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Abstract

This dissertation discusses investigations of vibrationally and rotationally inelastic

collisions of NaK with argon, helium and potassium as collision partners. We have

investigated collisions of NaK molecules in the 2(A)1Σ+ state with argon and helium

collision partners in a laser-induced fluorescence (LIF) experiment. The pump laser

prepares the molecules in particular ro-vibrational (v, J ) levels in the 2(A)1Σ+ state.

These excited molecules then emit fluorescence as they make transitions back to the

ground [1(X)1Σ+ ] state, and this fluorescence is collected by a Bomem Fourier-

transform spectrometer. Weak collisional satellite lines appear flanking strong, di-

rect lines in the recorded spectra. These satellite lines are due to collisions of the

NaK molecule in the 2(A)1Σ+ state with noble gas and alkali atom perturbers, which

carry population to nearby rotational levels [(v, J )→ (v, J + ∆J )] or to various ro-

tational levels of nearby vibrational levels, [(v, J )→ (v+∆v, J+∆J )]. Ratios of the

intensity of each collisional line to the intensity of the direct line then yields infor-

mation pertaining to the transfer of population in the collision. Our results show a

propensity for ∆J = even collisions of NaK with noble gas atoms, which is slightly

more pronounced for collisions with helium than with argon. Such a ∆J = even

propensity was not observed in the vibrationally inelastic collisions. Although it

would be desirable to operate in the single collision regime, practical considerations

make that difficult to achieve. Therefore, we have developed a method to estimate

the effects of multiple collisions on our measured rate coefficients and have obtained

approximate corrected values.
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Chapter 1

Introduction

1.1 Overview

In this dissertation, an analysis of population transfer that occurs in collisions

of diatomic alkali molecules with neutral atoms will be presented. Each alkali atom

in the diatomic molecule can be approximated as having a single loosely bound

electron, so that the alkali diatomic is (to first order) effectively a two electron

molecule. Consequently these molecules represent a fairly simple quantum mechan-

ical system and these experiments can serve as tests of the fundamental ideas of

quantum mechanics. The experimentally measured rate coefficients serve as bench-

marks for theoretical calculations of these molecule-atom collisions. This chapter

presents an introduction to laser induced fluorescence (the technique used in Lyon,

France to record the data obtained for this work), alkali spectroscopy and colli-

sions, and a brief discussion of optical-optical double resonance spectroscopy (used

at Lehigh University). Previous collisional studies will also be discussed, including

previous experimental and theoretical work carried out in our research group at
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Lehigh University.

1.2 Laser Induced Fluorescence

Laser induced fluorescence (LIF), with its wide range of applications in spec-

troscopy, provides a variety of options to monitor the absorption and emission of

photons with high sensitivity, and is well suited to obtain information on molecular

states. In its most basic form, LIF uses a narrow band, stable laser to excite a

molecule from a ground state to a higher electronic state by tuning the laser to the

resonance frequency of a particular transition. In the work I present in this disser-

tation, NaK molecules in a particular rotational-vibrational (ro-vibrational) level of

the ground state [1(X)1Σ+ ] are excited to a particular ro-vibrational level of the

first excited state [2(A)1Σ+ ], from which they decay back to the ground state with

the emission of fluorescence. LIF also offers a method to study collisional processes,

where population from the directly populated excited state level can be transferred

to a neighboring level via these collisions. Previous studies of this type of process are

discussed in Sec. 1.4 and details of the experimental technique used in our work are

provided in Chapter 4. Refs [1, 2, 3, 4] provide experimental details and a general

introduction to LIF. Fourier transform spectroscopy, combined with LIF, allows the

acquisition of spectra over wide ranges of frequency, containing thousands of spectral

lines (due to the simultaneous collection of all fluorescence lines at one time), with

relatively high signal-to-noise ratios. Molecules studied using this method include

Rb2 [5] and Cs2 [6].

Of particular interest for this work are data which have been collected on a
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plethora of vibrational and rotational levels in the electronic ground state [1(X)1Σ+ ]

by Ross et al. [7] and Russier-Antoine et al. [8] and in the first excited state

[2(A)1Σ+ ] of NaK by Ross et al. [9]. Further work leading to even more accurate

potentials was carried out by Gerdes et al. [10] for the NaK ground state [1(X)1Σ+ ]

and by Harker et al. [11] for the 2(A)1Σ+ state. Most of this work was done us-

ing Fourier transform spectroscopy (see Chapter 4), and the data collected in these

works was used by the authors to produce accurate potential energy curves and

determine spectroscopic constants for these electronic states.

1.3 Optical-Optical Double Resonance

The experimental technique used in the Lehigh experiments, which preceded the

current work, is a two-step method called optical-optical double resonance (OODR).

One laser (the pump laser) excites the molecule from the ground state to the first

excited state, preparing the molecule in a particular ro-vibrational level of this inter-

mediate state. A second (probe) laser is then used to excite the molecule to a higher

electronic state. Fluorescence associated with downward transitions from both the

intermediate state and the excited state are typically observed in order to moni-

tor the populations of these particular ro-vibrational levels. Woerdman [12] used

this method in early experiments to study the high lying 1Σ+
g electronic states of

Na2 molecules. A modified version of OODR, called perturbation facilitated OODR

(PFOODR) [13] has been used to study high lying triplet states, utilizing intermedi-

ate levels that carry mixed singlet-triplet spin character due to localized spin-orbit

coupling between specific rotational levels of neighboring singlet and triplet states.
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These two techniques have been applied to both homo- and heteronuclear di-

atomic alkali molecules. In our research group at Lehigh, the 31Π [14], 33Π [15], 13∆

[16, 17], 43Π [18] and 43Σ+ [19] electronic states of NaK have been mapped utilizing

these methods. Experimental studies of the 11(0+)(53Π0) [20] and 12(0+)(71Σ+)

[21] electronic states of NaCs have also been carried out.

1.4 Collisional Studies of Diatomic Molecules

Important to this work are previous studies of ro-vibrationally inelastic colli-

sions, which have been carried out by many molecular physics research groups.

Propensities for certain transitions due to collisions have been observed in several

of these experiments. Ottinger et al. studied collisions of Li2 1(B)1Πu molecules

with argon atoms, and observed a propensity for a positive or negative change in

J based on the initial Λ-doubled component excited [22]. Collisional studies of Li2

1(A)1Σ+
u molecules with a range of collisional partners (xenon, argon, neon) showed

a propensity for ∆J = −4∆v [23, 24, 25]. Pritchard and coworkers attributed this to

an approximate energy resonance, since the vibrational energy gap in this electronic

state is approximately equal to the energy gap between rotational levels J and J +

4 for the range of J ’s they studied.

Observing fluorescence following collisional transfer of population allows colli-

sional rate coefficients to be determined. In most cases, as in the current work,

these rate coefficients were determined by comparing fluorescence from the directly
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populated level to the fluorescence of nearby collisionally populated vibrational or

rotational levels. Pritchard and coworkers [23, 24, 25] also determined rate co-

efficients for rotationally and vibrationally inelastic collisions of Li2 with various

perturbers, and these studies were expanded in further experiments by Gao and

Stewart [26] and Gao et al. [27]. Bergmann and Demtröder [28] examined colli-

sional cross sections for collisions of Na2 [in the 1(B)1Πu state] with helium.

Theoretical calculations of collision cross sections and rate coefficients have also

been carried out for collisions of diatomic alkali molecules with atomic perturbers,

which can be directly compared to experiment. Calculations for vibrationally in-

elastic collisions of Li2 in the 1(A)1Σ+
u state were performed by McCaffery [29] and

gave a kinematic interpretation for these collisions, while ab initio calculations for

collisions of Li2 molecules in this state with neon perturbers was completed by

Alexander and Werner [30]. The theoretical results of [30] agree quite well with the

experimental results of Scott et al. [23].

More recent work at Lehigh combines both experimental studies and theoretical

calculations. Wolfe et al. [31] studied collisions of a heteronuclear molecule, NaK,

in the 2(A)1Σ+ electronic state, with argon and potassium perturbers. This work

observed both ∆J = even and ∆J = odd collisional transitions (only ∆J = even

collisional transitions are observed in the homonuclear molecules due to symmetry

considerations). However Wolfe et al. did observe a strong propensity for ∆J =

even in the experimentally determined argon rate coefficients, but they reported a

monotonic fall off with increasing |∆J | in the potassium rate coefficients. Data were
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collected in this experiment using the OODR technique, and using polarization la-

beling spectroscopy. The polarization experiment gave information on the transfer

of both population and orientation, with the latter representing the distribution

of population over the magnetic sublevels of the NaK intermediate state, during

inelastic collisions of the NaK molecules with atomic perturbers. Wolfe et al. also

observed that collisions of the NaK molecules with potassium atoms were both more

likely to transfer population, and more likely to destroy orientation, than collisions

of the NaK molecules with argon atoms. In addition to experimentally determined

collisional rate coefficients, Wolfe et al. also obtained line broadening rates and

studied velocity-changing collisions using their data.

Early calculations by Malenda [32] of collisional cross sections for the NaK-He

system showed no ∆J = even propensity, in apparent disagreement with the ex-

perimental data collected by Wolfe et al. However the conditions used for these

calculations differed from those of the experiments both in the buffer gas and in the

initially populated 2(A)1Σ+ ro-vibrational level. Specifically, the calculations were

carried out for NaK-He, rather than for NaK-Ar since the latter would have re-

quired computer resources beyond those available at the time, and the 2(A)1Σ+ (16,

30) level was initially populated in the experiment, while the calculations were per-

formed for 2(A)1Σ+ (0, 14) (again due to limitations on computer resources). Work

carried out by REU student Ariel Fragale and graduate student Phil Weiser at-

tempted to extend the calculations to v = 16 by averaging the potential over a

range of internuclear separations, using the square of the wavefunction. This aver-

age was then used for the scattering calculations (rather than fixing this parameter

at the v=0 equilibrium separation). In this early calculation, a weak propensity for
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∆J = even was displayed, leading us to believe that the vibrational state might play

an important role in this effect (see Ruth Malenda’s thesis, [32] p. 143). However,

improvements in the basis sets used in the calculations of Malenda et al. [33] led

to higher quality potential surfaces, and the ∆J = even propensity was observed

in the theoretical results for v = 0. In addition, a strong dependence of the rate

coefficients on initial J was also predicted.

The observed early discrepancies between theory and experiment, and the pre-

dicted J dependence of rate coefficients also led to plans to expand the experiment

to use helium as a collision partner, as well as to move to lower initial rotational and

vibrational levels within the 2(A)1Σ+ state. The experiments described by Wolfe et

al. [31] were extended by Jones [34] to include NaK collisions with helium per-

turbers, which also showed this ∆J = even propensity. The ∆J = even propensity

observed by Jones for NaK-He collisions is more pronounced than that for NaK-

Ar collisions, and Jones found that collisions of NaK with helium are less likely to

destroy orientation than collisions of NaK with argon. Jones also experimentally

looked at collisions of NaCs with argon and helium perturbers, where a monotonic

fall off of rate coefficients for increasing |∆J | was observed for NaCs-Ar collisions,

but a weak ∆J = even propensity was observed for NaCs-He collisions. This result

seemed to be consistent with the intuitive idea that the ∆J = even propensity ob-

served in NaK is due to the fact that NaK is “almost homonuclear” (i.e. Na and K

are both alkali atoms with similar electronic structure and not too different masses).

Conversely, the ∆J = even propensity is much reduced in NaCs since NaCs is “more

heteronuclear”. However other experimental facts, such as that the different per-

turbers produce different degrees of ∆J = even propensity, seem to contradict this
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naive idea. The most recent theory now indicates that the origin of the ∆J = even

propensity is much more subtle, depending on the details of the potential surfaces

at long-range.

The theoretical calculations are now also being extended by Price et al. [35].

Further improvements in the basis sets have been made, leading to improved col-

lisional cross sections for both NaK-He and NaK-Ar collisions. Price et al. also

expanded the range of initial J (and ∆J) used in the calculations. Combined with

the current set of experimental results, we can now make direct and detailed com-

parisons between experiment and theory for NaK-He and NaK-Ar collisions, with

initially populated levels (v = 0, J = 14) and (v = 0, J = 30), over a wide range of

∆J .

1.5 Summary of Content

It is the aim of this work to investigate the transfer of population during col-

lisions of NaK molecules with argon, helium, or potassium collision partners using

LIF spectroscopy. We have measured rate coefficients of population transfer for both

rotation and vibration-rotation changing collisions, and we compare the effects of

different buffer gas perturbers. We excite low lying vibrational levels (v = 0, 1, 2) so

that we can directly compare our experimental results with theoretical calculations

of Malenda et al. [33] and Price et al. [35].

The collection of data for this work was completed during the collaboration
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with Drs. A. J. Ross and Patrick Crozet at Université Lyon-1, during two separate

visits of the author to Lyon in November 2013 and November 2014. The Fourier

Transform Spectrometer (FTS) allowed a wider range of ∆J collisional lines to be

investigated rapidly in comparison to previous experiments at Lehigh. In addition

∆v,∆J collisional spectra could also be collected with the Lyon setup. Unfortu-

nately, the higher densities needed to observe v -changing collisions also meant that

the approximation of being in the single collision regime was no longer always sat-

isfied. Therefore considerable effort was needed to analyze the effects of multiple

collisions on our measured rate coefficients.

Chapter 2 outlines some background information pertaining to diatomic molecules,

including solutions of the Schrödinger equation for vibrational and rotational mo-

tion, and the most common Hund’s cases. Chapter 3 describes the experimental

setup used in our experiment in Lyon, France, as well as the experimental setup

at Lehigh University. The experimental techniques used in this work are discussed

in Chapter 4, which includes discussions concerning the determination of the alkali

vapor pressures and densities, and of laser-induced fluorescence (LIF), which is the

primary experimental method used in this work. An extensive discussion of the

empirical model used to analyze our data is outlined in Chapter 5, along with a de-

scription of the error analysis. Chapter 6 includes a presentation of the results of the

experiment for both rotation (J )-changing and vibration, rotation(v, J )-changing

collisions of NaK with Ar, He, and K perturbers. This chapter also discusses how

the breakdown of several assumptions and approximations used in our analysis can

be taken into account after the fact. Chapter 7 then summarizes these results and

presents possible future work.
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Chapter 2

Molecular Physics Background

2.1 Overview

In this chapter, I give a summary of how the diatomic molecule is treated quan-

tum mechanically. This treatment begins with the time-independent Schrödinger

equation (TISE). We begin in Sec. 2.2 by separating the TISE into electronic and

nuclear portions utilizing the Born-Oppenheimer approximation. This allows for a

simplification, based on the relative speeds of the nuclei and electrons, such that

the electrons move in the field of the nuclei, which are considered frozen at fixed

separations. In Section 2.3 I discuss the nuclear vibrational and rotational motion,

as well as higher order effects due to these motions that must also be included in

the calculations. I then briefly discuss the most common Hund’s cases in Sec. 2.4,

which provide a vector representation of the relative strengths of the electric and

magnetic interactions within the molecule. I close the chapter with a discussion of

electronic transitions and selection rules in Sec. 2.5.
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2.2 The Born-Oppenheimer Approximation

When we look at the diatomic molecule, we know two things about the molecular

system: the molecule vibrates, changing the distance between the two nuclei, and

the molecule also rotates about the center of mass of the system. Even though the

diatomic molecule is the simplest molecular form there is, the quantum mechanical

treatment of the diatomic molecule is already quite complicated. We begin our solu-

tion of the time-independent Schrödinger equation (TISE) by defining the position

vectors of the electrons and nuclei, as seen in Fig. 2.1. Here A and B are the two

nuclei, and ~RA and ~RB describe the location of these nuclei with respect to their

center of mass (CoM). The ~r1, ~r2,..., ~rn represent the locations of electrons 1, 2, ...,

n with respect to the CoM.

… 

Center of Mass 
A B 

AR


BR


1r


2r


nr


4r


3r


Figure 2.1: The coordinate system used in treating the diatomic molecule.
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We begin consideration of the molecular TISE

ĤΨ = EΨ, (2.1)

where the Hamiltonian contains both nuclear (T̂N) and electronic (T̂E) kinetic energy

terms, as well as Coulomb interaction potential energy terms (V ):

(T̂N + T̂E + V )Ψ(~R,~r1, ~r2, ..., ~rn) = EΨ(~R,~r1, ~r2, ..., ~rn). (2.2)

Here ~R ≡ ~RA − ~RB is the internuclear separation vector. The term describing the

motion of the two nuclei, T̂N , can be translated into the CoM reference frame as

T̂N =
−~2

2µ
∇2
R, (2.3)

where µ is the reduced nuclear mass MAMB

MA+MB
. We also include the kinetic energy for

all electrons in the system T̂E (me is the electron mass), as

T̂E =
n∑
i=1

(
−~2

2me

∇2
ri

)
. (2.4)

Since the electrons and nuclei all carry charges, the potential energy term V includes

electron-electron and nucleus-nucleus repulsion terms, as well as nucleus-electron

attraction terms:

V = VN−N + Ve−e + VN−e

=
ZAZBe

2

4πε0R
+

n∑
i>j

e2

4πε0

1

|~ri − ~rj|
−

n∑
i=1

ZAe
2

4πε0|~ri − ~RA|
−

n∑
i=1

ZBe
2

4πε0|~ri − ~RB|
. (2.5)
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The solution of the time-independent Schrödinger equation, with a Hamiltonian

consisting of all the kinetic and potential energy terms, would be quite complicated.

To simplify this, we can exploit the fact that the nuclei are significantly heavier

than the electrons, and therefore the electrons move much faster than the nuclei.

This means, if the distance R = |~R| between the two nuclei does change, the elec-

trons readjust to this change almost instantaneously. We can fix the internuclear

separation R at a given value and first solve the electronic portion of the TISE:

[TE + V ]φq(~R,~r1, ~r2, ..., ~rn) = Eqφq(~R,~r1, ..., ~rn). (2.6)

The total wavefunction Ψ(~R,~r1, ~r2, ..., ~rn) can be expanded in terms of these

electronic wavefunctions φq(~R,~r1, ~r2, ..., ~rn) which form a complete set of functions

over the electronic coordinates. Since the potential energy terms depend on ~R,

the electronic wavefunctions φq(~R,~r1, ~r2, ..., ~rn) depend on ~R parametrically and the

expansion coefficients depend on ~R; i.e.,

Ψ(~R,~r1, ~r2, ..., ~rn) =
∑
q

Fq(~R)φq(~R,~r1...~rn). (2.7)

The electronic wavefunctions φq are ortho-normal

∫
dr1...drnφ

∗
p(~R,~r1...~rn)φq(~R,~r1...~rn) = δpq. (2.8)

If we substitute Eq. 2.7 into Eq. 2.2 and rearrange slightly, we find

[
T̂N + T̂E + V − E

](∑
q

Fq(~R)φq(~R,~r1...~rn)

)
= 0. (2.9)
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We can then multiply this expression on the left by φ∗p(~R,~r1...~rn), integrate over

electron coordinates, and use

[
T̂E + V

](∑
q

Fq(~R)φq(~R,~r1...~rn)

)
=
∑
q

EqFq(~R)φq(~R,~r1...~rn) (2.10)

to write

∫
dr1...drnφ

∗
p(~R,~r1...~rn)T̂N

∑
q

Fq(~R)φq(~R,~r1...~rn)

=
[
E − Ep(~R)

]
Fp(~R). (2.11)

Since both Fq(~R) and φq(~R,~r1, ~r2, ..., ~rn) depend on ~R, the nuclear kinetic energy

term T̂N
∑
q

Fq(~R)φq(~R,~r1...~rn) is fairly complicated. The identity

∇2(fg) = f∇2g + 2∇f · ∇g + g∇2f (2.12)

allows us to write

T̂N
∑
q

Fqφq =
−~2

2µ
∇2
R

(∑
q

Fqφq

)

=
−~2

2µ

∑
q

[
Fq∇2

Rφq + 2∇RFq · ∇Rφq + φq∇2
RFq

]
. (2.13)

It is common at this point to invoke the Born-Oppenheimer approximation. This

approximation assumes that the electron wavefunctions depend only weakly on ~R,

and therefore

|∇RFq(~R)| � |∇Rφq(~R;~r1...~rn)|. (2.14)
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This allows us to neglect the Fq∇2
Rφq + 2∇RFq · ∇Rφq terms in Eq. 2.13, leaving a

simplified version of Eq. 2.11:

∑
q

∫
dr1...drnφ

∗
p

[
−~2

2µ
∇2
RFq

]
φq =

−~2

2µ
∇2
RFp(~R). (2.15)

Here, the orthonormality of the electronic wavefunctions φq collapses the sum to a

single term, and Eq. 2.15 reduces to

−~2

2µ
∇2
RFp(~R) +

[
Ep(~R)− E

]
Fp(~R) = 0, (2.16)

which is a Schrödinger equation for the nuclei moving in a “potential” Ep(~R). Note

that this potential energy in the nuclear equation is the energy eigenvalue from the

electronic Schrödinger equation. Further separation of the nuclear equation into

radial and angular terms is now possible, as shown in Sec. 2.3.

2.3 Motion of Nuclei

2.3.1 Vibration and Rotation

In addition to the motion of the electrons, the diatomic molecule also can

vibrate and rotate about it’s center of mass. As previously mentioned in the

Born-Oppenheimer approximation, the electronic eigenvalues act as potential en-

ergy terms in the nuclear equation. The solution of the nuclear equation (Eq. 2.16)

with this electronic potential determines the energies of the many vibrational and

rotational levels allowed for a given electronic potential.
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The nuclear wavefunction, Fp(~R), introduced in Sec. 2.2, can be split into a

radial (vibrational) term χ(R) and an angular (rotational) term ψ(θ, φ) using the

technique of separation of variables:

Fp(~R) =
1

R
χp,v(R)ψp,J(θ, φ). (2.17)

To carry out this procedure, we expand the nuclear kinetic energy term in Eq. 2.16

in spherical coordinates as

∇2
R

[
1

R
χp,v(R)ψp,J(θ, φ)

]
=
ψp,J(θ, φ)

R

d2

dR2
χp,v(R)

+
χp,v(R)

R3

[
1

sin θ

∂

∂θ

(
sin θ

∂ψp,J(θ, φ)

∂θ

)
+

1

sin2 θ

∂2ψp,J(θ, φ)

∂φ2

]
. (2.18)

At this point, we consider Ep(~R) ≈ Ep(R). Inserting Eq. 2.18 into the nuclear

Schrödinger equation (2.16), and multiplying through by −2µ
~2

R3

χψ
, we obtain

R2

χ

d2χ

dR2
− 2µR2

~2
[Ep(R)− E] =

−1

ψ

[
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

]
. (2.19)

The equation is now separated. The left hand side only depends on R and the right

hand side only on θ and φ, so both sides must be a constant which we call J (J +1).

Setting the right hand side equal to this constant yields

1

sin θ

∂

∂θ

[(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

]
+ J(J + 1)ψ = 0. (2.20)

The eigenfunction solutions of this last equation are the spherical harmonics ψ =
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YJMJ
(θ, φ).

If we return to Eq. 2.19 and set the left hand side equal to J (J +1), we find

−~2

2µ

d2

dR2
χp,v(R) +

[
Ep(R) +

J(J + 1)~2

2µR2
− Ep,v,J

]
χp,v = 0, (2.21)

which is just the one-dimensional Schrödinger equation for a particle of mass µ,

moving in an effective potential

Veff(R) = Ep(R) +
J(J + 1)~2

2µR2
. (2.22)

The first term in Eq. 2.22 represents the electronic potential Ep(R) = V (R), while

the second is the centrifugal potential term. Equation 2.21 can be solved numerically

for any potential of the form (2.22). The various radial solutions χp,v(R) are labeled

by the quantum number v (for vibration), which represents the number of nodes in

the radial wavefunction χp,v(R).

2.3.2 The Rigid Rotor Approximation

In general, we can write the total energy of the molecule as the sum of three

energy terms: electronic, vibrational, and rotational.

E = Eel + Evib + Erot. (2.23)

Since the molecule vibrates about an equilibrium separation R0, a good first order

approximation to the rotational energy is given by

Er =
~2

2µR2
0

J(J + 1) ≡ BeJ(J + 1) (2.24)
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where Be is the rotational constant Be = ~2

2I
, and I is the moment of inertia I = µR2

0

of a mass µ rotating about a fixed center at orbital radius R0. This is the rigid rotor

approximation.

2.3.3 The Harmonic Oscillator Approximation

If we consider a molecule in a bound state, near the minimum of the effective

potential (i.e. a low lying vibrational level), the the average position of the nuclei

is close to the equilibrium separation R0. The potential energy curve near the

minimum can be expanded in a Taylor expansion about R = R0 as

V (R) = V (R0) + (R−R0)
dV (R)

dR

∣∣∣∣
R=R0

+
(R−R0)2

2!

d2V (R)

dR2

∣∣∣∣
R=R0

+ .... (2.25)

The first term, V (R0), signifies the minimum of the potential well, and is a constant

energy offset, while the first derivative, when evaluated at the minimum, is equal

to zero. If we then ignore the terms beyond the second derivative, we find a simple

harmonic oscillator potential,

V (R) ≈ V (R0) +
1

2
k(R−R0)2, (2.26)

with a spring constant k = d2V (R)
dR2

∣∣∣
R=R0

. The vibrational energy levels associated

with this first order approximation are given by

Ev = V (R0) + ~ω0(v +
1

2
), (2.27)
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where each vibrational level is characterized by the quantum number v = 0, 1, 2,...,

with the oscillation frequency ω0 =
√

k
µ
. The rigid rotor and harmonic oscilla-

tor solutions are good as first approximations, but higher order effects need to be

considered to accurately describe the energy levels of the molecule.

2.3.4 Higher Order Effects

As the energy of the system increases, the range of radial motion increases to

the point where the harmonic oscillator approximation breaks down. A typical

electronic potential is shown in Fig. 2.2 where it can be seen that it is more repul-

sive than a harmonic oscillator at small R and less repulsive at large R (where it

must asymptotically approach the molecular dissociation limit). Thus the potential

becomes progressively more anharmonic as energy increases.

E
n
er

g
y

 

0       5             10           15           20    25 

R(Å) 

Figure 2.2: Comparison of a harmonic oscillator (dashed line) and the
2(A)1Σ+ electronic potential for NaK (solid line), where a relative
shift has been made so that the two potentials have the same equalibrium
separation R0 and minimum Te.
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A better approximation to a real potential is the Morse potential,

V (R) = De

[
1− eα(R−R0)

]2
, (2.28)

where α and De are constants. De represents the well depth Ep(∞)−Ep(R0). When

the Morse potential is substituted into Eq. 2.21 with J = 0, the vibrational energies

are given exactly by

Ev = ωe(v +
1

2
)− ωexe(v +

1

2
)2. (2.29)

Here the second term in Eq. 2.29 represents the anharmonicity, and ωexe is the

anharmonicity constant. In this expression, one can show [36] that

ωe =

√
~De

πcµ
β (2.30)

and

ωexe =
ω2
e

4De

, (2.31)

for ωe, ωexe and De all measured in wavenumbers (cm−1). Figure 2.3 shows a

comparison of a Morse potential to a harmonic oscillator, both with minima at Te.

Figure 2.4 shows a comparison of the vibrational energies calculated using a Morse

potential with those for a harmonic oscillator potential.
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Figure 2.3: Comparison of a Morse potential with a harmonic oscillator potential. Note
the similarity of the Morse potential to the actual 2(A)1Σ+ state potential
shown in Fig. 2.2. The well depth of the Morse potential, De, is also indi-
cated.
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Figure 2.4: Comparison of the vibrational levels of a harmonic oscillator with those of
a Morse potential for ωe = ω0. The separation between the vibrational level
energies associated with the Morse potential, ∆Ev = ωe − 2ωexe(v + 1

2) are
smaller than for the harmonic oscillator potential ∆Ev = ω0. Consequently
the energy discrepancies increase with v.

Although the Morse potential is a good approximation to real potentials, it’s

still an approximation. Thus we can include additional terms in the expansion of

Eq. 2.29 to obtain an even more accurate representation of the energy levels of the

molecule; i.e.,

Ev = Gv = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + ..., (2.32)

but when more terms are added it becomes harder to associate physical interpreta-

tions with these additional correction terms, and they are usually just considered
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fitting parameters.

In addition to the anharmonicity in the potential, additional corrections are

needed because rotation also causes the molecule to stretch due to the centrifugal

force. Since the effective equilibrium separation (the minimum of the effective po-

tential Veff(R) in Eq. 2.22) increases with increasing rotation, the rotational energy

is reduced relative to Eq. 2.24. The first order correction to Eq. 2.24 is given by

Er = BeJ(J + 1)−Dv[J(J + 1)]2, (2.33)

where Dv is called the centrifugal distortion constant. The last term in Eq. 2.33, is

the centrifugal distortion term, which reduces the spacings between levels of large J

relative to those of a rigid rotor.

Up to this point, we have been dealing with the vibrational and rotational mo-

tions separately. However, a more accurate model of a diatomic molecule is the

vibrating rotor, which couples the vibrational and rotational motion. Specifically,

the fact that the potential is slightly anharmonic means that the equilibrium inter-

nuclear separation (and therefore the moment of inertia) increases as the molecular

vibration increases, and this, in turn, decreases the effective rotational constant.

This is usually expressed as expansions of the rotational and centrifugal distortion

constants in powers of (v + 1
2
). Thus we obtain slightly different rotational coeffi-

cients for each vibrational state:

Bv = Be − αe
(
v +

1

2

)
+ γe1

(
v +

1

2

)2

+ γe2

(
v +

1

2

)3

+ ... (2.34)
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and

Dv = De + βe1

(
v +

1

2

)
+ βe2

(
v +

1

2

)2

+ βe3

(
v +

1

2

)3

+ .... (2.35)

Finally we combine the electronic, vibrational, and rotational energies (in descending

order of contribution) in Eq. 2.23 to obtain

E(v, J) = Eel + Ev + Er = Te +Gv + Fv(J) (2.36)

with

Gv = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + ... (2.37)

and

Fv(J) = BvJ(J + 1)−Dv[J(J + 1)]2 + .... (2.38)

Dunham [37] developed a concise way to represent Eq. 2.36, as

Ep,v,J =
∑
i,k

Yi,k

(
v +

1

2

)i [
J(J + 1)− Ω2

]k
(2.39)

where the constant vector Ω = Λ + Σ, and will be discussed briefly in the next

section. The constants associated with the Dunham expansion can be determined

spectroscopically, and are used to reproduce ro-vibrational level energies. Table 2.1

lists the relationship between some of the lowest order Dunham coefficients Yi,k and

the physical (spectroscopic) constants that are usually listed in older publications.
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i � k 0 1 2

Yik =

0 Te Be −De

1 ωe −αe −βe1
2 −ωexe γe1 −βe2
3 ωeye γe2 −βe3

Table 2.1: The spectroscopic constants and the corresponding Dunham coefficients Yi,k.

2.4 Hund’s Cases

The Hund’s cases consider the different ways the various internal molecular an-

gular momenta vectors can couple due to the electric and magnetic interactions. In

all cases, we must take into account four angular momentum vectors; the electron

orbital angular momentum L, the electron spin angular momentum S, the nuclear

orbital angular momentum N, and the nuclear spin angular momenta I, all of which

can couple to each other as well as to the internuclear axis. While each angular mo-

mentum vector interacts with every other angular momentum vector via magnetic

dipole interactions in the molecule, the Hund’s cases allow for a simplified method of

taking the various interactions into account based on the relative strengths of these

interactions. Fortunately some interactions are sufficiently weak that they can be

neglected entirely.

Equation 2.40 describes the molecular Hamiltonian including the most important

of these interactions involving the angular momentum vectors [38],

Ĥ = Ĥel + Ĥvib + Ĥrot + ĤSO + ĤHFS + ĤSR + ...

≈ Ĥ0 + ĤSO + ĤHFS + ĤSR (2.40)
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or

Ĥ = Ĥ0 + AL • S + bI • S + γN • S. (2.41)

Here the first term, Ĥ0, includes the previously discussed electronic, vibrational,

and rotational energy terms, but typically neglects the parts of the kinetic energy

that were dropped when the Born-Oppenheimer approximation was invoked. The

second term (AL•S) describes the spin-orbit interaction, while the third term (bI•

S) describes the Fermi-contact portion of the hyperfine interaction (which is the

dominant hyperfine interaction in all diatomic alkali molecules). The final inter-

action term here (spin-rotation) is significantly smaller than the other terms, but

should ideally be included as well. As previously mentioned, there are several other

terms that are even smaller (including the electron spin-spin interactions, but they

are neglected here.

The various coupling schemes are described by the Hund’s cases. Hund’s cases

(a), (b) and (c) are the most common and will be discussed in moderate detail here;

further information can be found in [36] and [38].

The three main Hund’s cases [(a), (b), and (c)] are distinguished first by the

strengths of the interactions between L, S, and the internuclear axis. In case (a) and

case (b), the electron orbital angular momentum L is strongly coupled to the electric

field along the internuclear axis. Cases (a), (b) and (c) are further distinguished by

the strength of the spin-orbit interaction relative to other interactions.
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2.4.1 Hund’s Case (a)

Case (a) is valid when the strongest of the angular momentum coupling terms

is the interaction of L with the strong internuclear electric field. This causes the

vector L to precess about the internuclear axis (dotted ellipse shown in Fig. 2.5)

with a constant projection Λ along the axis. Although L does not correspond to

a “good quantum number”, its projection along the internuclear axis (Λ) can be

taken to be a constant of the motion and is usually used to label the molecular

states using Greek symbols as given in Table 2.2. Note that the Greek labels for

Λ are chosen analogously to the Roman symbols for values of the quantum number

L, used in atomic physics. In Hund’s case (a), the next interaction that must be

L Atomic State Λ Molecule State
0 S 0 Σ
1 P 1 Π
2 D 2 ∆
3 F 3 Φ

Table 2.2: Values of Λ and the corresponding molecular labels. The analogous atomic
labels for the quantum number L are also given.

considered is the spin-orbit interaction. The precession of L around the internuclear

axis is sufficiently fast that, on average, only the component Λ survives. Therefore,

because of the L•S interaction, S also precesses rapidly about the internuclear axis,

and we need only consider its component Σ along the axis. Note that the use of Σ

as the component of S along the internuclear axis should not be confused with the

label for states with Λ = 0. L, S and their components Λ and Σ are depicted in

Fig. 2.5 where it can be seen that a vector Ω of length Λ + Σ can also be defined.
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L S 

Ω = Λ + Σ  

Λ           Σ 

N 
J 

Figure 2.5: Vector diagram of Hund’s case (a). The ellipses on the diagram show the
precession of the vectors.

In case (a) the final interaction to consider is the coupling of Ω with the nuclear

orbital angular momentum N to create the total angular momentum J (i.e. Ω and

N both precess slowly about J). Case (a) is more common in lower rotational levels

and in heavier molecules. A good rule of thumb is obtained by calculating the ratio

A
BυJ

, where A is the spin-orbit constant and Bυ is the rotational constant. When

this ratio is greater than 1, Hund’s case (a) is usually a good approximation, unless

the spin-orbit interaction is so strong that case (c) is valid (see Sec. 2.4.5). If A
BυJ

is much less than 1, the state is usually well described by case (b).

2.4.2 Hund’s Case (b)

Hund’s case (b) is used for cases where the electron spin is either weakly coupled

to the internuclear axis or not coupled to it at all. Σ, the component of electron

spin along the internuclear axis, is no longer a good quantum number, but this does
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not necessarily mean that S=0. Since the spin-orbit interaction is very weak for

molecules in states that can be described by Hund’s case (b), Λ first couples to N

to form the intermediate vector K = Λ + N. The electron spin S then couples to

K to form J [ J = S + K]. Figure 2.6 shows the Hund’s case (b) vector coupling

diagram.

L 

Λ  

N 
K 

S 

J 

Figure 2.6: Vector diagram showing the Hund’s case (b) coupling scheme, including the
ellipse depicting the precession of Λ and N about K.

2.4.3 Notation

In both cases (a) and (b), Λ and S are good quantum numbers [Σ and Ω are also

good quantum numbers for case (a)]. This is the basis for the most common notation

used to describe molecular states, which is also the one that is used throughout this

dissertation to describe the states of alkali diatomic molecules. States are labeled

using the format n2S+1ΛΩ(v, J). Here n is the number corresponding to the ordering

of states of a particular symmetry, with n=1 representing the lowest energy state
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of that symmetry. In an alkali molecule, there are two free valence electrons, each

with spin s1 = s2 = 1
2
. Thus the total electron spin is given by S =

∑
i

si and

the corresponding quantum number S can only take on two values; either S = 0

for electron spins in an anti-parallel orientation, or S = 1 if the electron spins are

parallel. These values correspond to spin multiplicities, (2S + 1) of one (singlet

states) or three (triplet states).

In addition to the Λ and multiplicity labels, case (a) and case (b) electronic

states with Λ = 0 (Σ states) also carry a superscript − or + label (i.e. Σ− or Σ+),

depending on whether the wavefunction changes sign or not when the electron co-

ordinates are reflected through a plane running through the two nuclei. Finally, we

also use the previously discussed vibration and rotation quantum numbers, v and

J, to describe the ro-vibrational level within the electronic state n2S+1Λ.

In case (a) and case (b) [as well as case (c)], the vector J represents the total

angular momentum sans the nuclear spin. The corresponding quantum number is

J, which is generally called the rotational quantum number. Note that this notation

is used for all states of the NaK molecule, all of which typically follow case (a) or

case (b) coupling (or something intermediate between the two).

2.4.4 Hyperfine Structure

When the nuclear spin vector is included, cases (a) and (b) are further broken

down into sub cases α and β based on whether or not I couples strongly to the

internuclear axis. In case aα, I couples strongly to the internuclear axis, so Ω = Λ

+ Σ + Iz and J = Ω + N is still valid. In case aβ, Ω and J are as shown in Fig.
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2.5, then I couples to J to form the total angular momentum F, where F = J + I.

In case (b) it turns out that case bα doesn’t occur because if S is not coupled to

the internuclear axis then it is unlikely that I would couple to the axis. However,

in case bβ there are two different coupling schemes, bβJ and bβS, that must be

considered. In case bβJ , S first interacts with K to form J, and then J interacts

with I to form F. This hyperfine coupling scheme is shown in Fig. 2.7 (A). In case

bβS, S interacts most strongly with I, creating the intermediate vector G, and then

F = K + G. The case bβS coupling scheme is shown in Fig. 2.7 (B). aβ, bβJ and

bβS hyperfine coupling schemes are common in the alkali diatomics, and have been

observed in many laboratories for Li2 [39, 40], Na2 [41, 42, 43], K2 [44, 45] and NaK

[15, 16, 17, 19, 46].
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Figure 2.7: Vector coupling diagrams of the two most common hyperfine interaction
schemes in Hund’s case (b). The first diagram (panel A) shows case bβJ ,
while the second (panel B) shows case bβS .
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2.4.5 Hund’s Case (c)

L 

S 

Ω 

N 
J 

Ja 

Figure 2.8: Vector diagram of Hund’s case (c). Vectors L and S precess about Ja, which
has component Ω along the internuclear axis. Ω then interacts with N to
create J.

In Hund’s case (c), the interaction between L and S is stronger than the interaction

of either one with the internuclear axis (see Fig. 2.8). Consequently, we first form

the vector Ja [Ja = L + S], and then Ja couples with the internuclear axis. Ω is

the component of Ja along the axis. In states that follow case (c), Λ and Σ are

not good quantum numbers while Ω is. Therefore the labeling convention of cases

(a) and (b) is not really valid. Instead, we use the notation nΩ+/−, where again n

denotes the ordering in energy of the electronic states of a given symmetry (1 being

lowest), and the +/- symmetry of the wavefunction for Ω = 0 states is denoted by

a superscript (for these Ω = 0 states only).

34



2.5 Electronic Transitions

Discrete energy differences occur between specific ro-vibrational levels of a lower

electronic state and ro-vibrational levels of a higher electronic state. When a

molecule in level vm, Jm of the lower state is subjected to an electromagnetic wave,

and a photon with energy equal to this energy difference (∆E = hνnm) encounters

the molecule, the photon may be absorbed. This absorption causes the molecule to

make a transition to level vn, Jn of the higher electronic state. In other instances,

the excited molecule can emit a photon, making a downward transition instead.

Following Refs. [36] and [38], the intensity of a spectral line in emission, in terms of

the energy emitted per second by a source, is

Inmem. = NnhνnmAnm, (2.42)

where hνnm is the energy of a single photon being emitted at line center νnm. Nn is

the number of atoms or molecules in the initial state, and Anm represents the rate

at which these excited atoms or molecules make radiative transitions from level n

to level m. Anm is called the Einstein coefficient of spontaneous emission, or the

Einstein A coefficient, and is given by

Anm =
8π2ν3

nm

3ε0~c3
|Rnm|2, (2.43)
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where Rnm is the transition dipole moment

Rnm =
SJn,Jm

2Jn + 1

∫
χv∗n (R)χvm(R)dR

×
∫
φel∗n (~R, ~r1... ~rn)µ̂elφ

el
m(~R, ~r1... ~rn)d3r1...d

3rn (2.44)

and µ̂el = −
∑
i

e~ri is the electric dipole operator. In this last expression, we sep-

arated the total wavefunction into the electronic and nuclear wavefunctions as in

Eq. 2.7, and further separated the nuclear wavefunctions into radial and angular

terms according to Eq. 2.17. The Hönl-London factors, SJn,Jm , divided by (2Jn +

1) are obtained from integrating the nuclear angular coordinates, thus eliminating

the rotational wavefunctions. When we insert Eq. 2.44 into Eq. 2.43, we obtain

Anm =
8π2ν3

nmSJn,Jm
3ε0c3~(2Jn + 1)

∣∣∣∣∫ χv∗n (R)χvm(R)dR

×
∫
φel∗n (~R, ~r1... ~rn)µ̂elφ

el
m(~R, ~r1... ~rn)d3r1...d

3rn

∣∣∣∣2 . (2.45)

The Hönl-London factors are representative of the line strength of a particular

rotational transition within a particular electronic-vibrational band, and they de-

pend on several factors. The first is whether the transition is a P, Q, or R transition,

Jm = Jn + 1, Jm = Jn or Jm = Jn − 1, respectively. It also is dependent on the

electron spin and the change in the quantum number Λ of the electronic transition.

For a ∆Λ = 0 transition between two 1Σ states, relevant to the present work in

which we observe NaK 2(A)1Σ+ (v, J ) → 1(X)1Σ+ (vl, Jl) downward transitions,
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the Hönl-London factors for P and R lines, [36, 38] respectively, are given by

SPJ,Jl = SPJ,J+1 =
(Jl + Λl)(Jl − Λl)

Jl

=
(J + 1)(J + 1)

J + 1
= (J + 1) (2.46)

for P transitions and

SRJ,Jl = SRJ,J−1 =
(Jl + 1 + Λl)(Jl + 1− Λl)

Jl + 1

=
(J − 1 + 1)(J − 1 + 1)

J − 1 + 1
= J (2.47)

for R transitions.

The contribution from the integral over the vibrational wavefunctions can be

written as ∣∣∣∣∫ χv∗n (R)µel(R)χvm(R)dR

∣∣∣∣2 , (2.48)

where

µel(R) ≡
∫
φel∗n (~R, ~r1... ~rn)µ̂elφ

el
m(~R, ~r1... ~rn)d3r1...d

3rn. (2.49)

If µel(R) is approximately independent of R, we can write Eq. 2.48 as

∣∣∣∣∫ χv∗n (R)µel(R)χvm(R)dR

∣∣∣∣2 ≈ µ̄2
el

∣∣∣∣∫ χv∗n (R)χvm(R)dR

∣∣∣∣2 (2.50)

where the square of the vibrational wavefunction overlap integral
∣∣∫ χv∗n (R)χvm(R)dR

∣∣2
is called the Franck-Condon factor. This factor is largely responsible for the relative

intensities of vibrational bands.
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Transitions between electronic states must obey selection rules which can be

derived from the consideration of the Hönl-London factors, as well as the matrix

elements of the transition electric dipole moment operator. Some selection rules

are generally valid, while other approximate selection rules are only valid in certain

Hund’s coupling limits. These selection rules for electronic transitions are listed in

Table 2.3.

Quantum number Selection rule Hund’s case validity
Λ ∆Λ = 0,±1 (a), (b)
Σ ∆Σ = 0 (a)
Ω ∆Ω = 0,±1 (a), (c)
S ∆S = 0 (a), (b)
J ∆J = 0,±1 (a), (b), (c)
v ∆v =anything (a), (b), (c)

Table 2.3: The selection rules for dipole allowed electronic transitions, and the Hund’s
cases in which they are valid.
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Chapter 3

Experimental Setup

3.1 Overview

In this chapter I discuss the experimental set up, which was used for the data

collection in Lyon, France, and which is shown in Fig. 3.1. I made two separate

visits to Lyon to collect data: one in November 2013 and one in November 2014.

The main experimental setup used during both visits was the same, while some

aspects of the data collection procedure were improved for the second visit. Section

3.2 discusses the heat pipe oven and its theory of operation, followed in Sec. 3.3

by a discussion of the laser system. The Fourier Transform Spectrometer (FTS)

and optical systems are explained in Sec. 3.4. The chapter concludes with a brief

explanation of the experimental set up and data acquisition procedure in the Lehigh

University experiment (see Sec. 3.5).
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Figure 3.1: Experimental setup in Lyon including the linear heat pipe oven, laser system
and Bomem Fourier Transform Spectrometer.

3.2 Heat Pipe Oven

The heat pipe oven is a linear pipe with the inner surface lined by a stainless

steel mesh in the central region. BK-7 glass windows are affixed to flanges with

epoxy and the flanges are bolted to either end of the heat pipe. The windows were

either affixed at 90 degrees to the oven axis or at approximately Brewster’s angle.

Different combinations of the window orientations were used in 2013. In 2014 both
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windows were oriented at Brewster’s angle. Because the Lyon heat pipe does not

have side arms for the collection of fluorescence, the use of Brewster windows reduces

the laser scatter contaminating the signal.

Block Oven 

12 cm 

27.5 cm 

H2O 

cooling 

line 

H2O 

cooling 

line 

Inlets for 

Gas Line 

Cooling 

Fan 

Figure 3.2: Linear heat pipe used in Lyon.

The first report of heat pipe oven construction and theory of operation was pub-

lished by Vidal and Cooper [47]. The heat pipe sits within a block oven with a

heater length of 12 cm. Sodium and potassium metals were loaded into the heat

pipe oven and, when heated, creates a mixed vapor of sodium and potassium atoms

as well as K2, Na2 and NaK molecules. The oven is also filled with argon or helium

buffer gas. This buffer gas is necessary, not only for the collisional study, but also to

prevent the alkali vapor from reaching (and coating) the windows. The outermost

portion of each arm (outside the oven block) is cooled with external water coils and

41



cooling fans (see Fig. 3.2). This causes the alkali vapor to condense in this region.

The liquid alkali metal is then wicked by the internal screen back into the central

hot region of the oven.

The heat pipe oven has two possible modes of operation. The Lyon heat pipe

was run in “oven” mode. In this regime, the buffer gas vapor pressure exceeds the

alkali vapor pressure, usually by a large amount. The buffer gas fills the entire oven,

becoming the dominant collision partner with the excited NaK molecules within the

central zone. When the oven temperature is sufficiently high, the alkali vapor pres-

sure becomes equal to the buffer gas pressure, and the so called “heat pipe” mode is

attained. In this mode, the alkali vapor and buffer gas separate. The central zone of

the heat pipe is void of buffer gas, the regions near the ends of the pipe contain only

buffer gas, and there is a relatively short transition zone in between. In this mode,

alkali atoms are the dominant collision partners with the excited NaK molecules.

Different methods were used to fill the heat pipe oven in 2013 and 2014. In

2013, the heat pipe itself was removed from the optical table and transported to a

secondary location for filling. The oven was connected to a vacuum and gas han-

dling system in this other room. It was first evacuated using the vacuum pump and

then filled to the desired buffer gas pressure, all at room temperature. The heat

pipe was then sealed and taken back into the lab where it was heated to the desired

temperature. The same pressure and temperature conditions were maintained for

the entire day.
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Maintaining the same pressure for the course of the day limited the number of

different temperature and buffer gas pressure combinations that could be completed

in the course of our visit. In 2014, a new gas system was installed in the lab so

that the pressure could be adjusted throughout the day. The new vacuum system

includes a rough pump (a 2-stage Edwards rotary pump), an argon or helium gas

tank, a pressure gauge and a series of valves allowing evacuation and filling of the

oven (see Fig. 3.3). This allows the pressure to be changed while the oven is hot.

When the heat pipe is used in the oven mode, the buffer gas pressure in the hot

region is PBG = Ptot − Palk where Palk is the alkali vapor pressure and Ptot is the

total fill pressure.
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H2O 

cooling 

line 

H2O 
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Figure 3.3: 2014 vacuum system in Lyon.
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3.3 Laser System

The tunable laser used in the Lyon experiment is a Spectra Physics Sirah Matisse

cw, single-mode, Titanium:Sapphire (Ti:S) laser, which is pumped by 7 W from a

frequency doubled 532 nm YVO4 laser (Spectra Physics Millennia) (see Fig. 3.1).

The Matisse has an output power of 600-900 mW, a linewidth of approximately 1

MHz and can complete a 1-wavenumber continuous scan. In our experiments the

laser frequency was typically set at a given value to pump a particular molecular

transition. The laser beam exits the laser cavity and is split by a thick beam split-

ter. The secondary (reflected) beam is sent to an external wavemeter (Burleigh

WA 1500) where the wavelength is measured to 3x10−3 cm−1 precision. The main

beam passing through the splitter continues through a half-wave plate followed by

a polarizer and then is sent to the heat pipe. The polarizer is set to minimize

the reflection from the windows on the heat pipe, while the half-wave plate can be

rotated to attenuate the power of the beam that is sent to the experiment. This

can be reduced further with apertures and neutral density filters for the laser line

absorption measurement.

The external wavemeter was used to monitor the Ti:S once it was set to the

desired transition frequency for the duration of a scan of the Bomem Fourier Trans-

form Spectrometer. The Ti:S laser uses a birefringent filter for coarse adjustments

to the frequency and intracavity etalons for finer frequency adjustments.

Particular transition frequencies were calculated using the ground state 1(X)1Σ+ ro-

vibrational level energies of [10] and 2(A)1Σ+ ro-vibrational level energies of [9, 11].
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The Ti:S was then tuned to a particular transition frequency, which was verified by

measuring the spacing between P and R lines of the fluorescence spectrum (see Fig.

3.4).
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Figure 3.4: An example of a 2(A)1Σ+ (0, 30)→ 1(X)1Σ+ (v′′, J ′′) fluorescence spectrum.
Transitions down to each ground state vibrational level give rise to strong P
and R direct lines ( J ′′ = Jupper + 1 and J ′′ = Jupper − 1, respectively) and
to much weaker collisional line progressions. The anomalously large P line
in the right-most band is the direct laser line, which is contaminated with
scattered laser light.
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3.4 Fourier Transform Spectrometer (FTS) and

Light Detection System

The principal spectroscopic tool used in this work is the Bomem DA3 Fourier

Transform Spectrometer (FTS). The FTS is basically a traveling Michelson inter-

ferometer (see Fig. 3.5). Light entering the FTS is collimated and sent through a

50/50 beam splitter. One half of the light is sent along one arm of the interferome-

ter to a fixed mirror and then reflected back towards the beam splitter. The other

half is sent along the second interferometer arm to a traveling mirror, where it is

reflected back toward the beam splitter. The motorized mirror allows the length

of the second beam path to be varied in the vertical arm. After the light traverses

the two paths, the beams are recombined at the beam splitter, where, depending on

the path difference, individual frequency components either add constructively or

destructively. For example, when the beam paths are of equal lengths, there is zero

path difference, and all the frequency components interfere constructively. Because

the incoming light is usually made up of a number of different frequency components,

as the position of the traveling mirror is scanned, the recombined beams create a

complicated interference pattern, which is recorded by one of the light detectors

installed in the detector compartments (see Fig. 3.5). A calibrated helium-neon

(He-Ne) laser located inside the Bomem (FTS) is used as a frequency reference.

This keeps track of the distance that the traveling mirror has traveled, while an in-

ternal white light allows the spectrometer to find the mirror location corresponding

to zero path difference.
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Figure 3.5: Fourier Transform Spectrometer optical schematic. [48]

47



A white light is mounted outside the main FTS compartment, which can be used

to align the external optics guiding the fluorescence into the FTS with the aligned

internal optical path. This white light is an equivalent distance from the beam split-

ter as are the detectors, and light from this source passes backwards through the

Bomem’s optics to exit through the fluorescence input port. As explained later, this

is used to align the optics used to direct the fluorescence from the heat pipe oven to

the FTS. The Bomem is also equipped with a vacuum pump to evacuate the entire

housing, and various detectors can be cooled using liquid air or liquid nitrogen (as

well as operate at room temperature). Both of these options are used to reduce the

noise of the detectors.

The spectral resolution increases in proportion to the travel distance of the mir-

ror in the vertical arm (i.e. to the total path length difference). However, increasing

the travel distance also increases the scan time. The Bomem in Lyon is equipped

with the extended vertical arm, which allows for greater resolution than a standard,

shorter arm. In our experiments, the Bomem traveling mirror was scanned at a rate

of 0.3 cm/s. The spectral resolution for all recorded fluorescence spectra was 0.025

cm−1. An increase in exposure time (more total up and down scans of the traveling

mirror) enables more light to be accumulated and increases signal-to-noise across

the entire frequency range. Because all fluorescence in the collected spectral range

(generally spanning roughly 2000 cm−1 in our experiments) is gathered at the same

time, all line intensities in the spectrum scale together, creating consistent relative

intensities even in the event of small laser frequency drifts.
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The intensity measurements and spectral resolution of a Michelson interferometer

(MI) can be estimated as follows [1]. Figure 3.6 shows the basic interferometer

design. The distance the moving mirror travels during a given scan is the path

difference ∆y, which represents an optical path difference ∆s = 2n∆y. Here n is

the index of refraction for a particular frequency, for whatever medium occupies the

volume between the beam splitter S and the mirrors. If the interferometer has been

evacuated, n = 1.

M2 

M1 

S 

Δy 

Incoming 

fluorescence 

Recombined 

fluorescence sent 

towards detectors 

Figure 3.6: The incoming fluorescence enters from the right side and reaches beam split-
ter S where it is split into two waves, one traveling towards a stationary
mirror (M1) and the second moving towards a traveling mirror (M2). Both
beams are reflected and return to the beam splitter where they are recom-
bined. The two beams interfere (either contructively, destructively, or some-
thing in between) depending on the accumulated phase difference.
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Once the two beam components are reflected by their respective mirrors and

interfere at the beam splitter, the number of interference maxima Ni counted by the

detector for an incident wave with wavelength λi is

Ni =
2∆y

λi
. (3.1)

Two wavelengths (λ1 and λ2, where λ1 > λ2) with a difference ∆λ = λ1 − λ2,

which is small compared to either wavelength, can be clearly distinguished when

N2 ≥ N1 + 1. Combining this criterion with Eq. 3.1 allows us to determine the

spectral resolving power
1
2

(λ1+λ2)

∆λ
as

1
2
(λ1 + λ2)

∆λ
=

2∆y
1
2
(λ1 + λ2)

=
∆s

1
2
(λ1 + λ2)

, (3.2)

which shows that the spectral resolving power of the instrument is proportional to

the optical path difference, measured in units of wavelength.

Two detectors can be housed in the FTS at a given time, and a particular

detector can be chosen by orienting the flat mirror (labeled “output beam selection

mirror” in Fig. 3.5). Both the silicon avalanche (Si-Av) and the Indium-Gallium-

Arsenide (InGaAs) detectors used in this experiment were cooled with liquid air to

reduce the dark noise, or thermal background. The choice of detector depends on

the wavelength range of interest: the Si-Av is used for wavelengths shorter than 1

µm, while the InGaAs is used for further into the infrared. Once the light from the

recombined beams is collected by the detector, it is recorded as an interferogram

(IGM) on the computer (see Fig. 3.7). The computer then calculates a Fourier

transform of the IGM to obtain a high resolution spectrum as seen in Fig. 3.8.
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Figure 3.7: Pre-processed interferogram (IGM) of NaK fluorescence as collected by
Bomem FTS before the Fourier transform is performed.
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Figure 3.8: The Fourier transform of the NaK fluorescence interferogram in Fig. 3.7.
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In our experiment, NaK molecules in the heat pipe oven are excited by the laser

beam after it passes through a pierced mirror (see Fig. 3.9). Fluorescence emitted

along the laser propagation axis in the backward direction is collected by the pierced

mirror and is focused onto the input aperture of the FTS. Scattered laser light is

blocked with long and short-pass filters, depending on the selected 2(A)1Σ+ level

to be excited. In 2013, a long-pass 900 nm filter was used for all v = 0 scans,

and in 2014 a long-pass 750 nm filter was used for collection of all v = 0, 1 and 2

fluorescence. In both cases, the filter was placed inside of the detector housing.

Laser Propagation 

Axis  

Fluorescence Path  

Pierced Mirror 

To Heat Pipe Oven 

Figure 3.9: A representation of the laser and fluorescence paths near the pierced mirror.

An interferogram is recorded as the traveling mirror moves up and back a given

number of times, where the actual number is chosen by the operator. We generally

used between 4 and 15 repetitions of the mirror movement in a given scan. After

processing, the different ro-vibrational transitions give rise to separate peaks in the

Fourier transform spectrum. Although the signal-to-noise is usually quite good, the

recorded spectral lines are sometimes asymmetric or broader than they should be.
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For example, if the fluorescence path is misaligned with the interferometer axis, the

spectral lines will appear to be asymmetric, non-Gaussian, in nature and can have

an uneven baseline. While this can occur for all spectral lines, it is most easily

seen in the direct lines, [see Fig. 3.10(b)]. A proper alignment of the fluorescence

optical path with the Bomem optical axis can reduce these asymmetries. To align

the external optics with the internal light path, the previously mentioned white

light mounted external to the main Bomem chamber is sent through the FTS in the

direction opposite to the fluorescence path. This light comes to a focus just outside

the FTS. This focused white light is then sent through the heat pipe, again in the

direction opposite to the fluorescence path. The fluorescence collection optics are

then adjusted to focus this light to the approximate center of the heat pipe, thus

aligning the optics between the Bomem and the heat pipe oven. In the event that,

after proper alignment, a spectral line is still asymmetric, there are mathematical

steps which can be taken to correct these errors in the IGM processing stage. It

is important to mention that the correction of the IGM does not alter the relative

heights of individual lines, and the majority of collisional lines are not noticeably

asymmetrical. The effect is most noticible for large intensities, as seen in the direct

lines, and has little effect on the relatively small intensities of the collisional spectral

lines.
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a) 

b) 

Figure 3.10: Bomem spectra showing a symmetrical (a) and an asymmetrical (b) direct
line spectral baseline. The shorter peaks to either side are collisionally
populated lines and do not visibly exibit the same asymmetry as the direct
line due to the fact that they are much weaker lines.
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3.5 Lehigh Experiment

A full discussion of the experimental setup at Lehigh can be found in [34],

[49] or [50], but a basic outline of it will be laid out here. Figure 3.11 shows

the Lehigh experimental setup. Two laser systems are used in these experiments;

an argon ion laser pumped tunable, single-mode, cw Ti:S laser (Coherent 899-29)

and an argon ion laser pumped tunable, single-mode, cw ring dye laser (Coher-

ent 699-29). Beams from the two tunable lasers are counter-propagated through

the heat pipe oven and create a two-step excitation. In the NaK experiment, the

dye laser acts as the initial excitation laser (pump laser) and the Ti:S is the sec-

ond step (probe) laser. The pump laser excites specific rovibrational levels of the

NaK 2(A)1Σ+ state [2(A)1Σ+ (v′, J ′) ← 1(X)1Σ+ (v′′, J ′′ = J ′± 1)], while the probe

laser further excites the molecule from the directly excited level 2(A)1Σ+ (v′, J ′)

or from a collisionally excited level 2(A)1Σ+ (v′, J ′ + ∆J) to levels of the 31Π

state [31Π(v, J = J ′ or J = J ′ ± 1) ←2(A)1Σ+ (v′, J ′) or 31Π(v, J = J ′ + ∆J

or J = J ′ ± 1 + ∆J)←2(A)1Σ+ (v′, J ′ + ∆J), respectively.]

One large difference between the Lyon and Lehigh setups is the shape of the

heat pipe oven. Lehigh’s oven has four horizontal arms in a cross shape with a

fifth vertical arm. This allows the collection of fluorescence through the windows

of the arms perpendicular to the laser propagation axis. The vertical arm is used

for loading metal into the oven. Violet 31Π → 1(X)1Σ+ fluorescence is detected

with a free-standing photomultiplier tube (“Total Violet PMT” in Fig. 3.11) while

red 2(A)1Σ+→ 1(X)1Σ+ fluorescence is detected with a second free-standing PMT

(“Total Red PMT”).
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Figure 3.11: Experimental setup used at Lehigh University. The main differences be-
tween this setup and the Lyon setup are the cross-shaped heat pipe used
at Lehigh and the use of double resonance excitation.
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Chapter 4

Experimental Techniques

4.1 Overview

I begin this chapter with a discussion (Sec. 4.2) of how both buffer gas and alkali

densities are experimentally determined. The discussion highlights the differences

in the procedures used in the two different time periods that data were recorded

in Lyon, France. In Sec. 4.2.1 I describe the buffer gas filling procedure and pres-

sure measurements used in November 2013 and in November 2014. Section 4.2.2

discusses the vapor pressure formulas used to form initial estimates of the alkali

densities. Section 4.2.3 then details the use of a white light source to determine

alkali vapor densities (actually column densities) in both years, and the laser line

absorption method used for the same purpose, but only in November 2013. In this

discussion, the relationship between the absorption lineshape and atomic number

density is presented.

Section 4.3 details the technique of Laser Induced Fluorescence (LIF) and how
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it was used to collect data on the collisional transfer of population from one ro-

vibrational molecular level to another. This is the experimental technique used for

all of the data collected in Lyon. A brief description of the two-step excitation used

in the Lehigh experiments is also included in this section.

4.2 Determining Vapor Densities

4.2.1 Buffer Gas Densities

In order to determine collisional rates from measured fluorescence intensities, we

must have accurate determinations of both the alkali atom densities and buffer gas

atom densities. The current section describes the determination of the buffer gas

density.

Line to 

Buffer Gas 

tank 

Pressure 

Gauge 

Line to 

rough 

pump 

A 

B 

C 

Figure 4.1: Vacuum system used in Lyon, 2014. There are three labeled valves in the
system; valve A closes off the heat pipe oven from the outside environment,
valve B controls the flow to the rough pump, and valve C connects to the
buffer gas tank.
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As seen in Fig. 4.1, we can close off the heat pipe from the outside environment

by a valve (A) at its entrance. This valve allows the heat pipe to be evacuated by

the vacuum system, consisting of a rough pump connected through valve B, or to

be filled with buffer gas from attached gas bottles (through valve C). When valves

A and C are open with valve B closed, the volume of the system is roughly double

compared to when valve A is closed. The pressure gauge is near valves B and C,

where it remains at room temperature, roughly 21◦ C. The vacuum systems used

in 2013 and 2014 were constructed with essentially the same layout as shown in

Figure 4.1, and in 2014 the system was located next to the optical table where the

fluorescence measurements were made.

As previously stated, in 2013 the heat pipe was filled at room temperature in a

separate location from the optical setup and then valve A was closed. In principle,

after that point the number of buffer gas atoms in the heat pipe does not change,

nor does the volume. Applying the ideal gas law, PV = NkBT

n =
N

V
=

P

kBT
, (4.1)

we see that the pressure P in the heat pipe oven will rise proportionally to the tem-

perature, T . n is the atomic number density (atoms/cm3) and kB is Boltzmann’s

constant. Since there is no change in the atomic number density for the buffer

gas throughout the course of the day (assuming no leaks), we use nhot = ncold =

Pfill
kBTroom

= Pmeas
kBTroom

for the 2013 data.
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In 2014, a new vacuum system was constructed so that the pressure could be

adjusted during the course of the day. To fill the heat pipe, both valve A and the

vacuum pump valve (B) were opened and the system evacuated. Valve B was then

closed, valve C was opened, and the oven was refilled to the desired pressure. The

measured pressure readings, Pmeas, were carried out with valve A opened and the

heat pipe oven hot. Periodically throughout the day, valve A could be opened to

check the pressure or A and C could both be opened to adjust the pressure to a new

value.

Since the oven was already at the operating temperature when these pressure

readings were made, we need to take into account the fact that the vapor within the

hot zone would also have contributions from the alkali vapor pressure. By adjusting

the power sent to the heating elements, we can vary the alkali vapor density, which

also changes the value of the buffer gas density in the central (hot) zone. Using

the fact that the measured pressure has contributions from both the buffer gas and

alkali vapor, we find the buffer gas pressure in the hot zone, PBG, which is given by

Pmeas = PBG + Palk

PBG = Pmeas − Palk

= Pmeas − nalkkBThot. (4.2)

We use Eq. 4.2 to determine the buffer gas pressure in the hot oven. The buffer

gas atom density in the hot oven is then found from Eq. 4.1, but with the hot oven

temperature; i.e.
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nBG =
PBG
kBThot

=
Pmeas

kBThot

− nalk. (4.3)

4.2.2 Nesmeyanov Vapor Pressure Equation

Determining the alkali vapor densities can be done in several ways, starting

with a simple estimate based on an equation (vapor pressure formula) relating the

temperature of the oven to the pressure or density of the species being investigated.

In 1963, Nesmeyanov published a critical compilation of pressure vs temperature

data [51]. He used the available data to create a vapor pressure formula of the

general form

log10 P = A− B

T
+ CT +D log10 T, (4.4)

providing the best fit values for the coefficients A, B, C and D for each element.

The values for sodium and potassium are listed in Table 4.1.

Species A B C D
Na 10.86423 5619.409 -3.45x10−6 -1.04111
K 13.83624 4857.902 3.494x10−4 -2.21542

Table 4.1: Nesmeyanov vapor pressure coefficients for species pertinent to this experi-
ment. [51]

Vapor pressure formulas like Nesmeyanov’s are based on the assumption that

the vapor in question contains only a single pure atomic or molecular species. In

our experiment, we heat a mixture of two different species of atoms, which creates

a mixed vapor. This mixed vapor is better defined using a combination of Dalton’s

law [52] and Raoult’s law [53] to describe the mixed vapor once the components have
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reached equilibrium. The former states that the total pressure of a mixed system is

the sum of the partial pressures of each species,

Ptotal =
∑
i

Pi, (4.5)

while the latter states that partial vapor pressure Pi of a species is related to the

vapor pressure of the pure component P ∗i weighted by its mole fraction χi in the

mixture

Pi = P ∗i χi. (4.6)

Combining Eq. 4.5 with Eq. 4.6 yields

Ptotal =
∑
i

P ∗i χi. (4.7)

However, it is important to note that Eq. 4.7 has limited validity. In general, we

have found that experimentally measured densities in the Lyon heatpipe are sys-

tematically significantly lower than those calculated directly from the Nesmeyanov

formula, because the Lyon heat pipe is loaded with relatively small amounts of alkali

metal. With the Lehigh heat pipe, which is loaded with much larger amounts of

metal, the measured densities are typically between those calculated directly from

the Nesmeyanov formula and those calculated from the Nesmeyanov formula modi-

fied by Raoult’s Law [34].
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4.2.3 White Light Absorption and Laser Line Absorption

The previously discussed equations for vapor pressure (or density) can be used

to make a simple initial prediction of the alkali atomic densities. These calculations,

however, do not replace an actual measurement of the vapor densities. In the 2013

experiments in Lyon, we used a combination of white light absorption spectra and

laser line absorption measurements to accurately determine the alkali atom densi-

ties. In 2014, only white light absorption measurements were used to determine

these vapor densities, since this method was easier to implement and generally more

reproducible. In both the white light and laser absorption methods, the potassium

vapor density was determined by comparing measured and calculated absorption in

the wings of the potassium D2 line.

For white light absorption, we directed the light from a calibrated tungsten

halogen lamp through the heat pipe along the path of fluorescence and into the

Bomem FTS. A cold background scan was recorded with the oven heaters off to

determine the baseline transmitted intensity with nK = 0. The oven was then

heated up to the desired temperature and a second scan was recorded. Such a scan

is shown in Fig. 4.2. We determine the fraction of light absorbed as a function of

frequency by dividing the hot scan by the background scan.
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Figure 4.2: Example of a white light absorption scan recorded with the oven at 435◦C.

Figure 4.3 shows the data of Fig. 4.2 after division by the background scan. For

these density measurements we used the Bomem at a 1.0 cm−1 resolution in 2013

and at a 0.5 cm−1 resolution in 2014. Both of these resolutions are small compared to

the absorption linewidths. The fraction of the white light transmitted as a function

of frequency was then used to determine the potassium vapor densities. To maintain

good signal-to-noise, we only used transmission values in the range of 20% to 80%.

Every time we changed the buffer gas pressure or temperature, a new white light

absorption scan was recorded.

64



12800  12900  13200  13000  13100  

Wavenumber (cm-1) 

In
te

n
si

ty
 (

ar
b

. 
u
n
it

s)
 

100 

0 

Figure 4.3: Transmission spectrum of the potassium D1 and D2 lines. The hot scan
shown in Fig. 4.2 has been divided by the cold background white light scan,
leaving a flat baseline of 100% transmission.

The laser line absorption method also uses the absorption in the line wings and

determines the fraction of laser intensity absorbed at specific detunings from line

center. The Ti:Sapphire laser has a very narrow linewidth (approximately 750 kHz)

which provides very high resolution. However, the intensity is also very high. There-

fore, to avoid saturation effects, the laser was sent through almost crossed polarizers

to reduce the laser beam intensity to the order of microWatts. We set the laser to

specific detunings from line center and recorded the laser intensity both before and

after the heat pipe. Correcting for window losses (by recording the laser intensities

before and after the heat pipe with the oven off), we determined the fraction of light

transmitted through the vapor at these specific frequencies.
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Under our experimental conditions, the absorption coefficient for the resonance

lines of the alkali atoms can be described by a Voigt lineshape [54]:

kν =
λ2

0nA21

8π

g2

g1

∫
G(ν ′ − ν0)L(ν − ν ′) dν ′ (4.8)

Equation 4.8 is the convolution of a normalized Gaussian G(ν ′−ν0), due to Doppler

broadening and a normalized Lorentzian lineshape L(ν − ν ′), due to natural and

collisional broadening, which are used to describe the total lineshape kν .

While the Voigt profile is an extremely good representation of the true line

shape, if we concentrate on absorption well out in the line wings where the Gaussian

function is very small, we can approximate the lineshape as a single Lorentzian

function

∫
G(ν ′ − ν0)L(ν − ν ′) dν ′ = L(ν − ν0) =

Γ

4π2(ν − ν0)2 + (Γ
2
)2
. (4.9)

Thus the absorption coefficient kν in the line wings can be written as

kν =
λ2

0nA21

8π

g2

g1

Γ

4π2(ν − ν0)2 + (Γ
2
)2
. (4.10)

Here Γ contains information about the homogenous broadening contributions includ-

ing natural broadening and collisional broadening from both the alkali and buffer

gas collision partners (Γ = Γnat + kbralknalk + kbrBGnBG).

The intensity of light of frequency ν that is transmitted through a length L of

the vapor, Iν(L), is related to the absorption coefficient through Beer’s Law:
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Iν(L) = Iν(0)e−kνL. (4.11)

In our experiment, L is the length of the central hot region (defined by the length

of the housing containing the heating elements) within the heat pipe. Solving Eq.

4.11 for kν and comparing to Eq. 4.10 we find

kν =
1

L
ln

(
Iν(0)

Iν(L)

)
=
λ2

0nA21

8π

g2

g1

Γ

4π2(ν − ν0)2 + (Γ
2
)2
. (4.12)

Assuming the values of the detuning (ν − ν0), linewidth Γ (where Γ = Γnat +

kbrselfnalk +kbrBGnBG), and Einstein A coefficients are known, the atomic density n can

be determined via Eq. 4.12. Table 4.2 lists the self broadening rates and buffer gas

broadening rates (Ar and He) for the D1 and D2 lines of sodium and potassium.

Alkali kbrself (cm3s−1) kbrHe (cm3s−1) kbrAr (cm3s−1)

Sodium
D1 3.07 x 10−7 [55] 1.90 x 10−9 [56] 2.77 x 10−9 [56]
D2 4.67 x 10−7 [55] 2.19 x 10−9 [56] 2.27 x 10−9 [56]

Potassium
D1 3.91 x 10−7 [57] 1.55 x 10−9 [58] 2.45 x 10−9 [58]
D2 6.36 x 10−7 [57] 2.06 x 10−9 [58] 1.98 x 10−9 [58]

Table 4.2: Broadening rate coefficients for the sodium and potassium atomic lines used
in the calculation of Γ. The D1 and D2 line rate coefficients for sodium (the
3S 1

2
→ 3P 1

2
, 3
2

transitions) and potassium (the 4S 1
2
→ 4P 1

2
, 3
2

transitions) for

broadening by collisions of each alkali with other alkali atoms of the same
type and by collisions with helium and argon are listed.

Potassium densities were determined using measured transmissions Iν(L)/Iν(0)

at various points in the line wings and Eq. 4.12 for the D2 transition. As previously

stated, atomic number densities were determines in both 2013 and 2014 by the

white light absorption method. In 2013, laser line absorption measurements were

also obtained as a secondary check to the white light method. However, all the alkali
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density values used in the present analysis are those derived from the white light

scans.

4.3 Laser Induced Fluorescence (LIF) Intensity

Ratios

In Lyon we used laser excitation (the Matisse Ti:Sapphire) to induce transi-

tions from a specific ro-vibrational level within the ground state, 1(X)1Σ+ , to a

specific ro-vibrational level within the 2(A)1Σ+ state. This upper 2(A)1Σ+ (v′, J ′)

level then decays back to the ground state via spontaneous emission, which we

observe as a progression of transitions to all ground state vibrational levels. These

1(X)1Σ+ (v′′, J ′±1)← 2(A)1Σ+ (v′, J ′) transitions, as previously discussed in Chap-

ter 2, obey the standard selection rule ∆J = ±1 for a 1Σ→1 Σ transition. Therefore,

the spectrum consists of a series of P(J ′′ = J ′ + 1) and R(J ′′ = J ′ − 1) lines, as

shown in Figure 4.4.
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1 A
upper  

level 

vd, Jd  

1 X

v=0, Jd ± 1 

v=1, Jd ± 1 

v=2, Jd ± 1 

R-lines 

(Jd→ Jd – 1) 

P-lines 

(Jd→ Jd + 1) 

Figure 4.4: NaK molecules in a particular 2(A)1Σ+ ro-vibrational level (vd, Jd) decay by
spontaneous emission on transitions to all ground state vibrational levels.
The intensities of these transitions are proportional to the Einstein A coef-
ficients of each transition. All transitions originate in the same upper level
with population density nupper. The schematic on the left is reflected in the
FTS scan on the right as the strong transitions, marked with arrows.
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Before decaying to the ground state, the excited molecules can collide with buffer gas

atoms, alkali atoms, or other alkali molecules (NaK, Na2, K2) that are all present in

the oven. These collisions can result in the transfer of population from the directly

excited level 2(A)1Σ+ (vd, Jd) to an adjacent J level J = Jd+∆J . Molecules in these

collisionally populated ro-vibrational levels also radiate down to the 1(X)1Σ+ state.

The final ground state vibrational level v ′′ can have any value, with the fluorescence

intensities of the various transitions being proportional to the Einstein A coefficients

as discussed previously. In Fig. 4.5 we present a spectrum showing fluorescence from

both directly and collisionally populated ro-vibrational levels decaying to the ground

state via P and R transitions. It is also possible that a collision will not only change

J, but will also change v. Evidence of such v-changing collisions can be seen in the

spectra shown in Figure 4.6.
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Figure 4.5: Fluorescence from directly populated and collisionally populated
2(A)1Σ+ ro-vibrational levels making transitions to a particular vibra-
tional level v′′ = 9 of the ground state. This FTS scan shows that levels
J = Jd + ∆J are collisionally populated out beyond |∆J | = 10. Note that
the direct lines are much stronger than the collisional lines (the direct lines
go far off scale).
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Direct Pump: 

A(2,44) 

Direct Pump: 

A(1,26) 

Direct Pump: 

A(0,30) 

11008 11010 11012 11014 11016 11018 
frequency (cm-1 ) 

11020 11022 11024 

Figure 4.6: Three spectra recorded following excitation of three different 2(A)1Σ+ levels:
The top trace corresponds to direct pumping of 2(A)1Σ+ (2,44), the middle
trace corresponds to direct pumping of 2(A)1Σ+ (1,26) and the bottom spec-
trum shows fluorescence following the direct pumping of 2(A)1Σ+ (0,30). In
all cases, the observed fluorescence in this spectral region corresponds to
the 2(A)1Σ+ (v = 0)→1(X)1Σ+ (v = 9) transitions. The fact that emission
from v = 0 is observed following excitation of v = 1 and v = 2 is evidence
of v-changing collisions in the A state.
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Figure 4.6 shows three separate recorded spectra, each highlighting fluorescence

emitted by molecules in the v = 0 vibrational level of the 2(A)1Σ+ electronic state.

The difference between the three spectra is the level directly excited by the laser:

2(A)1Σ+ (v = 2, J = 44), 2(A)1Σ+ (v = 1, J = 26) and 2(A)1Σ+ (v = 0, J = 30)

from top to bottom. The bottom spectrum obviously does not represent v-changing

collisions. Rather, it is provided as a reference to easily discern the small v-changing

collisional lines corresponding to v = 0 in the other spectra.

4.3.1 Optical-Optical Double Resonance Spectroscopy

As discussed in Section 3.5, the Lehigh experiment utilizes a two laser pump-

probe scheme. This optical-optical double resonance (OODR) technique uses counter-

propagating beams to first excite NaK molecules on a specific transition 1(X)1Σ+ (v′′,

J ′± 1) → 2(A)1Σ+ (v′, J ′). Similar to the Lyon experiment, collisions of perturbers

with molecules in the 2(A)1Σ+ state can transfer population to neighboring rota-

tional levels. The molecules in directly excited level [2(A)1Σ+ (v′, J ′)] and molecules

in collisionally populated levels [2(A)1Σ+ (v′, J ′+∆J)] are then excited by the probe

laser to various ro-vibrational levels of a particular upper electronic state. As de-

scribed in Refs. [31] and [34], the chosen upper electronic state used in the Lehigh

experiment was the NaK 31Π state. In the experiment, the total red fluorescence

signal, corresponding to transitions from the intermediate state to the ground state,

was constantly monitored to insure that the pump laser frequency didn’t drift. Flu-

orescence from the 31Π state was monitored by a second (violet filtered) PMT as

the probe laser frequency was scanned over transitions involving the direct and col-

lisionally populated levels. In general, the number of rotational lines flanking the

direct line (the ∆J progression) observed in this pump-probe experiment is much
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smaller than the number observable with the FTS experiment in Lyon. This also

limits the ability to record fluorescence from v-changing collisional lines at Lehigh

as these lines are approximately an order of magnitude smaller than the |∆J | ≤ 4

collisional lines. Thus, all of the data reported in this dissertation were recorded in

Lyon.
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Chapter 5

Empirical Model of Collisional

Population Transfer

5.1 Overview

In this chapter, I discuss the theoretical basis of our collision experiment and the

way we assign uncertainties to the measured quantities. Section 5.2 discusses the

population transfer resulting from inelastic collisions. This begins with a general

steady state rate equation analysis that can be applied to both rotation changing

collisions and to vibration-rotation changing collisions. The results of the rate equa-

tion model are then inserted into expressions for the measured fluorescence intensity

ratios, which must be treated in slightly different ways for the two types of collisions.

Section 5.3 contains a description of the major sources of uncertainty in our

experiment and how we assign uncertainties to the measured intensity ratios.
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5.2 Collisional Transfer of Population

The purpose of studying rotation and/or vibration changing collisions is to de-

termine relative and absolute rate coefficients for the various processes. Thus we

construct a rate equation model to describe the flow of population between molec-

ular energy levels.

Figure 5.1 shows a schematic diagram of the various processes affecting the pop-

ulation in the excited 2(A)1Σ+(v′, J ′) levels for the single laser experiment carried

out in Lyon. The rate equation model provides an expression for the ratio of popula-

tion in a given collisionally populated level relative to the population in the directly

populated level. That population ratio is then related to the fluorescence intensity

ratio which is the quantity we measure. The final equations show the dependence of

the measured intensity ratios on the various rate coefficients we wish to determine.
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Figure 5.1: Schematic diagram of the collisional and radiative processes involved in the
transfer of populations. The pump laser excites ground state (GS ) molecules
to the directly populated level d. Collisions transfer population from the
directly populated level to a collisional level, c, and are designated by the
rate constant k∆J

P , relating. Both states decay by radiation to various lower
levels at a total rate Γi (i = c or d) and by collisional transfer to all final
states (quenching collisions) at a rate kQ,iP nP . The subscript P represents a
particular type of perturber (collisional partner).

The directly excited level, d, is the upper level in the laser excitation 2(A)1Σ+

(v′, J ′) ← 1(X)1Σ+ (v′′, J ′′). Level c is a neighboring level populated by collisions,

and can be in the same vibrational level as the directly excited level or can be in

a different vibrational state. Both levels d and c are affected by collisional and

radiative processes. Figure 5.1 only includes the three previously mentioned levels

(GS, d, c) but in reality there are many neighboring levels within the ground and

excited states.
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5.2.1 The Rate Equation Model

Based on the collisional and radiative population transfer mechanisms depicted

in Fig. 5.1, we can write steady-state rate equations for the populations of the

directly excited and collisionally populated levels.

dnd
dt

= PLnGS +
∑
P

nP
∑
i

ki→dP ni −

(
PL
gGS
gd

+ Γd +
∑
P

kQ,dP nP

)
nd = 0 (5.1)

dnc
dt

=
∑
P

kd→cP nPnd +
∑
P

nP
∑
i 6=d

ki→cP ni −

(
Γc +

∑
P

kQ,cP nP

)
nc = 0 (5.2)

where nd,c are the population number densities of molecules in the directly and

collisionally populated levels, respectively, and nP is the density of perturbing atoms

or molecules of type P. PL is the laser pumping rate, PL
gGS
gd

is the pump laser induced

stimulated emission rate, ki→jP is the rate constant for transfer of population from

level i to level j, kQ,iP is the rate coefficient for transfer of population out of level i

to all final states (quenching) due to the perturber P, and Γi is the total radiative

rate out of a level i. The laser pump rate PL is difficult to determine quantitatively

due to variations of the laser beam intensity in both the radial and longitudinal

directions. Consequently Eq. 5.1 is difficult to solve. However Eq. 5.2 provides the

steady state solution

nc
nd

=

∑
P

nP

[
kd→cP +

∑
i 6=d

ki→cP
ni
nd

]
[
Γ +

∑
P

kQ,cP nP

] (5.3)

If we now also assume that the experiment is in the “single collision” regime,

where all the levels i 6= d obey ni
nd
� 1 and hence the second term in the numerator
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of Eq. 5.3 is negligible compared to the first, Eq. 5.3 reduces to

nc
nd

=

∑
P

(
kd→cP

Γ

)
nP

1 +
∑
P

(
kQ,cP

Γ

)
nP

. (5.4)

Note that the single collision regime is a valid assumption if the probability of a colli-

sional transition occurring within one radiative lifetime is small; i.e., if
∑
P

kd→cP nP �

Γ, since that means that it is very highly unlikely that two such collisions would

take place before the excited molecule decays to the ground state.

Within the oven, we have several types of perturbers (possible collision partners).

Our data are obtained with different combinations of potassium and either argon

or helium buffer gas densities, and we include both types of perturbers in Eq. 5.4.

Other species not included in our analysis are sodium atoms and K2, Na2 and NaK

molecules. The number of molecules is very small (nK2 , nNa2 , nNaK � nK , nNa),

so we neglect them. In addition, nNa � nK , so we can also neglect collisions

with sodium atoms. However, later we will show (in Chapter 6) how the sodium

atom collisions can be taken into account (approximately) after the fact. Therefore,

labeling terms with BG for buffer gas and K for potassium, we obtain

nc
nd

=

k∆
BG

Γ
nBG +

k∆
K

Γ
nK

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

. (5.5)

When fluorescence is emitted during a transition between upper level u and lower

level l, the measured laser-induced fluorescence intensity (Iu→l) is given by

Iu→l = hνu→lnuΓu→lεu→lV
dΩ

4π
F. (5.6)
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Here hνu→l represents the energy of a single fluorescence photon, nu is the density

of molecules in the upper level, and Γu→l is the radiative rate for the observed

transition (Einstein A coefficient discussed in Chapter 2). V is the the observation

volume within the oven, dΩ
4π

is the fraction of the total 4π sterradian emission solid

angle that is focused on the detector, and F is an anisotropy factor, which is due to

the fact that the fluorescence is polarized and hence the emission is not isotropic.

εu→l represents the detector efficiency at the given transition energy. Because some

of these factors are not well known absolutely, we always look at ratios of a collisional

line intensity to a direct line intensity; i.e.,

Ic→lc
Id→ld

=
hνc→lcncΓc→lcεc→lcV

dΩ
4π
Fc→lc

hνd→ldndΓd→ldεd→ldV
dΩ
4π
Fd→ld

. (5.7)

To simplify this expression, we make several reasonable assumptions. First, we

assume that the detection solid angle and the observation volume within the oven do

not change during the course of a measurement. We also only compare P collisional

lines to P direct lines (and R lines to R lines), so that the anisotropy factor F also

cancels (I will return to this point in Chapter 6). The ratio of the spectral efficiencies

of the detector
εc→lc
εd→ld

can be taken to be one when comparing closely spaced rotational

lines. However, for the 2(A)1Σ+(v′ = 0, 1, 2) → 1(X)1Σ+(v′′) transitions we study,

the fluorescence spans the frequency range from 10000 cm−1 to 12000 cm−1. It

is erroneous to assume that the detector efficiency is constant through this large

frequency range. Therefore when comparing collisional and direct line intensities

from within a single vibrational band, we assume the efficiency factors are identical.

However, when comparing collisional and direct lines from different vibrational levels

(v changing collisions), the different efficiency factors must be taken into account.
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If we label Ic→lc as the intensity of the c → lc fluorescence corresponding to

transitions from a particular collisionally populated level c to some lower level lc

and Id→ld as the intensity of fluorescence corresponding to transitions from directly

populated level d to a lower level ld, we find the ratio

RF ≡
Ic→lc
Id→ld

=
νc→lcΓc→lc
νd→ldΓd→ld

εc→lc
εd→ld

nc
nd

(5.8)

as the quantity that we determine experimentally. If we use Eq. 2.45 for the Einstein

A coefficients (Γ factors) from our discussion in Chapter 2 on electronic transitions

Γu→l ≡ Aul =
8π2ν3

u→lSJu,Jl
3ε0c3~(2Ju + 1)

∣∣∣∣∫ χv∗u χ
v
l dR

∫
φel∗u µ̂elφ

el
l

∣∣∣∣2 (5.9)

and insert this into Eq. 5.8, the general expression for the intensity ratio becomes

RF =
Ic→lc
Id→ld

=
ν4
c→lc
ν4
d→ld

εc→lc
εd→ld

nc
nd

SJc,Jlc
(2Jc+1)

SJd,Jld
(2Jd+1)

|
∫
χv∗c χ

v
lc
dR
∫
φel∗c µ̂elφ

el
lc
|2

|
∫
χv∗d χ

v
ld
dR
∫
φel∗d µ̂elφelld |

2
. (5.10)

5.2.2 Rotation Changing Collisions

If we consider a collision that changes only the rotational level and compare

intensities of P to P (or R to R) lines in the same vibrational band, the integrals over

the vibrational and electronic wavefunctions are the same for the directly populated

level d and the collisional level c. In addition, if we compare fluorescence lines that

are part of the same vibrational band, the emission frequencies are sufficiently close
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that we can take
εc→lc
εd→ld

≈ 1. Thus the intensity ratio RF reduces to

RF =
Ic→lc
Id→ld

=
ν4
c→lc
ν4
d→ld

nc
nd

SJc,Jlc
(2Jc+1)

SJd,Jld
(2Jd+1)

. (5.11)

As mentioned in Chapter 2, the Hönl-London factors, SJ ′,J ′′ , are determined

by the rotational numbers of the levels involved in the specific transitions, the line

type (P and R in this experiment), as well as the transition type ([36], p. 208). For

transitions between two 1Σ states, where ∆Λ = 0, the Hönl-London factors are given

by SRJ,J−1 = J and SPJ,J+1 = J + 1. Therefore the intensity ratio can be written as

(
Ic→lc
Id→ld

)
R-lines

=
ν4
c→lc
ν4
d→ld

nc
nd

Jc
(2Jc+1)

Jd
(2Jd+1)

(5.12)

and

(
Ic→lc
Id→ld

)
P-lines

=
ν4
c→lc
ν4
d→ld

nc
nd

Jc+1
(2Jc+1)

Jd+1
(2Jd+1)

. (5.13)

It is apparent that the ratio of the J dependent factors is ∼ 1 when Jd is large and

∆J is small, but it is easy to include this factor regardless. Solving Eqs. 5.12 and

5.13 for nc
nd

allows us to combine them with the rate equation result 5.5 to yield

Ic→lc
Id→ld

ν4
d→ld
ν4
c→lc

Jd
(2Jd+1)

Jc
(2Jc+1)

=

(
nc
nd

)
R-lines

=

k∆
BG

Γ
nBG +

k∆
K

Γ
nK

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

(5.14a)

Ic→lc
Id→ld

ν4
d→ld
ν4
c→lc

Jd+1
(2Jd+1)

Jc+1
(2Jc+1)

=

(
nc
nd

)
P-lines

=

k∆
BG

Γ
nBG +

k∆
K

Γ
nK

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

. (5.14b)

These equations are valid for any value of ∆J as long as there is no change in upper

vibrational level and we compare fluorescence intensities of transitions to the same
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ground state vibrational level.

5.2.3 Vibration-Rotation Changing Collisions

In a collision that changes both vibrational and rotational level, we return to Eq.

5.7

Ic→lc
Id→ld

=
hνc→lcncΓc→lcεc→lcV

dΩ
4π
Fc→lc

hνd→ldndΓd→ldεd→ldV
dΩ
4π
Fd→ld

. (5.15)

As discussed previously in Sec. 5.2.1, we still assume that the detection solid angle

and the observation volume within the oven do not change, and that the anisotropy

factors cancel out. With these assumptions, we can solve Eq. 5.15 for the population

ratio

nc
nd

=
ncolvc,Jc
ndirvd,Jd

=
Ivc,Jc→vlc,Jc±1

Ivd,Jd→vld,Jd±1

νvd,Jd→vld,Jd±1

νvc,Jc→vlc,Jc±1

εvd,Jd→vld,Jd±1

εvc,Jc→vlc,Jc±1

Γvd,Jd→vld,Jd±1

Γvc,Jc→vlc,Jc±1

. (5.16)

In this expression, we have been more explicit in indicating the vibrational and ro-

tational quantum numbers of the levels involved in the observed transitions: vlc and

vld are the lower (ground) vibrational states of the observed transitions. Plus signs

in the transition labels are used for P lines while minus signs are used for R lines.

The ratios of radiative rates can be calculated fairly accurately using the program

LEVEL 8.0 [59]. The relative efficiency factors are not known when we compare

intensities of lines belonging to different vibrational bands that are separated in

frequency. However, we can determine these factors by comparing the measured

intensities of different lines to intensities of standard reference lines designated for

each 2(A)1Σ+ state vibrational level. In Table 5.1 we list the chosen reference tran-

sitions for each directly populated 2(A)1Σ+ level studied in this work: (vd, Jd) =(0,

14), (0, 30), (1, 26) and (2, 44). These reference transitions are used to normalize
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the measured intensities when a collisionally populated level lies in a different vi-

brational state than the directly populated level, as will be shown below.

2(A)1Σ+ Directly Pop. Level and Reference Transition Primary or Subsidiary
(v′d, J

′
d) (v′d, J

′
d)→ (v′′d , J

′
d ± 1)

(0,14) 2(A)1Σ+ (v′=0,J ′=14)→ 1(X)1Σ+ (v′=9,J ′=13,15) Subsidiary
(0,14) 2(A)1Σ+ (v′=0,J ′=14)→ 1(X)1Σ+ (v′=10,J ′=13,15) Primary
(0,30) 2(A)1Σ+ (v′=0,J ′=30)→ 1(X)1Σ+ (v′=9,J ′=29,31) Subsidiary
(0,30) 2(A)1Σ+ (v′=0,J ′=30)→ 1(X)1Σ+ (v′=10,J ′=29,31) Primary
(1,26) 2(A)1Σ+ (v′=1,J ′=26)→ 1(X)1Σ+ (v′=11,J ′=25,27) Subsidiary
(1,26) 2(A)1Σ+ (v′=1,J ′=26)→ 1(X)1Σ+ (v′=12,J ′=25,27) Primary
(2,44) 2(A)1Σ+ (v′=2,J ′=44)→ 1(X)1Σ+ (v′=14,J ′=43,45) Subsidiary
(2,44) 2(A)1Σ+ (v′=2,J ′=44)→ 1(X)1Σ+ (v′=15,J ′=43,45) Primary

Table 5.1: The reference transitions for each directly populated level. The reference
bands were chosen based on stronger direct line intensities (Franck-Condon
Factors) and signal to noise ratios within the spectra. The table includes
both P and R lines, which only differ in the 1(X)1Σ+ rotational level of the
transitions.

For example, when we directly pump level (vd, Jd) = (0, 30) and wish to analyze

2(A)1Σ+ (vc = 1, Jc = 15) → 1(X)1Σ+ (vlc = 12, Jlc = 16) fluorescence from the

collisionally populated level (vc, Jc) = (1, 15), we would first determine the product

of ratios

(
I1,15→12,16

I1,26→12,27

)(
I1,26→12,27

I0,30→10,31

)
. (5.17)

If we wish to analyze the collisional P line in the vc = 1→ vlc = 11 band, we instead

use the “subsidiary” reference line 2(A)1Σ+ (vc = 1, Jc = 26) → 1(X)1Σ+ (vlc =

11, Jlc = 27).

Next, we consider the ratio of a specific direct line (P or R) intensity to the total
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intensity of all (P or R) transitions for that level. From Eq. 5.15 we find

 Idirvd,Jd→vld,Jd±1∑
v′′
Idirvd,Jd→v′′,Jd±1

 =
νvd,Jd→vld,Jd±1εvd,Jd→vld,Jd±1Γvd,Jd→vld,Jd±1∑
v′′
νvd,Jd→v′′,Jd±1εvd,Jd→v′′,Jd±1Γvd,Jd→v′′,Jd±1

. (5.18)

Note that since each line in both the numerator and denominator of 5.18 origi-

nates from the same upper level (vd, Jd), the level densities cancel in the ratio. These

ratios can be determined from the experimental spectra shown in Figs. 5.2, 5.3, 5.4,

and 5.5. Table 5.2 includes the values used for analysis for a direct pump of (0, 14),

Table 5.3 for (0, 30), Table 5.4 for (1, 26) and Table 5.5 for (2, 44). The specific

values included are the observed intensity ratios (branching ratios) for these strong

lines corresponding to transitions from the directly excited 2(A)1Σ+ (vd, Jd) level.
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Figure 5.2: Fluorescence emission following direct population of 2(A)1Σ+ (0, 14). The
direct line branching ratios are independent of collisions, or variations in
temperature or pressure.
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Figure 5.3: Fluorescence emission following direct population of 2(A)1Σ+ (0, 30). The
direct line branching ratios are independent of collisions, or variations in
temperature or pressure.
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Figure 5.4: Fluorescence emission following direct population of 2(A)1Σ+ (1, 26). The
direct line branching ratios are independent of collisions, or variations in
temperature or pressure.
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Figure 5.5: Fluorescence emission following direct population of 2(A)1Σ+ (2, 44). The
direct line branching ratios are independent of collisions, or variations in
temperature or pressure.
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We determine separate ratios for P and R transitions since our assumptions

require that only P line intensities are compared to P line intensities (and the same

for R lines). Note also that these ratios are constants for our experiments since they

don’t depend on experimental conditions that change over time. Thus, once they

are determined, they can be set for all future work.
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2(A)1Σ+ (0, 14) Branching Ratios

vX
I0,14→vX,J′′∑

v′′
I0,14→v′′,J′′

A0,14→vX,J′′∑
v′′

A0,14→v′′,J′′
Iratio
Aratio

Franck-
Condon
Factors

P (J ′′ = 15)

14 0.0162 0.0192 0.8467 2.11E-02
13 0.0340 0.0388 0.8757 4.17E-02
12 0.0666 0.0685 0.9721 7.19E-02
11 0.1066 0.1051 1.0142 1.08E-01
10 0.1395 0.1399 0.9972 1.40E-01
9 0.1657 0.1610 1.0296 1.58E-01
8 0.1649 0.1590 1.0369 1.52E-01
7 0.1373 0.1336 1.0277 1.25E-01
6 0.0913 0.0943 0.9684 8.63E-02
5 0.0536 0.0549 0.9755 4.92E-02
4 0.0243 0.0257 0.9443 2.25E-02

R (J ′′ = 13)

14 0.0163 0.0194 0.8406 2.13E-02
13 0.0350 0.0392 0.8927 4.21E-02
12 0.0674 0.0690 0.9776 7.23E-02
11 0.1064 0.1056 1.0077 1.08E-01
10 0.1430 0.1402 1.0197 1.40E-01
9 0.1671 0.1610 1.0376 1.58E-01
8 0.1656 0.1587 1.0432 1.52E-01
7 0.1347 0.1331 1.0116 1.25E-01
6 0.0896 0.0938 0.9550 8.58E-02
5 0.0533 0.0545 0.9778 4.88E-02
4 0.0217 0.0255 0.8526 2.23E-02

Table 5.2: Observed branching ratios for both P and R lines originating in the level
2(A)1Σ+ (0, 14). This list does not include ground state vibrational levels
lower than v′′ = 4 or higher than v′′ = 14 since the lines associated with these
levels are very weak due to the small Franck-Condon factors. The fourth
column indicates the ratio of the Einstein A coefficient for the indicated tan-
sition relative to the total for all the bands listed in the table. The fifth
column gives the ratio of the third and fourth columns, which is a rough
indication of the relative efficiency factors. The final column lists the calcu-
lated Franck-Condon factors from LEVEL 8.0 for the given band. The listed
Franck-Condon factors sum to 0.975 for both P and R branches, indicating
that about 97.5% of the total emission has been included in this table.
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2(A)1Σ+ (0, 30) Branching Ratios

vX
I0,30→vX,J′′∑

v′′
I0,30→v′′,J′′

A0,30→vX,J′′∑
v′′

A0,30→v′′,J′′
Iratio
Aratio

Franck-
Condon
Factors

P (J ′′ = 31)

15 0.0068 0.0088 0.7758 9.21E-03
14 0.0166 0.0206 0.8066 2.10E-02
13 0.0377 0.0418 0.9015 4.17E-02
12 0.0688 0.0739 0.9306 7.20E-02
11 0.1097 0.1135 0.9665 1.08E-01
10 0.1561 0.1511 1.0334 1.40E-01
9 0.1814 0.1737 1.0440 1.58E-01
8 0.1734 0.1714 1.0118 1.52E-01
7 0.1462 0.1438 1.0164 1.25E-01
6 0.1033 0.1013 1.0191 8.61E-02

R (J ′′ = 29)

15 0.0068 0.0090 0.7558 9.48E-03
14 0.0173 0.0211 0.8236 2.15E-02
13 0.0375 0.0426 0.8812 4.25E-02
12 0.0701 0.0748 0.9364 7.29E-02
11 0.1098 0.1144 0.9604 1.09E-01
10 0.1560 0.1516 1.0291 1.41E-01
9 0.1802 0.1735 1.0385 1.58E-01
8 0.1773 0.1705 1.0396 1.52E-01
7 0.1436 0.1425 1.0072 1.24E-01
6 0.1014 0.1000 1.0137 8.51E-02

Table 5.3: Observed branching ratios for both P and R lines originating in the level
2(A)1Σ+ (0, 30). This list does not include ground state vibrational levels
lower than v′′ = 6 or higher than v′′ = 15 since the lines associated with
these levels are very weak due to the small Franck-Condon factors. The listed
Franck-Condon factors sum to 0.913 for the P branch and 0.915 for the R
branch, indicating that about 91.4% of the total emission has been included
in this table.
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2(A)1Σ+ (1, 26) Branching Ratios

vX
I1,26→vX,J′′∑

v′′
I1,26→v′′,J′′

A1,26→vX,J′′∑
v′′

A1,26→v′′,J′′
Iratio
Aratio

Franck-
Condon
Factors

P (J ′′ = 27)

17 0.0131 0.0159 0.8266 1.84E-02
16 0.0320 0.0351 0.9095 3.97E-02
15 0.0635 0.0645 0.9845 7.11E-02
14 0.0917 0.0974 0.9418 1.05E-01
13 0.1302 0.1180 1.1032 1.24E-01
12 0.1278 0.1092 1.1703 1.12E-01
11 0.0773 0.0690 1.1204 6.91E-02
10 0.0279 0.0204 1.3670 2.00E-02
9 0.0000 0.0001 0.0000 8.92E-05
8 0.0247 0.0268 0.9221 2.51E-02
7 0.0778 0.0810 0.9604 7.42E-02
6 0.1153 0.1206 0.9557 1.08E-01
5 0.1104 0.1183 0.9327 1.04E-01
4 0.0734 0.0825 0.8897 7.08E-02
3 0.0349 0.0411 0.8495 3.46E-02

R (J ′′ = 25)

17 0.0131 0.0163 0.7998 1.89E-02
16 0.0336 0.0358 0.9383 4.05E-02
15 0.0618 0.0654 0.9450 7.20E-02
14 0.0976 0.0981 0.9947 1.05E-01
13 0.1333 0.1181 1.1294 1.24E-01
12 0.1225 0.1084 1.1301 1.11E-01
11 0.0857 0.0676 1.2674 6.77E-02
10 0.0251 0.0194 1.2903 1.90E-02
9 0.0000 0.0002 0.0000 1.70E-04
8 0.0262 0.0278 0.9423 2.60E-02
7 0.0814 0.0821 0.9923 7.51E-02
6 0.1090 0.1208 0.9017 1.08E-01
5 0.1112 0.1177 0.9439 1.03E-01
4 0.0675 0.0816 0.8263 7.01E-02
3 0.0321 0.0405 0.7924 3.41E-02

Table 5.4: Observed branching ratios for both P and R lines originating in the level
2(A)1Σ+ (1, 26). This list does not include ground state vibrational levels
lower than v′′ = 3 or higher than v′′ = 17 since the lines associated with
these levels are very weak due to the small Franck-Condon factors. The listed
Franck-Condon factors sum to 0.976 for the P branch and 0.975 for the R
branch, indicating that about 97.5% of the total emission has been included
in this table.
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2(A)1Σ+ (2, 44) Branching Ratios

vX
I2,44→vX,J′′∑

v′′
I2,44→v′′,J′′

A2,44→vX,J′′∑
v′′

A2,44→v′′,J′′
Iratio
Aratio

Franck-
Condon
Factors

P (J ′′ = 45)

19 0.0134 0.0194 0.6912 2.23E-02
18 0.0366 0.0431 0.8479 4.84E-02
17 0.0725 0.0766 0.9466 8.36E-02
16 0.1110 0.1059 1.0473 1.13E-01
15 0.1203 0.1085 1.1096 1.13E-01
14 0.0838 0.0728 1.1505 7.39E-02
13 0.0315 0.0213 1.4766 2.11E-02
12 0.0000 0.0003 0.0000 3.27E-04
11 0.0305 0.0314 0.9695 2.97E-02
10 0.0839 0.0763 1.0991 7.05E-02
9 0.0915 0.0761 1.2018 6.88E-02
8 0.0359 0.0293 1.2279 2.59E-02
7 0.0000 0.0000 0.0000 7.41E-06
6 0.0275 0.0338 0.8127 2.86E-02
5 0.0872 0.0960 0.9083 7.96E-02
4 0.1111 0.1199 0.9270 9.73E-02
3 0.0634 0.0892 0.7108 7.09E-02

R (J ′′ = 43)

19 0.0148 0.0203 0.7300 2.33E-02
18 0.0363 0.0446 0.8138 5.00E-02
17 0.0755 0.0782 0.9659 8.53E-02
16 0.1133 0.1066 1.0632 1.13E-01
15 0.1158 0.1073 1.0794 1.11E-01
14 0.0835 0.0703 1.1880 7.13E-02
13 0.0266 0.0193 1.3771 1.92E-02
12 0.0000 0.0007 0.0000 6.41E-04
11 0.0329 0.0334 0.9838 3.15E-02
10 0.0888 0.0773 1.1496 7.14E-02
9 0.0855 0.0747 1.1445 6.76E-02
8 0.0327 0.0274 1.1931 2.42E-02
7 0.0000 0.0001 0.0000 7.62E-05
6 0.0321 0.0357 0.9008 3.02E-02
5 0.0906 0.0972 0.9320 8.06E-02
4 0.1155 0.1193 0.9681 9.69E-02
3 0.0560 0.0877 0.6387 6.98E-02

Table 5.5: Observed branching ratios for both P and R lines originating in the level
2(A)1Σ+ (2, 44). This list does not include ground state vibrational levels
lower than v′′ = 3 or higher than v′′ = 19 since the lines associated with
these levels are very weak due to the small Franck-Condon factors. The listed
Franck-Condon factors sum to 0.947 for the P branch and 0.947 for the R
branch, indicating that about 94.7% of the total emission has been included
in this table.
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Returning to Eq. 5.16

ncolvc,Jc
ndirvd,Jd

=
Ivc,Jc→vlc,Jc±1

Ivd,Jd→vld,Jd±1

νvd,Jd→vld,Jd±1

νvc,Jc→vlc,Jc±1

εvd,Jd→vld,Jd±1

εvc,Jc→vlc,Jc±1

Γvd,Jd→vld,Jd±1

Γvc,Jc→vlc,Jc±1

, (5.19)

we can write

ncolvc,Jc
ndirvd,Jd

=
Ivc,Jc→vlc,Jc±1

Ivd,Jd→vld,Jd±1

νvd,Jd→vld,Jd±1

νvc,Jc→vlc,Jc±1

εvd,Jd→vld,Jd±1

εvc,Jc→vlc,Jc±1

Γvd,Jd→vld,Jd±1

Γvc,Jcr→vlc,Jcr±1

(
Γvc,Jcr→vlc,Jcr±1

Γvc,Jc→vlc,Jc±1

)
, (5.20)

where we introduce the collisional reference transition vc, Jcr → vlc, Jcr ± 1. The

relative ratio of Γ factors of two rotational lines A and B within the same band can

be obtained from Eq. 5.9

Γv,JA→v′′,JA±1

Γv,JB→v′′,JB±1

=
ν3
v,JA→v′′,JA±1

ν3
v,JB→v′′,JB±1

SJA,JA±1

SJB ,JB±1

(2JB + 1)

(2JA + 1)
(5.21)

since the vibrational and electronic terms cancel. Thus Eq. 5.20 becomes

ncolvc,Jc
ndirvd,Jd

=
Ivc,Jc→vlc,Jc±1

Ivd,Jd→vld,Jd±1

νvd,Jd→vld,Jd±1

νvc,Jc→vlc,Jc±1

εvd,Jd→vld,Jd±1

εvc,Jc→vlc,Jc±1

Γvd,Jd→vld,Jd±1

Γvc,Jcr→vlc,Jcr±1

ν3
vc,Jcr→vlc,Jcr±1SJcr,Jcr±1

ν3
vc,Jc→vlc,Jc±1SJc,Jc±1

(2Jc + 1)

(2Jcr + 1)
(5.22)

Equation 5.22 now includes the Hönl-London factors for the reference and colli-

sional lines. Figure 5.6 shows that both lines originate from the same upper vibra-

tional level vc within the 2(A)1Σ+ state and radiate down to the same 1(X)1Σ+ vibrational

level, vlc.
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1 A

1 X

levels 

levels 

vld , Jd ± 1 

vlc , Jc ± 1 

vlc , Jcr ± 1 

vd , Jd  

vc , Jcr  

vc , Jc 

Figure 5.6: Schematic of the transitions and levels discussed in the derivation in this
section. The 2(A)1Σ+ levels fluoresce in transitions down to the various
1(X)1Σ+ levels. It is important to note that the collisional and reference
lines both begin and end in the same vibrational levels of the 2(A)1Σ+ and
1(X)1Σ+ states, respectively.

We now relate the relative efficiencies between the collisional and direct lines

to the branching ratios of the direct and reference bands. We accomplish this by

expanding the ε and Γ terms in Eq. 5.22. We begin by multiplying Eq. 5.22 on the

right by (εvc,Jcr→vlc,Jcr±1/εvc,Jcr→vlc,Jcr±1) = 1. This yields

ncolvc,Jc
ndirvd,Jd

=
Ivc,Jc→vlc,Jc±1

Ivd,Jd→vld,Jd±1

νvd,Jd→vld,Jd±1

νvc,Jc→vlc,Jc±1

εvd,Jd→vld,Jd±1

εvc,Jcr→vlc,Jcr±1

εvc,Jcr→vlc,Jcr±1

εvc,Jc→vlc,Jc±1

× Γvd,Jd→vld,Jd±1

Γvc,Jcr→vlc,Jcr±1

ν3
vc,Jcr→vlc,Jcr±1SJcr,Jcr±1

ν3
vc,Jc→vlc,Jc±1SJc,Jc±1

(2Jc + 1)

(2Jcr + 1)
. (5.23)
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Next we substitute in Eq. 5.18 for the product νvd,Jd→vld,Jd±1εvd,Jd→vld,Jd±1Γvd,Jd→vld,Jd±1

and a similar expression for νvc,Jcr→vlc,Jcr±1εvc,Jcr→vlc,Jcr±1Γvc,Jcr→vlc,Jcr±1.

ncolvc,Jc
ndirvd,Jd

=
Ivc,Jc→vlc,Jc±1

Ivd,Jd→vld,Jd±1

νvc,Jcr→vlc,Jcr±1

νvc,Jc→vlc,Jc±1

εvc,Jcr→vlc,Jcr±1

εvc,Jc→vlc,Jc±1

×

 Idirvd,Jd→vld,Jd±1∑
v′′
Idirvd,Jd→v′′,Jd±1



∑
v′′
Irefvc,Jcr→v′′,Jcr±1

Irefvc,Jcr→vlc,Jcr±1


×

∑
v′′
νvd,Jd→v′′,Jd±1εvd,Jd→v′′,Jd±1Γvd,Jd→v′′,Jd±1∑

v′′
νvc,Jcr→v′′,Jcr±1εvc,Jcr→v′′,Jcr±1Γvc,Jcr→v′′,Jcr±1

×
ν3
vc,Jcr→vlc,Jcr±1SJcr,Jcr±1

ν3
vc,Jc→vlc,Jc±1SJc,Jc±1

(2Jc + 1)

(2Jcr + 1)
(5.24)

As in the pure J -changing collision analysis, we assume that
εvc,Jcr→vlc,Jcr±1

εvc,Jc→vlc,Jc±1
≈ 1

since the two transitions lie in the same vibrational band.

Finally, since the 2(A)1Σ+(v′)→ 1(X)1Σ+(v′′) emission spans approximately the

same spectral range for v′ = 0, 1 and 2, and since the efficiency factors don’t change

much over this range (see Tables 5.2, 5.3, 5.4 and 5.5), we replace εvd,Jd→v′′,Jd±1 and

εvc,Jcr→v′′,Jcr±1 by average efficiencies ε̄ over this spectral range. These factors then

cancel leaving

ncolvc,Jc
ndirvd,Jd

=
Icolvc,Jc→vlc,Jc±1

Idirvd,Jd→vld,Jd±1

 Idirvd,Jd→vld,Jd±1∑
v′′
Idirvd,Jd→v′′,Jd±1



∑
v′′
Irefvc,Jcr→v′′,Jcr±1

Irefvc,Jcr→vlc,Jcr±1


×

∑
v′′
νvd,Jd→v′′,Jd±1Γdirvd,Jd→v′′,Jd±1∑

v′′
νvc,Jcr→v′′,Jcr±1Γrefvc,Jcr→v′′,Jcr±1

ν4
vc,Jcr→vlc,Jcr±1

ν4
vc,Jc→vlc,Jc±1

SJcr,Jcr±1

SJc,Jc±1

(2Jc + 1)

(2Jcr + 1)
. (5.25)
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This is the final expression we need to analyze the vibration-changing collision

data.
Icolvc,Jc→vlc,Jc±1

Idirvd,Jd→vld,Jd±1
is the measured collisional to direct line intensity ratio. The

terms in parentheses are the observed direct and collisional reference line branching

ratios found in Tables 5.2, 5.3, 5.4 and 5.5. Frequencies are measured quantities

and summed νΓ factors are calculated (these ratios are very close to one). Hönl-

London factors are given by SRJ,J−1 = J and SPJ,J+1 = J + 1. Therefore, we have all

the information we need to determine experimental values of the collisional level to

direct level density ratios for each studied buffer gas and potassium density. These

density ratios are related to the desired rate coefficients through Eq. 5.5. It should be

noted that for collisional transfer within the same vibrational state (pure J -changing

collisions), the reference transitions are the same as the direct level transitions and

Eq. 5.25 reduces to Eq. 5.11.

5.3 Uncertainties

To fit the data recorded in this experiment accurately, we need to assign uncer-

tainties to each measurement made in the laboratory. The measured collisional to

direct line intensity ratios are given by

RF =
Icol

Idir
. (5.26)

These ratios have an uncertainty given by
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δRF =

∣∣∣∣∂RF

∂Icol

∣∣∣∣ δIcol +

∣∣∣∣ ∂RF

∂Idir

∣∣∣∣ δIdir
=
δIcol

Idir
+

Icol

(Idir)2
δIdir

=
δI

Idir
(1 +RF ) (5.27)

where δI is the uncertainty of the intensity measurements. This uncertainty is de-

termined by the noise in the baseline for each individual scan and is the same for

the collisional and direct lines. However, each scan must be considered individually

because of differences in scan time, signal-to-noise, laser power and laser stability

throughout the scan.

The most significant source of error in the present work stems from the deter-

mination of vapor densities. The determination of the alkali atom vapor density is

based on white light absorption in the blue wing of the potassium D2 transition,

and the results contain uncertainties due to the baseline uncertainties, imprecise

knowledge of line broadening rates, approximations used in modeling the lineshape,

imperfect spectral resolution, and non-uniformities in the heat pipe oven vapor col-

umn. When hot, the heat pipe system is not in thermal equilibrium, but rather is

actually a dynamic system. Due to alkali metal migration away from the central

region, temperature gradients, and partial separation of the sodium and potassium

vapors, the alkali density is not uniform within the central region. However the

absorption measurement can only determine an average density (column density

divided by the length of the hot zone,
L∫
0

n(x)dx/L). Following Jabbour et al. [60]
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and Wolfe et al. [31] we assign a conservative uncertainty of 30% for the measured

alkali densities or pressures; i.e.,

δnalk = 0.3nalk (5.28)

and

δPalk = 0.3Palk. (5.29)

The buffer gas pressure is regulated by a valve (C in Fig. 4.1) allowing gas to

flow into the system, and a second valve (B) connected to a vacuum pump allowing

the pressure to be reduced. The pressure gauge used in the Lyon experiment has a

precision of 0.5 Torr, while the gauge used in the Lehigh experiment has a precision

of 0.01 Torr. Since typical buffer gas pressures were 1-10 Torr, the uncertainty in the

total gas pressure ranges from 5 to 50% in Lyon. Note that the total gas pressure

under operating conditions was Ptotal = Pfill
Thot
Tcold

for data recorded in 2013 (when

the oven was filled at room temperature and sealed). However, in 2014, when the

oven was brought to operating pressure while hot, Ptotal = Pfill. Because the alkali

vapor displaces some of the buffer gas in the hot zone, the gauge reading Pgauge is

Pgauge = Ptotal = PBG + Palk (5.30)

and therefore

δPBG =

∣∣∣∣ ∂PBG∂Pgauge

∣∣∣∣ δPgauge +

∣∣∣∣∂PBG∂Palk

∣∣∣∣ δPalk
= δPgauge + δPalk = δPgauge + 0.3Palk. (5.31)
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We obtain the buffer gas and alkali vapor densities from the ideal gas law:

nBG(cm−3) =
9.66× 1018PBG(Torr)

T (K)
(5.32)

and

nalk(cm−3) =
9.66× 1018Palk(Torr)

T (K)
. (5.33)

Thus

δnBG =
nBG
PBG

δPBG =
9.66× 1018

T
δPBG

=
9.66× 1018 · δPgauge

T (K)
+ 0.3nalk. (5.34)

In general we record the intensity ratios as functions of the independent variables

nBG and nalk. For fitting purposes, we choose to roll all of the uncertainties of

measuring the intensity ratios and determining the buffer gas and alkali densities

into the error for the dependent variable. The contributions from δnBG and δnalk

can be added to Eq. 5.27 as follows:

δRF =

∣∣∣∣ ∂RF

∂nBG

∣∣∣∣ δnBG +

∣∣∣∣ ∂RF

∂nalk

∣∣∣∣ δnalk +
δI

Idir
(1 +RF ). (5.35)

However, from a practical standpoint, we found it more convenient to fit the

collisional to direct line density ratio to the fitting function given in Eq. 5.5. Since

in each instance

RF =
Icol

Idir
= A

nc
nd
≡ AnF , (5.36)

and therefore δnF = δRF
A

, where A is the constant reflecting the various factors in
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Eq. 5.25:

A =
RF

nF
=


∑
v′′
Idirvd,Jd→v′′,Jd±1

Idirvd,Jd→vld,Jd±1


 Irefvc,Jcr→vlc,Jcr±1∑

v′′
Irefvc,Jcr→v′′,Jcr±1


×

∑
v′′
νvc,Jcr→v′′,Jcr±1Γrefvc,Jcr→v′′,Jcr±1∑

v′′
νvd,Jd→v′′,Jd±1Γdirvd,Jd→v′′,Jd±1

ν4
vc,Jc→vlc,Jc±1

ν4
vc,Jcr→vlc,Jcr±1

SJc,Jc±1

SJcr,Jcr±1

(2Jcr + 1)

(2Jc + 1)
. (5.37)

For pure J -changing collisions, where the reference line is the direct line, most of

these terms drop out and we find

A =
RF

nF
=
ν4
vc,Jc→vlc,Jc±1

ν4
vd,Jd→vld,Jd±1

SJc,Jc±1

SJd,Jd±1

(2Jd + 1)

(2Jc + 1)
. (5.38)

Thus with either of these expressions, A is constant, and we can assign uncer-

tainties to the collisional to direct level density ratios (nF ) that are derived from

the experimental data:

δRF

RF

=
δnF
nF

=

∣∣∣∣ ∂nF∂nBG

∣∣∣∣ δnBGnF
+

∣∣∣∣ ∂nF∂nalk

∣∣∣∣ δnalknF
+

δI

Idir

(
1

RF

+ 1

)
. (5.39)

For collisions which only change J, we use Eq. 5.5

nF ≡
nc
nd

=

k∆
BG

Γ
nBG +

k∆
K

Γ
nK

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

(5.40)
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and find

δnF
nF

=

∣∣∣∣∣∣
k∆
BG

Γ

k∆
BG

Γ
nBG +

k∆
K

Γ
nK
−

kQ,cBG

Γ

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣ δnBG
+

∣∣∣∣∣∣
k∆
K

Γ

k∆
BG

Γ
nBG +

k∆
K

Γ
nK
−

kQ,cK

Γ

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣ δnK +
δI

Idir

(
1

RF

+ 1

)
. (5.41)

Finally, multiplying through by nF , we obtain

δnF =

∣∣∣∣∣∣
k∆
BG

Γ

k∆
BG

Γ
nBG +

k∆
K

Γ
nK
−

kQ,cBG

Γ

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣nF δnBG
+

∣∣∣∣∣∣
k∆
K

Γ

k∆
BG

Γ
nBG +

k∆
K

Γ
nK
−

kQ,cK

Γ

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣nF δnK
+
δI

Idir
(1 +RF )

nF
RF

. (5.42)

Equation 5.42 represents the total uncertainty in each nF value when we carry

out a global fit of nF vs. nBG and nK where all parameters are varied. In practice,

since the uncertainties depend on the rate coefficients that are being fitted, we

update the uncertainties after each fit has converged to a set of values. This process

is iterated until there are no further changes in the fitted rate coefficients. However,

as I discuss in Chapter 6, there are cases where we choose to fix the quenching rate

coefficients at values determined in other fits. In these cases, there is an additional

uncertainty due to the statistical uncertainties in the fixed values of kQ,cBG and kQ,calk .

In such cases, Eq. 5.39 (multiplied by nF ) must be expanded to include these terms:
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δnF =

∣∣∣∣ ∂nF∂nBG

∣∣∣∣ δnBG +

∣∣∣∣ ∂nF∂nalk

∣∣∣∣ δnalk +
δI

Idir

(
1

RF

+ 1

)
nF

+

∣∣∣∣∣∣∣
∂nF

∂
(
kQ,cBG

Γ

)
∣∣∣∣∣∣∣ δ
(
kQ,cBG

Γ

)
+

∣∣∣∣∣∣∣
∂nF

∂
(
kQ,calk

Γ

)
∣∣∣∣∣∣∣ δ
(
kQ,calk

Γ

)
(5.43)

where the first row of terms is identical to Eq. 5.39 and the added terms appear in

the second row. Acknowledging that the only alkali term we are taking into account

at this point is the potassium term, the new terms here are evaluated as

∣∣∣∣∣∣∣
∂nF

∂
(
kQ,cBG

Γ

)
∣∣∣∣∣∣∣ δ
(
kQ,cBG

Γ

)
=

∣∣∣∣∣∣∣
k∆
BG

Γ
nBG +

k∆
K

Γ
nK(

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

)2nBG

∣∣∣∣∣∣∣ δ
(
kQ,cBG

Γ

)

=

∣∣∣∣∣∣ 1

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣nBGnF δ
(
kQ,cBG

Γ

)
(5.44a)

and ∣∣∣∣∣∣∣
∂nF

∂
(
kQ,calk

Γ

)
∣∣∣∣∣∣∣ δ
(
kQ,calk

Γ

)
=

∣∣∣∣∣∣∣
k∆
BG

Γ
nBG +

k∆
K

Γ
nK(

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

)2nK

∣∣∣∣∣∣∣ δ
(
kQ,cK

Γ

)

=

∣∣∣∣∣∣ 1

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣nKnF δ
(
kQ,cK

Γ

)
. (5.44b)

The final form for the uncertainties in cases where the quenching rate coefficients
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are fixed is given by

δnF =

∣∣∣∣∣∣
k∆
BG

Γ

k∆
BG

Γ
nBG +

k∆
K

Γ
nK
−

kQ,cBG

Γ

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣nF δnBG
+

∣∣∣∣∣∣
k∆
K

Γ

k∆
BG

Γ
nBG +

k∆
K

Γ
nK
−

kQ,cK

Γ

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣nF δnK
+

δI

Idir
(1 +RF )

nF
RF

+

∣∣∣∣∣∣ 1

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣nBGnF δ
(
kQ,cBG

Γ

)

+

∣∣∣∣∣∣ 1

1 +
kQ,cBG

Γ
nBG +

kQ,cK

Γ
nK

∣∣∣∣∣∣nKnF δ
(
kQ,cK

Γ

)
. (5.45)
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Chapter 6

Analysis and Results

6.1 Overview

In this chapter, I describe the data set we have obtained for the rotationally and

vibrationally inelastic collisions of NaK molecules with argon, helium, and potassium

atoms, as well as how the data are analyzed to determine population transfer in

these collisions. In Section 6.2, I discuss the analysis of the spectra recorded with

the Bomem FTS. Then in Section 6.3, I discuss the methods used for fitting small

|∆J | (|∆J | ≤ 4) J-changing collisional data to determine quenching rate coefficients,

which are then used in the fits of large |∆J | (|∆J | > 4)J -changing collisions and all

v-changing collisional data. The results from these fits are also reported in Section

6.3. A discussion of the assumptions used in our analysis and how these affect our

final results is included in Section 6.4. Finally, A comparison of experimental rate

coefficients obtained in our work with theoretical calculations carried out by Price,

Malenda and Hickman is included in Section 6.5.
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6.2 Analysis of Spectra

An important aspect of recording useful data for this work is that the collision

environment must be controlled. We would like the perturber density to be suffi-

ciently low that the single-collision approximation is valid. However, low perturber

densities (both alkali and buffer gas) lead to low signal-to-noise ratios. A sufficiently

high alkali atom density is required to create enough molecules to produce usable

signal. There must also be enough buffer gas (or alkali atoms) present in the system

to produce collisional lines that are discernible from the noise.

Spectra recorded using the Fourier transform spectrometer (FTS) contain mul-

tiple transitions that can be used to monitor a particular upper state (v′, J ′) pop-

ulation, specifically the P (J ′′ = J ′ + 1) and R (J ′′ = J ′ − 1) transitions of each

2(A)1Σ+ (v′) → 1(X)1Σ+ (v′′) vibrational band. Each peak within a spectrum (di-

rect or collisional) has the same line width, which is limited by the resolution of the

Bomem FTS. Therefore, a particular collisional line to a direct line intensity ratio

is just the ratio of peak heights. Occasionally we observe a peak with significantly

larger width. Such lines are most likely contaminated by another transition and

should not be used in the analysis.

I assigned approximately 600 2(A)1Σ+ (v′, J ′)→ 1(X)1Σ+ (v′′, J ′′) transition fre-

quencies using the 2(A)1Σ+ state database of T. Bergemann et al. [11] , which is

based on experimental transition frequencies determined by A. J. Ross, and others,

and 1(X)1Σ+ ground state energies determined by Gerdes et al. [10]. To expedite

the collection of all line intensities, a peak finding function of the Thermo Galactic
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GRAMS computer program was utilized. This peak finder allows a minimum inten-

sity to be set, and any peak with an intensity greater than this minimum is cataloged

in a table by it’s frequency and peak height. The minimum intensity value for each

scan was set to be somewhat larger than the background noise level for that scan.

The peak finder output table for a given scan was then input to a Fortran program I

wrote to compare each peak frequency to a reference file of assigned 2(A)1Σ+ (v′, J ′)

→ 1(X)1Σ+ (v′′, J ′′) transition frequencies. If the observed peak frequency matched

an assigned A → X line frequency within a set tolerance (usually 0.035 cm−1) the

peak was recorded in an output file along with the line intensity and frequency from

the spectrum. The recorded information also included line assignment information,

including whether the given line represented a P or R transition. The program al-

lows for an absolute shift of the input frequency list, as the 2013 data needed to be

corrected in frequency by ∆ν = 0.025 cm−1 to agree with the reference file which

was assigned based on 2014 lines. The main reason for the difference in frequencies

between the two years was that the Bomem interferometer was not evacuated in

2013 but was in 2014.

6.3 Fitting Methods and Results

In this section we present our results for population transfer between rotational

and vibrational levels of the NaK 2(A)1Σ+ state (v = 0, 1, 2) due to collisions of

these molecules with argon, helium and potassium perturbers. I first present the

global fit used to determine quenching rate coefficients as well as rate coefficients for

|∆J | ≤ 4 J -changing collisions within a single vibrational level. I then discuss the

simpler, individual fits used to obtain rate coefficients for the larger |∆J | J -changing
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collisions and for the v -changing collisions using the quenching rates obtained in the

global fit.

6.3.1 Global Fit and Results

In our first fitting attempts, we separately fit the |∆J | ≤ 4 data for each of the

four directly pumped levels 2(A)1Σ+ (0, 14), 2(A)1Σ+ (0, 30), 2(A)1Σ+ (1, 26) and

2(A)1Σ+ (2, 44). Within a given fit, the potassium quenching term (kQ,cK ) is com-

mon to all data (see below), while the buffer gas quenching terms (kQ,cAr , kQ,cHe ) are

only relevant to the data recorded with that buffer gas. Individual J -changing rate

coefficients k∆J
K , k∆J

Ar and k∆J
He depend on the data for specific ∆J values (and on the

buffer gas). In the majority of the fits, all k∆J values and the buffer gas quenching

terms were allowed to vary. The rate coefficients obtained from the separate fits

for each pump transition varied greatly, and it was determined that a more robust

fitting method was required.

The theoretical calculations by T. Price [61] show that the total inelastic cross

section for v = 0 (obtained by summing the individual calculated cross sections for

J -changing collisions) does not vary much over the range J = 0 - 50 for argon-NaK

collisions (Fig. 6.1) and for helium-NaK collisions (Fig. 6.2). Since this total inelastic

cross section is a good approximation to the total quenching cross section, one can

conclude that kQ,cAr and kQ,cHe are independent of the particular collisional level c under

consideration (hence justifying our use of global rate coefficients kQ,cAr,He ≈ kQAr,He in

the fits described above for each pump transition). The fact that the separate fitted

buffer gas quenching rate coefficients for v = 0, 1, and 2 are not too different from

each other, or from the fitted quenching rate coefficients for v = 16 obtained by

109



Wolfe et al. [31], indicates that it is reasonable to assume common quenching rate

coefficients for all data sets obtained with different pump transitions.
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Figure 6.1: Total, elastic, and inelastic cross sections plotted versus initial J for collisions
between argon and NaK molecules. Based on calculations of cross sections
by T. Price [61].
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Figure 6.2: Total, elastic, and inelastic cross sections plotted versus initial J for collisions
between helium and NaK molecules. Based on calculations of cross sections
by T. Price [61].

Since we can assume common quenching rate coefficients for all pump transi-

tions and all collisional levels, we gain the advantage that the total data set is much

more robust than the data sets associated with the individual pump transitions.

For example, we note that the data obtained with different pump transitions had

different argon, helium, and potassium density ranges since data could not always

be recorded for all four transitions on a given day. This was most apparent within

the 2(A)1Σ+ (0, 30) data set, which only includes two helium densities, meaning

we could not effectively fit the helium rate coefficient for the (0, 30) pump in the

separate pump transition fits.
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In the global fit method we simultaneously fit all data for the four pump transi-

tions, including data recorded with various densities of both argon and helium as the

buffer gas. We then assumed all data shared the same kQAr, k
Q
He, and kQK parameters.

The individual k∆J
P rate coefficients for ∆J = ±1,±2,±3,±4 were considered to

be independent of each other and different for each pump transition. This meant

that the k
∆J,(0,14)
P , k

∆J,(0,30)
P , k

∆J,(1,26)
P , and k

∆J,(2,44)
P rate coefficients all were separate

fitting parameters, creating a 99-parameter fit. (This included 8 different ∆J values

for each of the 3 different perturber gases, and 4 different pump transitions, as well

as 3 quenching rate coefficients.)

To test these ideas, several variations of the fit were carried out, in which the

quenching rate coefficients were either allowed to vary, or were set to specific values.

The reason for this was to see, specifically, how changing the potassium quenching

rate coefficients affected the other fitted rate coefficients. In one fit, all terms (in-

cluding kQK) were allowed to vary, while in other fits, kQK was set at a given value

and not allowed to vary. In one fit the three quenching rate coefficients were set to

the values obtained by Wolfe et al. [31] for the 2(A)1Σ+ (v = 16, J = 30) pump

transition;
kQAr
Γ

= 2.81× 10−17 cm3,
kQHe

Γ
= 4.15× 10−17 cm3, and

kQK
Γ

= 2.69× 10−16

cm3. The reason kQK was sometimes fixed is due to the fact that the potassium

densities have large uncertainties and the fitted kQK values sometimes converged to

unphysical values. In all cases, the fits were iterated until convergence.
k∆J
Ar

Γ
and

k∆J
He

Γ
values obtained from these fits are shown in Figs. 6.3 and 6.4, respectively, for

1 ≤ |∆J | ≤ 4.
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Figure 6.3: Various fits for directly pumped levels (0, 14), (0, 30), (1, 26) and (2, 44)

with argon as the buffer gas. In one fit, all parameters (
k∆J
BG
Γ and

k∆J
K
Γ for

1 ≤ |∆J | ≤ 4, and all quenching terms) were allowed to vary. One fit
allowed all ∆J terms to vary but fixed the quenching rates at the (16, 30)

values. In other fits only the value of
kQK
Γ was fixed, either at the (16, 30)

value (2.69 × 10−16 cm3) that was obtained by Wolfe et al. [31], or at one
of several specific values (0, 5× 10−17 cm3, 1× 10−16 cm3, 1× 10−15 cm3).
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Figure 6.4: Various fits for directly pumped levels (0, 14), (0, 30), (1, 26) and (2, 44)

with helium as the buffer gas. In one fit, all parameters (
k∆J
BG
Γ and

k∆J
K
Γ for

1 ≤ |∆J | ≤ 4, and all quenching terms) were allowed to vary. One fit
allowed all ∆J terms to vary but fixed the quenching rates at the (16, 30)

values. In other fits only the value of
kQK
Γ was fixed, either at the (16, 30)

value (2.69 × 10−16 cm3) that was obtained by Wolfe et al. [31], or at one
of several specific values (0, 5× 10−17 cm3, 1× 10−16 cm3, 1× 10−15 cm3).

From the figures it can be seen that the k∆J
Ar,He values are relatively insensitive to

the value of kQK . The argon and helium rate coefficients which resulted from these

fits are given in Table 6.1 for the directly pumped level (0, 14), Table 6.2 for (0, 30),

Table 6.3 for directly pumped level (1, 26), and Table 6.4 for the directly pumped
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level (2, 44). Quenching rate coefficients obtained in these various fits for all pump

transitions are also listed in these tables. There it can be seen that the argon and

helium quenching rate coefficients are also relatively insensitive to the value of kQK .

Rate Coefficients for 2(A)1Σ+ (0, 14)

Buffer ∆J Vary all Fix all
kQ
P

Γ Fix
kQ
K

Γ Fix
kQ
K

Γ Fix
kQ
K

Γ
Gas at (16, 30) at 5× 10−17 at 1× 10−16 at 1× 10−15

(10−18 cm3) (10−18 cm3) (10−18 cm3) (10−18 cm3) (10−18 cm3)

(Ar)

-4 1.26 1.83 1.55 1.51 0.91
-3 0.78 1.14 0.96 0.94 0.56
-2 2.96 4.26 3.60 3.51 2.15
-1 1.08 1.55 1.31 1.28 0.78
1 1.18 1.70 1.44 1.40 0.86
2 3.48 5.00 4.23 4.13 2.55
3 0.97 1.40 1.19 1.16 0.70
4 1.76 2.53 2.14 2.09 1.28

(He)

-4 3.09 3.97 3.14 3.14 2.99
-3 1.32 1.68 1.36 1.36 1.23
-2 5.08 6.61 5.23 5.21 4.81
-1 1.41 1.81 1.47 1.47 1.29
1 1.58 2.03 1.66 1.65 1.45
2 5.93 7.71 6.09 6.08 5.62
3 1.53 1.96 1.59 1.58 1.43
4 4.27 5.48 4.33 4.33 4.13

kQAr 1.75× 10−17 2.81× 10−17 2.28× 10−17 2.21× 10−17 1.11× 10−17

kQHe 2.96× 10−17 4.15× 10−17 3.08× 10−17 3.07× 10−17 2.74× 10−17

kQK 4.30× 10−16 2.69× 10−16 5.0× 10−1 1.0× x10−16 1.0× x10−15

Table 6.1: The rate coefficients for argon and helium for the initial fits of the J -changing
collisional rate coefficients following direct pumping of the 2(A)1Σ+ (0, 14)
level, with different limits or values used for the quenching coefficients. The
last three rows represent the quenching rate coefficients; either fit or assigned.
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Rate Coefficients for 2(A)1Σ+ (0, 30)

Buffer ∆J Vary all Fix all
kQ
P

Γ Fix
kQ
K

Γ Fix
kQ
K

Γ Fix
kQ
K

Γ
Gas at (16, 30) at 5× 10−17 at 1× 10−16 at 1× 10−15

(10−18 cm3) (10−18 cm3) (10−18 cm3) (10−18 cm3) (10−18 cm3)

(Ar)

-4 1.76 2.40 2.10 2.05 1.33
-3 1.14 1.54 1.34 1.31 0.90
-2 3.44 4.73 4.08 3.99 2.64
-1 1.52 2.05 1.77 1.73 1.22
1 1.41 1.91 1.65 1.61 1.11
2 3.58 4.93 4.26 4.17 2.74
3 1.23 1.66 1.44 1.41 0.96
4 1.84 2.52 2.20 2.15 1.39

(He)

-4 3.00 4.02 3.02 3.02 2.93
-3 2.19 2.89 2.16 2.17 2.22
-2 4.90 6.61 4.98 4.98 4.74
-1 2.95 3.90 2.91 2.92 3.01
1 2.50 3.31 2.48 2.48 2.52
2 5.36 7.22 5.43 5.42 5.21
3 2.56 3.38 2.52 2.53 2.61
4 3.10 4.16 3.13 3.13 3.03

kQAr 1.75× 10−17 2.81× 10−17 2.28× 10−17 2.21× 10−17 1.11× 10−17

kQHe 2.96× 10−17 4.15× 10−17 3.08× 10−17 3.07× 10−17 2.74× 10−17

kQK 4.30× 10−16 2.69× 10−16 5× 10−1 1× 10−16 1× 10−15

Table 6.2: The rate coefficients for argon and helium for the initial fits of the J -changing
collisional rate coefficients following direct pumping of the 2(A)1Σ+ (0, 30)
level, with different limits or values used for the quenching coefficients. The
last three rows represent the quenching rate coefficients; either fit or assigned.
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Rate Coefficients for 2(A)1Σ+ (1, 26)

Buffer ∆J Vary all Fix all
kQ
P

Γ Fix
kQ
K

Γ Fix
kQ
K

Γ Fix
kQ
K

Γ
Gas at (16, 30) at 5× 10−17 at 1× 10−16 at 1× 10−15

(10−18 cm3) (10−18 cm3) (10−18 cm3) (10−18 cm3) (10−18 cm3)

(Ar)

-4 1.41 1.93 1.68 1.64 1.06
-3 0.88 1.19 1.04 1.01 0.67
-2 3.12 4.32 3.73 3.64 2.37
-1 1.17 1.59 1.37 1.35 0.92
1 1.15 1.58 1.37 1.34 0.88
2 3.17 4.38 3.78 3.70 2.40
3 0.95 1.29 1.12 1.10 0.74
4 1.46 2.01 1.75 1.71 1.10

(He)

-4 3.21 4.12 3.29 3.28 3.09
-3 1.12 1.40 1.15 1.15 1.05
-2 5.14 6.65 5.29 5.27 4.87
-1 1.23 1.55 1.28 1.27 1.15
1 1.26 1.59 1.31 1.30 1.17
2 5.28 6.85 5.44 5.42 5.01
3 1.19 1.49 1.23 1.22 1.12
4 3.53 4.53 3.61 3.60 3.40

kQAr 1.75× 10−17 2.81× 10−17 2.28× 10−17 2.21× 10−17 1.11× 10−17

kQHe 2.96× 10−17 4.15× 10−17 3.08× 10−17 3.07× 10−17 2.74× 10−17

kQK 4.30× 10−16 2.69× 10−16 5× 10−1 1× 10−16 1× 10−15

Table 6.3: The rate coefficients for argon and helium for the initial fits of the J -changing
collisional rate coefficients following direct pumping of the 2(A)1Σ+ (1, 26)
level, with different limits or values used for the quenching coefficients. The
last three rows represent the quenching rate coefficients; either fit or assigned.
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Rate Coefficients for 2(A)1Σ+ (2, 44)

Buffer ∆J Vary all Fix all
kQ
P

Γ Fix
kQ
K

Γ Fix
kQ
K

Γ Fix
kQ
K

Γ
Gas at (16, 30) at 5× 10−17 at 1× 10−16 at 1× 10−15

(10−18 cm3) (10−18 cm3) (10−18 cm3) (10−18 cm3) (10−18 cm3)

(Ar)

-4 1.40 1.93 1.67 1.63 1.05
-3 1.03 1.40 1.14 1.15 0.80
-2 2.98 4.18 3.60 3.51 2.21
-1 1.10 1.51 1.24 1.23 0.84
1 1.29 1.76 1.43 1.43 1.00
2 2.94 4.13 3.55 3.46 2.17
3 1.03 1.41 1.15 1.15 0.80

(He)

-4 3.13 4.04 3.20 3.19 3.00
-3 1.06 1.37 1.09 1.09 1.00
-2 5.04 6.58 5.20 5.18 4.78
-1 1.11 1.43 1.14 1.14 1.03
1 1.14 1.48 1.17 1.17 1.06
2 5.23 6.81 5.38 5.36 4.97
3 1.06 1.37 1.09 1.09 0.99
4 3.32 4.29 3.39 3.39 3.19

kQAr 1.75× 10−17 2.81× 10−17 2.28× 10−17 2.21× 10−17 1.11× 10−17

kQHe 2.96× 10−17 4.15× 10−17 3.08× 10−17 3.07× 10−17 2.74× 10−17

kQK 4.30× 10−16 2.69× 10−16 5× 10−1 1× 10−16 1× 10−15

Table 6.4: The rate coefficients for argon and helium for the initial fits of the J -changing
collisional rate coefficients following direct pumping of the 2(A)1Σ+ (2, 44)
level, with different limits or values used for the quenching coefficients. The
last three rows represent the quenching rate coefficients; either fit or assigned.
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It was decided that the “best” fit was the one in which all parameters were

allowed to vary. The quenching rate coefficients obtained from this global fit (the

first column in Tables 6.1 through 6.4) were then used to fit the individual k
|∆J |>4)
P

and k
∆v,J)
P values for the four pump transitions. These results will be discussed in

the next subsections, (6.3.2 and 6.3.3).

6.3.2 Individual Fits and Results: J -changing collisions

This section discusses the results of the individual fits for J -changing collisions

and our four different directly pumped initial (v, J ) levels. All fits have been carried

out using the quenching rate coefficients determined in the global fit and presented

in the previous section. In each case,
k∆J
P

Γ
values obtained in the fits have been multi-

plied by the appropriate gamma for that direct level, so that rate coefficients k∆J
P can

be presented. These Γ values were obtained from the program LEVEL [59], using the

previously mentioned experimentally determined 2(A)1Σ+ and 1(X)1Σ+ electronic

state potentials of [9] and [10], respectively. Calculated Einstein A coefficients for

transitions from each of the initially pumped levels down to 1(X)1Σ+ ground state

vibrational levels vX in the range 0 to 20, and rotational levels obeying the selec-

tion rules for P and R transitions were summed to obtain the total radiative rate

Γ. Figures 6.5, 6.6 and 6.7 show the results for 2(A)1Σ+ (0, 14) argon, helium, and

potassium rate coefficients, respectively, which are all included in Table 6.5. Figures

6.8, 6.9 and 6.10 show the results for 2(A)1Σ+ (0, 30) argon, helium, and potassium

rates, respectively, which are all included in Table 6.6. Figures 6.11, 6.12 and 6.13

give the results for 2(A)1Σ+ (1, 26), which are included in Table 6.7. Table 6.8

includes the results for 2(A)1Σ+ (2, 44), which are plotted in Figs. 6.14, 6.15 and

6.16.
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Figure 6.5: Results of the individual fits for J -changing collisions following direct pump-
ing of the NaK 2(A)1Σ+ (0, 14) level. Here, results for the argon rate coeffi-
cients for ∆J = −10 to ∆J = 16 have been plotted. It can be seen that the
∆J = even propensity continues past the previously fit |∆J | ≤ 4 range.
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Figure 6.6: Results of the individual fits for J -changing collisions following direct pump-
ing of the NaK 2(A)1Σ+ (0, 14) level. Here, results for the helium rate co-
efficients for ∆J = −10 to ∆J = 16 have been plotted. It can be seen that
the ∆J = even propensity continues past the previously fit |∆J | ≤ 4 range.
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Figure 6.7: Results of the individual fits for J -changing collisions following direct pump-
ing of the NaK 2(A)1Σ+ (0, 14) level. Here, results for the potassium rate
coefficients for ∆J = −10 to ∆J = 16 have been plotted. It can be see
that the ∆J = even propensity continues past the previously fit |∆J | ≤ 4
range, but is in contrast to the results of Wolfe et al. [31] and Jones [34] for
2(A)1Σ+ (16, 30).
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∆J k∆J
Ar k∆J

He k∆J
K

(10−11cm3s−1) (10−11cm3s−1) (10−10cm3s−1)
-10 1.82 ± 0.42 5.37 ± 0.55 3.41 ± 2.98
-9 0.89 ± 0.22 2.82 ± 0.46 6.60 ± 2.69
-8 1.95 ± 0.27 7.06 ± 0.60 7.24 ± 2.90
-7 1.97 ± 0.25 4.02 ± 0.49 5.87 ± 2.72
-6 3.53 ± 0.34 10.03 ± 0.71 8.90 ± 3.53
-5 2.69 ± 0.31 4.54 ± 0.53 8.65 ± 3.27
-4 5.97 ± 0.48 14.62 ± 0.95 20.23 ± 4.08
-3 3.70 ± 0.33 6.23 ± 0.56 13.59 ± 3.04
-2 13.98 9 ± 1.01 24.02 ± 1.52 42.12 ± 7.84
-1 5.10 ± 0.41 6.65 ± 0.59 15.66 ± 3.47
1 5.59 ± 0.44 7.47 ± 0.63 17.26 ± 3.70
2 16.47 0 ± 1.15 28.03 ± 1.73 44.45 ± 8.66
3 4.60 ± 0.38 7.25 ± 0.60 14.69 ± 3.28
4 8.31 ± 0.61 20.22 ± 1.23 23.33 ± 4.84
5 4.33 ± 0.39 7.94 ± 0.66 11.18 ± 3.99
6 5.37 ± 0.45 16.65 ± 0.96 13.94 ± 4.64
7 3.91 ± 0.37 8.33 ± 0.66 10.30 ± 3.77
8 3.95 ± 0.39 14.85 ± 0.89 13.03 ± 4.15
9 3.61 ± 0.34 7.98 ± 0.63 8.90 ± 3.52
10 3.26 ± 0.35 13.13 ± 0.83 10.94 ± 3.73
11 3.20 ± 0.33 8.08 ± 0.64 9.46 ± 3.49
12 3.02 ± 0.33 12.35 ± 0.79 10.39 ± 3.58
13 2.86 ± 0.32 7.74 ± 0.63 9.59 ± 3.42
14 2.69 ± 0.31 10.91 ± 0.74 8.81 ± 3.29
15 2.85 ± 0.31 7.67 ± 0.62 9.03 ± 3.34
16 2.37 ± 0.31 10.17 ± 0.71 10.14 ± 3.38

Table 6.5: Results for 2(A)1Σ+ (0, 14) individual fits of J -changing collisions with per-
turbers argon, helium and potassium. Rate coefficients k∆J

P are presented as

the fit parameters (
k∆J
P
Γ ) multiplied by Γ(0,14) = 4.73× 107 s−1.
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Figure 6.8: Results of the individual fits for 2(A)1Σ+ (0, 30). Here, results for the argon
rate coefficients for ∆J = −20 to ∆J = 10 have been plotted. The ∆J
= even propensity can be seen continuing past the previously fit |∆J | ≤ 4
range.
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Figure 6.9: Results of the individual fits for 2(A)1Σ+ (0, 30). Here, results for the helium
rate coefficients for ∆J = −20 to ∆J = 10 have been plotted. The ∆J =
even propensity can be seen continuing past the previously fit |∆J | ≤ 4
range.
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Figure 6.10: Results of the individual fits for 2(A)1Σ+ (0, 30). Here, results for the
potassium rate coefficients for ∆J = −20 to ∆J = 10 have been plotted.
The ∆J = even propensity can be seen continuing past the previously fit
|∆J | ≤ 4 range, but is in contrast to the results of Wolfe et al. [31] and
Jones [34] for 2(A)1Σ+ (16, 30).
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∆J k∆J
Ar k∆J

He k∆J
K

(10−11cm3s−1) (10−11cm3s−1) (10−10cm3s−1)
-20 1.22 ± 0.12 3.25 ± 0.73 2.35 ± 0.61
-19 1.50 ± 0.12 3.98 ± 0.71 2.81 ± 0.66
-18 1.52 ± 0.13 3.63 ± 0.74 3.04 ± 0.69
-17 1.63 ± 0.13 3.97 ± 0.80 2.99 ± 0.69
-16 1.75 ± 0.14 4.56 ± 0.74 3.69 ± 0.78
-15 2.08 ± 0.15 5.70 ± 0.80 3.63 ± 0.79
-14 2.17 ± 0.16 4.99 ± 0.75 4.44 ± 0.89
-13 2.32 ± 0.15 5.61 ± 0.79 4.06 ± 0.85
-12 2.51 ± 0.17 5.65 ± 0.78 5.32 ± 1.01
-11 2.64 ± 0.17 6.03 ± 0.81 4.70 ± 0.93
-10 3.16 ± 0.19 7.02 ± 0.85 6.12 ± 1.15
-9 3.26 ± 0.18 7.21 ± 0.87 5.09 ± 1.02
-8 3.93 ± 0.23 7.87 ± 0.88 8.62 ± 1.42
-7 3.30 ± 0.20 8.10 ± 0.90 6.78 ± 1.16
-6 5.28 ± 0.28 9.33 ± 0.94 11.40 ± 1.76
-5 4.51 ± 0.23 9.23 ± 0.96 6.97 ± 1.28
-4 8.29 ± 0.52 14.13 ± 1.08 17.99 ± 3.54
-3 5.37 ± 0.31 10.32 ± 0.89 8.62 ± 1.93
-2 16.20 ± 0.96 23.08 ± 1.62 30.99 ± 6.36
-1 7.16 ± 0.38 13.90 ± 1.08 9.84 ± 2.34
1 6.64 ± 0.37 11.78 ± 0.96 10.36 ± 2.34
2 16.86 ± 1.00 25.25 ± 1.74 33.06 ± 6.69
3 5.79 ± 0.33 12.06 ± 0.98 9.19 ± 2.07
4 8.67 ± 0.55 14.60 ± 1.11 19.26 ± 3.76
5 4.99 ± 0.24 10.60 ± 1.03 8.05 ± 1.41
6 6.26 ± 0.32 12.91 ± 1.12 13.09 ± 2.04
7 4.56 ± 0.23 9.99 ± 1.00 7.35 ± 1.32
8 4.85 ± 0.26 10.69 ± 1.02 9.70 ± 1.64
9 4.01 ± 0.21 9.70 ± 0.99 6.74 ± 1.24
10 4.09 ± 0.23 9.89 ± 0.99 8.01 ± 1.41

Table 6.6: Results for 2(A)1Σ+ (0, 30) individual fits of J -changing collisions with per-
turbers argon, helium and potassium. Rate coefficients k∆J

P are presented as

the fit parameters (
k∆J
P
Γ ) multiplied by Γ(0,30) = 4.71× 107 s−1.
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Figure 6.11: Results of the individual fits for 2(A)1Σ+ (1, 26). Here, results for the argon
rate coefficients for ∆J = −17 to ∆J = 23 have been plotted. The ∆J
= even propensity can be seen continuing past the previously fit |∆J | ≤ 4
range. Effects of perturbations can be observed at ∆J = 6 and ∆J =
12-19.
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Figure 6.12: Results of the individual fits for 2(A)1Σ+ (1, 26). Here, results for the
helium rate coefficients for ∆J = −17 to ∆J = 23 have been plotted.
The ∆J = even propensity can be seen continuing past the previously fit
|∆J | ≤ 4 range. Effects of perturbations can be observed at ∆J = 6 and
∆J = 12-19.

129



-20 -15 -10 -5 0 5 10 15 20 25

0

10

20

30

40

k

J

K
 (

x
1
0

-1
0
 c

m
3
s

-1
)

J

k
J

K 
 for A

1


+
(1, 26)

Figure 6.13: Results of the individual fits for 2(A)1Σ+ (1, 26). Here, results for the
potassium rate coefficients for ∆J = −17 to ∆J = 23 have been plotted.
The ∆J = even propensity can be seen continuing past the previously fit
|∆J | ≤ 4 range, but is in contrast to the results of Wolfe et al. [31] and
Jones [34] for 2(A)1Σ+ (16, 30).
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∆J k∆J
Ar k∆J

He k∆J
K

(10−11cm3s−1) (10−11cm3s−1) (10−10cm3s−1)
-17 0.93 ± 0.26 2.11 ± 0.33 2.31 ± 1.68
-16 1.13 ± 0.27 3.78 ± 0.46 2.00 ± 1.68
-15 1.27 ± 0.20 2.32 ± 0.25 1.81 ± 1.24
-14 1.59 ± 0.23 4.78 ± 0.38 2.77 ± 1.45
-13 1.32 ± 0.19 2.80 ± 0.24 2.73 ± 1.20
-12 1.75 ± 0.19 5.30 ± 0.31 3.26 ± 1.21
-11 1.75 ± 0.19 3.70 ± 0.25 3.65 ± 1.24
-10 2.16 ± 0.21 6.99 ± 0.37 5.02 ± 1.47
-9 2.27 ± 0.21 3.81 ± 0.28 4.83 ± 1.46
-8 3.09 ± 0.27 8.63 ± 0.43 6.89 ± 1.94
-7 2.57 ± 0.23 4.34 ± 0.28 6.24 ± 1.64
-6 4.05 ± 0.32 11.26 ± 0.51 11.82 ± 2.46
-5 3.35 ± 0.28 4.23 ± 0.28 5.96 ± 1.98
-4 6.61 ± 0.46 15.06 ± 0.85 17.82 ± 3.22
-3 4.11 ± 0.28 5.25 ± 0.33 7.46 ± 1.81
-2 14.63 ± 0.92 24.11 ± 1.37 34.19 ± 6.38
-1 5.49 ± 0.34 5.77 ± 0.36 7.08 ± 2.20
1 5.39 ± 0.35 5.91 ± 0.37 10.04 ± 2.32
2 14.87 ± 0.93 24.76 ± 1.40 35.08 ± 6.52
3 4.46 ± 0.29 5.58 ± 0.35 6.99 ± 1.85
4 6.85 ± 0.47 16.56 ± 0.93 18.76 ± 3.36
5 3.49 ± 0.25 5.35 ± 0.31 5.86 ± 1.77
6 1.60 ± 0.19 4.78 ± 0.29 4.09 ± 1.29
7 2.88 ± 0.24 5.49 ± 0.32 6.05 ± 1.69
8 2.90 ± 0.24 7.46 ± 0.40 5.63 ± 1.70
9 2.48 ± 0.21 4.88 ± 0.29 4.04 ± 1.42
10 2.24 ± 0.25 6.19 ± 0.41 4.09 ± 1.66
11 2.08 ± 0.22 4.26 ± 0.30 2.89 ± 1.41
12 1.60 ± 0.24 6.00 ± 0.44 3.95 ± 1.63
13 1.24 ± 0.21 3.12 ± 0.29 2.35 ± 1.29
14 0.86 ± 0.18 2.80 ± 0.28 0.95 ± 1.06
15 0.94 ± 0.19 2.41 ± 0.26 1.83 ± 1.14
16 1.20 ± 0.20 3.96 ± 0.34 1.75 ± 1.21
17 1.12 ± 0.19 2.64 ± 0.27 1.69 ± 1.16
18 0.93 ± 0.19 3.28 ± 0.30 2.45 ± 1.22
19 0.88 ± 0.18 2.29 ± 0.25 1.83 ± 1.12
20 0.70 ± 0.17 2.05 ± 0.24 1.33 ± 0.98
21 0.78 ± 0.26 1.79 ± 0.32 1.22 ± 1.45
22 0.76 ± 0.26 2.23 ± 0.35 2.00 ± 1.59
23 0.92 ± 0.26 2.16 ± 0.35 1.82 ± 1.61

Table 6.7: Results for 2(A)1Σ+ (1, 26) individual fits of J -changing collisions with per-
turbers argon, helium and potassium. Rate coefficients k∆J

P are presented as

the fit parameters (
k∆J
P
Γ ) multiplied by Γ(1,26) = 4.69× 107 s−1.
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Figure 6.14: Results of the individual fits for 2(A)1Σ+ (2, 44). Here, results for the argon
rate coefficients for ∆J = −17 to ∆J = 16 have been plotted. The ∆J
= even propensity can be seen continuing past the previously fit |∆J | ≤ 4
range.
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Figure 6.15: Results of the individual fits for 2(A)1Σ+ (2, 44). Here, results for the
helium rate coefficients for ∆J = −17 to ∆J = 16 have been plotted.
The ∆J = even propensity can be seen continuing past the previously fit
|∆J | ≤ 4 range.
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Figure 6.16: Results of the individual fits for 2(A)1Σ+ (2, 44). Here, results for the
potassium rate coefficients for ∆J = −17 to ∆J = 16 have been plotted.
The ∆J = even propensity can be seen continuing past the previously fit
|∆J | ≤ 4 range, but is in contrast to the results of Wolfe et al. [31] and
Jones [34] for 2(A)1Σ+ (16, 30).
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∆J k∆J
Ar k∆J

He k∆J
K

(10−11cm3s−1) (10−11cm3s−1) (10−10cm3s−1)
-17 0.92 ± 0.18 1.83 ± 0.21 0.50 ± 1.01
-16 0.72 ± 0.19 1.78 ± 0.21 0.33 ± 1.02
-15 0.84 ± 0.22 1.48 ± 0.20 0.00 ± 1.12
-14 1.08 ± 0.23 2.76 ± 0.29 1.04 ± 1.27
-13 1.26 ± 0.19 2.30 ± 0.23 1.26 ± 1.09
-12 1.62 ± 0.21 4.68 ± 0.31 2.40 ± 1.19
-11 1.87 ± 0.22 3.18 ± 0.26 1.94 ± 1.26
-10 2.23 ± 0.23 6.71 ± 0.38 3.49 ± 1.37
-9 2.32 ± 0.26 3.60 ± 0.31 2.59 ± 1.57
-8 3.17 ± 0.30 8.57 ± 0.51 3.75 ± 1.84
-7 2.98 ± 0.26 4.32 ± 0.30 2.33 ± 1.63
-6 4.08 ± 0.31 10.88 ± 0.53 8.29 ± 2.04
-5 3.77 ± 0.29 4.86 ± 0.32 3.45 ± 1.82
-4 6.48 ± 0.46 14.49 ± 0.83 13.94 ± 3.00
-3 4.77 ± 0.34 4.91 ± 0.33 3.82 ± 2.06
-2 13.80 ± 0.91 23.34 ± 1.34 29.12 ± 6.02
-1 5.09 ± 0.36 5.14 ± 0.34 4.26 ± 2.16
1 5.97 ± 0.40 5.28 ± 0.35 4.72 ± 2.47
2 13.61 ± 0.90 24.22 ± 1.38 29.59 ± 6.02
3 4.77 ± 0.34 4.91 ± 0.33 4.03 ± 2.06
4 6.58 ± 0.46 15.37 ± 0.88 14.59 ± 3.07
5 3.83 ± 0.29 4.72 ± 0.31 3.52 ± 1.83
6 4.15 ± 0.37 11.48 ± 0.64 8.47 ± 2.42
7 3.05 ± 0.31 4.45 ± 0.36 3.24 ± 1.88
8 3.38 ± 0.39 9.58 ± 0.69 5.19 ± 2.38
9 2.45 ± 0.34 3.95 ± 0.40 3.16 ± 2.01
10 2.51 ± 0.34 7.36 ± 0.57 3.50 ± 2.03
11 2.09 ± 0.32 3.59 ± 0.38 2.47 ± 1.88
12 2.29 ± 0.33 6.95 ± 0.56 3.31 ± 1.95
13 1.96 ± 0.31 3.51 ± 0.38 1.94 ± 1.83
14 1.76 ± 0.30 5.23 ± 0.47 2.55 ± 1.75
15 1.88 ± 0.40 3.64 ± 0.51 1.77 ± 2.36
16 1.46 ± 0.36 4.20 ± 0.55 1.58 ± 2.10

Table 6.8: Results for 2(A)1Σ+ (2, 44) individual fits of J -changing collisions with per-
turbers argon, helium and potassium. Rate coefficients k∆J

P are presented as

the fit parameters (
k∆J
P
Γ ) multiplied by Γ(1,26) = 4.63× 107 s−1.
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J ∆J from (1,26) 2(A)1Σ+ (v=1)% total b3Π (v= 5)%
30 4 96.96 3.04
31 5 96.16 3.84
32 6 76.77 23.23
33 7 94.55 5.45
34 8 95.18 4.82
35 9 94.55 5.45
36 10 93.35 6.65
37 11 91.24 8.76
38 12 87.09 12.91
39 13 77.38 22.63
40 14 54.46 45.54
41 15 64.82 35.18
42 16 76.79 23.21
43 17 78.71 21.29
44 18 75.81 24.19
45 19 69.36 30.64

Table 6.9: Percentages of 2(A)1Σ+ and b3Π character in mixed rotational levels of nomi-
nal 2(A)1Σ+ character. When rotational levels of the same J from two neigh-
boring electronic levels have total energies that are approximately equal, the
two levels can interact, creating mixed states, assuming some coupling mecha-
nism exists for those two states. In the present case, the 2(A)1Σ+ and 1(b)3Π
states are coupled by spin-orbit interaction. In our work, these mixed levels
produce anomalously low intensities in the collisional spectrum because only
the singlet amplitude contributes significantly to the collisional transfer and
to the subsequent fluorescence emission.

An interesting feature can be seen in the +∆J branch of 2(A)1Σ+ (1, 26) data.

Here, we notice a substantial dip in the sequence of rate coefficients, at ∆J = 6,

which appears to go against the normal ∆J =even propensity. This deviation from

the expected population ratio, is caused by a local perturbation of 2(A)1Σ+ (1, 32)

with the 1(b)3ΠΩ=0,1,2(5, 32) level, which is a result of the spin-orbit interaction

between the two levels. Table 6.9 shows percentages of 2(A)1Σ+ and b3Π state char-

acter for levels that are nominally 2(A)1Σ+ (v = 1) levels (i.e. have predominantly
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2(A)1Σ+ character) [11]. Note that 2(A)1Σ+ (v = 1) state levels with J = 12 - 19 are

also highly mixed, so those measured rate coefficients are also suppressed relative

to what they would be in the absence of perturbation.

6.3.3 Individual Fits and Results: v, J -changing collisions

In addition to our studies of NaK 2(A)1Σ+ J -changing collisions with argon, he-

lium, and potassium, we have also obtained a significant amount of data on collisions

in which both v and J change. The present section describes our analysis of these

data, and presents our results. These individual fits for collisions in which both

v and J change were carried out with the same procedure as for the J -changing

collision data, as outlined in the previous section 6.3.2.

Here I present the results of the individual fits carried out for collisions in which

population was transferred from 2(A)1Σ+ vibrational level v = 2 to level v = 1

(∆v = −1 transfer) and to v = 0 (∆v = −2), and for collisions in which population

was transferred from 2(A)1Σ+ vibrational level v = 1 to v = 0 (∆v = −1). The fits

have been carried out using the quenching rate coefficients determined in the global

fit of the ∆v = 0, |∆J | ≤ 4 data. Again, in each case,
k∆
P

Γ
values obtained in the fits

have been multiplied by the appropriate gamma, so that values for rate coefficients

k∆
P are presented.

Figures 6.17, 6.18 and 6.19 show the rate coefficient results for ∆v = −1 collisions

of NaK 2(A)1Σ+ (2, 44) molecules with argon, helium, and potassium, respectively,

and these are also listed in Table 6.10. Figures 6.20, 6.21 and 6.22 show the re-

sults for argon, helium, and potassium rate coefficients, respectively, for ∆v = −2

137



collisions of NaK 2(A)1Σ+ (2, 44) molecules. These values are listed in Table 6.11.

Figures 6.23, 6.24 and 6.25 give the results for 2(A)1Σ+ (1, 26) ∆v = -1 collisions,

which are listed in Table 6.12.

We see that the rate coefficients for v -changing collisions are about an order of

magnitude smaller than those for J -changing collisions for small ∆J (|∆J | ≤ 5) and

comparable to those for large ∆J (|∆J | ≥ 15). We also see that the v = 1→ v = 0

rate coefficients are larger than the v = 2 → v = 1 rate coefficients and the v =

2 → v = 1 rate coefficients are larger than the v = 2 → v = 0 rate coefficients,

although these differences are not great. The fitted potassium rate coefficients are

often equal to zero within error bars. The v -changing rate coefficients are also fairly

independent of ∆J . However it is possible that larger variations with ∆J do occur,

but are partially washed out due to multiple collision effects. We note the results

reported in Figs. 6.17-6.25 and Tables 6.10 to 6.12 have not been corrected for

multiple collision effects. We address this issue in more detail in Sec. 6.4.
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Figure 6.17: Results of the individual fits for NaK 2(A)1Σ+ (2, 44) v - and J - chang-

ing collisions. Here, results for the argon rate coefficients for ∆v = −1,
∆J = −25 to ∆J = 5 have been plotted. The ∆J = -4 rate coefficient
(which corresponds to the ro-vibrational level (1, 40)) is suppressed due to
a perturbation as described in the previous section.
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Figure 6.18: Results of the individual fits for NaK 2(A)1Σ+ (2, 44) v - and J - chang-

ing collisions. Here, results for the helium rate coefficients for ∆v = −1,
∆J = −25 to ∆J = 5 have been plotted. The ∆J = -4 rate coefficient
(which corresponds to the ro-vibrational level (1, 40)) is suppressed due to
a perturbation as described in the previous section.
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Figure 6.19: Results of the individual fits for NaK 2(A)1Σ+ (2, 44) v - and J - changing

collisions. Here, results for the potassium rate coefficients for ∆v = −1,
∆J = −25 to ∆J = 5 have been plotted.
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Rate coefficients for 2(A)1Σ+ (2, 44), ∆v = -1
∆J k∆J

Ar k∆J
He k∆J

K

(10−11cm3s−1) (10−11cm3s−1) (10−11cm3s−1)
-25 0.51 ± 0.21 1.06 ± 0.18 0.00 ± 10.74
-24 0.60 ± 0.18 1.35 ± 0.19 0.38 ± 9.77
-23 0.69 ± 0.19 1.34 ± 0.18 0.00 ± 10.51
-22 0.63 ± 0.20 1.30 ± 0.18 0.00 ± 10.09
-21 0.59 ± 0.20 1.20 ± 0.18 0.00 ± 10.19
-20 0.60 ± 0.21 1.35 ± 0.18 0.00 ± 10.70
-19 0.63 ± 0.18 1.29 ± 0.18 0.00 ± 9.45
-18 0.59 ± 0.20 1.41 ± 0.20 0.00 ± 10.93
-17 0.67 ± 0.19 1.42 ± 0.17 0.00 ± 10.42
-16 0.72 ± 0.21 1.45 ± 0.24 0.00 ± 11.48
-15 0.69 ± 0.18 1.53 ± 0.19 0.00 ± 9.77
-14 0.64 ± 0.19 1.56 ± 0.21 0.00 ± 10.23
-13 0.77 ± 0.18 1.74 ± 0.20 0.00 ± 9.72
-12 0.94 ± 0.24 1.96 ± 0.28 0.00 ± 13.29
-11 0.73 ± 0.17 1.67 ± 0.19 0.06 ± 9.49
-10 0.68 ± 0.18 1.68 ± 0.19 0.00 ± 9.54
-9 0.78 ± 0.19 1.68 ± 0.19 0.00 ± 10.09
-8 0.86 ± 0.19 1.93 ± 0.23 0.00 ± 10.51
-7 0.77 ± 0.20 1.68 ± 0.21 0.00 ± 10.97
-6 0.65 ± 0.20 1.58 ± 0.24 0.00 ± 11.16
-5 0.60 ± 0.20 1.40 ± 0.23 0.00 ± 10.79
-4 0.39 ± 0.31 1.00 ± 0.21 0.00 ± 14.45
-3 0.52 ± 0.19 1.13 ± 0.21 0.00 ± 10.46
-2 0.65 ± 0.20 1.41 ± 0.27 0.00 ± 11.25
-1 0.73 ± 0.20 1.41 ± 0.23 0.00 ± 11.07
0 0.64 ± 0.21 1.49 ± 0.23 0.00 ± 11.34
1 0.68 ± 0.21 1.43 ± 0.23 0.00 ± 11.48
2 0.72 ± 0.24 1.25 ± 0.22 2.70 ± 13.33
3 0.67 ± 0.20 1.47 ± 0.23 1.42 ± 11.16
4 0.52 ± 0.28 1.14 ± 0.31 4.51 ± 14.91
5 0.71 ± 0.33 1.54 ± 0.35 0.00 ± 17.36

Table 6.10: Results for individual fits of NaK 2(A)1Σ+ (2, 44) v -, J -changing collision
data with perturbers argon, helium and potassium. Rate coefficients k∆J

P

are presented as the fit parameters (
k∆J
P
Γ ) multiplied by Γ(2,44) = 4.63× 107

s−1.
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Figure 6.20: Results of the individual fits for NaK 2(A)1Σ+ (2, 44) v - and J - chang-

ing collisions. Here, results for the argon rate coefficients for ∆v = −2,
∆J = −15 to ∆J = 15 have been plotted. The ∆J = 10 rate coefficient
(which corresponds to the ro-vibrational level (0, 54)) is suppressed due to
a perturbation as described in the previous section.
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Figure 6.21: Results of the individual fits for NaK 2(A)1Σ+ (2, 44) v - and J - chang-

ing collisions. Here, results for the helium rate coefficients for ∆v = −2,
∆J = −15 to ∆J = 15 have been plotted. The ∆J = 10 rate coefficient
(which corresponds to the ro-vibrational level (0, 54)) is suppressed due to
a perturbation as described in the previous section.
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Figure 6.22: Results of the individual fits for NaK 2(A)1Σ+ (2, 44) v - and J - changing

collisions. Here, results for the potassium rate coefficients for ∆v = −2,
∆J = −15 to ∆J = 15 have been plotted.

145



Rate coefficients for 2(A)1Σ+ (2, 44), ∆v = -2
∆J k∆J

Ar k∆J
He k∆J

K

(10−11cm3s−1) (10−11cm3s−1) (10−11cm3s−1)
-15 0.53 ± 0.11 0.99 ± 0.12 0.00 ± 6.07
-14 0.41 ± 0.11 0.86 ± 0.11 0.00 ± 5.69
-13 0.39 ± 0.10 0.78 ± 0.11 0.00 ± 5.46
-12 0.43 ± 0.11 0.89 ± 0.12 0.00 ± 5.74
-11 0.45 ± 0.11 0.90 ± 0.11 0.00 ± 5.74
-10 0.44 ± 0.10 0.81 ± 0.11 0.00 ± 5.51
-9 0.46 ± 0.11 0.85 ± 0.11 0.00 ± 5.79
-8 0.52 ± 0.10 0.99 ± 0.12 0.00 ± 5.83
-7 0.48 ± 0.11 0.95 ± 0.12 0.00 ± 5.79
-6 0.55 ± 0.14 1.06 ± 0.13 0.00 ± 7.22
-5 0.47 ± 0.10 0.91 ± 0.11 0.00 ± 5.56
-4 0.56± 0.11 1.14 ± 0.12 0.00 ± 6.16
-3 0.49 ± 0.10 0.96 ± 0.12 0.00 ± 5.74
-2 0.54 ± 0.11 1.01 ± 0.12 0.00 ± 6.16
-1 0.58 ± 0.11 1.06 ± 0.12 0.00 ± 5.93
0 0.49 ± 0.10 0.95 ± 0.12 0.00 ± 5.74
1 0.52 ± 0.10 0.98 ± 0.12 0.00 ± 5.83
2 0.56 ± 0.11 1.08 ± 0.12 0.00 ± 6.11
3 0.53 ± 0.11 1.00 ± 0.12 0.00 ± 5.97
4 0.51 ± 0.11 1.00 ± 0.12 0.00 ± 6.07
5 0.53 ± 0.11 1.11 ± 0.12 0.00 ± 6.07
6 0.52 ± 0.10 1.08 ± 0.12 0.00 ± 5.83
7 0.50 ± 0.11 1.02 ± 0.12 0.00 ± 5.83
8 0.49 ± 0.11 0.96 ± 0.12 0.00 ± 5.93
9 0.44 ± 0.10 0.90 ± 0.11 0.00 ± 5.56
10 0.34 ± 0.13 0.72 ± 0.11 0.00 ± 6.99
11 0.48 ± 0.12 0.92 ± 0.14 0.00 ± 6.67
12 0.48 ± 0.12 1.02 ± 0.14 0.00 ± 6.76
13 0.49 ± 0.12 0.92 ± 0.14 0.00 ± 6.76
14 0.41 ± 0.12 0.91 ± 0.14 0.00 ± 6.62
15 0.45 ± 0.17 0.87 ± 0.14 0.00 ± 8.98

Table 6.11: Results for individual fits of NaK 2(A)1Σ+ (2, 44) v -, J -changing collision
data with perturbers argon, helium and potassium. Rate coefficients k∆J

P ,

∆v = -2 are presented as the fit parameters (
k∆J
P
Γ ) multiplied by Γ(2,44) =

4.63× 107s−1.
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Figure 6.23: Results of the individual fits for NaK 2(A)1Σ+ (1, 26) v - and J - changing

collisions. Here, results for the argon rate coefficients for ∆v = −1, ∆J =
−5 to ∆J = 25 have been plotted.
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Figure 6.24: Results of the individual fits for NaK 2(A)1Σ+ (1, 26) v - and J - changing

collisions. Here, results for the helium rate coefficients for ∆v = −1, ∆J =
−5 to ∆J = 25 have been plotted.
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Figure 6.25: Results of the individual fits for NaK 2(A)1Σ+ (1, 26) v - and J - changing

collisions. Here, results for the potassium rate coefficients for ∆v = −1,
∆J = −5 to ∆J = 25 have been plotted.
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Rate coefficients for 2(A)1Σ+ (1, 26), ∆v = -1
∆J k∆J

Ar k∆J
He k∆J

K

(10−11cm3s−1) (10−11cm3s−1) (10−11cm3s−1)
-5 0.87 ± 0.12 1.63 ± 0.14 0.00 ± 7.22
-4 0.87 ± 0.12 1.72 ± 0.14 0.00 ± 7.18
-3 0.91 ± 0.12 1.64 ± 0.14 0.00 ± 7.08
-2 0.88 ± 0.12 1.78 ± 0.14 0.00 ± 7.22
-1 0.94 ± 0.12 1.61 ± 0.14 0.00 ± 7.27
0 1.06 ± 0.13 1.97 ± 0.15 0.00 ± 8.07
1 0.95 ± 0.12 1.72 ± 0.14 0.00 ± 7.55
2 0.91 ± 0.12 1.85 ± 0.15 0.00 ± 7.50
3 1.10 ± 0.13 1.97 ± 0.15 0.00 ± 8.16
4 1.05 ± 0.12 1.95 ± 0.15 0.00 ± 8.07
5 0.98 ± 0.12 1.77 ± 0.14 0.00 ± 7.69
6 1.10 ± 0.13 2.10 ± 0.16 0.00 ± 8.35
7 1.07 ± 0.13 2.04 ± 0.15 0.94 ± 8.21
8 0.96 ± 0.12 1.95 ± 0.15 0.00 ± 7.74
9 1.01 ± 0.12 1.80 ± 0.14 0.00 ± 7.97
10 1.03 ± 0.12 1.97 ± 0.15 0.00 ± 7.97
11 0.98 ± 0.12 1.80 ± 0.14 0.00 ± 7.74
12 0.99 ± 0.12 1.85 ± 0.15 0.00 ± 7.69
13 1.03 ± 0.12 1.88 ± 0.15 0.00 ± 8.02
14 1.02 ± 0.14 1.92 ± 0.17 2.68 ± 8.91
15 0.99 ± 0.12 1.85 ± 0.15 2.64 ± 7.64
16 1.02 ± 0.12 1.96 ± 0.15 1.13 ± 7.93
17 1.18 ± 0.13 2.04 ± 0.15 2.63 ± 8.49
18 1.04 ± 0.12 1.87 ± 0.15 1.08 ± 7.97
19 0.90 ± 0.13 1.69 ± 0.16 3.78 ± 8.21
20 0.94 ± 0.14 1.74 ± 0.16 0.00 ± 8.40
21 1.10 ± 0.12 2.37 ± 0.16 20.96 ± 7.88
22 0.91 ± 0.13 1.67 ± 0.16 0.41 ± 8.54
23 0.82 ± 0.11 1.65 ± 0.14 4.67 ± 6.71
24 0.83 ± 0.13 1.69 ± 0.16 1.97 ± 8.02
25 0.84 ± 0.11 1.59± 0.14 0.00 ± 7.13

Table 6.12: Results for individual fits of NaK 2(A)1Σ+ (1, 26) v -, J -changing collisions
with perturbers argon, helium and potassium. Rate coefficients k∆J

P are

presented as the fit parameters (
k∆J
P
Γ ) multiplied by Γ(1,26) = 4.69× 107s−1.
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6.4 Approximations and Assumptions Used in This

Work

In the derivation of the final expressions used in this work (Eqs. 5.14a, 5.14b and

5.25) for intensity ratios observed in J -changing and v -changing collisions, respec-

tively, we have made several assumptions that should be discussed.

6.4.1 The Anisotropy Factor F

The first assumption, which was made just after Eq. 5.7, stated that the anisotropy

factors F cancel in the ratio of collisional fluorescence to direct fluorescence. This

argument is based on the fact that we only compare P collisional lines to P direct

lines (or R lines to R lines). However the anisotropy factor is related to polariza-

tion, and we know that v and J changing collisions reduce the orientation and hence

tend to depolarize the light. Therefore the anisotropy factor for a collisional line is

different than that for a direct line.

To estimate the difference in the collisional and direct level anisotropy factors,

we begin by introducing f as the percentage of the direct line emitted light that

is collected by our detector. We follow an argument similar to that given in Chen

et al. [62]. We define a coordinate system such that the laser propagates along

the x̂-direction, and is polarized in the ẑ-direction. We assume the fluorescence

is observed at an angle θ with respect to the polarization axis ẑ. In the current

experiment, we observe in the backwards x̂-direction, so that the angle θ = 90◦, as

shown in Fig. 6.26.
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Figure 6.26: Diagram of laser propogation, polarization, and detector angle for our ex-
periment. The fluorescence can be decomposed into two polarization com-
ponents, one component perpendicular to ẑ (⊥), and one component in the
plane containing the ẑ axis (‖).

For an excited state level 2(A)1Σ+ (ve, Je,Me) directly populated from the ground

state level 1(X)1Σ+ (vg, Jg,Mg), (where Me,g are the individual magnetic sublevels

for the two states), we can represent the populations in these individual sublevels

as

nve,Je,Me ∝
nvg ,Jg

2Jg + 1

∑
Mg

|〈αg, vg, Jg,Mg|ê1 · ~µ|αe, ve, Je,Me〉|2 , (6.1)

where αg,e represents all other quantum numbers needed to represent the state,

~µ = e~r is the electric dipole moment operator of the optically active electron. ê1

is the unit vector describing the laser polarization (ẑ in our case, which means

ê1 · ~µ = µz).
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If we observe fluorescence corresponding to a transition from an anisotropically

populated level of the excited state to a final ro-vibrational level (f ) of the ground

state, the intensity of the component of this fluorescence polarized along the direc-

tion ê2 is given by

Iê2 ∝
∑
Mf

∑
Me

nve,Je,Me |〈αe, ve, Je,Me|ê2 · ~µ|αf , vf , Jf ,Mf〉|2 . (6.2)

If we combine Eqs. 6.1 and 6.2, we can obtain expressions for I⊥ using ê2 = ê⊥ = ŷ,

I⊥ ∝
nvg ,Jg

2Jg + 1

∑
Mf

∑
Me

∑
Mg

|〈αg, vg, Jg,Mg|µz|αe, ve, Je,Me〉|2

|〈αe, ve, Je,Me|µy|αf , vf , Jf ,Mf〉|2 (6.3)

and for I‖ using ê2 = ê‖ = sin θẑ − cos θx̂ = ẑ,

I‖ ∝
nvg ,Jg

2Jg + 1

∑
Mf

∑
Me

∑
Mg

|〈αg, vg, Jg,Mg|µz|αe, ve, Je,Me〉|2

|〈αe, ve, Je,Me| sin θµz − cos θµx|αf , vf , Jf ,Mf〉|2 . (6.4)

The dipole moment operator components can be used to construct a spherical tensor

operator µkq of rank k = 1 with µ1
1 = −(2)−

1
2 e(x+iy), µ1

0 = ez, µ1
−1 = (2)−

1
2 e(x−iy).

Then, following the Wigner-Eckart theorem [63], we find

〈α, v, J,M |µ1
q|α′, v′, J ′,M ′〉 = (−1)1+J ′−J〈J ′,M ′1q|JM〉〈α, v, J‖~µ‖α′, v′, J ′〉. (6.5)

Here 〈J ′,M ′1q|JM〉 is the Clebsch-Gordon coefficient, and the square of the reduced

matrix element |〈α, v, J‖~µ‖α′, v′, J ′〉|2 is proportional to the Hönl-London factor
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S(J, J ′) [64]. The Clebsch-Gordon coefficients vanish unless q + M ′ = M , which

reduces the triple summations in Eqs. 6.3 and 6.4 to single sums over M = Mg.

Thus,

I⊥ ∝ S(Jg, Je)S(Je, Jf )A⊥, (6.6)

and

I‖ ∝ S(Jg, Je)S(Je, Jf )
[
A‖ sin2 θ + A⊥ cos2 θ

]
(6.7)

where A⊥ and A‖ contain the Clebsch-Gordon coefficients,

A⊥ =
1

2Jg + 1

∑
M

1

2

{
|〈JfM − 1, 11|JeM〉|2+

|〈JfM + 1, 1− 1|JeM〉|2
}
|〈JeM, 10|JgM〉|2 (6.8)

and

A‖ =
1

2Jg + 1

∑
M

|〈JfM, 10|JeM〉|2|〈JeM, 10|JgM〉|2. (6.9)

These can be related to the particular rotational levels J and sublevels M as dis-

cussed in Zare, pg. 57 [63].

In our case we only collect a small portion of the light intensity in solid angle

dΩ, around detection angle θ, φ, which compares to the total intensity emitted at

all angles as

f =
I(θ, φ)dΩ

Itot
=

I(θ, φ)dΩ∫ 2π

0

∫ 1

−1
I(θ, φ)d(cos θ)dφ

. (6.10)
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The total fluorescence intensity has two components: I⊥ and I‖, where

I(θ, φ) = I⊥(θ, φ) + I‖(θ, φ), (6.11)

and inserting this and Eqs. 6.6 and 6.7 into Eq. 6.10 yields

I(θ, φ)dΩ

Itot
=

[I⊥(θ, φ) + I‖(θ, φ)]dΩ∫ 2π

0
dφ
∫ 1

−1
[I⊥(θ, φ) + I‖(θ, φ)]d(cos θ)

=
[A⊥(1 + cos2 θ) + A‖ sin2 θ]dΩ∫ 1

−1
dφ
∫ π

0
[A⊥(1 + cos2 θ) + A‖ sin2 θ]d(cos θ)

=
[A⊥(1 + cos2 θ) + A‖ sin2 θ]dΩ

(2π)(8
3
A⊥ + 4

3
A‖)

. (6.12)

This can be further simplified by considering our specific experiment where θ =

90◦, such that

I(θ, φ)dΩ

Itot
=

[A⊥ + A‖]dΩ

(2π)(8
3
A⊥ + 4

3
A‖)

=
3(A⊥ + A‖)

4A⊥ + 2A‖

dΩ

4π
. (6.13)

The exact value of this is dependent on the specific Clebsch-Gordon coefficients,

which depend on Jg, Je, and Jf . We consider four possible combinations: pump from

the ground state 1(X)1Σ+ to the 2(A)1Σ+ state on a P-transition (Je = Jg− 1), and

observe either P (Jf = Je + 1) or R (Jf = Je − 1) fluorescence, or pump an R-

transition (Je = Jg + 1) and look at P or R fluorescence. The expressions for A‖

and A⊥ pertaining to these four possibilities can then be determined from Eqs. 6.8

and 6.9 and the Clebsch-Gordon coefficients as given by Zare [63]. Calculating these

values for various Je values, we find that as Je increases, the fractions I(θ,φ)dΩ
Itot

con-

verge for the four combinations. Some of these values, for a range of J are listed in
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Table 6.13.

I(θ,φ)dΩ
Itot

(units of dΩ
4π

)

Je Pump P Pump P Pump R Pump R
Observe P Observe R Observe P Observe R

1 1.0049 1.050 1.050 1.500
10 1.038 1.050 1.050 1.067
14 1.041 1.050 1.050 1.062
26 1.045 1.050 1.050 1.056
30 1.045 1.050 1.050 1.055
44 1.047 1.049 1.050 1.053
100 1.049 1.050 1.050 1.052

Table 6.13: Values for I(θ,φ)dΩ
Itot

, calculated at several Je values. Note that at very small

values of J the value of I(θ,φ)dΩ
Itot

is significantly greater than 1 for the pump
R / observe R case, but this difference is less than 7% even at J = 10.

The fraction of direct line emission that reaches the detector, f = I(θ,φ)dΩ
Itot

, is

related to the anisotropy factor F by

Fdir =
fdir
dΩ
4π

. (6.14)

During a collision, the orientation is partially destroyed, and consequently the

polarization is reduced. In the “worst case” scenario, we can estimate that all polar-

ization is destroyed, so that the collisional line fluorescence is completely isotropic

(F =1). For J =14 (our smallest Jdir value), this is reflected in the ratio of collisional-

to-direct anisotropy terms for an R-pumped, R-fluorescence direct line as

Fcol
Fdir

=
1

1.062
= 0.942. (6.15)

156



Thus in the very worst case, the ratio of anisotropy factors differs from 1 by 6%.

Since much of our data was recorded at higher J, and since the orientation is not

completely destroyed in J -changing collisions, the actual correction is something

less than this. Because other errors are much larger than this, we did not attempt

to correct the results for the error associated with neglect of the anisotropy factor.

6.4.2 Sodium Contributions

The second significant approximation was made in expanding the sum over per-

turbers in the rate equation given by Eq. 5.4. There we approximated

nc
nd

=

∑
P

k∆
P

Γ
nP

1 +
∑
P

kQP
Γ
nP

≈
k∆
BG

Γ
nBG +

k∆
K

Γ
nK

1 +
kQBG

Γ
nBG +

kQK
Γ
nK

. (6.16)

In this approximation, we neglect other possible perturbers such as sodium atoms,

K2, NaK and Na2 molecules, and various impurities. We don’t know much about

possible impurities that may be present. However we use argon and helium buffer

gas of 99.99% purity and sodium and potassium metals that are purified to better

than 99.9%. Ratios of Na, K2 and Na2 densities relative to K atom densities can be

estimated with the Nesmeyanov vapor pressure formulas at various temperatures in

the range used in this experiment, and these values are listed in Table 6.14. Note

that in general the NaK density lies between those of K2 and Na2, but cannot be

obtained from the Nesmeyanov formula. So the density of NaK must be calculated
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from the equilibrium constant,

1

Keq

≡ nNanK
nNaK

=
σ

kT

gNagK
gNaK

3

√
2πµkT

h2

h2

8π2I

[
1− exp

(
−hcωe
kT

)]
exp

(
−D0

kT

)
(6.17)

(see Ref. [50]). Here gNa and gK are the degeneracies of the atomic ground states

(gNa = gK = 2), gNaK = 1 for the molecular ground state, µ is the reduced mass of

the molecule, D0 is the dissociation energy of the molecule in vibrational level v = 0,

ωe is the vibrational constant, and I = µR2
eq is the moment of inertia of the molecule.

σ = 1 for a heteronuclear molecule (or 2 for a homonuclear molecule). From Table

6.14 , it can be seen that all molecular densities are less than 2% of the potassium

density. Therefore, even if the molecule-molecule collisional rate coefficients are 10

times larger than the potassium-molecule rate coefficients, these contributions add

no more than 20% error to our reported potassium rates and much less to the noble

gas rates.

Also as can be seen from Table 6.14, the sodium density is approximately an

order of magnitude smaller than the potassium density and the collisional rates are

probably comparable. However, the effects of Na collisions can be taken into account

approximately as described below.

To include sodium collisions in Eq. 6.16 we should ideally add a term (
k∆
Na

Γ
nNa)

for population transfer due to sodium collisions in the numerator and a quenching

term (
kQNa

Γ
nNa) in the denominator,

nc
nd

=

k∆
BG

Γ
nBG +

k∆
K

Γ
nK +

k∆
Na

Γ
nNa

1 +
kQBG

Γ
nBG +

kQK
Γ
nK +

kQNa
Γ
nNa

(6.18)
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T(K) nK
nNa
nK

nK2

nK

nNa2

nK

nNaK
nK

563.2 3.53124×10+15 0.0510 0.0032 0.0004 0.0030
583.2 6.3385×10+15 0.0581 0.0040 0.0006 0.0039
603.2 1.09162×10+16 0.0657 0.0050 0.0008 0.0051
623.2 1.81121×10+16 0.0738 0.0061 0.0011 0.0064
643.2 2.90557×10+16 0.0822 0.0074 0.0014 0.0079
663.2 4.52089×10+16 0.0910 0.0088 0.0018 0.0097
683.2 6.84153×10+16 0.1002 0.0104 0.0023 0.0118
703.2 1.00944×10+17 0.1097 0.0121 0.0029 0.0141
723.2 1.45531×10+17 0.1195 0.0140 0.0036 0.0166

Table 6.14: Potassium densities calculated using the Nesmeyanov vapor pressure formula
for the range of temperatures used in this experiment. The densities of Na,
K2 and Na2 were also calculated using the Nesmeyanov formulas, and are
reported as ratios to the potassium density at that temperature. The NaK
density was calculated using Eq. 6.17, and taken as a ratio to the potassium
density. Across the range of temperatures used in this work, the fraction of
sodium-to-potassium densities does not exceed 12%.

which we can rewrite as

nc
nd

=

k∆
BG

Γ
nBG +

k∆
K

Γ
(1 +

k∆
Na

k∆
K

nNa
nK

)nK

1 +
kQ,cBG

Γ
nBG +

kQK
Γ

(1 +
kQNa
kQK

nNa
nK

)nK
. (6.19)

Since the potassium and sodium densities essentially scale together with temper-

ature, it’s difficult to separate the effects that the two alkalis have on NaK molecules

in collisions. Since sodium and potassium are both alkalis with similar electronic

structure, it’s reasonable to assume that
k∆
Na

k∆
K
∼ 1 and

kQNa
kQK
∼ 1. Thus, we see that

the alkali terms can be written as

k∆
K

Γ

(
1 +

k∆
Na

k∆
K

nNa
nK

)
nK ∼

k∆
K

Γ

(
1 +

nNa
nK

)
nK (6.20)

and
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kQK
Γ

(
1 +

kQNa
kQK

nNa
nK

)
nK ∼

kQK
Γ

(
1 +

nNa
nK

)
nK . (6.21)

Therefore, the previously fitted potassium terms should be corrected as

(
k∆
K

Γ

)
fitted

nK =

(
k∆
K

Γ

)
actual

(
1 +

nNa
nK

)
nK =

(
k∆
K

Γ

)
actual

nalk (6.22)

and (
kQK
Γ

)
fitted

nK =

(
kQK
Γ

)
actual

(
1 +

nNa
nK

)
nK =

(
kQK
Γ

)
actual

nalk (6.23)

where nalk =
(

1 + nNa
nK

)
nK . Thus the actual alkali collisional rate coefficients can

be obtained to a good approximation from our fitted potassium rate coefficients by

the substitution

kalk =
kK

1 + nNa
nK

. (6.24)

The average of the fraction nNa
nK

= 0.083 ± 0.037 (see Table 6.14) over the range of

temperatures used in the experiment, so that even without the correction of Eq.

6.24, the error in the potassium rates due to neglect of Na collisions is less than

10%. With this correction, which takes the sodium collisions into account to first

order, we believe residual errors due to sodium collisions are probably reduced to

below 5% (based on k∆
Na ∼ k∆

K and kQNa ∼ kQK being valid to within 30%). Whether

or not this correction is made, the effect of neglect of Na collisions on all noble gas

rate coefficients is negligible. Potassium rate coefficients presented earlier in this

chapter have not been corrected in this manner, but could easily be corrected by

dividing each reported value by 1.08.
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6.4.3 Multiple Collision Regime

A third assumption that was made in deriving the collisional to direct line in-

tensity ratios from our simplified rate equations (Eqs. 5.3 and 5.4) in Chapter 5

was the neglect of multiple collisions. In the ideal situation, the perturber densities

are low enough that only one collision is likely to occur within the lifetime of the

excited molecule. In reality, utilizing such low alkali densities results in very low

NaK molecule densities (hence smaller direct line intensities since there are fewer

molecules to absorb laser photons). In addition, if the noble gas density is also

small, the collisional line intensities are an even smaller fraction of the direct line

intensities, leading to very low signal-to-noise ratios. Therefore, as in many experi-

ments of this nature, we must find a compromise between the desire for low densities

and the problem of low signal. Unfortunately, the perturber densities required for

acceptable signal-to-noise may in fact put us into the multiple collision regime, for

at least some of our data. Consequently, we now try to estimate the impact this

effect has on our measured rate coefficients.

If we return to Eq. 5.3 in Chapter 5,

nc
nd

=

∑
P

nP

[
kd→cP +

∑
i 6=d

ki→cP
ni
nd

]
[
Γ +

∑
P

kQ,cP nP

] , (6.25)

we see that the first term in the numerator represents collisions that transfer popu-

lation from the directly populated level (d) to the designated collisional level (c) in

one step, and the second term (the sum over i 6= d) represents collisions populating

level c from other levels i 6= d that were populated from level d, either directly or
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indirectly, in previous collisions. Figure 6.27 shows the level diagram corresponding

to the rate equation that leads to Eq. 6.25.
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Figure 6.27: Level diagram outlining the collisional processes in Eq. 6.25. A directly
populated level d undergoes collisions with a perturber P to transfer pop-
ulation either to the collisional level in which we are interested (c) or to
other collisional levels i. Secondary collisions can then transfer population
from the levels i to level c.

In our analysis up to now we have assumed the multiple collision term is neg-

ligible. One check on the validity of this assumption is to compare the sum of all

available fitted J -changing rate coefficients for a particular perturber with the fitted

quenching rate coefficient for that perturber kQP . (Note: in principle the v -changing

rate coefficients should also be included. However, these only contribute approxi-

mately 33% to the total and are therefore neglected here, but will be discussed later

in this section.) Table 6.15 shows this comparison where we see that the quenching
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rate coefficients are, in the worst cases, only ≈50% of the sums of individual ∆J

rate coefficients.

Direct level
∑
J

k
∆J,(0)
Ar

∑
J

k
∆J,(0)
He

∑
J

k
∆J,(0)
K

(cm3s−1) (cm3s−1) (cm3s−1)
2(A)1Σ+ (0, 14) 1.17×10−9 2.72×10−9 3.55×10−8

2(A)1Σ+ (0, 30) 1.46×10−9 2.84×10−9 2.74×10−8

2(A)1Σ+ (1, 26) 1.19×10−9 2.41×10−9 2.53×10−8

2(A)1Σ+ (2, 44) 1.21×10−9 2.27×10−9 1.79×10−8

kQ (cm3s−1) 8.27×10−10 1.39×10−9 2.02×10−8

Table 6.15: Comparison of fitted quenching rate coefficients with the sums of the k∆J

values for a given initial level. These values were obtained using the global

fit results for the quenching rate coefficients and zeroth order k
d→c(0)
P rate

coefficients for argon, helium and potassium.

Since the total quenching rate should represent the sum of all collisional rates

out of a given level, the fact that the sum of the J -changing rates is larger than the

fitted quenching rates implies that we have over estimated the individual J -changing

rates (by neglecting the multiple collision effects). In principle all data consisting of

all measured nc
nd

and ni
nd

ratios for all levels c should be fit simultaneously as func-

tions of the various perturber densities by using Eq. 6.25. But this procedure would

couple all the rate coefficients together, and the fitting would become impractical,

as even the fits of the |∆J | ≤ 4 data already involve 99 fitted parameters without

inclusion of multiple collision considerations. On the other hand, correcting the

rate coefficients for multiple collision effects after the fact also doesn’t work since

the magnitude of the effect depends on the perturber densities. However, we can

calculate an upper limit for the magnitude of the error in the various rate coefficients

due to neglect of multiple collisions.
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We start by noting that the previously determined ki→cP values are approximately

equal for the same ∆J but different initial J. This means we can, for example, ap-

proximate kJ=28→J=25
P by kJ=30→J=27

P . The rate coefficients obtained in our original

fit, which we now designate as the zeroth order rate coefficients k
∆J(0)
P , in fact rep-

resent the sum of the actual rate coefficient for one-step collisional transfer from the

directly excited level (k
d→c(act)
P ) and the actual multiple collision terms that populate

level c from all other levels i, i.e., k
i→c(act)
P

ni
nd

. Thus for a given perturber, we have

k
∆J(0)
P =

[
k
d→c(act)
P +

∑
i 6=d

k
i→c(act)
P

ni
nd

]
(6.26)

or

k
∆J(act)
P =

[
k
d→c(0)
P −

∑
i 6=d

k
i→c(act)
P

ni
nd

]
. (6.27)

One way to proceed from here is to use the zeroth order k
∆J(0)
P values as estimates

of the k
i→c(act)
P values, with ∆J = c− i. If the corrections were sufficiently small, we

could obtain a first order estimate for each k
∆J(act)
P :

k
∆J(1)
P = k

d→c(0)
P −

∑
i 6=d

k
∆J=c−i(0)
P

ni
nd

(6.28)

using known values for ni
nd

. This process could be iterated, such that

k
∆J(m)
P = k

d→c(0)
P −

∑
i 6=d

k
∆J=c−i(m−1)
P

ni
nd
. (6.29)

Unfortunately, when we tried this, we found that for high perturber densities some

(or all) values of k
∆J=c−d(1)
P turned out to be negative, which implies that multiple

collisions are much more than a small correction at these densities. This causes
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the iteration process to fail because the zeroth order rate coefficients are not a suffi-

ciently good first estimate for the actual rate coefficients. In other words, estimating

the multiple collision terms using the zeroth order rate coefficients grossly over com-

pensates for these effects. Therefore another method of estimating the first order

rate coefficients is needed. If we return to Eq. 6.26, we can write

k
d→c(act)
P

k
d→c(0)
P

=
k
d→c(act)
P

k
d→c(act)
P +

∑
i 6=d

k
i→c(act)
P

ni
nd

(6.30)

which is exact. Now, it is not unreasonable to assume, as a first approximation,

that each ∆J collision is affected equally by multiple collisions; i.e. that
k
d→c(act)
P

k
d→c(0)
P

≈

constant. Thus we can form an alternative first approximation to the actual rate

coefficients as

k
d→c(1)
P

k
d→c(0)
P

=
k
d→c(0)
P

k
d→c(0)
P +

∑
i 6=d

k
i→c(0)
P

ni
nd

(6.31)

or

k
d→c(1)
P =

(k
d→c(0)
P )2

k
d→c(0)
P +

∑
i 6=d

k
i→c(0)
P

ni
nd

. (6.32)

These first order estimates can be substituted into the multiple collision term in

Eq. 6.29 to give a second order estimate of the k
d→c(act)
P values. This process can

then be iterated.

We carry out this process with the recognition that it is far from exact since, as

we previously noted, these corrections depend on density through the terms ni
nd

. In

fact, because the zeroth order rate coefficients were fit to the density ratios, we can
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accurately replace ni
nd

in the above equations with

ni
nd

=

∑
P

k
d→i(0)
P

Γ
nP

1 +
∑
P

kQP
Γ
nP

. (6.33)

Thus the corrected (iterated) rate coefficients would only represent the actual

rate coefficients if the perturber densities were the values used in Eq. 6.33 for all

recorded data. But by using the highest perturber densities in Eq. 6.33 and then

carrying out the calculations outlined above, we get a good estimate of an upper limit

for the errors in our measured rate coefficients due to neglect of multiple collision

effects. Initial rate coefficients values, as well as calculations for the first through

sixth, 99th and 100th iterations are, for 2(A)1Σ+ (0, 14), given in Tables 6.16, 6.17,

and 6.18 for argon, helium, and potassium perturbers, respectively. Similar values

for initial levels 2(A)1Σ+ (0, 30), 2(A)1Σ+ (1, 26) and 2(A)1Σ+ (2, 44) are provided

in Tables 6.19-6.21, 6.22-6.24, and 6.25-6.27, respectively. Note that in the case of

the helium values for 2(A)1Σ+ (2, 44), the iterative process didn’t converge by 100

iterations, but did by 1000 iterations. Therefore, Table 6.26 includes results for the

999th and 1000th iterations, rather than for the 99th and 100th iterations.
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2(A)1Σ+ (0, 14) Original and Corrected kd→c
Ar values (in units of 10−11 cm3s−1)

k
d→c(n)
Ar for iteration n

∆J k
d→c(0)
Ar n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-10 1.82 1.05 1.08 1.21 1.15 1.20 1.16 1.18 1.18
-9 0.89 0.32 0.03 0.14 0.06 0.13 0.07 0.10 0.10
-8 1.95 0.86 0.46 0.55 0.46 0.53 0.46 0.49 0.49
-7 1.97 0.89 0.66 0.84 0.72 0.82 0.74 0.78 0.78
-6 3.53 1.77 1.43 1.57 1.46 1.57 1.47 1.51 1.51
-5 2.69 1.20 0.81 0.99 0.85 0.97 0.86 0.91 0.91
-4 5.96 3.33 2.95 3.01 2.85 2.98 2.86 2.92 2.92
-3 3.70 1.74 1.31 1.51 1.32 1.49 1.34 1.41 1.41
-2 14.00 10.74 11.59 11.78 11.64 11.78 11.64 11.73 11.73
-1 5.11 2.62 2.34 2.58 2.36 2.56 2.38 2.46 2.46
1 5.58 2.87 2.62 2.93 2.66 2.90 2.69 2.79 2.79
2 16.46 12.53 13.62 13.91 13.67 13.91 13.72 13.81 13.81
3 4.60 2.03 1.37 1.70 1.38 1.66 1.40 1.53 1.53
4 8.32 4.54 4.09 4.30 3.97 4.26 3.99 4.12 4.12
5 4.32 1.85 1.25 1.68 1.31 1.65 1.35 1.49 1.49
6 5.34 2.42 1.70 2.09 1.71 2.06 1.75 1.90 1.90
7 3.91 1.61 1.00 1.48 1.08 1.44 1.11 1.27 1.27
8 3.94 1.58 0.84 1.31 0.92 1.29 0.95 1.11 1.11
9 3.61 1.46 0.88 1.37 0.95 1.32 0.98 1.14 1.14
10 3.26 1.24 0.52 1.00 0.59 0.96 0.62 0.79 0.79
11 3.20 1.26 0.69 1.14 0.73 1.11 0.77 0.93 0.93
12 3.02 1.17 0.61 1.08 0.67 1.05 0.70 0.87 0.87
13 2.86 1.12 0.61 0.98 0.59 0.94 0.62 0.77 0.77
14 2.69 1.05 0.59 0.96 0.58 0.92 0.61 0.75 0.75
15 2.85 1.30 1.23 1.60 1.28 1.58 1.31 1.44 1.44
16 2.37 1.02 0.87 1.22 0.91 1.20 0.94 1.06 1.06

Table 6.16: J -changing rate coefficients for argon, corrected for multiple collision effects
(with nAr = 2.13 ×1017 cm−3 and nK = 2.12 ×1015 cm−3) obtained using

quenching rate coefficients from the global fit results and zeroth order k
d→c(0)
Ar

rate coefficients from the original global and individual fits. The zeroth, first
through sixth, 99th and 100th order (corrected) argon rate coefficients for
excitation of 2(A)1Σ+ (0, 14) are presented here.
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2(A)1Σ+ (0, 14) Original and Corrected kd→c
He values (in units of 10−11 cm3s−1)

k
d→c(n)
He for iteration n

∆J k
d→c(0)
He n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-10 5.39 2.84 2.85 2.98 2.89 3.06 2.84 3.80 2.12
-9 2.81 1.14 0.85 1.12 0.89 1.15 0.85 1.93 0.03
-8 7.05 3.44 3.01 3.04 2.86 3.12 2.78 4.20 1.72
-7 4.02 1.64 1.21 1.58 1.23 1.62 1.16 2.65 0.00
-6 10.03 5.06 4.61 4.63 4.37 4.73 4.27 6.20 2.84
-5 4.54 1.67 0.78 1.20 0.71 1.24 0.61 2.73 0.00
-4 14.62 7.99 7.99 7.99 7.62 8.14 7.47 9.93 5.68
-3 6.24 2.51 1.87 2.54 1.91 2.62 1.79 4.20 0.00
-2 24.03 15.85 17.64 17.97 17.55 18.16 17.36 20.29 15.23
-1 6.67 2.49 1.44 2.22 1.39 2.30 1.24 4.31 0.00
1 7.47 2.79 1.72 2.75 1.75 2.88 1.57 5.06 0.00
2 28.05 17.78 20.06 20.72 19.96 21.00 19.72 23.98 16.56
3 7.24 2.44 0.77 1.93 0.72 2.08 0.50 4.66 0.00
4 20.20 10.22 10.07 10.64 9.60 10.88 9.37 14.43 5.49
5 7.95 2.69 1.03 2.41 1.00 2.58 0.75 5.34 0.00
6 16.65 7.33 6.15 6.91 5.72 7.24 5.39 11.21 1.01
7 8.32 2.83 1.24 2.77 1.23 2.98 0.96 5.87 0.00
8 14.85 6.15 4.82 5.87 4.56 6.20 4.23 10.31 0.00
9 7.99 2.62 0.84 2.33 0.70 2.54 0.41 5.58 0.00
10 13.15 5.16 3.54 4.64 3.24 4.97 2.89 9.22 0.00
11 8.09 2.73 1.25 2.75 1.11 2.97 0.81 5.87 0.00
12 12.35 4.87 3.53 4.68 3.25 5.01 2.90 9.03 0.00
13 7.76 2.65 1.38 2.72 1.10 2.90 0.80 5.82 0.00
14 10.93 4.20 2.98 4.03 2.62 4.29 2.28 8.14 0.00
15 7.66 2.91 2.54 3.94 2.51 4.14 2.25 6.53 0.00
16 10.17 4.24 4.03 5.20 3.96 5.49 3.68 8.56 0.00

Table 6.17: J -changing rate coefficients for helium, corrected for multiple collision effects
(with nHe = 2.95 ×1017 cm−3 and nK = 3.02 ×1015 cm−3) for excitation of
2(A)1Σ+ (0, 14) are presented here.
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2(A)1Σ+ (0, 14) Original and Corrected kd→c
K values (in units of 10−11 cm3s−1)

k
d→c(n)
K for iteration n

∆J k
d→c(0)
K n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-10 3.41 1.46 0.88 1.14 0.97 1.11 0.99 1.05 1.05
-9 6.62 3.80 3.99 4.39 4.20 4.38 4.22 4.29 4.29
-8 7.24 3.59 2.98 3.39 3.15 3.36 3.18 3.26 3.26
-7 5.87 2.49 1.35 1.69 1.38 1.63 1.40 1.51 1.51
-6 8.89 3.96 2.17 2.41 2.08 2.37 2.11 2.24 2.24
-5 8.66 3.89 2.63 3.09 2.69 3.04 2.73 2.88 2.88
-4 20.24 11.97 11.35 11.59 11.16 11.54 11.21 11.35 11.35
-3 13.58 7.00 6.34 6.95 6.43 6.91 6.48 6.67 6.67
-2 42.14 32.31 34.81 35.38 34.95 35.38 35.00 35.19 35.19
-1 15.66 8.04 7.14 7.76 7.14 7.71 7.19 7.43 7.43
1 17.26 8.99 8.37 9.22 8.47 9.13 8.56 8.85 8.85
2 44.46 32.97 35.85 36.70 36.00 36.70 36.09 36.37 36.37
3 14.71 6.81 5.34 6.34 5.44 6.24 5.53 5.87 5.87
4 23.32 12.58 11.40 12.11 11.16 12.01 11.26 11.59 11.59
5 11.16 4.42 2.08 3.32 2.26 3.20 2.36 2.76 2.76
6 13.95 5.82 3.18 4.19 3.12 4.09 3.21 3.62 3.62
7 10.31 3.97 1.81 3.27 2.13 3.15 2.23 2.67 2.67
8 13.01 5.63 4.03 5.49 4.36 5.39 4.46 4.92 4.92
9 8.89 3.22 0.89 2.31 1.12 2.19 1.23 1.68 1.68
10 10.93 4.43 2.71 4.03 2.86 3.92 2.95 3.41 3.41
11 9.46 3.70 2.03 3.34 2.17 3.24 2.28 2.73 2.73
12 10.41 4.33 3.02 4.23 3.10 4.14 3.20 3.65 3.65
13 9.60 4.03 2.91 3.99 2.88 3.87 2.97 3.40 3.40
14 8.80 3.57 2.21 3.10 2.04 2.99 2.12 2.54 2.54
15 9.03 4.23 4.13 5.16 4.24 5.11 4.32 4.69 4.69
16 10.12 5.25 5.68 6.67 5.82 6.62 5.91 6.24 6.24

Table 6.18: J -changing rate coefficients for potassium, corrected for multiple collision
effects (with nAr = 2.13 ×1017 cm−3 and nK = 2.12 ×1015 cm−3) for exci-
tation of 2(A)1Σ+ (0, 14) are presented here.
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2(A)1Σ+ (0, 30) Original and Corrected kd→c
Ar values (in units of 10−11 cm3s−1)

k
d→c(n)
Ar for iteration n

∆J k
d→c(0)
Ar n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-20 1.22 0.45 0.35 0.61 0.31 0.65 0.27 0.96 0.00
-19 1.50 0.58 0.53 0.83 0.50 0.87 0.46 1.20 0.00
-18 1.52 0.53 0.28 0.59 0.21 0.63 0.16 1.04 0.00
-17 1.62 0.55 0.22 0.54 0.12 0.57 0.07 1.06 0.00
-16 1.75 0.58 0.19 0.57 0.12 0.62 0.06 1.11 0.00
-15 2.08 0.74 0.41 0.83 0.37 0.89 0.31 1.40 0.00
-14 2.17 0.74 0.31 0.77 0.28 0.83 0.22 1.39 0.00
-13 2.32 0.79 0.32 0.80 0.28 0.86 0.22 1.48 0.00
-12 2.51 0.85 0.28 0.78 0.25 0.84 0.18 1.53 0.00
-11 2.64 0.89 0.31 0.84 0.28 0.89 0.21 1.62 0.00
-10 3.16 1.13 0.53 1.06 0.50 1.12 0.43 1.91 0.00
-9 3.26 1.19 0.66 1.25 0.69 1.31 0.62 2.06 0.00
-8 3.93 1.50 0.87 1.38 0.84 1.45 0.78 2.30 0.00
-7 3.30 1.12 0.28 0.79 0.24 0.84 0.17 1.79 0.00
-6 5.28 2.22 1.59 2.00 1.49 2.07 1.42 2.99 0.39
-5 4.51 1.79 1.21 1.73 1.22 1.79 1.16 2.69 0.09
-4 8.29 4.22 3.96 4.22 3.74 4.27 3.68 5.23 2.67
-3 5.37 2.26 1.62 2.01 1.53 2.05 1.47 3.04 0.43
-2 16.20 11.35 12.67 13.05 12.67 13.14 12.62 14.04 11.68
-1 7.16 3.53 3.42 3.83 3.42 3.88 3.37 4.90 2.36
1 6.64 3.11 2.70 3.00 2.64 3.04 2.59 4.01 1.64
2 16.86 12.01 13.33 13.61 13.38 13.71 13.33 14.55 12.53
3 5.79 2.58 2.01 2.29 1.99 2.33 1.95 3.24 1.07
4 8.67 4.50 4.04 4.08 3.82 4.11 3.78 4.95 2.99
5 4.99 2.14 1.50 1.73 1.48 1.76 1.45 2.57 0.67
6 6.26 2.98 2.44 2.58 2.38 2.62 2.36 3.34 1.65
7 4.56 2.04 1.59 1.79 1.59 1.80 1.56 2.47 0.91
8 4.85 2.24 1.74 1.86 1.69 1.87 1.66 2.45 1.08
9 4.01 1.98 1.91 2.12 1.98 2.14 1.96 2.64 1.47
10 4.09 2.11 2.09 2.28 2.18 2.30 2.16 2.74 1.73

Table 6.19: J -changing rate coefficients for argon, corrected for multiple collision effects
(with nAr = 2.13 ×1017 cm−3 and nK = 2.12 ×1015 cm−3) for excitation of
2(A)1Σ+ (0, 30) are presented here.
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2(A)1Σ+ (0, 30) Original and Corrected kd→c
He values (in units of 10−11 cm3s−1)

k
d→c(n)
He for iteration n

∆J k
d→c(0)
He n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-20 3.25 1.12 0.97 1.65 0.77 1.92 0.39 3.04 0.00
-19 3.98 1.46 1.46 2.23 1.30 2.54 0.89 3.75 0.00
-18 3.63 1.12 0.50 1.23 0.17 1.56 0.00 3.13 0.00
-17 3.97 1.21 0.39 1.09 0.00 1.41 0.00 3.35 0.00
-16 4.56 1.46 0.81 1.71 0.51 2.09 0.00 4.01 0.00
-15 5.70 2.03 1.69 2.69 1.46 3.10 0.91 5.09 0.00
-14 4.99 1.53 0.53 1.54 0.24 1.97 0.00 4.33 0.00
-13 5.60 1.77 0.76 1.79 0.43 2.21 0.00 4.85 0.00
-12 5.65 1.71 0.48 1.58 0.20 2.04 0.00 4.90 0.00
-11 6.03 1.84 0.48 1.60 0.18 2.06 0.00 5.18 0.00
-10 7.02 2.29 1.13 2.30 0.86 2.77 0.18 6.08 0.00
-9 7.21 2.35 1.12 2.29 0.88 2.76 0.20 6.22 0.00
-8 7.87 2.64 1.39 2.51 1.14 2.99 0.47 6.74 0.00
-7 8.10 2.75 1.54 2.68 1.34 3.15 0.68 6.97 0.00
-6 9.33 3.33 2.04 2.89 1.59 3.32 0.94 7.82 0.00
-5 9.23 3.31 2.16 3.13 1.88 3.56 1.25 7.96 0.00
-4 14.13 6.41 6.45 7.21 6.08 7.63 5.46 11.96 0.00
-3 10.31 3.87 2.72 3.47 2.35 3.86 1.76 8.76 0.00
-2 23.08 13.66 16.06 16.81 15.87 17.24 15.35 21.90 9.23
-1 13.89 6.31 6.55 7.35 6.45 7.77 5.93 12.34 0.00
1 11.78 4.80 3.79 4.15 3.36 4.47 2.88 9.94 0.00
2 25.25 15.73 18.37 18.84 18.27 19.22 17.85 24.26 12.10
3 12.06 5.13 4.57 4.99 4.42 5.32 4.01 10.46 0.00
4 14.60 6.78 6.22 6.12 5.60 6.41 5.23 11.73 0.00
5 10.60 4.33 3.31 3.47 3.02 3.74 2.67 8.95 0.00
6 12.91 5.98 5.56 5.60 5.28 5.89 4.95 10.93 0.00
7 9.99 4.27 3.56 3.68 3.37 3.90 3.08 8.43 0.00
8 10.69 4.80 4.19 4.10 3.85 4.28 3.58 8.81 0.00
9 9.70 4.71 4.85 5.09 4.90 5.28 4.69 8.81 0.77
10 9.89 5.09 5.42 5.65 5.51 5.84 5.32 9.04 1.79

Table 6.20: J -changing rate coefficients for helium, corrected for multiple collision effecs
(with nHe = 2.95 ×1017 cm−3 and nK = 3.02 ×1015 cm−3) for excitation of
2(A)1Σ+ (0, 30) are presented here.
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2(A)1Σ+ (0, 30) Original and Corrected kd→c
K values (in units of 10−10 cm3s−1)

k
d→c(n)
K for iteration n

∆J k
d→c(0)
K n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-20 2.35 0.87 0.66 1.16 0.57 1.25 0.49 1.81 0.00
-19 2.81 1.10 0.99 1.59 0.94 1.68 0.84 2.22 0.02
-18 3.04 1.09 0.65 1.25 0.49 1.36 0.38 2.10 0.00
-17 2.99 1.00 0.35 1.00 0.18 1.10 0.06 1.90 0.00
-16 3.69 1.30 0.68 1.41 0.53 1.53 0.40 2.43 0.00
-15 3.63 1.23 0.49 1.32 0.38 1.45 0.25 2.29 0.00
-14 4.44 1.58 0.85 1.71 0.73 1.85 0.59 2.87 0.00
-13 4.06 1.32 0.31 1.28 0.22 1.39 0.08 2.39 0.00
-12 5.32 1.93 1.03 2.01 0.94 2.15 0.79 3.33 0.00
-11 4.70 1.55 0.37 1.46 0.33 1.58 0.18 2.69 0.00
-10 6.12 2.19 0.97 1.95 0.81 2.09 0.65 3.50 0.00
-9 5.09 1.64 0.17 1.29 0.12 1.40 0.00 2.74 0.00
-8 8.62 3.56 2.66 3.65 2.56 3.82 2.41 5.23 0.71
-7 6.78 2.51 1.31 2.50 1.36 2.62 1.22 3.90 0.00
-6 11.40 5.13 4.20 4.99 3.91 5.13 3.77 6.69 2.08
-5 6.97 2.49 0.86 1.92 0.82 2.02 0.69 3.59 0.00
-4 17.99 9.80 9.75 10.31 9.33 10.46 9.18 12.01 7.54
-3 8.62 3.39 1.94 2.91 1.89 2.99 1.77 4.49 0.08
-2 30.99 21.67 24.12 24.87 24.02 24.96 23.93 26.47 22.42
-1 9.84 4.17 3.01 3.91 3.00 3.99 2.90 5.56 1.30
1 10.36 4.51 3.35 4.15 3.34 4.21 3.25 5.75 1.73
2 33.06 23.69 26.19 26.75 26.14 26.89 26.09 28.26 24.77
3 9.18 3.80 2.36 3.06 2.36 3.11 2.29 4.56 0.89
4 19.26 10.83 10.50 10.69 10.13 10.74 10.03 12.06 8.76
5 8.05 3.25 1.77 2.38 1.80 2.43 1.74 3.70 0.49
6 13.09 6.50 5.65 5.93 5.46 5.98 5.42 7.16 4.29
7 7.35 3.09 2.01 2.52 2.04 2.53 1.99 3.61 0.96
8 9.70 4.61 3.72 3.98 3.59 4.00 3.55 4.95 2.62
9 6.74 3.21 2.95 3.46 3.12 3.48 3.09 4.28 2.30
10 8.01 4.18 4.11 4.48 4.23 4.53 4.21 5.23 3.52

Table 6.21: J -changing rate coefficients for potassium, corrected for multiple collision
effects (with nAr = 2.13 ×1017 cm−3 and nK = 2.12 ×1015 cm−3) for exci-
tation of 2(A)1Σ+ (0, 30) are presented here.
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2(A)1Σ+ (1, 26) Original and Corrected kd→c
Ar values (in units of 10−11 cm3s−1)

k
d→c(n)
Ar for iteration n

∆J k
d→c(0)
Ar n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-17 0.93 0.41 0.34 0.45 0.37 0.44 0.38 0.41 0.41
-16 1.13 0.50 0.41 0.53 0.44 0.52 0.45 0.48 0.48
-15 1.27 0.55 0.42 0.56 0.45 0.54 0.46 0.50 0.50
-14 1.59 0.72 0.59 0.75 0.62 0.73 0.64 0.68 0.68
-13 1.32 0.50 0.19 0.35 0.21 0.33 0.23 0.28 0.28
-12 1.74 0.72 0.43 0.61 0.46 0.58 0.48 0.53 0.53
-11 1.75 0.72 0.43 0.64 0.48 0.61 0.50 0.55 0.55
-10 2.16 0.91 0.55 0.75 0.59 0.72 0.61 0.66 0.66
-9 2.27 0.98 0.70 0.93 0.76 0.90 0.78 0.84 0.84
-8 3.09 1.45 1.13 1.36 1.20 1.34 1.21 1.27 1.27
-7 2.57 1.09 0.67 0.89 0.71 0.85 0.73 0.79 0.79
-6 4.05 1.97 1.52 1.70 1.53 1.68 1.56 1.61 1.61
-5 3.35 1.55 1.17 1.39 1.22 1.37 1.24 1.30 1.30
-4 6.61 3.76 3.41 3.50 3.33 3.48 3.35 3.40 3.40
-3 4.11 1.99 1.60 1.79 1.61 1.76 1.63 1.69 1.69
-2 14.63 11.44 12.29 12.48 12.33 12.48 12.33 12.43 12.43
-1 5.49 3.03 2.91 3.10 2.93 3.08 2.95 3.01 3.01
1 5.39 2.94 2.78 2.95 2.78 2.94 2.80 2.86 2.86
2 14.87 11.73 12.57 12.76 12.57 12.71 12.62 12.66 12.66
3 4.46 2.25 1.93 2.11 1.93 2.09 1.95 2.02 2.02
4 6.85 4.12 4.01 4.12 3.97 4.10 3.99 4.04 4.04
5 3.49 1.63 1.26 1.47 1.29 1.45 1.31 1.37 1.37
6 1.59 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 2.88 1.31 0.98 1.20 1.02 1.18 1.04 1.10 1.10
8 2.90 1.42 1.31 1.54 1.39 1.52 1.41 1.46 1.46
9 2.48 1.11 0.84 1.06 0.87 1.02 0.90 0.95 0.95
10 2.24 1.00 0.78 0.98 0.82 0.95 0.83 0.89 0.89
11 2.08 0.93 0.74 0.96 0.79 0.94 0.81 0.87 0.87
12 1.60 0.64 0.35 0.54 0.39 0.52 0.41 0.46 0.46
13 1.24 0.44 0.08 0.28 0.12 0.25 0.14 0.19 0.19
14 0.86 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.94 0.31 0.00 0.15 0.00 0.12 0.02 0.07 0.07
16 1.20 0.50 0.39 0.57 0.45 0.55 0.47 0.51 0.51
17 1.12 0.47 0.35 0.53 0.40 0.51 0.41 0.46 0.46
18 0.93 0.36 0.20 0.34 0.22 0.32 0.24 0.27 0.27
19 0.88 0.34 0.17 0.29 0.18 0.27 0.19 0.23 0.23
20 0.70 0.25 0.04 0.14 0.03 0.12 0.04 0.08 0.08
21 0.78 0.31 0.16 0.24 0.14 0.23 0.16 0.19 0.19
22 0.76 0.35 0.34 0.44 0.36 0.43 0.38 0.40 0.40
23 0.92 0.50 0.54 0.64 0.57 0.63 0.58 0.61 0.61

Table 6.22: J -changing rate coefficients for argon, corrected for multiple collision effects
(with nAr = 1.50 ×1017 cm−3 and nK = 1.48 ×1015 cm−3) for excitation of
2(A)1Σ+ (1, 26) are presented here.
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2(A)1Σ+ (1, 26) Original and Corrected kd→c
He values (in units of 10−11 cm3s−1)

k
d→c(n)
He for iteration n

∆J k
d→c(0)
He n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-17 2.11 0.87 0.71 1.01 0.77 1.01 0.77 1.31 0.47
-16 3.78 1.78 1.65 1.92 1.71 1.94 1.70 2.26 1.38
-15 2.32 0.85 0.38 0.71 0.40 0.70 0.40 1.08 0.01
-14 4.78 2.19 1.84 2.13 1.87 2.15 1.85 2.55 1.45
-13 2.80 1.02 0.41 0.78 0.41 0.76 0.41 1.22 0.00
-12 5.30 2.26 1.48 1.74 1.43 1.76 1.41 2.22 0.94
-11 3.70 1.50 1.09 1.57 1.17 1.57 1.17 2.07 0.66
-10 6.99 3.26 2.68 3.01 2.69 3.05 2.67 3.56 2.17
-9 3.81 1.45 0.77 1.25 0.80 1.24 0.79 1.80 0.23
-8 8.63 4.19 3.58 3.87 3.52 3.92 3.50 4.46 2.96
-7 4.34 1.70 1.05 1.58 1.10 1.58 1.10 2.19 0.48
-6 11.26 5.91 5.49 5.72 5.35 5.77 5.35 6.33 4.74
-5 4.23 1.53 0.55 1.07 0.55 1.07 0.54 1.73 0.00
-4 15.05 8.72 8.68 8.82 8.40 8.86 8.40 9.43 7.79
-3 5.25 2.13 1.47 2.05 1.51 2.05 1.51 2.72 0.83
-2 24.11 17.17 18.71 19.04 18.67 19.09 18.62 19.65 18.06
-1 5.77 2.42 1.83 2.41 1.86 2.42 1.85 3.10 1.15
1 5.91 2.48 1.85 2.42 1.84 2.42 1.83 3.12 1.12
2 24.76 17.87 19.56 19.84 19.42 19.89 19.42 20.45 18.85
3 5.58 2.26 1.52 2.10 1.51 2.11 1.51 2.80 0.80
4 16.56 10.36 11.12 11.49 11.07 11.54 11.07 12.10 10.51
5 5.35 2.13 1.38 1.95 1.36 1.96 1.36 2.64 0.65
6 4.78 1.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 5.49 2.29 1.79 2.39 1.81 2.40 1.81 3.05 1.12
8 7.46 3.48 3.12 3.63 3.18 3.64 3.18 4.18 2.61
9 4.88 1.97 1.38 1.94 1.37 1.94 1.36 2.55 0.71
10 6.19 2.73 2.26 2.73 2.27 2.73 2.27 3.25 1.71
11 4.26 1.67 1.11 1.68 1.14 1.67 1.13 2.22 0.52
12 6.00 2.77 2.54 3.01 2.56 3.01 2.56 3.49 2.02
13 3.12 1.06 0.29 0.82 0.32 0.82 0.32 1.32 0.00
14 2.80 0.82 0.00 0.00 0.00 0.00 0.00 0.27 0.00
15 2.41 0.74 0.00 0.37 0.00 0.36 0.00 0.85 0.00
16 3.96 1.68 1.39 1.82 1.45 1.82 1.45 2.19 1.00
17 2.64 0.96 0.53 1.00 0.58 1.00 0.59 1.37 0.12
18 3.28 1.37 1.13 1.54 1.19 1.53 1.19 1.85 0.79
19 2.29 0.82 0.40 0.79 0.41 0.78 0.41 1.12 0.00
20 2.04 0.67 0.02 0.27 0.00 0.24 0.00 0.60 0.00
21 1.79 0.60 0.12 0.41 0.07 0.39 0.07 0.73 0.00
22 2.23 0.96 0.91 1.23 0.97 1.22 0.97 1.44 0.68
23 2.16 0.98 1.03 1.34 1.08 1.34 1.08 1.56 0.80

Table 6.23: J -changing rate coefficients for helium, corrected for multiple collision effects
(with nHe = 1.13 ×1017 cm−3 and nK = 2.92 ×1015 cm−3) for excitation of
2(A)1Σ+ (1, 26) are presented here.
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2(A)1Σ+ (1, 26) Original and Corrected kd→c
K values (in units of 10−10 cm3s−1)

k
d→c(n)
K for iteration n

∆J k
d→c(0)
K n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-17 2.31 1.13 1.12 1.44 1.22 1.41 1.25 1.33 1.33
-16 2.00 0.81 0.50 0.83 0.57 0.79 0.61 0.69 0.69
-15 1.81 0.61 0.00 0.27 0.00 0.21 0.00 0.09 0.09
-14 2.77 1.12 0.61 1.05 0.71 0.99 0.76 0.86 0.86
-13 2.73 1.02 0.31 0.77 0.40 0.71 0.45 0.57 0.57
-12 3.26 1.23 0.33 0.80 0.40 0.73 0.45 0.58 0.58
-11 3.65 1.47 0.76 1.31 0.90 1.24 0.95 1.09 1.09
-10 5.02 2.18 1.38 1.93 1.51 1.87 1.56 1.70 1.70
-9 4.83 2.08 1.37 1.95 1.48 1.87 1.54 1.69 1.69
-8 6.89 3.18 2.22 2.72 2.27 2.66 2.33 2.49 2.49
-7 6.24 2.87 2.19 2.83 2.35 2.76 2.41 2.57 2.57
-6 11.82 6.52 5.96 6.47 6.00 6.43 6.05 6.24 6.24
-5 5.96 2.48 1.23 1.83 1.32 1.74 1.38 1.55 1.55
-4 17.82 10.88 10.46 10.74 10.22 10.65 10.32 10.46 10.46
-3 7.46 3.40 2.34 3.00 2.50 2.93 2.56 2.73 2.73
-2 34.19 26.92 28.70 29.17 28.75 29.12 28.80 28.94 28.94
-1 7.08 3.04 1.56 2.11 1.59 2.02 1.65 1.82 1.82
1 10.04 5.30 4.83 5.53 5.02 5.49 5.11 5.25 5.25
2 35.08 28.09 29.83 30.30 29.88 30.25 29.92 30.06 30.06
3 6.99 3.05 1.70 2.27 1.74 2.19 1.81 1.98 1.98
4 18.76 12.33 12.52 12.94 12.48 12.85 12.57 12.71 12.71
5 5.86 2.44 1.16 1.75 1.23 1.66 1.29 1.46 1.46
6 4.08 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 6.05 2.82 2.24 2.94 2.44 2.87 2.51 2.68 2.68
8 5.63 2.62 2.16 2.78 2.35 2.72 2.42 2.55 2.55
9 4.04 1.59 0.66 1.24 0.74 1.15 0.80 0.96 0.96
10 4.09 1.72 1.05 1.57 1.13 1.48 1.18 1.32 1.32
11 2.89 1.02 0.11 0.67 0.21 0.60 0.27 0.42 0.42
12 3.95 1.79 1.44 1.93 1.53 1.87 1.59 1.72 1.72
13 2.35 0.81 0.03 0.56 0.15 0.51 0.21 0.35 0.35
14 0.95 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 1.83 0.60 0.00 0.37 0.00 0.30 0.03 0.15 0.15
16 1.74 0.59 0.03 0.38 0.07 0.33 0.11 0.21 0.21
17 1.69 0.59 0.08 0.48 0.15 0.43 0.20 0.31 0.31
18 2.45 1.13 1.03 1.41 1.13 1.37 1.17 1.27 1.27
19 1.83 0.73 0.41 0.75 0.47 0.70 0.51 0.61 0.61
20 1.33 0.44 0.00 0.14 0.00 0.09 0.00 0.00 0.00
21 1.21 0.41 0.00 0.15 0.00 0.11 0.00 0.02 0.02
22 2.00 1.07 1.17 1.42 1.23 1.39 1.26 1.33 1.33
23 1.82 0.98 1.05 1.26 1.10 1.24 1.12 1.18 1.18

Table 6.24: J -changing rate coefficients for potassium, corrected for multiple collision
effects (with nAr = 1.50 ×1017 cm−3 and nK = 1.48 ×1015 cm−3) for exci-
tation of 2(A)1Σ+ (1, 26) are presented here.
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2(A)1Σ+ (2, 44) Original and Corrected kd→c
Ar values (in units of 10−11 cm3s−1)

k
d→c(n)
Ar for iteration n

∆J k
d→c(0)
Ar n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-17 0.92 0.43 0.43 0.56 0.48 0.54 0.49 0.51 0.51
-16 0.72 0.26 0.11 0.23 0.14 0.21 0.15 0.18 0.18
-15 0.84 0.29 0.03 0.15 0.04 0.13 0.06 0.09 0.09
-14 1.08 0.41 0.17 0.32 0.21 0.30 0.22 0.26 0.26
-13 1.26 0.48 0.22 0.38 0.25 0.36 0.27 0.31 0.31
-12 1.62 0.67 0.42 0.60 0.46 0.58 0.48 0.52 0.52
-11 1.87 0.80 0.56 0.75 0.61 0.73 0.63 0.68 0.68
-10 2.23 0.97 0.68 0.85 0.70 0.83 0.72 0.77 0.77
-9 2.32 1.00 0.68 0.87 0.71 0.85 0.73 0.78 0.78
-8 3.17 1.50 1.25 1.44 1.29 1.43 1.31 1.37 1.37
-7 2.98 1.34 1.01 1.20 1.04 1.19 1.06 1.12 1.12
-6 4.08 1.99 1.62 1.77 1.61 1.75 1.62 1.69 1.69
-5 3.77 1.79 1.46 1.64 1.47 1.63 1.49 1.55 1.55
-4 6.48 3.66 3.43 3.51 3.34 3.50 3.36 3.42 3.42
-3 4.77 2.44 2.22 2.42 2.25 2.41 2.26 2.33 2.33
-2 13.80 10.56 11.44 11.62 11.48 11.62 11.48 11.58 11.58
-1 5.09 2.58 2.25 2.39 2.21 2.38 2.23 2.30 2.30
1 5.97 3.32 3.30 3.50 3.33 3.50 3.34 3.42 3.42
2 13.61 10.28 11.20 11.39 11.20 11.39 11.25 11.30 11.30
3 4.77 2.38 2.06 2.24 2.06 2.22 2.07 2.14 2.14
4 6.57 3.68 3.46 3.57 3.39 3.55 3.41 3.47 3.47
5 3.83 1.78 1.40 1.61 1.43 1.59 1.44 1.51 1.51
6 4.15 1.97 1.54 1.70 1.54 1.69 1.55 1.62 1.62
7 3.05 1.33 0.93 1.15 0.98 1.13 1.00 1.06 1.06
8 3.38 1.57 1.27 1.49 1.33 1.48 1.34 1.40 1.40
9 2.44 1.01 0.60 0.81 0.65 0.79 0.67 0.73 0.73
10 2.50 1.06 0.67 0.86 0.70 0.83 0.71 0.77 0.77
11 2.09 0.85 0.50 0.69 0.54 0.67 0.55 0.61 0.61
12 2.29 1.03 0.81 0.99 0.85 0.97 0.87 0.92 0.92
13 1.96 0.86 0.63 0.78 0.64 0.75 0.66 0.70 0.70
14 1.76 0.76 0.53 0.67 0.55 0.65 0.56 0.60 0.60
15 1.88 0.95 0.96 1.10 1.00 1.09 1.01 1.05 1.05
16 1.46 0.68 0.61 0.74 0.64 0.72 0.65 0.69 0.69

Table 6.25: J -changing rate coefficients for argon, corrected for multiple collision effects
(with nAr = 1.69 ×1017 cm−3 and nK = 1.65 ×1015 cm−3) for excitation of
2(A)1Σ+ (2, 44) are presented here.
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2(A)1Σ+ (2, 44) Original and Corrected kd→c
He values (in units of 10−11 cm3s−1)

k
d→c(n)
He for iteration n

∆J k
d→c(0)
He n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 999 n = 1000

-17 1.83 0.81 0.78 1.03 0.87 1.02 0.88 0.95 0.95
-16 1.78 0.62 0.13 0.37 0.20 0.36 0.20 0.28 0.28
-15 1.48 0.45 0.00 0.10 0.00 0.07 0.00 0.00 0.00
-14 2.76 1.04 0.38 0.63 0.42 0.63 0.42 0.52 0.52
-13 2.30 0.84 0.36 0.67 0.41 0.65 0.42 0.54 0.54
-12 4.68 2.09 1.63 1.90 1.66 1.90 1.66 1.78 1.78
-11 3.18 1.28 0.89 1.26 0.95 1.24 0.96 1.10 1.10
-10 6.71 3.28 2.92 3.19 2.92 3.19 2.92 3.06 3.06
-9 3.60 1.42 0.88 1.26 0.91 1.24 0.92 1.07 1.07
-8 8.57 4.34 3.93 4.16 3.88 4.18 3.87 4.02 4.02
-7 4.32 1.78 1.28 1.72 1.33 1.69 1.34 1.52 1.52
-6 10.88 5.79 5.46 5.65 5.32 5.65 5.32 5.51 5.51
-5 4.86 2.05 1.56 2.03 1.61 2.00 1.62 1.81 1.81
-4 14.49 8.38 8.33 8.47 8.15 8.47 8.15 8.29 8.29
-3 4.91 1.99 1.33 1.82 1.37 1.80 1.38 1.59 1.59
-2 23.34 16.44 17.96 18.24 17.96 18.29 17.96 18.10 18.10
-1 5.14 2.08 1.42 1.95 1.47 1.92 1.49 1.70 1.70
1 5.28 2.17 1.55 2.11 1.63 2.08 1.64 1.86 1.86
2 24.21 17.08 18.66 18.98 18.66 19.03 18.66 18.84 18.84
3 4.91 1.93 1.16 1.69 1.20 1.66 1.21 1.44 1.44
4 15.37 8.80 8.75 8.89 8.57 8.94 8.52 8.70 8.70
5 4.72 1.85 1.11 1.63 1.17 1.61 1.18 1.39 1.39
6 11.48 5.88 5.32 5.51 5.19 5.56 5.19 5.37 5.37
7 4.45 1.75 1.06 1.56 1.13 1.54 1.13 1.34 1.34
8 9.58 4.72 4.20 4.49 4.18 4.52 4.17 4.35 4.35
9 3.95 1.50 0.79 1.25 0.84 1.23 0.85 1.04 1.04
10 7.36 3.33 2.50 2.75 2.44 2.76 2.44 2.60 2.60
11 3.59 1.37 0.73 1.13 0.75 1.10 0.77 0.94 0.94
12 6.95 3.35 2.98 3.29 3.02 3.31 3.02 3.17 3.17
13 3.50 1.44 1.03 1.37 1.04 1.34 1.05 1.19 1.19
14 5.23 2.36 1.85 2.08 1.83 2.08 1.83 1.95 1.95
15 3.63 1.76 1.81 2.15 1.89 2.13 1.90 2.01 2.01
16 4.20 1.95 1.73 2.00 1.80 2.00 1.80 1.90 1.90

Table 6.26: J -changing rate coefficients for helium, corrected for multiple collision effects
(with nHe = 1.13 ×1017 cm−3 and nK = 2.92 ×1015 cm−3) for excitation
of 2(A)1Σ+ (2, 44). The zeroth, first through sixth, 999th and 1000th order
helium rate coefficients are presented here.
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2(A)1Σ+ (2, 44) Original and Corrected kd→c
K values (in units of 10−10 cm3s−1)

k
d→c(n)
K for iteration n

∆J k
d→c(0)
K n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-17 0.50 0.14 0.00 0.07 0.00 0.04 0.00 0.01 0.01
-16 0.33 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-14 1.04 0.31 0.00 0.04 0.00 0.00 0.00 0.00 0.00
-13 1.26 0.41 0.00 0.16 0.00 0.10 0.00 0.02 0.02
-12 2.40 1.02 0.60 1.00 0.73 0.94 0.78 0.86 0.86
-11 1.94 0.70 0.06 0.51 0.21 0.44 0.26 0.35 0.35
-10 3.49 1.58 1.07 1.56 1.23 1.50 1.28 1.38 1.38
-9 2.59 0.98 0.21 0.75 0.40 0.67 0.46 0.56 0.56
-8 3.75 1.50 0.42 0.89 0.49 0.80 0.55 0.66 0.66
-7 2.33 0.73 0.00 0.03 0.00 0.00 0.00 0.00 0.00
-6 8.29 4.54 4.03 4.56 4.13 4.49 4.19 4.33 4.33
-5 3.45 1.28 0.01 0.67 0.23 0.59 0.30 0.43 0.43
-4 13.94 8.70 8.38 8.80 8.29 8.70 8.38 8.52 8.52
-3 3.82 1.41 0.00 0.68 0.16 0.58 0.24 0.39 0.39
-2 29.12 23.66 25.09 25.70 25.23 25.65 25.33 25.47 25.47
-1 4.26 1.60 0.00 0.68 0.12 0.57 0.20 0.37 0.37
1 4.72 1.92 0.61 1.39 0.83 1.31 0.92 1.09 1.09
2 29.59 23.94 25.42 26.07 25.56 25.97 25.60 25.79 25.79
3 4.03 1.48 0.00 0.63 0.04 0.53 0.12 0.31 0.31
4 14.58 9.12 8.89 9.35 8.80 9.26 8.84 9.03 9.03
5 3.52 1.24 0.00 0.56 0.00 0.47 0.05 0.24 0.24
6 8.47 4.47 3.82 4.40 3.86 4.33 3.93 4.12 4.12
7 3.24 1.16 0.00 0.71 0.17 0.64 0.24 0.43 0.43
8 5.19 2.35 1.56 2.18 1.66 2.11 1.72 1.90 1.90
9 3.16 1.22 0.38 1.06 0.54 0.98 0.60 0.78 0.78
10 3.50 1.38 0.45 1.00 0.50 0.93 0.56 0.73 0.73
11 2.47 0.89 0.08 0.67 0.19 0.60 0.25 0.41 0.41
12 3.31 1.44 0.95 1.48 1.04 1.43 1.10 1.25 1.25
13 1.94 0.68 0.00 0.44 0.02 0.37 0.07 0.21 0.21
14 2.55 1.08 0.65 1.06 0.69 1.01 0.73 0.86 0.86
15 1.77 0.73 0.47 0.88 0.56 0.84 0.61 0.71 0.71
16 1.58 0.63 0.31 0.64 0.36 0.61 0.39 0.49 0.49

Table 6.27: J -changing rate coefficients for potassium, corrected for multiple collision
effects (with nAr = 1.69 ×1017 cm−3 and nK = 1.65 ×1015 cm−3) for exci-
tation of 2(A)1Σ+ (2, 44) are presented here.
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We note that in this iteration procedure the first order rate coefficients are smaller

than the zeroth order values. The second order coefficients are larger than the first

order coefficients, and further iterations tend to oscillate between the second and

third corrected values, converging to a consistent set of values. However, in some

cases, the iterations give fairly consistent results for the first few iterations, but then

begin to diverge. We discuss how we deal with these cases below. But, in general

these iterated rate coefficients, which are based on calculations for the highest per-

turber densities used in our experiments, give a reasonable estimate of how much

our measured rate coefficients may be affected by multiple collisions in the worst

cases. We can see that our zeroth order fitted values of the largest rate coefficients,

representing ∆J = ±2, might overestimate the actual rate coefficients by 20-25%,

due to multiple collisions, whereas the zeroth order rate coefficients for larger ∆J

values (|∆J | ≈ 10) could be as much as, or even more than, a factor of 3 too large.

At lower perturber densities, these effects are less, so the above estimates are indeed

strictly an upper limit. Nevertheless, because the ni
nd

ratios saturate at relatively

low densities, we believe this “multiple collision correction”, based on the highest

densities used in the experiment, is probably a pretty good representation for the

required correction at most densities.

Thus, in cases where this multiple collision correction process converges to a con-

sistent set of values, we take the values obtained in the final iteration as the “best”

measured rate coefficients determined in our work. [In the case where the multiple

collision correction iterations failed to converge, we report the average of the fifth

and sixth iterations as our final rate coefficients. These average values are actually

not too different than the average of the 99th and 100th iteration values, although
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the differences between the fifth and sixth iteration values are much smaller than

the differences between the 99th and 100th iteration values.]

Figures 6.28 – 6.30 show a comparison of the zeroth order fitted rate coefficients

and the final rate coefficients corrected for multiple collision effects for initial level

2(A)1Σ+ (0, 14). Similar figures for initial levels 2(A)1Σ+ (0, 30), 2(A)1Σ+ (1, 26),

and 2(A)1Σ+ (2, 44) are presented in Figs. 6.31 – 6.33, 6.34 – 6.36, and 6.37 – 6.39,

respectively. The true values should lie between the two sets of results in each plot,

but are likely to be closer to the corrected (lower) values. In any event, it is impor-

tant to note that although multiple collision effects have a strong effect on absolute

rate coefficients, they have a relatively small effect on the relative values of rate

coefficients for different ∆J ’s. I also present a comparison of the quenching rate co-

efficients to the sums of the final rate coefficients in Table 6.28, in a similar fashion

to the comparison of the quenching rate coefficients to the sums of the zeroth order

values given in Table 6.15.
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Figure 6.28: Comparison of the zeroth order (original fit) and final argon rate coefficients
which include multiple collision effects, for initial level 2(A)1Σ+ (0, 14).
Values are presented in Table 6.16.
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Figure 6.29: Comparison of the zeroth order (original fit) and final helium rate coeffi-
cients which include multiple collision effects, for initial level 2(A)1Σ+ (0,
14). Values are presented in Table 6.17.
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Figure 6.30: Comparison of the zeroth order (original fit) and final potassium rate coef-
ficients which include multiple collision effects, for initial level 2(A)1Σ+ (0,
14). Values are presented in Table 6.18.
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Figure 6.31: Comparison of the zeroth order (original fit) and final argon rate coefficients
which include multiple collision effects, for initial level 2(A)1Σ+ (0, 30).
Values are presented in Table 6.19.
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Figure 6.32: Comparison of the zeroth order (original fit) and final helium rate coeffi-
cients which include multiple collision effects, for initial level 2(A)1Σ+ (0,
30). Values are presented in Table 6.20.
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Figure 6.33: Comparison of the zeroth order (original fit) and final potassium rate coef-
ficients which include multiple collision effects, for initial level 2(A)1Σ+ (0,
30). Values are presented in Table 6.21.
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Figure 6.34: Comparison of the zeroth order (original fit) and final argon rate coefficients
which include multiple collision effects, for initial level 2(A)1Σ+ (1, 26).
Values are presented in Table 6.22.
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Figure 6.35: Comparison of the zeroth order (original fit) and final helium rate coeffi-
cients which include multiple collision effects, for initial level 2(A)1Σ+ (1,
26). Values are presented in Table 6.23.
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Figure 6.36: Comparison of the zeroth order (original fit) and final potassium rate coef-
ficients which include multiple collision effects, for initial level 2(A)1Σ+ (1,
26). Values are presented in Table 6.24.
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Figure 6.37: Comparison of the zeroth order (original fit) and final argon rate coefficients
which include multiple collision effects, for initial level 2(A)1Σ+ (2, 44).
Values are presented in Table 6.25.
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Figure 6.38: Comparison of the zeroth order (original fit) and final helium rate coeffi-
cients which include multiple collision effects, for initial level 2(A)1Σ+ (2,
44). Values are presented in Table 6.26.
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Figure 6.39: Comparison of the zeroth order (original fit) and final potassium rate coef-
ficients which include multiple collision effects, for initial level 2(A)1Σ+ (2,
44). Values are presented in Table 6.27.
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Direct level
∑
J

k∆J,Final
Ar

∑
J

k∆JFinal
He

∑
J

k∆JFinal
K

(cm3s−1) (cm3s−1) (cm3s−1)
astate argon sum helium sum K sum

2(A)1Σ+ (0, 14) 5.94 ×10−10 1.17 ×10−9 1.81 ×10−8

2(A)1Σ+ (0, 30) 6.80 ×10−10 1.15 ×10−9 1.27 ×10−8

2(A)1Σ+ (1, 26) 6.22 ×10−10 1.14 ×10−9 1.32 ×10−8

2(A)1Σ+ (2, 44) 6.15 ×10−10 9.21 ×10−10 1.10×10−8

kQ (cm3s−1) 8.27×10−10 1.39×10−9 2.02×10−8

Table 6.28: Comparison of fitted quenching rate coefficients with the sums of the k∆J

values for a given initial level. These values were obtained using the “final”

value from the multiple collision analysis, which is the average of the k
d→c(99)
P

and k
d→c(100)
P (or in some cases the k

d→c(5)
P and k

d→c(6)
P ) rate coefficients, for

argon, helium and potassium.

After the correction of the individual rate coefficients, we see that the summa-

tion of the final terms for each directly populated level, over all individual k∆J , has

been reduced to less than the quenching rate. These reduced values are presented

in Table 6.28.

We also note that our measured rate coefficients should, of course, obey the prin-

ciple of detailed balance. The only place we can actually test this is by comparing

the values of k∆J=16
P for 2(A)1Σ+ (0, 14) with k∆J=−16

P for 2(A)1Σ+ (0, 30), Unfortu-

nately, both of these values have large uncertainties due to the large values of |∆J |,

and large multiple collision corrections involved. In addition, relative values of these

rate coefficients are no better than the absolute values since they were obtained from

entirely separate scans (relative values of rate coefficients for the same initial level

but different ∆J ’s are determined very accurately). Nevertheless, detailed balance

predicts that k∆J=16
0,14 ≈ 2k∆J=−16

0,30 . We find that our final (0, 14) coefficients are

indeed larger than those for (0, 30), but by larger factors than predicted (3.1 for

argon and 4.4 for helium).
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We have described our calculation of the impact of multiple collisions on our

collisional rate coefficients for vibrationally elastic collisions. However, we can also

expand this type of analysis to the v -changing collisions. We estimate that the effect

of multiple collisions on v and J changing collisions is similar to that of large ∆J

vibrationally elastic collisions: the corrected rate coefficients turn out to be approx-

imately half of the original fitted values.

To study this more quantitatively, we expand the summation of states i in Eq.

6.27 to include vibration, as well as rotation changing transitions as

ki→cP

ni
nd

= k
(vi,Ji)→(vc,Jc)
P

n(vi,Ji)

n(vd,Jd)

, (6.34)

where now vi does not necessarily have to equal either vc or vd. However, it is clear

that there are two likely “paths” that can be taken from the directly populated

level d to the (final) collisionally populated level c. In the first case, a collision

transfers population from d to i, where rotational level i is in the same vibra-

tional level as level d, and then a second collision transfers population from i to

c. Therefore vd = vi 6= vc [or, vd, Jd → vi=d, Ji → vc, Jc ]. In the second case,

the first collision transfers population from d to i, where vi 6= vd, but vi = vc [or,

vd, Jd → vi=c, Ji → vc, Jc]. While the initial and final ro-vibrational levels are iden-

tical in these two cases, the cases are distinguished by whether the vibrationally

inelastic transition occurs on the first or second step.

An important note pertaining to the results of the multiple collision analysis for
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vibration and rotation-changing collisions is related to the rate coefficients on the

ends of the ∆J ranges studied. Because only a finite number of ∆J values were fit

for each set of vibrationally inelastic collisions, the values on the ends of the ∆J

range are not properly corrected for transfer from neighboring states characterized

by larger |∆J |. This is, of course, also true for the multiple collision corrections for

vibrationally elastic collisions, but it is less of a problem in that case because the

population falls off with |∆J |. For the vibrationally inelastic collisions, we see that

original fitted values k
∆v,∆J(0)
P do not vary much with ∆J (see Sec. 6.3.3). Therefore

we find that the rate coefficients at the ends of the ∆J range are adjusted downward

less than they should be and less than those near the center of the ∆J range. This

introduces an apparent increase in the vibrationally inelastic collision rate coeffi-

cients at both ends of the ∆J range relative to those at the center of the range.

This is not a real effect, and we believe all of the rate coefficients are comprable in

magnitude to those near the center of the range, just as all of the originally fitted

rate coefficients for the vibrationally inelastic collisions are comparable before the

multiple collision corrections are applied.

For the vibration-changing collisional rate coefficients, the “final” values we re-

port are those obtained from the average of the 99th and 100th iterations of the

multiple collision calculations, with the caveat about the values on the ends of the

∆J range mentioned above. In the multiple collision analysis of the helium rate

coefficients for v = 2 → v = 0 and v = 1 → v = 0, we find that the iterations of

multiple collision calculations never truly converge, but continued to oscillate be-

tween the values from iterations 99 and 100.
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Initial v, J -changing rate coefficients values, as well as calculations for the first

through sixth, 99th and 100th iterations are, for 2(A)1Σ+ (2, 44) ∆v = −2, given in

Tables 6.29 and 6.30 for argon and helium perturbers, respectively. Similar values for

2(A)1Σ+ (2, 44) ∆v = −1 are provided in Tables 6.31 (argon) and 6.32 (helium), and

for 2(A)1Σ+ (1, 26) ∆v = −1 in Tables 6.33(argon), and 6.34 (helium). Figures 6.40

and 6.41 show a comparison of the zeroth order fitted rate coefficients and the final

rate coefficients corrected for multiple collision effects for initial level 2(A)1Σ+ (2,

44), ∆v = −2. Figures 6.42 and 6.43 present similar figures for 2(A)1Σ+ (2, 44),

∆v = −1, and Figures 6.44 and 6.45 present figures for 2(A)1Σ+ (1, 26), ∆v =

−1. Similar to the J -changing multiple collision results, the true values should lie

between the two sets of results in each plot (except near the ends of the ∆J ranges

where even the “corrected” values are probably too large). As stated previously, we

believe that the actual values for all ∆J ’s are likely to be closer to the corrected

(lower) values near the center of the ∆J range.
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2(A)1Σ+ (2, 44), ∆v = -2 Original and Corrected kd→c,∆v,∆J
Ar values (in units of 10−12 cm3s−1)

k
d→c(n)
Ar for iteration n

∆J k
d→c(0)
Ar n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-15 5.36 3.21 3.15 3.83 3.26 3.78 3.31 3.53 3.53
-14 4.19 2.10 1.58 2.29 1.65 2.24 1.71 1.96 1.96
-13 3.98 1.69 0.45 1.22 0.45 1.14 0.52 0.81 0.81
-12 4.32 1.89 0.80 1.71 0.87 1.63 0.94 1.27 1.27
-11 4.59 1.99 0.81 1.85 0.93 1.77 1.01 1.37 1.37
-10 4.51 1.87 0.47 1.56 0.56 1.47 0.64 1.03 1.03
-9 4.67 1.93 0.52 1.72 0.64 1.61 0.73 1.15 1.15
-8 5.26 2.27 0.94 2.22 1.08 2.11 1.18 1.62 1.62
-7 4.89 1.99 0.50 1.85 0.65 1.73 0.75 1.22 1.22
-6 5.55 2.36 0.91 2.30 1.04 2.18 1.15 1.64 1.64
-5 4.79 1.86 0.14 1.60 0.29 1.48 0.40 0.91 0.91
-4 5.64 2.36 0.81 2.31 0.96 2.18 1.08 1.60 1.60
-3 4.94 1.88 0.02 1.55 0.15 1.41 0.27 0.81 0.81
-2 5.50 2.23 0.55 2.12 0.71 1.99 0.84 1.39 1.39
-1 5.88 2.49 1.00 2.63 1.19 2.50 1.33 1.88 1.88
0 4.94 1.83 0.00 1.35 0.00 1.20 0.01 0.57 0.57
1 5.26 2.04 0.12 1.72 0.25 1.57 0.38 0.95 0.95
2 5.73 2.38 0.81 2.45 1.03 2.32 1.16 1.72 1.72
3 5.41 2.16 0.43 2.03 0.60 1.88 0.73 1.28 1.28
4 5.17 2.02 0.21 1.74 0.35 1.60 0.48 1.01 1.01
5 5.41 2.21 0.60 2.13 0.76 1.99 0.89 1.41 1.41
6 5.26 2.16 0.61 2.07 0.78 1.94 0.90 1.39 1.39
7 5.12 2.09 0.54 1.96 0.70 1.84 0.82 1.30 1.30
8 4.94 2.04 0.64 1.96 0.83 1.85 0.94 1.39 1.39
9 4.51 1.76 0.13 1.38 0.24 1.26 0.34 0.78 0.78
10 3.42 1.15 0.00 0.33 0.00 0.21 0.00 0.00 0.00
11 4.84 2.10 0.87 1.97 0.99 1.88 1.09 1.46 1.46
12 4.89 2.28 1.42 2.39 1.56 2.31 1.65 1.97 1.97
13 4.94 2.33 1.42 2.32 1.49 2.23 1.57 1.88 1.88
14 4.21 2.04 1.44 2.20 1.52 2.13 1.58 1.84 1.84
15 4.56 2.39 1.98 2.68 2.05 2.62 2.11 2.35 2.35

Table 6.29: v, J -changing rate coefficients for argon, corrected for multiple collision ef-
fects (with nAr = 1.69 ×1017 cm−3 and nK = 1.65 ×1014 cm−3) for excitation
of 2(A)1Σ+ (2, 44), ∆v =-2 are presented here.
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2(A)1Σ+ (2, 44), ∆v = -2 Original and Corrected kd→c,∆v,∆J
He values (in units of 10−12 cm3s−1)

k
d→c(n)
He for iteration n

∆J k
d→c(0)
He n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-15 10.01 5.64 5.36 6.91 5.45 6.91 5.50 6.63 5.78
-14 8.70 4.37 3.52 5.12 3.57 5.12 3.60 4.79 3.89
-13 7.90 3.31 1.02 2.81 0.93 2.75 0.97 2.40 1.31
-12 9.07 4.07 2.25 4.26 2.27 4.22 2.32 3.84 2.68
-11 9.12 3.90 1.65 3.95 1.72 3.90 1.78 3.49 2.18
-10 8.23 3.15 0.10 2.43 0.06 2.36 0.12 1.92 0.55
-9 8.65 3.33 0.27 2.89 0.31 2.82 0.38 2.35 0.84
-8 10.06 4.15 1.38 4.17 1.49 4.11 1.57 3.62 2.05
-7 9.68 3.84 0.87 3.88 1.04 3.83 1.12 3.33 1.64
-6 10.76 4.39 1.32 4.39 1.43 4.31 1.51 3.77 2.05
-5 9.21 3.37 0.00 2.97 0.00 2.88 0.00 2.32 0.47
-4 11.56 4.79 1.76 5.12 1.97 5.08 2.06 4.50 2.64
-3 9.73 3.56 0.00 3.21 0.00 3.12 0.00 2.53 0.55
-2 10.25 3.78 0.00 3.28 0.00 3.17 0.03 2.60 0.65
-1 10.76 4.14 0.63 4.28 0.85 4.22 0.94 3.65 1.58
0 9.64 3.36 0.00 2.55 0.00 2.43 0.00 1.76 0.00
1 9.92 3.52 0.00 2.94 0.00 2.84 0.00 2.16 0.04
2 10.95 4.19 0.48 4.14 0.74 4.06 0.85 3.50 1.49
3 10.20 3.73 0.00 3.38 0.00 3.29 0.00 2.69 0.60
4 10.11 3.70 0.00 3.18 0.00 3.05 0.00 2.44 0.50
5 11.23 4.49 1.23 4.79 1.42 4.75 1.51 4.15 2.13
6 11.00 4.42 1.30 4.69 1.54 4.60 1.64 4.05 2.22
7 10.34 4.02 0.64 3.97 0.75 3.88 0.83 3.30 1.41
8 9.78 3.79 0.57 3.58 0.71 3.48 0.80 2.99 1.35
9 9.17 3.44 0.00 2.96 0.00 2.88 0.08 2.35 0.61
10 7.33 2.45 0.00 1.18 0.00 1.08 0.00 0.55 0.00
11 9.35 3.79 1.07 3.74 1.10 3.68 1.17 3.20 1.65
12 10.34 4.75 3.11 5.45 3.24 5.36 3.32 4.98 3.75
13 9.35 4.09 2.08 4.35 2.08 4.30 2.14 3.88 2.55
14 9.26 4.47 3.37 5.26 3.44 5.22 3.49 4.89 3.84
15 8.84 4.25 3.19 5.08 3.22 5.03 3.27 4.68 3.60

Table 6.30: v, J -changing rate coefficients for helium, corrected for multiple collision
effects (with nHe = 1.13 ×1017 cm−3 and nK = 2.92 ×1014 cm−3) for exci-
tation of 2(A)1Σ+ (2, 44), ∆v =-2 are presented here.
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2(A)1Σ+ (2, 44), ∆v = -1 Original and Corrected kd→c,∆v,∆J
Ar values (in units of 10−12 cm3s−1)

k
d→c(n)
Ar for iteration n

∆J k
d→c(0)
Ar n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-25 5.17 2.56 1.81 2.63 1.88 2.53 1.96 2.23 2.23
-24 6.06 3.13 2.51 3.47 2.63 3.36 2.73 3.02 3.02
-23 7.05 3.57 2.70 3.84 2.85 3.72 2.97 3.32 3.32
-22 6.39 2.94 1.60 2.82 1.73 2.68 1.86 2.24 2.24
-21 5.97 2.49 0.65 1.98 0.78 1.82 0.93 1.34 1.34
-20 6.11 2.54 0.71 2.18 0.91 2.02 1.06 1.51 1.51
-19 6.35 2.61 0.67 2.27 0.90 2.09 1.07 1.54 1.54
-18 5.97 2.31 0.04 1.69 0.25 1.49 0.42 0.92 0.92
-17 6.77 2.77 0.72 2.52 1.00 2.31 1.18 1.71 1.71
-16 7.33 3.12 1.24 3.13 1.59 2.93 1.79 2.33 2.33
-15 7.00 2.81 0.51 2.41 0.76 2.17 0.96 1.53 1.53
-14 6.49 2.40 0.00 1.46 0.00 1.20 0.00 0.54 0.54
-13 7.80 3.27 1.17 3.23 1.52 2.99 1.73 2.33 2.33
-12 9.54 4.48 2.98 5.08 3.43 4.89 3.66 4.25 4.25
-11 7.38 2.90 0.35 2.39 0.62 2.13 0.84 1.44 1.44
-10 6.91 2.55 0.00 1.49 0.00 1.20 0.00 0.51 0.51
-9 7.90 3.24 0.93 3.02 1.26 2.76 1.49 2.09 2.09
-8 8.74 3.89 2.09 4.18 2.53 3.95 2.75 3.33 3.33
-7 7.80 3.26 1.14 3.19 1.54 2.97 1.76 2.33 2.33
-6 6.63 2.55 0.16 2.03 0.52 1.80 0.71 1.22 1.22
-5 6.06 2.21 0.00 1.51 0.00 1.26 0.16 0.70 0.70
-4 3.98 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-3 5.31 1.82 0.00 0.81 0.00 0.58 0.00 0.00 0.00
-2 6.63 2.76 0.97 2.62 1.36 2.43 1.53 1.96 1.96
-1 7.43 3.30 1.70 3.32 2.06 3.15 2.24 2.69 2.69
0 6.49 2.69 0.73 2.18 0.94 1.97 1.10 1.51 1.51
1 6.91 3.02 1.26 2.66 1.49 2.48 1.65 2.04 2.04
2 7.29 3.50 2.34 3.66 2.59 3.49 2.74 3.09 3.09
3 6.77 3.12 1.63 2.75 1.75 2.59 1.88 2.20 2.20
4 5.26 2.38 1.25 2.22 1.38 2.09 1.49 1.77 1.77
5 7.24 4.06 3.71 4.67 3.91 4.55 4.01 4.27 4.27

Table 6.31: v, J -changing rate coefficients for argon, corrected for multiple collision ef-
fects (with nAr = 1.69 ×1017 cm−3 and nK = 1.65 ×1014 cm−3) for excitation
of 2(A)1Σ+ (2, 44), ∆v =-1 are presented here.
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2(A)1Σ+ (2, 44), ∆v = -1 Original and Corrected kd→c,∆v,∆J
He values (in units of 10−12 cm3s−1)

k
d→c(n)
He for iteration n

∆J k
d→c(0)
He n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-25 10.81 5.08 3.38 5.69 3.36 5.59 3.44 4.51 4.49
-24 13.72 7.05 5.97 8.55 6.06 8.51 6.16 7.29 7.29
-23 13.63 6.35 4.17 7.19 4.23 7.10 4.33 5.69 5.69
-22 13.16 5.69 2.53 5.64 2.46 5.50 2.58 4.02 4.00
-21 12.22 4.79 0.76 4.23 0.73 4.12 0.86 2.47 2.44
-20 13.72 5.59 1.61 5.36 1.67 5.22 1.82 3.50 3.47
-19 13.11 5.03 0.45 4.54 0.54 4.40 0.70 2.52 2.50
-18 14.29 5.59 0.89 5.17 1.03 5.03 1.20 3.09 3.06
-17 14.38 5.55 0.59 5.17 0.74 5.03 0.93 2.95 2.92
-16 14.76 5.59 0.21 4.94 0.40 4.75 0.59 2.65 2.62
-15 15.56 6.02 0.81 5.78 1.00 5.59 1.20 3.38 3.35
-14 15.84 6.02 0.28 5.31 0.46 5.08 0.68 2.85 2.82
-13 17.67 7.19 2.33 7.71 2.65 7.52 2.87 5.17 5.12
-12 19.93 8.55 4.13 9.64 4.57 9.40 4.79 7.10 7.05
-11 16.97 6.53 0.84 6.30 1.08 6.06 1.31 3.68 3.64
-10 17.01 6.39 0.02 5.36 0.15 5.08 0.39 2.69 2.66
-9 17.06 6.53 0.65 6.20 0.95 5.97 1.20 3.58 3.54
-8 19.55 8.18 3.40 8.98 3.91 8.70 4.15 6.39 6.35
-7 17.01 6.63 1.18 6.67 1.62 6.44 1.88 4.20 4.16
-6 16.03 6.06 0.41 5.55 0.87 5.26 1.10 3.16 3.14
-5 14.24 5.08 0.00 4.13 0.00 3.85 0.00 1.72 1.70
-4 10.20 2.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-3 11.52 3.64 0.00 1.66 0.00 1.40 0.00 0.00 0.00
-2 14.34 5.55 0.79 5.22 1.25 4.98 1.45 3.19 3.16
-1 14.29 5.55 0.79 5.12 1.17 4.94 1.40 3.22 3.20
0 15.09 6.35 2.66 6.72 3.00 6.49 3.21 4.84 4.79
1 14.48 5.92 1.79 5.64 1.99 5.41 2.19 3.82 3.80
2 12.74 5.17 1.52 4.94 1.65 4.70 1.83 3.25 3.23
3 14.95 6.67 3.58 6.82 3.66 6.63 3.84 5.22 5.22
4 11.56 5.08 2.81 5.69 3.02 5.50 3.17 4.32 4.31
5 15.60 8.13 7.10 9.87 7.33 9.73 7.47 8.60 8.60

Table 6.32: v, J -changing rate coefficients for helium, corrected for multiple collision
effects (with nHe = 1.13 ×1017 cm−3 and nK = 2.92 ×1014 cm−3) for exci-
tation of 2(A)1Σ+ (2, 44), ∆v =-1 are presented here.
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2(A)1Σ+ (1, 26), ∆v = -1 Original and Corrected kd→c,∆v,∆J
Ar values (in units of 10−12 cm3s−1)

k
d→c(n)
Ar for iteration n

∆J k
d→c(0)
Ar n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-5 8.70 4.75 4.26 5.31 4.39 5.22 4.47 4.84 4.84
-4 8.74 4.60 3.92 5.12 4.07 5.03 4.17 4.57 4.57
-3 9.07 4.31 2.71 4.04 2.78 3.91 2.90 3.37 3.37
-2 8.79 3.94 1.95 3.37 2.00 3.22 2.12 2.64 2.64
-1 9.45 4.23 2.16 3.84 2.32 3.68 2.46 3.04 3.04
0 10.58 4.98 3.23 5.12 3.49 4.94 3.64 4.26 4.26
1 9.54 4.11 1.72 3.63 1.90 3.45 2.06 2.72 2.72
2 9.12 3.74 0.97 2.97 1.14 2.76 1.31 2.00 2.00
3 11.05 5.03 3.04 5.26 3.35 5.08 3.53 4.26 4.26
4 10.53 4.59 2.18 4.42 2.43 4.21 2.62 3.37 3.37
5 9.78 3.98 1.02 3.27 1.19 3.04 1.39 2.16 2.16
6 11.05 4.84 2.51 4.94 2.84 4.75 3.05 3.84 3.84
7 10.76 4.62 2.07 4.54 2.37 4.32 2.59 3.40 3.40
8 9.64 3.81 0.64 3.05 0.82 2.79 1.03 1.86 1.86
9 10.15 4.18 1.38 3.89 1.67 3.66 1.88 2.72 2.72
10 10.29 4.30 1.66 4.21 1.99 3.98 2.20 3.04 3.04
11 9.82 3.96 1.02 3.50 1.27 3.25 1.49 2.32 2.32
12 9.96 4.07 1.24 3.71 1.50 3.47 1.72 2.54 2.54
13 10.29 4.31 1.64 4.13 1.95 3.90 2.16 2.98 2.98
14 10.25 4.30 1.62 4.03 1.89 3.80 2.10 2.90 2.90
15 9.92 4.05 1.09 3.40 1.28 3.15 1.49 2.27 2.27
16 10.20 4.31 1.66 3.95 1.90 3.73 2.10 2.87 2.87
17 11.80 5.50 3.59 5.92 3.97 5.73 4.16 4.89 4.89
18 10.39 4.56 2.25 4.40 2.51 4.20 2.69 3.40 3.40
19 8.98 3.56 0.33 2.25 0.41 2.02 0.58 1.26 1.26
20 9.40 4.05 1.66 3.55 1.84 3.37 2.01 2.65 2.65
21 11.00 5.36 3.85 5.78 4.20 5.64 4.36 4.98 4.98
22 9.17 4.19 2.35 3.95 2.49 3.79 2.62 3.17 3.17
23 8.18 3.53 1.29 2.70 1.33 2.53 1.46 1.96 1.96
24 8.37 4.21 3.31 4.62 3.47 4.50 3.58 4.01 4.01
25 8.46 4.46 3.80 4.98 3.96 4.89 4.06 4.45 4.45

Table 6.33: v, J -changing rate coefficients for argon, corrected for multiple collision ef-
fects (with nAr = 1.5 ×1017 cm−3 and nK = 1.48 ×1015 cm−3) for excitation
of 2(A)1Σ+ (1, 26), ∆v =-1 are presented here.
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2(A)1Σ+ (1, 26), ∆v = -1 Original and Corrected kd→c,∆v,∆J
He values (in units of 10−12 cm3s−1)

k
d→c(n)
He for iteration n

∆J k
d→c(0)
He n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 99 n = 100

-5 16.31 8.08 6.53 9.82 6.58 9.87 6.58 9.82 6.58
-4 17.25 8.41 6.49 10.01 6.49 10.06 6.49 10.01 6.49
-3 16.45 7.10 3.33 7.33 3.21 7.33 3.21 7.29 3.22
-2 17.86 7.71 3.55 7.80 3.37 7.80 3.37 7.80 3.38
-1 16.17 6.30 0.72 5.41 0.56 5.41 0.57 5.41 0.59
0 19.79 8.37 3.46 8.55 3.37 8.60 3.37 8.55 3.39
1 17.25 6.72 1.12 6.58 1.18 6.53 1.19 6.53 1.21
2 18.57 7.24 1.20 6.96 1.19 6.96 1.20 6.91 1.22
3 19.74 8.04 2.82 8.88 3.07 8.88 3.09 8.88 3.11
4 19.55 7.57 1.15 7.38 1.13 7.38 1.13 7.33 1.15
5 17.72 6.39 0.00 5.36 0.00 5.31 0.00 5.26 0.00
6 21.06 8.37 2.24 9.02 2.39 9.02 2.40 9.02 2.42
7 20.45 7.94 1.54 8.27 1.74 8.23 1.76 8.23 1.78
8 19.51 7.19 0.00 6.53 0.00 6.49 0.00 6.49 0.00
9 18.05 6.39 0.00 5.69 0.00 5.69 0.00 5.64 0.00
10 19.74 7.38 0.38 7.38 0.46 7.38 0.46 7.38 0.48
11 18.05 6.39 0.00 5.64 0.00 5.59 0.00 5.59 0.00
12 18.52 6.67 0.00 6.20 0.00 6.20 0.00 6.20 0.00
13 18.80 6.91 0.00 6.58 0.00 6.53 0.00 6.53 0.00
14 19.27 7.19 0.22 6.96 0.18 6.96 0.18 6.96 0.20
15 18.52 6.77 0.00 6.02 0.00 6.02 0.00 5.97 0.00
16 19.60 7.61 1.42 7.94 1.47 7.94 1.47 7.94 1.49
17 20.40 8.13 2.25 8.55 2.43 8.55 2.44 8.55 2.46
18 18.71 7.19 1.03 7.05 0.92 7.05 0.92 7.05 0.93
19 16.92 6.02 0.00 4.09 0.00 4.06 0.00 4.04 0.00
20 17.39 6.77 1.14 6.58 1.02 6.63 1.02 6.58 1.04
21 23.74 11.28 8.32 13.72 8.60 13.77 8.65 13.77 8.65
22 16.73 6.82 2.27 7.00 2.09 7.00 2.09 7.00 2.10
23 16.54 6.67 1.69 5.97 1.40 5.92 1.40 5.92 1.41
24 16.92 7.94 5.83 9.92 5.88 9.92 5.88 9.92 5.88
25 15.98 7.29 4.66 8.37 4.57 8.41 4.58 8.37 4.59

Table 6.34: v, J -changing rate coefficients for helium, corrected for multiple collision
effects (with nHe = 1.13 ×1017 cm−3 and nK = 2.92 ×1014 cm−3) for exci-
tation of 2(A)1Σ+ (1, 26), ∆v =-1 are presented here.
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Figure 6.40: Comparison of the zeroth order (original fit) and final argon rate coefficients
which include multiple collision effects, for initial level 2(A)1Σ+ (2, 44),
∆v = -2 . Values are presented in Table 6.29.
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Figure 6.41: Comparison of the zeroth order (original fit) and final helium rate coeffi-
cients which include multiple collision effects, for initial level 2(A)1Σ+ (2,
44), ∆v = -2 . Values are presented in Table 6.30.
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Figure 6.42: Comparison of the zeroth order (original fit) and final argon rate coefficients
which include multiple collision effects, for initial level 2(A)1Σ+ (2, 44),
∆v = -1 . Values are presented in Table 6.31.
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Figure 6.43: Comparison of the zeroth order (original fit) and final helium rate coeffi-
cients which include multiple collision effects, for initial level 2(A)1Σ+ (2,
44), ∆v = -1 . Values are presented in Table 6.32.
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Figure 6.44: Comparison of the zeroth order (original fit) and final argon rate coefficients
which include multiple collision effects, for initial level 2(A)1Σ+ (1, 26),
∆v = -1 . Values are presented in Table 6.33.
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Figure 6.45: Comparison of the zeroth order (original fit) and final helium rate coeffi-
cients which include multiple collision effects, for initial level 2(A)1Σ+ (1,
26), ∆v = -1 . Values are presented in Table 6.34.
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6.5 Comparison of Experiment and Theory

The first calculations of cross sections for rotationally inelastic collisions of NaK

molecules with noble gas atoms carried out by the Hickman group at Lehigh in-

volved molecules in the initial levels 2(A)1Σ+ (v = 0, J ≤ 25), with helium as the

perturber [65]. These calculations did not show a ∆J = even propensity, while

experimental results for 2(A)1Σ+ (16, 30) with argon perturbers did show a strong

∆J = even propensity [31]. Direct comparison of the two sets of results was not

completely valid, due to differences in perturbers (argon calculations would require

substantially more computer resources) and initial 2(A)1Σ+ levels (v = 16, J = 30

was used in the experiment, while the theoretical calculations were carried out for

v=0).

Malenda et al. [33] used a better basis set than the earlier work, and produced

results demonstrating a ∆J = even propensity for collisions between 2(A)1Σ+ NaK

molecules and helium atoms, covering a larger range of J (0 to 40). In the mean

time, experimental data with helium as the perturber were recorded with initial

level 2(A)1Σ+ (v = 16, J = 30), where again a ∆J= even propensity was observed

[34].

The current calculations by T. Price et al. [33, 35, 66] of population transfer for

NaK 2(A)1Σ+ (v=0, J ≤ 30) in collisions with helium show a more dramatic ∆J

= even propensity for helium than for argon, which agrees with the experimental

results. Calculations for collisions with argon have now also been completed, for v =

0, J = 0-60, but there are still advances being made in the quality of the calculated
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potential surfaces being used. Work with Drs. P. Crozet and A. J. Ross at Uni-

versité Lyon-1 (this dissertation) has also expanded the experimental data available

for analysis. This work collected and analyzed collisional spectra with initial states

2(A)1Σ+ (v=0, J =14, 30) and the same perturbers (helium and argon) that were

used in the theoretical calculations, as well as for additional vibrational levels v = 1,

2. Data were also collected for 2(A)1Σ+ (16, 14) to continue the comparison of how

differing initial v, J combinations affect the collisional rate coefficients. Figures 6.46

through 6.49 show comparisons of experimental rate coefficient results (corrected

for multiple collision effects described in the preceeding section) with theoretical

calculations of cross sections (converted to rate coefficients using k∆
P = σ∆

P v̄ with v̄

being the thermally averaged relative speed) for J -changing collisions of 2(A)1Σ+ (0,

14) and 2(A)1Σ+ (0, 30) with both argon and helium perturbers.

It should be noted that the absolute magnitudes of the theoretical rate coeffi-

cients are in excellent agreement with the experimental values. This agreement is,

in the argon cases, better once corrections for multiple collision effects have been

applied to the experimental results (see Sec. 6.4.3), however the difference between

experimental and theoretical results becomes larger for the helium rate coefficients.

In addition, the most recent theoretical calculations also do a good job in deter-

mining the magnitude of the ∆J = even propensity, although there is a slight

discrepancy at large |∆J | for the argon cross sections, where the calculations show

a transition from a ∆J = even propensity to a ∆J = odd propensity that is not

observed experimentally. This discrepency may be due to minor shortcomings of

the basis set used in the theoretical calculations, and work is currently being done

by Price et al. [35, 66] to clarify this.

210



-10 -5 0 5 10 15 20

0

5

10

15

(0, 14) Argon Rate 

      Coefficients
k

J

A
r 
(1

0
-1

1
 c

m
3
s

-1   
 )

J

 Experiment

 Theory

Figure 6.46: Comparison of theoretical and experimental rate coefficients for collisions
of NaK 2(A)1Σ+ (0, 14) molecules with argon perturbers. Theoretical cross
sections are converted to rate coefficients by k∆

P = σ∆
P v̄. The experimental

rate coefficients presented are the “final” values presented in the previ-
ous section which approximately take into account the effects of multiple
collisions.
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Figure 6.47: Comparison of theoretical and experimental rate coefficients for collisions
of NaK 2(A)1Σ+ (0, 14) molecules with helium perturbers. Theoretical
cross sections are converted to rate coefficients by k∆

P = σ∆
P v̄. The ex-

perimental rate coefficients presented are the “final” values presented in
the previous section which approximately take into account the effects of
multiple collisions.
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Figure 6.48: Comparison of theoretical and experimental rate coefficients for collisions
of NaK 2(A)1Σ+ (0, 30) molecules with argon perturbers. Theoretical cross
sections are converted to rate coefficients by k∆

P = σ∆
P v̄. The experimental

rate coefficients presented are the “final” values presented in the previ-
ous section which approximately take into account the effects of multiple
collisions.
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Figure 6.49: Comparison of theoretical and experimental rate coefficients for collisions
of NaK 2(A)1Σ+ (0, 30) molecules with helium perturbers. Theoretical
cross sections are converted to rate coefficients by k∆

P = σ∆
P v̄. The ex-

perimental rate coefficients presented are the “final” values presented in
the previous section which approximately take into account the effects of
multiple collisions.
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Chapter 7

Conclusions and Future Work

7.1 Inelastic Collisions

This dissertation has discussed investigations of vibrationally and rotationally

inelastic collisions of NaK with argon, helium and potassium as collision partners.

Previous studies of inelastic collisions involving the NaK molecule in our group were

completed at higher initial 2(A)1Σ+ state levels (v = 16, J = 30), with argon [31, 34]

and helium perturbers [34]. We have expanded upon this by looking at lower initial

vibrational states (v = 0, 1, 2) and wider ranges of ∆J , which much more closely

align with the theoretical calculations of Malenda, Price, Hickman and coworkers

[32, 33, 35, 66]. Vibrationally inelastic collisions have also been studied experimen-

tally in the current work.

Previous work by Wolfe et al. [31] showed a strong propensity for ∆J = even

transitions in collisions of NaK 2(A)1Σ+ (v =16, J = 30) molecules with argon.

Jones’ [34] use of helium as a collisional partner for the same initial state showed

215



that the ∆J = even propensity was much more pronounced than in the argon col-

lisions. No ∆J = even propensity was seen in these previous studies for NaK-K

collisions. However in the current experiment we did see a ∆J = even propensity

in the potassium rate coefficients. We originally thought, in the preliminary fitting

stage, that this was an artifact due to the relatively low potassium densities and

our inability to completely disentangle the potassium and noble gas collision rates.

However this ∆J = even propensity in NaK-K collisions seems to be present in all

J -changing data analyzed in this work for v = 0, 1 and 2. This important question

could be answered with a “pure” potassium experiment conducted with the heat

pipe oven operating in “heat pipe mode”. In this mode of operation, the noble gas

is excluded from the interaction zone, only NaK+K collisions occur, and the pres-

ence or absence of a ∆J = even propensity would be directly apparent from even

a quick look at the data. Unfortunately, heat pipe mode was not used during the

Lyon visits, and the NaK heat pipe oven at Lehigh has now been decommissioned.

The probe laser required for the Lehigh pump/probe experiment is also no longer

available.

We also presented experimentally determined rate coefficients for vibrationally

inelastic collisions in this dissertation. In collisions of NaK with both argon and he-

lium, no ∆J = even propensity was observed for either perturber case (although such

a propensity, if it existed, might have been masked by multiple collision effects). The

experimentally fit rate coefficients for vibration-changing collisions (k∆v,∆J) were,

on average, an order of magnitude smaller than the J -changing collision rate co-

efficients for small values of |∆J | (k|∆J |≤5) and approximately on the same order

of magnitude as rate coefficients for large values of |∆J | (k|∆J |≥15). The effects of
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multiple collisions on our fitted collisional rate coefficients were also discussed, and

estimates of correction factors were determined.

Dr. Hickman’s group at Lehigh has carried out theoretical calculations of cross

sections for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ v=0

level with argon and helium perturbers [33, 35]. Our measurements provide a di-

rect test of these calculations for both NaK-He and NaK-Ar systems, in the same

vibrational level used in these calculations, as well as for a wider range of ∆J than

studied in previous experiments (previous experimental work only covered the range

−4 ≤ ∆J ≤ +4). In their calculations, Hickman and coworkers have found that

the quality of the interaction potential energy surfaces for NaK and the collisional

partner are important, and that the predicted ∆J = even propensity is sensitive

to the degree to which the interaction potential deviates from inversion symmetry

when you exchange the potassium and sodium atoms.

7.2 Future Work

During J. Jones’ work at Lehigh University [34] and in our work in Lyon, addi-

tional v - and J -changing collisional data were collected using the NaK 2(A)1Σ+ (v=16,

J =14) initial level, with both argon and helium as the collisional partners. These

data have not yet been analyzed due to time constraints. Therefore a useful future

project would involve compilation and analysis of these data, which would allow

comparison of rate coefficients for two initial vibrational levels (v = 0, 16), each

with the same two initial rotational levels (J = 14, 30). This information can give a
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more definitive understanding of the effect of initial v and J on the rates associated

with rotationally inelastic collisions. In addition to this, an extension of the current

work would be to collect v - and J -changing collision data with the same initial levels

as in the present work, but with different inert gas perturbers. This would allow

us to learn more about how population transfer is affected by the mass and polar-

izability of the collisional partner. The observed ∆J = even propensity of NaK-Ar

collisions is less pronounced than for NaK-He collisions, and it would be interesting

to see if collisions of NaK with larger, more polarizable inert gases (such as xenon)

continued the trend of reduced ∆J = even propensity with increased perturber mass

or increased perturber polarizability.

In addition, Malenda et al. [33] and Price et al. [35, 66] have carried out

theoretical calculations for the transfer of population, orientation, and alignment in

rotationally inelastic collisions of NaK-He and NaK-Ar. Wolfe et al. [31] and Jones

[34] investigated the experimental transfer of both population and orientation in

rotationally inelastic collisions of NaK with argon and with both helium and argon,

respectively. Orientation for a level J is defined as [63]

O = 〈cos θ〉 =

〈
MJ√

J(J + 1)

〉
(7.1)

and represents the first moment of the distribution of population over the magnetic

sublevels MJ ; i.e. positive orientation implies MJ > 0 levels are preferentially

populated and vice versa for negative orientation. Alignment is defined as [63]

A =

〈
3M2

J − J(J + 1)√
J(J + 1)[J(J + 1)− 3

4

〉
, (7.2)
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and represents the second moment of the distribution of population over MJ ; i.e.

non-zero alignment implies that either the high |MJ | or low |MJ | levels are more

likely to be populated. Wolfe et al. [31] and Jones [34] found expressions relating

the orientation to experimental signals obtained using a circularly polarized pump

beam and a linearly polarized probe beam in a polarization spectroscopy setup. The

circularly polarized pump beam prepares an orientation in the magnetic sublevels of

the intermediate level. If instead, a linearly polarized pump beam, polarized at 45◦

with respect to the vertical polarization of the probe beam is used, the intermediate

state can be prepared with a non-zero alignment but no net orientation. Before I

began the work presented in this dissertation, I derived an expression relating the

2(A)1Σ+ (intermediate) state alignment to the experimental signal obtained with

this 45◦ linearly polarized pump beam. A proposed future project for a student could

be to perform an experimental alignment study using this relation, experimentally

determining the transfer of alignment in collisions of NaK with helium or argon.

This would provide another excellent test of the theoretical calculations of Hickman

and coworkers.
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