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ABSTRACT 

Identification of Arid Soil Inducible Genes in Pseudomonas 
fluorescens Strain PfO-1 

by 

Katila Pipitone 

Dr. Eduardo A. Robleto, Examination Committee Chair 
Associate Professor in Microbiology 

University of Nevada, Las Vegas 

This thesis contains three major sections: introduction, literature review and the 

project entitled: 'Identification of Arid Soil Inducible Genes in Pseudomonas fluorescens 

Strain PfO-1'. The introduction section describes a general background, the current and 

potential applications of P. fluorescens and the main goal of this dissertation. The 

literature review chapter discusses two main areas. The first area offers insights about 

different types of in vivo expression technology (IVET) as a tool in gene identification. 

This section also describes the limitations of IVET, as well as the benefits over other 

methods for gene identification. The second part of the literature review is a 

compendium of previously reported genetic factors involved in soil survival. Finally, the 

last part of this thesis documents the identification of arid soil inducible gene in P. 

fluorescens strain PfO-1. 

This study, identification of arid soil inducible genes in Pseudomonas fluorescens, 

investigated adaptation mechanisms of Pseudomonas fluorescens strain PfO-1 in arid soil. 

Auxotrophy-based in vivo expression technology (IVET) was employed to identify 26 
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arid-soil inducible genes in P. fluorescens. Based on analysis of Clusters of Orthologous 

Groups of proteins (COGs), ten genes are involved in metabolism; four genes are 

engaged in information storage and processing; three are signaling and regulation cellular 

processes genes; and nine are poorly characterized or hypothetical. Four genes of 

different functional groups (Pfl01_2143: glutamine synthetase; Pfl01_2660: GTPase 

Subunit of Restriction Endonuclease like; Pfl01_5595: hypothetical protein; and 

Pfl01_3972: putative diguanylate phosphodiesterase EAL domain) were inactivated and 

tested for their influence in soil colonization. Only two of the four strains carrying 

defective alleles showed slight but significant decreases in soil colonization. The growth 

patterns of mutant strains carrying defective alleles on Pfl01_2143 and Pfl01_5595 

showed a decline in arid soil persistence, which were partially restored in strain 

derivatives carrying a complementing plasmid. Overall, these results indicate that 

adaptation of P. fluorescens to soil requires the expression of many genes, perhaps acting 

cooperatively. We further surmise that nitrogen limitation and metabolism are important 

factors in soil colonization in arid soils. 
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CHAPTER 1 

INTRODUCTION 

1.1 Pseudomonas fluorescens 

The genus Pseudomonas belongs in the subdivision gamma Proteobacteria, which 

encompasses a large proportion of known gram negative bacteria. Pseudomonas spp, are 

chemoorganotrophic aerobic rods with a single or multiple polar flagellum(a). Other 

classic microbiological indicator tests for of Pseudomonas identification include oxidase 

positive, catalase positive, indole-negative, methyl red negative and Voges-Proskauer 

negative. Pseudomonas spp. may exhibit diverse lifestyles which range from endophytic, 

epiphytic, saprophytic to pathogenic to animals and plants. 

Pseudomonas fluorescens is ubiquitous in soil and on plant surfaces. Under iron-

limited conditions, P. fluorescens produces a mixture of low molecular weight 

siderophores that contribute to its ecological competence, such as pyoverdine (12, 13, 15, 

16), thioquinolobactin (9), ornicorrugatin (8), pyochelin (19), salicylic acid (10, 11), 

quinolobactin (14), enantio-pyochelin (21). Pyoverdine has been recognized as the main 

chemophore that imparts a yellow-green characteristic to P. fluorescens (2). P. 

fluorescens develops biofilms and produces a variety of secondary metabolites with 

antimicrobial properties such as 2,4-diacetylphloroglucinol (2,4-DAPG) (20), phenazines 

(1), pyoluteorin (3) and hydrogen cyanide (17). 
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1.2 Applications of Pseudomonas fluorescens 

Pseudomonas fluorescens is a member of the rhizobacteria, a group of bacteria 

that are found in soil immediately beside and around plants' roots. In this environment, 

exudation and secretion from roots provides increased ability of nutrients, compared to 

non-rhizophere soil (7). These nutrients support rhizobacterial communities, which in 

turn may influence soil characteristics. Root effluxes caused by nutrient absorption can 

also dramatically influence soil chemistry such as pH and nitrogen transformations. 

Thus, the rhizosphere is a site where complex interactions among roots, soil and 

rhizobacteria occur. 

As an aggressive rhizosphere colonizer, Pseudomonas fluorescens also displays 

antagonism against other microorganisms, which in some cases are plant pathogens for 

examples Gaeumannomyces graminis, Thielaviopsis basicola, and Fusarium oxysporum. 

P. fluorescens produces a plant growth factor, pyrroloquinoline, that has been shown to 

promote tomato plant (Solanum lycopersicum ) growth, (5). Such properties have 

resulted in use of P. fluorescens as Plant Growth-Promoting Bacteria (PGPB) or for 

biocontrol of plant diseases (4, 6). Furthermore, P. fluorescens is closely related to a 

human pathogen, P. aeruginosa, associated with chronic lung infections and infections in 

severely burned patients. Thus, understanding genetic factors and processes governing 

how P. fluorescens adapts to soil provides basic knowledge on molecular mechanisms in 

soil microbiology and lead to the development of strategy to improve beneficial 

applications or may help in designing better infection preventive measures. 
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1.3 Questions to be Addressed 

The main objective of this dissertation is to genetically dissect microbial 

processes that contribute to adaptation of P. fluorescens PfO-1 to arid soils from the 

Mojave Desert. Adaptation is a complex trait that involves many processes. We employ 

a promoter trapping strategy, In Vivo Expression Technology (IVET), to identify 

promoters that are active during prolonged exposure to arid soil but become inactive in 

laboratory culture medium (18). These arid soil-inducible promoters are likely to drive 

the expression of genes that are important for soil colonization and persistence. This 

study is aided in two ways. One, the whole genome sequence of Pseudomonas 

fluorescens, available at National Center for Biotechnology Information (NCBI), 

accommodates our analysis of genes downstream of the 'trapped' promoters. Two, a 

recent study has identified 22 genetic regions that are expressed by P. fluorescens PfO-1 

in response to exposure to agricultural soil. Thus, in addition to examining P fluorescens 

adaptation to arid soil, the hypothesis that P. fluorescens occupies its niche in diverse 

soils by expressing different genes is tested. 

We identified 26 genes that are expressed in our soil conditions. Based on 

analysis of Clusters of Orthologous Groups of proteins (COGs), ten genes are involved in 

metabolisms; four genes are engaged in information storage and processing; three are 

cellular (regulation and signaling) processes genes; four are poorly characterized genes. 

Interestingly, we discover five uncharacterized genes that are not within a distinct COG. 

Four genes of different functional groups were randomly selected for genetic disruption 

and complementation analysis. Two, out of four, strains carrying disruptions in arid soil-

induced genes showed decreases in their ability to persist in soil. Genetic 
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complementation of the genes affecting persistence partially restored the wild phenotype. 

Comparative analysis with those genes expressed in agricultural soil indicated no overlap, 

suggesting that P. fluorescens adapts to diverse soil environments because of its diverse 

genetic resources. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Two fundamentals principles that pertain to the identification of Pseudomonas 

fluorescens genes that are important for soil persistence are discussed in this chapter. 

First refers to the methodology used in genetic searches to identify soil factors, which 

covers the principle of In Vivo Expression Technology (IVET) and its contrast to other 

methods for identification of genes important for stressful environments. Second will 

cover genetic elements described previously as important for soil colonization. 

2.2 Use of in vivo Expression Technology (IVET) 

IVET originates from a 'promoter probing technique' that allows positive 

selection of transcriptionally active DNA regions. It was first used in an experiment in 

which colonization of Xanthomonas campestris of turnip seedlings was studied (74) . 

After this groups' publication, the technique was extensively modified. In 1993 Mahan 

and coworkers coined the term IVET and used this technique to study pathogenicity of 

Salmonella enterica serovar typhimurium in mice (56, 63). IVET is the technique of 

choice for pathogenicity studies in phylogenetically diverse pathogens such as 

Pseudomonas aeruginosa (33), Yersinia enterocolitica (18), Staphylococcus aureus (55), 

Vibrio cholera (54, 75), Vibrio vulnificus (52), Listeria monocytogenes (28), and Shigella 

7 



flexneri (96, 97). The use of IVET has allowed identification of over a hundred virulence 

factors. Furthermore, results from studies in pathogens and non-pathogens suggest IVET 

provides a powerful tool not only for identification of epistatic genes that are essential in 

a complex environment, but also for identification of the genes that are expressed during 

dynamic ecological succession of a specific niche (35). 

IVET is a promoter searching technique that entraps niche-specific DNA regions 

that are required for growth in a natural habitat, but are inactive in laboratory media (4). 

These specific promoters, that are induced, drive the expression of genes, and thus 

assumed to be required for growth, in a specific niche. IVET relies on two factors: the 

construction of genomic library in a pIVET plasmid and the construction of a knock-out 

strain that is compromised in the environment of interest. The specific features of the 

pIVET construct vary depending on the type of selection. However, the main feature of 

pIVET is that it is non-replicative in the bacterial species under investigation. In our case, 

the pIVET plasmid possesses a R6K origin of replication, which requires the n protein 

{pir gene). The 7i protein is a replication factor, engineered into the E. coli strains via 

lambda. Dimeric n protein binds to iteron sequences of ori-y, located in the oriR6K 

region, causing a DNA conformational change and formation of a nucleoprotein 

structure. This facilitates the binding of required replication initiation factors, DnaA and 

integration host factor (IHF), to their binding sites. In summary, pIVET plasmid doesn't 

replicate without protein, and is lost during plasmid partitioning. Another important 

feature in pIVET is the presence of a multiple cloning site (MCS) immediately upstream 

of a bicistronic gene arrangement. The first gene of this arrangement is a promoterless 

marker, which is transcriptionally fused to a reporter gene cassette, lacZ. The type of 
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marker depends on the selection used and includes variations that rely in antibiotic 

resistance cassette, the synthesis of an essential growth factor, or the activation of a 

resolvase system. The second gene of the genetic fusion is a promoterless reporter gene; 

expression of this gene confers a phenotypic change that is easily detected or measured 

by a simple assay. The lac operon and gfp (green fluorescent protein) are the two most 

common reporters used in IVET. The generation of random genomic fragments to be 

cloned in the vector should be diversified in order to enhance the screening efficiency of 

IVET. This can be achieved by using multiple restriction enzymes and partial digests of 

the genome under study. 

Upon the construction of the genomic library, constructs are introduced into the 

strain under study via conjugation. Transconjugants are then selected based on the 

resistance carried in pIVET. Because pIVET replication is dependent on the presence of 

pir, not present in the recipient strain, selection for the pIVET antibiotic marker indicates 

that conjugation and chromosomal recombination events have taken place in the 

recipient. The RecA-dependent event results in a strain with a two-copy chromosomal 

arrangement of the genomic fragment originally cloned into pIVET. If a region 

containing a promoter is cloned (fused to the essential growth factor gene), one of the 

copies activates transcription in its native gene, while the other activates transcription of 

the bicistronic arrangement in pIVET, which carries a selective feature (Figure 2.1). 

These integrants have been referred to as "fusions" (39). 

Four different IVET systems have been used to study niche-specific genes. The 

(essential growth factor) auxotrophy-based selection IVET requires the construction of a 

strain with a deficiency in the synthesis of a growth factor that is absent or limiting in the 
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Figure 2.1 Homologous recombination between the genomic library sequence and its 
homologous sequence on the chromosome. The arrow indicates the presence of a 
promoter. A single recombination event results in an integration of the plasmid construct 
into the host chromosome. This results in a two-copy chromosomal arrangement of the 
genomic fragment originally cloned into pIVET causing a genetic rearrangement and two 
copies of promoters: one drive the expression of the 'dapB while another activate the 
transcription of the native gene. 

strain with a deficiency in the synthesis of a growth factor that is absent or limiting in the 

environment of interest. This is usually achieved by constructing an in-frame deletion of 

an essential growth factor (egf) gene by standard molecular methods. Some auxotrophic 

markers that provide an outstanding IVET selectivity include pur A (purine synthesis) in 

Pseudomonas aeruginosa (49), thyA (nucleotide synthesis) in Salmonella enterica (8), 

dapB (lysine synthesis) in Pseudomonas fluorescens (10, 85) and inhA (mycolic acid 
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synthesis) in Mycobacterium (57). Defects in the gene of choice for IVET and growth in 

the environment studied can be restored by two events: First, the growth factor may be 

supplemented exogenously. Second, restoration of growth occurs when a recombinant 

pYVETegf vector contains a genomic fragment with an active promoter, generating 

transcription of the egfcoding sequence. Transcriptional activity of the egf also results in 

expression of the reporter gene, which in most cases is lacZ, and can be assayed in 

laboratory culture conditions using 5-bromo-4-chloro-3-indoyl-P-D-galactopyranoside 

(X-Gal). X-Gal is spontaneously oxidized, forming 5,5'-dibromo-4,4'-dichloro-indig, 

which is an insoluble blue product. If the transcriptional activity of pYVETegf fusion is 

constitutive, colonies display a deep blue phenotype in laboratory culture. In contrast, the 

fusion strain that contains a niche-specific promoter displays a white colony phenotype 

on X-gal containing rich medium. 

Similarly, the antibiotic-based selection IVET uses a pIVET construct with a 

promoterless antibiotic resistance gene(Abr, instead of 'eg/in the auxotrophic-based 

IVET (74). Antibiotic selection is simpler than auxotrophic-based selection because it 

does not require the construction of auxotrophic strain. However, this strategy 

necessitates that the environment of interest be amended with an antibiotic to which the 

wild type strain is sensitive. The antibiotic-amended environment selects for the "fusion" 

strains containing a fragment that activates transcription of the promoterless antibiotic 

gene. 

Recombinase-based IVET (RIVET) is a more sophisticated and sensitive version 

of IVET used to detect slight increases in promoter activity. There are two versions of 

RIVET: the original, based on genetic screening, and a modified version, which may be 
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used with positive selection or screen. Both RIVET versions rely on a site-specific 

recombinase, an enzyme that recognizes and binds to two specific repeated sequences, 

forming a cointergrate between the two sites. There are many recombinases but TnpR is 

the most commonly used in RIVET. Dimeric TnpR is encoded by tnpR, from 

transposony8 (Tny5). It recognizes direct repeat sequences at res sites, a 114-bp 

sequence which contains three direct repeat binding sites: site I, site II and site III (34, 

100). TnpR dimers bind to all three sites. DNA cleavage and ligation occurs at site I (43, 

90). The recombinase works in conjunction with other key DNA constructs in RIVET. 

In the original RIVET, a key construct, located in the chromosome of the 

bacterium of interest, features two sets or resl sites flanking an Abr gene, which serves as 

a genetic marker. The other construct, located in pIVET, consists of a genomic 

arrangement similar to the one generated with other IVET strategies and results in a 

random genomic fragment cloned upstream of a promoterless tnpR. When mobilized to 

the test species, the pIVET constructs give rise to a fusion strain through a single 

recombination between the random sequence in pIVET and its chromosomal homolog. 

An active promoter in the random sequence drives the expression of TnpR, which brings 

about site-specific recombination between the two sets of resl. Expression oftnpR 

mediates the resolution and loss of a fragment that contains the resI-Abr, leaving behind 

one complete resl sequence in the genome and generating Ab (100). The reporter system 

in the modified RIVET is the same as that in the original version. However, the marker 

system in the modified RIVET involves epistasis between two genetic markers, Abr and 

gfp. The Abris located in the chromosome and is transcriptionally fused to lad, a 

transcriptional repressor. A pair of resl sites flanks the Abr-lacl fusion, resulting in a 
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sequence of res 1-Ab' -lacl-resl. Elsewhere in the chromosome, a gfp is under the control 

of the Lad repressor. Therefore, the presence of an active promoter in the genomic 

fragment drives the expression of tnpR and recombination occurs at the resl sites,, 

causing a loss of the Ab' -lacl-resl sequence. Loss of this sequence leads to expression 

of gfp, which can be detected in a spectrophotometer at wavelengths of 395 nm or 509nm-

One other IVET system is based on system-specific selection. It includes a 

promoterless system-specific gene, which is used to identify DNA fragments of interest. 

The mechanics and protocols used with this IVET system are very similar to the 

auxotrophy-based IVET (86). 

2.2.1 Limitations of IVET 

IVET allows niche-specific gene identification but requires a few time-consuming 

steps. Inactivation of the marker gene requires a genetic allele exchange in the bacterial 

species of interest. Such requirement may narrow IVET applications to well studied 

systems with available genetic alteration and mobilization tools. IVET cannot detect 

niche-specific down-regulated promoters since these promoters would be inactive, 

causing the loss of function in the marker gene in the environment of interest. Also, it 

has been shown that approximately 50% of the genetic regions selected by IVET present 

a 'cryptic' arrangement (98, 99). This arrangement can be explained in two possible 

ways: An artifact or a false positive fusion may be generated by a situation where a high 

AT-content locus could function as a 'false' promoter during exposure to stress. 

Alternatively, it is possible that a cryptic" promoter could be selected. The term 

"cryptic" refers to an identified region of DNA that has not been previously characterized 

or annotated. Interestingly, some cryptic regions lie inside and in the opposite orientation 
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of a previously ascribed coding sequence. It has been hypothesized that these cryptic 

regions generate anti-sense mRNAs that regulate the annotated gene in which they are 

embedded (99). Overall, IVET is an excellent strategy to identify and study features of 

gene regulation in experimentally challenging environments. 

2.3 Other Genomic Approaches 

DNA microarrays, together with whole-genome sequences, have revolutionized 

mRNA analysis. Quantification of gene expression by microarray provides a global view 

of how genes are regulated at the transcriptional level in response to certain stressors or 

to a certain growth phase. However, biological processes are complex and much more 

remains to be discovered. Classic DNA microarrays cannot detect antisense RNA (a 

short RNA molecule silencing gene expression at the post-transcriptional level). The 

extraction of high quality and quantity mRNA from hard-to-control environments is 

difficult to achieve due to the short half-life of bacterial mRNA. Application of 

microarrays to study of bacterial responses toward complex environments such as a 

rhizosphere is intricate. First, there is no easy technique to discriminate the mRNA of 

interest from total mRNA in the different bacterial species living in the environment of 

interest. This means one has to isolate the bacteria of interest from the mixed population, 

causing a delay in the extraction process. Furthermore, microarray chips are expensive, 

and due to background noise caused by variable factors such as mRNA quality and dust 

on the chip, many replicates are needed for statistical analysis (35, 36, 73) 
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2.4 Genetic Factor in Survival in Soil 

Soil is a heterogeneous environment where dynamic interactions between biotic 

and abiotic factors take place. Bacterial survival in soil is complicated and influenced by 

adaptation, which is defined as any developmental, physiological or behavioral change 

that contributes to survival over time. The genes controlling these processes are usually 

up-regulated during exposure to soil and sometimes down-regulated under other growth 

conditions. Identification of these genes and understanding their function provides a 

better understanding of bacterial adaptation. Previously, research studies have identified 

several P.fluorescens genes that contribute to survival in soils. Based on their functions, 

they can be classified into 4 groups: chemotaxis and motility, nutrient scavenging; 

adaptation to environmental stress, and secretion of secondary metabolites (86). 

2.4.1 Motility and chemotaxis 

P. fluorescens possesses a polar flagellum, a complex organelle, whose function 

and synthesis are encoded by at least 36 genes. A flagellum consists of three main 

structures: the filament, hook and basal body. The filament is a tail like structure, made 

of the protein flagellin, which is assembled into a helix with a hollow core. The filament 

is connected to a hook and anchored to the basal body. The structure of the Gram-

negative basal body is similar to those belonging to type III secretion systems (TTSS), 

suggesting a common evolutionary path between the two structures (31). As early as 

1968, direct viable cell counts from a competitive assay between flagellated wild-type P. 

fluorescens and a non-flagellated mutant in TSB media showed a higher CFU/ml count 

for the wild- type than for the mutant, suggesting that flagellated cells are more 

competitive than non-flagellated ones (101). Later, field studies revealed that the 
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presence of flagella contributes not only to motility, but also to rhizosphere attachment, 

which facilitates rhizosphere colonization (20, 21, 82). Transposon mutagenesis studies 

showed that mutations in fliC,fliS and adnA genes result in no motility, while a mutation 

in fliT resulted in decreased motility (14). They7/'Cgene encodes flagellin, which is the 

main protein of the flagellum filament. FUS codes for a protein involved in flagellum 

assembly. AdnA, which is 85% identical to fleQ in P. aeruginosa, encodes a 

transcriptional factor that has been reported to affect flagellum synthesis, biofilm 

formation, and attachment to soil and seeds (15, 22). In contrast to JJeQ, which directly 

regulates flagellum synthesis in P. aeruginosa (6, 19), adnA in P.fluorescens also affects 

other cellular processes (88). Interestingly IVET studies showed that fliF, which encodes 

the flagellum M ring protein in P. fluorescens, is up-regulated during colonization of 

sugar beet roots (29). This implies that the presence of the flagellum is important in root 

colonization. Whether flagellum mediated-motility or attachment provides adaptation of 

P. fluorescens to soil environments remains to be determined. 

Flagellum-mediated bacterial motility is a complicated behavior consisting of 

alternations between runs and tumbles. A run is characterized by a linear motion in a 

random direction as the distal end of a flagellum rotates in one direction. A tumble is 

caused by rotation of the flagellum in the direction opposite to the one generating a run, 

and results in a stop, reorientation and preparation for the next run. Even though 

seemingly random, the motility of bacteria is influenced by environmental cues, a process 

called chemotaxis. Chemotaxis is defined as a phenomenon by which a bacterium 

migrates towards an attractant against the concentration gradient and/or away from a 

repellent along the concentration gradient. Although little is known about P.fluorescens 
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chemotaxis, the proteins involved in this process (Mcp and Che) are strongly resemble 

those found in other Bacteria and Archaea, suggesting that P. fluorescens Mcp and Che 

proteins function in a similar movement (30, 103). In E. coli, the chemotaxis response is 

accomplished by a signal transduction cascade. This signal cascade is initiated by 

transmembrane chemoreceptors (Mcp), passed onto Che proteins via phosphorylation, 

and ultimately transferred to the flagellum motor switch (Mot). This cascade modulates 

the frequency of runs and tumbles. When an attractant triggers the signal, cells exhibit 

positive chemotaxis, characterized by longer runs and less frequent tumbles; as the 

attractant concentration increases, the response becomes greater. On the other hand, 

decreased attractant concentration or sensing of repellents results in negative chemotaxis, 

outlined by shorter runs and more frequent tumbles. Thus, the net bacterial kinetic is a 

biased movement towards attractants and repulsion from repellents (11). 

Not surprisingly, experiments in which IVET was used to identify niche-specific 

genes have shown that regulation of chemotaxis is an important process. Up-regulation 

of Mcps occurred when Vibrio cholera was inoculated into mice. Interestingly, Mcp in 

genes in Pseudomonas stutzeri were repressed during rice rhizosphere colonization (85). 

Further, the cheR and cheY genes were expressed in E. chrysanthemi and P. aeruginosa 

that were inoculated onto spinach and into mouse, respectively (110). Taken together, 

the reports on chemotaxis suggest that it is a key feature in bacterial adaptation to soil 

environments. 

2.4.2 Desiccation and stress response 

Soil can place organisms under several forms of stress. Soil desiccation, which is 

the most limiting factor for bacterial growth, can significantly impair cellular functions 
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due to increased proteolysis, increased accumulation of DNA mutations caused by 

reactive oxygen species, and also alter membrane permeability (83). Desiccated or dry 

soil has very low water potential. Water potential measures the tendency of a water 

molecule to move from one place to another and reach equilibrium. Free water has a 

potential of zero while soil water potential is variable and depends on temperature and 

rate of evaporation. Capsules and biofilms are structures that generally protect cells from 

dehydration and other detrimental factors such as antibiotics, phagocytosis, and reactive 

oxygen species (72). Biofilms are composed of hydrated extracellular polysaccharides 

(EPS) and may be occupied by single or multiple species. Such matrices retain water in 

conditions of soil dryness. Several physiological responses contribute to desiccation 

tolerance, which include regulation of intracellular osmotic pressure and stabilization of 

membrane lipids and intracellular proteins (83). Under moderate water limitation, 

bacteria retain cytoplasmic solutes in order to lower osmotic pressure. During extreme 

water deficit, accumulation of intracellular trehalose and sucrose contributes to 

membrane protection (17). Although it is not clear how trehalose stabilize proteins, in 

vitro experiments in which cells were subjected to osmotic stress, showed that addition of 

trehalose improved enzyme stability and activity compared to conditions in which 

trehalose was absent (5, 23). Furthermore, a mutant strain of Saccharomyces cerevisiae 

with a defective trehalose transport system survived less than the wild-type in a 

desiccated environment (23). Investigations in trehalose-lipid membrane interactions 

conducted in vitro showed that the polyhydroxyl groups of trehalose replace water 

molecules and form hydrogen bonds around the polar regions of phospholipids, thereby 

maintaining phospholipid integrity (78). 

18 



Periods of dryness followed by short exposure to rehydrating conditions in soil, in 

a dry climate region, can cause soil water potential to fluctuate from -20 MPa to 2.8 MPa 

(50). Such extreme fluctuation may result in damage to cells or cell lysis. In conditions 

of rapid rehydration, bacteria may use three different strategies to reduce osmotic shock 

such as secretion of intracellular solutes, catabolism of cytoplasmic organic molecules 

and polymerization of solutes. P.fluorescens under hypo-osmotic shock may release 

22%-26% of the cytoplasmic pool of amino acids and up to 11%-21% of low molecular 

weight neutral sugars into the environment (83). 

The genetic elements that initiate the rapid response to desiccation stress in P. 

fluorescens are the alternative sigma factors RpoS (as) and AlgU, also known in E. coli as 

RpoE (o22) (91). The transcriptional activator AlgU is highly conserved among Gram 

negative bacteria and positively regulates biosynthesis of EPS (102). Further, a deletion 

of algU causes a significant decrease of EPS production and increased sensitivity to 

osmotic stress on agar medium. P.fluorescens algU is located in the algU-mucA-mucB 

DNA locus. Three factors regulate algU expression: AlgU levels, the anti-sigma factor 

MucA and the two-component regulation system of GacA/GacS. GacA and GacS control 

many cellular functions that may affect soil adaptation, including biofilm formation, EPS 

secretion, antibiotic production, response to nutrient starvation and quorum sensing (91, 

109). 

2.4.3 Nutrient scavenging 

Iron, carbon, nitrogen, and phosphate are very well known to influence growth of 

P. fluorescens in soil. In bulk soil, carbon is a limiting factor for growth, while 

phosphate and nitrogen are limiting in the rhizosphere or soils that support plant growth. 
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Transmission microscope images of cells subjected to either carbon, nitrogen, phosphate 

or iron limitation showed aberrant morphology such as formations of cytoplasmic 

vacuoles, granules in the nucleoid, plasmolysis, and cell lysis. In soil conditions, bacteria 

possess multiple scavenging mechanisms to procure adequate levels of nutrients. 

a.) Iron acquisition 

Iron is a cofactor of enzymes that catalyze many biological redox reactions and 

therefore is essential for living organisms including most bacteria. In anoxic conditions 

iron exists in the +2 oxidation state, (ferrous state). Ferrous iron is water soluble and 

readily used by most living organisms. However, in oxic conditions, oxidation occurs 

and favors formation of ferric iron, which is in the +3 oxidation state. Ferric iron is water 

insoluble and cannot be utilized for metabolic functions. Thus, most aerobic microbes 

require iron acquisition mechanisms in order to grow. One well studied iron acquisition 

mechanism in bacteria is that of siderophore production. Siderophores are low molecular 

weight compounds that can tightly bind insoluble iron and transport it into the cell. Once 

in the cell ferric iron is converted to its soluble form and incorporated into general 

metabolism (16). 

P. fluorescens, an obligate aerobe, produces several siderophores that include 

pyoverdine (67, 80, 81), thioquinolobactin (59), ornicorrugatin (58), pyochelin (104) and 

salicylic acid (62, 64). Pyoverdine, also known as pseudobactin, is the siderophore that 

gives the yellow-green pigmentation to P. fluorescens. Pyoverdine is composed of three 

domains: a dihydroxyquinoline chromophore, a variable peptide chain comprising six to 

twelve amino acids, and a side-chain containing either dicarboxylic acid or a dicarboxylic 

acid amide (16). Since the sequence of the peptide chain is strain-specific, diversity of 
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pyoverdine has been employed to differentiate among Pseudomonas strains. This 

technique is called siderotyping (65, 66). Pyoverdine is optimally produced in a medium 

containing succinate and elevated levels of Zn2+, Cu2+ or Co2+ (89, 95). Pyoverdine 

production contributes to ecological fitness in both bulk soil and rhizosphere soil. 

Complete synthesis of pyoverdine (and its receptors) requires the extracytoplasmic 

function (ECF) alternative sigma factor, PbrA (13, 60, 93, 94). Expression of pbrA is 

negatively controlled at the transcriptional level by the Fur (Ferric uptake regulator) 

repressor. Under high ferric concentrations, +3 iron molecules bind to Fur, forming a 

Fur-ferric complex. This complex has an increased binding affinity toward a consensus 

DNA sequence located in the promoter region of pbrA. The binding between the 

complex and the fur operator region precludes pbrA transcription, which in turn represses 

transcription of pyoverdine genes, pvd (69, 71). PbrA" cells not only exhibit deficiencies 

in pyoverdine synthesis but also display a protease-negative phenotype on skim milk 

agar, suggesting a role in regulation of proteolysis (60). Furthermore, the cytochrome C 

gene, ccmC, is involved in pyoverdine production (7, 27). This concept is supported by 

studies in which a CcmC" strain of Pseudomonas fluorescens showed a reduction in the 

production of two siderophores: pyoverdine and quinolobactin (7, 27). 

The uptake of pyoverdine in P. fluorescens depends on the outer membrane 

receptor PbuA (known as FpvA in P. aeruginosa), and on the TonB-dependent 

membrane transporter (encoded by TonBl, TonB2 and PA0695 in P. aeruginosa). The 

Twin-Arginine Translocation system mediates membrane localization of PbuA, which 

attaches to TonB. PbuA can bind to both free pyoverdine and to ferriated pyoverdine but 

only the latter activates TonB. This results in TonB-mediated transport, which is 
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powered by proton motive force (24). It is assumed that PbuA is a species-specific 

receptor that allows the recognition of 'self pyoverdine-Fe complex and transports it into 

the cell. However, there are reports indicating that PbuA of P. fluorescens and P. putida 

recognizes a broad spectrum heterologous pyoverdine produced by other Pseudomonas 

spp. (16). When cyctoplasmic iron is too high, TonB-dependent iron uptake is inhibited 

by the iron repressed outer membrane protein (IROMP), which prevents the development 

of iron cytotoxicity (70). In summary, P. fluorescens has several iron acquisition 

mechanisms that improve adaptation to soils. 

b.) Carbon metabolism 

Carbon is the backbone of all organic compounds and is used by all organisms to 

generate cellular components. In addition, catabolism of carbon compounds generates 

energy. In general, the TCA, the Embden-Meyerhof and pentose phosphate pathways 

provide energy and the starting substrates for the generation of all building blocks in the 

cell. 

Among heterotrophic bacterial species, P. fluorescens is metabolically diverse. In 

conditions of carbon limitation, P. fluorescens may use a wide range of alternative carbon 

sources, including recalcitrant compounds such as biphenyl, ethylbenzenes (76), 

naphthalene (108), and styrene (53). In bulk soil, P. fluorescens is exposed to carbon 

deprivation, a major stress (37). Such stress activates the sigma factor as, a global 

regulator affecting expression of genes important for survival, antibiotic production, and 

degradation of some organic compounds (46). Note that the source of carbon used for 

growth has a direct effect on cell energetics, morphology and other traits. For example, 

glucose-grown P. fluorescens has a cell envelope with a high lipopolysaccharide density. 
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Interestingly, lipopolysaccharide density has been shown to affect resistance to 

actinomycin D, a compound first isolated from soil microorganisms (105). 

c.) Nitrogen metabolism 

Cells require nitrogen for the synthesis of compounds such as purines, 

pyrimidines, imidazole derivatives and amino acids. In E. coli, the status of cellular 

nitrogen is signaled by the cellular ratio of a-ketoglutarate to glutamine. A high ratio of 

a-ketoglutarate to glutamine indicates insufficient nitrogen and carbon excess. Also, a 

high C/N ratio suggests high cellular energy levels, whereas a low ratio indicates nitrogen 

excess as well as carbon and energy deficiency (26). 

In nitrogen rich cells, ammonia is transformed into glutamine and glutamate by 

glutamine synthetase and glutamate dehydrogenase, respectively. During nitrogen 

deficiency, the synthesis of enzymes that degrade nitrogen-containing compounds, with 

the exception of ammonia, ammonium or glutamine, is induced. This process has been 

denoted as nitrogen regulated response (Ntr) and it is responsible for assimilation of any 

nitrogen containing compound. The central regulators of Ntr are a54 (rpoN) and the two-

component regulators, NtrC (glnG) and NtrB (glnL). NtrB is a phosphokinase and NtrC 

is the transcriptional activator of a54. Nitrogen limitation triggers NtrB-mediated NtrC 

phosphorylation, resulting in the activation of NtrC. Activated NtrC induces the 

expression of glnALG operon, which encodes glutamine synthetase, NtrB and NtrC 

respectively. The raise in the cellular NtrC activates the Ntr regulons (26). 

In rhizosphere where nitrogen is a limiting factor for P.fluorescens growth, 

glutamine and glutamate, found in root exudates, are major sources of nitrogen (40). 

Both amino acids can be transported into the cell via different transportation systems 
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depending on the availability of ammonia. Once in the cell, intracellular glutamate is 

assimilated with a-ketoglutarate into glutamine, the central intermediate of nitrogen 

metabolism (48). 

Interestingly, P. fluorescens strain NCIMB 11764 can utilize cyanide as nitrogen 

sole source during nitrogen limiting conditions. Assimilation of cyanide into ammonia of 

P. fluorescens strain NCIMB 11764 occurs through two pathways: cyanide nitrilase 

(CCN) and cyanide oxygenase (CNO). CCN, which is also known as cyanide 

dihydratase or cyanidase, catalyzes hydrolysis of cyanide in concerted fashion to form 

ammonia and formic acid (25). CNO route, which is more sensitive breaks down 

cyanide into carbon dioxide and ammonia (48). 

d.) Phosphate metabolism 

Phosphorous is an essential element; it is a molecular component of nucleic acids, 

membrane lipids, and biological high-energy molecules such as ATP and NADP. P. 

fluorescens primarly uses inorganic phosphate (Pi) as a source of phosphorous, but can 

also use organophosphates, phosphonates and phosphites. P. fluorescens senses and 

adapts to low phosphorus conditions via the expression of the Pho regulon (68), The 

response to low extracellular Pj is mediated by PhoB-PhoR, a two-component regulatory 

system (68, 84). During Pj starvation, the response regulator PhoB is phosphorylated by 

the sensor kinase PhoR, causing an increase in binding affinity towards the pho box, a 

sequence located in the promoter region of Pj-starvation responsive genes. Binding of 

PhoB to pho boxes facilitates recruitment of a70 and initiates the expression of genes 

involved in Pj transport and assimilation (68). When Pj is sufficient, PhoB interacts with 

the Pst (phosphate transporter system), through an unknown process, prevents PhoR-
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mediated PhoB phosphorylation, and reduces transcription initiation ofpho promoters 

(47). Not surprisingly, a Gfp-based IVET assay detected upregulation of Erwinia 

chrysanthemi phoB during colonization of spinach leaves (85, 110). Furthermore, a P. 

fluorescens phoB' mutant is sensitive to Pj limitation, suggesting it is important in 

survival and ecological succession (68). 

2.4.4 Secondary metabolites 

Unlike primary metabolites, secondary metabolites are organic compounds that 

are not involved in growth per se, but their production provides other fitness benefits in 

complex environments. Well-characterized secondary metabolites produced by P. 

fluorescens include siderophores (see iron acquisition), broad spectrum antimicrobials, 

plant growth promoters and enzymes that are responsible for transport, and catabolism of 

xenobiotic compounds. 

Four well-know broad-spectrum antimicrobial agents of P. fluorescens are 2,4-

diacetylphloroglucinol (DAPG) (106), pyrrolnitrin (45), pyoluteorin (38), phenazines 

(41) and hydrogen cyanide, each of which are encoded by the gene clusters phlABCD (3), 

pltFABCDEFGR (45), prnABCD (32), phzFABCD (61),and hcnABC (9, 79), respectively. 

In vitro analysis of the protozoa Vahlkampfia and C. steinii in the presence of P. 

fluorescens supernatants showed growth inhibition of the protozoa. This finding provides 

support for the concept that P. fluorescens secondary metabolites are used as a defense 

mechanism against protozoa grazing (42). Other studies conducted with 2,4-DAPG" 

strains indicate that this compound suppresses take-all disease in wheat, black root rot in 

tobacco, and tomato wilt, caused by the fungal pathogens Gaeumannomyces graminis, 

Thielaviopsis basicola, and Fusarium oxysporum, respectively (41). Pyrrolnitrin 
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antagonized Bipolaris maydis, a soil-borne pathogen that causes Southern maize leaf 

blight, and Sclerotinia homoecarpa, which causes Dollar spot in turf grass. Pyoluteorin 

and phenazines protect plant roots against damping-off disease caused by Pythium and 

take-all disease. The discussion above suggests that production of secondary metabolites 

is likely to be an adaptation feature in Pseudomonas spp. because it confers antibiosis 

properties against other soil denizens (41). 

Regulation of the synthesis of P. fluorescens secondary metabolites involves both 

global and pathway-specific controls. Four global systems of regulation have been 

described to affect production of secondary metabolites: the two-component regulatory 

system GacS (global antibiotic and cyanide regulator) and GacA (51), the housekeeping 

sigma factor RpoD, the alternative stress-respond sigma factor RpoS (107), and the sigma 

factor RpoN (77). As previously discussed, all four genetic regulators also influence 

other cellular functions. RpoN, RpoS and RpoD positively control P. fluorescens 

antagonistic activities through their interaction with different promoter sequences and 

with core RNA polymerase. Although GacA possesses DNA binding properties, its 

binding locus on the target promoter(s) has not been extensively characterized. It has 

been hypothesized that GacA and GacS positively control transcription through signal 

transduction, but the complete signal transduction pathway has not been fully elucidated 

(12). Recently, it was reported that GacS/A promotes transcription of three small non-

coding RNAs: RsmX, RsmY and RsmZ. An RsmXYZ triple mutant strain displays an 

identical phenotype as a gacS/A double mutant with respect to microbial antagonistic 

acivities. Additionally, research in the GacS/A system indicates that additional 

regulation is mediated by two repressor proteins, RsmA and RsmE. It is speculated that 
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RsmAE mRNA transcripts are bound by RsmXYZ mRNA, which prevents translation of 

RsmAE, resulting in up- regulation of synthesis of secondary metabolites (44). 

Pathway-specific regulation for P. fluorescens antagonistic activities includes 

genetic autoinduction, as well as transcriptional and post-transcriptional regulation (1). 

Supernatants extracted from P. fluorescens late stationary phase cultures demonstrated 

increased transcriptional activity of aphlA- 'LacZ reporter system by 15 to 20 fold 

compared to the control (87). Studies in which HPLC fractions from culture 

supernatants, also used in expression studies, indicated that a fraction corresponding to 

synthetic 2,4-DAPG increasedphlA expression, suggesting that phlA is autoregulated 

(92). In addition, Tn5 experiments revealed a genetic region, denoted as phlF, that 

repressed expression of 2,4-DAPG production in P. fluorescens. The phlF gene is 

located 363 bp upstream of the phi operon. Intergenic region investigations of these two 

loci, phlA and phlF, showed the presence of several inverted repeats, one of which 

contains a a70-30 element, implying a70-mediated gene expression of phlABCD. Further 

investigations confirmed that PhlF exerts negative control of the phi operon at the 

transcriptional level. It is proposed that PhlF dimerizes and binds to the intervening 

inverted repeat sequences and prevents a70 from accessing its -30 element (2). 

2.5 Conclusion 

This chapter has described IVET as an effective technology to identify genes 

expressed in soil conditions. The Pseudomonads and their close relatives have several 

mechanisms that allow them to adapt to soil environments. Genetic regulation of 
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adaptation mechanisms is complex, multilayered and sometimes activated by overlapping 

or redundant processes. 
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CHAPTER 3 

IDENTIFICATION OF ARID SOIL INDUCIBLE GENES IN 

PSEUDOMONAS FLUORESCENS 

3.1 Abstract 

Adaptation of Pseudomonas fluorescens strain PfO-1 in arid soil was investigated. 

Auxotrophy-based in vivo expression technology (IVET) was employed to identify 26 

arid-soil inducible genes in P. fluorescens. Based on analysis of Clusters of Orthologous 

Groups of proteins (COGs), ten genes are involved in metabolism; four genes are 

engaged in information storage and processing; three are signaling and regulation cellular 

processes genes; and nine are poorly characterized or hypothetical. Four genes of 

different functional groups (Pfl01_2143: glutamine synthetase; Pfl01_2660: GTPase 

Subunit of Restriction Endonuclease like; Pfl01_5595: hypothetical protein; and 

Pfl01_3972: putative diguanylate phosphodiesterase EAL domain) were inactivated and 

tested for their influence in soil colonization. Only two of the four strains carrying 

defective alleles showed slight but significant decreases in soil colonization. The growth 

patterns of mutant strains carrying defective alleles on Pfl01_2143 and Pfl01_5595 

showed a decline in arid soil persistence, which were partially restored in strain 

derivatives carrying a complementing plasmid. Overall, these results indicate that 

adaptation of P. fluorescens to soil requires the expression of many genes, perhaps acting 
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cooperatively. We further surmise that nitrogen limitation and metabolism are important 

factors in soil colonization in arid soils. 

3.2 Introduction 

The Pseudomonads are good model systems to examine adaptation to diverse 

environments. They possess a large complement of genes and numerous two-component 

signal transduction systems. One interesting environment that presents many abiotic and 

biotic complexities to bacteria is soil. It has been shown previously that Pseudomonas 

fluorescens has many genes enabling adaptation to agricultural soils (15). Some of the 

genetic regions involved in adaptation have unusual modes of genetic regulation (16). 

This study, identification of arid soil inducible genes in Pseudomonas fluorescens, 

describes the genetic compositions of adaptation of Pseudomonas fluorescens PfO-1 in 

arid soil from the Mojave Desert. A 'dapB marker in combination with a 'lacZ reporter 

system was applied, as part of an auxotrophic-based in vivo expression technology 

(IVET), to 'trap' promoters that are inducible in arid soil, but become inactive in 

laboratory culture medium. The whole genome sequence ofPseudomonas fluorescens, 

deposited at the National Center for Biotechnology Information (NCBI), accommodates 

our search of genes downstream from the 'trapped' promoters. Specifically, we 

hypothesize that adaptation of P. fluorescens PfO-1 to arid soil requires expression of 

genes that are specific, and thus differ from those previously reported in to be expressed 

in agricultural soil. 
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3.3 Material and Methods 

3.3.1 Bacterial strains and growth conditions 

The bacterial strains and plasmids used in this study are described in Table 1. 

Wild type Pseudomonasfluorescens (PfO-1) and PfO-\Adap were grown in aerated Luria-

Bertani (LB) or Pseudomonas Minimum Medium (PMM) at 27°C stirred at 250 rpm. 

The reagents and concentrations of PMM were: 35 mM K2HPO4 (Potassium Phosphate 

Dibasic), 22mM KH2P04 (Potassium Phosphate Monobasic), 8 mM (NH4)2S04 

(Ammonium Sulfate), 1.2 mM MgS04 (Magnesium Sulfate), 25mM C4H4Na204 (Sodium 

Succinate). Escherichia coli strains were grown in aerated LB medium at 37°C stirred at 

250 rpm. Antibiotics were used at the following concentrations: ampicillin, 100 ug/ml; 

kanamycin, 50 ug/ml; nalidixic acid, 10 ug/ml, tetracycline, 10 ug/ml or 25 ug/ml, 

depending on the bacterial strain; carbenicillin, 100 ug/ml, and streptomycin, 20 ug/ml. 

In addition, agar media used to grow PfO-lAdap, or its derivatives, was amended with, 10 

ug/ml of diaminopimelic acid (DAP). Media used to detect P-galactosidase activity 

contained 35 ug/ml of X-Gal (5-bromo-4-chloro-3-indoyl-P-D-galactopyranoside). 

3.3.2 Construction of A Pf0-1 genomic library 

A Pf0-1 genomic library was constructed in the pIVETdap vector (a gift from 

Mark W. Silby) (15). The pIVETdap constructs and their generation is illustrated in 

Figure 3.1. Purified Pf0-1 genomic DNA was extracted from an overnight culture in 

PMM medium, using the Wizard® Genomic DNA Purification Kit (Promega; Madison, 

WI). The genomic DNA was partially digested with Sau3Al (New England Biolabs, 

Beverly, MA) for 18 minutes. The partially digested DNA was electrophoresed in 0.7% 

agarose at 
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98 V for 40 minutes. One to 3 kb fragments were isolated and purified from agarose 

fragments using a Qiagen gel isolation kit (Qiagen,Valencia,CA) and ligated to 

dephosphorylated pIVETdap/5g/II, yielding pIVETdap/Bglll/genomic. pIVETdap/Bglll 

was previously prepared from pIVETdap extracted from an overnight culture of an E. coli 

strain carrying pIVETdap using QIAprep Spin Miniprep Kit (Qiagen, CA). Purified 

pIVETdap was digested with Bglll in the presence of Buffer D at 37°C for 24 hours and 

subsequently inactivated by heat treatment at 80°C for 15 minutes (Promega; Madison, 

Wisconsin). Dephosphorylated pIVETdap/Bglll was prepared by treatment of 

pIVETdap/Bglll with Calf Intestinal Alkaline Phosphatase at 37°C for 24 hours 

(Promega; Madison, Wisconsin). Ligation reactions were transformed into Strain 

DH5o$.pir and selected on nalidixic acid and tetracycline LB medium. A pool of 9375 

clones from several independent ligations was kept at -80°C. Twenty-one random clones 

were subjected to PCR analysis for fragment variations, using pbla as the forward primer 

and pdap as the reverse primer (4). Nineteen out of 21 clones show PCR products of 

various sizes (data is not shown). This suggested that 8482 out of 9375 clones contained 

insertions at the MCS; as predicted, 8482 clones accounted for approximately 94.09% 

coverage of the Pf0-1 genome. 

3.3.3 Construction of PfO-lAdap 

A Pf0-1 mutant strain carrying an in-frame deletion of the dapB gene was 

constructed. The primer pairs DapBl/DapB2 and DapB3/DapB4 were used to amplify 

upstream and downstream regions respectively via PCR under the following conditions: a 

cycle of primary denaturation at 95°C for 5 minutes; 25 cycles of denaturation at 95°C 

for 2 minutes, annealing at 62°C for 1 minute and extension at 72°C for 2 minutes; and 
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one cycle of final extension at 72°C for 5 minutes. The 5' ends of DapB2 and DapB3 

contained complementing linker sequences of 5'-AAACCAGCGGCCGCTATACG-3' 

and 5'-CGTATAGCGGCCGCTGGTTT-3' that were used to anneal both PCR products 

together. Annealed fragments were ligated into the plasmid pSR47s using the Sail and 

Sacl sites, resulting in pJGAlOl, which was transformed into E. coli DH5a^pir. 

Derivatives of pSR47s do not replicate in PfO-1 that lack the TI replication factor (see 

chapter 2) (7). Conjugation of pSR47s derivatives into PfO-1 and kanamycin selection 

demands recombination between the genomic insert in the plasmid and its counterpart in 

the chromosome. A second recombination event, brought about by counter-selection 

based on sensitivity to high levels of sucrose (encoded by sacB), results in recombinant 

strains that contain either the original allele or the plasmid borne version, PCR is later 

used to discern recombinants. Further screening of recombinants included testing growth 

in the absence of Dap. 

3.3.4 Selection of recombinant strains carrying promoters specific to arid soil 

Figure 3.1, 3. 2 and 3.3 shows the genetic scheme used in this study. In figure 

3.2, Clones from the PfO-1 genomic library constructed in pIVETdap were conjugated en 

masse into PfO-1 Adap by triparental matings. Because pIVETdap, carrying the PfO-1 

genomic library, is non-replicative in P. fluorescens, selection for transcojugants requires 

the integration of clones into homologous regions of the PfO-lAdap chromosome, which 

are referred to as "fragments" or "fusions". The fusion strains were selected in LB 

medium, containing antibiotics and DAP. Thus, each transconjugant clone in this step 

represented a fusion strain bearing transcriptionally active or inactive promoters, or non-

promoter fragments upstream of the bicistronic sequence of dapB-lacZ. 
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Approximately 50-200 fusion strains from a single independent conjugation were pooled 

and used in our soil assay. 

3.3.5 Soil assay 

Non-sterile arid soil, obtained from the Nevada Test Site was used for this study. 

Coarse analysis of the soil used here showed 0.91% organic matter, 89.0% sand, 4.1% 

silt, and 6.9% clay, with a pH level of 8.3 (for a more detailed description of other soil 

properties see Titus 2001). A pool of pIVET fusion clones was diluted and adjusted with 

sterile double distilled water to 0.01 OD55o. One ml of the adjusted bacterial suspension, 

containing approximately 5><105 CFU, was inoculated onto a 35 ml Pyrex test tube 

containing 5 g of soil. Preliminary experiments measuring how the test soil loses water 

over a period of 8 days show 18%, 14% and 10% moisture content at 0, 3 and 8 days of 

incubation. A value of 11-19% water content is field capacity, while a water content of 

3-10% is considered the permanent wilting point for a soil with a loamy-sand texture. 

After a 7-day period of incubation at room temperature, 1 gram of inoculated soil 

was extracted and combined with 9 ml of sterile double distilled water to make a soil 

suspension. This solution was sonicated for 30 seconds and 1 ml of the solution was 

subsequently used to inoculate a 35 ml Pyrex test tube containing 5 grams of soil. After 

the assay was incubated for another 7 days at room temperature, the procedure to 

generate a soil suspension was repeated, used for a 10-fold dilution series and plated onto 

selective media containing X-gal and DAP. Plates were incubated at 27°C for 2 days and 

counted. Three types of colonies (blue, pale blue and white) appeared on plates. A blue 

colony indicates that the fusion strain bares a constitutive promoter (Figure 3.3). 
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Fusion strain baring an arid soil 
inducible promoter 

Figure 3.3 Soil assay and white-blue screening. A pool of pi VET fusion clones was 
diluted and adjusted with sterile double distilled water to 0.01 OD550. 1 ml of diluted 
culture was inoculated into 5 grams of non-sterile soil and was incubated at room 
temperature for 7 days. White colonies on X-gal plate were fusion strains carrying arid 
soil inducible promoters. 
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Pale blue colonies represent a fusion strain that contains a weakly upregulated promoter 

during arid soil persistence. White colonies occur when a fusion strains bares a promoter 

that was active in arid soil but became inactive in the culture medium. From each 

independent soil assay, approximately 1% of the colonies on the selective plates appeared 

white, and only one white was selected for further analysis. 

3.3.6 Analysis of soil-activated fragments 

The white colonies were cultured independently in aerated LB broth containing 

DAP at a concentration of 10 ng/ml. This procedure was repeated twice before plasmid 

extraction. This subculture procedure was followed to ensure that a fraction of cells had 

a recombination event that excise the Campbell construct into its plasmid form (13). The 

plasmid preparations were then used to transform E. coli DH5a^.pir. Tetracycline 

resistant transformants were used to study genomic fragments, containing an arid soil 

inducible promoter, by PCR, using the primers pdap and pbla. The PCR products were 1-

3kb. 

3.3.7 Sequence analysis 

All PCR products to be sequenced were sent to the Nevada Genomic Center at the 

University of Nevada, Reno. Each PCR product was sequenced in both directions using 

the pbla, and pdap primers. The two sequences represent the 5' and 3' ends of the 

fragment recovered. Sequences of arid-inducible fragments were then compared to the 

whole genome sequence of Pseudomonas fluorescens at the NCBI database (3). 
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3.3.8 Construction of knock out strains 

Internal sequences of Fr2, Fr4, Fr9 and FrlO were amplified using PfO-1 genomic 

template and primers shown in table 2 under the following conditions: a cycle of primary 

denaturation at 95°C for 5 minutes; 25 cycles of denaturation at 95°C for 2 minutes, 

annealing at 49°C for 1 minutes and extension at 72°C for 1 minute; and one cycle of 

final extension at 72°C for 5 minutes. The 0.5 kb PCR fragements were resolved by 

electrophoreses in 0.7% agarose at 98 V for 20 minutes and purified (Qiagen, CA). 

Purified products were cloned in pGEMTeasy (Promega, WI), and cloned plasmids were 

prepared using QIAprep Spin Miniprep Kit (Qiagen, CA). The pGEMTeasy contructs 

baring Fr2, Fr4, Fr9 and FrlO were digested with EcoRI. Digestions were subsequently 

inactivated by heat treatment at 80°C for 15 minutes (Promega, WI), which yielded 

Fr2/EcoRI, Fr4/EcoRI, Fr9/EcoRI and FrlO/EcoRI respectively. Digested products were 

purified by QIAquick PCR Purification Kit and were ligated to linear dephosphorylated 

pKNOCK/EcoRI (1), by incubating the fragment, the plasmid and ligase at 4°C for 24 

hours in the presence of a buffer provided by LigaFast™ Rapid DNA Ligation System 

(Promega; Madison, Wisconsin). Ligation reaction yielded four derivatives: 

pKNOCK/EcoRI::Fr2, pKNOCK/EcoRI::Fr4, pKNOCK/EcoRI::Fr9 and 

pKNOCK/EcoRI::Frl0, which were transformed into E. coli DH5aA,pir. Linear 

dephosphorylated pKNOCK/EcoRI was used as control and prepared from an overnight 

culture of an E. coli strain carrying pKNOCK. pKNOCK was extracted using QIAprep 

Spin Miniprep Kit (Qiagen, CA) and was incubated with JECORI at 37°C for 24 hours. 

The resulting product was incubated with Calf Intestinal Alkaline Phosphatase at 37°C 

49 



T
ab

le
 3

.2
 P

ri
m

er
s 

Pr
im

er
s 

D
es

cr
ip

tio
n 

R
ef

er
en

ce
 o

r 
So

ur
ce

 

o
 

Pb
la

 
5 

'-C
 A

G
G

G
T

T
A

T
T

G
T

C
T

C
 A

T
G

A
G

C
G

-3
' 

Pd
ap

 
5'

-C
C

G
C

C
T

C
T

A
C

C
A

G
C

G
T

C
T

T
G

C
C

-3
 

D
ap

B
 1

 
5'

- 
G

C
A

T
G

A
G

A
G

C
T

C
A

C
C

C
T

T
T

C
C

G
T

C
A

A
A

G
T

G
C

 -
3'

 
D

ap
B

2 
5'

- 
A

A
A

C
C

A
G

C
G

G
C

C
G

C
T

A
T

A
C

G
T

C
G

C
A

T
G

C
C

G
A

C
T

C
C

 -
3

' 
D

ap
B

3 
5'

- 
C

G
T

A
T

A
G

C
G

G
C

C
G

C
T

G
G

T
T

T
G

T
A

C
G

A
C

A
T

G
C

A
G

G
 -

3 
D

ap
B

4 
5'

- T
T

A
C

A
T

G
T

C
G

A
C

T
T

G
C

T
C

G
C

T
A

C
C

A
G

C
G

G
 -

3'
 

fF
r2

 
5'

- 
G

T
A

A
C

T
G

T
T

G
G

C
C

T
G

G
A

A
 -

3'
 

rF
r2

 
5'

- 
G

C
C

A
A

A
C

G
C

G
A

T
C

A
C

A
 -

3'
 

fF
r4

 
5'

- 
C

C
G

C
G

T
T

A
T

T
C

G
C

A
G

A
 -

3'
 

rF
r4

 
5'

- 
T

G
T

A
A

T
C

A
T

C
C

G
G

C
C

A
G

A
 -

3'
 

fF
r9

 
5'

- G
A

G
C

C
G

A
C

T
G

C
A

C
G

A
A

 -
3*

 
rF

r9
 

5'
- T

G
G

T
C

A
T

G
A

G
T

T
C

G
C

T
G

A
 -

3'
 

fF
rlO

 
5'

- 
C

G
C

A
C

G
T

T
C

A
G

G
C

T
G

A
 -

3'
 

rF
rl

O
 

5'
- 

C
C

A
A

C
A

G
C

C
A

C
G

A
G

C
A

 -
3'

 
fF

r2
co

m
 

5*
- 

A
T

T
G

C
G

G
C

C
G

C
T

C
A

G
G

C
T

T
C

G
G

T
C

A
G

A
T

A
C

C
-3

' 
rF

r2
co

m
 

5'
- C

G
C

A
C

T
A

G
T

C
G

A
T

G
A

A
A

T
T

C
G

C
A

G
C

C
A

T
T

G
A

 -
3'

 
fF

rlO
co

m
 

5'
- G

C
G

C
A

A
T

T
C

T
T

A
C

T
C

T
T

T
G

T
C

C
A

G
C

A
T

G
C

C
A

 -
3'

 
rF

r 1
 O

co
m

 
5'

- A
T

T
G

C
G

G
C

C
G

C
T

A
T

G
A

G
C

A
C

T
A

G
C

G
C

A
G

C
A

C
A

 -
3'

 

(4
) 

(4
) 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 

T
hi

s 
St

ud
y 



for 24 hours (Promega; Madison, Wisconsin) and was purified by QIAquick PCR 

Purification Kit (Qiagen, CA). E. coli DH5aX.pir derivatives containing 

pKNOCK/EcoRI::Fr2, pKNOCK/EcoRI::Fr4, pKNOCK/EcoRI::Fr9 and 

pKNOCK/EcoRI::FrlO were conjugated with PFO-1 in the presence an E. coli pRK2031. 

Transconjugants from each mating were selected for Ampicillin resistance and 

kanamycin resistance, which gave rise to PfO-1 ::pKNOCK Fr2, PfO-1 ::pKNOCK Fr4, 

PfO-l::pKNOCK Fr9 and PfO-l::pKNOCK FrlO respectively. These four strains were 

subject to the arid soil assay previously described; their ability to colonize arid soil was 

measured at 0, 1,3 and 7 days after inoculation. 

3.3.9 Complementation 

Two primer pairs fFr2com/rFr2com and fFrlOcom/rFrlOcom were used to 

amplify Pfl_2143 and Pfl_5593 from the PfO-1 genome, respectively (see table 2). Taq 

Vent DNA polymerase was used under the following conditions: a cycle of primary 

denaturation at 95°C for 5 minutes; 25 cycles of denaturation at 95°C for 2 minutes, 

annealing at 59°C for 1 minutes and extension at 72°C for 2 minutes; and one cycle of 

final extension at 72°C for 5 minutes. The PCR products were electrophoresed in 0.7% 

agarose at 98 V for 30 minutes and 1.3kb and 1.4kb fragments were isolated and purified 

from agarose using a Qiagen gel isolation kit. Purified PCR products were digested with 

either Afllll (Fr2) and Notl or EcoRl and Notl (FrlO) at 37°C for 24 hours (Promega; 

Madison, Wisconsin), yielding Fr2/AflIII/NotI and FrlO/EcoRI/Notl. Purified 

Fr2/AfllII/NotI and FrlO/EcoRI/Notl were ligated to linear dephosphorylated 

pJB866/AflIII/NotI and pJB866/EcoRI/NotI respectively, yielding pJB866Fr2 and 

pJB866::FrlO. pJB866Fr2 and pJB866::FrlO were transformed into E. coli DH5o^pir 
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yielding the strains of E. coli pJB866:.\FV2 and E. coli pJB866FrlO respectively. The E. 

coli strains carrying the complementing fragments were selected in LB plates containing 

5 ug/ml tetracycline and 10 |ig/ml nalidixic acid. The complementing plasmids carried 

by E. coil_pJB866::Fr2 and E. coil_pJB866::FrlO were conjugated into PfO-

l::pKNOCK Fr2 and Pf0-l::pKNOCK FrlO via triparental matings, generating PfO-

1 ::pKNOCK Fr2+Fr2 and Pf0-1 ::pKNOCK FrlO+FrlO. The two complemented strains 

were subject to soil colonization of arid soil. 

3.4 Results and Discussion 

In this experiment, a Pf0-1 genomic library with 95.5% coverage was cloned 

upstream of a promoterless dapB-lacZ gene construct and used in combination with a 

dapB' mutant, constructed by deleting of 807 bp of the dapB gene, to isolate fragments 

that are transcriptionally active in arid soil. The genomic library, cloned into a non-

replicative plasmid was conjugated into the dapB' mutant thereby generating recombinant 

clones that contained promoterless dapB transcriptional fusions placed randomly in the 

chromosome of P. fluorescens. Our assay tested recombinant cells for their ability to 

synthesize lysine in soil conditions and to repress transcription of lacZ on laboratory 

medium. Thirty independent colonies recovered from soil which showed reduced or no 

lacZ activity on laboratory medium were selected for further analysis, which represented 

approximately 1% of all the colonies tested on laboratory medium. 

4.3.1 Recovery and analysis of soil-activated DNA fragments 

Thirty fragments were recovered from the phenotypically white fusions. The 

strategy to recover the genomic fragments of interest is shown in Figure 4. 
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'dapB 'lacZ 1— tet 4 oriR6K mob bla 

bla mob oriR6K II 
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• oriR6K - tet • 

pIVETD 

i 'dapB 'lacZ J 

Plasmid Extraction 

Transformation in E. coli DH5cdpir 

PCR using pdap and pbla primers 

Figure 3.4 Strategy of fragment recovery from a fusion strain 
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Recombination events in PfO-1 derivatives carrying the pIVET recombinants yielded 

plasmid intermediates, generated during subculturing, that were transformed and 

recovered in E. coli. The pIVET clones were then amplified using primers that flanked 

the cloning site (Figure 2). This approach yielded fragments of approximately 1-3 kb in 

size. 

The sequenced fragments were mapped by matching their sequence to the 

Pseudomonas genome sequence at NCBI. Identification of putative arid soil inducible 

promoters was performed using the Softberry promoter locator software, which 

recognized bacterial sigma 70 sequences with 80% accuracy (Table 3.3) (17). However, 

not all the fragments recovered from the fusion strains contained a promoter that was 

recognized by the Softberry software, which suggests the presence of promoters 

recognized by other sigma factors (6). We also employed the PromScan software 

program to locate promoters recognized by sigma 54 (19). Also, indicated in table 3 is 

the locus associated (genome position) for each of the soil-activated fragments in soil 

conditions. Interestingly, our promoter in silico analysis did not show putative promoters 

for fragments 5, 8, 9 and 13. These fragments may be under the control of other sigma 

factors and the identification of their promoters will require further experimentation. In 

addition to the in silico promoter studies, we conducted further analysis of these 

fragments (Table 3.4). Based on functional groups, 22 out of 26 sequences could be 

classified into four major groups: metabolisms, cellular processes, information storage 

and processing and poorly characterized. Five of the 26 fragments have not been 

previously characterized. Interestingly, four fragments, which mapped to Pfl_2143, 

Pfi_2547, Pfl_0250 and Pfl_2186, were recovered twice in independent soil assays. 
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Table 3.3 Fragment analysis 

Fragment Promoter Locator promoter Genomic Position 

Softberry :Y!S:- 2945m 

Softberry 

Softberry/ 
PromScan 

Yes 

;No: 

2428134 

59182265 

Softberry 

Softberry/ 
PromScan 

Yes 

No 

3053004 

2470094 

Softberry 

Softberry/ 
PromScan 

Softberry/ 
PromScan 

No 

No 

Yes 

5009954 

6215466 

4496043 

10 

11 

12 

13 

Softberry 

Softberry 

PromScan 

Softberry/ 
PromScan 

Yes 

Yes 

Yes 

No 

6266901 

6322555 

5025784 

3773146 

14 Softberry Yes 6175349 
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Table 3.3 Fragment analysis (continued) 

Fragment Promoter Locator promoter Genomic Position 

15 

16 

18 

19 

20 

21 

23 

24 

25 

27 

Softberry 

Softberry 

Softberry 

Softberry 

Softberry 

Softberry 

Softberry 

Softberry 

Softberry 

PromScan 

Yes 

Yes 

;;Yes:: 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

1064366 

1243253 

845845 

713425 

3345214 

3161874 

4273273 

2724286 

4812587 

3172705 

28 

29 

PromScan 

Softberry 

Yes 

Yes 

2915005 

267167 

30 PromScan Yes 4434208 
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a.) Analysis of metabolism genes 

We recovered a total of twenty-six different soil-activated fragments in our 

colonization assay. Table 3.4 shows ORFs associated with these fragments grouped by 

ORF number and predicted function in the P. fluorescens genome, the corresponding 

cluster of orthologous group, and the direction of transcription in relation to the 

associated annotated ORF. Ten of the 26 fell within the broad group of metabolism. 

Five fragments from this group map to ORFs associated with transport and metabolism of 

amino acids, lipids and carbohydrates. There are two soil-activated fragments involved 

in energy generation. Our soil assays also yielded one fragment associated with each of 

three following groups: cell membrane/cell wall biogenesis, inorganic ion transport and 

production of secondary metabolites. These results suggest, as expected, that arid soil is 

an environment with low availability of carbon and nitrogen for P. fluorescens. 

Further analysis of the fragments with metabolic functions indicates that eight fragments 

are transcribed in the opposite orientation to the corresponding annotated ORF (Table 4). 

With the exception of fragments 2 (Pfl01_2143, glutamine synthase), 29 (Pfl01_0225, 

amino acid permease) and 28 (Pfl01_2547, glucotranferase), all other fragments are 

transcribed in the opposite orientation to those proposed by the annotated genome. This 

is interesting and suggests a few scenarios. One, the sequences for such fragments may 

need further curation as they may be coding products in the complementary strand, or 

may resemble a promoter when fused to a promoterless dapB gene. Two, synthesis of 

gene products that affect energy production, cell wall biosynthesis, secondary metabolite 

production and carbon metabolism may be repressed in conditions of low availability of 

carbon and nitrogen and that their repression is mediated by antisense mRNA. Fragments 
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28, 12 and 30 are predicted to contain a o promoter and code for a glucotransferase 

(carbon transport), antisense mRNA corresponding to a putative insecticidal protein gene, 

and antisense mRNA that matches the coding sequence of a luciferase gene. This result 

implies that when P. fluorescens experiences Nitrogen starvation pathways for carbon 

uptake are activated and pathways that consume energy or mediate cell envelope 

biosynthesis are repressed. However, similar processes or genes have been reported to be 

activated in soil-influenced environments. For example, elevated transcription of 

fragment 29 (Pfl01_0225; amino acid ABC transporter permease) have been detected in 

P. fluorescens SBW25 exposed to sugar beet rhizopheres (4). Interestingly, a gene 

encoding a TonB periplasmic transmembrane barrel that allows passage of inorganic ions 

via proton-motive force, is transcriptionally activated in sugar beet rhizosphere, however, 

in our case the expression of this gene may be repressed since Fragment 1 transcribes in 

the opposite orientation to this ion transporter. Lastly, similar to our results, a 

homologous gene to Fragment 2 (Pfl01_2143; glutamine synthetase) has been detected to 

be activated when the sulfate-reducing gamma proteobacterium Desulfovibrio 

desulfuricans is exposed to sediments (10). 

b.) Analysis of regulation and signaling genes 

Three cellular processing genes were transcriptionally induced in arid soil. 

Fragment 4 (Pfl01_2660; GTPase Subunit of Restriction Endonuclease), Fragment 11 

(Pfl01_5642; Transcriptional Regulator, RpiR family) and Fragment 9 (Pfl01_3972; 

Putative diguanylate phosphodiesterase). In E. coli, the transcriptional regulator, RpiR, 

negatively controls the expression of ribose phosphate isomerase, RpiB (18). In the 

pentose pathway, RpiB cooperates with RpiA in catalyzing the formation of ribose 5-
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phosphate from ribulose 5-phosphate. Ribose 5-phosphate ribose 5-phosphate is an 

important compound for cellular anabolism of nucleotides, histidine and tryptophan. 

Fragment 4, the GTPase subunit of a putative restriction endonuclease protein contains a 

conserved P-loop NTPase domain. The P-loop NTPases are involved in diverse cellular 

functions through phosphorylation of nucleosides, nucleotides, sugars, coenzyme 

precursors, adenosine 5'-phosphosulfate and polynucleotides (9). Fragment 9, 

diguanylate phosphodiesterase, EAL domain is involved in turnover of an important 

secondary messenger, cyclic dinucleotide 3, 5-cyclic diguanylic acid (c-di-GMP) (14, 

20). Cellular levels of c-di-GMP influence several physiological processes, such as 

cellulose biosynthesis and biofilm formation in the Gram-negative enteric pathogens. 

Levels of this signal molecule also affect survival of Salmonella enterica serovar 

typhimurium in mice and the transition between sessile and motile phenotypes in S. 

typhimurium, P. aeruginosa, and E. coli. Increased cellular concentrations of c-di-GMP 

favor biofilm formation while a decreased in its concentration induces toxin production in 

Vibrio spp. The activation of these genes indicates that adapting to arid soil requires that 

P.fluoresecens engage in biofilm formation and protection of its genome integrity. 

c.) Analysis of information storage and processing genes 

The information process and storage genes are involved in transcription and 

translation, as well as ribosomal structure and biosynthesis. In silico promoter analysis of 

these fragments indicated that Fragment 13 (Pfl01_3287, transcriptional antiterminator 

Pvho) and Fragment 8 (Pfi01_5547, Ribonuclease PH) do not contain canonical a70 or a54 

promoters. Further, BLAST analysis against the annotated P. fluorescens genome 

showed that these two fragments are transcribed as antisene to the predicted ORFs found 
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in these regions. On the other hand, Fragments 18 (Pfl01_0719, LysR type 

transcriptional regulator) and 24 (Pfl01_2366, XRE transcriptional regulator) appeared to 

be transcriptionally controlled by a70 and are transcribed as annotated. Fragment 13 

contains a member of the Rho-dependent transcription termination (ROF), which inhibits 

Rho-dependent transcription termination. Pfl01_0719 is a putative transcriptional 

regulator of the LysR family. The majority of LysR transcription regulator proteins 

appear to be transcription activators and most are known to negatively regulate their own 

expression. Interestingly, Pfl01_0719 sequence is highly conserved among Pseudomonas 

spp with 71%-85% identity and has been reported to regulate production of detoxifying 

gene products in P. putida (12). Furthermore, it has been shown that this regulator 

affects soil survival of P. putida (5) and persistence of P. aeruginosa persistence in rat 

lungs (8). 

Pfl01_5547 is rph gene, which encodes a ribonuclease PH 3' exoribonuclease. 

The rph gene is involved in maturation of tRNA precursors and removes terminal 

nucleotides near the CCA acceptor arm of mature tRNAs (See 

http://www.ncbi.nlm.nih.gov/Structure/cdd/). Interestingly, our result detects 

upregulation of rph antisense, suggesting a decrease in tRNA turn-over in soil 

environments. Pfl01_2366 contains a transcriptional regulator domain of the XRE 

family. The XRE shows helix-turn-helix properties and regulates genes that respond to 

the presence of xenobiotic compounds (See http://www.ncbi.nlm.nih.gov/Strucrure/cdd/). 

Taken together, the activation of genetic regions coding for storage and process of 

information suggests that in arid soil P. fluorescens represses protein synthesis by 
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altering message stability and tRNA turnover and it activates genes that increase 

persistence or that permit the degradation/detoxification of soil compounds. 

d.) Poorly characterized and uncharacterized genes 

This class contains a total of nine fragments that code for either a hypothetical or 

poorly characterized proteins. Interestingly, we also detect sense and antisense 

transcripts in this group. Pfl01_1075, Pfl01_5595, Pfl01_3777, Pfl01_0609, Pfl01_2750 

and Pf01_2901 are transcribed as predicted by the genome annotation. However, 

PflOl 2186, Pfl01_5509 and Pfl01_5256 are transcribed from the opposite strand from 

the one predicted by annotation. Altogether, the soil-activated expression of these genes 

are important for soil survival, however, further studies are necessary to illuminate the 

processes coded by these fragments. 

3.4.2 Soil colonization of mutants and complementation studies 

One gene from each of four COG functional groups were chosen to conduct 

inactivation and complementation analysis. The strains carrying single inactivated alleles 

were constructed by generating internal deletions using the pKNOCK-km system (1) and 

tested for their ability to colonize arid soil. The results for the experiments using 

Fragment 2 and Fragment 10 are shown in Figure 3.5. The genetic inactivations in 

Fragment 4 (Pfl0_2660; GTPase subunit restriction endonuclease-like protein) and 

Fragment 9 (Pfl01_3972; putative diguanylate phosphodiesterase) did result in a 

significant decrease in soil colonization compared to the wild type strain (data not 

shown). Values for soil colonization at 0 days of incubation suggest that cell size, cell 

density per OD unit, the ability attach to soil particles, or a combination of these factors 

varies slightly for the test strains. Nevertheless, at an inoculum density corresponding to 
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Soil colonization OD550 0.01 
Inoculant 

Days after inoculation 

—PfD-l -—PfAdap —Ptt)-l::pKNOCKFr2 —Pf0-l::pKNOCKFil0 

Figure 3.5 Arid soil colonization patterns of knock-out strains and other derivatives. 
Inoculum suspensions were adjusted to 0.01 OD55o. PfD-l::pKNOCK Fr2 contains a 
partial deletion of PA012143, which encodes glutamine synthetase. PfD-l, wild type; 
PfAdap, dap auxotroph. PfD-l::pKNOCK FrlO features a partial deletion of Pfl01_5595, 
which expresses a protein of unknown function. The experiment was repeated three 
times (t test: PO.05). 
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OD55onm 0.01, approximately 105 CFU/ml, Pf0-l::pKNOCK FrlO exhibited a more 

pronounced decline in Log CFU/g of soil than either the wild type strain or PfO-

l::pKNOCK Fr2. As expected, PfAdap showed an even faster decline in Log CFU/g soil 

values than that observed for Pf0-l::pKNOCK Fr2. We also conducted soil colonization 

assays using a lower inoculum density adjusted to ODssonm 0.001, approximately 104 

CFU/g soil. Figure 3.6 shows the growth patterns of the test strains used in this study and 

indicates that inoculum concentration influences soil colonization differently in the test 

strains. While genetic inactivation of Fragment 2 showed similar values in Log CFU/g 

soil to those observed for the wild type at a lower inoculum concentration, it resulted in a 

significant decline when cells were placed in soil at a higher inoculum concentration. On 

the other hand, a significant decline in soil colonization was observed in strains that 

contained genetic defects in Fragment 10 at a low concentration, but not at a high 

concentration. The decline in soil colonization observed in either Pf0-1 ::pKNOCK Fr2 

or Pf0-l::pKNOCK10 was less striking than that observed in the DapB-deficient strain. 

In light of these results, we conducted soil colonization assays for PfO-

1 ::pKNOCK Fr2 and its derivatives at a high inoculum and for Pf0-1 ::pKNOCK10 and 

its derivatives at a low inoculum. Pf0-l::pKNOCK Fr2 and Pf0-l::pKNOCK FrlO were 

complemented in trans by using the plasmid pJB866. Soil colonization of the mutant 

strains and their complemented counterparts is shown in figures 3.7 and 3.8. 

Interestingly, carrying the plasmid used for complementation impaired the ability of the 

Pf0-l::pKNOCK Fr2 and Pf0-l::pKNOCK FrlO to colonize soil; these strains showed a 

significant decrease in Log CFU/g of soil compared to the knockout strains carrying no 

complementing plasmid. 
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Soil Colonization OD550 0.001 
Inoculant 

5 4 

bSJ 

bfi 
4.8 

4.6 

4.4 

4.2 

1 2 3 4 5 6 7 8 

Days after inoculation 

•Pftdap —PfD-1 Pf0-l::pKNOCKFr2 PfD-l::pKNOCKFrl0 

Figure 3.6 Arid soil colonization patterns of knock-out strains and other derivatives. 
Inoculum suspensions were adjusted to 0.001 OD55o. Pf0-l::pKNOCK Fr2 contains a 
partial deletion of Pfl01_2143, which encode glutamine synthetase. Pf0-1, wild type; 
PfAdap, dap auxotroph. Pf0-l::pKNOCK FrlO features a partial deletion of Pfl01_5595, 
which expresses a protein of unknown function. The experiment was repeated three 
times 0 test: PO.05). 
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Figure 3.7 Arid soil colonization patterns of knock-out strains and other derivatives. 
Inoculum suspensions were adjusted to 0.01 OD550. PfD-1, wild type; PfAdap, dap 
auxotroph. The strain PfD-l::pKNOCK Fr2 contains a partial deletion of Pfl01_2143, 
which encodes glutamine synthetase. PfD-1 ::pKNOCK Fr2pJB is a knock-out strain 
complemented with the vector pJB866. PfD-l::pKNOCK Fr2pJB Fr2 is a knock-out 
strain complemented with the vector pJB866 with a full length Pfl01_2143. The 
experiment was repeated three times (7 test: PO.05). 
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Figure 3.8 Arid soil colonization patterns of knock-out strains and other derivatives. 
Inoculum suspensions were adjusted to 0.001 OD550. Pf0-1, wild type; PfAdap, dap 
auxotroph. The strain Pf0-l::pKNOCK FrlO contains a partial deletion of PA015595, 
which encodes a protein of unknown function. Pf0-l::pKNOCK FrlOpJB is a knock-out 
strain complemented with the vector pJB866. Pf0-1 ::pKNOCK FrlOpJB FrlO carries the 
vector pJB866 with a full length Pfl01_2143. The experiment was repeated three times (t 
test: PO.05). 
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Partial complementation was observed when PfO-l::pKNOCK Fr2 and PfO-l::pKNOCK 

FrlO possessed pJB866 with the corresponding complementing gene. Perhaps there is an 

associated cost in fitness by carrying pJB866. This was evident by the presence of a 

subpopulation of cells that lost the plasmid after exposure to soil (data not shown). Our 

soil colonization assays suggest that nitrogen is limiting in arid soil conditions and that 

deficiency of such nutrient compromises the ability to attain and maintain high 

populations in arid soil. Moreover, while nitrogen metabolism, as 

indicated by defects on Fragment 2, appears important for reaching high populations, 

defects in Fragment 10 seem to influence maintenance of soil populations at lower levels. 

Alternatively, it also possible to speculate that defects in the genes encoded by these 

fragments affect desiccation tolerance of soil populations. Previous studies conducted in 

the same system indicate that soil moisture limits growth after three days of incubation. 

This is evident because the observed leveling off of log CFU/g soil after day three of 

incubation is independent of inoculum levels. This is consistent with the observations on 

water loss experiments that were conducted in this soil. Future experiments involving 

different soil moisture and inoculation levels will elucidate the effects of Fragment 2 and 

Fragment 10 on adaptation of P. fluorescens to arid soil. 

3.4.3 Comparison of arid and agricultural soil inducible genes 

Recently Mark W. Silby and Stuart B. Levy identified 22 iiv genes in P. 

fluorescens strain PfO-1 that are expressed in an agricultural soil from Massachusetts, 

using a similar IVET approach (15). Similar to our studies, close to 50 percent of the 

"fusions" reported in that study were found to be transcribed "cryptically". Moreover, 

only three of the 22 showed an effect on early soil colonization. Further comparison of 
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the "agricultural soil" genes and those reported here indicate no overlap in gene 

expression in these two diverse environments. These observations suggest that P. 

fluorescens follows very distinct strategies to establish growing populations and to persist 

when exposed to soil environments and that antisense regulation is a key concept in 

adaptation to diverse environments. 

3.5 Conclusion 

This study identified arid-soil inducible genes that contribute to survival in P. 

fluorescens strain PfO-1. The genetic regions featured here are expressed either as 

predicted by the genome annotation or in the opposite orientation, which suggests 

antisense or mRNA stability as a mean to control gene expression in arid soil. Further 

examination of a select group of four genes indicated that inactivation of two of these 

genes negatively affected the ability of P. fluorescens to colonize arid soil. Sequence 

analysis of these two genes revealed that nitrogen metabolism and uncharacterized 

functions significantly affect adaptation to arid soil. However, the phenotypes conferred 

by these genes were not as striking as the one observed in a lysine auxotroph strain. 

Perhaps adaptation to soil environments requires expression of many genes that act 

additively. This concept may be addressed by conducting future soil colonization studies 

that involve double knock-outs. Another intriguing area of future studies would be the 

characterization of those regions that are transcribed opposite to the annotated ORF as it 

may provide insights into gene regulation in diverse and fluctuating environments. 
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