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ABSTRACT 

The Role of Larval Fat Cells in Starvation Resistance and 
Reproduction in Adult Drosophila melanogaster 

by 

Jerell Roland Aguila 

Dr. Deborah K. Hoshizaki, Examination Committee Chair 
Associate Professor of Life Sciences 

University of Nevada, Las Vegas 

The intricate life cycle of holometabolous insects includes well-defined larval and 

adult stages associated with feeding and non-feeding periods. The larval stage is 

distinguished by prevalent feeding and is necessary for supporting the animal as it 

quickly grows. The larval stage also serves as the period for the animal to obtain adequate 

energy stores, primarily in the larval fat body, to fuel the animal through the non-feeding 

pupal and immature adult stages. Acquiring sufficient energy stores is paramount for the 

success of the adult animal. In fact, certain insects, such as silkworms and mayflies, do 

not feed as adults and must obtain all their lifetime nutrients during the larval stage. In 

Drosophila melanogaster, the larval fat body is preserved during the pupal stage as 

individual dissociated cells, enabling the animal access to the energy stores. These larval 

fat cells do not undergo early pupal autophagic cell death that eliminates most of the 

larval cells during metamorphosis. Instead, these larval fat cells persist into the adult 

stage and have a nutritional role in the young adult. By utilizing cell markers, I show that 

the larval fat cells remain in the young adult and are ultimately removed in the adult by a 
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caspase cascade leading to cell death. In addition, I demonstrate that the larval fat body 

plays a key role in enhancing starvation resistance and serving as a nutritional reservoir 

for the adult animal. I also report here that the rapid release of energy stores from larval 

fat cells by caspase-induced cell death promotes the rapid maturation of the ovaries and 

has an important role in establishing female fecundity. Furthermore, I suggest that the 

transfer of larval nutrients from the larval fat body to the adult gonadal tissues is 

necessary for the proper development of the ovaries. Finally, I demonstrate that in the 

absence of caspase-induced programmed cell death, the age of first reproduction is 

delayed and total fecundity is reduced in females. Overall these results reveal an 

important role for the larval fat reserves in the rapid development of the ovaries, which I 

propose in a model at the end of the dissertation. 
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CHAPTER 1 

INTRODUCTION 

Energy homeostasis is important for the fitness and survival of all organisms and 

entails energy acquisition, storage, and tissue specific allocation. In Drosophila 

melanogaster, the fat body plays a significant role in both intermediary metabolism and 

the storage of nutrients. It has also been shown to serve as a nutrient sensor that affects 

organismal growth and longevity (Colombani et al., 2003). Through insulin and TOR 

signaling, the fat body directly influences the growth of cells and the overall size of the 

organism (Hafen, 2004). In addition, previous studies have demonstrated a role for the fat 

body in the production of growth factors (Kawamura et al., 1999) and in the synthesis 

and secretion of antimicrobial defense peptides (Hoffmann et al., 1996). Finally, the 

larval fat body functions to accrue sufficient energy stores to fuel pupal development and 

to sustain the young adult until it begins foraging. 

In D. melanogaster, metamorphosis is characterized by an extraordinary 

transformation from the larval to the adult form. The specialized larval imaginal cells 

proliferate to give rise to the adult tissues while the larval tissues are degraded through 

the process of autophagic programmed cell death (Lee and Baehrecke, 2001). A striking 

exception to this loss of larval tissues is the fat body, which undergoes tissue dissociation 

into individual cells (Nelliot et al., 2006). These larval-derived fat cells survive as 

independent cells throughout metamorphosis and are presumed to function as a 
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nutritional reservoir to fuel the re-architecture of the animal to the adult. The larval-

derived fat cells persist and are present in the young adults, where they later undergo cell 

death. 

In this dissertation, I present the first definitive evidence that energy stores 

acquired during larval development are transmitted to the adult via the larval fat cells. I 

hypothesize that the presence of larval fat cells in newly-eclosed females is instrumental 

in the three-fold increase in starvation resistance relative to older females (Aguila et al., 

2007). Consistent with this hypothesis are my observations that the inhibition of 

programmed cell death in the larval fat cells results in a four-fold increase in starvation 

resistance (Aguila et al., 2007). While it has been assumed that larval fat cells serve as an 

important energy reservoir in the adult female, these data do not explain why females, 

where fat-cell energy stores are released by programmed cell death, are more sensitive to 

starvation than females in which death of the larval fat cells is delayed. 

To explore this conundrum, I tested the role of larval fat cells as the source of 

energy stores transferred to the ovaries to support their proper development. I 

demonstrate that the transfer of energy stores from the larval fat cells to the ovaries is 

facilitated by programmed death of the larval fat cells. I also demonstrate that the 

inhibition of normal cell death of the larval fat cells leads to a decrease in the size and 

mass of adult ovaries, as well as a decrease in overall female fecundity. Overall, I address 

the importance of larval reserves in establishing female fecundity, the trade-off between 

growth and size, and life history traits. 
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Larval Diet Affects Adult Survival and Fecundity 

In holometabolous insects, the acquisition of sufficient metabolic resources during 

the larval stages is paramount for the adult's success. The allocation of larval energy 

stores directly affects adult morphology, size control, and fitness. In fact, some insects do 

not feed as adults and must obtain all their nutrient reserves during the larval period. For 

example the silkworm, Bombyx mori, cannot fly in the adult phase and has reduced 

mouth parts making it unable to feed as an adult (Goldsmith et al., 2004). Likewise, adult 

mayflies have vestigial mouthparts and a digestive system filled with air, and thus do not 

feed. Their adult life-span ranges from only 30 minutes to one day, and their primary 

objective is to reproduce (McCafferty, 1994). 

Some researchers have observed that the larval feeding period has a significant 

role in overall adult fitness. In Manduca sexta, it has been demonstrated that varying the 

amounts of sugar, protein, or water in the larval diet has a profound effect on adult 

eclosion time, size, and fat content (Raguso et al., 2007). Furthermore, in the butterfly 

Speyeria mormonia, adults with a smaller body mass and shorter forewing length resulted 

when their last larval instar food intake was reduced by half (Boggs and Freeman, 2005). 

Recent work in D. melanogaster has also investigated the importance of the larval 

feeding period for adult success. Drosophila larvae restricted from feeding on yeast 

exhibit a delayed eclosion, small body size, reduced ovariole number, and reduced age-

specific fecundity (Tu and Tatar, 2003). It has also been demonstrated that desiccation-

selected D. melanogaster have a higher body mass resulting from a prolonged third instar 

larval feeding period (Gefen et al., 2006). Furthermore, flies that are selected for high 
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aggregated oviposition behavior are larger as adults compared to controls because of a 

significant increase in larval feeding rates (Ruiz-Dubreuil et al., 1996). 

Larval Energy Stores: Importance for Life History Evolution 

For any animal, limiting nutritional resources can lead to a metabolic tradeoff 

between growth, reproduction, and somatic maintenance. One important determinant of 

an animal's life history is the acquisition and allocation of nutrients (Rose and Bradley, 

1998). In many insects, the acquisition and allocation of nutrients takes place at both the 

larval and adult stages. Limitations on nutrient usage from different life stages can be 

affected by changes in diet, anatomy, metabolism, and digestive physiology (Zera and 

Harshman, 2001). It is imperative for an insect to obtain sufficient energy stores at both 

the larval and adult stages in order to support growth, reproduction, and maintenance of 

the soma. 

Energy resources in adults of holometabolous insects may originate either from 

larval or adult feeding. The Y model of resource allocation predicts a key tradeoff 

between reproduction and survival (Zera and Harshman, 2001). While it is clear that 

allocating energy stores to one will compromise the success of the other, the 

physiological mechanisms underlying the tradeoff are still largely unknown. 

Since pupae do not feed, the energy required to fuel developmental changes 

during metamorphosis must be acquired and stored during the larval feeding period. In D. 

melanogaster the last three days of larval development are characterized by a 200-fold 

increase in mass (Church and Robertson, 1966). The accumulation of nutrient reserves is 

primarily in the larval fat body. Interestingly, during development there is a non-feeding 

period both before and after metamorphosis. Prior to metamorphosis, the larva stops 
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feeding and "wanders" for 12-24 hours in search of a pupation site (Riddiford, 1993). 

After eclosion, the newly-emerged adult remains inactive for approximately eight hours 

until the wings expand and the cuticle tans (Chiang, 1963). Larvae must therefore 

acquire enough nutrients not only to fuel developmental re-organization but also to 

survive the late larval and early adult periods. In nature, the new adult may also need to 

seek a new food source, if the fruit or other substrate upon which it developed is no 

longer available. Therefore, sufficient larval-derived nutrients must be stored and remain 

available for use by the adult. 

Ovary Development in Drosophila melanogaster 

The germ cell elements of the female reproductive system are derived from cells 

that are sequestered to the posterior pole of the embryo before blastoderm formation 

(Sonnenblick, 1950). These pole cells have RNA-rich polar granules within their 

cytoplasm and develop into a polar cap of 24 to 48 cells between the blastoderm and 

vitelline membrane (Sonnenblick, 1950). The pole cells destined to be incorporated into 

gonads move to the interior of the embryo within the lumen and form the posterior 

midgut rudiment. Later, they disperse from the gut lumen and move to the left or right 

side of the gut cells. These germ cells are then enveloped by a monolayer of cuboidal 

cells that originate from the somatic mesoderm. The mesoderm also supplies secondary 

cells that lie between the large germ cells (Poulson, 1950). A newly hatched larva 

contains minute ovaries that only have 8 to 12 oogonia, or precursor stem cells that 

occupy the cortex of the ovary and begin oogenesis (Sonnenblick, 1950). 

Throughout the larval life of a female Drosophila, there are relatively little 

changes in the ovary apart from an increase in size. During larval development the ovary 
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will increase 50-fold in volume (Sonnenblick, 1941). For the duration of the larval and 

pupal periods, the ovaries only contain immature oogonia and no oocytes. About 36 

hours after puparium formation, the ovaries become attached to the oviducts. The first 

oocytes appear much later in development, shortly before the emergence of the fly 

(Kerkis, 1933). Upon eclosion, the adult ovary is comprised of a cluster of parallel 

ovarioles containing egg chambers arranged in a single file. The ovaries of newly eclosed 

flies are not yet completely mature and contain no ripe eggs. The ovaries are made up of 

15-20 egg tubes or ovarioles with the germarium as the anteriormost end. The exact 

number of ovarioles is dependent upon the larval food condition (Saveliev, 1928). The 

ovaries of 1 -day-old flies contain eggs at various stages of development, and the amount 

of yolk deposited in each egg indicates its stage of development. Around two days after 

eclosion of the fly, the ovary contains fully developed eggs ready to be laid (Saveliev, 

1928). 

In Drosophila melanogaster females, the rate at which ovarioles complete 

development and the rate of egg lay can vary considerably based on several factors, 

including genotype, age, temperature, humidity, the abundance of mates, the quality of 

oviposition sites, and the overall nutrition of the animal (Robertson and Sang, 1944; 

Chiang and Hodson, 1950). If a female fruit fly is reared under optimal conditions, it can 

lay up to twice as many eggs as its total number of ovarioles each day (David and Merle, 

1968). Therefore, if a female contains 20 ovarioles, it could lay 40 eggs in a 24-hour 

period under ideal conditions. 
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Types of Cell Death: Necrosis, Apoptosis, and Autophagy 

Cell death is a natural biological process that occurs as a normal sequence of 

development and homeostasis. There are numerous types of cell death which are defined 

by the biochemical or morphological behavior of the cell. Severely injured cells may 

undergo necrosis, or unnatural cell death. Necrosis includes cell swelling, disruption of 

the integrity of the plasma membrane or organelle membranes, and chromatin digestion 

(Lockshin and Zakeri, 2001). In the final phase of necrosis, the cell will simply rupture 

and the intracellular contents will be released. Because necrosis is termed a disorderly 

type of cell death, there is no evidence that the proper cell signals are sent to phagocytes 

to engulf the dying cell. Therefore, it is much more difficult for the immune system to 

find and recycle dead cells that have undergone necrosis compared to those which have 

undergone apoptosis (Lockshin and Zakeri, 2001). 

Physiological cell death has been divided into two main categories: apoptosis and 

autophagy. Unlike necrosis, both apoptosis and autophagy are programmed cell deaths 

that are under physiological control. 

Apoptosis is a type of programmed cell death that was first described by 

morphological criteria and later by a distinctive and restricted form of degradation of 

DNA. Unlike necrosis, apoptosis possesses cellular mechanisms to properly dispose of 

cellular debris through phagocytes. The hallmarks of apoptosis include cell shrinkage, 

condensation and blebbing of the cytoplasm, changes to the cell membrane, nuclear 

fragmentation, chromosomal DNA fragmentation, and chromatin condensation (Bortner 

and Cidlowski, 2002). Cell shrinkage during apoptosis is the result of the loss of K+from 

the cell (Razik and Cidlowski, 2002) while the collapse of chromatin likely stems from 

7 



the degradation of DNA (Arends et al., 1990). Many of these characteristics are 

controlled by the activation of specialized restricted-target proteases called caspases 

(Salvesen, 2002). 

The caspases are highly conserved from Caenorhabditis to Drosophila to 

mammals and were only discovered in 1993 (Yuan et al., 1993). The two general 

categories of caspases are initiator caspases (caspases 8 and 9) and effector caspases 

(caspases 3 and 7). Caspases 8 and 9 can be activated by an extracellular signal or by 

dramatic changes in the mitochondria of a cell, such as the release of cytochrome c into 

the cytoplasm (Suzuki et al , 2001). When the initiator caspases are activated, they in turn 

are able to activate the effector caspases leading to apoptotic activity. After proper 

signaling and activation, the effector caspases are able to attack crucial cytoplasmic 

proteins, strategic enzymes, and structural proteins (Suzuki et al., 2001). 

Autophagy is a form of programmed cell death that involves the deterioration of 

the components of the cell through the use of lysosomes. Autophagy is usually employed 

by a cell to primarily remove large amounts of cytoplasm (Schmid and Muenz, 2007). 

The process of autophagy is generally not caspase-driven, and DNA destruction is not a 

priority (Klionsky and Emr, 2000). While there are several current studies regarding the 

processes of autophagy, there are many unanswered questions surrounding its regulatory 

mechanisms. Specific studies have demonstrated that autophagy plays a significant role 

in how a starving cell is able to breakdown cellular components in order to reallocate 

nutrients from unessential processes to more vital processes (Yorimitsu and Klionsky, 

2005). 
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Autophagy and Apoptosis in Drosophila melanogaster 

Current studies in D. melanogaster have made important advancements in 

understanding the processes of autophagy and apoptosis. Autophagy has been shown to 

not only be involved in physiological cell death in Drosophila but also to play a key role 

in mechanisms controlling cell survival (Berry and Baehrecke, 2007). Furthermore, it has 

been demonstrated that components of autophagy and apoptosis are shared between the 

two mechanisms (Berry and Baehrecke, 2007). 

While apoptosis has been classified as type I programmed cell death (PCD), 

autophagy has been designated as a type II PCD (Schweichel and Merker, 1973). In 

addition, autophagy has been further defined by the presence of autophagosomes and 

autolysosomes within cells that are dying (Berry and Baehrecke, 2007). By using the 

salivary glands of Drosophila, Berry and Baehrecke demonstrated that PCD of the glands 

is triggered by the steroid hormone ecdysone. They found that the death of the salivary 

glands showed morphology of autophagy but were also aware that ecdysone played a role 

in caspase cascade activation in salivary glands which is associated with apoptosis. 

To study autophagy, Berry and Baehrecke manipulated positive regulators of the 

class I phosphoinositide 3-kinase (PI3K) pathway, such as pi 10 and Akt, enabling them 

to investigate the inhibition of degradation of the salivary gland (Berry and Baehrecke, 

2007). The investigators also demonstrated that autophagy gene (atg) mutants inhibit 

proper gland degradation. One major finding was that atg mutants still had active 

caspases which is a hallmark of apoptosis. They concluded that growth arrest and 

caspases contribute to autophagic cell death and that there may be other caspase-

independent factors that are required for PCD of the salivary glands. Thus, components 
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of autophagy and caspases contribute to autophagic cell death of salivary glands (Berry 

and Baehrecke, 2007). This model of programmed cell death may apply to the larval fat 

body in the immature adult. 

Cell Death Genes in Drosophila melanogaster 

The genetic control of apoptosis has been extensively studied in D. melanogaster. 

The Drosophila apoptosis genes include rpr (reaper), hid (head involution defect), and 

grim (White et al., 1994). The structural similarity between Rpr, Hid, and Grim sits in a 

short N-terminal sequence known as the RHG motif (Wing et al., 2001). These proteins 

are capable of inducing cell death by inactivating the Drosophila inhibitor of apoptosis 

protein (Diapl). Rpr, Hid, and Grim interact with Diapl in a RHG-dependent manner to 

promote Diapl ubiquitination and degradation (Goyal et al., 2000). 

Inhibitors of apoptosis (IAP) proteins are able to moderate apoptosis by directly 

binding to and inhibiting caspases (Goyal, 2001). There are two Drosophila IAPs known 

as Diapl and Diap2. They contain two amino-terminal baculovirus inhibitor of apoptosis 

repeats (BIRs) that regulate binding to caspases (Hay et al., 1995). In addition, the Diap 

proteins have a carboxy-terminal RING finger domain that has E3 ubiquitin-ligase 

activity (Yang et al., 2000). Diapl and Diap2 were two of the earliest cellular IAPs to be 

isolated as potent inhibitors of death induced by rpr, hid and grim (Hay, 2000). Studies 

have shown that Diapl functions by inhibiting the processing and activation of caspases 

Dcp-1, Drice, and Drone (Goyal et al., 2000; Muro et al., 2002). The precise function of 

Diap2 in cell death inhibition has not been well characterized (Quinn et al., 2000). 
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Stable Isotope Analysis: C3 versus C4 Plants 

Numerous studies in Drosophila have focused attention into investigating the 

source and allocation of nutrients within the animal. It is clear that the larval feeding 

period is paramount for the success of the adult organism (Tu and Tatar, 2003; Goldsmith 

et al., 2004; Raguso et al., 2007), yet the mechanisms surrounding these events are 

currently not clearly understood. In the adult, larval energy stores must be allocated to 

both somatic and gonadal tissue in order to increase the animal's overall fitness. After 

larval energy stores are transferred and utilized by adult structures, the maintenance and 

maturation of these structures must then come from adult-derived nutrients. Stable 

isotopes have been used to gain new insight into the distribution and allocation of larval 

energy stores to adult gonadal and somatic tissues (Min et al., 2006). 

Stable isotope analysis involves the identification of a ratio of stable 

elements in an investigated material and allows for direct inferences concerning diet, 

trophic level, and subsistence. Recent studies using stable isotope analysis have focused 

on the light elements of hydrogen, carbon, nitrogen, oxygen and sulfur in human and 

animal bone, tooth enamel, and hair to determine the diets and water sources of an 

organism (Webb et al., 1998). 

One important use for isotope analysis is to identify the amounts of carbon 

isotopes within a tissue in order to determine the principal diet of an animal (Van der 

Merwe, 1982). On earth, 99 percent of all carbon exists in the Carbon 12 (I2C) form 

which has 6 protons and 6 neutrons. Most of the other one percent exists in the slightly 

heavier Carbon 13 ( C) form containing 6 protons and 7 neutrons (Starr, 2006). The ratio 

of these isotopes in plants differs according to their photosynthetic mechanism. In C3 

11 



carbon fixation, the 3-carbon organic compound phosphoglyceric acid (PGA) is the first 

stable intermediate of the Calvin-Benson cycle. In C4 carbon fixation, the 4-carbon 

oxaloacetate forms as a stable intermediate in reactions that fix carbon twice before the 

Calvin-Benson cycle (Starr, 2006). Examples of C3 plants include sugar beets, rice, and 

wheat, while C4 plants include sugarcane, corn, and millet. In C4 carbon fixation, the 

heavier 13C isotope is less depleted than in C3 carbon fixation. Therefore, C4 plants 

naturally have a higher fraction of 13C than C3 plants (Fischer et al., 2004). This naturally 

occurring difference between these two types of plants may serve as a tool to monitor 

larval- versus adult-derived nutrients in holometabolous insects. In other words, if one 

can determine the ratio of l2C to l3C in an animal or animal tissue, then one can figure out 

what type of plant was incorporated into its diet. 
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CHAPTER 2 

MATERIALS AND METHODS 

Drosophila husbandry and genetic crosses 

All flies were raised at 25°C on a corn meal-soy flour-molasses-corn syrup 

medium (corn meal 80 g/1, molasses and corn syrup 36.3 ml/1 each, yeast 18 g/1, soy flour 

11 g/1, ethanol 12 ml/1, agar 6 g/1, propionic acid 5.2 ml/1, and niapagen 1.2 g/1) 

supplemented with dry yeast. 

The stocks (a)yw; P{w[+mCJ=UAS-n-syb.eGFP}3, (b)yw; P{Lsp2-GAL4.H}, 

(c) w; P{w[+mC]=UAS-p35.H}BH2, (d) w; P{w[+mCJ=UAS-diapl.H}3, and (e) w; 

P{w[+mCJ=UAS-diapl.Hjl were obtained from the Bloomington Stock Center 

(Bloomington, Indiana, USA). The protein trap line G000343 was identified as part of a 

screen for proteins expressed in the larval fat body and salivary glands (Andres et al., 

2004; Morin et al., 2001) and was generously provided by L. Cooley (Yale University, 

New Haven, Connecticut., USA). The artificial exon encoding Green Fluorescent Protein 

(GFP) in G000343 is inserted in-frame with a gene coding for a larval protein localized to 

polytene chromosomes (Andres et al., 2004) and is within chickadee but on the opposite 

strand, i.e., in the opposing reading frame (Cooley, unpublished). 

I used the GAL4/UAS system of Brand and Perrimon (1993) to restrict expression 

of GFP to larval fat-body cells. Briefly, the GAL4/UAS system is a bipartite system 

composed of a GAL4 driver (GAL4 transgene) and a UAS responder gene (UAS 
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transgene). The GAL4 driver in this case is Lsp2-GAL4 (P{Lsp2-GAL4.H}3), a chimeric 

transgene composed of the promoter from the larval serum protein 2 (Lsp2) gene and the 

coding sequence of the yeast Saccharomyces cerevisiae GAL4 gene (C. Antoniewski, 

unpublished data). 

The Lsp2-GAL4 transgene contains the Lsp2 promoter and recapitulates the 

expression pattern of the endogenous Lsp2 gene. Lsp2 is expressed solely in larval fat-

body cells beginning early in the third larval instar (B. Hassad, personal communication 

to FlyBase). The Gal4 protein encoded by Lsp2-GAL4 is produced only in the larval fat-

body cells in the temporal and spatial pattern of the endogenous LSP2 protein. Gal4 is a 

DNA-binding protein that recognizes a 17-basepair sequence that functions as an 

upstream activation sequence designated UAS. Binding of GAL4 protein to the UAS 

sequence is sufficient to activate transcription of a downstream gene. Thus, in animals 

carrying both Lsp2-GAL4 and a chimeric gene containing a UAS promoter region fused to 

the coding sequence for GFP, i.e., UAS-GFP, (P{w[+mC]=UAS-n-syb.eGFP}3), the 

expression of the GFP gene occurs strictly in the larval fat-body cells. 

Standard genetic crosses were performed to recombine UAS-GFP, which serves 

as a cell marker, and the larval fat-cell driver transgene, Lsp2-GAL4, onto the same 

chromosome. The final stock is homozygous for the genotype y w; P{Lsp2-GAL4.H}, 

P{w+mc=UAS-n~syb.eGFPJ3 and is abbreviated as Lsp2-GAL4::UAS-GFP. This stock 

specifically marks the larval fat-body cell with GFP and is used in conjunction with other 

UAS transgenes to target expression to this tissue. 

Two different cell death inhibitor genes, p35 and Drosophila inhibitor of 

apoptosis 1 (diapJ), were employed to block cell death in the larval fat cells. Ectopic 

14 



expression of p35 or diapl was achieved using the GAL4/UAS system (Brand and 

Perrimon, 1993). Individuals carrying a UAS transgene for either p35 or diapl i.e., UAS-

p35 (P{w[+mCJ=UAS-p35.HJBH2) or UAS-diapl (either P{w[+mCJ= P{UAS-

DIAP1.HJ3 or P{w[+mC]= {UAS-DIAP1.H}1) were crossed to Lsp2-GAL4::UAS-GFP 

to drive ectopic expression of either p35 or diapl to the larval fat cells and thus block cell 

death in these cells. In all experiments, the two parental stocks in which normal 

programmed cell death occurs were used as controls. 

Quantitative analysis of larval fat cells and ovaries 

Two methods were used to quantify the number of larval fat cells in the adult. In 

the first method the abdomens of Lsp2-GAL4::UAS-GFP females were gently teased 

open and the free floating larval fat cells were released intolx Dulbecco's phosphate 

buffered saline (DPBS) (52 mmol l"1 NaCl; 40 mmol T1 KC1; 10 mmol l"1 Hepes; 

1.2 mmol F1 MgS04; 1.2 mmol T1 MgCl2; 2 mmol T1 Na2HP04; 0.4 mmol l-! KH2P04; 

1 mmol T1 CaCb; 45 mmol T1 sucrose; 5 mmol 1_1 glucose, pH 7.2) on a 25 x 75mm 

glass slide. Cells were examined by light and fluorescent microcopy to confirm that all 

larval fat cells expressed the GFP cell marker. A micro-grid and a counter were used to 

physically count the number of larval fat cells in the abdomen. 

In the second method, larval fat cells were quantified by GFP fluorescence. Intact 

Lsp2-GAL4::UAS-GFP aged females were mounted dorsal side down onto 25 x 75mm 

glass slides using GelMount (Sigma, St Louis, Missouri, USA). GFP fluorescence was 

measured using a Typhoon 8600 Variable Mode Imager and the intensity of the 

phosphoimage (in pixels) quantified using ImageQuant software. 
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Ovaries were dissected from females in Dulbecco's phosphate buffered saline 

(DPBS) on a 25x75 mm glass slide. Dissected ovaries were examined by light 

microscopy, and photographs were taken using a Canon A620 digital camera coupled to a 

Zeiss Stemi 2000-C microscope and Canon Zoom Browser EX photo software. 

Starvation resistance 

For each genotype, newly eclosed females were collected immediately upon 

eclosion (0-10 min) and further identified by their deflated wings that have the 

appearance of flattened raisins. These adults were immediately assayed for starvation 

resistance or placed on food supplemented with yeast until tested. For starvation 

experiments, flies were divided into groups often and starved in 47mm plastic Petri 

dishes containing a disc of Whatman #42 ashless filter paper soaked with 650 uL of 

deionized water. Flies were maintained at 25°C, and mortality rates were determined by 

counting the number of dead flies every three hours. The starvation graphs in chapter 3 

show the average percent survival for n groups of 10 animals over time and error bars 

represent standard deviations. 

Fluorescent and confocal imaging 

Fluorescent and confocal microscopy was carried out in the Nevada INBRE 

Center for Biological Imaging using a Zeiss LSM 510 microscope and LSM 510 

Axioplan 2 Imaging software. Freely floating fat-body cells were obtained from Lsp2-

GAL4::UAS-GFP females and mounted in lx DPBS. Cells were analyzed within an hour 

after slide preparation. 
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Stable isotope studies 

Animals for stable isotope analysis were reared on either a cane sugar- or beet 

sugar-based diet as larvae (corn meal, 42.6 g/1; beet or cane sugar, 68.2 g/1; yeast, 23.9 

g/1; agar, 7.9 g/1; and propionic acid, 4.5 ml/1), supplemented with dry yeast.. Newly 

eclosed (0-2 hour old) female adults were collected and were maintained on the same diet 

or switched to the other sugar-based diet. Thus four different feeding regimes were used 

in this study (larval diet:adult diet): cane:cane; cane:beet; beet:beet; and beetxane. 

Ovaries from 1 to 7 day old virgin female adults were dissected on a 25x75 mm glass 

slide in a drop of DPBS. Approximately 0.5 mg of ovaries (6 to 36 per sample) were 

placed in 5x9 mm pressed-tin capsules (Costech Analytical Technologies; Valencia, 

California, USA; No. 041061) and dried at 50°C for 48 hours. Dry weight for each 

sample was then determined using a Cahn C-30 microbalance to a precision of lug. 

Samples were analyzed using a Costech NA 2000 Elemental Analyzer coupled with Delta 

V Plus mass spectrometer by the Las Vegas Isotope Science Laboratory (LVIS; 

University of Nevada, Las Vegas). Isotope ratios (813C) are reported in parts per million 

values relative to Peedee Belemnite (Werner and Brand, 2001). 

Initiation of egg laying and egg laying capacity 

To establish when egg laying is initiated and to determine total egg laying 

capacity, recently eclosed females (0-2 hours) were collected and placed into individual 

wells of an 8 x 11.6cm 24-well food plate Fly Condo™ (Genesee Scientific; San Diego, 

California, USA; No. 59-110) containing grape agar (Genesee Scientific; San Diego, 

California, USA) and supplemented with yeast paste. Groups of 12 females per trial were 

observed every 12 hours for egg deposition. The number of eggs deposited in each 12 
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hour period was recorded for 7 to 10 days. Similar experiments were also carried out with 

newly eclosed females paired with 2 males. 

Protein, triglyceride and carbohydrate assays 

Energetic substrates (carbohydrates, proteins, and lipids) were assayed in 

triplicate using standard protocols. Adult females were homogenized in a lysis solution 

containing detergent to solubilize lipids (1% NP-40, 0.5% deoxycholic acid, 0.1% Triton-

X 100, 100 mM NaCl, 0.1 mM CaCl2,2 mM MgCl2,pH 7.6). Triacylglyceride levels were 

measured using a commercial serum triglyceride kit (Sigma; St. Louis, Missouri USA; 

cat no. TR0100-1KT), and protein was quantified using the bicinchinonic acid method 

(Smith, 1985). Carbohydrates (glycogen and trehalose) were digested with 

amyloglucosidase and quantified with a blood glucose kit (Pointe Scientific; Canton, 

Michigan, USA; kit no. G7521). 
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CHAPTER 3 

THE ROLE OF LARVAL FAT CELLS IN ADULT DROSOPHILA MELANOGASTER 

Abstract 

In the life history of holometabolus insects, distinct developmental stages are 

tightly linked to feeding and non-feeding periods. The larval stage is characterized by 

extensive feeding, which supports the rapid growth of the animal and allows 

accumulation of energy stores, primarily in the larval fat body. In Drosophila 

melanogaster access to these stores during pupal development is possible because the 

larval fat body is preserved in the pupa as individual fat cells. These larval fat cells are 

refractive to autophagic cell death that removes most of the larval cells during 

metamorphosis. The larval fat cells are thought to persist into the adult stage and thus 

might also have a nutritional role in the young adult. We used cell markers to 

demonstrate that the fat cells in the young adult are in fact dissociated larval fat body 

cells, and we present evidence that these cells are eventually removed in the adult by a 

caspase cascade which leads to cell death. By genetically manipulating the lifespan of the 

larval fat cells, we demonstrate that these cells are nutritionally important during the 

early, non-feeding stage of adulthood. We experimentally blocked cell death of larval fat 

cells using the GAL4/UAS system and found that in newly eclosed adults starvation 

resistance increased from 58 hours to 72 hours. Starvation survival was highly correlated 

with the number of remaining larval fat cells. We discuss the implications of these results 
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in terms of the overall nutritional status of the larva as an important factor in adult 

survival in environmental stresses such as starvation. 

Introduction 

The complex life cycle of holometabolous insects involves morphologically and 

ecologically distinct larval and adult stages, separated by the non-feeding pupal stage. In 

the case of Drosophila melanogaster Meigen 1830, the last three days of larval 

development are characterized by a 200-fold increase in mass (Church and Robertson, 

1966) and accumulation of nutrient reserves primarily in the larval fat body, a single-cell 

thick tissue composed of fat cells. These larval fat cells serve as an energy reservoir to 

support the animal through the subsequent non-feeding period. An important but 

somewhat overlooked aspect of Drosophila development is that this non-feeding period 

includes a period of time both before and after metamorphosis. Prior to metamorphosis, 

the larva ceases feeding and "wanders" for 12-24 hours in search of a pupation site 

(Riddiford, 1993). After eclosion, the newly-emerged adult remains inactive for 

approximately 8 hours until the wings expand and the cuticle tans (Chiang, 1963; Aguila 

and Hoshizaki, unpublished). Larvae must therefore acquire enough nutrients not only to 

fuel developmental reorganization but also to survive the late larval and early adult 

periods. In nature, the new adult may also need to seek a new food source, if the fruit or 

other substrate upon which it developed is no longer available. Thus, sufficient larval-

derived nutrients must be stored and remain available for use by the adult. 

The unusual developmental history of the larval fat body complicates our 

understanding of its role as an energy reservoir and its effects on the overall physiology 
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of the animal. During metamorphosis, most larval tissues undergo autophagy and cell 

death, while the adult progenitor cells i.e., imaginal discs and histoblasts, undergo cell 

proliferation, differentiation, and organogenesis to give rise to the adult structures 

(Bainbridge and Bownes, 1981; Bodenstein, 1950; Robertson, 1936). The fat body, on 

the other hand, is refractive to cell death, but does undergo an unusual transformation 

from an organized tissue to a loose association of individual fat cells (Hoshizaki, 2005; 

Nelliot et al., 2006). The phenomenon of fat-body tissue dissociation has been 

documented in Diptera (D. melanogaster and Sarcophaga peregrina) and Lepidoptera 

{Calpodes ethlius) and is likely to be a common feature of holometabolous insects 

(reviewed in Hoshizaki, 2005). 

In D. melanogaster, the individual cells of the larval fat body persist throughout 

metamorphosis as freely floating fat cells dispersed throughout the body cavity of the 

pupa (Butterworth, 1972; Hoshizaki, 2005; Nelliot et al, 2006). The newly eclosed adult 

contains freely floating fat cells that are likely to be larval derived fat cells. These cells 

later undergo cell death and are replaced by sheets of fat cells recognized as the adult fat 

body. The adult fat cells are most likely derived from cells embedded within the larval 

body wall and from adepithelial cells associated with imaginal discs (Hoshizaki et al., 

1995). Fully differentiated adult fat cells are not easily recognized within the abdomen of 

the adult until 3-4 days post eclosion. Although the adult fat cells are derived from a 

distinct and separate cell lineage from the larval fat body, both tissues share an important 

energy storage function. 

Our focus in this study is the role of larval energy stores in the adult fly. Using 

cell markers we have identified the free-floating fat cells in the young adult as larval fat 
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cells and experimentally extended their lifespan. We hypothesized that larval fat cells 

function in the young adult as "meals-ready-to-eat" until the animal is flight-ready and 

successfully feeds. To test this hypothesis, we compared the ability of adults to resist 

starvation in the absence or presence of larval fat cells. Young adults harboring larval fat 

cells are nearly three times as resistant to starvation as older adults. The half-life of the 

larval fat cells is 9 hours, and unfed adults begin to die from starvation once 85% of the 

larval fat cells have undergone cytolysis. We experimentally manipulated the lifespan of 

the larval fat cells and found that unfed adults are more starvation resistant when death of 

these cells is blocked. These data suggest that nutrients acquired by the larva and stored 

within the larval fat cells can contribute to adult stress resistance. Thus, larval fat cells 

have a fundamental role in post-metamorphic energy metabolism and provide an 

effective energy reserve important to the young adult animal. 

Materials and Methods 

Drosophila husbandry and genetic crosses 

All flies were raised at 25°C on a corn meal-soy flour-molasses-corn syrup 

medium (corn meal 80 g/1, molasses and corn syrup 36.3 ml/1 each, yeast 18 g/1, soy flour 

11 g/1, ethanol 12 ml/1, agar 6 g/1, propionic acid 5.2 ml/1, and niapagen 1.2 g/1) 

supplemented with dry yeast. 

The stocks (a)yw; P{w[+mC]=UAS-n-syb.eGFP}3, (b)yw; P{Lsp2-GAL4.H}, 

(c) w; P{w[+mCJ=UAS-p35.H}BH2, (d) w; P{w[+mC]=UAS-diapl.H}3, and (e) w; 

P{w[+mC]=UAS-diapl.Hj 1 were obtained from the Bloomington Stock Center 

(Bloomington, Indiana, USA). The protein trap line G000343 was identified as part of a 
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screen for proteins expressed in the larval fat body and salivary glands (Andres, 2004; 

Morin et al., 2001) and was generously provided by L. Cooley (Yale University, New 

Haven, Connecticut., USA). The artificial exon encoding Green Fluorescent Protein 

(GFP) in G000343 is inserted in-frame with a gene coding for a larval protein localized to 

polytene chromosomes (Andres, 2004) and is within chickadee but on the opposite 

strand, i.e., in the opposing reading frame (Cooley, unpublished). 

In separate experiments, we used the GAL4/UAS system of Brand and Perrimon 

(1993) to restrict expression of GFP to larval fat-body cells. Briefly, the GAL4/UAS 

system is a bipartite system composed of a GAL4 driver (GAL4 transgene) and a UAS 

responder gene (UAS transgene). The GAL4 driver in this case is Lsp2-GAL4 (P{Lsp2-

GAL4.HJ3), a chimeric transgene composed of the promoter from the larval serum 

protein 2 (Lsp2) gene and the coding sequence of the yeast Saccharomyces cerevisiae 

GAL4 gene (C. Antoniewski, unpublished data). 

Because the Lsp2-GAL4 transgene contains the Lsp2 promoter, it recapitulates the 

expression pattern of the endogenous Lsp2 gene, which is expressed solely in larval fat-

body cells beginning early in the third larval instar (B. Hassad, personal communication 

to FlyBase). Thus, Gal4 protein encoded by Lsp2-GAL4 is produced only in the larval fat-

body cells in the identical temporal and spatial pattern of the endogenous LSP2 protein. 

Gal4 is a DNA-binding protein that recognizes a 17-basepair sequence that functions as 

an upstream activation sequence designated UAS. Binding of GAL4 protein to the UAS 

sequence is sufficient to activate transcription of a down stream gene. Thus, in animals 

carrying both Lsp2-GAL4 and a chimeric gene containing a UAS promoter region fused to 
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the coding sequence for GFP, i.e., UAS-GFP, (P{w[+mC]=UAS-n-syb.eGFP}3), the 

expression of the GFP gene occurs strictly in the larval fat-body cells. 

Standard genetic crosses were performed to recombine UAS-GFP which serves as 

a cell marker and the larval fat-cell driver transgene, Lsp2-GAL4 on to the same 

chromosome. The final stock is homozygous for the genotype y w; P{Lsp2-GAL4.HJ, 

P{w+mc=UAS-n-syb.eGFP}3 and is abbreviated as Lsp2-GAL4::UAS-GFP. This stock 

specifically marks the larval fat-body cell with GFP and is used in conjunction with other 

UAS transgenes to target expression to this tissue. 

Two different cell death inhibitor genes, p35 and Drosophila inhibitor of 

apoptosis 1 (diapl), were employed to block cell death in the larval fat cells. Ectopic 

expression of p35 or diapl was achieved using the GAL4/UAS system (Brand and 

Perrimon, 1993). Individuals carrying a UAS transgene for either p35 or diapl i.e., UAS-

p35 (P{w[+mCJ=UAS-p35.H}BH2) or UAS-diapl (either P{w[+mCJ= P{UAS-

DIAP1.HJ3 or P{w[+mCJ= {UAS-DIAP1 .H} 1) were crossed to Lsp2-GAL4::UAS-GFP 

to drive ectopic expression of either p35 or diapl to the larval fat cells and thus block cell 

death in these cells. 

Quantitative Analysis of Larval Fat Cells 

Two methods were used to quantify the number of larval fat cells in the adult. In 

the first method the abdomens of Lsp2-GAL4:: UAS-GFP females were gently teased 

open and the free floating larval fat cells were released intolx DPBS (52mM NaCl; 

40mM KC1; lOmM HEPES; 1.2mM MgS04; 1.2mM MgCl2; 2mM Na2HP04; 0.4mM 

KH2PO4; ImM CaCi2;45mM sucrose; 5mM glucose, pH 7.2) on a 25 x 75mm glass slide. 

Cells were examined by light and fluorescent microcopy to confirm that all larval fat cells 

24 



expressed the GFP cell marker. A micro-grid and a counter were used to physically count 

the number of larval fat cells in the abdomen. 

In the second method, larval fat cells were quantified by GFP fluorescence. Intact 

Lsp2-GAL4::UAS-GFP aged females were mounted dorsal side down onto 25 x 75mm 

glass slides using GelMount (Sigma, St Louis, Missouri, USA). GFP fluorescence was 

measured using a Typhoon 8600 Variable Mode Imager and the intensity of the 

phosphoimage (in pixels) quantified using ImageQuant software. 

Starvation resistance 

For each genotype, newly eclosed females were collected immediately upon 

eclosion (0-10 min) and further identified by their deflated wings that have the 

appearance of flattened raisins. These adults were immediately assayed for starvation 

resistance or placed on food supplemented with yeast until tested. For starvation 

experiments, flies were divided into groups often and starved in 47mm plastic Petri 

dishes containing a disc of Whatman #42 ashless filter paper soaked with 650 (aL of 

deionized water. Flies were maintained at 25°C, and mortality rates were determined by 

counting the number of dead flies every three hours. The starvation graphs are the 

average percent survival for n groups of 10 animals over time and error bars represent 

standard deviations. 

Fluorescent and confocal imaging 

Fluorescent and confocal microscopy was carried out in the Nevada INBRE 

Center for Biological Imaging using a Zeiss LSM 510 microscope and LSM 510 

Axioplan 2 Imaging software. Freely floating fat-body cells were obtained from Lsp2-
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GAL4::UAS-GFP females and mounted in lx DPBS. Cells were analyzed within an hour 

after slide preparation. 

Results 

Adults flies starved upon eclosion are more resistant to starvation than older flies 

We hypothesized that the free-floating fat cells found in the newly eclosed adult 

represent an important energy reserve. Because these cells are absent in 3 day-old adults, 

we initially tested our hypothesis by comparing the starvation resistance of newly eclosed 

adults carrying mutations yellow (y) and white (w) with older y w adults. Groups of \0y 

w females were collected upon eclosion (0-10min) and either immediately tested for 

starvation resistance, or aged on food supplemented with yeast before testing. We found 

that newly eclosed females adults were more resistant to starvation (LD50 = 45hr) than 3 

or 10 day-old animals (LD50 = 16hr and 14hr, respectively; Fig 1). These data support the 

idea that the free-floating fat cells represent a significant energy source. 

Freely floating fat cells in the adult are the larval fat cells 

During metamorphosis the larval fat-body dissociates to give rise to individual fat 

cells that persist throughout pupal development. It is commonly accepted that the freely-

floating fat cells in the adult are the cells from the dissociated larval fat body 

(Butterworth, 1972; Hoshizaki, 2005; Nelliot et al., 2006).We re-examined the origin of 

the freely-floating fat cells in the adult because it is important to our understanding of the 

energy flow that supports the young adult and defining the underlying basis of the higher 

starvation resistance of newly eclosed adults. 
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Figure 1. Starvation resistance of y w adult flies decreases with age. Starvation resistance 

was measured by percentage survival of adult females in groups of 10 flies. Newly 

eclosedy w adults (JV=20 groups of 10) (squares), 3-day-oldjy w adults (iV=30 groups of 

10) (diamonds), 10-day-old y w adults (N=\0 groups of 10) (triangles). Values are means 

±s.d. 
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To experimentally establish the origin of these cells in the young adult, we took 

advantage of a Green Fluorescent Protein (GFP) protein trap line for a polytene 

chromosome-associated protein (Andres, 2004). Polytene chromosomes are a hallmark of 

larval tissues including the fat body. We used this cell marker to distinguish between 

adult tissues which contain mitotic chromosomes from larval polytenized tissues. As 

expected the free-floating fat cells in the newly eclosed adult were GFP-labeled, thus 

confirming their larval origin (Fig 2). 

To begin to understand the contribution of the larval fat cells to the young adult, 

we developed a GAL4/UAS GFP-based assay to monitor the presence of these cells in 

the adult. We used a homozygous transgenic line, Lsp2-GAL4: .UAS-GFP in which GFP 

is expressed only in the larval fat body (Nelliot et al., 2006). Thus, in the adult the only 

GFP-positive cells are the fat cells from the dissociated larval fat body. We determined 

the rate at which these cells were lost in the adult by following the loss of GFP 

fluorescence by measuring phosphoimage intensity (Fig. 3). GFP fluorescence was 

quantified for individual aged female adults and compared to the physical number of 

larval fat cells obtained by dissection of individual animals (Fig. 4); GFP fluorescence 

was proportional to the number of the larval fat cells. Thus, by measuring GFP 

fluorescence we can monitor the transient presence of larval fat cells in the adult. We 

found that within ~9 hours post eclosion, 50% of the larval fat cells have undergone 

cytolysis (Fig. 4 and see Fig 6.). 
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Figure 2. Free-floating fat cells in the adult are dissociated larval fat body cells. Free 

floating fat cells from an adult labeled with a polytene chromosome GFP cell marker 

(G000343/CyO). Scale bar, 200 urn. 
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Figure 3. Whole-mount adults used for GFP-based measurement of larval fat cells. (A-C) 

Fluorescent images of whole-mount Lsp2-Gal4::UAS-GFP aged adult females. GFP 

labeled larval fat cells are prominent in the abdomen. (D) Phosphoimage of whole-mount 

Lsp2-Gal4::UAS-GFP aged adult females used to quantify larval fat cells. 
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Transgenic adults starved upon eclosion were also more resistant to starvation than 

older adults 

We next tested whether starvation accelerates the rate of cytolysis of the larval fat 

cells, thereby allowing a more rapid recycling of bulk nutrients. This increase in nutrient 

recycling might be a mechanism contributing to starvation resistance. As a control we 

first tested whether the presence of the Lsp-GAL4::UAS-GFP transgenes affected 

starvation resistance. We found that the presence of the transgenes had no effect on 

starvation resistance; newly eclosed animals were still more resistant (LD50 = 58hr) than 

3 or 10 day old adults, (LD50 = 26hr and 20hr, respectively; Fig 5). To test the effects of 

starvation, we monitored the loss of fat cells using the GFP-based assay in newly eclosed 

Lsp-GAL4::UAS-GFP animals. Surprisingly, starvation did not affect the rate of larval 

fat-cell cytolysis; within 8.5 hours post eclosion, 50% of the fat cells had undergone cell 

death (data not shown). We note that adults began to succumb to starvation when 

approximately 85% of the larval fat cells were lost (Fig 6). These data suggest that larval 

fat cells represent a significant energy reserve and that mobilization of fat-cell energy 

stores is not solely dependent upon bulk recycling of fat-cell components released upon 

cell death. 

Larval fat cells increase starvation resistance in the adult. 

To directly test whether larval fat cells contribute to adult starvation resistance, we 

inhibited the normal cell death of the larval fat cells. We employed both the Drosophila 

inhibitor of apoptosis 1 (DIAP1) protein and the baculovirus p35 protein, both of which 

directly inhibit the caspase cascade leading to apoptotic cell death (Wang et al., 1999; 

Wilson et al., 2002). Ectopic expression of either p35 or diapl in the larval fat cells 
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Figure 4. GFP fluorescence in adults is directly related to in situ percentage fat-cell 

number. Larval fat-cell number for Lsp2-Gal4: :UAS-GFP adult females using the GFP 

based assay (JV=44-60 individuals per time point) compared with in situ fat-cell numbers 

from dissected individual females (./V=28-46 individuals per time point). Values are 

means ± s.d. Squares, percentage fluorescence; diamonds, percentage cell number. 
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Figure 5. Starvation resistance of Lsp2-Gal4:: UAS-GFP adults decreases with age. 

Starvation resistance was measured by percentage survival of adult females in groups of 

10 flies. Newly eclosed Lsp2-Gal4:.UAS-GFP adults (JV=8 groups of 10) (squares), 3 

day-old Lsp2-Gal4:: UAS-GFP adults (JV=14 groups of 10) (diamonds), 10-day-old Lsp2-

Gal4:: UAS-GFP adults (#=10 groups of 10) (triangles). Values are means ± s.d. 
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Figure 6. Larval fat-cell number and starvation resistance in newly eclosed adults. Larval 

fat-cell number measured for Lsp2-Gal4::UASGFP adult females using the GFP-based 

assay (iV=25--36 per time point), and compared with the percentage survival of newly 

eclosed Lsp2-Gal4::UAS-GFP starved adult females (JV=8 groups of 10). Diamonds, 

percentage fluorescence; squares, percentage survival. Values are means ± s.d. 

0 12 24 36 48 60 72 

Time (hours) 

34 



was accomplished using the larval fat-cell driver Lsp2-Gal4 (i.e., Lsp2-GAL4::UAS-

GFP) and either the UAS-p35 or UAS-diapl transgene. As a control we tested whether 

the inhibition of cell death in the fat body affects the total number of fat cells. We 

compared the number of larval fat cells present in the newly eclosed control adults (Lsp2-

GAL4::UAS-GFP) with the number of larval fat cells in the experimental adults (Lsp2-

GAL4::UAS-GFP + UAS-diapl) (Fig 7); we found that equal number of fat cells were 

present. 

The newly eclosed experimental animals (either Lsp2-GAL4::UAS-GFP + UAS-

p35 or Lsp2-GAL4::UAS-GFP + UAS-diapl) were then tested for starvation resistance; 

these animals exhibited increased starvation resistance from LD5o = 57hr to LD50 = 82hr 

(Fig 8). To determine whether the increase in starvation resistance was correlated with 

an extended lifespan of the larval fat cells, we physically counted the number of larval fat 

cells in Lsp2-GAL4::UAS-GFP + UAS-diapl animals (Fig. 7A). At 24 hours post 

eclosion, when -70% of the fat cells have normally undergone cytolysis, only 38% of fat 

cells were absent in the adults in which cell death was blocked. The increased 

survivorship of fat cells in the experimental adults was also detected at 48 hours, when 

cytolysis of the larval fat cells is normally complete. In the cell death blocked animals, 

40% of the fat cells were still present. Finally, at 72 hours experimental adults began to 

succumb to starvation while -22% of the larval fat cells remained (compare Fig. 7A with 

Fig.8). 
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Figure 7. Larval fat cells persist in aged adults when cell death is blocked. (A) In situ fat 

cell number from Lsp2-Gal4::UAS-GFP/UASdiapl adult females in which cell death is 

blocked (A/= 15-20 individuals per time point, filled bar) compared with Lsp2-

Gal4::UASGFP control adult females {N-XQ-A6 individuals per time point, open bar). 

(Mean initial cell number for Lsp2-Gal4::UAS-GFP/UAS-diapl was 792 cells; for Lsp2 

Gal4::UAS-GFP it was 724 cells.) (B) GFPfluorescence of Lsp2-Gal4::UAS-GFP/UAS 

diapl adult females (N= 15-25 per time point, filled bar). Lsp2-Gal4::UAS-GFP control 

adult females (JV= 10-60 individuals per time point, open bar). (Mean initial fluorescence 

for Lsp2-Gal4::UAS-GFP/UAS-diapl was 25 600 pixels; for Lsp2-Gal4::UAS-GFP it 

was 21 900 pixels.) Note, perdurance of GFP-fluorescence does not reflect fat-cell 

number in the cell death-blocked animals. This is probably because of a loss of activity 

from the Lsp2 promoter (see Discussion for details). Values are means ± s.d. 
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Figure 8. Starvation resistance increases in adults when larval cell death is blocked. 

Starvation resistance was measured by percentage survival of newly eclosed adult 

females in groups of 10 individuals. Control, Lsp2-Gal4::UAS-GFP adults (JV=80 groups 

of 10, squares). Larval fat cells with extended lifespan, Lsp2 Gal4::UASGFP/UAS-p35 

adults (iV=20 groups of 10, diamonds), Lsp2-Gal4::UAS-GFP/UAS-diapl adults (N=2Q 

groups of 10, circles), and UAS-diapl/+; Lsp2-Gal4::UAS GFP/+ adults (N=2Q groups of 

10, triangles). Values are means ± s.d. 
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Discussion 

The life cycle of D. melanogaster is characterized by feeding and non-feeding 

periods that are linked to specific developmental stages. During the larval stage energy 

reserves are acquired and stored in the larval fat body to be used to fuel the re-

architecture of the animal to the adult form during metamorphosis. The underlying 

mechanisms controlling mobilization of energy stores from the fat cells during 

metamorphosis are not known, although it has been suggested that autophagy plays a 

fundamental role in this process (Rusten et al., 2004). Most larval tissues undergo 

autophagy leading to cell death, thereby allowing bulk recycling of components; 

however, the fat body undergoes tissue remodeling leading to the dissociation of the fat 

body (Nelliot et al., 2006). In addition to supporting pupal development, sufficient larval 

energy stores must also be in reserve to support the newly-eclosed adult until a suitable 

foraging site is located. We present here the first experimental evidence that the energy 

reservoirs acquired during the larva feeding period are carried into the adult by free-

floating cells derived from the dissociated fat body. By employing GFP cell markers, we 

demonstrated that the free-floating fat cells are larval in origin and have established a 

profile measuring the loss of these cells in the young adult. Correlated with the loss of 

larval fat cells is an increased sensitivity to starvation. By genetic manipulation, we have 

inhibited cell death of the larval fat cells in the adult and have correspondingly increased 

starvation resistance. These data demonstrate that the larval fat cells serve as "meals-

ready-to-eat" for young adults and are of importance for individuals that have developed 

on ephemeral breeding sites and must relocate to new feeding sites. 
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Larval fat cells in the adult 

Through the use of cell markers, we have demonstrated using cell markers that the 

free-floating fat cells in the adult are the dissociated cells from the larval fat body (Fig. 

2). We have determined the number of free-floating fat cells in the abdomen of the 

newly eclosed female adults to be 766 (n = 49; SD = 49), which is in contrast to the 1052 

cells (n = 8; SD = 177) estimated by Butterworth (Butterworth, 1972). We believe the 

discrepancy between our results and those of Butterworth lies in our improved ability to 

identify larval fat cells. In our in situ counts, the fat cells express GFP, thereby allowing 

easy identification of the cells from other free-floating cells and debris. In contrast, 

Butterworth examined unstained samples and, as noted by Butterworth (Butterworth, 

1972), the in situ counts are likely to include cells from other tissues. 

It has been estimated that the female larval fat body is made up of 2500 fat cells 

(Rizki, 1969). After tissue dissociation during metamorphosis, 20% of the fat cells are 

thought to reside in the pupal head with some cells in the thorax (Rizki, 1969). Based on 

these estimations, approximately 2000 fat cells should be present in the abdominal region 

of the pupa. In newly eclosed adults however, far fewer fat cells were recovered 

(Butterworth, 1972); this report). This discrepancy might reflect partial elimination of 

larval fat cells during pupal development (Butterworth, 1972), or the estimated 

distribution of fat cells in the pupa might not be correct. Our recent descriptive analysis 

of fat-cell dissociation in the early pupa indicates that a substantial proportion of the fat 

cells reside in the thorax (Fig 1. in Nelliot et al., 2006). We estimate that in the early 

stage pupa, at least half of the fat cells reside in the pupal head and thorax. Therefore, the 
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pupal abdomen should contain approximately 1250 cells. Our average number of cells 

recovered from the adult abdomen was 766, only 60% of the predicted number of cells. 

It is possible that a portion of the fat cells undergo cell death during pupal 

development, but we believe this to be unlikely for two reasons. First, we have measured 

the number of fat cells at the beginning of pupal development using the GFP-assay and 

find that this number remains the same between white prepupae and newly eclosed adults 

(data not shown). Second, the inhibition of apoptotic cell death by expression ofdiap or 

p35 did not change the number of fat cells recovered in the newly-eclosed adult. These 

data indicate that few larval fat cells are eliminated during pupal development. The 

discrepancy in the predicted cell number in the adult abdomen might be due in part to the 

incomplete efficiency in recovering the abdominal fat cells for in situ counts and/or 

distribution of fat cells in the early pupa might be altered during later pupal development. 

Mechanism of larval fat cell cytolysis in the adult 

During metamorphosis the fat body is refractive to cell death and does not begin 

to undergo cytolysis until after eclosion. Based on our measurements, cytolysis is 

essentially complete by 48 hours of adult development (Fig. 6). The factors that control 

or trigger fat-cell cytolysis and the underlying mechanism by which cell death is achieved 

are not known. It has been suggested that juvenile hormone and the gene apterous might 

participate in triggering programmed cell death in the fat cells (Butterworth, 1972; 

Postlethwait and Jones, 1978) but a reassessment of the apterous mutant (Richard et al., 

1993) suggests otherwise (reviewed in Hoshizaki, 2005). We suggest that the cytolysis 

signal is also not likely to be a nutritional cue because we did not observe an accelerated 

rate of larval fat cell loss in starved adults. 
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We note that in adults where fat-cell death is blocked, expression of GFP in the 

fat cells does not correspond to the in situ number of fat cells (Fig. 7). We surmise that 

the ectopic activity of the Lsp2-GAL4 is compromised in the adult and does not allow for 

maintenance of GFP beyond 48 hours. Under normal conditions, this is not a concern for 

the GFP-based assay because removal of fat cells is complete by this time. If the activity 

of Lsp2-GAL4 is compromised, then it follows that the expression of the UAS-diapl 

would also be compromised. If induction of cell death occurs immediately after eclosion, 

then expression of cell death inhibitors, such as diapl and p35 during this window should 

be sufficient to prevent loss of fat cells. The nature of subsequent removal of the 

remaining larval fat cells at 72 to 96 hours post eclosion is not known and is currently 

under investigation. 

The programmed cell death of the larval fat cells is the final and normal step in 

the developmental history of this tissue. Two major classes of programmed cell death, 

type 1 (apoptotic) and type 2 (autophagic), are recognized as normal processes for 

remodeling tissues, controlling cell number, and eliminating abnormally damaged cells. 

Apoptotic cell death is characterized by cellular and nuclear shrinking, association of 

chromatin with the nuclear periphery, DNA fragmentation, formation of apoptotic bodies, 

caspase activation, and the engulfment and lysosomal degradation of the dying cell by a 

phagocyte (Kerr et al., 1972). Autophagic cell death, on the other hand, is a membrane 

trafficking process involving autophagosomes which engulf cytosol and organelles and 

then are fused with lysosomes to form autolysosomes in which the cargo undergoes 

hydrolysis (Yoshimori, 2004). 
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The major signal that triggers metamorphosis and larval tissue histolysis is the 

high titer pulse of ecdysone that occurs at puparium formation, i.e. the larval-pupal 

transition. Most larval tissues undergo histolysis, with the notable exception of the fat 

body, which is remodeled from an intact tissue to detached cells (Nelliot et al., 2006). 

Larval histolysis is associated with formation of acidic autophagic vesicles consistent 

with an autophagic cell death response. However, histolysis is also accompanied by hall 

marks of apoptosis. The degenerating prothoracic and labial glands of the tobacco horn 

worm Manduca sexta, for example, are accompanied by highly condensed chromatin 

indicative of apoptosis (Dai and Gilbert, 1997; Jochova et al., 1997) while the D. 

melanogaster salivary glands are characterized by DNA fragmentation (Jiang et al., 

1997). Furthermore, inhibition of caspase activity by p35 blocks DNA fragmentation and 

salivary gland cell death (Jiang et al., 1997; Lee and Baehrecke, 2001) and expression of 

diapl (a direct inhibitor of caspase activity) in the salivary glands is required throughout 

larval development to inhibit reaper- and head involution de/ecft've-triggered apoptotic 

cell death (Yin and Thummel, 2004). Based on these observations, we surmise that larval 

tissue histolysis might be accompanied by autophagy to allow efficient recycling of larval 

cellular components during metamorphosis and in the young adult, while the final 

destruction of the cell in the aged adult is dependent upon apoptotic cell death. 

A developmental conundrum, however, is presented by the larval fat body. 

Ecdysone signaling that triggers histolysis in most larval tissue triggers fat-cell 

dissociation but not cell death which is delayed until adult stage. The final destruction of 

the fat cells, however, is also inhibited by expression of diapl and p35, thereby 

suggesting that fat cell death is through a process similar to that used to remove the other 
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larval tissues. Further studies are needed to understand why the fat body is initially 

refractive to cell death while other larval tissues are destroyed, and the relationship 

between apoptotic cell death and recycling of cellular components (macroautophagy) in 

larval fat cells of the adult. 

Importance of larval energy stores for adult performance 

The natural feeding and oviposition site of D. melanogaster, rotting fruit, is an 

ephemeral resource. Eclosing flies may have no food available, but their ultimate 

evolutionary success depends upon finding a foraging and breeding site which leads to 

successful reproduction. The larval fat cells therefore may contribute to the success of the 

adult by serving as a reserve energy source in case foraging is delayed (e.g., by the 

deterioration of the pupal development site or by inclement weather). It is also important 

to note that energy expenditure during pupation and early adulthood will vary according 

to temperature. Drosophila habitats can vary widely in temperature, on times scales of 

minutes to days (Feder et al., 1997; Gibbs et al., 2003), so a reserve of larval-derived 

energy may prove essential for adult success. 

Although larval-derived energy may be essential for the success of individual 

adults, selection experiments indicate there is a trade-off between energy storage and 

other life history parameters. Starvation-selected populations of D. melanogaster store 

more energy in the larval stage than unselected control populations, but they develop 

more slowly and their egg-to-adult viability is lower (Chippindale et al, 1996; 

Chippindale et al., 1998). Similar patterns can be found in desiccation-selected lines, in 

which accumulate larval accumulation of water and glycogen leads to slower 

development (Chippindale et al., 1998; Gefen et al., 2006). 
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At the organismal level, our most surprising finding is that starvation resistance 

decreased during the first 3 days of adult life, despite the fact that flies were able to feed 

and presumably store energy. Similar results have been obtained for several other 

Drosophila species (Sevenster and Vanalphen, 1993), though not all (Baldal et al., 2004). 

A likely explanation for this phenomenon is allocation of resources to reproduction 

during early adulthood. When D. melanogaster are provided with a high-protein diet, 

energy storage declines as fecundity and metabolic rates increase (Simmons and Bradley, 

1997). Resources acquired during the first few days of adult life may be preferentially 

directed to reproduction, rather than stored as an energy reserve. This is in accordance 

with D. melanogaster being considered a "fast" species (Sevenster and Vanalphen, 1993) 

that develops and breeds rapidly at the expense of adult survival. 

Conclusion 

Nutrient stores acquired by the larva are transferred to the adult in the dissociated 

cells of the larval fat body. These larval fat cells appear to be a very efficient source of 

nutrients compared to the adult fat cells, based on the observation that newly-eclosed 

adults are nearly three times as resistant to starvation as older fed flies. The ability of 

newly-eclosed adults to resist starvation, however, goes beyond their access to fat-cell 

energy stores left over from pupal development. By blocking cytolysis of the larval fat 

cells, starvation resistance can be further increased by over 24 hours. This increase is not 

due to an increase in the number of larval fat cells in the newly-eclosed adult. One 

possible explanation is that energy stores contained within the fat cells are more easily 

mobilized to support the starving animal than energy stores previously released by cell 
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death or autophagy and distributed in other tissues or hemolymph. Thus, not all energy 

stores in the adult fly may be equally accessible. 
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CHAPTER 4 

LARVAL FAT CELLS DRIVE FEMALE REPRODUCTION 

IN DROSOPHILA MELANOGASTER 

Abstract 

Holometabolous insects possess a phenomenal life cycle that is divided into 

unique larval and adult stages closely linked to feeding and non-feeding periods. During 

the larval stages, the attention of the animal is directed primarily to feeding, in order to 

accumulate energy stores in the larval fat body for later use in the pupal and adult stages. 

In previous studies, we reported that energy stores acquired during larval development 

are later transferred to the adult via the larval fat cells (Aguila et al., 2007) and suggested 

that nutrients accumulated by the larval fat cells followed by programmed cell death in 

the adult is important for female reproduction. We demonstrated that newly eclosed 

females are three times more starvation resistant than aged females due to the presence of 

the larval fat cells. Furthermore, the inhibition of programmed cell death in the larval fat 

cells resulted in a distinct advantage in starved females, where disruption of programmed 

cell death resulted in four times more starvation resistance than aged adult females 

(Aguila et al., 2007). While it is apparent that larval fat cells serve as an important energy 

reservoir in the adult female, these data do not explain why females in which fat-cell 

energy stores are released by programmed cell death are more sensitive to starvation than 

females in which death of the larval fat cells is delayed. 
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We report here that the "quick" release of energy stores from larval fat cells by 

cell death promotes the rapid maturation of the ovaries and has an important role in 

establishing female fecundity. By using stable carbon isotopes, we followed the 

acquisition of larval nutrients by the adult ovaries and demonstrate that this acquisition is 

driven by the programmed cell death of the larval fat cells. Furthermore, we demonstrate 

that in the absence of programmed cell death, ovary development is delayed although 

normal ovary size is achieved by day 4 of adult life. Concomitant with the delay in 

ovarian development, initiation of egg laying is delayed by 24 hours, and the egg laying 

capacity is depressed by 63% and 36% in virgin and mated females, respectively. This 

depression is not the result of differences in the initial energy accumulation from larval 

feeding or differences in the size of the adult. We discuss the implications of these results 

in terms of the importance of the larval reserves in establishing female fecundity, the 

trade-off between growth and size, and life history traits. 

Introduction 

In the life history of holometabolous insects, distinct developmental stages are 

tightly linked to feeding and non-feeding periods. During the last three days of larval 

development in D. melanogaster, the animal will attain a 200-fold increase in mass 

(Church and Robertson, 1966) where the nutrient reserves are primarily accumulated in 

the larval fat body. Before metamorphosis, the larva stops feeding and a 12-24 hour 

"wandering" phase begins in which the animal searches for a suitable pupation site 

(Riddiford, 1993). After eclosion, the newly-emerged adult remains inactive for 

approximately eight hours until the wings expand and the cuticle tans (Chiang, 1963; 
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Edgecomb et al., 1994; J.R.A and D.K.H., unpublished data). Larvae must therefore 

acquire enough nutrients not only to fuel the developmental re-organization of the pupa 

but also to survive the final larval and early adult periods. 

In Drosophila, metamorphosis is characterized by an extraordinary transformation 

from the larval to the adult state. The imaginal cells proliferate to give rise to the adult 

tissues, while the larval tissues are degraded through the process of autophagic 

programmed cell death (Lee and Baehrecke, 2001). A striking exception to this loss of 

larval tissues is the fat body, which undergoes tissue dissociation into individual cells 

(Nelliot et al., 2006). These larval fat cells survive as independent cells throughout 

metamorphosis and function as a nutritional reservoir to fuel the re-architecture of the 

pupa to the adult state. The larval fat cells are carried forward into the young adult and 

provide energy for the development of adult somatic and gonadal tissues (Aguila et al., 

2007). 

In previous work (Aguila et al., 2007), we demonstrated that energy stores 

acquired during larval development are later transmitted to the adult via the larval fat 

cells. The larval fat cells normally undergo programmed cell death in the immature adults 

and within 24 hours 85% of the fat cells are lost, releasing their contents into the 

hemolymph. Newly-eclosed adult females with their full complement of larval fat cells 

are three times more starvation resistant than mature females in which the larval fat cells 

have undergone cell death. Furthermore, genetic inhibition of programmed cell death of 

the larval fat cells further increases starvation resistance by four times (Aguila et al., 

2007). It is clear that the larval fat cells serve as an important energy reservoir in the adult 

female, yet these data do not explain why energy stores retained within the fat cells allow 
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for increased starvation resistance when compared to females in which the fat-cell energy 

stores have been released by programmed cell death. 

In this study, we address this conundrum and test the hypothesis that the "quick" 

release of energy stores from the larval fat cells via programmed cell death drives the 

rapid maturation of the ovaries. We conducted stable isotope studies to measure the 

relative contributions of larval- versus adult-derived nutrients into the ovaries. To 

distinguish between larval- and adult-derived nutrients, we took advantage of the 

naturally occurring differences in the ratio of 13C to 12C in sugars derived from sugar 

beets versus sugar cane. The sugar beet undergoes C3 photosynthesis and therefore 

contains a lower ratio of C to C than sugar derived from sugar cane, which utilizes C4 

photosynthesis (Starr, 2006). Stable isotopes provide a means to estimate the relative 

contributions of different dietary sources to the tissues. (O'Brien et al., 2002; Fischer et 

al, 2004; Min et al., 2006). By feeding larvae and adults diets containing beet or cane 

sugar which differed in stable carbon isotope ratios, we were able to track larval- versus 

adult-derived nutrients into the ovaries of adult animals. We tracked nutrients in wild-

type animals and animals in which larval-fat cell death was genetically blocked in order 

to test the role of caspase-induced programmed cell death in mobilizing larval nutrients 

into the adult ovaries. 

We found that larval nutrients make up -42% of the carbon in two day-old 

ovaries and in the absence of programmed cell death of the larval fat cells, uptake of 

larval nutrients is reduced in the ovary and ovarian development is delayed. Furthermore, 

the initiation of egg laying and egg laying capacity was depressed. This depression was 

not the result of differences in the initial energy accumulation from larval feeding or 
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differences in the size of the adult. Our data support the idea that larval nutrition and 

energy accumulation are important contributors to ovarian development and fecundity. 

Materials and Methods 

Drosophila husbandry and genetic crosses 

All flies were raised at 25°C on a corn meal-sugar-yeast medium (corn meal, 42.6 

g/1; beet or cane sugar, 68.2 g/1; yeast, 23.9 g/1; agar, 7.9 g/1; and propionic acid, 4.5 ml/1), 

supplemented with dry yeast. 

Genetically constructed flies were used in ovary mass, stable isotope, and 

fecundity assays. To block cell death in the larval fat cells, the cell death inhibitor gene, 

Drosophila inhibitor ofapoptosis 1 (diapl), was employed. Construction of flies with the 

genotype y w; P{Lsp2-GAL4.H}, P{w+mc=UAS-n-syb.eGFP}3 (abbreviated Lsp2-

GAL4::UAS-GFP) is described in Aguila et al., 2007. Ectopic expression of diapl was 

achieved using the GAL4/UAS system (Brand and Perrimon, 1993). Individuals carrying 

the diap UAS transgene, P{w[+mC]={UAS-DIAPl.H}l (abbreviated UAS-diap) , 

Bloomington Stock Center; Bloomington, Indiana USA) were crossed to Lsp2-

GAL4::UAS-GFP to drive ectopic expression of diapl to the larval fat cells, to inhibit 

cell death in these cells (Aguila et al., 2007). In all experiments, the two parental stocks 

in which normal programmed cell death occurs were used as controls. 

Photography 

Ovaries were dissected from females in Dulbecco's phosphate buffered saline 

(DPBS) (52 mmol l"1 NaCl; 40 mmol l"1 KC1; 10 mmol l"1 Hepes; 1.2 mmol T1 MgS04; 

1.2 mmol l-1 MgCl2; 2 mmol T1 Na2HP04; 0.4 mmol T1 KH2P04; 1 mmol 1"1 CaCl2; 
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45 mmol 1_1 sucrose; 5 mmol l-1 glucose, pH 7.2) on a 25 x 75 mm glass slide. Ovaries 

were examined by light microscopy, and photographs were taken using a Canon A620 

digital camera coupled to a Zeiss Stemi 2000-C microscope and Canon Zoom Browser 

EX photo software. 

Stable isotope studies 

Animals for stable isotope analysis were reared on either a cane sugar- or beet 

sugar-based diet as larvae. Newly eclosed female (0-2 hour old) adults were collected and 

were maintained on the same diet or switched to the other sugar-based diet. Thus four 

different feeding regimes were used in this study (larval dietadult diet): canexane; 

cane:beet; beefcbeet; and beet:cane. Stable isotope analyses of ovaries from 1 to 7 day 

old virgin female adults were carried out. Ovaries were dissected on a 25 x 75 mm glass 

slide in a drop of DPBS. Approximately, 0.5 mg of ovaries (6 to 36 per sample) were 

placed in 5x9 mm pressed-tin capsules (Costech Analytical Technologies; Valencia, 

California, USA; No. 041061) and dried at 50°C for 48 hours. Dry weight for each 

sample was then determined using a Cahn C-30 microbalance to a precision of lug. 

Samples were analyzed using a Costech NA 2000 Elemental Analyzer coupled with Delta 

V Plus mass spectrometer by the Las Vegas Isotope Science Laboratory (LVIS; 

University of Nevada, Las Vegas). Isotope ratios (813C) are reported in parts per million 

values relative to Peedee Belemnite (PDB). Historically, the so-called PeeDee Belemnite 

was agreed to be used as a common reference to define the zero-point of the carbon 

isotope (Werner and Brand, 2001). 
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Initiation of egg laying and egg laying capacity 

To establish when egg laying is initiated and to determine total egg laying 

capacity, recently eclosed females (0-2 hours) were collected and placed into individual 

wells of an 8 x 11.6cm 24-well food plate Fly Condo ™ (Genesee Scientific; San Diego, 

California, USA; No. 59-110) containing grape agar (Genesee Scientific; San Diego, 

California, USA) and supplemented with yeast paste. Groups of 12 females per trial were 

observed every 12 hours for egg deposition. The number of eggs deposited in each 12 

hour period was recorded for 7 to 10 days. Similar experiments were also carried out with 

newly eclosed females paired with 2 males. 

Protein, triglyceride and carbohydrate assays 

Energetic substrates (carbohydrates, proteins, and lipids) were assayed in 

triplicate using standard protocols. Adult females were homogenized in a lysis solution 

containing detergent to solubilize lipids (1% NP-40, 0.5% deoxycholic acid, 0.1% Triton-

X 100, 100 mM NaCl, 0.1 mM CaCl2,2 mM MgCl2>pH 7.6). Triacylglyceride levels were 

measured using a commercial serum triglyceride kit (Sigma; St. Louis, Missouri USA; 

cat no. TR0100-1KT), and protein was quantified using the bicinchinonic acid method 

(Smith, 1985). Carbohydrates (glycogen and trehalose) were digested with 

amyloglucosidase and quantified with a blood glucose kit (Pointe Scientific; Canton, 

Michigan, USA; kit no. G7521). 

Results 

We previously demonstrated that the larval fat cells persist into the adult stage 

and that these cells can serve as an important nutrient reservoir for the immature adult to 

survive starvation (Aguila et al , 2007). Newly-eclosed females with their normal 
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complement of larval fat cells are three times more starvation resistant than aged females 

which lack larval fat cells. Furthermore, starvation resistance is enhanced by four times in 

adult females in which normal caspase-induced programmed cell death is blocked in the 

larval fat cells. We hypothesized that in females, programmed cell death of the larval fat 

cells allows for the "quick" release of fat cell contents, i.e. lipids, carbohydrates, and 

protein that are used to drive the maturation of the ovaries. 

Ovarian Uptake of Larval Nutrients is Driven by Programmed Cell Death of the Larval 

Fat Cells 

In order to test our hypothesis, we investigated if blocking the normal cell death 

of the larval fat cells would affect the mass or size of the adult ovary. To test this 

assertion, animals were grown on a normal canexane diet and the growth of the ovaries 

was monitored at 24 hour intervals. Qualitative differences in ovary mass were easily 

detected (Fig. 9B). In the parental line, Lsp2-GAL4::UAS-GFP, ovaries increased 

dramatically in size to 73 + 3 |j,g/ovary by day 2 and then exhibited a decline in mass that 

stabilized at 55 + 2 ^g/ovary by day 4. In contrast, ovaries from the Fl females are 

already underdeveloped by day 1, never reached the peak mass (37 + 2 (ag/ovary) 

exhibited by day 2 in the ovaries of the parental line, but achieved the same mass (52 + 4 

ug/ovary) as the ovaries from the parents after day 4 (Fig. 9A). 

To further test our hypothesis that the larval fat cells serve as carriers of energy 

for the development of the ovaries, we used stable isotopes to track ovary acquisition of 

nutrients acquired during larval and adult feeding. We predicted that the normal death of 

the larval fat cells allows for rapid uptake of larval nutrients by the ovaries in the 
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Figure 9. Ovaries from adult wild-type and fat cell-death inhibited females. Cell-death 

inhibited (Lsp2-GAL4/UAS-diap) animals' ovaries have less mass (A) and are visibly 

smaller (B) compared to wild-type animals from days 1-3. 
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immature adult and that in the absence of cell death only minor uptake of larval-derived 

nutrients is possible. To inhibit cell death of the larval fat cells, we used the GAL4/UAS 

system to express the cell death inhibitor gene diapl specifically in the fat cells (see 

material and methods and Aguila, et al., 2007 for details). 

To track larval- and adult-derived nutrients, larvae were raised on a cane sugar-

based diet, and newly-eclosed females were collected and either maintained on the larval 

diet (cane sugar) or switched to the beet sugar-based diet. These females are designated 

as canexane or cane:beet animals, respectively. Other larvae were grown on a beet sugar-

based diet, and the newly eclosed females were either maintained on the larval diet (beet 

sugar) or switched to the cane sugar-based diet. These females are designated as beetbeet 

or beetxane, respectively. 

Ovaries were dissected from aged individuals from the parental lines, Lsp2-

GAL4::UAS-GFP (a fat body specific Gal4 driver that carries a GFP cell marker) or UAS-

diap (the UAS responder line), and from the Fl offspring (UAS-diap/+; Lsp2-

GAL4::UAS-GFP/+) in which programmed cell death is blocked in the larval fat cells. 

The proportion of carbon derived from the larval and adult diet present in the ovaries was 

determined by mass spectrometric elemental analysis and expressed as 813C, the ratio of 

13C to 12C relative to Peedee Belemnite. 

As expected, ovaries from the parental lines and the Fl offspring which were 

maintained on the canexane diet had a carbon isotope ratio of 5 3C= -12.4 + 0.29 , the 

carbon signature characteristic of cane sugar (Fig. 10A), while ovaries from the parental 

lines and the Fl offspring reared on beetbeet diet had a carbon isotope ratio of 8 C 
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Figure 10. Stable isotope analysis of adult ovaries. Stable isotope analysis was 

conducted on ovaries dissected from adult animals. Female adults were given one of four 

different diet regiments (larval dietadult diet): cane:cane; cane:beet; beet:beet; and 

beet:cane. (A). Larvae reared on cane-sugar medium, then reared on cane as adults (top 

lines) or beet (bottom lines). (B). Larvae reared on a beet-sugar medium, then reared on 

beet as adults (bottom lines) or cane (top lines). Points represent average 813C values. 

Error bars = standard deviation, n = 3 replicates. 
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value of-19.9 + 0.33, characteristic of beet sugar (Fig. 10B). In contrast, ovaries from 

day-old females from the parental lines that were switched from a cane-sugar to a beet-

sugar diet (cane:beet) initially had a cane sugar-like carbon isotope ratio of 813C= -12.8 + 

0.25 (Fig. 10B) which shifted as females fed on the beet-sugar diet. The ovaries gradually 

acquired a carbon isotope ratio corresponding to beet sugar. After day 4 ovaries had a 

beet sugar signature of 5 C= - 20.9 + 0.18 (Fig. 1 OB), thereby indicating that after 4 days 

only adult-derived nutrients were contributing to the ovaries. In contrast, in the Fl 

females where programmed cell death is blocked in the fat cells, the ovaries more rapidly 

acquired an adult-diet carbon isotope ratio as measured on day 2 (Fig. 10B). These data 

suggest that fewer larval-derived nutrients are taken up by the ovaries of animals in the 

absence of fat cell death. In the reciprocal diet experiment (beetxane), similar result were 

observed (Fig. 10A). We suggest that as a consequence of inhibiting programmed cell 

death, larval nutrients are not readily available for uptake by the ovaries, and ovary 

development is compromised because adult feeding can not compensate for this loss. 

However, because the elemental analysis provides only a ratio of i3C to 2C, it is not 

possible to distinguish between a decrease in the uptake of larval-derived nutrients or a 

compensatory increase in the uptake in adult-derived nutrients. To address this problem 

we calculated for 2 day-old ovaries the relative amount of carbon derived from the larval-

diet based on the 813C value and the weight of the ovaries. At day 2, larval-derived 

nutrients represented ~42% of the carbon present in the ovaries; however, in the Fl 

females in the absence of larval fat cell death, the larval contribution to the ovaries 

dropped to 26% (Table 1). These data suggest that cell death of the larval fat cells allows 

for the rapid transfer of larval nutrients to the ovaries. 
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Larval Energy Stores are Used for the Maturation of the Ovaries 

To determine whether the difference in ovary size affects fecundity we 

established when the parents (UAS-diap or Lsp2-Gal4) and Fl females initiated egg 

laying and measured egg laying capacity. Females were collected upon eclosion (0-2hr), 

placed into individual wells containing grape agar and monitored for egg laying. Parents 

began to lay eggs by day 2, while the Fl females were delayed until day 3 post-eclosion 

(Fig. 11). Females were monitored for seven days for deposition of eggs. The parental 

females laid -40 eggs per female while the Fl females laid -18 eggs per female, a 55% 

reduction in egg laying capacity (Fig. 12). These data demonstrate that programmed cell 

death of the larval fat cells drives the rapid development of the ovaries and affects both 

the initiation of egg laying and egg laying capacity. 

Virgin females lay only a limited number of eggs as illustrated in Fig. 11. It is 

possible that in mated females with their longer egg laying period and higher egg laying 

capacity, that the Fl females might recover and exhibit normal fecundity. Parental and Fl 

females were collected upon eclosion (0-2hr) and placed in the individual egg laying 

wells with two males. Both initial egg laying and egg laying capacity were determined 

over a 10 day period. In mated females, egg lay commenced by day 2 post-eclosion for 

both the parental and the Fl animals (Fig. 13), but the overall fecundity of the Fl females 

was lower. Fl mated females produced only 197 + 3 eggs in the first 10 days of adult life, 

compared to 297 + 4 and 307 + 4 eggs for the parental females (Fig. 14). The rate of egg 

laying was reduced in the F1 females but approached parental levels during the latter half 

of the egg laying period (days 6-10) (Fig. 13 and 14). These data taken together suggest 
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Table 1. At day 2, larval-derived nutrients represent ~ 42% of the carbon present in the 

ovaries; however, in the Fl females where larval fat cell death is inhibited, the larval 

contribution to the ovaries drops to 26%. Calculations illustrated below table. 

Day 2 - Beet/Cane Diet - Amount of Carbon per Ovary 

|j,g of C from larval diet 

\xg of C from adult diet 

Total ug of C 

Percent C from larval diet 

Parental 
Control 

(UAS-diap) 
10.1 

13.7 

23.8 

42.4% 

Parental 
Control 

(Lsp2-Gal4) 
16.2 

23.1 

39.3 

41.2% 

Absence of Cell 
Death 

4.7 

13.5 

18.2 

25.8% 

The |a.g of C from the larval or adult diet within the ovaries was calculated according to 
the following functions: 

(j,g of C = (weight of sample (u,g)) x (% total C in sample) 

The 513C canesugar̂  -11.25 and 813C beet sugar= -23.50; thus the difference between the 
range of values is (-23.50) - (-11.25) = -12.25. 

ug of C from larval diet = -[(-23.50 - 813C 0vary) /12.25] 

ug of C from adult diet = -[(-11.25 - 813C ovary) /12.25] 

The percent C from the larval diet was calculated according to the following functions: 

u.g of C from larval diet + u.g of C from adult diet = Total fig of C. 

ug of C from larval diet / Total jig of C = Percent C from larval diet. 
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Figure 11. Absence of larval fat-cell death in virgin females leads to a 2-day delay in 

initiating egg laying. Ectopic expression of the Drosophila inhibitor of apoptosis 1 

(DIAP1) protein in the larval fat cells blocks the normal cell death of larval fat cells in 

the adult (Aguila et al., 2007). In the absence of cell death in the larval fat cells, unmated 

fed females (Lsp2-GAL4/UAS-diap) egg laying is delayed to day 3 while in the fed 

parental controls (Lsp2-GAL4 and UAS-diap) egg laying commences by day 2. Error bars 

= standard deviation. n= 4 trials with 12 females for each genotype. 
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Figure 12. Absence of larval fat-cell death in virgin females leads to a 58% decrease in 

egg laying capacity. In the absence of cell death in the larval fat cells, fed females 

{Lsp2-GAL4I UAS-diap) egg laying capacity is reduced to 17+1.3 eggs compared to 37 + 

1.4 and 43 + 1.4 eggs for the fed parental controls, Lsp2-GAL4 and UAS-diap, 

respectively. Error bars = standard deviation. n= 4 trials with 12 females of each 

genotype per trial. 
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that the programmed cell death of the larval fat cells triggers the quick release of larval 

nutrient stores and allows for the rapid maturation of the ovaries necessary for egg laying. 

Larval Fat Cell Triacylglycerid.es Fuels the Maturation of the Ovaries 

A possible explanation for the reduced fecundity of the Fl females is that 

different amounts of energy stores are brought forward into the adult compared to 

parental controls. We have previously demonstrated that the number of fat cells present in 

the newly-eclosed female is unaffected by the inhibition of fat-cell death (Aguila et al., 

2007). Here, we determine the triglyceride, glycogen, and protein content of Fl and 

parental females at eclosion and at one day intervals. Upon eclosion, the Fl and parental 

females exhibit the same triglyceride, glycogen and protein levels. Thus, there is no 

difference in the energy content between the Fl and parental females at the beginning of 

adult life. The levels of triglyceride, glycogen and protein remained similar between the 

Fl and parentals throughout the first 10 days of adult life. The only significant difference 

was at day 1 where triglyceride levels in the Fl females increased to 94.6 ±3.1 jig per 

female which was over 33% higher than in the parental females (Fig. 15). 

Discussion 

The life cycle of Drosophila melanogaster is distinguished by feeding and non-

feeding periods that are closely linked to unique developmental stages. Energy reserves 

acquired during the larval stage are stored in the larval fat body to fuel the later re-

architecture of the animal to the adult form during metamorphosis. These larval nutrient 

stores are transferred to the adult in the dissociated cells of the larval fat body. In the 
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Figure 13. In the absence of larval fat-cell death mated females lay fewer eggs. In the 

absence of cell death in the larval fat cells, mated females exhibit a delay in egg laying 

and an overall reduction in egg laying capacity . In mated females, egg lay commenced 

by day 2 post-eclosion for all animals, but total fecundity over ten days decreased by 35% 

for experimental versus control animals. In the absence of cell death in the larval fat cells, 

mated females (Lsp2-GAL4/UAS-diap) laid 197 + 3.1 eggs in the first 10 days of adult 

life, compared to 297 + 4.1 and 307 + 3.9 eggs for controls. Error bars = standard 

deviation, n = 4 trials with 12 females for each genotype per trial. 
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Figure 14. In the absence of larval fat-cell death mated females cumulatively lay fewer 

eggs. In the absence of cell death in the larval fat cells, mated females exhibit a delay in 

egg laying and an overall reduction in egg laying capacity. Error bars = standard 

deviation, n = 4 trials with 12 females per trial for each genotype. 
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Figure 15. Absence of larval fat-cell death in virgin females leads to a normal energy 

budget except for a transient accumulation of triglycerides at day 1. In the absence of cell 

death in the larval fat cells, unmated females {Lsp2-GAL4IUAS-diap) the energy reserves 

brought forward through pupal development remain unchanged from the reserves of the 

control parents (NE, newly eclosed). At day 1, in the absence of cell death in the larval 

fat cells, females exhibit a transient accumulation of triglycerides not seen in the parental 

lines. Lsp2-GAL4, parental control, UAS-diap, parental control, and Lsp2-GAL4IUAS-

diap, fat cell death inhibited. Error bars = standard deviation. n= 24 for NE, 2-day, and 3-

day; 20 for 10-day. 
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adult, the larval nutrients are presumably allocated to support the maturation of somatic 

and gonadal tissues. 

In females, the gonads develop rapidly during the first 24-48 hours post eclosion. 

We hypothesized that gonadal tissue growth depends on the energy stores brought 

forward by the larval fat cells and that these stores must be readily available during this 

crucial time period for ovary development. During this important time, the normal cell 

death of larval fat cells leads to the transfer of energy stores to the ovaries. In contrast, if 

cell death of larval fat cells is inhibited, then the energy stores would not be available for 

gonadal development. 

In the absence of cell-death animals, we demonstrated that the proper 

development of the ovaries is delayed and overall fecundity is reduced. For these 

absence of cell death experimental animals, two different situations could be envisioned 

to explain the results. On one hand, the larval energy stores may be mobilized to support 

the soma at the expense of proper gonadal development. Because these animals would 

allocate less of their larval energy stores to ovary development, the nutrients may be 

available to support the soma and thus lead to an increase in starvation resistance (Aguila 

et al. 2007). Moreover, the decrease in available energy sources would lead to decreases 

in gonadal growth and lower fecundity in cell-death inhibited females. On the other hand, 

the larval energy stores may not be mobilized to any tissue at all. To investigate these 

varying situations, we utilized stable isotope techniques and were able to track whether 

carbon in the ovaries was derived from the larval fat body or adult feeding. 
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The Importance of Larval Energy Stores for the Development of the Ovaries 

Previous studies have shown the importance of the larval fat cells for successful 

survival through metamorphosis. Along with producing small amounts of growth factors, 

the larval fat body contains large stores of proteins, carbohydrates, and lipids. These 

nutrients are utilized during metamorphosis and shortly after eclosion, but if an animal is 

starved, they are precociously mobilized into the hemolymph to support the animal 

during starvation (Britton et al., 2002). In our study, we used stable carbon isotopes to 

show that energy from the larval fat cells is mobilized to the ovaries. We were able to 

manipulate the carbon signature of the gonadal tissue by providing diets that differed in 

carbon isotope ratios, and by blocking the normal cell death of the larval fat body. In 

animals that had their larval fat cell death blocked, ovaries acquired an adult isotope 

signature more quickly. 

In Drosophila, dietary sugar is very important for successful ovary development 

and egg production. Ovaries from animals on the cane:beet diet had a strong cane isotope 

signature at day 1 (Fig. 10B). On the other hand, on the beetxane diet, the ovaries from 

animals at day 1 had a less complete beet signature (Fig. 10A). This is likely due to the 

fact that some carbon was derived from the corn meal and yeast in the diet. Corn, like 

sugar cane, is a C4 plant; therefore, corn meal (and yeast, if grown on a C4 carbon 

source) consumed during larval feeding in the first 24 hours of adult life may have 

affected the carbon isotope signature. At every age, it has been shown that half of the 

carbon in eggs is derived from dietary sugar (Min et al., 2006); the rest must be derived 

from other sources. Since all the diets contained the same amounts of corn meal and yeast 

and only differed in the type of sugar, the effects would be the same across all diets. For 
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both control and cell-death inhibited experimental animals that were raised on the same 

diet as larvae and adults (canexane or beet:beet), the isotope ratios remained consistent 7 

days post-eclosion. Females on a cane:cane diet attained isotope signatures of 

approximately -12.4 + 0.29 and those on a beet:beet diet had a signature of approximately 

-19.9 ±0.33. 

In contrast, animals that were raised on one diet as larvae and switched to the 

other as adults showed a very different pattern for isotope signatures. In both the 

cane:beet and beet:cane group, the isotope signature of the cell-death inhibited animals 

migrated towards an adult carbon source more quickly than did that of control animals. 

At days 1 to 3 post-eclosion, the cell-death inhibited animals consistently contained 

carbon signatures closer to the adult signature (Fig. 10A & 10B). Furthermore, isotope 

signatures converged at 4 days after eclosion in experimental and control animals. In cell-

death inhibited animals, larval fat cell death is completed by 90-96 hours post-eclosion 

(Aguila et al., 2007); therefore, by day 4, the larval fat reserves would have become 

available to all animals. Taken these data together, it can be concluded that cell-death 

inhibited animals utilize a larger ratio of adult energy stores earlier in adulthood (days 1 

to 3 post-eclosion) compared to control animals. 

In cell-death inhibited virgin females, it is important to note the possibility of 

compensatory feeding of the animal as an adult to offset the lack of availability of energy 

stores from the larval fat cells. Compensatory feeding may or may not lead to a relevant 

change in overall ovary development. In the end, the mass of the cell-death inhibited 

animals' ovaries was lower and the ovaries were visibly much smaller from days 1 to 3 

post-ecolosion. (Fig. 9). 
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Effects of Blocking Normal Cell Death of the Larval Fat Cells on Reproductive Success 

Normally, wild-type females contain fully developed eggs ready to be laid 

approximately two days after eclosion. In cell-death inhibited virgin females, initiation of 

egg laying was delayed and overall egg laying capacity decreased compared to controls 

(Fig. 11 and 12). It is important to note that the virgin female pattern of egg laying is 

quite different from that of mated females (Bouletreau-Merle, 1971). Mated females can 

hypothetically lay 750-1000 eggs in a perfect environment (Gowen and Johnson, 1946), 

but fecundity is extremely sensitive to environmental conditions including humidity, 

temperature (Siddiqui and Barlow, 1972), population density (Pearl, 1932), and the 

availability of food, most importantly yeast (David et al., 1971; Simmons and Bradley, 

1997). Furthermore, the mere presence of males increases the fecundity of females even 

if fertilization does not occur. In fact, egg laying is stimulated by the paragonial 

secretions of males, even if they are sterile (Hihara, 1981). In mated females, egg lay 

commenced by day 2 post-eclosion for all animals, but total fecundity over ten days 

decreased by 35% in experimental versus control animals. Cell-death inhibited animals 

laid fewer eggs than control animals from days 2-4, yet began to lay wild-type levels of 

eggs at days 5-6. (Fig. 13 and 14). This demonstrated that while mated experimental 

animals eventually were able to lay wild-type levels of eggs on a per day basis, the 

cumulative number of eggs laid over a ten day period never reached wild-type levels. 

The Importance of Larval Fat Cell Triacylglycerides for Ovary Maturation 

We demonstrated that cell-death inhibited animals did not differ in the amounts of 

lipids, carbohydrates, or proteins at eclosion compared to control animals (Fig. 15). This 

important finding leads us to conclude that cell-death inhibited animals' increase in 
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starvation resistance and decrease in fecundity was not caused by differences in initial 

energy stores. In cell-death inhibited animals, energy stores from the larval fat body are 

not properly transferred to the ovaries. Furthermore, we demonstrated that cell-death 

inhibited animals accumulate more lipids compared to controls 1 day post eclosion. 

Lipids contain two times more energy than carbohydrates or proteins and thus would be a 

more efficient energy source for a stressed organism. Therefore, storing high amounts of 

lipids may be beneficial for animals that are in a starvation environment or those who are 

unable to properly transfer the stored nutrients from the larval fat cells to tissues in the 

early adult. These stores may serve as an effective nutrient reservoir that the animal may 

be able to utilize as it matures into adulthood. 

In the absence of cell death in the larval fat cells, one-day old females (Lsp2-

GAL4/UAS-diap) had 94.6 + 3.1 fag triglycerides compared to 53.9 ± 3.7 and 59.9 ± 6.1 

|j,g for the control genotypes, Lsp2-GAL4 and UAS-diap, respectively (Fig. 15). This was 

a significant finding because it may be correlated to the noticeable delay in egg laying as 

well as reduced fecundity for cell-death inhibited females compared to controls in virgins 

and mated females. The amount of lipids at day 1 and 2 may affect the fecundity and 

oviposition of experimental animals, in addition to starvation resistance (Aguila et al. 

2007). This may indicate compensatory feeding by cell-death inhibited animals as adults, 

leading to extra lipid stores. In early adulthood, these animals may not be able to 

efficiently allocate the necessary amounts of energy stores to both the soma and 

developing ovaries, and the organism may enter a starvation-like response. Previous 

studies have demonstrated that selecting Drosophila for starvation resistance changes the 

timing of egg production in these animals. Selected starvation animals produce fewer 
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eggs early in adulthood compared to controls, but later these animals have higher ovariole 

numbers (Wayne et al., 2006). Blocking larval fat cell death in animals may emulate the 

effects seen in starvation selected animals. Therefore, it would be more beneficial for the 

animal to store more lipids in order to support the somatic tissues during this time. 

This experiment supports the idea that a critical period exists in early adulthood of 

female flies to mobilize nutrient stores from the larval fat body to the ovaries for proper 

gonadal development. If this "window of opportunity" is disrupted, then overall gonadal 

development is compromised. It is important to recall that cell-death inhibited animals 

eventually lose their larval fat cells, but at a much slower rate than control animals. For 

proper ovarian development, there may be a specific time when energy stores are 

necessary. If energy stores are not mobilized to the gonadal tissue, then the ovaries may 

develop at a slower pace and overall reproductive success will decline. In the absence of 

cell death in the larval fat cells, the capacity of these animals to lay eggs decreases and is 

delayed. Yet adult feeding 5-6 days post eclosion may compensate for these nutrients and 

allow animals to begin to lay wild-type levels of eggs. 

Conclusion 

Environmental stress, such as starvation, could affect a tradeoff between 

reproduction and survival, but the physiological mechanisms underlying environmental 

mediation of the tradeoff are largely unknown. In our earlier study, we showed a 

fundamental role for the larval fat cells in adult starvation resistance (Aguila et al., 2007). 

Furthermore, we demonstrated that blocking death of the larval fat cells in the adult 

increased starvation resistance. We speculate that death of the larval fat cells allows bulk 
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recycling of cellular components and release of the energy stores for utilization by the 

adult. This presented a paradox in that while animals utilize energy stores from larval fat 

cells undergoing cell death to combat starvation, their resistance to starvation is increased 

when cell death is inhibited. In this study, we investigated the possibility that in young 

adults, larval fat-cell energy stores are normally allocated to the gonads. We suggest that 

when normal larval fat cell death is blocked, energy stores of the fat cells are available 

during starvation, whereas energy that has entered the gonads is not. 

Our current findings shed some new light upon the mechanism of energy 

allocation from the larval fat cells to the adult somatic and reproductive tissues. By using 

stable isotope analysis, we were able to specifically track larval- versus adult-derived 

nutrients in the ovaries. We also demonstrated the importance for the adult animal to 

have readily available access to nutrient stores acquired by the larva for proper ovarian 

development and fecundity. 
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(0723930) and D.K.H. (0719551). J.R.A. was also supported by the UNLV Office of 
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CHAPTER 5 

CONCLUSION 

In this dissertation, I have demonstrated the importance and a role of the larval fat 

cells in the adult Drosophila melanogaster female. It is clear that the larval fat cells serve 

as a nutritional reservoir for the young adult prior to feeding. Moreover, the energy 

contents of the larval fat cells may function as a "meal-ready-to-eat" if the adult ecloses 

in a stressful environment where sufficient food is unavailable. Finally, I demonstrate that 

the energy stores within the larval fat cells are directly transferred to the adult ovaries and 

are necessary for proper ovarian development, age of first reproduction, and levels of 

fecundity. 

The importance of the larval fat cells for overall adult fitness is clearly observed 

in insects that do not feed as adults, including the silkworm and mayfly. These animals 

must acquire all their nutrients during the larval period and must then utilize a mechanism 

to allocate them throughout the pupal and adult stages. A likely mechanism for energy 

store utilization in these animals is programmed cell death (PCD) in which larval fat cells 

release their energy contents for the animals use. In D. melanogaster, an interesting 

question is what type of programmed cell death do larval fat cells undergo in order to 

transfer their energy contents to adult tissues such as the ovaries. New studies in the 

Drosophila salivary gland, have suggested that multiple degradation pathways act 

synergistically to break down cells (Berry and Baehrecke, 2007). Furthermore, it has 
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been shown that various caspase-dependent and -independent factors are required in both 

autophagic and apoptotic cell death (Berry and Baehrecke, 2007). 

Because I ectopically expressed the Drosophila inhibitor of apoptosis (Diapl) in 

the larval fat body, my model suggests that caspase-induced programmed cell death of 

the larval fat cells is part of the mechanism leading to proper development of the ovaries 

(Fig. 16). In wild-type animals that undergo larval fat cell death, larval derived energy 

stores are transferred efficiently to the ovaries. On the other hand, when programmed cell 

death of the larval fat cells is inhibited, a portion of the energy stores are unavailable for 

transfer to the ovaries causing them to be underdeveloped (Fig. 16). With the current 

findings that components of both the autophagic and apoptotic pathways may be shared, 

ovarian development might be controlled by parallel PCD pathways of the larval fat cells 

that could contribute to ovarian growth. In other words, even if a specific Drosophila 

inhibitor of apoptosis is utilized to block the caspase cascade leading to cell death, there 

still might be another active autophagic pathway that enables stressed cells to undergo 

PCD and release their energy contents for use by the animal. This alternative pathway 

may be correlated to both an increase in starvation resistance or a comparable ovary size 

in animals that have their caspase induced programmed cell death inhibited. This 

possible explanation may also serve as a foundation for utilizing the larval fat body as a 

model for investigating the intricacies of programmed cell death. 

Future directions for these studies include using the GAL4-UAS system to 

genetically construct an animal that ecloses as an adult with a considerably depleted 

levels of larval fat cells. This could serve as an important tool to further investigate the 

importance of the larval fat cells in starvation resistance and adult reproduction. We 
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Figure 16. Model for the transfer of larval energy stores to the ovaries. In caspase-

induced programmed cell death of the larval fat cells, larval-derived energy stores are 

transferred as well as adult-derived nutrients from feeding to support ovarian 

development (left). When programmed cell death of the larval fat cells is inhibited, half 

of the larval energy stores are no longer found in the ovaries causing them to be 

underdeveloped (right). This model is supported by the data in figures 9, 10, and 11 and 

table 1 of this dissertation. Ovaries pictured were dissected 2 days post eclosion. 
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hypothesize that these animals would succumb to starvation more quickly than control 

animals. Furthermore, we believe these animals would show a more severe negative 

effect on adult reproduction. In addition, fecundity assays could be conducted during the 

entire lifetime of the larval fat cell death blocked mated adult females, in order to observe 

if they would ever lay wild-type levels of eggs. While I planned on carrying out this 

experiment, the data from the 10-day fecundity assays demonstrated a gradual plateau of 

egg laying from days 7 to 10 with the experimental group still laying less eggs compared 

to the controls (Fig. 13). Finally, cell staining at various pupal and adult stages could be 

carried out to monitor for either necrosis or programmed cell death. This would allow for 

a better temporal and spatial understanding of what is occurring to the cells at the cellular 

level. The results reported in this dissertation as well as the proposed future studies may 

shed new light upon the diverse mechanisms of programmed cell death and may also lead 

to new insight regarding the transfer of larval energy stores to the adult. 
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