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Abstract

These papers are concerned with estimating the marginal effect of weight

and obesity on medical expenditures for children and adults when heights

and weights are misreported. The first chapter investigates the implications

of reporting error and endogenous instruments in GLM and IV-GLM mod-

els. We evaluate standard IV estimation along with regression calibrated

IV estimators (RCIV). We find that the standard regression calibrated IV

model is fundamentally inconsistent, but propose an adjusted RCIV estima-

tor (ARCIV) that corrects these faults, as well as incorporating correction

for misreporting. Chapter 2 contains an application of the ARCIV from the

first chapter to estimate the marginal effect of changes in BMI of children

on their annual medical care costs. After correcting for reporting error and

instrumenting, we find that the impact of youth obesity is significantly larger

than found in previous research. Chapter 3 updates previous estimates the

impact of adult obesity on medical expenditures. Although prior research has

used instrumental variables to estimate the cost of adult obesity, controlling

for measurement error using our ARCIV estimator shows that the true effect

is still larger than found in non-IV models, but smaller than IV models with

mismeasured BMIs.
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Chapter 1

The Conditional Expectations

Instrumental Variables Method for

Models with Additive Measurement

Error

1.1 Introduction

Estimates of the impact of BMI and obesity on medical expenditures generally rely

on survey data. Data drawn from surveys are susceptible to measurement error. The

error generating process may be due to lack of precision in recording true information. In

the Medical Expenditure Panel Survey, used in subsequent chapters, BMIs are generated

using self- and proxy-reported height and weight. Incorrect reporting can introduce

measurement error that results in biased estimates of the impact of BMI and obesity on

medical expenditures (Bound et al., 2001). A confounding concern in medical expenditure

modelling is the endogeneity of BMI. Some earlier studies of the impact of BMI on medical

expenditures admit that endogeneity of BMI is a potential limitation, but do not explicitly

control for it in their analysis (Finkelstein et al., 2009; Monheit et al., 2009).

2



Cawley and Meyerhoefer (2012) addressed concerns about endogeneity by using in-

strumental variables to estimate the impact of BMI on medical expenditures. They used

the BMI of biological children to instrument for the BMI of their parents in the MEPS

in order to estimate the impact of obesity on adult medical expenditures. They find that

after correcting for the endogeneity of BMI, coefficient estimates significantly increase

in magnitude, suggesting that endogeneity is responsible for a considerable attenuation

bias.

Cawley and Meyerhoefer (2012), and other studies using similar instruments, utilize

BMI that is derived from self- and proxy-reported height and weight. IV estimation will

be consistent if any reporting error is classical (has mean zero). However, there have been

a number of empirical studies of adult self- and proxy-reporting behavior that suggests

a general tendency to overstate height and understate weight, which results in under-

reports of BMI (Stommel and Schoenborn, 2009; Gorber et al., 2007; Lundahl et al.,

2014). The key concern is that under-reporting will generate non-classical error in the

endogenous regressor. In one study, O’Neill and Sweetman (2013) describe the bias due to

non-classical measurement error analytically for the log-linear model. They demonstrate

that the bias due to non-classical error in BMI is determined by the joint distribution of

reporting error and true BMIs, and in particular, the covariance between the instrument

and the measurement error. They find evidence that under-reporting in BMI can result

in upward bias when using instrumental variables to estimate the impact of obesity on

income. Cawley and Meyerhoefer (2012) acknowledge that in the MEPS, the endogenous

regressor and the instrument are under-reported. Thus IV estimation using the MEPS

may be biased due to reporting error in BMI

In subsequent chapters, we use validation data to correct for measurement error in

both the endogenous regressor and the instrument. Validation data can be used to

generate correction equations whose arguments are present in the main sample. The

correction equations are then used to predict the true value for the mismeasured variables

in the main sample (Lee and Sepanski, 1995; Bound et al., 2001). Previous studies have

used the NHANES as a source of validation data for mismeasured BMI. Cawley (2000)

3



used the NHANES III to correct for self-reporting error in height and weight in the

National Longitudinal Survey of Youth (NLSY) in order to estimate the impact of body

weight on employment disability. He uses an IV model, and corrects for reporting error in

both the endogenous regressor as well as the instrument. This estimator can be thought

of as a regression calibrated instrumental variables (RCIV) estimator, since fitted values

conditional on validation data are substituted into the IV model. The same corrections

are employed by Cawley (2004) in order to estimate the impact of obesity on wages.

These previous studies have used corrected BMI in IV models. However, the subsequent

chapters are the first studies to implement corrected BMI for IV estimates of the impact

of obesity on medical expenditures.

This chapter updates the descriptions of bias due to reporting error by Bound et al.

(2001) and O’Neill and Sweetman (2013) to accommodate the non-linear medical expen-

diture models used in Cawley and Meyerhoefer (2012), as well as in subsequent chapters.

This chapter also evaluates the validation method of Cawley (2000) used to correct for

measurement error in both the endogenous regressor and the instrument. We find that

this estimator is only approximately consistent, and prone to bias even when the in-

strument is not measureed with error. We propose an alternative version of the RCIV

estimator that are more robust to certain measurement error regimes. We then use Monte

Carlo simulations to compare the RCIV estimators to uncorrected and IV estimators in

both linear and non-linear contexts. We find the the standard RCIV estimator performs

worse than uncorrected IV estimation, although it can be improved to match the perfor-

mance of the IV.

The contributions of this chapter satisfy the concerns about validation literature de-

scribed in Bound et al. (2001). In their review of validation methods for measurement

error in survey data, they conclude that validation studies need to be more explicit about

their assumptions regarding the model errors and their relationship to the true variables

in the model. This chapter provides a clear theoretical description of bias under measure-

ment error regimes that are suggested by empirical studies of self- and proxy-reporting

behavior with regard to height and weight. We update previous research by describ-

4



ing possible biases in the situation where the endogeneity of BMI necessitates the use

of IV estimation, but both the endogenous regressor and the available instruments are

measured with error. Bound et al. (2001) also express concern that validation studies

are not of practical use to data analysts and researchers. Their review provides a clear

description of bias when the endogenous regressor is mismeasured, and they evaluate the

efficacy of different validation procedures in those situations. We frame our findings in

terms of the empirical model of the impact of BMI on medical expenditures, and only

use available data to implement any validation method. To accommodate the diversity of

modeling approaches, we demonstrate the effect of measurement error when estimating

both linear and non-linear models of healthcare demand.

1.2 Measurement Error in Linear Models of Medical

Expenditures

What follows is a description of the impact of measurement error on various models

of healthcare demand. In order to make the conclusions here more portable into other

chapters, we will consider the outcome y to be medical expenditures, and the regressor of

interest to to be BMI. Thus we can focus on instances that are grounded in the empirical

reality of these models. We assume that all models are correctly specified, as our main

interest is the role of measurement error. Additional resources regarding bias due to

measurement error in linear models can be found in Fuller (1987). Measurement error in

non-linear models are discussed in Carroll et al. (2006). Our discussion overlaps somewhat

with that in Bound et al. (2001) since we are also discussing models and measurement

error that commonly incorporate survey data.

1.2.1 Least-Squares Estimator

Consider a simple linear model in which y is the outcome that depends on X, an

Nxk column matrix of data such that X = [x|Z], where x is the regressor of interest,

and Z is a matrix of other covariates. To allow for measurement error, X is not directly

5



observable, and instead only measurements of X can be observed. The true model is,

y = Xβ + ε (1.1)

We assume that E(Xε) = 0 so that the true model is correctly specified. We do not

observe X, but instead observe measurement W such that,

W = X + u. (1.2)

We begin by assuming that Cov(Xu) = 0 and V ar(u) 6= 0 in equation 1.2. If E(u) =

0, then the measurement error is classical in nature. In this case, measurement error is

also said to be nondifferential, as the observed BMI W does not contain any information

about the expenditures y not already contained in X.1

Give the true model is linear, the best estimator for β is the least squares estimator.

The asymptotic bias due to measurement error in equation 1.2 for k = 1 can be shown

using the probability limit of the least-squares estimator,2

plimβOLS =
Cov(w, y)

V ar(w)
=
σwy
σ2
w

=
βσ2

x

σ2
x + σ2

u

(1.3)

As the measurement error variance increases, β̂OLS attenuates towards zero.3

In practice, data drawn from surveys depends on self- or proxy-reports. It may be the

case that X is correlated with u. For example, individuals may be more likely to under-

report their weight as their own weight increase. In this case we would have nonclassical

measurement error such that, E(Xu) 6= 0. Nonclassical measurement error would alter

the probability limit to be,

plimβOLS =
β(σ2

x + σux)

σ2
x + σ2

u + 2σux
. (1.4)

1Measurement error u in equation 1.2 would be differential if u was correlated with the error term ε.
This is analogous to reporting error being an omitted variable in the true model, or W being a replicate
measure, or proxy for X. Since we assume the model is correctly specified, we assume that measurement
error is nondifferential.

2Bound et al. (2001) show this bias in multivariate regression.
3If σ2

u = 0, then x is not mismeasured and it is clear that βOLS is a consistent estimator.
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The direction of bias depends on the relationship between the measurement error

variance σ2
u and the covariance between x and the additive error term u (σux). If σux > 0,

then OLS will underestimate the true effect. If σux < 0 OLS will still attenuate the

estimated coefficients unless σ2
u + σux < 0.

Another characterization of the bias due to u is in terms of the least-squares estimator

from regressing the additive error u on w, which we will call βuw (Bound et al., 2001). In

the bivariate regression, the bias can be expressed as,

βOLS = β(1− βuw). (1.5)

The sign of βuw depends on the relationships between σ2
u and σux stated above.

In practice, it is possible that σuε 6= 0, suggesting that u is endogenous to the error

term. This may be due to x being correlated with unobservable factors that affect the

outcome. In the context of the impact of obesity, reporting of height and weight may be

correlated with factors such as culture or environment that also effect expenditures, but

are unobservable and thus omitted from the estimated model. In this case, measurement

error is said to be differential. Differential measurement error will cause further upward

or downward bias in the estimated coefficients of all covariates in X.

If validation data are available, then it may be possible to correct for measurement

error in x. This approach requires that there is at least one shared covariate that can be

used to predict x in both datasets (Guo and Little, 2011). In previous research of the

impact of obesity, the NHANES has served as validation data. The NHANES contains

measured heights and weights as well as self-reported height and weight. Suppose that

equation 1.2 describes self-reporting behavior for BMI, and that there exist validation

data such that,

wN = xN + uN , (1.6)

Where the superscript denotes that the data are from the validation sample in the

NHANES. Unlike the main sample, we observe xN . This allows us to estimate the rela-

7



tionship between measured and reported BMI in the NHANES,

α̂xw = (w′NwN)−1(w′NxN) (1.7)

We then estimate the least-squares estimator using the fitted values of x̂ = wα̂xw.

In general, replacing x in the analysis with the regression of X on (W,Z) is called re-

gression calibration (Carroll et al., 2006). To disambiguate the method here from other

applications of regression calibration, we refer to fitting the true predictor x in the main

model with it’s expected value conditional on the observed value w as the conditional

expectation method (O’Neill and Sweetman, 2013; Lyles and Kupper, 1997). The validity

of this approach depends on some assumptions about w. First, w must be a surrogate for

y in both datasets, such that w does not contain any additional information about the

distribution of y than x in both datasets. (this is identical in practice to assuming that

the instrument is not endogenous to the error term. Second, the distribution of y given

x and y given w must be the same in both datasets, which is known as transportability

(Carroll et al., 2006; Lee and Sepanski, 1995). We assume here that these conditions are

met.

The probability limit of β̂CE from conditional expectations approach is,1

plimβ̂CE = β +
σuε

σ2
x + σux

. (1.8)

O’Neill and Sweetman (2013) demonstrate that the least-squares estimator using the

fitted values x̂ is consistent only when measurement error is classical. The conditional

expectation estimator will exhibit the same bias as βOLS when Cov(X, u) = var(u),

and the sign of β is the same as the sign of Cov(u, ε). If Cov(X, u) > V ar(u), then

non-classical measurement error will cause larger bias in βOLS than in βCE. Differential

measurement error will cause larger bias in βOLS than in β̂CE as well. Thus using corrected

BMI can tighten the bounds around the true coefficient relative to least-squares.

1The conditional expectation approach is equivalent to two-sample two-stage least squares (Inoue
and Solon, 2010)
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1.2.2 Instrumental Variables

Another possibility is that the true BMI x is itself endogenous, which is to say also

correlated with ε. If this is true then observing the true value x will still result in biased

estimates of βOLS. For example, True BMI is endogenous in medical expenditure models

because individuals with low SES tend to have higher rates of obesity, but poorer access

to care, resulting in a confounding effect of elevated BMI on medical expenditures. We are

unable to adequately control for SES, and associated cultural or environmental factors.

The endogeneity of BMI has lead impact of obesity studies to use instrumental variables

as a source of identification.

Previous research has established that the BMI of a biological relative is a valid

instrument for BMI (Cawley, 2000, 2004). We assume that the BMI of a biological child

s exists for our sample. For child BMI s to be a valid instrument in the bivariate linear

model,

Cov(s, x) 6= 0, (1.9a)

Cov(sε) = 0. (1.9b)

Cov(s, u) = 0, (1.9c)

Equation 1.9a states that s must be correlated with x. Equation 1.9b states that the

IV is uncorrelated with the model error term ε.1 This is often referred to as the ‘exclusion

restriction’ by which the IV must not be a part of the true model, and can only influence

the outcome y through it’s correlation with x.

Equation 1.9c states that s must be uncorrelated with measurement error u = w −

x. Though typically not one of the canon assumptions of IV validity, this condition

is a necessary assumption for the IV estimator to be consistent. If measurement error

is classical random additive measurement error, then this assumption will always be

satisfied.

1Non-linear IV methods requite a more stringent assumption that s is independent of the error term
(Carroll et al., 2006).
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Under the IV assumptions,

plimβ̂IV =
Cov(y, s)

Cov(w, s)
=
σxsβ + σsε
σxs + σsu

= β. (1.10)

If any of the above assumptions are violated, β̂IV will be biased. Following the em-

pirical literature, we assume that condition 1.9a is satisfied such that we do not need to

worry about bias due to weak instruments.1 It is fundamentally unobservable whether

the true instrument s is endogenous to the error term, and may result in attenuating bias

or upward bias depending on the sign of Cov(s, ε).

Non-classical measurement error in x, where Cov(x, u) 6= 0, may result in the true

instrument being correlated with the additive error u and violating the condition in

equation 1.9c. In survey data such as the MEPS, a single respondent will self-report their

own height and weight and proxy-report the height and weight of their child. Although

covariance is not transitive, it is feasible that equation 1.9a and Cov(x, u) 6= 0 will result

in Cov(s, u) 6= 0. If adults tend to under-report their BMI, then we may find that

Cov(s, u) < 0. This will cause the IV estimator to overestimate the true β. Further,

the size of the bias does not depend on the size of the measurement error variance. This

implies that even if few observations are measured with error, it can cause significant

bias.

We now allow for the instrument to be measured with error such that,

t = s+ v (1.11)

where t is the observed instrument. We update the probability limit of β̂IV to incorporate

measurement error in the instrument,

plimβ̂IV =
Cov(y, t)

Cov(w, t)
=
β(σxs + σxv) + σsε + σvε
σxs + σxv + σsu + σvu

. (1.12)

The IV estimator is consistent if the conditions in 1.9 hold for t and if Cov(v, ε) =

1See section 3.2.1 for a discussion of the empirical validity of this instrument, and Stock et al. (2002);
Bound et al. (1995) for a discussion of the bias due to weak instruments.
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Cov(v, u) = 0. In the context of reported weight, we may observe Cov(v, u) 6= 0 if a

parent uses the same process to report their weight as they do their child’s weight. This

may be incidentally true if both adult and child BMI share the same relationship with

their reporting error. An example is if both adult and child BMI are reported with non-

classical measurement error such that Cov(x, u) < 0 and Cov(s, v) < 0. This is not a

strict implication, and even if adult and child BMI are both increasingly under-reported

as BMI increases, the correlation in reporting errors may be effectively zero.

IV estimation will be consistent if x is endogenous due to differential measurement

error. If the IV suffers from differential measurement error, then it will be endogenous

to the error term and will introduce bias. The direction of this bias is determined by the

sign of Cov(v, ε). Interestingly, it is possible for true child BMI s to be a valid instrument,

yet for the mismeasured IV t to be invalid due to differential measurement error.

1.2.3 Regression Calibration in Linear IV Estimation

Validation data may exist for both x and s. The NHANES contains measured height

and weight for both adults and children as well self-reported height and weight for adults,

and can be used to correct for measurement error. For example, Cawley (2000) uses the

NHANES III to correct for reporting error in both the endogenous regressor and the IV

in the National Longitudinal Survey of Youth (NSLY).

Let us suppose that in addition to the presence of measured and reported height

and weight as in equation 1.6, there exists a measured and reported child BMI in the

NHANES,1

tN = sN + vN . (1.13)

Measured child BMI is regressed on reported BMI as in equation 1.7 to generate fitted

1With the exception of children above the age of 16, there are no reported measures for height and
weight for children in the NHANES. We assume they exist to simplify the discussion here, which gen-
eralizes to validation using any valid matching surrogate. Courtemanche et al. (2014) demonstrate that
the percentile rank of BMI can be used as as matching surrogate in lieu of self-reported BMI. Subse-
quent chapters implement validation using this method and demonstrate that percentile rank satisfies
the conditions for the conditional expectation approach.
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values ŝ = tλ̂, where λ̂ is the estimated coefficient for the instrument from the regression

calibration equation in the validation sample. The conditional expectation IV estimator

is

βRCIV = (ŝ′x̂)−1(ŝ′y) (1.14)

The probability limit of βRCIV is,

plimβ̂RCIV =
Cov(y, ŝ)

Cov(x̂, ŝ)
=
βσxŝ + σŝε

σx̂ŝ
. (1.15)

The RCIV estimator βRCIV is approximately consistent if Cov(x, ŝ) ≈ Cov(x̂, ŝ). It

is still a necessary assumption that ŝ is not endogenous to the error term, which is by

extension of the IV exclusion restriction in (1.9b). This closeness of Cov(x̂, ŝ) to Cov(x, ŝ)

depends on the the validation assumptions in Lee and Sepanski (1995) being satisfied.

Even if transportability holds, βRCIV may still be inconsistent. This can be seen using

the error due to imputation. We define the imputation error as,

û = x̂− x, (1.16a)

v̂ = ŝ− s. (1.16b)

The resulting condition for consistency is that Cov(Ŝ, û) = 0. We can expand (1.15)

as,

plimβ̂RCIV =
βσxŝ

σxŝ + σŝû
.

Thus the estimator will be consistent only when Cov(Ŝ, û) = 0.

Another interpretation of the consistency conditions for RCIV is whether there exists

fitted values that satisfy them. Consider estimating a RCIV model where first α̂ and λ̂

are estimated using (1.7). The fitted conditional expectations are x̂ = wα̂ and ŝ = tλ̂.

Under transportability, we can assume that the pattern of reporting error is identical in

the validation data as it is in the main sample. We can then solve for α∗ that causes
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βRCIV to consistently estimate β,

α∗ =
Cov(x, t)

Cov(w, t)
. (1.17)

The optimal alpha could be obtained from an IV regression of x on w in the main

sample, but would require knowledge of true x. The validation sample can only produce

α∗ if both xN and sN are in the same dataset, and E(xNsN) = E(xs). Replicate measures

of x and s would be sufficient, however x and smay have separate validation. For example,

the NHANES contains adult and child BMI, but it is not possible to match parents and

children in the public-use NHANES.

If α∗ cannot be obtained, regression calibration may generate inconsistent IV esti-

mates. Under perfect transportability, consistency would require that, Cov(x,w)/V ar(w) =

Cov(x, t)/Cov(w, t). It is easy to deduce that this will not hold whenever IV regression

of x on w is warranted (x is endogenous, or measured with error).

To change the conditions under which RCIV estimation will be consistent, we propose

as an alternative estimators adjusted regression calibrated IV (ARCIV) which is estimated

as,

βARCIV = (ŝ′w)−1(ŝ′y), (1.18)

which is simply the IV regression of Y on w, using Ŝ as the instrument. The only

difference between ARCIV and IV is that the covariance between error in the instrument

and the model error term is replaced with Cov(v̂ε). If there is no differential measurement

error in the IV, then the ARCIV estimator reduces to the IV estimator.

The degree of bias in the RCIV estimators is a function of the method of imputation.

A poor regression calibration fit introduces more error into the fitted values, which can

exacerbate the RCIV bias. Under more sophisticated validation methods that improve

the fitting of x̂ and ŝ, the magnitude of any bias in the RCIV will be reduced. This implies

that in addition to transportability and exogenous true instruments, RCIV requires that

the conditional expectations must be very close to the true values.

13



1.3 Regression Calibration in IV Log-Gamma Model

of Medical Expenditures

1.3.1 Log-Gamma Model

Early literature in health expenditure modeling focuses on the non-linear relationship

between medical expenditures and BMI. This non-linear relationship is partly due to the

distribution of medical expenditures, which only has support over non-negative values,

typically has a mass point at zero, and can have severe positive skewness (Jones, 2000).

In some circumstances, it is sufficient to get consistency by estimating a linear model

using a transformed outcome variable, such as the log of expenditures. However, a log-

linear model may not fully correct for heteroscedasticity. A commonly used method to

model expenditures is to employ a Generalized Linear Model to relate BMI to medical

expenditures (Manning and Mullahy, 2001). We are particularly interested in a Gamma

GLM with log-link, as this is the GLM specification that empirical studies have identified

as the correct fit for the data (Manning and Mullahy, 2001; Finkelstein et al., 2009;

Cawley and Meyerhoefer, 2012).1

In this section a very simple framework for GLM will be established. We follow Carroll

et al. (2006) and describe GLM as a mean and variance model, called a quasilikelihood

and variance function (QVF). The advantage is it is easy to show how measurement

error introduces bias, and to demonstrate how regression calibration and instrumental

variables can be used to correct for error. We narrow the focus to Gamma GLM with

log-link, and describe the conditional expectations instrumental variables estimator for

this specification. We will assume that the GLM is correctly specified, as the concern here

is consistency when covariates are measured with error, and not the choice of model.2

Mean and variance models specify the mean and variance conditional on model co-

variates (thus variance can be said to be conditionally heteroscedastic). In general, we

1For a general description of measurement error in non-linear models, see Lee and Sepanski (1995).
2A set of heuristics for selecting the appropriate model for non-linear outcomes can be found in

Manning and Mullahy (2001).
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express this as,

E(y|X) = µ(X, θ), (1.19a)

V ar(y|X) = φV (µ(X, θ)), (1.19b)

Where V (µ(Z,X, θ)) is a non-negative function, φ is a scale parameter, and θ is a

vector containing parameters that specify both functions. The Log-gamma model is then

specified as,

µ = exp(η), (1.20a)

V (µ) = µ2, (1.20b)

Where η is the linear predictor Xβ. The inverse link function 1.20a relates the linear

predictor to the conditional mean of outcome y. The gamma conditional variance is the

square of the inverse link. The GLM is fit by setting up and solving a set of estimating

equations (Hardin and Hilbe, 2012). For the Log-Gamma Model, the equations to solve

for β are,

n∑
i=1

yi − µi
V (µi)

∂µi
∂βk

=
n∑
i=1

yi − exp(Xiβk)

exp(Xiβk)
Xi = 0,∀ k. (1.21)

In practice, the GLM model is fit using iteratively reweighted least squares (IRLS).

This is the method used in the STATA QVF command employed in subsequent chapters

(Hardin et al., 2003; Hardin and Carroll, 2003a). For a complete description of IRLS

for the Log-Gamma Model, see Appendix A.1. If the IRLS algorithm converges to a

fixed coefficient vector βIRLS, then it is a MLE of β, as long as x is measured without

error. The βIRLS for the Log-Gamma model specifically can be thought of as the result

of iterated least squares. The iterations do not need to be reweighted as the Log-Gamma

model is a special case where the weighting matrix that relates the linear predictor to the

variance devolves to the identity matrix. (This is the same as GLS where V ar(ε|X) = I.)
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Measurement error in X will cause βIRLS to fit the GLM by minimizing the naive

estimating equations (combining (1.6) and (1.21)),

n∑
i=1

yi − exp(Wiβk)

exp(Wiβk)
Wi = 0,∀ k. (1.22)

As long as V ar(u) 6= 0, βIRLS will be inconsistent. Interestingly, measurement error

in X will introduce the same magnitude asymptotic bias as in OLS. This is because the

measurement error variance cannot influence the weighting matrix in the IRLS algorithm

(Ξ = I). This implies that the linear model can serve as a conceptual proxy for the Log-

Gamma model when it comes to quantifying the asymptotic bias due to measurement

error in X when it is both classical or non-classical in nature.

1.3.2 Conditional Expectations Instrumental Variables in Log-

Gamma Models

In the context of medical expenditure models, If X is BMI, then it will be endogenous

to the error term even in the non-linear model whether it is measured with error or not.

This endogeneity can be corrected by using instrumental variables. Hardin et al. (2003)

describe the IV estimation procedure for mean and variance models. Their IV-GLM

estimator is robust to differential measurement error in X, and is the only correction

method so far attempted to mitigate the bias due to endogeneity of BMI in non-linear

medical expenditure models (Cawley and Meyerhoefer, 2012; Cawley et al., 2014). The

estimator is effectively a two-stage non-linear least squares. The first stage is linear,

in which observed BMI W is regressed on matrix R, which is an augmented matrix of

exogenous variables [Z, S] consisting of instruments S and other covariates Z, in order to

obtain the coefficient vector γ̂j for j = 1, ..., k. The second stage fits the specified GLM

using IRLS with general estimating equations.

n∑
i=1

yi − µi
V (µi)

∂µi
∂ηi

(Z, Rγ̂) = 0, ∀ k. (1.23)

As in the linear case, the IV-GLM model will be inconsistent if Cov(S, u) 6= 0.
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If validation data are available, the IV-GLM estimator can be corrected by using

the conditional expectation approach. The IV-GLM model estimated using IRLS with

both W and T (allowing the IV to be mismeasured as well) replaced by their conditional

expectations X̂ and Ŝ respectively from equation 1.7. For the Log-Gamma Model with

all covariates measured with error, the estimating equation of the GLM is,

n∑
i=1

yi − exp(Ŝγ̂iβk)
exp(Ŝγ̂iβk)

Ŝγ̂i = 0, ∀ k, (1.24)

where the linear first stage regression is,

γ̂ = (X̂ ′X̂)−1(X̂ ′Ŝ). (1.25)

As in the linear case, the RCIV-GLM model will be approximately consistent if

Cov(Ŝ, û) = 0, as long as the true instrument is not endogenous, and the validation

assumptions are satisfied.

1.4 Monte Carlo Simulations

1.4.1 Simulation Framework

We follow the general simulation framework from Manning and Mullahy (2001) to

demonstrate the bias due to measurement error in the context of Log-OLS and Log-

Gamma models. Unlike their simulations, we regulate the correlations between variables

by drawing from a joint-normal distribution. The main data X = [x|z1, z2, z3], instrument

s with its own associated covariates z4, z5, and z6, additive error u and v and model error ε

are drawn from a single joint normal distribution. Mismeasured covariates are generated

using (1.2) and (1.11).

The corresponding variables from the validation data are drawn from a separate dis-

tribution. The measurement error in x and s are identical in both datasets, which would

imply transportability. The covariance between x and s in the validation draws are set to

zero and Cov(SN , uN) = 0. We set V ar(x) = V ar(s) = 1. The variance of all covariates
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are set equal to one as well. All exogenous variables have mean 0.5. Select variables,

z1, z2, z4, z5, are transformed into binary variables that are 1 when z ≥ 0.5 and zero

otherwise.

We construct linear predictor η = β0 + 1x + 1d1 + 1d2 + 1z3. The log outcome is

then ln(y) = η + ε. Error in the log-scale generates skewness on raw scale. The raw

scale relationship is E(y|X) = exp(β0 + βX + 0.5σ2
ε), where β0 is chosen with σε to set

E(y|X) = 1. The gamma distributed outcome is drawn from a gamma distribution with

µ = exp(η) and a scale parameter of 0.5.1 We set E(ε) = 0, so that all models are

correctly specified.

We compare OLS, IV, and RCIV under two validation procedures. First we reproduce

the standard validation method in Cawley (2000) by regressing measured outcomes in

the validation data on higher order functions of their mismeasured values and additional

covariates. We also reproduce the validation method proposed in Courtemanche et al.

(2014) that uses the percentile rank of of w and wN as the matching surrogate in addition

to exogenous covariates. In our simulations, the standard method has R2 = .92 on

average; The percentile-rank method has R2 = .99.

For clarity of presentation, we initially do not allow x to be endogenous. When

E(xε) 6= 0, Even though the OLS estimator may appear consistent under certain mea-

surement error conditions, it is understood that the motivation for IV estimation is that

OLS is biased due to endogeneity. The relative magnitudes of measurement error vari-

ances presented here are calibrated using the NHANES validation data for adults used

in Chapter 3. We use 500 simulations, and set the number of observations to 1,500. We

alternatively used 10,000 observations and found that such a large sample size obscures

variation in the finite sample performance of the estimators.

1.4.2 Simulated Measurement Error

Table 1.1 contains the simulation results where regression calibration is performed

using percentile rank. The first panel contains the baseline results where x or s are not

1We set all zero draws to .000001, otherwise the IV-GLM models will not converge.
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measured with error. The sample covariances are computed using the fitted values and

predicted ũ and ṽ where, ũ = w − x̂ and ṽ = t− ŝ.

The second panel introduces classical measurement error in x. Uncorrected estimates

are predictably biased downward as in equation 1.3. Interestingly, the RCIV estimator is

slightly biased upwards. Since the instrument is not endogenous and the true coefficient

β = 1, equation 1.15 tells us βRCIV = Cov(x, ŝ)/Cov(x̂, ŝ). When σ2
u = 0.10, βRCIV =

0.248/0.236 = 1.051. The difference between Cov(x, ŝ) and Cov(x̂) is equal to Cov(ŝû) =

0.013. This term can differ from zero even if Cov(s, u) = Cov(s, v) = Cov(x, v) = 0 if

α 6= α∗. The ARCIV estimator does not impute x and will not exhibit this bias. Panel

3 introduces under-reporting which shifts the measurement error distribution. There is

little effect of this shift on the average coeffecient estimates, although the variance of the

GLM estimates increases slightly.

Panels four and five contain the results for non-classical measurement error in x where

Cov(x, u < 0. These clearly illustrate that the RCIV estimators bias stems from the

regression calibration stage. When σ2
u = 0.1 and σxu = −.1, equation 1.4 shows that

α̂ = 1. In this case, none of the RCIV estimators are biased. However, when α̂ 6= 1, The

RCIV estimator is again biased. ARCIV is as robust to non-classical measurement error

in x as the regular IV model will be. Correlation between x and its own error does not

explicitly factor into any asymptotic bias in βIV , but is a kind of omitted variables bias

in βOLS for which IV, and in turn ARCIV can correct.

Table 1.2 contain the simulation results in which measurement error in the instrument

is also introduced. In panel one, both x and s are measured with classical measurement

error. IV estimates are robust to classical error, so long as it does not lead to a weak

IV problem. ARCIV is also robust to this problem. The standard RCIV is upwardly

biased, since Cov(x, ŝ)/Cov(x̂, ŝ) = 0.241/0.228 = 1.057. This difference is again driven

by Cov(ŝ, û) 6= 0. Imputation of the instrument is responsible for Cov(xŝ) 6= Cov(x, s).

Thus even classical measurement error in the IV can cause bias in the RCIV estimator.

The RCIV estimator is similarly biased when the measurement error in s is non classical.

Panels three and four contain estimated coefficients when both x and s exhibit non-
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classical error. OLS estimates are only incidentally close to β, and will be attenuated when

x is endogenous. IV and ARCIV are both robust to non-classical error in both x and s,

even with E(x) < 0. The standard RCIV estimator understates the true effect. Notably

in panel 4, ARCIV is less biased than IV. However, IV still performs significantly better

than RCIV, and is slightly more efficient than ARCIV. When we increase the number of

observations, ARCIV performs no better than IV. ARCIV may have slightly better finite

sample performance over IV, at least in this data scenario.

Even though Cov(s, u) = 0, the estimated covariance is not zero. However, the

estimated covariance Cov(ŝ, ũ), does provide an estimate of Cov(ŝ, û) even when both x

and s exhibit non-classical measurement error. We can estimate Cov(x, ŝ) = Cov(x̂, ŝ) +

Cov(ŝ, ũ) and then explain the difference between the RCIV and the ARCIV estimator.

We find this relationship in the subsequent empirical chapters, suggesting that the ARCIV

estimates may be consistent, with RCIV generating slight underestimates, as they are

in panels three and four of Table 1.2. We characterize this relationship as βRCIV =

βARCIV × δ where,

δ =
σŝx̂ + σx̂v̂ + σŝû + σûv̂

σŝx̂ + σx̂v̂
. (1.26)

In panel 1 for instance, δ = (0.222 + 0.013)/(0.222) ≈ 1.059, and βRCIV = 1.050 =

0.991 × 1.059. In panel 4, δ = (0.278 − 0.013)/(0.278) ≈ 0.953, and βRCIV = 0.950 =

1.004× 0.953.

Panel five in Table 1.2 introduces correlation between the instrument and measure-

ment error in x. All IV and RCIV estimators will dramatically overstate the true effect.

In the presence of this correlation, it may only be possible to bound the true effect.

βOLS will likely under-state the true effect due to endogeneity or measurement error in

x. The RCIV estimator is potentially less upwardly biased than IV estimation, and can

potentially tighten the bounds around the true effect, even when regression calibration is

unable to produce a consistent estimate of β.

Table 1.3 contains the simulation results from panel three of Table 1.2 with additional

endogeneity. Panel one incorporates correlation between x and the model error term ε.
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We focus only on the Log-Linear Estimator since correlation with error in the log-scale

causes the GLM estimator to be mis-specified. OLS is biased downward, and IV is still

consistent since the instrument is exogenous. The RCIV estimator is downwardly biased,

but not by as much as OLS. The ARCIV estimator still mirrors the IV estimator and

consistently estimates β. The robustness of IV and RCIV estimators to endogeneity

is reassuring as the endogeneity of x is the primary motivation for using instrumental

variables to begin with.

Panel two in Table 1.3 adds correlation between measurement error in the IV and the

model error term. Such a correlation may arise even if the true instrument is exogenous.

For instance, reporting error may be associated with unobservable SES or cultural char-

acteristics that are also correlated with the outcome. All estimators are biased downward

when Cov(v, ε) < 0. However, the IV and ARCIV estimators are less biased than OLS

and RCIV. Conceptually, if ARCIV perfectly or near-perfectly predicts, s, then ARCIV

may perform better than RCIV by causing Cov(v̂, ε) < Cov(v, ε).

1.5 Discussion

This chapter describes bias due to measurement error in IV estimation used in com-

mon models of health health expenditures and describe how regression calibration may

improve the performance of IV estimation of the marginal effect of BMI on spending.

Analytical results demonstrate that regression calibration of both the endogenous regres-

sors and the instrument may introduce bias into IV estimates, as the fitted values contain

information about the mismeasured variables used to predict them. We show that in the

standard method of regression calibration, this bias is unavoidable in the RCIV model.

We propose two alternative estimators to RCIV. ARCIV simply performs IV estimation

using fitted values for the instrument to IV regress the outcome on observed, possibly

mismeasured covariates. In simulations we find that this estimator performs equally well

to IV estimation, both of which are consistent when RCIV is biased.

Using the simulations only, it is difficult to select between IV and ARCIV solely based
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on consistency. However, these simulations do have limitations. The draws are all from

joint-normal draws, and thus all data have the same distribution shapes. The regression

calibrated estimators may have better performance than IV under different data condi-

tions. Another reason ARCIV may be preferable to IV is that, under sufficiently strong

validation, the imputed error may be equal to zero in expectation, and thus diminish the

covariance between imputed error and variables used in the estimation. The drawback of

ARCIV is that standard errors are more difficult to compute as they must incorporate

the variance due to imputation. Despite these concerns, ARCIV is no more biased than

IV, and may potentially mitigate certain biases. For this reason we estimate the main

results in subsequent chapters using the ARCIV estimator.

Regression calibration is not robust to differential measurement error, or correlation

between the IV and measurement error in x. Substituting regression calibration with

other stochastic imputation methods may improve the performance of the RCIV and AR-

CIV estimators in these severe situations (O’Neill and Sweetman, 2013). If knowledge of

the outcome variable was available in the validation data, stochastic multiple imputation

could produce RCIV and ARCIV estimators more robust to differential measurement

error (Freedman et al., 2009). It is possible to use improved regression calibration or

stochastic imputation in lieu of regression calibration. In the absence of additional data,

stochastic imputation can only improve on regression calibration if the regression model

is not flexible enough to fit the relationship between true values and their mismeasured

counterparts. Otherwise, stochastic imputation will simply reproduce fitted values with

the same properties as those from regression calibration. No validation data exists with

both measured BMI and medical spending. If the NHANES were to survey a sub-sample

of respondents about medical expenditures, or the MEPS to measure the heights and

weights of a weighted sub-sample of household respondents, then more refined correc-

tion methods could be employed that are more robust to differential measurement error,

and possibly other severe measurement error problems, than the conditional expectation

estimators.
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Table 1.1: Simulation Results - Measurement error in x

Log-Linear Estimator Log-Gamma Estimator Sample Cov.
No Measurement Error Estimator Mean S.D. Estimator Mean S.D. σwt = 0.250
σxs = 0.25 σxt = 0.250 OLS 1.000 0.028 GLM 1.013 0.069 σxŝ = 0.248

E(u) = 0 E(ε) = 1 IV 0.994 0.101 IV-GLM 0.997 0.177 σx̂ŝ = 0.246
σ2
u = 0 σxu = 0 RCIV 0.999 0.106 RCIV-GLM 1.002 0.181 σx̂ũ = -0.007
σ2
v = 0 σsv = 0 ARCIV 0.994 0.102 ARCIV-GLM 0.996 0.177 σŝṽ = -0.006

σŝû = 0.002
σŝũ = 0.002

Classical M.E. in x Estimator Mean S.D. Estimator Mean S.D. σwt = 0.251
σxs = 0.25 σxt = 0.251 OLS 0.895 0.029 GLM 0.911 0.058 σxŝ = 0.249

E(u) = 0 E(ε) = 1 IV 1.001 0.113 IV-GLM 1.001 0.161 σx̂ŝ = 0.235
σ2
u = 0.1 σxu = 0 RCIV 1.063 0.124 RCIV-GLM 1.063 0.173 σx̂ũ = 0.043
σ2
v = 0 σsv = 0 ARCIV 1.002 0.113 ARCIV-GLM 1.002 0.161 σŝṽ = -0.005

σŝû = 0.014
σŝũ = 0.015

Classical M.E. in x
E(u) < 0 Estimator Mean S.D. Estimator Mean S.D. σwt = 0.250
σxs = 0.25 σxt = 0.251 OLS 0.890 0.026 GLM 0.901 0.055 σxŝ = 0.237

E(u) = -0.1 E(ε) = 1 IV 0.995 0.120 IV-GLM 1.019 0.171 σx̂ŝ = 0.213
σ2
u = 0.1 σxu = 0 RCIV 1.107 0.138 RCIV-GLM 1.135 0.194 σx̂ũ = 0.089
σ2
v = 0 σsv = 0 ARCIV 0.995 0.122 ARCIV-GLM 1.020 0.172 σŝṽ = 0.043

σŝû = 0.024
σŝũ = 0.024

Non-Classical M.E. in x
Cov(x, u) < 0 Estimator Mean S.D. Estimator Mean S.D. σwt = 0.248
σxs = 0.25 σxt = 0.251 OLS 0.943 0.028 GLM 0.951 0.065 σxŝ = 0.248

E(u) = 0 E(ε) = 1 IV 1.004 0.115 IV-GLM 1.002 0.163 σx̂ŝ = 0.247
σ2
u = 0.1 σxu = -0.05 RCIV 1.006 0.120 RCIV-GLM 1.008 0.169 σx̂ũ = 0.047
σ2
v = 0 σsv = 0 ARCIV 1.003 0.116 ARCIV-GLM 1.004 0.164 σŝṽ = -0.001

σŝû = 0.001
σŝũ = 0.001

Non-Classical M.E. in x
Cov(x, u) < 0 Estimator Mean S.D. Estimator Mean S.D. σwt = 0.249
σxs = 0.25 σxt = 0.251 OLS 0.882 0.030 GLM 0.901 0.056 σxŝ = 0.235

E(u) = 0 E(ε) = 1 IV 1.004 0.123 IV-GLM 1.021 0.177 σx̂ŝ = 0.234
σ2
u = 0.1 σxu = -0.1 RCIV 1.010 0.126 RCIV-GLM 1.026 0.182 σx̂ũ = -0.006
σ2
v = 0 σsv = 0 ARCIV 1.004 0.123 ARCIV-GLM 1.020 0.178 σŝṽ = 0.041

σŝû = 0.001
σŝũ = 0.002

Notes: N = 1, 500. Results averaged over 500 simulations. True coefficient β = 1. Predicted values x̂ and ŝ are fitted by regressing xN and sN
on percentile rank of observed values interacted with exogenous covariates. Some sample covariances use predicted ũ and ṽ where, ũ = w − x̂
and ṽ = t− ŝ. Unknown error introduced by imputation û and v̂ are defined in (1.16).
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Table 1.2: Simulation Results - Measurement Error in x and s

Log-Linear Estimator Log-Gamma Estimator Sample Cov.
Classical M.E. in x and s Estimator Mean S.D. Estimator Mean S.D. σwt = 0.250
σxs = 0.25 σxt = 0.251 OLS 0.894 0.027 GLM 0.908 0.061 σxŝ = 0.236

E(u) = 0 E(ε) = 1 IV 0.990 0.116 IV-GLM 1.005 0.175 σx̂ŝ = 0.222
σ2
u = 0.1 σxu = 0 RCIV 1.050 0.125 RCIV-GLM 1.065 0.190 σx̂ũ = 0.042
σ2
v = 0.1 σsv = 0 ARCIV 0.991 0.118 ARCIV-GLM 1.005 0.178 σŝṽ = 0.044

σŝû = 0.013
σŝũ = 0.014

Classical M.E. in x
Non-Classical M.E in s Estimator Mean S.D. Estimator Mean S.D. σwt = 0.251
σxs = 0.25 σxt = 0.251 OLS 0.898 0.027 GLM 0.911 0.061 σxŝ = 0.264

E(u) = 0 E(ε) = 1 IV 1.006 0.102 IV-GLM 1.016 0.175 σx̂ŝ = 0.249
σ2
u = 0.1 σxu = 0 RCIV 1.067 0.112 RCIV-GLM 1.078 0.187 σx̂ũ = 0.045
σ2
v = 0.1 σsv = -0.1 ARCIV 1.006 0.102 ARCIV-GLM 1.016 0.178 σŝṽ = -0.058

σŝû = 0.016
σŝũ = 0.015

Non-Classical M.E. in x and s Estimator Mean S.D. Estimator Mean S.D. σwt = 0.248
σxs = 0.25 σxt = 0.248 OLS 1.000 0.031 GLM 1.016 0.066 σxŝ = 0.261

E(u) = 0 E(ε) = 1 IV 1.004 0.100 IV-GLM 1.018 0.169 σx̂ŝ = 0.274
σ2
u = 0.1 σxu = -0.1 RCIV 0.954 0.100 RCIV-GLM 0.967 0.164 σx̂ũ = -0.057
σ2
v = 0.1 σsv = -0.1 ARCIV 1.004 0.101 ARCIV-GLM 1.018 0.164 σŝṽ = -0.056

σŝû = -0.013
σŝũ = -0.013

Non-Classical M.E. in x and s
E(u) < 0 Estimator Mean S.D. Estimator Mean S.D. σwt = 0.251
σxs = 0.25 σxt = 0.251 OLS 1.001 0.030 GLM 1.018 0.062 σxŝ = 0.264

E(u) = -0.1 E(ε) = 1 IV 0.999 0.099 IV-GLM 1.010 0.155 σx̂ŝ = 0.278
σ2
u = 0.1 σxu = -0.1 RCIV 0.950 0.045 RCIV-GLM 0.957 0.152 σx̂ũ = -0.057
σ2
v = 0.1 σsv = -0.1 ARCIV 1.000 0.099 ARCIV-GLM 1.007 0.156 σŝṽ = -0.058

σŝû = -0.013
σŝũ = -0.013

Non-Classical M.E. in x and s
σsu < 0 Estimator Mean S.D. Estimator Mean S.D. σwt = 0.150
σxs = 0.25 σxt = 0.250 OLS 0.999 0.031 GLM 1.015 0.068 σxŝ = 0.262

E(u) = 0 E(ε) = 1 IV 1.696 0.210 IV-GLM 1.691 0.288 σx̂ŝ = 0.165
σ2
u = 0.1 σxu = -0.1 RCIV 1.615 0.200 RCIV-GLM 1.607 0.277 σx̂ũ = -0.055
σ2
v = 0.1 σsv = -0.1 ARCIV 1.697 0.210 ARCIV-GLM 1.688 0.288 σŝṽ = -0.055

σsu = -0.05 σŝû = -0.098
σŝũ = -0.008

Notes: N = 1, 500. Results averaged over 500 simulations. True coefficient β = 1. Predicted values x̂ and ŝ are fitted by regressing xN and sN
on percentile rank of observed values interacted with exogenous covariates. Some sample covariances use predicted ũ and ṽ where, ũ = w − x̂
and ṽ = t− ŝ. Unknown error introduced by imputation û and v̂ are defined in (1.16).
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Table 1.3: Simulation Results - Endogeneity and Differential Measurement Error

Log-Linear Estimator Log-Gamma Estimator Sample Cov.
Non-Classical M.E. in x and s
Cov(x, ε) < 0 Estimator Mean S.D. Estimator Mean S.D. σwt = 0.251
σxs = 0.25 σxt = 0.251 OLS 0.592 0.028 GLM – – σxŝ = 0.249

E(u) = 0 E(ε) = 1 IV 1.000 0.112 IV-GLM – – σx̂ŝ = 0.248
σ2
u = 0.1 σxu = -0.1 RCIV 1.005 0.037 RCIV-GLM – – σx̂ũ = -0.007
σ2
v = 0.1 σsv = -0.1 ARCIV 1.000 0.112 ARCIV-GLM – – σŝṽ = -0.007

σxε = -0.25 σŝû = 0.001
σŝũ = 0.002

Non-Classical M.E. in x and s
Cov(v, ε) < 0 Estimator Mean S.D. Estimator Mean S.D. σwt = 0.250
σxs = 0.25 σxt = 0.250 OLS 0.998 0.032 GLM – – σxŝ = 0.263

E(u) = 0 E(ε) = 1 IV 0.801 0.105 IV-GLM – – σx̂ŝ = 0.276
σ2
u = 0.1 σxu = -0.1 RCIV 0.761 0.037 RCIV-GLM – – σx̂ũ = -0.058
σ2
v = 0.1 σsv = -0.1 ARCIV 0.801 0.104 ARCIV-GLM – – σŝṽ = -0.055

σxε = 0 σvε = -0.05 σŝû = -0.014
σŝũ = -0.014

Notes: N = 1, 500. Results averaged over 500 simulations. True coefficient β = 1. Predicted values x̂ and ŝ are fitted by regressing xN and sN
on percentile rank of observed values interacted with exogenous covariates. Some sample covariances use predicted ũ and ṽ where, ũ = w − x̂
and ṽ = t− ŝ. Unknown error introduced by imputation û and v̂ are defined in (1.16). GLM results are not interpretable as σxε 6= 0 implies the
GLM model is mis-specified.
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Chapter 2

The Medical Care Costs of Youth

Obesity

2.1 Introduction

Over the last 50 years, the prevalence of youth obesity has significantly increased. In

1965, under 5% of US children and adolescents aged 2-19 years were obese. As of 2012,

the prevalence of youth obesity is an estimated 16.9%, with significantly higher rates of

obesity among Hispanic and non-Hispanic black children and adolescents (NCHS 2010;

Ogden et al., 2012). Further, about 33% of boys and 30.4% of girls are considered to be

overweight or obese.1

This prevalence of overweight currently exceeds 40% among black and Hispanic ado-

lescents (Ogden et al., 2012). Simply being overweight or obese increases their likelihood

of type 2 diabetes, gallbladder disease, sleep apnea, joint problems, and cardiovascular

risk factors during childhood and adolescence (Han et al., 2010; Guo and Chumlea, 1999;

Dietz and Robinson, 2005; Ogden et al., 2002). In addition to physical consequences, be-

ing overweight or obese is also associated with negative self-image, low self-esteem, and

behavioral and learning difficulties (Dietz, 1998). Overweight children are more likely to

become overweight and obese adults (Biro and Wien, 2010), and children who are over-

1Weight status for children is determined by percentile rank in gender-age specific CDC growth
charts. Table 2.1 contains youth BMI percentile cutoffs. Table 2.2 contains the prevalence rates of
obesity from 1963 to 2010 calculated from the National Health and Nutrition Examination Survey.
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weight are more likely to have coronary heart disease, type 2 diabetes, and other serious

health problems (NIH, 1998).

Previous research has assessed the short-term costs of youth obesity1. Finkelstein and

Trogden (2008) found that, on average, obese children and adolescents incur $220 more

in medical spending than normal weight children and that overweight children incur $180

more than normal weight children. Monheit et al. (2009) estimated separate models by

gender and found that adolescent girls who become obese cost $790 more per year than

normal weight girls. They found no significant effect for boys. These studies suggest

that the short term return-on-investment to youth obesity interventions is small, and

the financial benefits of targeted interventions only exceed the costs by incorporating the

expected future costs of adult obesity (Finkelstein and Trogden, 2008).

The costs associated with youth obesity can be seen in higher utilization of hospital

care, as well as less acute care in outpatient settings. Trasande et al. (2009) estimated

that childhood obesity was responsible for $237.6 million in hospitalizations in 2005,

up from $125.9 million in 2001. Trasande and Chatterjee (2009) used the 2002 – 2005

MEPS to estimate the impact of youth obesity on health care utilization. They found that

overweight and obese children aged 6 to 19 years old had higher utilization of inpatient and

outpatient care, as well as higher prescription drug expenditures. They also found that the

increases in costs and utilization were concentrated among adolescents. They aggregate

these additional expenses to attribute $14.1 billion annually in additional medical care

costs to elevated BMI in children.

It is of both academic and policy concern whether these additional costs are borne by

the individuals and families whose health and diet behaviors can influence their weight

status, or whether third parties such as public or private insurance plans bear the ad-

ditional costs of obesity. Children with low socioeconomic tend to have higher BMI on

average, and are more likely to be enrolled in public programs like Medicaid (Freedman

et al., 2006), which may lead to public programs covering a larger share of medical care

costs associated with youth obesity. For instance, the cost of additional hospitaliza-

1For an overview of studies estimating not only the short-term costs of childhood obesity, but the
long-term costs and economic impact, see Trasande and Elbel (2012) and Pelone et al. (2012)
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tions associated with obesity related conditions among children and adolescents was by

Trasande et al. (2009) found to be paid mostly by Medicaid, even though private payers

cover more obesity treatments.

If families do not face the financial burden of poor health behaviors, then health

insurance may, in effect, subsidize obesity (Bhattacharya and Sood, 2005). Bhattacharya

and Sood (2005) show that the external costs of obesity (costs not faced by the obese

individual) can represent a negative externality if premiums are not risk-adjusted to

reflect the weight of the enrollee. Families most prone to obesity face the smallest out-of-

pocket share of medical costs for conditions associated with youth obesity due to public

insurance programs such as Medicaid and SCHIP. If these public programs bear the larger

share of the external costs of obesity, even though they cover a small share of the US

population, then these costs may represent a loss in societal welfare.

A major limitation of these prior studies is that they only estimate the association

between obesity and youth medical expenditures, and not the causal effect, as they do not

explicitly account for possible endogeneity of weight or measurement error in body weight

and height. As a result, these studies likely underestimate the true causal effect. Weight

is endogenous because it is correlated with unobserved socio-economic status (SES) or

access to care, both of which affect medical spending. Families with lower SES are more

likely to be obese and have higher incidence of poor health; have unobservable health

problems; or engage in other risky behaviors (Fontaine and Bartlett, 2000). However,

due to poor access to care, these families may have lower expenditures on medical care

(Burkhauser and Cawley, 2008). To reconcile the endogeneity of child weight, we use the

BMI of a biological relative to instrument for child BMI (Cawley, 2004). Prior research has

used the weight of biological relatives as a source of exogenous instruments. For example,

Cawley and Meyerhoefer (2012) employ restricted-use biological linkage variables in the

MEPS to match parents to their biological children in order to estimate the impact of

obesity on adult medical expenditures. We use the BMI of each child’s biological parents

as an IV for the child’s BMI.

In data sets drawn from surveys, in which height and weight are reported and not

28



measured, it is plausible to observe random additive or classical measurement error as

well as measurement error that is non-classical. For example, a number of studies find

that individuals tend to under-report their own weight, and that this under-reporting is

correlated with their own BMI (Gillum and Sempos, 2005; Rowland, 1990). This type of

misreporting can invalidate measurement error models only suitable for random additive

error (Villanueva, 2001; O’Neill and Sweetman, 2013). In prior studies of the impact of

youth obesity, child BMI is usually derived from parental proxy-reports. Parental self-

reports as well as their proxy-reports of child height and weight are likely mis-measured. If

this mis-reporting is not random, then measurement error can introduce asymptotic bias,

even when using instrumental variables (O’Neill and Sweetman, 2013). In the absence

of repeat measures of BMI and correctly measured instruments, we can use validation

data to correctly identify the true impact of youth obesity, even in the presence of non-

classical measurement error (Bound et al., 2001). We correct for measurement error in

child and parent BMI by using the National Health and Nutrition Examination Survey

(NHANES) as a source of measured BMI data. The NHANES contains both measured

and self-reported heights and weights and can be used to correct reported BMI in the

MEPS (Cawley, 2004).

After correcting for reporting error and endogeneity of weight, we find that medical

expenditures are significantly higher for children, and in particular, girls aged 11-17

who are overweight and obese relative to those who are healthy weight. Our estimates

are larger in magnitude than those from previous studies that do not use instrumental

variables. This suggests that endogeneity of weight and measurement error have a large

role in biasing non-IV estimates of the impact of obesity on child medical expenditures.

Further, previous studies have likely underestimated the cost of youth obesity and in

turn, the cost effectiveness of interventions that target youth obesity before they reach

adulthood. We also find evidence that the costs of youth obesity are borne mostly by

third party-payers.
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2.2 Identification Strategy

2.2.1 Instrumental Variables

We estimate the effect of BMI on medical expenditures using the IV-GLM procedure

described in Carroll et al. (2006). In order for IV estimation to produce consistent esti-

mates, the instrument must be sufficiently correlated with the endogenous or mismeasured

variable. Our first stage partial F-statistics range from 697.44 - 2,064.07, well in excess

of the rule-of-thumb F-stat = 10 for all of our specifications (Stock et al., 2002). More

difficult to establish is that the instrument is independent of the error in the structural

model.1

Independence would be violated if parents and their children’s BMI are affected by

common environmental factors that also influence the child’s medical care costs. Parents

are typically responsible for their children’s healthcare decisions. Parenting decisions may

stem from parent attitudes towards health, and may be reflected in the parent’s BMI.

If these attitudes are correlated with unobserved cultural or environmental factors that

also effect the child’s medical expenditures, then the instrument will be correlated with

the error term in the model. This cannot be directly tested in our data.

There is however, a substantial behavioral genetic literature validating the genetic

relationship between the weight of biological relatives. (Haberstick et al., 2010; Smith

et al., 2009; Wardle et al., 2008; Grilo and Pogue-Geile, 1991) For example, Grilo and

Pogue-Geile (1991) find that 40–70% of the variation in obesity-related phenotypes, such

as body mass index, skinfold thickness, fat mass and leptin levels, is inheritable. Adop-

tion studies have found that the strong genetic correlation between children and their

biological parents is not weaker for children raised by adoptive parents (Stunkard et al.,

1986; Srensen and Stunkard, 1993). Twin studies also find that the correlation in the

weight of twins does not depend on whether they were raised together or separately.

(Price and Gottesman, 1991; Maes et al., 1997)

This same behavioral genetics literature finds little to no evidence in favor of shared

1Independence is a stronger assumption than for linear IV, but is required for IV-GLM (Carroll et al.,
2006).
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household or environmental effects on BMI (Haberstick et al., 2010; Wardle et al., 2008;

Maes et al., 1997; Grilo and Pogue-Geile, 1991). Taken at face value, no shared household

effect of BMI implies that a parent’s BMI can only effect their child’s medical expenditures

through it’s effect on child BMI. We interpret this lack of evidence for environmental

effects not as a statement that location, shared culture, or shared diet do not effect child

BMI, but that all of the correlation between parent BMI and these factors is captured

by the strong correlation between parent and child BMI due to the strong influence of

shared genetics.

Prior economic research has employed genetic variation in weight to generate instru-

mental variables. Cawley (2000) use the National Longitudinal Survey of Youth (NLSY)

in order to measure the effect of body weight on employment disability. He uses the

BMI of a biological child to instrument for adult BMI. Kline and Tobias (2008) use the

BMI of parents to instrument for the BMI of their children and estimate the impact of

BMI on wages in Britain. Lindeboom et al. (2010) estimate the effect of obesity on em-

ployment, using rich data from the British National Child Development Study (NCDS).

The results show a significant negative association between obesity and employment even

after controlling for a rich set of demographic, socioeconomic, environmental and behav-

ioral variables. Cawley (2004) uses the BMI of a sibling to instrument for adult BMI

in estimating the impact of obesity on wages. More recently Cawley and Meyerhoefer

(2012) and Cawley et al. (2014) use the BMI of children to instrument for the BMI of

their biological parents in the MEPS in order to estimate the impact of obesity on adult

medical expenditures.

2.2.2 Proxy-Reporting Error in BMI

Parents in the MEPS are responsible for not only reporting their height and weight,

but proxy-reporting their childrens’ height and weight. If parental mis-reporting behav-

ior is correlated with their own weight, then the strong correlation between the BMI of

parents and children may results in correlation between parents BMI and the measure-

ment error in their child’s BMI. This correlation will result in biased IV estimates of the
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impact of BMI on medical expenditures.

Prior research has documented that adults under-reported their own weight (Shiely

et al., 2013; Gorber et al., 2007; Villanueva, 2001). A number of small studies have

tried to determine the manner in which parents report their children’s weight and height.

Studies of parental reporting of adolescent BMI show slight over-reporting of height and

under-reporting of weight, resulting in under-reports of BMI (Brettschneider et al., 2012;

O’Connor and Gugenheim, 2011; Goodman, Hinden, and Khandelwal, Goodman et al.;

Reed and Price, 1998). For example, O’Connor and Gugenheim (2011) surveyed parents

of children 2 to 17 years old at an outpatient orthopedic clinic, asking them to report

their child’s height and weight prior to having them measured. They found that mean

weight error in parental reports increased with child age and with age-specific child BMI

z-score. Parents tended to under-report their child’s weight, leading to 21 percent of

children measured as obese being misclassified as not-obese in parental reports.

In their meta-analysis of parental proxy reporting studies, Lundahl et al. (2014) find

that 14.3% of parents underestimate the weight of their normal weight children, and

that over 50% of parents underestimate the weight of their overweight and obese chil-

dren. They find that parents are more likely to underestimate child weight in the over-

weight/obese range, and that parents become more accurate estimating the weight of

children with much larger BMI. This indicates that children with a BMI-for age per-

centile just over the cutoff for overweight were at greater risk for being misclassified by

parents than those with a much higher BMI. The higher incidence of mis-classification

around the thresholds may be due to higher density of observations compared with the

tails of the BMI distribution. They speculate that the improvement in the accuracy of

parental reporting for very high BMI children may be due to increased measurement since

BMI is a more salient factor in healthcare decisions. This trend of improved reporting

for children with high BMIs does not confound the negative correlation between child

BMI and measurement error across the entire BMI distribution. They also found that

parents were more likely to under-report normal weight boys, than normal weight girls.

Importantly for our identification, they found that misreporting did not vary across year
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or the country/state of the study.

Parental under-reporting of their children’s weight may be intentional if parents know

the true weight of their child, but choose to misreport it, possibly due to stigma associated

with obesity (Puhl and Heuer, 2010; Latner et al., 2005). Parents who intend to be accu-

rate may still incorrectly estimate their children’s weight due to their own perception of

what an obese child looks like, or what an obese child’s lifestyle is compared to their child.

Another possibility is that parents are unaware of their child’s true height and weight,

and respond with the most recent measurements they recall or inaccurate measurements.

This may cause random measurement error, but may result in under-reports as children’s

height and weight tend to rise over time regardless of obesity status. In either case, the

consequence of under-reporting is a negative correlation between the child’s BMI and the

proxy-reporting error in child BMI. This negative correlation, combined with positive

correlation between parent and child BMI does not imply a negative correlation between

parent BMI and the reporting error in child BMI, regardless of the reason parents misre-

port their children’s weight.1 Were parent BMI to be correlated with the measurement

error in child BMI, then using parent BMI as an IV for child BMI would not result in

consistent estimates of the impact of child obesity on medical expenditures.

2.2.3 Bias Due to Measurement Error

Systematic misreporting of a covariate is a kind of omitted variables problem that is

most easily analyzed using simple linear regression. Like random-additive error, under-

reporting will lead to biased OLS coefficients (Bound et al., 2001). This can be demon-

strated using the probability limit of the beta coefficient in a bivariate linear IV model2.

Consider a true linear model:

Y = βx+ ε, (2.1)

1Covariance (and correlation, which is normalized covariance) is not transitive. (Langford et al.,
2001)

2See Bound et al. (2001) for a more detailed description.
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such that E(xε) = 0. We cannot observe X directly in the data, and instead observe w

such that,

w = x+ u. (2.2)

Thus, the true data X is observed with some additive error term u. If E(u) = 0 and

Cov(x, u) = 0, any variance in u causes an attenuating bias in OLS estimates of β. If

Cov(x, u) 6= 0, then OLS is still biased towards zero (more significantly if Cov(x, u) > 0).

We introduce instrument S such that,

x = γs+ ζ (2.3)

Where γ 6= 0 and ζ has mean zero.

IV estimation will consistently estimate β as long as S is uncorrelated with u and

ε, and is sufficiently correlated with X. We assume Cov(s, ε) = 0 and Cov(s, x) 6= 0

and focus on the relationship between the IV and the measurement error in x. Typically

instruments are also measured with error such that,

t = s+ v. (2.4)

The probability limit of βIV can be expressed in terms of covariances, as

plimβIV =
Cov(t, Y )

Cov(t, w)
=
βCov(t, x)

Cov(t, w)
. (2.5)

Changing notation and substituting equations (2.2) and (2.4) into equation (2.5) we

can derive,

plimβ̂IV ==
β(σxs + σxv) + σsε + σvε
σxs + σxv + σsu + σvu

. (2.6)

Although all the covariance terms in the probability limit depend on unobservable

relationships, IV estimation will be robust to non-classical error in both x and s. The

non-linear instrumental variables models used in this analysis incorporate linear first

stages. The second stage performs a GLM fit of the outcome y using the fitted values for

X from the first stage.

34



2.2.4 Corrected Body Mass Index

OLS and IV estimates are not robust to all forms of measurement error. Differential

measurement error or correlation between the true instrument and the measurement

error in the endogenous variable may still bias IV estimates. It is possible to reduce the

magnitude of these biases by using validation techniques to replace mismeasured variables

with error-corrected fitted values (Bound et al., 2001). Using mismeasured heights and

weights will also lead to incorrectly estimating the share of the population of children

who are overweight or obese. Prior studies have used measured validation data to correct

for measurement error in BMI when estimating the impact of BMI on health and labor

outcomes (Cawley, 2000, 2004; Dutton and McLaren, 2014). Validation data are typically

used to generate correction equations that are used to predict true BMI in the principle

sample, which only contains mismeasured BMI. (Courtemanche et al., 2014). We follow

the imputation procedure described in Courtemanche et al. (2014) using the National

Health and Nutrition Examination Survey (NHANES) as a source of validation data.1 A

summary of the imputation procedure in Courtemanche et al. (2014) in the context of

our model follows here.

Imputation requires there is a surrogate, or matching agent, present in the princi-

pal and validation datasets, as well as the transportability of the surrogate across both

datasets. Each observation has true BMI X and observed BMI wj in the principle sample

j = M and in the validation sample j = N .2 the first condition is that for true BMI x,

there exists a surrogate (typically the observed BMI) wsurj such that the distribution of

the outcome Y given (x,wsurj ) is the same as Y given x. Essentially the observed BMI

cannot contain information about the outcome that is not already reflected in true BMI.

Another interpretation is that measurement error in BMI cannot be correlated with unob-

served variables that influence the outcome. The second condition is the transportability

of the surrogate; that the underlying distributions of true BMI in both datasets are equal

1We follow the arguments of Lee and Sepanski (1995) and impute BMI directly instead of predicting
height and weight and using the predictions to calculate BMI. The advantage is we are directly predicting
the BMI distribution, and in turn the non-linear relationship between BMI and expenditures.

2In our analysis, the MEPS is the principle sample and the NHANES serves as the validation sample.
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conditional on the surrogate. Transportability implies that,

E(x|wM , ZM) = E(x|wN , ZN), 1 (2.7)

where covariates (Zj) are shared in both datasets (gender, age, race, etc...).

In prior research using the NHANES as validation data for self-reported adult BMI,

the self-reported BMI in the NHANES is used as the surrogate for imputation (Cawley,

2000, 2004). We can only follow this method to impute adult BMI for adults who self-

report their own height and weight, which will be used to generate their imputed BMI.

In practice, mothers and fathers may have different self-reporting behavior, which may

vary by age or race. In order to maintain transportability, we focus on children whose

mothers are the primary survey respondent, and self-report their own height and weight,

and then control for age and race in the imputation steps.

Even after restricting the sample, we are unable to use proxy-reported BMI as the

surrogate for children because the NHANES does not include proxy-reported height and

weight for children, as it only contains measured heights and weights. To impute child

BMI, as well as adult BMI, we follow the method in Courtemanche et al. (2014), and use

the percentile rank of BMI as the matching surrogate. In this way, misreporting manifests

not only as a stochastic process on additive error terms u and v, but as a shifting in the

distribution of BMIs. Using the percentile rank as the matching surrogate only requires

that the expected value of true BMI conditional on reported BMI is monotonically in-

creasing in reported BMI (Courtemanche et al., 2014). This monotonicity implies that

individuals who report higher BMI are expected to have higher a BMI than those who

report report lower BMI. Courtemanche et al. (2014) test this monotonicity assumption

in the NHANES, and do not find evidence to reject it.

The percentile rank is a transportable surrogate if,

E(x|BMI RankM , ZM) = E(x|BMI RankN , ZN). (2.8)

1This is known as weak transportability (Lee and Sepanski, 1995).
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For both adults and children, we predict measured BMI in the NHANES as a function

of gender, race, and their interactions with linear splines generated from the percentile

rank of BMI and higher orders of age (age in months for children). We then use the

estimated equations to predict true BMI for adults and children in the principal sample

(MEPS).

2.3 Data and Empirical Model

2.3.1 Data

The Medical Expenditure Panel Survey (MEPS) is a comprehensive, nationally rep-

resentative survey of the U.S. civilian non-institutionalized population. In the MEPS,

families are surveyed five times during a two year period about their medical care uti-

lization and expenditures. For each family (the responding unit in the MEPS), a single

individual is the primary respondent. For most families in the MEPS, the mother is

the primary respondent. In two parent households, the second most common primary

respondent is the father. We can identify the primary respondent in each family (usually

a parent) and we use restricted-use biological linkage variables to match parents to their

biological children. Heights and weights are not measured in the MEPS. The primary

respondent typically reports the heights and weights of everyone in the reporting unit.

This means that the primary respondent self-reports her height and weight, and heights

and weights for her spouse and children are generated from proxy-reports.

We use data from the 2000-2010 household component of the MEPS and inflate all

expenditures in each year to 2010 dollars. We limit the sample to households with

biological children younger than 18 and older than 11, and mother’s between 20 and 64;

both with non-missing BMI. We do not incorporate children younger than 11 due to high

rates non-response for height and weight. We eliminate children whose parents had BMI

in excess of 80 and below 10 (2,152 observations). We finally eliminate 1,590 underweight

children from the sample. The resulting estimation dataset has 27,002 children aged 11-17

with mothers who were the primary-respondent and proxy-reported the child’s BMI.
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In the MEPS, medical expenditures and the source of payment are collected directly

from households as well as from the households medical care providers for every medical

event. In addition to total medical expenditures, we estimate the impact of obesity on

expenditures by all third party payers (typically, public and private insurers), and also ex-

penditures by all payers on specific categories of care: inpatient, outpatient, prescription

drugs, and other (which includes dental, vision, home health care services, and medical

equipment but excludes spending on over-the-counter medications).

MEPS data are collected through a stratified multi-stage probability design, which

we account for in the calculation of the standard errors for our marginal effects. In

particular, we use the method of balanced repeated replications to estimate standard

errors in our non-IV and IV two-part GLM models. This method accounts for clustering

at the PSU-level, stratification, and weighting.

We correct for reporting error in BMI by using the National Health and Nutrition

Examination Survey (NHANES) as a validation dataset. The NHANES is a nationally

representative survey of adults and children that combines interviews and physical exam-

inations ( CDC / National Center for Health Statistics, 2014). In the NHANES, adults

and children aged 16 or older self-report their weight, and all survey respondents have

their heights and weights measured1. The NHANES does not contain medical expendi-

tures, but does share with the MEPS a rich set of covariates.

The continuous version of the survey data are released in two-year waves (survey-

cycles), beginning in 1999. We construct the validation dataset by appending six survey

cycles of the data, from the 1999-2000 survey cycle to the 2009-2010 survey cycle. Like

the MEPS, the NHANES provides weights to account for the complex survey design

(including oversampling), survey non-response, and post-stratification ( CDC / National

Center for Health Statistics, 2013). We construct the appropriate survey weights for a

12 year span of the data (1999-2010).2

1Survey participants are not aware that they will be weighed until after they self-report their height
and weight.

2We extrapolate the method to construct weights when combining survey cycles for 12 years of data
using the 10 year method in task 2 in CDC / National Center for Health Statistics (2013). Our code is
displayed in Appendix A.
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2.3.2 Model Specification

As with adult medical expenditures, medical spending on children is highly positively

skewed with a substantial number with zero expenditures in any survey year (Monheit

et al., 2009; Finkelstein and Trogden, 2008). To account for the shape of distribution of

expenditures we employ a two-part model of medical expenditures (Jones, 2000). The

first part is a Logit model that estimates the probability of having positive expenditures.

The second part estimates the level of medical expenditures conditional on having positive

spending and is specified as a a GLM with Gamma variance structure and log link. We

conduct the specification tests suggested by Manning and Mullahy (2001) to identify

the proper link function and distribution for our data.1 We also perform a modified

Hosmer-Lemeshow test by regressing prediction error from each model on deciles of the

distribution of predicted expenditures. We fail to reject the null-hypothesis that the

decile coefficients are jointly equal to zero, indicating the choice of distribution and link

function is appropriate.2

Both parts of the model include child characteristics: gender, race/ethnicity (white,

black, Hispanic, other race), child age in months, education levels for both parents (no

high school diploma, high school graduate, some college, bachelors degree or higher) and

household characteristics: census region (northeast, midwest, south, or west), whether the

respondent lives in an MSA, household composition (number of household members age

0-5 years, 6-17 years). We acknowledge that income can partly determine child medical

expenditures, but we do not include income in the model as it is likely endogenous.

We also exclude insurance status or coverage type due to similar endogeneity concerns.

Measures of both parent’s education serve as proxys for parental SES. We do not control

for parent race as it is highly co-linear with child race. We also control for whether the

child self-reported their height and weight, although fewer than one percent of children

self-reported their BMI when their mother was the primary respondent.

We implement both parts of the model as Generalized Linear Models (the first stage is

1We conduct Park tests to confirm our choice of conditional variance, in particular that the variance
is proportional to the square of the conditional mean. We find λ = 1.87− 1.99 across our samples.

2Monheit et al. (2009) tested alternate specifications on the 2001-2003 MEPS and selected a two-part
model with a Probit first stage and a Log-Gamma second stage.
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a GLM using the binomial distribution and a Logit link.). In this way we can incorporate

instrumental variables into both parts of the two-part model using the IV-GLM estimator

proposed by described in Hardin and Carroll (2003a).1 Their method is essentially two-

stage nonlinear least squares. The first stage is a linear regression of the mismeasured

covariates on the set of included and excluded instruments. The second stage is a GLM

fit of the outcome on the known covariates and the fitted values of the mismeasured

covariate from the first stage2 (Hardin and Carroll, 2003b).

It is possible to estimate models using the z-score of child BMI as the explanatory

variable. Child weight status is determined using the z-score of BMI, however, it is

difficult to interpret the weight change associated with a unit change in the z-score. We

use child BMI as the measure of youth obesity and include controls for child gender and

age in months. BMI is an imperfect measure of body fat since it does not distinguish

fat from fat-free mass such as muscle and bone (Burkhauser and Cawley, 2008; ONeill,

2015), but BMI is the only measure of fatness in the MEPS.

We do not estimate marginal effects using binary indicators of obesity. Instrumenting

for binary measures of obesity can cause biased estimates in the the first stage regression.

We can only estimate bounds for the true effect when instrumenting for a binary indicator

derived from reported child BMI that is both endogenous and non-classically mismeasured

(Frazis and Loewenstein, 2003). To estimate the average marginal effect of moving from

normal weight to overweight or obese, we alternatively predict expenditures as the mean

BMI within each category, and take the difference in predicted expenditures.

2.4 Results

2.4.1 Descriptive Statistics

Descriptive statistics for the model covariates are presented in tables 2.3 and 2.4.

Mean expenditures are reported only for children with non-zero expenditures (around

1For a thorough treatment on non-linear measurement error models, see Chen et al. (2011).
2We estimate the IV-GLM in STATA using the qvf command in (Hardin et al., 2003). The command

fits the GLM using iteratively re-weighted least squares (IRLS). Hardin and Hilbe (2012) (2012) detail
the steps of the IRLS algorithm.
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88% of children). Boys (girls) aged 11-17 have on average $2,098.93 ($2,264.74) in med-

ical expenditures a year from all payers. These magnitudes are smaller than the mean

expenditures for adults (From chapter 3). Although average expenditure is slightly higher

for girls than for boys, other covariates are very similar across gender.

Table 2.5 contains descriptive statistics for boys and their parents’ BMI and Table

2.6 shows the same descriptive statistics for girls. Comparing the mean reported BMI

in the MEPS to the imputed measured BMI from the NHANES suggests that BMIs

in the MEPS are under-reported. For example, the mean reported BMI of girls in the

sample is 22.18. The mean imputed BMI from the NHANES is higher at 22.49. The

same relationship exists for mothers, whose self-reports are lower, on average, than their

imputed measured BMI levels. The magnitude of under-reporting is larger for obese

children than for overweight and healthy weight children. This indicates that there is

some correlation between child BMI, and the degree to which child BMI is under-reported.

Tables 2.5 and 2.6 also show the mean mothers’ BMI, and indicate similar under-reporting

on average.

2.4.2 Proxy-Reporting Error

Figure 2.1 compares the distribution of self-reported BMI in the NHANES to the

measured BMI of adult females. The self-reported distribution is shifted to the left

of the measured BMIs, suggesting that mothers under-report their own BMI. A neces-

sary assumption to impute measured BMI from the NHANES into the MEPS is that

the misreporting behavior is the same in both samples. Only primary respondents in

the MEPS self-report their data, the large majority of which are women. Figure 2.2

shows the distribution of self-reported BMI in the MEPS and measured BMIs imputed

from the NHANES. The self-reports in the MEPS are similarly distributed to those in

the NHANES. When measured BMI is imputed, we observe similar reporting as in the

NHANES. There is less mass in the distribution of measured BMI relative to self-reported

BMI for BMI > 30. There is greater mass in the distribution of self-reports over the nor-

mal weight and overweight range of BMI.

41



Figure 2.3 shows the distribution of child BMIs proxy-reported in the MEPS and

the distribution of measured child BMI in the NHANES. Mothers’ misreporting of their

children’s height and weight results in under-reporting of BMI similar to that caused by

mothers’ self-reports. There is greater mass in the distribution of imputed measured BMI

above BMI = 25 up to approximately 40 and less mass below BMI of around 23. The

standard BMI cutoffs for weight status do not strictly apply for children, whose BMIs

tend to be lower than adults. Thus misreporting that over-represents the number of

children with BMI under 20 may be indicative of the same over-representation of normal

weight individuals that we observe in mothers’ self-reports.

We estimate the sample covariances between measurement error in reported BMI and

imputed measured parent and child BMI by calculating the error terms in equations (2.2)

and (2.4). This allows us to indirectly observe how mothers’ misreporting can generate

measurement error in child BMI that is correlated with both the child’s and parent’s BMI.

Figure 2.4 plots the additive error in boys’ proxy-reported BMI against their imputed

measured BMI. There is a moderate relationship (ρ = −0.40) between boys’ BMIs and

the degree to which parents misreport their height and weight. At lower imputed BMIs

the proxy reporting error is mean zero, turning negative as imputed BMI increases. There

is a greater portion of boys’ BMIs that are under-reported than over-reported. Figure 2.5

separates the plot by age. Although the 11 and 13 year old boys have positive correlation

coefficients, The gradient of under-reporting also becomes steeper as boys become older.

Figure 2.6 plots the additive error in girls’ BMI values against their imputed measured

BMIs. The negative correlation is slightly stronger (ρ = −0.48) than for boys, although

far more observations are under-reported. When we split up observations by age in

figure 2.7 we observe some variation in parental reporting by child age, but a consistent

downward gradient due to under-reporting. Interestingly, the degree of misreporting

approaches zero at very high BMI levels for girls in some age groups. This finding is

consistent with Lundahl et al. (2014), who observe in their meta-study that parents

reporting accuracy improves as child BMI increases. One possible explanation is that

parents are more acutely aware of their child’s weight because it is significantly higher
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than average, or because their children have weight-related comorbidities that increase

their contact with the healthcare system. It may be that this salience of higher BMI

is associated with more honest reporting; either by resolving lack of information or by

mitigating the effect of stigma associated with relatively high BMI.

2.4.3 Impact of Youth Obesity on Medical Expenditures

We begin by estimating a non-IV two-part model with the same specification as our

main model. The results are presented in the left column of Table 2.7. Each estimated

marginal effect represents a one unit increase in BMI on annual medical expenditures.

From our non-IV model we find that, on average, an additional BMI unit raises medical

care costs by $17.45 per year, however this effect is not precisely estimated.

To estimate the impact of a normal weight child becoming obese (overweight), we

use the model to compute the average marginal effect of moving from the mean BMI

among normal weight children to the mean BMI among the obese children (overweight)1.

(Cawley et al., 2014) Table 2.8 presents the effects of moving from normal weight to

overweight and moving from normal weight to obese for the models estimated in columns

1 - 4 in table 2.7. When not instrumenting the magnitudes are small and insignificant,

suggesting that the cost curves associated with BMI are flat and close to zero.

Column 2 presents the coefficient estimates using the mother’s self-reported BMI as

the IV for the proxy-reported BMI of their child. Compared to the non-IV estimates, the

effect sizes are much larger, and statistically significant for the total sample, and for the

subsample of just girls. These estimates use the same model as Cawley and Meyerhoefer

(2012), and suggest that the marginal effect of a BMI increase for children ($92.66) is

significantly lower than for adults ($149), which is reasonable given children have lower

incidence of hospitalizations ad chronic illness.

Columns 3 and 4 contain estimates from the RCIV and ARCIV estimators described

in Chapter 1. The RCIV estimator uses predicted child and adult BMI in place of the

mismeasured values from the MEPS. The RCIV estimates are smaller than the IV esti-

1The dataset from which the child BMI is observed is used to determine child weight status.
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mates. This is consistent with non-classical measurement error in child BMI, which can

cause downward bias in the RCIV estimator. Column 4 Contains the ARCIV estimator

in which only the instrument is replaced with it’s fitted value. The ARCIV estimates are

in between the IV and RCIV estimates. The simulation results in Chapter 1 suggest that

the IV and RCIV estimates should be very similar.

In the simulation results from chapter 1, we can use the sample covariances to explain

the difference between the RCIV and the ARCIV estimates when ARCIV is consistent.

Column 5 in table 2.7 contains the ARCIV estimates multiplied by δ from (1.26). We find

that this relationship holds as the estimates in column 5 are very close to the RCIV esti-

mates in Column 3. When both BMI and child BMI are systematically under-reported,

the RCIV estimator will be biased downward. We do find evidence of under-reporting in

both adult and child BMI in the MEPS, and conclude that the RCIV estimator is biased

downward.

In simulations, the ARCIV estimator should be very similar to IV. We observe that

they are similar, although the ARCIV estimates are slightly smaller. It is not possible to

know if this difference is due to improved consistency by using ARCIV, or if the difference

is attributable to finite sample size. If imputation improves the estimators performance

under some unknown measurement error, then ARCIV is the better estimator. If IV is

consistent, then the estimated coefficients using ARCIV are slightly conservative esti-

mates of the true effect. For these reasons, and because we can used sample covariances

to explain the bias in the RCIV estimator relative to the ARCIV estimator, we use the

ARCIV estimator as our preferred estimator.

We find that, on average, an increase of one BMI unit is associated with a $87.39

increase in medical expenditures. For boys (girls), this effect is $98.60 ($92.18) for each

BMI unit. We use the estimated models to calculate average marginal effects of moving

from normal weight to overweight and obese on medical expenditures. We find that, on

average, overweight children incur $409.74 in additional expenditures relative to normal

weight children, and boys (girls) who are overweight incur $419.43 ($483.78) in addi-

tional expenditures relative to normal weight girls. Moving from normal weight to obese
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increases boys (girls) annual expenditures by $1,163.93 ($1,273.28).

2.4.4 Economic Burden of Youth Obesity

To better understand the impact of youth obesity on medical expenditures we estimate

separate models by payment type. Child medical expenses are often covered by their

families private health insurance plan (such as an employer sponsored plan), or a public

insurance plan such as Medicaid or CHIP. Table 2.9 shows the results from the preferred

model estimated separately for expenditures paid out-of-pocket, and for expenditure paid

by any third party. We find that a one BMI unit increase is associated with a $102.56

increase in third-party expenditures. This is larger than effect of a one BMI unit increase

on total expenditures, despite the fact that third-party payments are a subset of total

expenditures. We find a negative effect of a BMI unit increase on out-of-pocket payments.

These complimentary effects sum very close to the effect BMI on total expenditures. The

effect of a one unit increase in BMI on boys’ third-party expenditures is $123.96. However,

the effect of BMI on boys’ expenditures paid out-of-pocket is $-31.38. For girls, the effect

of BMI on third-party payments is $102.03, with a less precisely estimated negative effect

of BMI on out-of-pocket payments of $-17.61. Table 2.10 contains the estimated marginal

effects of overweight and obesity estimated from the models in Table 2.9.

One possible interpretation for the negative effect of elevated BMI on out-of-pocket

expenditures is that becoming overweight or obese shifts costs onto third parties. Obesity

related comorbidities are associated with higher levels of care, such as inpatient stays or

heavy utilization of outpatient facilities. High utilization consumers of healthcare are

likely spending beyond their deductibles, where levels of cost-sharing are lower relative to

those spending their first dollars, even though their total dollar spending is higher. Obese

children may be receiving a greater share of their care in higher cost environments. For

example, a healthy weight child with joint problems may receive regular out-patient care,

whereas an obese child with joint problems is more likely to have a severe event such as a

sprain or muscle tear and end up in receiving more expensive treatment in an emergency

department or hospital floor. Insurance design typically discourages individuals from
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substituting hospital care for other types of care in order to lower their out-of-pocket

costs by taking advantage of more generous cost-sharing for inpatient care. Yet, there is

still considerable heterogeneity among plan enrollees, and obese individuals in any plan

are likely receiving higher levels of care, potentially at more generous rates of coverage.

Another possible explanation is that the rates of overweight and obesity are higher

among Medicaid enrollees compared to private insurance. We do not control for insurance

status as it is endogenous in the main model. Thus the negative effect may be capturing

the difference in average cost-sharing across insurance types, which is confounded with

the higher rates of obesity among Medicaid enrollees. Omitting insurance status from

the model may be directly contributing to a spurious correlation between higher BMI

and lower out-of-pocket costs. We test this possibility by including indicator variables

for coverage by private insurance and by Medicaid. We find that after including controls

for insurance status, the negative coefficients for out-of-pocket expenditures are smaller

and only strongly significant for boys.1 There is a corresponding drop in the size of the

effect of BMI on third-party expenditures, reinforcing that the total impact of BMI can

be expressed as the sum of the the out-of-pocket and third-party expenditures. There is

still considerable heterogeneity in underlying health across enrollees with the same type

of insurance coverage, and there may still be some negative effect of obesity on out-of-

pocket costs due to higher utilization of more intense care among overweight and obese

children.

Given that third parties seem to bear most of the medical care costs associated with

youth obesity, it is of interest to determine what share is paid by public payers as com-

pared to private insurance. Table 2.11 contains estimates of the impact of increased BMI

on expenditures paid by Medicaid among Medicaid enrollees and expenditures paid by

private insurance plans among those enrolled in private insurance. We find that a one

BMI unit increase causes the level of expenditures paid for by Medicaid to increase by

$145.51. When we restrict the sample to only those enrolled in Medicaid, we find that a

one BMI unit increase raises boys’ medicaid expenditures by $135.64, and girls’ expen-

1We also estimate these models including the Log of family income, and find no discernible difference
whether income is included in the model or not.
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ditures by $266.48. We find no effect on the level of expenditures paid for by private

insurance among those enrolled in private insurance plans. Table 2.12 contains estimates

of the impact of overweight and obesity on expenditures paid by Medicaid among Medi-

caid enrollees and expenditures paid by private insurance plans among those enrolled in

private insurance. Moving from healthy weight to overweight or obese significantly in-

creases both boys’ and girls’ annual medical expenditures. The estimated effects for girls

are again larger than those for boys. The estimated effects of overweight and obesity on

the privately insureds’ third-party payments are small and imprecisely estimated. Taken

with the results in Tables 2.9 and 2.10, it seems that the costs of youth obesity accrue

mostly to third parties, of which public insurance pays the larger share.

We use the IV estimates to estimate the aggregate cost of youth obesity. Table

2.13 contains estimates of annual medical care expenditures (in 2010 USD) associated

with youth overweight and obesity, and Table 2.14 contains estimates of the costs just

associated with obesity among children aged 11-17 with biological mothers who were the

primary respondents.1 Among this restricted IV sample, we find that from 2000 to 2010,

the explicit costs of youth overweight and obesity was $4.75 billion on average. This cost

estimate is composed of an average annual $5.64 billion increase in third-party payments,

which is offset by an average annual reduction in out-of-pocket payments of $1.16 million.

We aggregate the individual effects of overweight and obesity among children enrolled in

Medicaid from Table 2.11 for the estimated 2 million children aged 11-17 who are enrolled.

We find that the aggregate cost of medical care associated with youth overweight and

obesity among Medicaid enrolled children is $3.46 billion, of which nearly all can be

attributed to costs associated with only youth obesity.

Under the (admittedly, strong) assumption that the effect of obesity in our subpopu-

lation generalizes to the full non-institutionalized population of adults aged 18 and older,

we can scale up the aggregate costs in the IV sample used to estimate our model up to the

entire population of children aged 11-17 by multiplying the subpopulation aggregate costs

by the ratio of the US population of adults to the US population of adults with biological

1Using the MEPS sampling weights, we determined the population of children aged 11-17 was on
average 19.97 million children from 2000 to 2010.
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children. For example, the total effect of overweight and obesity is $2.68 billion *(30.4

million / 19.97 million) = $7.24 billion.1 Using the generalized costs, we find that youth

overweight and obesity is associated with $5.40 billion a year is medicaid expenditures,

of which 96% is attributable solely to obesity.

2.5 Discussion

We estimate the effect of youth obesity on medical expenditures using data from the

2000-2010 Medical Expenditure Panel Survey (MEPS) using instrumental variables. IV

estimation will correct for bias due to measurement error in child BMI and endogeneity

of weight. IV estimation may still be vulnerable to bias due to non-classical measure-

ment error in the IV, as parents also tend to under-report their own BMI. We correct

for reporting error in the instrument by imputing measured BMI values into the MEPS

from the National Health and Nutrition Examination Survey. Imputation allows us to

indirectly identify the proxy-reporting behavior of parents with regard to their children’s

BMI. Our indirect observations correspond to the findings from empirical studies in two

key ways. First, we find evidence of systematic under-reporting by mothers when re-

porting their children’s weight, which is more pronounced for daughters. Second, we find

that parental reporting improves as BMI increases beyond a certain point (as observed

in Lundahl et al. (2014).) Maternal under-reporting is consistent with findings in pre-

vious research as well as in the NHANES where each adult both self-reports and has

their weight measured. We these indirect observations of reporting error as theoretical

justification for using instrumental variables estimation with error-corrected instruments.

We estimate a non-IV model and are unable to find significant effects of obesity

on child medical expenditures. Finkelstein and Trogden (2008) estimated a two-part

GLM model on 2001-03 MEPS with binary indicators for obesity and found that obese

children and adolescents incur $220 more medical expenditures than those of normal

weight, and overweight incur $180 more in medical expenditures. Monheit et al. (2009)

estimated separate models by gender and found that adolescent girls who become obese

1The population counts are derived from the MEPS sample and sample weights.
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cost $790 more per year than normal weight girls. Unlike these studies, we cannot use

the full sample of children in the MEPS, and subset to children with reporting biological

mothers due to availability of instruments. Children in single parent households may

have different underlying health or access to care that will cause our estimates to differ

from prior studies. In all non-IV studies of the impact of obesity, we cannot interpret

estimated coefficients as causal effects, and expect that these effects are influenced by

attenuating bias due to the endogeneity of weight, as well as measurement error.

Instrumenting using self-reported mothers’ BMI in the MEPS dramatically increases

the estimated effects of BMI on expenditures. Although IV estimation mitigates bias

due to endogeneity and proxy-reporting error in child BMI it may still be biased due

to reporting error in parent BMI. WE follow Chapter 1 and use regression calibrated

child and parent BMI to estimate RCIV and ARCIV models of medical expenditures.

We find that ARCIV estimates are slightly lower than IV estimates, but larger than

RCIV estimates. We compute the sample covariance between the fitted instrument and

predicted measurement error in child BMI, and show that this covariance is not equal

to zero, and is responsible for the RCIV estimator under-estimating the true effect. The

results in Chapter 1 show that correlation between the regression calibrated instrument

and predicted measurement error in child BMI does not imply that the true instrument

is correlated with the true reporting error in child BMI. Taken together, our findings are

consistent with non-classical error and under-reporting in both child and parent BMI,

but no correlation between the IV and measurement error in child BMI. IV estimation

may still be biased if reporting error in the instrument is correlated with the model error

term. The ARCIV estimator may reduce this bias, or simply generate the same coefficient

estimates as IV. We find ARCIV estimates are slightly lower than those from IV, and

interpret them as either the true effect, or more conservative under-estimates compared

to the larger IV estimates.

After adjusting for self-reporting error in mothers’ BMI, we find that, on average, an

increase of one BMI unit is associated with a $87.39 increase in medical expenditures. For

boys (girls), this effect is $98.60 ($92.18) for each BMI unit. When we compare medical
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costs of obese children to those who are healthy weight, we find that obese children incur

$1,091.23 more in medical care costs relative to healthy weight children. These effect

sizes are significantly larger than those found in our non-IV model, both overall, and for

boys and girls. The effects for boys are notable, as previous studies have not precisely

estimated effects of increased BMI on boys’ medical expenditures.

We are also the first to estimate the impact of youth obesity on expenditures by payer

type. We find that virtually all the increase in medical expenditures caused by youth

obesity is paid by third parties; primarily public programs like Medicare. We are the

first to find a positive effect of obesity on medical expenditures for boys, and determine

the reason previous studies find no effect of elevated BMI on boys’ medical expenditures

is that increases in expenditures covered by third parties are offset by reductions in out-

of-pocket payments. These results have serious implications for policy-makers concerned

with the US obesity epidemic. Not only are the costs larger than previously understood,

but federal social insurance covers nearly all the costs of care associated with youth

obesity.

There are some limitations to our modeling approach. Like previous research using in-

strumental variables, the validity of the IV depends on an untestable exclusion restriction.

There is a large behavioral genetics literature that supports the genetic linkage between

the weight of biological relatives, and little support for shared environmental effects that

are correlated with weight. But genes which influence weight may be inherited alongside

genes that also affect demand for medical care. We cannot observe genetic information

in the MEPS and acknowledge this possible limitation. Further, BMI is an imperfect

measure of fatness. BMI is strongly correlated with more accurate measures of obesity

such as body fat or waist circumference (Burkhauser and Cawley, 2008; ONeill, 2015).

However, BMI is the only measure of fatness available in the MEPS and the NHANES.

Chapter 1 shows IV models will be inconsistent under differential measurement error

in the IV. Error corrected IV models using fitted values from regression calibration may

mitigate this bias by replacing the instrument with its fitted expectation conditional on

mismeasured mother’s BMI and her observed covariates. To test the robustness of our
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imputations we compare our our results to those using alternative methods of imputation.

We impute using hotdeck imputation matching on reported BMI for children and adults.

The advantage of hotdeck imputation is that it does not impose a functional form on

the validation equation. This can allow for improved fitting of error corrected BMI when

the relationship between true BMI and it’s surrogate (typically observed BMI) is highly

irregular. Estimates of the impact of BMI on annual youth medical expenditures are

presented in Appendix Table B2. Using these alternate imputations, we find slightly

larger effect sizes than using the regression based imputation. Interestingly, when using

the ARCIV estimator, the effects significantly attenuate, and then increase when child

BMI is imputed to perform RCIV. This suggests that this method of imputation, though

perhaps correct in the aggregate, introduces idiosyncratic error into the imputations that

may result in additional bias. One metric to evaluate alternative imputations is to see if

sample covariances can be used to explain the difference between the RCIV and ARCIV

estimates, suggesting that ARCIV is consistent. We find that the analytical relationship

does not hold across the regression calibrated estimators. Additionally, our calibration

regressions from the validation data have R2 = 0.999, suggesting that the regression

model is a strong fit for the relationship between true BMI and reported BMI. It is

unlikely that hotdeck imputation, though more flexible, can improve the model fit by

regression calibration.

Despite these limitations, we make an important contribution by being the first to

use instrumental variables to estimate the the causal impact of youth obesity on medical

expenditures. The discrepancy between our IV estimates and the non-IV estimates from

previous studies suggest the costs of youth obesity are larger than previously believed.

This has important implications for the cost effectiveness of weight-management inter-

ventions targeted at children. Previous estimates of the cost of childhood obesity have

been used to motivate local and national level childhood obesity interventions (Trasande,

2010; Brown et al., 2007; Wang et al., 2003) For example, Trasande (2010) estimated the

cost-effectiveness of government spending to reduce childhood obesity using estimates

from Finkelstein et al. (2009). Our IV estimates suggest that Trasande (2010) signifi-
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cantly underestimated the economic impact of these interventions. Whitlock et al. (2010)

examined the effectiveness of both behavioral and pharmacologic weight-management in-

terventions, and found that comprehensive behavioral interventions of medium-to-high

intensity resulted in 1.9 to 3.3 BMI unit reduction.1 Using our estimates and the most

conservative policy effect size, a 1.9 BMI unit reduction would translate into a $166.04

cost savings per student, per year. Our estimates suggest that these and other treatments

may be cost-effective, or even lead to cost savings, where using previous estimates may

under-estimate the benefits relative to the costs of these interventions.

1They also found that behavioral interventions combined with prescription medicine can cause small
to moderate reductions in BMI.
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Table 2.1: Clinical Weight Classifications for Youth

Clinical Weight Classification BMI Percentile Range for Youth

Underweight BMI ≤ 5th

Healthy Weight 5th ≤ BMI < 85th

Overweight 85th ≤ BMI< 95th

Obesity BMI ≤ 95th

Severe Obesity BMI ≥ 99th

Source: Centers for Disease Control and Prevention (CDC) (2014); Skelton et al.
(2009)
Notes: The percentiles correspond to a reference (historic), not the current, distri-
bution of weight-for-height that is specific to gender and age. Youths defined as
aged 2 to 19 years.

Table 2.2: Prevalence of Youth Obesity in the United States Defined Using BMI

Study Years Ages 2-5 Ages 6-11 Ages 12-19

NHES II 1963-1965 4.2

NHES III 1966-1970 4.6*

NHANES I 1971-1974 4.0 6.1

NHANES II 1976-1980 6.5 5.0

NHANES III 1988-1994 7.2 11.3 10.5

NHANES Continuous 1999-2002 10.3 15.9 16.0

2003-2006 12.5 17.0 17.6

2007-2010 11.2 18.8 18.2

Source: National Center for Health Statistics (NCHS) (2014)
Notes: Based on measured weight and height from the nationally representative samples in the Na-
tional Health and Nutrition Examination Surveys. Obesity defined as a weight-for-height exceeding
the 95th percentile in a historic reference population; see Table 2.1. Youth defined as individuals aged
2 to 19 years. NHANES stands for National Health and Nutrition Examination Survey. NHES stands
for National Health Examination Survey. NHES I sampled adults aged 18-79, NHES II included chil-
dren aged 6-11, NHES III included youths aged 12-17 years. *NHES III included youths aged 12-17,
not 12-19.
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Table 2.3: Descriptive Statistics for Boys in Two-Parent Households

Variables Mean S.D. Min Max

Has positive medical expenditures 0.86 (.35) 0 1

Annual Medical Expenditures* $1,959.22 (5,374.2) 1 226,914.90

BMI (MEPS) 22.49 (4.91) 14.50 67.10

Hispanic 0.16 (.37) 0 1

Black 0.14 (.35) 0 1

Other race 0.04 (.19) 0 1

Age in months 170.91 (24.) 127 221

Self-reported 0.01 (.08) 0 1

Mother

HS diploma 0.32 (.47) 0 1

Some college 0.26 (.44) 0 1

Bachelor’s degree 0.17 (.38) 0 1

BA plus 0.09 (.29) 0 1

Father

HS diploma 0.21 (.41) 0 1

Some college 0.14 (.35) 0 1

Bachelor’s degree 0.11 (.31) 0 1

BA plus 0.08 (.27) 0 1

Household

People in the household aged 0 - 5 0.19 (.50) 0 6

People in the household aged 6 - 17 2.12 (1.04) 1 9

Northeast 0.18 (.38) 0 1

Midwest 0.23 (.42) 0 1

South 0.37 (.48) 0 1

West 0.22 (.42) 0 1

Urban 0.82 (.39) 0 1

Year 2000 0.08 (.28) 0 1

Year 2001 0.09 (.29) 0 1

Year 2002 0.09 (.29) 0 1

Year 2003 0.09 (.29) 0 1

Year 2004 0.10 (.30) 0 1

Year 2005 0.10 (.30) 0 1

Year 2006 0.09 (.29) 0 1

Year 2007 0.09 (.28) 0 1

Year 2008 0.09 (.28) 0 1

Year 2009 0.09 (.29) 0 1

Year 2010 0.09 (.28) 0 1

Notes: Data: MEPS 2000–2010. N = 13,718 (11,178 have positive expenditures). All entries are in 2010
dollars.
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Table 2.4: Descriptive Statistics for Girls in Two-Parent Households

Variables Mean S.D. Min Max

Has positive medical expenditures 0.88 (.33) 0 1

Annual Medical Expenditures* $2,103.89 (4,806.27) 1.27 97,217.22

BMI (MEPS) 22.08 (4.82) 14.40 73.50

Hispanic 0.16 (.37) 0 1

Black 0.15 (.36) 0 1

Other race 0.04 (.19) 0 1

Age in months 171.66 (24.26) 127 221

Self-reported 0.01 (.08) 0 1

Mother

HS diploma 0.31 (.46) 0 1

Some college 0.28 (.45) 0 1

Bachelor’s degree 0.16 (.37) 0 1

BA plus 0.09 (.29) 0 1

Father

HS diploma 0.21 (.40) 0 1

Some college 0.13 (.34) 0 1

Bachelor’s degree 0.11 (.32) 0 1

BA plus 0.08 (.27) 0 1

Household

People in the household aged 0 - 5 0.19 (.49) 0 4

People in the household aged 6 - 17 2.11 (1.03) 1 9

Northeast 0.17 (.38) 0 1

Midwest 0.24 (.43) 0 1

South 0.35 (.48) 0 1

West 0.23 (.42) 0 1

Urban 0.81 (.39) 0 1

Year 2000 0.08 (.27) 0 1

Year 2001 0.09 (.28) 0 1

Year 2002 0.09 (.29) 0 1

Year 2003 0.09 (.28) 0 1

Year 2004 0.09 (.29) 0 1

Year 2005 0.09 (.29) 0 1

Year 2006 0.10 (.30) 0 1

Year 2007 0.10 (.30) 0 1

Year 2008 0.10 (.29) 0 1

Year 2009 0.09 (.29) 0 1

Year 2010 0.09 (.28) 0 1

Notes: Data: MEPS 2000–2010. N = 13,284 (11,058 have positive expenditures). All entries are in 2010
dollars.
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Table 2.5: BMI of Boys and Their Mothers

Observations Mean S.D. Min Max

Reported Child BMI 13,718 22.49 4.91 14.50 67.10

Normal Weight 8,014 19.54 1.97 14.50 24.90

Overweight 2,341 23.82 1.42 20.00 27.32

Obese 3,363 29.71 4.50 22.60 67.10

Imputed Child BMI 13,718 22.80 5.34 13.74 49.00

Normal Weight 8,014 19.55 2.24 13.74 25.23

Overweight 2,341 24.34 1.91 20.11 28.83

Obese 3,363 30.73 4.39 22.91 49.00

Mothers

Reported BMI 13,718 27.95 6.71 14.70 73.20

Imputed BMI 13,718 29.14 7.17 16.00 67.28

Notes: Data: MEPS 2000–2010. Overweight and obese labels are determined using im-
puted BMI from the NHANES. Measured BMI data are imputed from the NHANES by
matching on BMI percentile rank, age, race, and gender.

Table 2.6: BMI of Girls and Their Mothers

Observations Mean S.D. Min Max

Reported Child BMI 13,284 22.08 4.82 14.40 73.50

Normal Weight 7,914 19.38 1.97 14.40 24.20

Overweight 2,460 23.71 1.62 20.00 28.10

Obese 2,910 29.85 4.71 22.70 73.50

Imputed Child BMI 13,284 23.17 5.25 14.75 52.00

Normal Weight 7,914 20.10 2.13 14.75 25.40

Overweight 2,460 25.18 1.92 20.66 29.88

Obese 2,910 31.87 4.28 24.01 52.00

Mothers

Reported BMI 13,284 28.22 6.69 14.40 71.60

Imputed BMI 13,284 29.45 7.19 16.00 67.25

Notes: Data: MEPS 2000–2010. Overweight and obese labels are determined using im-
puted BMI from the NHANES. Measured BMI data are imputed from the NHANES by
matching on BMI percentile rank, age, race, and gender.
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Figure 2.1: Distribution of Mothers’ BMI in the NHANES

Figure 2.2: Distribution of Mothers’ BMI in the MEPS
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Figure 2.3: Distribution of Child BMI in MEPS and NHANES
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Figure 2.4: Proxy-Reporting Error in Boys’ BMI

Figure 2.5: Proxy-Reporting Error in Boys’ BMI by Age
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Figure 2.6: Proxy-Reporting Error in Girls’ BMI

Figure 2.7: Proxy-Reporting Error in Girls’ BMI by Age
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Table 2.7: Marginal Effects of Child BMI on Annual Medical Expenditures

Estimator: Non-IV IV RCIV ARCIV ARCIV×δ̂
Column (1) (2) (3) (4) (5)

Boys & Girls 17.45 92.66*** 81.52*** 87.39*** 81.20

N= 27,002 (10.89) (32.35) (29.74) (32.08)

[1,657.48] [1,829.79] [2,064.07] {.929}

Boys 19.02 101.02** 91.70** 98.60** 93.18

N=13,718 (15.77) (51.18) (46.76) (50.54)

[905.86] [991.80] [1,002.41] {.945}

Girls 16.80 100.04*** 85.89** 92.18** 84.98

N= 13,284 (14.31) (36.31) (33.48) (36.11)

[697.44] [750.08] [975.86] {.922}

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level respectively.

BRR standard errors in parentheses. First-stage F-statistics in brackets. All entries are in 2010

dollars. For column 5, δ̂ displayed in curly brackets.
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Table 2.8: Marginal Effects of Overweight and Obese on Annual Medical Expenditures

Estimator: Non-IV IV RCIV ARCIV

Column: (1) (2) (3) (4)

Marginal Effect of Overweight Relative to Normal Weight

Boys & Girls 83.67 433.46*** 386.36*** 409.74***

N= 27,002 (52.38) (143.29) (131.43) (143.23)

Boys 84.66 429.39** 416.31** 419.43**

N=13,718 (70.15) (196.36) (189.75) (194.87)

Girls 88.68 524.11*** 423.79*** 483.78**

N= 13,284 (76.13) (184.71) (155.39) (185.13)

Marginal Effect of Obese Relative to Normal Weight

Boys & Girls 192.76 1,164.47** 1,032.54** 1,091.23**

N= 27,002 (124.23) (460.38) (416.2) (451.9)

Boys 202.23 1,193.82* 1,129.77* 1,163.93*

N=13,718 (172.75) (682.17) (640.59) (671.37)

Girls 197.45 1,399.35** 1,152.51** 1,273.28**

N= 13,284 (175.13) (598.37) (506.01) (585.02)

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level.

BRR standard errors in parentheses. Columns 1 - 3 use differences in mean proxy-

reported BMI. Column 4 uses differences in mean imputed BMI.

62



T
ab

le
2.

9:
M

ar
gi

n
al

E
ff

ec
ts

of
C

h
il
d

B
M

I
on

A
n
n
u
al

M
ed

ic
al

E
x
p

en
d
it

u
re

s
b
y

P
ay

m
en

t
T

y
p

e

E
st

im
at

or
:

A
R

C
IV

A
R

C
IV

A
R

C
IV

A
R

C
IV

P
op

u
la

ti
on

T
ot

al
E

x
p

en
d

it
u

re
s

T
h

ir
d

P
a
rt

y
E

x
p

en
d

it
u

re
s

O
u

t-
o
f-

P
o
ck

et
E

x
p

en
d

it
u

re
s

T
h

ir
d

P
a
rt

y
E

x
p

en
d

it
u

re
s

O
u

t-
o
f-

P
o
ck

et
E

x
p

en
d

it
u

re
s

B
oy

s
&

G
ir

ls
87

.3
9*

**
1
0
2
.5

6
*
*
*

-2
4
.9

5
*
*
*

8
6
.3

8
*
*
*

-1
5
.6

2
*

N
=

27
,0

02
(3

2.
08

)
(3

1
.2

7
)

(8
.6

9
)

(2
9
.8

7
)

(8
.7

9
)

B
oy

s
98

.6
0*

*
1
2
3
.9

6
*
*

-3
1
.3

8
*
*
*

1
0
4
.7

1
*
*

-2
3
.3

5
*
*

N
=

13
,7

18
(5

0.
54

)
(5

2
.9

9
)

(1
0
.5

8
)

(4
7
.1

)
(1

0
.3

1
)

G
ir

ls
92

.1
8*

*
1
0
2
.0

3
*
*
*

-1
7
.6

1
*

8
7
.7

1
*
*
*

-6
.5

3

N
=

13
,2

84
(3

6.
11

)
(3

2
.0

6
)

(1
1
.7

9
)

(3
1
.7

9
)

(1
2
.0

6
)

A
d

d
it

io
n

al
C

on
tr

ol
s

fo
r

In
su

ra
n

ce
S

ta
tu

s
X

X

O
b

se
rv

at
io

n
s

w
it

h
p

os
it

iv
e

m
ed

ic
al

ex
p

en
d

it
u

re
s

27
,0

02
2
0
,5

7
5

1
7
,1

7
7

2
0
,5

7
5

1
7
,1

7
7

N
o
te
s:

D
a
ta

:
M

E
P

S
2
0
0
0
–
2
0
1
0
.

*
,*

*
,*

*
*

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

a
t

1
0
%

,
5
%

,
1
%

le
v
el

re
sp

ec
ti

v
el

y.
B

R
R

st
a
n

d
a
rd

er
ro

rs
in

p
a
re

n
th

es
es

.
A

ll

en
tr

ie
s

a
re

in
2
0
1
0

d
o
ll
a
rs

.

63



Table 2.10: Marginal Effects of Child Overweight and Obese on Annual Medical Expenditures
by Payment Type

Population Total
Expenditures

Third Party
Expenditures

Out-of-Pocket
Expenditures

Third Party
Expenditures

Out-of-Pocket
Expenditures

Marginal Effect of Overweight Relative to Normal Weight

Boys & Girls 409.74*** 465.15*** -115.48*** 395.49*** -72.99*

N= 27,002 (143.23) (124.38) (37.87) (122.97) (39.7)

Boys 419.43** 493.35*** -136.12*** 473.44*** -101.88**

N=13,718 (194.87) (165.47) (43.47) (180.47) (43.42)

Girls 483.78** 408.97*** -90.06 451.94*** -33.91

N= 13,284 (185.13) (109.8) (56.87) (152.79) (61.15)

Marginal Effect of Obese Relative to Normal Weight

Boys & Girls 1,091.23** 1,334.09*** -228.18*** 1,099.59*** -151.69*

N= 27,002 (451.9) (463.56) (63.39) (431.48) (74.13)

Boys 1163.93* 1,533.36** -265.75*** 1,429.39** -209.25***

N=13,718 (671.37) (711.21) (70.39) (732.86) (76.02)

Girls 1,273.28** 1,238.38*** -184.75* 1,241.43** -73.66

N= 13,284 (585.02) (430.26) (101.27) (533.87) (125.38)

Additional Controls
for Insurance Status

X X

Observations with
positive medical
expenditures

12,765 11,660 10,735 11,660 10,735

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level respectively. BRR standard errors in parentheses. All entries

are in 2010 dollars.
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Table 2.11: Marginal Effects of Child BMI on Third-Party Medical Expenditures by
Payer Type

Population Third Party
Expenditures

Medicaid
Expenditures

Private
Insurance
Expenditures

Marginal Effect of BMI

Boys & Girls (Full Sample) 102.56*** 145.51* -12.58

N = 27,002 (31.27) (84.37) (19.69)

Boys & Girls 255.06 13.13

N = 10,389 / 14,190 – (157.45) (29.76)

Boys – 135.64* 25.92

N = 5,215 / 7,288 (71.16) (38.97)

Girls – 266.48** 24.43

N = 5,174 / 6,902 (130.28) (32.16)

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level respectively. BRR

standard errors in parentheses. All entries are in 2010 dollars. Row 1 incorporates the full sample. Sub-

sequent rows restrict the sample to individuals covered by Medicaid / Private insurance respectively.
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Table 2.12: Marginal Effects of Overweight and Obese on Third-Party Medical Expendi-
tures by Payer Type

Population Third Party
Expenditures

Medicaid
Expenditures

Private
Insurance
Expenditures

Marginal Effect of Overweight Relative to Normal Weight

Boys & Girls (Full Sample) 465.15*** 316.67*** -62.11

N = 27,002 (124.38) (49.89) (95.77)

Boys & Girls – 662.75*** 63.43

N = 10,389 / 14,190 (134.73) (143.88)

Boys – 484.21*** 127.40

N = 5,215 / 7,288 (150.16) (188.5)

Girls – 616.07*** 120.12

N = 5,174 / 6,902 (106.08) (156.67)

Marginal Effect of Obese Relative to Normal Weight

Boys & Girls (Full Sample) 1,334.09*** 1,704.55*** -153.06

N = 27,002 (463.56) (536.96) (202.27)

Boys & Girls – 2,830.95*** 141.36

N = 10,389 / 14,190 (981.99) (339.46)

Boys – 1,698.30*** 293.86

N = 5,215 / 7,288 (780.12) (472.76)

Girls – 2,938.28*** 283.15

N = 5,174 / 6,902 (1,006.97) (396.12)

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level respectively. BRR

standard errors in parentheses. All entries are in 2010 dollars. Row 1 incorporates the full sample. Subse-

quent rows restrict the sample to individuals covered by Medicaid / Private insurance respectively.
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Table 2.13: Aggregate Costs of Youth Overweight and Obesity on Annual Medical
Expenditures

Year Total
Expenditures

Third Party
Expenditures

Out-of-
Pocket
Expenditures

Medicaid
Expenditures

2000 3.07 (1.11, 5.04) 3.32 (1.61, 5.03) -0.96 (-1.48, -0.44) 0.96 (0.39, 1.52)

2001 3.90 (1.42, 6.39) 4.60 (2.13, 7.08) -1.02 (-1.54, -0.49) 1.42 (0.62, 2.23)

2002 4.26 (1.44, 7.08) 4.85 (2.15, 7.56) -1.12 (-1.71, -0.53) 3.32 (1.15, 5.50)

2003 4.08 (1.52, 6.65) 4.63 (2.28, 6.98) -1.10 (-1.69, -0.52) 2.77 (1.53, 4.02)

2004 4.64 (1.86, 7.43) 5.51 (2.87, 8.16) -1.16 (-1.79, -0.52) 3.19 (1.67, 4.70)

2005 5.32 (1.86, 8.78) 6.31 (2.95, 9.67) -1.29 (-1.96, -0.62) 4.16 (2.12, 6.21)

2006 5.53 (2.32, 8.73) 6.61 (3.57, 9.65) -1.34 (-2.07, -0.61) 3.66 (1.99, 5.32)

2007 4.45 (1.55, 7.35) 5.25 (2.44, 8.06) -1.10 (-1.68, -0.51) 2.95 (1.55, 4.35)

2008 5.45 (2.08, 8.83) 6.55 (3.30, 9.80) -1.31 (-1.99, -0.63) 3.95 (2.07, 5.83)

2009 5.45 (2.04, 8.87) 6.81 (3.40, 10.22) -1,15 (-1.72, -0.58) 5.29 (2.65, 7.88)

2010 6.12 (2.45, 9.79) 7.61 (3.93, 11.28) -1.23 (-1.90, -0.56) 6.46 (3.23, 9.69)
Generalized to
population 2010

9.70 (3.88, 15.53) 12.06 (6.24, 17.88) -1.95 (-3.01, -0.89) 10.23 (5.12, 15.34)

2000 - 2010
average

4.75 (1.87, 7.63) 5.64 (2.95, 8.33) -1.16 (-1.75, -0.57) 3.46 (1.97, 4.96)

Generalized to
population 2000
- 2010 average

7.24 (2.85, 11.63) 8.60 (4.50, 12.69) -1.77 (-2.66, -0.88) 5.40 (3.07, 7.73)

Notes: Data: MEPS 2000–2010. All expenditures are in billions of 2010 dollars. 90% BRR Confidence intervals in parentheses

are adjusted for the complex design of the MEPS. Generalized effects for total, third-party, and out-of-pocket expenditures are

computed by multiplying the average effect into the ratio of the general population of children aged 11-17 and children aged 11-17

in two parent households. The general effects for Medicaid expenditures are generalized to the population of children aged 11-17

enrolled in Medicaid. The population counts are derived from the MEPS sample and sample weights.
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Table 2.14: Aggregate Costs of Youth Obesity on Annual Medical Expenditures

Year Total
Expenditures

Third Party
Expenditures

Out-of-
Pocket
Expenditures

Medicaid
Expenditures

2000 2.21 (0.67, 3.75) 2.48 (1.03, 3.93) -0.60 (-0.92, -0.29) 0.88 (0.25, 1.51)

2001 3.02 (1.01, 5.02) 3.71 (1.57, 5.84) -0.68 (-1.02, -0.34) 1.38 (0.47, 2.29)

2002 3.48 (1.04, 5.92) 4.09 (1.59, 6.59) -0.81 (-1.22, -0.40) 3.07 (0.77, 5.37)

2003 3.05 (1.00, 5.10) 3.60 (1.57, 5.63) -0.71 (-1.07, -0.35) 2.60 (1.20, 4.00)

2004 3.49 (1.26, 5.71) 4.34 (2.04, 6.63) -0.74 (-1.12, -0.35) 3.35 (1.37, 5.33)

2005 3.94 (1.21, 6.68) 4.90 (2.04, 7.76) -0.82 (-1.21, -0.42) 4.30 (1.74, 6.86)

2006 3.92 (1.42, 6.41) 4.96 (2.35, 7.56) -0.78 (-1.16, -0.39) 3.73 (1.66, 5.79)

2007 3.42 (1.06, 5.78) 4.26 (1.76, 6.71) -0.71 (-1.06, -0.36) 3.02 (1.31, 4.72)

2008 4.01 (1.35, 6.67) 5.05 (2.25, 7.85) -0.81 (-1.21, -0.41) 3.75 (1.62, 5.87)

2009 4.20 (1.41, 6.99) 5.47 (2.46, 8.49) -0.76 (-1.13, -0.39) 4.90 (2.09, 7.72)

2010 4.69 (1.68, 7.71) 6.05 (2.81, 9.30) -0.82 (-1.24, -0.39) 5.81 (2.25, 9.37)
Generalized to
population 2010

7.44 (2.66, 12.23) 9.60 (4.45, 14.75) -1.29 (-1.96, -0.62) 9.20 (3.57, 14.83)

2000 - 2010
average

3.59 (1.26, 5.91) 4.44 (2.09, 6.80) -0.75 (-1.10, -0.40) 3.34 (1.57, 5.12)

Generalized to
population 2000
- 2010 average

5.46 (1.93, 9.00) 6.77 (3.18, 10.36) -1.14 (-1.68, -0.60) 5.21 (2.45, 7.89)

Notes: Data: MEPS 2000–2010. All expenditures are in billions of 2010 dollars. 90% BRR Confidence intervals in parentheses

are adjusted for the complex design of the MEPS. *,**,*** indicate significance at 10%, 5%, 1% level respectively. Generalized

effects for total, third-party, and out-of-pocket expenditures are computed by multiplying the average effect into the ratio of the

general population of children aged 11-17 and children aged 11-17 in two parent households. The general effects for Medicaid

expenditures are generalized to the population of children aged 11-17 enrolled in Medicaid. The population counts are derived

from the MEPS sample and sample weights.
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Chapter 3

The Impact of Obesity on Adult

Medical Care Costs

3.1 Introduction

The prevalence of obesity has more than doubled in the US over the last 30 years

(Burkhauser et al., 2009). In 2009−2010, the prevalence of obesity (BMI ≥ 30) was 35.5%

of adult men and 35.8% of adult women.1 Additionally, over two-thirds of US adults are

considered overweight, having 25 ≤ BMI < 30 (Flegal et al., 2012). Obesity is associated

with an increased risk of many health conditions, including cardiovascular disease, stroke,

type-2 diabetes, certain cancers, osteoarthritis, asthma, and depression (Dixon, 2010;

Hu, 2008). Incurring treatment for these conditions can represent a considerable increase

in medical expenditures, particularly if they result in prolonged inpatient stays or the

development of chronic illness.

A number of previous studies have estimated the impact of obesity on medical care

costs by estimating cross-sectional models of the relationship between BMI or obesity

on medical expenditures. (Finkelstein et al., 2009; Trasande et al., 2009; Trasande and

Chatterjee, 2009; Thorpe et al., 2004; Finkelstein et al., 2003). For example, Finkelstein

et al. (2009) use the 1998 and 2006 Medical Expenditure Panel Survey (MEPS) to esti-

mate the impact of obesity on medical expenditures. They find that on average, being

1Body mass index is defined as weight in kilograms divided by height in meters squared.
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obese was associated with $1,429 (2006 dollars) in additional spending on average. These

studies have identified significant medical costs associated with obesity, and have raised

the concern that much of these additional expenditures are paid for by state and Federal

insurance programs such as Medicare and Medicaid.

A limitation of these previous studies is that estimating cross-sectional models can

only estimate the correlation between BMI and medical expenditures, and cannot be

interpreted as causal estimates. Another limitation is that BMI and weight status are

endogenous in these models, which can lead to biased estimates of the association between

BMI and medical expenditures. For example, a prolonged inpatient stay may result in

increased expenditures as well as weight loss, resulting in underestimation of the true

effect. The correlation will also likely underestimate the true effect as individuals with

less access to care tend to have higher rates of obesity (Fontaine and Bartlett, 2000).

More recent research has addressed the endogeneity of weight while estimating the

causal effect of obesity on medical expenditures. Cawley and Meyerhoefer (2012) use

the BMI of the oldest biological child as an instrumental variable for the BMI of the

respondent. Unlike Least-Squares regression, instrumental variables estimation is consis-

tent in the presence of endogeneity as well as classical measurement error in BMI. They

find that instrumenting significantly increases the magnitude of the impact of obesity

on medial expenditures relative to non-IV estimates. They estimate that obesity raises

annual medical costs by $2,741 (2005 dollars) per obese individual, compared to $656

when not using instrumental variables. Cawley et al. (2014) update this model using the

2000 - 2010 MEPS, and find that obesity raises annual medical care costs by $3,508 (2010

dollars) per obese individual on average.

As costs of obesity increase, given the structure of health insurance coverage, a large

share of these costs may represent a negative externality if individuals do not face the

financial consequences of their poor health behaviors (Bhattacharya and Sood, 2005). For

example, Bhattacharya and Sood (2005) suggest that if premiums are not risk-adjusted

to reflect the weight of the enrollee then health insurance may, in effect, subsidize obesity.

If public programs bear the larger share of the external costs of obesity, then these costs

70



may represent a loss to societal welfare as families most prone to obesity face the smallest

out-of-pocket share of medical costs for conditions associated with obesity. Earlier studies

have suggested that there is a substantial externality of obesity. In their estimates using

the MEPS, Finkelstein et al. (2009) found that obesity related costs to Medicare and

Medicaid were 32% of total obesity related costs.

Cawley and Meyerhoefer (2012) point out that heights and weights in the MEPS

are not measured, but instead reported by a single survey respondent, who self-reports

their own height and weight, and proxy-reports the other members of the household.

Studies of adult reporting behavior suggest that individuals tend to overstate their height

and under-report their weight, resulting in smaller BMIs, and that the degree to which

BMI is understated increases with BMI, generating a correlation between measurement

error and the true value (Stommel and Schoenborn, 2009; Gorber et al., 2007). We

expect this reporting error will lead to misclassification of individuals, understating the

true rates of overweight and obesity. Previous IV estimates of the impact of obesity on

medical expenditures may still result in biased coefficient estimates if measurement error

is non-classical, as under-reporting will generate additive error that is not mean zero

and potentially correlated with unobserved factors that also affect medical expenditures

(Bound et al., 2001; O’Neill and Sweetman, 2013).

This paper uses data from the 2000 - 2010 Medical Expenditure Panel Survey to es-

timate the impact of BMI and obesity on adult medical expenditures. We acknowledge

the limitations of previous studies as well as the empirical evidence of under-reporting,

and use validation data to predict true BMI their children, whose BMI serve as an instru-

ment. We use the National Health and Nutrition Examination Survey (NHANES) as a

source of measured BMI data. The NHANES contains both measured and self-reported

heights and weights for adults as well as measured child heights and weights, and can be

used to correct reported BMI in the MEPS (Cawley, 2004). Due to the unavailability of

proxy-reports for child height and weight in the NHANES to correspond to proxy-reports

in the MEPS, we follow the imputation procedure in Courtemanche et al. (2014) and use

the percentile rank of BMI as the matching agent to impute child BMI.
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We are able to use the imputed adult and child BMIs to indirectly observe adult self-

and proxy-reporting behavior, and provide evidence of under-reporting in the MEPS. We

use the ARCIV estimator from chapter 1 to estimate the impact of obesity on annual

medical expenditures. For most sub-populations we find estimates very similar to previous

IV estimates. We also find evidence that third-parties bear a larger share of additional

costs associated with obesity, suggesting that there are considerable negative externalises

associated with obesity.

3.2 Identification Strategy

3.2.1 Instrumental Variables

We estimate the effect of BMI on medical expenditures using the IV-GLM proce-

dure described in Carroll et al. (2006). In order for IV estimation to produce consistent

estimates, the instrument must be sufficiently correlated with the endogenous or mismea-

sured variable. Our first stage partial F-statistics range from 80.75 - 773.98, well in excess

of the rule-of-thumb F-stat = 10 for all of our specifications (Stock et al., 2002). More

difficult to establish is that the instrument is independent of the error in the structural

model.1

Independence would be violated if parents and their childrens’ BMI are affected by

common environmental factors that also influence the child’s medical care costs. Parents

are typically responsible for their children’s healthcare decisions. Parenting decisions may

stem from parent attitudes towards health, and may be reflected in the parent’s BMI.

If these attitudes are correlated with unobserved cultural or environmental factors that

also effect the child’s medical expenditures, then the instrument will be correlated with

the error term in the model. This cannot be directly tested in our data.

There is however, a substantial behavioral genetic literature validating the genetic

relationship between weight of biological relatives. (Haberstick et al., 2010; Smith et al.,

2009; Wardle et al., 2008; Grilo and Pogue-Geile, 1991) For example, Grilo and Pogue-

1Independence is a stronger assumption than for linear IV, but is required for IV-GLM (Carroll et al.,
2006).
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Geile (1991) find that 40–70% of the variation in obesity-related phenotypes, such as

body mass index, skinfold thickness, fat mass and leptin levels, is inheritable. Adoption

studies have found that the strong genetic correlation between children and their biolog-

ical parents is not weaker for children raised by adoptive parents (Stunkard et al., 1986;

Srensen and Stunkard, 1993). Twin studies also find that the correlation in the weight

of twins does not depend on whether they were raise together or separately. (Price and

Gottesman, 1991; Maes et al., 1997)

This same behavioral genetic literature finds little to no evidence in favor of shared

household or environmental effects on BMI (Haberstick et al., 2010; Wardle et al., 2008;

Maes et al., 1997; Grilo and Pogue-Geile, 1991). Taken at face value, no shared household

effect of BMI implies that a parent’s BMI can only effect their child’s medical expenditures

through it’s effect on child BMI. We interpret this lack of evidence for environmental

effects not as a statement that location, shared culture, or shared diet do not effect child

BMI, but that all of the correlation between parent BMI and these factors is captured

by the strong correlation between parent and child BMI due to the strong influence of

shared genetics.

Prior economic research has employed genetic variation in weight to generate instru-

mental variables. Cawley (2000) use the National Longitudinal Survey of Youth (NLSY)

in order to measure the effect of body weight on employment disability. He uses the BMI

of a biological child to instrument for adult BMI. Lindeboom et al. (2010) estimated the

effect of obesity on employment, using rich data from the British National Child Develop-

ment Study (NCDS). The results show a significant negative association between obesity

and employment even after controlling for a rich set of demographic, socioeconomic, en-

vironmental and behavioral variables. Kline and Tobias (2008) used the BMI of parents

to instrument for the BMI of their adult offspring and estimate the impact of BMI on

wages in Britain. Cawley (2004) used the BMI of a sibling to instrument for adult BMI

in estimating the impact of obesity on wages. More recently, Cawley and Meyerhoefer

(2012) and Cawley et al. (2014) used the BMI of children to instrument for the BMI of

their biological parents in the MEPS in order to estimate the impact of obesity on adult
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medical expenditures.

3.2.2 Reporting Error in BMI

Prior research has documented the relationship between adult’s height and weight and

reporting error in their own weight. In their systematic review, Gorber et al. (2007) found

an overall trend of under-reporting in adult self-reports. Villanueva (2001) studied the

NHANES III, and found that measurement error in weight was negatively associated with

measured BMI. More recently, Stommel and Schoenborn (2009) studied self-reporting in

the 2001 - 2006 NHANES and found that, while adults tended to over-estimate BMI at

low levels of BMI < 22, the tended to under-estimate BMI for BMIs > 28. In the MEPS,

many adults have their BMI proxy-reported by another adult. (usually men being proxy-

reported by their wives.) Few studies look at the accuracy of proxy-reporting. Reed

and Price (1998) find that first degree relatives provide fairly accurate weight estimates,

within 3–5% of measured weight, but that these proxy reports also tend to under-report

weight and over-estimate height, leading to underestimation of BMI.

IV estimation is robust to classical measurement error, but may be biased in the pres-

ence of non-classical measurement error if this error is differential.1 Chapter 1 contains

analytical and simulation results demonstrating the properties of the IV estimator and

regression calibrated IV estimators under non-classical measurement error.

3.2.3 Corrected Body Mass Index

OLS and IV estimates are not robust to all forms of measurement error. Differential

measurement error or correlation between the true instrument and the measurement

error in the endogenous variable may still bias IV estimates. It is possible to reduce the

magnitude of these biases by using validation techniques to replace mismeasured variables

1Under-reporting that increases with BMI will lead to a negative correlation between BMI and the
measurement error in BMI. This negative correlation, combined with positive correlation between parent
and child BMI does not necessarily imply negative correlation between child BMI and the measurement
error in adult BMI, as covariance (and correlation, which is normalized covariance) is not transitive
(Langford et al., 2001). If child BMI is correlated with the measurement error in their parent’s BMI,
then using child BMI as an IV for their parent’s BMI may not result in consistent estimates of the impact
of obesity on medical expenditures.
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with error-corrected fitted values (Bound et al., 2001). Prior studies have used measured

validation data to correct for measurement error in BMI when estimating the impact of

BMI on health and labor outcomes (Cawley, 2000, 2004; Dutton and McLaren, 2014).

Validation data are typically used to generate correction equations that are used to predict

true BMI in the principle sample, which only contains mismeasured BMI. (Courtemanche

et al., 2014). We follow the imputation procedure described in Courtemanche et al. (2014)

using the National Health and Nutrition Examination Survey (NHANES) as a source of

validation data.1 A summary of the imputation procedure in Courtemanche et al. (2014)

in the context of our model follows here.

Imputation requires that there is a surrogate, or matching agent, present in the prin-

cipal and validation datasets, as well as the transportability of the surrogate across both

datasets. Each observation has true BMI X and their observed BMI wj in the principle

sample j = M and in the validation sample j = N .2 The first condition is that for

true BMI x, there exists a surrogate (typically the observed BMI) wsurj such that the

distribution of the outcome Y given (x,wsurj ) is the same as Y given x. Essentially the

observed BMI cannot contain information about the outcome that is not already reflected

in true BMI. Another interpretation is that measurement error in BMI cannot be corre-

lated with unobserved variables that influence the outcome. The second condition is the

transportability of the surrogate; that the underlying distributions of true BMI in both

datasets are equal conditional on the surrogate. Transportability implies that,

E(x|wM , ZM) = E(x|wN , ZN), 3 (3.1)

where covariates (Zj) are shared in both datasets (gender, age, race, etc...).

In prior research using the NHANES as validation data for self-reported adult BMI,

the self-reported BMI in the NHANES is used as the surrogate for imputation (Cawley,

2000). We can only follow this method to impute adult BMI for adults who self-report

1We follow the arguments of Lee and Sepanski (1995) and impute BMI directly instead of predicting
height and weight and using the predictions to calculate BMI. The advantage is we are directly predicting
the BMI distribution, and in turn the non-linear relationship between BMI and expenditures.

2In our analysis, the MEPS is the principle sample and the NHANES serves as the validation sample.
3This is known as weak transportability (Lee and Sepanski, 1995).
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their own height and weight, which will be used to generate their imputed BMI. In

practice, mothers and fathers may have different self-reporting behavior, which may vary

by age or race. Further, there are no proxy-reports of child BMI in the NHANES to

match to proxy-reports in the MEPS.

In order to impute both adult and child BMI, we follow the method in Courtemanche

et al. (2014), and use the percentile rank of BMI as the matching surrogate. In this

way, misreporting manifests not only as a stochastic process on additive error terms u

and v, but as a shifting in the distribution of BMIs. Using the percentile rank as the

matching surrogate only requires that the expected value of true BMI conditional on

reported BMI is monotonically increasing in reported BMI (Courtemanche et al., 2014).

This monotonicity implies that individuals who report higher BMI are expected to have

higher a BMI than those who report report lower BMI. Courtemanche et al. (2014) test

this monotonicity assumption in the NHANES, and do not find evidence to reject it.

The percentile rank is a transportable surrogate if,

E(x|BMI RankM , ZM) = E(x|BMI RankN , ZN). (3.2)

For both adults and children, we predict measured BMI in the NHANES as a function

of gender, race, and their interactions with linear splines generated from the percentile

rank of BMI and higher orders of age (age in months for children). We then use the

estimated equations to predict true BMI for adults and children in the principal sample

(MEPS).1

3.2.4 Empirical Model

To accommodate the non-trivial number of observations with no observed expendi-

tures in any survey period (16% on average), we employ a two-part model of medical

expenditures to estimate the impact of BMI on medical spending (Jones, 2000). The first

part of the model is specified as a Logit model that estimates the probability of having

1To test the robustness of our imputations we alternatively impute using hotdeck imputation match-
ing on percentile rank for children and adults. Using these alternate imputations. We find very similar
results to those using the regression based imputation.
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positive expenditures. The second part of the model estimates the level of medical ex-

penditures conditional on having positive spending. We follow previous studies that have

estimated the impact of BMI on medical expenditures and specify the second part as a

GLM with Gamma variance structure and log link (Cawley et al., 2014; Cawley and Mey-

erhoefer, 2012; Finkelstein et al., 2009). This specification is more flexible than a linear

model using transformed expenditures (such as log expenditures) and thus accommodates

the non-linear relationship between BMI and medical expenditures, even without using

higher orders of BMI in the model. We follow Manning and Mullahy (2001), and perform

modified Park tests to test our choice of conditional variance and HosmerLemeshow tests

to confirm that our choice of link function is consistent with the data generating process.1

We implement both parts of the model as Generalized Linear Models (the first stage is

a GLM using the binomial distribution and a Logit link.). In this way we can incorporate

instrumental variables into both parts using the IV-GLM estimator proposed by described

in Hardin and Carroll (2003a). Their method is essentially two-stage non-linear least

squares. The first stage is a linear regression of the mismeasured covariates on the set

of included and excluded instruments. The second stage is a GLM fit of the outcome on

the known covariates and the fitted values of the mismeasured covariate from the first

stage2 (Hardin and Carroll, 2003b). We use the BMI of the oldest child and the squared

BMI of the oldest child as instruments. Cawley and Meyerhoefer (2012) used the BMI

of the oldest child due to higher rates of non-response among younger children, and did

not find significant differences in estimates across different sets of instruments.

In all models we control for gender, race/ethnicity (white, black, Hispanic, other

race), respondent age (indicator variables for whether age in years is 20-34, 35-44, 45-54,

or 55-64), education level (no high school diploma, high school graduate, some college,

1We conduct modified Park tests to confirm our choice of conditional variance, in particular that
the variance is proportional to the square of the conditional mean. We find λ = 1.77 − 2.02 across our
samples and is precisely estimated. We also perform a modified Hosmer–Lemeshow test by regressing
prediction error from each model on deciles of the distribution of predicted expenditures. We fail to reject
the null-hypothesis that the decile coefficients are jointly equal to zero for all subpopulations, indicating
the choice of link function is appropriate.

2We estimate the IV-GLM in STATA using the qvf command in (Hardin et al., 2003). The command
fits the GLM using iteratively re-weighted least squares (IRLS). Hardin and Hilbe (2012) (2012) detail
the steps of the IRLS algorithm.
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bachelors degree or higher), census region (northeast, midwest, south, or west), whether

the respondent lives in an MSA, household composition (number of household members

age 0-5 years, 6-17, 18-64, and 65 or older), whether the survey information was self-

reported as opposed to proxy reported, fixed effects for year, the gender of the oldest child,

and the age of the oldest child in months. For subgroup analyses the set of regressors is

modified to drop irrelevant control variables.

3.3 Data

The Medical Expenditure Panel Survey (MEPS) is a comprehensive, nationally rep-

resentative survey of the U.S. civilian non-institutionalized population.1 In the MEPS,

families are surveyed five times during a two year period about their medical care uti-

lization and expenditures. For each family (the responding unit in the MEPS), a single

individual is the primary respondent. For most families in the MEPS, the mother is the

primary respondent. We can identify the primary respondent in each family (usually a

parent) and we use restricted-use biological linkage variables to match parents to their

biological children. Heights and weights are not measured in the MEPS. The primary

respondent typically reports the heights and weights of everyone in the reporting unit.

This means that the primary respondent self-reports his or her height and weight, and

heights and weights for their spouse and children are generated from proxy-reports.2

We use data from the 2000-2010 household component of the MEPS and inflate all

expenditures in each year to 2010 dollars. We limit the sample to adults between the ages

20 and 64 with biological children between the ages of 11 and 20 years old; We exclude

pregnant women and observations with missing BMI. We exclude parents whose oldest

child is younger than 11 years of age due to high rates non-response in height and weight.

We exclude nine observations with implausibly high BMI > 80, and one observation with

annual expenditures above $500,000. We are only interested in modeling the effect of

1To account for the complex survey design of the MEPS, we use the method of balanced repeated
replications to estimate standard errors in all models, which implements clustering at the PSU-level,
stratification, and weighting.

2The exception to this is when all adult members of the household are present during the interview,
in which case each adult self-reports their height and weight.

78



obesity, and drop 412 underweight individuals, bringing our final estimation sample to

17,533 men and 25,475 women.

In the MEPS, medical expenditures and the source of payment are collected directly

from households as well as from the households medical care providers for every medical

event. MEPS respondents are also asked whether their medical visits or other events

are related to any specific medical conditions. These responses are then professionally

coded using the International Classification of Diseases, Ninth Revision (ICD-9), and

subsequently collapsed to into 259 clinically relevant medical conditions using the Clin-

ical Classification System (CCS) developed by the Agency for Healthcare Research and

Quality (Agency for Healthcare Research and Quality (AHRQ), 2007). In addition to to-

tal medical expenditures, we estimate the impact of obesity on expenditures by all third

party payers (typically, public and private insurers), and also expenditures by all payers

on specific categories of care: inpatient, outpatient, prescription drugs, and other (which

includes dental, vision, home health care services, and medical equipment but excludes

spending on over-the-counter medications).

MEPS data are collected through a stratified multi-stage probability design, which

we account for in the calculation of the standard errors for our marginal effects. In

particular, we use the method of balanced repeated replications to estimate standard

errors in our non-IV and IV two-part GLM models. This method accounts for clustering

at the PSU-level, stratification, and weighting.

We correct for reporting error in BMI by using the National Health and Nutrition

Examination Survey (NHANES) as a validation dataset. The NHANES is a nationally

representative survey of adults and children that combines interviews and physical exam-

inations ( CDC / National Center for Health Statistics, 2014). In the NHANES, adults

and children aged 16 or older self-report their weight, and all survey respondents have

their heights and weights measured1. The NHANES does not contain medical expendi-

tures, but does share with the MEPS rich covariates.

The continuous version of the survey data are released in two-year waves (survey-

1Survey participants are not aware that they will be weighed until after they self-report their height
and weight.
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cycles), beginning in 1999. We construct the validation dataset by appending six survey

cycles of the data, from the 1999-2000 survey cycle to the 2009-2010 survey cycle. Like

the MEPS, the NHANES provides weights to account for the complex survey design

(including oversampling), survey non-response, and post-stratification ( CDC / National

Center for Health Statistics, 2013). We construct the appropriate survey weights for a

12 year span of the data (1999-2010).1

3.4 Results

3.4.1 Descriptive Statistics

Descriptive statistics of variables used in our analysis are presented in Table 3.1 for

men and Table 3.2 for women. (The samples are limited to parents of biological children.)

In our sample, 79% of men and 88% of women have positive medical expenditures during

the periods they are surveyed in the data. The high rate of adults with no expenditures is

our justification for using a two-part model. Conditional on having medical expenditures,

men have $3,094.94, and women have $3,592.08 in average annual medical expenditures.

The average BMI, calculated from proxy-reported or self-reported height and weight,

is 28.46 for men, and 27.86 for women. After imputing BMI using correction equations

from the NHANES, we estimate that the true average BMI is 29.49 for men and 29.53

for women. Comparing the means reveals that both mens’ and womens’ BMIs are under-

reported, with womens’ BMI being under-reported to a greater extent. After correcting

for mis-reporting we find that the true prevalence of obesity in our sample is 39% for men

and 41% for women. These are larger than the prevalence rates in the NHANES of 35.5%

for men and 35.8% for women. (Flegal et al., 2012). It is possible that this difference

is due to our sample of adults with biological children having a different underlying

rate of obesity than the entire population, although we would expect parents to have

better underlying health compared to adults without children. It may also be that our

1We extrapolate the method to construct weights when combining survey cycles for 12 years of data
using the 10 year method in task 2 in CDC / National Center for Health Statistics (2013). Our code is
displayed in Appendix A.
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imputation method over-states the degree to which individuals under-report. We find

similar mis-reporting of the BMI of the oldest child, which is the result of proxy-reporting

by the survey responding parent.

3.4.2 Self- and Proxy-Reporting Error

Figure 3.1 compares the distribution of reported BMI in the NHANES to the mea-

sured BMI of adult females. It is clear in the NHANES, where women self-report and

are subsequently measured, that the distribution of reported BMI has less mass in the

right tail, and greater mass in the overweight and healthy weight BMI range. In Figure

3.2, which displays the distribution of measured and self-reported BMI for men in the

NHANES, There is a spike in the mass of the distribution of self-reports just to the left

of the cutoff between overweight and obese. This distribution shift due to mis-reporting

is less pronounced than for women.

A necessary assumption for imputation is that reporting behavior is the same in both

the validation data and the principal sample. We compare the distribution of imputed

BMI in the MEPS to the reported BMI in order to indirectly observe reporting error in the

MEPS as well as compare the distribution shifting in the MEPS after imputation to the

under-reporting in the NHANES. Figure 3.3 shows the distribution of women’s reported

BMI in the MEPS and the distribution of imputed BMI. The pattern of misreporting is

similar to that observed in Figure 3.1, although there appears to be more mass shifted

from the right tail to the non-obese portion of the distribution. Figure 3.4 shows the

distribution of men’s reported BMI in the MEPS and the distribution of imputed BMI.

In the MEPS, very few men self-report, so we interpret Figure 3.4 as under-reporting by

their proxy, (who is usually their spouse) instead of men under-reporting their own weight

as in the NHANES. However, we still find indirect evidence that spouses do similarly

under-report their husbands BMI, even if we cannot directly corroborate proxy-reporting

with observed behavior in the NHANES. In Figure 3.5 we observe under-reporting in

the parental proxy-reports of their oldest child’s BMI, showing that the instruments are

themselves likely under-reported.
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We use the imputed BMIs to generate sample measurement errors. We then compare

the sample errors to the imputed BMIs in order to indirectly observe parental self and

proxy reporting behavior. Figure 3.6 plots womens’ imputed BMI against the additive

error term in BMI generated by self (and some proxy) reporting. The smoothness of this

relationship is due to the regression based imputation. Thus we can best interpret these

as estimates of the mean additive error for a given BMI level. The distinct curves are each

associated with each race category used in the prediction. We observe a general trend

where as womens’ BMI increases, they under-report their BMI by a greater amount

on average. (Observations with negative values of u are under-reported.) The trend

breaks down for the most extreme BMIs above 50, which represents fewer than 2% of

all observations. Most BMIs are under-reported. Figure 3.7 plots mens’ imputed BMI

against the additive error term in BMI generated by proxy (and some self) reporting. We

find a very similar trend of under-reporting as in women. The imputed relationships are

non-linear, suggesting that the increased flexibility of the imputation method is necessary

to model the relationship between observed and true BMI.

3.4.3 Impact of Obesity on Medical Expenditures

We begin by estimating a non-IV two-part model with the same specification as our

main model for the full sample, as well as for certain subpopulations: men, women, white,

nonwhite, those with private insurance, those with Medicaid, and the uninsured. The

results are presented in the left column of Table 3.3. Each estimated coefficient repre-

sents the marginal effect of a one unit increase in BMI on annual medical expenditures

(Standard errors are below in parentheses). From our non-IV model we find that, on

average, gaining an extra unit of BMI raises medical care costs by $74.35 per year.1 All

the marginal effects of a one unit increase in BMI are statistically significant across sub-

groups, and are under $100. The non-IV results suggest that the effect of elevated BMI

is larger for men ($84.22) than for women ($74.41), larger for whites ($89.17) than non-

1Appendix table B1 contains the effects of overweight and obese from the non-IV model. We find
from the non-IV model that moving from normal weight to obese is associated with a $884 increase
in annual medical care costs. This is similar to the non-IV baseline found in Cawley and Meyerhoefer
(2012) of $656.

82



whites ($47.95), and larger for privately insured ($75.41) relative to those with Medicaid

($65.97).

Column 2 of Table 3.3 contain the estimated marginal effects from the IV-GLM model,

where both adult BMI and the BMI of their oldest child are the reported BMI from the

MEPS. The effect sizes are over twice as large as the point estimates in column 1. We

expect using IV-GLM to increase the effect sizes since instrumenting controls for bias in

the cross-sectional model due to the endogeneity of BMI. The increase in effect size is

akin to the increase found in Cawley and Meyerhoefer (2012), except we find statistically

significant effects of BMI on medical care costs for men. This is possibly due to increased

statistical power, as we are pooling over more years of data, as opposed to indicating

structural change in the effect of BMI on men’s medical expenditures over time. After

instrumenting we find that the effect of a one BMI unit increase on annual medical

expenditure is similar across subpopulations, except for the medicaid covered and the

uninsured, which are $101.45 and $104.39 respictively. Like the non-IV estimates, we

do not find any statistically significant impact of elevated BMI on expenditures among

adults enrolled in Medicaid.

Columns 3 and 4 contain estimates from the RCIV and ARCIV estimators described

in Chapter 1. The RCIV estimator uses predicted child and adult BMI in place of

the mismeasured values from the MEPS. The RCIV estimates are smaller than the IV

estimates. This is consistent with non-classical measurement error in BMI, which can

cause downward bias in the RCIV estimator. Column 4 contains the ARCIV estimator

in which only the instrument is replaced with it’s fitted value. The ARCIV estimates

are in very similar to the IV estimates. This is corroborated by the simulation results in

Chapter 1, which show that the IV and ARCIV estimates should be very similar.

In the simulation results from chapter 1, we can use the sample covariances to explain

the difference between the RCIV and the ARCIV estimates when ARCIV is consistent.

Column 5 in table 3.3 contains the ARCIV estimates multiplied by δ from (1.26). We find

that this relationship holds as the estimates in column 5 are very close to the RCIV esti-

mates in Column 3. When both BMI and child BMI are systematically under-reported,
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the RCIV estimator will be downward. We do find evidence of under-reporting in both

adult and child BMI in the MEPS, and conclude that the RCIV estimator is biased down-

ward. We use the ARCIV estimator as the preferable estimator. We acknowledge that

these estimates are very similar to the IV model, and under most plausible measurement

error scenarios will be identical to the IV estimator.

We find that on average, a one BMI unit increase is associated with a $189.31 increase

in annual medical expenditures. The estimated effect is larger for women ($208.18) than

for men ($166.09), larger for non-whites ($210.58) than whites ($175.20), and lower than

average for privately insured ($163.00) relative to the full sample, but still larger than the

effect for the uninsured ($105.06). We still do not find any significant effect of elevated

BMI on expenditures among Medicaid enrollees. These effects are significantly larger

than those from the non-IV model, suggesting that endogeneity and measurement error

play a significant role in attenuating the non-IV estimates.

It is of health policy interest to know the marginal effect of changing weight categories;

in particular, the effect of moving from normal weight to overweight or to obese on annual

medical expenditures. Table 3.4 presents to marginal effects of overweight and obese on

annual medical expenditures. Columns 2 and 3 are estimated by predicting expenditures

at the mean BMI within weight classes (healthy weight, overweight, obese) and then

taking the difference. We find that moving from healthy weight obese increases total

expenditures by $2,383.94. Comparing the estimated effects of overweight and obesity

implies that there are non-linearities in the impact of elevated BMI, and that these trends

may vary by subpopulation. We observe that the impact of obesity is larger for women

than for men.

The impact of obesity in column 3 is lower than the $3,060.38 (2010 dollars) average

impact of obesity found in Cawley and Meyerhoefer (2012) as well as the $3,508 average

effect in Cawley et al. (2014).1 We cannot directly compare our estimates in column 3

to these binary effects because they directly estimated a model using a binary treatment

effect for obesity. For comparison, we estimate the same method in column 4, and find a

1The $2,741 effect in Cawley and Meyerhoefer (2012) is in 2005 dollars. We inflate their estimated
effect to 2010 dollars using the CPI.
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$3,212.62 increase in annual medical expenditures associated with becoming obese, which

is similar to the effect found in Cawley and Meyerhoefer (2012). We also use the binary

treatment effect model to estimate a marginal effect of obesity of $2,456.39 for men and

$3,840.45 for women.

We prefer to use the estimates in column 2, but report the results using a binary

treatment effect in order to compare the more current estimates here to prior research.

The estimation method in columns 2 and 3 has some advantages over replacing contin-

uous BMI in the model with an indicator variable for overweight or obese. The main

benefit is that we avoid adding categorical variables to ensure that the comparison group

is only healthy weight (as opposed to comparing obese to non-obese). Adding additional

categorical variables would require additional instruments. An additional concern is that

even after imputation, there is probably still idiosyncratic error in the BMI prediction

(with mean zero). This is not a problem as such error is essentially classical in nature,

and will not bias estimates in an IV model. However, such random additive error will

become non-classical when continuous BMI is transformed into a binary indicator, as a

mismeasured 1 can only become a 0, and vice versa. In addition to being non-classical

error, the error is negatively correlated with the true regressor, and will be negatively

correlated with the IV. This can generate exactly the upward bias that imputation is used

to alleviate. Empirically, we cannot know the exact degree of error introduced in the bi-

nary treatment effect model. We compute the sample correlation between the instrument

and the difference in the indicator variables for obesity before and after imputation, and

find a negative correlation, but it is near zero and unlikely to result in serious bias. (The

sample correlation between this error term and error in the IV is larger at -.04.) Further,

the IV estimate of the effect of obesity where the categorical variable is both endoge-

nous and mismeasured is only usable to generate bounds for the true effect. (Frazis and

Loewenstein, 2003)

The marginal effects in Tables 3.3 and 3.4 predict the impact of changes in BMI at

the mean BMI, or the mean BMI within a weight class. We demonstrate the non-linear

relationship between BMI and costs implied in Table 3.4 by predicting medical expendi-
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tures across the BMI distribution, allowing a more flexible relationship by including BMI

squared as an additional regressor. Figure 3.8 shows the predicted relationship between

BMI and annual expenditures for the full sample (men and women pooled). Figures 3.9

and 3.10 show the predicted relationships for men and women respectively. We observe

similar patterns as found in Cawley and Meyerhoefer (2012); a J-shaped curve for the

pooled sample with a flatter J-shape for women and a U-shaped curve for men, however,

our cost curves are estimated with greater precision, and are generally flatter than those

found in Cawley and Meyerhoefer (2012). This may be due to our corrections for upward

bias from measurement error reducing the magnitude of the marginal effects, and in turn

the predictions, particularly in the extreme values of BMI.

In Figure 3.9, we see that expenditures fall sharply as BMI passes above 20, rising

slowly at first as BMI increases through the overweight and obese categories. Expendi-

tures rise sharply again only as BMI moves into Grade III obesity (BMI ≥ 40), suggesting

that expenditures are relatively similar for men who are overweight as well as obese. In

Figure 3.10, the J-shaped curve shows a more gradual decline in expenditures as women

move into healthy weight from underweight, and a quicker increase in expenditures as

BMI increases into the overweight and obese ranges. Though the non-linear relationship

between BMI and predicted expenditures is more gradual for women, predicted expendi-

tures for overweight women are larger than for healthy weight, and predicted expenditures

for obese women are larger than those for overweight women. The overlaid distributions

show that, although a considerable number of adults are overweight or obese, the high-

est predicted expenditures are among the few individuals with BMIs well in excess of

the cutoff for obese. These few individuals are responsible for a disproportionate share

of obesity-related medical costs, and have a large influence on the size of the marginal

effects of obesity.

3.4.4 Economic Impact of Obesity

Table 3.5 contains the results from estimating the impact of BMI on third-party

expenditures using imputed parent and child BMI. Third-party expenditures represent
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a possible channel for obesity-related externalities. Some of the medical costs of obesity

may be borne by other enrollees in private insurance pools or by taxpayers in the form

of higher expenditures by the Medicaid program. We find that elevated BMI and obesity

may be associated with substantial externalities. A one unit increase in BMI raises third-

party annual expenditures by $158.18 in the pooled sample, which is 84% of the total

effect. Obesity raises third-party annual expenditures by $1,9183.50 , which is 84% of the

total effect. The impact of obesity on third-party medical expenditures is significantly

higher for women ($2,375.54) than men ($1,559.37). We find a lower than average impact

of obesity on third-party medical expenditures among those who are privately insured

($1,762.68, 87% of the total effect), yet do not find a significant impact of BMI on third-

party payments among Medicaid enrollees.

To better understand the channels through which obesity affects medical expenditures,

we estimate the impact of BMI on specific categories of medical expenditures. Table 3.6

contains the marginal effects of BMI, overweight, and obese on spending on inpatient care,

ambulatory care (outpatient services), prescription drugs, and other care (vision, dental,

home health, and medical equipment) using imputed adult and child BMI. We find that on

average obesity increases spending on inpatient care, ambulatory care, and prescription

drugs by roughly the same amount, with the effect being largest for ambulatory care

($884.05). When we estimate separate effects by gender, we find that for women (men),

a one unit increase in BMI increases medical spending by $81.54 ($51.35, not significant)

for inpatient care, $67.54 ($62.90) for ambulatory care, $62.29 ($55.91) for prescription

drugs, and has a negligible impact on spending on other medical care. For women (men),

obesity raises medical spending by $1,067.50 ($547.62, not significant) for inpatient care,

$932.46 ($714.84) for ambulatory care, and $846.42 ($637.97) for prescription drugs. We

find that the sum of the effects for the pooled sample and for women are similar to the

total effects in Table 3.4. The sum of the significant effects for men fall short of the

estimated total effect, suggesting that there may be a larger effect of BMI on inpatient

spending than the point estimate would suggest, but we are unable to precisely estimate

it.
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We use the IV estimates to estimate the aggregate cost of obesity. Table 3.7 contains

estimates of annual medical care expenditures (in 2010 USD) associated with obesity.1

Under the (admittedly, strong) assumption that the effect of obesity in our subpopulation

generalizes to the full non-institutionalized population of adults aged 18 and older, we

scaled the costs in the subpopulation used to estimate our model up to the entire adult

population by multiplying the subpopulation aggregate costs by the ratio of the US

population of adults to the US population of adults with biological children in 2010, or

$US 59.5 billion *(233.7 million/33.9 million) = $410.2 billion in 2010. Using the same

method, we estimate that third-party payments accounts for $360.5 billion (88%) of the

average annual costs of obesity in 2010.

3.5 Discussion

We estimate the effect of obesity on adult medical expenditures using data from

the 2000–2010 Medical Expenditures Panel Survey (MEPS). We employ an adjusted

conditional expectation IV estimator to correct measurement error in the instrument by

imputing measured BMI values into the MEPS from the National Health and Nutrition

Examination Survey. Imputation allows us to indirectly identify adults self- and proxy-

reporting behavior with regard to their own BMI. Our indirect observations correspond

with the findings from empirical studies in two key ways. First, we find evidence of

systematic under-reporting, and second, under-reporting is more pronounced for women

than for men.

We estimate an non-IV model and find small but significant estimates of the impact of

obesity similar to those found in Finkelstein et al. (2009). Unlike this and other studies,

we subset to parents of children aged 11-20 due to availability of instruments. Parents

may have different underlying health or access to care on average relative to the full US

population that will cause our estimates to differ from prior studies. In all non-IV studies

of the impact of obesity, we cannot interpret estimated coefficients as causal effects, and

1Using the MEPS sampling weights, we determined the population of adults aged 20–64 to be 233.7
million in 2010.
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expect that the smaller magnitude of these effects are the result of attenuating bias due

to the endogeneity of weight, as well as measurement error in BMI.

We use imputed BMI to correct for reporting error when estimating the effect of

obesity on medical expenditures. After correcting for reporting error in the instrument,

child BMI, we find that The impact of obesity is $2,383.94. This is lower than the

$3,060.38 found by Cawley and Meyerhoefer (2012) and the $3,508 found by Cawley

et al. (2014). This estimate in not comparable to our main results because they used a

binary treatment effects model for the impact of obesity. For comparison, we use the same

specification and find a $3,212.62 increase in annual medical expenditures associated with

becoming obese, which is very similar to the effect in Cawley and Meyerhoefer (2012).

We prefer to estimate the marginal effect of obesity using continuous BMI as the main

regressor. A binary treatment effect model warrants a different interpretation from our

estimated marginal effects. Models using binary indicators for obese do not include

additional indicators for overweight or underweight. Thus their effects are marginal

effects of obese compared to all other BMI classes. Estimates using the binary indicator

are best interpreted as the average difference in expenditures associated with being obese

compared to any other weight status. Our estimates explicitly uses healthy weight as

the control group, and represent the marginal effect of becoming overweight or obese

compared to healthy weight. This method essentially compares means within categories.

The mean expenditures among he obese likely obscures the significantly higher spending

in the right tail, and will likely lead to our method understating the true effect of moving

from healthy weight to obese. Comparing both estimates can provide bounds around

the true effect. Despite the econometric concerns, researchers may prefer an aggregate

estimate of expenditures associated with obesity or to aggregate our estimate of the

marginal effect of obesity depending on the policy question they are studying. Thus we

provide both sets of estimates using corrected BMI.

There are some limitations to our modeling approach. Like previous research using in-

strumental variables, the validity of the IV depends on an untestable exclusion restriction.

There is a large behavioral genetics literature that supports the genetic linkage between
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the weight of biological relatives, and little support for shared environmental effects that

are correlated with weight. But genes which influence weight may be inherited alongside

genes that also affect demand for medical care. We cannot observe genetic information

in the MEPS and acknowledge this possible limitation. Further, BMI is an imperfect

measure of fatness. BMI is strongly correlated with more accurate measures of obesity

such as body fat or waist circumference (Burkhauser and Cawley, 2008; ONeill, 2015).

However, BMI is the only measure of fatness available in the MEPS and the NHANES.

The consistency of our estimates also depend on the validity of the assumptions nec-

essary for imputation. There is no way to observe the true correction equations estimated

in the NHANES. We can however rely on the survey design and sample weights for both

the MEPS and the NHANES to be random samples of the same population. We also

compare estimated misreporting to the behavior observed in prior studies as well as em-

pirically in the NHANES and find that they are similar patterns of under-reporting. We

do not explicitly control for variance due to imputation. However, we know from chap-

ter 1 that the ARCIV estimator essentially reduces to the IV estimator (when the is no

differential measurement error). Further, the calibration equations have extraordinarily

high R2 = 0.999, which means the validation contributes little additional variance. Thus

we use the IV-GLM standard errors, as they are very close to the true standard errors.

Despite these limitations, we make an important contribution by highlighting the

role of measurement error and modeling in estimating the impact of obesity on medical

expenditures. By comparing the imputed BMI to those reported in the MEPS, we can

corroborate the under-reporting behavior found in other studies. Our estimates suggest

that non-IV estimates of the impact of obesity understate the true effect. We ultimately

find that the more recent IV estimates are likely consistent estimates of the true effect by

comparing them to error corrected estimates. However, IV estimation is not robust to all

possible measurement errors, and the use of validation data can improve the accuracy of

point estimation, as well as improve the bounding of true effects when point estimation

is not adequate.
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Table 3.1: Descriptive Statistics for Men with Biological Children

Variables Mean S.D. Min Max

Has positive medical expenditures 0.79 0.41 0 1

Annual Medical Expenditures* $3,088.50 7,955.55 1.05 265,048

BMI (MEPS) 28.46 5.06 18.5 70.6

BMI (Imputed) 29.49 5.58 19.03 59.30

Obesity (MEPS) 0.31 0.46 0 1

Obesity (Imputed) 0.39 0.49 0 1

Oldest Child is Female 0.47 0.50 0 1

Oldest Child’s Age in months 190.66 30.85 132 239

Oldest Child’s BMI (MEPS) 22.48 4.91 6.1 72.7

Oldest Child’s BMI (Imputed) 23.86 5.74 11.60 52.23

Hispanic 0.15 0.36 0 1

Black 0.16 0.36 0 1

Other race 0.05 0.22 0 1

Age is 35 - 44 0.41 0.49 0 1

Age is 45 - 55 0.44 0.50 0 1

Age is 55 - 64 0.03 0.18 0 1

Self-reported 0.26 0.44 0 1

High school graduate 0.32 0.47 0 1

Some college 0.22 0.41 0 1

Bachelor’s degree 0.17 0.38 0 1

BA plus 0.12 0.33 0 1

Married 0.90 0.30 0 1

People in the household aged 0 - 5 0.17 0.48 0 5

People in the household aged 6 - 17 1.59 1.05 0 8

People in the household aged 18 - 64 2.45 0.82 1 9

People in the household aged 65+ 2.45 0.82 0 3

Midwest census region 0.23 0.42 0 1

South census region 0.34 0.47 0 1

West census region 0.24 0.43 0 1

Residence in MSA 0.82 0.39 0 1

Year 2000 0.09 0.28 0 1

Year 2001 0.09 0.29 0 1

Year 2002 0.10 0.29 0 1

Year 2003 0.09 0.29 0 1

Year 2004 0.09 0.29 0 1

Year 2005 0.09 0.29 0 1

Year 2006 0.09 0.29 0 1

Year 2007 0.09 0.29 0 1

Year 2008 0.09 0.28 0 1

Year 2009 0.09 0.28 0 1

Year 2010 0.09 0.28 0 1

Notes: Data: MEPS 2000− 2010. N = 17,533 (12,907 have positive expenditures). All entries are in
2010 dollars.
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Table 3.2: Descriptive Statistics for Women with Biological Children

Variables Mean S.D. Min Max

Has positive medical expenditures 0.88 0.33 0 1

Annual Medical Expenditures* $3,591.28 8,360.67 1.02 326,153

BMI (MEPS) 27.86 6.54 18.50 78.3

BMI (Imputed) 29.53 7.19 18.50 67.04

Obesity (MEPS) 0.31 0.46 0 1

Obesity (Imputed) 0.41 0.49 0 1

Oldest Child is Female 0.49 0.50 0 1

Oldest Child’s Age in months 191.12 30.71 132 239

Oldest Child’s BMI (MEPS) 22.75 5.09 6.1 73.5

Oldest Child’s BMI (Imputed) 24.13 5.91 11.64 52.57

Hispanic 0.16 0.37 0 1

Black 0.20 0.40 0 1

Other race 0.05 0.21 0 1

Age is 35 - 44 0.50 0.50 0 1

Age is 45 - 55 0.35 0.48 0 1

Age is 55 - 64 0.04 0.19 0 1

Self-reported 0.83 0.38 0 1

High school graduate 0.32 0.47 0 1

Some college 0.26 0.44 0 1

Bachelor’s degree 0.16 0.37 0 1

BA plus 0.10 0.29 0 1

Married 0.72 0.45 0 1

People in the household aged 0 - 5 0.17 0.46 0 6

People in the household aged 6 - 17 1.55 1.03 0 8

People in the household aged 18 - 64 2.28 0.89 1 9

People in the household aged 65+ 0.04 0.82 0 3

Midwest census region 0.23 0.42 0 1

South census region 0.36 0.48 0 1

West census region 0.23 0.42 0 1

Residence in MSA 0.82 0.38 0 1

Year 2000 0.08 0.27 0 1

Year 2001 0.09 0.29 0 1

Year 2002 0.09 0.29 0 1

Year 2003 0.09 0.29 0 1

Year 2004 0.09 0.29 0 1

Year 2005 0.09 0.29 0 1

Year 2006 0.09 0.29 0 1

Year 2007 0.09 0.29 0 1

Year 2008 0.09 0.29 0 1

Year 2009 0.09 0.29 0 1

Year 2010 0.09 0.29 0 1

Notes: Data: MEPS 2000− 2010. N = 25,475 (21,386 have positive expenditures). All entries are in
2010 dollars.
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Figure 3.1: Distribution of Womens’ BMI in the NHANES

Figure 3.2: Distribution of Mens’ BMI in the NHANES
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Figure 3.3: Distribution of Womens’ BMI in the MEPS

Figure 3.4: Distribution of Mens’ BMI in the MEPS
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Figure 3.5: Distribution of The Oldest Child’s BMI in the MEPS
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Figure 3.6: Reporting Error in Womens’ BMI

Figure 3.7: Reporting Error in Mens’ BMI
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Table 3.3: Marginal Effects of BMI on Annual Medical Expenditures

Estimator: Non-IV IV RCIV ARCIV ARCIV×δ̂
Column (1) (2) (3) (4) (5)

Total 74.35*** 189.57*** 189.31*** 173.24*** 166.31

N =43,008 (8.96) (40.01) (38.83) (35.31) (.879)

Men 84.22*** 185.64*** 166.09*** 153.53** 142.80

N =17,533 (14.33) (78.67) (72.14) (66.89) (.86)

Women 74.41*** 194.40*** 208.18*** 190.11*** 185.81

N = 25,475 (10.71) (38.69) (40.58) (36.83) (.891)

White 89.17*** 183.04*** 175.20*** 161.34*** 162.27

N = 21,037 (11.77) (54.52) (52.38) (48.15) (.926)

Non-White 47.95*** 206.81*** 210.58*** 187.81*** 187.25

N = 21,971 (10.36) (57.21) (57.46) (49.93) (.889)

Private Insurance 75.41*** 165.06*** 163.00*** 148.65*** 142.96

N = 28,418 (10.45) (36.53) (34.35) (31.37) (.877)

Medicaid 65.97*** 101.45 102.69 96.57 93.58

N = 5,050 (16.53) (95.03) (95.46) (90.11) (.911)

Uninsured 20.15*** 104.39** 105.06** 96.08** 93.11

N = 8,461 (6.96) (45.3) (46.27) (40.84) (.886)

Source of

BMI: MEPS MEPS MEPS NHANES MEPS

IV: — MEPS NHANES NHANES NHANES

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level respectively. BRR standard errors in

parenthesis. First-stage F-statistics in brackets. All entries are in 2010 dollars. For column 5, δ̂ displayed in curly brackets.
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Table 3.4: Marginal Effects of Obesity on Annual Medical Expenditures

Estimator: ARCIV ARCIV ARCIV

Population BMI Obese Obese†

Population BMI Obese Obese*

Total 189.31*** 2,383.94*** 3,212.62***

(38.83) (461.22) (690.88)

Men 166.09*** 1,869.42*** 2,456.39***

(72.14) (767.11) (1,145.63)

Women 208.18*** 2,832.78*** 3,840.45***

(40.58) (525.52) (811.13)

White 175.20*** 2,244.16*** 3,046.23***

(52.38) (656.9) (976.38)

Non-White 210.58*** 2,434.78*** 3,230.20***

(57.46) (541.56) (860.96)

Private Insurance 163.00*** 2,042.83*** 2,710.33***

(34.35) (423.13) (617.53)

Medicaid 102.69 1,461.34 1,724.35

(95.46) (1,307.59) (1,644.63)

Uninsured 105.06** 1,291.86*** 1,825.61**

(46.27) (486.22) (811.09)

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level re-

spectively. BRR standard errors in parenthesis. All entries are in 2010 dollars. Effects of

moving form normal weight to obese are estimated by taking the difference of predicted

expenditures at mean BMI within the respective weight class. † Marginal effect of obesity

estimated by regressing expenditures on a binary indicator equal to one if BMI≥ 30.
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Figure 3.8: Predicted Expenditures By BMI - Men and Women Pooled

Fig 3.8. Predicted relationship between BMI and annual medical expenditures for all adults with biological children.
Notes: Data: MEPS 2000–2010. Expenditures are in 2010 USD. Dashed lines represent the 90% confidence interval,
which has been adjusted for the complex design of the MEPS. Medical expenditures are denoted by the solid line, while
the distribution of individuals in the population is indicated by the dotted line. BMI is predicted in the MEPS using
correction equations calibrated using the NHANES.
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Figure 3.9: Predicted Expenditures By BMI - Men

Fig 3.9. Predicted relationship between BMI and annual medical expenditures for men with biological children. Notes:
Data: MEPS 2000–2010. Expenditures are in 2010 USD. Dashed lines represent the 90% confidence interval, which has
been adjusted for the complex design of the MEPS. Medical expenditures are denoted by the solid line, while the
distribution of individuals in the population is indicated by the dotted line. BMI is predicted in the MEPS using
correction equations calibrated using the NHANES.
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Figure 3.10: Predicted Expenditures By BMI - Women

Fig 3.10. Predicted relationship between BMI and annual medical expenditures for women with biological children.
Notes: Data: MEPS 2000–2010. Expenditures are in 2010 USD. Dashed lines represent the 90% confidence interval,
which has been adjusted for the complex design of the MEPS. Medical expenditures are denoted by the solid line, while
the distribution of individuals in the population is indicated by the dotted line. BMI is predicted in the MEPS using
correction equations calibrated using the NHANES.
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Table 3.5: Marginal Effects of BMI, Overweight and Obese on Third-Party Expenditures

Estimator: ARCIV ARCIV

Population BMI Obese

Total 158.18*** 1,983.50***

(34.37) (403.1)

Men 138.52*** 1,559.37***

(62.18) (656.83)

Women 175.85*** 2,375.54***

(38.95) (493.65)

White 146.63*** 1,873.44***

(44.55) (553.25)

Non-White 177.33*** 2,047.33***

(53.94) (506.43)

Private Insurance 140.94*** 1,762.68***

(30.95) (379.08)

Medicaid 92.26 1,321.18

(88.17) (1,216.2)

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at

10%, 5%, 1% level respectively. BRR standard errors in parenthe-

sis. All entries are in 2010 dollars. Effects of moving form normal

weight to obese are estimated by taking the difference of predicted

expenditures at mean BMI within the respective weight class.
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Table 3.6: Marginal Effects of BMI, Overweight and Obese on Categories of Expenditures

Men and Women Pooled

Category of Care BMI Overweight Obese

Inpatient 66.40*** 201.66*** 801.13***

(23.19) (36.52) (237.79)

Ambulatory 69.21*** 274.44*** 884.05***

(18.04) (53.68) (224.79)

Prescription Drugs 59.68*** 209.66*** 754.59***

(9.8) (19.15) (111.39)

Other -3.54 -16.89 -45.59

(3.32) (16.76) (42.)

Men

Category of Care BMI Overweight Obese

Inpatient 51.35 145.48** 547.62

(40.77) (78.49) (382.46)

Ambulatory 62.90* 224.49*** 714.84**

(33.44) (82.91) (363.24)

Prescription Drugs 55.91*** 183.96*** 637.97***

(14.11) (24.49) (145.62)

Other -1.58 -6.11 -18.45

(5.35) (23.45) (61.46)

Women

Category of Care BMI Overweight Obese

Inpatient 81.54*** 246.29*** 1,067.50***

(29.49) (42.16) (321.83)

Ambulatory 67.54*** 286.84*** 932.46***

(15.12) (51.33) (207.14)

Prescription Drugs 62.29*** 225.34*** 846.42***

(11.43) (23.46) (139.17)

Other -4.98 -25.38 -67.59

(4.27) (22.96) (55.98)

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level re-

spectively. BRR standard errors in parenthesis. All entries are in 2010 dollars. Effects

of moving form normal weight to overweight and obese are estimated by taking the dif-

ference of predicted expenditures at mean BMI within the respective weight class.
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Table 3.7: Annual Medical Costs of Obesity for Adults Aged 20 - 64 with Biological
Children

Year Total
Expenditures

Third-Party
Expenditures

Population

2000 29.0 (18.2, 39.9) 24.1 (14.3, 33.9) 30,627,982

2001 39.7 (24.7, 54.8) 32.7 (19.6, 45.7) 33,968,508

2002 40.7 (25.3, 56.2) 34.2 (20.4, 48.0) 35,476,220

2003 40.1 (25.4, 54.9) 33.0 (20.2, 45.8) 34,686,341

2004 45.9 (28.6, 63.1) 38.4 (23.2, 53.5) 34,145,908

2005 44.7 (27.2, 62.1) 37.0 (21.5, 52.5) 34,667,712

2006 45.3 (28.8, 61.7) 37.4 (23.0, 51.8) 34,578,514

2007 47.7 (29.5, 65.9) 41.3 (24.5, 58.0) 34,395,320

2008 46.8 (30.2, 63.5) 39.6 (24.7, 54.5) 34,198,229

2009 55.7 (36.2, 75.2) 49.0 (30.7, 67.3) 34,530,901

2010 59.5 (38.5, 80.5) 52.3 (32.7, 71.9) 33,962,749

2000 - 2010
average

45.0 (29.0, 61.0) 38.1 (23.7, 52.4) 34,112,580

44.1 (28.5, 59.7) 37.5 (23.5, 51.4) 34,112,580

Notes: Data: MEPS 2000–2010. All expenditures are in billions of 2010 dollars. 90% Con-

fidence intervals in parentheses are adjusted for the complex design of the MEPS. Marginal

effects of obesity are estimated by regressing expenditures on a binary indicator equal to

one if BMI≥ 30. Estimates are aggregated using obesity indicators where BMI is corrected

for reporting error.
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Appendix A

A.1 IRLS for the Log-Gamma Model

Hardin and Hilbe (2012) derive the general IRLS algorithm. To avoid confounding

notation with names for covariates, we define weighting matrix Ξ, and a vector of pseu-

dodata ζ such that,

Ξ = g′(µ)−2V (µ)−1, (A.1a)

ζ = g′(µ)(y − µ) + η. (A.1b)

The IRLS algorithm first uses initial values of µ and η to calculate Ξ and ζ. Second,

β is chosen to minimize

n∑
i=1

Ξi(ζi −Xiβ)2. (A.2)

The solution β(r) is then used to evaluate η(r+1) and the procedure is reiterated.

We state the full IRLS algorithm in terms of the Log-Gamma model:
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IRLS Algorithm for Log-Gamma Model

Set initial values

1. µ◦ = (y + ȳ)/2

2. η◦ = ln(µ◦)

3. Set Devold

4. Set Devnew

5. Set ∆Dev

While |∆Dev| > tolerance {

6. Calculate Ξ = g′(µ(r−1))−2 · V (µ(r−1))−1 = I

7. Calculate ζ = g′(µ(r−1)) + η = (yi − µ(r−1)
i )/µ

(r−1)
i +Xβ(r−1)

8. βr = (X ′ΞX)−1(X ′Ξζ)

9. ηr = Xβr

10. µr = g−1(ηr) = exp(Xβr)

11. Devold = Devnew

12. Devnew = 2
∑{

yi−µr
µr
− ln

(
yi
µr

)}
13. ∆Dev = Devnew −Devold

14. }

An interesting special case result of the Log-Gamma specification is that the weighting

matrix Ξ devolves to the identity matrix I. Thus IRLS for the Log-Gamma model can be

characterizes as simply as iterated least squares, where pseudodata ζ = (yi − µi)/µi) + η

is iteratively regressed on X. If the IRLS algorithm converges to a fixed βr, then it is a

MLE of β.

A.2 NHANES: Constructing 12-Year Sample Weights

The NHANES weight construction example code from CDC / National Center for

Health Statistics (2013) is as follows:

Example 6: How to combine 10 years of data that include 1999-2000 through 2007-2008
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Answer: You must use the 4-year weights provided for 1999-2002 (WTMEC4YR) with the
2-year weights for 2003-2004, 2005-2006 and 2007-2008 (WTMEC2YR) to create a 10-year
weight variable (MEC10YR)..

For 10 years of data from 1999-2008 a weight should be constructed as:

if sddsrvyr=1 or sddsrvyr=2 then

MEC10YR = 2/5 * WTMEC4YR ; /* for 1999-2002 */

if sddsrvyr=3 or sddsrvyr=4 or sddsrvyr=5 then

MEC10YR = 1/5 * WTMEC2YR ; /* for 2003-2008 */

Again, future years of data can continue to be added using the same methods as above for
combining cycles by taking the correct proportion of the 4-year and 2-year weights.

We extrapolate from the 10 year code the method to construct 12 year weight (MEC12YR)

from 1999 - 2010

gen MEC12YR = .

replace MEC12YR = WTMEC4YR/3 if sddsrvyr==1

replace MEC12YR = (2/6)*WTMEC4YR if sddsrvyr==2

replace MEC12YR = (1/6)*WTMEC2YR if sddsrvyr==3

replace MEC12YR = (1/6)*WTMEC2YR if sddsrvyr==4

replace MEC12YR = (1/6)*WTMEC2YR if sddsrvyr==5

replace MEC12YR = (1/6)*WTMEC2YR if sddsrvyr==6
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Appendix B

B.3 Additional Results

Table B1: Marginal Effects of BMI, Overweight and Obese on Third-Party Expenditures
from Non-IV Model

Population BMI Overweight Obese Obese†
Total 69.18*** 307.52*** 884.68*** 906.98***

(9.05) (36.3) (116.08) (113.65)

Men 80.39*** 307.89*** 916.96*** 903.38***

(14.18) (46.74) (161.02) (162.06)

Women 68.33*** 321.01*** 935.21*** 926.99***

(10.73) (46.64) (149.02) (137.66)

White 86.27*** 382.79*** 1,108.16*** 1081.76***

(11.77) (46.58) (152.69) (152.2)

Non-White 40.49*** 181.94*** 513.65*** 566.18***

(10.76) (43.21) (135.61) (131.88)

Private Insurance 73.60*** 325.73*** 922.42*** 905.08***

(10.29) (41.42) (129.94) (129.65)

Medicaid 41.49** 209.37*** 595.72** 654.15**

(17.03) (76.27) (244.93) (309.31)

Uninsured 19.64*** 90.49*** 248.80*** 238.13**

(6.97) (29.66) (88.89) (101.89)

Source of

BMI: MEPS MEPS MEPS MEPS

IV: n/a n/a n/a n/a

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level respectively. BRR stan-
dard errors in parentheses. All entries are in 2010 dollars. Effects of moving form normal weight to overweight
and obese are estimated by taking the difference of predicted expenditures at mean BMI within the respective
weight class. †
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B.4 Hotdeck Imputation: Impact of Youth Obesity

An alternative to regression based imputation is hotdeck imputation. Hotdeck impu-

tation does not use correction equations to predict measured values of BMI, but instead

stochastically chooses an observed BMI value in the validation sample and assigns it to

an observation in the principal sample. Hotcdeck allows for this imputation to be carried

out within exclusive strata defined by covariates shared in both datasets.1 The advantage

of hotdeck imputation is that it does not impose a functional form on the validation equa-

tion. This can allow for improved fitting of error corrected BMI when the relationship

between true BMI and it’s surrogate (typically observed BMI) is highly irregular.

Hotdeck imputation demands the same assumptions as regression based imputation.

In particular, the matching surrogate must be transportable such that,

E(x|wM , ZM) = E(x|wN , ZN), (A.3)

where w and covariates Z are used to define the strata.

In order for transportability to be satisfied empirically, the strata are defined as to

finely divide the data, so that within a strata, we can assume that reporting behavior is

homogeneous. We alternatively impute children within strata defined by gender, age (in

years) 100 bins for each percentile of BMI.2 For adults, we generate strata using gender,

categories for age, and 100 bins for each percentile of BMI.

Table B2 contains the estimated coefficients from Table 2.7 where hotdeck imputation

is the validation method. We find that the ARCIV estimates using hotdeck imputed BMI

are close to those from regression based imputation in Table 2.7. The RCIV estimates

are again close for the pooled sample, but differ significantly when estimated on separate

subsamples by gender. Further, δ does not successfully link βARCIV to βRCIV , suggesting

that the hotdeck either fails to fully control for measurement error, or that it introduces

additional error.

1Hotdeck is implemented using the STATA hotdeck command of Mander and Clayton (1999).
2We generated an additional imputed measure for children incorporating race categories, but there

were large numbers of categories with no observations in them, and the estimation results using this
imputation were unstable.
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Table B2: Marginal Effects of Child BMI on Annual Medical Expenditures: Hotdeck
Imputation

Estimator: Non-IV IV RCIV ARCIV ARCIV×δ̂
Column (1) (2) (3) (4) (5)

Boys & Girls 17.45 92.66*** 95.40*** 95.61*** 85.73

N= 27,002 (10.89) (32.35) (33.83) (31.1) (.899)

Boys 19.02 101.02** 100.30** 78.07* 90.82

N=13,718 (15.77) (51.18) (53.89) (42.39) (.906)

Girls 16.80 100.04*** 105.27*** 121.57*** 94.81

N= 13,284 (14.31) (36.31) (38.12) (36.8) (.901)

Notes: Data: MEPS 2000–2010. *,**,*** indicate significance at 10%, 5%, 1% level respectively. BRR standard

errors in parentheses. All entries are in 2010 dollars. Effects of moving form normal weight to overweight and obese

are estimated by taking the difference of predicted expenditures at mean BMI within the respective weight class.

(*) BMI are hotdeck imputed from NHANES are matched to observations in the MEPS using percentile rank of

BMI. For column 5, δ̂ displayed in curly brackets.

116



ADAM I. BIENER

Lehigh University
College of Business and Economics
621 Taylor St.
Bethlehem, PA 18015

E-mail: aib210@lehigh.edu
Phone: (201) 819-8714
www.lehigh.edu/~aib210

EDUCATION

Lehigh University, Bethlehem, PA (expected) September 2015
Ph.D. (Ph.D Candidate) Economics

Ramapo College of New Jersey, Mahwah, NJ May 2010
B.A., Economics, Minors in Mathematics and Music

EMPLOYMENT

Research Economist (Starting) August 2015
Center for Financing, Access and Cost Trends
Agency for Healthcare Research and Quality

Adjunct Professor September 2013 - May 2015
Lehigh University

Teaching Assistant September 2011 - May 2013
Lehigh University

RESEARCH PAPERS

“Savings in Medical Expenditures Associated with Reductions in Body Mass Index Among Adults with Obe-
sity, by Diabetes Status”
J. Cawley, C. Meyerhoefer, A. Biener, M. Hammer, N. Wintfeld
Forthcoming in PharmacoEconomics,

REFEREED CONFERENCE PRESENTATIONS

AEA/ASSA Annual Meeting, Boston, MA. January 2015
Contributed Papers in the Economics of Hospitals, Public Insurance, and Medical Expenditures
“Estimating the Medical Care Costs of Youth Obesity in the Presence of Proxy Reporting Error”
A. Biener, C. Meyerhoefer, J. Cawley

Obesity Week 2014 (The Obesity Society’s Annual Scientific Meeting), Boston, MA. November 2014
“Savings in Medical Expenditures Associated with Reductions in Body Mass Index Among
Adults with Obesity, by Diabetes Status”
J. Cawley, C. Meyerhoefer, A. Biener, M. Hammer, N. Wintfeld

American Society of Health Economists July 2014
5th Biennial Research Conference, Los Angeles, CA.
“The Medical Care Costs of Childhood Obesity” (poster)
A. Biener, C. Meyerhoefer, J. Cawley

Eastern Economic Association Annual Conference, New York, NY. May 2013
“The Medical Care Costs of Childhood Obesity”, A. Biener, C. Meyerhoefer, J. Cawley

OTHER CONFERENCE ACTIVITIES

Invited Attendee, NBER Summer Institute for Health Economics July 2013



Session Chair, ”The Economics of Obesity” Eastern Economic Association Annual May 2013
Conference, New York, NY.

Discussant, Eastern Economic Association Annual Conference, New York, NY. May 2013

WORKS IN PROGRESS

“The Medical Care Costs of Youth Obesity”
A. Biener, C. Meyerhoefer, J. Cawley

“Bias due to Measurement Error in Regression Calibrated Estimates of the Costs of Adult Obesity”
A. Biener, C. Meyerhoefer, J. Cawley

MEDIA CITATIONS

BloombergBusiness, “Obesity is Hurting the U.S. Economy in Surprising Ways” March 5, 2015
The Incidental Economist, “What are the Health Care Costs of Obesity?” July 15, 2015

REFEREE EXPERIENCE

Bulletin of Economic Research April 2015
Health Economics July 2013, June 2014, December 2014, July 2015
International Journal of Obesity June 2014

TEACHING EXPERIENCE

Lehigh University
Instructor, Statistical Methods Summer 2014, Fall 2014, Spring 2015
Instructor, Intermediate Microeconomics Fall 2013, Spring 2014, Fall 2014
Research Assistant, Lehigh University / LVHN EHR Evaluation Summer 2012, Summer 2013
Teaching Assistant, Money and Banking and Financial Systems Spring 2013
Teaching Assistant, Principles of Economics Fall 2011, Spring 2012, Fall 2012

HONORS AND AWARDS

Visiting scholar to the Institute on Health Economics, Health Behaviors, August 2014
and Disparities, Cornell University, Ithaca, NY.

Presidential Fellowship, Lehigh University Fall 2010 - Spring 2011

Sebastian J. Raciti endowed scholarship for undergraduates majoring in 2009
economics, Ramapo College

SKILLS

STATA, SAS, LaTeX

REFERENCES

Chad D. Meyerhoefer

Lehigh University & NBER
621 Taylor St.
Bethlehem, PA 18015
Tel. (610) 758-3445
Fax (610) 758-4677
chm308@lehigh.edu

John H. Cawley

Cornell University & NBER
2312 MVR Hall
Ithaca, NY 14853
Tel: (607) 255-0952
johncawley@cornell.edu

James Dearden

Lehigh University
621 Taylor St.
Bethlehem, PA 18015
Tel. (610) 758-5129
Fax. (610) 758-4677
jad8@lehigh.edu


	Lehigh University
	Lehigh Preserve
	2015

	The Impact of Obesity in Children and Adults on Medical Care Expenditures: A Regression Calibration Instrumental Variables Approach
	Adam Ira Biener
	Recommended Citation


	tmp.1498661647.pdf.IHGx9

