* 

χ 1.77 0.220 

βr 1.49 0.271 

Significant results in bold.                                                                                                                    
* denotes difference between bees hovering in air and                                  
heliox; Tukey’s HSD. 
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Table 2.3: Results of two-way ANOVA for kinematic response to hovering in air and 
heliox, and maneuvering in air (condition); and for kinematic differences between the 
downstroke and upstroke (stroke).  There were no significant Condition x Stroke 
interactions. 

 Condition  Stroke  
 F2,22 P F1,22 P 
Θ 0.49 0.618 83.2 <0.001 
α 0.60 0.555 2.19 0.154 
αr 1.44 0.259 1.56 0.225 
αr, avg 0.57 0.573 16.9 <0.001 
ω 14.3     <0.001* 0.58 0.453 
α̇   0.52 0.604 3.46 0.076 

 Significant results in bold. 
    * denotes significant difference between all three groups. 
 
 
 
significant differences in body angle (χ) or the stroke plane angle relative to the body 

(βr) across the three conditions; however, 3 of the 4 bees hovering in heliox had 55% 

greater χ than bees hovering in air. 

 

Discussion 

Hovering flight requires mass-specific metabolic rates among the highest ever 

recorded in the animal kingdom (Coelho and Mitton, 1988; Harrison, 1986; Roberts et 

al., 2004; Suarez et al., 2005; Suarez et al., 1996; Withers, 1981).  Even so, hovering 

animals must possess significant aerodynamic reserves to allow for load-carriage, 

accommodating atmospheric perturbations, and maneuvering.  Although the kinematics 

of hovering flight are complex, it appears that many animals modulate aerodynamic 

output by manipulating a reduced set of parameters, primarily n and Φ, to control ω 

(Altshuler et al., 2005; Altshuler and Dudley, 2003; Altshuler and Dudley, 2004; Chai et 

al., 1997; Dudley, 1995; Lehmann, 2004; Lehmann and Dickinson, 1997).  To meet the 

demands of enhanced-lift maneuvers and hovering in heliox, honey bees augment  
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Figure 2.1: Wing stroke reversals and body angle in honey bees 
during hovering in air (A), simple, enhanced-lift maneuvers in 
air (B), and hovering in heliox (C).  Columns (from left to right) 
are ventral stroke displacement (φventral), dorsal stroke 
displacement (φdorsal), and body angle (χ). 

 
 
 
aerodynamic force production almost exclusively by increasing Φ while maintaining 

constant n (Fig 2.4), a strategy used by other hymenopterans (Dillon and Dudley, 2004; 

Dudley, 1995; Roberts et al., 2004).  As Φ and ω increased, the aerodynamic force 

profile is affected by large increases in mid-stroke lift and, to a lesser degree, by 

increases in lift associated with the stroke transitions (Fig 2.5; Altshuler et al., 2005).  

Honey bees are able to vary Φ by 47% (Figs. 2.1 and 2.2), and maximum Φ during 

hovering in heliox were similar to those of X. varipuncta (Roberts et al., 2004) and 

Euglossine spp. (Dudley, 1995), which suggests that these bee species may share 

common thorax and wing-hinge morphologies that limit ventral excursion and overall 

range of motion.  The ability to vary Φ across such a large range contributes to a 

A 

B 

C 
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Figure 2.2: Mean kinematic patterns of wing stroke amplitude (φ), deviation from the 
mean stroke plane (θ), and wing rotation angle (α) during hovering in air (blue trace), 
simple maneuvers in air (green trace), and hovering in heliox (red trace). The kinematic 
patterns are normalized across 100% of the wingbeat cycle and averaged across all 
wingbeats per bee per group. The shaded plots represent the mean difference between 
hovering and maneuvering in air (green) and the mean difference between hovering in 
air and heliox (red). The grey and white columns indicate the downstrokes and 
upstrokes, respectively.  
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substantial aerodynamic reserve capacity that allows these foraging bee species to 

accommodate the perturbations of a dynamic environment even when laden with pollen, 

nectar or water, or when transporting dead bees away from the colony (undertaking).   

Despite no significant differences in the minima, maxima, or average values for 

several kinematic parameters, there was discernable variation in the patterns of α, α̇  , 

and αr across the entire wingbeat cycle.  During hovering in air, the timing of maximum 

α̇   had a tendency to be delayed relative to the dorsal stroke reversal, whereas, during 

hovering in heliox, the timing of maximum α̇  was advanced relative to the ventral stroke 

Figure 2.3: Mean pattern of the wingtip trajectory (in two dimensions) during hovering 
in air (blue), simple maneuvers in air (green) and hovering in heliox (red). The line 
segments trailing each of the three respective traces indicate the wing rotation angles (α) 
across the wing beat cycle. The broken lines represent the mean body angle for the bees 
in each of the three conditions. 
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Figure 2.4: Mean kinematic patterns of wing angular velocity (ω), wing angle of attack 
(αr), and wing rotation velocity (α̇  ) during hovering in air (blue trace), simple 
maneuvers in air (green trace), and hovering in heliox (red trace). The kinematic patterns 
are normalized across 100% of the wingbeat cycle and averaged across all wingbeats per 
bee per group. The shaded plots represent the mean difference between hovering and 
maneuvering in air (green) and the mean difference between hovering in air and heliox 
(red). The grey and white columns indicate the downstrokes and upstrokes, respectively. 
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Figure 2.5: Aerodynamic forces (lift) resulting from kinematics representative of 
hovering in air (blue), simple maneuvers in air (green), and hovering in heliox (red). 
Forces were measured using a dynamically-scaled robot model as described in 
(Altshuler et al., 2005).  The grey and white columns indicate the downstrokes and 
upstrokes, respectively. 
 
 
 
reversal (Fig 2.4).  Although subtle, the timing of maximum α̇   could affect the 

production of lift through wing rotational mechanisms. Less subtle, however, is the 

pattern of αr, which appears markedly different across the three conditions (Fig 2.2, αr).   

To understand the potential for this variation in αr to affect translational-lift 

production, I estimated the aerodynamic forces (quasi-steady method; Sane and 

Dickinson, 2002) for each bee’s wingstroke kinematics using all patterns of αr observed 

in this experiment.  For bees hovering in air, average lift forces increased by 3.7% when 

αr was replaced by those patterns of αr used in the maneuver and heliox conditions.  
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Even though variation in αr contributes only a small percentage to the estimated 

aerodynamic forces, future work (including dynamically-scaled modeling) may provide 

insight as to whether these kinematic variations contribute to flight control and stability. 

As stroke amplitude increased in response to the aerodynamic challenges of 

hovering in heliox, body angle also increased.  It is unknown whether this trend resulted 

from a lack of pitch control, either due to the physical properties of the heliox 

atmosphere or from wing kinematics approaching functional limitations.  However, 

another explanation may be that the increased body angle moved the abdomen away 

from the path of the wing stroke-induced air flow and vorticity, especially at stroke 

amplitudes where dorsal excursion exceeded 90 degrees (Fig 2.1C).  If the body angle 

did not increase under such wing kinematics, the latter portion of the wing stroke and 

dorsal stroke transition would occur directly above the abdomen.  Although increasing 

body angle cannot be viewed as a lift-enhancing mechanism, it may simply minimize 

losses in lift that would otherwise be attributed to interference with the abdomen.  In 

either case, increasing body angle will transfer the bees’ center of mass further below 

the height of the wing hinges.  Passive stability should improve simply by this increase 

in inertia about the roll axis, which could be beneficial during near-maximal effort flight 

where diminished kinematic and muscle reserve capacities may not provide active 

compensation to perturbations.  

During hovering in heliox, some bees exhibited extreme dorsal stroke excursions 

that caused contact between the distal region of the wings at the dorsal stroke transition 

(Fig 1).  While this was not investigated with a dynamic model, these kinematics are 

similar to those that produce aerodynamic force via ‘clap-and-fling.’  In application, the 
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‘clap’ forces air out from between the area where the two wings are in contact, and the 

‘fling’ causes air to rush over the leading edges as the wings peel apart, speeding up the 

development of vorticity (Ellington, 1999; Lehmann et al., 2005).  This aerodynamic 

mechanism is utilized by a variety of insects, ranging from small parasitic wasps (Miller 

and Peskin, 2005) to damselflies (Wakeling and Ellington, 1997a; Wakeling and 

Ellington, 1997b), and has been successfully exploited at much larger scales in micro 

aerial vehicle (MAV) development, such as the Mentor MAV (Zdunich, 2007).  

However, the degree to which a clap-and-fling pattern increases lift is crucially 

dependent on the precise kinematics of the wing (Lehmann and Pick, 2007; Lehmann et 

al., 2005), and its mere presence does not necessarily indicate a substantial augmentation 

in force.  Currently, I do not know what forces result from the bees’ wing-contact at the 

dorsal stroke transition.  However, bees’ dorsally-biased wing strokes suggest that their 

biomechanics and/or thorax morphology are conducive to eliciting clap-and-fling when 

magnitudes of Φ are great enough.    Further investigation is necessary to determine 

whether this contributes to bees’ flight ability, and to what extent increased dorsal stroke 

excursion and wing-contact affect pitch control and body angle during flight in heliox. 

Several hymenopteran species operate at n that are very high relative to their body 

mass, compared to other hovering insects.  Many endothermic bees vary n inversely 

with air temperature in an apparent thermoregulatory manner (Borrell and Medeiros, 

2004; Harrison et al., 1996; Roberts and Harrison, 1998; Spangler and Buchmann, 1991; 

Unwin and Corbet, 1984), whereas other bee species have demonstrated at least some 

capacity to increase n as a mechanism to augment lift.  For example, the carpenter bee, 

Xylocopa varipuncta, modestly increases wingbeat frequency in response to hypodense 
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gas; this effect is most pronounced in lighter bees, but diminishes with mass as heavier 

bees must operate near or at their maximal wingbeat frequency during hovering in air 

(Roberts et al., 2004).  Likewise, the solitary desert bee, Centris pallida, increases 

wingbeat frequency by 12% during transient “bursts” when defending territory during 

mate competition (Roberts, 2005).  However, neither Euglossines (Dudley, 1995) nor 

the honey bees in this study varied wingbeat frequency in response to hovering 

aerodynamic challenges. This might indicate that the flight muscle of these species may 

simply have a narrow operating range, respective of the resonant properties of the 

surrounding structures.  In contrast, dipteran muscle, which relative to body size 

operates at a much lower frequency, has a broader operating range.  In this study, if bees 

hovering in heliox had instead held Φ constant, n exceeding 320 Hz would be required 

to produce the same ω.  This strategy could allow for significant contribution of lift from 

wing-wake interactions and wing-rotation mechanisms, but it would come at the cost of 

metabolic work to overcome the increased inertial power and drag associated with small 

wing strokes (Altshuler et al., 2005).  It is possible that honey bees also are capable of 

increasing n during short bursts of maximal aerodynamic output, such as what might be 

required to evade predators.  Thus, hypodense atmospheres may not reveal transient 

bouts of true, maximal flight, and instead may reveal only sustained near-maximal 

efforts.  Nonetheless, honey bees maintained n across normal, sub-maximal and near-

maximal flight efforts, which suggests that this operating frequency is tuned to 

maximize economy across modes of flight that bees experience during extended bouts of 

foraging.  
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Honey bees use high-frequency, low-amplitude wing strokes during hovering in air, 

in contrast with insects that use low-frequency, high amplitude strokes such as 

Drosophila.  Bees perform sustained, long-distance flight in dynamic environments and 

are capable of accommodating gusts of wind, maneuvers (including ascending and 

descending flight), and pollen/nectar loading.  Moreover, these aerodynamic challenges 

are compounded for bee populations and species from high-altitude habitats with low 

atmospheric densities.  A substantial reserve capacity is necessary for successful flight 

under such conditions, yet despite complex wing kinematics, bees accommodate the 

aerodynamic challenges of simple, enhanced-lift maneuvers and flight in hypodense 

atmospheres by simply increasing Φ.  The kinematics of these simple maneuvers lie 

within the continuum of kinematics between hovering in air and heliox, which suggests 

that the response to heliox is not novel, but a routine strategy that bees employ when 

conditions require near-maximal aerodynamic output.  These results suggest that the 

output degrees of freedom with which insects can modulate aerodynamic performance 

are limited, perhaps by constraints of their musculoskeletal system.  The reduction of the 

control of aerodynamic output to simply manipulating stroke amplitude in bees provides 

validation and support for the kinematics yielded by studies utilizing single camera 

views and/or low temporal resolution (Dudley, 1995; Roberts et al., 2004).  However, 

further research is necessary to characterize the aerodynamic consequences of the more 

subtle kinematic patterns I observed. Specifically, future work should address how 

variation in the patterns of αr and α̇  , and dorsal wing contact contribute to the 

production of aerodynamic force, flight control and stability. 
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CHAPTER 3 

 

THE EFFECTS OF AGE AND BEHAVIORAL DEVELOPMENT 

ON FLIGHT PERFORMANCE 

Abstract 

A critical but seldom studied component of life history theory is how behavior and 

age affect whole-organism performance. To address this issue I compared the flight 

performance of honey bees (whose behavioral development and age can be assessed 

independently via simple manipulations of colony demographics) between distinct 

behavioral castes (in-hive nurse bees vs. out-of-hive foragers) and across lifespan. 

Variable-density gases and high-speed video were used to determine the maximum 

hovering flight capacity and wing kinematics of age-matched nurse bees and foragers 

sampled from a single-cohort colony over a period of 34 days. The transition from hive-

work to foraging was accompanied by a 42% decrease in body mass and a proportional 

increase in flight capacity (defined as the minimum gas density allowing hovering 

flight). The lower flight capacity of hive-bees was primarily due to the fact that in air 

they were functioning at a near maximal wing angular velocity due to their high body 

masses. Foragers were lighter and when hovering in air required a much lower wing 

angular velocity, which they were able to increase by 32% during maximal flight 

performance. Flight performance of hive-bees was independent of age, but in foragers 

the maximal wingbeat frequency and maximal wing angular velocity were lowest in 
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precocious (7 to 14-day-old) foragers, highest in normal-aged (15 to 28-day-old) 

foragers and intermediate in foragers older than 29 days. This pattern coincides with 

previously described age-dependent biochemical and metabolic properties of honey bee 

flight muscle. 

Order of authors: Jason Vance, Jason Williams, Michelle Elekonich, Stephen 

Roberts. 

 

Introduction 

A critical issue in life history theory is how behavior and age affect the lifetime 

patterns of whole-organism performance (Roff, 2007; Rose et al., 2007). Studies of this 

issue should ideally separate the effects of age and behavior without ambiguity, focus on 

performance traits that are ecologically relevant, and utilize free-living animals, whose 

behavior and physiology may be quite different from those of laboratory-reared 

counterparts (Ricklefs and Wikelski, 2002). These challenges can be met by comparing 

the flight performance of honey bees (Apis mellifera, whose behavioral development 

and age can be assessed independently via simple manipulations of colony 

demographics) among distinct behavioral castes and across lifespan. Flight is a principal 

trait (along with eusociality, memory, communication and navigation) contributing to 

honey bee fitness and success via colony-level resource acquisition. Flight is unique 

among these traits in that its capacity is subject a suite of physiological changes during 

development, yet chronic performance of this behavior entails exposure to stressors (e.g. 

high temperature, reactive oxygen species, mechanical wear) that may hinder these same 

beneficial physiological traits and cause senescence (Roberts and Elekonich, 2005).  
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Adult honey bees proceed through behaviorally-defined life-history stages as they 

age, a process of behavioral development called temporal polyethism.  These insects 

increasingly rely on flight ability during this process, which normally involves in-hive 

tasks such as brood care (nursing) and hive maintenance during the first 2-3 weeks of 

adult life followed by a transition to tasks outside the hive, predominantly foraging, 

which typically last for 2-3 weeks prior to death (Dukas, 2008). Among the many 

physiological and biochemical changes occurring between eclosion and the onset of 

foraging are a 10-fold increase in cytochrome concentrations (Herold, 1963), a doubling 

of thoracic glycogen levels (Fewell and Harrison, 2001; Harrison, 1986), and increased 

citrate synthase levels and Troponin T (TnT) 10A expression (Schippers et al., 2006) 

that combine to yield an 8-fold increase in flight metabolic rate (up to 800W kg-1) during 

this period (Harrison and Fewell, 2002; Roberts and Harrison, 1999). 

For many metabolically expensive behaviors such as insect flight, peak capacity is 

transient and progressively senesces (Carey et al., 2006; Grotewiel et al., 2005; Leffelaar 

and Grigliatti, 1984; Miller et al., 2008), presumably due in large part to oxidative stress 

and the impairment of mechanisms resisting it (Amdam and Omholt, 2002; Golden et 

al., 2002; Martin and Grotewiel, 2006; Seehuus et al., 2006; Sun and Tower, 1999; 

Vieira et al., 2000; Yoon et al., 2002; Yu and Chung, 2006). In Drosophila 

melanogaster, the frequency and duration of flight bouts as well as wing kinematic 

performance decreases with age beginning 1-2 weeks after eclosion (Carey et al., 2006; 

Leffelaar and Grigliatti, 1984; Miller et al., 2008). In house flies (Musca domestica), 

flight behavior accelerates age-dependent oxidative damage including the accrual of 

mitochondrial peroxide, carbonylation of select mitochondrial enzymes, and 
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mitochondrial DNA damage, while preventing flight prevents such damage and 

increases longevity  (Agarwal and Sohal, 1994; Sohal and Buchan, 1981; Sohal and 

Dubey, 1994; Yan et al., 1997; Yan and Sohal, 1998; Yan and Sohal, 2000).  

Oxidative stress produced by the intense aerobic demands upon honey bee foragers 

is likely mitigated by upregulation of flight muscle Hsp70, catalase and CuZn 

superoxide dismutase (Williams et al., 2008; Wolschin and Amdam, 2007). However, 

the diurnal upregulation of Hsp70 and catalase (along with total antioxidant capacity) in 

the flight muscles of foragers subsides with age (Williams et al., 2008), and honey bee 

mortality sharply increases following 12-14 days of foraging experience (Dukas, 2008). 

Thus, oxidative stress that accrues with age, especially following the transition to 

foraging behavior, may accelerate senescence of flight capacity in honey bees. 

The present study investigated how age and behavioral development independently 

affect honey bee flight capacity. I hypothesized that changes in flight capacity reflect 

physiological and biochemical changes in flight muscle that are known to occur during 

behavioral development and with age as described above. I predicted that, independent 

of age, bees collecting pollen and nectar (foragers) will have greater flight capacity than 

bees performing brood-care (nurses). I also predicted that the flight capacity of foragers 

will initially improve with age, reach some maximum level in intermediate-aged 

individuals, and senesce in older individuals. To separate the effects of age and 

behavioral development on normal vs. maximal hovering flight capacity, I created a 

single-cohort colony (SCC) comprised only of 1- to 2-day old honey bees. About 10% 

of bees in a SCC will transition to foraging precociously (i.e. about 1 week after 

eclosion) while others remain normal-aged nurses. In the following 1-2 weeks more bees 
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transition into foraging behavior at a typical age while others remain in the hive as over-

aged nurses. Thus, a SCC allows for comparisons of flight performance between age-

matched groups of nurses and foragers, to assess the effects of behavior independently 

of age, and within behavioral castes, to assess the effects of age independently of 

behavior. I assayed maximal flight capacity by permitting bees to hover in a series of 

normoxic, variable-density gasses to determine the minimal gas density (MGD) that 

allowed for hovering flight (Roberts et al., 2004). A high-speed (4348 fps) digital video 

camera was used to record hovering sequences, from which the following kinematics 

were derived: wingbeat frequency (n), wing stroke amplitude (Φ), and wing angular 

velocity (ω̄  ). I found that honey bee flight capacity is limited and age-independent in 

nurses but greatly improves at the transition to foraging behaviors. Moreover, flight 

capacity further improves with age if the transition to foraging is premature, and then 

senesces in very old foragers. 

 

Materials and Methods 

Single Cohort Colony; Sampling and Weighing 

A SCC containing 2240 European honey bee workers was created from 6 frames of 

immature bees from 3 different source colonies (each derived from multiply-mated 

queens) at the University of Nevada, Las Vegas apiary during late June, 2007. The 

frames were placed in an incubator (32 °C, 75% RH, 24-hour dark cycle) and newly-

eclosed adult bees were removed every 24 hours. The SCC was founded from adult bees 

that eclosed on two consecutive days. On the first of these two days, 1000 bees were 

fitted with small, unique, color- and number-coded tags (Opallitplätchen, Graze, KG, 
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Endersbach, Germany) glued to the dorsal thorax for the purpose of individual 

identification. Of these bees, 400 were individually weighed immediately following 

tagging. The SCC was provided with an unrelated queen bee, one frame each of honey 

and pollen, and three empty frames for egg-laying/brood development. The SCC was 

kept closed in an environmental chamber (30 °C and 30% RH) for the following five 

days post-eclosion to allow the queen to lay eggs and maturation of the workers before 

being moved to the outdoor apiary to permit normal colony activity. Only tagged nurses 

and foragers were collected for assessment of flight capacity.  

Maximal Flight Capacity and Wing Kinematics 

Forager and nurse bees were assessed for maximal flight capacity. Foragers 

generally exit the hive at a relatively high velocity (relative to bees performing guarding 

behavior, or in-hive bees performing orientation or defecation flights) and in a straight-

line trajectory towards the perimeter of the apiary. I intercepted individual out-going 

foragers (N = 57, ranging in age from 8 to 40 days old) as they flew into a 1-quart, clear 

plastic bag held approximately 30 cm from the entrance of the hive. Nurses (N = 40, 

ranging in age from 8 to 27 days old) were collected from the comb using light forceps 

after they performed the caste specific behavior of repeatedly sticking their heads into 

cells that contained larvae. I was unable to collect nurses older than 27 days of age from 

the original cohort of tagged bees because these individuals were gradually replaced by 

younger bees from brood laid by the resident queen. Bees were transported to an 

environmental chamber maintained at a temperature of 30 °C where maximal flight 

capacity was determined. Bees were weighed to the nearest 0.0001 g following 

assessment of maximal flight capacity.  
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The methods used to assess individual flight capacity were similar to those used by 

Roberts et al. (2004). Forager and nurse bees were immediately transferred to a flight 

chamber which consisted of a 5-L Erlenmeyer flask fitted with an inlet port at the base 

for gas perfusion and a lucite cover to prevent the bees from escaping. Bees were 

exposed to variable density, normoxic gas mixtures which consisted of oxygen and 

nitrogen and/or helium, and ranged from normodense air (21% O2, 79% N2; 1.21 kg m-3) 

to hypodense heliox (21% O2, 79% He; 0.41 kg m-3) in 0.16 kg m-3 increments. The 

gasses were mixed using calibrated bi-metal thermo-actuated valves (low flow: Tylan F 

C-260; San Diego, CA, USA) and solenoid-actuated valves (high flow: Tylan FC-2910), 

and mixtures and flow rates were metered by an electronic flow controller (Sable 

Systems MFC-4; Las Vegas, NV, USA). When assessing maximal flight capacity and 

filming hovering flight, total gas flow rate was maintained at 1 L min-1. Each trial began 

with air and the 5 hypodense gas mixtures were then administered in random order. In 

between gas mixtures, the flight chamber was flushed with the new gas mixture at a 

flow rate of 25 L min-1 for one minute to ensure complete washout. Bees were flown in 

each gas mixture until either: 1) sustained hovering flight was observed and recorded; 2) 

hovering flight was attempted but failed (typically distinguished by the bee skimming 

across the floor of the chamber, unable to generate enough lift to hover); or, 3) three 

minutes elapsed, in which case the inactive bee was excluded from analysis. Bees that 

landed on the floor or sides of the chamber were persuaded to fly by agitating them with 

a small magnetic stir-bar, directed by a magnetic wand outside of the chamber. Maximal 

flight capacity was determined as MGD, the minimal gas density that allowed hovering 

flight.  
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Honey bees hover in air and heliox using a horizontal stroke plane (Altshuler et al., 

2005; Ellington, 1984); therefore, hovering flight kinematics were determined from the 

wing trajectories in the horizontal plane recorded by a single, high-speed (4348 fps) 

digital video camera (Vision Research, Phantom v5.1; Wayne, NJ, USA). The camera 

was oriented directly above the flask and focused such that the focal plane was at the 

center of the flask. Hence, hovering bees in focus and viewed directly through the mouth 

of the flask were away from the narrow-circumference(s) near the top of the flask and 

centered in the chamber at least five wing-lengths (i.e. 50 mm) away from the chamber 

floor and walls. The central positioning within the chamber minimized the possibility of 

kinematic variation due to the boundary effect – when vortices become ‘trapped’ 

between the flyer and nearby surfaces (Raynar and Thomas, 1991). Ascending, 

descending or maneuvering flight was ignored. The digital video sequences were 

analyzed using custom software (Matlab, The Mathworks; Natick, MA USA) to 

determine the following kinematic variables for individual bees during hovering in air 

(subscript: “norm”) and hovering in the MGD (subscript: “max”): n (in Hz) was 

calculated from the duration to complete 10 successive wingbeats; Φ (in degrees) was 

calculated as the average of the downstroke and upstroke angular displacement for each 

of the 10 wingbeats; and ω̄   (in radians sec-1), the average wing angular velocity, was 

calculated from the duration to complete the total angular displacement of one 

downstroke and one upstroke for each of the 10 wingbeats.  

Statistical Analysis 

Analysis of variance (ANOVA) was used to evaluate how body mass (Mb) differed 

between foragers, nurses and one-day old bees (eclosion mass). Multivariate analysis of 
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covariance (MANCOVA; α = 0.05) was used to determine the effect of behavioral 

caste, with Mb and age as covariates, on flight performance and kinematic variables. Our 

post hoc analyses consisted of evaluating specific relationships using linear or 

polynomial regression. Model I (least squares) linear regression was used to analyze 

relationships that included age or maximal flight capacity (MGD). Other relationships 

where both continuous variables were subject to measurement error were analyzed with 

Model II linear (reduced major axis) regression. Because our a priori prediction was that 

flight capacity and kinematics in foragers would improve and then decline with age, I 

also used a 2nd-order polynomial regression to test the effects of age on these variables.  

 

Results 

Behavioral Development and Body Mass 

The Mb of a random sample of adult honey bees (exclusive of those used in flight 

assays) within 24 hrs of eclosion was 93.9 ± 13.3 mg (mean ± S. D.; N = 40). The 

youngest age at which bees began to forage was 8 days post-eclosion. Collection of 

nurses and foragers for flight analyses began at this time and concluded at 27 days of 

age for nurses and at 40 days of age for foragers. Body mass was significantly different 

between bees at eclosion, nurses and foragers (ANOVA: F1,94 = 376.9; P < 0.001), with 

foragers (76.0 ± 7.4 mg, N = 57) being 42.9% lighter than nurses (133 ± 19.1 mg, N = 

40). However, age did not significantly affect Mb for either nurses (Model I linear 

regression: P = 0.154) or foragers (Model I linear regression: P = 0.345).   
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Flight Performance and Kinematics 

There was a significant effect of behavioral caste, mass and age on flight 

performance (MANCOVA: P < 0.001; P < 0.001; P = 0.006 respectively, see Table 

3.1). Behavioral caste had a significant effect on MGD (MANCOVA: P < 0.001), with 

foragers being able to fly in gas densities 34% lower than nurses, after correcting for 

variation in mass and age (Table 3.1). Approximately 20% of foragers could hover in 

pure heliox, while the same fraction of nurses were capable of hovering only in normal 

air or could not fly at all.  Age had a significant effect on MGD (MANCOVA: P < 

0.001). Because my hypothesis predicted that maximal flight capacity would improve 

with age in young foragers and senesce in older foragers, I fitted a 2nd order polynomial 

curve to the MGD vs. forager age data (Fig. 3.1); this polynomial regression was 

significant (r2 = 0.26, P < 0.001). 

Body mass also had a significant effect on MGD (MANCOVA: P = 0.005). Because 

Mb varied greatly between the two behavioral castes, I further evaluated the relationship 

between Mb and MGD using linear regression (Fig. 3.2). MGD was independent of Mb in 

 

Table 3.1: Multivariate Analysis of Covariance (MANCOVA) for the effects of caste, 
mass and age on flight performance. 
 Parameter Estimatesa (mean ± S.E.) Casteb Massc Aged 

 Nurse Forager F1,93 P F1,93 P F1,93 P 
nnorm (Hz) 233.7 ± 3.7 229.1 ± 2.7 0.63 0.429 3.36 0.070 1.37 0.244 

Φnorm (deg) 121.1 ± 2.9 108.7 ± 2.1 7.21 0.009 15.3 < 0.001 0.45 0.503 
ω̄  norm (rad s-1) 985.1 ± 24.4 866.5 ± 18.1 9.28 0.003 6.33 0.014 0.01 0.925 

nmax (Hz) 220.6 ± 4.3 219.9 ± 3.2 0.01 0.923 0.12 0.733 3.07 0.083 
Φmax (deg) 139.0 ± 2.8 143.6 ± 2.1 1.03 0.314 0.98 0.326 5.86 0.017 

ω̄   max (rad s-1) 1065.1 ± 22.6 1102.6 ± 16.8 1.08 0.302 0.59 0.446 15.83 < 0.001 
MGD (kg m-3) 0.99 ± 0.04 0.65 ± 0.03 19.23 < 0.001 8.40 0.005 18.5 < 0.001 

a  Least squares means evaluated at mass = 100.3 mg, and age = 19.9 days 
b  MANCOVA: Pillai’s Trace, F7,87 = 5.04; P < 0.001 
c  MANCOVA: Pillai’s Trace, F7,87 = 5.18; P < 0.001 
d  MANCOVA: Pillai’s Trace, F7,87 = 3.09; P = 0. 006 
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Figure 3.1: Maximal flight capacity (minimal gas density: MGD) vs. age for foragers 
(MGDforager; open symbols) and nurses (MGDnurse; filled symbols). Large filled circles 
indicate overlapping forager and nurse data. Values of MGD (kg m-3) are inverted to 
reflect the increasing aerodynamic demand of flying in lesser-density gas mixtures. Bees 
that were unable to fly in air (no flight: NF; secondary y-axis) were plotted for 
descriptive purposes and were not included in the calculated MANCOVA or 
regressions. 2nd order polynomial regression for foragers: MGD = 0.954 + 0.029age – 
0.0005age2, r2 = 0.26, P < 0.001 (solid line). 

 
 
 

foragers (Model II regression: MGDforager = 0.619 – 0.001Mb, r2 = 0.002, P = 0.772), but 

significantly increased with Mb in nurses (Model II regression: MGDnurse = 0.613 + 

0.003Mb, r2 = 0.177, P = 0.006). This effect was subtle, with variation in Mb explaining 

just 18% of variation in MGD in nurses.  However, each bee in our experiment is an 

independent observation, and when behavioral castes were pooled, MGD significantly 

increased with Mb (i.e. lighter bees - primarily foragers - were better able to fly in 

hypodense gases), with variation in Mb explaining 66% of variation in MGD for all bees 
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Figure 3.2: Maximal flight capacity (minimal gas density: MGD) vs. body mass (Mb) for 
foragers (MGDforager; open symbols) and nurses (MGDnurse; filled symbols). Values of 
MGD (kg m-3) are inverted to reflect the increasing aerodynamic demand of flying in 
lesser-density gas mixtures. Bees that were unable to fly in air (no flight: NF; secondary 
y-axis) were plotted for descriptive purposes and were not included in the calculated 
MANCOVA or regressions. Model II regression: MGDforager = 0.619 – 0.001Mb, r2 < 
0.01, P = 0.772; MGDnurse = 0.613 + 0.003Mb, r2 = 0.18, P = 0.006 (broken line). 
MGDtotal = 0.061 + 0.007Mb, r2 = 0.66, P < 0.001 (solid line). 
 
 
 
combined (Model II regression: MGDtotal = 0.061 + 0.007Mb, r2 = 0.660, P < 0.001). 

For bees hovering in air, nnorm tended to decrease across Mb, but this trend was not 

significant (MANCOVA: P = 0.070). However, Mb significantly affected Φnorm and      

 ω̄  norm (MANCOVA: P < 0.001, P = 0.014, respectively). During hovering in air, Φnorm 

significantly increased with Mb (model II regression: P < 0.001), with variation in Mb 

explaining 67% of the variation in Φnorm (Fig. 3.3). The heaviest bees had Φnorm values 

approximately 45% higher than the lightest bees. Likewise, ω̄  norm significantly 
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Figure 3.3:Wingbeat frequency (n; panel A), wing stroke amplitude (Φ; panel B), and 
wing angular velocity (ω̄  ; panel C) vs. body mass (Mb) for foragers (diamonds) and 
nurses (circles) during flight in air (norm; open symbols) and maximal flight in the 
MGD (max; closed symbols). Model II regression for n (panel A): nnorm = 272.18 – 
0.411Mb, r2 = 0.07, P = 0.008 (solid line); nmax = 267.71 – 0.474Mb, r2 = 0.01, P = 
0.401. Model II regression for Φ (panel B): Φnorm = 56.85 + 0.568Mb, r2 = 0.67, P < 
0.001 (solid line); Φmax = 173.54 – 0.318Mb, r2 < 0.01, P = 0.823. Model II regression 
for ω̄   (panel C): ω̄  norm = 488.49 + 4.256Mb, r2 = 0.58, P < 0.001 (solid line); ω̄  max = 
1356.80 – 2.689Mb, r2 = 0.01, P = 0.347. 
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Figure 3.4: Wingbeat frequency (n; panel A), wing stroke amplitude (Φ; panel B), and 
wing angular velocity (ω̄  ; panel C) vs. age for foragers. 2nd order polynomial regression 
for nmax: nmax = 173.27 + 4.19age – 0.079age2, r2 = 0.24, P < 0.001. 2nd order polynomial 
regression for Φmax: Φmax = 135.57 + 0.252age – 0.003age2, r2 = 0.11, P < 0.001. 2nd 
order polynomial regression for ω̄  max:  ω̄  max = 813.50 + 22.14age – 0.355age2, r2 = 
0.34, P < 0.001 (solid line). 
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increased with Mb during hovering in air (model II regression: P < 0.001), with variation 

in the latter explaining 58% of the variation in the former. During hovering in the MGD, 

Mb did not affect nmax, Φmax, or ω̄  max (MANCOVA: P = 0.733, P = 0.326, P = 0.446, 

respectively). Behavioral caste had a significant effect on MGD, Φnorm, and ω̄  norm 

(MANCOVA: P < 0.001, P = 0.009, P = 0.003, respectively; Fig. 3.3). The effects of 

behavioral caste are similar to those of Mb (Table 3.1), in large part due to the significant 

difference in Mb between the nursing and foraging castes. 

Age did not affect nnorm, Φnorm, and ω̄  norm during hovering in air (Table 3.1). 

Although age did not affect nmax during hovering in the MGD, age had a significant 

effect on Φmax and ω̄  max (MANCOVA: P = 0.017, P < 0.001, respectively). However, 

the MANCOVA is a linear model and thus cannot reveal the predicted parabolic 

relationships between kinematic capacity and age. To test whether maximal kinematic 

capacities peaked in middle-aged foragers, I fitted a 2nd order polynomial curve to the 

forager data. The polynomial regression for nmax vs. age was significant (r2 = 0.24, P < 

0.001) for foragers hovering in the MGD (Fig. 3.4A). For Φmax vs. age, the 2nd order 

polynomial regression curve fit for foragers hovering in MGD was significant but 

explained only a small percentage of the variation in Φmax across age (r2 = 0.11, P = 

0.040; Fig. 3.4B). The 2nd order polynomial curve fit to ω̄  max vs. age was significant (r2 

= 0.34, P < 0.001) for foragers hovering in MGD (Fig. 3.4C). Hence, nmax and ω̄  max 

increased with age in precocious foragers, reached a plateau in middle-aged foragers, 

and senesced to a small degree in older foragers. In foragers, nmax was less than nnorm, 

while Φmax and ω̄  max were greater than Φnorm and ω̄  norm, respectively (Paired T-Test:  
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Figure 3.5: Wingbeat frequency (n; panel A), wing stroke amplitude (Φ; panel B), and 
wing angular velocity (ω̄  ; panel C) for nurses during hovering in air (norm) and 
hovering in the MGD (max). Asterisks indicate significant differences between normal 
and maximal hovering for n, Φ, and ω̄   (Paired T-Test: P < 0.001 in each case). 
 
 

 
Figure 3.6: Maximal flight capacity (minimal gas density: MGD) vs. maximal wing 
angular velocity (ω̄  max) for foragers (MGDforager; open symbols) and nurses (MGDnurse; 
closed symbols). Values of MGD (kg m-3) are inverted to reflect the increasing 
aerodynamic demand of flying in lesser-density gas mixtures. Model I regression: 
MGDforager = 1.930 – 0.0012ω̄  max, r2 = 0.62, P < 0.001 (solid line); MGDnurse = 1.594 – 
0.0006ω̄  max, r2 = 0.08, P = 0.083.  
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P < 0.001 in each comparision).  There were no significant regressions of n, Φ, or ω̄   

across age for nurses hovering in air or MGD. In nurses, nmax was slightly, but 

significantly, less than while Φmax and ω̄  max were significantly greater than Φnorm and ω̄  

norm (Fig. 3.5; Paired T-Test: P < 0.001 in each comparison). In order to better 

understand how kinematic performance might affect the caste-specific flight 

performance, I performed an ANCOVA to investigate the effects of caste on MGD with 

ω̄  max as a covariate (Fig. 3.6). There was a significant interaction between caste and ω̄  

max on MGD (ANCOVA: F1,93 = 5.38, P = 0.023). In foragers, MGD significantly 

increased with ω̄  max, with variation in ω̄  max explaining 62% of the variation in MGD. 

However, there was no relationship between ω̄  max and MGD in nurses. 

 

Discussion 

Using SCCs and variable-density gas mixtures, I was able to show that both age and 

behavioral development affect the flight performance of honey bees. To my knowledge 

this is the first study to experimentally segregate these factors and test their effects on 

the locomotor capacity of a free-living organism over a lifetime. The ability to fly in 

hypodense atmospheres greatly improves at the transition from nursing to foraging 

behaviors, and this improvement is facilitated predominantly by a large decrease in body 

mass that accompanies this transition. Although precocious (8-14 day old) foragers had  

greater flight capacity than age-matched nurses, flight capacity generally improved with  

age in young (15-21 days old) and typical-aged (22-28 day old) foragers. Peak kinematic 

performance was lowest in precocious (7 to 14-day-old) foragers, highest in normal-

aged (15 to 28-day-old) foragers and intermediate in foragers older than 29 days. 
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Kinematic performance and flight ability strongly increased following the transition to 

foraging (although this improvement was not complete if the behavioral transition 

occurred too early), and also showed modest, but perhaps ecologically important, signs 

of senescence in the oldest foragers in the study.  

Body Mass and Flight Performance 

The primary basis for improved flight ability in foragers was the large (~ 43%) 

decrease in Mb that occurred prior to the transition to foraging behavior, regardless of 

age. The reduction in Mb prior to the behavioral transition is restricted to tissues of the 

abdomen and is primarily due to gut emptying; hence, thoracic mass remains constant 

(but relative thorax mass increases) across the behavioral transition (Harrison, 1986). 

The strong effect of Mb on flight capacity was not apparent by comparing the two 

variables within each behavioral caste, as flight capacity was unaffected by Mb in 

foragers and only weakly correlated with Mb in nurses. However, when the two 

behavioral castes were pooled, yielding a much broader range of independent 

observations of mass and flight capacity in honey bees as a general group, a strong 

inverse relationship between Mb and MGD was revealed (Fig. 3.2). 

Nurse bees had a very limited reserve capacity for kinematic and aerodynamic 

performance due predominantly to their heavy bodies, but also to their immature flight 

muscles. While hovering in air, the Φnorm and ω̄  norm of heavier, younger bees (nurses) 

were at or just below maximal attainable levels. Moreover, nurses were unable to sustain 

normal n when challenged to hover in hypodense gases – to the extent that ω̄  max 

exceeded ω̄  norm air by only 8% (after adjusting for the effects of age and mass). 

Precocious foragers and very old foragers were similarly unable to maintain n when 
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challenged with hypodense gases, but their ability to strongly increase Φ still offered 

greatly elevated ω̄   during maximal hovering performance. When challenged with 

hypodense gases, only middle aged foragers were able to increase Φ and maintain n. 

Hummingbirds (Altshuler and Dudley, 2003; Chai et al., 1997), euglossine bees 

(Dudley, 1995) and carpenter bees (Roberts et al., 2004) similarly increase Φ and 

maintain (or even slightly increase) n during maximal hovering flight. Although there is 

no information on the age-dependence of flight performance in these taxa, it seems 

plausible that kinematic performance might be similarly affected in very young or old 

individuals.  

Across closely-related hovering insects, n decreases with Mb during hovering flight 

(Dillon and Dudley, 2004; Dudley, 2000), but this negative relationship does not always 

hold true for the few available datasets allowing intraspecific comparisons of n and Mb. 

In honey bees, there is a slight negative relationship between nnorm and Mb, although this 

is unlikely due to resonance issues and an increase in the induced power required to 

move a larger wing (factors typically associated with the negative relationship between 

n and Mb across similar species) because neither wing size nor thorax dimensions differ 

between foragers and nurses (personal observation). Instead, the heaviest honey bees 

(nurses) require elevated Φ just to fly in air, but their immature flight muscles do not 

allow them reach n values attainable by many (particularly middle aged) foragers, which 

are much lighter than nurses. For carpenter bees (Xylocopa varipuncta) hovering in air, 

heavier individuals have higher Φ (as do honey bees; Fig. 3.3B) and n during due to 

disproportionately heavier abdomens and high wing loading (Roberts et al., 2004), 

although peak kinematic performance and Mb are independent of each other in both of 
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these species. This is not the case during flight in heliox and maximal load lifting across 

several species of euglossine bees whose Mb span over an order of magnitude, in which 

case Φmax is highly conserved near 140°, but nmax decreases with Mb (Dudley 1995; 

Dillon and Dudley, 2004). 

Variation in Mb was smallest in foragers, and Mb had no effect on MGD in this 

group. This is not so for X. varipuncta, in which body mass varies by 3-fold, with lighter 

individuals capable of hovering in lower gas densities than heavier individuals due to 

lower wing loading, relatively larger flight muscles and smaller abdomens (Roberts et 

al., 2004). The ability of honey bee foragers to fly in hypodense gases was positively 

correlated with ω̄  max (Fig 3.6). In several species of Drosophila, aerodynamic forces 

scale to the square of wing translational velocity (Lehmann and Dickinson, 1998), which 

is determined by ω̄  , and hence it is not surprising that the honey bees capable of 

generating the highest values of ω̄  max were also the ones capable of hovering in the 

lowest gas densities. To our knowledge this is the only study to date linking individual 

variation in kinematic capacity (in this case largely due to age plus random effects) to 

peak flight performance.  

The Development and Senescence  

of Flight Performance 

The improvement of flight muscle performance at the transition to foraging and 

during foraging (if the transition is premature) is likely due to a suite of biochemical and 

structural changes in the flight muscle that occur during honey bee maturation and 

behavioral development. For example, young honey bees (~3 days old) that have 

acquired the ability to fly express an isoform of TnT similar to the 46 kDa TnT isolated 
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only to the mature flight muscle of adult Drosophila (Domingo et al., 1998). This TnT 

isoform is absent in juvenile stages in Drosophila as well as 1-2 day old bees that are 

unable to fly, suggesting that the muscle function necessary for flight is dependent upon 

the expression of specific TnT isoforms. Furthermore, honey bee foragers express more 

TnT 10A (> two-fold increase) in their flight muscles than younger hive bees (Schippers 

et al., 2006). The effects of the differential TnT isoform expression on honey bee flight 

are unknown, but in the dragonfly Libellula pulchella the differential expression of TnT 

isoforms affects flight muscle calcium sensitivity and is correlated with an increase in 

wingbeat frequency and amplitude as the dragonflies progress from the teneral stage to 

sexual maturity (Fitzhugh and Marden, 1997; Fitzhugh et al., 1999; Marden et al., 2001; 

Marden et al., 1998; Marden et al., 1999). Elevated TnT 10A expression may contribute 

to the age and behavior-dependent increase in maximal wingbeat frequency in honey 

bees, and attempts to determine if the expression of TnT isoforms (and other flight-

motor proteins) are similarly affected by age and behavioral development are ongoing in 

our laboratories.  

The reduction in maximal kinematic and flight capacity in the older foragers likely 

reflects senescence via oxidative stress within the flight muscles. The intense aerobic 

metabolism of forager flight muscle (over 2000 W kg-1 muscle) yields high levels of 

reactive oxygen species (ROS), the effects of which are mitigated by the upregulation of 

stress and antioxidant proteins such as Hsp 70, catalase and CuZn superoxide dismutase 

(Schippers et al., 2006; Williams et al., 2008; Wolschin and Amdam, 2007). However, 

resistance to oxidative stress declines with age, as old (30-32 days) honey bee foragers 

express less catalase and have lower total antioxidative capacity than precocious 
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foragers (Williams et al., 2008). Cytochrome c oxidase activity also decreases in aged 

honey bee flight muscle (Schippers 2006), but other cellular pathologies of honey bee 

flight muscle senescence are unknown. In Drosophila and other dipterans, such 

pathologies include depressed actin transcription, decreased sarcomere length, 

enlarged/degraded mitochondria, depressed mitochondrial respiration and depressed 

aconitase activity (Ferguson et al., 2005; Labuhn and Brack, 1997; Miller et al., 2008; 

Yarian and Sohal, 2005). 

The mechanical wear of wings has also been implicated as an important factor 

contributing to the senescence of flight performance and mortality in eusocial bees 

(Cartar, 1992; Dukas, 2008; Hedenstrom et al., 2001; Higginson and Barnard, 2004). 

These authors hypothesize that degraded wings in older bees limits flight performance 

with consequences for foraging ability and predator evasion. Wing wear was not a factor 

contributing to senescence of flight performance in our study because in our 

experiments I only assayed bees that possessed intact, unworn wings. However, our 

finding of impaired nmax in very old foragers may compound the problems of worn 

wings. For example, bumblebees increase n in response to wing clipping (Hedenstrom et 

al., 2001), and such compensation may be unavailable to older honey bee foragers. I 

have no information about the foraging history of the bees in our study (i.e. the absolute 

age of the foragers is known, but not how long they had been foraging), but I believe 

that the declines in nmax, ω̄  max, and maximal flight capacity in the older foragers 

probably mark the onset of senescence in the flight muscle. The pace of senescence of 

overall flight ability is still unknown but should be a function of both flight muscle and 

wing degradation.  
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The Ecological Significance of Honey Bee 

Flight Performance 

A honey bee colony can shift worker demographics in response to a deficiency of 

workers in a particular caste (Huang and Robinson, 1992; Robinson et al., 1989) or 

worker effort in response to a shortage of pollen stores (Fewell and Winston, 1992). 

Such shifts might involve precocious or very old foragers, both of which have reduced 

maximal flight capacity, and negatively affect foraging loads and rate of foraging intake 

(Higginson and Barnard, 2004; Schippers et al., 2006), with potential consequences for 

colony-scale economy and energy flux (Schmid-Hempel et al., 1985). Likewise, colony-

level intake should be higher when, all else being equal, the foraging caste is represented 

by middle-aged individuals. Indeed, the amount of food collected per trip increases by 

over 300% throughout a bee’s first week of foraging behavior (Schippers et al., 2006). 

Finally, precocious and aged foragers may be subject to higher predation risk due to 

their limited burst flight capacities (Cartar, 1992; Dukas, 2008). There are no data to 

confirm this linkage in honey bees, although wing damage resulting from male-male 

combat in the burrowing bee Amegilla dawsoni increases the risk of predation by birds 

and shortens longevity (Alcock, 1996).  

Certain honey bee genotypes are predisposed to early or late initiation of foraging 

(Calderone and Page, 1988; Giray and Robinson, 1994), and it is possible that the 

trajectory of the age-dependent development of maximal flight capacity varies 

genetically as well. For colonies genetically predisposed to begin foraging at an earlier 

age, any potential colony-level costs of precocious foraging may be mitigated by a faster 

rate of development and shorter periods of sub-optimal maximal flight capacity. 
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Conversely, in colonies predisposed to a later onset of foraging, the costs of precocious 

foraging may be prolonged by a slower rate of development, or foraging onset may be 

temporally coordinated with slower development of flight capacity. Experiments 

addressing the temporal kinetics of foraging initiation and flight capacity among such 

genotypes would be valuable to test these possibilities. 

Conclusion 

The development of the flight capacity necessary for effective foraging in honey 

bees depends upon the sharp reduction in body mass at the transition from nursing to 

foraging behavior.  Following this transition, the age-dependent development and 

senescence of maximal flight capacity in foragers reflects the ability to, when 

aerodynamically challenged, increase Φ while simultaneously maintaining n.  

Importantly, our experiment does not allow us to determine if the timing of the initiation 

of foraging affects the onset and pace of senescence (which would require lifetime 

ethography of individual bees), although precocious foraging does shorten lifespan 

(Rueppell et al., 2007). Even so, our results suggest that variation in honey bee flight 

capacity across age is an important factor explaining known life-history patterns of 

foraging behavior and mortality rates. However, future research is needed to directly 

link the ontogeny of flight capacity to foraging efficacy, predation risk and mortality. 
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CHAPTER 4 

 

THE EFFECTS OF ARTIFICIAL WING WEAR ON  

FLIGHT PERFORMANCE 

Abstract 

The wings of bees and other insects accumulate permanent wear, which increases the 

rate of mortality and impacts foraging behavior, presumably due to effects on flight 

performance. In this study, I investigated how experimental wing wear affects flight 

performance in honey bees.  Variable-density gases and high-speed video were used to 

determine the maximum hovering flight capacity and wing kinematics of bees from 

three treatment groups: no wing wear, symmetric and asymmetric wing wear.  Wing 

wear was simulated by clipping the distal-trailing edge of one or both of the wings.  In 

all bees, increases in wingbeat frequency were inversely proportional to wing area.  

During hovering in air, the kinematic response to accommodate symmetric and 

asymmetric wing wear produced wingtip velocities similar to those bees with no wing 

wear.  However, maximum wingtip velocity and maximal flight capacity decreased in 

direct proportion to wing area.  Bees with asymmetric wear produced lower maximum 

wingtip velocity than the control and symmetric groups, and despite less total wing area 

loss than the symmetric group, asymmetric wear caused a greater impairment in 

maximal flight capacity. These results demonstrate that the magnitude and type of wing 

wear affects maximal aerodynamic power production and, potentially, the control of 
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hovering flight.  Wing wear reduces aerodynamic reserve capacity and, subsequently, 

the capacity for flight behaviors such as load carriage, maneuverability, and evading 

predators. 

Order of authors: Jason Vance, Stephen Roberts.  

 

Introduction 

Damage or wear to the locomotor apparatus can result from encounters with 

predators and prey, locomotion in physically heterogenous environments, and aging via 

prolonged use and senescence. In some cases even self-amputation of an appendage 

(autotomy) is a strategy to avoid predation (Congdon et al., 1974; Fleming et al., 2007; 

Robinson et al., 1970), although at great cost to locomotor capacity (Fleming and 

Bateman, 2007; Punzo, 1982).  Most animals possess healing or restorative processes 

that improve or preserve functionality in locomotor appendages so damaged.  However, 

such processes are conspicuously absent for the wings of insects so that any damage and 

functional impairment of these airfoils are permanent.  The loss of wing area, changes in 

mechanical properties such as stiffness, or symmetry of the wing pair can impair flight 

performance and may ultimately reduce fitness.  In this study I examined the 

consequences of artificially induced wing wear on the kinematics and flight capacity of 

honey bees (Apis mellifera). 

Research attempting to unequivocally link wing damage, flight performance and 

longevity in insects is rare, although one exception is the case of honey bees and 

bumblebees (Bombus spp), both of which are eusocial.  Foraging bees accumulate wing 

wear and damage with flight experience (Higginson and Barnard, 2004), and both 
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natural and experimentally induced wing wear reduces longevity (Cartar, 1992).  In 

honey bees, longevity is inversely related to foraging effort (Neukirch, 1982; Schmid-

Hempel and Wolf, 1988), and if wing wear increases flight metabolism via kinematic 

effort to offset loss of wing area, then this effect may reduce longevity in the context of 

a fixed lifetime energy budget.  However, for Bombus terrestris, wing wear has no effect 

on flight metabolism, despite elevated kinematic and aerodynamic costs through 

increased wingbeat frequency (n), coefficient of lift, and induced power (Hedenstrom et 

al., 2001).  Wing wear may also cause behavioral impairments with colony-level 

consequences.  For example, as foraging honey bees accumulate wing wear, they accept 

inflorescences that are smaller or aged, suggesting that the efficiency of nectar foraging 

is reduced via acceptance of lower nectar quality/quantity by wing-worn bees 

(Higginson and Barnard, 2004).   

The absence of a clear link between wing wear and metabolic cost indicates that 

wing wear impacts longevity and foraging behavior through a deficit in a different 

currency related to flight performance.  Cartar (1992) and Hedenstrom et al. (2001) 

hypothesized that elevated mortality due to wing wear could be due to higher rates of 

predation resulting from impaired flight maneuverability.  Lepidopterans, which rely on 

erratic zigzags to deter predators from a potentially energetically costly and unsuccessful 

hunt, are capable of flying with their hindwings completely removed, although such 

marked reductions in wing area in Limantria dispar and Pieris rapae decreases linear 

and turning acceleration, resulting in flight behavior that may predispose individuals to 

predation (Jantzen and Eisner, 2008).  To a point, the magnitude and asymmetry of 

artificial wing wear in foraging B. flavifrons has little effect on flight distance and 
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velocity, and only when magnitude of wear and asymmetry is extreme do they begin to 

deviate from linear flight paths and require longer flight distances with higher velocities 

between flowers (Haas and Cartar, 2008).  Although hymenopterans and lepidopterans 

are robust in their ability to mitigate substantial wing wear, these studies suggest that the 

costs of wing wear are reductions in kinematic and aerodynamic reserves available for 

elevated flight effort.  

 The kinematic and aerodynamic reserve capacities of flying insects are necessary 

for behaviors such as load carriage, gust mitigation, and predator evasion.  The few 

studies have been able to elucidate these capacities during free flight have focused on 

bees, which are capable of vertical force production in excess of 2-times their body mass 

(Dillon and Dudley, 2004) and flight in atmospheres 1/3 the density of sea-level air 

(Altshuler et al. 2005; Dudley 1995; Roberts et al. 2004).  These aerodynamic demands 

are met by increasing stroke amplitude (Φ) up to 45%, which in turn increases the 

angular and translational velocities (ω̄   and Ut, respectively) of the wings.  Studying 

bees during challenging flight should reveal how wing wear affects maximal flight 

capacity and underlying functional reserves.  Wing-worn B. terrestris increase n during 

normal hovering flight (Hedenstrom et al., 2001), but it is not known how wing-worn 

bees modulate Φ and n during maximal flight performance.  If wing wear, and the 

subsequent reduction in wing area (S) and wing length (R), reduces maximal flight 

capacity, then the efficacy of flight behaviors dependant on those aerodynamic reserves 

should decrease.  The present study investigates how the reduction in S due to 

symmetric and asymmetric experimental wing wear affects maximal hovering flight 

capacity in the honey bee (Apis mellifera), with the predictions that maximal flight 
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capacity will inversely vary with wing wear and that asymmetric wear will have the 

greatest affect on flight capacity due to likely impairment of both lift and control.  I 

simulated symmetric and asymmetric wing wear across an ecologically-relevant range 

by clipping the distal-trailing edge of the wings (Hedenstrom et al., 2001; Higginson and 

Barnard, 2004).  Maximal flight capacity was evaluated by allowing bees to hover in a 

series of normoxic, variable-density gasses to determine the minimal gas density (MGD) 

that permitted hovering flight (Roberts et al., 2004; Vance et al., Accepted).  A high-

speed (4348 fps) digital video camera recorded hovering sequences, from which I 

derived n, Φ, average ω̄   and average Ut.  Our results show that honey bee flight 

capacity is progressively limited by the reduction in wing area, and that this effect is 

compounded by asymmetric wear.   

 

Materials and Methods 

Collection and Experimental Treatment 

Honey bees of the foraging caste were collected as they exited a hive at the 

University of Nevada Las Vegas campus apiary and were randomly assigned to one of 

three experimental wing wear treatment groups: no wing wear (control; N = 17), 

symmetric (N = 16) and asymmetric (N = 15) wing wear.  Only bees that possessed 

complete, unworn wings were chosen for the study (i.e. bees with pre-existing natural 

wing wear were not used).  To create the experimental wing-wear, bees were held by the 

thorax using soft forceps, and the distal trailing edge of the forewing was trimmed using 

micro-shears.  The symmetric group had both left and right forewings trimmed equally, 

and the asymmetric group had only one forewing trimmed and the opposite forewing left 
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intact.  The magnitude of wing wear varied across an ecologically-relevant range, from 3 

to 37% (Higginson and Barnard, 2004).  For the control group, the bees were held by the 

thorax for 10 seconds, and the distal trailing edges of the forewings were touched with 

the shears, but no S was removed, similar to the sham-treatment used by Hedenstrom et 

al. (2001).  Following the flight assay, bees were weighed, sacrificed, and the wings 

were removed and photographed with a digital camera.  Wing images were digitized 

using custom software (MatLab; The Mathworks; Natick, Ma, USA) to calculate wing 

length and area.   

Maximal Flight Capacity and Flight Kinematics 

The methods used to assess individual flight capacity were similar to those used by 

Roberts et al. (2004) and Vance et al. (accepted).  Following the experimental wing wear 

treatment, bees were immediately transferred to a flight chamber, which consisted of a 

5-L Erlenmeyer flask with a lucite cover. Bees were exposed to six variable density, 

normoxic gas mixtures composed from oxygen and nitrogen and/or helium, and ranged 

from normodense air (21% O2, 79% N2; 1.21 kg m-3) to hypodense heliox (21% O2, 79% 

He; 0.41 kg m-3) in 0.16 kg m-3 increments. The gases were mixed using calibrated bi-

metal thermo-actuated valves (low flow: Tylan FC-260,  San Diego, Ca, USA) and 

solenoid-actuated valves (high flow: Tylan FC-2910, San Diego, Ca, USA), and 

mixtures and flow rates were metered by an electronic flow controller (Sable Systems 

MFC-4, Las Vegas, Nv, USA). When assessing maximal flight capacity, total gas flow 

rate was maintained at1 L min-1. In between trials, the flight chamber was flushed with a 

new gas mixture at a flow rate of 25 L min-1 for 1 minute. The initial trial began in air 

and the remaining gas mixtures were administered in a non-repeating, random order.  
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Bees that landed on the floor or sides of the chamber were persuaded to fly by agitating 

them with a small magnetic stir-bar, directed by a magnetic wand outside of the 

chamber. Maximal flight capacity was determined as the minimal gas density (MGD) of 

these gas mixtures that allowed hovering flight.  Thus, lower MGD corresponds to 

greater maximal flight capacity, and the highest MGD corresponds to flight that was 

limited to air.  Bees that failed to fly in air (e.g. the wing wear was too severe, the bee 

lacked motivation, etc.) were omitted from the analysis. 

Hovering flight kinematics were calculated from the wing trajectories in the 

horizontal plane recorded by a single, high-speed (4348 fps) digital video camera 

(Vision Research, Phantom v5.1, Wayne, Nj, USA) which was oriented above the flask 

and focused such that the focal plane was at the center of the flask and away from the 

narrow-circumference(s) near the top of the flask to minimize boundary effects (Raynar 

and Thomas, 1991).  The digital video sequences were analyzed using custom software 

(Matlab, The Mathworks; Natick, MA USA) to determine the following kinematic 

variables for individual bees during hovering in air (subscript: “norm”) and hovering in 

the MGD (subscript: “max”): n (in Hz) was calculated from the duration to complete 10 

successive wingbeats; Φ (in degrees) was calculated as the average of the downstroke 

and upstroke angular displacement for each of the 10 wingbeats; and ω̄   (in radians sec-

1), the average wing angular velocity, was calculated from the duration to complete the 

total angular displacement of one downstroke and one upstroke for each of the 10 

wingbeats.  
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Results 

The morphology of honey bees analyzed in this study is summarized in Table 4.1.  

Body mass (Mb) was consistent across all three wing treatment groups.  There was low 

variation in total S and wing asymmetry for bees in the control group.  The symmetric 

wing wear treatment reduced wing area by approximately 15% on average, and ranged 

from 3% to approximately 40%.  Wing asymmetry in the symmetric treatment group 

was comparable to the control group.  The asymmetric wing wear treatment reduced the 

wing area of the treated wing by an average of 15%, the area of the untreated wings in 

this group was similar to wings of bees in the control group.  Asymmetry in wing area 

between the treated and untreated wings averaged 14.6 ± 6.6 (mean ± S.D.) %, and 

ranged from 6 to 26%.  The reduction in total S for the asymmetric treatment was 

approximately one-half that of the symmetric group, although the wing area loss per 

treated wing was similar between the symmetric and asymmetric treatments.  For all 

bees, S significantly correlated to R (P < 0.001; r = 0.92); because S reflects both  

spanwise (R) and chordwise wing dimensions, S was chosen, along with Mb, as 

covariates for the following multivariate analyses of covariance (MANCOVA) for flight 

performance.  

 

Table 4.1:  Honey bee morphology. 
 

Treatment 
N Mb 

(mg) 
S 

(mm2) 
R 

(mm) 
Asymmetry 

(%) 
MGD 

(kg m-3) 
Control 17 79.7 ± 8.7 52.4 ± 3.6 9.2 ± 0.4 2.4 ± 2.7 0.50 ± 0.10 

Symmetric 16 77.3 ± 4.5 45.0 ± 4.7 8.3 ± 0.7 4.0 ± 2.6 0.77 ± 0.23 
Asymmetric 15 78.7 ± 6.7 47.8 ± 3.2 8.5 ± 0.4 14.7 ± 6.6 0.90 ± 0.25 

Units are mean ± S.D.: Body mass, Mb; Total wing area, S; Average wing length, R; Asymmetry in wing 
area between right and left wings, Asymmetry; Minimal gas density allowing for hovering flight, MGD. 
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Wing area and wing treatment group had a significant effect on the overall model of 

flight performance (MANCOVA: wing area F9,35 = 18.4, P < 0.001; wing treatment 

group F18,70 = 2.70; P = 0.002).  Although the effect of Mb on the entire model was 

significant (MANCOVA: F9,35 = 3.00; P = 0.009), Mb had no effects on any individual 

variables of flight performance (Table 4.2).  There was a significant effect of S 

(MANCOVA: F1,43 = 8.26; P = 0.006) and wing treatment (MANCOVA: F2,43 = 9.39; P 

< 0.001) on maximal flight performance (minimal gas density: MGD; Fig 4.1A). 

Pairwise comparison of least squares means (evaluated at S = 48.5 mm2, Mb = 78.6 mg) 

revealed that bees from both the control (P < 0.001) and symmetric (P = 0.009) 

treatments had greater maximal flight performance than the asymmetric treatment (Fig 

1B).  Wingbeat frequency during hovering in air (nnorm; Figure 4.2A) increased as S 

decreased  (MANCOVA: F1,43 = 18.1; P < 0.001), but there was no effect of wing 

treatment (MANCOVA: F2,43 = 1.16; P = 0.323).  Similarly, wingbeat frequency during  

 

Table 4.2: Multivariate Analysis of Covariance (MANCOVA) for the effects of area, 
mass and wing treatment on flight performance. 

 Parameter Estimatesa (mean ± S.E.) Sb                        Mb
c                 Treatmentd 

 Control Symmetric Asymmetric F1,43 P F1,43 P F2,43 P 
nnorm (Hz) 240.7±5.3 231.6±5.3 241.9±4.8 18.1 <0.001 0.41 0.528 1.16 0.323
Φnorm (deg) 107.2±3.2 116.3±3.1 111.7±2.9 3.98 0.052 0.34 0.565 1.70 0.195
ω̄  norm (rad s-1) 909.3±32.8 938.0±32.6 944.0±29.8 21.1 <0.001 0.63 0.433 0.30 0.745
Ut norm (m s-1) 7.75±0.26 8.16±0.26 8.05±0.24 1.42 0.240 1.07 0.308 0.53 0.590
nmax (Hz) 238.1±4.2 236.0±4.2 242.9±3.8 25.7 <0.001 0.03 0.862 0.89 0.419
Φmax (deg) 146.2±3.5 140.0±3.5 129.5±3.2 0.001 0.976 2.66 0.110 6.71 0.003
ω̄  max (rad s-1) 1211.5±38.7 1157.1±38.5 1097.8±35.1 7.10  0.011 1.82 0.184 2.37 0.105
Ut max (m s-1) 10.46±0.32 10.07±0.32 9.41±0.29 0.62 0.434 1.61 0.212 3.11 0.055
MGD (kg m-3) 0.59±0.05 0.69±0.05 0.89±0.05 8.27  0.006 0.04 0.846 9.39 <0.001
Body mass, Mb; Total wing area, S; Wing treatment group, Treatment; wingbeat frequency, n; stroke 
amplitude, Φ; wing angular velocity, ω̄  ; wingtip velocity, Ut; Minimal gas density allowing for hovering 
flight, MGD; kinematics during flight in air, norm; kinematics during flight in the MGD, max. 
a  Least squares means evaluated at S = 48.49 mm2, and Mb = 78.57 g 
b  MANCOVA: F9,35 = 18.4; P < 0.001 
c  MANCOVA: F9,35 = 3.00; P = 0.009 
d  MANCOVA: F18,70 = 2.70; P = 0.002 
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Figure 4.1:  A) Maximal flight capacity (minimal gas density: MGD) vs. wing area (S) 
for control (blue ), symmetric (green ), and asymmetric (red ) wing wear.  Values 
of MGD (kg m-3) are inverted to reflect the increasing aerodynamic demand of flying in 
lesser-density gas mixtures.  There was a significant effect of treatment (P < 0.001) and 
S (P = 0.006) on MGD (MANCOVA): MGDsham = 1.04 - 0.0103S (blue line); MGDsym = 
1.68 - 0.0264S (green line); MGDasym = 2.78 – 0.0394S (red line).  B) Least squares 
means evaluated at S = 48.49 mm2 and Mb = 78.57 g.  Pairwise comparisons revealed 
that bees with the control and symmetric wing treatments had greater maximal flight 
capacity than bees with asymmetric wings after accounting for variation in S and Mb. 
 
 
 
hovering in the MGD (nmax; Fig 4.2A) increased as S decreased (MANCOVA: F1,43 = 

25.7; P < 0.001), but there was no effect of wing treatment (MANCOVA: F2,43 = 0.89; P 

= 0.419).  After adjusting for variation in wing area (evaluated at S = 48.5 mm2, Mb = 

78.6 mg), there were no differences in the least squares means for nnorm or nmax between 

the three treatment groups (Fig 4.2B). 

Wing stroke amplitude during hovering in air (Φnorm; Fig 4.3A) was not affected by 

the wing treatment (MANCOVA: F2,43 = 1.70; P = 0.195).  Although there was a 

general linear trend between S and Φnorm for all bees (model I regression: F1,46 = 15.8; P 

< 0.001), the MANCOVA did not reveal a significant relationship between S and Φnorm 

(F1,43 = 3.98; P = 0.052).  During hovering in the MGD, wing stroke amplitude (Φmax) 
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Figure 4.2:  A) Wingbeat frequency (n) vs. wing area (S) for control (blue ), 
symmetric (green ), and asymmetric (red ) wing wear.  Data during flight in air 
(nnorm) are represented by open symbols and flight in MGD (nmax) are represented by 
filled symbols.  There was a significant effect of S (P < 0.001), but no effect of 
treatment (P = 0.323), on nnorm (MANCOVA): All bees, nnorm = 367 – 2.66S (broken 
line). There was also a significant effect of S (P < 0.001), but no effect of treatment (P = 
0.419), on nmax (MANCOVA): All bees, nmax = 383 – 2.98S (solid line). B) Least 
squares means for nnorm (open) and nmax (filled) evaluated at S = 48.49 mm2, and Mb = 
78.57 g.  There were no differences in nnorm or nmax between the three groups after 
accounting for variation in S. 

 
 
 
was not affected by S (MANCOVA: F1,43 = 0.001; P = 0.976), but was affected by wing 

treatment (MANCOVA: F2,43 = 6.71; P = 0.003).  Pairwise comparisons of least squares 

means (evaluated at S = 48.5 mm2, Mb = 78.6 mg) showed that bees from both the 

control (P = 0.001) and symmetric (P = 0.027) treatments were capable of greater Φmax 

than bees from the asymmetric treatment (Fig 4.3B).  To evaluate the potential effects of 

natural and experimental asymmetry in S on Φ, I compared Φ between the smaller and 

larger wing in each bee.  During hovering in air (Fig. 4.3C), there were no differences in 

Φnorm between the smallest and largest wings for the control and symmetric treatment 

groups (Paired T-Test: P = 0.055, P = 0.205, respectively).  However, for the 

asymmetric treatment group, the smaller (treated) wing had significantly greater Φnorm  
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Figure 4.3:  A) Wing stroke amplitude (Φ) vs. wing area (S) for control (blue ), 
symmetric (green ), and asymmetric (red ) wing wear.  Φ  is the mean amplitude of 
the left and right wings.  Data during flight in air (Φnorm) are represented by open 
symbols and flight in MGD (Φmax) are represented by filled symbols.  Although there 
was an inverse trend between S and Φnorm (broken line: Φnorm = 175 – 1.31S), there was 
no effect of S (P = 0.052) or treatment (P = 0.195), on Φnorm (MANCOVA). There was 
no effect of S (P = 0.967), but there was a significant effect of treatment (P = 0.003) on 
Φmax (MANCOVA): Sham, Φmax = 142 + 0.084S; Symmetric: Φmax = 161 - 0.472S; 
Asymmetric: Φmax = 198 + 2.30S (red line).  B) Least squares means for Φnorm (open) 
and Φmax (filled) evaluated at S = 48.49 mm2, and Mb = 78.57 g.  Pairwise comparisons 
revealed that there were no differences between the three groups for Φnorm, but bees with 
the control and symmetric wing treatments had greater Φmax than bees with asymmetric 
wings after accounting for variation in S and Mb.  C)  Independent Φnorm for the smallest 
(filled) and largest (open) wings.  For the asymmetric wing treatment group, the smallest 
wing had significantly greater Φnorm than the largest wing (Paired T-Test: P < 0.001).  
D)  Independent Φmax for the smallest (filled) and largest (open) wings.  For the 
asymmetric wing treatment group, the smallest wing had significantly greater Φmax than 
the largest wing (Paired T-Test: P < 0.001). 



63 

 

than the larger (untreated) wing (Paired T-Test: P < 0.001).   During hovering in the 

MGD (Fig. 4.3D), there were also no differences in Φmax between the smaller and larger 

wings for the control and symmetric treatment groups (Paired T-Test: P = 0.096, P = 

0.877, respectively).  As during hovering in air, the asymmetric treatment group 

exhibited greater Φmax in the smaller (treated) wing than the larger (untreated) wing 

during hovering in the MGD (Paired T-Test: P < 0.001).    

Wing angular velocity during hovering in air (ω̄  norm; Fig 4.4A) had an inverse 

relationship to S (MANCOVA: F1,43 = 21.1, P < 0.001), but was not affected by wing 

treatment (MANCOVA: F2,43 = 0.30; P = 0.745).  Likewise, during hovering in the 

MGD, ω̄  max had an inverse relationship to S (MANCOVA: F1,43 = 7.10, P = 0.011), but 

was not affected by wing treatment (MANCOVA: F2,43 = 2.37; P = 0.105).  Pairwise 

comparisons of least squares means showed no significant differences between the three 

treatment groups for ω̄  norm. The control treatment group had greater ω̄  max than the 

asymmetric group (P = 0.040), after adjusting for variation in S (evaluated at S = 48.48 

mm2, Mb = 78.6 mg).  During hovering in air (Fig. 4.4C), there were no differences in ω̄  

norm between the smaller and larger wings for the control and symmetric treatment 

groups (Paired T-Test: P = 0.051, P = 0.180, respectively).  However, for the 

asymmetric treatment group, the smaller (treated) wing had significantly greater ω̄  norm 

than the larger (untreated) wing (Paired T-Test: P < 0.001).   During hovering in the 

MGD (Fig. 4.4D), there was also difference in ω̄  max between the smaller and larger 

wings for the sham (Paired T-Test: P = 0.109).  Both the symmetric and asymmetric 

treatment groups exhibited greater ω̄  max in the smaller (treated) wing than the larger 

(untreated) wing during hovering in the MGD (Paired T-Test: P = 0.010, P < 0.001). 
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Figure 4.4:  A) Wing angular velocity (ω̄  ) vs. wing area (S) for control (blue ), 
symmetric (green ), and asymmetric (red ) wing wear.  Data during flight in air (ω̄  
norm) are represented by open symbols and flight in MGD (ω̄  max) are represented by 
filled symbols.  There was a significant effect of S (P < 0.001), but no effect of treatment 
(P = 0.745) on ω̄  norm (MANCOVA): all bees, ω̄  norm = 2011 – 22.3S (broken line). There 
was an effect of S (P = 0.011), but no effect of treatment (P = 0.105) on ω̄  max 
(MANCOVA): all bees, ω̄  max = 1597 – 9.05S (solid line).   B) Least squares means for 
ω̄  norm (open) and ω̄  max (filled) evaluated at S = 48.49 mm2, and Mb = 78.57 g 2.  There 
were no differences in ω̄  norm between the three groups, but the control  group had 
greater ω̄  max than the asymmetric group after accounting for variation in S and Mb.  C) 
Independent ω̄  norm for the smallest (filled) and largest (open) wings.  In the asymmetric 
treatment group, ω̄  norm for the smallest wing was significantly greater than in the largest 
wing (Paired T-Test: P < 0.001).  D) Independent ω̄  max for the smallest (filled) and 
largest (open) wings.  For the symmetric and asymmetric treatment groups, ω̄  max for the 
smallest wing was significantly greater than in the largest wing (Paired T-Test: P = 
0.010 and P < 0.001, respectively). 
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Figure 4.5:  A) Wingtip velocity (Ut) vs. wing area (S) for control (blue ), symmetric 
(green ), and asymmetric (red ) wing wear.  Data during flight in air (Ut norm) are 
represented by open symbols and flight in MGD (Ut max) are represented by filled 
symbols.  There was no effect of S (P = 0.240) or treatment (P = 0.590), on Ut norm 
(MANCOVA). There was no effect of S (P = 0.434) or treatment (P = 0.055) on Ut max 
(MANCOVA). B) Least squares means for Ut norm (open) and Ut max (filled) evaluated at 
S = 48.49 mm2, and Mb = 78.57 g.  Pairwise comparisons revealed that there were no 
differences between the three groups for Ut norm, but the control group had greater Ut max 
than the asymmetric treatment group after accounting for variation in S and Mb.  C) 
Independent Ut norm for the smallest (filled) and largest (open) wings.  In the asymmetric 
group, Ut norm for the smallest wing was significantly greater than the largest wings 
(Paired T-Test: P = 0.009).  D) Independent Ut max for the smallest (filled) and largest 
(open) wings.  For the symmetric and asymmetric groups, Ut max for the smallest wing 
was significantly greater than the largest wing (Paired T-Test: P = 0.040, P = 0.003, 
respectively).  
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Wingtip velocity during hovering in air (Ut norm; Figure 4.5A) was not affected by S 

(MANCOVA: F1,43 = 1.42; P = 0.240) or wing treatment (MANCOVA: F2,43 = 0.53; P 

= 0.590).  Likewise, Ut max was not affected by S (MANCOVA: F1,43 = 62; P = 0.434) or 

wing treatment (MANCOVA: F2,43 = 3.11; P = 0.055).  However, pairwise comparisons 

of least square means (evaluated at S = 48.5 mm2, Mb = 78.6 mg) did reveal that bees 

from the control treatment were able to maintain greater Ut max than bees from the 

asymmetric treatment (P = 0.024; Figure 4.5B).  During hovering in air (Fig. 4.5C), 

there were no differences in Ut norm between the smaller and larger wings for either the 

control or symmetric groups (Paired T-Test: P = 0.223, P = 0.265, respectively).  

However, bees with asymmetric wing wear had greater Ut norm in the smaller wing, as 

compared to the larger wing (Paired T-Test: P < 0.001).  There was no difference in Ut 

max between the smaller and larger wings during hovering in the MGD (Fig. 4.5D) for the 

control group (Paired T-Test: P = 0.316).  However, the symmetric and asymmetric 

groups had greater Ut max in the smallest wing than the largest wing (Paired T-Test: P = 

0.040, P < 0.001, respectively). 

 

Discussion 

As bees accrue wing wear with foraging experience, foraging behavior is altered and 

mortality increases (Higginson and Barnard, 2004; Cartar, 1992).  Hedenstrom et al. 

(2001) found no metabolic cost associated with wing wear, and Haas and Cartar (2008) 

observed little variation in free flight performance across varying degrees of wing wear 

magnitude and asymmetry.  Our results confirm that, during non-challenging flight 

conditions, bees are resilient to wing wear, but also that wing wear, especially that 
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which is asymmetric, profoundly impairs maximal flight capacity.  Such reductions in 

maximal flight capacity limit the aerodynamic reserves available for maneuvers and 

burst performance associated with evading predators and flight under adverse condition 

such as high wind.  Reduced flight capacity likely compromises the performance of 

other flight-dependent behaviors such as foraging.  Thus, I proposed that limited 

maximal flight capacity, and the consequences for flight behaviors that require those 

aerodynamic reserves, are the mechanisms that link wing wear to mortality and foraging 

behavior.  

In normal and maximal hovering, the reduction in wing area due to wing wear is 

mitigated by enhanced kinematics to maintain aerodynamic force production.  During 

hovering in air, there was a tendency for Φnorm to vary inverse to S (Figure 4.3A; broken 

line), but the predominant strategy to compensate for decreased S was to increase n 

(Figure 4.2A; broken line), which is similar to how B. terrestris responds to wing wear 

(Hedenstrom et al., 2001).  This variation in n across S may simply result from passive 

resonance properties, as n is inversely related to wing moment of inertia (Sotavalta, 

1952).  However, it is not known whether any active mechanisms also contribute to the 

modulation in n across S.  For Drosophila melanogaster, the asynchronous flight 

muscle, and control and accessory muscles are sensitive to the spike rate of neural 

inputs, and contribute to the active modulation of n (Dickinson et al., 1998).  Some bee 

species, such as Xylocopa varipuncta and Centris pallida, exhibit the capacity to 

increase n when augmenting aerodynamic output (Roberts et al., 2004; Roberts et al., 

1998).  Whereas, other bee species, including Euglossines and honey bees, do not vary n 

under similar conditions (Altshuler et al., 2004; Dudley, 1995), although they exhibit n 
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that is sensitive to ambient temperature (Roberts and Harrison, 1999), development and 

age (Vance et al., accepted).  The general absence of modulation of n in honey bees 

(under normal, non-impaired conditions) may reflect the selection of muscle strain rates 

that maximize muscle efficiency (Dickinson et al., 1998), which would be favorable for 

foraging bouts of long duration.  Considering that other hymenopterans do not incur 

greater metabolic costs associated with the increase in n due to S loss (Hedenstrom et 

al., 2001), it is plausible that n is modulated across S loss to optimize muscle strain rates 

and efficiency.  

The modulation of ω̄   and Ut (by varying n and/or Φ) is a general strategy used by 

hoverers to control aerodynamic output (Altshuler et al. 2005; Chai and Dudley, 1996; 

Chai and Dudley, 1997; Dudley, 1995; Roberts et al. 2004; Vance et al. in press), as 

aerodynamic forces generally scale to Ut
2 (Lehmann and Dickinson, 1998).  I expected 

Ut norm to increase as a mechanism to mitigate the loss of S and R in the symmetric and 

asymmetric groups.  Although ω̄  norm varied inversely to S, Ut norm was maintained across 

the 3 groups.  In order to produce normal, hovering flight forces at a given Ut norm with 

smaller wings, the coefficient of lift may be augmented by exploiting wake capture or 

rotational mechanisms common to the high-frequency, short wingstrokes of honey bees 

during flight in air (Altshuler et al., 2005).  However, as Φ increases during flight in 

hypodense atmospheres, midstroke force production related to Ut max would dominate 

aerodynamic force production.  Bees with wing wear did not sufficiently increase ω̄  max 

to offset the loss of S and R, and Ut max decreased in response to the magnitude and type 

of wing area loss, which ultimately impaired maximal flight performance.  In the 

asymmetric treatment group, the smaller (treated) wing exhibited greater Φ, ω̄  , and Ut 
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than the larger (untreated) wing during normal and maximal hovering.  The putative 

aerodynamic and inertial imbalances imposed by asymmetric Ut may have disrupted 

stability during hovering near or at MGD.  Indeed, bees with high asymmetry were 

prone to spiraling flight as they approached the point of aerodynamic failure and 

spiraling plummets as they achieved aerodynamic failure.  Bees were capable of 

mitigating asymmetric wear during normal flight but appeared unable to overcome the 

effects of the wing and stroke asymmetries during challenging flight, and thus maximal 

flight capacity in these bees was below that of bees with symmetric wear.  

The mechanism relating wing wear to longevity and mortality rates has long been 

elusive.  In the absence of a metabolic link between wing wear and mortality, it has been 

hypothesized that wing wear may reduce bees’ ability to evade predators (Alcock, 1996; 

Cartar, 1992; Hedenstrom et al. 2001).  Aerodynamic power reserves (Pres) in excess of 

the power required to sustain normal flight (Pnorm) facilitate the maneuverability and 

burst performance of evasive flight.  However, the Pres available to the insect is 

determined by its maximal aerodynamic capacity (Pmax),  

Pres = Pmax – Pnorm 

Thus, as maximal capacity (Pmax) is impacted by the magnitude and type of wing wear,  

the subsequent reduction in Pres may limit bees’ maneuverability and burst performance, 

and increase risk of predation and mortality (Cartar, 1992; Dukas, 2008).  In addition to 

evading predators, Pres is required to augment aerodynamic output beyond the 

requirements of steady flight for many transient tasks, such as rapid ascent, 

maneuvering, and burst performance to defend territory or compete for a mate.  It is also 
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important to consider other ecologically-relevant factors that reduce aerodynamic 

reserves,  

Pres = Pmax – Pnorm – Pload – Pwind  

such as the aerodynamic power required to carry additional load (Pload) during foraging 

or mating (Petersson, 1995), and the aerodynamic power necessary to overcome wind 

(Pwind).  In the context of a given flight behavior (where Pnorm may be constant), a 

reduction in Pmax, or an increase in Pload or Pwind, will reduce Pres.  It is plausible that 

bees govern flight behavior, such as limiting load carriage, in order to maintain Pres as a 

margin of safety, especially when foraging within dynamic environments that demand 

variable Pwind.  For example, despite the capacity to carry large nectar loads, A. mellifera 

only partially fill their crop during foraging bouts (Schmid-Hempel et al., 1985).  

Although this regulation of nectar loading has been attributed to colony-level energetics 

and foraging efficiency, a further increase in the foraging load and Pload would reduce 

Pres and bees’ ability to ascend, maneuver, and evade predators.  Likewise, as Pmax and 

Pres are reduced by wing wear, foraging bees may limit Pload (Higginson and Barnard, 

2004) as a mechanism to maintain adequate Pres.  Pmax may be constrained by other 

factors, such as parasitic tracheal mites which limit flight metabolic rates (Harrison et 

al., 2001), or developmental trajectory (Vance et al., accepted); under such conditions, 

reduced Pres may be insufficient for optimal flight performance without otherwise 

compromising task-specific flight behaviors.   

When imposed with significant symmetric and asymmetric wear, honey bees 

maintained normal flight performance by increasing nnorm and ω̄  norm, which produced Ut, 

norm similar to unaffected bees.  However, bees could not increase Ut, max sufficient to 
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offset loss in S, which impacted maximal flight capacity.  Asymmetry further 

compounds the effects of wing wear and impaired maximal flight capacity, possibly due 

to inertial and aerodynamic imbalances which limit flight control and stability.  Thus, 

wing wear reduces the aerodynamic reserve capacity that is available for flight 

behaviors which require enhanced aerodynamic output, such as predator evasion, and I 

believe this is the mechanism that links wing wear to mortality in foraging bees.  Flying 

insects must balance the aerodynamic power expended on task-specific flight behaviors 

with their remaining aerodynamic reserves so that they can accommodate environmental 

perturbations, maneuver, or evade predators if necessary.  Besides wing wear, a broad 

suite of other physiological, developmental and environmental factors may reduce 

maximal flight capacity and hinder flight performance.  Thus, future research that links 

these sources of variation in maximal flight capacity to the performance of ecologically-

relevant flight behaviors will be critical in understanding how such behaviors are 

governed.  
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