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ABSTRACT 

Embryonic Development of the Grass Shrimp, Palaemonetes pugio, 

and the Influence of Salinity on 

Cardiac Physiology 

 

By 

Amie L Romney 

Dr. Carl L Reiber, Examination Committee Chair 

Professor of Biological Sciences 

University of Nevada, Las Vegas 

 

The grass shrimp, Palaemonetes pugio, inhabit the brackish waters along the Atlantic 

coast of North America and are a key component of the estuarine ecosystem.  These decapod 

shrimp can tolerate large fluctuations in environmental parameters including daily and seasonal 

fluctuations in salinity between 0 to 55 parts per thousand (seawater at 30-32 ppt).  Any observed 

distribution patterns of adult P. pugio in relation to salinity may be accounted for by their relative 

ability to tolerate a range in salinity and their ability to maintain internal water volumes and 

cardiac performance in the earliest life stage, the embryonic period.  This thesis describes 

embryonic development and cardiac physiology of P. pugio embryos at standard conditions (20˚ 

C, 30-32 ppt seawater) and under the influence of hypersalinity (20˚ C, 45 ppt seawater).  By 

investigating developmental physiology, fundamental mechanisms of cardiac compensatory 

responses can be evaluated in face of osmotic stress induced by variable salinity. 

A concise description and understanding of embryonic development is necessary to 

provide the foundation for the further investigation of physiological development.  Here, we 

establish for the first time, a staging scheme for the embryonic period of development for the 

grass shrimp using an 8-stage sequence.  Under constant conditions, (20˚ C, 30-32 ppt ), embryos 
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were described by observable morphological changes using photo- and video-microscopy.  The 

mean time for embryonic development from fertilization to eclosion was 13 days and mean clutch 

size was 190 (±5) embryos per female.  The heart begins to contract at stage VIb.  Using 

standardized nomenclature for decapod development to describe the ontogenetic sequences and 

cardiac maturation of P. pugio, patterns of development and cardiac physiology can be more 

accurately addressed. 

The cardiovascular system is the earliest system to become functional during 

development and so it can be utilized to examine developmental strategies of basic physiological 

processes.  Specifically, cardiac function should be linked to embryonic maturation through the 

establishment of internal convective processes to meet increasing metabolic demands.   Cardiac 

physiological parameters (heart rate, stroke volume, and cardiac output) have been characterized 

here in embryos of the grass shrimp under standard conditions (20˚ C, 30-32 ppt).  Furthermore, 

the relationship between the initiation of cardiac function and embryonic growth was examined 

by measuring dimensional growth of the egg, water content and metabolizing mass.  It was found 

that the initiation of cardiac contraction occurs during a time when the embryo outgrows the 

diffusive capabilities of the chorion.  The transition to internal convection is a likely attempt to 

sustain metabolic homeostasis for further development and growth of the embryo. 

  The effects of osmotically driven water movements between animal and environment 

are known to influence cardiovascular function in many species.  However, the embryos of the 

grass shrimp are exposed to similar fluctuations in salinity as are the adults yet lack the ability to 

osmoregulate.  In order to examine the ability of grass shrimp embryos to adjust cardiac 

parameters in response to osmotically driven water exchanges, cardiac parameters (heart rate, 

stroke volume, and cardiac output) were measured in embryos of P. pugio when transferred from 

control conditions (20˚ C, 30-32 ppt) to hypersaline conditions (20˚ C, 45 ppt).   In higher salinity 

seawater, embryos showed a significant decrease in embryonic water content, egg volume, and 
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surface area that likely suggest a decrease in the volume of hemolymph within the cardiovascular 

system.  In response, embryos showed observable compensations for hemolymph volume loss by 

increasing heart rate and decreasing stroke volume to maintain optimal levels of cardiac output 

that are necessary for convective transport.  Demonstrations of a homeostatic role in cardiac 

responses to environmental stress may imply early development of cardiac regulation necessary 

for P. pugio survival. 

Invertebrate cardiovascular physiology holds fundamental clues to evolutionary 

conserved mechanisms of cardiac regulation that exist in many advanced animal forms.  Early 

developmental patterns in physiological ontogeny also supply a basic understanding of 

homeostatic function in adults.  By investigating the effects of fluctuating salinities on 

cardiovascular development and physiology in the grass shrimp, P. pugio, we can better 

understand their environmental tolerances and survivability.  This can lead to accurate predictions 

of the effects of future global climate change on decapod populations. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

THE GRASS SHRIMP, Palaemonetes pugio 

Prawns of the genus Palaemonetes have a wide distribution across an array of aquatic 

habitats ranging from freshwater to brackish and saltwater ecosystems and are distributed 

throughout the world (Anderson, 1985; Knowlton and Kirby, 1984).  The grass shrimp, 

Palaemonetes pugio, inhabit the brackish waters along the Atlantic and Gulf Coasts of North 

America (Anderson, 1985; Glas et al., 1997), and are highly abundant in estuarine systems which 

are characterized by variable environmental conditions.  These decapod shrimp can tolerate large 

fluctuations in environmental parameters such as temperature, dissolved oxygen, and salinity 

(Anderson, 1985; Morgan, 1980; Roesljadi et al., 1976; Thorp and Hoss, 1975; Welsh, 1975; 

Wood, 1967).  They are able to successfully survive and in many instances, reproduce in these 

environments that may range from salinities of between 0 to 55 parts per thousand (seawater at 

30-32 parts per thousand; ppt), temperatures of 5˚ to 38˚C, and dissolved oxygen levels from 4 to 

22 kPa (Anderson, 1985; Brown-Peterson et al., 2008; Cochran and Burnett, 1996; Knowlton and 

Kirby, 1984; Welsh, 1975).  Since most physiological processes require a stable osmotic and 

ionic environment, salinity is generally considered a key ecological factor in coastal and estuarine 

zones (Anger, 2003).  The direct effects of osmotic stress along with tangential influences have 

been previously reported and may select for physiological adaptations to such highly variable 

salinity environments (Anger, 2003; Lee and Petersen, 2003; McGaw and McMahon, 1996; 

Roesijadi et al., 1976; Roesljadi et al., 1976; Wheatly, 1988).  Factors contributing to the 

seasonal and daily variability in salinity include rainfall, evaporation, and tidal movements 

(Anderson, 1985; Knowlton and Kirby, 1984; Welsh, 1975).  This species’ tolerance to 
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environmental fluctuations in salinity can be generally attributed to the ability of all decapods to 

regulate internal water volumes in relation to osmotic movements of water and ions (Mantel and 

Farmer, 1983).  The physiological responses of adult and juvenile life stages of P. pugio to 

salinity changes have been extensively investigated (Knowlton and Kirby, 1984; Wheatly, 1988), 

but little is known about embryonic cardiac responses to changes in salinity. 

The adults of P. pugio are euryhaline osmoregulators and therefore can maintain internal 

osmotic and chloride balance over a wide range of external salinities (Knowlton and Kirby, 1984; 

Roesljadi et al., 1976).  The effects of salt and water balance between external media of decapods 

and their internal fluids follow the physical laws of thermodynamics characteristic of a two-

compartment system separated by a semi-permeable membrane.  Thus, strong differences in 

concentrations between the external medium and the animal’s hemolymph results in diffusive 

movements of water and ions into and out of the animal across any permeable surfaces (Mantel 

and Farmer, 1983).  When in dilute seawater, the animal takes on water leading to increased 

internal pressures and tissue swelling along with a loss of ions to the environment.  Internal 

osmotic problems in freshwater crustaceans are primarily those of control of hemolymph volume, 

and cardiovascular compensation, as well as prevention of the loss of salts and the compensatory 

uptake of salts from the environment across the gill epithelium.  Freshwater decapods also adjust 

by excreting a large volume of dilute urine from the antennal gland (Gilles and Pequeux, 1983; 

Mantel and Farmer, 1983; Wheatly, 1988).  In concentrated saline environments, the animal risks 

becoming dehydrated and losing water to the environment across the tissues and exoskeleton and 

a diffusive gain of ions across the gill and gut epithelium.  To retain water as much as possible, 

the animal excretes low volumes of concentrated urine (Gilles and Pequeux, 1983; Mantel and 

Farmer, 1983). 
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Palaemonetes pugio AS A MODEL SYSTEM 

Certain characteristics of P. pugio allow their easy use as a model research organism for 

laboratory investigations.  They are easily maintained in the laboratory and the length of their 

breeding season extends from February through October which allows for a sufficient supply of 

embryos most of the year.  Females can produce large clutch sizes, ranging between 200 and 400 

eggs, multiple times throughout the breeding season (Alon and Stancyk, 1982; Anderson, 1985; 

Welsh, 1975).  The grass shrimp have a translucent exoskeleton, allowing many physiological 

parameters to be observed externally without the use of invasive techniques.  In addition to their 

physical characteristics, these decapod crustaceans can provide insights into the evolution of the 

development of physiological and regulatory mechanisms.  Palaemonids inhabit a variety of 

ecological niches and equally possess the ability to tolerate a range environmental stresses (Alon 

and Stancyk, 1982; Anderson, 1985).  This species provides comparative and developmental 

physiologists a tractable model for furthering our understanding of developmental, physiological 

and environmental questions. 

Characteristic of most Carideans, P. pugio embryos develop with eggs brooded externally 

in a translucent chorion on the pleopods of the females (Anderson, 1985; Bauer and Abdalla, 

2000; Glas et al., 1997; Knowlton and Kirby, 1984).  The eggs adhere to the pleopods by setae 

and the embryos are carried by the female, exposed to the ever changing environment.   

Normally, embryos hatch to become larvae 11-13 days post-oviposition under field conditions 

(Rayburn et al., 1996).  While there are many studies regarding the harmful effects of 

environmental toxicity on development (Foss and Rayburn, 1997; Harper-Arabie et al., 2004; 

Rayburn et al., 1996; Tyler-Schroeder, 1979), there are few studies of natural embryonic and 

physiological development in this species. 
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ADULT CARDIOVASCULAR REGULATION IN RESPONSE TO SALINITY 

The physiological responses of decapods to changes in environmental salinity have been 

extensively investigated (Anger, 2003; Knowlton and Kirby, 1984; McGaw and McMahon, 2003; 

Wheatly, 1988).  Of these physiological changes, I am interested in the effect of salinity on 

cardiovascular parameters due to osmosis between the animal and the environment.  Decapod 

crustaceans have what is described as in incompletely closed circulatory system (in contrast to the 

early characterized “open” system).  Blood, termed hemolymph, is circulated within a complex 

arrangement of vessels and sinuses with oxygen taken up at the gills (McMahon et al., 1997; 

Reiber and McGaw, 2009).  The term hemolymph is used because this fluid is a mixture of both 

blood and lymph (McMahon et al., 1997).  As osmoregulators, these animals maintain a gradient 

between hemolymph osmotic pressure and that of their external medium and thus can experience 

osmotically driven movements of water across the body surface, gills and gut (Knowlton and 

Kirby, 1984).  The result can be changes in internal hemolymph volume and resultant 

compensatory changes in cardiac performance may occur (McGaw and Reiber, 1998; Wheatly, 

1988).  Changes in cardiac function resulting from hemolymph volume changes have not been 

investigated during embryonic development. 

The decapod crustacean’s globular heart consists of a single muscular ventricle 

suspended within a pericardial sinus by suspensory ligaments.  Upon muscular contraction, 

hemolymph is forced out of the heart, stretching the ligaments.   Hemolymph flow is directed 

through multiple arterial outlets through the opening and closing of arterial valves located at the 

entrance of each vessel.  The potential energy stored in the ligaments allows the heart to return to 

presystolic volume as hemolymph refills the heart via ostial valves in the ventricular wall 

(Guadagnoli et al., 2007; McMahon et al., 1997; Reiber and McGaw, 2009).  Cardiac 

compensatory responses resulting from hemolymph volume changes can be observed and the 

dynamics of the system characterized.  Heart rate and stroke volume of crustaceans are controlled 
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independently by nervous input from the cardiac ganglion and the central nervous system.  After 

exiting the ventricle, hemolymph flows through a network of arterial systems and finally into 

capillary-size vessels that ramify into tissues for gas exchange.  These vessels cannot be termed 

capillaries due to the absence of an endothelial lining (Reiber and McGaw, 2009).  Hemolymph 

then collects in large sinuses and veins as it moves toward the paired infrabrachial sinuses which 

direct the hemolymph to the gills for oxygenation.  Hemolymph moves through the branchio-

cardiac veins for delivery to the pericardial sinus where, upon the next cardiac contraction, is 

drawn back through multiple pairs of ostia leading into the ventricle of the heart (Guadagnoli et 

al., 2007; Reiber and McGaw, 2009). 

 

EMBRYONIC EXPOSURE TO FLUCTUATING SALINITY 

In many crustaceans, the heart begins beating during embryonic development.   To 

understand phenotypic characteristics and regulatory capabilities of cardiac function in adult P. 

pugio, one must first understand the patterns of cardiac development and the environment that 

shape its function.  Environmental fluctuations in salinity during embryonic development can 

cause the embryo to experience osmotically driven water movements across the chorion.  As the 

cardiovascular system matures in later stages of development, water movements may result in 

cardiac compensatory responses that facilitate proper hemolymph volumes and pressures 

(McMahon and Wilkens, 1983).  The postulated baroreflex in decapods, changes in cardiac 

function in response to changes in hemolymph volume (Burggren et al., 1990) is synonymous to 

the vertebrate response and maybe explained by the Frank-Starling Law of the heart.  Here, the 

length-tension relationship of cardiac muscle tissue regulates both cardiac stroke volume and 

systolic pressure.  An increase in hemolymph volume will increase venous return to the heart 

which in turn would result in an expansion of the ventricle.  The increase in ventricular pre-
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loading volume (end diastole) will shift the length tension relationship of the myofibrils overlap, 

where a greater tension can be generated by the myocardium.  This would increase the stroke 

volume through a decrease in end systolic volume.  The overall effect produces an increase 

hemolymph pressure through an increase in cardiac contractility.  The reverse effect was also 

reported with a reduction in hemolymph volume resulting in a decrease in contractility (Burggren 

et al., 1990; McMahon and Wilkens, 1983).  Grass shrimp can both survive and reproduce in 

euryhaline environments due to their ability to osmotically regulate their hemolymph in response 

to an ever changing environment (Knowlton and Kirby, 1984). While osmotic mechanisms of 

these changes have been investigated with respect to fluctuations in salinity, the downstream 

cardiovascular responses have not. 

One successful feature of this group is their ability to adapt to ecological stress.  

Crustaceans have evolved a variety of mechanisms to regulate cardiovascular function in 

response to an array of environmental stresses (McGaw and McMahon, 1996; McMahon, 2001; 

McMahon et al., 2002; Reiber et al., 1997).   Estuarine and intertidal ecosystems are subject to 

salinity change due to the effects of tidal inundation and freshwater run-off from the land (Anger, 

2003; Wheatly, 1988).    The magnitude and rate of salinity fluctuation can range from gradual 

seasonal shifts to sudden diurnal shifts (Wheatly, 1988; Wood, 1967).  These changes can depend 

on the topology of the land, the drainage system and the effects of tides and currents.    Decapods 

should have evolved the ability to compensate for external salinity shifts via cardiac regulatory 

mechanisms that result in the appropriate maintenance of cardiac function during periods of 

challenge (McGaw and McMahon, 1996; Wheatly, 1988). 
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RESEARCH OBJECTIVES 

This research is presented as three unique components all focused on embryonic response 

to salinity change.  First, I establish an embryonic developmental staging scheme under 

controlled laboratory conditions of 20˚ C, 12 hour photoperiod, and a constant salinity of 30-32% 

to determine, in later experiments, if changes to the osmotic environment modify cardiac 

parameters during development.  Second, in order to understand the timing of cardiac initiation, 

cardiovascular morphology and cardiac functions are described throughout development through 

direct observations (morphology), and monitoring heart rate and stroke volume (physiology), 

under control and experimental conditions.  Third, I identify whether regulation of cardiovascular 

physiology as a function of salinity exists by determining acute versus chronic effects on cardiac 

function by transferring embryos from control conditions to an increased salinity.  I hypothesize 

that the grass shrimp, P. pugio, exhibit cardiac development and physiology in coordination with 

osmotically driven water volume changes from external salinities.  If cardiac parameters 

including heart rate and stroke volume are significantly different for embryos exposed to alternate 

salinities, it can be inferred that one reason for this species’ distribution along stressful estuarine 

regions could be due to adaptive plasticity in cardiac function in response to hemolymph volume 

changes. 

 

STAGING SCHEME 

  To further our understanding of physiological regulation during embryonic development 

of P. pugio, we must describe and establish the timing of embryonic development.  A common 

set of terms as used with other closely related crustaceans will be used to facilitate comparative 

studies between related taxa as well as a means to review intraspecific variation.  In order to 

image the embryos properly, eggs harvested from the pleopods of females will be maintained 
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under controlled conditions.  Optimal embryonic developmental conditions are 20˚ C with a 

consistent 12-hour day and 12-hour light cycle and frequent water changes of artificial sweater at 

30 ppt salinity (Glas et al., 1997; Tyler-Schroeder, 1978).  

 

CARDIAC DEVELOPMENT 

Cardiac function will be described and further quantified through video dimensional 

analysis of the heart and the use of equations to calculate ventricular volumes throughout the 

stages of embryonic development.  Microscopic imaging will allow for geometric measurement 

of the heart for a 3-dimensional reconstruction at each developmental stage.  When cardiac 

contraction initiates, a dorsal view of the heart will be measured at end diastole (EDV; maximal 

distension), end systole (ESV; minimal distension).  The change in ventricular volume between 

EDV and ESV is the stroke volume (Vs) for one cardiac cycle (Vs = EDV – ESV).  The volume of 

hemolymph pumped with each stroke (Vs) times the number of heart beats per minute ( fH ) is an 

index of hemolymph volume expelled per unit time termed cardiac output ( Vb ; Vb = Vs  x  fH ).  

The values for EDV and ESV of the heart will be measured by a videomicroscope equipped with 

a CCD camera and the use of the computer software program ImageJ (National Institutes of 

Health, Bethesda, MD, USA). 

 

PHYSIOLOGICAL REGULATION IN RESPONSE TO SALINITY CHANGES 

Cardiovascular parameters (fH, Vs, Vb) were measured in embryos using the same 

videomicroscope and dimensional analysis techniques as mentioned above and further determined 

for the shrimp when transferred to different levels of salinity.  For this, newly fertilized embryos 

were harvested from ovigerous females and transferred between salinities using small scale 
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treatment tanks (100 ml reservoirs).  Measurements of individuals came from multiple clutches, 

yet which were determined to be at the same stage of development.  It should be assumed that 

different clutches are genetically similar and that due to external fertilization, cross-fertilizing is 

possible to occur often.  Their genetic relatedness should prove that any statistical differences in 

heart parameters between clutches are due to environmental conditions and not those which are 

genetic.   

I plan to compare embryonic morphology and cardiac physiology in embryos maintained 

under standard marine salinities (30-32 ppt) and transferred to hypersaline conditions (45 pp).  I 

hypothesize that embryos will exhibit internal water volume changes in response to fluctuating 

salinity and at stages of cardiac activity, are capable of cardiac responses to maintain levels of 

function.  Significant differences in cardiac activity, as quantified by fH and Vs at high salinities 

could suggest an induced response from changes of hemolymph volume.   To my knowledge, this 

is the first study of decapod circulation that indicates hemolymph volume may be regulated by a 

change in cardiac performance during embryonic development.  In addition, this research may 

suggest the invertebrate circulatory system may not be a primitively designed and less efficient 

system than in vertebrates. 
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CHAPTER 2 

 

EMBRYONIC DEVELOPMENT AND CARDIAC MORPHOLOGY OF THE GRASS 

SHRIMP, Palaemonetes pugio (CRUSTACEA, DECAPODA): EMBRYONIC STAGING 

 

ABSTRACT 

Decapod crustaceans are known for their variation in developmental patterns and their 

successful adaptation to diverse environmental conditions. The grass shrimp, Palaemonetes 

pugio, inhabits the brackish waters off the Atlantic and Gulf coasts of North America and are a 

critically important component of the food chain in these ecosystems.  A clear description and 

understanding of early embryonic developmental processes is necessary in order for this species 

to be used for future physiological, ecological, developmental and toxicological investigations.  

Here, we establish a uniform staging scheme for the embryonic period of development in grass 

shrimp using an 8-stage sequence.  Under constant conditions, (20º C, 30-32 ppt sea water), mean 

clutch size was 190 (±5) embryos per female and mean time for embryonic development from 

fertilization to eclosion was 13 days.  Morphological changes and staging were documented using 

photo-microscopy and video-microscopy.  Also described are cardiac morphological changes 

associated with embryonic development.  The morphometrics of both embryonic development 

and cardiac ontogeny are provided.  The morphological features described for P. pugio 

throughout embryonic development and the standardized embryonic staging scheme can be used 

to compare developmental patterns and timing when investigating questions related to an array of 

biological disciplines making this species a stronger model system. 
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INTRODUCTION 

The grass shrimp, Palaemonetes pugio, Holthius, 1949, is a decapod crustacean native to 

North American coastal estuaries and collectively are an important model organism for 

physiological, developmental and environmental investigations (Bauer and Abdalla, 2000; 

Cházaro-Olvera, 2009).   Shrimp populations range from Nova Scotia to Veracruz, Mexico 

(Anderson, 1985) and are an important component to ecosystems (Welsh, 1975; Wood, 1967).  

Their habitats are typically characterized by extreme environmental variation which leads to 

physiological stress (Welsh, 1975). This species’ success is related to being uniquely adapted to 

tolerate wide fluctuations in environmental conditions such as temperature, salinity and dissolved 

oxygen (Alon and Stancyk, 1982; Thorp and Hoss, 1975; Welsh, 1975). 

The embryonic development of crustaceans in a broader sense has been extensively 

reviewed (Anderson, 1973; Gore, 1985; Hartnoll, 1982).  Developmental patterns in Decapods 

are highly variable both among and within classes yet are also characterized by a number of 

unified patterns (Anderson, 1973; Gore, 1985).  The general pattern of embryonic development 

seen in this order proceeds from large yolky eggs with spiral cleavage, through naupliar stages, 

and followed by the development of post-naupliar segments as a forwardly flexed caudal papilla 

(Anderson, 1973; Gore, 1985).  Overlying this basic pattern of development is a number of 

morphological and physiological adaptations made by individual species allowing exploitation of 

particular environments (Anderson, 1973; Hartnoll, 1982).  Comparing embryonic developmental 

patterns along with descriptive staging schemes (Nazari (2000), Müller et al., (2003), Müller et 

al., (2007), one can begin to see the group’s ability to fill an array of ecological niches.  

Palaemonid embryonic and larval development is highly sensitive to environmental conditions 

and as such well-described developmental stages are needed when investigating physiological 

and morphological plasticity induced by varying developmental conditions (Ituarte et al., 2005; 

Rayburn et al., 1996). 
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Embryonic development of P. pugio is initiated by external fertilization of the eggs.  The 

male deposits a spermatophore on the ventral thorax of a mature female, near the opening of the 

gonopores.  As eggs are extruded from the oviduct, they pass across the spermatophore to be 

fertilized.  The eggs are manipulated by the female and attached to the pleopods on the ventral 

surface of the abdomen where they are adhered by setae (Anderson, 1985; Bauer and Abdalla, 

2000; Glas et al., 1997).  Once fertilized, cleavage is initiated and follows a spiral pattern, 

resulting in the blastomeres being oriented at an angle to the principle axis of the embryo 

(Carlson, 2003).  The outcome of cleavage within most groups is a blastoderm surrounding a 

unitary yolk mass.  In crustaceans that develop from large, yolky eggs the nauplius stage is 

retained in an embryonized form, allowing a greater degree of developmental maturation to occur 

within the chorion prior to eclosion (Anderson, 1973; Gore, 1985). 

In addition to determining whole animal morphological changes during development, 

specific anatomical changes of the heart are a useful indicator of transition between 

developmental stages.  Cardiac performance may reflect the impact of environmental variables on 

the shrimp during development.  The heart is one of the first physiological systems to become 

active and in crustaceans the first contraction can be seen during the embryonic period (Reiber, 

1997; Spicer, 2001; Spicer and Morritt, 1996).  The ventricle continues to undergo anatomical 

development even after the initiation of cardiac contraction occurs (Spicer and Morritt, 1996).  It 

is important to understand the morphological changes associated with embryonic development at 

both a gross and systems level in order to make comparisons in developmental timing under 

control and experimental conditions for these animals. 

Developmental-based studies in P. pugio have been commonly used in investigations 

focused on ecological, toxicological, environmental, and physiological processes (Glas et al., 

1997; Rayburn and Fisher, 1997; Rayburn and Fisher, 1999).  The larval development of the grass 

shrimp has been described previously by Broad (1957) yet the embryonic development has not 

been described nor has a consistent standard for developmental staging been established.  The 
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objectives of this research are to document the morphological and physiological changes 

associated with embryonic development in P. pugio and to establish an embryonic staging 

scheme that can be used as a basis for developmental, comparative and toxicological 

investigations.  The introduction of consistent terminology and control-based measurements to 

describe embryonic development is used to generate an embryonic staging scheme that is founded 

on previously described developmental patterns in this and other closely related species (Müller 

et al., 2004; Müller et al., 2007; Nazari et al., 2000).  The embryonic staging scheme can be used 

in conjunction with previously described larval staging schemes to investigate plasticity of 

development in response to environmental change as well as to develop questions focused on the 

adaptive significance of developmental patterns and timing in this species. 

 

 

MATERIALS AND METHODS 

Animal Maintenance 

Adult P. pugio were obtained from Gulf Specimen Marine Laboratories, Inc. (Panacea, 

FL, USA).  Experimental animals were maintained in 40L aquaria in aerated artificial seawater 

(30-32 ppt at 20-25˚C) with a 12L: 12D photoperiod.  Aquaria were maintained individually 

using filters with water changes scheduled as necessary.  Animals were fed a high protein marine 

fish flake to encourage ova production (Ocean Nutrition Formula Two Flakes).   

 

Embryonic Culture 

Embryonic cultures were established separately from the adult aquaria to assure 

consistency of environment and synchrony in developmental age.  Embryos were removed at the 

funiculus from the pleopods of the ovigerous females then staged under a dissecting microscope.  

Embryos used to document development were placed into 100 mL nursery chambers (glass 
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containers) maintained at 20˚C, 30-32 ppt seawater, 12L: 12D photoperiod and kept on an 

agitating platform to mimic natural maternal movements. 

 

Imaging and Microscopy 

Live embryos were observed within their intact, translucent chorion for ontogenetic 

staging and cardiac description using a CCD camera (World Precision Instruments) attached to a 

stereo-microscope (Leica MZ12.5; McBain Instruments, Chatsworth, CA, USA).  Whole egg 

morphological measurements were made using an ocular micrometer on a Zeiss light microscope 

at a magnification of 6X.  Measurements of the ellipsoidal egg include the length from rostrum to 

abdominal flexure as the long axis, and the perpendicular width as the short axis.  The dorso-

ventral and lateral spanning short axes of the egg were not differentiated due to their equal 

distance in measurements.  These long and short axes were further used to calculate whole 

embryonic volume (volume of ellipsoid = 4/3π·l·2w).  The heart of the embryo is located in the 

posterior thorax and can also be modeled as an ellipsoid.  Morphological changes of the ventricle 

were described with video recordings from a high speed camera (Phantom V5.1, Vision Research, 

Wayne, NJ, USA) for enhanced imaging and measured with ImageJ, an imaging analysis program 

(National Institutes of Health, Bethesda, MD, USA).  Mean whole egg mass was approximated 

from pooled masses from groups of five eggs and dividing by five.  Embryos were removed from 

nursery chambers with a pipette, placed onto a weighing boat, and blotted dry to remove external 

water before being weighed on a microbalance (0.0001 mg accuracy; Cahn 21 automatic 

electrobalance, Cahn Instruments Div., Ventron Corp., Cerritos, CA, USA).   

 

 

RESULTS 

Under constant laboratory conditions (20˚ C, 32 ppt, 12:12 day: light cycle), P. pugio 

females had an average clutch size of 190 (±5).  Embryos took an average of 13 days to complete 
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development.  Eggs from a single brood were synchronous in development, and reached eclosion 

within hours of each other. 

 

Table 1:  Embryonic developmental timeline of Palaemonetes pugio, Holthius, 1949, at 20˚ C and 

salinity of 30 ppt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:  Linear measurements (mm) of the major axes (n = 40) of the ellipsoidal embryonic egg 

of Palaemonetes pugio, Holthius, 1949, and corresponding egg masses (mg) of whole embryos (n 

= 8).  From the linear measurements, whole egg volume (mm
3
) is calculated (n = 40).  Data are 

shown in mean values and standard error of the mean for each developmental stage. 

 

 

Stage Long Axis (mm) Short axis (mm) Egg mass (mg) Egg volume (mm
3
) 

I 0.691 ± 0.007 0.513 ± 0.003 0.1058 ± 0.003 0.0951 ± 0.001 

II 0.648 ± 0.004 0.475 ± 0.002 0.1054 ± 0.004 0.0767 ± 0.001 

IIIa 0.671 ± 0.003 0.510 ± 0.002 0.1164 ± 0.003 0.0913 ± 0.000 

IIIb 0.692 ± 0.003 0.514 ± 0.002 0.1229 ± 0.002 0.0957 ± 0.001 

IV 0.681 ± 0.003 0.527 ± 0.002 0.139 ± 0.005 0.0988 ± 0.001 

V 0.733 ± 0.004 0.540 ± 0.002 0.1479 ± 0.008 0.1118 ± 0.001 

VIa 0.728 ± 0.003 0.590 ± 0.002 0.1864 ± 0.009 0.1324 ± 0.001 

VIb 0.767 ± 0.003 0.575 ± 0.004 0.1678 ± 0.003 0.1328 ± 0.002 

VIIa 0.799 ± 0.003 0.586 ± 0.002 0.1854 ± 0.006 0.1435 ± 0.001 

VIIb 0.873 ± 0.002 0.603 ± 0.002 0.2169 ± 0.006 0.1664 ± 0.001 

VIII 0.895 ± 0.003 0.632 ± 0.003 0.2409 ± 0.007 0.1874 ± 0.002 

 

Stage Description Days post-
fertilization 

I Post-fertilization, oviposition 0 

II Cleavage 1 

IIIa Gastrulation: Blastopore 2 

IIIb Gastrulation: V depression 3 

IV Early Nauplius 4 

V Mid-Nauplius 5 

VIa Late Nauplius: C shaped embryo 7 

VIb Late Nauplius: Cardiac 
Contractions 8 

VIIa Post-nauplius: Eye pigmentation 9 

VIIb Post-nauplius: Eye condensation 11 

VIII Pre-hatch Embryo 13 
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 Embryonic development 

Embryonic development of P. pugio is characterized by eight distinct stages and defined 

by significant morphological changes.  Of these stages, III, VI, and VII can be further separated 

into early and late sub-stages.  These distinct stages are numbered I-VIII with substages lettered; 

a and b (Fig. 1; a-k). 

 

Stage I: Post Fertilization (0-5 hours) 

 The fertilized egg is an ellipsoid and is composed primarily of a pale yellow yolk mass 

(YM) surrounded by a transparent chorion (Ch).  No embryonic structures or cellular divisions 

are observed (Fig. 1a).  At this stage, the mean long axis of the egg is 0.691 mm (±0.007) and the 

mean short axis is 0.513 mm (±0.003; Table 2).  The mean mass of an individual embryo is 

0.1058 mg (±0.003) and mean volume at this stage is 0.0951 mm
3
 (±0.001).  Stage I is initiated at 

fertilization and lasts approximately five hours until the zygote initiates cellular division (Table 

1).  

 

Stage II: Cleavage (5-24 hours)  

The single egg begins dividing with surface furrows visible in a spiral axes pattern, 

maintaining the yolk mass centralized (Fig. 2a).  At each round of cellular division, blastomeres 

(Bl) remain of equal size but increase in number, each showing a prominent nuclei (Nu) and 

clearly outlined by their cleavage furrows (CF) (Fig. 1b).  The mean length of the long axis of the 

egg is 0.648 mm (±0.004), mean length of the short axis is 0.475 (±0.002) and mean egg mass is 

0.1054 mg (±0.044) and mean volume is 0.0767 mm
3
 (±0.001; Table 2).  Stage II lasts 

approximately 24 h post-fertilization and terminates at gastrulation (Table 1). 
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Stage IIIa: Gastrulation, blastopore formation (24-48 hours) 

Blastulation continues forming an outer lining of blastodermal cells that surround the 

central yolk mass (Fig. 2b).  On the ventral aspect of the egg, a thickened disk of cells develops at 

one pole.  This is the germinal disk and represents the formation of the blastopore (Bp) as it 

begins to invaginate inward (Fig. 1c).  The mean length of the long axis of the embryo at this 

stage is 0.671 mm (±0.003), mean short axis is 0.510 mm (±0.002), and mean egg mass is 0.1164 

mg (±0.003) and mean volume is 0.0913 mm
3
 (±0.000; Table 2).  The blastopore is the early 

substage (a) of gastrulation beginning at 48 h post-fertilization and lasting until the formation of a 

V-shaped depression on the superior side of the embryo (Table 1). 

 

Stage IIIb: Gastrulation, V-depression (48-72 hours)  

The late substage (b) of gastrulation starts when blastomeric cells on the superior side of 

the growing blastopore begin to migrate forward and separate (Fig. 2c), changing the shape of the 

pore to a V-depression (Vd).  The forward projecting extremities and fixed base of the V 

correspond to the future optic lobes and caudal papilla respectively (Fig. 1d).  Embryos have a 

mean length of 0.692 mm (±0.003) on the long axis and 0.514 mm (±0.002) on the short axis of 

the egg; mean egg mass is 0.1229 mg (±0.002) and mean volume is 0.0957 mm
3
 (±0.001; Table 

2).  The V-depression occurs at 72 h post-fertilization (Table 1) and is the terminating feature of 

gastrulation. 

 

Stage IV: Early Nauplius (72-96 hours) 

The V-depression changes into the early nauplius in stage IV, as embryonic structures 

begin to take form and are discernable (Fig. 2d).  The paired optic lobes (OL) migrate anteriorly 

and become posteriorly bordered by three naupliar appendages: the antennules (An), antennae 

(At), and mandibles (Mb).   The posterior extremity of the embryo is the caudal papilla (CP) and 

will develop into the future segmented abdomen.  The stomodeum (St) can be seen in the center 
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of the translucent embryo against the surface of the remaining lightly colored yolk (Fig. 1e).  The 

mean long axis of the egg is 0.681 mm (±0.003), mean short axis is 0.527 mm (±0.002), mean 

egg mass is 0.1390 mg (±0.005), and mean egg volume is 0.0988 mm
3
 (±0.001)(Table 2).  The 

stage of the early nauplius lasts for 24 h and ends 4 d post-fertilization (Table 1). 

 

Stage V: Mid-Nauplius (96-144 hours) 

The primary dimension of growth of the embryo at this stage is along the long axis, with 

the optic lobes extending anteriorly and differentiating into the cephalic region of the animal (Fig. 

2e).  Of the naupliar appendages (NA), the antennules and antennae have lengthened and are 

directed posterior-ventrally.  The caudal papilla lengthens and folds over itself ventrally.  Limb 

buds of the five post-naupliar appendages (PnA) can be seen laterally from the caudal papilla.   

Development proceeds from an anterior to posterior direction forming an embryonized nauplius 

with all remaining yolk on the dorsal aspect of egg (Fig. 1f).  Mean lengths of the embryo are 

0.733 mm (±0.004) on the long axis, 0.540 mm (±0.002), mean egg mass is 0.1479 mg (±0.008), 

and mean volume 0.1118 mm
3
 (±0.001; Table 2).  Stage V is initiated at the folding of the caudal 

papilla, lasts for 48 h at 5 d post-fertilization, and terminates when the caudal papilla has 

stretched the length of the long axis of the egg (Table 1). 

 

Stage VIa: Late Nauplius, C shaped embryo (5-6 days) 

The early substage (a) of the late nauplius is initiated when the embryo has grown to form 

a C-shaped body on the ventral surface of the egg (Fig. 2f).  The caudal papilla has extended over 

itself posteriorly and is now segmented.  The optic lobes have reached the opposite pole on the 

anterior end of the egg where they will continue to develop.  Post-naupliar appendages are further 

developed than earlier (Fig. 1g).   Mean embryo length of the long axis is 0.728 mm (±0.003), 

mean short axis is 0.590 mm (±0.002), mean egg mass is 0.1864 mg (±0.009), and mean volume 

is 0.1324 mm
3
 (±0.001) (Table 2).  Substage (a) of the late nauplius is characterized by the 
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development of the C-shaped embryo prior to cardiac function and occurs at 7 d post-fertilization 

(Table 1).  

 

Stage VIb: Late Nauplius, Initiation of cardiac contractions (6-7 days) 

Substage (b) of late naupliar development is marked by the initiation of cardiac 

contraction.  The heart is located between the remains of yolk mass and the growing caudal 

papilla.  The embryo has become completely encircled, filling the inside of the chorion.  The 

caudal papilla resembles the future abdomen with a rudimentary telson developing ventrally just 

posterior to the optic lobes.  The optic lobes have enlarged and have become more translucent 

resting bilaterally on the anterior pole of the egg (Fig. 1h).  The long axis of the egg has expanded 

to a mean of 0.767 mm (±0.003), mean short axis is 0.575 mm (±0.004), and the mean egg mass 

at this stage is 0.1678 mg (±0.003) with a mean volume of 0.1328 mm
3
 (±0.002)(Table 2).  

Substage (b) of the late nauplius starts at 8 d post-fertilization and is terminated at the appearance 

of eye pigmentation approximately 24 h later. 

 

Stage VIIa: Post-nauplius, Eye-pigmentation (7-9 days)  

The initiation of stage VIIa occurs with the development of darkly pigmented cells 

forming the future eye (Ey).  The eye begins as a linear array of pigmented cells that form on the 

posterior edge of both optic lobes.  The abdomen (Ab) appears fully compartmentalized from the 

rest of the body with the remainder of yolk in the cephalothorax, posterior to the optic lobes.  All 

appendages are fully lengthened and overlap one another due to the tightly curled position of the 

post-nauplius (Fig. 2g).  Telsonic spines can begin to be seen on the edge of the extending telson 

(Te) (Fig. 1i).  The mean long axis of the egg is 0.799 mm (±0.003), mean short axis is 0.586 mm 

(±0.002), mean egg mass is 0.1854 mg (±0.006), and mean volume is 0.1435 mm
3
 (±0.001)(Table 

2).  Linear eye formation begins in the post-nauplius embryo at 9 d post-fertilization and 

terminates when the pigmented eye becomes more round in shape (Table 1). 
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Stage VIIb: Post-nauplius, Eye condensation (9-11 days)  

Late stage post-nauplius, substage (b), begins when pigmented cells condense, changing 

the eye into a more rounded appearance (Fig. 2h).  There is movement within the thoracic region 

underneath a carapace (Ca) as the formed hepatopancreas becomes more active (Fig. 1j). The 

mean long axis of the egg is 0.873 mm (±0.002), the mean short axis is 0.603 mm (±0.002), mean 

egg mass at this time is 0.2169 mg (±0.006), and mean egg volume is 0.1664 mm
3
 (±0.001)(Table 

2).  Substage (b) of the post-nauplius occurs at 11 d post-fertilization and terminates when the 

development of the compound eye has completed (Table 1). 

 

Stage VIII: Pre-hatch Embryo (288-312 h) 

Embryonic development is complete.  The eyes are large pigmented circles with 

ommatidia evident (Fig. 2i).  The appendages extend from the cephalothorax to overlap the 

telson.  The carapace surrounds the formed hepatopancreas (Hp), which now has four lobules that 

can be seen actively contracting.  Some animal movement can be seen and scaphagnathite 

movements begin arhythmically.  The telson is clearly segmented with the last segment having 

telsonic spines.  The edge of the telson overlaps the extending rostrum from the head (Fig. 1k).  

The mean long axis of the egg is 0.895 mm (±0.003), the mean short axis is 0.632 mm (±0.003), 

mean egg mass is 0.2409 mg (±0.007), and the mean volume is 0.1874 mm
3
 (±0.002) (Table 2).  

The embryo has fully developed at this stage (13 d post-fertilization) with eclosion occurring 

within hours (Table 1). 
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Figure 1:  External characteristics of the embryonic developmental stages for Palaemonetes 

pugio, Holthius, 1949:  (a.) stage I, fertilized egg; (b.) stage II, cleavage; (c.) stage IIIa, 

gastrulation with blastopore; (d.) stage IIIb, gastrulation with V-depression; (e.) stage IV, early 

nauplius; (f.) stage V, mid-nauplius; (g.) stage VIa, late nauplius with posterior segmentation; (h.) 

stage VIb, late nauplius with cardiac initiation; (i.) stage VIIa, post-nauplius with eye 

pigmentation, (j.) stage VIIb, post-nauplius with eye condensation; (k.) stage VIII, pre-hatch 

embryo.  (Ab) Abdomen, (An) antennulae, (At) antennae, (Bl) blastomere, (Bp) blastopore, (Ca) 

carapace, (CF) cleavage furrow, (Ch) chorion, (CP) caudal papilla, (Ey) eye, (He) heart, (Hp) 

hepatopancreas, (Mb) mandibles, (NA) naupliar appendages, (Nu) nucleus, (OL) optic lobe, 

(PnA) post-naupliar appendages, (St) stomodeum, (Te) telson, (Vd) V-depression, (Ym) yolk 

mass. 



25 

 

 

 

 

 
 

 

Figure 2:  Images of embryonic stages of development of Palaemonetes pugio, Holthius, 1949, 

taken under a stereoscope.  Stage I and stage VIb are omitted for irrelevance of single shot image 

properly representing characteristics for those particular stages. Stages pictured include: (a.) stage 

II, cleavage; (b.) stage IIIa, gastrulation with blastopore; (c.) stage IIIb, gastrulation with V-

depression; (d.) stage IV, early nauplius; (e.) stage V, mid-nauplius; (f.) stage VIa, late nauplius 

with posterior segmentation; (g.) stage VIIa; post-nauplius with eye pigmentation; (h.) stage VIIb; 

post-nauplius with eye condensation; (i.) stage VIII; pre-hatch embryo.   Images of animals 

shown here are not processed together to scale. 

 

 

Cardiac Development 

The heart of the embryonic grass shrimp, P. pugio, is a single muscular ventricle located 

in posterior end of the thorax (Fig. 3b; 4a-d).  The formation of the inactive heart can be observed 

in the intact C-shaped embryo of stage VIa as a translucent structure out-pocketed from the 
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dorsally extending cardiac tube.  Details of ostial and vasculature development cannot be seen 

until initiation of contraction occurs.  The heart begins to beat at stage VIb of embryonic 

development.  Contractions are arrhythmic and lack coordination between the lateral walls of the 

ventricle.  At this time, the heart appears to be a laterally inflated region of the dorsal aorta which 

extends along the embryo both anteriorly and posteriorly (Fig. 3b).  Vasculature supplying the 

anterior of the embryo beyond the aorta may exist but the primary pathway utilized is the single 

anteriorly extending aorta.  It appears that valve control is weak in the anterior aorta having 

observed masses suspended within the hemolymph (most likely particles from yolk breakdown) 

exit incompletely through this route during contraction and returning back through upon 

relaxation of the ventricle.  The posterior aorta runs superficially on the abdominal segment and, 

like the anterior aorta, can be seen to lack tight control of valvular function as re-entry of 

suspended masses within the hemolymph occur often upon  relaxation of the heart. At this stage, 

a pair of bilateral ostia can be seen from the dorsal surface of the heart.  Coordination of ostial 

closure is more organized at this stage, most likely because they act in affect of stronger 

contractions not independently regulated.  And yet, there are masses suspended within the 

hemolymph that travel back and forth through the ostia during contraction and relaxation as seen 

in the aortic vessels.  Additional ostial pairs may exist and either cannot be seen because of a 

possible ventral location that is obscured by the animal folding and/or because they do not open 

or close during contraction and relaxation.  Visualization of these structures in live embryos 

depends heavily upon their differential movement during the cardiac cycle.  
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Figure 3:  Illustrations of the dorsal view of the ventricle during embryonic stages of 

Palaemonetes pugio, Holthius, 1949: Dimensional arrangement of the ventricle for analysis; the 

Y-axis runs the length of the long axis of the egg, (a.) Dorsal and lateral positions of the heart in 

reference to the embryonic shrimp, (b.) Morphological development of the ventricle during stages 

of embryonic development.  Functional ostial pairs can be seen developing through the stages.  

Solid lines signify a structure seen on the dorsal surface of the heart and dashed lines signify a 

structure seen through the heart on the ventral surface. 

 

In stage VIIa, contraction has become more regular and is synchronous between the 

lateral edges of the ventricle (Fig. 3c).  In addition to the dorsally located pair of ostia seen in the 

previous stage, a new pair of ostia can be seen operating posteriorly on the lateral edges of the 

ventricle. These ostia appear shorter and function over a smaller area on the surface of the 

ventricle.   
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When embryonic development has reached stage VIIb, cardiac contractions continue to 

become more organized and ostial function easier to discern (Fig. 3c).  A functional third pair of 

ostia on the ventral surface can be seen through the translucent ventricle. 

 At stage VIII of development, the heart is coordinated and contraction is rhythmic with 

the ventricle expanding to the boundary of the pericardial sac (Fig. 3c).  While no notable 

changes can be seen to have occurred between stages VIIb and VIII of development, structures 

surrounding the heart are more defined such as the hepatopancreas.  During contraction, a definite 

pulling can be seen on the pericardial sac even though no suspensory ligaments can be seen to 

connect to the ventricle. 

 

 

 
 

Figure 4:  Images of the dorsally positioned ventricle in embryonic stages of development in  

Palaemonetes pugio, Holthius, 1949: (a.) stage VIb, (b.) stage VIIa, (c.) stage VIIb, (d.) stage 

VIII.  The ventricle is seen outlined as an ellipsoid. Images shown are pictured to individual scale 

bars. 
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DISCUSSION 

Embryonic development of P. pugio 

In establishing a developmental staging scheme, it is important to have consensus with 

other ontogenetic patterns outlined in previous studies produced for closely related species.  

While staging nomenclature varies somewhat among related species, comparable descriptive 

analyses of embryonic development exist (for Macrobrachium acanthurus, see Müller et al., 

2007, and Palaemonetes argentinus, see Nazari et al., 2000) and were used to establish an 

embryonic staging scheme for P. pugio.  A comparative characterization of embryonic 

development was made for Macrobrachium olfersi, Macrobrachium potiuna, Palamon 

pandaliformis and Palaemonetes argentinus (Müller et al., 2004).  Anger et al., (2002) made a 

comparative analysis of egg composition and size in species of Palaemonidae, Atyidae, and 

Pandalidae.  Additionally, embryonic developmental patterns outlined in other studies using P. 

pugio were reviewed and key developmental landmarks were incorporated to establish a more 

consistent staging scheme (Tyler-Schroeder, 1978; Tyler-Schroeder, 1979).  There are many 

similarities in decapod development that are made evident in these studies including the 

morphological progression of development from dividing cells through organogenesis to an 

embryonized animal form termed the nauplius.  However, there are species specific differences 

such as developmental rates and egg size.  The development of the grass shrimp can be 

morphologically described in reference to existing studies along with direct comparisons of the 

timing of progression of crucial embryonic events. 

Embryonic development of P. pugio begins with external fertilization, stage I, as the 

female deposits the eggs onto her pleopods.   The eggs are centrolecithal showing a pattern of 

modified spiral cleavage, like that of most decapod crustaceans (Anderson, 1973; Gore, 1985).  

Subsequent divisions of blastomeres at stage II show clearly defined cleavage furrows yet, like 

that found in Müller et al.,(2004), dissection and removal of the chorion showed what has been 
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described as a holoblastic cleavage pattern with blastomeres incompletely divided from the yolk 

mass.  

In stage III, once differentiation of blastomeres at one pole of the egg has formed the 

germinal disc, a thickening followed by an invagination occurs contributing to the blastopore and 

later, the V-depression (Müller et al., 2003; Nazari et al., 2000). The cells that migrate through 

the blastoporal area will constitute the early germ layers and it is at this stage in most 

Palaemonids that an intense organization of the embryonized nauplius begins (Hartnoll, 1982; 

Müller et al., 2004). This terminates the stages of development that contribute to pre-naupliar 

development; the period of cleavage and gastrulation.   Pre-naupliar development has been shown 

to vary moderately in lengths of time for related Palaemonid species with P. argentinus lasting 

approximately 1 day and P. pandaliformis lasting between 2 and 3 days (Müller et al., 2004).  We 

report here that P. pugio pre-naupliar development lasts for 3 days (Table 1). 

The formation and duration of the embryonized nauplius begins at stage IV as the early 

nauplius and lasts until stage V, the mid-nauplius.  Naupliar development has little variation in 

time among palaemonid species with P. argentinus and P. pandaliformis both lasting 

approximately 1 day (Müller et al., 2004).  Our results follow this trend with the embryonized 

nauplius in P. pugio lasting 1 day (Table 1).  The mid-nauplius, stage V, proceeds with the 

addition of abdominal segments initiating the group of stages contributing to post-naupliar 

development, stages VIa-VIII.  Yolk reserves decrease as the lipid and protein content are 

metabolized into embryonic structures and the embryo develops from a simpler form, to a more 

complex post nauplius, stage VI.  At the termination of this stage, the embryonic heart begins 

contracting, suggesting the need to initiate internal convective processes and the advent of cardiac 

regulatory capabilities.   

Duration of post-naupliar development last until eclosion and varies most among 

palaemonid species compared to the pre-naupliar and naupliar stages.  Post-naupliar development 

was reported to last between 10 and 21 days in related species by Müller et al., (2004) and lasted 
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7 days here for P. pugio until eclosion (Table 1).  Stages VII and VIII show an increase in motor 

activity of post-naupliar appendages along with coordination of scaphagnathite beating and active 

vitellophage function of the rudimentary hepatopancreas.  After embryonic development is 

complete, the embryo reaches eclosion and hatches out into the zoeal form.   

There is a positive linear growth of the eggs during this period of development (Fig. 5a).  

Growth of the long axis (X axis) increased with a slope of 0.023 while growth of the short axis (Z 

axis) increased at a slope of 0.014.  Volume increases similarly, growing at a slope of 0.065 

during development (Fig. 5b).  Egg sizes and development times are consistent with a common 

trend that appears in decapod crustaceans where smaller eggs have a shorter embryonic period 

than that off larger eggs.  This has been described by Müller et al., (2004) where small eggs of in 

M. olfersi and P. argentinus have duration of development lasts 14 days and 12 days respectively.  

Yet with larger eggs, duration of embryonic development in M. potiuna was 21 days.  Our data 

further suggest the importance of egg size on duration of development, where eggs with a larger 

yolk supply have the ability to retain developmental processes during the embryonic period 

before hatching out.  The adaptive significance of a longer embryonic period should supply the 

developing embryo with nutrients and time to develop more complex structures and better fit for 

environmental conditions. 
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Figure 5:  Linear measurements and volume of Palaemonetes pugio, Holthius, 1949, embryos: 

(a.) Linear growth over time in development with circles and squares representing the long and 

short axes respectively, and (b.) volume over time in development in calculated from linear 

measurements.  Error bars are the standard error of the mean. 

  

 

Cardiac development of P. pugio 

Cardiac development of P. pugio was consistent with that seen in the adult grass shrimp 

(Guadagnoli et al., 2007).  In stage VIb of embryonic development, when cardiac contractions are 

initiated, the bilaterally located ostial valve pair can be equated to the adult dorsal ostial valves.  

The heart is more rounded in the embryo than the adult thus using an ellipsoid rather than a 

trapezoid best describes the ventricle.   

 The second pair of functional ostial valves seen in stage VIIa of embryonic development 

can be equated to the lateral ostial valves described in the adult (Guadagnoli et al., 2007).  This 
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set of ostial valves most likely did not form during this stage of development as ostial formation 

is inscribed at each segment of the dorsal heart tube in development (Wilkens, 1999), but rather 

began to function at this time.  The same is seen for the third pair of ostial valves.  Seen to 

function first in stage VIIb, these valves correspond to the ventral ostial valves described in the 

adult arrangement (Guadagnoli et al., 2007).   

 At stage VIII the heart has developed more tapered lateral edges and now resemble a 

trapezoidal as seen in the adult but due to the curvature of the animal within the egg, the heart is 

still best modeled as an ellipsoid.  During development, primary vasculature includes the dorsal 

aorta that extends anteriorly and posteriorly from the ventricle. These are best described as the 

anterior aorta and posterior aorta in conjunction with terminology of the adult (Guadagnoli et al., 

2007).  Secondary vasculature is not detected, not necessarily because of the lack of formation 

but likely rather the lack of utilization during the embryonic period of the animal.  At stage VIII, 

the anterior aspect of the ventricle appeared heavily rooted into the newly formed hepatopancreas 

suggesting existence of secondary vasculature.  Further investigations using alternative imaging 

techniques may elucidate the details of these vessels. 

 A more comprehensive embryonic staging scheme for the grass shrimp along with a 

description of cardiac development is crucial for ecological, environmental, toxicological and 

physiological investigations using this important species.  The literature is filled with studies 

using Palaemonid shrimp as models for an array of investigations where embryonic development 

is characterized by loosely defined terms or simple egg dimensions under a variety of laboratory 

conditions.  Without a standardized embryonic developmental staging scheme, ontogenetically 

based events may be overseen, inaccurately characterized or even over stated.  This description of 

development and corresponding cardiac maturation in embryonic P. pugio is crucial for studies 

using similar crustaceans.  Whether used for studies of environmental interactions on morphology 

and developmental processes or broad scale evolutionary patterns of development, a standardized 

staging scheme based on define characteristics is necessary for a basis of comparison. 



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

LITERATURE CITED 

Alon N., Stancyk N. (1982) Variation in life-history patterns of the grass shrimp Palaemonetes 

pugio in two South Carolina estuarine systems. Marine Biology 68:265-276. 

Anderson D.T. (1973) Crustaceans, Embryology and phylogeny in annelids and arthropods, 

Pergamon Press, Oxford. pp. 263-364. 

Anderson G. (1985) Species Profiles. Life Histories and Environmental Requirements of Coastal 

Fishes and Invertebrates (Gulf of Mexico). Grass Shrimp, U.S. Fish and Wildlife Services 

Biological Reports, U.S. Army Corps of Engineers. pp. 1-19. 

Anger K., Moreira G., Ismael D. (2002) Comparative size, biomass, elemental composition (C, N, 

H), and energy concentration of caridean shrimp eggs. Invertebrate reproduction & 

development 42:83-93. 

Bauer R., Abdalla J. (2000) Patterns of brood production in the grass shrimp Palaemonetes pugio 

(Decapoda: Caridea). Invertebrate Reproduction and Development 38:107-114. 

Broad A. (1957) Larval development of Palaemonetes pugio Holthuis. Biological Bulletin 

112:144-161. 

Carlson B.M. (2003) Developmental mechanisms: animal, in: B. Hall and W. Olson (Eds.), 

Keywords and concepts in evolutionary developmental biology, Harvard University 

Press, Cambridge. pp. 74-82. 

Cházaro-Olvera S. (2009) Growth, Mortality, and Fecundity of Palaemonetes pugio from a 

Lagoon System Inlet in the Southwestern Gulf of Mexico. Journal of Crustacean Biology 

29:201-207. 

Glas P., Courtney L., Rayburn J., Fisher W. (1997) Embryonic coat of the grass shrimp 

Palaemonetes pugio. The Biological Bulletin 192:231-242. 

Gore R.H. (1985) Molting and growth in decapod larvae, in: A. M. Wenner (Ed.), Larval growth, 

A. A. Balkema, Boston. pp. 1-65. 

Guadagnoli J., Tobita K., Reiber C. (2007) Assessment of the pressure-volume relationship of the 

single ventricle of the grass shrimp, Palaemonetes pugio. The Journal of experimental 

biology 210:2192-2198. 

Hartnoll R.G. (1982) Embryology, morphology, and genetics, in: L. Abele (Ed.), The Biology of 

the Crustacea Academic Press, New York. pp. 111–196. 

Holthuis L.B. (1949) Note on the species of Palaemonetes (Crustacea Decapoda) found in the 

United States of America. Proceedings of the Section of Sciences 52:87-95. 

Ituarte R., Spivak E., Anger K. (2005) Effects of salinity on embryonic development of 

Palaemonetes argentinus (Crustacea: Decapoda: Palaemonidae) cultured in vitro. 

Invertebrate reproduction & development 47:213–223. 



36 

 

Müller Y., Nazari E., Simões-Costa M. (2003) Embryonic stages of the freshwater prawn 

Macrobrachium olfersi (Decapoda, Palaemonidae). Journal of Crustacean Biology 

23:869-875. 

Müller Y., Ammar D., Nazari E. (2004) Embryonic development of four species of palaemonid 

prawns (Crustacea, Decapoda): pre-naupliar, naupliar and post-naupliar periods. Revista 

Brasileira de Zoologia 21:27-32. 

Müller Y., Pacheco C., Simões-Costa M., Ammar D., Nazari E. (2007) Morphology and 

chronology of embryonic development in Macrobrachium acanthurus (Crustacea, 

Decapoda). Invertebrate reproduction & development 50:67-74. 

Nazari E., Müller Y., Ammar D. (2000) Embryonic Development of Palaemonetes argentinus 

Nobili, 1901 (Decapoda, Palaemonidae), Reared in the Laboratory. Crustaceana 73:143-

152. 

Rayburn J., Fisher W. (1997) Developmental toxicity of three carrier solvents using embryos of 

the grass shrimp, Palaemonetes pugio. Archives of environmental contamination and 

toxicology 33:217-221. 

Rayburn J.R., Fisher W.S. (1999) Developmental toxicity of copper chloride, methylene chloride, 

and 6-aminonicotinamide to embryos of the grass shrimp, Palaemonetes pugio. 

Environmental toxicology and chemistry 18:950-957. 

Rayburn J.R., Glas P.S., Foss S.S., Fisher W.S. (1996) Characterization of grass shrimp 

(Palaemonetes pugio) embryo toxicity tests using the water soluble fraction of number 2 

fuel oil. Marine Pollution Bulletin 32:860-866. 

Reiber C.L. (1997) Ontogeny of cardiac and ventilatory function in the crayfish Procambarus 

clarkii. American Zoologist 37:82-91. 

Spicer J.I. (2001) Development of cardiac function in crustaceans: Patterns and processes. 

American Zoologist 41:1068-1077. 

Spicer J.I., Morritt D. (1996) Ontogenic changes in cardiac function in crustaceans. Comparative 

Biochemistry and Physiology Part A: Physiology 114:81-89. 

Thorp J., Hoss D. (1975) Effects of salinity and cyclic temperature on survival of two sympatric 

species of grass shrimp (Palaemonetes), and their relationship to natural distributions. 

Journal of Experimental Marine Biology and Ecology 18:19-28. 

Tyler-Schroeder D. (1978) Culture of the grass shrimp (Palaemonetes pugio) in the laboratory. 

Bioassay Procedures for the Ocean Disposal Permit Program:69-72. 

Tyler-Schroeder D.B. (1979) Use of the grass shrimp (Palaemonetes pugio) in a life-cycle 

toxicity test, in: L. L. Marking and R. A. Kimerle (Eds.), Aquatic Toxicilogy, ASTM STP 

667, American Society for Testing and Materials. pp. 159-170. 

Welsh B. (1975) The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosystem. 

Ecology 56:513-530. 



37 

 

Wilkens J. (1999) The control of cardiac rhythmicity and of blood distribution in crustaceans. 

Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 

124:531-538. 

Wood C.E. (1967) Physioecology of the grass shrimp, Palaemonetes pugio, in the Galveston Bay 

estuarine system. Contributions to Marine Science 12:54-79. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

CHAPTER 3 

 

ONTOGENY OF CARDIAC FUNCTION IN THE GRASS SHRIMP Palaemonetes pugio 

 

ABSTRACT 

The cardiovascular system is the earliest system to become functional during 

development in an organism.  As an animal continues to develop, the anatomy and physiology of 

the heart must also grow and mature to maintain proper physiological function.  The ontogeny of 

cardiac physiology was investigated in the embryonic stages of the grass shrimp, Palaemonetes 

pugio, with specific regard to functional and anatomical development of the heart and growth of 

the embryo (dimensional growth, water content and metabolizing mass).  The grass shrimp heart 

begins to contract at embryonic stage VIb, when incubated at 25˚C and 30-32 ppt salinity. The 

initiation of cardiac activity occurs just after an observed plateau in embryonic growth in terms of 

mass, surface area, egg volume and surface area-to-volume ratio.  Once the heart begins to beat, 

these growth parameters resume their previous trajectories, which are followed by an increase in 

cardiac stroke volume (Vs) and heart rate (ƒH).  The product of both cardiac variables (ƒH and Vs) 

results in an increase in cardiac output (Vb) as embryonic development continues.  It is 

hypothesized that during embryonic development, initiation of contraction occurs when the 

embryo outgrows the diffusive capabilities of chorion, driving the need for internal convective 

processes to maintain metabolic homeostasis and allowing the embryo to continue to grow.  

Furthermore, the independent modulation of ƒH and Vs with embryonic development is of interest 

as it appears these two cardiac parameters mature differentially.   
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INTRODUCTION 

The grass shrimp is a model organism for the investigation of physiological responses to 

environmental change for a variety of reasons but of increasing significance is this organism’s 

evolutionary history and ability to survive and thrive in highly variable environments including 

estuarine ecosystems.  The relationship between organismal adaptation and its environment can 

be studied by examining the ontogeny of physiological processes in early life stages as this time 

period can be most sensitive to environmental disturbance and thus selection.  The cardiovascular 

system is one of the first physiological systems to become functional during embryonic 

development and continues to mature and develop as the animal is exposed to continued 

ontogenetic change and environmental demands.  Crustacean morphological developmental 

patterns are highly variable and so are their cardiovascular developmental strategies, which may 

explain not only the ability of this taxon to exploit a wide range of niches but also meet the 

challenges of variable and stressful environments (McMahon et al., 1997; Spicer, 2001; Wilkens, 

1999). 

Adult and larval crustacean cardiovascular development has been investigated with a 

focus on furthering our understanding of regulatory patterns and environmental influences 

(McMahon et al., 1997; Reiber and Harper, 2001; Spicer, 2001; Spicer and Morritt, 1996).  

However, it is apparent that the effect of stresses imposed during embryonic development are 

highly significant and must be assessed to gain an understanding of how the cardiovascular 

system of this important species responds, compensates and adapts.  Grass shrimp are a key 

component to estuarine ecosystems and have been show to tolerate large temperature fluctuations, 

a range of oxygen concentrations and salinity variations (Welsh 1975).  The ecological 

significance of this species has been extensively examined as has the impact of environmental 

toxins on this cornerstone of the food web (Harper-Arabie 2004).   The ontogenetic sequence of 

cardiac function should be linked to embryonic growth through the establishment of internal 
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convective processes to meet increasing metabolic demands.  The onset and timing of cardiac 

functions will be correlated with growth parameters to test this hypothesis.  Additionally, based 

on our understanding of the importance of the embryonic period of development and the 

significance of this key indicator species, an investigation into the cardiovascular physiology, 

growth and development will establish an important base-line on which future studies can be 

launched.  

In the range of diverse developmental patterns within decapods, P. pugio are described as 

exhibiting regular development.  This is a relative term to describe the ontogeny of the individual 

group when compared to other closely related decapods, i.e. genera or family.  Regular 

development is defined as the numerically predominant type of ontogenetic growth and 

developmental staging that consistently recurs in a particular decapod group” (Broad, 1957; 

Rabalais and Gore, 1985).  This process can be compared to those patterns seen in what is termed 

“irregular development” (including a continuum between abbreviated and direct development to 

opposing extended development) (Gore, 1985; Rabalais and Gore, 1985; Reiber and Harper, 

2001).  Regular development of P pugio includes an embryonic developmental period which 

upon eclosion, is followed by a postnaupliar form, the freely swimming zoea.  An embryonized 

nauplius implies that the development of many physiological processes occur prior to eclosion 

and full exposure to environmental variability.  A longer embryonic period that is followed by 

multiple anamorphic larval stages can be advantageous to the survival of the animal because the 

embryo which resides within the chorion maybe buffered from environmental changes (Reiber 

and Harper, 2001).  

Much of our understanding of crustacean cardiovascular function during development is 

based on larval studies and the systems treated as adults scaled down to size in terms of 

physiology, growth and compensatory responses (Spicer and Morritt, 1996; Wilkens, 1999).  In 

many crustacean studies, the initiation of cardiac function occurs during the embryonic period 
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prior to eclosion (Harper and Reiber, 2004; Reiber, 1997; Spicer, 2001; Spicer and Morritt, 

1996).  It is believed that the initiation of heart function is linked to the need to facilitate internal 

convective process as simple diffusion across the chorion can no longer maintain an appropriate 

level of gas and nutrient exchange required to meet the embryos demands (Harper and Reiber, 

2004; McMahon, 2001; McMahon et al., 1997; Reiber, 1997; Reiber and Harper, 2001; Spicer 

and Morritt, 1996).  In this study we test the hypothesis that the onset of internal convective 

processes (cardiac contractions) occur at a  point in development when growth plateaus as the 

embryo can no longer meet oxygen demands through simple diffusion across the chorion and that 

this key event then correlates with continued growth.  Additionally, fundamental cardiac 

parameters will be assessed over the embryonic period (such as heart rate, ƒH; stroke volume, Vs; 

and cardiac output, Vb) to determine how internal convective processes meet metabolic demands 

and if they appear to be regulated. 

 

METHODS AND MATERIALS 

Shrimp Culture 

Grass shrimp, Palaemonetes pugio, were purchased from Gulf Specimen Marine 

Laboratories, Inc. (Panacea, FL, USA) and maintained in aerated aquaria with artificial seawater 

(30-32 ppt) at room temperature with consistent light: dark cycles (20-25˚C; 12L:12D).  Embryos 

from ovigerous, adult female shrimp were harvested and transferred to small nursery chambers 

(100 mL glass containers).  Each chamber was supplied with oxygen and maintained in an 

incubator under control temperature and photoperiod (20.0˚ C; 12L: 12D) in artificial seawater 

(30-32 ppt).   

 



42 

 

Egg Morphology and Mass 

 Eggs of the grass shrimp were measured along the long and short axes of the ellipsoidal 

egg chronologically through previously described embryonic stages (Romney and Reiber 

submitted to Crustaceana, 2011).  Linear measurements were made using an ocular micrometer 

on a Zeiss light microscope at a magnification of 6X.  Measurements of the ellipsoidal egg 

include the length from rostrum to abdominal flexure as the long axis, and the perpendicular 

width as the short axis.  The dorso-ventral and lateral spanning short axes of the egg were not 

differentiated due to the occurrence of equal distance in measurements.  The axes were further 

used to calculate surface area as modeled as an ellipsoid as follows: 

        
              

 
 

 
  

 

Where the variable ɭ is the long axis radius and s is the short axis radius of the egg.  The value P 

is the least relative error accounts for by symmetrical approximation known as the Thomsen’s 

variable (Klamkin, 1971; Klamkin, 1976). The volume of the egg was calculated for an ellipsoid 

as follows: 

     
             

Where again, the variable ɭ is the length of the egg as the long axis and s is the width of the egg as 

the short axis (as described previously).  Eggs were also weighed on an electron microbalance 

(0.0001 mg accuracy) (Cahn 21 automatic electrobalance, Cahn Instruments Div., Ventron Corp., 

Cerritos, CA, USA) before and after complete water dissection to account for egg mass with and 

without the water component.  
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 Ventricular volumes and cardiac parameters 

Cardiovascular development and physiological parameters including end diastolic 

volume (EDV), end systolic volume (ESV), ejection fraction (EF), heart rate (ƒH), stroke volume 

(Vs) and cardiac output (Vb) were investigated for the embryonic shrimp. 

Ventricular volumes including EDV and ESV were measured throughout development 

using a modified form of the non-invasive videomicroscopic and dimensional analysis techniques 

adapted from Guadagnoli et al, (2007).  Using a stereo-microscope (Leica MZ12.5; McBain 

Instruments, Chatsworth, CA USA) equipped with a high speed camera (Phantom v5.1; Vision 

Research, Inc., Wayne New Jersey USA), recordings of cardiac contractions were made through 

the dorsal aspect of the shrimp.  The heart was positioned posteriorly in the cephalothoracic 

region and imaged.  Cardiac Vs was determined by advancing the images frame-by-frame until the 

heart reaches its maximal dimension (EDV) and then to its minimal dimension (ESV).  The 

images were captured using a computer based video frame grabber and digitizing program, 

ImageJ (National Institutes of Health).  The dimensions of the dorsal heart image were then 

measured and used in a geometric equation to calculate cardiac volumes based on the shape of the 

heart, (ellipsoid).  From these volumes, EF and Vs were determined for each of the stages of 

development that were characteristic of cardiac activity. 

           

   
  

   
      

Embryonic ƒH, was determined by counting the number of contractions over a 30 second 

time intervals and reported as beats per minute.  Video recordings were through a Zeiss light 

microscope with a CCD mounted video camera (World Precision Instruments).  A value for mean 
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ƒH was determined for each of the embryonic stages after the onset of cardiac activity (stages VIb, 

VIIa, VIIb, and VIII). 

Embryonic Vs was measured independently from ƒH due to the need for higher quality 

imaging, faster sampling rates and greater magnification requirements.  Mean Vb was calculated 

as the product of the mean Vs and mean rate of contraction (beats per minute) for each stage of 

development. 

         

 

 

Statistical Analysis 

Means and standard deviations were calculated for each developmental stage (n=11) for 

data on long and short axes, wet weight, dry weight, water mass, surface area, volume, surface 

area-to-volume ratio, heart rate, stroke volume, ejection fraction, end diastolic volume, and end 

systolic volume. The overall effects of development on the various dependent variables were 

studied using one way analysis of variances (SAS, ver. 9.1).  A Bonferroni t-test was used for 

pairwise multiple comparisons where a significance of P  0.05 was found.  Kruskal-Wallis test, 

a nonparametric analysis of variance method based on ranks was used for data that are not 

normally distributed where a significance of P  0.05 was found.   
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RESULTS 

Egg Morphology and Mass 

Shrimp were collected at all embryonic stages (I-VIII) for linear measurements of the 

ellipsoidal egg (n ≥ 40 per stage).  Through development, embryos matured with a change in egg 

size along the long and short axis of the egg (Fig. 1).  The long axis of the egg varied significantly 

with development (P  0.01, F = 538.41).  The long axis at stage I was 0.69 mm (±0.04) and then 

decreased significantly to stage II at 0.65 mm (± 0.02; P ≤ 0.05).  The long axis then remained 

relatively unchanged until 0.73 mm (±0.02) at stage VIb.  There were significant increases in 

length thereafter until eclosion at stages VIb, VIIa, VIIb and VIII (P ≤ 0.05 for each stage).  The 

short axis of the embryo also varied significantly with development (P ≤ 0.01).  The short axis at 

stage I was 0.51 mm (±0.02) and then significantly decreased to 0.48 mm (±0.01; P ≤ 0.05).  The 

short axis then remained relatively unchanged until significantly increasing at stages IV with 0.53 

mm (±0.01) and stage V with 0.54 mm (0.02; P ≤ 0.05 for both stages).  Prior to eclosion, stages 

VIIb and VIII also significantly increased to 0.60 mm (±0.01) and 0.63 mm (±0.02; P ≤ 0.05 for 

both stages).  Specifically at the initiation point of contraction at stage VIb, the long axis of the 

embryo was 0.77 mm (±0.003) and the short axis was 0.58 (±0.004).   
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Figure 1:  Linear measurements of Palaemonetes pugio embryos throughout development.  The 

egg is modeled as an ellipsoid; open circles indicate the long axis of the egg and open squares 

indicate the short axis.  * indicates significant differences from the previous level of P ≤ 0.05.  

The grey bar represents the time during development when cardiac contractions are initiated.  

Values are shown as means ± the standard error, n ≥ 30 at each stage. 

 

Animals in groups of 5 were weighed and normalized for the mean mass per individual; 8 

groups were analyzed for each embryonic stage (n ≥ 6 per stage).  The whole egg mass, 

characterized as water mass plus embryonic metabolizing tissue within the egg, is reported for 

each embryonic stage (Fig. 2).  Dry mass was determined by subtracting the dry mass from the 

wet mass after complete desiccation of the embryo.  This allowed one to determine embryonic 

water content throughout development.   Whole egg mass varied significantly throughout 

development (P ≤ 0.01).  Mean values increased from 0.106 mg (± 0.006) at stage I to 0.241 mg 
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(± 0.02) at stage VIII.  Interestingly, the mass of the embryo went down from 0.186 mg (± 0.03) 

at stage VIa, when no cardiac activity is observed, to 0.168 mg (±0.008) at VIb when cardiac 

contractions begin.  At stage VIIa after the heart began to contract, total egg mass increased again 

to 0.185 mg (±0.006).    Embryonic water content with development is shown in figure 2 and also 

varied significantly with development (P ≤ 0.01).  Between stages I to VIII, the embryonic water 

content increased from 0.041 mg (±0.006) composing 39% of the eggs mass at stage I to 0.18 mg 

(±0.018) composing 75% of the eggs mass at stage VIII.  The remaining tissue after complete 

desiccation of the egg is also plotted against embryonic stages (Fig. 2) and varied significantly 

with development (P ≤ 0.01).  This mass can be referred to as the metabolizing tissue of the 

embryo as it is compiled from the remainder of yolk and metabolically active tissue after removal 

of water.  Throughout development, the metabolizing mass of the whole egg ranged from 0.057 

mg to 0.087 mg.  Normalizing this relative to the whole egg mass, the metabolizing tissue 

accounted for 61% of the embryo at stage I and decreased to 24% at stage VIII. 
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Figure 2:  Whole egg mass, water composition and metabolizing mass within the chorion (mg) of 

Palaemonetes pugio.  * indicates significant differences from the previous level of P ≤ 0.05 of 

implied data point of respective symbol (see legend).  The grey bar represents the time during 

development when cardiac contractions are initiated.  Values are shown as means ± the standard 

error, n ≥ 6 at each stage. 

 

Linear measurements of the long and short axes of the egg allowed the calculation of 

surface area and volume for each individual animal (n ≤ 30).  Throughout development, surface 

area and volume significantly increased (Figs. 3a and b; P ≤ 0.01).  The mean surface area for 

embryonic shrimp at stage I was 1.023 mm
2
 (±0.045) and increased to 1.615 mm

2
 (±0.057) at 

stage VIII.  The egg volume at stage I was 0.095 mm
3
 (±0.006) and 0.187 mm

3
 (±0.011) at stage 

VIII.  The rate of increase for the egg surface area is much larger than the rate of increase for the 

volume of the egg: the mean slopes of the lines are 0.065 mm
2
 and 0.01 mm

3
 per developmental 
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stage, respectively.  The surface area-to-volume ratio significantly decreased overall with 

development (Fig. 3c; P ≤ 0.01).  The surface area-to-volume ratio was 10.8 at stage I, and was 

followed by a significant increase to 11.6 at stage II (P ≤ 0.05).  After stage VIb, the ratio 

significantly decreased at stages VIIa, VIIb, and further to 8.6 at stage VIII (P ≤ 0.05).  The slope 

of the line for the surface area-to-volume ratio over developmental time is -0.26.   
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Figure 3:  Surface area, volume, and the surface area-to-volume ratio calculated from linear 

measurements of the embryonic egg (Palaemonetes pugio).  * indicates significant differences 

from the previous level of P ≤ 0.05.  The grey bar represents the time during development when 

cardiac contractions are initiated.  Values are shown as means ± the standard error, n ≥ 30 at each 

stage. 
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Ventricular volumes and cardiac parameters 

Cardiac contractions consistently began in the embryonic grass shrimp by stage VIb of 

development which was consistent with previous work (Romney and Reiber submitted to 

Crustaceana, 2011) and are reported as volumes (nL/beat) and beats per minute (bpm) for each 

stage of embryonic development (Figs. 4 and 5).   

Ventricular volumes, EDV and ESV, of the embryonic heart increased significantly with 

development (Fig. 4a; P ≤ 0.01, F = 81.08 and 71.03, respectively).  Upon the initiation of cardiac 

contractions at stage VIb, ventricular EDV was 0.100 nL/beat (± 0.01).  At stage VIIa, EDV 

significantly increased to 0.282 nL/beat (± 0.03; P ≤ 0.05).  Ventricular EDV remained at a 

constant level until stage VIII when it significantly increased to 0.333 nL/beat (0.03; P ≤ 0.05).  

ESV followed a similar pattern and significantly increased from stage VIb at 0.055 nL/beat (± 

0.01) to 0.164 nL/beat (± 0.02; P ≤ 0.05) at stage VIIa.  In addition, ESVs stayed relatively 

constant until stage VIII when there was a significant increase to 0.199 nL/beat (± 0.02; P ≤ 

0.05).   

Embryonic ventricular EFs were calculated for each stage of cardiac activity (Fig. 4b) 

and showed no significant change throughout development.  Mean values remained between 45 to 

40% of total volume from the initiation of cardiac contraction until eclosion. 
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Figure 4:  Ventricular volumes during the cardiac cycle of Palaemonetes pugio, during embryonic 

development.  Error bars indicate the standard errors of the mean.  * indicates significant 

differences from the previous level of P ≤ 0.05.  The grey bar represents the time during 

development when cardiac contractions are initiated.  Values are shown as means ± the standard 

error, n = 6 at each stage. 

 

Embryonic ƒH and Vs increased significantly with development (Figs. 5a and b; P ≤ 0.01).  

At the onset of cardiac contractions, ƒH was irregular with short bursts of activity interspersed 

with periods of cardiac arrest.  Therefore, ƒH was determined by averaging over 30 second time 

periods.  Initially at stage VIb, mean ƒH was 45 bpm (±7.5) and stayed relatively constant to 

through to stage VIIa with 69 bpm (±12.0).  At stage VIIb, ƒH significantly increased to 177 bpm 

(±22.5; P ≤ 0.05) and continued to onto stage VIII at 202 bpm (±33.9). 
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Embryonic mean Vs determined by the difference between EDV and ESV was reported 

for each embryonic stage (Fig. 4b).  At stage VIb, the mean Vs per contraction was 0.045 nL/beat 

(±0.003) and was followed by a significant increase to 0.118 nL/beat (± 0.01; P ≤ 0.05) at stage 

VIIa.  At stage VIIb, Vs remained at constant levels with 0.120 nL/beat (± 0.01) and 0.135 

nL/beat (± 0.02) at stage VIII. 

Mean Vb was calculated by multiplying ƒH (bpm) by Vs (nL/beat) for each of the four 

stages where cardiac activity was observed (Fig. 5c).  Cardiac output increased from 2.0 at stage 

VIb to increasing to 27.2 at stage VIII. 
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Figure 5:  Ontogeny of heart rate, stroke volume, and cardiac output of embryonic Palaemonetes 

pugio.  Error bars indicate the standard errors of the mean.  * indicates significant differences 

from the previous level of P ≤ 0.05.  The grey bar represents the time during development when 

cardiac contractions are initiated.  Values are shown as means ± the standard error, n = 6 at each 

stage. 
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DISCUSSION 

Egg Morphology and Mass 

The array of developmental patterns exhibited by decapod crustaceans and their ability to 

live and reproduce in diverse ecosystems makes this taxon useful in exploring ontogenetic 

processes, physiological compensatory mechanisms as well as long-term evolutionary patterns 

(Reiber and Harper, 2001).  Decapod embryos develop externally on the maternal pleopods until 

eclosion and are thus directly exposed to any changes in environmental conditions (Anderson, 

1973; Glas et al., 1997; Rabalais and Gore, 1985).  This fact, results in selective pressures acting 

on these early life stages requiring active compensation but also potentially influencing the 

physiological phenotype of later developmental stages (Harper and Reiber, 2006).   

We find that there is a correlation between observed plateaus (or declines) in embryonic 

growth parameters (including, metabolizing mass, whole egg mass, water content and 

dimensional growth) just prior to the onset of cardiac activity (embryonic state VIb; in all 

figures).  At stage VIb, embryonic cardiac contractions are initiated and facilitate the movement 

of hemolymph within the embryo.  The initiation of internal convective processes in the 

embryonic grass shrimp may play a role in overcoming diffusive gas exchange limitations across 

the chorion and allow the embryo to continue growth and maturation (Burggren and Pinder, 1991; 

Harper and Reiber, 2006; Reiber, 1997).   The surface area (mm
2
) and volume (mm

3
) of the egg 

increase from stage I through stage VIa and then plateau until stage VIIa after which both 

increase (Figs. 3a and b).  The surface area-to-volume ratio, calculated from egg surface area and 

volume, decreases steadily until stage VIa (Fig. 3c).  A similar plateau to that seen in surface area 

and volume measurements is seen between stages VIa and VIb of mean surface area-to-volume 

ratios, after which shows a significant decline.   The pattern discussed above is mirrored in both 

whole egg mass and egg water content between stages I through VIa, after which a plateau or 
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decline is observed (Fig. 2).  Additionally, growth in both the long- and short-axis’ of the egg 

follow a similar pattern with growth plateauing just before the heart starts to beat (Figs. 1). The 

fact that all of the measured growth parameters slow or decline at the same developmental stage 

suggests that there must be a limiting component to the system that must be overcome before 

growth can resume. Diffusive gas exchange limitations could result from disproportional 

increases in internal egg volume as compared to egg surface area.  The surface area of the chorion 

may not be great enough to meet the increasing gas exchange demands of the metabolizing 

embryo, resulting in a diminution in growth.  Once organized cardiac contractions begins, internal 

hemolymph circulation can overcome boundary layers resulting in better internal mixing, bind 

oxygen at the chorion for transport to deeper tissues and circulate nutrients and waste products.  

The result of which is to facilitate continued embryonic growth and maturation.   

A more detailed examination of the surface area-to-volume ratio of grass shrimp embryos 

shows that there are three distinct phases of the growth curve as the embryo moves from state I 

through stage VIII.   Regression analysis across all developmental stages shows that surface area-

to-volume ratio decreases (slope of -0.26).  The first phase includes a rapid increase in the surface 

area-to-volume ratio just post fertilization (stage 1 to stage 2) which is then followed by a steady 

decline through stage VIa with a slope of -0.24 (Fig. 6a).  The second phase is characterized by a 

distinct plateau that spans stage VIa, VIb and VIIa with a slope of -0.09 (Fig. 6b).  The third and 

last phase shows a more rapid and continued decline in the surface-to-volume ratio from stage 

VIIa through eclosion (stage VIII) with a slope of -0.38 (Fig. 6c).  There is a positive allometric 

relationship between embryonic mass and metabolic activity (Burggren and Pinder, 1991).  In 

general, body surface area-to-volume ratio and the diffusion capabilities for cutaneous gas 

exchange decreases with increasing mass (Burggren and Pinder, 1991).  The three distinct phases 

of surface area-to-volume in egg growth throughout development may imply that as the embryo 

grows and surface area-to-volume decreases, the animal reaches a limit where further growth is 
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not possible through diffusive gas exchange across the chorion.  At stages VIa through VIIa, the 

growth of the embryo decreases due to this limitation and until internal convective transport of 

hemolymph is initiated, growth slows.  Once rhythmic and functional cardiac contractions have 

been established, the animal then continues to grow as by all measured parameters (Fig. 5).  By 

introducing internal fluid convection within the egg membrane, the embryo is able to increase 

oxygen uptake from the environment by eliminating external boundary layers and maintaining a 

diffusion gradient (Harper and Reiber, 2006). 

The significance of these correlations is important not only to those interested in 

embryonic growth and physiological ontogeny but also indicates the existence of a critical 

window during development that maybe highly sensitive to environmental disturbance.  As the 

embryo makes the transition from relying solely on diffusion to meet metabolic demands to a 

more complex diffusion-convective system, sensory, physiological and regulatory systems must 

come on-line to meet the demands of the growing embryo.  If the internal or external environment 

changes during this critical window a stress will be imposed on the embryo and a compensatory 

response must be elicited or the embryo maybe compromised.  If the stress is severe enough in 

magnitude or duration the embryo may modify its systems to an extent that adult physiological or 

even anatomical phenotype may become modified (aka developmental plasticity).     
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Figure 6:  Three distinct phases of embryonic development, where surface area-to-volume ratio of 

Palaemonetes pugio, decreases at varying rates.  (a.) Embryonic stages prior to cardiac activity 

with a slope of -0.24.  (b.) Embryonic stages during the initiation of cardiac contractions with a 

slope of -0.09 (plateau phase), (c.)  Embryonic stages after the heart is functional with a slope of -

0.38.  * indicates significant differences from the previous level of P ≤ 0.05.   

 

Ventricular volumes and cardiac parameters 

Cardiovascular function has been studied in the adult shrimp, Palaemonetes pugio to 

further our understanding of cardiac regulatory mechanisms, energetics and environmental stress 

responses (Guadagnoli et al., 2007; Harper and Reiber, 2004).  The grass shrimp is an important 

organism for the study of animal-environment interactions in a particularly stressful and variable 

estuarine habitat.  The grass shrimp is a key component to estuarine ecosystems, and have been 

found to tolerate large ranges in temperature, salinity and dissolved oxygen (Welsh, 1975).  The 

ecological significance of this key indicator species has also been extensively examined through 

environmental toxicology studies with a focus on environmental contaminants (Harper-Arabie et 

al., 2004).   The cardiac responses of embryos in stages that may be sensitive to environmental 

stress have not been examined.   
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The heart of the embryonic grass shrimp, P. pugio, is a single muscular ventricle located 

in posterior end of the thorax.  The heart begins to beat at stage VIb of embryonic development.  

Contractions are arrhythmic and lack coordination between the lateral walls of the ventricle.  

Vasculature supplying the anterior of the embryo beyond the aorta may exist but the primary 

pathway utilized is the single anteriorly extending aorta.  The posterior aorta runs superficially on 

the abdominal segment and, like the anterior aorta, can be seen to lack valvular tight control as re-

entry of suspended masses within the hemolymph occur often upon  relaxation of the heart.  

Hemolymph appears to be circulating as indicated by the movement of these suspended masses, 

which is an indication of a functional cardiovascular system at this stage.  In stage VIIa, 

contraction has become more rhythmic and regular.  Cardiac development through stages VIIb 

and VIII continues to strengthen and it is clear the system is functional. 

The basic pattern of cardiac development of P. pugio is similar to that seen in embryos of 

other decapods although comparable, most exhibit different general patterns of development (i.e. 

direct vs. regular development) (Harper and Reiber, 2004).  At stage VIb, the heart begins to beat, 

after which there is a significant increase in the ƒH and Vs until eclosion at stage VIII.  It is 

common to observe an increase with ƒH throughout development as it has been shown that ƒH 

scales with body mass and both increase as the animal grows (Burggren, 1988; Burggren and 

Pinder, 1991; Harper and Reiber, 2006).  Embryonic Vs, unlike ƒH, show significant change at 

only once throughout stages of development with cardiac activity (VIa).  This has been observed 

in other decapods and could likely be due to decreases in contractility over time that is offset by 

an increase in the dimensional growth of the cardiac chamber. From this data it is clear that Vb is 

dependent on Vs during stages VIb and VIIa.  A transition occurs at stage VIIa where ƒH plays a 

greater role in determining Vb.  This may indicate a regulatory transition as the heart becomes 

more organized anatomically and with increasing metabolic demands of the growing embryo.   
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The timing of physiological events during embryonic development represents a 

relationship between the animal and its environment and the data shown here should be used in 

conjunction with decapods characteristic of alternative developmental trajectories.  The initiation 

of cardiac contractions and internal convection at stage VIa will result in an increase in oxygen 

transport availability to tissues deeper in the developing embryo.  The correlation between the 

observed plateau in all measured growth parameters and the on-set of cardiac activity points 

toward an oxygen limited embryo.  Once internal convective processes are initiated growth 

resumes presumably because the developing embryo can now meet its metabolic demands, 

indicating the importance in the timing of these key physiological events.   
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CHAPTER 4 

 

  

 

CARDIAC RESPONSES TO CHANGES IN ENVIRONMENTAL SALINITY IN EMBRYOS 

OF Palaemonetes Pugio 

 

 

ABSTRACT 

In estuaries along the Atlantic coast of North America, daily and seasonal fluctuations in 

salinity occur frequently.  The adult grass shrimp, Palaemonetes pugio, are abundant in these 

brackish waters and are well adapted as strict osmoregulators.  As embryos, the grass shrimp lack 

osmoregulatory capabilities and yet are exposed to the same fluctuating salinities as adults.  The 

effects of osmotically driven water movements are known to influence cardiovascular function in 

many species.  However, it has not been previously investigated as to whether grass shrimp 

embryos exhibit cardiac compensatory responses to fluctuating environmental salinity.  Such 

responses may serve a role in facilitating appropriate cardiac function and thus deserves 

examination to further our understanding of embryonic cardiac regulatory capabilities.  Here we 

examine the ability of grass shrimp embryos to adjust cardiac parameters in response to 

embryonic water volume changes induced by hypersaline exposure.  Embryos were transferred 

from control conditions (30 ppt) at defined stages of development (VIb, VIIa, VIIb, and VIII) to 

hypersaline water (45 ppt) and to evaluate cardiac compensatory responses.  There was a 

significant decrease in embryonic water content, egg volume, and surface area in embryos after 

transfer to 45 ppt as compared to controls (30 ppt).  Ventricular volumes (end diastolic and end 

systolic volumes) also decreased significantly with exposure and throughout development.  

Furthermore, heart rate and stroke volume showed a significant increase at 45 ppt during the 

embryonic development that may be necessary for maintenance of cardiac output in response to 

water volume loss.   By understanding the homeostatic role of such cardiac responses to 
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environmental stress during embryonic development, we can infer possible mechanisms 

regulatory capabilities.  

 

INTRODUCTION 

 The dynamic effects of salinity on circulatory function have provided the foundation for 

previous reviews on cardiac physiology in decapod crustaceans (Mantel and Farmer, 1983; 

McGaw and McMahon, 1996; Spaargaren, 1973; Spaargaren, 1974; Wheatly, 1988).  Intertidal 

zones and estuaries are characterized by rapid fluctuations in salinity, and therefore the 

inhabitants of these regions are subject to a variety of osmotic stresses.  When decapods are 

exposed to hyposmotic conditions relative to their internal hemolymph, osmotic pressures favor 

the movement of water into the animal and result in internal volume loading.  Alternatively, when 

exposed to hyperosmotic conditions, animals lose water to their environment (Mantel and Farmer, 

1983; Withers, 1992).  In order to tolerate a broad range of salinities, many decapod crustaceans 

regulate their extracellular environment homeostatically to buffer against significant salinity 

fluctuations (Mantel and Farmer, 1983; Wheatly, 1988).   Osmoregulators actively regulate the 

osmotic concentration of their body fluids to maintain internal water composition (Withers, 

1992).  To compensate for passive water and ion movement between their hemolymph and the 

environment, osmoregulating decapods regulate body fluid ion and water composition by 

integument and gill ion pumps, urine excretion from the antennal glands, and modifications in 

cardiovascular performance (Gilles and Pequeux, 1983; Withers, 1992). 

Within the infraorder Caridea, the adult grass shrimp, Palaemonetes pugio, are euryhaline 

osmoregulators, and maintain their hemolymph osmotic concentration between 500 to 650 

mOs/kg H2O in ranges of seawaters between 60 to 925 mOs/kg H2O, respectively (Mantel and 

Farmer, 1983; Roesljadi et al., 1976).    In addition to their osmoregulatory abilities, 
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environmental salinity has an indirect effect on their cardiac function mediated by changes in 

hemolymph volume (McMahon, 1999; Wheatly, 1988).  Hemolymph volume changes resulting 

from osmotically induced water movements have been shown to occur in adult decapod 

crustaceans, but little is known about these effects during embryonic and larval periods.  

Modifications in hemolymph volume might reflexively stimulate changes in heart rate and stroke 

volume that stabilize cardiac function (Burggren et al., 1990; McGaw and McMahon, 1996; 

McGaw and Reiber, 1998; Sabourin, 1984; Spaargaren, 1973; Ungherese et al., 2008).   

Cardiac compensatory responses in crustaceans may result from environmental stresses to 

facilitate adequate oxygen delivery to metabolizing tissues (Bakhmet et al., 2005; DeFur and 

Mangum, 1979).  Specifically, cardiac parameters (e.g. heart rate and stroke volume) can be 

adjusted independently in crustaceans when exposed to stresses such as temperature, salinity and 

hypoxia (McMahon and Wilkens, 1983; Reiber and Harper, 2001; Wilkens, 1999).  The globular 

heart of decapod crustaceans is a single chambered ventricle suspended within a pericardial sinus 

by suspensory ligaments.  Upon systolic contraction of the myocardium, oxygenated hemolymph 

is forced out of the heart through the coordinated opening of ostia into peripheral arterial outlets.  

The hemolymph supplies metabolically active tissues then collects in paired infrabranchial 

sinuses that lead to the gills.  From the gills, re-oxygenated hemolymph moves through the 

branchio-cardiac veins to the pericardial sinus and back into the heart.  The heart then returns to a 

presystolic volume which draws the hemolymph back through multiple pairs of ostia leading into 

the ventricle of the heart aided by both the hemolymph pressure gradient and the rebound of the 

suspensory ligaments (Guadagnoli et al., 2007; Reiber and McGaw, 2009).   

The initiation of cardiac contractions (or cardiac activity) occurs during stage VIb of the 

embryonic developmental period in grass shrimp (Romney and Reiber submitted to Crustaceana 

2011).  At this time, embryos are encased within a chorion and attached to the abdominal 

pleopods of female shrimp.  Embryos are carried externally, and as such they are exposed to 



65 

 

temporal and spatial changes in salinity associated with the intertidal and estuarine habitats yet, 

unlike the adults, palaemonid embryos lack the branchial and excretory organs responsible for 

osmoregulation (Anderson, 1982; Anderson, 1985; Ituarte et al., 2005; Taylor and Seneviratna, 

2005).  We hypothesize that P. pugio embryos exposed to hypersaline water (45 ppt), will 

experience an osmotic water loss.  This will further result in a decrease in venous return to the 

heart and a decrease in ventricular stretch thus impacting stroke volume and ultimately decreasing 

cardiac output and oxygen delivery to the tissues.  To compensate for the reduction in 

hemolymph return to the ventricle, heart rate and stroke volume will increase to maintain the 

cardiac output necessary to sustain aerobic metabolism and growth.  Based on this data we can 

infer embryonic cardiac regulatory capabilities that allow these early stage embryos to 

successfully develop in the face of such fluctuating salinities.   

 

MATERIALS AND METHODS 

Animal culture 

Adult grass shrimp, P. pugio, were purchased from Gulf Specimen Marine Laboratories, 

Inc. (Panacea, FL, USA) and maintained in 40 L aerated aquaria with artificial seawater at room 

temperature with consistent light and dark cycles as control conditions (30-32 ppt; 20-25˚C; 

12L:12D).  Embryos from ovigerous, adult female shrimp were harvested and transferred to small 

nursery chambers (approximately 100 mL glass jars).  Each chamber was supplied with room air 

and maintained in an incubator under the same control conditions (30-32 ppt; 20-25˚C; 12L: 

12D). 
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Experimental Design 

Grass shrimp eggs were transferred from control conditions (30 ppt) to hypersaline (45 

ppt) treatment chambers (also in 100 mL glass jars) to evaluate changes in egg morphometrics 

and cardiac physiology during late embryonic stages of development.  Stages of development 

were previously described by Romney and Reiber (submitted to Crustaceana, 2011).  Stage VIb 

was defined as the point of development where cardiac contractions begin, and stages VIIa, VIIb, 

and VIII were defined by morphological development of the eye: linear pigmentation at VIIa, 

oval pigmentation at VIIb, and the circular eye at VIII.   Egg morphometrics and cardiac 

parameters were measured after a two hour acclimation period (post-transfer time) to hypersaline 

water (45 ppt).  As preliminary data to determine when cardiac parameters were stable, 

intermediate time periods of 10, 30, 60, and 120 minutes were chosen to collect heart rates from 

embryos at each development stage VIb, VIIa, VIIb, and VIII after being transferred from 30 ppt 

to 45 ppt (Fig. 1).  A one way analysis of variance showed no statistical difference in heart rates 

(P ≤ 0.05) at any time period between 10 and 120 minutes (2 hours) for stages VIb, and VIIa, and 

VIIb.  For consistency, all stages of development were determined to have stable cardiac 

parameters between initial transfer time of 10 minutes until 2 hours post-transfer.    To control for 

stress induced by the physical transfer, embryos that were used for analysis under control 

conditions were transferred from 30 ppt to nursery chambers also maintained at 30 ppt and 

allowed to acclimate for 30 minutes prior to data collection.   
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Figure 1:  Embryonic heart rates of Palaemonetes pugio, Holthius, 1949, after being transferred 

from 30 ppt salinity to 45 ppt salinity at time periods 10, 30, 60, and 120 minutes to determine 

when cardiac parameters were stable.  Stages VIb, VIIa, and VIIb showed no significant 

difference in heart rate over the intermediate time periods. 

 

 

Egg morphometrics 

Eggs of the grass shrimp were measured along the short and long axes of the ellipsoidal 

egg chronologically through previously described embryonic stages based on whole egg 

morphology as previously mentioned (Romney and Reiber submitted to Crustaceana, 2011).  

Linear measurements were made using an ocular micrometer on a Zeiss light microscope at a 

magnification of 6X.  Measurements of the ellipsoidal egg included the length from rostrum to 

abdominal flexure as the long axis, and the perpendicular width as the short axis.  Either the 

dorso-ventral or the lateral spanning axes of the egg were used as the short axes due to the 
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occurrence of their equal distances in measurements.  The long and short axes were used to 

calculate surface area modeled as an ellipsoid as follows: 

        
              

 
 

 
  

 

where l is the long axis radius and s is the short axis radius of the egg.  The value P is the least 

relative error accounted for by symmetrical approximation known as the Thomsen’s formula 

(Klamkin, 1971; Klamkin, 1976). The linear axes were also used to calculate the volume of the 

egg modeled as an ellipsoid as follows: 

     
             

where l is the length of the egg as the long axis and s is the width of the egg as the short axis.  

Values of surface area and volume were then further used to determine the surface area-to-

volume ratio.   

 

Embryonic water content 

Grass shrimp eggs that were treated under control (30 ppt, 30 minutes) and experimental 

(45 ppt, two hours) conditions were removed from their chambers and weighed on an electron 

microbalance (0.0001 mg accuracy; Cahn 21 automatic electrobalance, Cahn Instruments Div., 

Ventron Corp., Cerritos, CA, USA) in groups of 5.  Groups of five eggs were measured together 

and averaged for the wet mass of an individual egg.  Following wet mass measurements, eggs 

were immediately transferred to a desiccation oven to evaporate embryonic water (approximately 

24 hours).  After complete desiccation, (as established by sequential measurements of a constant 

mass) each group of five eggs was again weighed in order to calculate the average dry mass per 

individual that corresponds to the metabolizing tissue of the embryo.  
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Ontogeny of Heart Rate, Stroke Volume, and Cardiac Output 

 Embryonic cardiac parameters were measured under both control and experimental 

conditions after a two hour post-transfer acclimation period (20-25˚C; 30 and 45 ppt, 

respectively) at development stages VIa, VIIa, VIIb, and VIII.  Embryos were imaged 

microscopically using a stereo-microscope (Leica MZ12.5; McBain Instruments, Chatsworth, CA 

USA) equipped with a high speed camera (Phantom v5.1; Vision Research, Inc., Wayne New 

Jersey USA).  Recordings of cardiac contractions from the dorsal and lateral aspects of the heart 

through the thoracic region of the animal were captured and analyzed with an image processing 

program, ImageJ (National Institutes of Health).  Ventricular volumes including end diastolic 

(EDV) and end systolic volumes (ESV) were marked on still frames when the ventricle was at its 

most maximal and minimal dimensions, respectively as a modified form of the non-invasive 

video-microscopic and dimensional analysis techniques adapted from Guadagnoli et al, (2007).  

The dimensions of the heart were then used in a geometric equation to calculate cardiac volumes 

based on the shape of the heart, (ellipsoid; same formula as previously used for egg volume) and 

calculated as nanoliters per contraction (nL·beat
-1

).  The maximal dimension or EDV corresponds 

to the volume of hemolymph that enters the ventricle prior to contraction and is referred to as 

preload.  The minimal dimension or ESV is the volume of hemolymph that remains in the 

ventricle after contraction.   The two values, EDV and ESV, can be further used for the 

calculation of cardiac stroke volume (Vs), the volume of hemolymph that is ejected from the 

ventricle during contraction, and the ejection fraction (%; EF), the fraction of ejected hemolymph 

volume:    
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Embryonic ƒH, was determined as beats per minute by counting the number of 

contractions over 30 second intervals. Video recordings were made independently from the 

previous recordings of Vs using a Zeiss light microscope with a CCD video camera (World 

Precision Instruments).  A value for mean ƒH was determined for each of the embryonic stages 

(VIb, VIIa, VIIb, and VIII), at either 30 ppt and 45 ppt after a two hours post-transfer time from 

control conditions (30 ppt).   Mean embryonic cardiac output, Vb, was calculated as the product of 

the mean Vs per mean ƒH, (nL·min
-1

), for each stage of cardiac activity for either salinity 

treatment (30 and 45 ppt). 

         

 

 

Statistical Analysis 

The overall effects of development on the various dependent variables were studied using 

one way analysis of variances (SAS, ver. 9.1) for the values of wet mass, water mass, surface 

area, volume, surfacea area-to-volume ratio, EDV, ESV, ƒH, Vs, and EF to detect differences 

among development stage VIb, VIIa, VIIb, and VIII.  At each developmental stage, a Student’s t-

test was used to further compare various measurements between salinity level of 30 and 45 ppt.  

A Bonferroni t-test for pairwise multiple comparisons was used in order to correct for the effect 

of multiple corrections with a significance level of P   0.05.  Also, a Kruskal-Wallis test was 

used as a nonparametric analysis of variance method based on ranks for data that were not 

normally distributed (even after transformation). 
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RESULTS 

Embryonic water composition 

Whole egg mass was determined for individual eggs at each embryonic stage (VIb, VIIa, 

VIIb, VIII) after being transferred to control (sham transfer at 30 ppt, n = 8) and treatment 

salinities (45 ppt; n = 8).  Mean egg mass for embryos transferred to 45 ppt weighed significantly 

less (P ≤ 0.05) than embryos at 30 ppt at stages VIb, VIIa, and VIIb (Fig. 2) .  Mean embryonic 

wet mass increased significantly throughout development at stages VIIb and VIII in 30 ppt and 

stages VIIa and VIII at 45 ppt (P ≤ 0.01 for each stage with significant change). 

 

0.1

0.15

0.2

0.25

0.3

VIb VIIa VIIb VIII

30 ppt

45 ppt

Embryonic Stage

M
ea

n
 w

h
o

le
 e

g
g

 m
a

ss
 (

m
g

)

In
it

ia
ti

o
n

 o
f 

co
n

tr
a
c
ti

o
n

*

*

*

 

Figure 2:  Individual egg mass of Palaemonetes pugio embryos during development at 30 ppt 

(circles) and 45 ppt after being transferred for two hours (squares) from 30 ppt.  * indicates a 

significant difference between the variable at either salinity of the same stage as determined by t-

test with P ≤ 0.01.  The open and solid stars represent stages that are significantly different from 

the previous stage at each salinity level (30 and 45 ppt, respectively).  The grey bar represents the 

time during development when cardiac contractions are initiated.  The values shown are the 

means ± the standard error, n = 8 at each stage for both salinities. 
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After complete desiccation, the same embryos were re-measured to determine individual 

embryonic water content (1 µL of H2O has a mass of 1 mg).  Mean embryonic water volume was 

calculated for each development stage after the heart began contracting (Fig. 3).  There was a 

significant decrease in embryo water content in eggs exposed to 45 ppt salinity as compared to 

control embryos  30 ppt (p = 0.05) at stages VIb, VIIa, and VIIb.  Initially, at stage VIb, 

embryonic water volume at 30 ppt was 0.101 µL (± 0.01) and 0.077 µL (± 0.01) at 45 ppt.  At 

stage VIIa, embryos at 45 ppt had less embryonic water with 0.102 µL (± 0.02) than those at 30 

ppt with 0.124 µL (± 0.02).  At stage VIIb, embryos at 45 ppt had significantly less embryonic 

water with 0.116 µL (±0.01) than embryos at 30 ppt with 0.156 µL (±0.02).  Yet at stage VIII, the 

mean embryonic water volume in embryos transferred to 45 ppt was not significantly different 

than the mean at 30 ppt.  Before eclosion, embryonic water volume at stage VIII was 0.181 µL 

(±0.02) at 30 ppt and was 0.170 µL (±0.03) at 45 ppt.   Mean embryonic water composition 

increased significantly at both salinities throughout stages VIIa, VIIb and VIII at 30 ppt and at 

stage VIII at 45 ppt (P ≤ 0.01 for all significant changes).  
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Figure 3:  Embryonic water volume within the eggs of Palaemonetes pugio, during development 

at 30 ppt (circles) and then after being transferred to 45 ppt for two hours (squares).  * indicates a 

significant difference between the variable at either salinity of the same stage as determined by t-

test with P ≤ 0.05.  The open and solid stars represent stages that are significantly different from 

the previous stage at each salinity level (30 and 45 ppt, respectively).  The grey bar represents the 

time during development when cardiac contractions are initiated.  Values are shown as means ± 

the standard error, n = 8 at each stage for both salinities. 

 

 

Egg morphometrics 

Based on previous egg dimensions,  surface areas (mm
2
) and whole egg volumes (mm

3
) 

were calculated for each developmental stage at both 30 and 45 ppt (n = 40; Figs. 4a and 4b).  

Both egg surface area and volume increased throughout stages of development at both salinity 

treatments (P ≤ 0.01).  The surface of the egg showed an average increase in area (mm
2
) of 1.8% 

from stages VIb to VIII at 30 ppt and 2.7% at 45 ppt.  At stage VIb the surface area was 

significantly less at 45 ppt with 1.28 mm
2
 ± 0.07 compared to the mean value at 30 ppt with 1.08 

mm
2
 ± 0.03 at 45 ppt.  At stage VIII, the mean surface areas of the egg at either salinity were not 
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significantly different (1.62 mm
2
 ± 0.07 at 30 ppt and 1.60 mm

2
 ± 0.05 at 45 ppt).  Mean whole 

egg volume was significantly larger at 30 ppt for stage VIb compared to the mean egg volume at 

45 ppt (1.33 mm
3
 ± 0.01 and 0.103 mm

3
 ± 0.01, respectively).  At stage VIII mean egg volumes 

were not significantly different at either salinity (0.187 mm
3
 ±0.01 and 0.186 mm

3
 ± 0.01, 

respectively).  Mean whole egg volumes at 30 ppt had a positive slope of 1.8 % throughout 

developmental stages and at 45 ppt had a slope of 2.7%.  The mean surface area-to-volume ratios 

were calculated for the eggs at each stage and were found to decrease significantly for either 

salinity from VIb to VIII (P ≤ 0.01; Fig. 4c).  At 30 ppt the surface area-to-volume ratio 

decreased from 9.6 to 8.6 from stage VIb to VIIII.  Surface area-to-volume ratios of eggs 

transferred to 45 ppt at each stage decreased from 10.4 at stage VIb to 8.6 at stage VIII.  
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Figure 4:  Embryonic surface area (a.), volume (b.) and surface area to volume ratio (c.), per 

embryonic stage of Palaemonetes pugio at 30 ppt salinity (circles/solid line) and 45 ppt 

(squares/dashed line).  * indicates a significant difference between the variable at either salinity 

of the same stage as determined by t-test with P ≤ 0.05.  The open and solid stars represent stages 

that are significantly different from the previous stage at each salinity level (30 and 45 ppt, 

respectively).  The grey bar represents the time during development when cardiac contractions are 

initiated.  Values are shown as means ± the standard error, n = 8 at each stage for both salinities. 
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Ontogeny of Heart Rate, Stroke Volume, and Cardiac Output 

After initiation of cardiac activity (stage VIb), the mean EDV (nL·beat
-1

) and ESV 

(nL·beat
-1

) were determined for each embryonic stage (VIb, VIIa, VIIb, and VIII) two hours after 

being transferred from 30 ppt to either 30 or 45 ppt (Figs. 5).  As embryos developed, there was a 

significant increase in EDV at stages VIIa and VIII at both 30 and 45 ppt (P ≤ 0.01).  There was 

also a significant increase throughout development in ESV at stages VIIa and VIII when embryos 

were transferred to either salinity treatment (P ≤ 0.05).  At stage VIIa, EDV was significantly less 

for embryos transferred to 45 ppt compared to embryos at 30 ppt (0.240 nL·beat
-1 

± 0.024 and 

0.262 nL·beat
-1 

± 0.015, respectively; P ≤ 0.05).  During the same stage, mean ESV was also 

significantly less for embryos transferred to 45 ppt with 0.155 nL·beat
-1 

± 0.017 compared to 

embryos transferred to 30 ppt with 0.162 nL·beat
-1 

± 0.008 (P ≤ 0.05).  Mean EDV for embryos at 

stage VIII who were transferred to 45 ppt were significantly lower with 0.347 nL·beat
-1 

± 0.037 

compared to embryos transferred to 30 ppt with 0.358 nL·beat
-1 

± 0.020 (P ≤ 0.05).  However, 

mean ESV for embryos at stage VIII had an opposite effect of what was previously seen at 45 ppt 

with 0.222 nL·beat
-1 

± 0.026 which was significantly higher compared to embryos at 30 ppt with 

0.208 nL·beat
-1 

± 0.019; (P ≤ 0.05). 
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Figure 5:  End diastolic (squares) and systolic (circles) volumes of Palaemonetes pugio embryos 

at 30 ppt (open) and 45 ppt (closed) salinities.  * indicates a significant difference between the 

variable at either salinity of the same stage as determined by t-test with P ≤ 0.05.  The open and 

solid stars represent stages that are significantly different from the previous stage at each salinity 

level (30 and 45 ppt, respectively).  The grey bar represents the time during development when 

cardiac contractions are initiated.  Values are shown as volume means ± the standard error, n = 6 

at each stage for both salinities. 

 

The mean ƒH (bpm) was determined for each of the following embryonic stages two 

hours after being transferred from 30 ppt to either 30 or 45 ppt (Fig. 6a).  At stage VIb, the 

embryonic ƒH was initially sporadic and became more synchronized and rhythmic by stage VIIa.  

Mean ƒH increased significantly at 30 ppt for stages VIIb and VIII and at 45 ppt at stage VIII (P ≤ 

0.01).  Throughout development, ƒH was significantly higher for embryos at 45 ppt than the ƒH of 

embryos at 30 ppt at all four stages (P ≤ 0.05).  At stage VIb, embryos at 30 ppt had a mean ƒH of 
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53 bpm ±10, which was not significantly different from that of embryos at 45 ppt with 73 bpm 

±17.  At stage VIII, mean ƒH of embryos at 30 ppt increased to 213 bpm ±57 which was 

significantly higher than the mean ƒH of embryos at 45 ppt of 301 bpm ±108 (P ≤ 0.05).   

Mean cardiac Vs (nL·beat
-1

) was calculated from individual EDV and ESV for embryos 

transferred to 30 and 45 ppt (Fig. 6b).  Throughout development, there was a significant increase 

at stages VIIa and VIII at either salinity treatment (P ≤ 0.01).  At those stages, mean Vs of 

embryos at 45 ppt was significantly higher than for embryos at 30 ppt (P ≤ 0.05 for both stages).  

At 30 ppt, mean embryonic Vs increased from 0.034 nL·beat
-1

 ± 0.002 at stage VIb to 0.15 

nL·beat
-1

 ± 0.016 at stage VIII.  At 45 ppt, mean embryonic Vs increased from 0.056 nL·beat
-1

 ± 

0.005 to 0.222 nL·beat
-1

 ±0.015.   

 Embryonic Vb (nL·min
-1

) for embryos transferred to 30 and 45 ppt was calculated from 

the mean ƒH and Vs for each developmental stage and therefore cannot be analyzed for significant 

differences (Fig. 6c).  At stage VIb, the mean Vb for embryos transferred to 30 ppt was 18 

nL·min
-1

 and at stage VIII was 32 nL·min
-1

.  At 45 ppt, Vb was 4.1 nL·min
-1

 at stage VIb and 67 

nL·min
-1

 at stage VIII.   
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Figure 6:  Embryonic heart rate (a.), stroke volume (b.) and cardiac output (c.) of Palaemonetes 

pugio at both 30 ppt (circles/solid line) and then transferred to 45 ppt (squares/dashed line) for 

two hours.  * indicates a significant difference between the variable at either salinity of the same 

stage as determined by t-test with P ≤ 0.05.  The open and solid stars represent stages that are 

significantly different from the previous stage at each salinity level (30 and 45 ppt, respectively).  

The grey bar represents the time during development when cardiac contractions are initiated.  

Values are shown as the means ± the standard error, n = 6 at each stage for both salinities. 
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Ejection fraction (EF) is the fraction of hemolymph ejected from the ventricle during one 

cardiac cycle and was determined for all four stages of development from individually recorded 

values of mean Vs and EDV at control (30 ppt) and experimental (45 ppt) conditions (Fig. 7).  

Throughout development, embryos at 30 ppt showed no significant difference in mean EF from 

stage VIb to VIIb.  However, at stage VIII, there was a significant increase in EF (41.9% ± 3.9%; 

P ≤ 0.05).  There was no significant increase in EF from stage VIb to VIII for embryos transferred 

to 45 ppt. At both stages VIIa and VIII, the mean EF at 30 ppt was significantly higher than the 

mean EF at 45 ppt (P ≤ 0.01). 
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Figure 7:  Ejection fraction of ventricular volume during embryonic development of 

Palaemonetes pugio, at both 30 ppt (circles/solid line) and then transferred to 45 ppt 

(squares/dashed line) for two hours.  * indicates a significant difference between the variable at 

either salinity of the same stage as determined by t-test with P ≤ 0.05.  The open star represents 

the stage that was significantly different from the previous stage at 30 ppt.  The grey bar 

represents the time during development when cardiac contractions are initiated.  Values are 

shown as mean percents ± the standard error, n = 6 at each stage for both salinities. 

 

 

DISCUSSION 

In the current study, embryos of the grass shrimp, P. pugio, were successfully reared 

under control (30 ppt) and experimental (45 ppt) conditions through developmental stages with 
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cardiac activity (stages VIb, VIIa, VIIb, and VIII) to eclosion.  Shrimp embryonic development 

was characteristic of what has been previously described by Romney and Reiber (submitted to 

Crustaceana, 2011).  After being transferred from control conditions to 45 ppt for two hours at 

each developmental stage, embryos exhibited a decrease in whole egg mass and water volume 

that can be largely attributed to embryonic water loss to the environment (Figs. 2 and 3).  In 

addition, there was a decrease in egg surface area and egg volume after being transferred to 

hypersaline water (45 ppt; Figs. 4a and b).  It is evident here that when exposed to high salinity 

during embryonic development, there is an osmotic water loss to the environment through the 

permeable coat of the egg.  This supports previous studies on the water and solute exchange of 

the chorion for the grass shrimp embryo (Glas et al., 1997). 

Throughout development when embryos were transferred to a higher salinity, there was 

an observed decrease in EDV and ESV (Fig. 5).  This is likely due to a decrease in hemolymph 

volume that occurred as a result of embryonic water loss.  Thus, if hemolymph volume was 

reduced through water loss to the environment, it is highly probable that a concomitant decrease 

would occur in venous hemolymph return to the heart.   

At all four stages of development, there was an increase in ƒH for embryos transferred to 

hypersaline water (Fig. 6a).  With a decrease in hemolymph volume within the circulatory 

system, an increased ƒH may compensate for the reduced preload of the ventricle.  While 

individual ventricular volumes, EDV and ESV were significantly lower at 45 ppt, there was an 

overall increase in the difference between the two volumes, cardiac Vs (Fig. 6b).  This suggests 

that embryonic water loss caused a reduction in the volume of hemolymph that returned to the 

heart for each cardiac cycle and such decreases in ventricular Vs caused an elevated ƒH to 

maintain cardiac output within the circulatory system.  This is further supported by the sustained 

levels of EF at both 30 and 45 ppt.  It is important for these embryos to sustain cardiac output to 

maintain the aerobic metabolism of actively growing tissues.  
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Maintenance in Vb in response to changes in hemolymph volume can serve as a 

compensatory reflex that is synonymous to the vertebrate baroreflex response and may be 

explained by the Frank-Starling Law of the heart (Bagshaw, 1985; Burggren et al., 1990).  Here, 

the length-tension relationship of cardiac muscle tissue regulates both cardiac stroke volume and 

systolic pressure.  An increase in hemolymph volume will increase venous return to the heart 

which in turn would result in an expansion of the ventricle.  The increase in ventricular pre-

loading volume (EDV) will shift the length tension relationship of the myofibril arrangement, 

where a greater tension can be generated by the myocardium.  The overall effect produces an 

increase in hemolymph pressure through an increase in cardiac contractility.   Conserved cardiac 

EF between salinity treatments could likely be a cardiac reflex to hemolymph volume changes 

and may suggest that transition of active regulation of ƒH may occur during embryonic period of 

development in the grass shrimp.   

While adult grass shrimp are euryhaline and can survive large shifts in salinities, the 

larvae are less tolerant to fluctuations and show high mortality rates at salinities much higher or 

lower than their optimal concentration of 25% seawater; 100% seawater is 32 ppt and 

approximately 1000 mOsms (Knowlton and Kirby, 1984).  Therefore, the transition from 

stenohaline to euryhaline must occur after larval life stages when regulatory mechanisms have 

developed that provide sufficient osmoregulatory capacity under osmotic stress.  As the 

embryonic period in grass shrimp comes before the larval period of development, they too must 

have limited range of salinity tolerance.  The ability to withstand fluctuations in salinity must be 

largely due to the physical characteristics of the chorion acting as a physical barrier to 

environmental salinity stress.   

The chorion of the grass shrimp has been previously characterized as a dynamic structure 

that is able to form additional layers throughout embryonic development period (Glas et al., 

1997).  The initial embryonic coat is produced within hours of fertilization and remains until 7 
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days post-fertilization when multiple embryonic envelopes become incorporated within the 

chorion and persist until eclosion.  In the grass shrimp, it is approximately 8 days post-

fertilization when the heart begins to contract at stage VIb (Romney and Reiber, submitted to 

Crustaceana, 2011).  The underdeveloped chorion at this stage may allow water movements 

between the animal and its environment.  The result of this might induce the initiation of cardiac 

activity that likely occurs in response to hemolymph volume changes with the embryo under 

osmotic stress.  When cardiac activity is initiated at stage VIb, contractions are arrhythmic and 

are likely less effective in the coordinated movement of hemolymph and thus not optimal for gas 

exchange and maintaining metabolism.  In addition, the individual parameters that make up Vb 

such as ƒH and Vs are higher at 45 ppt salinity as compared to control conditions of 30 ppt.  As the 

cardiovascular system matures (with embryonic development), the rate of increase of Vb from 

stage VIb to VIII appears to be greater at 45 ppt than compared to control embryos at 30 ppt. 

In summary, exposure to large fluctuations in environmental salinity occurs often during 

the embryonic development of grass shrimp as the fertilized eggs are transported externally on 

maternal pleopods.  As larvae, the shrimp can gain the ability to tolerate salinity stress as they 

develop the osmoregulatory mechanisms essential to maintain internal hemolymph osmotic 

pressures.  During the embryonic period, we have shown here that exposure to hypersaline water 

can induce the embryos to lose water osmotically.  Embryos can then compensate for hemolymph 

volume loss by increasing ƒH and decreasing Vs to maintain optimal levels of Vb and EF that are 

necessary for convective transport.  Future work to evaluate internal hemolymph hydrostatic and 

osmotic pressure changes in response to salinity fluctuations would provide further insight into 

the regulatory mechanisms that exist with the embryonic shrimp heart.  By understanding 

fundamental physiological responses to salinity, the field of developmental biology can better 

understand the effects of environmental fluctuation, like global climate change, on early life 

stages in animals.      
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CHAPTER 5 

 

ONTOGENY AND CARDIAC PHYSIOLOGY OF THE EMBRYONIC GRASS SHRIMP, 

Palaemonetes pugio 

 

RESEARCH CONCLUSIONS 

Investigations of crustacean physiological development aim to understand the 

fundamental mechanisms of regulation that contribute to adult environmental tolerance (Anger, 

2006; Burggren and Warburton, 2005; Spicer and Burggren, 2003).  Such mechanisms are 

observed as a response to environmental stress and thus can be easily incorporated into laboratory 

experimental designs (Burggren and Warburton, 2005; Burggren and Pinder, 1991).  

Furthermore, invertebrate systems hold fundamental clues to the evolutionarily conserved 

regulatory systems that exist in many advanced forms of cardiac function (Burggren and Pinder, 

1991; McMahon et al., 1997). 

Decapod shrimp can tolerate large fluctuations in environmental parameters such as 

temperature, salinity, and dissolved oxygen (Anderson, 1985; Morgan, 1980; Roesljadi et al., 

1976; Thorp and Hoss, 1975; Welsh, 1975; Wood, 1967).  They are able to successfully survive 

and reproduce in these environments that often fluctuate in salinities between 0 to 55 parts per 

thousand (seawater at 30-32 parts per thousand; ppt).  The family Palaemonidae is considered by 

some to be in the process of evolution from marine to fresh water (Emery K. O. et al., 1967; 

Knowlton and Kirby, 1984). This would be particularly advantageous for their survival 

considering their inhabiting brackish coastal waters.  Any observed distribution patterns of adult 

Palaemonetes spp. in relation to salinity may be accounted for by their relative ability to tolerate 

a particular range of salinity (and extent of change over this range) and their ability to maintain 
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internal water volumes and cardiac performance.  However, many of these homeostatic 

mechanisms do exist in early life stages such as embryonic and larval development. 

Ontogeny can be described for many decapod crustaceans as a complex transition both 

morphologically and physiologically in a series of gradual changes within a life cycle (Carlson, 

2003; Reiber and Harper, 2001).  Regular development is defined by Broad (1957) and reiterated 

by Gore (1985), as the pattern of development (in terms of numbers of stages) that predominates 

in decapods.    We have demonstrated here that P. pugio shows an anamorphic pattern as a larva 

that is frequently interrupted by a molt stage that shows a radical change in morphology and/or 

physiology, a metamorphosis.  It is believed that having multiple developmental stages might 

allow a wider degree of plasticity in such morphological/physiological parameters that are 

necessary for animals whose habitats are characteristic of fluctuating environmental variables 

(Reiber and Harper, 2001). 

From the studies conducted here, the embryonic grass shrimp, Palaemonetes pugio, 

appears to offer the possibility that cardiac compensatory responses may exist during embryonic 

development to facilitate optimal cardiac function.  The grass shrimp were able to adjust cardiac 

parameters such as heart rate and stroke volume as compensatory mechanisms in order to 

withstand internal water loss due to salinity stress.  In hypersaline water, embryonic hemolymph 

volume is subject to osmotic influences at the chorion that would otherwise dehydrate the 

developing embryo due to the lack of their osmoregulatory capability.  Embryos exhibited cardiac 

responses in order to compensate for hemolymph composition changes and maintain levels of 

cardiac output and ejection fraction that is likely necessary for the developing tissues. 

Much of what we know regarding crustacean cardiovascular development comes from 

physiological and regulatory observations in response to environmentally induced stress (Anger, 

2003; Burggren, 1988; Guadagnoli and Reiber, 2005; Harper and Reiber, 2004; McGaw and 
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McMahon, 1996; McGaw and Reiber, 1998; McGaw and McMahon, 2003; Reiber, 1997; Reiber 

and Harper, 2001; Wilkens, 1999).  The advent of internal convective processes early in 

development and during their responses to high salinity serve to increase oxygen transport rates 

thus allowing P. pugio to partially compensate for embryonic water loss.  Cardiac compensatory 

reflexes resulting from hemolymph volume changes have been demonstrated in adult decapods 

(Burggren et al., 1990; McGaw and Reiber, 1998).  This study along with other investigations of 

physiological ontogeny in crustaceans provides a unique opportunity to better understand 

processes of cardiac malleability and physiological trajectories.  Here we have shown that 

significant differences in cardiac performance, as quantified by stroke volume and ejection 

fraction at high salinities as an induced phenotypic response from the environment.  
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