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ABSTRACT 

Environmental Influence on Brain, Behavior, and Gene Expression in 
Drosophila 

 
by 
 

Xia Wang 
 

Dr. J. Steven de Belle, Examination Committee Chair 
Associate Professor of Biological Sciences 

University of Nevada, Las Vegas 
 

Brain development and behavior are sensitive to environmental stimuli. To 

gain an understanding of how and to what extent environmental variations, 

particularly with regard to thermal stress and sensory input, affect brain 

development, function, and genomic activity, in this dissertation, three 

interrelated studies were conducted in Drosophila melanogaster. 

The first study examined the effects of ecologically-relevant hyperthermia 

stress on development of the Drosophila mushroom body (MB), a conserved 

sensory integration and associative center in the insect brain. A daily 

hyperthermic episode throughout larval and pupal development was shown to 

severely disrupt MB anatomy by reducing intrinsic Kenyon cell neuron numbers, 

but had little effect on other brain structures or general anatomy. This heat stress 

also greatly impaired associative odor learning in adults, despite having little 

effect on memory or sensory acuity. 

In the second study, individual and combined effects of sub-adulthood 

hyperthermia stress, larval density, and early-adulthood living space enrichment 

on brain anatomy and olfactory learning in adult flies were investigated. Both 

larval crowding and early-adulthood space enrichment did not significantly 
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increase brain structure volumes or improved odor learning capacities, and did 

not mitigate heat stress induced MB or learning reductions.  

In the third study, a mild thermal pretreatment was applied to Drosophila 

before the acute thermal stress treatment. The heat pretreatment moderately 

mitigated the hyperthermia-induced MB volume reduction and fluctuating 

asymmetry increment, but did not protect flies from odor learning defects or male 

specific early-stage sterility. Moreover, genome-wide transcript analyses 

revealed that the variation of gene expression pattern in flies exposed to both 

heat pretreatment and heat stress was much smaller than that in flies exposed to 

only heat stress.  A set of heat stress long-term down regulated genes were 

tested through mutant analysis and CG32444 was found to significantly affect 

MB anatomy.  

By establishing empirical linkages between environmental factors, brain 

structures, and behavior, this research demonstrates that brain’s plasticity is 

reflected not only by its ability to change, but also its adaptability to retain 

developing and functioning authenticity in response to environmental variations.  
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CHAPTER 1 

GENERAL INTRODUCTION 

One of the most dramatic discoveries in neural and behavioral biology over 

the past decades is the revealing that brain development is determined by the 

interplay between inherent genetic programs and a wide range of environmental 

exposures and experiences (Rutter et al., 2006, Tau & Peterson, 2009). While 

the DNA code points the direction for the brain to develop, environmental factors 

play important roles in influencing gene regulation, sculpting neural circuitry, and 

shaping the consequent behavior (Eisenberg, 1999, Rutter et al., 2006). Although 

the current scientific view no longer debates "nature vs. nurture," the 

understanding of how and to what extent environmental stimuli, particularly with 

stress and enrichment, affect brain development, behavior, and genome activity 

still rages on (McCain et al., 2007). 

 

Stress 

  Brain development is vulnerable to environmental stress because its 

growing processes, including proliferation, migration, differentiation, 

synaptogenesis, myelination, and apoptosis are temporal and regional critical 

(Rice & Barone, 2000). Noxious experiences during sensitive developmental 

periods have been observed to damage the brain structure and function in many 

different animals as well as in humans (Weinstock, 2001, Welberg & Seckl, 

2001). One example is hyperthermia being a teratogen to cause both physical 

and behavioral birth defects in offspring (Edwards, 1986). Hyperthermia is the 
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first teratogen that has been studied in animals and subsequently proven to be 

teratogenic in humans (Graham et al., 1998). Experimentally hyperthermia 

induced malformations involve many organs and structures (Edwards et al., 

1995). Among these, central nervous system (CNS) defects are the most 

common consequence, displayed as anencephaly, micrencephaly, exencephaly, 

encephalocele, microphthalmia, and other neuroanatomical deficits in a variety of 

mammals, such as rats, mice, rabbits, sheep, pigs, and monkeys (Graham, 

2005). Those animals exhibited associated neurobehavioral abnormalities, 

particularly reduced learning capacities. In humans, maternal hyperthermia 

(febrile illness, sauna use, and hot tub use) has been related to neural tube 

defects (Graham et al., 1998, Miller et al., 1978, Milunsky et al., 1992). For 

example, anencephaly was reported in infants whose mothers had a high fever 

during the neural tube closure critical period in pregnancy (Chambers et al., 

1998). An analysis of 28 dysmorphic children who experienced maternal 

hyperthermia in the first trimester showed that all survivors had mental deficiency 

(Pleet et al., 1981). It has been suggested that cell death and disruption of gene 

induction of neuroblasts proliferation might be the major hyperthermia damages 

in CNS that lead to pathogenic defects (Edwards et al., 1974, Li & Shiota, 1999, 

Upfold, 1989, Wanner et al., 1976). Additionally, the inability to compensate the 

loss of prospective neurons by additional cell divisions probably explains the 

reason that CNS is at most risk from hyperthermia (Edwards, 2006, Edwards et 

al., 1976).   
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Enrichment 

Throughout brain development there are sensitive periods during which 

particular experiences are essential and important to instruct and refine brain 

maturation (Bornstein, 1989, Knudsen, 2004). On one hand, the development, 

organization, and function of particular neural circuits must rely on typical 

environmental sensory inputs. One of the classic findings indicates that during 

early developmental periods of kittens, visual deprivation of one eye dramatically 

reduced the visual cortical cell number responding to the covered eye, and 

increased the number neurons in the open eye (Wiesel & Hubel, 1963). Other 

examples include filial imprinting in the forebrain of chicks (Bolhuis & Honey, 

1998, Ramsay & Hess, 1954, Scheich, 1987), song learning in the forebrain of 

songbirds (Bottjer et al., 1984, Marler, 1970), and auditory space processing in 

the midbrain of barn owls (Brainard & Knudsen, 1998, Knudsen & Knudsen, 

1989). In humans, refinement of visual and auditory pathways in the brain also 

requires optical and acoustic stimulations (Sharma et al., 2007, Vaegan & Taylor, 

1979). On the other hand, environmental enrichment can enhance the 

development and capacity of the brain. Rodents raised in enriched environments 

have showed significant increases in brain weight and size, survival of newborn 

neurons, and spatial learning and memory relative to their impoverished siblings 

(Diamond et al., 1964, Diamond et al., 1966, Fordyce & Farrar, 1991, 

Kempermann et al., 1997, Rosenzweig & Bennett, 1969, Wainwright et al., 

1993). It has been suggested that infants and toddlers require safety, love, 

conversation, and a stimulating environment to complete brain development that 
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is essential for subsequent success in curiosity, creativity, and self-confidence 

(Gable, 2008). Previous studies indicate that a developing brain tends to 

overproduce synapses between neurons at the early postnatal stage. However, 

not all synaptic connections will survive. The synapses infrequently used will be 

eliminated; whereas those frequently used through environmental associated 

experiences will become a permanent part of the brain and continue to generate 

new connections (Glaser, 2000, Singer, 1995). 

 

Model System 

Whereas the effects of environmental stress and enrichment on developing 

nervous system are abundantly documented, the causative influences on specific 

brain targets, consequent behavior, and fundamental mechanism are still not 

very well understood (Loebrich & Nedivi, 2009, Sale et al., 2009).  The revealing 

of how nature and nurture interact on brain construction and maintenance in 

anatomy, behavior and gene activity requires the study of model organisms that 

have (1) well understood CNS development, structure and function, (2) 

demonstrated CNS plasticity in response to environmental variations, and (3) 

established genetic and molecular tools and sequenced genomes. One 

exceptional model system that meets all the requirements is the fruit fly 

Drosophila melanogaster.  

In Drosophila, the CNS originates from a bilaterally symmetrical sheet of 

neuroectodermal cells on the ventral side of the embryo, which develops into the 

ventral nerve cord and the brain (Urbach & Technau, 2008). During embryonic, 
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larval, and pupal developmental phases, neuroblasts undergo discontinuous 

proliferation and differentiation to shape and form the adult brain (Hartenstein et 

al., 2008). The mature Drosophila brain consists of an outer layer (cortex) with 

cell bodies of neurons and glial cells and an inner neuropile with highly branched 

axons, dendrites and synapses, which are assembled into distinct compartments 

(Ito & Awasaki, 2008). The mushroom bodies (MBs) are pairs of neuropils 

implicated in the integration, association, and comparison of olfactory 

conditionings (Davis, 2005, Heisenberg, 1998). Each MB consists of ~2500 

intrinsic neurons called Kenyon Cells (KCs) (Technau & Heisenberg, 1982). The 

cell bodies of KCs are located posterior dorsally in the protocerebrum. Just 

anterior and ventral to the cell bodies, KCs give rise to a dendritic field known as 

the calyx. The axons (fibers) of KCs project to the anterior portion of the brain via 

a dense structure known as the peduncle, where they branch dorsally and 

medially and give rise to the lobes of the MBs (Heisenberg, 1980, Ito & Hotta, 

1992).  Anterior to the MB calyxes, the central complex lies at the centre of the 

cerebrum and is important for motor coordination control and visual memory 

(Hanesch et al., 1989, Liu et al., 2006, Strauss & Heisenberg, 1993). The 

antennal lobes are situated in the anterior ventral part of the brain, with the role 

of receiving odorous chemical signals and translating them into appropriate 

attraction or avoidance behaviors (Laissue & Vosshall, 2008, Stocker et al., 

1990). More peripherally and on each side of the central brain are the optic 

lobes, which perceive visual input from the compound eyes and process the 
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information for higher order motion detection and color vision functions 

(Fischbach & Dittrich, 1989, Fischbach & Hiesinger, 2008).  

Drosophila brain size has been shown to be highly variable and sensitive to 

environmental influences (Heisenberg et al., 1995, Technau, 1984). Heisenberg 

and colleagues (1984 and 1995) reported that limited social context reduced MB 

development in flies reared in isolation or in very small populations; whereas an 

enriched environment improved MB development in flies reared in groups in 

large flight cages with various odor and color sources. Their data imply that most 

neuropil regions in the Drosophila brain are continuously reorganized throughout 

life in response to specific living conditions (Heisenberg et al., 1995). 

Interestingly, short-term memory mutants dnc1 and rut1 did not show the 

experience dependent MB structural plasticity (Balling et al., 1987), which 

indicates that neuronal and behavioral plasticity may share common genetic 

pathways in flies.   

Drosophila has been used for genetic research since circa 1910 (Morgan, 

1910); and the continuous development and application of genetic and molecular 

tools in fly studies have made it one of the most thoroughly understood metazoan 

species (Griffiths, 2000). Based on MB structure and cognition defects in 

mutants, an abundance genes have been isolated that are involved in MB 

development and associative odor learning and memory (de Belle & Heisenberg, 

1996, Dubnau & Tully, 1998, Tully, 1996). Using the GAL4 enhancer trap system 

(Brand & Perrimon, 1993), MB-targeted expression of transgenic genes (Figure 

1-1) has revealed spatial and temporal aspects of MB growth and function 
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(Connolly et al., 1996, Dubnau et al., 2001, Ito et al., 1998, Lee et al., 1999). 

Furthermore, in 2000, nearly 120 megabases (Mb) of euchromatic portion of the 

Drosophila genome (~180 Mb) were sequenced (Release 1) and 13,601 genes 

were annotated and interpreted (Adams et al., 2000); in 2007, another 24 Mb of 

heterochromatin with 230-254 annotated genes were added to the Drosophila 

genome sequence Release 5 (Smith et al., 2007). These findings established 

Drosophila as an excellent model for unraveling the molecular mechanisms 

underlying development, behavior, and many other processes. 

 
 

 
 
Figure 1-1. Drosophila MBs expressing green florescent protein. 
Cytoplasm-targeted green florescent protein expression pattern driven by a MB 
GAL4-expressing element in a whole mount fly brain viewed with a laser 
scanning confocal microscope. 

 

 

Scope of the Study 

The goals of this research are to identify and quantify the singular and 

interactive effects of environmental stress and enrichment on brain development, 
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brain function, and correlated genomic activity through the study of Drosophila 

melanogaster.  

Chapter 2 demonstrates empirical influences of an ecologically-relevant 

thermal stress on MB development and learning potential in Drosophila. I show 

that a daily hyperthermic episode throughout larval and pupal development 

dramatically reduced MB volume by decreasing intrinsic KC neuron numbers, but 

had little effect on other brain structures; and considerably damaged associative 

odor learning in adults, despite having little effect on memory or sensory acuity. 

In Chapter 3, I study the individual and combined effects of environmental 

enrichment and stress on fly brain anatomy and cognitive functions. My data 

show that the previously suggested enrichment in rearing conditions, such as 

enhanced social contact in larval crowding and enlarged living space flight cages 

(Heisenberg et al., 1995) (Technau, 1984), did not increase MB volume and 

learning ability, nor mitigated the MB development deficiency induced by heat 

stress. 

Chapter 4 illustrates the role of a mild thermal pretreatment in protecting flies 

from the acute hyperthermia stress. The heat pretreatment moderately alleviated 

the heat stress caused gene expression variation and MB volume reduction, but 

not the learning deficiency. By using DNA microarray analysis, I identified various 

heat stress-related long-term affected genes, which may have important 

functions in mediating neuroanatomical and behavioral plasticity.  

    My investigation of stress/enrichment mediated affects on MB 

development, function, and correlated gene activity reveals a novel and 
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unprecedented linkage of developmental biology, neurobiology, and gene 

expression with environmental, behavioral, and social sciences.  
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CHAPTER 2 

THERAML DISRUPTION OF MUSHROOM BODY DEVELOPMENT AND ODOR 
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Abstract 

Environmental stress (nutritive, chemical, electromagnetic and thermal) has 

been shown to disrupt central nervous system (CNS) development in every 

model system studied to date. However, empirical linkages between stress, 

specific targets in the brain, and consequences for behavior have rarely been 

established. The present study experimentally demonstrates one such linkage by 

examining the effects of ecologically-relevant thermal stress on development of 

the Drosophila melanogaster mushroom body (MB), a conserved sensory 

integration and associative center in the insect brain. We show that a daily 

hyperthermic episode throughout larval and pupal development (1) severely 

disrupts MB anatomy by reducing intrinsic Kenyon cell (KC) neuron numbers but 

has little effect on other brain structures or general anatomy, and (2) greatly 

impairs associative odor learning in adults, despite having little effect on memory 

or sensory acuity. Hence, heat stress of ecologically relevant duration and 

intensity can impair brain development and learning potential. 
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Introduction 

  Whereas the effects of environmental stress on developing nervous systems 

are well documented (Rice & Barone, 2000, Weinstock, 2001, Welberg & Seckl, 

2001), few studies demonstrate causative influences on specific targets in the 

brain and their consequences for behavior. One familiar exception is the 

volumetric reduction of basal ganglia, cerebellum and corpus callosum due to in 

utero ethanol exposure in mammals (Mattson & Riley, 1998). These effects on 

the developing brain are associated with symptoms of fetal alcohol syndrome in 

humans, such as impaired verbal and visual-spatial learning, attention, reaction 

time, and executive functions (Roebuck et al., 1998). Thermal stress is a more 

common and potentially hazardous feature of the natural environment for 

developing animals. Indeed, hyperthermia is also an especially powerful CNS 

teratogen in the laboratory (Milunsky et al., 1992, Suarez et al., 2004). Adult male 

rats exposed to in utero hyperthermia display aberrant sexual behavior 

associated with disruptions of the sexually dimorphic nucleus of the preoptic area 

and the anteroventral periventricular nucleus (Rhees et al., 1999). However, the 

consequences of natural or ecologically-relevant heat stress for CNS 

development and function in organisms that normally experience extreme 

thermal heterogeneity are unknown. Drosophila melanogaster developing in 

necrotic fruit are subject to daily episodes of intense hyperthermia capable of 

causing significant mortality and disruption of external morphology (Feder, 1997, 

Roberts & Feder, 1999). Here we show that the anatomy and function of 

Drosophila MBs, structures associated with sensory integration and higher 
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processing in insects (de Belle & Kanzaki, 1999, Heisenberg, 2003, Zars et al., 

2000), are acutely sensitive to ecologically-relevant heat stress experienced 

during sub-adult stages.  

Surprisingly little is known about invertebrate CNS and behavioral responses 

to thermal stress. In recent studies with honeybees, workers exposed to low 

temperatures within the range of normal experience showed reduced behavioral 

performance relative to their siblings raised at higher temperatures (Tautz et al., 

2003). Deviations of only one degree from optimum induced striking 

developmental reductions in sensory mode-specific zones of the calyx, the 

dendritic input of the MBs (Groh et al., 2006, Groh et al., 2004). These findings 

imply that temperature-mediated MB plasticity may be important for regulating 

complex behavioral tasks. MBs are also remarkably responsive to sensory 

experience, with exposure to either enriched or deprived artificial environments 

inducing dramatic structural plasticity (Balling et al., 1987, Barth & Heisenberg, 

1997, Heisenberg et al., 1995, Technau, 1984). The current study expands our 

understanding of the acute sensitivity of the MB to stress and to thermal variation 

in particular. The implications of environment and experience for brain 

development and adult behavior are discussed.  

 

Results 

Heat Stress Influence on Development 

D. melanogaster from a large orchard population reared at 23°C were 

exposed daily to a brief heat stress (39.5°C for 35 min) throughout larval and 
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pupal development. This laboratory treatment mimics documented profiles of 

thermal oscillation experienced by developing flies in nature (Feder, 1997, 

Roberts & Feder, 1999), and like such intense natural hyperthermic episodes, 

yielded approximately 60% increases for both mortality and developmental time 

(data not shown). Eclosing heat-stressed (HS) adults nonetheless appeared 

entirely normal, with wild-type walking, flight, activity levels and reproductive 

capacity. However, the brains of these flies showed striking reductions in MB 

neuropil when viewed in paraffin sections under a fluorescence microscope 

(Figure 2-1A). Using planimetric measurements to quantify this observation, we 

found that MB calyx volume (dendritic elements; Figure 2-1B) and pedunculus 

cross section area (axonal elements; Figure 2-1C) were both reduced by 

approximately 30% in HS flies relative to controls (CT) reared at a constant 23°C. 

In considering more peripheral brain structures associated with sensory input, 

antennal lobe (AL) volume was reduced by about 15% (Figure 2-1D), while the 

much larger optic lobes appeared to be unaffected by heat stress treatment 

(Figure 2-1E). The central complex, controlling aspects of motor output in flies 

and other insects (Strauss, 2002), was 9% smaller in heat stressed males only 

(Figure 2-1F). Except for a 6% wing area reduction in females, differences in 

external anatomical features, such as leg length, were indistinguishable between 

HS and CT flies (Figure 2-1G and H).  
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Figure 2-1. Thermal stress disrupts brain development. 
(A) Frontal 7 µm paraffin sections of MB calyces at their broadest point, viewed 
with a fluorescence photo microscope. MBs are smaller in HS flies than in the CT 
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group. (B) Heat stress induced a significant 31% reduction in MB calyx volume 
(F[1,97] = 188.39, P < 0.0001), estimated from planimetric measurements of serial 
sections of HS and CT flies shown in (A). (C) MB pedunculus cross-section area 
(the means of measurements from three serial caudal sections) was reduced by 
29% in HS flies (F[1,97] = 123.43, P < 0.0001). (D) AL volume [derived as in (B)] 
was reduced by 15% in HS flies (F[1,51] = 26.04, P < 0.0001). (E) Optic lobe 
volume [medulla + lobula, derived as in (B)] was not significantly influenced by 
heat stress (F[1,40] = 1.59, P = 0.22). (F) Central complex volume [fan shaped 
body + ellipsoid body, derived as in (B)] was reduced by 9% in HS male flies only 
(F[1,51] = 10.78, P = 0.002). (G) Wing area was reduced by 6% in HS female flies 
only (F[1,60] = 7.04, P = 0.01). (H) Forelimb length was not significantly affected in 
HS flies (F[1,60] = 1.21, P = 0.28). (B–H) Bars are mean ± standard error (SE); n 
indicated on each bar. Different letters designate significant differences (SNK, P 
≤ 0.05). doi:10.1371/journal.pone.0001125.g001 
 

 

In D. melanogaster adults, MBs are paired neuropil structures each consisting 

of about 2500 intrinsic KC neurons (Heisenberg, 2003, Technau & Heisenberg, 

1982). Four equivalent neuroblasts in each hemisphere of the developing brain 

generate three morphologically and spatially distinct classes of KCs in a specific 

temporal order (Armstrong et al., 1998, Ito et al., 1997a, Lee et al., 1999). 

Gamma neurons appear until the mid-3rd instar larval stage, followed by α′β′ 

neurons until puparium formation, with αβ neurons proliferating until adult 

eclosion. To address whether MB hypersensitivity to heat stress might be limited 

to any of these classes of neurons, we examined the brains of flies that were 

heat stressed according to the sequential pattern of KC generation (Figure 2-2A). 

Adult MBs were reduced following heat treatment during all stages of larval and 

pupal development, and corresponding temporal windows of KC proliferation 

(Figure 2-2B). MB calyx reductions induced during γ, α′β′, and αβ neuron 



23 
 

proliferation periods were not significantly different, suggesting that all KC 

classes have equivalent heat stress sensitivity. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Figure 2-2. All classes of Intrinsic MB neurons are sensitive to thermal stress. 
(A) Schematic illustration of heat stress treatment administered 35 min/day 
throughout larval and pupal development, or restricted to specific developmental 
stages that correspond with the birth of MB neurons projecting to γ, α′β′, or αβ-
lobes. (B) MB calyx volume measurements (derived as in figure 1B). All three 
classes of MB neurons are sensitive to heat stress (F[4,138] = 17.92, P < 0.0001). 
Calyx volume in flies receiving daily episodes of heat stress treatment throughout 
development reflected additive reductions of each of the three neuron classes 
exposed to heat stress as shown in (A). Bars are mean ± SE; n indicated on 
each bar. Different letters designate significant differences (SNK, P ≤ 0.05). 
doi:10.1371/journal.pone.0001125.g002 
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To determine whether MB reduction in HS flies was due to either smaller or 

fewer KCs, we used the GAL4/UAS reporter gene system (Brand & Perrimon, 

1993, Yang et al., 1995) to visualize MB architecture (Ito et al., 1997b, Yang et 

al., 1995, Zars et al., 2000) and count KC perikarya (Akalal et al., 2006, Mader, 

2004). In these experiments, cytoplasm-targeted green fluorescent protein (GFP) 

expressed by the T10 element (Ahmad & Henikoff, 2001) was used to label KC 

projection patterns, and nuclear-localized GFP expressed by the nls14 element 

(Robertson et al., 2003) was used to label nuclei in KC perikarya. MBs in HS flies 

bearing T10 driven by one of three different P[GAL4] drivers (247 (Schulz et al., 

1996), 201Y (Yang et al., 1995), or c739 (Yang et al., 1995)) appeared slightly 

smaller, but otherwise normal in all respects. We observed paired neuropiles with 

wild-type structural features, including KC clusters, calyces, pedunculi, and lobes 

(Figure 2-3A). In contrast, there were fewer labeled KCs counted in HS P[GAL4]/ 

nls14 flies than in CT groups (Figure 2-3B). Cell numbers differed by 29% in 

247/nls14, 36% in 201Y/nls14, and 57% in c739/nls14 (Figure 2-3C). Initially, 

heat stress appeared to influence numbers of GFP-expressing cells in some 

genetic backgrounds more than others, suggesting a possible distinction 

between KC classes. However, the analysis of variance (ANOVA) genotype × 

treatment interaction component was not significant (F[1,104] = 2.69, P = 0.07), 

indicating that intrinsic MB neurons have similar heat stress responses. Thus, 

heat stress disrupts MB development by either blocking KC proliferation or 

triggering abnormal KC death. 
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Figure 2-3. Thermal stress disrupts MB development by reducing KC numbers.  
 (A) Cytoplasm-targeted GFP expression patterns driven by different GAL4-
expressing elements in whole mount brains of CT (top) and HS (bottom) flies 
viewed with a laser scanning confocal microscope. All MB structural elements 
represented in each of three CT P[GAL4]/T10 genotypes were present (labeled) 
but clearly diminished in HS flies. We noted that cytoplasm-targeted GFP 
revealed low-level enhancer activity (labeled in blue) that is often not observed 
when targeting GFP expression to membranes (Krashes et al., 2007, Pascual & 
Preat, 2001). (B) Nuclear-targeted GFP expression patterns driven by different 
GAL4-expressing elements in whole mount brains of CT (top) and HS (bottom) 
flies viewed with a laser scanning confocal microscope. We observed fewer KCs 
in the three HS P[GAL4]/nls14 genotypes compared with CT flies. (C) KCs 
counted in the brains of flies represented in (B). A two-way ANOVA found highly 
significant effects of genotype (F[2,104] = 42.36, P < 0.0001) and treatment (F[1,104] 

= 143.00, P < 0.0001), while the interaction component was not significant 
(F[1,104] = 2.69, P = 0.07). KC numbers were reduced by 29% in 247/ nls14, 36% 
in 201Y/nls14 and 57% in c739/nls14. Bars are mean ± SE; n indicated on each 
bar. Different letters designate significant differences (SNK, P ≤ 0.05). 
doi:10.1371/journal.pone.0001125.g003 



26 
 

Heat Stress Influence on Behavior  

 Since MBs are a secondary olfactory neuropil essential for mediating 

associative odor learning and memory in Drosophila (de Belle & Kanzaki, 1999, 

Heisenberg, 2003, Zars et al., 2000), we compared the behavior of HS and CT 

flies using a Pavlovian conditioning assay (de Belle & Heisenberg, 1994, de Belle 

& Heisenberg, 1996, Tully & Quinn, 1985). Learning of odors paired with electric 

shock was profoundly reduced (28%) in HS flies relative to CT flies (Figure 2-4A). 

While memory appears to decay more rapidly in HS flies, this effect is minor 

since the ANOVA treatment6time interaction component was not significant 

(F[2,56] = 2.00, P = 0.15). Performance indices averaged over all retention 

intervals for HS flies were 53% of the CT group. Similar olfactory conditioning 

defects and rates of memory decay have been described for several Drosophila 

mutants (Margulies et al., 2005, Mcguire et al., 2005), including those with 

observed reductions in MB anatomy (de Belle & Heisenberg, 1996, de Belle & 

Kanzaki, 1999, Pinto et al., 1999).  

Ablation studies show that Drosophila MBs are not required for normal 

responses to electric shock or noxious odors (de Belle & Heisenberg, 1994). 

Although heat stress does have a minor influence on the development of other 

structures (Figure 2-1D, F and G), and lengthens developmental time (Figure 2-

2A), HS flies did not have sensory acuity defects in control tests relevant to our 

conditioning paradigm. They avoided 80 V dc shock pulses normally, and 

responded to 120 V dc shock with only a slight reduction compared to CT flies 

(Figure 2-4B). Similarly, HS flies showed normal avoidance of both 4-
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methylcyclohexanol (MCH) and 3-octanol (OCT) odorants at the 10 × 10−3 

dilutions used in classical conditioning (Figure 2-4C and D). Responses to a 5 × 

10−3 
dilution of MCH were slightly reduced (Figure 2-4C). Thus, low performance 

of HS flies in conditioning experiments was not a secondary result of impaired 

shock reactivity or olfactory capacity as a consequence of AL reduction, but due 

to weak association of these stimuli paired during training. 

 
 

 

 
Figure 2-4. Associative odor learning is impaired by thermal stress. 
(A) Olfactory learning and memory. The mean performance index calculated for 
HS flies was lower than CT flies at all time intervals. A two-way ANOVA detected 
significant effects of treatment (F[1,56] = 101.25, P < 0.0001) and time (F[2,56] = 
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41.93, P < 0.0001), while the interaction component was not significant; F[2,56] = 
2.00, P = 0.15). (B) Shock reactivity. HS flies showed normal avoidance of 80 V 
dc electric shock used in (A) and a slight reduction in avoidance at 120 V (F[1,36] = 
6.23, P = 0.017). (C) MCH odor avoidance. HS flies demonstrated a normal 

avoidance of MCH at the 1610
22 

dilution used in (A) and a slight reduction in 
avoidance at the 5610

23 
dilution (F[1,37] = 14.72, P = 0.0005). (D) OCT odor 

avoidance. HS flies demonstrated normal avoidance responses to OCT at both 
dilutions. (A–D) Symbols or bars are mean ± SE; n indicated above each symbol 
or on each bar. Different letters designate significant differences (SNK, P ≤ 0.05). 
doi:10.1371/journal.pone.0001125.g004 

 

 

Discussion 

This study demonstrates that adult Drosophila brain anatomy and behavior 

are especially sensitive to acute, ecologically relevant heat stress during 

development. The effect was most evident in the MBs, which were smaller due to 

fewer KCs, but otherwise appeared structurally normal. Calyx volume 

measurements in flies recently derived from a natural population and counts of 

GFP-labeled KCs in P[GAL4]/nls14 brains suggested equivalent heat stress 

responses for all three classes of intrinsic neurons and corresponding γ, α′β′, and 

αβ lobe systems. HS flies were also strongly impaired in associative odor 

learning, while memory decay, sensory acuity and basic motor behavior 

remained largely unaffected. Since odor avoidance was essentially normal in HS 

flies, associative functions that might be attributed to the ALs (Yu et al., 2004) 

were probably not markedly affected by heat stress. We saw no evidence of 

necrosis in paraffin sections of HS fly brains (Figure 2-1A), and consequently 

favor the view that impaired KC proliferation, rather than aberrant KC mortality, 

was the source of MB and olfactory conditioning reduction. KCs may be 
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especially sensitive to heat stress because they are derived from only four 

progenitor cells (of more than 100 in each brain hemisphere (Urbach et al., 

2003)) that divide asymmetrically (Campos-Ortega, 1993) and continuously from 

embryo until adult eclosion (Ito & Hotta, 1992, Lee et al., 1999). AL local and 

projection interneurons follow a similar temporal course of development (Ito & 

Hotta, 1992, Stocker et al., 1997) and for this reason might be expected to show 

a similar sensitivity to heat stress. On the other hand, enhanced structural 

plasticity may be a fundamental feature of MB neurons, reflecting cellular 

changes that are particularly responsive to convergent sensory input, and having 

a profound impact on the behavioral characteristics of adults. The latter 

explanation may be more likely, since the optic lobes (about half of the brain) 

were evidently not affected by heat stress occurring throughout their 

development. The source of these stress response differences in the brain is a 

focus of our ongoing investigation. 

A prevailing neural circuit model for olfactory discrimination and learning 

proposes that KCs serve as temporal coincidence detectors for odors paired with 

inherently meaningful or conditioned reinforcement (Gerber et al., 2004, 

Heisenberg, 2003). KCs might learn and represent odors as memories in their 

signaling to downstream neurons. In consideration of this model, we expect that 

training flies to avoid one simple odor will recruit relatively few neurons, whereas 

the vastly more complex natural olfactory environment should engage large 

overlapping KC arrays. In HS flies, fewer KCs had a diminished capacity for odor 

learning, but these remaining neurons had superficially normal projections and 
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sustained relatively normal representations of odor memory. Correlated 

reductions of MB structure (Figure 2-1B and C, Figure 2-2B, Figure 2-3C) and 

learning (Figure 2-4A) by about 30% may reflect a simple relationship between 

the numbers of KCs capable of representing specific conditioned odors and 

learning performance, at least for the pure odorants used in our experiments. 

Moreover, since both MB structure and memory decay were apparently spared in 

HS flies, we argue that normal KC projection and connectivity are critical for 

memory storage and retrieval. Several observations support these simple 

arguments. In MB ablation studies, Drosophila larvae fed the cytostatic agent 

hydroxyurea developed into adults having only a small fraction of the normal KC 

complement and correlated reductions in odor learning (de Belle & Heisenberg, 

1994). A number of these flies had partially ablated MBs that were reduced in 

size but otherwise appeared anatomically normal. Similarly, mutations that 

reduce MB neuropil but have no obvious additional structural phenotypes also 

impair olfactory conditioning but not memory (de Belle & Heisenberg, 1996, Pinto 

et al., 1999). More recent transgenic studies showed that synaptic transmission 

from KC terminals in the lobes is required for memory retrieval but not acquisition 

or storage (Dubnau et al., 2001, Mcguire et al., 2001). In view of these 

observations, we propose that lower memory scores in HS flies reflects a 

reduced sum of conditioned KC signals received by extrinsic neurons 

downstream of the MBs. 

Heat stress appears to phenocopy defects described for several Drosophila 

MB anatomy mutants (de Belle & Heisenberg, 1996, de Belle & Kanzaki, 1999, 
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Heisenberg et al., 1985), providing a practical non-invasive tool for dissecting 

brain structure-function relationships. The significance of different KC classes, 

with their discrete temporal and spatial patterns of proliferation and projection to 

the three lobe systems of the Drosophila MB, is largely unknown. Mutant and 

transgenic studies suggest a possible distinction between them as neural 

substrates for representations of memories consolidated at different stages of 

development (Balling et al., 1987), discrete phases of memory, (Akalal et al., 

2006, Isabel et al., 2004, Krashes et al., 2007, Margulies et al., 2005, Pascual & 

Preat, 2001, Zars et al., 2000), or conduits to extrinsic sites downstream of the 

MBs for memory storage and retrieval (Dubnau et al., 2001, Mcguire et al., 

2001). Since temporal windows of heat stress can reliably induce significant and 

equivalent reductions of each KC class (figure 2, figure 3), this method should 

distinguish behavioral functions of these neurons and MB structures formed by 

their projections. 

Although the mechanism(s) by which heat stress disrupts neural development 

and behavior are unknown, the apparent phenocopy of MB mutant defects may 

provide important clues for understanding how the brain responds to normal 

environmental variation. Our results suggest that KC proliferation during 

development is especially sensitive, while KC plasticity in adults may respond 

with more subtle changes (Balling et al., 1987, Barth & Heisenberg, 1997, 

Heisenberg et al., 1995, Technau, 1984). Whole genome analyses (e.g., DNA 

microarrays) should identify potential links between both types of neuronal 
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plasticity and environmental triggers of gene activity that may either drive or 

accompany them. 

In the wild, flies encounter stress from many sources, but also receive a 

broad spectrum of complementary enrichment. Stimulating environments 

augment MB development in a learning mechanism-dependent manner (Balling 

et al., 1987), while stressful environments disrupt MB anatomy and impair 

function. Hence, genetic influences and a combination of beneficial and 

deleterious environmental exposures during development likely have significant 

roles in determining the neural and behavioral characteristics of adults. Since all 

nervous systems demonstrate acute sensitivity to environmental stress, our 

findings have broad implications for brain development and cognitive ability in all 

animals, including humans. 

 

Materials and Methods 

Flies 

Wild-type D. melanogaster adults were collected from a large orchard 

population in southern Nevada. The lineage of these flies was used for all 

paraffin histology and behavior. We generated heterozygous GFP-expressing 

flies for confocal laser scanning microscopy by crossing either P[UAS-

GFP.S65T]T10 (T10; Bloomington Stock Center) (Ahmad & Henikoff, 2001) or 

P[UAS-GFP.nls]14 (nls14; Bloomington Stock Center) (Robertson et al., 2003) 

with three different enhancer trap strains in which GAL4 expression was reported 

in distinct subsets of MB neurons: P[Mef2-GAL4.247] (247; γ, α′β′, and αβ lobe 
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neurons; Robert Schulz) (Schulz et al., 1996), P[GAL4]201Y (201Y; γ and αβ 

lobe neurons; Douglas Armstrong) (Yang et al., 1995), or P[GAL4]c739 (c739; αβ 

lobe neurons; Douglas Armstrong) (Yang et al., 1995). Cytoplasm-targeted GFP 

expression was examined in HS and CT 247/T10, 201Y/T10 and c739/T10 

heterozygotes. Nuclear-localized GFP expression in HS and CT 247/nls14, 

201Y/nls14, and C739/nls14 heterozygotes was used to count KC nuclei. We 

cultured flies at equal density in plastic vials with cotton plugs on 8 ml of standard 

Drosophila cornmeal and molasses medium at 23°C (except for heat st ress 

treatment, below). 

Heat Stress 

HS treatment consisted of a single daily 39.5°C pulse fo r 35 min throughout 

larval and pupal development. We administered HS by immersing culture vials of 

flies in a circulating water bath. In staged HS experiments, daily heat pulses were 

limited to (1) early 1st instar to early 3rd instar, stressing γ-lobe neuron 

development, (2) late 3rd instar to puparium formation, stressing α′β′-lobe neuron 

development, and (3) pupal development, stressing αβ-lobe neuron 

development, respectively.  

Histology and Anatomy 

We used paraffin mass histology to process flies for neuroanatomical 

analyses as described previously (de Belle & Heisenberg, 1994, de Belle & 

Heisenberg, 1996, Heisenberg & Bohl, 1979). Three-4-day-old Drosophila adults 

were cold-anaesthetised and placed in collars. They were then fixed in Carnoy’s 

solution, dehydrated in ethanol, embedded in paraffin, cut in 7 µm serial frontal 
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sections, and photographed under a fluorescence microscope with an AXIOCAM 

digital camera (Zeiss). Brain structure volumes were derived from planimetric 

measurements of serially-sectioned brains (de Belle & Heisenberg, 1994, de 

Belle & Heisenberg, 1996) using AXIOVISION software (Zeiss). Pedunculus 

cross section area was derived from the means of measurements taken from 

three serial sections anterior to the calyx. The means of all paired structures 

were used for each fly. To examine GFP expression in whole mounted fly brains, 

heads were dissected in PBS and maintained in FOCUS-CLEAR (Pacgen) for 15 

min. They were then mounted and viewed under a fluorescence microscope with 

a far-blue (FITC) filter. Z-series confocal images were collected (Zeiss LSM510) 

to cover the whole MB for viewing structure (1.5 µm virtual sections), or perikarya 

clusters (0.75 µm virtual sections) for counting cells. GFP-labeled KC nuclei in 

HS and CT brains were counted manually in every 10th section with the 

assistance of IMAGE-J software (Abramoff, 2004), ensuring that all perikarya 

(diameters, 6 µm) in each of these sections would each be counted only once.  

We measured right wing area and right fore limb length to assess the effects 

of heat stress on external anatomy. Appendages were removed using micro 

scissors from cold-anaesthetised flies being processed for paraffin mass 

histology (above). These were mounted on glass microscope slides with cover 

slips sealed with nail polish. Images were photographed under a light microscope 

with an AXIOCAM digital camera and measured using AXIOVISION software 

(Zeiss).  
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Behavior 

Associative odor learning, memory and sensory acuity controls were assayed 

using a Pavlovian conditioning T-maze paradigm as described previously (de 

Belle & Heisenberg, 1994, de Belle & Heisenberg, 1996, Tully & Quinn, 1985). 

Groups of approximately 100 3-4day-old flies were aspirated into a training tube 

embedded with an internal double-wound electrifiable copper grid. To assay odor 

learning and memory, flies were exposed to an air current (750 ml/min) bubbled 

through one odor [1 × 10−2 dilutions of either MCH (Sigma) or OCT (Sigma) in 

heavy mineral oil (Sigma)] paired temporally with 1.25 sec pulses of 80V dc 

electric shock delivered every 5 sec for 1 min. They were then exposed to an air 

current bubbled through a second odor without electric shock for an additional 1 

min. We assessed learning and memory by presenting trained flies with both 

odors in converging air currents for 2 min. Performance was measured as a 

function of shock-paired odor avoidance at a variety of time points ranging from 1 

min (giving an approximation of learning at the earliest testable time in the T-

maze) to 3 hr after training. A second group of flies was trained in a reciprocal 

manner and tested. Scores from both tests were averaged to account for odor 

preferences among different populations of flies. In electric shock-avoidance 

controls, one arm of the T-maze was electrified with 80 or 120 V dc for 2 min. In 

odor-avoidance controls, flies were exposed to 5 × 10−3 or 1 × 10−2 dilutions of 

MCH or OCT versus air for 2 min. A performance index represents the average 

normalized percent avoidance of the shock-paired odor (learning, memory) or 

individual stimulus (sensory acuity).  
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Statistical Analysis 

The Shapiro-Wilk test (Zar, 1996) showed that all 57 data samples in this 

report are distributed normally. Comparisons were made using ANOVA followed 

by the Student-Numan-Keuls (SNK) multiple range test (Zar, 1996) (SAS Institute 

software). 

 

Acknowledgments 

We are grateful for flies from Douglas Armstrong, Robert Shultz and the 

Bloomington Drosophila Stock Center. T-mazes and components were 

meticulously constructed by Hans Kaderschabek. We thank Andrew Andres and 

Michael Stebbins for reading preliminary versions of the manuscript, and JSdB 

and SPR lab members for helpful discussion. Part of this work was conducted by 

JSdB while serving as a Visiting Scientist at the National Science Foundation. 

Author Contributions 

Conceived and designed the experiments: Jd XW SR. Performed the 

experiments: XW DG. Analyzed the data: Jd XW SR. Contributed 

reagents/materials/analysis tools: Jd SR. Wrote the paper: Jd XW SR. 

 

References 

Abramoff, M.D., Magelhaes, P.J., Ram, S.J. (2004) Image Processing with 
ImageJ. Biophotonics International, 11, 36-42. 

Ahmad, K. & Henikoff, S. (2001) Modulation of a transcription factor 
counteracts heterochromatic gene silencing in Drosophila. Cell, 104, 839-847. 



37 
 

Akalal, D.B., Wilson, C.F., Zong, L., Tanaka, N.K., Ito, K. & Davis, R.L. (2006) 
Roles for Drosophila mushroom body neurons in olfactory learning and memory. 
Learn Mem, 13, 659-668. 

Armstrong, J.D., de Belle, J.S., Wang, Z. & Kaiser, K. (1998) Metamorphosis 
of the mushroom bodies; large-scale rearrangements of the neural substrates for 
associative learning and memory in Drosophila. Learn Mem, 5, 102-114. 

Balling, A., Technau, G.M. & Heisenberg, M. (1987) Are the structural 
changes in adult Drosophila mushroom bodies memory traces? Studies on 
biochemical learning mutants. J Neurogenet, 4, 65-73. 

Barth, M. & Heisenberg, M. (1997) Vision affects mushroom bodies and 
central complex in Drosophila melanogaster. Learn Mem, 4, 219-229. 

Brand, A.H. & Perrimon, N. (1993) Targeted gene expression as a means of 
altering cell fates and generating dominant phenotypes. Development, 118, 401-
415. 

Campos-Ortega, J.A. (1993) Mechanisms of early neurogenesis in Drosophila 
melanogaster. Journal of neurobiology, 24, 1305-1327. 

de Belle, J.S. & Heisenberg, M. (1994) Associative odor learning in 
Drosophila abolished by chemical ablation of mushroom bodies. Science, 263, 
692-695. 

de Belle, J.S. & Heisenberg, M. (1996) Expression of Drosophila mushroom 
body mutations in alternative genetic backgrounds: a case study of the 
mushroom body miniature gene (mbm). Proc Natl Acad Sci U S A, 93, 9875-
9880. 

de Belle, J.S. & Kanzaki, R. (1999) Protocerebral olfactory processing. Insect 
Olfaction (BS Hansson, ed). Springer Verlag, Stuttgart, pp. 243-281. 

Dubnau, J., Grady, L., Kitamoto, T. & Tully, T. (2001) Disruption of 
neurotransmission in Drosophila mushroom body blocks retrieval but not 
acquisition of memory. Nature, 411, 476-480. 



38 
 

Feder, M.E. (1997) Necrotic fruit: A novel model system for thermal 
ecologists. Journal of Thermal Biology, 22, 1-9. 

Gerber, B., Tanimoto, H. & Heisenberg, M. (2004) An engram found? 
Evaluating the evidence from fruit flies. Current opinion in neurobiology, 14, 737-
744. 

Groh, C., Ahrens, D. & Rossler, W. (2006) Environment- and age-dependent 
plasticity of synaptic complexes in the mushroom bodies of honeybee queens. 
Brain, behavior and evolution, 68, 1-14. 

Groh, C., Tautz, J. & Rossler, W. (2004) Synaptic organization in the adult 
honey bee brain is influenced by brood-temperature control during pupal 
development. Proc Natl Acad Sci U S A, 101, 4268-4273. 

Heisenberg, M. (2003) Mushroom body memoir: from maps to models. Nature 
reviews, 4, 266-275. 

Heisenberg, M. & Bohl, K. (1979) Isolation of Anatomical Brain Mutants of 
Drosophila by Histological Means. Z Naturforsch C, 34, 143-147. 

Heisenberg, M., Borst, A., Wagner, S. & Byers, D. (1985) Drosophila 
mushroom body mutants are deficient in olfactory learning. J Neurogenet, 2, 1-
30. 

Heisenberg, M., Heusipp, M. & Wanke, C. (1995) Structural plasticity in the 
Drosophila brain. J Neurosci, 15, 1951-1960. 

Isabel, G., Pascual, A. & Preat, T. (2004) Exclusive consolidated memory 
phases in Drosophila. Science, 304, 1024-1027. 

Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. (1997a) The 
Drosophila mushroom body is a quadruple structure of clonal units each of which 
contains a virtually identical set of neurones and glial cells. Development, 124, 
761-771. 

Ito, K. & Hotta, Y. (1992) Proliferation pattern of postembryonic neuroblasts in 
the brain of Drosophila melanogaster. Dev Biol, 149, 134-148. 



39 
 

Ito, K., Sass, H., Urban, J., Hofbauer, A. & Schneuwly, S. (1997b) GAL4-
responsive UAS-tau as a tool for studying the anatomy and development of the 
Drosophila central nervous system. Cell Tissue Res, 290, 1-10. 

Krashes, M.J., Keene, A.C., Leung, B., Armstrong, J.D. & Waddell, S. (2007) 
Sequential use of mushroom body neuron subsets during drosophila odor 
memory processing. Neuron, 53, 103-115. 

Lee, T., Lee, A. & Luo, L. (1999) Development of the Drosophila mushroom 
bodies: sequential generation of three distinct types of neurons from a 
neuroblast. Development, 126, 4065-4076. 

Mader, M.T. (2004) Analyse von Expressionsmustern in den Pilsko¨rpern von 
Drosophila melanogaster. Diplom thesis, Wu¨rzburg, Germany, Universita¨ t 

Wu¨rzburg.  

Margulies, C., Tully, T. & Dubnau, J. (2005) Deconstructing memory in 
Drosophila. Curr Biol, 15, R700-713. 

Mattson, S.N. & Riley, E.P. (1998) A review of the neurobehavioral deficits in 
children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcoholism, 
clinical and experimental research, 22, 279-294. 

McGuire, S.E., Deshazer, M. & Davis, R.L. (2005) Thirty years of olfactory 
learning and memory research in Drosophila melanogaster. Prog Neurobiol, 76, 
328-347. 

McGuire, S.E., Le, P.T. & Davis, R.L. (2001) The role of Drosophila 
mushroom body signaling in olfactory memory. Science, 293, 1330-1333. 

Milunsky, A., Ulcickas, M., Rothman, K.J., Willett, W., Jick, S.S. & Jick, H. 
(1992) Maternal heat exposure and neural tube defects. Jama, 268, 882-885. 

Pascual, A. & Preat, T. (2001) Localization of long-term memory within the 
Drosophila mushroom body. Science, 294, 1115-1117. 

Pinto, S., Quintana, D.G., Smith, P., Mihalek, R.M., Hou, Z.H., Boynton, S., 
Jones, C.J., Hendricks, M., Velinzon, K., Wohlschlegel, J.A., Austin, R.J., Lane, 
W.S., Tully, T. & Dutta, A. (1999) latheo encodes a subunit of the origin 



40 
 

recognition complex and disrupts neuronal proliferation and adult olfactory 
memory when mutant. Neuron, 23, 45-54. 

Rhees, R.W., Al-Saleh, H.N., Kinghorn, E.W., Fleming, D.E. & Lephart, E.D. 
(1999) Relationship between sexual behavior and sexually dimorphic structures 
in the anterior hypothalamus in control and prenatally stressed male rats. Brain 
research bulletin, 50, 193-199. 

Rice, D. & Barone, S., Jr. (2000) Critical periods of vulnerability for the 
developing nervous system: evidence from humans and animal models. Environ 
Health Perspect, 108 Suppl 3, 511-533. 

Roberts, S.P. & Feder, M.E. (1999) Natural hyperthermia and expression of 
the heat shock protein Hsp70 affect developmental abnormalities in Drosophila 
melanogaster. Oecologia, 121, 323-329. 

Robertson, K., Mergliano, J. & Minden, J.S. (2003) Dissecting Drosophila 
embryonic brain development using photoactivated gene expression. Dev Biol, 
260, 124-137. 

Roebuck, T.M., Mattson, S.N. & Riley, E.P. (1998) A review of the 
neuroanatomical findings in children with fetal alcohol syndrome or prenatal 
exposure to alcohol. Alcoholism, clinical and experimental research, 22, 339-344. 

Schulz, R.A., Chromey, C., Lu, M.F., Zhao, B. & Olson, E.N. (1996) 
Expression of the D-MEF2 transcription in the Drosophila brain suggests a role in 
neuronal cell differentiation. Oncogene, 12, 1827-1831. 

Stocker, R.F., Heimbeck, G., Gendre, N. & de Belle, J.S. (1997) Neuroblast 
ablation in Drosophila P[GAL4] lines reveals origins of antennal target 
interneurons. J. Neurobiol., 32, 443–456. 

Strauss, R. (2002) The central complex and the genetic dissection of 
locomotor behaviour. Current opinion in neurobiology, 12, 633-638. 

Suarez, L., Felkner, M. & Hendricks, K. (2004) The effect of fever, febrile 
illnesses, and heat exposures on the risk of neural tube defects in a Texas-
Mexico border population. Birth Defects Res A Clin Mol Teratol, 70, 815-819. 



41 
 

Tautz, J., Maier, S., Groh, C., Rossler, W. & Brockmann, A. (2003) Behavioral 
performance in adult honey bees is influenced by the temperature experienced 
during their pupal development. Proc Natl Acad Sci U S A, 100, 7343-7347. 

Technau, G. & Heisenberg, M. (1982) Neural reorganization during 
metamorphosis of the corpora pedunculata in Drosophila melanogaster. Nature, 
295, 405-407. 

Technau, G.M. (1984) Fiber number in the mushroom bodies of adult 
Drosophila melanogaster depends on age, sex and experience. J Neurogenet, 1, 
113-126. 

Tully, T. & Quinn, W.G. (1985) Classical conditioning and retention in normal 
and mutant Drosophila melanogaster. J Comp Physiol [A], 157, 263-277. 

Urbach, R., Schnabel, R. & Technau, G.M. (2003) The pattern of neuroblast 
formation, mitotic domains and proneural gene expression during early brain 
development in Drosophila. Development, 130, 3589-3606. 

Weinstock, M. (2001) Alterations induced by gestational stress in brain 
morphology and behaviour of the offspring. Prog Neurobiol, 65, 427-451. 

Welberg, L.A. & Seckl, J.R. (2001) Prenatal stress, glucocorticoids and the 
programming of the brain. J Neuroendocrinol, 13, 113-128. 

Yang, M.Y., Armstrong, J.D., Vilinsky, I., Strausfeld, N.J. & Kaiser, K. (1995) 
Subdivision of the Drosophila mushroom bodies by enhancer-trap expression 
patterns. Neuron, 15, 45-54. 

Yu, D., Ponomarev, A. & Davis, R.L. (2004) Altered representation of the 
spatial code for odors after olfactory classical conditioning; memory trace 
formation by synaptic recruitment. Neuron, 42, 437-449. 

Zar, J. (1996) Biostatistical Analysis, 3rd edition. Englewood Cliffs, Prentice 
Hall.  

Zars, T., Fischer, M., Schulz, R. & Heisenberg, M. (2000) Localization of a 
short-term memory in Drosophila. Science, 288, 672-675. 

 



42 
 

CHAPTER 3 

ENVIRONMENTAL EFFECTS ON DROSOPHILA BRAIN DEVELOPMENT AND 

LEARNING  

Abstract 

Brain development and behavior are sensitive to environmental input. Martin 

Heisenberg and colleagues observed that a crowded culture density for larvae 

and an enlarged living space for adults increased the size of mushroom bodies 

(MBs) in the Drosophila brain. The study in Chapter 2 revealed that MB 

development and associative odor learning were severely impaired by 

ecologically relevant hyperthermic episodes throughout larval and pupal 

development. Whereas sensory environment provides a complex experience of 

both enrichment and stress, little is known about how multiple environmental 

factors interact to affect the brain and cognitive functions. We addressed these 

issues by testing the individual and combined effects of sub-adulthood thermal 

stress, larval density, and early-adulthood living space enrichment on brain 

anatomy and olfactory learning in adult flies. We found no significant increase in 

brain structure volumes or odor learning capacities in flies that experienced either 

larval crowding or early-adulthood space enrichment. Likewise, neither larval 

culture density nor early-adulthood experience mitigated MB or learning 

reductions induced by heat stress. These results suggest that brain development 

and behavior show diverse plasticity in response to environmental conditions. 

This plasticity also contributes to the brain’s resilience in its capacity to adapt to 

variations. 
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Introduction 

Brain development is tightly regulated by genetic programs, whereas 

environmental factors play important roles in sculpting and refining the neural 

circuitry and consequent behavior (Eisenberg, 1999, Rutter et al., 2006, Sale et 

al., 2009). On the one hand, environmental enrichment has been revealed to 

have positive effects on the brain and brain function (Rosenzweig & Bennett, 

1996, Van Praag et al., 2000). In a series of well-known experiments, rodents 

raised in enriched environments showed significant increases in neurogenesis, 

brain weight and size, and learning and memory relative to their impoverished 

siblings (Fordyce & Farrar, 1991, Kempermann et al., 1997, Rosenzweig & 

Bennett, 1969). On the other hand, central nervous system development has 

been found to be disrupted by environmental stress exposure (nutritive, 

chemical, electromagnetic and thermal) in every model system studied to date, 

including humans (Ahmed, 2005, Rice & Barone, 2000, Roebuck et al., 1998, 

Weinstock, 2001). For example, neural tube defects, one of the most common 

birth defects of the brain and spinal cord in humans, have been associated with 

maternal early pregnancy hyperemia (Chambers, 2006, Moretti et al., 2005).  

The environment-related neuronal and behavioral plasticity phenomenon is 

not limited to vertebrates. In Drosophila, social context was suggested to be an 

enriched environment that improves brain development, especially in mushroom 

bodies (MBs), the conserved sensory integration and associative odor learning 

center. Female flies from high density larval cultures had more MB neuron 

(Kenyon cell, KC) fibers than flies from low density larval cultures (Heisenberg et 
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al., 1995). In adult flies, living space was shown to be the most important 

enrichment parameter. In groups of flies reared in large cages with various odor 

sources and visual stimulation or with just open food bottles, females had more 

KC fibers and larger MB calyx volume than their sisters maintained under normal 

lab rearing conditions in standard food bottles or isolated singly in small plastic 

vials (Heisenberg et al., 1995, Technau, 1984). In a more recent study, we 

showed that daily episodes of physiologically relevant hyperthermia throughout 

larval and pupal development severely reduced MB calyx volume by decreasing 

the number of KCs (Wang et al., 2007). These flies also had proportional 

reductions in Pavlovian odor learning abilities.  

Given the demonstrated benefits of sensory enrichment and detrimental 

impacts of stress on CNS development, it is possible that these effects could 

offset each other in organisms concurrently experiencing variation in sensory 

enrichment and stress. Indeed, enriched environments aided recovery from 

cortical and behavioral deficits associated with malnutrition and crowding in rats 

(Carughi et al., 1989). Remarkably, environmental enrichment has been shown 

to delay and even recuperate brain disorders such as Huntington’s disease, 

Alzheimer’s disease, and Parkinson’s disease in rodent models 

(Nithianantharajah & Hannan, 2006). To further investigate the effects of multiple 

environmental factors and their interactions on brain development and function, 

we examined the brain anatomy and learning behavior in flies exposed to sub-

adulthood heat stress, larval crowding (larval social enrichment), early-adulthood 

living space enrichment, and combined rearing conditions. Our data indicate that 
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neither larval crowding nor early-adulthood space enrichment significantly 

enhanced brain structure volumes or associative odor learning abilities, nor did 

they mitigate sub-adulthood daily heat stress-induced deficits in MB 

development.  

 

Materials and Methods 

Flies 

Wild-type Drosophila melanogaster adults were used to establish populations 

in the laboratory from a large orchard population collected in southern Nevada in 

2002. The lineage of these flies was used for all stress and enrichment studies in 

which we assessed anatomy and behavior. We cultured flies at 23°C (except for 

the heat stress treatment, below). Flies were allowed to oviposit overnight on 

petri dishes containing 10% molasses and 1% agar.  In the larval culture density 

experiment, we transferred from 1 to 900 1st instar larvae (4-8 h after hatching) 

into plastic vials (Genesee Scientific) containing 8 ml of standard Drosophila 

cornmeal medium (yeast, soy flour, cornmeal, and corn syrup; recipe from the 

Bloomington Drosophila Stock Center at Indiana University). Adult flies were 

collected every day after eclosion. Since flies that emerged later in severely 

crowded densities varied considerably in size, only those emerging in the first 4 

days were used in the following experiments to minimize size variation. In the 

adult deprivation/enrichment experiment, 150 1st instar larvae were transferred to 

plastic vials with 8 ml of standard medium. After eclosion, single adult flies were 

isolated in plastic vials with 8 ml of standard medium (deprived environment). 
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The control group consisted of approximately 100 adult flies that were transferred 

into each plastic bottle (Genesee Scientific) containing 50 ml of standard 

medium. For space-enriched treatment, approximately 500 adult flies were 

released into each of 0.5 m3 meshed cage containing 5 open food bottles. Food 

bottles were changed or replaced every 3-4 days. 

Thermal Stress 

Control (CT) flies were reared at a constant 23°C.  Heat stress (HS) treatment 

consisted of a single daily 39.5°C pulse for 35 min throughout larval and pupal 

development, administered by immersing culture vials of larvae in a circulating 

water bath.  

Histology and Anatomy   

We analyzed the brain neuropil anatomy by using a paraffin mass histology 

as described previously (de Belle & Heisenberg, 1994, Heisenberg & Bohl, 1979) 

for 3-4-day-old Drosophila adults in the density comparison experiment and 19-

21-day-old Drosophila adults in the enrichment experiment. Flies were cold-

anaesthetized, placed in collars, fixed in Carnoy’s solution, dehydrated in 

ethanol, embedded in paraffin, cut in 7 µm serial frontal sections, and 

photographed under a fluorescence microscope with an AxioCam digital camera 

(Zeiss). The volumes of brain neuropil structures were measured planimetrically 

in serial brain sections using AxioVision software (Zeiss).  

Behavior  

We analyzed the associative odor learning by using a Pavlovian conditioning 

T-maze paradigm as described previously (de Belle & Heisenberg, 1994, Tully & 
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Quinn, 1985) for 3-6-day-old flies in the larval culture density experiment and 19-

21-day-old flies in the adult enrichment experiment.  Briefly, to assay odor 

learning, groups of approximately 100 flies were transferred into a training tube 

embedded with an internal double-wound electrifiable copper coil. Flies were 

exposed to an air current (750 ml/min) bubbled through one odor [2 × 10−3 

dilutions of 4-methyl cyclohexanol (MCH) or 4 × 10−3 dilutions of 3-octanol (OCT)] 

in heavy mineral oil (CS+) paired temporally with 1.25 s pulses of 90 V dc electric 

shock delivered every 5 s for 1 min. They were then exposed to fresh air for 1 

min, followed by a second odor without electric shock for 1 min (CS−). 

Immediately after training, flies were transferred to the lower part of the T-maze, 

where they were exposed to both odors in converging air currents for 2 min, with 

the binary option to demonstrate a preference for either the CS+ or CS− by 

walking down one of two collection tubes. Flies were then collected from each 

tube and counted. Learning performance was measured as a function of shock-

paired odor avoidance at 1 min (giving an approximation of learning at the 

earliest testable time in the T-maze). A second group of flies was trained in a 

reciprocal manner and tested. Scores from both tests were averaged to account 

for odor preferences among different populations of flies. 

Statistical Analyses   

All 57 data samples in this report were normally distributed (Shapiro-Wilk 

normality test, P > 0.05). Comparisons were made using ANOVA followed by the 

Tukey multiple comparisons test with R software (Team, 2008). For multivariate 

allometry, data were log transformed and calculated using the prcomp() function, 
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or the pca() function in the labdsv package, in R (Shingleton et al., 2009).  The 

loadings of the first principal component (PC1) multiplying √n (n is the number of 

variables, here n = 4) gave the bivariate allometric coefficients for each variable 

against overall brain size (Klingenberg, 1996). We then generated a bootstrap 

dataset by randomly sampled the original data 10000 times with replacement to 

calculate 95% confidence intervals of PC1 loadings as described by Shingleton 

et al. (2009).      

 

Results 

High Larval Density and Thermal Stress Influences on Brain Structures 

Experiments with Drosophila have demonstrated that larval crowding has 

negative effects in culture, such as decreased adult body weight and size, 

increased developmental time, increased variability of adult body weight, size 

and developmental time, and increased larval mortality (Ashburner, 1989). 

Nonetheless, adult flies derived from high larval culture density have increased 

longevity and thermal stress resistance (Miller & Thomas, 1958, Sorensen & 

Loeschcke, 2001). Female flies developing as larvae under crowded rearing 

conditions had up to 20% more MB KC fibers than their siblings grown with 

ample space and food supply (Heisenberg et al., 1995). To investigate a broad 

effect of crowded larval culture density, as well as the interaction of larval density 

and hyperthermic stress on brain development, we measured brain structure 

volumes in adult flies reared at constant 23°C (CT) with cultures of 50, 150, 300, 

and 450 larvae per vial (LPV), and in flies exposed daily to a brief heat shock at 
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39.5°C for 35 min (HS) throughout larval and pupal development with cultures of 

50, 150, 300, 450, and 900 LPV. As in previous studies, we found that larval 

culture density had a strong impact on development. While 150- and 300-LPV 

(“crowded”) conditions were still endurable densities, 450-LPV (“overcrowded”) 

severely delayed development, increased the variability of developmental time, 

and decreased larval and pupal viability and adult eclosion rates.  

The volumes of adult MB calyx, central complex (CCX), antennal lobe (AL), 

and optic lobe (OL) were examined using planimetric microscopy measurements 

of serial paraffin brain sections (Figure 3-1A). In Drosophila, KC perikarya are 

located posterior dorsally in the protocerebrum; just anterior and ventral to the 

perikarya, KCs give rise to dendritic fields forming the calyx (Heisenberg, 1980, 

Ito & Hotta, 1992).  Anterior to the MB calyxes, the CCX is situated centrally 

between the two protocerebral hemispheres (Hanesch et al., 1989). The ALs sit 

in the anterior ventral part of the brain (Stocker et al., 1990). More peripherally 

and on each side of the central brain are the OLs, which volume approximates 

half of the brain (Fischbach & Dittrich, 1989). These different brain structures 

showed variable plasticity in response to high larval density and heat stress. In 

CT flies, MB calyx volume was not sensitive to most larval culture densities 

(Figure 3-1B). The volume of CCX was not influenced by crowded (150 and 300 

LVP) cultures, but was significantly reduced by overcrowded (450 LVP) culture 

compared to non-crowded (50 LVP) culture (Figure 3-1C). Overcrowded (450 

LVP) culture strongly decreased both AL and OL volumes relative to crowded 

(150 and 300 LVP) and non-crowded (50 LVP) cultures (Figure 3-1D and E).  In 
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HS flies, both MB calyx volume and CCX volume showed insensitivity to most 

larval densities (Figure 3-1B and C). The volumes of AL and OL were smaller 

only in the 900-LPV culture compared to other lower density cultures (Figure 3-

1D and E). Overall, in both CT and HS flies, the volumes of MB calyx, CCX, AL, 

and OL were not enlarged by larval crowding. Instead, particularly at extremely 

densely populated cultures, all brain structures volumes were inversely related to 

larval culture densities. Consistent with our previous findings, heat stress 

dramatically reduced MB calyx volume, but had less or no effect on other brain 

structures in non-crowded (50 LVP) larval cultures (Figure 3-1B, C, D, and E).  

However, the volumes of MB calyx in overcrowded (450 LVP) cultured CT and 

HS flies were not significantly different.  

Static allometry reveals the scaling relationship among individuals between 

one body part and overall body size or between two body parts (Stern & Emlen, 

1999). The slope of such scaling relationships, represented by the letter b, is the 

allometric coefficient. When there is complete proportionality between a body 

part and overall body size, the relationship is isometric (b = 1). A relatively 

smaller body part is hypoallometric (b < 1), while a larger body part is 

hyperallometric (b > 1) (Huxley & Teissier, 1936). Multivariate allometric 

coefficients for MB calyces, CCX, ALs, and the OLs were studied to address the 

scaling relationship between each brain structure and overall brain size produced 

by larval culture density and the combination of larval culture density and heat 

stress. Brain structures showed diverse allometry to different environmental 

factors (Figure 3-1F). In thermally-benign conditions, although there are slight 
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differences, all structures were virtually isometric to overall brain size. That is, 

they scaled quite similarly along with each other in response to larval culture 

density. The combination of heat stress and larval culture density dramatically 

changed the brain allometry pattern. The MB calyx was considerably 

hyperallometric to overall brain size, indicating that the decrease in volume in MB 

calyx is much sharper than that in overall brain as the larval culture density 

increased. Consequently, smaller flies have proportionally smaller MB calyx than 

larger flies. On the contrary, the CCX were hypoallometric to overall brain size, 

namely smaller flies have relatively larger CCX. The ALs and OLs are rather 

close to isometry. 

 
Figure 3-1. Brain development was effected by high larval rearing densities.  
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Figure 3-1. (Continued) 
(A) A frontal paraffin section of the fly brain viewed with a fluorescent 
microscope. a, MB calyx; b, OL; c, CCX; d, AL. Volume of each structure was 
estimated from planimetric measurements of serial sections. (B) The MB calyx 
volume was not significantly affected by larval culture densities, but significantly 
reduced by heat stress (F[8,72] = 9.37,  P < 0.0001). (C) The CCX (ellipsoid body 
and fan-ship body) was significantly reduced in 450-LPV culture CT flies 
compared to that in 50-LPV cultured CT flies, but not in HS flies (F[8,72] = 3.81, P 
= 0.0009). (D) The AL volumes in 450-LPV cultured CT flies and 900- LPV 
cultured HS flies were significantly decreased relative to 50-,150-, and 300- LPV 
cultured flies (F[8,72] = 17.62, P < 0.0001). (E) The 450- LPV culture significantly 
reduced OL volume (medulla, lobula, and lobula plate) in CT flies, and the 900- 
LPV culture significantly reduced OL volume in HS flies (F[8,72] = 12.85, P < 
0.0001). (F) Multivariate allometric coefficients for MB, CCX, AL and OL. 
Allometric coefficients equal to 1 indicating isometry, larger than 1 indicating 
hyperallometry, smaller than 1 indicating hypoallometry. Error bars in (B-E) are 
standard error (SE) and in (F) are 95% confidence intervals. n = 10 / bar in (B-E), 
n = 40 / bar in CT treatment and n = 50 / bar in HS treatment in (F). Different 
letters designate significant differences (Tukey, P < 0.05). 

 

 

Low Larval Density and Thermal Stress Influences on MBs 

It has been reported that low larval density increased adult body weight and 

size, though it also increased developmental time and larval mortality 

(Ashburner, 1989). Little is known about the influence of sparse larval density on 

brain development. To address the effects of low larval culture density and 

interaction of thermal stress and low larval culture density on MB development, 

we examined MB calyx volume in adult CT flies reared with cultures of 1, 5, 15, 

and 50 LVP, as well as HS flies reared with cultures of 1, 5, 15, 50, and 150 LVP. 

There was no statistic difference in MB calyx volumes of any low larval density 

cultures, in either CT or HS flies (Figure 3-2).  
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Figure 3-2. MB development was not affected by low larval rearing densities.  
MB calyx volume was not influenced by low larval rearing densities, but was 
significantly reduced by heat stress (F[8,213] = 26.11, P < 0.0001). Bars are mean 
± SE, 25 ≤ n ≤ 27 / bar. Different letters designate significant differences (Tukey, 
P < 0.05). 

 

 

Adult Living Space and Preadult Thermal Stress Influences on MBs 

In addition to the sub-adulthood enrichment and stress stimuli, we studied the 

influences of adult living experiences, and its combination with sub-adulthood 

hyperthermic stress on MB anatomy. Previous studies have observed that flies 

reared in large flight cages have about 15% more KC fibers than their “deprived” 

siblings reared singly in small plastic vials (Balling et al., 1987, Heisenberg et al., 

1995). Here we used volumetric analysis to assess the influence of different 

rearing conditions on MB anatomy. In the enriched treatment, adult flies were 

kept in large populations (~500) in big cages (50 cm3) with open food bottles 

where they could have social contact and space to fly. In the deprived treatment, 

adult flies were isolated individually in small vials after eclosion. As a control, 

~100 flies were reared as a group in regular food bottles.  MB calyx volumes in 
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these flies with completely different adult experiences were indistinguishable, in 

spite of their non-heat stressed or heat stressed sub-adult experiences (Figure 3-

3). Despite the adult experiences, consistently, sub-adult heat stress severally 

reduced MB calyx volume. 

 
 
Figure 3-3. MB was not affected by adult living experience.  
MB calyx volume was not influenced by either adulthood deprived living condition 
(single flies isolated in vials) or enriched living condition (flies kept in group in 
flight cages), but was significantly reduced by daily bouts of thermal stress during 
development (F[5,185] = 34.64, P < 0.0001). Bars are mean ± SE, 28 ≤ n ≤ 36 / 
bar. Different letters designate significant differences (Tukey, P < 0.05). 

 

 

High Larval Density and Adult Living Space Influences on Learning Ability 

In Drosophila, associative odor learning and memory are mediated by MBs 

(de Belle & Kanzaki, 1999, Heisenberg, 2003, Zars et al., 2000). We tested the 

learning abilities of flies with different sub-adult and adult experiences using the 

pavlovian condition assay (de Belle & Heisenberg, 1994, de Belle & Heisenberg, 

1996, Tully & Quinn, 1985) to further investigate the environmental influence on 

brain cognitive behavior. Larval crowding did not show significant impact on odor 

learning. Flies grown in crowded (150 and 300 LVP) and overcrowded (450 LVP) 
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larval cultures performed normally in the associative odor learning test (Figure 3-

4A). The early adulthood enrichment with increased living space in cages did not 

improve odor learning either. The learning performance of flies reared in large 

cages was similar to that of their siblings reared in regular bottles (Figure 3-4B). 

 
 
Figure 3-4. Associative odor learning was not affected by larval rearing density or 
adult living experience.  
(A) All flies reared with different larval densities demonstrated similar olfactory learning 
(F[3,44] = 1.45, P = 0.24). (B) Both fly groups reared in bottles and in flight cages 
demonstrated similar olfactory learning (P = 0.94). Bars are mean ± SE, n =12 / bar in 
(A) and n = 10 / bar in (B). 

 

 

Discussion 

Contradictory Findings in MB Studies  

In Drosophila, increases in brain structure size, especially MBs, have been 

observed as an enrichment result from densely populated larval culture and 

enlarged adult living space (Heisenberg et al., 1995, Technau, 1984). This 

current study, however, does not find any significant enhancement in brain 

anatomy and cognitive behavior in flies from either crowded larval cultures or 

flight cages. Additional contradictory findings in MB studies have also been 
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reported. For example, both Technau (1984) and Heisenberg (1995) showed that 

MB fiber numbers of the flies from flight cages were larger than those of flies kept 

isolated in vials. However, Balling et al. (1987) observed that in one of their 

enrichment/deprivation experiments the difference of MB fiber number was very 

small and non-significant. In addition, they reported that MB fiber number in 

newly eclosed flies was remarkably high and it declined during the first week, 

which was contrary with Technau’s (1984) report, indicating that MB fiber number 

started with a low number and increased during early adulthood.   

Given the bizarre architecture of the MBs, early studies (before 1995) counted 

the numbers of KC fibers from cross sections through the peduncle using 

electron microscope to represent the size of MBs. In later studies, volumes of MB 

calyxes were derived from planimetric measurements of serially sectioned brains 

aided by fluorescence microscope to characterize the MB sizes (Heisenberg et 

al., 1995). However, the results of MB KC fiber number and calyx volume are not 

always in complete agreement. Female peduncles contain more KC fibers than 

male peduncles, though male flies showed larger calyxes than female flies 

(Heisenberg et al., 1995). Heisenberg et.al (1995) pointed out that KC fiber 

numbers probably do not reflect MB cell bodies precisely, as the outgrowth and 

degeneration of fibers might occur independently of cell death in the adult brain. 

In our previous study we found that MB calyx volume, peduncle cross section 

area, and KC perikarya number were all reduced by approximately 30% or more 

in flies experiencing daily thermal stress throughout sub-adult development 

relative to CT flies reared at a constant benign temperature (Wang et al., 2007). 
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Here we found no significant increases in the volumes of the MB calyx or other 

brain structures as consequences of enrichment from either the enhanced larval 

social contact or enlarged adult living space in flies.  

Enrichment Influences on Brain Development and Behavior 

Earlier isolation and overcrowding observations have suggested that normal 

development in brain and behavior requires an optimal environmental stimulation 

(Rosenzweig & Bennett, 1976). While low larval density may not provide 

adequate stimulation for the brain to develop, high larval density may be 

potentially stressful or even harmful because of the excessive utilization and 

interference competition of food and space (Beebee & Wong, 1992, Roberts, 

1998, Rodriguez-Munoz et al., 2003, Walls, 1998).  In our study, although it was 

not significant, MB calyx volume of crowded larval cultures (150 and 300 LVP) 

was larger than that of uncrowded larval culture (50 LVP), which was larger than 

that of overcrowded larval culture (450 LPV) (Figure 3-1B). The similar trend also 

appeared in the odor learning tests. Flies reared from crowded larval cultures 

(150 and 300 LVP) showed slightly higher (not significant) learning abilities than 

flies from uncrowded (50 LVP) and overcrowded (450 LVP) larval cultures 

(Figure 3-4A). Moderate larval crowding might provide a favorable density that 

improves brain development and cognitive function in Drosophila, while it 

provides enhanced social stimulation, modest competition, and sufficient 

nutrition.  

Environmental enrichment has been shown to enhance neuroblast 

proliferation, neuronal survival, as well as morphological changes like 
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synaptogenesis and dendrite branching (Kempermann et al., 1997, Sandeman & 

Sandeman, 2000, Van Praag et al., 1999b, Volkmar & Greenough, 1972). 

Crowded larval cultures and space enriched flight cages might induce neuronal 

re-growth or re-sculpture, but those fine changes may not be discovered by our 

volume measurement with fluorescence microscope. Application of confocal 

microscopy and electron microscopy might be required to locate sub cellular 

changes in the fly brain. In addition, rodents reared in enriched laboratory 

environments were found to have improved learning and problem-solving abilities 

(Renner & Rosenzweig, 1987, Van Praag et al., 1999a, Wainwright et al., 1993). 

However, the results were often short-lived and depended on multiple factors, for 

example the age at which enrichment was experienced, and the tasks that were 

learned and measured (Rosenzweig et al., 1972). Rosenzweig (Rosenzweig, 

2003) has cautioned against over-interpretation of enrichment experiments on 

learning ability: “Early enrichment may improve subsequent learning of one task, 

have no effect on another task and actually impair learning of a third. Perhaps we 

should not expect much transfer of capacity among entirely different kinds of 

behavior. Nor should we expect experience in an enriched environment to lead to 

an increase in ‘general ability.’” In the olfactory aversive Pavlovian conditioning 

paradigm, we found no significant learning difference among flies reared from 

variable larval densities (50, 150, 300, and 450 LVP), or among flies with 

different early-adulthood experiences (space enriched flight cages or regular food 

bottles). In line with Rosenzweig’s suggestion, alterations in behavior might be 

stimulated in flies that experienced crowded larval cultures and space enriched 
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flight cages, but more prominent in just certain neural circuits. More behavior 

assays (Pitman et al., 2009), such as courtship conditioning (Siegel & Hall, 

1979), olfactory appetitive conditioning (Tempel et al., 1983), visual learning (Dill 

et al., 1993), heat box spatial memory (Putz & Heisenberg, 2002), aversive 

phototaxic suppression (Le Bourg & Buecher, 2002), might be helpful to uncover 

the possible difference induced by those environmental enrichment factors. 

 However, it is possible that neither moderate larval crowding nor increased 

space in a flight cage constitute enriched environments for flies. Enrichment can 

be defined as “a combination of complex inanimate and social stimulation” 

(Rosenzweig et al., 1978); though the so-called experimental enriched 

environment should be also defined relative to the regular laboratory 

impoverished settings, rather than enrichment over the natural living conditions. 

Additionally, studies in rats revealed that enriched environment induced affects 

were mostly associated with an increase in voluntary motor behavior or exercise 

(Kempermann et al., 1997, Van Praag et al., 1999a). In crowded cultures, larvae 

were exposed to increased social interactions, but with few changes in activity. 

We also noticed that flies were inactive unless disturbed in flight cages as well as 

in the bottles. Most of the time, we observed flies remaining inside or at the edge 

of the food bottles.  The lack of stimulation of exploratory movement or voluntary 

exercise might be one of the reasons that our laboratory rearing conditions were 

not sufficiently enriched to induce significant responses in brain structures and 

behavior in Drosophila.  
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Combination of environmental Influences on Brain Development 

Larval crowding in Drosophila has been reported to induce heat shock protein 

70 (Hsp70) expression, and lead to increased adult longevity and adult thermal 

stress resistance as Hsp70 has positive effects on survival to stress (Sorensen & 

Loeschcke, 2001). We combined larval crowding and heat stress to study their 

combined effects on brain sizes. In our experiment, the negative effects of heat 

stress on the volume of MB calyx appeared to be counterbalanced in 

overcrowded larval rearing density (450 LVP, Figure 3-1B). In 50-LPV cultures, 

MB calyx volume was reduced in HS flies relative to CT flies (statistic groups A 

vs. BC). In 450-LPV cultures, MB calyx volume was not significantly different in 

HS and CT flies (Figure 3- 1B, groups AB vs. BC). The effects of daily 

hyperthermic stress were so deleterious that they caused more than 60% larvae 

mortality. That is, the heat stress would decimate a culture density from 450-LPV 

to about 150-LPV. Therefore, MB calyx volume in HS 450-LPV cultured flies was 

actually more comparable with that measured in CT 150-LPV cultured flies by the 

end of development.  Indeed, MB calyx volume of HS 450-LPV cultured flies 

(150-LPV as final density) was smaller than that of CT 150-LPV cultured flies. 

High larval density did not mitigate the harmful effects of the daily hyperthermic 

stress. Instead, the heat stress probably alleviated the high larval density induced 

developmental pressure of malnutrition and competition by increasing larval 

mortality (i.e. decreasing larval density), although it still disrupted MB 

development. Thus, our study provides an example of multiple harmful stimuli 
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combining to give a beneficial effect. The negative impact of one limits the 

damaging impact of another.  

Environmental Influences on Brain Allometry 

Static allometry has been used to study the variation in relative sizes in a 

population or species in response to variant genetic and environmental 

regulators. In Drosophila, one thorough study showed that different parameters, 

such as larval rearing density, nutrition, and temperature, result in diverse 

allometries for different body traits (Shingleton et al., 2009).  This is also true of 

our data. High larval rearing density at normal rearing temperature combined with 

heat stress produced distinct patterns of scaling relationships between individual 

brain components and overall brain size (Figure 3-1F). In benign thermal 

conditions, all measured brain structures were nearly isometric to overall brain 

size, meaning that all brain structures scaled proportionally together in response 

to larval culture density. This likely accounts for the similar odor learning abilities 

of flies reared at different larval densities. In severe thermal conditions, the MB 

calyx was greatly hyperallometric to overall brain size, while the CCX, AL and OL 

were hypoallometric or near to isometric to overall brain size in relation to larval 

rearing density. This result is similar to our previous finding where heat stress 

effects were exclusively studied. Heat stress severely reduced the MB calyx 

volume but had less effect on other brain structures at non-crowded (50 LVP) 

larval culture (Wang et al., 2007).  Analyzing those data in multivariate allometry 

revealed that the MB calyx was particularly hyperallometric (b = 1.76) to overall 

brain size, while the CCX (b = 0.51), AL (b = 0.40), and OL (b = 0.67) were 
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hypoallometric or slightly isometric to overall brain size as a result of heat stress. 

The similarity of allometries resulting from combined impacts of different thermal 

environments and rearing density compared with allometries resulting from 

different thermal treatment alone suggests that larval density did not have any 

compensatory effect in the brain. While the MBs were especially sensitive to heat 

stress (in terms of both absolute and relative size), their response to differences 

in larval density were comparatively minor.  

Conclusions 

Our previous study found that a daily episode of hyperthermia throughout 

sub-adult development dramatically disrupts MB anatomy (with only minor 

impacts on other brain structures) and odor associated learning ability in 

Drosophila. Here, we showed that neither larval crowding nor early adult rearing 

space enrichment significantly enhanced brain structures volume or odor learning 

performance in flies, while all brain structures scaled proportionally at high larval 

rearing densities. We found that sparse larval density did not impede MB 

development.  These results show that although some brain structures and 

behaviors are especially vulnerable to some stressful environmental impacts, the 

brain is also resilient that it tends to retain its authenticity in its genetically 

determined development and function under a certain range of situations. A 

recent study reported that laboratory rearing does not reduce the capacity of 

snails to form memory compared to others reared in their natural environments 

(Orr et al., 2008). The study suggests that their laboratory rearing conditions 

might not be impoverished enough to affect brain development and memory 
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ability, or the behavior they examined might be “unaltered by environment 

challenges during ontogeny”. In humans, there is an abundance of data showing 

that stressed situations, such as severe malnutrition at early ages, causes 

delayed brain development and decreased intelligence (Grantham-Mcgregor & 

Fernald, 1997, Ivanovic et al., 2000, Winick & Rosso, 1969).  On the other hand, 

it has also been reported that adaptations can be made by the brain itself in 

response to retarding growth conditions to maintain successful neuronal 

development and later cognitive performance (Martyn et al., 1996). Thus, brain 

plasticity should be defined not only by its ability to change, but also by robust 

maintenance of developmental and behavioral fidelity in response to 

environmental variations.  
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CHAPTER 4 

THERMAL PRETREATMENT MITIGATES HYPERTHERMIA INDUCED 

MUSHROOM BODY DAMAGE AND GENE EXPRESSION  

Abstract 

Chapter 2 showed that a daily hyperthermic episode throughout larval and 

pupal development severely disrupts the mushroom bodies, the centers for 

sensory integration in the insect brain, and hence impairs the associative odor 

learning in adult Drosophila. In the present study, we applied a mild thermal 

pretreatment before the acute thermal stress. The heat pretreatment moderately 

mitigated the hyperthermia induced mushroom body calyx volume reduction and 

fluctuating asymmetry increment, but did not protect flies from the decrease of 

cognitive ability and male specific early-stage sterility. Moreover, we analyzed 

genome-wide transcripts alteration associated with thermal pretreatment and 

stress. The variation of gene expression pattern in flies treated with both heat 

pretreatment and heat stress was much smaller than that in flies treated with 

heat stress only.  A small set of the differing expressed genes were tested 

through mutant analysis and one was found to significantly affect mushroom 

body anatomy. These results suggest that (1) the protection of heat pretreatment 

against heat stress induced damage on mushroom body development and gene 

activity in the brain is incomplete, and (2) the long-term hyperthermia disturbed 

genes may have important functions in mushroom body plasticity. 
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Introduction 

Hyperthermia has been shown to be one of the most deleterious 

environmental stresses that can disrupt organismal development. In the 

laboratory, experiments carried on mouse, rat, rabbit, cat, dog, etc. pointed out 

that thermal stress may cause histological and physiological changes on the 

central nervous system (CNS), and impede CNS neurogenesis and growth 

(Ahmed, 2005).  Drosophila melanogaster, one of the most extensively studied 

metazoan models outside mammals, is also vulnerable to hyperthermia (Feder et 

al., 1997, Krebs & Feder, 1997b). More than 10% of eclosing adult flies that had 

survived natural heat stress were found to exhibit severe developmental 

anomalies of wing and abdominal morphology (Roberts & Feder, 1999). In a 

recent study, We observed that a daily episode of ecologically relevant 

hyperthermia throughout larval and pupal development dramatically disrupts the 

anatomy of mushroom bodies (MBs), the conserved integrative sensory centers 

in the brain, but has little effect on other brain structures; and greatly impairs the 

associative odor learning without affecting memory in adult flies (Wang et al., 

2007).   

On the other hand, to defend development and enhance fitness, upon heat 

and other stresses, nearly all organisms express heat shock proteins (Hsps), 

which help to protect cells by functioning as molecular chaperones (Feder & 

Hofmann, 1999, Parsell & Lindquist, 1993).  In Drosophila, it has been 

demonstrated that thermal pretreatment can induce Hsp70 expression, therefore 

increasing larval thermotolerance (Krebs & Feder, 1998) and alleviating heat-
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induced locomotor impairment (Roberts et al., 2003). However, acute tissue 

damage was not prevented by thermal pretreatment (Krebs & Feder, 1998).  In 

addition, there have been experimental evidences indicating disadvantages of 

Hsp expression, such as that overexpression of Hsp70 decreases larval 

development, growth, and thermotolerance (Krebs & Feder, 1997a). To further 

investigate whether a heat pretreatment is able to protect against the detrimental 

hyperthermic influences on brain development and its consequent function, in the 

present study, we examined the MB calyx volume and learning and memory 

abilities in flies that experienced daily heat stress, with and without a heat 

pretreatment, during larval and pupal development.  

Full genome gene expression of the heat stress response has been widely 

studied recently (Furusawa et al., 2009, Sonna et al., 2002, Sonna et al., 2004). 

In Drosophila, 1222 genes, including heat shock genes, have been identified to 

be up as well as downregulated after the application of heat hardening (Sorensen 

et al., 2005), which provided tremendous information in understanding cellular 

injury and self-protect mechanisms. However, little is known about the long-term 

effects of developmental periodic thermal stress on the adult gene activity. Here, 

we used DNA microarray to investigate the expression pattern of genes in the 

brain of flies survived from sub-adulthood hyperthermia, with and without a 

thermal pretreatment, and to explain the thermal stress induced defects in MB 

and learning.  
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Materials and Methods 

Flies 

The lineage of wild-type Drosophila melanogaster collected in southern 

Nevada (population established in the laboratory in 2002) was used for all the 

hyperthermic treatment and thermal pretreatment studies (histology, behavior, 

and microarray). The following mutant lines were obtained from the Bloomington 

Stock Center (Bloomington, IN, USA): w1118; Mi{ET1}Pde1cMB02052 

CG31704MB02052 (CG31704MB02052), w1118; PBac{WH}CG32444f00963  

(CG32444f00963),  y1 w67c23; P{EPgy2}AcCoASEY12601  (AcCoASEY12601), w1118; 

P{GT1}BG02569 (PepckBG02569). We background standardized all the mutants by 

backcrossing them to a white Canton Special line (w1118; CS) for 8 generations.     

Heat Stress and Heat Pretreatment 

Control (CT) flies were reared at a constant 23°C.  The heat stress (HS) 

treatment consisted of a single daily 39.5°C pulse for 35 min during larval and 

pupal development as described previously (Wang et al. 2007). The heat 

pretreatment and heat stress treatment (HPHS) comprised 3 stages, 36°C for 1 

hr, 25°C for 1 hr, and 39.5°C for 35 min, every day throughout sub-adulthood 

development. As another control, heat pretreatment (HP), 36°C for 1 hr, was 

applied to larvae and pupae on a daily basis. We administered all heat 

treatments by immersing culture vials of larvae or pupae in circulating water 

baths.  
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Histology and Anatomy   

Paraffin mass histology was used to analyze fly neuronal anatomy as 

described previously (de Belle & Heisenberg, 1994, Heisenberg & Bohl, 1979). 

Three-6-day-old Drosophila adults were cold-anaesthetized, placed in collars, 

fixed in Carnoy’s solution, dehydrated in ethanol, embedded in paraffin, cut in 7 

µm serial frontal sections, and then photographed under a fluorescence 

microscope with an AxioCam digital camera (Zeiss). The volumes of brain 

neuropil structures were derived from planimetric measurements of serial brain 

sections using AxioVision software (Zeiss).  

Behavior Assays  

We used the Pavlovian conditioning T-maze paradigm to analyze the 

associative odor learning, memory, and sensory acuity controls as described 

previously (de Belle & Heisenberg, 1994, Tully & Quinn, 1985). Groups of 

approximately 100 3-6-day-old flies were transferred into a training tube 

embedded with an internal double-wound electrifiable copper grid to undergo 

training. They were exposed to an air current (750 ml/min) bubbled through one 

odor (2×10−3 dilutions of 4-methyl cyclohexanol [MCH, Sigma] or 4×10−3 dilutions 

of 3-octanol [OCT, Sigma]) in heavy mineral oil (Sigma) paired temporally with 

1.25 sec pulses of 90V direct current electric shock delivered every 5 sec for 1 

min. Flies were then exposed to fresh air for 1 min, and followed with another air 

current bubbled through another odor without electric shock for 1 min. To assay 

learning (immediately after training, indicated as 0 min) and memory (30min, 3h, 

and 6 hr after training), flies were transported to the lower part of the T-maze to 



74 
 

be exposed to both odors in converging air currents from 2 tubes for 2 min, and 

then collected from those 2 tubes separately and counted. Learning and memory 

performance index was measured as a function of shock-paired odor avoidance. 

A second group of flies was trained in a reciprocal manner and tested. Scores 

from both tests were averaged to account for odor preferences among different 

populations of flies. In the sensory acuity tests, a performance index (PI) 

represents the percent avoidance of the electric shock or odors.  

Fertility Assays   

Virgin male and female flies were crossed within treatment and to CT flies 

(with normal fertility) to test the fertility. Seven crosses (♂HS × ♀HS, ♂HS × 

♀CT, ♂CT × ♀HS, ♂HPHS × ♀HPHS, ♂HPHS × ♀CT, ♂CT× ♀HPHS, ♂HP × 

♀HP, ♂HP × ♀CT, ♂CT × ♀HP, ♂CT × ♀CT) were assayed. Seven vials were 

set up for each cross, with 2 males and two females in each vial. Flies were 

transferred to new vials every 2 days. The offspring left in each vial were counted 

after eclosion.  

Microarray Analyses   

Three-6-day-old male flies were decapitated on a cold plate, and the heads 

were immediately frozen in liquid nitrogen. Total RNA (Supplemental Figure 4-1) 

was extracted by using RNeasy Mini kit (QIAGEN, Valencia, CA, USA). Three 

replicates of 6 microarrays in 3 dye-swap pairs were performed respectively 

using the DGRC-2 oligonucleotide transcriptome microarrays (Drosophila 

Genomics Resource Center, Center for Genomics and Bioinformatics, Indiana 

University, Bloomington, IN, USA) and the Cy3/Cy5 Array350 assay kit 
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(Genisphere, Hatfield, PA, USA) according to the dendrimer use and 

hybridization protocol (Cherbas, 2006). Microarray slides (Supplemental Figure 

4-2) were scanned using the GenePix 4000B scanner and the signal intensities 

were quantified with the GenePix Pro microarray analysis software (Axon 

Instruments, Union City, CA, USA) 

Quantitative RT-PCR   

We performed quantitative RT-PCR (qRT-PCR) to validate 11 genes from the 

microarray results using the PerfeCTa SYBR Green FastMix for iQ™ kit (Quanta 

Biosciences, Gaithersburg, MD, USA) on the iCycler iQ™ real-time PCR 

detection system (Bio-Rad Laboratories, Hercules, CA, USA). The qRT-PCR 

data were analyzed with the 2-∆∆CT method (Livak & Schmittgen, 2001). Primer 

sequences were designed via Primer-BLAST online software (Rozen & 

Skaletsky, 2000) (NCBI webpage) according to the DNA sequence printed on the 

microarray for Actin 5C (Act5C), Acetyl Coenzyme A synthase  (AcCoAS), ade5, 

CG11395, CG14075, CG1628, CG32444, CG31704, CG8193, Glutamate 

oxaloacetate transaminase 2 (Got2), Phosphoenolpyruvate carboxykinase 

(Pepck), and prophenol oxidase A1 (proPO-A1) (Table 4-1). All primers were 

ordered from Integrated DNA Technologies (IDT, San Diego, CA, USA). We also 

used these primers to measure the transcript levels in the mutant flies.  

Statistical Analyses   

The R software (Team, 2008) was used for all statistical analysis. In Figure 4-

1A and C and Table 2, the Shapiro-Wilk test showed that all 44 data samples are 

distributed normally. Comparisons were made using ANOVA followed by the 
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Tukey multiple comparisons test. In Figugure 4-1B, differences in fluctuating 

asymmetry (FA) of MB calyx volume were analyzed (Palmer & Strobeck, 2003). 

The distribution of differences between right (R) and left (L) sides of MB calyx 

volume (R-L) and mean of R-L equals to 0 were tested by Shapiro-Wilk test and 

t-test in each treatment (CT, HP, HPHS, and HS). In each treatment, the 

frequency distribution of R-L appeared normal and the mean of R-L equaled to 0, 

which exhibited ideal FA. A following Levene’s test was used to test the 

heterogeneity of variance among treatments (P = 0.013). Subsequently, means 

of the absolute value of R-L (|R-L|) were compared to find the differences in FA. 

The Shapiro-Wilk test showed that 3 out of 4 data samples of |R-L| are not 

distributed normally (P = 0.0968 for HP treatment). Comparisons were made 

using Kruskal-Wallis test followed by the nonparametric multiple comparisons 

with unequal sample size (Zar, 2010). In Figure4-3, the Shapiro-Wilk test showed 

that 7 out of 8 data samples are distributed normally and 1 datum sample has p-

value = 0.012. Comparisons were made using t-test between each mutant line 

and the background wild type line for normally distributed data. The 

nonparametric Wilcoxon test was used to compare the non-normally distributed 

datum for the mutant CG31704 line and the wild type w1118; CS line. The limma 

package (Smyth, 2004) in R was used for microarray analysis. The M-values (M 

= log2R − log2G, i.e. the intensity ratios) were normalized with the loess 

normalization method for each array, and the A-Values (A = ½  (log2R + 

log2G), i.e. the average intensities) were then normalized with the quantile 

normalization method between arrays. The data were fitted in a linear model 
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according to the direct two-color design matrix, and computed with the empirical 

Bayes method. 

 
Table 4-1. Sequences for qRT-PCR primers. 
 
Gene Forward Primer (5' to 3') Reverse Primer (5' to 3') 
 
AcCoAS TTCTCCAAGTTCCCAGGCTA ACACGACCAGTGATCCACAA 

Act5C GAGCGCGGTTACTCTTTCAC GCCATCTCCTGCTCAAAGTC 

ade5 AACTGGCTGATATTGTGCCC  ATCGACAGCTGGTGGCTATC 

CG11395 TCACCAGAATTGAGCACAGC TTGGGATCCAGGTTGAAGAG 

CG14075 GTGGAAATCGTCAGCAAGGT GTTGGCATCGGTGTAGAGGT 

CG1628 CAACCCGCAGTCTAAGAAGAA CATCCTTTTTATTCACAAGCTCTCT 

CG31704 TATTCCAGTACTCCTGCCCG CTTCTCCACGGTAATGGAGC 

CG32444 GACGTCAAGGACACCGTCTT AGCAGTTGTCGTAGCCCTTG 

CG8193 CTAGACGATCCGCACCTGAT AAGCGGCTCAATAAAGATGC 

Got2 TTCAAGAAGGACACCAACCC CGGCTCACCACTCTCTTCTC 

Pepck GTGCCATCAACCCAGAGAAT GCCCAACCAGTCAGTGATTT 

proPO-A1 ACCGTGGACTACATTGAGGC GGTGAACGAGGCGAATATGT 
   

 

 

Results 

Heat Pretreatment and Heat Stress Influences on Development and Behavior 

Heat pretreatment partially protected the development of MB in the brain. The 

average MB calyx volume of HPHS flies was increased by approximately 16% 

relative to HS flies, but was still reduced by approximately 13% relative to CT 

flies (Figure 4-1A). Whereas the acute daily heat stress severely disrupted the 

MB development, the mild heat pretreatment by itself had no effect on the 

volume of MB calyx. The developmental stability of MB was also perturbed by the 

heat stress. The MBs of HS flies had larger FA than the MBs of CT flies (Figure 
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4-1B). The HP and HPHS flies exhibited higher FA in MB relative to CT flies and 

lower FA in MB relative to HS flies, though the effects were not significant. 

However, heat pretreatment did not rescue the learning from the impairment 

caused by heat stress. Learning (PI at 0 min) of odors paired with electric shock 

was the same in HPHS and HS flies, which was profoundly reduced by about 

24% compared with CT flies (Figure 4-1C). HP flies, experiencing only heat 

pretreatment, did not show any decline in learning or memory retention relative to 

CT flies. In HS flies, the associative odor memory decreased to the lowest point 

after 3h (the 6h memory was not statistically different from the 3h memory). 

Thus, the memory curves from 0min to 3h were compared between the 4 fly 

groups. Although the PIs averaged overall retention intervals for HPHS and HS 

flies were 72% and 62% of the CT flies, the ANOVA treatment × time interaction 

component was not significant (P = 0.38), indicating that the memories of heat 

stress treated groups (with and without heat pretreatment) do not decay more 

rapidly relative to the CT group. Both HPHS and HS flies did not have severe 

sensory acuity defects. They showed normal avoidance of 2×10–3 diluted MCH 

and 4×10–3 diluted OCT odorants and 90 V dc electric shocks used in the 

classical conditioning (Table 4-2). Hence, the low conditioning performance in 

HPHS and HS flies was not attributed to the weak olfactory or shock reactivity, 

but a result of impaired association of these stimuli. 
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Figure 4-1. Influences of heat pretreatment and heat stress on MB size and 
associative odor learning and memory.  
 (A) MB calyx volume (the average of left and right for each fly) for flies with 
different preadult thermal treatment experiences. 33 ≤ n ≤ 35 in each bar. (B) Box 
plot of the FA in MB calyx (the absolute value of left and right difference for each 
fly). Upper and lower edges of each box correspond to the 25% and 75% 
quantiles; the horizontal line in the box represents the median; the dashed lines 
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show the 5% and 95% quantiles. 33 ≤ n ≤ 35 in each box. (C) Learning and 
memory. Performance indexes of learning, 30min and 3h memory of CT and HP 
flies are significantly higher than those of HPHS and HS flies (P < 0.001). n = 12 
in each point. (A-C) Each bar, box, or point represents mean ± standard error 
(SE). Different letters designate significant different groups (P < 0.05). 

 

 

Table 4-2. Aversive olfactory avoidance and shock reactivity. 

 Olfactory Avoidance (PI) Shock Reactivity (PI) 

Treatment MCH OCT  90 V  
 
  CT 74 ± 4 62 ± 3  81 ± 3  

  HP 67 ± 4 60 ± 5  80 ± 3  

  HPHS 71 ± 3 55 ± 2  81 ± 3  

  HS 71 ± 2 57 ± 3  79 ± 4  
 
The odrant MCH was 2 × 10−3 diluted, and OCT was 4 × 10−3 diluted. Each score 
is expressed as mean PI ± standard error. n= 12 per group for olfactory 
avoidance, n = 16 per group for shock reactivity. 

 

 
 

Moreover, the influence of heat stress and heat pretreatment on flies’ 

fecundity was examined. In the first 6 days, both HS and HPHS males displayed 

almost complete sterility, although HS and HPHS females were normally fertile 

(Figure 4-2). Starting from day 7 and 8, the fertility of HS and HPHS males was 

largely restored. Not surprisingly, the fertility of HP flies was virtually unaffected. 
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Figure 4-2. Effects of heat pretreatment and heat stress on fertility.  
Number of offspring produced by 2 male (♂) and 2 female (♀) flies every 2 days. 
In the first 6 days, there was no offspring from crosses ♂HS × ♀HS, ♂HS × ♀CT, 
♂HPHS × ♀HPHS, and ♂HPHS × ♀CT, but from crosses ♂CT × ♀HS and ♂CT× 
♀HPHS, indicating that young HS and HPHS males are sterile, while HS and 
HPHS females are normally fertile. The fertility of HS and HPHS males was 
largely restored starting from day 8.  

 

 

Heat Pretreatment and Heat Stress Influences on Gene Expression 

The differences in gene expression in the heads of HS, HPHS, and CT flies 

were studied to find out the long-term effects of preadult heat stress, with and 

without heat pretreatment, on the adult. Since HP flies did not show any defect in 

MB development, or learning or memory abilities, it was not included. A loop dye-

swap design was used for the two-color microarray experiment (Smyth, 2004; 

Yang & Speed, 2002) (Figure 4-3A). Of 14018 transcripts, 8618 transcripts were 
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identified above the background threshold (signal intensity > 132), of which 7343 

transcripts showed non-probe specific dye effects (Pdye-effect > 0.05). We then 

used both statistical (P < 0.05) and fold-changing (fold-change > 1.5) criteria to 

filter the significantly differently expressed transcripts. 4.11%, 0.91%, and 0.15% 

of the transcripts showed significant different expression pattern between HS/CT, 

HPHS/CT, and HS/HPHS flies (Figure 4-3B, C, and D). Of those, 61 genes were 

up regulated and 8 genes were down regulated only in HS flies; 1 gene was up 

regulated and no genes were down regulated only in HPHS flies; 9 genes were 

up regulated and 3 genes were down regulated in both HS and HPHS flies 

relative to CT flies. The annotation from FlyMine (Lyne et al., 2007) revealed that 

about half of proteins encoded by these genes function in diverse biological 

processes, including proteolysis, metabolic process, and protein transport among 

others (Table 4-3). The molecular functions of the other half genes are still 

unknown. 

To validate the microarray results, we used qRT-PCR to assay the expression 

pattern of 8 HS downregulated genes and 3 HS and HPHS downregulated 

genes. There were 7 genes that showed similar reduced expression in HS and 

HPHS flies (fold-change > 1.5, Table 4-4). To evaluate whether these genes are 

involved in the MB development and odor associated learning, we then chose 4 

mutant Drosophila lines corresponding to confirmed stress downregulated genes 

that were publicly available. Further qRT-PCR indicated that the gene expression 

of CG31704, CG32444, and Pepck, but not AcCOAS, was interrupted in the 

cantonized mutants (data not shown). Mutant CG32444f00963 showed a significant 
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decrease in MB calyx volume (Figure 4-4A, P = 0.005). However, none of the 

mutants displayed any significant difference in learning compared with wild type 

flies (Figure 4-4B). 

 

 
Figure 4-3. Influences of heat pretreatment and heat stress on gene expression.  
(A) Microarray two-color experimental design. Each microarray chip is 
represented by one arrow, which points in the Cy3 to Cy5 direction. (B-D) MA 
plots of microarray data reflect the comparison of gene expression between CT 
and HS, CT and HPHS, and HPHS and HS. M represents the signal intensity 
ratio and A represents the average signal intensity for a dot in the plot. 
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Table 4-3. List of genes showing significant differences in gene expression 
between HS, HPHS, and CT flies. 
 

Gene Biological process Gene Biological process 
 

HS up-regulation 

alphaTry proteolysis Mlc1 mesoderm development, muscle contraction 

Bace proteolysis Cpn rhabdomere development 

CG12374 proteolysis CG10910 

CG7542 proteolysis CG1136 

epsilonTry proteolysis CG11672 

Jon25Bii proteolysis CG12699 

Jon25Biii proteolysis CG13324 

Jon65Aiii proteolysis CG14022 

Jon65Aiv proteolysis CG15043 

Jon74E proteolysis CG1674 

Jon99Ci proteolysis, digestion CG16884 

Jon99Ciii proteolysis, digestion CG16885 

yip7 proteolysis CG33346 

Gasp chitin metabolic process CG3819 

obst-B chitin metabolic process CG3906 

CG14125 chitin metabolic process CG4000 

CG14645 chitin metabolic process CG4363 

serp chitin metabolic process CG4783 

open tracheal system development CG5107 

CG33173 chitin metabolic process, transport CG5172 

LysP cell wall macromolecule catabolic process CG5399 

antimicrobial humoral response CG7203 

LysS cell wall macromolecule catabolic process CG8927 

antimicrobial humoral response Cpr100A 

LvpH carbohydrate metabolic process Cpr92F 

CG6295 lipid metabolic process Cpr97Eb 

Strn-Mlck protein amino acid phosphorylation Cry 

KP78b protein amino acid phosphorylation dpr13 

CG7214 positive regulation of NFAT protein  Lcp1 

Import  into nucleus m1 

CG6484 transmembrane transport TpnC4 

Act88F cytoskeleton organization, phagocytosis TpnC41C 

fln muscle thick filament assembly 

HPHS  up-regulation 

CG13305 

HS and HPHS  up-regulation 

CG18180 proteolysis CG13071 

CG30360 carbohydrate metabolic process CG8736 

Acp1 Cpr47Ea 

CG12998 Cpr62Bc 
CG13056 
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Table 4-3. (Continued) 
 

Gene Biological process Gene Biological process 
 

HS down-regulation 

AcCoAS metabolic process ade5 de novo' IMP biosynthetic process 

CG32444 hexose metabolic process inter-male aggressive behavior 

Pepck gluconeogenesis CG1628 transmembrane transport 

Got2 glutamate biosynthetic process  CG11395 

neurotransmitter receptor metabolic process CG14075 

synapse assembly 

HS and HPHS  down-regulation 

CG31704 proteolysis proPO-A1 catechol oxidase activity 

CG8193 metabolic process monophenol monooxygenase activity 

oxygen transporter activity 

monophenol monooxygenase activity 

 
 

 

Table 4-4. Comparison of microarray and qRT-PCR results in gene eaxpression 
pattern. 
 

 

Microarray q RT-PCR 

Symbol Treatment Down-regulation Down-regulation 

Fold change Fold change 
 

AcCoASab HS  1.54 1.53 

ade5 HS  1.50 1.23 

CG11395a HS  1.62 1.71 

CG14075 HS  1.50 1.41 

CG1628 HS  1.55 1.14 

CG32444ab HS  1.65 1.63 

Got2 HS  1.50 1.29 

Pepckab HS  1.78 1.89 

CG31704ab HS  1.66 2.24 

HPHS 1.64 1.63 

CG8193a HS  2.31 2.74 

HPHS 1.99 1.51 

proPO-A1a HS  1.90 2.87 

HPHS 1.73 2.07 

 
aGenes show same expression pattern in microarray and qRT-PCR analysis. 
bGenes have publicly available mutant line 
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Figure 4-4. Phenotypes of mutants in MB size and associative odor learning.  
(A) MB calyx volume for wild type and mutant flies representing genes identified 
in microarray. **P < 0.001 for comparison between CG32444f00963 and w1118; 
CS. 20 ≤ n ≤ 22 in each bar. (B) Learning and memory. None of the mutant lines 
shows significantly different performance index relative to the wild type line (P > 
0.05). n = 12 in each point. (A, B) Each bar represents mean ± SE.   

 

 

Discussion 

Here we describe a partial protective effect of heat pretreatment against heat 

stress at the physiological and molecular levels. The administration of heat 

pretreatment before heat stress moderately mitigated heat disruption of MB 
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anatomy, despite having little effect on the impairment of associative odor 

learning. Our previous work found that the heat stress induced reduction in MB 

calyx volume was due to fewer intrinsic MB Kenyon cells (KCs) (Wang et al., 

2007). It has been also reported that heat pretreatment can abate developmental 

damages caused by mitotic poisons in Drosophila (Isaenko et al., 2002). Heat 

pretreatment might partly protect KC proliferation from heat stress, thus 

increased KC numbers and calyx volume. The failure  

of heat pretreatment to partly rescue heat stress induced associative odor 

learning reduction was surprising, given that the heat pretreatment partly 

increased MB calyx volume. We showed that HS flies with smaller MB calyx had 

a diminished capacity for odor learning. de Belle and Heisenberg (1994) 

indicated that hydroxyurea fed Drosophila with partially ablated MB showed 

incomplete loss of odor learning. Both studies suggest a correlation between MB 

calyx volume and olfactory conditioning, although this cognitive behavior also 

requires other upstream and downstream extrinsic neurons of the MB. We 

propose that the changes in MB calyx volume can be reflected by the differences 

in odor learning, which may be both a continuous and a threshold-like 

association. Here, the decrease in MB volume in HS flies compared with CT flies 

reduced the odor learning, whereas the minor increase in MB calyx volume in 

HPHS flies relative to HS flies might not have been enough to enhance the odor 

learning. A more supportive observation is that although the KC fiber number 

slightly decreases in aged flies (Balling et al., 1987, Technau, 1984), the odor 
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learning remains the same from 10-day-old flies up to 50-day-old flies (Tamura et 

al., 2003).     

Under severe stress conditions, development tends to be disturbed. This 

developmental instability can be measured as FA, the small and random 

fluctuation from perfect bilateral symmetry of body traits (Palmer & Strobeck, 

1992). FA in MB calyx in HS flies was much larger than that in CT flies, indicating 

that heat stress is a considerable perturbing MB developmental noise. It has 

been suggested that heat shock proteins may function as molecular chaperones 

involved in maintaining developmental stability, as mutations in the Hsp83 gene 

were found with malformations in various body parts (Rutherford & Lindquist, 

1998). Our study shows evidence that heat pretreatment, which induces 

expression of numerous heat shock proteins, protected MB developmental 

stability characterized by reduced FA. 

Early stage sterility in male, but not in female, HS and HPHS flies was 

observed. Interestingly, male or female sterility has also been reported in many 

MB mutations (de Belle & Heisenberg, 1996). The gene mushroom body defect 

(mud) is such an example that it is involved in MB neuroblast proliferation (Guan 

et al., 2000) and female meiosis II spindle assembly (Yu et al., 2006).  However, 

the recovery of fertility in older male HS and HPHS flies indicated that their 

infertility is not strictly an organically developmental defect, but may just be a 

temporary spermatogenesis halt capable of recovery. 

The preadult stage heat stress significantly changed the expression level of 

579 transcripts in adult fly heads (P < 0.05), among which 92 genes showed fold 
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changes larger than 1.5 compared with the control. There were 127 transcripts 

expressed significantly different between HPHS and CT flies (P < 0.05), with only 

19 genes showing changes larger than 1.5 fold. Remarkably, heat pretreatment 

alleviated the long-term gene expression alteration caused by heat stress. 

Nevertheless, this alleviation in gene expression is not complete. Additionally, 

heat pretreatment did not completely mitigate the heat stress related reduction in 

MB calyx volume, and it did not affect the odor learning decline or male sterility. 

Although heat pretreatment induces heat shock responses, which help 

organisms to be prepared for stresses, it cannot absolutely protect organisms if 

stresses are extremely harsh and persistent. Here, the changed gene expression 

in HS and HPHS flies might be both a reflection and an adjustment of the heat 

stress injury.  

The largest overlapping groups of genes that showed long term changes in 

their expression due to heat stress have been identified in other microarray 

studies as being involved in immune and stress responses. Of all the overlapping 

genes, thirteen of them (Act88F, CG4000, CG7542, epsilonTry, fln, Jon25Bii, 

Jon25Biii, Jon65Aiii, Jon74E, Jon99Ci, Mlc1, TpnC41C, yip7) were found in 

response to the infection with a sigma virus (Rhabdoviridae) (Carpenter et al., 

2009); Ten genes (Acp1, Act88F, alphaTry, CG8736, Cpr47Ea, Cpr62Bc, 

Cpr92F, fln, Gasp, Strn-Mlck) were involved in the defense triggered by the 

Pseudomonas aeruginosa (Apidianakis et al., 2005); six genes (CG13324, 

CG18180, Jon25Bii, Jon25Biii, Jon65Aiv, Jon99Ci) were affected by septic 

injuries (De Gregorio et al., 2001, De Gregorio et al., 2002); and six genes 
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(Act88F, CG7203, CG7214, fln, Mlc1, TpnC41C) were related to innate immunity 

after microbial challenges (Boutros et al., 2002). In addition, seven genes 

(AcCoAS, CG32444, CG6295, Got2, m1, Pepck, serp) responded to starvation 

treatment (Fujikawa et al., 2009, Zinke et al., 2002); and six genes (AcCoAS, 

CG12374, CG32444, fln, Jon65Aiii, Strn-Mlck) exhibited changes in aging or 

oxidative stress response (Zou et al., 2000). These findings suggest that the 

most disrupted or adjusted genes in HS and HPHS flies are related to self-

protective signaling pathways. There were no genes that were overlapped with 

the heat shock response genes that are induced shortly after the heat stress. 

This is not surprising because we examined gene expression profiles in adult 

flies that were exposed to preadult heat stress.  

The long-term heat stress effects on gene activity might correlate more with 

the developmental and behavioral defects. Such molecular dissection on long-

lasting consequences has been studied in MB ablation (Kobayashi et al., 2006) 

and other behaviors including geotaxis and aggression (Dierick & Greenspan, 

2006, Toma et al., 2002).  Since the MB calyx volume and the associated odor 

learning are reduced in HS and HPHS flies, we anticipated that the expression 

pattern of some MB development and/or odor learning related genes might have 

also changed. However, all the known MB and/or learning genes showed no 

significant changes, for example, mushroom body miniature (mbm, CT/HS = 

1.05, P = 0.40; CT/HPHS = 1.14, P = 0.28) and latheo (lat, CT/HS = 1.03, P = 

0.27; HPHS/CT = 1.12, P = 0.78). One possible explanation might be that many 

of these genes are not just exclusively expressed in MBs, but also in other brain 
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structures. These structures are less or not affected by heat stress, but comprise 

considerable parts of the brain. Further mutant analysis of a set of HS/HPHS 

disrupted genes detected that only CG32444f00963 is a MB single gene mutant, 

though none of the mutants showed any significant change in odor learning. It is 

possible that the interruption of most of these genes is not strong or specific 

enough to disturb MB development and/or odor learning, since the disruption of 

MB and/or learning in HS and HPHS is a result of complex changes of many 

genes. Moreover, our previous finding suggests that the reduced learning in HS 

flies is due to a lower MB KC number, but not a KC dysfunction (Wang et al., 

2007), which might be an alternative explanation for no finding of learning genes 

and mutants.   

The CG32444f00963 mutant showed reduced MB calyx volume, but the 

reduction in odor learning was not significant. Probably, the decrease in MB calyx 

volume is not sufficient for a significant reduction in odor learning in the 

CG32444f00963 mutant, since the association between MB calyx volume and 

behavior is both continuous and threshold-like, as we suggested above. The 

annotation of the CG32444 sequence suggests that it has the aldose 1-

epimerase activity and may be involved in the hexose metabolic process 

(FlyBase report). CG32444 has also been identified in other microarray analysis, 

such as aging and oxidative stress response (Zou et al., 2000), starvation 

(Fujikawa et al., 2009), copper homoeostasis (Southon et al., 2004), circadian 

behavior (Ceriani et al., 2002), and aggression (Dierick & Greenspan, 2006) in 
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Drosophila. These discoveries suggest that CG32444 might play important roles 

in development and stress response. 

It should not be neglected that some of the genes, for example, several of the 

Jonah gene family (Jon25Bii, Jon25Biii, Jon99Ci, et.al.) that were detected in the 

fly head by our microarray analysis were reported as only being expressed in the 

adult fly midgut (Carlson & Hogness, 1985a, Chintapalli et al., 2007). The 

expression level of Jonah transcripts is very high in midgut; it is actually 

discovered from an unexpected contamination of midgut in other mass dissected 

tissue in larvae (Carlson & Hogness, 1985b). We do not suspect that there might 

be contaminated tissue in the hand-sectioned-adult-head. A possible explanation 

is that the microarray signal intensities of some of the Jonah genes are close to 

the background threshold (slighter higher), their sensitivity might not be accurate. 

In addition, seven out of 11 genes confirmed by the qRT-PCR showed the same 

expression changes as our microarray results, which indicated a relatively high 

false positive rate in the microarray data. As a compensation for the common 

disadvantages of microarray, a new approach, RNA-sequencing (RNA-Seq), is 

becoming more promising with its low background signal, high quantification 

accuracy, few RNA sample requirements, and even no requisite for existing 

genomic sequence (Shendure, 2008, Wang et al., 2009). A genome-wide 

transcriptome study will be more precise and comprehensive in the future, 

though the elucidation of the biological processes and networks of all identified 

genes is still one of the challenges. Here, the analysis of full genome gene 

expression, especially further studies of the candidate genes, will help us begin 



93 
 

to understand the complex long-term effects of heat pretreatment and heat stress 

on brain development and behavior. 
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CHAPTER 5 

CONCLUSIONS 

The studies presented in this dissertation used histological, behavioral, 

genetic, and molecular tools to investigate how and to what extent environmental 

factors affect brain development and cognitive functions in Drosophila 

melanogaster.  

 
Thermal Stress 

  The first study demonstrates that adult Drosophila MB anatomy, but no other 

brain structures, is especially susceptible to acute, ecologically relevant heat 

stress during development. Calyx volume measurements, counts of GFP-labeled 

KCs, and visualization of GFP-labeled MBs revealed that reduced MB volume is 

due to fewer KCs, rather than smaller aberrant MB structures. There was no 

evidence of necrosis in paraffin brain sections of HS flies, which suggests that 

thermal stress did not induce KC mortality, but impaired KC proliferation. To 

further determine how thermal stress disrupts the proliferation of MB neuroblasts, 

but not the migration growth or synaptogenesis of MB neurons, the MARCM 

(mosaic analysis with a repressible cell marker) system (Lee et al., 1999) can be 

used to visualize fluorescence labeled single-cell and two-cell clones to trance 

neurogenesis in a further study. 

Associative odor learning, but not memory, was also impaired in HS flies. The 

approximate 30% learning reduction was correlated with the approximate 30% 

MB volume and KC number reductions. This relationship indicates that lower 

memory scores in HS flies were reflections of the reduced sum of conditioned KC 
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signals received by MB downstream extrinsic neurons. Moreover, since both MB 

structure and memory decay were not affected in HS flies, it supports the idea 

that normal KC projection and connectivity are critical for memory storage and 

retrieval. 

 

Stimulating Enrichment 

In Drosophila, enhanced social context in densely populated larval culture 

and enlarged adult living space have been reported to be enriched factors that 

improve brain development (Heisenberg et al., 1995). However, in the second 

study, I did not find any significant increases in brain structure volumes in flies 

reared from either crowed larval cultures or flight cages. These rearing conditions 

might induce fine neuronal changes, which may not be discovered by the volume 

measurement with fluorescence microscope. Improvement of microscopy 

contrast, resolving power, and magnification by use of specific neuronal markers, 

application of antibodies, and use of confocal microscopy or electron microscopy 

might be required to locate sub cellular changes in the fly brain. 

In addition, the associative odor learning was neither significantly increased 

by crowded larval cultures nor spatially enlarged flight cages. This finding 

supports the argument that these laboratory improved settings were possibly not 

enriched enough. Further research might be necessary to find out the effective 

enriched laboratory rearing conditions for the flies.  

Moreover, numerous studies have reported that larval crowding in Drosophila 

during development actually has negative effects on growth, especially in body 
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size (Imasheva & Bubliy, 2003, Lefranc & Bundgaard, 2000, Miller & Thomas, 

1958). My data showed that the volumes of CCX, AL, and OL were inversely 

related to larval rearing density. In Caenorhabditis elegans, high population 

density promotes formation of dauer larvae, a non-feeding and non-aging 

specialized form for stressed environments. The crowded culture is sensed 

through secreted small-molecule pheromones (Butcher et al., 2007, Golden & 

Riddle, 1982), and then coupled to endocrine pathways to regulate development 

and survival (Fielenbach & Antebi, 2008). It is worth mentioning that Heisenberg 

et al. (1995) showed that the increase in adult fly MB KC fiber numbers in 

crowded larval culture was mediated by diffusible substances produced by larvae 

themselves. Rather than depressing MB development, they suggested that this 

diffusible factor might directly stimulate KC proliferation or fiber growth, or 

deplete the inhibitory substances in the food. Yet, how rearing density is sensed 

or coordinated in growth by the Drosophila larvae remain poorly understood. 

To illustrate the variation in relative sizes in response to heat stress and larval 

density, I applied static allometry to analyze brain structures. MBs were isometric 

to overall brain size in benign thermal conditions, but were particularly 

hyperallometric relative to heat stress. Nevertheless, larval crowding did not have 

significant effect on MB allometry.      

 
 

Thermal Pretreatment 

The third study demonstrates that the administration of a mild thermal 

pretreatment before the acute thermal stress moderately mitigated the heat 
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induced volume reduction in MBs. Furthermore, DNA microarray analysis 

showed that heat stress significantly changed the expression level of 579 

transcripts in adult fly heads, while the addition of heat pretreatment reduced that 

number into 127. The altered gene expression in HS and HPHS flies might be a 

reflection and also an adjustment of the heat stress injury. These heat stress 

long-term affected genes encode proteins involved in diverse biological 

processes. One of the heat stress downregulated genes, CG32444, was 

annotated to have the aldose 1-epimerase activity and may be involved in the 

hexose metabolic process (FlyBase report). The CG32444f00963 mutant showed 

reduced MB calyx volume, though the functional relationship between them is yet 

not known. Further studies for the heat stress upregulated genes by using over-

expression or knocking-down might find more candidates that are important for 

mediating neuroanatomical and behavioral plasticity. 

Heat pretreatment induces the expression of heat shock proteins, which is a 

key factor to guard the gene expression and protect the MBs from heat stress. 

Interestingly, I have found that a chronic equivalent heat stress had no inimical 

impact on MB anatomy (Figure 5-1). In the chronic heat stress treatment, an 

incubator was substituted for the water bath that produced the acute thermal 

stress treatment. The temperature increased much slower in the chronic thermal 

treatment (heat transmits slower in the air than in the water), indicating a 

deliberate continuous accumulating of heat shock proteins, which might be more 

beneficial for their function as molecular chaperones. Thus, this chronic heat 

stress treatment can be interpreted as a combination of a series of heat 
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pretreatments (continuously preparing abundant heat shock proteins) and heat 

stress. In the wild, Drosophila larvae inhabit in necrotic fruits that routinely attain 

temperatures greater than 35°C and as high as 52°C und er direct sunlight 

(Feder, 1997). It would be fascinating to learn how MB development is influenced 

by natural thermal stress.    

 

 
 
Figure 5-1. Chronic thermal stress does not affect MB development.  
MB calyx volume was not significantly influenced by chronic heat stress (t-test, P 
= 0.95). Bars are mean ± SE, nCT = 29, nHS = 30. Drosophila culture vials were 
kept in a programmed incubator. The chronic Heat stress treatment was 
administered by automatically increasing the incubating temperature from 23°C 
to 39.5°C for 35 min every day throughout larval an d pupal development. 

 

 

Summary 

In this dissertation research, empirical linkages between thermal stress, 

specific targets in the brain, and consequent behavior were established in 

Drosophila. On the one hand, I discovered that MBs and associative odor 

learning are especially sensitive to excessive hyperthermia stress. On the other, I 
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showed that the brain bears resilient adaptability to retain its developing and 

functioning authenticity in response to certain environmental variations. 

Therefore, brain plasticity should be defined not only by its ability to change, but 

also its robust maintenance of developmental and behavioral fidelity. These 

findings have broad implications for societal and scientific views on genetic and 

environmental determinism. 
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APPENDIX  

SUPPLEMENTAL DATA 

 

 
 
 
Supplement Figure 4-1. Electrophoresis gel image of Drosophila RNA. 
rRNA is visible as two sharp bands half way down the gel (Drosophila 28S rRNA 
is processed into 2 fragments that migrate in a similar manner to the 18S rRNA 
{Ambion,  #355}), whereas mRMA is the smear in the background. Lane L, RNA 
marker; lane 1-4, RNA of CT flies; lane 5-8, RNA of HS flies; lane 9-12, RNA of 
HPHS flies. 
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Supplement Figure 4-2. DNA microarray image. 
Chip R1_Chip1_13600633_2007-10-19_6_R1. CT fly cDNA was labeled with 
Cy3 (green), HS fly cDNA was labeled with Cy5 (red). 
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