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Abstract 

In Chapter 1, we use low birth weight (LBW) and intrauterine growth restriction (IUGR) as 

proxies for a compromised intrauterine environment experienced by one generation, and examine 

its association with the LBW (or IUGR) status of the next generation. We create two three- 

generational samples using Taiwan birth certificates from 1978-2006 to study both maternal and 

paternal transmissions. The results show that the intergenerational transmission only occurs 

matrilineally and it is stronger among female offspring. We find weak evidence that females, but 

not males, born to areas with lower unemployment rate, higher average income, and higher 

parental education can be buffered from these effects. 

Chapter 2 uses the most recent vaccine scare in the U.S., the Measles-Mumps-Rubella 

(MMR)-autism controversy, to investigate how well-educated people respond to information 

differently when information is mixed. The controversy was first provoked by a paper linking 

autism to the childhood vaccine of MMR and was retracted years later due to scientific 

misconduct. We combine state-level information exposures with individual vaccination records 

from the National Immunization Survey, 1998-2011. Results show that the persistent increase in 

MMR non-uptake rate is driven by biased beliefs among well-educated mothers, which in turn 

leads to strong responses to only new information that confirms their beliefs. We find evidence 

that online search has a more influential impact on the high education group than mainstream 

media.  

Chapter 3 investigates the association between published hospital report card information and 

hospital relative attractiveness to commercial HMO insurers for CABG surgery in Pennsylvania 

during report card episodes 2006-2010. Relative bargaining position between hospitals and 

insurers are measured using aggregated changes in individual willingness-to-pay for a particular 
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plan if a hospital is included in its network. Plan’s hospital networks are implied using PHC4 

inpatient discharge data. Our results suggest that high charge hospitals in the most recent report 

card episode are 53.4% less attractive to insurers and low charge hospitals are 76.1% more 

attractive to insurers, given the plan’s network. Based on our calculation, low charge hospitals in 

the most recent report card episode are 20.5% more likely to have a new HMO contract.   
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1. The Intergenerational Transmission of Low Birth Weight: A Large 

Multigenerational Cohort Study in Taiwan 

1.1.  Introduction 

Prenatal environment has increasingly been recognized as having an important effect on adult 

health and diseases. Although the link between fetal conditions and future diseases has been 

studied since the 1940s, it was not until the 1990s that the fetal origins hypothesis was proposed 

by Barker (1990; 1995). That gave a greater impetus to subsequent research on this temporal 

linkage. The fetal origins hypothesis states that a fetus faced with a compromised intrauterine 

environment not only would slow down its growth to reduce nutritional requirements but also 

might make developmental adaptations by modifying its structure and physiology in a durable 

fashion, leading to a higher risk of developing chronic diseases in later life. The word 

“programming” thus is used to describe the linkage between fetal life and long-term 

consequences (Lucas 1991). Over the past two decades, such an association has been strongly 

supported by hundreds of human and animal studies.1 For example, epidemiologic studies in 

populations worldwide have found that poor fetal growth resulting in low birth weight increases 

the risk of developing diseases in adulthood, including cardiovascular disease, type 2 diabetes, 

glucose intolerance, and hypertension. Economic studies further interpret the hypothesis as a 

major explanation for the temporal relationship between early environment and non-health 

capital.2 

More importantly, the evidence--mostly from animal studies--suggests that such impacts of 

developmental adaptation to the environment occurred during fetal life may not be limited to a 

single generation but may be transmitted to subsequent generations not exposed to adverse 

                                                           
1 See Hales and Barker (2001) for a review. 
2 See Almond and Currie (2011) for a review. 
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environment via non-genomic mechanisms (Drake and Walker 2004; Jablonka and Lamb 2005; 

Gluckman, Hanson, and Beedle 2007).3 There are two possible processes underpinning such 

non-genomic mechanisms. First, adverse in utero experiences lead to permanent alterations in 

physiology, resulting in an adverse intrauterine environment (these includes higher maternal 

blood pressure, higher maternal insulin, or elevated plasma glucocorticoids during pregnancy) 

for the fetus, inducing programming effects in the next generation. Second, adverse in utero 

experiences also may influence expression of genes without changing the nucleotide sequences 

of DNA, through epigenetic modification, thus inducing permanent changes in the phenotype. It 

is possible to pass an epigenetic trait through both fathers and mothers to the next generation, 

leading to an intergenerational transmission of fetal programming effects. The latter process 

highlights the importance of examining the transmission of fetal programming effects, not only 

matrilineally but also patrilineally. In this paper, we seek to contribute to the scant number of 

human studies on a general population and to provide evidence on the transmission of 

programming effects across generations through maternal and paternal lines.   

The intergenerational fetal programming effect has important implications. It explains how 

adverse environmental influences affecting one generation affect the well-being of subsequent 

generations, a potential mechanism for persistent racial health disparities in the US (Kuzawa and 

Sweet 2009), or for the so-called “intergenerational cycle of growth failure” in developing 

countries (Ramakrishnan et al. 1999). Socioeconomic or nutrition interventions that prevent or 

reverse this transmission could generate positive rewards for future generations. However, it may 

take the combined efforts of several generations to wash out the impact of an abrupt shock to an 

                                                           
3 For example, intergenerational inheritance is found in the stress response of both animals and humans, 
suggesting that there is transgenerational memory of fetal experience that can extend across multiple 
generations (Matthews and Philips 2010). 
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ancestor. The effectiveness of such interventions may take longer to manifest, which needs to be 

taken into account during evaluations. 

To examine the intergenerational transmission of the fetal programming effect, we follow 

most of the literature and use small birth size as a marker of poor fetal nutrition, triggering fetal 

developmental adjustments that not only slow the growth rate but also influence the future risks 

of developing chronic diseases. We define small birth size with a low birth weight (LBW, birth 

weight < 2,500 grams) indicator, which is commonly used in the literature. However, low birth 

weight is a crude measure for fetal growth, because it can result from prematurity (gestation < 37 

weeks), or intrauterine growth restriction (IUGR, also referred to as “small-for-gestational age”), 

or a combination of the two. Therefore, we further use IUGR as a phenotype of fetal growth. 

There is no commonly accepted standard definition for IUGR, but the followings are often used: 

birth weight below the 5th percentile for gestational age; birth weight less than 2,500 grams and 

gestational age greater than or equal to 37 weeks; and birth weight less than two standard 

deviations below the mean value of gestational age (Kramer 1987). 

Using the annual birth certificates from 1978 to 2006 in Taiwan, we construct three- 

generational samples. The third generation (G3) includes births that occurred from 1999 to 2006. 

We then merge data on mothers or fathers for those births to birth certificate data for 1978 to 

1985--thus obtaining information on the second generation (G2)--along with demographic 

information for the grandmother, or the first generation (G1). Identification of G1 is important, 

because it allows us to control grandmother fixed effects and to net out time-invariant 

confounding factors, such as shared genes. We create one indicator for LBW and three indicators 

for IUGR measures for the second and third generations. To examine the intergenerational fetal 
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programming effects, we study the intergenerational relationships between G2 and G3 for these 

four markers of fetal growth. 

Empirically studying these intergenerational relationships in humans is challenging. The 

mechanisms underpinning these intergenerational relationships may include not only 

intergenerational fetal programming effects but also the intergenerational transmission of poverty 

and shared genes. These intergenerational relationships could be further confounded by the 

gender of each generation, assortative mating among G2, parenting behaviors (of G1 and G2) 

after birth (i.e. compensating or reinforcing behaviors), and myriad possibilities of sample 

selection. Previous epidemiological studies that use natural experiments, such as the Dutch 

famine during World War II (Lumey 1992), the Chinese famine of 1959-1961 (Fung and Ha 

2009), and Ramadan fasting in Tunisia (Alwasel et al. 2013), have provided unique settings for 

examining the effect of adverse maternal in utero environment on offspring growth while netting 

out potential confounders. However, evidence of such temporal linkages from those studies is 

mixed, possibly due to small sample sizes and a focus on different cohorts. Small sample sizes 

make it difficult to obtain precise estimates, and the results obtained from cohorts that experience 

extreme or specific conditions are difficult to generalize to the entire population. 

In this paper, we use within-maternal-sibling-pair or within-paternal-sibling-pair comparisons 

to estimate the intergenerational correlation in phenotypes of fetal programming from the 

maternal as well as the paternal side. Our identification strategy is similar to Currie and Moretti 

(2007) and Royer (2009). The within-G2-sibling comparison allows us to control the genetic 

predisposition to be small. We include extensive characteristics of mothers and fathers in the 

regressions in order to control for confounding factors, such as persistent environment, 

assortative mating of G2, and parental behaviors after birth. We also examine the possible biases 
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due to sample selection and postnatal investments. We find that sample selection on both G2 and 

G3 is indeed correlated with their LBW (or IUGR) status. We estimate models accounting for the 

probability of being observed for the second generation, and find very similar results. We also 

find little evidence for differential parenting behaviors, suggesting that our results are not due to 

postnatal investments. 

Our contribution to the literature is to address three questions regarding intergenerational fetal 

programming in humans. First, is LBW (or IUGR) status correlated across generations through 

maternal and paternal lines? The existing literature mostly focuses on maternal transmission 

because of missing information on the paternal side. However, as previously mentioned, paternal 

transmission is possible through epigenetic modification. Moreover, with paternal information 

we can further control for the confounding effect due to assortative mating. Second, is there a 

gender-specific effect of such intergenerational transmission? Despite increasing recognition of 

differential susceptibility to certain outcomes between females and males, few empirical studies 

focus on a gender-specific pattern in the intergenerational fetal programming effect. Third, can 

the cycle of intergenerational transmission be modified through interventions that improve 

socioeconomic status? The second generation in our sample (G2) obtained more years of 

schooling because of the introduction in 1968 of nine years of compulsory schooling in Taiwan. 

This generates an arguably exogenous change in socioeconomic status across the generations. 

Consistent with the results of epidemiology studies, we estimate a stronger maternal 

intergenerational transmission on LBW (or IUGR). Other observables do not explain the 

observed correlations. After controlling for family shared background, the impacts on the 

paternal side diminish; in contrast, the impacts on the maternal side drop by half, suggesting that 

shared genetics account for around 50% of the observed maternal correlations. Females are more 
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affected by this maternal inheritance. Moreover, we find only weak evidence that a child born to 

a high SES group is less affected by maternal transmission; and such a buffering effect, if there is 

any, only occurs for females. These findings suggest that maternal health is very important: 

improving it will provide a healthier intrauterine environment and generate positive spillovers for 

future generations. Furthermore, socioeconomic interventions may not yield the desired effects 

within a short period of time. The intergenerational memory of fetal experience may take the 

efforts of several generations to wash out. 

The rest of the paper proceeds as follows. Section 1.2 reviews the literature. Section 1.3 

describes the data and constructed samples. Section 1.4 examines whether both maternal and 

paternal intergenerational correlations in LBW (or IUGR) exist. Section 1.5 investigates the 

differential inheritance pattern by gender. Section 1.6 examines the potential buffering effects of 

better socioeconomic status of G2, and section 1.7 concludes. 

1.2. Background and Literature Review 

1.2.1. Mechanisms for Intergenerational Fetal Programming  

Although the biological and molecular mechanisms for intergenerational fetal programming 

are complicated and not completely understood, two possible pathways have been suggested by 

existing animal studies. First is the modification of the structure and function of organs and 

systems involved with metabolism and physiology; second is the modification of the epigenome. 

We discuss these pathways in more detail below and summarize the discussion in Figure 1.1. 

Because the intrauterine environment a fetus experiences is part of the mother’s phenotype, 

the mother’s intrauterine environment can influence the intrauterine environment she creates for 

her offspring. Studies show that those born with reduced size are at increasing risk of developing 
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hypertension, 4  fetal glucocorticoid overexposure, 5  heightened stress reactivity, 6  and insulin 

resistance during pregnancy.7 All four factors, in turn, are strong predictors for LBW or small for 

gestational age (SGA) of the offspring.  

Growing evidence further shows that epigenetic modification may turn out to be the major 

mechanism for programming that has long-term impacts. It reflects the interacted effects of 

environment with epigenomes, which can be conceived of as a series of switches that turn on (or 

off) the expression of various parts of the genome. Fetal life in fact may be the critical stage 

setting these switches (Petronis 2010; Weaver et al. 2004). Thus, the process gives rise to various 

phenotypes, even for organisms with the same genetic code.8 There is some evidence that certain 

environmentally induced epigenetic markings present in the parent cell can even be maintained 

during gametogenesis and embryogenesis (Roemer et al. 1997; Morgan et al. 1999), leading to a 

transgenerational fetal programming effect. 

                                                           
4 Females small for gestational age are at increased risk of developing hypertension during pregnancy 
(Klebanoff et al. 1999), which in turn predicts low birth weight offspring (Brown et al. 2001; Buchbinder 
et al. 2002). 
5 Adults born with lower birth weight have elevated plasma glucocorticoids (Phillips et al. 1998; Levitt et 

al. 2000; Rynolds et al. 2001), which may cause fetal overexposure to maternal glucocorticoids during 
later pregnancy. Moreover, prenatal glucocorticoid exposure lowers birth weight (McTernan et al. 2001). 
Biologically, fetal overexposure to glucocorticoids reduces the gene expression of 11β-hydroxysteroid 
dehydrogenase type 2 (11β HSD2), an enzyme in the placenta that converts active glucocorticoids to 
inactive products, protecting the fetus from maternal glucocorticoids. Reduced placental 11β HSD2 are 
found in human pregnancies with intrauterine growth retardation. 
6 Hightened stress reactivity not only restricts fetal growth but also has a direct impact on the develop 

ment of fetal hypothalamic-pituitary-adrenal (HPA) axis (Worthman and Kuzara 2005). The differences 
in behavioral and neruoendocrine response to stress can be transmitted across generations (Meaney 2001). 
7 Nutrients delivered across the placenta stimulate fetal production of insulin, a key determinant of fetal 
growth rate (Lang et al. 2003). Low birth weight is associated with the development of insulin resistance 
and higher maternal insulin during pregnancy, which further reduces birth size of the offspring. 
8 The epigenetic mechanism modifies gene expressions without changing the nucleotide sequences of 
DNA. The process gives rise to various phenotypes, typically through DNA methylation or histone 
modification. Methylation impedes gene expression of that part of DNA to which it is attached. Histone 
protein can be modified to alter the tightness of DNA packing, thus allowing (or blocking) enzymes and 
transcription factors to access that stretch of DNA. For example, women with the same genetic code can 
have different stress reactivity levels based on methylation status of their DNA (Weaver et al. 2004). 
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Taken together, these two mechanisms seem to suggest a stronger maternal inheritance, 

because the effect of an adverse intrauterine environment only can be passed on to subsequent 

generations matrilineally. Nevertheless, the potential transmission through epigenetic 

modification highlights the importance of examining paternal inheritance as well,9 although it is 

largely ignored in the literature. 

1.2.2. Intergenerational Correlations in LBW and IUGR 

Although birth size has been widely accepted as a major marker for fetal programming 

(Simon et al. 2006), reduced birth weight may not lie in the causal pathway for disease in 

adulthood: some gestational exposures are linked to adult disease without any influence on birth 

size (Morley et al. 2002). To explore more meaningful measures for slow fetal growth in utero, 

we focus on the lower tail of the birth weight distribution: LBW and IUGR. There are no 

uniform diagnostic criteria for IUGR, so we look at some of the commonly used ones, including 

SGA at the 5th percentile, less than two standard deviations below mean of gestation, and low 

birth weight at term.10 To study the intergenerational fetal programming effects, we examine the 

intergenerational relationships of these four markers of fetal growth.  

However, intergenerational transmission of LBW (or IUGR) may reflect the effects of shared 

genes and a persistently poor environment. To net out these potential underlying pathways, our 

fixed-effect models account for the impact of shared family background and genes in the 

intergenerational correlations. When Currie and Moretti (2007) use a maternal sibling fixed-

effect model, they find that LBW women are 50% more likely to deliver LBW infants. The 

intergenerational transmission of LBW is also stronger for mothers in high poverty zip codes. 

                                                           
9 For example, the IGF2 gene promotes growth during gestation. Only the allele for IGF2 inherited from 
the father is expressed (imprinted genes). Imprinted genes may be more susceptible to methylation. 
10 Low birth weight at term is referred as full-term LBW in this paper. It indicates that the birth is at term 
(between 37 and 42 weeks of gestation) but still weighs less than 2,500 grams. 



11 
 

However, it is a little surprising that the inclusion of sibling fixed effects does not change the 

coefficients in a noticeable way. Royer (2009) in contrast uses a maternal twin fixed-effect 

model and finds that a 100-gram increase in maternal birth weight leads to a 7-gram rise in 

child’s weight, a trivial effect. Further, Royer’s fixed-effect estimate is roughly 60 percent 

smaller than the cross-sectional coefficient.11 

Although twin settings are appealing, in that a twin serves as a near-ideal counterfactual to the 

other, we do not use them for a couple of reasons. First, we choose to use LBW and IUGR as 

markers for fetal programming, and the variation of these markers within twin pairs is much 

smaller than differences in birth weight. Moreover, large differences in intrapair birth weight 

may indicate a pathologic process that will lead to adverse neonatal outcomes (Hollier, McIntire, 

and Leveno 1999), resulting in a greater degree of sample selection among twin pairs: G2 twin 

pairs that make it to the sample will have a lower degree of birth weight discordance. Second, 

birth weight differences in twins are due mainly to unequal nutrition supply in utero, which may 

be caused by insufficient blood flowing to the placenta in dichorionic twins, or vascular 

complications of the shared placenta in monochorionic twins. However, epigenetic traits in twins 

are almost identical during the early years of life (Fraga et al. 2005). Together, these results 

suggest that if the birth weight difference in twins is through the programming effect, then the 

most likely underlying mechanism is the physiological change due to undernourishment. Using 

twin fixed effects thus will preclude the possibility of intergenerational fetal programming from 

the paternal side through the modification of epigenetic traits. Third, to study the transmission 

effects from the maternal and paternal sides separately, we can only use same sex twin pairs. 

This further restricts our sample size, and the variations of LBW (or IUGR) within the twin pairs. 

                                                           
11 The numbers are taken from Table 3 of Royer (2009) where child’s birth weight is the dependent 
variable. The percentage reduction of the coefficient is (177.87-70.42)/177.87. 
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Our results may not be generalizable given such a selected sample. Thus, in this paper, we use 

within-maternal-sibling-pair or within-paternal-sibling-pair comparisons to study the 

intergenerational transmission effects. We use singleton births for both G2 and G3. 

In addition to making a contribution to the literature by studying the transmission effects from 

mothers and fathers separately, we examine the G3-gender-sepcific effects. Emerging evidence 

shows that a sex difference in offspring outcomes results from developmental programming. 

However, the findings on this subject are mixed. Both female-specific (Roseboom et al. 2001; 

Clifton 2005; Stark et al. 2009) and male-specific (Zaren et al. 2000; Goldenberg et al. 2006; 

Mingrone et al. 2008) outcomes occur in response to different types of environmental stressors. 

These results suggest that development in males and females are separate processes from the 

time of conception (Aiken and Ozanne 2013). 

1.3. Data and Sample 

We create a maternal and paternal sample using confidential annual birth certificate data for 

the period 1978-2006 in Taiwan. These data are compiled from forms completed at births and are 

assembled by the Ministry of Interior. For the entire Taiwan population born during the period, 

these forms have information on maternal and paternal characteristics (e.g. years of schooling, 

birth county/town, and birth date), newborns characteristics (e.g. gender, birth order, birth 

county/town, and birth date), and infant birth outcomes (e.g. birth weight and gestation). Health 

information at birth is available only in the birth certificate of the particular individual, so we 

have to match birth certificates over years to obtain birth weight for two generations. We also 

have personal identification numbers for the infant and both parents, which we use for matching. 

We focus on singleton births with gestation between 31 and 45 weeks (see footnote 13 for an 

explanation) and birth weight between 400 and 6,500 grams. 
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We obtain information for three consecutive matrilineal and patrilineal generations by linking 

the birth certificates of two generations. For each record in our sample, we have observables for 

the child (the third generation, G3), the mother or father (the second generation, G2), and the 

grandmother (the first generation, G1).12 Our matching procedure is: 1) we set a singleton birth 

in Taiwan between 1999 and 2006 as the potential G3 in our sample; 2) the birth certificates for 

singleton births between 1978 and 1985, our G2, are available for us to link; and 3) we merge the 

birth certificate of the mother (G2) to that of the child (G3) according to mothers birth date and 

personal identification number to construct a maternal sample. We repeat the procedure to create 

a paternal sample based on father’s birth year and personal identification number. Our final 

samples provide us with birth weight, gestation age, and other characteristics at birth for G3 and 

G2, as well as characteristics when giving birth for G2 and G1. 

We define LBW for both generations as a dummy equal to one if birth weight is less than 

2,500 grams. In order to obtain alternative markers for fetal programming experienced by mother 

(or father), we estimate birth weight thresholds for SGA at the 5th percentile, denoted as SGA 

(5th percentile), and at less than two standard deviations below the mean of gestation, denoted as 

2SD < mean. To do so, we use the entire singleton population born during 1999-2006 for G3 and 

during 1978-1986 for G2, respectively.13 Estimated birth weight thresholds for each gestational 

age are reported in Appendix Table A1. These thresholds, estimated separately for the two 

generations, incorporate the impacts of technology changes and medical advances in Taiwan 

                                                           
12 In the maternal sample, we observe the child’s mother and maternal grandmother. In the paternal 
sample, we observe the child’s father and paternal grandmother. 
13 One drawback of using birth certificate to estimate thresholds for IUGR is that we are not able to get 
credible estimates for very preterm births because there are too few observations as a result of the high 
rate of fetal mortality. Therefore, we have to limit the lower bound of gestation to 31 weeks in our 
samples. 
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over the years.14 We define SGA (5th percentile) and 2SD < mean dummies equal to one for the 

child and the mother (or father) if their birth weights are less than the corresponding thresholds. 

We also define indicators for full-term LBW, denoted as FT LBW, for both generations if their 

birth weights are less than 2,500 grams at term.15 Together with LBW, the four indicators are 

complementary to each other. LBW is determined based on an absolute standard, which is 

affected by the impact of being preterm. In contrast, SGA (5th percentile) and 2SD < mean are 

determined based on relative standards for a given gestation. The latter suggests an even more 

extreme case in birth weight, which is close to the SGA at the 3rd percentile in our samples. 

However, these two IUGR indicators are potentially subject to measurement errors in gestation. 

In early years, term infants more often were wrongly recorded as preterm based on the mother’s 

memory of her last menstrual period. In this sense, full-term LBW serves as a better marker 

among the four, however it is less representative for births before 37 weeks of gestation. 

Our third research question, whether the intergenerational transmission could be modified 

through an improvement in socioeconomic conditions, requires us to measure socioeconomic 

status at child’s birth at an aggregate level to avoid endogeneity. We consider: 1) average income 

at town-level; 2) unemployment rate at county-level; and 3) average parental education at 

county-level. We obtain town-level average income at child’s birth from Township Income Tax 

data 1999-2006 provided by the Financial Data Center, Ministry of Finance in Taiwan.16 We 

collect county-level unemployment rates by year (1999-2006) from Directorate-General of 

                                                           
14 It is inappropriate to use fetus growth charts to define indicators for IUGR directly, because most charts 
are for developed countries, making them inapplicable to the Taiwan population. For example, in some 
countries the cutoff of 2,500 grams for LBW is about the threshold for SGA at the 10th percentile for 
birth at 37 weeks of gestation. In contrast, it corresponds to a cutoff for SGA at the 5th percentile for that 
gestation in Taiwan. It suggests that birth weight exhibits a country-specific pattern. 
15 Births with gestation between 37 and 42 weeks are referred as “at term.” 
16 Town-level average income at mother’s (or father’s) birth is not available. We successfully merged 
average income during 1999-2006 for 360 towns. Observations from two counties, Jinmen and Lianjiang 
are excluded. In the year 2004, Middle area and West area are combined as Mid-west area in Tainan city. 
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Budget under Executive Yuan. We use birth certificates of the entire G3 singleton population to 

estimate the percentage of at least one parent with years of schooling higher than 9 (or 12) at 

county-level by year. We also use birth certificates of the entire G2 singleton population to 

estimate the percentage of G1 with at least 9 years of schooling at county-level at G2’s births. 

Finally, we obtain improvement in education experienced by the child’s family, defined as the 

difference between the above two estimated percentages for at least 9 years of schooling. 

There are a total of 280,030 observations in the final maternal sample and 125,078 in the final 

paternal sample.17 The paternal sample is less than a half of the maternal sample for several 

reasons. There is more missing information for the father on the child’s birth certificate, which 

prevents us from tracking father’s own birth record. Moreover, our matching procedure requires 

the second generation to give birth between 1999 and 2006--that is, before the age of 28--in 

order to be observed in the samples. However, fathers are generally older than mothers at child’s 

birth, resulting in a relatively smaller paternal sample. According to the Demographics Fact 

Book, Republic of China issued by the Ministry of Interior, the average maternal age at first 

child’s birth is 26.7-28.1 and the average paternal age for having the first child is 30.3-32.9 from 

1999-2006. This suggests that our maternal sample is representative, but the paternal sample is 

relatively young for fathers in Taiwan experiencing births during the G3 period. 

We study intergenerational fetal programming by examining the intergenerational correlations 

in LBW, SGA (5th percentile),18 2SD < mean, and FT LBW. Table 1.1 presents the sample 

means of these four markers of fetal programming for both G2 and G3 in the maternal and 

                                                           
17 Conditional on birth at term for the child and the mother (or father), the sample size is 255,100 in the 
maternal sample and 113,369 in the paternal sample. 
18 Another commonly used measure for IUGR is SGA at 10th percentile. In both the maternal and paternal 
samples, thresholds for SGA at 5th percentile for gestation around 37 weeks are close to 2,500 grams, the 
cutoff for LBW. Therefore, the results using indicators for SGA at the 5th percentile are more comparable 
to those using indicators for LBW. 
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paternal samples. We also provide statistics for a subset sample, conditional on at least one sister 

(or brother) of the mother (or father) being observed in the samples (denoted as sibling sample). 

The statistics are similar between the whole and sibling samples, suggesting that our source of 

variation comes from a subsample that is not selective. We note that the fraction of LBW 

increased drastically from G2 to G3. There is also a slight increase in the fraction of IUGR as 

measured by all three criteria, but not as much. Two policy changes are responsible for these 

trends. First, the birth reporting requirement becomes more stringent after 1994. Before that year, 

it was common to not report a birth if the newborn was dead. Second, the National Health 

Insurance (NHI) program implemented in 1995 provides the entire Taiwan population with 

access to health care at a very low cost. Better medical care allows more preterm births and a 

weak fetus to survive. In our samples, both policy changes affect the entire third generation, but 

not the second generation, which explains the observed differences. In section 1.4.4, we account 

for the potential bias that the probability of observation in samples for the second generation may 

be correlated with birth weight. 

Table 1.2 presents sample statistics of other control variables in the regressions. We note that 

there is a substantial educational improvement from grandmothers to mothers (or fathers). In 

1968, the level of compulsory schooling increased from 6 to 9 years. The mothers and fathers in 

our samples were affected by that policy. In contrast, only about 0.8% of the G1 in our samples 

were affected by it. Roughly 10% of grandmothers have more than 9 years of schooling. 

However, that number skyrockets to 80% for G2. This drastic change is due, more or less, to the 

1968 compulsory education law, which provides us with an arguably exogenous change in 

socioeconomic status across generations. We discuss this in more detail in section 1.6. 
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1.4. Intergenerational Correlation in LBW 

1.4.1. Estimation Strategy 

To estimate the intergenerational correlation, we assume that a child’s marker of fetal 

programming, such as LBW, is an additively separable linear function of the mother’s (or 

father’s) marker and a matrilineal (or patrilineal) family fixed effect.19 For each child ! of mother 

(or father) " of grandmother #, we consider a grandmother fixed-effect model 

 $%&'()
*+ = -) + /01$%&()

*2 + 345'()
*+ , 5()

*2, 5)
*78 + 97:;<=>? =!

*2 +

92"#:=>? =!
*2 + $'(), (1.1) 

where $%&'()
*+ is a dummy equal to one if the child is LBW; $%&()

*2 is the key independent 

variable, an indicator for LBW of the mother (or father); 45'()
*+ , 5()

*2, 5)
*78  is a vector of 

observables for all three generations; :;<=>? =!
*2  and "#:=>? =!

*2  are years of schooling and age of 

the spouse of the second generation at child’s birth, which attempts to capture the mating 

behavior of the second generation;20 -) is the grandmother fixed effects, representing the time-

invariant heterogeneity within the family; and $'(), is an idiosyncratic error term. Grandmother 

fixed effects are used to capture the genetic factors that are common to maternal or paternal 

siblings, but also indicate other shared family background, such as consistent health behaviors 

and parenting styles. We could also have controlled for grandfather fixed effects in both samples. 

In essence, both types of fixed effects account for the same source of shared unobservables on 

                                                           
19 The specification is less flexible in the sense that it does not allow a gene and environment interaction 
(Royer and Witman, 2013). 
20 We could obtain more information on the spouse of the second generation by merging the maternal 
sample to the paternal sample. However, such a combined sample suffers from a severe selection issue 
because only children with both parents below the age of 28 will be observed. 
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maternal or paternal line.21 In equation (1.1), /01  is the coefficient of interest. Its impact is 

identified by variations in LBW among children whose mothers (or fathers) are sisters (or 

brothers). If the fetal programming effect is inheritable, then we would expect the sign of the 

coefficient to be positive and significant. We also run regressions replacing the LBW indicator in 

equation (1.1) with three indicators of IUGR for both G3 and G2. The standard errors are 

clustered at child’s hospital-year level. 

One limitation of the model is that we cannot capture family-specific time-varying variables; 

this may lead to different outcomes among the third generation of the family. Following Currie 

and Moretti (2007), we therefore add observables, step by step, to examine the impact of other 

confounding factors on our estimates. First, we estimate an OLS specification without other 

controls. Next, we add gestation dummies for pre-term, at term, and post-term. Two factors can 

explain extremes in birth weight: being preterm and the growth rate at a fixed gestation. Our 

specification using gestation dummies is expected to net out any variations in the child’s LBW 

that come from being pre-term. In an additional step, we add variables that we treat as 

predetermined before the birth of G3. They include: dummies for G2 and G3’s birth year, to 

account for trends in birth weight over time; dummies for G2’s birth order (first, second, or third) 

and birth place (hospital, or clinics and maternity homes); dummies for G1’s years of schooling 

(7-9 years, 10-12 years, 13-14 years, 15-16 years, or above 17 years); age (21-25, or 26-30) and 

marital status when giving child birth; and interactions between dummies for G1’s county of 

residence at G2’s birth and G2’s birth year.22 Then, we include variables that are not strictly 

                                                           
21 In both samples, only around 1.1% of the grandmothers gave birth with different spouses. Most of those 
cases resulted from typos in grandfather’s personal identification numbers. Therefore, switching from 
grandmother fixed effects to grandfather fixed effects in both samples generates similar results. 
22 G1’s county of residence at G2’s birth is assumed to be the county where G2 was born, indicated in 
G2’s birth certificate. Similarly, mother’s county of residence at child’s birth is assumed to be the county 
where the child was born, indicated in child’s birth certificate. 
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exogenous, in the sense that they may be jointly determined with the decision of giving birth: 

dummies for child’s birth order; G2’s years of schooling, age, and marital status at child’s birth; 

interactions between dummies for G2’s county of residence at child’s birth and child’s birth year; 

and town-level average income at child’s birth. Finally, we account for assortative mating by 

adding dummies for G2 spousal years of schooling and age at the child’s birth,23 and then control 

grandmother fixed effects. 

1.4.2. Results 

Tables 1.3 and 1.4 present the intergenerational correlations in LBW, SGA (5th percentile), 

2SD < mean, and FT LBW using the maternal and paternal sample, respectively. In both tables, 

the additional controls just described are added in turn from columns (1) to (6). Without 

controlling any additional variables, a child born to a LBW mother is 5.40 percentage points 

more likely to be LBW (column (1) of Table 1.3). In contrast, a child born to a LBW father is 

only 2.25 percentage points more likely to be LBW (column (1) of Table 1.4). The estimates for 

SGA (5th percentile), 2SD < mean, and FT LBW all yield similar patterns: maternal correlation 

is stronger than paternal correlation. Adding additional controls does not change the estimates 

very much in columns (1) to (5) of both tables. This suggests that observables do not explain 

much about intergenerational transmission. In the maternal sample, the magnitudes of all 

correlations decline and remain significant when we add grandmother fixed effects in column (6). 

Comparing those to the estimates in column (5), we find that shared genes explain about a half of 

the correlation. This suggests that genetics or shared background is an important determinant of 

intergenerational correlation of LBW (or IUGR), in contrast to the findings of Currie and Moretti 

(2007). Accounting for grandmother specific effects, a child born to a LBW mother is around 36% 

                                                           
23 In the maternal sample, there are six dummies for spousal age (21-25, 26-30, 31-35, 36-40, 41-45, and 
46-50) in the paternal sample, there are five dummies for spousal age (21-25, 26-30, 31-35, 36-40, and 
41-45). 
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more likely to be LBW (column (6) of Table 1.3).24 This impact is slightly smaller than the 

estimated 50% that Currie and Morretti (2007) find. However, we find no similar evidence in the 

paternal sample. In column (6) of Table 1.4, all four estimates lose significance after we control 

for paternal grandmother fixed effects. For the models with SGA (5th percentile) and 2SD < 

mean, the estimated correlations become negligible. 

Because results for IUGR indicators may be contaminated by measurement errors in G2 

gestational age, we regress four markers of G3 on G2’s LBW status. We find similar results: 

intergenerational correlations are stronger for the maternal sample, and controlling grandmother 

fixed effects reduces the correlations by about half. These estimates are reported in Tables A2 

and A3 in Appendix A. 

After accounting for shared genes, the stronger maternal intergenerational correlations in 

LBW (or IUGR) are consistent with the results of biology studies (Magnus et al. 2001; Collins et 

al. 2002; 2003; Kuzawa and Sweet 2009). Part of the intrauterine environment that the fetus 

experienced is an expression of the maternal phenotype. The programming effect experienced by 

mothers, as reflected in LBW (or IUGR), serves as a signal for the fetus to make developmental 

adaptations without the presence of other environmental stressors. Along with the additional 

pathways discussed in section 1.2.2, the consequence of maternal fetal programming appears to 

be more durable. This suggests that improving maternal health will generate a positive spill-over 

effect on offspring. 

1.4.3. Postnatal Investments by G1 

The difference in maternal and paternal transmission presented in Tables 1.3 and 1.4 does not 

account for possible differential parental investments by gender. Postnatal investment by 

                                                           
24  The number is obtained using the baseline incidence of LBW for G3 in the maternal sample, 
0.0228/0.0626=36.4%. 
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grandparents over the childhood of mothers and fathers may change their health conditions at the 

time they give birth to the third generation, and thus obfuscate the biological impact of 

intergenerational correlation in LBW (or IUGR). For example, if parents invest more heavily in a 

disadvantaged male child, their behavior may prevent us from observing a correlation in LBW 

between the child and the father. On the other hand, if parents care less for a disadvantaged 

female child because of potentially low returns to their investment, their behavior may lead to a 

stronger correlation in LBW on the maternal side. Under these scenarios, our findings would be 

driven by grandparents allocating resources differently by gender, based on G2’s LBW (or 

IUGR). The estimated effects would be upward biased in the maternal sample and downward 

biased in the paternal sample. 

We cannot estimate the relationship between grandmother’s parenting behavior and G2’s 

LBW (or IUGR) status using birth certificates alone because they lack such information. So 

following Royer (2009), we instead examine whether intergenerational correlations differ across 

families whose ability to invest more on weak children varies. For example, large families may 

have a tighter budget and be less likely to invest more on one particular child. In all the 

regression models, we add to the most inclusive specification presented in Tables 1.3 and 1.4 an 

interaction term between G2’s LBW (or IUGR) and an indicator equal to one if G2 was born into 

a large family. We define a large family as the mother (or father) having at least two older 

siblings. These results are reported in Table A4 in Appendix A. We find that the differential 

maternal correlations in LBW (or IUGR) are generally negligible in large families relative to 

small families. Our results suggest that the strong evidence for maternal transmission of LBW 

(or IUGR) found in Table 1.3 is not driven by differential parenting behavior of the grandmother. 
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1.4.4. Sample Selection on G2 

Conditional on the survival of G3, the mother and father will be observed in our samples if 

they give birth to a singleton between 1999 and 2006. Therefore, selection on G3 and selection 

on G2 may bias our estimates. A severe intergenerational fetal programming effect can lead to 

fetal mortality, thus preventing us from observing G3 from birth certificates. This type of 

selection will lead us to underestimate the intergenerational effect, because those influenced by 

the intergenerational fetal programming will not be in the sample. The impact of selection on G2 

is ambiguous, though. On one hand, weaker G2 may not be observed in our samples due to 

mortality, inferior marriage market outcome, or delay in fertility. On the other hand, stronger G2 

may not be observed in our samples because of higher educational attainment that delays 

marriage and fertility (Almond 2006). In the former case, our estimates will be understated; in 

the latter case, they will be overstated. 

To get a sense of the potential bias due to sample selection, we run a regression using the 

entire G2 sample, with and without having G3 offspring. The dependent variable %&'"()*: is 

equal to one if G3 offspring is observed; that is, the G2-G3 pair is in our analysis samples. We 

estimate the probability of being observed in our analysis samples using the following 

equation:25 

 %&'"()*:()
*+ = -) + /01$%&()

*2 + 34 5()
*2, 5)

*78 + $(). (1.2) 

In Table 1.5, we show that the second generation born with reduced birth size--measured by birth 

weight and indicators for LBW, SGA (5th percentile), 2SD < mean, and FT LBW--is less likely 

to be observed in both the maternal and paternal samples. Our fixed-effect estimates suggest that 

                                                           
25 Observed controls include dummies for G2’s birth year, birth order, birth place and gestation; dummies 
for G1’s years of schooling, age, marital status, and county of residence at G2’s birth; and interactions 
between dummies for G1’s county of residence at G2’s birth and G2’s birth year. 
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LBW mothers are 1.26 percentage points less likely to be observed in the maternal sample and 

LBW fathers are 1.22 percentage points less likely to be observed in the paternal sample. To 

further gauge how much this sample selection may bias our results, we provide two sets of 

robustness checks. First, we perform a series of nonparametric tests following Royer (2009). 

Then, we include the probability of being observed by using different functional forms in 

estimating equation (1.1). 

The basic idea of the “nonparametric” test is that, for observations in groups with different 

degrees of sample selection, if the intergenerational correlations are identical across the groups 

then sample selection bias may not be an issue. To carry out this test, we divide G2 into groups 

based on available observables, such as birth cohort of G2 and G1’s years of schooling. We then 

test whether the effect of LBW on the probability of later observation differs across groups. In 

other words, we include the interaction terms between G2 LBW and categorical observables 

(listed in Table A5) in equation (1.2), and then perform a joint F-test on those interaction terms. 

If the interaction terms are jointly significant, this implies that sample selection based on the 

observable occurs. For the observables that do lead to sample selection across groups, we further 

test whether the intergenerational correlations in LBW (or IUGR) are identical across groups by 

including the same interaction terms into equation (1.1). We perform these two-step tests 

separately by maternal and paternal sample. The results, presented in Table A5 in Appendix A, 

suggest that the effects of LBW on the probability of being observed do not vary by most of the 

observables. Out of eight joint tests, only one is statistically significant at the 1% level for the 

maternal sample; three are statistically significant at the 5% level for the paternal sample. Table 

A6 shows the results of including the interaction terms between LBW and the observables that 
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are jointly significant in the first step into equation (1.1). None of the joint tests are statistically 

significant, suggesting that sample selections based on observables do not bias our estimates. 

The results adjusted for the predicted probability of being observed, denoted as )̂(.)  as 

estimated by equation (1.2), are reported in Tables 1.6 and 1.7 for the maternal and paternal 

samples, respectively. Column (1) of both tables presents our original fixed-effect estimates as 

shown in column (6) of Tables 1.3 and 1.4. Columns (2) to (5) report estimates after our four 

adjustments: the estimates from a weighted regression using inverse probability, 1/)̂(.), are 

reported in column (2); the estimates controlling directly for the probability are presented in 

column (3); the estimates controlling for a quadratic form of probability are displayed in column 

(4); and the estimates from models capturing selection by adding the interaction between G2 

LBW (or IUGR) and demeaned estimated probability of being observed, $%& x ()̂(.) − )̂(.)222222) 

are reported in column (5). We also report the p-values for t-tests on the equality between the 

adjusted estimates in column (2) to (5) and those in column (1). 

After accounting for the probability of being observed in the sample, our results are largely 

the same. With large p-values, we are unable to reject the null hypothesis that adjusted and 

unadjusted estimates are the same for all outcomes. These results suggest that our findings are 

robust after accounting for sample selection on G2, which is consistent with the results from the 

earlier “nonparametric” tests. 

1.5. Differential Inheritance Patterns by Gender 

1.5.1. Estimation Strategy 

After finding no significant impact from the paternal sample, we turn our focus to the 

maternal intergenerational effect of LBW (or IUGR). To estimate the differential inheritance 
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patterns by gender of G3, for each child !  of mother "  of grandmother # , we consider the 

following grandmother fixed-effect model: 

 $%&'()
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where male is a dummy equal to one for male birth; the other controls are the full set of 

observables held constant in the regressions as in equation (1.1).26 /345! is the coefficient of 

interest; it captures the differential impact on male birth from maternal transmission. 

1.5.2. Results and Discussions 

Table 1.8 presents the estimates of differential maternal transmission by gender on all four 

outcomes. The estimates from the model with LBW show that difference by gender is small and 

insignificant. However, maternal inheritance of SGA (5th percentile) and FT LBW is 

significantly smaller for male than for female offspring. The results from these two outcomes 

suggest that female infants born to IUGR mothers are 50-70% more likely to be IUGR than those 

not born to IUGR mothers. In contrast, male infants born to IUGR mothers are 20-50% less 

likely to be IUGR than those not born to IUGR mothers.27 This evidence suggests stronger 

maternal transmission in fetal growth for females, which is consistent with the findings from 

similar animal studies. Observing rhesus monkey across several generations, for example, Price 

and his colleagues find that intergenerational correlation in fetal growth has followed a 

matrilineal pattern and was much more pronounced for female than for male offspring (Price, 

Hyde, and Coe 1999; Price and Coe 2000). 

                                                           
26 Main effect of child’s gender is included in other controls. 
27 In the maternal sample, the base-line incidences of SGA (5th percentile) for G3 are 0.082 for female 
birth and 0.046 for male birth; the base-line incidences of 2SD < mean for G3 are 0.029 and 0.016 for 
female and male births, respectively. 
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Explanations from evolutionary biology provide a way to understand the observed sex 

difference in maternal transmission of LBW. To have the best chance of reproductive success for 

the overall species, it may be more effective and efficient for mothers to invest heavily in the 

long-run protection of their female fetuses, thus making female offspring more sensitive but also 

more adaptable to the intrauterine environment (Aiken and Ozanne 2013). Mothers LBW (or 

IUGR) thus may serve as an integrated signal, reflecting recent intrauterine environments 

experienced by matrilineal ancestors (Kuzawa 2005). Therefore, the observed stronger maternal 

transmission for females would enable them to make more stable adaptations, filtering out the 

noise of potential short-term fluctuations in environmental stress. Even though fetuses of both 

sexes are affected by any given stress, the process could be experienced differently for females 

and males.28 

1.5.3. Parenting Behavior by G2 

If mothers perform different parenting behaviors when they find out the gender of the unborn 

child, for example, taking better care of themselves if they know they are carrying a boy, then 

there would be an upward bias in the observed differential impact among males. We cannot 

however identify mothers who know the gender of their child before birth in our dataset. As in 

section 1.4.3, we instead examine gender differences in intergenerational correlations across 

families with varying ability to invest more in the unborn child. We define a large family as the 

child having at least two older siblings, and we expect large families to be less likely to treat one 

unborn child better than another because of limited resources. We add a triple interaction term to 

equation (1.3): mother’s LBW (or IUGR), male birth indicator for the child, and a dummy equal 

to one if the child is born to a large family. The results are reported in Table A7 in Appendix A. 

                                                           
28 For example, hypertension in men was linked to the mother’s socioeconomic status, an indicator of their 
diets; in contrast, hypertension in women was linked to the mothers height, an indicator of her protein 
metabolism (Eriksson et al. 2010). 
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Out of four tests, we only find a positive and significant coefficient on this triple interaction term 

in the model with 2SD < mean. Our results provide only weak evidence that mothers may 

perform compensating behaviors to male births if boys are small. 

1.5.4. Sample Selection on G3 by Gender 

Greater environmental adaptability in female fetuses leads to more stable reproductive 

outcomes for female offspring. Thus, female and male fetuses affected by an intergenerational 

fetal programming effect may encounter different degrees of fetal mortality risk, potentially 

leading to stronger maternal transmission in LBW (or IUGR) on female births (See Appendix B 

for the proof). Similarly, the Triver-Wilard hypothesis predicts that mothers in poor conditions 

have more daughters, because of female having a greater chance of reproductive success (Trivers 

and Wilard 1973). Both explanations indicate that the probability of observation for a female 

child in the sample could be significantly greater than that for a male child if the mother is LBW 

(or IUGR), and this may be driving the observed gender difference. 

To measure the potential bias due to sample selection on child by gender, we estimate the 

impact of mothers LBW (or IUGR) on the probability of observing a male birth in the maternal 

sample, using the most inclusive specification of equation (1.1).29 The results are presented in 

Table A8 in Appendix A. We find that all the estimates of fetal programming markers (LBW, 

SGA (5th percentile), 2SD < mean, and FT LBW) are small and insignificant, suggesting that 

sample selection by gender is not likely to bias our findings. 

                                                           
29 Gender of G3 will be excluded from the explanatory variables. 
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1.6. Differential Maternal Transmission by SES 

1.6.1. Estimation Strategy 

We use a difference-in-difference-in-difference model to test whether the intergenerational 

transmission can be buffered by socioeconomic interventions and whether such a protective 

effect also exhibits a gender-specific pattern. For each child ! of mother " of grandmother #, we 

consider the following grandmother fixed-effect model 

 $%&'()
*+ = -) + /7$%&()

*2 + /2("*: + /+ℎ!#ℎ'7' + /8$%&()
*2 x ("*: +

/9$%&()
*2 x ℎ!#ℎ'7' + /:("*: x ℎ!#ℎ'7' + /;$%&()

*2 x ("*: x ℎ!#ℎ'7' +

345'()
*+ , 5()

*2, 5)
*78 + 97:;<=>? =!

*2 + 92"#:=>? =!
*2 + $'(), (1.4) 

where ℎ!#ℎ'7' is a dummy equal to one if the child is born into a high socioeconomic group. 

This is defined based on: 1) average town-level income at G3’s birth above the mean value of 

1999-2006; 2) county-level unemployment rate at G3’s birth above the mean value of 1999-2006; 

and 3) county-level percentage of at least one parent of G2 with above 12 years of schooling at 

G3’s birth above the mean value of 1999-2006.30 Finally, we use the change in educational 

attainment between G1 and G2 to measure the improvement in SES. As mentioned in the 

Introduction, we exploit the arguably exogenous change in SES across the generations due to the 

introduction of compulsory schooling in Taiwan in 1968. We define ℎ!#ℎ'7' as a dummy equal 

to 1 if the difference in county-level percentage of at least 9 years of schooling from G1 to G2 is 

above the mean value of the sample. In equation (1.4), /9 is the coefficient of interest. It captures 

                                                           
30 We divide the high income group based on the mean of town-level average income at child’s birth 
instead of the median because income distribution is skewed. For the rest of the measures for high SES, 
we use the mean as the threshold for consistency in reporting; the results are unaffected by changing the 
cutoff to the median. Moreover, the criterion for high education for G2 being higher than that for G1 at 
the time of giving birth is due to the policy change regarding compulsory schooling in 1968. 
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the differential impact in the high SES, or most improved, group for females. The sum of /9 and 

/; is the differential impact in the high SES, or most improved, group for males. 

1.6.2. Results and Discussions 

Table 1.9 presents the estimates for /7, /8, /9, and /; in equation (1.4). Based on the p-values 

for the t-test (row (f) in each panel), we are unable to reject the null hypothesis that there is no 

differential impact of G2 LBW (or IUGR) on male children born to the high SES group in all 

panels across all models. In contrast, we find some evidence that females born to the high SES 

groups are less affected by the intergenerational correlation in LBW (or IUGR). Out of 16 

coefficients (row (c) in each panel), three coefficients in panel A and one coefficient in panel B 

and panel C are statistically significant at the 5% level (two of these five are significant at the 1% 

level). In panel A, except for SGA (5th percentile), females born to LBW (or IUGR) mothers in a 

county with a low unemployment rate are 2.26-2.50 percentage points less likely to be LBW (or 

IUGR). This difference represents a decrease of around 30% as compared to the base-line 

incidence of LBW (or IUGR) in females. The evidence from town-level income and parental 

education is weaker. However, we only find a significant differential impact on females born into 

towns with high average income in the model with 2SD < mean (in panel B) and those born in 

counties with high parental education in the model with FT LBW (in panel C).31 We find no 

differential impact on males and females born in counties that experienced the most 

improvement in SES (in panel D). Thus, our results weakly support the findings in the literature: 

children born into favorable socioeconomic conditions suffer less as a result of poor maternal 

health (Currie and Moretti 2007; Bhalotra and Rawlings 2013). Moreover, our findings indicate 

                                                           
31 We also measured the socioeconomic status using G1’s education level at mother’s birth. We define a 
child as born to a high SES group if the percentage of G1’s years of schooling above 9 at the county-level 
at the time of the mother’s birth is above the mean. Although the variation in SES at birth among mothers 
who are siblings is rather limited, we do find weak evidence that females, but not males, born to the high 
SES group suffer less from the maternal transmission of LBW (or IUGR). 
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that such a buffering effect only occurs for females, which may be attributable to the greater 

sensitivity of females to the maternal intrauterine environment. 

Although the evidence for such a buffering effect is weak, it clearly suggests that creating a 

less stressful living environment for mothers--especially during a critical stage of life such as 

pregnancy--will mitigate the intergenerational transmission of maternal poor health for females, 

possibly through improving the intrauterine environment. It may take the collective effort of 

several generations to completely wash out the programming effect in a given matrilineal line, 

but the rewards for females will generate positive spill-over effects to future generations. 

1.6.3. Sample Selection on G3 by SES and Gender 

If the probability of observation for a male birth is different from that for a female birth for 

the third generation (G3) by socioeconomic group, this may potentially drive our observed 

difference in the buffering effect of SES intervention by gender. As in section 1.5.4, we therefore 

regress the indicator for male birth on mother’s LBW (or IUGR) and an interaction term between 

mother’s LBW (or IUGR) and dummies for high SES measured at child’s birth. Our results are 

reported in Table A9 in Appendix A. We do not find that sample selection on G3 differs by 

gender across SES groups as measured by all four criteria in all outcomes. 

1.7. Conclusion 

This paper uses two three-generational samples of Taiwan-born singletons to estimate the 

intergenerational transmission of LBW (or IUGR) from the maternal and paternal side, 

respectively. The intergenerational fetal programming effect provides the biological mechanism 

for such correlation. We use LBW (or IUGR) as markers for experiencing an adverse intrauterine 

environment. We use grandmother fixed effects to examine how an unfavorable in utero 
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experience for parents may pass through to their offspring. This is appealing, because it controls 

for unobserved heterogeneity across families and incorporates evidence from both genders. 

We find that the intergenerational correlation of LBW (or IUGR) only occurs matrilineally. 

Specifically, children born to LBW mother are 36% more likely to be LBW, after accounting for 

shared family background. In contrast, there is no significant inheritance on the paternal side. 

Further, such correlation is stronger in female offspring when we use IUGR measures. We find 

only weak evidence that intergenerational transmission of LBW (or IUGR) is buffered by high 

SES. Moreover, such a buffering effect, if it exists, is only found for female offspring. Based on 

several robustness checks, we conclude that our results are not driven by sample selection or by 

differential parenting behaviors by gender. 

These findings suggest that maternal health is very important because the consequences of 

exposure to an adverse in utero event can extend to multiple future generations through the 

matrilineal line via a non-genomic mechanism. Socioeconomic improvements have only weak 

ameliorative effects on this intergenerational transmission. Therefore, it may take the collective 

effort of several generations to wash out the transgenerational memory of an unfavorable fetal 

experience. A longer study window may be more appropriate for evaluating the effectiveness of 

interventions that focus on the wellbeing of the mother. 

There are some caveats in our study. First, because of the matching procedure, the paternal 

sample is smaller and the fathers observed are generally younger than average for the second 

generation in Taiwan at the time of giving birth. This makes some of our results less precise and 

less representative in the paternal sample. Second, extremes in birth weight are only broad 

measures for intrauterine environment. Biological measures, such as insulin sensitivity, blood 

pressure, and stress response, may better capture the biological mechanism underlying the 
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intergenerational fetal programming effect on specific health outcomes. This could be a focus for 

future research. 
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Figure 1.1 Underlying Mechanisms of Intergenerational Inheritance of Fetal Programming 
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Table 1.1 Sample Means for Markers of Fetal Programming for G2 and G3 

  Maternal sample Paternal sample 

 
Whole sample Sibling sample1 Whole sample Sibling sample1 

 
 

Markers for G3 (1999-2006)  

LBW 0.0626 0.0662 0.0659 0.0715 

SGA (5th percentile) 0.0635 0.068 0.0663 0.0697 

    2SD < mean 0.0225 0.0246 0.0234 0.0257 

FT LBW2 0.0367 0.0400 0.0386 0.0402 

Markers for G2 (1978-1985) 

LBW 0.0363 0.034 0.0258 0.0274 

SGA (5th percentile) 0.0588 0.0575 0.0367 0.0386 

2SD<Mean 0.0233 0.0222 0.0148 0.0169 

    FT LBW3 0.0275 0.0264 0.0179 0.0196 

Sample size 280,030 46,849 125,078 9,181 
1 Maternal sibling sample includes mothers that have at least one sister in the sample and paternal sibling 

sample includes fathers that have at least one brother in the sample.  
2 For full-term LBW, the sample sizes for the maternal samples are 261,478 for the whole sample and 

43,555 for the sibling sample. The sample sizes for the paternal samples are 116,509 for the whole sample 

and 8,527 for the sibling sample. 
3 For full-term LBW, the sample sizes for the maternal samples are 273,109 for the whole sample and 

45,717 for the sibling sample. The sample sizes for the paternal samples are 122,006 for the whole sample 

and 8,933 for the sibling sample.  
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Table 1.2 Sample Means of Other Control Variables 

    Maternal sample Paternal sample 

Whole 
sample 

Sibling 
sample 

Whole 
sample 

Sibling 
sample 

G3 characteristics 

Gestational age 

Preterm (33-36 weeks) 0.0620 0.0661 0.0643 0.0651 

Full-term (37-42 weeks) 0.9337 0.9297 0.9315 0.9288 

Post-term (43-45 weeks) 0.0005 0.0005 0.0004 0.0008 

Birth order 

First born 0.6459 0.6012 0.7003 0.6595 

Second born 0.2970 0.3241 0.2595 0.2885 

Third born 0.0497 0.0645 0.0357 0.0457 

Birth place 

Hospital 0.6024 0.5912 0.5924 0.5752 

Clinics or maternity homes 0.3972 0.4084 0.4071 0.4245 

G2 (mother or father) characteristics 

    
Birth order 

First born 0.3190 0.2448 0.3080 0.2744 

Second born 0.2974 0.3157 0.2909 0.3446 

Third born 0.2192 0.2515 0.2260 0.2486 

Birth place 

Hospital 0.6687 0.6115 0.6542 0.6019 

Clinics or maternity homes 0.3122 0.3653 0.3261 0.3757 

Married 0.9859 0.9846 0.9860 0.9845 

Age at child birth 

21-25 0.6205 0.6383 0.5954 0.6456 

26-30 0.2083 0.1464 0.3089 0.2290 

Years of schooling at child birth 

7-9 years 0.1637 0.2158 0.2006 0.2525 

10-12 years 0.7245 0.7132 0.6992 0.6852 

13-14 years 0.0514 0.0304 0.0447 0.0298 

15-16 years 0.0430 0.0210 0.0381 0.0184 

> 16 years 0.0025 0.0007 0.0060 0.0016 

G1 (grandmother) characteristics 
    

Married 0.9857 0.9879 0.9857 0.9863 

Age at child birth 

21-25 0.4801 0.5152 0.4852 0.5474 

26-30 0.2733 0.2467 0.2777 0.2185 

31-35 0.0537 0.034 0.0533 0.0200 

36-40 0.015 0.0062 0.0152 0.0038 
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41-45 0.004 0.0014 0.0040 0.0011 

Years of schooling at child birth 

7-9 years 0.1981 0.1893 0.1813 0.1842 

10-12 years 0.0953 0.0553 0.0925 0.0542 

13-14 years 0.0037 0.0013 0.0041 0.0017 

15-16 years 0.0016 0.0004 0.0019 0.0005 

> 16 years 0.0005 0.0006 0.0004 0.0001 

Sample size 280,030 46,849 125,078 9,181 
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Table 1.5 G2's Probability of Being in the Sample as a Function of LBW (or IUGR) 

  G2 females G2 males 

  (1) (2) 

G2 birth weight (per kilogram) 0.0028* 0.0071*** 

(0.002) (0.001) 

G2 LBW -0.0126*** -0.0122*** 

(0.003) (0.003) 

G2 SGA (5th pctl.) -0.0074*** -0.0119*** 

(0.003) (0.002) 

G2 2SD < mean -0.0116*** -0.0122*** 

(0.004) (0.003) 

Sample size 1,423,811 1,527,356 

G2 FT LBW -0.0137*** -0.0116*** 

(0.004) (0.003) 

Sample size 1,385,033 1,484,044 

Notes: Standard errors are clustered at child’s hospital and year level. Each column of each row is a 

separate regression. The probability of being observed in our samples is the probability that the singleton 

G2 is observed giving birth to a singleton (G3) in Taiwan between 1999 and 2006. The estimation sample 

includes all G2 female (column(1)) or G2 male (column (2)) singleton births in Taiwan between 1978 and 

1985 with gestation between 31 and 45 weeks and birth weight between 400 and 6,500 grams. All 

regressions are based on the most inclusive specification that includes grandmother fixed effects as well 

as all variables listed in footnotes 2-4 in Tables 1.3 and 1.4. *** Significant at the 1 percent level; ** 

Significant at the 5 percent level; * Significant at the 10 percent level. 
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Table 1.8 Effect of Mother's LBW (or IUGR) on Child's LBW (or IUGR) by Gender 

Dependent Variables 

G3 LBW 
G3 SGA 
 (5th pctl.) 

G3 2SD 
 < mean G3 FT LBW 

  (1) (2) (3) (4) 

G2 LBW (or IUGR) 0.0263*** 0.0383*** 0.0246*** 0.0304*** 

(0.009) (0.008) (0.007) (0.009) 
G2 LBW (or IUGR) x male -0.0068 -0.0300*** -0.0106* -0.0164** 

(0.007) (0.006) (0.006) (0.007) 

Sample size 280,030 280,030 280,030 255,100 

Notes: Standard errors are clustered at child’s hospital and year level. Each column is a separate 

regression. The dependent variables are dummies for child’s LBW (or IUGR). Coefficients are reported 

for dummies for mother’s LBW (or corresponding IUGR indicator) and interactions between the 

dummies and an indicator equal to one if the child is a male. All regressions include the full set of control 

variables and grandmother fixed effects. *** Significant at the 1 percent level; ** Significant at the 5 

percent level; * Significant at the 10 percent level. 
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2. Pseudoscience Conspiracy Dies Hard: Evidence from the MMR-Autism 

Controversy in the United States 1998-2011 

2.1. Introduction 

It is a prevailing phenomenon that pseudoscientific conspiracies are always found surrounded 

by their die-hard fans. People form biased beliefs and persistently support these flawed theories 

by correlating their actual health behaviors without referring to hard proofs. For example, 

alternative medicine continually gains its popularity without evidence gathered using the 

scientific method. The cost of such misinformation may lead to delay in treatment or even death. 

Nevertheless, the mechanism underlying biased beliefs and possible ways to properly address 

misinformation is not fully understood. We consider the most recent vaccine scare, the MMR-

autism controversy, to examine how biased beliefs drive the persistent MMR non-uptake rate 

over the years when information is mixed. 

The MMR-autism controversy was first provoked by a study (Wakefield et al. 1998) 

published in Lancet. The study links childhood vaccine of Measles-Mumps-Rubella (MMR) to 

autism. Follow-up studies (Peltola et al. 1998; Farrington et al. 2001; Taylor et al. 2002), 

authorities (i.e. FDA, and CDC), vaccine manufactures all dispute such a link. This debate has 

been widely publicized in mass media and has attracted public attention since 2000.1 Later, the 

initial study was partially retracted in 2004 and fully retracted in 2010 due to scientific 

misconduct.2 However, parents still hold strong skepticism against the vaccine even after the 

                                                           
1 For example, news titled “house panel asks for study of a vaccine” was published in The New York 

Times (New York) on April 7, 2000; news titled “state’s autism cases continue to increase; little is known 
why, however one theory on a link to child vaccinations stirs an international feud” was published in 
Contra Costa Times (California) on April 21, 2000. 
2 After a four-month investigation in 2004, Sunday Times reporter Brain Deer found that the author did 
not disclose the fact that the research was founded through parents seeking evidence against vaccine 
manufacturers.  
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retraction of the paper.3 Such distrust was further fueled by  the “Hannah Poling case” in 2009, 

which was the first case related to autism to have been awarded compensated by the vaccine 

court. Even after the partial retraction of the initial paper, the MMR uptake rate declined 

persistently, resulting in outbreaks of vaccine preventable diseases such as measles. To our 

surprise, such decline in MMR uptake rate was mainly driven by children of well educated and 

high-income parents, as documented in the newspaper4 as well as in previous studies (Wright 

and Polack 2005; Anderberg et al. 2011).  

Studies have shown that media coverage intensity of health information contributes to notable 

changes in preventive behaviors (Katherine and Brain 2005; Stryker 2003; Yanovitzky and 

Stryker 2001) and widened education gradient (Anna and Laura 2010). The well-accepted 

explanation is that the more educated possess better understanding of health risks, thus they react 

faster. However, there are no disagreements in the attitudes of the information regarding to safety 

and effectiveness examined by these studies. Indeed, it is important to study how people respond 

to information when there is ambiguity. As pointed out by psychological literature (Lord, Ross 

and Lepper 1979; Darley and Gross 1983; Keren 1987; Griffin and Tversky 1992), people may 

suffer confirmation bias when processing information by misinterpreting ambiguous evidence as 

confirming his current hypothesis of the world, causing the impact of information to be quite 

different from the existing literature when information is mixed.  

The investigation of the MMR-controversy contributes to the literature with a case where 

people are exposed to great amount of information with various contents and to contradictory 

attitudes from various sources. The case helps us to identify differential responses to specific 

                                                           
3 “Much of the current anti-vaccine movement bases its arguments not on real statistics but on anecdotes, 
which are powerful, emotional and personal” published in Brattleboro Reformer in 2011, which is the 
third largest daily newspaper in the state of Vermont.  
4 For example, the article titled “Rich, educated and stupid parents are driving the vaccination crisis” was 

published in Los Angeles Times on Sep. 3, 2014.   
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information source and content by education level, which help us understand the joint impacts of 

information and education on health behaviors when information is mixed. Although studies 

focusing on this controversy find faster reduction in uptake rate among children of more 

educated parents (Anderberg et al. 2011) and limited influence of mainstream media on 

immunization (Smith et al. 2008), no studies provide adequate explanation on the persistent and 

ever strengthened trend to opt-out the MMR vaccine after the Wakefield paper was retracted. 

Our paper fills this gap. In particular, we study the differential mechanism that underlies 

information processing by education level as an explanation for the persistent vaccine scare.  

In this paper, we combine data on individual-level immunization records with state-level 

information exposures to investigate the differential impacts of information on health decisions 

by the mother’s education level. From the National Immunization Survey (NIS) during the 

period 1998-2011, we obtain vaccination records and demographics for children aged 19-to-35 

months. We also assemble state-level information exposures, including passive and active ones. 

For passive exposures, we obtain relevant disease prevalence rates, from the Office of Special 

Education Programs and various issues of Morbidity and Mortality Weekly Report, and news 

counts from LexisNexis Academic database. For active exposures, we collect online search 

intensity from Google Trends. These exposures are further categorized into groups based on their 

attitudes, contents, and sources, which helps identify heterogeneous responses to certain features 

of information. By exploiting variations in differential responses to information by mother’s 

education, we find that strong biased beliefs among mothers with college education are 

responsible for the persistent non-uptake rate of MMR. Such beliefs cause asymmetric responses 

to new information based on its attitude and content, which in turn intensify the strength of the 

beliefs. A one-standard-deviation increase in exposure to information indicating that vaccine 
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may not be safe leads to 40% increase in the belief coefficient. In contrast, increase in exposure 

to information encouraging for immunization generally results in a small and insignificant 

impact on MMR non-uptake rate. Moreover, although authorities’ words in the newspaper help 

to decrease the non-uptake rate, overall impact of main stream media is limited. In contrast, 

online search results are more influential to mothers when making immunization decisions for 

their children.  

Our results provide empirical evidence on confirmation bias. It is important to keep prudent 

when conveying information to the public. The impact of an initial misinformation may take a 

long time to fully address because people may suffer from such bias when processing new 

information. Moreover, the study also provides implications on how to efficiently and effectively 

communicate public policy, research results, or even science to the public. By targeting a large 

and more interested audience, web is a more effective medium than traditional newspaper for 

spreading the opinions of the authorities.  

In the rest of the paper, section 2.2 provides the background of MMR controversy and a 

literature review. Section 2.3 presents a conceptual framework. Section 2.4 describes how data is 

collected on individual-level demographics and state-level information exposures. Section 2.5 

establishes our empirical model. Section 2.6 and 2.7 provides results and robustness checks. 

Section 2.8 concludes the study.  

2.2. Background 

2.2.1. MMR-Autism Controversy 

The controversy of MMR-autism is initiated by a paper (Wakefield et al. 1998) published in 

The Lancet in February of 1998. The article asserts that the measles virus is associated with an 

inflammatory bowel disease found in autistic children, which is proposed as evidence for the link 
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between MMR shots and autism risks. However, research using various approaches, larger 

samples, and a longer study window from different countries all dispute such a link (Taylor et al. 

1999; Madsen et al. 2002; DeStefano et al. 2004; Richler et al. 2006). In 2004, the Immunization 

Safety Review Committee published a final report after examining the scientific evidence and 

they rejected the link. Due to scientific misconduct, the initial Wakefield study was partially 

retracted in 2004 and fully retracted in 2010. 

In addition to the MMR controversy, two other parallel but related debates exist on the safety 

of childhood vaccine, which help the MMR controversy escalate into a general vaccine scare and 

affect the MMR uptake rate. The first debate is the proposed mercury-autism link. In 2001, a 

published study (Bernard et al. 2001) hypothesizes a link between autism and thimerosal, a 

preservative used in vaccines. Similarly, later studies do not find sufficient evidence to support 

such an association (Stehr-Green et al. 2003; Verstraeten et al. 2003; Price et al. 2010). 5  

Although the MMR vaccine have never contained thimerosal,6 the mercury-autism controversy 

affect uptake rate of MMR indirectly because news generally report the two hypotheses simply 

as vaccine-autism link without differentiating between them. The second is the criticisms on the 

heavy vaccine schedule. Some argue that too many vaccines overwhelm the child’s immune 

system, throwing the whole childhood immunization schedule under question, which also has 

been disputed now by scientific evidence (DeStefano, Price, and Weintraub 2013). 

Therefore, during the study period, parents question the safety of childhood vaccines in 

general, with MMR being the most controversial. In this study, we solely focus on the MMR 

uptake rate for two reasons. First, the MMR-autism controversy has a more clear and distinct 

                                                           
5 As a precaution, the Food and Drug Administration (FDA) removed thimerosal from all childhood 
vaccines except for a few influenza and hepatitis vaccines since 2001 in the United States. 
6 According to Centers for Disease Control and Prevention (CDC), varicella (chickenpox), inactivated 
polio (IPV), and pneumococcal conjugate vaccines have also never contained thimerosal.   
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timeline of events with respect to the publication and retraction of the Wakefield paper. Second, 

a comparison with the other childhood vaccines is not reasonable because most of them are 

under question due to the mercury-autism link. 

Figure 2.1 shows the non-uptake rate, defined as delayed MMR shots, from 1998 to 2011. The 

annual estimates are obtained using the National Immunization Survey (NIS). Events directly 

related to the debate on MMR-autism link are labeled. As expected, the trend experienced an 

overturn during 1998 to 2004 with a local maximum point in 2000 following the Wakefield 

paper. Interestingly, even after the partial retraction of the initial paper, the non-uptake rate 

continues to increase, despite mounting scientific evidence that rejects the MMR-autism link and 

despite claims from health professionals, including FDA, the American Academy of Pediatrics 

(AAP), Public Health Service, and CDC, that childhood vaccines are safe. 

Indeed, after 2004, parents are also more exposed to controversial information filled with 

emotional personal stories, some of which are even advocated by influential celebrities,7 which 

trump the impact of scientific studies.8 On the one hand, health professionals emphasize the 

importance of immunization in response to measles outbreaks in U.S. due to low vaccination rate. 

On the other hand, in March 2008, the vaccine court made the first compensation decision on an 

autism claim, the Hannah Poling case, which fueled the fear among skeptical parents and was 

considered by some as government concession on the vaccine-autism link by some.9 The case 

                                                           
7 In June 2005, an environmental lawyer and political activist, Robert F. Kennedy Jr., wrote an article 
titled “Deadly Immunity” in Rolling Stone Magazine, claiming that vaccine is a government/Big Pharma 
conspiracy.  In 2007 and 2009, actress Jenny McCarthy went on the Oprah Winfrey show to promote her 
new books “Louder than Words: A Mother’s Journey in Healing Autism” and “Mother Warriors: A 
Nation of Parents Healing Autism against All Odds”. She also promoted the view of possible autism-
vaccine link at the same time.  
8 The New York Times published a news titled “Vaccination: A Hot Debate Still Burning” on April 2010.  
9 Hannah Poling received five vaccines including MMR when she was 19 months old and court concluded 

that the vaccines worsened a rear and pre-existing cell disorder, resulting in developmental disorders of 
the child. 
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attracted wide media coverage and the attention of parents widely under media coverage.10 On 

the one hand, actress Amanda Peet teamed with health officials to defend vaccines in December 

2008 and the vaccine court ruled against vaccine-autism claims in February 2009. However, on 

the other hand, two counter-vaccine articles written by Actress Holly Robinson Peete and Actor 

Jim Carrey11 were published in March and April of 2009. Over the past decade, people are 

exposed to mixed information with contradicting attitudes regarding the MMR vaccine with 

various contents from different sources. The MMR-autism controversy enables us to identify the 

impact of a specific feature of the information on immunization decision.  

Empirical studies that directly examine the impact of MMR-autism controversy on vaccine 

uptake rates generally focus on a period before 2004, when scientific evidence reached a definite 

consensus. Using data in the U.S., Smith et al. (2008) posit that the influence of mainstream 

media on MMR immunization is limited by comparing temporal correlation between MMR non-

uptake rate and newspaper coverage. Employing data from the U.K., Anderberg et al. (2011) find 

that the uptake rate of MMR declined faster in areas where a larger fraction of parents had stayed 

in education past the age of 18 than in areas with less educated parents. However, both of the 

studies fail to explain the trend of declining MMR vaccine use after 2004. According to the 

newspaper, such trend is driven by well-educated parents, the mechanism of which is not 

examined in previous studies. In order to answer this question, we use a longer study window, 

which starts from the very first year of the debate till a year after the initial paper was fully 

retracted. We focus on differential responses in immunization decisions for their children by 

parental education level when information is mixed.   

                                                           
10 For example, Akron Beacon Journal (Ohio) published an editorial titled “Rare Conditions” on this case.   
11 In March 2009, actress Holly Robinson Peete wrote an article in Essence magazine to refute comments 

from actress Amanda Peet and argue for the possible link between vaccines and autism. In April 2009, 
actor Jim Carrey wrote an editorial to Huffington Post calling parents to be cautious toward the official 
claims regarding to lack of evidence in vaccine-autism link.  
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2.2.2. Confirmation Bias 

Confirmation bias is a tendency to process information in a way that is consistent to ones 

prior beliefs. This has long been documented in psychological and cognitive research (Nikerson 

1998; Kunda 1999). There are three major manifestations, which contribute to overconfidence 

and self-perpetuated false beliefs. First, people may selectively search for information in order to 

prove their pre-existing hypothesis of the world is correct (Kayhan 2013). Second, people may 

subjectively interpret new evidence based on their beliefs. They value more any information that 

conforms to their priors and devalue or even ignore information that contradicts their hypothesis. 

Even provided with the same ambiguous information, beliefs further diverge among people with 

different initial beliefs (Lord, Ross, and Lepper 1979).  Third, people may suffer from biased 

memory, even if they seek for and evaluate information neutrally. Results from experimental 

studies are mixed: some suggest that people may recall information that match with their 

expectations more easily; in contrast, some also posit that unexpected information is more 

memorable (Oswald and Grosjean 2004).   

The MMR-autism controversy provides an appropriate context to examine the impact of the 

confirmation bias. People adopt a biased view when examining information they received. For 

example, they misinterpret the Hannah Poling case as recognition that vaccine is not safe and 

they ignore the findings from scientific research and respond more to celebrity voice, which 

manifest that they subjectively value information. According to the statistics published by CDC, 

autism prevalence rate increases from 1 in 150 children in 2000 to 1 in 68 children in 2010. 

Without clear and acceptable alternative answers to such drastic increase, parents keep holding 

vaccine as the crucial reason and even throw the government into a trust crisis (Hilton 2007).12 It 

                                                           
12 For example, “Haley, the retired University Kentucky professor, put this way: the people saying there is 
no connection are the ones who caused the problem by making all these vaccines mandatory. The CDC 
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suggests that parents search for information to test their priors in a one-sided way. More 

importantly, the larger increase in MMR non-uptake rate among children of well-educated 

parents as observed in the previous study can be attributed to the possibility that they suffer more 

confirmation bias. People with high education are more aware of the adverse consequences of 

autism, and generally consider measles as curable and less harmful. Fear of danger leads people 

to search for evidence in a biased way and result in exaggerated focus on danger and threat 

(Friedrick 1993; Gilbert 1998). Highly educated people may also have higher perceived 

knowledge, which may not be necessarily consistent with their actual knowledge level. Using a 

field experiment, Park et al. (2013) find that confirmation bias is more pronounced among 

investors with higher perceived knowledge about the market. Although previous literature focus 

on differential confirmation bias by anxiety level (Remmerswaal 2014)13 and gender (Traut-

Mattausch 2011), we, in particular, examine whether variations in vaccine decisions by parental 

education level are attributable to different degrees of confirmation bias. 

2.3. A Conceptual Framework 

In the Bayesian information processing model, rational people hold common priors and update 

their beliefs in the same direction in response to a given signal. To incorporate confirmation bias 

into economic model, previous studies used different ways to revise the traditional assumptions 

(Rabin and Schrag 1999; Wing 2004). Following the literature, we lay out a simple model of 

information and vaccination. We assume an extreme case that college (well-educated) parents 

suffer confirmation bias by valuing information confirms to their priors more, but non-college 

(less-educated) parents do not. Our objective is to articulate with the conceptual framework what 

will be observed with our data if differential confirmation bias by education level exists.  
                                                                                                                                                                                           
mad a big mistake, and they don’t want to admit it”, which is published in the news titled “Family faces 
uncertainty in dealing with autism” in the Leader-Telegram (Wisconsin).  
13 See Matthew and MacLeod (1994) for a review.  
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2.3.1. The Set-Up 

There are two states of the world, Ω ∈ >?, '@, where ? denotes the state in which vaccine is 

harmful and ' denotes the state in which vaccine is safe. The common priors are that both states 

are equally likely. Parents are making vaccine decisions on behalf of their children. We assume 

that parents are altruistic toward their children and fully internalize their children's health 

benefits and costs of vaccine. The two possible actions parents take are " ∈ >A, B@, where A 

denotes taking vaccine and B denotes refusing to take vaccine. 

We assume that the health benefits and costs of vaccine are heterogeneous among families. To 

a family the health benefit of vaccine is, in utility terms, α ≥ 0. And in the case that vaccine is 

harmful, the health cost of vaccine is β ≥ α. We thus have G(', A) = -, G(?, A) = - − / , and 

G(?, B) = G(', B) = 0. 

We assume that there are two groups of parents, college educated and non-college educated. 

The difference between them pertains to how they process information, which will be covered 

below. Within each group, each family has a different health benefits and costs of vaccine. Each 

family is identified with the ratio 
H
I. There is a unit mass of college educated parents with 

H
I 

distributed on [0,1]  according to distribution MN ; there is another unit mass of non-college 

educated parents with 
H
I distributed on [0,1]  according to MON . For simplicity, we assume that 

MN = MON = M. 

In every period P ∈ >1, 2@, parents receive a signal R ∈ >ℎ, R@ that is correlated with the true 

state of the world. Signals received at different P are independently distributed, with Pr(ℎ|?) =

Pr(R|') ∈ >7
2 , 1@. The signal can be interpreted as the information regarding whether vaccine is 
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harmful or safe. In this context, ℎ  is the information that vaccine is harmful and R  is the 

information that vaccine is safe. We will adopt this interpretation from now on. 

We assume that the two groups of parents perceive the values of Pr(ℎ|?) = Pr(R|') 

differently. For non-college educated parents, they consider Pr(ℎ|?) = Pr(R|') = ). For college 

educated parents, they perceive Pr(ℎ|?) = Pr(R|') = ) only when they consider ? and ' are 

equally likely. If they consider that ?  is more likely, college educated parents perceive that 

Pr(ℎ|?) = Pr(R|') = )′ > ) when ℎ is received and that Pr(ℎ|?) = Pr(R|') = )′′ < ) when R 

is received. If they consider that '  is more likely, college educated parents perceive that 

Pr(ℎ|?) = Pr(R|') = )′ > ) when R is received and that  Pr(ℎ|?) = Pr(R|') = )′′ < ) when ℎ 

is received. In other words, college educated parents suffer from some sort of confirmation bias, 

who consider a new information to come from a more informative source when it conforms to 

their existing beliefs. 

2.3.2. Analysis 

Parents choose to vaccine their children if and only if the expected payoff from doing so is 

greater than zero. In period t = 1 before receiving any new information, this means that when 

H
I ≥ 7

2. The proportions of college and non-college educated parents' taking vaccine are thus 1 −

F(7
2). Upon receiving a new signal in P = 1  that vaccine is harmful, both college and non-college 

parents update their beliefs according to 

 
[7

N(ℎ) = [7
ON(ℎ) =

\
]>

\
]>^\

](7_>)
= ). 

(2.1) 

The corresponding threshold for taking vaccine is 
`
a ≥ ). The proportions of college and non-

college educated parents' taking vaccine are thus 1 − M()). Since ) > 7
2, 1 − M()) < 1 − M(7

2). 

We summarize this observation with the following two trends we expected to find in our data: 
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Proposition 2.1. In period P = 1, upon receiving a signal that vaccine is harmful, the proportions 

of college and non-college educated parents' taking vaccine for their children decrease. 

Note that ) becomes the prior beliefs of both groups of parents at the beginning of P = 2. 

Since ) > 7
2, college and non-college educated parents start to process information differently. 

Upon receiving a signal in P = 2 that vaccine is actually safe, college and non-college educated 

parents' updated beliefs are  

 [2
N(R) = >47_>bb8

>(7_>bb)^(7_>)>bb, 

 

[7
ON(R) = >(7_>)

>(7_>)^(7_>)>. 

 
(2.2) 

Given that )cc < ), [2
N(R) > [7

de(R), which further implies that 1 − M()) < 1 − M4[2
N(R)8 < 1 −

M([7
ON(R)). 

On the other hand, upon receiving a signal in P = 2 that vaccine is indeed harmful, college 

and non-college educated parents' updated beliefs are 

 [2
N(ℎ) = >>b

>>b^(7_>)(7_>b), 

 

[7
ON(ℎ) = >]

>]^(7_>)]. 

 
(2.3) 

Given that )c > ) , [2
N(ℎ) > [7

ON(ℎ) , which further implies that 1 − M([2
N(ℎ) < 1 −

M4[7
ON(ℎ)8 < 1 − M()). We summarize the above with the following phenomenon we expect to 

find in our data: 

Proposition 2.2. Having received in P = 1 a news that vaccine is harmful, upon receiving a news 

in P = 2 that it is actually safe, the proportions of college and non-college educated parents' 

taking vaccine for their children increase, and the increase is higher for non-college educated 

parents; upon receiving a news in P = 2 that it is indeed harmful, the proportions of college and 
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non-college educated parents' taking vaccine for their children decrease, and the decrease is 

higher for college-educated parents. 

2.4. Data and Sample 

We combined data on individual-level immunization record and state-level information 

exposures to empirically examine whether the strong and persistent trend in MMR non-uptake 

rate is driven by biased beliefs by education level when information is mixed. If the answer is 

confirmed, we further examine the mechanism underlying such biased beliefs. We calculated 

cumulative exposures for each type of information during our study period to capture general 

features of the information by state that are available to parents. To be comparable across 

information sources, contents, and attitudes, we obtained z-scores using the mean and standard 

deviation of 51 states for a given information exposure. 

2.4.1. Individual Immunization Records and State characteristics 

 We obtained immunization records and demographics for children aged 19-to-35 months 

from the National Immunization Survey (NIS) 1998-2011, which is an annual telephone survey 

administered to estimate immunization coverage. Households with children in the target age 

range are randomly selected each year and asked a series of vaccination and demographics 

questions. Child’s primary care physician was contacted under consent to verify vaccination 

records. For accuracy, we restricted our sample to children with valid provider data. In the 

survey year 2011, only landline sample is included in order to be consistent with previous years. 

We observed up-to-date status of MMR shots, demographics for the child and mother, 

socioeconomic status of the household, and the child’s health care facility type. The data also 

provides state identifier, which is used to merge state-level information exposures. Conditional 

non-missing values in demographics, we obtained a total of 271,478 observations.  
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In order to capture some time-variant state-level characteristics, we obtained percentage of 

uninsured children under 18 to all people by state-year from Current Population Survey Annual 

Social and Economic Supplement (CPS ASEC)14. We collected percentage of immigration share 

of residence by state-year from the Yearbook of Immigration Statistics. And we acquired 

estimated resident population by state-year from Census Bureau.  

2.4.2. State-level Information 

For information exposures, we consider both passive receptions and active searches. For 

passive information exposures, we obtain state-level autism prevalence rate, total reported cases 

for measles, mumps and rubella, and news counts from state news outlets. For active information 

exposures, we acquire state-level online search intensity on relative topics.  Differential impacts 

of active information exposures on strength of false beliefs by education level not only capture 

subjective valuation of information but also absorb selectively test for priors under confirmation 

bias. We further group both types of information based on source, content, and attitude.   

We estimated autism prevalence rate by state-year using autism to total counts in special 

education program for age 6 to 21 from the Office of Special Education Programs (OSEP) during 

1998-201115. OSEP maintains standardized compilations of state counts of children receiving 

free public education services. The counts are classified into 13 primary disability categories 

defined under the Individual with Disability Education Act (IDEA). Autism is among one of 

them. We collected total reported cases for indigenous measles, mumps and rubella during 1998-

2011 by state-year from various issues of Morbidity and Mortality Weekly Reports (MMWR). 

The statistics are compiled from reports sent by state health departments and territories to the 

                                                           
14 Uninsured rate by state in the year 1998 is not available to us. We imputed it by assuming values in the 
year 1999 are the average of those in the year 1998 and 2000. 
15 We imputed the counts as the average of year 1998 and 2000 for year 1999, due to the data in that year 
is not available. For the state Vermont, values for year 2007 and year 2008 are missing. We imputed them 
using the average of 2006 and 2009. 
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National Notifiable Diseases Surveillance System. In order to make the data comparable across 

states, we normalized the values using estimated resident population. 

For newspaper coverage, we count number of stories captured by the search terms “MMR” 

and “autism” or “vaccine” and “autism” or “measles” and “autism”.16 We searched LexisNexis 

Academic from 1998 to 2012. News from the outlet of a given state is used to construct the 

newspaper coverage for that state. National newspapers were not included because we expect 

they have the same effect across states. We obtained a total of 208 pieces of news. Within our 

search, newspaper starts to publicize the controversy in 2000. We find variations in newspaper 

coverage by state. There are 35 states with at least one piece of news related to the MMR-autism 

controversy and the 16 states in Table 2.1 accounted for 61% of the total news counts we 

obtained. We further analyze each piece of news to determine its attitude, positive if encourages 

vaccination, negative if discourage vaccination or narrative. Based on the content of the news, 

we assign different indicators if the news includes opinions from parents, words from authorities, 

and scientific proof.17 Authorities are defined as the government, health care agencies, health 

professionals and researchers. We created variables by state-year for total news count, 

percentage of news with positive attitudes, opinions from parents, words from authorities, and 

evidence from scientific study.  

Google Trends provides us a search index that represents a relative value of search intensity 

for a term in a given state-year. The index ranges from 0 to 100, a higher value indicating more 

intensive search in that state-year.  The Trends eliminates repeated queries from a certain user 

                                                           
16 We did not use search term “thimerosal” and “vaccine” because thimerosal-autism link is irrelevant to 

MMR vaccine. However, if the news only generally mention the relationship between vaccine and autism, 
we consider it a relevant news count because it potentially affect uptake rate of MMR.  
17 The newspaper coverage is generally filled with parents doubt against vaccine, authorities’ persuasion 

for immunization, and scientific proof against the link with autism. After scrutinizing the articles, only 
five of them contained parents’ opinions encouraging vaccination and only one of them involved 
suggestions against vaccine by authorities. 
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over a short period of time and only analyzes data if search volume is over a certain threshold 

and results are normalized by total number of Google searched done nationwide in that year. We 

obtained search index at state-year level for terms “Autism (Disease)” “Measles (Disease)”, 

“Mumps (Disease)”, “Rubella (Disease)”, “vaccine and autism”. These search indexes are 

available to us post 2004, the year Google Trends was put into use. Due to extreme low search 

volume for the topic “vaccine and autism”, the index is available since 2008. As an analogous to 

disease prevalence rate, we average values for measles, mumps and rubella together to obtain a 

combined search index for disease outbreaks.  

2.4.3. Sample Statistics 

Table 2.2 presents sample statistics for individual demographics. Estimates in column (1) and 

(2) are obtained using the full sample and estimates in column (3) and (4) are acquired from 

children of college and non-college mothers, respectively. Table 2.3 presents characteristics of 

the cumulative state-level information exposures. Means and standard deviations are reported for 

each type of information using the final regression sample. We also predict the effect of each 

information variable on non-uptake rate of MMR. A positive sign indicates that we expect the 

type of information discourages vaccination decision and thus is a harmful signal. In contrast, a 

negative sign indicates that the information encourage immunization and thus is a safe signal.  

2.4.4. Differential Responses between College and Non-college Mothers 

For each child ! in state R in year P, we consider  

 f'=g = hijk/ + l=g +  m= + ng + $'=g, (2.4) 

The outcome of interest is an indicator for none up-to-date shots of MMR.  hijk is a vector of 

observables for the child,  l=g is time-variant state-level variables, m= is state fixed effects and ng 

is year fixed effects. $'=g  is the idiosyncratic error term. We include child’s gender, firstborn 
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status, dummies for age group, dummies for race categories, and dummies for facility types, 

indicator equal to one if the child is moved from a different state, mother’s marital status, 

dummies for mother’s education level, and dummies for mother’s age group. For time-variant 

state characteristics, we have percentage of uninsured children under 18 among all uninsured, 

immigration share of residence, and population by state-year.  

Table 2.4 reports estimated coefficients of year dummies in equation (1) for our full sample 

(in column (1)), and children of college (in column (2)) and non college mothers (in column (3)). 

In response to newspaper coverage, there is an increase in MMR non-uptake rate among both 

college and non-college groups in 2000. In response to the partial retraction of Wakefield paper 

in 2004, MMR non-uptake rate among low education group decreased significantly by 1.62 

percentage points compared to that in 1998. In contrast, the vaccine rate is not statistically 

different from that in 1998 for high education group. We find that post the year 2004, the 

unexpectedly persistent and strengthened trend to opt out MMR shots is mainly driven by 

children of college mothers. For the well-educated group, estimates are significantly positive and 

increase in magnitude after 2004. In contrast, for low education group, estimates are generally 

small and insignificant, except for the year 2009. Due to the impact of the anti-vaccine voice 

from celebrities, non-uptake rate increase for both groups in 2009. However, only high education 

group exhibit a carry-over effect in later years.  

Compared to the baseline,18 MMR non-uptake rate increased by 31.5% in 2000 and remained 

unchanged in 2004 for college group. In contrast, the non-uptake rate for non-college group 

increased by 13.5% in 2000 and decreased by 18.6% in 2004. Though non-uptake rate increased 

in both groups in response to news coverage, asymmetric responses to information that suggests 

safety of vaccines in 2004 are only found in college group, which are consistent with the 

                                                           
18 The baseline non-uptake rate for MMR is 0.06082 for college group and 0.08714 for non-college group.  
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predictions of our conceptual framework under the assumption that college parents suffer from 

confirmation bias more. The top graph in Figure 2.2 plots the estimated coefficients in column (2) 

and (3) of Table 2.4. And the bottom graph depicts the differences in the annual estimates 

between college and non-college groups. Education gradient widened continuously after 1998 

and it shows limited impacts of events in following years, suggesting that the strong and 

persistent trend to delay MMR can be attributable to biased beliefs formed since 1998 among 

college group.     

2.5. Model 

To investigate how strong is the biased beliefs that drove the MMR non-uptake rate over 

years for high education group, we consider  

 f'=g = op**:#: x q(f:"Bg) + op**:#: x )pRP + hijk/ + l=g + m= + ng + $'=g, (2.5) 

where q(f:"Bg) is a time trend, college is a dummy equal to one for child of mother with at least 

a bachelor degree, and )pRP is a dummy equal to one for years after 2004. All the other controls 

are the same as those in equation (2.5). The term, op**:#: x q(f:"Bg), captures the impact of 

biased beliefs formed by college parents since 1998. And the term, op**:#: x )pRP, identifies 

any deviations from the trend following the retraction of the Wakefield paper in 2004. We 

change the definition of the )pRP dummy to identify the impact of different events over the years.  

 To further examine the underlying mechanism for the persistence of the biased belief, we 

consider 

 
f'=g = op**:#: x q(f:"Bg) + op**:#: x q(f:"Bg) x !&qp= + op**:#: x )pRP +

hijk/ + l=g +  m= + ng + $'=g, (2.6) 

where !&qp=  is a vector for state-level cumulative information exposures, which are used as 

proxy for the overall features of information available to parents over time. All the other controls 
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are the same as those in equation (2.6). The three layer interaction term, 

op**:#: x q(f:"Bg) x !&qp=, identifies the effect of exposures to each specific information type 

on biased beliefs for high education group.   

We choose log linear as the functional form for the time trend. It captures an increasing 

average impact of beliefs on immunization decision with a diminishing marginal effect over 

years, which is also consistent with the plotted differences between estimates from college and 

non-college samples depicted in Figure 2.2. 

2.6. Results 

2.6.1. The Impact of Biased Beliefs 

Table 2.5 presents results from equation (2.5). In the odd columns, we control for a post 

dummy equal to one for years after 2004. In the even columns, we include indicators for each 

single year after 2004 to capture any deviations from the year trend due to events in the years 

following the partial retraction of the Wakefield paper. In columns (1), we do not include area 

specific year effect; in columns (2), we add B:#!p& x f:"B fixed effects; in column (3), we 

control for ;!A!R!p& x f:"B fixed effects;19 and in columns (4), we include state fixed effects x 

log year trend. The results are robust after considering area specific year trend.  

The strong and significant estimates for year trend and college interaction suggest that college 

mothers hold stronger beliefs against MMR vaccine over years compared to non-college mothers. 

Estimates for the post dummies for 2004 are small and insignificant, indicating that the partial 

retraction of the Wakefield paper generally does not have meaningful impact on the 

immunization decisions of college mothers. Examining the effects from each single year after 

2004 also supports for the finding. Except for 2010, we detect no deviations from the year trend. 

                                                           
19 We group states into 9 divisions based on U.S. Census Bureau.  



65 
 

Indeed, the significant estimates for the indicator of year 2010 are consistent with our hypothesis 

that college mothers suffer more confirmation bias. MMR non-uptake rate increase in both 

groups in response to anti-vaccine voice form celebrities and aftershock of the Hannah Poling’s 

case. However, the impact linger into following years only in college group, resulting in 

significant difference observed in 2010 when compared to non-college group. Therefore, the 

persistent increasing non-uptake rate of MMR is mainly driven by the biased beliefs of college 

parents.  

2.6.2. Mechanisms for Biased Beliefs 

Table 2.6 presents estimates from equation (2.6) and is organized similar to Table 2.5. Each 

type of information exposures described in Table 2.3 is interacted with the college indicator and 

a log linear year trend. We report z-scores for information variables because standardized 

variables are comparable and provide meaningful interpretation. Results are similar using raw 

values of these information exposures as presented in Table C1 in Appendix. The findings are 

robust after including different area specific time trends.  

In all specifications, coefficients of op**:#: x )pRP are not materially affect by the inclusion 

of information interactions. We find significant impact on the belief coefficient for four types of 

specific information exposure: reported total cases of measles, mumps and rubella, percentage of 

news with words from authorities in newspaper, online search intensity for disease outbreaks, 

and online search intensity for the topic “vaccine and autism”. A one-standard-deviation increase 

in reported cases of diseases leads to a decrease of 13.3-15.3% in the belief coefficient. A one-

standard-deviation increase in percentage of news with words from authorities is associated with 

a decline of 24.6-28.1% in the belief coefficient. A one-standard-deviation increase in web 

search index for vaccine preventable disease is associated with a decline of 28.9-32.8% drop in 
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the belief coefficient. In contrast, a one-standard-deviation increase in web search index for 

“vaccine and autism” is related with 22.2-26.3% increase in the belief coefficient. The impacts of 

these information measures are consistent with our expectations. Interestingly, the impact of 

autism prevalence rate is negligible and insignificant. Though we only use a crude measure, it 

suggests that mothers’ fear for adverse consequence from vaccine is widespread regardless of the 

actual autism prevalence rate.  

We further examine whether college parents value information from various sources 

differently. We focus on three information sources: disease prevalence rate, newspaper, and web 

searches. We create composite information measures according to the expected sign of each 

single measure by averaging the z-scores of information from the same source. Information is 

treated as a harmful signal if its expected impact on MMR non-uptake rate is positive. Likewise, 

information is regarded as a safe signal if its expected sign is negative. The impact of news count 

is inconclusive. More media attention may help the mass to understand the origin and 

consequence of the controversy, which lead to a negative impact on MMR non-uptake rate. But 

it may result in a positive impact on the MMR non-uptake rate by providing more chance for 

biased readers to selectively test their hypothesis especially when most of the news presents a 

mix of scientific evidence, words from authorities, and personal stories. Luckily, the impact of 

news count in Table 2.6 is trivial and insignificant. And we find that grouping it into either a safe 

(in Table C2) or a harmful signal (in Table 2.7) does not affect our results.  

Table 2.7 displays estimates using composite information exposures based on information 

source and attitude. Although college mothers vaccinate their children in response to words from 

authorities, the overall impact of newspaper on immunization decision is limited, which is 

consistent with the literature (Smith et al. 2008). However, a one-standard deviation of safe 



67 
 

signals from disease prevalence rate leads to 14.8-16.1% decrease in the belief coefficient. The 

impact of safe signals from web searches is similar but only significant at 10 percent level and 

less robust when considering area specific time trend. In contrast, a one-standard-deviation 

increase in harmful signals from web searches is associated with 29.9-41.6% increase in the 

belief coefficient, suggesting a strong and significant impact. Compared to traditional media, 

web tends out to be more influential to mothers’ vaccination decisions. However, under 

confirmation bias, college mothers may actively search for information to confirm their beliefs in 

a biased way, leading to more significant impact of harmful signals in general and thus further 

sustain their priors.  

In Table 2.8, we further aggregate information exposures solely based on the expected effects. 

That is, we obtain harmful composite by averaging z-scores of all information variables with an 

expected positive sign and news count. And we obtain safe composite by averaging z-scores of 

all information variables with an expected negative sign. Our results are not affected if we 

consider news count as a safe signal as presented in Table C3. The findings further confirm that 

college parents suffer more confirmation bias in our study. A one-standard-deviation increase in 

the composite harmful signal leads to 43.0-51.8% increase in the belief coefficient. In contrast, a 

one-standard-deviation increase in the composite safe signal only leads to 14.18-20.14% 

decrease in the belief coefficient and the impact is insignificant. The results suggest that college 

parents filter the information they respond to based on their existing and biased priors, further 

strengthening their false beliefs and lead to strong and persistent MMR non-uptake rate even 

after the Wakefield paper was partially retracted.  
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2.7. Robustness Check 

We perform two types of robustness check. First, we only include children not moved from a 

different state. We expect more precise estimated impacts of information exposures because the 

estimates will be less contaminated by information features in the other states. Second, we 

exclude parents unable to speak and read English from our sample. Because these parents are 

immune to most of the information signals we examined in this study even though they live in a 

state exposed to intensive information during the MMR-autism controversy. To the extent that 

this factor is correlated with parental education level, our results may be driven by the gap in 

information availability instead of difference in understanding the same type of information 

between college and non-college parents. Unfortunately, the NIS sample does not provide us 

with English speaking status of parents. Therefore, we only include non-Hispanic White and 

Black children in our sample to check whether our main results still hold with major English 

speaking population. 

Tables 2.9, 2.10, 2.11 and 2.12 report estimates from the sample restricted to children not 

moved from a different state. We find robust results. Compared to non-college parents, college 

parents form strong biased beliefs over the years, which affect their immunization decisions for 

their child. In addition to our main results, we also find that parents opinions in the newspaper 

leads to an increase in the biased beliefs. In contrast, scientific evidence in the newspaper leads 

to a decrease in the biased beliefs. However, the estimates are only significant at 10 percent level 

and the significance goes away when considering area specific time trends. Moreover, results 

examining impact of information sources suggest a stronger and significant effect of safe signals 

from web searches, though the estimates are smaller compared to harmful signals from web 

searches. Our finding that online search results are more influential to mothers in immunization 
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decisions for their children is further confirmed. Furthermore, similar results are obtained using 

the sample including only non-Hispanic White and Black children as presented in Tables C4, C5, 

C6, and C7 in Appendix.  

2.8. Conclusion 

This study considers the most recent vaccine scare, the MMR-autism controversy, as a 

platform for studying differential responses to information by education level when information 

is mixed.  

The MMR-autism controversy was first provoked by a paper (Wakefield et al. 1998), which 

links autism to the childhood vaccine of MMR. Follow-up studies disprove such a link. And the 

Wakefield paper was partially and then fully retracted in 2004 and 2010. Even after the retraction 

of the paper, parents still hold strong skepticism against MMR vaccine especially among well-

educated mothers. During the wake, people are exposed to tremendous information with 

contradicting attitudes and mixed contents from various sources. As psychology literature 

documented that people may suffer confirmatory bias when processing information with 

ambiguous evidence, we focus on whether such bias beliefs are the driving factors for the 

persistently increasing MMR non uptake rate among well-educated mothers over the years. We 

also investigate the underlying mechanism for such biased beliefs.  

In order to empirically study the impact of information on health decisions, we combined data 

on individual-level immunization records and state-level information exposures. We obtained 

vaccine record and demographics for children aged 19-to-35 months from the National 

Immunization Survey (NIS) for the years 1998-2011. We assembled both passive and active 

cumulative information exposures at state-level during the study period. For passive exposures, 
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we collected relevant disease prevalence rates and newspaper coverage. For active information 

exposures, we acquired online search index for related topics.  

Our results show that the persistently increasing MMR non-uptake trends are driven by biased 

beliefs among well-educated mothers. Suffering from confirmation bias, well-educated mothers 

respond more to harmful signals that confirming their priors, further intensifying these false 

beliefs. A one-standard-deviation increase in harmful signals in general is associated with around 

45% increase in belief coefficients. Although college mothers decide to vaccinate their children 

more in response to words from authorities, the overall impact of newspaper coverage is limited. 

In contrast, web search results are more influential to the immunization decisions.   
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Table 2.1 Newspaper Coverage by State 

State Newspaper News counts 

(1) (2) (3) 

California Contra Costa Times 9 

California San Jose Mercury News 7 

California Orange County Register 3 

Florida St. Petersburg Times 6 

Florida Florida Times-Union  4 

Minnesota St. Paul Pioneer Press 5 

Missouri St. Louis Post-Dispatch 3 

Nebraska Lincoln Journal Star 3 

Nevada Las Vegas Review-Journal 3 

New York The New York Times 7 

New York Daily News 5 

New York The New York Post 5 

New York Buffalo News 3 

Ohio Akron Beacon Journal 7 

Oklahoma The Oklahoman 5 

Pennsylvania Pittsburgh Post-Gazette 7 

Pennsylvania Sunday News 4 

Pennsylvania York Daily Record 3 

Pennsylvania Intelligencer Journal / New Era 3 

Texas Austin American-Statesman 4 

Texas El Paso Times 3 

Virginia The Roanoke Times 3 

Washington The Columbian 3 

West Virginia Charleston Gazette 5 

Wisconsin Wisconsin State Journal 7 

Wisconsin The Capital Times 6 

Wyoming Wyoming Tribune-Eagle 3 

Notes: News counts are obtained from LexisNexis Academic using search term search terms “MMR” and 
“autism” or “vaccine” and “autism” or “measles” and “autism”. News from the outlet of a given state is 
used to construct the newspaper coverage for that state. Only newspapers with at least three counts during 
1998-2011 are listed in the table.   
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Table 2.2 Sample Statistics for Individual Demographics 

  Full sample College Non college 

 
Mean St.d. Mean  St.d. Mean  st.d. 

  (1) (2) (3) (4) (5) (6) 

       MMR non-receipt rate 0.076 (0.266) 0.061 (0.239) 0.087 (0.282) 

Child's age group (reference: 19-23 months)       

24-29 months 0.352 (0.478) 0.353 (0.478) 0.352 (0.478) 

30-35 months 0.351 (0.477) 0.354 (0.478) 0.348 (0.476) 

Child's race (reference: Hispanic)       

Non-Hispanic white 0.599 (0.490) 0.743 (0.437) 0.499 (0.500) 

Non-Hispanic black 0.125 (0.330) 0.071 (0.257) 0.161 (0.368) 

Other non-Hispanic 0.082 (0.275) 0.092 (0.289) 0.076 (0.265) 

% of male 0.512 (0.500) 0.512 (0.500) 0.511 (0.500) 

% of first born  0.420 (0.493) 0.452 (0.498) 0.077 (0.267) 

% of moved from a different state 0.081 (0.274) 0.087 (0.283) 0.397 (0.489) 

Mother's education (reference: <12 years)       

%  12 years 0.249 (0.432) -- -- 0.420 (0.494) 

% >12 years, non-college 0.220 (0.414) -- -- 0.371 (0.483) 

%  college graduate 0.408 (0.491) -- -- -- -- 

Mother's age group (reference: <19)       

20-29  0.393 (0.488) 0.198 (0.398) 0.527 (0.499) 

> 30 0.583 (0.493) 0.801 (0.399) 0.433 (0.495) 

% of married 0.739 (0.439) 0.917 (0.276) 0.617 (0.486) 

Family income (reference: 0-30K)       

% 30-50K 0.187 (0.390) 0.158 (0.364) 0.207 (0.405) 

% >50K 0.425 (0.494) 0.719 (0.449) 0.223 (0.416) 

unknown 0.061 (0.239) 0.023 (0.150) 0.087 (0.282) 

Facility type (reference: public)       

% private 0.576 (0.494) 0.688 (0.463) 0.499 (0.500) 

% others 0.210 (0.407) 0.183 (0.386) 0.229 (0.420) 

% mixed 0.085 (0.278) 0.070 (0.255) 0.095 (0.293) 

       Sample size 271,478 110,688 160,790 

Notes: Sample statistics for individual demographics are reported for the full sample in column (1) and 
(2), for children of mothers with at least bachelor degree in column (3) and (4), for children of mothers 
without a bachelor degree in column (5) and (6). 
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Table 2.4 MMR Non-Uptake Rate Compared to 1998 

  Full sample College Non-college 

VARIABLES (1) (2) (3) 

        

Year=1999 0.0027 0.0060 0.0016 

(0.004) (0.006) (0.006) 

Year=2000 0.0136*** 0.0192*** 0.0118* 

(0.005) (0.006) (0.006) 

Year=2001 0.0075 0.0209*** 0.0028 

(0.005) (0.006) (0.006) 

Year=2002 0.0045 0.0131** 0.0018 

(0.005) (0.006) (0.007) 

Year=2003 -0.0094** 0.0011 -0.0135** 

(0.004) (0.006) (0.006) 

Year=2004 -0.0105** 0.0047 -0.0162*** 

(0.004) (0.006) (0.006) 

Year=2005 0.0086* 0.0197*** 0.0047 

(0.005) (0.007) (0.007) 

Year=2006 -0.0021 0.0088 -0.0058 

(0.005) (0.007) (0.007) 

Year=2007 -0.0010 0.0198*** -0.0088 

(0.005) (0.007) (0.006) 

Year=2008 0.0068 0.0272*** -0.0008 

(0.005) (0.007) (0.007) 

Year=2009 0.0294*** 0.0418*** 0.0246*** 

(0.006) (0.007) (0.008) 

Year=2010 0.0147*** 0.0440*** 0.0019 

(0.005) (0.008) (0.007) 

Year=2011 0.0113** 0.0350*** 0.0009 

(0.006) (0.007) (0.007) 

Sample size 271,478 110,688 160,790 

Notes: Column (1) presents estimated coefficients for year dummies from full sample. Results in column 
(2) and (3) are from subsamples for children of college and non-college mothers, respectively. Standard 
errors are reported in brackets. In all regressions, we include for child’s gender firstborn status, age group, 
race, indicator for those moved from a different state, and facility type, mother’s marital status, education, 
and age group, uninsured share of children, immigration share of residence, estimated population, and 
state fixed effects. 
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Figure 2.2 Differences in MMR Non-Uptake Rate by Education 

 

Notes: The top graph plots estimated coefficients of year dummies in column (2) and (3) of Table 2.4. 
Solid line is for college sample and dash line is for non-college sample. The bottom graph depicts the 
difference between estimates from college and non-college samples. 
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Table 2.6 Mechanisms Underlying Biased Beliefs: Single Information Exposures 

(1) (2) (3) (4) 

          

College x ln(year) 0.0129*** 0.0130*** 0.0134*** 0.0132*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0014 0.0008 0.0006 0.0011 

(0.005) (0.005) (0.005) (0.005) 

College x ln(year) x autism  0.0001 0.0004 0.0005 0.0010 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x reported cases -0.0021*** -0.0018** -0.0018** -0.0020** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x news counts 0.0008 0.0004 0.0003 0.0009 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news for vaccine 0.0046 0.0044 0.0039 0.0046 

(0.003) (0.003) (0.003) (0.003) 

College x ln(year) x news w/ science -0.0034 -0.0026 -0.0023 -0.0032 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news w/ authority -0.0045** -0.0042** -0.0039** -0.0040** 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news w/ parents 0.0023 0.0021 0.0021 0.0023 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x autism search 0.0009 0.0001 -0.0001 -0.0003 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x outbreaks search -0.0035*** -0.0033*** -0.0034*** -0.0038*** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x “vaccine autism” search 0.0036*** 0.0030*** 0.0030*** 0.0030*** 

(0.001) (0.001) (0.001) (0.001) 

Sample size 271,478 271,478 271,478 271,478 

Area specific time trend No 
Region x 
year FE 

Division x 
 year FE 

State x  
 ln(year) 

Notes: The outcome variable is a dummy equal to one if MMR shot is not up-to-date for the child. 
Coefficients are reported for triple interaction terms using all the information exposures presented in 
Table 3. We use z-scores for each type of information exposure. All controls in Table 4 are included. No 
area specific time trend is controlled in columns (1). We include region specific year effects in columns 
(2), division specific year effects in columns (3), and state specific log linear time trend in columns (4). 
Standard errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2.7 Mechanisms for Biased Beliefs: Information Sources 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0117*** 0.0118*** 0.0121*** 0.0119*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0014 0.0009 0.0007 0.0011 

(0.005) (0.005) (0.005) (0.005) 

Disease Prevalence rate 

College x ln(year) x harmful signal -0.0029 0.0102 0.01733 0.0742 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x safe signal -0.0022*** -0.0020** -0.0020** -0.0021** 

(0.001) (0.001) (0.001) (0.001) 

News coverage 

College x ln(year) x harmful signal 0.0020 0.0015 0.0014 0.0019 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x safe signal -0.0014 -0.0007 -0.0008 -0.0006 

(0.002) (0.002) (0.002) (0.002) 

Online searches 

College x ln(year) x harmful signal 0.0057*** 0.0046*** 0.0045*** 0.0040*** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x safe signal -0.0018* -0.0016 -0.0017 -0.0020* 

(0.001) (0.001) (0.001) (0.001) 

Sample size 271,478 271,478 271,478 271,478 

Area specific time trend No 
Region x 
year FE 

Division x 
 year FE 

State x  
 ln(year) 

Notes: The outcome variable is a dummy equal to one if MMR shot is not up-to-date for the child. 
Coefficient of the triple interaction term using harmful signal of disease prevalence rate is multiplied by 
100 for reporting purpose. For disease prevalence rate, the harmful signal is the z-score of autism 
prevalence rate; and the safe signal is the z-score of reported total cases of measles, mumps, and rubella. 
For news coverage, the harmful signal is the average z-scores of news count and percentage of news with 
parents’ opinions; and the safe signal is the average z-scores of percentage of news encouraging 
immunization, with words from authorities, and scientific proofs. For web searches, the harmful signal is 
the z-score of search index for measles, mumps, and rubella; and the safe signal is the average of z-scores 
of search index for autism and “vaccine and autism” topics. All controls in Table 4 are included. No area 
specific time trend is controlled in columns (1). We include region specific year effects in columns (2), 
division specific year effects in columns (3), and state specific log linear time trend in columns (4). 
Standard errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2.8 Mechanisms for Biased Beliefs: Information Attitudes 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0111*** 0.0112*** 0.0115*** 0.0112*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0014 0.0008 0.0007 0.0011 

(0.005) (0.005) (0.005) (0.005) 
College x ln(year) x  
    composite harmful signal 0.0071*** 0.0059*** 0.0058*** 0.0065*** 

(0.002) (0.002) (0.002) (0.002) 
College x ln(year) x  
    composite safe signal -0.0026 -0.0019 -0.0022 -0.0027 

(0.002) (0.002) (0.002) (0.002) 

Sample size 271,478 271,478 271,478 271,478 

Area specific time trend No Region x year FE Division x year FE State x ln(year) 

Notes: The outcome variable is a dummy equal to one if MMR shot is not up-to-date for the child. 
Harmful composite is the average z-scores of autism prevalence rate, news count, percentage of news 
with parents’ opinions, and search index for autism, and “autism and vaccine” topic. Safe composite is the 
average z-scores of reported total cases for measles, mumps, and rubella, percentage of news encouraging 
immunization, with words from authority, and scientific proofs, and search index for measles, mumps, 
and rubella. No area specific time trend is controlled in columns (1). We include region specific year 
effects in columns (2), division specific year effects in columns (3), and state specific log linear time 
trend in columns (4). Standard errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2.9 Impact of Biased Beliefs--Children not Moved from a Different State 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0122*** 0.0118*** 0.0120*** 0.0116*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0037 0.0030 0.0029 0.0035 

(0.006) (0.005) (0.005) (0.006) 

Sample size 249,358 249,358 249,358 249,358 

Area specific time trend No 
Region x  
year FE 

Division x  
year FE 

State x 
ln(year) 

Notes: The sample is restricted to children not moved from a different state. The outcome variable is a 
dummy equal to one if MMR shot is not up-to-date for the child. All controls in Table 4 are included. No 
area specific time trend is controlled in columns (1) and (2). We include region specific year effects in 
columns (3) and (4), division specific year effects in columns (5) and (6), and state specific log linear time 
trend in columns (7) and (8). Standard errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2.10 Mechanism for Biased Beliefs: Single Information Exposures--Children not 
Moved from a Different State 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0116*** 0.0118*** 0.0121*** 0.0116*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0036 0.0029 0.0028 0.0034 

(0.006) (0.005) (0.005) (0.006) 

College x ln(year) x autism  -0.0002 0.0001 0.0002 0.0006 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x reported cases -0.0017** -0.0015* -0.0015* -0.0017** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x news counts 0.0009 0.0005 0.0003 0.0008 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news for vaccine 0.0048 0.0047 0.0044 0.0053 

(0.003) (0.003) (0.003) (0.003) 

College x ln(year) x news w/ science -0.0038* -0.0031 -0.0028 -0.0037 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news w/ authority -0.0043** -0.0040** -0.0038** -0.0038* 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news w/ parents 0.0028* 0.0026 0.0026 0.0027 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x autism search 0.0013 0.0004 0.0002 -0.0001 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x outbreaks search -0.0036*** -0.0035*** -0.0035*** -0.0038*** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x “vaccine autism” search 0.0031*** 0.0026*** 0.0026*** 0.0024** 

(0.001) (0.001) (0.001) (0.001) 

Sample size 249,358 249,358 249,358 249,358 

Area specific time trend No 
Region x 
year FE 

Division x 
year FE 

State x 
ln(year) 

Notes: The sample is restricted to children not moved from a different state. The outcome variable is a 
dummy equal to one if MMR shot is not up-to-date for the child. Coefficients are reported for triple 
interaction terms using all the information exposures presented in Table 3. We use z-scores for each type 
of information exposure. All controls in Table 4 are included. No area specific time trend is controlled in 
columns (1). We include region specific year effects in columns (2), division specific year effects in 
columns (3), and state specific log linear time trend in columns (4). Standard errors are reported in 
brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2.11 Mechanisms for Biased Beliefs: Information Sources--Children not Moved from 
a Different State 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0107*** 0.0108*** 0.0111*** 0.0106*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0037 0.0030 0.0028 0.0035 

(0.006) (0.005) (0.005) (0.006) 

Disease Prevalence rate 

College x ln(year) x harmful signal -0.0003 -0.0002 -0.0001 0.0004 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x safe signal -0.0018** -0.0016** -0.0016** -0.0018** 

(0.001) (0.001) (0.001) (0.001) 

News coverage 

College x ln(year) x harmful signal 0.0027* 0.0023 0.0021 0.0024 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x safe signal -0.0017 -0.0010 -0.0010 -0.0004 

(0.002) (0.002) (0.002) (0.002) 

Online searches 

College x ln(year) x harmful signal 0.0053*** 0.0041*** 0.0040*** 0.0035** 

(0.001) (0.001) (0.001) (0.002) 

College x ln(year) x safe signal -0.0024** -0.0021** -0.0022** -0.0025** 

(0.001) (0.001) (0.001) (0.001) 

Sample size 249,358 249,358 249,358 249,358 

Area specific time trend No 
Region x 
year FE 

Division x 
year FE 

State x 
ln(year) 

Notes: The sample is restricted to children not moved from a different state. The outcome variable is a 
dummy equal to one if MMR shot is not up-to-date for the child. For disease prevalence rate, the harmful 
signal is the z-score of autism prevalence rate; and the safe signal is the z-score of reported total cases of 
measles, mumps, and rubella. For news coverage, the harmful signal is the average z-scores of news count 
and percentage of news with parents’ opinions; and the safe signal is the average z-scores of percentage 
of news encouraging immunization, with words from authorities, and scientific proofs. For web searches, 
the harmful signal is the z-score of search index for measles, mumps, and rubella; and the safe signal is 
the average of z-scores of search index for autism and “vaccine and autism” topics. All controls in Table 
4 are included. No area specific time trend is controlled in columns (1). We include region specific year 
effects in columns (2), division specific year effects in columns (3), and state specific log linear time 
trend in columns (4). Standard errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2.12 Mechanisms for Biased Beliefs: Information Attitudes--Children not Moved 
from a Different State 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0095** 0.0097*** 0.0100*** 0.0095*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0037 0.0030 0.0028 0.0035 

(0.006) (0.005) (0.005) (0.006) 
College x ln(year) x 
    composite harmful signal 0.0061*** 0.0042** 0.0040** 0.0042** 

(0.002) (0.002) (0.002) (0.002) 
College x ln(year) x  
    composite safe signal -0.0018 -0.0007 -0.0008 -0.0007 

(0.002) (0.002) (0.002) (0.002) 

Sample size 249,358 249,358 249,358 249,358 

Area specific time trend No 
Region x 
year FE 

Division x 
year FE 

State x 
ln(year) 

Notes: The Sample is restricted to children not moved from a different state. The outcome variable is a 
dummy equal to one if MMR shot is not up-to-date for the child. Harmful composite is the average z-
scores of autism prevalence rate, news count, percentage of news with parents’ opinions, and search index 
for autism, and “autism and vaccine” topic. Safe composite is the average z-scores of reported total cases 
for measles, mumps, and rubella, percentage of news encouraging immunization, with words from 
authority, and scientific proofs, and search index for measles, mumps, and rubella. No area specific time 
trend is controlled in columns (1). We include region specific year effects in columns (2), division 
specific year effects in columns (3), and state specific log linear time trend in columns (4). Standard 
errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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3. Hospital Report Cards and Hospital Attractiveness to Commercial HMO 

Insurers 

3.1. Introduction 

Since 1990s, government has been devoted numerous resources to publish hospital report card 

with quality ratings for individuals to identify high quality providers as well as to promote 

efficiency on the provider side. Around 2007, price transparency action has been called for as a 

tool to bring medical cost under control by encouraging individuals to choose medical providers 

with cost-consciousness. Currently, more than half of the states report at least somewhat price 

information either alone or combined with existing quality report card. 

One major concern facing the price transparency action is what price to publish. There are 

three commonly reported prices, which differ in degrees of transparency and criticism they are 

facing (Sinaiko and Rosenthal 2011). The most commonly reported type is average charge by 

hospital. Charge is the list price of hospital stay, which is a poor proxy for the transaction price 

actually paid to the hospital. Besides, individual may consider charge as an indicator for quality 

because higher quality might be more costly.  Then, whether the intention of price transparency 

will be achieved depends on how the majority individuals perceive the charge information, 

which may affect the relative bargain position between hospitals and insurers, providing another 

mechanism for the published price information to play a role.  

This paper we use data from Pennsylvania to study whether published hospital report card 

information, including both quality ratings and average charge, for Coronary Artery Bypass 

Graft (CABG) surgery is correlated with hospital attractiveness to commercial HMO insurer. 

Pennsylvania CABG surgery market provides a good setting for us because average charge 

information along with quality ratings is reported annually since 1998, and there is no other type 
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of price information available in the state.  The impact of report card information on the behavior 

of individual (Wang et al. 2011) and health care providers (Dranove et. al. 2003; Kolstad 2013) 

has been widely studied, but with a focus on quality ratings only. Moreover, researchers have not 

directly studied the effect of report card information on insurers, making our study a supplement 

to the existing literature.  

We consider our research question under the following framework. Individuals choose 

insurance plan that maximize their utility, which depends positively on the expected utility they 

are able to gain from the hospital network of the insurer, given the insurance premium they have 

to pay. For individual insured by HMO plans, he may visit only the hospitals in that plan’s 

network.  On the other hand, insurers maximize their profit by having more enrollees, given their 

reimbursement rate. Therefore, which hospital to include in the network indirectly affects the 

attractiveness of the plan to individuals, and thus the profitability of the plan. A hospital will be 

more attractive to the insurer if individual shows strong preference toward the hospital, it might 

not be so if the hospital is substitutable by the existing hospitals in the insurer’s network. We 

assume that such incentive is stronger for commercial plans.  

Based on the above framework, we construct a proxy for hospital relative attractiveness to 

insurer by aggregating individual willingness-to-pay for a commercial HMO insurer if a 

particular hospital is included in its network using Pennsylvania Health Care Cost Containment 

Council (PHC4) inpatient discharge data. We exams whether hospital report card information is 

associated with the relative bargaining position between hospitals and insurers. We further 

provide a discussion on the likelihood that changes in bargaining relationship measured by 

hospital attractiveness will eventually result in adjustment of the network in a given plan.  
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The paper outlines as follows. In section 3.2, we provide a literature review. In section 3.3, we 

describe the data source. In section 3.4, we lay out empirical application. In section 3.5, we 

provide results and discussion. In section 3.6, we perform robustness check. In section 3.7, we 

present conclusions. 

3.2. Literature Review 

There is a large body of literature examining the impact of hospital report card. Studies that 

rely on observed consumer behavior find little effect of quality reporting at hospital level (Wang 

et al. 2011) and more evidence, though effects are relatively small, on aggregate market share 

(Dranove and Stefka 2008). Another line of research focuses on the behavior of health care 

provider by investigating selection against sicker patients (Dranove et al. 2003). Both of the lines 

of study focus on published quality ratings only. Our analysis complete the existing study by 

incorporating reported charge information into discussion and consider the effect of report card 

information on the bargaining position between hospitals and insurers, which has not been 

studied.  

Studies investigating the bargaining between hospitals and insurers focus on the impact of 

market competition on the negotiated price paid to hospitals. Town and Vistnes (2001) 

investigate the determinants of actual negotiated prices paid to hospitals by two major HMOs in 

Los Angeles area from 1990-1993 and find that hospital bargain power decreases when HMO 

can readily turn to alternative networks that exclude the hospital. Using detailed California 

claims data, Ho and Lee (2013) conclude that increasing insurer competition lower prices on 

average but the most attractive hospitals can leverage increased competition to negotiate higher 

rates. In our study, we do not observe insurance characteristics. Instead, we measure the bargain 
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relationship solely based on aggregated change in expected utility of individual if a hospital is 

included in the network of a particular insurer. 

3.3.  Data Source 

This paper pulls together information from several datasets. The first is the Pennsylvania 

Inpatient Hospital Discharge Data collected by PHC4. This dataset provides rich patient-level 

information on patient’s demographics, zip code of residence, health insurer, admission type, the 

quarter of admission, diagnosis and procedure details, and a four-digit unique hospital identifier. 

Hospital characteristics were taken from the second data source, American Hospital 

Association’s Annual Survey of Hospitals. We consider only CABG records and commercial 

health plan enrollees.  

The third dataset we use in our study is the Pennsylvania’s Guide to Coronary Artery Bypass 

Graft Surgery, which is referred as CABG report cards. The report card publication date and 

each patient’s admission year and quarter allow us to identify inpatient visits during the same 

report card episodes. Each report card publish one of the following ratings--“higher than 

expected”, “as expected”, and “lower than expected”--for in-hospital mortality, 30-day mortality, 

7-day readmission rate, and 30-day readmission rate for CABG hospitals. It also reports average 

post-surgical length of stay and total charge per patient. Consistent with previous studies, we use 

in-hospital mortality as a major quality measure. We define a hospital is of superior (inferior) if 

in-hospital mortality was rated as “lower than expected” (“higher than expected”) in the most 

recent report card. In order to incorporate rating information on both mortality and readmission 

rate, we create a set of composite scores as an alternative measure for hospital quality: we define 

a hospital as of inferior if it received at least one “higher than expected” rating, irrespective of its 

ratings in other categories; and we define a hospital as of superior if it received at least one 
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“lower than expected” and no “higher than expected” ratings.51 Accordingly, we re-define charge 

into categorical variables. We identify a hospital as of high charge if its average charge is in the 

upper quartile, and as of low charge if its average charge falls into the lower quartile in the most 

recent report card.52 Table 3.1 lists the number of hospitals by ratings and average charge across 

four report card episodes, as well as the sample years of PHC4 inpatient discharge data that are 

matched to each report card. During the study period, the number of CABG hospitals is quite 

constant. Our composite single scores provide more variations in hospital quality than in-hospital 

mortality ratings only. 

3.4. Empirical Application 

3.4.1. Hospital Demand 

We use a discrete choice model that allows for observed differences across individuals to 

estimate demand for hospitals during each CABG report card period. With some probability, 

individual ! needs CABG surgery. His utility from choosing hospital " is given by 

 <'( = ∅( + ℎ(- + ℎ(.'/ + $'(, (3.1) 

where ∅( , ℎ(  are unobserved and observed hospital characteristics, respectively; .' is observed 

individual characteristics, and $'(  is an idiosyncratic error term assumed to be i.i.d. Type I 

extreme value. Hospital characteristics include number of doctors per bed, and total bed size. 

Individual characteristics include gender, an indicator of age above 65, emergency status at 

admission, severity status (Charlson score greater than zero). In addition, we also include 

                                                           
51 During our study period, two mortality ratings are the same for all hospitals, as are the two ratings for 
readmission rate. However, there are variations in ratings across the two general categories. For example, 
some hospitals received “lower than expected” for mortality but “higher than expected” for readmission, 
or verse visa.   
52 We also create another set of composite scores for quality as a robustness check by incorporating 
reported information on length of stay. We assign “higher than expected” for hospitals with length of stay 
in the upper quartile, and “lower than expected” for hospitals with length of stay in the bottom quartile in 
the most recent report card. We then define superior and inferior for each hospital using the same 
definition as described above. 
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individual travel distance to the hospital, distance squared, and interactions between these and 

individual characteristics.53 Equation (3.1) is estimated using maximum likelihood techniques 

and PHC4 inpatient data for each report card period. 

Since the choice sets of commercial HMO enrollees are unobserved, we consider the choices 

made by commercial FFS and PPO enrollees, whose choice set is unrestricted. We assume that 

commercial FFS/PPO enrollees have the same preferences over hospitals as commercial HMO 

enrollees, conditional on their observed characteristics. That is, we use the estimated coefficients 

from the hospital demand equation for commercial FFS/PPO enrollees to predict commercial 

HMO enrollees’ favor for hospitals.  

Table 3.2 reports conditional logit estimates of hospital demand for commercial FFS/POS 

enrollees during each report card period. Each individual in the regression sample has the same 

choice set--all CABG hospitals operating in that report card period. In each column, the distance 

coefficient is negative and highly significant. The results suggest that higher-demanding patients, 

such as relatively severe or emergent, are less distance sensitive.  

3.4.2. Willingness-To-Pay 

Following previous literature (Ho and Lee 2013), we use changes in enrollee’s willingness-to-

pay (WTP) when a hospital is added to a particular plan’s network as a proxy for the relative 

attractiveness of the hospital to that insurer. It is one of the important determinants for the 

bargaining outcome between hospital and insurer.   

We first use the estimated coefficients from the hospital demand equation to predict the utility 

of HMO enrollees provided by each hospital network of HMO plans. We focus on most common 

                                                           
53 In order to estimate the distance between an individual and the various hospitals in his choice set, we 
obtained longitude and latitude of each hospital based on its street address and those of each patient based 
on his home zip code using user-written “geocode3” command in Stata. We then calculate travel distance 
between the two points in miles using user-written “geodist” command in Stata.   
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health plans listed in the Appendix C of Pennsylvania Uniform Claims and Billing Form 

Reporting Manual. Consistent with Ho and Pakes (2014), we infer the hospital network of each 

commercial HMO insurer using PHC4 inpatient data by assuming that a hospital is in the 

network if at least three patients are admitted from the particular insurer. Table 3.3 displays the 

commercial HMO plans studied in this paper along with the number of hospitals in its network 

during each report card episode.  Then, individual !’s expected utility from the hospital network 

offered by plan # when he needs CABG surgery can be written as 

 7G') = log (∑ exp (∅y( + ℎ(-z + ℎ(.'/{)(|}~ ), (3.2) 

where ü) is the set of hospitals offered to enrollees by plan # for CABG surgery.  The change in 

expected utility from having hospital "Äü) in the network is then given by 

 ∆7G'() = 7G') − 7G')(ü)\"#). (3.3) 

Prior to enrolling in health plan # and before individual ! is sick, individual !’s expected utility 

from having hospital "Äü) in the network is then given by 

 &Éü'() = Ñ'∆7G'(), (3.4) 

where Ñ' is individual !’s probability of admission to any hospital for CABG surgery conditional 

on single age, gender, and year in Pennsylvania.54 We then aggregate this measure over all HMO 

enrollees during a given report card period to obtain a measure of hospital "’s attractiveness to 

plan # in our final analysis, which is given by  

 &Éü() = ∑ Ñ'∆7G'()' . (3.5) 

As noted by Ho and Lee (2013), this measure captures not only hospital quality but also 

substitutability in the plan network. The relative differences across hospitals’ &Éü  in a 

                                                           
54 The probability is estimated using PHC4 inpatient data and population by single age, gender and year in 
Pennsylvania from http://seer.cancer.gov/popdata. 



92 
 

particular plan depend on characteristics of both the hospital itself and the other hospitals in the 

same network. 

3.4.3. Main Regression Equation 

The research question we interested in is whether public report cards information will affect 

the relative attractiveness of a hospital to an insurer in the existing network. In our final 

regression we consider hospital " in the network of plan # during report card episode B 

 &Éü()Ö =  /7B"P!&#R(Ö  +  /2oℎ"B#:(Ö  + mÖ + 3ℎ( + Ü) + A'(), (3.6) 

where the outcome variable is the hospital "’s relative attractiveness to insurer # in the hospital 

report card period B;  B"P!&#R(Ö and oℎ"B#:(Ö are report card information on quality and patient 

charge; mÖ is report card episode fixed effects; ℎ(  is observed hospital characteristics, including 

non-for-profit status, indicator of teaching council member, doctors per bed, and bed size; and  

Ü)  is plan fixed effects. 55  Coefficients of interest are /7  and /2 .The impact of report card 

information on hospital relative attractiveness to insurer is identified by variations in reported 

ratings and charge across hospitals in the same network.  

3.5. Results and Discussion 

3.5.1. Main Results 

Table 4 provides statistics summary for the full sample and each subsample within a given 

report card episode. Overall, hospital attractiveness to insurer and the size of insurer’s network 

decrease over time. In contrast, reported charge increases across the four episodes and reported 

ratings for both in-hospital mortality and composite single score fluctuate.  

To characterize the impact of report card information on hospital relative attractiveness to 

insurer, we estimate equation (6). Table 3.5 reports coefficients for reported ratings and charge, 

                                                           
55 We use the most recent value for hospital characteristics during each report card episode. For example, 
for report card episode 2009/3 -2010/4, we obtain AHA hospital information in 2010.  
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and interactions between these two. In column (1)-(4), ratings are defined based on in-hospital 

mortality: superior (inferior) is a dummy equal to one if  in-hospital mortality is lower (higher) 

than expected in the report card episode; in column (5)-(6), ratings are defined based on 

composite single score. Other controls are included step by step. Column (1) and (5) include 

report card fixed effects; Column (2) and (5) include hospital characteristics, including non-for-

profit status, indicator for member of teaching council, doctors per bed, and bed size; Column (3), 

(4), (7), and (8) further include plan fixed effects.  

We find that coefficients for charge variables are consistent with our expectations in signs and 

consistently significant. In contrast, all coefficients for report card ratings are insignificant, 

although the signs are generally as predicted. Compared to the sample mean, high charge 

hospitals are 53.4% less attractive to insurer, and low charge hospitals are 76.1% more attractive 

to insurer given the network of the plan, which suggests a quite substantial impact of reported 

charge on hospital relative attractiveness. Among variables for hospital characteristics, only 

hospital bed size remains positive and significant at 5 percent level across all specifications. It 

suggests that big hospitals enjoy more provider leverage in contract negotiation as they may 

generate more patient volume for a given insurer (Berenson et al., 2012). 

In column (4) and (8), we add interaction terms between reported ratings and charge with the 

most inclusive specification. The estimate for high charge interacted with in-hospital mortality 

lower than expected is not available, because there is no observation in this category in our final 

sample. Upon the inclusion of these interactions, main effects of rating and charge variables do 

not change materially, and all the interaction terms are insignificant. The result suggests that 

there is no interacted impact of ratings and charge on hospital relative attractiveness. 
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We expect that plans with a small hospital network are affected by the reported charge more 

because patient volumes are guaranteed by more hospitals in large networks making relative 

importance of one single hospital to be less. To test our hypothesis, we define a plan has small 

network if number of hospitals in its network is in the bottom quartile of the whole sample. And 

we include interaction terms between the small network indicator and report card information in 

regressions. Results are reported in Table 3.6. In column (1) and (2), superior and inferior ratings 

are defined based on in-hospital mortality; in contrast, in column (3) and (4), they are defined 

based on composite single score. Consistent with above findings, both plan types show distastes 

for high charge hospitals at 5-percent level. In contrast, only small plan favors low charge 

hospitals. Compared to the mean, a low charge hospital in the most recent report card episode is 

around 80% more attractive to the plan. In contrast, attractiveness only increases by 30% for low 

charge hospitals in non-small network and the estimate is not statistically different from zero.56 

The result also suggests that superior hospitals are more attractive in small sized network 

compared to non-small ones, although the findings are not consistent when we consider in-

hospital mortality only.   

3.5.2. Discussion 

The above findings suggest that reported charge will affect hospital attractiveness to insurer in 

a given plan. Overall, insurers prefer low charge hospitals and dislike high charge hospitals. 

Impact from report card ratings is weak and only exists in small network for superior hospitals, if 

any.  However, whether the impacts on hospital relative attractiveness to insurers will eventually 

result in inclusion or exclusion of hospitals for a given plan still remains uncertain. Since we do 

not observe actual change of plan’s network over year, we have to infer it based on our implied 

                                                           
56 The means for willingness-to-pay is 1.189 for small sized network and 0.371 for non-small sized 
network. The impact of low charge on hospital attractiveness in percentage term is around 80% 
((0.145+0.185)/1.189) in small sized network and about 30% (0.145/0.371) in non-small sized network. 
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network, which may introduce measurement errors. We define a hospital is added into a given 

plan if the hospital does not exist in the plan’s network during last report card episode. 

Accordingly, we define a hospital is dropped from a given plan if the hospital exist in the plan’s 

network during the following report card episode, but no longer does in the current report card 

episode.  Then, we consider, for hospital " in plan # during report card episode B 

 !&o*<R!p&()Ö = á&Éü()Ö + mÖ + 3ℎ( + ∅( + Ü) + [()Ö, (3.7) 

 :.o*<R!p&()Ö = á&Éü()Ö + mÖ + 3ℎ( + ∅( + Ü) + [′()Ö, (3.8) 

where !&o*<R!p&()Ö is a dummy equal to one if the hospital is newly included in the network 

during the current report card period, B − 1 ; :.o*<R!p&()Ö is a dummy equal to one if the 

hospital is dropped from the network in the next report card period, B + 1; consistent with above, 

&Éü  is willingness-to-pay at hospital-plan level, mÖ  is report card episode fixed effect, ℎ(  is 

hospital observed characteristics, ∅( is hospital fixed effects, and Ü) is plan fixed effects. The 

coefficient of interest is á, which is expected to be positive in equation (7) and negative in 

equation (8). Because we predict that a given hospital is more likely to be added into a plan that 

values it more and more likely to be dropped from a plan with distaste for it.  

Table 3.7 reports estimates from equation (7) in panel A and those from equation (8) in panel 

B. Other control variables are included step by step from column (1)-(3). We find that as relative 

attractiveness to insurer increases, a given hospital is more likely to have more HMO contracts 

with commercial insurer. The impact is significant as expected. In the most inclusive 

specification, the hospital is 4.22 percentage points more likely to be included in a plan’s 

network in response to one unit increase in willingness-to-pay, which corresponds to an impact 

of 27% in percentage term.57 However, contradicting to our expectations, willingness-to-pay fails 

                                                           
57 Average probability of hospital inclusion in network in the sample is 0.156.  
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to explain the exclusion of hospitals from plans because the estimates in panel B are negligible 

and insignificant across all specifications. One possible explanation is that employer are resistant 

to choice-limiting networks with few providers. Therefore, plans may lack an important 

bargaining chip, without a credible threat of excluding a provider from their network (Berenson 

et al. 2012). Based on our estimation, hospital with reported low charge are 20.5% (=76.4% x 

27%) more likely to be added into an HMO plan’s network by changing the relative 

attractiveness to its insurer.  

3.6. Robustness  

We perform two types of robustness check. First, we replicate our main results using superior 

and inferior ratings that include post-surgical length of stay. Results are reported in Table 3.8. 

Our findings are generally robust to this change, although estimates lose significance when full 

interaction terms between reported ratings and charge are included.  

Second, we check the sensitivity of our results by changing the definition of the implied 

network. Column (1) of Table 3.9 reports estimates from the sample that assume a hospital is in 

the network of a particular insurer if at least 1 patient is admitted from that insurer, which is a 

broader definition but it may also wrongly counts patients who go out-of-network into a plan’s 

network; and column (2) displays estimates form the sample that assume a hospital is in the 

network of a particular insurer if at least 5 patients are admitted from that insurer, which is a 

narrower definition but it may be too selective given the small patient volume of CABG surgery 

from commercial enrollees in each report card episode. Panel A reports estimated coefficients of 

equation (6); Panel B displays estimated coefficients of equation (7); and Panel C provides 

estimated coefficients of equation (8). We find that results in panel A are not sensitive to the 

change of network definition. Although the impact of high charge on hospital relative 
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attractiveness is not significant, impact of low charge are negative and significant. More hospital 

attractiveness to insurer lead to higher probability of inclusion in the plan, however, the estimates 

are not significant if we use narrower definition of plan network.  

3.7. Conclusion 

This paper investigates whether published report card information will affect hospital relative 

attractiveness to commercial HMO insurer for CABG surgery in Pennsylvania over four report 

card episodes from 2006-2010.  We consider impact of both reported hospital ratings and charge. 

We use change in expected willingness-to-pay for the plan if a hospital is dropped from the 

network of a particular insurer as a proxy for hospital relative bargaining position against insurer, 

given the characteristics of the plan. We hypothesis that report card information exerts an impact 

on the bargaining position between hospital and insurer as it affect the patient flow a provider 

will generate to the insurer.   

We first estimate hospital demand among commercial FFS/PPO enrollees during each report 

card episode. We then use the estimates to imply the tastes of commercial HMO enrollees. We 

calculate change in consumer expected utility of holding a particular plan if a hospital is 

excluded from its network using implied network from PHC4 inpatient discharge data. A 

hospital is assumed in the network of a particular insurer if at least three patients are admitted 

from the insurer. We finally aggregate over patients to obtain the outcome variable of interest, 

willingness-to-pay at hospital-plan level. Our results suggest that reported charge is strongly 

associated with hospital relative attractiveness. Given the insurance plan, low charge hospitals 

are more attractive and thus less likely to be substitute by the other alternatives. Based on our 

calculation, hospitals with reported low charge are 20.5% more likely to be added into the 

network of an HMO plan due to changes in the relative attractiveness to its insurer.  
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Our study has several limitations. First, we do not observe the actual network of commercial 

HMO plans. The implied network may introduce measurement errors. Second, characteristics of 

the insurer are not available to us, such as premiums, number of enrollees, and rated performance 

of the plan, all of which may also affect the attractiveness of the plan to patient, and thus affect 

negotiation outcomes between hospital and insurer. Third, we are not able to adequately explain 

the reason for plans to drop a hospital from their network. These are possible directions to 

improve in the future.  
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Table 3.1 Hospital Report Card Ratings and Average Charge 

Publication year/quarter 2009/3 2008/3 2007/2 2006/1 

Total number of hospitals 60 59 60 60 
Number of hospitals by in-hospital mortality ratings   
    Superior 1 5 6 5 
    Inferior 4 3 2 4 
      

Number of hospitals by composite single scores  
    Superior 2 5 8 9 
    Inferior 11 12 9 11 
 
Hospital average charge in thousands 
    Mean 126.018 117.736 113.522 107.270 
    Standard deviation (76.871) (73.234) (71.856) (67.523) 

Data collection year 2007 2006 2005 2004 

Report card period matched to 
2009/4-
2010/3 

2008/4-
2009/3 

2007/3-
2008/3 

2006/2-
2007/2 

Note: The data source is Pennsylvania’s Guide to Coronary Artery Bypass Graft Surgery. CABG 
hospitals with quality ratings in each report card episode are included. For in-hospital mortality ratings, 
superior (inferior) is defined as a hospital received “lower than expected” (“higher than expected”) rating 
in the most recent report card. Composite scores combine report card grades on in-hospital mortality, 30-
day mortality, 7-day readmission, and 30-day readmission. A superior rating means a hospital performed 
above expectation in at least one of the categories, and below expectation in none. An inferior rating 
means a hospital performed below expectation in at least one category. Hospital charges are in thousands 
and unadjusted for inflation. 
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Table 3.2 Hospital Demand Estimates from A Conditional Logit Model 

  (1) (2) (3) (4) 

Report card episode 2009/4-2010/3 2008/4-2009/3 2007/3-2008/3 2006/2-2007/2 

Doctors per bed 0.4745 -0.5499 -3.2886*** -0.5513 

(1.036) (1.701) (1.207) (0.861) 

Bed size 0.1338 -0.1431 -0.1881 0.261 

(0.248) (0.329) (0.17) (0.233) 

Distance -0.1696*** -0.1538*** -0.1517*** -0.1398*** 

(0.010) (0.009) (0.008) (0.008) 

Distance squared 4.8594*** 1.2637*** 1.7436*** -0.0249 

(0.446) (0.485) (0.486) (0.235) 

Severity x doctors per bed 0.0747 0.3331 0.7935*** 0.3675 

(0.211) (0.233) (0.215) (0.227) 

Severity x bed size -0.04 -0.0289 -0.0438* 0.0114 

(0.030) (0.025) (0.023) (0.023) 

Severity x distance 0.0213*** 0.0176*** 0.0200*** -0.0083* 

(0.007) (0.006) (0.005) (0.005) 

Severity x distance squared -1.3082*** -0.2361 -0.8246*** 0.321 

(0.374) (0.179) (0.162) (0.223) 

1{age>=65} x doctors per bed 0.2702 0.2354 -0.1954 0.1302 

(0.269) (0.277) (0.270) (0.262) 

1{age>=65} x bed size -0.0469 -0.0068 -0.0039 -0.0176 

(0.042) (0.035) (0.032) (0.031) 

1{age>=65} x distance 0.0068 -0.004 0.0124** 0.0067 

(0.005) (0.008) (0.006) (0.005) 

1{age>=65} x distance squared 0.0247 -0.8430** -0.6598* 0.2122*** 

(0.069) (0.333) (0.347) (0.053) 

Male x doctors per bed -0.0537 0.1205 0.1513 0.3108 

(0.250) (0.261) (0.241) (0.269) 

Male x bed size 0.0691* -0.0186 -0.0451* 0.005 

(0.039) (0.030) (0.025) (0.028) 

Male x distance 0.0138* 0.0157** 0.0023 0.0258*** 

(0.008) (0.007) (0.007) (0.007) 

Male x distance squared -0.8702** -0.7649* -0.6658 0.1926 

(0.396) (0.451) (0.481) (0.232) 

Emerge x doctors per bed -0.0024 -0.0828 0.0896 0.0922 

(0.193) (0.204) (0.188) (0.197) 

Emerge x bed size -0.032 -0.0429* -0.0881*** -0.0830*** 

(0.028) (0.023) (0.021) (0.021) 

Emerge x distance 0.0249*** 0.0049 0.0002 0.0168*** 

(0.006) (0.005) (0.005) (0.005) 
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Emerge x distance squared -2.4400*** 0.5115*** 1.5566*** 0.4893** 

(0.338) (0.079) (0.198) (0.242) 

Sample size 114,780 120,000 156,529 161,711 

Hospital fixed effects Yes Yes Yes Yes 

Notes: Standard errors are reported in parentheses. Each column is a separate regression using samples 
from PHC4 inpatient discharge during the corresponding report card episode. Regression samples only 
include commercial HMO/PPO enrollees. Distance is the miles between the zip code of patient’s 
residence and hospital in his choice set. Severity is a dummy equal to one if patient’s Charlson index 
greater than zero. And emerge is a dummy equal to one if patient’s admission type is emergent and urgent. 
The specification includes hospital fixed effects. *significant at 10%; ** significant at 5%; ***significant 
at 1%. 

 

  



102 
 

Table 3.3 Implied Network of Commercial HMO Insurer in Pennsylvania 

    
Number of hospitals in the network during 
report card episode (year/quarter) 

Plan NAIC  
2009/4-
2010/3 

2008/4-
2009/3 

2007/3-
2008/3 

2006/2-
2007/2 

Aetna Health, Inc 95109 21 27 36 30 

AmeriHealth 95044 1 1 2 2 

CIGNA Healthcare of PA 95121 6 3 7 1 

Geisinger Health Plan 95923 7 8 9 10 

HealthAmerica (Central and Pittsburgh) 95060 10 10 15 16 

HMO of Northeastern Pennsylvania 96601 5 6 6 5 

Horizon Healthcare PA 95359 0 0 1 1 

Keystone Health Plan Central, Inc. 95199 5 9 10 10 

Keystone Health Plan East, Inc. 95056 22 23 22 27 

Keystone Health Plan West, Inc. 95048 12 9 12 10 

Optimum Choice, Inc. of PA 95225 0 0 0 1 

UPMC Health Plan, Inc. 95216 9 10 10 10 

Notes: Only most common health insurer and HMO plans are included in the table. Sizes of hospital 
network reported are implied using PHC4 inpatient discharge data during each report card episode by 
assuming that a hospital is in the network if at least three patients are admitted form the particular insurer.  
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Table 3.4 Sample Statistics 

    Report card episode (year/quarter) 

Full sample 
2009/3-
2010/4 

2008/3-
2009/4 

2007/3-
2008/3 

2006/2-
2007/2 

(1) (2) (3) (4) (5) 

            

WTP 0.573 0.398 0.620 0.602 0.647 

(1.352) (0.811) (1.440) (1.388) (1.579) 

Superior rating based on  

In-hospital mortality 0.050 0.010 0.069 0.032 0.085 

(0.218) (0.101) (0.254) (0.177) (0.280) 

Composite single score 0.118 0.041 0.127 0.129 0.161 

(0.323) (0.199) (0.335) (0.337) (0.369) 

Poor rating based on  

In-hospital mortality 0.084 0.082 0.098 0.089 0.068 

(0.277) (0.275) (0.299) (0.285) (0.252) 

Composite single score 0.158 0.163 0.216 0.121 0.144 

(0.366) (0.372) (0.413) (0.327) (0.353) 

Charge 111.059 120.739 116.545 104.94 104.709 

(19.934) (20.764) (19.839) (20.951) (17.010) 

Non-for-profit 0.943 0.949 0.931 0.952 0.941 

(0.231) (0.221) (0.254) (0.215) (0.237) 

Doctors per bed 0.181 0.166 0.171 0.182 0.199 

(0.246) (0.240) (0.243) (0.248) (0.253) 

Bed size 4.428 4.578 4.499 4.377 4.297 

(2.224) (2.430) (2.314) (2.208) (1.989) 

Member of teaching council 0.396 0.357 0.412 0.395 0.415 

(0.490) (0.482) (0.495) (0.491) (0.495) 

Number of hospitals in the network  16.941 14.143 16.216 18.5 18.254 

(9.300) (6.867) (8.746) (10.687) (9.457) 

Sample size 442 98 102 124 118 

Notes: Mean coefficients are reported for the full sample and subsamples for each report card episode. 
Standard deviations are reported in parentheses. Superior rating based on in-hospital mortality is the 
rating of lower than expected; Inferior rating based on in-hospital mortality is the rating of higher than 
expected; the composite single score combines report card ratings on in-hospital mortality, 30-day 
mortality, 7-day readmission, and 30-day readmission. Superior rating based on composite single score is 
defined as above expectation in at least one of the categories, and below expectation in none; Inferior 
rating based on composite single core is defined as below expectation in at least one category. Charge is 
in thousand dollars and unadjusted for inflation. 
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Table 3.6 Willingness-To-Pay and the Size of Plan's Implied Network 

Outcome=WTP 

In-hospital mortality   Composite single score 

(1) (2)   (3) (4) 

            

High charge -0.400** -0.452** -0.378** -0.429** 

(0.167) (0.185) (0.166) (0.184) 

Low charge 0.102 0.076 0.145 0.111 

(0.168) (0.177) (0.171) (0.181) 

Superior 0.221 0.236 -0.127 -0.126 

(0.348) (0.347) (0.236) (0.240) 

Inferior -0.137 -0.0616 -0.221 -0.19 

(0.260) (0.261) (0.193) (0.193) 

Small size x high charge 0.954 0.814 0.907 0.768 

(0.604) (0.604) (0.606) (0.606) 

Small size x low charge 0.929*** 0.976*** 0.815*** 0.868*** 

(0.260) (0.261) (0.270) (0.271) 

Small size x superior 0.590 0.489 0.878** 0.809** 

(0.603) (0.601) (0.397) (0.396) 

Small size x inferior 0.257 0.157 0.264 0.224 

(0.535) (0.536) (0.411) (0.411) 

Sample size 443 443 443 443 

Report card fixed effects yes yes yes yes 

Hospital characteristics no yes no yes 

Notes: Standard errors are reported in parentheses. Each column is a separate regression. The dependent 
variable is hospital willingness-to-pay at hospital-plan level. High charge is defined as hospital charge in 
the top quartile in the report card episode; low charge is defined as hospital charge in the bottom quartile 
in the report card episode. In column (1) and (2), report card ratings are defined  based on in-hospital 
mortality, that is, the hospital is considered as superior (inferior) if in-hospital mortality in a given report 
card episode is lower (higher) than expected. In column (3) and (4), report card ratings are defined based 
on composite single score, which combines report card ratings on in-hospital mortality, 30-day mortality, 
7-day readmission, and 30-day readmission. Superior rating based on composite single score is defined as 
above expectation in at least one of the categories, and below expectation in none; Inferior rating based on 
composite single core is defined as below expectation in at least one category. Small size is a dummy 
equal to one if number of hospitals in the plan is in the bottom quartile of the whole sample. For the other 
controls, column (1) and (3) include report card fixed effects; column (2) and (4) further include hospital 
characteristics, including non-for-profit status, indicator for member of teaching council, doctors per bed, 
and bed size. *significant at 10%; ** significant at 5%; ***significant at 1%.  
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Table 3.7 Change of Plan's Implied Network and Willingness-To-Pay 

  (1) (2) (3) 

Panel A: outcome=probability of inclusion 

WTP 0.0312* 0.0725*** 0.0422** 

(0.016) (0.020) (0.020) 

Sample size 326 326 326 

Panel B: outcome=probability of exclusion 

WTP 0.0037 0.0217 -0.0018 

(0.015) (0.018) (0.019) 

Sample size 347 347 347 

Report card episode fixed effects yes yes yes 

Hospital characteristics and hospital fixed effects  no yes yes 

Plan fixed effects no no yes 

Notes: Standard errors are reported in the parentheses. Each column of each panel is a separate regression. 
In panel A, the dependent variable is a dummy equal to one if the hospital is newly included into a given 
network compared to last report card episode. In panel B, the dependent variable is a dummy equal to one 
if the hospital is dropped in a given network compared to the following report card episode. Estimated 
coefficients for the variable WTP are reported. Other control variables are included step by step. In 
column (1), report card episode fixed effects are included; in column (2), hospital fixed effects and 
hospital characteristics, including non-for-profit status, indicator for member of teaching council, doctors 
per bed, and bed size, are included. In column (3), plan fixed effects are further included. *significant at 
10%; ** significant at 5%; ***significant at 1%. 
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Table 3.8 Robustness Check A 

Outcome=WTP (1) (2) (3) 

High charge -0.319* -0.443 -0.401** 

(0.189) (0.294) (0.195) 

Low charge 0.439*** 0.329 0.072 

(0.155) (0.234) (0.181) 

Superior 0.004 -0.143 0.040 

(0.153) (0.207) (0.185) 

Inferior -0.030 -0.068 -0.137 

(0.146) (0.200) (0.166) 

High charge x superior 0.336 

(0.789) 

High charge x inferior 0.122 

(0.354) 

Low charge x superior 0.321 

(0.332) 

Low charge x inferior 0.012 

(0.358) 

Small size x high charge 0.774 

(0.649) 

Small size x low charge 0.905*** 

(0.291) 

Small size x superior 0.212 

(0.283) 

Small size x inferior 0.066 

(0.31) 

Sample size 443 443 443 

Report card episode fixed effects yes yes yes 

Hospital characteristics yes yes yes 

Plan fixed effects yes yes no 

Notes: Standard errors are reported in parentheses. Each column is a separate regression. The dependent 
variable is willingness-to-pay at hospital-plan level. High charge (low charge) is a dummy equal to one if 
hospital charge is in the top (bottom) quartile in the report card episode. Superior and inferior ratings are 
defined based on composite single score that includes post-surgical length of stay. Superior is a dummy 
equal to one if at least one of the categories is above expectation (in the top quartile for post-surgical 
length of stay), and below expectation (in the bottom quartile for post-surgical length of stay) in none; 
Inferior rating based on composite single core is defined as below expectation in at least one category. 
Small size is a dummy equal to one if number of hospitals in the plan is in the bottom quartile of the 
whole sample. *significant at 10%; ** significant at 5%; ***significant at 1%. 
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Table 3.9 Robustness Check B 

  

Define plan's hospital 
network if number of 
discharge>=1 

Define plan's hospital 
network if number of 
discharge>=5 

  (1) (2) 

Panel A: outcome=WTP 

High charge -0.136 -0.462 

(0.131) (0.311) 

Low charge 0.275** 0.736*** 

(0.112) (0.282) 

Superior 0.067 0.317 

(0.196) (0.411) 

Inferior -0.163 0.361 

(0.157) (0.355) 

Sample size 688 318 

Panel B: outcome=probability of inclusion 

WTP 0.029* -0.001 

(0.015) (0.016) 

Sample size 507 229 

Panel C: outcome=probability of exclusion 

WTP 0.005 -0.012 

(0.015) (0.021) 

Sample size 529 259 

Notes: Standard errors are reported in parentheses. Each column of each panel is a separate regression. 
We assume that a hospital is in the network if at least 1 patient is admitted from the particular insurer in 
column (1); and we assume that a hospital is in the network if at least 5 patients are admitted from the 
particular insurer in column (5). In panel A, the dependent variable is willingness-to-pay at hospital-plan 
level. High charge (low charge) is a dummy equal to one if hospital charge is in the top (bottom) quartile 
in the report card episode. Superior and inferior are defined based on in-hospital mortality ratings. In 
panel B, the dependent variable is a dummy equal to one if the hospital is newly included into a given 
network compared to last report card episode. In panel C, the dependent variable is a dummy equal to one 
if the hospital is dropped in a given network compared to the following report card episode. All 
specifications include report card episode fixed effects, hospital characteristics, including non-for-profit 
status, indicator for member of teaching council, doctors per bed, and bed size, and plan fixed effects. 
Specifications in panel C also include hospital fixed effects. *significant at 10%; ** significant at 5%; 
***significant at 1%. 
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Table A4 Variations in Maternal and Paternal Impacts by Family Size 

  Dependent variables 

  LBW 
SGA  
(5th pctl.) 2SD < mean FT LBW 

(1) (2) (3) (4) 

        

Panel A: the maternal sample 

G2 LBW (or IUGR) 0.0177* 0.0231*** 0.0204** 0.0228** 

(0.010) (0.008) (0.008) (0.010) 

G2 LBW (or IUGR) x large family 0.0151 -0.0020 -0.0039 -0.0026 

(0.016) (0.014) (0.014) (0.017) 

Sample size 280,030 280,030 280,030 255,100 

Panel B: the paternal sample 

G2 LBW (or IUGR) -0.0206 0.0238 0.0061 0.0228 

(0.025) (0.024) (0.022) (0.028) 

G2 LBW (or IUGR) x large family 0.0309 -0.0455 0.0084 0.0229 

(0.046) (0.041) (0.039) (0.050) 

Sample size 125,078 125,078 125,078 113,639 

Notes: Standard errors clustered at child’s hospital and year level are reported in parentheses. Each 

column of each panel is a separate regression. Results in Panel A are estimated using the maternal sample; 

and results in Panel B are estimated using the paternal sample. The dependent variables are dummies for 

child’s LBW (or IUGR). Coefficients are reported for G2’s LBW (or corresponding IUGR indicator) and 

its interaction with an indicator for large family size. Large family is a dummy equal to one if the child 

has at least two older siblings. All regressions include the full set of control variables and grandmother 

fixed effects. *** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at 

the 10 percent level. 
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Table A5 Test on Identical Effect of G2 LBW on the Probability of Being Observed in the 
Samples by Group 

  p-values of F-test 

G2 females G2 males 

(1) (2) 

  

G2 birth cohort 0.708 0.020 

G1 marital status at G2 birth 0.662 0.752 

G2 birth order 0.123 0.177 

G1 age at G2 birth 0.142 0.457 

G2 birth place 0.476 0.040 

G1 years of schooling at G2 birth 0.888 0.748 

G1 county of residence at G2 birth 0.837 0.858 

G1 spousal age at G2 birth 0.001 0.049 

Notes: P-values of F-test on null hypothesis that the effect of LBW on the probability of being observed 

in the maternal (paternal) sample is the same across each of the above characteristics are reported for G2 

females (males). The estimation sample includes all female (in column (1)) or male (in column (2)) 

singleton births in Taiwan between 1978 and 1985 with gestation between 31 and 45 weeks and birth 

weight between 400 and 6,500 grams. The probability of being observed is the probability that the 

singleton mother or father is observed giving birth to a singleton in Taiwan between 1999 and 2006.  
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Table A6 Test on Identical Effect of G2 LBW (or IUGR) on Child's LBW (or IUGR) by 
Group 

  Dependent variables 

  LBW 
SGA  
(5th pctl.) 2SD < mean FT LBW 

(1) (2) (3) (4) 

Panel A: the maternal sample 

G1 spousal age at G2 birth 0.357 0.418 0.754 0.174 

Panel B: the paternal sample 

G2 birth cohort 0.128 0.239 0.357 0.541 

G2 birth place 0.955 0.022 0.479 0.703 

G1 spousal  age at G2 birth 0.716 0.046 0.903 0.243 

Notes: P-values of F-test on null hypothesis that the effect of G2’s LBW (or IUGR) on child’s LBW (or 

IUGR) is the same across variables that fail the test presented in Table A5. Results in panel A are 

estimated using the maternal sample; and results in panel B are estimated using the paternal sample. Each 

column of each row is a separate regression. The dependent variables are dummies for child’s LBW (or 

IUGR). Interactions between corresponding dummies for mother’s (or father’s) LBW (or IUGR) and each 

categories of the presented variables are included in the regression. All regressions also include the full 

set of control variables and grandmother fixed effects.  
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Table A7 Gender Differences in Maternal Impacts of LBW (or IUGR) by Family Size 

  Dependent variables 

LBW 
SGA 

(5th pctl.) 2SD < mean FT LBW 

(1) (2) (3) (4) 

          

G2 LBW (or IUGR) 0.0261*** 0.0384*** 0.0255*** 0.0305*** 

(0.009) (0.008) (0.007) (0.009) 

G2 LBW (or IUGR) x male -0.0056 -0.0305*** -0.0145** -0.0177** 

(0.007) (0.006) (0.006) (0.007) 

G2 LBW (or IUGR) x male x large family -0.0104 0.0044 0.0346** 0.0125 

(0.016) (0.014) (0.014) (0.018) 

Sample size 280,030 280,030 280,030 255,100 

Notes: Standard errors clustered at child’s hospital and year level are reported in parentheses. Each 

column is a separate regression. The dependent variables are dummies for child’s LBW (or IUGR). 

Coefficients are reported for corresponding dummy for mother’s LBW (or IUGR), its interaction with 

indicator for male birth, and a triple interaction term among mother’s LBW (or corresponding IUGR 

indicator), an indicator for male birth, and an indicator for large family size. Large family is a dummy 

equal to one if the child has at least two older siblings. All regressions include the full set of control 

variables and grandmother fixed effects.  
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Table A8 Probability of Observing a Male Birth as a Function of Mother's LBW (or IUGR) 

   Independent variables 

Dependent variable G2 LBW 
G2 SGA  
(5th pctl.) 

G2 2SD 
 < mean G2 FT LBW 

(1) (2) (3) (4) 

Male 0.0077 0.0144 0.0013 0.0035 

(0.020) (0.016) (0.024) (0.025) 

Sample size 280,030 280,030 280,030 255,100 

Notes: Standard errors clustered at child’s hospital and year level are reported in parentheses. Each 

column of each panel is a separate regression. The dependent variable is an indicator equal to one if the 

child is a male. Coefficients are reported for dummies for mother’s (or father’s) LBW (or IUGR). Results 

are estimated using the maternal sample. All regressions include the full set of control variables and 

grandmother fixed effects. 
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Table A9 Variations in the Impact of Mother's LBW (or IUGR) on Male Birth by SES 

High SES group 

County-level 
unemployment 

rate 

Town-level 
average  
income 

County-level  
parental 

education 

County-level 
educational 

improvement 

(1) (2) (3) (4) 

   

Panel A: impact of G2 LBW on G3 male birth 

G2 x LBW 0.0062 0.0071 -0.0026 0.0022 

(0.022) (0.022) (0.022) (0.022) 

G2 LBW x high SES 0.0027 0.0016 0.0274 0.0121 

(0.016) (0.028) (0.022) (0.022) 

Panel B: impact of G2 SGA (5
th 

pctl.) on G3 male birth 

G2 SGA (5th pctl.) 0.0119 0.0119 0.0117 0.0033 

(0.017) (0.018) (0.017) (0.018) 

G2 SGA (5th pctl.)x high SES 0.0047 0.0067 0.0072 0.0237 

(0.013) (0.022) (0.018) (0.017) 

Panel C: impact of G2 2SD < mean on G3 male birth 

G2 2SD < mean -0.0080 -0.0038 -0.0045 -0.0071 

(0.027) (0.027) (0.026) (0.027) 

G2 2SD < mean x high SES 0.0168 0.0145 0.0161 0.0180 

(0.020) (0.035) (0.028) (0.027) 

 

Sample size 280,030 280,030 280,030 280,030 

Panel D: impact of G2 FT LBW on G3 male birth 

G2 FT LBW -0.0003 0.0067 0.0013 0.0004 

(0.027) (0.028) (0.027) (0.028) 

G2 FT LBW x high SES 0.0068 -0.0088 0.0060 0.0068 

(0.021) (0.036) (0.028) (0.028) 

 

Sample size 255,100 255,100 255,100 255,100 

Notes: Standard errors clustered at child’s hospital and year level are reported in parentheses. Each 

column of each panel is a separate regression. The dependent variable is a dummy equal to one if the 

child is a male. Coefficients are reported for mother’s LBW (or IUGR) and the interaction between 

mother’s LBW (or IUGR) and indicators for high SES group. In column (1), high SES is defined as 

county-level unemployment rate at child’s birth year below the mean of the sample; in column (2), high 

SES is defined as town-level average income at child’s birth year above the mean of the sample; in 

column (3), high SES is defined as county-level percentage of at least one parent with years of schooling 

greater than 12 at child’s birth above the mean of the sample; and in column (4), high SES is defined as 

change in county-level average parental education when giving birth from G1 to G2 is above the mean of 

the sample.  
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Appendix B 

Following the conceptual framework of “fetal origins” put forward by Douglas (2006), we 

demonstrate that the greater adaptability to intrauterine environment of females indicated by the 

literature (Aiken and Ozanne 2013) leads to a higher observed correlation with maternal LBW 

(or IUGR) because of lower mortality rates. We assume that there are two types of fetuses in the 

population of both genders: 1) those with non-LBW (or non-IUGR) mothers, who are not likely 

to be affected by the intergenerational fetal programming effect; and 2) those with LBW (or 

IUGR) mothers, who are likely to inherit the fetal programming effect. For simplicity, we 

assume further that the underlying health distributions for male and female fetuses are identical 

for both types. Let ℎ be the unobserved health of the individual. For those potentially affected by 

fetal programming transmission, the underlying health of both genders will deteriorate, causing a 

left shift in both distributions by the same amount, o. 

For a normal fetus, if ℎ falls below a survival threshold, ;, then fetal mortality occurs, so we 

are unable to observe the individual. The fetus will be identified as LBW (or IUGR) later, at 

birth, if ; <  ℎ ≤  ", where " is a fixed threshold determined by the health distribution of the 

entire population (including both types). Given these thresholds, the fetal mortality rate, M(;), 

and LBW (or IUGR) incidence, 
0(4)_0(â)

7_0(â) , are the same across gender, where M(. )  is the 

cumulative distribution function. 

For a fetus more likely to be affected by intergenerational fetal programming, we consider an 

extreme case where females are completely adaptable while males are completely inadaptable to 

the potential effect. Then, the survival threshold will also decrease to ; − o for a female fetus of 

this type, resulting in an unchanged fetal mortality rate. However, the survival threshold will 

remain constant for a male fetus of this type, leading to a higher fetal mortality rate. Thus, the 
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LBW (or IUGR) incidence, given that the fetus has a LBW (or IUGR) mother, will be 

0(4^N)_0(â)
7_0(â)  for females and 

0(4^N)_0(â)
7_0(â^N)  for males. 

The change in LBW (or IUGR) incidence between the two types by each gender corresponds 

to the observed intergenerational correlation in LBW (or IUGR). Because the baseline incidence 

is the same for males and females, we need only compare the incidence for a fetus with a LBW 

(or IUGR) mother for males and females. We can show that  
0(4^N)_0(â)

7_0(â)  > 0(4^N)_0(â)
7_0(â^N)  , which 

means intergenerational correlation among females is stronger than among males. 

Although a different sensitivity to the intergenerational fetal programming effect by gender 

can affect this gender difference, the proof clearly shows that there is a possibility that stronger 

intergenerational correlation in LBW (or IUGR) in females can be observed even when the 

underlying health distributions of both genders are affected to the same extent. Therefore, a 

robustness check for the effect of mother’s LBW (or IUGR) on sex ratio is necessary. 
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Appendix C 

Table C1 Mechanisms for Biased Beliefs: Single Information Exposures—Raw Values 

(1) (2) (3) (4) 

          

College x ln(year) 0.0121* 0.0146** 0.0155** 0.0154** 

(0.006) (0.006) (0.006) (0.006) 

College x post 0.0014 0.0008 0.0006 0.0011 

(0.005) (0.005) (0.005) (0.005) 

College x ln(year) x autism  0.0008 0.0023 0.0035 0.0061 

(0.006) (0.006) (0.006) (0.006) 

College x ln(year) x reported cases -0.0017*** -0.0014** -0.0014** -0.0016** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x news counts 0.0001 0.0001 0.0001 0.0001 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x news for vaccine 0.0032 0.0031 0.0027 0.0032 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news w/ science -0.0025 -0.0019 -0.0017 -0.0024 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news w/ authority -0.0034** -0.0032** -0.0030** -0.0031** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x news w/ parents 0.0023 0.0021 0.0020 0.0022 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x autism search 0.0008 0.0001 -0.0001 -0.0003 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x outbreaks search -0.0007*** -0.0007*** -0.0007*** -0.0008*** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x “vaccine autism” search 0.0053*** 0.0045*** 0.0045*** 0.0044*** 

(0.001) (0.001) (0.001) (0.001) 

Sample size 271,478 271,478 271,478 271,478 

Area specific time trend No 
Region x  
year FE 

Division x  
year FE 

State x 
 ln(year) 

Notes: The outcome variable is a dummy equal to one if MMR shot is not up-to-date for the child. 
Coefficients are reported for triple interaction terms using all the information exposures presented in 
Table 3. Raw values are used directly for each type of information exposure. No area specific time trend 
is controlled in columns (1). We include region specific year effects in columns (2), division specific year 
effects in columns (3), and state specific log linear time trend in columns (4). Standard errors are reported 
in brackets. *** p<0.01, ** p<0.05, * p<0.1. 

 

  



130 
 

 

Table C2 Mechanisms for Biased Beliefs: Information Sources--News Count as a Safe 
Signal 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0117*** 0.0118*** 0.0121*** 0.0119*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0014 0.0008 0.0007 0.0011 

(0.005) (0.005) (0.005) (0.005) 

Disease Prevalence rate 0.0001 0.0002 0.0003 0.0008 

College x ln(year) x harmful signal (0.001) (0.001) (0.001) (0.001) 

-0.0022*** -0.0019** -0.0020** -0.0021** 

College x ln(year) x safe signal (0.001) (0.001) (0.001) (0.001) 

News coverage 0.0003 0.0001 0.0001 0.0003 

College x ln(year) x harmful signal (0.001) (0.001) (0.001) (0.001) 

0.0004 0.0008 0.0006 0.0011 

College x ln(year) x safe signal (0.002) (0.002) (0.002) (0.002) 

Online searches 0.0053*** 0.0043*** 0.0042*** 0.0037** 

College x ln(year) x harmful signal (0.001) (0.001) (0.001) (0.001) 

-0.0015 -0.0013 -0.0014 -0.0017 

College x ln(year) x safe signal (0.001) (0.001) (0.001) (0.001) 

Sample size 271,478 271,478 271,478 271,478 

Area specific time trend No 
Region x  
year FE 

Division x 
year FE 

State x 
ln(year) 

Notes: The outcome variable is a dummy equal to one if MMR shot is not up-to-date for the child. 
Coefficient of the triple interaction term using harmful signal of disease prevalence rate is multiplied by 
100 for reporting purpose. For disease prevalence rate, the harmful signal is the z-score of autism 
prevalence rate; and the safe signal is the z-score of reported total cases of measles, mumps, and rubella. 
For news coverage, the harmful signal is the z-scores of percentage of news with parents’ opinions; and 
the safe signal is the average z-scores of news count, percentage of news encouraging immunization, with 
words from authorities, and scientific proofs. For web searches, the harmful signal is the z-score of search 
index for measles, mumps, and rubella; and the safe signal is the average of z-scores of search index for 
autism and “vaccine and autism” topics. All controls in Table 4 are included. No area specific time trend 
is controlled in columns (1). We include region specific year effects in columns (2), division specific year 
effects in columns (3), and state specific log linear time trend in columns (4). Standard errors are reported 
in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table C3 Mechanisms for Biased Beliefs: Information Attitudes--News Count as a Safe 
Signal 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0111*** 0.0112*** 0.0115*** 0.0112*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0014 0.0009 0.0007 0.0011 

(0.005) (0.005) (0.005) (0.005) 
College x ln(year) x  
    harmful signal 0.0061*** 0.0048*** 0.0049*** 0.0052*** 

(0.002) (0.002) (0.002) (0.002) 
College x ln(year) x  
    safe signal -0.0006 -0.0002 -0.0005 -0.0004 

(0.001) (0.001) (0.002) (0.002) 

Sample size 271,478 271,478 271,478 271,478 

Area specific time trend No 
Region x 
 year FE 

Division x 
year FE 

State x 
ln(year) 

Notes: The outcome variable is a dummy equal to one if MMR shot is not up-to-date for the child. 
Harmful composite is the average z-scores of autism prevalence rate, percentage of news with parents’ 
opinions, and search index for autism, and “autism and vaccine” topic. Safe composite is the average z-
scores of news count, reported total cases for measles, mumps, and rubella, percentage of news 
encouraging immunization, with words from authority, and scientific proofs, and search index for measles, 
mumps, and rubella. No area specific time trend is controlled in columns (1). We include region specific 
year effects in columns (2), division specific year effects in columns (3), and state specific log linear time 
trend in columns (4). Standard errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table C4 Impact of Biased Beliefs—Non-Hispanic Black and White  

  (1) (2) (3) (4) 

          

College x ln(year) 0.0125*** 0.0119*** 0.0121*** 0.0121*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0010 0.0007 0.0007 0.0008 

(0.006) (0.006) (0.006) (0.006) 

Sample size 196,428 196,428 196,428 196,428 

Area specific time trend No 
Region x  
year FE 

Division x 
year FE 

State x 
 ln(year) 

Notes: The sample is restricted to non-Hispanic Black and White children. The outcome variable is a 
dummy equal to one if MMR shot is not up-to-date for the child. All controls in Table 4 are included. No 
area specific time trend is controlled in columns (1) and (2). We include region specific year effects in 
columns (3) and (4), division specific year effects in columns (5) and (6), and state specific log linear time 
trend in columns (7) and (8). Standard errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table C5 Mechanisms for Biased Beliefs: Single Information Exposures--Non-Hispanic 
Black and White 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0120*** 0.0118*** 0.0120*** 0.0119*** 

(0.004) (0.004) (0.004) (0.004) 

College x post -0.0011 -0.0009 -0.0007 -0.0003 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x autism  -0.0029*** -0.0025*** -0.0025*** -0.0029*** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x reported cases 0.0013 0.0007 0.0007 0.0014 

(0.002) (0.002) (0.002) (0.003) 

College x ln(year) x news counts 0.0029 0.0029 0.0021 0.0031 

(0.003) (0.003) (0.003) (0.004) 

College x ln(year) x news for vaccine -0.0018 -0.0011 -0.0006 -0.0014 

(0.002) (0.002) (0.002) (0.003) 

College x ln(year) x news w/ science -0.0040* -0.0038* -0.0036* -0.0038* 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news w/ authority 0.0016 0.0015 0.0013 0.0017 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x news w/ parents 0.0027** 0.0020 0.0020 0.0018 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x autism search -0.0037*** -0.0035*** -0.0035*** -0.0042*** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x outbreaks search 0.0039*** 0.0033*** 0.0033*** 0.0031*** 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x “vaccine autism” search 0.0010 0.0007 0.0008 0.0008 

(0.006) (0.006) (0.006) (0.006) 

Sample size 196,428 196,428 196,428 196,428 

Area specific time trend No 
Region x 
year FE 

Division x 
year FE 

State x 
ln(year) 

Notes: The sample is restricted to non-Hispanic Black and White children. The outcome variable is a 
dummy equal to one if MMR shot is not up-to-date for the child. Coefficients are reported for triple 
interaction terms using all the information exposures presented in Table 3. We use z-scores for each type 
of information exposure. All controls in Table 4 are included. No area specific time trend is controlled in 
columns (1). We include region specific year effects in columns (2), division specific year effects in 
columns (3), and state specific log linear time trend in columns (4). Standard errors are reported in 
brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table C6 Mechanisms for Biased Beliefs: Information Sources--Non-Hispanic Black and 
White 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0112*** 0.0110*** 0.0112*** 0.0110*** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0010 0.0008 0.0008 0.0008 

(0.006) (0.006) (0.006) (0.006) 

Disease Prevalence rate 

College x ln(year) x harmful signal -0.0013 -0.0012 -0.0010 -0.0005 

(0.001) (0.001) (0.001) (0.001) 

College x ln(year) x safe signal -0.0030*** -0.0026*** -0.0027*** -0.0031*** 

(0.001) (0.001) (0.001) (0.001) 

News coverage 

College x ln(year) x harmful signal 0.0021 0.0016 0.0016 0.0024 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x safe signal -0.0021 -0.0015 -0.0017 -0.0013 

(0.002) (0.002) (0.002) (0.002) 

Web searches 

College x ln(year) x harmful signal 0.0073*** 0.0063*** 0.0063*** 0.0058*** 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x safe signal -0.0024* -0.0022* -0.0022* -0.0028** 

(0.001) (0.001) (0.001) (0.001) 

Sample size 196,428 196,428 196,428 196,428 

Area specific time trend No 
Region x 
year FE 

Division x 
year FE 

State x 
ln(year) 

Notes: The sample is restricted to non-Hispanic Black and White children. The outcome variable is a 
dummy equal to one if MMR shot is not up-to-date for the child. For disease prevalence rate, the harmful 
signal is the z-score of autism prevalence rate; and the safe signal is the z-score of reported total cases of 
measles, mumps, and rubella. For news coverage, the harmful signal is the average z-scores of news count 
and percentage of news with parents’ opinions; and the safe signal is the average z-scores of percentage 
of news encouraging immunization, with words from authorities, and scientific proofs. For web searches, 
the harmful signal is the z-score of search index for measles, mumps, and rubella; and the safe signal is 
the average of z-scores of search index for autism and “vaccine and autism” topics. All controls in Table 
4 are included. No area specific time trend is controlled in columns (1). We include region specific year 
effects in columns (2), division specific year effects in columns (3), and state specific log linear time 
trend in columns (4). Standard errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Table C7 Mechanisms for Biased Beliefs: Information Attitudes—Non-Hispanic Black and 
White 

  (1) (2) (3) (4) 

          

College x ln(year) 0.0105*** 0.0103** 0.0105*** 0.0103** 

(0.004) (0.004) (0.004) (0.004) 

College x post 0.0011 0.0008 0.0008 0.0008 

(0.006) (0.006) (0.006) (0.006) 

College x ln(year) x composite harmful signal 0.0071*** 0.0057*** 0.0060*** 0.0070*** 

(0.002) (0.002) (0.002) (0.002) 

College x ln(year) x composite safe signal -0.0028 -0.0020 -0.0025 -0.0030 

(0.002) (0.002) (0.002) (0.002) 

Sample size 196,428 196,428 196,428 196,428 

Area specific time trend No 
Region x 
year FE 

Division x 
year FE 

State x 
ln(year) 

Notes: The Sample is restricted to non-Hispanic Black and White children. The outcome variable is a 
dummy equal to one if MMR shot is not up-to-date for the child. Harmful composite is the average z-
scores of autism prevalence rate, news count, percentage of news with parents’ opinions, and search index 
for autism, and “autism and vaccine” topic. Safe composite is the average z-scores of reported total cases 
for measles, mumps, and rubella, percentage of news encouraging immunization, with words from 
authority, and scientific proofs, and search index for measles, mumps, and rubella. No area specific time 
trend is controlled in columns (1). We include region specific year effects in columns (2), division 
specific year effects in columns (3), and state specific log linear time trend in columns (4). Standard 
errors are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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