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ABSTRACT 

This dissertation explores the impacts of social interactions on consumer behavior.  

We first examine whether a consumer’s willingness to pay is higher for quiet handbags 

than for loud handbags. We use the transaction data for the sales of pre-owned Louis Vuitton 

handbags from two websites (i.e., eBay and Tradesy). We find that the amount consumers are 

willing to pay for quiet handbags is around $150 and $135 higher than for loud handbags on 

eBay.com and Tradesy, respectively. This result provides empirical evidence that consumers 

with high social capital are willing to pay more for quiet luxury goods. We also find that that the 

premium of a consumer’s willingness to pay for quiet luxury goods decreases as the condition of 

the goods deteriorates. The decrease in the price premium by each condition is around $7. The 

premium of a consumer’s willingness to pay for quiet luxury goods using the BuyItNow option 

is around $48 greater than that of the auction option. 

We then use a more general dataset, the Consumer Expenditure Survey (CEX) from the 

Bureau of Labor Statistics (BLS), to estimate the magnitude of peer effect using a two-part 

model with instrument variables to overcome the endogeneity and censored data issues. We find 

that a $1.00 increase in peers’ average consumption leads to a $0.60 increase on average in the 

individual’s consumption for outerwear and footwear. The coefficients are positive, which means 

that the conformism effect dominates. We also find that peers’ consumption has no significant 

influence on underwear consumption. 
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Next, we examine the process of consumption-related decision making within 

households. When family members make consumption decisions, they think about not only 

themselves, but also other family members. We find that when a wife’s relative salary compared 

to her husband’s salary increases, womenswear consumption will increase while menswear 

consumption will decrease. We estimate the Pareto weight to be negatively correlated with the 

ratio of the wife’s salary to the husband’s salary. When the wife’s salary increases, the ratio will 

increase, and the weight of the husband’s utility will decrease.  
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Chapter 1: Is Quiet Better Than Loud? Status Signaling in Online 

Luxury Markets 

1.1  Introduction 

Luxury goods have a long history. Tracing back to hundreds of years ago, people use 

hand silverware, hand-painted china, and expensive table linens at meals when less expensive 

substitutes are available. This phenomenon was coined by Veblen (1899): conspicuous 

consumption; that is, the use of money or other resources to display a higher social status. The 

luxury goods, also called “Veblen goods”, are different from the typical goods in terms of 

demand patterns. The demand for the “Veblen goods” increases as the price increases, instead of 

decreases according to the law of demand, because higher price confers greater status.  

Luxury goods is a fast-growing market. According to an industry report,1 the core market 

for personal luxury goods reached a fresh record high of €262 billion in 2017, the compound 

annual growth rate is around 6 percent from 1996 to 2017. Typical personal luxury goods include 

handbags (e.g., Coach, Louis Vuitton, etc.), Designer clothing and footwear (e.g., Gucci, Dior, 

etc.), luxury jewelry and watches (e.g., Cartier, Tiffany & Co., etc.), and premium cosmetics and 

fragrances (e.g., Chanel, Lancôme, etc.).  

A unique feature about luxury goods is their explicit effort in branding. Because luxury 

goods are to signal a consumer’s high social status, the conventional wisdom is that the luxury 

goods need to be “loud” in communicating the status through their brand. The apparent logos on 

                                                           
1 16th edition of Bain & Company’s annual global luxury study 
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handbags or on clothes make others aware they are luxury and expensive. At least, this is a 

tradition for hundreds of years’ experience. In the recent years, there has been a debate on 

whether brand logos should be shown on the product (e.g., Kapferer 2010; Krabtree 2016; 

Cavender et al 2014; Ghosh 2013; Han 2008; Duran 2017). The pro-logo side argues that 

consumers buy obvious logo product to show their status because it was more apparent to be 

seen, whereas the no-logo side argues that consumers choose no-logo goods because of the 

snobbism effect; that is, they do not want to be imitated by others (e.g., Kapferer 2010; Duran 

2017). According to a NPD report,2 one third of luxury handbags purchased in the U.S. in the 

year ending June 2016 did not have any visible branding and customers stated that it was 

important to them that the logo on their handbags should be subtle.  

The debate in the industry challenges the Veblen’s conspicuous consumption theory that 

luxury goods are to signal a social status so that their demands increases in prices. If a luxury 

handbag does not have a visible logo, it counters to the functionality of a Veblen good. In other 

words, Veblen’s conspicuous consumption theory suggests that the luxury goods with obvious 

logos (i.e., loud handbag) should have higher prices than the luxury goods without logos (i.e., 

quiet handbag). The reality seems to suggest otherwise that the luxury goods without logos 

should have higher prices than the luxury goods with logos. Therefore, given the debate and the 

mixed messages, an empirical examination of the Veblen’s conspicuous consumption theory is 

warranted and has potential to make important theoretical contributions.  

                                                           
2 The Importance of Visible Logos on Handbags is Diminishing, Reports NPD  

https://www.npd.com/wps/portal/npd/us/news/press-releases/2016/the-importance-of-visible-logos-on-handbags-is-

diminishing/ 
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An extensive body of literature has examined the pricing for luxury goods (e.g., Kapferer 

and Laurent 2016; Yeoman and Beattie 2006; Amaldoss and Jain 2005; Truong and el. 2011; 

Sahalia, Parker and Yogo 2004). On the pricing between loud and quiet luxury goods in 

particular, however, few papers have looked at the different pricing between loud and quiet 

luxury goods. Among the very few, Han et al (2010) compare the price of loud handbags and 

quiet handbags (as well as Mercedes emblem), and find that, on average, luxury brands Gucci 

and LV charge more for quiet handbags than for the loud products. On average, an increase in 

brand prominence of 1.0 on the seven-point scale equates to a $122.26 decrease in price for 

Gucci and a $26.27 decrease for LV handbags. 

Han et al. (2010) approach the issue from the supply-side perspective in that they collect 

and compare the list price of all handbags from the brands. There are two potential issues. First, 

their study does not consider sales as they do not have sales data. The brand firm may price quiet 

handbags higher than loud handbags but the quiet handbags may not sell as much as the loud 

handbags. Second, they have to rely on expert judges to evaluate the quietness and the loudness 

of handbags, which can be subjective. We approach this issue from the consumer’s perspective 

and use a well-controlled setting and larger dataset. In particular, we identified two similar 

handbags of the same LV brand, same size and same price, one with the LV logo (i.e., loud 

handbags) and the other one without the LV logo (i.e., quiet handbags). We collected sales data 

for the selected handbags from two popular online markets that sell pre-owned products (i.e., 

eBay.com and Tradesy), and developed econometric models to test the differences in the sales 
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price. The idea of using sales data for the pre-owned products in online markets is that the prices 

are a reasonable proxy for the consumer’s willingness to pay.3 Furthermore, we expand the study 

to examine the different pricing between products based on the conditions of the handbags and 

between auction and buy-it-now options.  

Our key findings are that: (1) The consumer’s willingness to pay is higher for the quiet 

handbags than for the loud handbags, everything else being equal. The price of quiet handbags is 

about $150 higher than that of loud handbags. (2) The price premium of quiet handbags 

decreases as a handbag’s condition worsens. The decrease in the price premium by each 

condition is around $7. And, (3) The price premium of quiet handbags is higher for price 

sensitive consumers. The premium of consumer’s willingness to pay for quiet luxury goods using 

BuyItNow option is around $48 greater than that of auction option. 

Our paper makes important contributions to the interface of information systems and 

marketing. First, the theory in conspicuous consumption is inconsistent from anecdotes in the 

market on whether loud or quiet luxury goods can command higher price premium. Although a 

few papers made attempts to examine this phenomenon, they used either analytical modeling or a 

very limited dataset. We are able to collect a larger dataset and systematically examine the issue, 

and our findings provide evidence that supports the subtle signal conspicuous consumption 

theory. Second, most studies have analyzed the behavior of wealthy consumers using new 

products. We extend their research settings to the pre-owned luxury goods market so that we can 

                                                           
3 Because in the context of a second-price sealed-bid auction, Vickrey (1961) proved that truth-telling is a dominant 

strategy. 
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study the less wealthy consumers whose purchase behavior may differ based on the conditions of 

the luxury goods. Therefore, our research fills a gap in the literature by focusing on consumers 

who are less wealthy and yet buy luxury goods from the pre-owned luxury goods market.  

The rest of the paper is structured as follows. Section 2 discusses the theory and develops 

the hypotheses. Section 3 describes our research setting, data, variables, and econometric 

models. Section 4 presents the analysis and results. Section 5 concludes our analysis and 

discusses limitations and potential future research.   

 

1.2 Theory and Hypothesis 

1.2.1 Literature Review 

Conspicuous Consumption —signal status 

Based on Veblen’s conspicuous consumption theory, several theoretical papers in 

economics have developed models of conspicuous consumption. Duesenberry (1949) propose 

that the conspicuous consumption depends not only on their own spending but also depends on 

the spending of others in their groups. Hirsch (1976) include status variables in their utility 

functions and find that an individual’s satisfaction that is derived from goods and services 

depends not only on their own consumption, but also on the consumption of others. Frank (1985) 

define the term “positional goods” whose value depends relatively on how they compare with the 

goods owned by others and show the patterns of how conspicuous consumption externalities may 

cause inefficiencies. Ireland (1994) develops a signaling model of conspicuous consumption as a 
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signal of wealth. Bagwell and Bernheim (1996) develop a model where status depends upon the 

perception of consumers’ wealth among social contacts and consumers have private information 

about the value of their assets and attempt to signal their wealth by consuming a conspicuous 

good, and explain why people desire to signal wealth (i.e., the Veblen effect, defined as a 

willingness to pay a higher price for a functionally equivalent good will be arise).  

In marketing, some researchers study the conspicuous consumption from consumer’s 

behavior perspective. For example, Wernerfelt (1990) shows that, although price is related to 

status, price alone does not determine the desirability of a status brand. Both price and brand 

choice are signals to other consumers about that consumer’s status and consumers’ decisions are 

also affected by their desire for status. Chao (1996) investigates brand-buying patterns among 

four cosmetics products and finds that more "status" accompanies the purchase of more socially 

visible products; that is, consumers are willing to pay more for expensive goods whose logos are 

evident to others. O'cass and McEwen (2004) analyze a survey data from individuals between 18 

and 25 years old and find that the status consumption and conspicuous consumption are distinct 

constructs and the characteristic of an individual determines their consumer behavior, for 

example, young status-conscious consumers are more likely to be affected by interpersonal 

influence. Using a sample of 302 middle age consumers (40-60) in the context of automobile 

buying behavior, Shukla (2008) find psychological and brand antecedents are of crucial 

importance among middle‐aged consumers in influencing their conspicuous consumption. 

Chaudhuri et al. (2011) develop and validate a measure of individual differences in conspicuous 
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consumption orientation and conclude that conspicuous consumption can be regarded as an 

inmate trait level that motivates consumers to engage in visible forms of consumption to exhibit 

their uniqueness, as expressed through product selection and usage. 

Inconspicuous consumption—loud vs. quiet goods 

Eckhardt et al. (2014) summarize the studies of inconspicuous consumption via a wide-

ranging synthesis of the literature. They redefine the luxury construct and re-evaluate the 

signaling quality of brands. Han et al. (2010) divide consumers into four groups based on their 

wealth and desire to signal status. Each group has a different preference for conspicuously or 

inconspicuously branded luxury goods. These researchers also classify luxury goods as being 

one of two types: “loud” (a lot of obvious logos) or “quiet” (no obvious logos). Wealthy 

consumers with little need to signal status prefer quiet luxury goods that only a few people can 

recognize while wealthy consumers who want to signal status use loud luxury goods. In addition, 

those who want to pretend or appear to be wealthy but cannot afford luxury goods will buy 

counterfeits. In Han et al. (2010) four-group model, only wealthy people buy quiet handbags. 

Berger and Ward (2010) hypothesize that consumers with more cultural capital in a particular 

domain prefer subtle signals, which provide differentiation from the mainstream. They identify 

cultural capital as a dimension in addition to both wealth and a consumer’s need to signal status, 

which is a measure of their knowledge of those handbags. Consumers with more cultural capital 

believe that subtle signals are effective among people with the requisite knowledge to decode 

their meaning.  
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Carbajal et al. (2015) propose a theoretical model using a signaling game and assume that 

social capital will influence consumer’s utility. At the perfect Bayesian equilibrium with 

endogenous price, they show that poorly connected consumers choose loud status goods while 

wealthy well-connected consumers choose subtle status goods in order to be distinguished from 

poorly connected consumers. Furthermore, the wealthy, well-connected consumers would like to 

pay more for the subtle goods as compared with loud goods. Carbajal et al. (2015) conclude that 

consumption of subtle status goods is therefore not only a signal of wealth but also a signal of 

social capital.  

All of these studies find that subtle goods have higher prices than loud goods, although 

their explanations are different. Han et al. (2010) conclude that consumers carry quiet handbags 

because they have a low desire to signal status, whereas Berger and Ward (2010) find that people 

use subtle signals not because of their low desire to signal status but because of their high 

cultural capital. The data in their studies are also somewhat limited. Our study is different from 

these studies by providing more detailed empirical evidence using a well-selected setting with a 

relatively large dataset.  

1.2.2 Hypotheses 

As discussed above, Han et al. (2010) differentiate consumers by two dimensions: wealth 

and desire to signal, which results in four groups of consumers. Carbajal et al. (2015) and Berger 

and Ward (2010) add another dimension of social capital and argue consumers with high social 

capital (i.e., well-connected consumers) choose quiet goods to separate them from poorly-
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connected consumers who choose loud goods (“nouveau riche”). Essentially, Carbajal et al. 

(2015), Berger and Ward (2010) and Han et al. (2010) are consistent in that consumers with high 

social capital have low desire to signal to pubic. In the case that consumers are sufficiently 

wealthy to afford the luxury goods, their preference is separated by their social capital or desire 

to signal. For consumers with low social capital, they tend to buy loud luxury goods to show off 

their status. They tend not to buy quiet luxury goods because their low social capital makes the 

quiet goods ineffective in signaling their status. For consumers with high social capital, they do 

not want to be considered as “nouveau riche”; hence, they prefer to purchase quiet luxury goods 

so that only their peers with high social capital can recognize their status. As a result, they are 

willing to pay more for quiet luxury goods. As discussed in Carbajal et al.’s (2015), after 

considering social capital, sellers can charge a higher price for a quiet luxury good relative to the 

price of a loud luxury good and there exists a separate equilibrium in which only high social 

capital type chooses the quiet good. Therefore, we posit that the customers with high social 

capital are willing to pay more for the quiet luxury goods than the customers with low social 

capital. We propose the following hypothesis:   

H1. Consumer’s willingness to pay for quiet luxury goods is higher than that for loud luxury 

goods.  

For the consumers who are not sufficiently wealthy to afford luxury goods but have low 

social capital or high desire to signal status, they tend to use loud counterfeits to emulate the 

wealthy group of consumers they desire to be recognized with (Han et al. 2010). Alternatively, 
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they may buy pre-owned handbags of lower conditions that are sold for cheaper prices. 

Similarly, for the consumers who are not sufficiently wealthy to afford luxury goods but have 

high social capital, they also would like to pay more to buy quiet luxury goods rather than loud 

luxury goods in order to distinguish themselves from the less connected peers and imitate the 

wealthy and well-connected consumers. This group of consumers, however, is of smaller number 

since most customers who buy pre-owned luxury goods in poor conditions are more willing to 

imitate the consumers using loud signal. While the willingness to pay for the pre-owned luxury 

goods decreases with the lowering conditions in general, it is expected to be more robust for the 

loud luxury goods than for the quiet luxury goods. That is, the willingness to pay for the loud 

luxury goods drops less than the quiet luxury goods when the condition of the goods becomes 

worse. Hence, we propose the following hypothesis:  

H2. The premium of the consumer’s willingness to pay for the quiet luxury goods is decreasing 

when the conditions of the luxury goods are lower.  

There are many online websites selling the pre-owned luxury goods. eBay.com is one of 

the major online auction and shopping websites where people can buy pre-owned luxury goods. 

eBay.com provides an online auction platform for consumers to bid. Buyers can bid for an item 

within a limited time and the highest bidder will be awarded the purchase of the item. In addition 

to the auctions, eBay.com also offers a "Buy It Now" (BuyItNow) option; that is, a buyer can 

purchase an item right away at the set price without having to wait for the duration of the sales 

listing to expire. The theoretical implications for the BuyItNow option are that the consumers 
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who use BuyItNow are different from those who use the auctions. In general, the time-sensitive 

buyers will choose the BuyItNow option (Mathews 2006). Since when auction participants make 

no distinction as to when a transaction occurs, the seller can optimally choose a BuyItNow price 

so high that the auction participants never exercise the option, resulting in auctions have lower 

sales price than BuyItNow (Mattews and Katzman 2006). Therefore, between the consumers 

who use BuyItNow with those who use auctions, those who use BuyItNow are more affluent and 

have higher social capital, thereby, more likely to buy quiet luxury goods. Hence, we propose the 

following hypothesis:  

H3. The premium of consumer’s willingness to pay for quiet luxury goods with BuyItNow option 

is greater than that with auction option. 

 

1.3 Empirical Context and Data  

1.3.1 Louis Vuitton Speedy Handbags 

In order to test our hypotheses, the ideal setting would be to find two products that are 

identical except for the logo appearance (i.e., loud vs. quiet). We conducted an extensive search 

among luxury handbags and found two products from the LV product lines that are potentially 

met with the criteria. They are the LV Monogram Speedy 30 handbag (Monogram handbag) and 

the LV Damier Ebene Speedy 30 handbag (DE handbag). The Monogram handbag is a loud 

handbag as it has the LV logo prominently displayed on the handbag, whereas the DE handbag is 



14 
 

a quiet handbag that has no obvious logos. These two handbags, as shown in Table 1.1, are of the 

same size, the same material and the same retail price. 

In addition, we chose the LV brand to study because it is one of the world's leading 

international fashion powerhouses. The LV logo is well recognized by consumers as a signal for 

luxury goods and status. It appears on most of its products, ranging from luxury trunks and 

leather goods to ready-to-wear shoes, watches, jewelry, accessories, sunglasses and books. The 

company’s classic “Speedy” handbag product line, from which we chose our products, was 

launched in 1930 and has been LV’s iconic products. 

1.3.2 Data  

We collected data from the eBay.com. eBay.com is an online auction and shopping 

website where consumers and businesses buy and sell a broad variety of goods and services. 

Sellers on eBay.com. can choose to auction their products or offer them for sale at a fixed price. 

If the auction option is selected, sellers list their products with a minimum required price and 

buyers can then bid within a limited time period. The highest bidder wins the auction. In addition 

to the auctions, eBay.com also offers "Buy It Now" (BuyItNow) option, that is, buyers can 

purchase a product right away at a set price. We collected both auctions and BuyItNow data from 

eBay.com America, where buyers reside in the U.S. and sellers can be located anywhere. Data 

from eBay.com have been widely used in prior studies (e.g., Resnick et al. 2006; Bajari and 

Hortacsu 2003; Roth and Ockenfels 2002). 
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We collected transaction data on all Monogram and DE handbags sold on eBay.com from 

February 25, 2016 to October 9, 2016. During the data collection period, 3,578 handbags in total 

were sold, among which 3,205 were Monogram handbags and 373 were DE handbags, and 1,871 

handbags were sold through auctions and 1,707 were sold through BuyItNow option. The 

transaction data includes transaction price, product information, product description, product 

pictures, shipping information, and seller’s reputation and experience.  

Because the samples are pre-owned handbags, their prices vary by the handbag 

conditions. While some sellers construct their own standards to describe condition levels, the 

standards vary among the sellers. Therefore, we develop a system to evaluate the conditions 

based on each handbag’s descriptions and pictures. The system is presented in Table 1.2. We 

evaluate each handbag by examining their descriptions and pictures and rate it from 1 (finest) to 

7 (poorest) as shown in Table 1.2. Similar evaluation systems have been used in the description 

in eBay.com when sellers are selling good.4 

Table 1.3 presents the distribution of products and their prices by conditions. It can be 

seen from the table that the handbags with poor condition ratings have lower prices, for example, 

the first column shows that the price of auction loud handbags drop from $740.3 to $98.62 when 

the condition change from very good (condition =1) to very bad (condition =7). We can also see 

that a greater number of loud handbags are sold in the group with low condition ratings level 

                                                           
4 https://www.eBay.com.com/itm/Auth-LOUIS-VUITTON-SPEEDY-40-Hand-Bag-Doctor-Purse-Monogram-

M41522-Brown/232944040583?epid=1841597860&hash=item363c8bfa87 
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(i.e., levels 4, 5 and 6), whereas quiet handbags are sold at a high condition rating levels (i.e., 

levels 1, 2 and 3).  

 

1.4 Analysis and Results  

1.4.1 Econometric Model 

In section 1.2.2, we proposed three hypotheses. H1 examines the effect of quiet handbags 

(DE) on consumer’s willingness to pay (Price), H2 examines whether the effect of quiet 

handbags on price is decreasing when condition (Condition) is worsening, and H3 examines 

whether the effect of quiet handbags on price is greater for BuyItNow option (BuyItNow) than 

auction option. Hence, the dependent variable is Price, which is the transaction price for the 

handbags. To test the H1, the independent variable is a dummy variable with 1 indicating the 

transaction is for a quiet handbag (DE). H1 is supported if the coefficient of DE is positive. To 

test H2, we add an interaction term between DE and conditions (DE*Condition), a widely-used 

method to test differing effects (Aiken et al. 1991). H2 is supported if the coefficient of 

DE*Condition is negative. To test H3, we add an interaction term between the interaction term 

of DE and BuyItNow (DE*BuyItNow) where BuyItNow is a dummy variable equaling 1 when a 

handbag is sold using the BuyItNow option, and 0 when it was sold using auction option. 

We also include a number of control variables for the heterogeneity among sellers. In 

particular, we include:  
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(1) Sellers reputation (Reputation). We collected information of each seller’s reputation 

and experience, which also influences price. eBay.com reports two different measures of a 

seller’s performance, a feedback score which is also called star rating and a positive rating 

percentage. We allocated feedback scores of one for each positive rating, zero for each 

neutral rating and negative one for each negative rating. This means that the more positive 

ratings a seller receives, the higher their score. The percentage of positive ratings shown 

on the website is calculated based on the total number of positive feedback ratings for 

transactions that took place during the last 12 months. It is from when we collected the data 

(we collected data from February 2016 to October 2016), excluding any repeat feedback 

ratings from the same purchasers within the same calendar week, divided by the sum of 

positive and negative feedback ratings5. 

(2) Number of evaluations the seller gets (Experience). This number called star rating 

shows on eBay.com right next to the next to sellers’ username. It shows how many buyers 

have left feedback for a seller. The more buyers who have rated their experience positively 

with a seller, the more assured you can be of getting great service. 

(3) Whether it is free shipping or not (Freeshipping). We also collected information on 

the shipping fees of each handbag sold, which includes free shipping, a fixed shipping fee 

and fees that vary by shipping distance and time. To simplify this shipping fee data, we 

                                                           
5 The description of seller ratings is on eBay.com website. https://www.eBay.com.com/help/buying/resolving-

issues-sellers/seller-ratings?id=4023 
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constructed a binary variable, Free Shipping, which equals one for free shipping and zero 

otherwise.  

(4) Whether the seller is in US or not (USlocation). eBay.com sellers are located inside 

and outside of the United States. Therefore, we constructed a binary US Location variable 

to reflect the varying shipping costs. If a seller located in the United States purchased a 

handbag, then the US Location equals one and zero otherwise. 

Hence, the baseline model for testing H1 is as follows. To test H2 and H3, we will add two 

interaction terms DE*Condition and DE*BuyItNow to the model. 

Price = 𝛽0+ 𝛽1*DE+ 𝛽2* BuyItNow+ 𝛽3* Condition+ 𝛽4*Free shipping+ 

𝛽5*US location+ 𝛽6* Reputation+ 𝛽7* Experience+   𝛽8* DE*Condition +  

𝛽9* DE*BuyItNow + Ɛ  

Table 1.4 presents the summary statistics and correlation matrix of the variables. To 

check potential multicollinearity, we computed the variance inflation factor (VIF) scores for all 

independent variables in our models. The VIF scores for all independent and control variables 

are between 1.00 and 1.90, lower than the commonly accepted cutoff of 10 (Kennedy 2003), 

indicating that multicollinearity is not a concern. 

 

1.4.2  Estimation Results 

To demonstrate the robustness of our results, we estimate two variants of our model. We 

first estimate a baseline model (Model 1) where only main effect of DE variable is entered into 
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the equation (i.e., no interaction terms), and then estimate the full model by adding the 

interaction. We use Ordinary Least Squares (OLS) to estimate the model. 

Table 1.5 presents the estimation results. For both models, the estimates for DE variable 

are consistent in terms of sign and significance, demonstrating the robustness of our results. For 

model 1, the coefficient of DE is positive and significant (=149.6, p < 0.001), indicating that 

consumers have higher willingness to pay for quiet bags. Hence, H1 is supported. The estimate 

suggests that the quiet handbags are $149.6 or 60% (the average price of all loud bags is $247.4) 

more expensive than loud bags on average.  

For Model 2 that adds the interaction terms from Model 1, the coefficient of DE is 

positive and significant (=189.0, p < 0.001), consistent with model 1 estimation, but the 

coefficient of DE*Condition is negative and significant ( = -7.34, p <0.01). Since the 

coefficient for the interaction term is at the opposite sign of the linear term, the results indicate 

that the price difference between the quiet and loud handbags is decreasing when the conditions 

of the handbags worsen. This suggests that when the handbag condition worsens by one level, 

the price premium of DE handbags will decrease by $7.34. Hence, H2 is supported. To further 

explore this result, we split the data into two subsets, auctions and BuyItNow, and estimated the 

model using the subsets of data separately. The results are shown in columns III and IV of Table 

1.5. The coefficient of DE*Condition is negative and significant in the auction subset ( = -9.64, 

p < 0.01), but insignificant in the BuyItNow subset. The results suggest that the finding that price 
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premium of DE handbags is smaller when the condition is worse is only the case for the auctions 

but not for the BuyItNow.  

The coefficient of DE*BuyItNow is positive and significant ( = 47.73, p < 0.001). This 

is at the same sign to DE, indicating that the price premium of DE handbags is greater for 

handbags sold through BuyItNow than those through auctions. The result lends support to H3 

that the premium of consumer’s willingness to pay for quiet luxury goods of BuyItNow is greater 

than that of Auction. This result suggests that the price premium of DE handbags sold using 

BuyItNow option is $47.73 higher than those using auctions. Hence, H3 is supported. We also 

note that the coefficient of BuyItNow variable is positive. This is consistent with our assumption 

that the handbags on BuyItNow have higher price and consumers who buy these handbags tend 

to care less about price.  

We also use the subset of our data for loud handbags and quiet handbags to perform the 

regressions separately for robustness checks. The results are consistent and are shown in 

Columns V and VI of Table 1.5. Some control variables are significant with expected signs. The 

coefficients of Condition are negative and significant, suggesting that as condition of the 

handbags is getting worse, the price decreases significantly. The coefficients of Freeshipping and 

USlocation are all positive and significant suggesting that if the seller provides free shipping, the 

price will be higher than non-free shipping handbags. And if the handbag is shipped from outside 

the U.S. it will be more expensive. The F statistics are significant in both estimations, rejecting 
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the null hypothesis that the coefficients are jointly zero. The adjusted R squared are 0.73-0.88, 

indicating a good fit. 

 

1.4.3 Robustness and Generalizability 

To check the robustness and generalizability of our results, we collected the data from 

another website Tradesy. Tradesy is an e-commerce mobile app and website that facilitates the 

sales of private items online. Tradesy, launched on October 24, 2012, is a comparatively new 

website that is not as well-known as eBay.com. Only pre-owned items are offered for sale on this 

website. All goods are sold at their list price (BuyITNow) and there are no auctions. Similar to 

our eBay.com data, we collected transaction data on 1,020 handbags, among which 966 were 

Monogram handbag and 54 were DE handbags.  

On the Tradesy, the seller evaluation system is different. Every seller is like a blogger 

and she can list several items for sale simultaneously. If users look at an item and like it, they can 

click “save this to favorites” and others can see how many other users save this item. In addition, 

if users like this seller and want to look at what the seller posts once she lists an item, they can 

choose to follow that individual seller. Others can also see how many people follow this seller, 

which reflects whether the seller is popular or not in some context. Hence, Likes and followers is 

an evaluation system for seller’s reputation. Similar measures have been used in prior studies 

(Bakshy et al 2010). Consumers can see this information, which may influence both their 

willingness to pay. The number of items a seller lists can tell us some information about each 
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seller’s experience. Therefore, we collected data on the number of items a seller sells (items), the 

number of likes - how many people save the item (likes) and how many followers the seller has 

(followers).  

Table 1.6 presents the distribution of prices by conditions that is similar to the eBay.com 

data. However, we note that handbags sold on Tradesy have a higher condition level than those 

sold on eBay.com, but loud handbags still have a lower condition level. Loud handbags sold are 

in poorer condition on both eBay.com and Tradesy. Table 1.7 presents the descriptive statistics 

and correlation matrix. 

Table 1.8 presents the estimation results. For both models, the estimates for DE variable 

are consistent in terms of sign and significance, demonstrating the robustness of our results. For 

model 1, the coefficient of DE is positive and significant (=135, p < 0.001), indicating that 

consumers have higher willingness to pay for quiet bags. On Tradesy, the quiet bags are $135 

more expensive than loud handbags which is about 35% of the price of loud handbags (the 

average price of all loud bags is $408.9) and about 20% of the price of quiet handbags (the 

average price of all quiet bags is $715.6). The results provide further support to H1. For model 2, 

the coefficient of DE is positive and significant (=151.3, p < 0.001), but the coefficient of 

DE*Condition is negative and insignificant ( = -7.38). This is consistent with the estimation 

results using eBay.com data where the coefficient for the interaction term is also insignificant in 

the estimation with the BuyItNow subset data. Because Tradesy does not have auctions, H3 

cannot be tested.  
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1.5 Concluding Remarks 

Luxury good market is a fast-growing market. Nowadays, in addition to the wealthy 

consumers who buy luxury goods, there are more customer segments in this market, and there 

are more reasons for consumers of buying luxury goods. Buying luxury goods is not only to 

signal wealthy and status but also signal their culture capital and social capital. Hence, it is of 

great importance to examine different consumer behaviors. Using a carefully chosen pair of loud 

and quiet products, a loud we collected data from online markets and compare their transaction 

prices and the price premiums between the loud and quiet products. 

We find that the price of quiet handbags is around $150 higher than that of loud handbags 

on eBay.com and is around $135 on Tradesy, suggesting that consumer’s willingness to pay for 

quiet luxury goods is higher than that for loud luxury goods. This result provides empirical 

evidence that supports the conclusions from Carbajal et al. (2015), Berger and Ward (2010) and 

Han et al. (2010) that consumers with high social capital are willing to pay more for quiet luxury 

goods.  

We find that that the premium of consumer’s willingness to pay for quiet luxury goods 

is decreasing as the condition is getting worse. The decrease in the price premium by each 

condition is around $7. This result complements prior studies on conspicuous consumption by 

extending their research setting to pre-owned luxury market where consumers may be less 

wealthy and who buy lower condition level luxury handbags. As discussed earlier, consumers 

who are not sufficiently wealthy to afford luxury goods but have low social capital and high 
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desire to signal status tend to use loud counterfeits to emulate the wealthy group of consumers 

they desire to be recognized with (Han et al. 2010). Alternatively, they may buy pre-owned 

handbags of lower conditions that are sold for cheaper prices. Our finding suggests that for the 

consumers who are not sufficiently wealthy to afford luxury goods but have high social capital, 

they also would like to pay more to buy quiet luxury goods rather than loud luxury goods in 

order to distinguish themselves from the less connected peers and imitate the wealthy and well-

connected consumers.  

We also find that the premium of consumer’s willingness to pay for quiet luxury goods 

using BuyItNow option is around $48 greater than that of auction option. This result suggests 

that consumers who are less price sensitive are willing to pay more for quiet handbags than for 

loud handbags.  

Our findings have important managerial implications. Although managers may be aware 

that consumers have different willingness to pay on quiet luxury goods and loud luxury goods, 

they may not have the means to know how much on average the difference is. Our estimation 

offers managers a quantitative modeling process that can help them obtain an approximation of 

the price premium that can be charged on quiet handbags. For LV speedy bags, that premium is 

about $135 which is about 13% as much as the new handbag price.  

Our study has limitations that provide future research directions. We find that that 

consumers buy luxury bags is not only to signal their wealthy and status but also signal a third 

dimension, but we do not know which third dimension is more appropriate. Berger and Ward 
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(2010) explain third dimension as culture capital. Carbajal, Hall, and Li (2015) think third 

dimension as social capital. Due to the limitation of data we do not have information about 

consumers, so it is difficult to tell what the third dimension is, social capital, culture capital or 

others. Future research can collect data about consumers and examine what the third dimension 

is and verify whether our findings hold in comparing between different types of consumers. If 

the social capital or the cultural capital can be quantified, future research can examine how these 

capitals influence consumers’ behavior (e.g. the consumption on luxury goods) quantitatively. 
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1.7 Tables and Figures 

 

 

Table 1.1: Loud and Quiet LV Handbags 

 

LV Monogram Speedy 30 LV Damier Ebene Speedy 30 

  

30 x 21 x 17 cm (length x height x width) 30 x 21 x 17 cm (length x height x width) 

11.8 x 8.2 x 6.6 in 11.8 x 8.2 x 6.6 in 

Golden color metallic pieces Golden color metallic pieces 

Elegant hand carry Textile lining 

Rounded handles and trimmings in natural cowhide leather Leather trimmings 

 

 

  

https://us.louisvuitton.com/eng-us/products/speedy-30-

monogram-008784 

https://us.louisvuitton.com/eng-us/products/speedy-

30-damier-ebene-008788 

 

 

 

 

https://us.louisvuitton.com/eng-us/products/speedy-30-damier-ebene-008788
https://us.louisvuitton.com/eng-us/products/speedy-30-damier-ebene-008788


30 
 

Table 1.2: Evaluation of the Handbag Conditions  

Conditio

n Level 

Condition 

Description 
LV Monogram Speedy 30  LV Damier Ebene Speedy 30 

1 

Excellent, less 

frequently used 

handbag 

 

  

 

  

2 

Very good, appears to 

be a little used but is in 

beautiful condition 

  
 

  
 

3 
Good, only minor 

damage 

 

  

 

  

4 
OK, some noticeable 

scratches and dirt 

 

  

 

  

5 
Fair, many noticeable 

scratches and dirt 

 

  

  
 

6 

Poor, many heavy 

noticeable scratches 

and dirt with some 

damage 

  
 

 

  

7 Junk, in need of repair  
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Table 1.3: Price Distribution by Conditions and Sale Options (eBay.com)   

 Monogram (Loud) Handbags   DE (Quiet) Handbags 
 Auction  BuyItNow  Auction  BuyItNow 

Condition Mean S.D. N  Mean S.D. N  Mean S.D. N  Mean S.D. N 

1 740.3 230.4 13  785.5 119.2 31  722.7 79.13 38  804.7 56.61 69 

2 552.5 99.87 33  578.8 88.57 77  614.2 59.9 57  690.8 85.23 77 

3 381.3 76.56 142  424.6 85.1 178  533.8 76.13 34  601.2 79.72 41 

4 258.1 54.65 280  299.6 62.06 270  452.4 78.94 24  523.2 88.85 13 

5 204.7 36.99 618  240.7 42.01 495  382.6 55.53 5  521.8 89.24 5 

6 156.5 34.55 513  181.6 40.76 407  347.9 75.04 6  283.3 76.38 3 

7 98.62 29.21 103  121.1 36.55 40  255 0 1  - - - 

Total 218.1 106.1 1,702   283.1 141 1499   580.2 129.2 165   690.5 128 208 
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Table 1.4: Descriptive Statistics and Correlation Matrix (eBay.com) (N=3,538) 
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Table 1.5: Regression Results (eBay.com)  

 

(Robust Standard Errors in Parentheses) 

  (I) (II) (III) (IV) (V) (VI) 

 Model 1 Model 2 Model 2 Model 2   

  All  All Auction BuyItNow 

Monogram 

Handbags 

DE 

Handbags 

DE 149.6*** 189.0*** 167.1*** 170.0***   

 (4.22) (8.29) (11.43) (11.59)   

BuyItNow 37.90*** 33.07***   32.95*** 73.30*** 

 (2.07) (2.16)   (2.09) (8.25) 

Condition -79.24*** -78.24*** -70.57*** -85.04*** -77.96*** -86.40*** 

 (0.88) (0.92) (1.22) (1.37) (0.90) (3.22) 

Free shipping 13.91*** 13.84*** 18.75*** 14.56*** 12.84*** 24.72*   

 (2.53) (2.51) (3.58) (4.06) (2.53) (10.95) 

US location 67.93*** 69.96*** 65.15*** 70.39*** 73.14*** 23.94 

 (3.19) (3.18) (4.21) (4.91) (3.19) (15.22) 

Reputation 0.609 0.595 0.366 0.971 0.458 1.447 

 (0.37) (0.37) (0.48) (0.57) (0.39) (1.17) 

Experience 4.57E-05 4.18E-05 -8.28E-05** 5.42E-05 4.21E-05 -5.3E-05 

 (5.49 E-05) (5.44E-05) (3.14E-05) (5.9E-05) (5.29E-05) (8.6E-04) 

DExCondition  -7.34** -9.637** -6.624                  

  (2.77) (3.52) (4.28)                  

DExBuyItNow  47.73***                    

  (6.91)                    

_cons 569.3*** 563.0*** 517.9*** 556.9*** 575.2*** 704.6*** 

 (37.77) (37.53) (48.15) (57.29) (39.36) (118.30) 

Model Statistics 
      

N 3538 3538 1849 1689 3183 355 

F statistic 3651.5 2895.8 1596.9 1914.4 1929.7 156.7 

R-sq 0.879 0.881 0.859 0.889 0.785 0.73 

* p < 0.05; ** p < 0.01; ***p<0.001 
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Table 1.6: Price Distribution by Conditions and Sale Options (Tradesy) 

  Monogram (Loud) Handbags   DE (Quiet) Handbags 

Condition Mean S.D. N   Mean S.D. N 

1 774.9 97.16 42  868.3 104.7 9 

2 617.9 70.62 136  735.3 87.3 29 

3 489 80.61 200  592.3 93.17 8 

4 384.7 71.98 168  571.8 109.3 5 

5 315.1 68.66 164  470 0 1 

6 223.6 64.4 197  395.9 0 1 

7 166.2 51.09 46  . . 0 

Total 408.9 184.8 966   715.6 145.6 54 
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Table 1.7: Descriptive Statistics and Correlation Matrix (Tradesy) (N=968) 
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Table 1.8: Regression Results (Tradesy) 

(Robust Standard Errors in Parentheses) 

  (I) (II) (III) (IV) 

 Model 1 Model 2   

 All All 
Monogram 

Handbags 

DE 

Handbags 

     

DE 135.0*** 151.3***   

 (13.55) (35.32)   

Condition -97.87*** -97.73*** -97.70*** -98.24*** 

 (2.00) (2.02) (2.02) (15.53) 

Free shipping 13.18* 13.04* 11.61*   130.2** 

 (5.69) (5.69) (5.70) (40.35) 

Items 0.0169*** 0.0170*** 0.0172*** -0.0148 

 (0.0049) (0.0049) (0.0049) (0.0292) 

Loves 0.0394*** 0.0393*** 0.0393*** 0.0484 

 (0.0081) (0.0081) (0.0081) (0.0795) 

Followers -0.0227*** -0.0229*** -0.0227*** 0.0102 

 (0.0068) (0.0068) (0.0068) (0.0403) 

DExCondition  -7.38                  

  (14.51)                  

_cons 801.8*** 801.3*** 801.4*** 932.5*** 

 (8.45) (8.53) (8.52) (38.92) 

Model Statistics 

    

N 968 968 921 47 

F statistic 
725.87 

625.84 709.96 18.51 

R-sq 0.847 0.847 0.83 0.624 

* p < 0.05; ** p < 0.01; ***p<0.001 
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Chapter 2: Peer Effects on Consumption: Conformism or 

Snobbism? 

2.1 Introduction 

           Consumers’ purchase decisions are influenced not only by themselves, but also through 

their interactions with others. An example is the fashion industry, where one person buys an item 

because another person is buying the same thing. In this paper, we want to figure out how people 

interact with others when making a purchase decision. Research on the social impacts of 

consumer behavior in economics has a long history. Veblen (1899) proposed the theory of 

conspicuous consumption and its relationship to social status.6 People purchase conspicuous 

goods to signal their social status. Veblen’s work marked an important economic study about 

social factors affecting consumer behavior.  

           Additional important research was conducted by Leibenstein (1950), who classified the 

motivations of demand for consumer goods and services into two perspectives: functional and 

nonfunctional. According to Leibenstein, “by functional demand it is meant that part of the 

demand for a commodity which is due to the qualities inherent in the commodity itself. By 

nonfunctional demand it is meant that a portion of the demand for a consumer’s good which is 

due to factors other than the qualities inherent in the commodity.” In particular, he describes the 

external effects on utility as being the most important kind of nonfunctional demand. He initially 

identified three external effects on utility: the bandwagon (conformism) effect, the snobbism 

effect, and the Veblen effect. The bandwagon effect describes a situation in which the demand 

                                                           
6
Conspicuous consumption is the spending of money on and the acquiring of luxury goods and services to publicly 

display economic power—of the income or of the accumulated wealth of the buyer. 
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for the good increases because others are buying the same good. The snobbism effect is the 

opposite: demand decreases because others are purchasing the good. Finally, the Veblen effect 

refers to the increasing demand for a good due to a higher price. Whereas the first two effects 

reflect the influence of others’ consumption, the Veblen effect shows that demand is a function 

of the price. Inspired by the idea of Leibenstein (1950), our current study will focus on the first 

two effects to explore how the purchase decision of a consumer is affected by others’ 

consumption. Data on clothes and footwear will be used to analyze whether the conformism 

effect or snobbism effect plays a dominant role in making consumption decisions and whether 

this conclusion is different for different categories of goods. 

             Based on the conformism and snobbism effects that Leibenstein (1950) proposed, Pollak 

(1976) suggested a general theoretical approach to analyze interdependent preferences, which 

becomes the basis of empirical research in estimating peer effects. He developed the linear 

expenditure system with others’ past consumption as the specification of the source of 

interdependent preferences. The basic assumption is that the demand function of one individual is 

a linear function of other people’s consumption. The model of Pollak (1976) also informs the 

theoretical model in this paper. 

            In the empirical literature, there are many studies estimating peer effects in different areas. 

Sacerdote (2011) summarized the recent literature on peer effects in education. Cawley and Ruhm 

(2011) summarized the literature on peer effects in risky health behaviors such as smoking. 

However, there are few studies estimating peer effects on consumer goods. Furthermore, existing 

studies that estimate peer effects on consumer goods do not explain the estimation results using 

the framework developed by Leibenstein (1950). For example, Birch (1980) used experimental 

data from 39 preschool children to estimate the peer effects on their food and eating consumption 
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behaviors. Moretti (2011) collected the data of box-office sales from the firm ACNielsen-EDI and 

found the social multiplier effect on movie consumption. However, the peer effects on movie 

consumption come from a learning mechanism that includes receiving information from peers, 

rather than a preference mechanism that involves others’ demand behavior as in the snobbism or 

conformism effect.  

Thus, although there are several theoretical studies about the conformism or snobbism 

effect on consumer behavior, there is no empirical research focused on these two effects. Our 

research will fill this gap, by using data on the consumption of clothes to analyze whether the 

conformism effect or snobbism effect exists in the real world. We will use data from the Consumer 

Expenditure Surveys (CEX) in the U.S. to estimate peer effects.  

There are two main econometric challenges in our paper. First, there is an endogeneity 

problem in the regression. For example, it is difficult to distinguish empirically between peer 

effects that are driven by individuals’ backgrounds and driven by individuals’ behavior. To address 

the endogeneity problem, we use an instrumental variable method. Second, the data on 

expenditures are naturally censored with many zeros. To address this problem, we use the two-

part model. The empirical strategy is described further in Section 4. In this paper, we find that 

there are significant conformism effect on outerwear and footwear, which can be easily observed 

by peers and have insignificant peer effect on underwear, which cannot be observed by others. 

       The paper proceeds as follows. In Section 2, a theoretical model is introduced. Subsequently, 

in Sections 3 and 4 we describe the data and the empirical strategy. In Sections 5 and 6 we describe 

the empirical results, while conclusions will be drawn in Section 7. 
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2.2  Theoretical Model 

           In this section, we will use an economic model to examine the interaction among 

consumers. In particular, we will examine how the external effects, snobbism or conformism, 

influence demand. We use the general model from Becker and Murphy (2009).  The utility 

function is as follows: U=U (x, y; S), where x is the consumption of the good, y is the numeraire, 

and S represents social influences. Assume S equals the average of the x’s chosen by all 

members of the same social group: S =
1

𝑁
∑𝑥𝑖, where the sum is over 𝑖 ∈ 𝐺, where G denotes the 

group. A typical member of group G chooses 𝑥𝑖 to maximize the utility. Here we assume that G 

is large enough that the change in an individual’s 𝑥𝑖 will not influence S. So, each person takes S 

as exogenous to his own choices. Let each person of a population maximizes utility under this 

budget constraint, 𝑝𝑥𝑥 + 𝑦 ≤ 𝐼. We assume that 𝑝𝑥 , the price of x, is fixed, and I is income. 

Then we can get this formula below:7  

𝑑𝑥

𝑑𝑆
=
𝑝𝑥𝑈𝑦𝑆−𝑈𝑥𝑆

𝐷
     

This formula is derived in the appendix, where D=𝑈𝑥𝑥 − 2𝑝𝑥𝑈𝑥𝑦 + 𝑝𝑥
2𝑈𝑦𝑦. However, 

there is one important difference between our analysis and Becker and Murphy (2009). In their 

analysis, it is assumed that S and x are complements: 𝑈𝑥𝑆 > 0. But in our analysis, we relax this 

assumption. According to Leibenstein (1950), consumer behavior is conformist if the utility of the 

good grows when it is more widely consumed, and it is snobbish if the utility is instead enhanced 

by its rarity. Applying this theory, the increase in S raises the marginal utility from x if conformism 

is present (𝑈𝑥𝑆 > 0) and decreases the marginal utility from x if snobbism is present ( 𝑈𝑥𝑆 < 0). 

                                                           
7 Becker,G.S.,&Murphy,K.M.(2009). Social economics: Market behavior in a social environment. 

Harvard University Press.P11. 
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The assumption of Becker and Murphy (2009) is the first case.  

Next, we solve the utility maximization problem under the budget constraint and take the 

derivative of the consumption of the good x on social influences S. From the result above, that 

𝑑𝑥

𝑑𝑆
=
𝑝𝑥𝑈𝑦𝑆−𝑈𝑥𝑆

𝐷
 ,   we will get the following predictions: 

Prediction 1: If the conformism effect dominates, an increase in peers’ consumption will lead to 

an increase in individual i’s consumption. 

 When S increases, according to the definition of conformism effect, the marginal utility from x 

will increase, therefore the partial derivative of utility function with respect to variable x and S is 

positive, 𝑈𝑥𝑆 > 0. Assume that y and S are not related, therefore the partial derivative of utility 

function with respect to variable y and S is zero, 𝑈𝑦𝑆 = 0. If the conformism effect dominates, 

𝑈𝑥𝑆 > 0  and 𝑈𝑦𝑆 = 0, therefore the first derivative of x on S is positive. 

𝑑𝑥

𝑑𝑆
=
𝑝𝑥𝑈𝑦𝑆 − 𝑈𝑥𝑆

𝐷
> 0 

Prediction 2: If the snobbism effect dominates, an increase in peers’ consumption will lead to a 

decrease in individual i’s consumption.  

When S increases, according to the definition of snobbism effect, the marginal utility from x will 

decrease, therefore the partial derivative of utility function with respect to variable x and S is 

negative, 𝑈𝑥𝑆 < 0. Assume that y and S are not related, therefore the partial derivative of utility 

function with respect to variable y and S is zero, 𝑈𝑦𝑆 = 0. If the snobbism effect dominates, 𝑈𝑥𝑆 <

0  and 𝑈𝑦𝑆 = 0, therefore the first derivative of x on S is negative. 

𝑑𝑥

𝑑𝑆
=
𝑝𝑥𝑈𝑦𝑆 − 𝑈𝑥𝑆

𝐷
< 0 
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Also, in this analysis, we assume that 𝑝𝑥 is exogenous and we ignore the price effect.     

 

2.3 Data 

2.3.1 Dataset Description 

         In this paper, we use the Consumer Expenditure Surveys (CEX) data from the Bureau of 

Labor Statistics. Because the primary sampling unit (PSU) categories changed in 2015, we use 

data from 2011 to 2014. The Bureau of Labor Statistics collects data every three months, so in 

total we have 16 time periods. Our analytical dataset includes 21 PSUs8 in total (see Figure 2.1). 

These PSU areas have an urban “core” plus the adjacent counties that have a high degree of social 

and economic integration with the core as measured by commuting ties. Because people living in 

these core and adjacent counties have many similar characteristics, we will use the PSUs to define 

peer groups. The dataset includes households’ demographic characteristics, income, and 

consumption information. The sample has 32,716 household by quarter observations in total. It is 

an unbalanced panel that has 14,619 different consumer units (i.e., households). Any observations 

without PSU information are excluded.  

2.3.2 Key Variables of Interest 

         The key outcome variables are the expenditures on different categories of goods. We pick 

three representative categories: outerwear, underwear, and footwear. Each household may have 

consumed several items from the same category in one period, and we see how much the household 

                                                           
8 According to the Bureau of Labor Statistics website, “the selection of households for the survey begins 

with the definition and selection of primary sampling units (PSUs), which consist of counties (or parts 

thereof), groups of counties, or independent cities. The sample of PSUs currently used in the survey consists 

of 105 geographic areas, of which 87 are urban geographic areas.”  

https://www.bls.gov/opub/hom/cex/design.htm 
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spent on each item. For example, one household may purchase three coats during one period. In 

the raw data there would be three observations for this household on coats purchases, which show 

how much was spent on each coat. We combine these records within each time period (quarter) so 

that each household has only one observation containing the sum of their expenditure in each 

category. We use this total to conduct the main analysis. 

The key explanatory variable is the consumption spending of other people within the peer 

group. We define peer groups using the PSU, education level, and age groups. We define four age 

groups according to the reference person’s age: 0 to 17 years old, 18 to 39 years old, 40 to 64 years 

old, and 65 to 100 years old. There are 387 observations in the first age group, 92,605 in the second 

group, 133,965 in the third group and 30,602 in the last group. We also define two education 

groups by whether the reference person has any education beyond high school (“any college”) or 

not. We assume that no matter who the reference person is, his/her education level shows the 

education level of the family because when people choose spouses, they are more likely to choose 

those who have similar education levels. We include 21 PSUs, so we have 168 (=21*4*2) total 

peer groups. We calculate the mean consumption within household i’s peer group, excluding the 

consumption of the household i. If there is only one group member, we cannot calculate the group 

mean; therefore, we drop those observations with only one observation in the peer group. If there 

are only two group members and we exclude one person, the group mean will be exactly the 

consumption of the other person, which causes some extreme values. Therefore, we also exclude 

those observations if there are two observations in the peer group. After dropping these 

observations, we have 140 groups left in total.  

After these restrictions, the final sample has 29,249 quarterly observations. Other control 

variables include age, race, education level, family type (single or not; have children or not), and 
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income. We also calculate the mean of each control variable within each peer group to use as 

instruments. In the next section, we explain more about the empirical strategy and instrumental 

variables. 

2.3.3 Summary Statistics 

Table 2.1 shows the summary statistics of key variables. We use expenditures on 

outerwear, underwear, and footwear as the outcome variables. Figure 2.2 shows the histogram 

regarding these variables. There are many zero values in these expenditure observations.  We think 

that zero is a meaningful amount, so we do not drop zero values in the analysis. However, because 

there are many zero values, we use a two-part model for the main analysis.  

 

2.4 Empirical Strategy 

2.4.1 General 

In this paper we want to estimate the influence of peers’ consumption on individuals’ 

consumption. We will learn that if the peers’ average consumption increases by one unit, how 

much the individual’s consumption will increase or decrease, controlling for other variables. A 

very popular approach to estimate peer effects in economic research is to fit a linear regression of 

individuals’ outcomes on the average outcomes of their peers. We will use Manski (1993)’s 

linear in means model as the basic specification. However, because there are many zero values, 

we will use a two-part model as the main specification. The first part of the model is a probit 

regression for any expenditures. The second part is a linear regression for the log of expenditure, 

only for those observations with positive expenditures. We use same regressors in the first and 

second part, including the peers’ average consumption. Thus, that model is: 
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𝑃𝑟(𝐶𝑖𝑘𝑡 > 0) = Ф(𝛼0 + 𝛼1𝐶𝐺𝑖𝑘𝑡 + 𝛼2𝑋𝑖𝑘𝑡 + λ𝑘 + S𝑡) 

𝐿𝑛(𝐶𝑖𝑘𝑡) = 𝛽0 + 𝛽1𝐶𝐺𝑖𝑘𝑡 + 𝛽2𝑋𝑖𝑘𝑡 + δ𝑘 + S𝑡 + 𝜀𝑖𝑘𝑡 

𝐶𝑖𝑘𝑡 is the consumption of each household i in PSU k at time t, with a peer group 𝐺𝑖, on 

outerwear, underwear and footwear. 𝐶𝐺𝑖𝑘𝑡 is the average consumption of group 𝐺𝑖. 𝐶𝐺𝑖𝑘𝑡 =

∑ 𝐶𝑖𝑗𝑡𝑗∈𝐺𝑖,𝑗≠𝑖

𝑁𝐺𝑖−1
, 𝑁𝐺𝑖 is the number of peers of household i. 𝑋𝑖𝑘𝑡 is a vector of households’ 

characteristics, and λ𝑘 and δ𝑘 are PSU fixed effects in order to control fixed PSU characteristics. 

S𝑡 controls for the seasonal variation. We are interested in the marginal effect of 𝐶𝐺𝑖𝑘𝑡. If 

marginal effect of the average consumption is bigger than zero, according to our prediction, it 

shows that conformism dominates, and if the marginal effect is smaller than zero, snobbism 

dominates.  

However, as detailed in Manski (1993), the estimators of peer effects face several 

problems. The first problem is the self-selection. Individuals generally self-select into groups 

because of some unobserved characteristics. In this paper, our groups are based on metro area, age, 

and education level, which help us to solve this problem. Second is the simultaneity problem. Two 

individuals in one group can affect each other simultaneously, and it is difficult to separate out the 

actual causal effect that individual i’s outcome has on j’s outcome. Third is the correlation of 

unobservables. It is difficult to distinguish empirically between peer effects that are driven by 

individuals’ backgrounds (correlated effects) and peer effects that are driven by individuals’ 

behavior (endogenous effects).  We will use an instrumental variable (IV) method to solve the last 

two problems.  

There are many other researchers who use IV methods to deal with these endogeneity 
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problems. For example, Evans, Oates and Schwab (1992) use metropolitan area characteristics as 

instruments. Case and Katz (1991) and Gaviria and Raphael (2001) use the average behavior of 

the peers’ parents as instruments. Borjas (1992) uses the average human capital in the prior 

generation of one’s ethnic group as the instrument. Many authors also adjust for group fixed effects 

and use instrumental variables to solve the endogenous problem (see e.g., Bramoullé et al. (2007); 

Trogdon et al. (2008); Carrell et al. (2009)) .    

In this paper we regress individuals’ outcomes on the average outcomes of their peers using 

instrumental variables and controlling for PSU fix effects, to see what the peer effect is, and to 

learn if snobbism or conformism dominates in this market. We assume that social effects only 

include snobbism and conformism.  In our regression we also control for seasonal effects because 

we can expect that consumers’ consumption will be different in different seasons. 

2.4.2 Instrumental Variables Approach 

          Due to the endogeneity problem, we want to find instruments that will change households’ 

consumption expenditure only through variable x and aside from the indirect route via x. Here we 

use the peers’ characteristics as the instrument. We assume that peers’ characteristics do not affect 

the individual’s consumption behavior directly. For example, the average education level of this 

group will influence individual consumption through the path of group consumption. And it is 

obvious that peers’ characteristics are correlated with group consumption. The instrumental 

variable 𝑍𝐺𝑖𝑘𝑡  in this case is equal to 𝑋𝐺𝑖𝑘𝑡
̅̅ ̅̅ ̅̅ ̅. 

           Furthermore, by including fixed effects, we control for the average differences across 

PSU in any observable or unobservable predictors and this helps us to avoid omitted variable 

bias. People in the same PSU face the same prices, so the fixed effects also help control prices. 

http://www.sciencedirect.com/science/article/pii/S0304407609000335
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            For the first part we use the IVprobit model with continuous endogenous regressors9: 

𝐶𝐺𝑖𝑘𝑡 = 𝛼0 + 𝛼1𝑍𝐺𝑖𝑘𝑡 + 𝛼2𝑋𝑖𝑘𝑡 + 𝜆𝑘 + S𝑡 + 𝜂𝐺𝑖𝑘𝑡 

𝐶𝑖𝑘𝑡 ∗= 𝛽0 + 𝛽1𝐶𝐺𝑖𝑘𝑡 + 𝛽2𝑋𝑖𝑘𝑡 + 𝛿𝑘 + S𝑡 + 𝜀𝑖𝑘𝑡 

𝐶𝐺𝑖𝑘𝑡 is the average consumption of group 𝐺𝑖, in PSU k, time period t and 𝐶𝐺𝑖𝑘𝑡 is 

endogenous. 𝑍𝐺𝑖𝑘𝑡  is the instrument that is a vector of group characteristics;  𝑋𝑖𝑘𝑡 is a vector of 

household characteristics, and λ𝑘, δ𝑘  are PSU fixed effects in order to control fixed PSU 

characteristics. Note that 𝐶𝐺𝑖𝑘𝑡 appears in the equation for 𝐶𝑖𝑘𝑡 ∗, but C𝑖𝑘𝑡 ∗ does not appear in 

the equation for 𝐶𝐺𝑖𝑘𝑡 . We do not observe 𝐶𝑖𝑘𝑡 ∗,  ; instead, we observe  

C𝑖𝑘𝑡                   0       C𝑖𝑘𝑡 ∗<0 

                         1       C𝑖𝑘𝑡 ∗>0 

Then the maximum likelihood method is used to estimate this model. 

            For the second part, we use the two stage least square method. 

The first-stage regression for the peer group is 

𝐶𝐺𝑖𝑘 = 𝛼0 + 𝛼1𝑍𝐺𝑖𝑘𝑡 + 𝛼2𝑋𝑖𝑘𝑡 + 𝜆𝑘 + S𝑡 + 𝜂𝐺𝑖𝑘𝑡 

The second-stage regression is 

𝐿𝑛(C𝑖𝑘𝑡) = 𝛽0 + 𝛽1C𝐺𝑖𝑘�̂� + 𝛽2X𝑖𝑘𝑡 + 𝛿𝑘 + S𝑡 + 𝜀𝑖𝑘𝑡 

 

                                                           
9 Rivers, D., & Vuong, Q. H. (1988). Limited information estimators and exogeneity tests for simultaneous probit 
models. Journal of econometrics, 39(3), 347-366. 
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2.4.3 Two-part Model 

           There are many zeros in our data set in the outcome variables, so we also use two-part 

models which may provide a better fit to the data. In a two-part model, the censoring mechanism 

and outcome are modeled using separate processes. For example, in explaining individual 

outerwear consumption, one process will determine purchase outerwear or not and a second 

process explains consequent outerwear expenditure. 

            To model the two-part process, let an individual with a positive expenditure be called a 

participant in the activity being studied. Define a binary indicator variable d =1 for participants 

and d =0 for nonparticipants. In our paper, d=1 means that consumers buy the goods and they 

will have positive expenditures y>0. And d=0 means that consumers do not buy the goods and 

the observation will have a zero expenditure. y =0 is observed for nonparticipants. For 

nonparticipants, those who have zero expenditures, we observe only Pr [d =0]. For participants, 

those who have positive expenditures, the conditional density of y given y > 0 is specified to be f 

(y|d =1), for some choice of density f (·). The two-part model for y is then given by 

                                                       Pr [d = 0|x]    if y=0 

                                                   Pr [d = 1|x] ∗ f (𝑦|d = 1, x)          if   y>0 

We calculate marginal effect manually and use bootstrap method in order to get the standard 

error of marginal effect. (See appendix) 

 

 

 

𝑓(𝑦|𝑥) 
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2.5 Empirical Results 

        Table 2.2 presents the estimated peer effects for outerwear, underwear and footwear using 

different specifications (for full results, see Appendix Table 2.3 - Table 2.5). From this table, we 

observe that the estimates for outerwear and footwear are significant, which shows that peer 

effects exist. The estimated coefficients are positive which indicates that the peer effects are due 

to conformism effects. The marginal effects of outerwear and footwear are around 0.64 and 0.61, 

which are substantial, implying that a $1.00 increase in peers’ average consumption will lead to a 

$0.60 increase in individual i’s consumption on average. The peer effects for underwear are not 

significant. We conclude from these results that people only have significant peer effects on 

those categories that can be observed by their peers, for example outerwear and footwear. For 

outerwear and footwear, people can observe each other’s consumption easily. However, the 

consumption of underwear cannot be observed by their peers. That is why the consumption of 

underwear does not have significant peer effects. 

        The first row in Table 2.2 shows the OLS results, and the second row shows the results of 

adding PSU dummies to control the unobserved characteristics. After a comparison of these two 

rows, we find that the marginal effects of the OLS regression with PSU dummies are smaller 

than the OLS results. This means that the PSU unobserved characteristics do influence people’s 

consumption behavior. These unobserved characteristics may make individuals self-select into 

groups. We control for PSU fixed effects in other specifications. Additionally, for each 

specification, we present robust standard errors and clustered standard errors. 

       The third row in Table 2.2 shows the two-stage least squares estimation results. The 

endogeneity problem causes an increase in the results because the measurement error problem 

leads to a downward bias. When adding the instrumental variables, we find that marginal effects 
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increase, which also addresses the measurement error problem. Thus, the OLS results actually 

underestimate the peer effects. 

         The fourth and fifth rows in Table 2.2 shows the results from the two-part model and the 

IV two-part model. When we use the two-part model with fixed effects, the results for outerwear 

and footwear are similar to the results for the OLS with fixed effects. Comparing the two-part 

model and the two-part model with instrumental variables, we get the same conclusion as 

comparing OLS with 2SLS. The estimates without instrumental variables underestimate the peer 

effects. The results for outerwear and footwear are significant. The results for underwear are not 

significant. We conclude that people have a significant conformism effect on those obviously 

observed consumptions and have an insignificant peer effect on the unobserved consumptions. 

 

2.6 Conclusion 

People’s consumption behavior is influenced by their peers. To examine peer effects on 

consumption, we develop a theoretical model based on Becker and Murphy (2009), which includes 

the peers’ average consumption in the utility function. We then use a more general dataset, the 

Consumer Expenditure Survey (CEX) from the Bureau of Labor Statistics (BLS), to estimate the 

magnitude of peer effect using a two-part model with instrument variables to overcome the 

endogeneity and censored data issues. The empirical results show that a $1.00 increase in peers’ 

average consumption leads to a $0.60 increase on average in the individual’s consumption for 

outerwear and footwear significantly. The coefficients are positive, which means that the 

conformism effect dominates. People tend to conform to the behavior of their social networks. 

People will increase their expenditures, when their peers increase expenditures. 
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The snobbism effect may exist at the level of the brand rather than category. For 

example, perhaps if others purchase a Louis Vuitton handbag, a person will purchase a Gucci 

handbag rather than a Louis Vuitton handbag. His expenditure on luxury handbags increases, 

which shows the results from this paper: when peers’ expenditures on luxury handbags increase, 

that person’s own expenditures also increase. But the snobbism effect also exists here when the 

market demand for the Louis Vuitton handbag decreases because others are purchasing the Louis 

Vuitton handbag. In our paper, because of the limited data, we can only examine peer effects on 

expenditures at the level of the category for outerwear, footwear and underwear. To figure out 

whether a snobbism effect exists at the level of the brand, we would need data with information 

on brand to conduct this further research.  
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2.8 Tables and Figures 

Table 2.1: Summary Statistics 

Variable Mean Std. Dev. percentage of zeros 

Dependent Variable 
   

Outerwear expenditure ($) 257.99 549.94 0.21 

Underwear expenditure ($) 28.37 74.47 0.65 

Footwear expenditure ($) 83.42 164.58 0.47 

Individual Characteristics 
   

College: education level of reference person 

(Any college above or not) 
0.7 0.46 0.3 

Age: age of reference person 46.01 15.02 0 

Male: sex of reference person (male or not) 0.47 0.5 0.53 

Black: race of reference person (black or not) 0.12 0.32 0.88 

Asian: race of reference person (Asian or not) 0.08 0.28 0.92 

Other: race of reference person (Other or not) 0.02 0.14 0.98 

Hispanic: Hispanic origin of reference person  0.18 0.39 0.82 

Single: familytype (single person/single parent or not) 0.23 0.42 0.77 

Children: have children or not 0.39 0.49 0.61 

Lnincome: log of family income  10.76 1.29 0 

Number of peers 421 265 0 

Number of peers Percentiles  

 
1% 50 

 

 
5% 88 

 

 
10% 124 

 

 
25% 203 

 

 
50% 372 

 

 
75% 632 

 

 
90% 805 

 

 
95% 994 

 
  99% 1097   



55 
 

Figure 2.1: Picture of PSU 

 

 

 

 

 

 

Picture is from BLS website: https://www.bls.gov/cex/sampling-methods.pdf 

We are going to use the A PSUs in this picture which has the population more than 2,700,000. 

There are 21 A PSUs, 5 Northeast, 4 midwest, 6 South, and 6 West. 

 

 

https://www.bls.gov/cex/sampling-methods.pdf
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Figure 2.2: Histogram of Group Mean of Consumption  
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Table 2.2: Peer Effects on Outerwear, Underwear, Footwear Consumption  

  outwear underwear footwear 

OLS 0.68 0.53 0.57 

(Robust S.E) (0.05)  (0.06)  (0.06)  

(Cluster S.E) (0.07)  (0.08)  (0.05)  

    
OLS with FIX effect 0.28 0.12 0.38 

(Robust S.E) (0.09)  (0.11)  (0.09)  

(Cluster S.E) (0.09)  (0.11)  (0.09)  

    
2SLS with FIX effect 0.42 0.58 0.46 

(Robust S.E) (0.17)  (0.25)  (0.1)  

(Cluster S.E) (0.14)  (0.14)  (0.08)  

    
Two-Part Model 0.28 0.13 0.39 

(Bootstrap S.E) (0.06)  (0.08)  (0.05)  

    
Two-Part Model with 

IV 
0.64 0.35 0.61 

(Bootstrap S.E) (0.15) (0.22) (0.11) 

 

 

 

Notes: Each cell shows the marginal effects of average consumption of group from separate 

models. Standard Errors in the parentheses. All models include households’ characteristic 

explanatory variables college, age, male, black, Asian, other, Hispanic, single and children. All 

models include seasonal effects. All two-part models control for the PSU fix effects. 
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Figure 2.3: Histogram of Log Expenditure (exclude zeros) 
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2.9 Appendix 

2.9.1 Maximization Process 

Suppose the household utility function is as follows: 

U=U(x, y; S). 

Assume S is exogenous, we want to maximize the utility by choosing x and y under the 

following budget constraint: 

𝑃𝑥𝑥 + 𝑦 ≤ 𝐼 

To solve this maximization problem, we get this Lagrange function below: 

𝐿 = 𝑈(𝑥, 𝑦, 𝑆) + 𝜆(𝐼 − 𝑃𝑥𝑥 − 𝑦) 

Now we let the partial derivatives of L equal to zero in order to find the local maximum of utility 

function. 

𝜕𝐿

𝜕𝑥
= 𝑈𝑥 − 𝜆𝑃𝑥 = 0 

𝜕𝐿

𝜕𝑦
= 𝑈𝑦 − 𝜆 = 0 

Solving these equations, we get 

𝑈𝑥 = 𝑃𝑥𝑈𝑦 

 

Then we take full differential on both sides and we will get equation (1). 

𝑑(𝑈𝑥) = 𝑑(𝑃𝑥𝑈𝑦) 
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𝑈𝑥𝑥
𝜕𝑥

𝜕𝑆
ds + 𝑈𝑥𝑦

𝜕𝑦

𝜕𝑆
ds + 𝑈𝑥𝑆ds = 𝑃𝑥𝑈𝑦𝑥

𝜕𝑥

𝜕𝑆
ds + 𝑃𝑥𝑈𝑦𝑦

𝜕𝑦

𝜕𝑆
ds + 𝑃𝑥𝑈𝑦𝑆𝑑𝑠    (1) 

According to the budget constraint,  

𝑃𝑥𝑥 + 𝑦 ≤ 𝐼 

𝑦 = 𝐼 − 𝑃𝑥𝑥 

Taking the derivation of S on both sides, we get equation (2). 

𝜕𝑦

𝜕𝑆
= −𝑃𝑥

𝜕𝑥

𝜕𝑆
    (2) 

Now we plug equation (2) into equation (1), we get the following equation 

𝑑𝑥

𝑑𝑆
=

𝑝𝑥𝑈𝑦𝑆 − 𝑈𝑥𝑆

𝑈𝑥𝑥 − 2𝑝𝑥𝑈𝑥𝑦 + 𝑝𝑥2𝑈𝑦𝑦
 

Denoting D=𝑈𝑥𝑥 − 2𝑝𝑥𝑈𝑥𝑦 + 𝑝𝑥
2𝑈𝑦𝑦, we get the same equation which is in the book of Becker 

and Murphy (2009) 

𝑑𝑥

𝑑𝑆
=
𝑝𝑥𝑈𝑦𝑆 − 𝑈𝑥𝑆

𝐷
10 

 

 

 

Next, we want to show that D is smaller than zero. To test a twice-differentiable function is 

quasiconcave, we can examine the determinants of matrices of the utility function, known as 

“bordered Hessians”. 

                                                           
10 Becker, G. S., & Murphy, K. M. (2009). Social economics: Market behavior in a social environment. 

Harvard University Press. P11. 
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(

 
 
 
 

𝜕2𝐿

𝜕𝜆2
𝜕2𝐿

𝜕𝜆𝜕𝑥

𝜕2𝐿

𝜕𝜆𝜕𝑦

𝜕2𝐿

𝜕𝑥𝜕𝜆

𝜕2𝐿

𝜕𝑥2
𝜕2𝐿

𝜕𝑥𝜕𝑦

𝜕2𝐿

𝜕𝑦𝜕𝜆

𝜕2𝐿

𝜕𝑦2
𝜕2𝐿

𝜕𝑦𝜕𝑥)

 
 
 
 

= (

0 −𝑃𝑋 −1
−𝑃𝑋 𝑈𝑥𝑥 𝑈𝑥𝑦
−1 𝑈𝑦𝑥 𝑈𝑦𝑦

) 

If it is strictly quasiconcave, 

|

0 −𝑃𝑋 −1
−𝑃𝑋 𝑈𝑥𝑥 𝑈𝑥𝑦
−1 𝑈𝑦𝑥 𝑈𝑦𝑦

|>0, 

So, we get that D= 𝑈𝑥𝑥 − 2𝑝𝑥𝑈𝑥𝑦 + 𝑝𝑥
2𝑈𝑦𝑦 < 0 
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2.9.2 Marginal Effects for Two-part Model 

First part: 

Using a Probit model for the first stage, we therefore have 

P𝑟(Y > 0) = Pr(I = 1) = Ф(𝑥𝑖′𝛽1) 

The Probit model is estimated on the full sample. 

Second part: 

To model the second stage, we need to account for skewness in E(Y | Y>0, X), so use the log 

transformation: 

log(Y|I = 1) = 𝑥𝑖
′𝛽2 + 𝜀2𝑖 

Log OLS model is estimated on the sample with positive expenditures. 

To re-transform the estimates back to the raw (dollar) scale we must apply a factor, the smearing 

factor 

E(Y|I = 1, X) = 𝜙𝑠exp (𝑥𝑖
′𝛽2) 

Where 𝜙𝑠 = E(e
ε|X) ≡ exp (𝜎2/2) 

Together: 

Putting it all together we get: 

E(Y|X) = P𝑟(I = 1)E(Y > 0|X) + P𝑟(I = 0)E(Y = 0|X) 

E(Y|X) = Ф(𝑥𝑖′𝛽1)𝜙𝑠exp (𝑥𝑖
′𝛽2) 
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E(Y|X) is estimated on the full sample (everyone has a predicted probability of positive 

expenditures) 

For this case Duan11 developed the following nonparametric estimate of 𝜙𝑠 and we use this in 

our calculation. 

𝜙�̂� =
1

𝑛
∑exp (𝜀2�̂�)

𝑖

 

 

Where 𝜀2�̂� are the estimated residuals from the second stage of the model. 

And we take the derivative of 𝑥1 for E(Y|X), which is the marginal effect of  𝑥1.   

For continuous variable 𝑥1, we will get: 

𝜕𝐸(𝑌|𝑋)

𝜕𝑥1
= Ф(𝑥𝑖

′𝛽1)𝛽11𝜙𝑠 exp(𝑥𝑖
′𝛽2) + Ф(𝑥𝑖′𝛽1)𝜙𝑠exp (𝑥𝑖

′𝛽2)𝛽21 

𝛽11 is the coefficient of 𝑥1 in first part, Probit model. 

𝛽21 is the coefficient of 𝑥1 in second part, OLS model 

 

 

 

 

 

                                                           
11 Duan, N. (1983). Smearing estimate: a nonparametric retransformation method. Journal of the American 

Statistical Association, 78(383), 605-610. 
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2.9.3 Bootstrap Method  

      Bootstrap was introduced by Efron (1979) and it has several advantages. For example, it 

requires no theoretical calculations, is not based on asymptotic results, and no matter how 

complicated the estimator θ̂ is, we can use it to get the standard error. A bootstrap sample is 

defined to be a random sample of size n drawn from the dataset. If θ̂ = s(x), x = (x1, x2…x𝑛) is a 

random sample. For each bootstrap sample x* there is a bootstrap replicate of θ̂, θ∗̂ = s(x*). If we 

pick B independent bootstrap samples, each consisting of n data values drawing with 

replacement from x. Then we evaluate the bootstrap replication corresponding to each bootstrap 

sample θ∗̂(𝑏) = s(x𝑏*), b = 1, …, B. Then we estimate the standard error se (θ̂) by the sample 

standard error of the B replicates   𝑠𝑒�̂� = [
1

𝐵−1
∑ {θ∗̂(𝑏) − 𝐵−1∑ θ∗̂(𝑏)𝐵

𝑏=1
𝐵
𝑏=1 }2]

1/2

. And using 

this method we get the bootstrap standard error of marginal effect for the two-part model.12  

 

 

 

 

 

 

 

                                                           
12 Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: methods and applications. Cambridge 

university press. 
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2.9.4 Appendix Tables  

Table 2.3: Peer Effects on Outerwear 
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Table 2.4: Peer Effects on Underwear 
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Table 2.5: Peer Effects on Footwear 
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Chapter 3: Interaction of Household Consumption: Evidence from 

US Households 

3.1 Introduction 

Consumers’ purchase decisions are influenced through their interactions with others. 

There is a long history of research on social impacts. Veblen (1899) proposes the theory of 

conspicuous consumption to address the importance of social influence on consumption. His 

study lays the foundation for economics research on social interactions. In the previous chapter, 

“Peer effects on consumption: conformism or snobbism,” we present empirical evidence 

showing significant peer effects in consumption.  

Family is the smallest social unit. Social interactions also exist between family members. 

Browning et al. (2014) introduce many popular models to analyze family economics and have 

developed influential research papers in the area of family economics in recent years. Three 

fundamental models can explain the family utility maximization problem: the unitary model, the 

cooperative model, and the noncooperative model. In this paper, we examine which of these 

theoretical models is more accurate when applied to US households.  

The unitary model explains one extreme situation. In the unitary model, the family is 

considered as a single entity and has one utility function. There are different explanations for this 

theory. For example, Samuelson (1956) thinks the common preference ordering may be the 

outcome of a consensus among the family members, and Becker (1974) shows that the dominant 

family member makes decisions for the whole family.13  

                                                           
13 Another extreme situation is that each family member only thinks about his/her utility, which is called 

the non-cooperative model. Browning, Chiappori, and Weiss (2014) also introduce this model in their book. 

In this model, family members maximize their own utility functions. Because whether people are family 

members or not has no effect on their decision-making process in this model, we ignore this extreme 
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The cooperative model explains the more general cases in real-world situations. This 

model attempts to incorporate divergent and conflicting preferences of individual family 

members into an economic analysis. Several models use different methods to deal with the 

divergence. The examples are the bargaining models, which include cooperative bargaining (e.g., 

Manser and Brown 1980; McElroy and Horney 1981; Lundberg and Pollak 1993) and non-

cooperative bargaining (e.g., Kanbur and Haddad 1994; Lundberg and Pollak 1994; Bergstrom 

1996). A generic “collective” approach avoids specifying a particular model of intrafamily 

allocation but assumes that family allocations obey a Pareto-efficient sharing rule (e.g., 

Chiappori 1988, 1992). In this paper, we conduct the theoretical analysis based on this collective 

approach. 

In the empirical literature, researchers want to figure out which theoretical model is more 

accurately explains real-world phenomena. Some empirical studies challenge the models whereas 

others provide support for the models. Browning (2014) reviews the empirical studies in Chapter 

5 of Economics of the Family, reviewing, for example, studies providing evidence against the 

unitary model (e.g., Browning and Chiappori 1998; Kapan 2009; Tomas 1990; Lundberg et al 

1997; Duflo 2003; Ward-Batts 2008), supporting the collective model (e.g., Chiappori 1998; 

Dauphin et al. 2009; Kapan 2009), and estimating the collective model (e.g., Browning et al 1994; 

Browning and Bonke 2009). In this paper, we aim to provide some evidence from US households.  

Our estimates show that when a wife’s relative salary compared to her husband’s salary 

increases, womenswear consumption will increase while menswear consumption will decrease. 

The paper proceeds as follows. In section 2, a theoretical model will be introduced. Subsequently, 

                                                           
situation in our later empirical analysis. 
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in sections 3 and 4, we will describe the data and the empirical strategy. In section 5, we describe 

the empirical results, while conclusions will be drawn in section 6. 

 

3.2 Theoretical Model 

3.2.1 Unitary and Cooperative Model 

In this section, we use a simple framework to explain the interaction of consumption 

within households. To simplify the analysis, we assume that each family has two family 

members: a husband and a wife.14 The model we use in this chapter is based on Samuelson’s 

(1956) work. In this model, one natural assumption, according to Samuelson (1956), is to impose 

on the household utility function that it respects individual preferences in the sense that:  

�̃�(𝑥𝐻, 𝑥𝑊, 𝑆) = W(U
𝑎(𝑥𝐻, S), U

𝑏( 𝑥𝑊, S)) 

𝑥𝐻 is the quantity of private good x consumed by husband and 𝑥𝑊 is the quantity of private good 

x consumed by wife. S is the quantity of public goods.  W is a utility weighting function which is 

strictly increasing in the individual utilities. The key difference between the unitary model and 

the cooperative model is the weight. For the unitary model, all family members think of the 

family as a whole, which indicates that the weight in the unitary model should be fixed. 

However, in the cooperative model, the weight changes along with the distribution factors. For 

example, a family member who gets more income has more weight in the family utility function. 

In our empirical analysis, the income ratio is the distribution factor influencing the weight. We 

next explain the unitary model and the cooperative model in more detail. 

                                                           
14 These models apply to same-sex couples as well. 
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In the unitary model, based on the following utility function given by Samuelson (1956),   

�̃�(𝑥𝐻𝑥𝑊, S) = W(U
𝑎(𝑥𝐻, S), U

𝑏( 𝑥𝑊, S)) 

 we define a household utility function over market goods as: 

𝑈(𝑥, S) = max�̃�(𝑥𝐻, 𝑥 − 𝑥𝐻, S) 

Given this household utility function we can derive market demands in the usual way —namely, 

maximize the family utility function U(𝑥𝐻 , 𝑥𝑊, S) under the family budget constraint 𝑃𝑥(𝑥𝐻+ 

𝑥𝑊) + 𝑃𝑆𝑆 ≤ 𝐼.  𝑃𝑥 is the price of good x. 𝑃𝑆 is the price of good S. 𝐼 is family income which is 

also the budget constraint. 

In the cooperative model, husbands’ and wives’ consumption of private goods influence 

their utilities. Each household has a unique decision-making process. The key assumption of this 

approach is that the outcomes of such a process are efficient. Another important assumption in the 

cooperative model is the distribution factors. Among the various factors that can influence 

household behavior, many have a direct impact on either preferences or the budget constraint. A 

more subtle influence occurs indirectly through the decision-making process. A change in the 

economic environment may not affect either the preferences or the budget opportunities but can 

still affect the decision-making process. This idea is incorporated into this model by introducing 

distribution factors. Any variable that has an impact on the decision-making process but affects 

neither preferences nor budget constraints is termed a distribution factor. The decision process is 

as follows: 

Max U=𝜇𝑈𝐻 (𝑥𝐻 , 𝑆) + (1 − 𝜇)𝑈𝑊 ( 𝑥𝑊, 𝑆)  

𝑃𝑥(𝑥𝐻+ 𝑥𝑊) + 𝑃𝑆𝑆 ≤ 𝐼 
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The detailed proof is in Economics of the Family by Browning, Chiappori, and Weiss 

(2014, p. 105). The coefficient μ indicates the Pareto weight for the husband. This shows that a 

Pareto-efficient outcome always maximizes a weighted sum of the two individual utilities.  

Moreover 𝜇 should be a function of (𝑃𝑥 , 𝑆, 𝐼, 𝑧), where z is the distribution factor.   

3.2.2 Pareto Weight Identification 

               The maximization problem is as follows. Family members maximize the family utility 

by choosing the quantity of private consumption of each family member, under the family 

budget constraint: 

Max U=𝜇𝑈𝐻 (𝑥𝐻 , 𝑆) + (1 − 𝜇)𝑈𝑊 ( 𝑥𝑊, 𝑆)  

𝑃𝑥(𝑥𝐻+ 𝑥𝑊) + 𝑃𝑆𝑆 ≤ 𝐼 

We assume the Pareto weight μ has a linear form μ = μ0 + μz𝑧, Where z is a K-vector of 

distribution factors (for example, the income ratio). To solve this maximization problem, we 

suppose utility function is a linear expenditure system (LES) form,15 

𝑈𝐻 (𝑥𝐻 , S) = 𝛼1
𝐻 log(𝑥𝐻) + 𝛼2

𝐻 log(𝑆) 

𝑈𝑊 (𝑥𝑊, S) = 𝛼1
𝑊 log(𝑥𝑊) + 𝛼2

𝑊 log(𝑆) 

 

Using this utility function to solve the linear expenditure system, we can get following demand 

functions,16 

                                                           
15 One popular demand system is called the linear expenditure system (LES), And this demand system is derived from 

a simple modification of Cobb-Douglas utility function. And the LES utility function has this form: 

( )
=

−=
n

i

ii
iCU

1


  where 1

1

=
=

n

i

i . 

 
16 For the process of solving the demand, see Pollak and Wales (1969)  

 Pollak, R. A., & Wales, T. J. (1969). Estimation of the linear expenditure system. Econometrica: Journal of the 

Econometric Society, 611-628. 
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𝑌𝐻 = 𝑃𝐻𝑥𝐻 = 𝛼1
𝐻(μ0 + μz𝑧)𝐼 

𝑌𝑊 = 𝑃𝑊𝑥𝑊 = 𝛼1
𝑊[1 − (μ0 + μz𝑧)]𝐼 

 

These demand functions show the relationship between private goods expenditures (𝑌𝐻 , 𝑌𝑊), 

family income (I) and distribution factors (𝑧). The left side is private goods expenditure, and the 

right side includes income and the interaction term of income and the distribution factor. We can 

rewrite the equations into the following forms, where we use 𝛽𝑠 to denote the coefficient of each 

variable. Also, using these equations, we can compare with the empirical models. 

𝑌𝐻 = 𝛼1
𝐻μ0 ∗ 𝐼 + 𝛼1

𝐻 μz ∗ 𝑧 ∗ 𝐼 

𝑌𝑊 = 𝛼1
𝑊 ∗ 𝐼 − 𝛼1

𝑤μ0 ∗ 𝐼 − 𝛼1
𝑊 μz ∗ 𝑧 ∗ 𝐼 = (𝛼1

𝑊 − 𝛼1
𝑊μ0) ∗ 𝐼 − 𝛼1

𝑊 μz ∗ 𝑧 ∗ 𝐼 

 

𝑌𝐻 = 𝛽0 + 𝛽1 ∗ 𝐼 + 𝛽2 ∗  𝑧 ∗ 𝐼  

𝑌𝑊 = 𝛾0 + 𝛾1 ∗ 𝐼 + 𝛾2 ∗  𝑧 ∗ 𝐼 

 

Where  𝛽1 = 𝛼1
𝐻μ0,    𝛽2 = 𝛼1

𝐻 μz,   𝛾1 = 𝛼1
𝑊 − 𝛼1

𝑊μ0,  𝛾2 = 𝛼1
𝑊 μz. 

 

To identify the parameters in the Pareto weight function, we can regress the husband’s 

and wife’s private goods expenditures on the family income and the interaction of distribution 

factors and family income. We will get the estimated coefficients 𝛽1̂ ,𝛽2̂, 𝛾1̂ , 𝛾2̂ by doing the 

regression. Then we can do some transformations to recover all the parameters in the Pareto 

weight function. Combining the above equations and assuming μz ≠ 0, we have 

𝛽1

𝛽2
=
μ0

μz
  
𝛾1

𝛾2
=
1−μ0

μz
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Therefore, 

 

μ0 =
𝛽1𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
 

μz =
𝛽2𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
 

 

 

The value of μz will enable us to distinguish between the unitary model and the cooperative 

model. For the unitary version, μ𝑧 = 0 = 𝛽2 = 𝛾2 and for the cooperative model μ𝑧 ≠ 0. 

 

3.3 Data 

3.3.1 Dataset Description 

         In this paper, we use Consumer Expenditure Surveys (CEX) data from the Bureau of Labor 

Statistics. Because the primary sampling unit (PSU) categories changed in 2015, we use data from 

2011 to 2014. The Bureau of Labor Statistics collects data every three months, so in total, we have 

16 different periods. Our analytic dataset includes 21 PSUs in total (see Figure 2.1).17 The family 

dataset includes households’ demographic characteristics, family income, and expenditure 

information. The family member’s dataset includes family member’s characteristics and salary 

information. We combine the family dataset and the family member dataset. Any observations 

without family information or family member’s information are excluded. 

 

                                                           
17 According to the Bureau of Labor Statistics website, “the selection of households for the survey begins 

with the definition and selection of primary sampling units (PSUs), which consist of counties (or parts 

thereof), groups of counties, or independent cities. The sample of PSUs currently used in the survey consists 

of 105 geographic areas, of which 87 are urban geographic areas.” 
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3.3.2 Key Variables of Interest  

         The key outcome variables are two private consumption expenditures, the expenditures on 

womenswear and menswear. The key explanatory variable is family income and the ratio of wife’s 

salary to husband’s salary. Family income also includes some investment interest or other transfer 

payments and is not equal to the sum of husband’s and wife’s salary. We use the salary ratio as 

the distribution factor in our analysis, which is equal to the wife’s salary divided by husband’s 

salary (ratio= 
𝑊𝑖𝑓𝑒 𝑆𝑎𝑙𝑎𝑟𝑦

𝐻𝑢𝑠𝑏𝑎𝑛𝑑 𝑆𝑎𝑙𝑎𝑟𝑦
). This influences how the family will distribute their income.  

Figure 3.1 shows histograms of womenswear expenditure, menswear expenditure, income, 

and salary ratio. There are around 80% zero values in the outcome variables.  We think that zero 

is a meaningful amount, so we do not drop zero values during the analysis. However, these inflated 

zero values will bias our estimates if we use the OLS regression. We instead use a two-part model 

for the main analysis. We also observe the histograms of positive values of outcome variables 

which are right-skewed. Therefore, for the second part of the two-part model, we use a log-linear 

regression.  

        For the variable salary ratio, the mean value is 0.72 in Table 3.1, which is smaller than one. 

This mean value shows that in most families, the wife has a lower salary than the husband. By 

looking at the histogram in Figure 3.1, we find some extreme values. The reason for these extreme 

values is that in some families one member has a very high salary and the other member has a very 

low salary. We next look at the detailed percentile summary of the variable ratio in Table 3.1. The 

99th percentile has a very large value (40). Thus, we drop the extreme values bigger than 95th 

percentile. For the income variable, we also see the right-skewed histogram graph and the variation 

is large, so we use the log of income as the explanatory variable. 
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           Table 3.2 shows the summary statistics after dropping extreme values. Figure 3.2 shows the 

histogram of key variables after transformation (log of womenswear expenditure and log of 

menswear expenditure after dropping the zeros, log of income and salary ratio after dropping the 

extreme values). The max salary of husband and wife is 292,304 because the upper topcode value 

is 292,304. Furthermore, since family income also includes some investment income and other 

income, family income is not equal to the sum of husband’s salary and wife’s salary. The 

correlation between the family income and the sum of husband’s salary and wife’s salary is 0.93. 

 

3.4 Empirical Strategy 

3.4.1 Two-part Model 

            In this paper, we want to estimate the parameters in the Pareto weight function. One 

possible problem is that some determinants of the process are not observed, which is the 

unobserved heterogeneity problem. For example, different tastes for consumption across 

households may make the regression results biased. In this case the different consumption 

allocation is not due to the different proportion of salary; instead, it is due to the different tastes. 

We can control for the PSU fix effects to address some of this heterogeneity problem.  

Second, because we also observe many zero values in the dependent variable, the 

womenswear expenditure and menswear expenditure, we will use a two-part model to address 

the inflated zero problem. The first part of the model is a probit regression for any expenditures. 

The second part is a linear regression for the log of expenditure, only for those observations with 

positive expenditures. We use the same regressors in the first and second part. Thus, the model 

is: 
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𝑃𝑟((𝑌𝐻)𝑖𝑘𝑡 > 0) = Ф(𝛼0 + 𝛼1 ∗ 𝐼𝑖𝑘𝑡 + 𝛼2 ∗  𝑧𝑖𝑘𝑡 ∗ 𝐼𝑖𝑘𝑡 + 𝛼3 ∗  𝑧𝑖𝑘𝑡 + 𝛼4X𝐻𝑖𝑘𝑡 + λ𝑘) 

𝐿𝑛((𝑌𝐻)𝑖𝑘𝑡 > 0) = 𝛽0 + 𝛽1 ∗ 𝐼𝑖𝑘𝑡 + 𝛽2 ∗  𝑧𝑖𝑘𝑡 ∗ 𝐼𝑖𝑘𝑡 + 𝛽3 ∗  𝑧𝑖𝑘𝑡 + 𝛽4X𝐻𝑖𝑘𝑡 + π𝑘 

 

𝑃𝑟((𝑌𝑊)𝑖𝑘𝑡 > 0) = Ф(𝛾0 + 𝛾1 ∗ 𝐼𝑖𝑘𝑡 + 𝛾2 ∗  𝑧𝑖𝑘𝑡 ∗ 𝐼𝑖𝑘𝑡 + 𝛾3 ∗  𝑧𝑖𝑘𝑡 + 𝛾4X𝑊𝑖𝑘𝑡 + φ𝑘) 

𝐿𝑛((𝑌𝑊)𝑖𝑘𝑡 > 0) = 𝛿0 + 𝛿1 ∗ 𝐼𝑖𝑘𝑡 + 𝛿2 ∗  𝑧𝑖𝑘𝑡 ∗ 𝐼𝑖𝑘𝑡 + 𝛿3 ∗  𝑧𝑖𝑘𝑡 + 𝛿4X𝑊𝑖𝑘𝑡 +ω𝑘 

 

(𝑌𝐻)𝑖𝑘𝑡  is the husband consumption of each family i in PSU k at time t. 𝑝
𝑊
𝑥𝑊𝑖𝑘𝑡

 is the wife 

consumption of each family i in PSU k at time t. X𝐻𝑖𝑘𝑡 is a vector of husband characteristics, for 

example, age, race and education level, X𝑊𝑖𝑘𝑡 is a vector of wife characteristics and 

λ𝑘, π𝑘, φ𝑘 , ω𝑘  are PSU fixed effects in order to control fixed PSU characteristics. We can 

calculate the marginal effects of log income (M1) and marginal effects of the interaction term 

(M2) using the DUAN method and use the bootstrap method to get standard errors for these 

marginal effects.18 

3.4.2 Pareto Weight Identification 

Recall the theoretical model. We have the following equations.  

𝑌𝐻 = 𝛽0 + 𝛽1 ∗ 𝐼 + 𝛽2 ∗  𝑧 ∗ 𝐼     

𝑌𝑊 = 𝛾0 + 𝛾1 ∗ 𝐼 + 𝛾2 ∗  𝑧 ∗ 𝐼     

 

Where  𝛽1 = 𝛼1
𝐻μ0,    𝛽2 = 𝛼1

𝐻 μz,   𝛾1 = 𝛼1
𝑊 − 𝛼1

𝑊μ0,  𝛾2 = 𝛼1
𝑊 μz.  

μ0 =
𝛽1𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
   

μz =
𝛽2𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
   

                                                           
18 Duan, N. (1983). Smearing estimate: a nonparametric retransformation method. Journal of the American 

Statistical Association, 78(383), 605-610. 
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By using the two-part model, we can get the marginal effects of the log of income and the 

interaction of log of income and the income ratio. We can use the following equation to show the 

relationships 

𝑌𝐻 = 𝑀0𝐻 +𝑀1𝐻 ∗ 𝑙𝑛(𝐼) +𝑀2𝐻 ∗  𝑧 ∗ 𝑙𝑛(𝐼)  + 𝜀𝐻   

𝑌𝑊 = 𝑀0𝑊 +𝑀1𝑊 ∗ 𝑙𝑛(𝐼) +𝑀2𝑊 ∗  𝑧 ∗ 𝑙𝑛(𝐼) + 𝜀𝑊  

 

We find the following results. The detailed derivation is shown in the appendix. 

μ0 =
𝛽1𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
= 

𝑀1𝐻 ∗ 𝑀2𝑊
𝑀2𝐻 ∗  𝑀1𝑊 +𝑀1𝐻 ∗  𝑀2𝑊

 

μz =
𝛽2𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
=

𝑀2𝐻 ∗ 𝑀2𝑊
𝑀2𝐻 ∗  𝑀1𝑊 +𝑀1𝐻 ∗  𝑀2𝑊

 

 

We can use the bootstrap method to get the standard errors of μ0 and μ𝑧. 

 

 

3.5 Empirical Results 

            Table 3.3 presents the estimation results, and Table 3.4 shows the estimated marginal 

effects. The first column in Table 3.3 shows the parameters of the first part probit regression of 

menswear, and the first column in Table 3.4 shows the corresponding marginal effects. The 

estimates imply that if the salary ratio increases by one unit, while keeping other variables 

unchanged, at the mean of lnincome, the probability of buying menswear will increase by 0.009.19 

We also calculate the marginal effects if lnincome at the 25th and 10th percentile level and find 

that, when lnincome is at the 25th percentile, this effect is still positive but it becomes negative at 

                                                           
19 0.009=0.009*11.6-0.095, which is the product of marginal effect of the interaction term ln(income)*ratio 

and the mean of lnincome plus the marginal effect of ratio. 11.6 is the mean and also the median of lnincome. 
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the 10th percentile.20 As the ratio is the wife’s salary divided by the husband’s salary, the ratio 

increases when the wife’s salary becomes relatively higher. If the marginal effect of the ratio is 

negative, it means that when wife’s salary becomes relatively higher, the probability of buying 

menswear decreases. We should also note that, in the real world, the ratio and the family income 

always change together. If the lnincome increases by one unit while keeping other variables 

unchanged, at the mean of ratio, the probability of buying menswear will increase by 0.045.21 As 

the sign of the marginal effect of income and the sign of the marginal effect of the interaction term 

are both positive, the effect of income should always be positive. When family income increases, 

the probability of buying menswear increases as well. 

           The second column in Table 3.3 shows the parameters of the second part linear regression 

of menswear, and the second column in Table 3.4 shows the corresponding marginal effects. The 

estimates imply that, if the salary ratio increases by one unit while keeping other variables 

unchanged, at the mean of lnincome, the menswear expenditure will decrease by 0.041%.22 We 

also calculate the marginal effects at different percentiles and the effects are all negative. A 

negative effect implies that, when the wife’s salary becomes relatively larger, the menswear 

expenditure will decrease. If the lnincome increases by one unit while keeping other variables 

unchanged, at the mean of ratio, the menswear expenditure will increase by 0.448.23   

                                                           
20 When lnincome is at the 25th percentile the effect is -0.004 and at the 10th percentile, the effect is 0.006. 

-0.004=0.009*10.07-0.095.   

0.006=0.009*11.18-0.095. 
21 0.045=0.038+0.009*0.81, which is the product of marginal effect of the interaction term ln(income)*ratio 

and the mean of ratio plus the marginal effect of lnincome. 
22 0.041=0.273-0.020*11.6, which is the product of marginal effect of the interaction term ln(income)*ratio 

and the mean of lnincome plus the marginal effect of ratio. 
 
23 0.448=0.432+0.020*0.81, which is the product of marginal effect of the interaction term ln(income)*ratio 

and the mean of ratio plus the marginal effect of lnincome. 
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           Next, we combine these two parts. If the ratio increases one unit, the menswear expenditure 

will increase by $0.242.24 We also calculate the marginal effects if lnincome at the 25th and 10th 

percentile levels and find that, when lnincome is at the 25th percentile, this effect is still positive 

but it becomes negative at the 10th percentile. When family income is low, the increase of ratio 

decreases the menswear expenditure. When family income is high, the increase of ratio increases 

the menswear expenditure. If lnincome increases one unit, the menswear expenditure will increase 

by 18.77 percentage points at the mean of ratio.25 

            The third column in Table 3.3 shows the parameters of the first part probit regression of 

womenswear, and the third column in Table 3.4 shows the corresponding marginal effects. The 

estimates imply that if the salary ratio increases by one unit while keeping other variables 

unchanged, at the mean of lnincome, the probability of buying womenswear will increase by 

0.009.26 We try all percentiles and the effects are always positive. Positive effect implies that when 

the wife’s salary becomes relatively higher, the probability of buying womenswear increases. If 

the lnincome increases by one unit while keeping other variables unchanged, at the mean of ratio, 

the probability of buying womenswear will increase by 0.048.27  

            The Fourth column shows the second part regression of womenswear. The estimates imply 

that, if the salary ratio increases by one unit keeping other variables unchanged, at the mean of 

linincome, the womenswear expenditure will increase by 0.0518.28 When the ratio increases, the 

wife’s salary becomes relatively higher, and the consumption of womenswear increases. We try 

all percentiles and the effects are always positive. If the income increases by 1%, the womenswear 

                                                           
24 0.242=1.87*11.6-21.45. 
25 18.77=17.26+1.87*0.81. 
26 0.009=0.044-0.003*11.626.  
27 0.048=0.051-0.003*0.81. 
28 0.0518=0.423-0.032*11.6. 
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expenditure will increase by 0.38%.29  

Last, we combine these two parts. If ratio increase one unit, at the mean of lnincome, the 

womenswear expenditure will increase by $3.8.30 The effects are positive for all percentiles. If the 

lnincome increases by one unit while keeping other variables unchanged, at the mean of ratio, the 

womenswear expenditure will increase by 24.06.31 

Table 3.5 provides the estimation results for μ0 and μ𝑧. Recall our theoretical model, 

U=𝜇𝑈𝐻 (𝑥𝐻, 𝑦) + (1 − 𝜇)𝑈𝑊 ( 𝑥𝑊, 𝑦). Because we specify μ = μ0 + μz𝑧,  the results mean that, 

if the ratio increases by one unit, the pareto weight will decrease by 0.34. That is to say, when a 

wife’s relative salary compared to her husband’s salary increases, the weight of the wife’s utility 

in the family’s utility will increase, and the weight of husband’s utility in the family’s utility will 

decrease. This conclusion is consistent with the cooperative model. However, the estimated 

value of μz is not statistically significant. 

 

3.6 Conclusion 

The estimation indicates that, when the wife’s relative salary compared to the husband’s 

salary increases, womenswear consumption increases while menswear consumption decreases. 

When the wife’s salary increases, both the family income and ratio change. The increasing income 

changes womenswear consumption through both the increased budget constraint and the 

distribution factor. Using our model, we can estimate different effects through these two paths. By 

using the US Consumer Expenditure Survey data, we estimate the Pareto weight to be negatively 

                                                           
29 0.38=0.408-0.032*0.81. 
30 3.8=26.00-1.91*11.6. 
31 24.06 =25.63-1.91*0.81. 
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correlated with the ratio of the wife’s salary to the husband’s salary. When the wife’s salary 

increases, the ratio increases whereas the weight of the husband’s utility decreases. However, in 

our results, these estimations are insignificant, which means that μz is not significantly different 

from zero. If μz is not significantly different from zero, the unitary model is more appropriate for 

explaining the situation in the US.  

Our research faces some limitations. For example, we only include one distribution factor: 

the salary ratio. There might exist other distribution factors that have a significant influence on the 

Pareto weight. In addition, we assume that the Pareto weight and the distribution factors have a 

linear relationship. In reality, they may have more complicated relationships, such as a quadratic 

function form. In future research, we can relax the assumptions when making the estimations. We 

can also conduct some interesting further research related to this topic. For example, people with 

different education levels, ages, and races may perceive things in different ways. We can examine 

how their education, age, or race influences the way that they make decisions related to family 

consumption. For example, family members with a higher education level might care more about 

themselves than the whole family; as people get older, they love their spouses more and might be 

more likely to use the unitary model to make decisions; and people from cultures with very strong 

family values might be more likely to use the unitary model to make decisions. 
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3.8 Tables and Figures 

Table 3.1: Summary Statistics 

Variable 
Observation 

Mean Std. Dev. Min Max 
Percentage 

of Zeros 

 
      

Womenswear expenditure ($) 7,183 43 142.47 0 3971 0.75 

Menswear expenditure ($) 7,183 28 124.34 0 3536 0.82 

Income ($) 7,183 136349 103671.5 2 1110485 0 

Wife Salary ($) 7,183 49222 48173.5 1 292304 0 

Husband Salary ($) 7,183 75502 66230.03 1 292304 0 

Income Ratio (wife’s salary/ 

husband’s salary) 7,183 59.23 1703.99 0  58000 0 

       
Income Ratio (wife’s salary/ 

husband’s salary) 
 

Percentiles 
    

 
1% 0.01 

    

 

5% 0.05 
    

 
10% 0.11 

    

 
25% 0.34 

    

 

50% 0.72 
    

 
75% 1.09 

    

 

90% 2.20 
    

 
95% 4.07 

    

 

99% 40 
    

 

Note: The minimum of income Income Ratio is a positive number and round to zero 
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Figure 3.1: Histogram of Key Variables 
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Table 3.2: Summary Statistics (After dropping) 

Variable 
Observation 

Mean Std. Dev. Min Max 
Percentage 

of Zeros 

 
      

Womenswear expenditure ($) 6,824 43 143.76 0 3971 0.75 

Menswear expenditure ($) 6,824 28 116.43 0 3200 0.82 

Income ($) 6,824 138554 104121.20 2 1110485 0 

Wife Salary ($) 6,824 48038 46666.31 1 292304 0 

Husband Salary ($) 6,824 79058 66009.59 1 292304 0 

Income Ratio (wife’s salary/ 

husband’s salary) 6,824 0.81 0.69 0 4.06 0 

Log income 6,824 11.60 0.73 0.69 13.92 
 

Income Ratio (wife’s salary/ 

husband’s salary) 
 

Percentiles 
    

 
1% 0.01 

    

 

5% 0.04 
    

 
10% 0.11 

    

 
25% 0.33 

    

 

50% 0.69 
    

 
75% 1.00 

    

 

90% 1.61 
    

 
95% 2.22 

    

 
99% 3.40 

    
 

Note: The minimum of income Income Ratio is a positive number and round to zero 
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Figure 3.2: Histogram of Key Variables (After Transformation) 
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Table 3.3: Estimation Results of Menswear and Womenswear 

 
Menswear Womenswear 

  Probit Linear  Probit Linear 

ln(income) 0.148*** 0.432*** 0.155*** 0.408*** 

 
(0.039) (0.066) (0.036) (0.052) 

ln(income)*ratio 0.035 0.020 -0.010 -0.032 

 
(0.033) (0.054) (0.030) (0.043) 

ratio -0.371 -0.273 0.149 0.423 

 
(0.390) (0.639) (0.351) (0.510) 

age -0.002 0.003 0.003* 0.008*** 

 
(0.002) (0.003) (0.002) (0.002) 

college 0.072* 0.205*** 0.114*** 0.271*** 

 
(0.038) (0.060) (0.035) (0.049) 

white -0.070 -0.275 0.086 0.052 

 
(0.139) (0.211) (0.135) (0.198) 

black -0.136 0.023 -0.002 0.183 

 
(0.154) (0.238) (0.148) (0.217) 

Asian -0.108 -0.469** 0.020 -0.087 

 
(0.149) (0.230) (0.144) (0.211) 

_cons -2.498*** -0.745 -2.692*** -0.976 

 
(0.475) (0.787) (0.434) (0.633) 

N 6824 1220 6824 1697 

Standard errors in parentheses 
    

* p<0.1 ** p<0.05 *** p<0.01     
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Table 3.4: Marginal Effects Estimation  

 
Menswear Womenswear 

  Probit Linear Probit Linear 

ln(income) 0.038*** 0.432*** 0.051*** 0.408*** 

 
(0.010) (0.066) (0.011) (0.052) 

ln(income)*ratio 0.009 0.020 -0.003 -0.032 

 
(0.009) (0.054) (0.009) (0.043) 

ratio -0.095 -0.273 0.044 0.423 

 
(0.100) (0.639) (0.110) (0.510) 

     
Two-Part Marginal Effect dy/dx (ln(income)) 17.26*** 25.63*** 

 
(2.51) (4.26) 

Two-Part Marginal Effect dy/dx (ln(income)*ratio) 1.87 -1.91 

 (1.91) (2.73) 

Two-Part Marginal Effect dy/dx (ratio) -21.45 26.00 

  (22.29) (32.22) 

Standard errors in parentheses 
    

* p<0.1 ** p<0.05 *** p<0.01     
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Table 3.5: Estimation Results of 𝛍𝟎 and 𝛍𝒛 

μ0 -3.22 

 
(8.86) 

μz -0.35 

  (0.42) 
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3.9 Appendix 

Pareto Weight Identification 

Recall the theoretical model, we have these following equations.  

𝑌𝐻 = 𝛽0 + 𝛽1 ∗ 𝐼 + 𝛽2 ∗  𝑧 ∗ 𝐼    (1)  

𝑌𝑊 = 𝛾0 + 𝛾1 ∗ 𝐼 + 𝛾2 ∗  𝑧 ∗ 𝐼    (2) 

 

Where  𝛽1 = 𝛼1
𝐻μ0,    𝛽2 = 𝛼1

𝐻 μz,   𝛾1 = 𝛼1
𝑤 − 𝛼1

𝑤μ0,  𝛾2 = 𝛼1
𝑤 μz.  

μ0 =
𝛽1𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
  (3)  

 

μz =
𝛽2𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
  (4) 

 

By using the two-part model, we can get the marginal effects of log of income and the marginal 

effects of the interaction term of log income and income ratio. We can use the following 

equation to show the relationships 

𝑌𝐻 = 𝑀0𝐻 +𝑀1𝐻 ∗ 𝑙𝑛(𝐼) +𝑀2𝐻 ∗  𝑧 ∗ 𝑙𝑛(𝐼)  + 𝜀𝐻  (5) 

𝑌𝑊 = 𝑀0𝑊 +𝑀1𝑊 ∗ 𝑙𝑛(𝐼) +𝑀2𝑊 ∗  𝑧 ∗ 𝑙𝑛(𝐼) + 𝜀𝑊 (6) 

              In equation (1), if I increase one unit, the 𝑦𝐻 will increase by ( 𝛽1 + 𝛽2 ∗  𝑧 ) units. And 

in equation (5), if I increase on unit, the 𝑦𝐻 will increase by 𝑀1𝐻 ∗ [𝑙𝑛(𝐼 + 1) − 𝑙𝑛(𝐼)] + 𝑀2𝐻 ∗

[𝑙𝑛(𝐼 + 1) − 𝑙𝑛(𝐼)]  ∗ 𝑧. Due to this relationship we can get that 𝛽1 = 𝑀1𝐻 ∗  𝑙𝑛(1 +
1

𝐼
),  𝛽2 = 
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𝑀2𝐻 ∗  𝑙𝑛(1 +
1

𝐼
). And use same logic on equation (2) and (6), we will get 𝛾1 = 𝑀1𝑊 ∗  𝑙𝑛(1 +

1

𝐼
), 𝛾2 = 𝑀2𝑊 ∗  𝑙𝑛(1 +

1

𝐼
).  

                And if we plug these marginal effects in the μ0 equation we will find that the term 

𝑙𝑛(1 +
1

𝐼
) will be canceled out.  

μ0 =
𝛽1𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
= 

𝑀1𝐻 ∗  𝑙𝑛(1 +
1
𝐼) ∗ 𝑀2𝑊 ∗  𝑙𝑛(1 +

1
𝐼)

𝑀2𝐻 ∗  𝑙𝑛(1 +
1
𝐼)𝑀1𝑊 ∗  𝑙𝑛(1 +

1
𝐼) + 𝑀1𝐻 ∗  𝑙𝑛(1 +

1
𝐼)𝑀2𝑊 ∗  𝑙𝑛(1 +

1
𝐼)

 

 

μ0 =
𝛽1𝛾2

𝛽2𝛾1 + 𝛽1𝛾2
= 

𝑀1𝐻 ∗ 𝑀2𝑊
𝑀2𝐻 ∗  𝑀1𝑊 +𝑀1𝐻 ∗  𝑀2𝑊
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