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Abstract

There is interest in magnetic properties of doped semiconductors for possible ap-

plications in spintronics and for gaining further insight into the incorporation sites

of the dopants. To this end, optical spectroscopy was conducted on several rare

earth doped systems subject to a magnetic field. In particular, several important

results were obtained for erbium doped gallium nitride. The results provide insight

into states of the dopants, effective g factors, and site symmetry, and some of the

difficulties inherent in performing measurements of those properties. Additional re-

sults were obtained regarding a previously observed effect in which reversing the

orientation of an applied magnetic field seems to change transition probabilities of

rare-earth dopants in some cases.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Rare-Earths

The term rare-earths refers to the first row of the f-block of the periodic table

(sometimes with the addition of yttrium and scandium), characterized by partially

filled 4f shells, with completed 5s and 5p shells. The larger radial extent of the n = 5

shells means that the partially filled 4f shells are shielded from local electric fields

by this outer shell. This leads to similar intra-4f transitions for a given rare-earth

element (in a given charge state) in a variety of different host materials. [13] [77] In

practice, of course, not all host materials may work well for a given application and

transition. Some of these difficulties will be described in 1.1.3.

Rare-earths are already used in a variety of existing technologies. Triply ion-

ized erbium has transitions corresponding to the best wavelengths for transmission

in silica glass (1.54µm), and is used in fiber communications, such as in erbium-

doped fiber amplifiers. [21] Neodymium has a transition near 1.06µm which can be

frequency doubled to give green light, as is done for some green lasers, based on

Nd:YAG. [69] Lasers based on Nd:YAG are used for many purposes, including ap-

plications in medicine, [42] dentistry [46], and manufacturing. [12] Europium has a

transition around 630nm, in the red part of the spectrum, and is used in phosphors
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Figure 1.1: The f-block elements are indicated. The row of elements of these labeled as
the Lanthanides are known as rare-earths.

for converting light to red light. [34] Host crystals already containing rare-earths,

such as yttrium in the already mentioned YAG, or Yttrium Aluminum Garnet, al-

low for easy incorporation of other rare-earth dopants. Outside optics, rare-earth

magnets are another application. [48]

Some optical applications for rare-earths could be improved with different crystal

host materials. For example, for a solid state laser, excess heating is a common en-

gineering problem. If a host material with higher thermal conductivity and similar

other characteristics is identified, it may be possible to use greater pump intensities

(and presumably greater power output), or to achieve similar powers with fewer en-

gineering problems due to cooling requirements. For applications using phosphors,

such as solid-state white lighting, there may be efficiency gains to be made in chang-

ing from phosphors to a technology in which the dopant is directly excited, as in an

LED, in terms of the amount of rare-earth material needed. Ideally, if a set of rare-

earths producing several visible colors, such as red, green, and blue, can be made

into LEDs with the same host material, it would be possible to produce these colors

without phosphors on a single substrate. [70] Erbium (green), europium (red), and

thulium (blue) might permit such a system. [25] Determining how to make devices
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with a cheaper host material, such as silicon, without sacrificing too much perfor-

mance, may translate into cheaper products. These applications require work in

identifying and improving performance in candidate host materials.

1.1.2 Spintronics

Rare-earths tend to have unpaired spins, making them useful for magnetic appli-

cations. One goal of research along these lines is to develop a cheap, conventional

semiconductor with ferromagnetic properties, which maintains those properties at

and above room-temperature. This would allow biasing of electron spins in a semi-

conductor, allowing both magnetic and electric properties of an electron to be ex-

ploited. Further, if this can be accomplished by doping semiconductors, in principle,

the degree of this biasing might be controlled in a way similar to carrier concen-

tration. Such materials may allow applications such as spin-polarized LEDs, as

demonstrated in Mn doped GaAs, albeit only at cryogenic temperatures. [55] This

use and transport of the spin of electrons in electronic devices is part of a field called

Spintronics.

There exist claims of room-temperature ferromagnetism in gallium nitride sam-

ples doped with various rare-earths, including erbium doped gallium nitride [1] [47]

[74], gadolinium doped gallium nitride [8], and neodymium doped gallium nitride.

[37] This provokes interest in understanding the magnetic properties of these mate-

rials.

1.1.3 Rare-Earth Doped Gallium Nitride

In a process known as thermal quenching, photoluminescence emission intensities

for rare-earth dopants decrease as temperature increases. It is empirically known

that the degree of thermal quenching decreases with increasing band gap. [13] [70]

One paper examining Pr, Eu, Tb and Tm doped AlN provides a model which could

explain the degree of thermal quenching, based upon a model for how energy is

transferred to the dopant. [36] It proposes that energy is transferred to the rare-

earth dopant by aid of a local defect which can trap carriers, which in turn creates
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a charge imbalance which attracts a carrier of opposite charge. This leads to a

trapped exciton which can transfer energy to the dopant. At elevated temperatures,

the carriers are not trapped for as long a period of time, and thus, energy transfer

to the dopant is less likely. Another paper studying Er doped InGaP came to the

conclusion (by varying the ratio of In to Ga and studying the resulting thermal

quenching) that there exists a trapping level which exists at constant offset from

the vacuum level, with largely similar reasoning to the previous paper. [49] A wider

band gap would correspond to greater average differences in energy between trapping

levels inside the band gap and the conduction and valence bands, suggesting a higher

temperature may be needed for carriers to escape the trapping levels.

Whatever the mechanism, in an extreme case, this may make obtaining a desired

optical emission from a rare-earth dopant only reasonably efficient at cryogenic tem-

peratures, rendering the material useless for room-temperature applications. This

causes several problems. First, many common and well understood host materials,

such as silicon, may not be usable host materials for optical applications. Second,

insulators, with huge band gaps, while experiencing less of this thermal quench-

ing effect, may have significant trade-offs, such as poor thermal conductivity, or

difficulty in producing PN junctions. While not the only possible solution, this is

the argument in favor of gallium nitride. It has a comparatively wide band gap

(3.4eV) without being an insulator, and facilities and technologies already exist for

its production. [70]

With regard to the spintronics applications, gallium nitride and zinc oxide have

both been suggested as good candidate materials for room-temperature ferromag-

netic semiconductors. [10] Some results using samples which were also examined

in this work suggested ferromagnetism in strained epitaxial erbium-doped gallium

nitride films. Specifically, hysteresis loops appeared for some samples. [74] The pos-

sibility of ferromagnetic behavior in rare-earth doped gallium nitride also inspired

a prior attempt to determine whether hysteresis curves could be measured spectro-

scopically in neodymium doped gallium nitride. [75] It has been suggested that,

due to a number of factors which can lead to false positives in detecting ferromag-

netism in small samples, multiple types of experiments are required to verify its
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presence. [51] This led to revisiting the question of whether spectroscopic detection

of ferromagnetic hysteresis is feasible.

In particular, erbium doped gallium nitride has been suggested as a possible

basis for a laser diode for applications in optical fiber communication, owing to

little thermal quenching and the light emission from erbium near 1.5µm, near the

optimum wavelength for transmission in silica glass. [78]

1.2 Objectives

• Reexamine whether hysteresis loops can be observed spectroscopically, sug-

gesting ferromagnetism, in neodymium doped gallium nitride. [75]

• Verify level and crystal-field number assignments for the majority site in er-

bium doped gallium nitride.

• Investigate a previously observed effect in which changing the sign of an ap-

plied magnetic field oriented along the c-axis led to different emission spectra

in both neodymium and erbium doped gallium nitride samples, despite an

expectation of time-reversal symmetry. [75] [44]

• Develop and apply a technique for examining nonlinear level splittings for the

application of magnetic fields to erbium doped gallium nitride.

• Develop an experimental setup for examining polarization of transitions in

detail, while also applying magnetic fields. Determine the behavior of the po-

larization of split transitions. Use this technique to verify crystal-field number

assignments in several host materials.
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Chapter 2

Theoretical Background

The results presented in this work involve measuring relative transition probabilities

and energy levels. Interpreting and understanding these results requires a framework

for predicting energy levels and selection rules.

The two rare-earth ions considered, Nd+3 and Er+3, have the electron configura-

tion for Xenon (1s22s22p63s23p63d104s24p64d105s25p6), with the addition of 4f3 for

the former and 4f11 for the latter. Similar structures occur for other triply ionized

rare-earths. [77] This implies three valence electrons for the former, and three holes

for the latter.

2.1 Hamiltonian for Rare-Earth Dopants

The first step in developing a framework for understanding the states of the rare-

earth dopants in a crystal is to consider the Hamiltonian for the system. As was

implied in the previous chapter, rare-earth ions in a crystal can be considered using

perturbed version of the Hamiltonian for the in-vacuum case.

H = HCoulomb +HLS +HCF +HZeeman +Hother
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2.1.1 HCoulomb- Coulomb Terms

Since this work is concerned only with transitions between electrons in the same

configuration, energies corresponding to changes in configuration are not considered,

such as energies from a change in the principal quantum number n. However,

electron-electron interactions must still be considered.

Energies for electrostatic portions of 4f configurations can be written in terms of

Slater radial integrals. In practice, it may be difficult to obtain enough experimental

data to determine these integrals empirically, and it may also be difficult to calculate

them directly without knowledge of the wavefunctions. Thus, it is common to

calculate the ratios of Slater integrals for hydrogenic wavefunctions, which are well

known, and assume the ratios are similar for other systems. This leaves this term in

the Hamiltonian with one free parameter. [77] Of course, with sufficient data, more

of them could be left as fitting parameters. The following gives an expression for a

Slater integral between two electrons, labeled a and b, with each having values of n

and l.

F k(nala, nb, lb) = e2

∫ ∞
0

∫ ∞
0

rk<
rk+1
>

R2
i (nala)R

2
j (nblb)dridrj

R is the radial eigenfunction for each electron. r< and r> refer to the lesser and

greater of ri and rj at each point being integrated, respectively. e is the fundamental

charge.

How exactly these integrals are summed to give energies in an LS basis set is tab-

ulated in Ref. [52], under the electrostatic matrices portion. It includes information

on how to relate its results in terms of Ei values to the F k integrals described here.

The Ei values, or electrostatic parameters, are linear combinations of Fk integrals

which may appear in other works.

2.1.2 HLS- Spin-Orbit Term

For the cases in this work, LS coupling is taken as the dominant term for the rare-

earth dopants after the Coulomb interaction terms, and associated terms are used
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to label levels. For the dopants considered, which take on f N configurations in the

charge state expected, this involves coupling electrons in the same configuration,

with only the number of electrons changing for the different dopants considered in

this work. Rare-earth ions typically have large LS coupling energies. [77]

HSO =
N∑
i=1

ξ(ri)(si · li)

where

ξ(ri) =
~

2m2c2ri

dU(ri)

dri

U(ri) refers to the spherically symmetric potential one obtains by assuming that

one can envision each electron as being affected by a sum of a potential from a

fixed nucleus and time-averaged positions of all the other electrons. The spin-orbit

term requires a sum over all the electrons of the configuration. It is assumed that

interactions with other configurations can be ignored. If it is found that the spin-

orbit interaction term is quite large compared to electrostatic terms, it is possible

to calculate matrix elements for both in a basis set of states determined from LS

coupling and then diagonalize the matrix to find a new basis set. The spin-orbit

radial integral,

ζnl =

∫ ∞
0

R2
nl(r)ξ(r)dr,

is a constant for a given configuration, and is called the spin-orbit radial integral.

The product term, si · li, is given by

(
lNαSL|

N∑
i=1

(si · li)|lNα′S ′L′
)

=
√
l(l + 1)(2l + 1)

(
lNαSL||V11||lNα′S ′L′

)
Note that α as used here in discussions of the Hamiltonian refers to any addi-

tional quantum numbers not indicated. Values are tabulated in [52] for the reduced

matrix element on the right hand side, 〈lNαSL||V11||lNα′S ′L′〉, for a variety of con-

figurations. V11 is a unit tensor operator introduced by Racah in [59], and can be
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thought of as a linear combination of spherical tensor operators, uk, weighted by

spin operators.

Having done this, it becomes apparent that this term adds one parameter to be

determined, ζnl, in addition to the Slater integrals.

2.1.3 HCF - Crystal-Field Terms

Definition

The crystal-field term includes corrections that result from taking the rare-earth

ion in question from the vacuum to a particular location in a crystal. This term

should be the only term so far which varies for different incorporation sites and

host materials. Typically, this term is expressed in terms of spherical harmonics,

or, more correctly when referring to terms in the Hamiltonian operator, operators

transforming like the spherical harmonics. This is similar to performing an expan-

sion of the electric field in terms of spherical harmonics. Here, however, quantum

mechanical features, such as exchange interactions, also contribute. These are the

tensor operators, Ck
q , [77] which appear in the expression

HCF =
∑
k,q,i

Bk
q

(
C(k)
q

)
i

The k and q indices correspond to similar indices for spherical harmonics. The

i refers to a particular electron. Symmetries associated with an incorporation site

in the crystal should also apply to the crystal-field terms, which results in certain

values of Bk
q being zero, as will be discussed later in the portion on group theory.

The Spherical Tensor, C
(k)
q , can be expressed in terms of spherical harmonics,

Ylm.

C(k)
q =

√
4π

2k + 1
Ykq

Unfortunately, it is difficult to calculate the Bk
q coefficients a priori, as the ex-

pansion is ultimately taking into account both classical and quantum mechanical

features. Recall that this term is treated as the only term with dependence on the
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choice of crystal host. Thus, it is common to treat these as fitting parameters af-

ter assuming a particular symmetry to limit their number. [50] The group theory

section will discuss how many nonzero, relevant parameters are present for relevant

symmetries.

Calculation

Calculations of the crystal-field term between the energy levels for the vacuum

case involve using various properties of angular momentum operators to simplify

calculations. The Wigner-Eckart Theorem allows calculation of spherical tensors

acting between states with a basis in terms of quantum numbers j and mj in a way

that removes dependence on mj values.

〈αjm|C(k)
q |α′j′m′j〉 = (−1)j−mj

(
j k j′

−mj q m′

)
〈αj||C(k)||α′j′〉

The portion containing six elements in parentheses is a Wigner 3j symbol. Below

is a similar result for removing dependence on J , using a variant of the same theorem.

The portion in brackets below is the Wigner 6j symbol.

〈αSLJ ||C(k)||α′S ′L′J ′〉 =

(−1)s+K+j+L′
√

(2J + 1)(2J ′ + 1)

{
L J S

J ′ L′ k

}
〈αSL||C(k)|α′S ′L′〉

For a single electron, ignoring spin, this last element in the former expression is

calculated rather easily, using

〈αl||C(k)||α′l′〉 = δαα′(−1)l
√

(2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)
However, none of the systems considered in this work can be considered as single

electron systems. To perform these multiple electron system calculations is rather

difficult, and was considered by Racah for several configurations of electrons in a

series of papers. [59] [60] [61] It is common to refer to tables of tabulated values
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to determine these. [52] However, typically, the tables are expressed in terms of

a different tensor, U
(k)
q , than the C

(k)
q tensors described so far. If all electrons are

members of the same configuration, the following expression is valid.

〈lNSLJmj|C(k)
q |lNS ′L′J ′m′j〉 = (−1)l(2l+1)

(
l k l′

0 0 0

)
〈lNSLJmj|U (k)

q |lNS ′L′J ′m′j〉

Here, l refers to the orbital angular momentum for one of the electrons, presumed

to be the same for all the electrons (which is the case in systems considered in this

work). The earlier expressions using the Wigner-Eckart theorem also apply to the

unit tensor operator.

〈LSJmj|U (k)
q |LSJ ′m′j〉 = (−1)J−mj

(
J k J ′

−mj q m′

)
〈LSJ ||U (k)||α′J ′〉

〈αSLJ ||U (k)||α′S ′L′J ′〉 =

(−1)s+K+J+L′
√

(2J + 1)(2J ′ + 1)

{
L J S

J ′ L′ k

}
〈αSL||U (k)|α′S ′L′〉

The values for 〈αSL||U (k)|α′S ′L′〉 are given in [52].

Crystal-Field Numbers

As will be discussed further in the portion on group theory, for a given symmetry,

crystal-field numbers are assigned to levels, grouping them by their transformation

properties. Put differently, these numbers categorize states by symmetry. They

are relevant insofar as these properties can be used to predict whether the matrix

elements of certain operators will yield zero when operating between two states.

The crystal-field number assigned to a particular group of levels which are part of

a multiplet with J angular momentum is determined by the value of mj closest to

zero sharing the same representation as the levels.
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2.1.4 HB- Magnetic Field Term

The Zeeman interaction term is taken as

BµB (L + gsS)

where µB is the Bohr magneton, B the applied magnetic field, and gs the gyro-

magnetic ratio for the electron. L and S correspond to the summed orbital and

spin angular momenta, respectively, for the electron configuration. Other coupling

schemes may be more relevant when examining electron configurations not consid-

ered in this work, such as fNs, the situation in which one electron is in an incomplete

s shell and N electrons are in an incomplete f shell. [77]

By application of the Wigner-Eckart theorem, and evaluation of the resulting

terms, it can be shown that the diagonal terms result in a simple expression for LS

coupling.

〈αSLJmj|L + gsS|αSLJmj〉 = mjg

g = 1 + (gs − 1)
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

g is the Landé g factor for the multiplet. The non-zero off diagonal elements are

given by

〈αSLJmj|L + gsS|αSL(J − 1)mj〉 =

(gs − 1)
√

(J2 −m2
j)

√
(S + L+ J + 1)(S + L+ J − 1)(L+ J − S)(S + J − L)

4J2(2J + 1)(2J − 1)

Ignoring the off diagonal terms for the moment, this means that the magnetic

term simplifies to

EB = Bµbmjg,
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where g is the Landé g factor, B is the applied magnetic field, and µB is the Bohr

magneton. In this work, since crystal-field splittings are expected to mix states of

differing mj, this is simplified to an effective g factor, which corresponds to some

weighted average of mj and g in the previous equation. This gives

EB = Bµbgeff

Of course, since levels in half-integer spin systems come in pairs, as will be

discussed later, this means that pairs of levels must exhibit opposite signs for the

effective g factor given above. Thus, in this work, effective g factors, when given for

a doubly degenerate level, are the value one would obtain using the above equation,

if EB gives the difference in energy between the two levels as a function of applied

field.

The above makes an assumption that the magnetic field is along the same direc-

tion as that indicated by mj. The effective g factor has angular dependence, and

thus, the direction of B is relevant. It is a rank 2 tensor, considering a linear relation

between each orientation of B and each orientation of L + gsS. As will be discussed

later, symmetry permits simplification of the number of levels required for fitting.

2.1.5 Hother- Other Terms

It must be noted that there are other terms that must be handled in order to de-

velop precise models for calculating energy levels of the rare-earths. These include

relativistic corrections, spin-spin and orbit-orbit interactions, as well as terms ap-

proximating multibody interactions for electrons. [77]

LS Coupling

Ultimately, because there are other terms in the Hamiltonian which are nonzero, the

LS coupling labels may be more or less valid depending on the particular system.

That is, an energy level labeled with particular values for L and S, even in vacuum,

may have differing actual values for those quantities. [77]
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2.1.6 Consequence of Crystal-Field Terms on Quantum Num-

bers

For LS coupling, in the absence of a crystal-field term, the Zeeman interaction term

can be expressed neatly in terms of a good quantum number, corresponding to Jz.

However, once the crystal-field interaction is applied, energy levels corresponding to

differing Jz values are mixed, meaning that mj ceases to be a good quantum number.

It is convenient to consider the resulting levels as being derived from combinations

of states for which mj is a good quantum number. Discussion of these and related

difficulties in definitively labeling states can be found in [77].

2.1.7 Comments on Relative Magnitudes of Terms

As will be discussed later, multiplet splittings in Er3+ considered in this work are

typically on the order of tenths of electron volts to electron volts. This is the

relative magnitude of the HLS term. For crystal splittings occurring in this work, the

magnitude is thousandths to hundredths of electron volts. This justifies applying the

crystal-field term as a perturbation of the LS coupling levels. However, the magnetic

field terms, in at least one case described in this work, can exceed the magnitude

of the crystal-field splittings at magnitudes which are reasonably experimentally

accessible. From a theoretical standpoint, this means that the magnetic field term

cannot be applied as a perturbation of the crystal-field split levels, but needs to be

applied simultaneously. Fortunately, this task can be handled by available software

packages, such as described in Ref. [4].

2.1.8 Importance of Perturbing Terms

Typically, intra 4f transitions are electric dipole forbidden because the parity of

the initial and final states are identical, and the electric dipole operator has odd

parity. This means that the transition probability is proportional to an integral

over all space of an odd integral, which is zero. Putting the rare-earth into a crystal

perturbs this symmetry. This also presents the possibility that less symmetric local
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environments may be an advantage to luminescence efficiency.

2.2 Group Theory for Optical Transitions of Rare-

Earth Ions

There is an important link between the way in which terms split and the symmetry

of the perturbation that causes the splitting. The symmetry determines how many

levels split and in which way those energy levels are mixed to form the new set

of energy levels. Group Theory provides a framework for determining this sort of

information, given some information about the term being split and the symmetry

of the perturbation to the Hamiltonian. While the full framework of group theory

can be quite complex, and is not described in full detail here, the basic ideas behind

this approach are rather simple. For example, consider the following differential

equation for ψ as a function of x, with V (x) some fixed function.

ψ′′ + (λ− V (x))ψ = 0

If V (x) is even, for any solution ψ(x), it can be seen by applying the transforma-

tion x → −x, that ψ(−x) also satisfies this differential equation for the eigenvalue

λ. By writing out the above for both solutions, subtracting them, and removing

common factors, it is possible to obtain

ψ(x)ψ′′(−x)− ψ(−x)ψ′′(x) = 0

Integrating the above yields

ψ(x)ψ′(−x)− ψ(−x)ψ′(x) = constant

However, this constant is presumably the same for every point in space. If the

solutions are now are interpreted to refer to actual, normalizable wavefunctions in

quantum mechanics, the wavefunctions and their derivatives must be zero or tending

to zero asymptotically far away. This implies that this constant is zero.
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ψ(x)ψ′(−x)− ψ(−x)ψ′(x) = 0(
f

g

)′
=
gf ′ − fg′

g2

⇒
(
ψ(x)

ψ(−x)

)′
= 0

ψ(x) = cψ(−x)

Applying the above twice,

ψ(x) = cψ(−x) = c2ψ(x)⇒ c2 = 1

If it is assumed that the ψ functions are real, this means solutions to this equa-

tion are forced to be either even or odd functions, because c = ±1. This also allows

classifications of eigenfunctions for the equation based on this value of c. Knowing

the parity of the wavefunctions also allows computing whether an operator placed

between two states will produce zero due to symmetry if the parity of the opera-

tor is known. In some sense, this amounts to also classifying operators using this

distinction.

Group theory, in its application here, is essentially a formalized way of making

the above argument, in potentially much more complicated situations. In some cases,

such as complicated molecules, it is much more difficult to make simple arguments

of the type given above, and even more difficult to solve for the wavefunctions

analytically, making group theory quite valuable. The above example is largely

taken from Ref. [22].

2.2.1 Background

It is not possible to give an overview of group theory which is at the same time con-

cise, mathematically rigorous, and sufficient to perform the calculations described

here. Far more thorough treatments are available, and should be referenced for

claims asserted here. [22] [72] The goal of this portion is to demonstrate a practical

approach to performing the relevant calculations, and to show the results of those

calculations.
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Some Basic Definitions

A group is a set of elements with an operation, group multiplication (which may be

distinct from arithmetic multiplication), which links ordered pairs of the elements

to a third element in that set. That third element, or the product, must always be

in the set if the two operands are in the set. The operation must be associative,

but need not be commutative. The set must include a unit element, E , such that

for any element A in the set, A · E = E · A = A. The dot here represents the group

multiplication operation. Finally, for each element A in the set, there must exist an

inverse element A−1 also in the set, with the property that A−1 · A = A · A−1 = E.

If the group multiplication happens to be commutative for the group elements, the

group is also said to be Abelian.

Many examples of groups exist. The set of all integers form an Abelian group

under addition, as adding any two integers yields a third integer, addition is both

commutative and associative, zero acts as a unit element, and positive and nega-

tive integers form pairs for inverses. Relevant to this work are groups of symmetry

operations. Rotations, for example, by multiples of a quarter of a complete turn

along one axis, could be said to form a group, with a group multiplication repre-

senting the net effect of performing the two rotations in order as another rotation.

The rotations about a given axis are associative and commutative, because the only

thing that matters is the sum of the rotated angles when applying the operation.

Rotating by an angle of zero gives an identity element. Inverses can be found by

finding the number of additional quarter turns required to form a full rotation, the

net result being equivalent to no rotation at all.

The aforementioned symmetry operations can be represented as square matrices

acting on coordinates (vectors). This allows an easy representation of symmetry

operations as groups consisting of matrices, with matrix multiplication being group

multiplication. Two groups are said to be isomorphic to one another if a one-to-

one mapping of their elements makes their group multiplication tables identical. A

subgroup is a group whose elements are all present in a larger group, using the same

group multiplication rules for its elements. All groups have two improper subgroups,
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the first being the set consisting of just the identity element, and the second being

identical to the group of which it is a subgroup. Proper subgroups are any other

valid subgroups.

A class is a set of elements in a group which can be related to one another using

a similarity transformation. That is, if elements A, B, and C are all in group G,

and CAC−1 = B, then A and B are said to be part of the same class. A class must

include all elements in the group which can be related by this sort of transformation.

Classes may not be groups themselves. Classes tend to have physical significance in

the context of symmetry groups. For example, pure rotation operators may form a

class separate from reflection operators. Note that the identity element always forms

a class by itself, as any such transformation results in CEC−1 = CC−1 = E for any

C. For the finite groups considered here, it is possible to determine these from a

group multiplication table, and simply exhausting the possibilities. The order of a

group is the number of elements in the group.

If this group is mapped homomorphically to operators in a vector space of dimen-

sion n, this is called an n-dimensional representation of the group. If the mapping

is also isomorphic, it is called a faithful representation of the group, and the orders

of the group of operators and the original group are equal. Representations (D) are

called equivalent if they can be related to one another using another operator (C)

such that

D′(R) = CD(R)C−1

D(R) indicates a particular operator, corresponding to a particular element, R,

in the original group. If these operators are written as matrices, it can be shown

that the trace of each operator in D is left invariant by the above transformation.

This value is called the character of the group element R in the representation D.

Equivalent representations result in the same values for the characters of the group

elements. It can be shown that elements of the original group belonging to the same

class will all have the same character in a given representation.

19



Fortunately for physical symmetries, it is often obvious how to represent symme-

try group elements in a three-dimensional vector space as matrices. Unfortunately,

it may be possible to construct representations in a number of different numbers of

dimensions. In Ref. [22], there is an example for representing the group of the iden-

tity and inversion operators in two dimensions. This is done by considering writing

functions as linear combinations of f(x) and f(−x), in which case, the identity op-

erator can be represented as a 2x2 identity matrix, and the inversion operator by

a 2x2 matrix with zeros on the diagonal, and ones on the off diagonal. If a lower

dimensional representation can be found, the representation is called reducible. An

irreducible representation has the smallest dimensionality possible. There exist cri-

teria, such as Schur’s lemma, for determining whether a representation is reducible,

which can be found in several texts on group theory.

Representations can be added. This is accomplished in the matrix example by

combining matrices from each representation in block diagonal form. If the repre-

sentation matrices share the same block diagonal form, or if there exists a similarity

transformation which makes this the case when applied to all group element matri-

ces, then the representation is reducible, to the sum of representations corresponding

to each block. An irreducible representation cannot be broken down in this way.

Symmetry Groups

Fortunately, the types of groups relevant to the work presented here are quite lim-

ited. Typically, three types of symmetry operations appear in solid-state physics,

reflections, translations, and rotations. Since the work here deals with dopants

thought to be isolated, rather than repeating crystals of rare-earths, only reflections

and rotations are relevant. To avoid translations over successive operations, these

operations must all leave one point in space unchanged. These are referred to as the

point groups. Rotations about an axis by 2π
n

radians are represented by Cn. These

clearly form a group because n such operations gives the identity element (labeled

as E) and any number of such rotations will yield some other number of rotations,

from which multiples of 2π in angle can be added or subtracted to limit the number

20



of elements in the group to n. Reflections are denoted by σ, with a subscript v or

h indicating a vertical or horizontal axis containing the reflection, where vertical

implies the same axis as that used for rotations. Complicating this somewhat is

the possibility of combining such operations. By combining a half turn, C2, and a

reflection, σh, it is possible to generate an operation called an inversion, I, whose

effect on coordinates can be described as x, y, z,→ −x,−y,−z.

For groups consisting only of the rotational symmetries along one axis, the groups

are labeled as Cn, with n indicating the fraction of a full rotation producing the sym-

metry. n is selected to be the largest possible value. Dn groups have the rotational

operations of Cn, with the addition of a rotation of π along an axis orthogonal to

the rotation axis associated with Cn. The addition of an h or v subscript to Cn,

such as in C3v, indicates the addition of a mirror symmetry corresponding to the

σv or σh operation with matching subscript. The h subscript for Dnh indicates the

same addition. Sn is defined as the group of rotation reflections, such that the

element Cn is combined with σh to produce symmetry elements. Additionally, T

indicates the symmetry of a tetrahedron, O that of an octahedron, and Y that of an

icosahedron (not relevant to these applications). T may have a subscript d added,

indicating a diagonal mirror plane, and O may have a subscript h. n is typically

restricted to 1,2,3,4, and 6. A time reversal operator, R, is sometimes considered,

indicating changes in the flows of current and magnetic field direction, and increases

the number of possible groups.

Before continuing, it is important to note that the tables required to perform

analysis of level splitting, such as multiplication tables, character tables, and repre-

sentations, are readily available in books for the 32 crystallographic point groups.

[31]

Constructing a Character Table

The dimensionality theorem can be used to indicate the number of irreducible rep-

resentations. If the order of the group being represented is h, and li gives the
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dimensionality of the irreducible representation numbered i, then∑
i

l2i = h

Further, it can be shown that the number of irreducible representations is equal to

the number of classes in the group.

The characters for the classes in each irreducible representation are often of use

for further applications without any direct need of the irreducible representations as

actual matrices. Character tables give this information, with entries corresponding

to the classes and the representations, and are available in books and online. The

rows give information for each representation, and the columns for each class. Simple

rules apply to the character tables, which may be sufficient to determine them

without using or knowing the actual representations.

• Since the identity element is always represented by a unit matrix, the character

(trace) of the identity element is always equal to the dimensionality of the

representation. This gives one column of the character table.

• There is always a one-dimensional representation corresponding to a one-

dimensional group in which all elements are one. This is because all group

multiplication tables can be satisfied by multiplying one by itself to obtain

one for every entry. This is typically given in the first row of the character

table, meaning the first row is filled with ones for each class.

• The rows of the table must be orthogonal and normalized to the order of the

group, if each character entry is weighted by the number of elements in the

corresponding class.

• The columns of the table must be orthogonal and normalized to the order of

the group divided by the number of elements in the class, if each character

entry is weighted by the number of elements in the corresponding class.

• While not a rule, characters for symmetry groups are typically integer valued.
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There are multiple conventions for labeling the irreducible representations. For

the Mulliken labels,

Label Meaning

A Symmetric under Cn, One-dimensional

B Antisymmetric under Cn, Two-dimensional

E Two-dimensional

T Three-dimensional

F Four-dimensional
′ Symmetric under σh
′′ Antisymmetric under σh

1 Symmetric under C2 rotation perpendicular to the Cn rotation

2 Antisymmetric under C2 rotation perpendicular to the Cn rotation

g Symmetric under inversion (g for gerade)

u Antisymmetric under inversion (u for ungerade)

Another common scheme labels the irreducible representations as Γ with sub-

scripts distinguishing them, perhaps with a superscript preceding the Γ indicating

dimensionality.

Character tables are typically combined with information on which common op-

erators correspond to each irreducible representation. To determine how x, y, and

z transform, consider a three-dimensional representation for spatial coordinates.

Calculate the characters for each class using this representation. Now, it must be

possible to represent this new representation as a linear combination of irreducible

representations, whose characters are added according to this linear combination to

form the characters of the representation. This indicates which of the irreducible

representations correspond to x, y, and z. For irreducible representations of dimen-

sion 2 or greater, combinations of a number of basis functions equal to the number

of dimensions are needed. In the examples which will follow, it is obvious which co-

ordinates must go with each irreducible representation, because block form matrices

are achieved, with dimensions corresponding to the dimensions of the irreducible

representations. If this is the case, the coordinates corresponding to each block are

associated with the irreducible representation corresponding to each block.
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The basis functions for a representation can be thought of as a set of functions

which can be used to create that representation by mapping out how each opera-

tor changes the functions. To determine the irreducible representations of a set of

basis functions, one must find a way to describe the action of the various operators

mapping these functions to each other using matrices, compute the trace of these

matrices (characters), and then express these traces as a combination of the char-

acters for the irreducible representations in the tables. Then, one must determine

how to break up the matrices into the irreducible representations indicated by this

linear combination by placing them all in block diagonal form. The basis functions

correspond to the functions for each block diagonal form. Examples will be given

later for a few symmetry groups of interest.

Constructing Multiplication Tables for Irreducible Representations

There is a rule for determining whether an operator acting between two states will

yield zero for symmetry reasons based upon multiplying irreducible representations

by one another. In summary, the characters for the classes of the product are

identical with the products of the characters for the classes. After performing this

operation, the product representation is decomposed into a linear combination of the

irreducible representations by finding such a linear combination for the characters

producing the product’s characters. This resulting linear combination of represen-

tations is the product of the two representations used.

Extending to Double Groups

The above framework is complicated by the property of representations of half-

integral values of J . The character of a rotation class for rotation angle φ for such

a representation is given by

sin
(
(2J + 1) φ

2

)
sin
(
φ
2

)
For integer J , the above has the desirable property that adding 2π to the angle

gives the same value. For half-integer J , this expression changes sign under such a
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rotation. In order to resolve the issues that this produces, one solution corresponds

to imagining that the crystal is symmetric under rotation by 4π rather than 2π

radians, and adds an operator, R, corresponding to rotation by 2π. This element is

applied to each of the already existing elements of the group to create a new group

with twice as many elements. It is important to note that there may be cases in

which this does not double the number of classes, if, for example, rotation by π is

already an operator. Every class besides a rotation by π produces two classes in the

double group. More details on the rotation by π and the rules which will soon follow

can be found in Ref. [56]. In short, rotation by π shares a class with this added set

of operators if an only if there is another rotation by π along an axis perpendicular

to the rotations for the first rotation operator.

A set of rules can be applied to derive the double group character table.

• First, determine the number of classes and the order of the double group,

which generally creates adds a new class for each single group class, with the

exception of the π rotation case already mentioned.

• Then, the sum of squares of the dimensions of the classes should still equal

the order of the overall group. The representations which appeared without

considering th double group should still be present.

• The portion of the table corresponding to the original operators and represen-

tations should be identical to the single group entries.

• For the original representations for the single group, the characters for corre-

sponding classes differing only by the R operator are identical.

• For the added representations unique to the double group, the characters for

each original and corresponding added class (that is, class differing only by

this R operator) must be the same value with opposite signs.

• The rules about the entries for the identity representation (first row) being

one and the entries for the identity operator class being the dimension of the

representation still apply, as this is still a character table.
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• The rules about normalizing the rows and columns also still apply, as do the

rules about orthogonality.

Kramers Theorem

Time reversal symmetry has a consequence for half-integer spin that is not present

for integer spin. Specifically, if a state is a solution of the Hamiltonian, its time

reversed state is also a solution. Time reversal changes the sign of angular momenta.

For a half-integer spin system, this requires that no state can be its own equivalent

time reversed state (since there is no possible zero spin state). This forces states

in a half-integer spin system to exist in pairs with identical energy. However, the

addition of a magnetic field breaks this time reversal symmetry.

In the original paper, it is stated that in systems where the number of electrons

is odd affected by purely electric (not magnetic) fields, the energy levels must be

doubly degenerate. [32]

Since the group theory predictions here do not explicitly include time reversal,

when calculations involving such systems are shown later, this property is included

after the fact.

Determining Level Properties

The next step is to apply these character tables to determine how multiplets split

into levels with symmetries corresponding to these irreducible representations. This

problem turns out to be similar to the problem of decomposing sets of basis func-

tions. A representation for the group of levels is needed which can be broken up

into a linear combination of the irreducible representations for symmetry group un-

der consideration. The case considered here will be that of calculating splittings of

multiplets of given J .

Fortunately, the number of splittings for a multiplet of given J for a given sym-

metry has already been determined in Ref. [64], which will be useful for verifying

the results. The result is as follows, for J values up to 8.
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Set of Point Groups Point Groups

Cubic Oh, O, Td, Th, T

Hexagonal D6h, D6, C6v, C6h, C6, D3h, D3, C3v, C3h, C3, D3d, S6

Tetragonal D4h, D4, C4v, C4, D2d, S4

Lower Symmetry D2h, D2, C2v, C2h,C2,Cs, S2,C1

J 0 1 2 3 4 5 6 7 8

Cubic 1 1 2 3 4 4 6 6 7

Hexagonal 1 2 3 5 6 7 9 10 11

Tetragonal 1 2 4 5 7 8 10 11 13

Lower Symmetry 1 3 5 7 9 11 13 15 17

J 1
2

3
2

5
2

7
2

9
2

11
2

13
2

15
2

Cubic 1 1 2 3 3 4 5 5

Any Other Symmetry 1 2 3 4 5 6 7 8

To be clear, the entries in the second two of these tables give the number of

distinct energy levels, not the degeneracy of any of those distinct energy levels. In

order to determine irreducible representations for each J value, the character for

each class needs to be calculated.

By considering properties of spherical harmonics, it is possible to derive the

following expressions for the character of a multiplet with J for its combined angular

momentum. The representation of J is labeled asDJ . χ is used to indicate character.

Justification for these relations is discussed in a set of lecture notes available online.

[11] To briefly describe the method, one can imagine a set of mj states to represent a

multiplet of J , and then calculate characters from matrices for how these states are

changed by the operators. This representation makes the character for the identity

operator equal to the number of valid mj states, which is equal to 2J + 1.

χ(J)(E) = 2J + 1

χ(J)(Cn) =
sin
(
(2J + 1)π

n

)
sin π

n
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χ(J)(i) = (−1)J (2J + 1)

χ(J)(Sn) = (−1)J
sin
(
(2J + 1)π

n

)
sin π

n

σh = C2 × i = S2

χ(J)(σh) = (−1)J sin
(

(2J + 1)
π

2

)
Ultimately, the irreducible representations themselves become the crystal-field

quantum numbers. That said, it may be the case that one such quantum number

refers to more than one such representation.

The above expression for the character of a rotation is valid for any axis, meaning

that any reflection operator can be expressed as a product of the inversion operator

and a rotation about some axis by π. Thus, the above expression for the character

for mirror operators applies to any such mirror operator, not just σh. The above

expression leads to the interesting property that for half-integral J , the character is

proportional to the sine of an odd number times π, meaning that the character of a

mirror operator for half-integral J is always zero. Additionally, for integral J , the

character of the mirror operator reduces to +1.

Application to Selection Rules

Once we have a multiplication table for the irreducible representations, represen-

tations for the levels, and representations for some basic operators, it is possible

to determine whether those operators are expected to yield zero for symmetry rea-

sons when acting between two levels. In general, for 〈Ψ1|A|Ψ2〉 to be non zero, the

product of the representation for Ψ1 with the representation for A must contain

the representation for Ψ2. Using this simple principle, it is possible to use existing

resources with precomputed tables. [31]

For an electric dipole, one checks whether x, y, or z as operators in place of A

can yield nonzero results. Also, the unit directions associated with each of those
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operators corresponds to the polarization associated with the electric dipole tran-

sition. For splitting under applied magnetic fields, one follows a similar procedure.

Assuming higher order terms are negligible, this is reduced to calculating 〈Ψ|HB|Ψ〉.
If the HB operator for a given orientation (suppose along the z axis) is proportional

to a term like Lz +gSz, it is expected that this will transform, in terms of symmetry

operations, identically to combinations of the x, y, and z operators (in this example,

only z). This also implies that the rules for magnetic splitting (for this low order

term) act similarly to selection rules for electric dipole transitions.

2.2.2 Application to Crystal-Field Terms

It can be shown that the Hamiltonian conforming to a given symmetry group is

equivalent to the symmetry operators commuting with the Hamiltonian. This allows

simplification of the crystal-field terms which are permitted. The following table is

taken from Ref. [50], and indicates the values of q for which Bk
q may be nonzero for

various symmetry operations.

Symmetry Operations Permitted q

C2,σh 0, ± even number

C3 0, ± multiples of 3

C4 0, ± multiples of 4

C6 0, ± multiples of 6

σv, U2 0, any positive number

Further, Ref. [77] explains that for f electron configurations, terms with k > 6 do

not contribute. If the electrons are equivalent (as is the case in this work), only

terms with even k are needed. Since q must be bounded inclusively by −k and k,

this enables a tabulation of a finite number of elements for the symmetries already

discussed in some detail. The term for k = 0 is ignored, as its predominant effect is

a uniform shifting of levels.

For C3v, the nonzero terms are B0
2 , B0

4 , B3
4 , B0

6 , B3
6 , and B6

6 , for a total of six

terms. For C1v, there are three nonzero terms for k = 2, five for k = 4, and seven
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for k = 6, giving a total of fifteen terms. For C1, essentially no symmetry, k = 2

gives five, k = 4 gives nine, and k = 6 gives thirteen, for a total of twenty-seven

terms. It can be seen that symmetry has a great effect on reducing the number of

crystal-field terms. This large number of terms for low symmetry groups requires a

large amount of experimental data to fit them.

When acting on a multiplet with angular momentum J , a crystal-field operator

with a particular value of q can be nonzero only when acting between states whose

difference in mj is equal to q. This property, combined with the table above, gives

rise to the notion of grouping states by crystal-field number. For example, for C3

symmetry, mj states can be mixed only into one of three groups by the crystal-field,

because there will be no off-diagonal elements connecting states whose mj values

differ by a value other than an integral multiple of three. The practice for assigning

a crystal-field quantum number is to use the mj value of the set of mixed states

closest to zero.

2.2.3 Simplifying Effective g Factors

The effective g factor can be represented as a tensor.

g =


gxx gxy gxz

gyx gyy gyz

gzx gzy gzz


However, in order to have C3v symmetry (which should be valid for the case in

which the magnetic fields are not large enough to dominate the symmetry of the

system), this tensor needs to have threefold rotational symmetry. The z axis is the

rotation axis.

Consider first the application of a magnetic field along the z axis. The following

quantity must be invariant under the rotation.

(Lx + gsSx)gxz + (Ly + gsSy)gyz + (Lz + gsSz)gzz

The last term has this symmetry guaranteed, as it is unaffected. Note that a
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multiplication by a rotation matrix for the xy plane will not change the column

and row of gij corresponding to z. Thus, for any rotation, Lx + gsSx and Ly + gsSy

change, while gxz and gyz do not.

(Lx + gsSx)gxz + (Ly + gsSy)gyz =

(cos(θ)(Lx+gsSx)+sin(θ)(Ly+gsSy))gxz+(− sin(θ)(Lx+gsSx)+cos(θ)(Ly+gsSy))gyz

gxz = cos(θ)gxz − sin(θ)gyz

gyz = sin(θ)gxz + cos(θ)gyz

gyz =
1− cos(θ)

sin(θ)
gxz =

sin θ

1− cos(θ)
gxz

Either gxz = 0 or
1− cos(θ)

sin(θ)
= 1,

of which the second requires sin(θ+ π
2
) = 1√

2
. However, if a system has a rotational

symmetry of π
4
, which satisfies this, it also has one of π

2
. Thus, it appears that for

any rotational symmetry about the z axis, these values of the tensor must be zero.

Further, a similar argument applies to gzx and gzy by rotating a magnetic field in

the xy plane, and requiring the coefficients of (Lz + gsSz) to remain unchanged.

All that remains is to examine the elements containing only x and y. First, to

simplify this process further, it is possible to select axes x′ and y′ by rotating x and

y about the z axis such that gyx = 0 for the new coordinates. This is accomplished

by rotating by an angle θ such that tan θ = gyx
gxx

. This rotation leaves the results

for entries containing z unchanged. From here on, it is assumed that x and y now

represent these primed axes.

Consider a magnetic field along the x axis, and the result of rotating the field.

gxx(Lx + gsSx) + (Ly + gsSy)gxy =

(gxx cos θ)((Lx + gsSx) cos θ + (Ly + gsSy) sin θ)+
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+(gxy cos θ − gyy sin θ)(−(Lx + gsSx) sin θ + (Ly + gsSy) cos θ)

This reduces to two equations by forcing the coefficients of the operators to be

equal.

gxx = gxx cos2 θ + (−gxy) sin θ cos θ + gyysin
2θ

gxy = gxy cos2 θ + (gxx − gyy) sin θ cos θ

Continuing, one must make an assumption about whether sin θ is equal to zero.

The only group with rotational symmetry which will be discussed in detail for this

work is C3v, so for this group, it can be assumed sin θ is non-zero.

gxx sin θ = gxy cos θ + gyy sin θ

gxy sin θ = (gxx − gyy) cos θ

gxx sin θ = (gxx − gyy) cos2 θ + gyy sin θ

0 = (gxx − gyy)(cos2 θ − sin θ)

Solutions for cos2θ − sinθ do not occur for any angles in the 32 crystallographic

point groups, which means that gxx = gyy, which in turn means that gxy = 0.

Thus, the above is sufficient to show that groups with C3v symmetries produce

a symmetric effective g tensor, with the xx and yy elements being identical when

diagonalized (if z is the rotation axis). This means that the effective g factors for

C3v can be expressed using only two numbers, g⊥ and g‖, for fields perpendicular

and parallel to the z-axis, respectively.
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2.2.4 C3v

Constructing Single Group Tables

As will be discussed later in this chapter, a reasonable guess for the symmetries

of the incorporation sites for the systems examined in this work is C3v symmetry.

This makes both this symmetry, and slight breakings of it, of particular interest.

First, there are six group elements, the identity element, E, two rotation operators,

C3 and C2
3 , a mirror operator, σv, and two other mirror operators corresponding

to two other planes obtained by rotating the first mirror plane by C3. This means

the order of the group is six. The identity element forms a class, the pure rotation

operators form a class, the operators involving reflection form a class. This indicates

that this group must be represented by three irreducible representations with each

a dimension li, satisfying

l21 + l22 + l23 = 6

However, since the dimensions must be positive integers greater than zero, the

only solution to the above requires that there are two irreducible representations of

dimension one, and one representation of dimension two. Using this information,

we begin to fill out the first row and the first column of the character table, with

four unknown entries.

E 2C3 3σv

A1 1 1 1

A2 1 a b

E 2 c d

Orthogonality between the first row and the other two gives

1 + 2a+ 3b = 0

2 + 2c+ 3d = 0

Orthogonality with the first column gives

1 + a+ 2c = 0
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1 + b+ d = 0

Combining some of these gives

a+ 3b = −2⇒ 1 + a = 2⇒ a = 1

which then allows straightforward determination of all the other entries.

b = −1

d = 0

c = −1

E 2C3 3σv

A1 1 1 1

A2 1 1 -1

E 2 -1 0

Note that this character table was constructed without explicit knowledge of

the matrix representations of the operators. For this next portion, x, y, and z will

be identified with these representations. Consider matrices for an operator in each

class.

E =


1 0 0

0 1 0

0 0 1



C3 =


−1

2
−
√

3
2

0
√

3
2
−1

2
0

0 0 1



σv =


−1 0 0

0 1 0

0 0 1


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The characters are 3, 0, and 1. Comparing this to the character table, this can

be achieved by adding the characters for A1 and E. Inspecting the above matrices,

and noting that none of the operators should change z, it can be seen that this rep-

resentation is already in a block diagonal form combining a one-dimensional and a

two-dimensional representation. The z coordinate appears in the block correspond-

ing to the one-dimensional representation, meaning that z corresponds to A1. By

similar reasoning, x and y correspond to E.

This process can be continued for other basis functions. Consider the operators

acting on the sum x2 + y2. This should be unaffected by rotations or reflections,

meaning that all the matrices corresponding to this should simply be the number

one, in a one-dimensional matrix. Comparing the traces of this to the character

table, it can be seen that this corresponds to A1. By extension, any basis function

left unchanged by the operations of the symmetry group must correspond to the

first group in the table.

Rotations about the various axes, Rx, Ry, and Rz, can also be considered. Rz

does not change into another type of rotation under the action of the operators

of the symmetry group, but reflection reverses the direction of the rotation. This

would result in one-dimensional matrices equal to one for the identity and rotation

classes, but negative one for the reflection classes. This implies Rz corresponds to

A2. Rx and Ry, however, form various linear combinations with one another under

these operations, and this implies a two-dimensional representation. This leaves

only the possibility of identifying these with E. Continuation of this process gives

all the information typically displayed in character tables.

E 2C3 3σv Linear Functions and Rotations Quadratic Functions

A1 1 1 1 z x2 + y2, z2

A2 1 1 -1 Rz

E 2 -1 0 (x,y), (Rx, Ry) (x2 − y2,xy), (xz,yz)

Next, there is the matter of the products of the irreducible representations.
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E 2C3 3σv

A1 1 1 1

A2 1 1 -1

E 2 -1 0

A1 × A1 1 1 1 A1

A2 × A1 1 1 -1 A2

E ×A1 2 -1 0 E

A2 × A2 1 1 1 A1

A2× E 2 -1 0 E

E × E 4 1 0 E + A1 + A2

Integer J

For integer values of J , the above is sufficient to make predictions about splitting

of multiplets. Recall the earlier expression for the character of a rotation operator.

χ(Cn) =
sin
(
(2J + 1) φn

2

)
sin
(
φn
2

)
Setting φ = 2π

3
, this gives rise to a repeating cycle of 1,0, and −1 as J increases.

The character of the identity element is equal to the number of states for a given

J , which means this is equal to 2J + 1. For the mirror operator, the operation is

considered as a product of a particular rotation by π, which gives a character of

(−1)J for integer J , and an inversion operator, which gives a character of (−1)J .

This means that the character of the mirror operator is always +1 for integer J . It

is important to note a discrepancy with [77], which treats the character of a mirror

operator as identical to the character of a rotation by π, which is incorrect when

discussing C3v symmetry, which has no such symmetry.

These rules give the characters for integral J . To find the representations in terms

of irreducible representations, these characters are expressed as a linear combination

of the characters of those representations.
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J E 2C3 3σv Linear Combination

0 1 1 1 A1

1 3 0 1 E + A1

2 5 -1 1 2E + A1

3 7 1 1 A1 + (A1 + A2) + 2E

4 9 0 1 A1 + (A1 + A2) + 3E

5 11 -1 1 A1 + (A1 + A2) + 4E

6 13 1 1 A1 + 2(A1 + A2) + 4E

7 15 0 1 A1 + 2(A1 + A2) + 5E

8 17 -1 1 A1 + 2(A1 + A2) + 6E

9 19 1 1 A1 + 3(A1 + A2) + 6E

In the linear combination column, each unit instance of a representation corre-

sponds to a number of levels equal to the number of dimensions in the represen-

tation. The choice to write a unit of A1 separately was made in order to denote

that A1 seems to correspond to mj = 0, but for nonzero even mj, levels appear to

be added in pairs of A1 and A2, or in adding E, as J increases. Unlike the half-

integer j case, in which two one-dimensional representations are treated as parts of

a two-dimensional representation to preserve Kramer’s degeneracy, here each dis-

tinct representation above must represent a level. This means that the number of

representations needed for each J gives the number of split groupings of levels, and

can be shown to reproduce the level splittings given earlier for hexagonal symme-

try. The degeneracy of each grouping with the same energy must correspond to the

dimensionality of the corresponding irreducible representation.

As noted earlier, for threefold rotational symmetry, mj levels are mixed within

groups whose members have differences in mj equal to an integral multiple of three.

This leads to two quantum numbers being assigned for these representations. ±1

for E, and 0 for A1 and A2.

Using the product rules developed earlier, polarization selection rules can be

found. For 〈Ψ1|A|Ψ2〉 to be non zero, the product of the representation for the state

Ψ1 by that for A must contain the representation for Ψ2. In the crystals of interest

37



in this work, the dipole operator for z will give π polarization, and x and y will give

σ. z is identified with A1, and x and y with E.

A1 A2 E

A1 π σ

A2 π σ

E σ σ πσ

For magnetic fields, consider the operators Lz + gsSz and Lx + gsSx. The former

is unaffected by rotations around the z axis, but reverses sign under reflection. This

behavior corresponds with A2. The latter should rotate and transform like x and y,

and thus corresponds with E. A parallel magnetic field in this work is considered

as being along the z axis, so nonzero elements for this operator acting between two

states are given by essentially the same table, marked by parallel and ⊥. Note that

actually forming a basis for E with Lx + gsSx requires including Ly + gsSy, so like

x and y, these operators are considered identical in symmetry properties.

A1 A2 E

A1 ‖ ⊥
A2 ‖ ⊥
E ⊥ ⊥ ‖ ⊥

If off-diagonal terms are ignored, it can be seen that a parallel magnetic field

should always split degenerate levels, while a perpendicular field should only split

degenerate levels with the symmetry of E.

Constructing Double Group Tables

C3v has no rotations by π, so the procedure here is straightforward. Each class

in the original group now is joined by a corresponding class multiplied by R. The

number of classes is now six, and the number of elements is twelve. This is solved

easily for the number and dimensionality of irreducible representations if another

set of irreducible representations is added with the same dimensions as the original,
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as 2(12 + 12 + 22) = 12. Applying rules for the first row and column, as well as some

rules for extending values in the table, the following is obtained. Justification for

the labels of the new representations will become more apparent once results for the

level splittings are obtained.

E 2C3 3σv RE 2 R C3 3 R σv

A1 1 1 1 1 1 1

A2 1 1 -1 1 1 -1

E 2 -1 0 2 -1 0

E 1
2

2 a b -2 -a -b

E 3
2

1 c d -1 -c -d

E ′3
2

1 e f -1 -e -f

Note that only six variables remain after this.

At this point, it should be noted that strictly speaking, multiplying elements for

checking for normalization and orthogonality requires taking the complex conjugate

of one of the two rows or columns of characters. In the previous portion for the single

group, this was not needed, because the characters were all real, but technically

speaking, this should have been done there as well.

From the row orthogonality and normalization

2 + 2ac? + 3bd? = 0

2 + 2ae? + 3bf ? = 0

1 + 2ce? + 3df ? = 0

2a?a+ 3b?b = 2

2c?c+ 3d?d = 5

2e?e+ 3f ?f = 5

From the column orthogonality and normalization

2a+ c+ e = 0
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2b+ d+ f = 0

a?b+ c?d+ e?f = 0

a?a+ c?c+ e?e = 3

b?b+ d?d+ f ?f = 2

It can be shown that the three row normalization equations above can be derived

from the others. Rather than solve the above equations in full, a shortcut is added,

by observing that these added representations must include a way to represent the

group corresponding to j = 1
2

which was not present in the original representations.

As discussed earlier, the character for a rotation operator for a given J has a simple

expression, and 2J + 1 gives a value of 2 for the identity operator character. This

neatly fits with the added dimension two representation. This can be considered as

a guess, which turns out to satisfy all the above equations.

Applying this, a = 1, the value for the character of the rotation of J = 1
2

by C3,

which from the fourth equation gives b = 0. From the seventh equation, c+ e = −2.

Using the ninth equation, one obtains c − e = 0. This means c = e = −1. Using

the tenth equation, this gives d?d + f ?f = 2. From the eighth equation, d = −f .

Next, from the last equation, d ∗ d = 1. From the third equation, df ? = −1. Since d

and f are of unit magnitude, the only solution is if one of the two is the imaginary

number and the other its negative. This uncertainty reflects the symmetry in the

equations under a swap of the last two rows of the table. It can be verified that all

these characters satisfy all the above equations.

E 2C3 3σv RE 2 R C3 3 R σv

A1 1 1 1 1 1 1

A2 1 1 -1 1 1 -1

E 2 -1 0 2 -1 0

E 1
2

2 1 0 -2 -1 0

E 3
2

1 -1 i -1 1 -i

E ′3
2

1 -1 -i -1 1 i
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The multiplication table is worked out similarly to before. Only the final result

is given below.

A1 A2 E E 1
2

E 3
2

E′3
2

A1 A1 A2 E E 1
2

E 3
2

E′3
2

A2 A2 A1 E E 1
2

E′3
2

E 3
2

E E E A1+A2+E E 1
2

+ E 3
2

+ E′3
2

E 1
2

E 1
2

E 1
2

E 1
2

E 1
2

E 1
2

+ E 3
2

+ E′3
2

A1+A2+E E E

E 3
2

E 3
2

E′3
2

E 1
2

E A2 A1

E′3
2

E′3
2

E 3
2

E 1
2

E A1 A2

Half-Integer J

The crystal-field splitting for half-integer J multiplets is considered. Character

calculations were already discussed. Half-integer angular momenta require double

valued characters, so it is expected that these states must be represented only by the

added irreducible representations (as there are no issues with overlapping classes),

which have different values for the extended operators. In this case, then, it is

adequate to be concerned only with expressing characters using the first three classes

for the new three representations.

J E 2C3 3σv Linear Combination
1
2

2 1 0 E 1
2

3
2

4 -1 0 E 1
2

+
(
E 3

2
+ E ′3

2

)
5
2

6 0 0 2E 1
2

+
(
E 3

2
+ E ′3

2

)
7
2

8 1 0 3E 1
2

+
(
E 3

2
+ E ′3

2

)
9
2

10 -1 0 3E 1
2

+ 2
(
E 3

2
+ E ′3

2

)
11
2

12 0 0 4E 1
2

+ 2
(
E 3

2
+ E ′3

2

)
13
2

14 1 0 5E 1
2

+ 2
(
E 3

2
+ E ′3

2

)
15
2

16 -1 0 5E 1
2

+ 3
(
E 3

2
+ E ′3

2

)
17
2

18 0 0 6E 1
2

+ 3
(
E 3

2
+ E ′3

2

)
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Considering Kramer’s degeneracy, and that the dimension of each representation

is the number of states it represents, it appears that the energy levels for this

symmetry are naturally separated into levels corresponding to E 1
2

and a combination

of E 3
2

and E 3
2

′ , suggesting two groupings of levels. The above also suggests that every

third increment of J adds a doubly degenerate state represented by E 3
2

and E ′3
2

,

starting with mj = ±3
2
. A similar thing can be said for adding a state represented

by E 1
2

if one considers every third value of mj starting from either +1
2

or −1
2
. This

idea is used to assign the crystal-field numbers. Levels corresponding to E 1
2

are

given crystal-field number ±1
2
, and levels corresponding to E 3

2
and E 3

2

′ are given 3
2
.

This also explains the choice of labels. Recall that E refers to a two-dimensional

representation. The rationale for labeling two one-dimensional representations as

E 3
2

and E 3
2

′ is that the levels that result here always appear as combinations of

equal parts of the two. The subscripts refer to the crystal-field numbers that result

for each.

All that remains is determining the selection rules. Since the basis functions

developed for the single group still apply, and still correspond to the same repre-

sentations, these can be derived from the multiplication table using just the portion

corresponding to the products of new and old representations. The results are ta-

bles virtually identical to the integer J results. Note that higher order moments for

transitions can be determined by the same process. A doubly degenerate level with

crystal-field number 3
2

is not expected to split under a magnetic field applied per-

pendicular to the c-axis (z axis) of the crystal, but all other splittings are expected.

These rules will be a great importance later in this work.

E 3
2

E 3
2

′ E 1
2

E 3
2

π σ

E 3
2

′ π σ

E 1
2

σ σ πσ
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-15/2 -9/2 -3/2 3/2 9/2 15/2

-13/2 -7/2 -1/2 5/2 11/2

-11/2 -5/2 1/2 7/2 13/2

-15/2 -9/2 -3/2 3/2 9/2 15/2-13/2 -7/2 -1/2 5/2 11/2-11/2 -5/2 1/2 7/2 13/2mj

=3/2

=-1/2

=1/2

Figure 2.1: Mixing of states with mj value differing by integer multiples of three (for
C3v symmetry) produces three groups of crystal-field quantum numbers, of
which two groupings must be identical under time reversal.

E 3
2

E 3
2

′ E 1
2

E 3
2
‖ ⊥

E 3
2

′ ‖ ⊥
E 1

2
⊥ ⊥ ‖ ⊥

2.2.5 C1 and C1v

Constructing Tables

Unfortunately, if the rotation and reflection symmetries are both broken, the sym-

metry group that results contains only one element, E. If the reflection remains,

there is one other symmetry operation available. These groups are considered pri-

marily because they give an indication of what might happen if the symmetry of

C3v breaks slightly.

For C1v, there are two elements, identity and reflection, with one class for the

identity element, and one class for the reflection. This means there must be two

irreducible representations of each dimensionality one, so that 12 + 12 = 2, as had

to be the case for C3v. Note that Cs is essentially the same group, except the mirror

plane is oriented differently.

For C1, there is only the identity element, which implies one irreducible repre-

sentation of dimension one by similar reasoning. For C1, this also means that the
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character table has only one entry, unity. For C1v, it is only slightly more compli-

cated.

E σv

A1 1 1

A2 1 a

It is easily seen by inspection that the only way to maintain orthogonality for

rows and columns is if a = −1.

E σv

A1 1 1

A2 1 -1

For C1, since the only operator is the identity operator, the action of the opera-

tors on any possible basis functions can be represented with a single one-dimensional

matrix equal to one, which implies all basis functions are identified with A.

For C3, some functions may change. Since the mirror axis has been selected

as vertical, z is left unchanged, and is identified with A1. For the correct rotation

of the x and y axes, one of these axes should be changed in sign by the reflection

operator, and the other not. This implies that x and y are expressed as a combination

of the A1 and A2, with some rotation allowing them to be considered separately,

so that x′ is identified with A1 and y′ with A2. Similarly, all functions can be

classified according to whether they change sign under this reflection to determine

their irreducible representation.

E σv Linear Functions and Rotations Quadratic Functions

A1 1 1 x, z, Ry x2,y2,z2,xz

A2 1 -1 y, Rz,Rx xy, yz

For C1, there is only one representation corresponding to an identity, so the

product table for the irreducible representations is simply A× A = A. For C1v,
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E σv

A1 1 1

A2 1 -1

A1 × A1 1 1 A1

A2 × A1 1 -1 A2

A2 × A2 1 1 A1

Integer J

For C1, because all levels and all operators must have the same representation, whose

product with itself is itself, all operators acting between states may have nonzero

value, so the selection rules are essentially that there are no rules imposed by the

symmetry of the crystal-field, and therefore, no way of distinguishing symmetries of

crystal-field split levels by use of group theory.

For C1v, for splitting of multiplets with integer J , the procedure is the same as

for C3v. First, the characters of the multiplets are determined.

J E σv Linear Combination

0 1 1 A1

1 3 1 A1 + (A1 + A2)

2 5 1 A1 + 2(A1 + A2)

3 7 1 A1 + 3(A1 + A2)

4 9 1 A1 + 4(A1 + A2)

5 11 1 A1 + 5(A1 + A2)

6 13 1 A1 + 6(A1 + A2)

7 15 1 A1 + 7(A1 + A2)

8 17 1 A1 + 8(A1 + A2)

9 19 1 A1 + 9(A1 + A2)

Because all levels may be mixed and grouped for both of these symmetries, the

crystal-field quantum number for all these levels is 0.

Next, the selection rules. Unfortunately, these are of less use experimentally,

because experimentally, the orientation of the remaining mirror plane (since it is
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assumed that the relevance of this is breaking symmetry) is not typically controlled.

Thus, the treatment of y as distinct from x is a problem.

A1 A2

A1 x,z, Lx + gsSx,Lz + gsSz y,Ly + gsSy

A2 y,Ly + gsSy x,z, Lx + gsSx,Lz + gsSz

Thus, the primary result of this exercise for C1v is that rotations in the xy plane

may produce different dipole moments and magnetic fields. From the perspective of

experimentally derived results only controlled for magnetic fields and polarizations

parallel and perpendicular to the c axis of a crystal (taken to be the z axis), this

does not yield any certainties of zero for particular operator elements. Further, if

the relevance of this is to examine breaking of C3v symmetry, this suggests that

in an actual crystal, for a given defect, there could be three different so-defined x

and y axes, depending on which mirror symmetry is preserved. This implies that

multiple versions of the same site with identical energies could exist simultaneously,

complicating selection rules.

Constructing Double Group Tables

For C1, the process of extension is trivial. Initially, only the representation and

operators corresponding to identity were available. Now, there is one additional

class of operator, for R. Two classes with order 2 of the group can have only two

one-dimensional representations. Following the rules for extending a character table,

E R

A 1 1

Ā 1 -1

The multiplication table is essentially identical to the single group results for C1v,

which makes sense, considering that rules for constructing character tables permit

only one valid table for two one-dimensional representations. Constructing repre-

sentations of the values of J is trivial, as they must be made of only Ā, as it is
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the only double valued representation, and the number of these required is simply

equal to 2J + 1. This implies that there is only one crystal-field quantum number,

which will be assigned as 1
2
, the lowest (positive, since there is a choice) mj for this

representation. Since all possible functions are mapped to the identity representa-

tion, this means group theory places no restrictions on any transition moments or

magnetic terms. Still, from Kramer’s degeneracy, the levels must still be doubly

degenerate.

For C1v, there are now four operators, in a group of order four, implying four

one-dimensional representations. Following through the procedure for constructing

this table gives

E σv R R σv

A1 1 1 1 1

A2 1 -1 1 -1

E 1
2

1 a -1 -a

E 1
2

′ 1 b -1 -b

Orthogonality of columns requires

a+ b = 0

2 + a?a+ b?b = 0

Following through,

a?a = −1

b = −a

This allows assigning either a = i and b = −i, or a = −i and b = i.
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J E σv Linear Combination

1
2

2 0
(
E 1

2
+ E ′1

2

)
3
2

4 0 2
(
E 1

2
+ E ′1

2

)
5
2

6 0 3
(
E 1

2
+ E ′1

2

)
7
2

8 0 4
(
E 1

2
+ E ′1

2

)
9
2

10 0 5
(
E 1

2
+ E ′1

2

)
11
2

12 0 6
(
E 1

2
+ E ′1

2

)
13
2

14 0 7
(
E 1

2
+ E ′1

2

)
15
2

16 0 8
(
E 1

2
+ E ′1

2

)
17
2

18 0 9
(
E 1

2
+ E ′1

2

)
The representations for half-integer J values are essentially identical to the result for

the C3v, but with the states of crystal-field number 3
2

replaced by states of crystal-

field number 1
2
. Similarly, the labels were chosen to reflect that the splittings almost

act as if there is a two-dimensional representation. Kramer’s degeneracy suggests

that only one crystal-field quantum number is needed, 1
2
, since the two representa-

tions must lead to the same energies under time reversal. The multiplication table

is updated below.

A1 A2 E 1
2

E ′1
2

A1 A1 A2 E 1
2

E ′1
2

A2 A2 A1 E ′1
2

E 1
2

E 1
2

E 1
2

E ′1
2

A2 A1

E ′1
2

E ′1
2

E 1
2

A1 A2

As noted before, x and y are distinguished by the mirror symmetry, so the following

table simply gives selection rules in terms of x, y, and z, which also applies to the

magnetic operators along the same direction.

E 1
2

E 1
2

′

E 1
2

x,z y

E 1
2

′ y x,z
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The same discussion at the end of the portion on integer J for these symmetries

is also relevant here.

2.2.6 SO(2)

Considering the case of a magnetic field separately, a magnetic field along a par-

ticular direction, selected as z for now, has rotational symmetry in the xy plane,

but no mirroring or other rotational symmetries. This is referred to as SO(2), the

rotation group for rotations around a line (which could also be considered as C∞).

This presents a complication not present in the previous two symmetry groups, in

that there are an infinite number of symmetry options, and so the group is of infinite

order. Rather than consider the details, the results of finding the irreducible repre-

sentations are simply presented and used here. The character table is given below,

in a form which differs from that of the previous tables. It can be also be found

in [28]. Specifically, the character of a rotation by angle φ is given in a functional

form, and the single row details all the irreducible representations as a function of

m ∈ Z.

Function E R(φ)

A±m (x± iy)m 1 e±imφ

Fortunately, the m values here neatly correspond to the mj values for the split-

ting of an LS coupled multiplet with total angular momentum j. This implies the

expected result for the splitting of levels in a magnetic field, that all will split accord-

ing to their mj value. Note that all the irreducible representations are of dimension

one, implying that all levels of a multiplet will be singly degenerate under this axial

symmetry.

In order to determine electric dipole selection rules, one must have a represen-

tation for z and for x and y (the last two should be indistinguishable). Note that

the effect of multiplying characters for the representations of the above form is to

add and subtract m values, implying that selection rules will be of a form involving

differences in mj values.
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For a representation of z, which does not explicitly appear in the above, note

that its behavior under rotations in the xy plane is to remain unchanged. Thus, z

is identified with the m = 0 case, which is the only representation which gives ones

for its two characters for any angle φ.

Since the procedure of taking a product of two such representations is to add

the m values for each, and the transition rule that a product of the initial state

and transition element representations must contain the final state representation,

this implies electric dipole transitions along the direction of the magnetic field are

allowed for ∆mj = 0.

A representation for x or y is slightly more difficult, because there is no way

to form such a representation without a linear combination of two irreducible rep-

resentations. The two representations are for m = 1 and m = −1. Following a

similar reasoning, this implies electric dipole transitions polarized in the xy plane

are allowed for ∆mj = ±1.

The combined result is familiar, that electric dipole transitions require ∆mj =

0,±1.

Electric Dipole Polarized along z ∆mj = 0

Electric Dipole Polarized along x,y ∆mj = ±1

A similar procedure would apply to higher dipole moments. In the case of a

magnetic field whose effects on the states are significantly larger than the effects

of the crystal-field terms, the symmetry group described here is what is expected.

In such a case, mj is expected to be a good quantum number, and all levels in LS

coupled multiplets are expected to be singly degenerate. Note that the z axis here

refers to the magnetic field direction, not the c-axis of a crystal.

2.2.7 Magnetic Perturbations

In order to add the effects of a perturbation of a different symmetry than the original,

the procedure is to start with the representations identified for the more significant

symmetry, and determine the irreducible representations for these in terms of the

perturbing symmetry. [22]
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The result discussed for SO(2) symmetry, that only one-dimensional represen-

tations appear, suggests all levels will be singly degenerate. Unfortunately, it is

difficult to identify the new representations (which are in terms of mj values, no

longer a good quantum number) without knowing more about the particular case.

The electric dipole selection rules are also complicated by states being composed

of multiple mj states. For example, if all states in a multiplet contain some pro-

portion of all mj labeled states, then any transitions between those states would

have no restrictions on polarization relative to the magnetic field (as there would

always exist an allowed electric dipole transition both for polarizations parallel and

perpendicular to the magnetic field axis).

Still, in some cases, this may be possible without additional information, such

as a multiplet with j = 3
2

split mostly by C3v symmetry. In such a case, the

mj = ±1
2

states cannot mix with any other state, including one another (although

the mj = ±3
2

states can mix with one another).

The result also suggests that it is conceivable that electric dipole moments could

change as a function of applied magnetic field magnitude and direction. Of course,

the question of degree depends on the relative effects of the magnetic field’s symme-

try and the crystal-field’s symmetry. The results for the selection rules determined

here are identical if the sign of the magnetic field is reversed (a point which will be

relevant to chapter 7).

In short, it is not possible in general to discuss how selection rules for a dopant in

a crystal change as a result of an applied magnetic field without more information,

because selection rules for the crystal-field are given in terms of the crystal-field

quantum numbers, µ, and in terms of axes determined by the crystal, whereas the

rules for an applied magnetic field are given in terms of mj, and in terms of axes given

by the magnetic field. The two are not, in general, simultaneously good quantum

numbers.

In principle, fitting energy levels in terms of the parameters discussed earlier

may make it possible to determine the makeup of states in terms of mj values

(which must also produce the correct Zeeman splittings at low field when compared

to experimental values) as a function of applied magnetic field, and carrying out
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rotations between the two axes for mj values may make some of this analysis feasible.

2.3 Expected Energy Levels

Triply ionized erbium and neodymium have the convenience of having similar elec-

tronic structure, with three holes or electrons involved in the L-S coupling. Their

both having half-integer J values leads to an essentially identical analysis in terms

of crystal-field numbers and selection rules.

For three electrons or holes in a 4f configuration, there are only two possible

sums for S, 1
2
, and 3

2
. The sum for L can be valued from 0 to 8 (9 is excluded due to

the Pauli exclusion principle), in integer increments. The number of combinations

of S and L are limited by symmetry requirements for equivalent electrons (or holes),

leading to the terms 4S, 2P, 2D, 4D, 4F, 2F, 2G, 4G, 2H, 4I, 2I, 2K, and 2L. Four of

these occur twice, 2D, 2F, 2G, and 2H.

For each combined value of L and S from this set, there are values for J going

from |l − s| to |l + s| in increments of one. It can be shown that the term with

the greatest multiplicity is 4I, so the lowest energy multiplet will always be from

that term, by Hund’s first rule. For neodymium, 4f3 is less than half-filled, so the

lowest energy multiplet is 4I 9
2
, by Hund’s third rule. For erbium, 4f11 is more than

half-filled, so 4I 15
2

is lowest.

2.3.1 Er3+

It should be noted that energies of many multiplets for this ion in its free state

have been measured experimentally. [43] The lowest energy LS coupled multiplets

considered in this work, in order of increasing energy, are expected to be 4I 15
2

, 4I 13
2

,
4I 11

2
, and 4I 9

2
. These are the multiplets predominantly used in the experiments in

this work. The two lowest multiplets have a separation corresponding to 1.54µm,

an ideal wavelength for transmission in silica glass fibers. Thus, these lower levels

are of particular interest for applications.

Results for C3v symmetry for multiplets of odd J have already been discussed
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4f11

4I

4I9/2

4I11/2

4I13/2

4I15/2

±1/2   ±1/2      E1/2

±3/2     3/2       E3/2

±5/2   ±1/2       E1/2

±7/2   ±1/2       E1/2

±9/2      3/2      E3/2

mj              Rep.

±1/2   ±1/2      E1/2

±3/2     3/2       E3/2

±5/2   ±1/2       E1/2

±7/2   ±1/2       E1/2

±9/2      3/2       E3/2

±11/2 ±1/2       E1/2

±1/2   ±1/2      E1/2

±3/2     3/2       E3/2

±5/2   ±1/2       E1/2

±7/2   ±1/2       E1/2

±9/2      3/2       E3/2

±11/2 ±1/2       E1/2

±13/2 ±1/2       E1/2

±1/2   ±1/2      E1/2

±3/2     3/2       E3/2

±5/2   ±1/2       E1/2

±7/2   ±1/2       E1/2

±9/2      3/2       E3/2

±11/2 ±1/2       E1/2

±13/2 ±1/2       E1/2

±15/2    3/2       E3/2

Con guration Term Multiplet Sublevels to be

mixed by C3v 

Crystal Field 

Er3+ 

Figure 2.2: The energy levels of erbium most important to this work are shown. Note
that final states do not have mj as a good quantum number, but the number
of states shown with each crystal-field number is valid. The relative ordering
of energies may also differ.

in some depth. For the majority of materials in this work, it is expected that this

symmetry group, or something close to it, is applicable to sites.
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μ=3/2

μ=±1/2
Upper Level

Lower Level μ=3/2

μ=±1/2

C3v Allowed

Electric Dipole

Transitions

σ and π
σ only
π only

Figure 2.3: For C3v symmetry for half integer J multiplets, the selection rules are ex-
pressed neatly in this diagram. These rules apply to both Nd3+ and Er3+.

2.3.2 Nd3+

As alluded to earlier, the situation is very similar for neodymium, but with different

ordering of multiplets. It should be noted that the energies for the multiplets have

been measured for the free ion. [76] Fewer of the results presented in this work

involve neodymium, and only a specific set of multiplets was used, 2G 7
2
, 2G 5

2
,4F 3

2
,

and 4I 9
2
.

The same results for crystal-field numbers and numbers of levels should apply

for both C3v and C1v.
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Figure 2.4: The energy levels of erbium most important to this work are shown. Note
that final states do not have mj as a good quantum number, but the number
of states shown with each crystal-field number is valid. The relative ordering
of energies may also differ.

2.4 Host Crystals and Incorporation Sites

The gallium nitride samples used in this work are in the wurtzite crystal structure,

a hexagonal crystal structure which is constructed by an overlap of two fcc latices

for two different types of atoms.
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Figure 2.5: A portion of the wurtzite crystal structure, applicable to the gallium nitride
samples used in this work. The marked polyhedra are meant to show how
this structure can result in C3v symmetry.

For wurtzite GaN, a reasonable guess as to the incorporation site for a positively

charged rare-earth ion is that it replaces a positively charged gallium ion in the

crystal. This substitutional gallium site would have C3v symmetry, assuming nothing

changes significantly besides this exchange. Translation along the c axis does not

break this symmetry, and is what makes this differ from tetragonal symmetry. This

is the justification for guessing that C3v, or a slightly broken version of it, may

be a good framework for analyzing the energy levels of the rare-earth dopants in

gallium nitride. The same argument applies to rare-earth doped wurtzite GaAs.

Density Functional Theory calculations exist which suggest that rare-earth dopants

in GaN substitute for gallium, with a number of possible local defects, such as nearby
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nitrogen and gallium vacancies. [66]

A similar argument applies to LiNbO3 and LiTaO3, that either the lithium or the

niobium (tantalum) is replaced by the dopant. Previous experimental work showed

substitution of the lithium site for erbium doped LiNbO3 [20] and for iron doped

LiNbO3. [19] In the former case, an offset along the c axis was observed. Similar

behavior for erbium in lithium tantalate and the similar crystal structure of the

host has been used to argue that the incorporation sites for LiNbO3 and LiTaO3 are

similar. [45] The lithium site has C3v symmetry, even if slightly displaced along the

c axis, if the c axis is identified with z.

Once a dopant is placed in a particular location in the lattice, a variety of local

defects can increase the number of apparent incorporation sites. In this way, one

substitutional site can be modified to generate several distinct incorporation sites.

In III-nitrides, nitrogen vacancies are suggested as one such defect. [54] Charge

compensation may also play a role in some hosts, in which a substitution of a rare-

earth dopant for an ion in the crystal of differing charge leads to a variety of local

deformations, such as in lithium tantalate. [45]

It has been proposed that defects might be helpful in increasing intensity of

transitions in either creating so-called trap levels, which increase the chance of an

exciton in the host material being close enough to the rare-earth dopant to transfer

its energy, [36] or in promoting the mixing of 4f states with other states of differing

parities. [77] In the case of codoping GaN with Er and Mg, it was found that a

particular site had significantly enhanced luminescence, suggesting that this may

have added a trapping mechanism to improve energy transfer. [29]

2.5 Dilute Magnetic Semiconductors

As mentioned in the introductory chapter, one motivating factor for this research

is the search for ferromagnetic semiconductors. Dilute magnetic semiconductors

would accomplish this by using dopants to introduce ferromagnetic properties, and

would presumably have the advantage of control of the magnetic properties via
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the concentration of the dopant. More specifically, this would hypothetically allow

control of the degree of spin polarization of the carriers in the material.

To date, Mn doped GaAs has been demonstrated to have these properties, with a

working device dependent on the effect having been demonstrated. Unfortunately,

it has a cryogenic Curie temperature (the temperature below which the material

exhibits ferromagnetic properties, and above which it does not). [55]

A paper by Dietl et al. suggested that Mn doped GaN and ZnO might be more

promising host materials for increasing the Curie temperature, possibly exceeding

room-temperature. [10] However, a later paper using a percolation theory model

to remove the mean field approximation used by Dietl suggests much lower Curie

temperatures than room-temperature for those materials at reasonable doping con-

centrations, 103K for 5 percent doping of Mn into GaN, as opposed to in excess of

room-temperature. [68] This is relevant because the mean field approximation used

is based upon nearest neighbor interactions, and assuming that all dopants can be

considered as a typical, and giving a similar contribution to the overall behavior.

At achievable doping concentrations, a significant proportion of dopants will have

different numbers of nearest neighbor dopants, potentially none. For percolation, a

feature in which a sufficiently high, randomly distributed concentration guarantees

the existence of chains connected by nearest neighbors traversing the entire system,

via nearest neighbors in an fcc lattice (the sublattice for either Ga or N in wurtzite

GaN), about 20 percent of the lattice points (of the sublattice) must be the dopant.

At lower concentrations, dopants form isolated groups if only nearest neighbor in-

teractions are considered. Complicating this further is that the percolation theory

model does not consider the possibility that the dopants may tend to cluster to-

gether in regions of the crystal, rather than being uniformly randomly distributed.

[67]

There are claims of having achieved Curie temperatures in excess of room-

temperature with transition-metal and rare-earth doped GaN, but without a de-

vice being demonstrated, these claims are questioned. [51] It has been suggested

that SQUID magnetometry, a common method for measuring magnetic hysteresis

curves of samples, may be susceptible to experimental artifacts, especially when the
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amount of material being measured is quite small. This implies that demonstration

of hysteresis curves by SQUID should be considered a necessary, but not sufficient

criterion for determining whether doped GaN samples are ferromagnetic, rather

than paramagnetic. To date, no device based upon dilute magnetic semiconductors

has been demonstrated to function at room-temperature, despite the predictions by

Dietl et al. having been made nearly two decades ago. This also casts some doubt

on the validity of these claims. [51] This is a motivating factor for determining

additional experimental methods for measuring ferromagnetic properties, and any

effects which might be related to ferromagnetism are of interest for this reason.

A further complication is a claim that a significant part of the magnetic moment

in rare-earth doped GaN may not come from the dopants directly, but from gallium

vacancies. [79]

2.6 Faraday Effect

This effect is discussed here because it is considered as a possible explanation for

another effect to be discussed later. Discovered by Michael Faraday, it is an effect

in which linearly polarized light traveling through a material experiences rotation in

its polarization proportional to the magnitude of an applied magnetic field applied

parallel to the light propagation. It is present in many dielectric materials, including

water. It is characterized by a material specific Verdet constant, ν, which gives the

degree of rotation per unit of magnetic field per unit of length traveled by the light.

It is explained by changes in the index of refraction for left and right circularly

polarized light. [23]

θ = νBd

θ is the angle of rotation, B is the magnitude of the magnetic field, and d is the

distance traveled by the light in the material.
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Chapter 3

Experimental Methods

3.1 Combined Excitation Emission Spectroscopy

(CEES)

3.1.1 Basic Principle

The ability to distinguish energy levels for differing incorporation sites of a dopant is

useful for finding differences between them. In this work, materials with wide band

gaps are employed, allowing the use of laser wavelengths that can directly excite

particular transitions in the dopants resonantly for a variety of multiplets.

In CEES, a tunable laser is used to excite dopants resonantly, and a subsequent

emission is measured with a spectrometer. Emission spectra are recorded for a

range of excitation wavelengths by repeating a process of adjusting the tunable laser

wavelength and recording a new emission spectrum. Typically, the initial excitation

corresponds to a significantly higher energy than the emission that is measured,

enabling straightforward separation of the excitation light from the emission. Since

similar possible emission energies are expected for all excitations (perhaps with

different relative intensities) for one incorporation site, if the energy levels of different

sites are significantly different, it is possible to distinguish sites by the appearance

of a ”grid” in the collected data. That is, each excitation energy corresponding
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Figure 3.1: Example CEES data for an erbium doped gallium nitride epitaxial film sam-
ple with one majority incorporation site.

to the same site should produce similar emission spectra. If one plots intensity

as color, for example, on a two dimensional figure, where one linear axis is the

excitation energy, and the orthogonal linear axis is the emission energy, one should

observe high intensity colors in a grid-like pattern. An example of this is shown

in Figure 3.1. It should be noted that there are complications to this assumption,

which will be relevant to erbium doped lithium tantalate, in which it is possible that

two sites may exhibit some sort of energy transfer mechanism. In cases where this is

suspected, peaks are typically assigned to the two sites based on relative strength.

Further discussion and some prior results obtained using this measurement can

be found in chapter 8 of Ref. [53].

3.1.2 Experimental Setup

First, a tunable laser is coupled into an optical fiber. This fiber is used to direct

light into a structure containing a dichroic mirror, selected to reflect the excitation

wavelengths and transmit the emission wavelengths (or beam splitter). The dichroic

mirror reflects the excitation light into an objective, which is aimed at a sample,
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which is typically cooled to cryogenic temperatures in a cryostat both to reduce

thermal quenching and to simplify spectra (as this biases the dopants towards their

lower energy levels). Emission light from the sample which passes back through the

objective passes through the dichroic mirror, and is coupled into another optical

fiber. This fiber leads to the monochrometer, which uses gratings and mirrors to

split the emission light by wavelength and allows imaging of spectra by a CCD array.

A piece of glass is used to reflect a portion of the light from the laser into a fiber

coupler. An optical fiber then directs this light into one of two wavelength meters,

enabling recording of excitation wavelengths or feedback loops to tune the excitation

wavelength to a particular value. An optical power meter is set either to measure

this redirected light, or at another point in the setup. All of the measurement

instruments and the tuning of the tunable laser are controlled by a computer. A

rough diagram is shown in Figure 3.2. A brief list of steps once the setup is prepared

and focused onto a sample is given below.

1. Adjust excitation wavelength to a desired new value

2. Simultaneously record emission spectrum, excitation wavelength, and excita-

tion power

3. Repeat until the desired set of excitations is complete

The same experimental setup for CEES was also used for other types of mea-

surement, using a non-tunable laser in place of the tunable laser. This was done for

ultraviolet excitation and Raman spectroscopy.

Occasionally, the process and experimental setup were modified to combine ad-

ditional measurements with CEES. For example, when certain additional variables

were considered, such as emission polarization, or measuring magnetic splittings for

one excitation wavelength, only one excitation wavelength, or a non-tunable laser

was employed. In this case, the process was often similar, with the adjustment of an

excitation wavelength being exchanged with the adjustment of some other parame-

ter. The measurement of the excitation wavelength also allowed for the addition of
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Figure 3.2: A typical setup for the CEES spectroscopy used for this work.

feedback loops to correct this wavelength in cases where this value tended to drift

over time.

3.1.3 Magnetic Fields

In this work, the transitions studied are between at least doubly degenerate levels.

For data in this work, all of the levels were doubly degenerate levels, with one

exception, in erbium doped Cs2NaYF6.

Thus, upon the application of a magnetic field, a given transition between such

levels can split into as many as four new levels. For one peak in CEES data, since

such a peak corresponds to a combination of a distinct excitation and an emission

transition, this one peak can become sixteen new peaks arranged in a four by four

grid. An example of this is shown in Figure 3.3.

Magnetic fields were applied by either using an Oxford brand helium-immersion

superconducting magnet capable of fields in excess of 6.6 tesla in conjunction with

a Janis brand cryostat, or the electromagnet included in the Magneto-Optic Option

of a Montana Instruments Cryostation, capable of maximum fields in somewhat

in excess of 1 tesla, depending on the spacing of adjustable probe tips and sample

geometry considerations. Control of the latter could be accomplished by a computer,
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Figure 3.3: Example CEES data in the vicinity of one peak which splits with the ap-
plication of a magnetic field, for a transition of site A in an erbium doped
lithium tantalate bulk crystal sample.

whereas the former was controlled using a power supply and function generator to

perform linear ramping of the magnetic field.

In order to determine splitting for a variety of incorporation sites, CEES was

combined with the application of a field. In some cases, where the behavior of the

splittings as a function of magnetic field was of interest, the Montana Instruments

Cryostation’s network interface was used to control ramping of the magnetic field

for each excitation wavelength, enabling recording of emission spectra for each of a

set of excitation wavelengths and magnetic field values.

3.1.4 Polarimetry

In order to examine the role of polarization, a motorized cage rotator from Thor

Labs (model number K10CR1) was fitted with a linear polarizer to measure po-

larization of transitions in an automated way. Both emission and excitation light

polarization could be controlled in this way (with the help of additional optics or

measurements to mitigate the issue of changes in power as the excitation polar-

ization is changed). Similar to the case for magnetic fields, the ability to control
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polarization was sometimes used in conjunction with the ability to control excitation

wavelength to produce data sets of emission spectra as a function of both of those

variables.

In some cases, it was relevant to control magnetic fields, polarization, and ex-

citation wavelength together. This produced sets of emission spectra as a function

of all three variables. This was accomplished by adjusting the magnetic field and

polarization at each excitation before advancing to the next wavelength. This was

considered a desirable approach for some of the experiments in this work because

it prevented issues arising from returning the tunable laser to precisely the same

wavelength and power for an additional measurement of another variable. Unfortu-

nately, as might be surmised, the addition of each variable adds significantly to the

time required to conduct a complete set of measurements.

3.2 Equipment Used

In the case of CEES for erbium doped samples, the excitation laser was typically cho-

sen to be either one of two Sacher brand diode lasers, both model number TEC500,

(one tunable near 970nm, the other near 800nm), or a 1.5 micron laser and Erbium

Doped Fiber Amplifier. One other non-tunable E-TEK brand diode laser was used

on occasion, with excitation near 980nm, with wider spectral range and higher power

than the aforementioned Sacher brand laser near the same wavelength output. For

neodymium doped samples, a Coherent brand dye laser, model 590, was used to

achieve wavelengths in the range of 600 to 630nm. For the dye laser and the Sacher

brand diode lasers, tuning of the wavelength was accomplished with computer con-

trolled stepper motors. For ultraviolet light (about 351nm), to excite a GaN host

material, a Coherent Innova 300 laser was used, which was not tunable.

A variety of instruments were used for power measurement. Typically, these

measurements were used either to verify consistent power output, or to correct

spectra for any variation. All of them had a computer interface to communicate
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with the computer controlling all the equipment. The devices used were the Thor-

labs PM100D with S121C or S120VC attachment, the ILX OMM-6810B Optical

Multimeter, HP 8163A Lightwave Meter, and the Newport 1830-C Optical Power

Meter. The selection of device for each experiment was determined by wavelength

and power considerations, as well as availability in a laboratory with shared equip-

ment.

Two wavelength meters were used, one primarily for infrared light, an HP

86120B, and one primarily for visible light, a Coherent Wavemaster. The former

has a rated accuracy of 3ppm, and the latter has a rated accuracy of ±.005 nm, but

both report resolution to .001nm or better.

For measuring spectra, an Acton SpectraPro 500i monochrometer was used, with

one of two CCD (charge-coupled device) arrays, both with computer interfaces.

The first, a Princeton Instruments LN/CCD 1340/100 E1, as implied by the model

number, was liquid nitrogen cooled, and had 1340 by 100 pixels, of which only the

portion of the 100 pixel axis with greatest signal was used. This was used for all

spectra with wavelengths up to and including roughly one micron. A second array,

a Hamamatsu C8061-01, gave a 512 pixel output, and was used for all the spectra

with wavelengths near 1.5 microns (although it can be used for a wider range). This

second array had thermoelectric cooling, and had the unfortunate issue of a dead

pixel, which is removed in the data presented in this work.

Calibration of the emission axis was accomplished in several different ways, de-

pending on the wavelength range. For visible light, a series of spectral lamps with

known spectra was used to perform calibration. For emission in the range of 920nm

to 1000nm, the aforementioned Sacher brand tunable diode laser was used in con-

junction with the optical wavelength meters to produce spectra for a series of mea-

sured wavelengths. For 1.5 micron emission, a Photonetics brand tunable external

cavity laser was used to produce similar spectra.

While performing various experiments, occasionally additional pieces of equip-

ment were required for some specific task. In order to investigate possible spatial

variation in a parameter, and to change samples while using the Janis brand cryo-

stat, Attocube brand linear steppers were used, which had a computer controlled
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interface for automated control of the stepping.

Programs for control of experiments were written using LabVIEW version 5.1,

and run on a personal computer using Microsoft Windows XP. A variety of interfaces

were used to communicate with equipment, including GPIB, RS-232, USB, and PCI

expansion cards.

3.3 Peak Fitting Methods

The experiments conducted in this work all ultimately result in sets of peaks in spec-

tra, which must be analyzed. This requires a formal approach more sophisticated

than visual inspection to find the pixel with the highest intensity. The approach

selected in this work was to develop specific numerical models for the shapes of spec-

tral peaks, and use nonlinear fitting algorithms in order to fit these models to actual

data. This is in contrast to the method of moments used in the past for similar data,

[75] in which moments of the data are collected without making assumptions about

the specific distribution of the data. As will be discussed, complicated broadening

mechanisms make developing an exact model for the lineshapes in CEES data likely

impossible (which is what makes the method of moments an attractive approach).

Still, an approximate numerical model has important advantages, such as the abil-

ity to perform fitting. This can take advantage of redundancy in optical spectra in

order to determine parameters which may have otherwise been difficult to extract.

3.3.1 Comments on Broadening Mechanisms

Multiple mechanisms broaden peaks in spectra, which may not have the same be-

havior. They are broadly classified into two groups, homogeneous if the mechanism

affects everything producing the peak in an identical way, and inhomogeneous if the

mechanism affects them in different ways. For example, Doppler broadening when

conducting spectroscopy on molecules in a gas would affect molecules differently,

depending on their relative motion, and would be classified as an inhomogeneous

broadening mechanism.
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First, there is an uncertainty principle relation requiring an inverse relationship

between the lifetime of a state and the uncertainty in energy of that state, ∆t∆E ≥
~. This implies that states which are observed (due to finite lifetimes) will always

have some uncertainty in energy. This yields homogeneous broadening. It can be

shown using a damped oscillator model that the intensity of radiation follows a

Lorentz distribution.

I = I0

∆ν
2π

(ν − ν0)2 + (∆ν
2π

)2

For a set of dopants at what might otherwise be identical sites, small differences

may arise, such as differences in distant defects, or variations in local strain. This

means that for what is labeled as a single site, there is effectively a distribution of

sites which may have slightly different energy levels. This leads to what is known

as fluorescence line narrowing, an inhomogeneous broadening mechanism. Suppose

that as a function of strain along some axis which varies in the host crystal, there

exists a site with a peak appearing in CEES data whose excitation and emission en-

ergies both vary roughly linearly with this strain. The result is something that looks

like a diagonally oriented peak, as seen in experimental data shown in Figure 3.4.

The appearance of these features is sometimes taken to imply strain is present

in the host crystal due to the above argument. In order to handle these cases

in fitting for centers of levels, a linear relation between excitation and emission

energy is assumed, and a peak in CEES data is assumed to be representable as

a product of profiles for emission and excitation. Observation (and an argument

about the result if each of these similar sites had essentially identical magnetic

splittings) led to justifying using the same linear relation for the excitation and

emission energies for magnetically split peaks in fitting. Further discussion of this

and related experimental results can be found in the eighth chapter of [53].

If this variation in energies for dopants at the same site is modeled using a

Gaussian distribution, the Voigt profile for the line shape arises very naturally. If

each of the individual dopant ions corresponding to one site produces a similar

Lorentz profile, but with differing center energy values described by a Gaussian
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Figure 3.4: Example CEES data for a peak exhibiting fluorescence line narrowing for
the majority site in erbium doped gallium nitride.

profile, the operation that describes the overall emission is a convolution of a Lorentz

and a Gaussian line shape, which is the definition of a Voigt profile. Of course, the

flaw in this argument is that a distribution of energies for similar sites is not certain

to be Gaussian. Still, this is used as a starting point for making an approximate

model.

3.3.2 Approximated Voigt Profile

The convolution of Lorentzian and Gaussian line profiles can become computation-

ally expensive. Thus, in this work, peak fitting was accomplished with an approxi-

mation to the Voigt profile taken from Ref. [35]. This expresses this profile in terms

of a weighted average of Gaussian and Lorentzian profiles, significantly reducing

computational difficulty, with a tradeoff of some small loss in accuracy in the profile

shape. It is assumed in most fitting in this work that the parameter corresponding

to how Gaussian or Lorentzian the profile is is identical for all peaks in a particular

spectrum. This is somewhat inaccurate on some level, particularly when comparing

spectra with peaks of significantly different lifetimes, but this is another tradeoff
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Figure 3.5: Diagram of the three parameters used for fitting Zeeman splitting for a
transition between two doubly degenerate levels.

made for simplifying fitting.

3.3.3 Zeeman Splitting

Zeeman splitting can produce difficulties in fitting due to the number of possible

peaks. As discussed earlier, this process may cause four times as many peaks as

originally present. To simplify the process, as few parameters as possible are used.

In analyzing the splitting of an individual peak due to a transition between two

doubly degenerate levels, the parameters used are the (two) differences in energy for

each of the lower and upper levels, and a parameter corresponding to the average

difference between the upper and lower energies. Because these parameters can

describe any relative shift of the four levels (and only three are needed, because the

absolute position is lost by taking differences to give transition energies), they are

adequate to describe the level splitting. This is shown in Figure 3.5. Allowing the

center of the split peaks to vary from the zero field case also allows analysis of how

this might change as a function of applied field.

For spectra with large numbers of peaks with small splittings, this idea is ex-

tended. First, one must determine a correct level assignment for the peaks. This
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process is discussed later in specific cases, but is aided by noting whether the former

process here yields level splittings which seem to be shared between peaks. Once

this is established, it is argued that one can fit these peaks by defining the center

of the ground state split level as zero, assigning relative position parameters to all

the centers of the other levels, and assigning a parameter for the splitting of each

level. Thus, for n doubly degenerate levels, there are 2n − 1 parameters needed

to describe their relative positions for Zeeman splittings. Reducing this number of

parameters also aids in cases where one particular peak is not easily fit for one of

these parameters, but another peak is.

To aid in reducing the number of parameters, in both the cases above, it is

argued that the Zeeman split peaks likely have similar widths, and so only one

width parameter is used for each of four grouped split peaks.

3.3.4 Ferromagnetic Hysteresis Curves

As will be discussed later, it became important to develop an approximate model

for ferromagnetic hysteresis to determine whether hysteresis was present in a ex-

perimentally derived quantity that revealed the magnitude, but not the sign of an

applied magnetic field. One computationally simple suggestion found in the litera-

ture [58] was to model hysteresis with two offset arctangent functions. This was the

approach used in that portion of this work.
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Chapter 4

Spectroscopic Detection of

Ferromagnetic Hysteresis

4.1 Motivation

As discussed earlier, there is significant interest in transition-metal and rare-earth

doped GaN for possible ferromagnetic properties. Work in this field has had some

issues with consistency. There are a number of conflicting reports on the transition

temperatures for rare-earth and transition-metal doped nitrides, including reports

of values exceeding room-temperature. [3] There is also a controversial paper on Gd

doped GaN in which a magnetic moment per Gd was found to be 4000 times the

Bohr magneton, compared to an atomic moment of 8 times the Bohr magneton. [7]

These problems need to be addressed. As mentioned earlier, it was proposed in

the literature that additional methods of verification of these properties are needed

to confirm ferromagnetic behavior. [51] Since even members of our own research

group have reported ferromagnetic hysteretic behavior in rare-earth doped (in this

case, erbium) gallium nitride, [74] it seems important that multiple methods of

measuring ferromagnetic properties be used and developed.

A proposal which was considered in the past [75] was to use optical spectra to

measure the total magnetic field experienced by a sample, and compare this to the
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magnetic field applied to that sample. This would enable measurement of magnetic

fields inside the sample, as opposed to simply adjacent to the sample. It should be

noted, however, that this particular method may be susceptible to similar issues that

were mentioned for SQUID magnetometry, namely that of other, external sources

of hysteresis.

4.2 Our Approach

The idea was to find whether the splitting of a peak in spectra could be used in order

to determine the magnetic field magnitude that a sample experiences, and compare

that to the applied magnetic field. If one cycles the applied magnetic field between

a large positive and a large negative value several times, one ideally should see if

there are signs of a remnant field. If the splitting depends only on the magnitude

of the applied field (if we confine the situation to the field being applied along one

axis), we should see signs that the field the sample experiences ”lags” behind the

field that is applied. Using the offset acrtangent model for ferromagnetic hysteresis,

and assuming an approximately parabolic behavior for peak splitting measures as

a function of applied magnetic field, Figure 4.1 shows an expected result, for a full

cycle of the applied magnetic field (not starting from a virgin material state).

There are multiple means for extracting information about Zeeman splittings,

but we specifically are interested in ones that work well at lower applied fields. Per-

forming a fit for each individual peak can run into issues, namely, that adjustments

in both the width and splittings can accomplish similar results in tweaking a model

to match the data. One metric used by a previous student [75] was calculating

the second moment of the peak. This was convenient, in that it incurs negligible

computational difficulty. However, this metric had difficulties returning to the same

value at zero applied field, both in data from that work and in new data presented

here. A proposed alternative is to model the Zeeman split peak as a single peak,

and use the fitted width as a measure of the splitting. Clearly, this method should

not work well for well-split, resolved Zeeman split peaks, but it happened to avoid
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Figure 4.1: Example expected behavior for peak splitting or width measures with hys-
teresis, assuming an arctangent function approximation for the hysteresis.

much of the aforementioned problem in returning to the same value at zero applied

field.

The growth conditions for the samples used in this work are given in Ref. [62].

The primary samples used in this portion are E176-R2-J and E185-R1-J. Some of

the data presented here were previously described in Ref. [75].

4.3 Results

In all experiments, the dopant was resonantly excited with a wavelength near 600nm.

In the experiments I performed and present here, 603.041nm was set as the target

wavelength for a feedback loop using a Coherent Wavemaster and a stepper motor

used to rotate a birefringent crystal in a dye laser. Both experiments involved

cooling in a cryostat and the application of a magnetic field. For more details, see
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Figure 4.2: Taken from Ref. [75], second moment of an emission peak near 1.353eV from
Nd3+ in GaN as a function of applied magnetic field.

Chapter 3.

As discussed, taking the second moment of the peak yielded issues in reproducing

the same value at zero applied field. There may be several reasons for this, such

as noise, or a lack of stability in the laser excitation used to trigger the emission.

It should also be noted that a feedback loop was employed to keep the excitation

wavelength constant during my own experiments. By using a Montana Instruments

Cryostation with an optional Magneto-Optic module, we were able to conduct these

sorts of experiments using a magnet which has a hysteresis of its own, typically on

the order of 0.1 tesla (depending on the probe configuration used). This allowed

testing this approach in a situation in which hysteresis is certain to be present. The

result was separation between the curves for increasing and decreasing applied field,

in line with the general prediction made.

As discussed in the Chapter 3, an approximate model for ferromagnetic hysteresis

based on arctangent functions was employed. This was used only for the purpose

of an approximate model which would allow data fitting in a straightforward way.
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Figure 4.3: Fitted widths as a function of applied field. Field was cycled prior to this
measurement, so there is no virgin material portion. Sample E185-R1-J,
GaN:Nd epitaxial film

Ideally, if this were to be used as a method for detection of hysteresis, something

more physical should be used.

The result was that the confidence interval for the parameter giving the remnant

field did not include zero, and included a range in the vicinity of the expected

value. Having established a method for doing this analysis, it was thought to be

valuable to reuse old data to reexamine the question of ferromagnetic hysteresis.

The experiments described in Ref. [75] were conducted using a helium immersion

superconducting magnet not expected to have any inherent hysteresis. While I
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Figure 4.4: Fitting of the fitted widths using an approximate arctangent function to
model ferromagnetic hysteresis, from an experiment using a magnet expected
to have its own hysteresis. Sample E185-R1-J, GaN:Nd epitaxial film

was able to find the original data, assignment of applied field values was somewhat

ambiguous. I used two methods to assign field values, and both led to a similar

result.

The first approach leads to a fitted remnant field of 42mT, with a 95% confidence

interval of -63mT to 148mT. The second leads to 25mT, with 95% a confidence

interval of -780mT to 830mT. Neither of these results is persuasive in demonstrating

ferromagnetic hysteresis.
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Figure 4.5: Older data from the author of Ref. [75] analyzed by the same method as
used for Figure 4.4, with two different approaches to assign field values.
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4.4 Improving the Detection Threshold

4.4.1 Relevant Parameters

Several parameters are not easily adjusted. For example, significantly larger effective

g factors would generally require larger angular momenta, which is limited for a given

number of 4f electrons. The relevant parameters for which large changes are likely

difficult or impossible are

• The saturation magnetization of the sample- specific to the sample

• The effective g factor for the level used for detection- limited by the possible

effective g factors of the dopant used

• The linewidth of the transition used for detection- specific to the site and the

sample

• To some extent, the temperature, as one likely goal is to use this technique

to study behavior as a function of temperature, and second, there is a strict

lower limit to the temperature

The following parameters are much more reasonably adjusted, perhaps with

changes in instrumentation.

• Resolution of the spectra- depends on specifics of the spectrometer optics and

CCD array used

• Intensity- can be improved via reductions in losses, increases in laser power,

and increases in exposure time

• Improvements in accuracy of labeled field strengths- might be improved by

implementing alternate control techniques

As can be seen in the example spectra, the ultimate question of whether ferro-

magnetism in the sample can be observed requires the detection of a separation of
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curves showing widths as a function of applied magnetic field just adjacent to the

zero field point. If there is more than one source of hysteresis, and the unwanted

source is quite large compared to the other source, this requires the ability to reduce

errors such that error in measuring the precise magnitude of the unwanted source

is much smaller than the magnitude of the wanted source.

4.4.2 Estimating Values for Parameters

The first, and arguably most important parameter to develop any sort of analysis

of required precision, is the magnitude of the remnant magnetic field. To estimate

this, results from Ref. [74] were considered, which refer to erbium doped gallium

nitride, with an erbium concentration of 6 x 1019 cm3. From inspection of the plots,

an upper estimate of 0.01 emu
cm3 for the volume magnetization corresponding to a

remnant field is made. Assuming a relative permeability of unity, this leads to an

estimate of 0.01mT. This is drastically smaller than any result suggested above.

Considering that the magnet for the Montana Instrument Cryostation has a radial

spatial variation on the order of parts in ten thousand within a millimeter, and

a hysteresis on the order of 100mT, even if the hysteresis of the magnet itself is

completely consistent from run to run and no error appears in the measurement of

the hysteresis curves (which is itself doubtful), having adequate precision to subtract

two curves requires submillimeter positioning for the sample and the laser relative

to the magnet. This suggests that improving the detection threshold adequately

will require a different magnet system, with either no ferromagnetic hysteresis of its

own, or hysteresis that is consistent and measurable to a precision corresponding to

something less than 0.01mT.

It is assumed that a magnetic field magnitude of about 1 tesla is more than

sufficient to reach saturation for this hysteresis behavior. It should be noted that

saturation in this behavior means that an increase in field magnitude will not im-

prove the detection threshold, and may indeed cause other issues involving stability

if this higher magnitude corresponds to a longer period of time to perform the

measurement. Of course, this magnitude may be higher.
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Next, an effective g factor for some transition needs to be selected. This is

approximately limited by the possible combined angular momentum of three 4f

electrons or holes if this is limited to erbium or neodymium. For order of magnitude

estimates, an effective g factor of 10 is selected for one level (which is somewhat

more than twice the largest j value for the multiplets involved in the emission and

excitation schemes for the data shown earlier), and 2 for another (an arbitrary

estimate for the 4F 3
2

multiplet, which was involved in the peak mentioned earlier).

The linewidth is difficult to determine as well, and is sample dependent, but

for some data presented in a later chapter on erbium-doped gallium nitride from a

sample believed to have rather sharp transition lines, a width of about 3 x 10−5 eV

was found for some peaks. This is taken as a best-case scenario estimate.

For the precision of the magnetic field axis, if the applied field axis varies by an

amount much greater than the residual magnetic field, since the width depends on

the sum of the residual and applied fields, it will not be possible to observe separa-

tions in width due to the residual field. This places a requirement that precision for

the applied magnetic field axis must be less than about 0.01mT.

The next step is to determine how the error in this fitted hysteresis varies as a

function of the adjustable parameters listed, resolution and intensity. To do this,

a model was created, using the aforementioned analysis methods of fitting with a

single peak and calculating second moments, considering Poisson distributions for

intensity for each pixel. This was done using an approximated lineshape which was

used to fit data to be shown later for Er doped GaN.

The point at which the maximum difference is observed for the increasing and de-

creasing magnetic field appears to be near the zero field point. Assuming a quadratic

dependence for the width on the total field (plus a constant term), the difference is

given by

∆w = a(Bapplied +Bresidual)
2 − a(Bapplied −Bresidual)

2 = 4aBappliedBresidual

Bresidual corresponds to the difference between the upper and lower hysteresis

curves, and is expected to be zero at the turning point of the applied field, and at a
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maximum at zero applied field. Since the question of this chapter is to determine the

point at which this value can be determined to be non-zero, this can be rearranged

to give the residual field in terms of the observed width difference. Taking this

further, to detect such a field, a difference in widths must be larger than the error

in widths, implying that this equation can be used to give a detection threshold as

a function of the applied field, the quadratic term constant a, and the error in the

widths.

Bthreshold =
∆w

4aBapplied

Of course, the relation between measures of width and the applied field are not

guaranteed to be quadratic, but this is used to develop an approximate model for

the detection threshold. In Ref. [74], it appears that the coercive field may be on

the order of a few tenths of a tesla.

A typical maximum intensity for the experiments and equipment in this chapter,

about twenty thousand photons in a one second exposure, was used for an initial

estimate of intensity. An estimate for resolution was determined by using that of

the specific CCD array and optics used to obtain that peak maximum intensity, 3

x 10−5 eV per pixel. Monte Carlo error estimation was used in order to determine

the errors in widths, leading to the possibility of variations from run to run of the

model.

4.4.3 Results

The initial estimates for parameters suggest that the detection threshold, if the

coercive field is close to 0.2 tesla, is likely on the order of 50mT. This is somewhat

higher than the magnetic field adjacent to a typical refrigerator magnet, suggesting

that if such a large residual field were present, simpler tests of ferromagnetism may

be more suitable at this detection threshold. This estimate is also expected to be

a lower estimate for the threshold in the actual setup used here, owing to ignoring

additional sources of errors.
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Figure 4.6: Detection threshold for error model using initial parameters as a function of
applied magnetic field.

Photon Count

Results for adjusting the peak intensity (or more correctly, the number of photons

recorded), and nothing else, suggest that increasing the photon count by a factor

of ten almost halves this detection threshold. However, it should noted that excep-

tionally long exposure times may lead to the increasing importance of other issues

not accounted for in this model, such as misfiring of a pixel, or drift in laser wave-

length and power, or perhaps worst of all, if a conventional electromagnet is used,

temperature changes which cause slight variations in the applied magnetic field.

The result of comparing the peak detection threshold at 0.1T was that if the

photon count is increased by a factor of 1015, that is, fifteen powers of ten, the

residual field detection threshold becomes close to the desired value. A plot with

logarithmic axes in Figure 4.7 shows several modeled points. This seems to be highly

impractical to achieve, and for the reasons mentioned already, simply summing up

more exposures over much more time (assuming that this is an option for practical
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Figure 4.7: Dependence of the detection threshold as a function of peak photon count,
with all other parameters held constant.

reasons) is subject to its own flaws which are not considered here. If even possible,

it would likely require radical redesign of the experimental apparatus.

Spectral Resolution

In order to normalize for the effects of intensity change, for each run of the model,

the intensity was scaled by the change in resolution, to keep the same number of

photons per range of spectrum.

Unfortunately, after a certain threshold (corresponding to at least 10 pixels),

it appears that this process did not cause a sufficiently significant decrease in the

detection threshold to be discernible from fluctuations due to the model including

Monte Carlo estimation. This is seen in Figure 4.8. It is suggested that the resolution

of the experiments conducted here is likely adequate for these measurements, in

the sense that increasing this by a factor of about 30 does not seem to yield any

improvement.
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Figure 4.8: Modeled detection threshold for a 0.1T applied field as a function of energy
range per pixel, with all other parameters held constant, with the caveat
that total photon count per range of energy is kept constant, rather than
peak photon count.

4.4.4 Final Comments

It seems that it is unlikely that this method could be improved in any straightforward

way to permit this measurement, unless the sample itself has a dramatically (several

orders of magnitude) higher residual magnetic field than was estimated. But, this is

the most important question that must be answered in order to determine whether

this technique could be used. In the end, it appears that the only way to improve

the detection threshold is to drastically improve the signal to noise ratio beyond

what is currently the case.

Also, there is an issue that must be resolved- the precision of the applied field

needs to be smaller than the value of the residual field. This likely precludes the

Montana Instruments Cryostation with Magneto-Optic option for the field magni-

tudes which were discussed. The Oxford Brand liquid helium immersion supercon-

ducting magnet used for some of the prior data shown here also would likely need to

85



be computer controlled in order to improve this, as for the experiments in Ref. [75],

a computer was simply set to record spectra at regular intervals while a separate

function generator was operated by hand.

In any case, this method is likely still susceptible to the same issues as SQUID,

in that when an exceptionally small magnetic field is under investigation, alternate

sources of observed ferromagnetic behavior become plausible. [51]

4.5 Conclusions and Future Advice

We were not able to establish ferromagnetic hysteresis, although some of the re-

sults look qualitatively like such hysteresis could be present. The older experiments

conducted using the Janis cryostat could conceivably be improved upon, however.

The addition of a feedback loop to stabilize the excitation laser wavelength, and

measures taken to improve precision in the applied field strength are expected to

help. Still, it seems unlikely that this method, with the equipment our group cur-

rently has, could easily detect remnant fields significantly smaller than several tens

of millitesla.

Regardless, success in the experiments using a magnet with its own hysteresis

has proven that it is at least feasible to measure ferromagnetic hysteresis via this

method, provided the fields produced by the hysteresis are sufficiently large.
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Chapter 5

An Investigation of Erbium Doped

Lithium Tantalate and Lithium

Niobate

5.1 Motivation

Other projects described in this work led to an interest in a close examination of site

symmetries, and developing an experimental setup to examine this in detail. As will

be discussed in a later chapter, the presence of an unusual asymmetry in Zeeman

split peaks in optical spectra in several erbium doped host crystals was perhaps the

most important of these. This sparked an interest in determining whether this effect

had any dependence on the properties of the levels involved in the transition. This

motivates identifying crystal-field numbers for several of these hosts.

Erbium doped lithium tantalate and lithium niobate were known from prior work

to have a large number of spectroscopically distinguishable incorporation sites [45]

[16], and samples available gave excellent signal and very sharp transition peaks

in comparison to gallium nitride samples which were available. This made these

materials interesting as model systems for applying such a setup.

In principle, if a large number of incorporation sites are present (greater than
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ten or so), it would be surprising if all these sites had the same symmetry group.

That said, it may be possible that slight perturbations from a perfect symmetry

may not be distinguishable, depending on the ability of an approach to determine

this. The ultimate question we wished to answer was, can combined excitation-

emission spectroscopy (CEES) be combined with control of applied magnetic fields

and polarization of excitation and emission light to identify these differences in

symmetry?

It should be noted that simultaneous analysis of polarization and magnetic split-

ting of peaks will be examined in a later chapter, due to its arguably greater relevance

to that chapter.

5.1.1 Objectives

• Identify a variety of incorporation sites in erbium doped lithium niobate and

lithium tantalate

• Compare polarization and magnetic data to selection rules for C3v symmetry

to identify both the crystal-field numbers for the levels, and the sites which

best conform to the selection rules (indicating higher degrees of symmetry).

• Determine crystal-field numbers for erbium doped gallium nitride in the same

way, but for the majority site.

5.2 Approach

5.2.1 Experimental

The changes to a typical CEES setup were fairly minimal. The Montana Instruments

Cryostation with Magneto-Optic option was used both as a cryostat, and as a means

for applying a magnetic field with variable magnitude. Mounting the sample at

different angles relative to this field in different experiments permitted some control

of magnetic field angle relative to the c-axis. In principle, this could be improved
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with a rotational stage. Polarization and magnetic field control were accomplished

as described in Chapter 3.

Unfortunately, each additional variable significantly increases the amount of time

required. In practice, this led to a preference for looking at as few variables simulta-

neously as possible. Still, many relevant group theory predictions allow comparison

for such limited data sets, such as polarization of transitions without an applied

magnetic field, or which levels are split under magnetic fields applied parallel and

perpendicular to the c-axis.

As discussed earlier, it is expected that in their host crystals, both neodymium

and erbium will take a charge state (+3) such that their levels will have odd J . In

the host materials described here, as well as in wurtzite gallium nitride in Chapter

6, it is expected that the majority incorporation site for the rare-earths will have C3v

symmetry. This leads to the levels for both of these dopants (which are split from

multiplets with particular L, S, and J) which can be classified with a crystal-field

number of either ±1
2

or 3
2
. These numbers represent some symmetry of the levels

involved. Doubly degenerate levels with a crystal-field number of 3
2

are expected

not to split under a magnetic field applied perpendicular to the c-axis, while levels

with a number of ±1
2

are. All doubly degenerate levels are expected to split under

a magnetic field applied parallel to the c-axis. The electric dipole transition rules

have already been discussed in Chapter 2, and are summarized in Table 5.1.

Thus, the most important goal appears to be identification of these crystal-field

numbers for each level, and comparing how well the associated rules apply for each

site. For a large number of sites, it seems unlikely that all would have perfect or

nearly perfect C3v symmetry. Unfortunately, if one imagines a simple reduction in

symmetry, such as breaking the threefold rotation, but keeping a mirror symmetry,

the same predictions for C1v predict all doubly degenerate levels will have the same

polarization and field splitting behavior. Thus, if the perturbation of symmetry is

slight, this might lead to a situation in which rules for C3v symmetry appear to

hold mostly, with some slight errors. This could cause an issue with a detection

threshold, which will be complicated by things like higher order transition terms,

precision in mounting and polarization angles, detection of splittings in spectra,

89



and higher order terms for magnetic splitting. So, even if the results for one of

these materials suggests all the sites have C3v symmetry, there may exist errors

which mask C1v symmetry. This complication, however, gives all the more reason

to examine whether this approach can work. Fortunately, it will be be shown that

there are clear differences between particular sites.

5.2.2 Analysis

Magnetic splittings were analyzed using the procedures for peak fitting discussed

in Chapter 3. When possible, several split peaks with shared levels were used to

improve error estimates. Otherwise, individual split peaks were fitted. Polarizations

were analyzed in two steps. First, amplitudes were determined for each of a number

of polarization angles. For the data presented in this section, this was determined

by simply summing the intensities near the center of a peak in CEES data for each

polarization angle. In the next chapter, there will be a portion in which amplitudes

are obtained by peak fitting. Second, these are fitted to the following function, with

the parameters, a, b, and θ0, with the polarization angle represented by θ.

I(θ) = (a+ b cos2(θ − θ0))

In the data presented here, the raw data and a fitted function of this form are

shown together.

It should be pointed out that the scheme used to identify levels in a concise way

here is duplicated from [44]. That is, the levels of 4I 15
2

are labeled with the letter

A, followed by a positive integer starting from one, and ascending to eight, in order

of increasing energy. For 4I 13
2

, the letter is B, and the number cannot exceed seven,

and for 4I 11
2

, the letter is C, and the number cannot exceed six. Not all of these

levels were observed for the materials and sites discussed in this chapter.
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5.3 Erbium in Lithium Tantalate

Samples used for this work were single-crystal erbium doped stoichiometric lithium

tantalate samples commercially available from the OXIDE Corporation.

5.3.1 Sites

While prior work on erbium doped lithium tantalate using CEES to identify sites

does exist, [45] experiments showed that the list of identified sites was incomplete.

Thus, an important first step was in identifying these sites by their transitions.

Labels for sites here are largely taken from the labels in Ref. [45]. An additional

five sites were assigned the letters I, J, K, L and M, without particular reasoning

for the additional letter assignments.

As described in Chapter 3, the process of identifying sites consists of identifying

grids within CEES data, that is, identifying sets of emission peaks that appear with

particular excitation peaks, and vice versa. The first step is to identify these sites

and their transitions. Tables of all transitions observed in data used for this work

are included in Appendix A. Some peaks involving other multiplets for this system

were reported in Ref. [45], as well as some of the same energy levels discussed here.

Next, level assignments are made. If we assume that states are roughly ther-

mally populated within a multiplet before a transition, there should be a tendency

for transitions to include the lowest levels of the starting multiplet. This implies

different peaks may be seen in excitation and in emission for transitions between

the same two multiplets. If two sets of transitions sharing one multiplet in common

have similar differences in peaks, it is reasonable to ascribe those differences to level

spacings in the shared multiplet. Using this reasoning, the levels are identified. For

reasons which will be described later, some of the transitions are thought to involve

interactions with phonons in the host lattice. Assuming that the erbium dopants

are all in roughly similar incorporation environments, it is reasonable that similar

level assignments should appear for all or most of the sites.

Comparison of different schemes suggested that the temperature was low enough
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relative to the level spacings (that is, kT was smaller than the level spacings) that

only the lowest level of the starting multiplet was involved in transitions. This

greatly reduces the effort in the analysis to follow, because each set of transitions

should only differ in one level. Appendix A also includes the result of fitting the

observed transitions with a model for the energy levels.

5.3.2 Polarization

Site A

First, the site with the greatest emission intensity, here labeled site A, was examined

in detail. As the majority site, it is easy to extract information from it, providing

a standard of comparison for other sites. First, comparison of transitions for two

excitation and emission schemes was done to verify a level assignment. Next, polar-

izations were determined by fitting intensities in spectra as a function of polarization

angle using a simple model

I(θ) = a+ b2 cos2 (θ + θ0)

Next, visual inspection of the fit and comparison of the magnitudes of a and b

parameters were used to determine if a given transition was likely linearly polarized.

After so doing, θ0 was used to determine the precise angle. It should be noted that

an offset in this angle is expected (due to issues such as imperfect mounting angles),

but if this offset is constant, it is expected that polarized transitions within the same

experiment should cluster around two angles orthogonal to one another.

In doing this, it usually appeared that the expected number of levels in several

multiplets seemed to have behavior as predicted by group theory results for C3v

symmetry.

Comparison of results for excitation and emission transitions between the 4I 15
2

and 4I 11
2

multiplets and magnetic splitting results shown later suggested that six of

these transitions could reasonably be ascribed to a transition involving the doubly
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Figure 5.1: Fitted amplitudes as a function of excitation polarization for several transi-
tions for Site A. 0 degrees corresponds to π polarization, assuming correct
angling of the sample and setup.

Table 5.1: Expected electric dipole transition polarizations between levels of given
crystal-field number for C3v symmetry and half integer J .

±1
2
±3

2

±1
2

πσ σ
±3

2
σ π

degenerate ground state. In excitation polarization, it appears that two such tran-

sitions are somewhat π polarized, and the remaining four somewhat σ polarized.

Assuming C3v symmetry, this suggests a crystal-field quantum number of 3
2

for the

ground state, and similar assignments for all the levels in the 4I 11
2

multiplet.

Similar differences in energy appear for four transitions in the 4I 11
2

to 4I 15
2

emis-

sion and the 4I 13
2

to 4I 15
2

emission. This suggests that these differences correspond
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to the spacing of levels in the 4I 15
2

multiplet. Unfortunately, these results appear less

strongly polarized than for the excitation polarizations already described, and not

all levels of the mulitplet are known, making it more difficult to judge the results.

If the assignment of ±1
2

crystal-field quantum number is kept for the lowest level

of 4I 11
2

, it might be reasonable to claim that the next three observed levels in 4I 15
2

above the ground state should be assigned ±1
2
. However, from this evidence alone,

it might be reasonable to claim that the first three levels could be assigned ±3
2

due

to a bias towards σ polarization. In fact, magnetic splitting results to be shown

later suggest that the second doubly degenerate level of 4I 15
2

has negligible splitting

under a perpendicular magnetic field, suggesting this ±3
2

assignment. It is therefore

difficult to make a definitive claim about these levels.

If only the emission starting from the 4I 11
2

level is considered, the implication

is that the lowest level of that multiplet has a crystal-field number of ±1
2
, and

the ground level has ±3
2
, which agrees with the results for the excitation involving

this same upper multiplet. Continuing, the second doubly degenerate level is likely

±1
2
, and the third ±3

2
. This is complicated by the next emission, which appears

to be π polarized. The spacing of this level from the highest energy transition

appears in emission from 4I 11
2

and from 4I 13
2

, suggesting that this transition still

involves the same lowest level of 4I 11
2

as the first three. The group theory transitions

cannot explain how three possibilities, π, σ, and both, are possible from two possible

combinations of crystal-field numbers (as the first four emissions all involve the same

starting level, implying the same starting crystal-field number, and there are only

two possibilities for the final crystal-field number).

Still, knowing that none of the transitions have been completely σ or π polarized,

it is not unreasonable to assert that this π biased polarization may be best inter-

preted as a transition for which both polarizations are allowed, but in this particular

situation, the moment for π polarized transitions is greater.

Complicating the assignment of the emission peaks is the possibility of phonon

assisted transitions. One phonon mode observed in Raman spectroscopy in LiTaO3

with an energy of 140 cm−1 has been reported, which corresponds to the spacing of

this emission (about 17 meV). [63] This corresponds to the difference between the
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Figure 5.2: Fitted amplitudes as a function of emission polarization for several transi-
tions for Site A, all thought to involve the lowest level of the 4I 11

2
multiplet,

C1. 0 degrees corresponds to π polarization, assuming correct angling of the
sample and setup.

highest energy emission and the peak that was just discussed. However, if this were

due to a phonon assisted transition, it would be difficult to explain why identical

spacings do not seem to appear for the other sites. Other phonon modes exist

with energies close to other differences in emission energies, including some closely

spaced near 25 meV. There exist prior results involving another emission scheme

which when combined with emission peaks found in this work produces too many

energy levels for the ground multiplet. [45] Clearly, not all of these transitions can

be ascribed to a simple decay from one initial state to one of eight final states, so

something in one of these assignments for higher levels of the 4I 15
2

multiplet must

be wrong. For now, it is assumed that levels corresponding to spacings appearing
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Figure 5.3: Fitted amplitudes as a function of emission polarization for several transi-
tions for Site A, all thought to involve the lowest level of the 4I 13

2
multiplet,

B1. 0 degrees corresponds to π polarization, assuming correct angling of the
sample and setup.

in two or more emission schemes ending with the lowest energy multiplet are likely

to be valid.

Other Sites

This led to the next step, applying this to the other sites. This initial level assign-

ment also gave an initial guess for which levels had which crystal-field numbers, by

assuming the energy levels should be roughly similar. Also, there is now the issue

of determining which sites have a breakdown of rules prescribed by C3v symmetry.

Assuming the assignments for the ground state and the levels of 4I 11
2

are essentially
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Figure 5.4: Fitted amplitudes as a function of excitation polarization for several tran-
sitions for site C. 0 degrees corresponds to π polarization, assuming correct
angling of the sample and setup.

correct, we can compare how well different sites adhere to these rules. Ideally, a

numeric measure should be made, but this is not straightforward to apply to every

site, due to complications which will be discussed shortly.

Consider first, site C, which is easily separated from more closely spaced sites.

Subjectively, the 980nm excitation polarization experiments, while still showing a

difference between the second and fifth levels of 4I 11
2

and the others, seems to have

resulted in a loss of the predominance of π polarization. The magnetic splittings

associated with the ground state seem to suggest no perceptible splitting under a

perpendicular magnetic field, so it seems unlikely that this is due to an entirely dif-

ferent ordering of levels. This suggests that site C is somehow much more perturbed

from C3v symmetry than site A is. The emission results look similar to the results
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Figure 5.5: Fitted amplitudes as a function of emission polarization for several transi-
tions for site C. 0 degrees corresponds to π polarization, assuming correct
angling of the sample and setup.

for site A, but with the σ polarized emissions starting from the 4I 11
2

multiplet less

pronounced.

Site B, however, shows no obvious π polarized excitations in the same experi-

ment that revealed them for site A. Since all the transitions appear to be mostly σ

polarized, it is not entirely obvious that C3v symmetry applies. Magnetic results,

also to be shown later, suggest negligible splitting for the ground state. This may

suggest a significant departure from this symmetry. The emission from the 4I 11
2

4I 15
2

multiplet transitions show less strongly polarized σ emissions, while the emissions

starting from the 4I 13
2

multiplet look qualitatively almost identical to the site A

results. This result, that sites B and C are likely of lower symmetry than site A,

has been previously reported. [45]

Complicating the issue of developing a numeric measure is that some sites have

not had enough transitions identified to determine whether they have the same

polarizations as for site A. For example, only four excitation transitions for the 4I 15
2

to 4I 11
2

multiplets have been identified with site M. For several sites (D, H2, I, M),

it is the case that one identified transition is biased towards π, but for whatever

reason, a second excitation of this polarization has not been identified. For site H1,

98



0

30

60
90

120

150

180

210

240
270

300

330

0

5

10

15

20

Site C- 0.8111eV

 Em. Polarization

0

30

60
90

120

150

180

210

240
270

300

330

0

2

4

6

Site C- 0.8053eV

 Em. Polarization

0

30

60
90

120

150

180

210

240
270

300

330

0

2

4

6

Site C- 0.7965eV

 Em. Polarization

0

30

60
90

120

150

180

210

240
270

300

330

0

0.5

1

Site C- 0.7955eV

 Em. Polarization

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

3

4

Site C- 0.7937eV

 Em. Polarization

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

3

4

Site C- 0.7858eV

 Em. Polarization

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

3

4

Site C- 0.7857eV

 Em. Polarization

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

3

4

Site C- 0.7853eV

 Em. Polarization

Figure 5.6: Fitted amplitudes as a function of emission polarization for several transi-
tions for site C. 0 degrees corresponds to π polarization, assuming correct
angling of the sample and setup.

it is unclear whether to include this in this category, due to problems of signal to

noise ratio. It appears that the second peak is not observable in the data set used,

creating ambiguity. Still, the remaining transitions for that site appear strongly σ

polarized.

When considering the emissions between the same two multiplets for these four

sites, all sites seem to follow a pattern of the highest energy emission being slightly

more σ polarized, and the next lower energy ones being more even. Site H2 seems

to be a bit more pronounced in this polarization for the first transition. Emission

transition polarizations for 4I 13
2

to 4I 15
2

seem to show essentially the same result as
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Figure 5.7: Fitted amplitudes as a function of excitation polarization for several tran-
sitions for site B. 0 degrees corresponds to π polarization, assuming correct
angling of the sample and setup.
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Figure 5.8: Fitted amplitudes as a function of emission polarization for several transi-
tions for site B. 0 degrees corresponds to π polarization, assuming correct
angling of the sample and setup.

for site A.

Several other sites (J, K, L) show similar results as for sites B and C. Specifically,

the second and fifth excitation energies which were π polarized for site A appear to

have little to no particular bias towards π polarization. Site K was not identified
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Figure 5.9: Fitted amplitudes as a function of emission polarization for several transi-
tions for site B. 0 degrees corresponds to π polarization, assuming correct
angling of the sample and setup.

in the emissions for the 4I 11
2

to 4I 15
2

multiplet decay, but these results for site J and

L also show little means of distinction between them. Emissions from 4I 13
2

to 4I 15
2

also show little distinction.

Site E appears to be an intermediate case, that is, while one excitation transition

(for 4I 15
2

to 4I 11
2

) is clearly π polarized, a second transition appears with a distinct

polarization that is not obviously π polarized, but appears to be polarized differently

from the σ polarized excitations. A numeric measure which relies on examining the

two π polarized transitions would have trouble distinguishing this site from site D

because only one such transition has been identified for site D. The highest energy

emission observed for 4I 11
2

to 4I 15
2

is more σ polarized than for some other sites, but

generally, the emission transition data looks much more similar to that for the other

sites here.

So far, just from the excitation polarizations (and assuming similar crystal-field

number assignments for all the sites), site A appears to most obviously adhere to

expectations for C3v symmetry. Sites D, E, H1, H2, I, and M may also adhere fairly

well, with some of those having uncertainties as discussed. Sites B, C, J, K, and

L appear to adhere poorly, in terms of lacking clear π polarized excitations, and
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Figure 5.10: Fitted amplitudes as a function of polarization for several transitions for
site D. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.
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Figure 5.11: Fitted amplitudes as a function of polarization for several transitions for
site H1. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.

having several more evenly polarized transitions.

For the emission data, it appears that the highest energy emission observed for
4I 11

2
to 4I 15

2
varies somewhat between sites, but that most of the polarizations for

the two emission schemes look qualitatively very similar. The most distinguishing

characteristics appear to be the two excitation transitions from 4I 15
2

to 4I 15
2

which
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Figure 5.12: Fitted amplitudes as a function of polarization for several transitions for
site H2. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.
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Figure 5.13: Fitted amplitudes as a function of polarization for several transitions for
site I. 0 degrees corresponds to π polarization, assuming correct angling of
the sample and setup.
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Figure 5.14: Fitted amplitudes as a function of excitation polarization for several transi-
tions for site M. 0 degrees corresponds to π polarization, assuming correct
angling of the sample and setup.

are expected to be π polarized, and the aforementioned σ polarized emission involv-

ing those same multiplets. This survey has also given information on crystal-field

assignments and the identification of several possible phonon-coupled transitions.
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Figure 5.15: Fitted amplitudes as a function of polarization for several transitions for
site J. 0 degrees corresponds to π polarization, assuming correct angling of
the sample and setup.

Direct Comparison

Despite the aforementioned difficulties, one attempt at a comparison of degree sym-

metry of incorporation sites was made by comparing a number of polarization am-

plitude results within the same figure. Because all the sites have different relative

intensities, this required a scaling. One particular (sometimes) π polarized peak
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Figure 5.16: Fitted amplitudes as a function of polarization for several transitions for
site K. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.

seemed to be identifiable for all the peaks, corresponding to a transition from the

ground state to the second doubly degenerate level of 4I 11
2

. While some informa-

tion can be gleaned from examination of these plots, significant overlap made this

difficult.

This led to an alternate approach. Using the fits of the polarization data, the

ratio of the values these fitted functions give for 0 and 90 degrees was used as a

measure of how π polarized the transition was. It is not entirely clear how these
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Figure 5.17: Fitted amplitudes as a function of polarization for several transitions for
site L. 0 degrees corresponds to π polarization, assuming correct angling of
the sample and setup.
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Figure 5.18: Fitted amplitudes as a function of polarization for several transitions for
site E. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.
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Figure 5.19: These show scaled intensity as a function of excitation polarization angle
for a transition believed to be the same transition for all identified sites.
0 degrees corresponds to π polarization, assuming correct angling of the
sample and setup.

differences correspond to particular breakings of symmetry. This approach showed,

for example, that site E has the third greatest degree of π polarization (out of 12) for

one expected π polarized excitation peak, but had the least degree for the other such

excitation peak. However, this does indicate that site A is clearly distinguishable

from the other sites, and that site B and C appear to be sites with significant

departures from the symmetry of site A.
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Table 5.2: Ratios of π to σ polarization for two excitation peaks (involving the ground
state and levels of 4I 11

2
) found to be predominantly π polarized for site A.

Site Ratio (C2 to A1) Rank Ratio(C5 to A1) Rank
A 3.75± .25 1 4.60± .33 1
B .638± .028 10 .349± .006 9
C .770± .050 9 .404± .004 7
D 1.554± .058 6 .380± .017 8
E 2.00± .21 3 .229± .006 10
H1 1.00± .14 7
H2 2.06± .11 2 .552± .020 5
I 1.76± .19 4 .520± .014 6
J .923± .032 8 .827± .033 4
K .633± .024 11 .888± .035 2
L .346± .029 12 .888± .045 2
M 1.600± .083 5
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5.3.3 Magnetic Splittings

As mentioned earlier, a crystal-field number of 3
2

for C3v symmetry suggests the

level should not split under a magnetic field applied perpendicular to the c-axis of

the crystal, assuming no higher order terms. For symmetry determination then,

the perpendicular field results are likely more important. However, also having the

parallel field splittings permits determination of effective g factors for the levels as

a function of field angle, and can give insight into the makeup of the states in terms

of mj labeled states. This, in turn, can give insight into the crystal-field numbers.

For example, a parallel effective g factor of roughly 15 for a doubly degenerate level

in a multiplet with J = 15
2

suggests that the two levels must be primarily states of

mj = ±15
2

, if the Landé g factor for this multiplet is one. However, it is roughly 1.09,

suggesting that if the effective g factor is measurably greater than 14.2 (for ±13
2

)

this reasoning still suggests the state contains mj = ±15
2

. This would also suggest

that this level must have a crystal-field number of 3
2

for C3v symmetry (because

mj = ±15
2

states are only included in the makeup of 3
2

crystal-field number levels).

As discussed in Chapter 2, the splittings are expected to have the following

behavior as a function of angle between the c-axis and the applied magnetic field:

geff (θ) =
√
g2
‖ cos2(θ) + g2

⊥ sin2(θ)

∆E = µBgeffB

In order to fit these splittings, a number of techniques were used. For most

of the results, spectra were extracted from CEES data, and fitted, applying a few

restrictions. Transitions splitting from the same original transition were forced to

have identical widths. Initial examinations of individual split peaks were used to

help confirm the level assignments already discussed. Having done this, the split-

tings were fitted using the splittings of the original levels as parameters, reducing

the number of parameters. For example, if three transitions share a level, rather

than having two parameters describing each of the three peaks, for a total of six,

only four are needed, describing splittings of each of the original doubly degenerate

levels. In some cases, to handle issues of overlapping peaks, a simple model for
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describing portions of CEES data was used. In this model, the data is modeled as

a product of functions describing the peaks along the excitation and emission axes,

with the addition of a parameter approximating the relation between the emission

and excitation energies as linear (handling the case of peaks that ”tilt” in the CEES

data). Issues of signal to noise ratio, especially in the case of overlapping peaks

from different sites, and peak widths, limited the amount of data which could be

extracted, and much of the fitting was individually adjusted for each case.

A large number of splittings for a variety of sites, field angles, and energy levels

were determined, and are presented in Appendix A. For some levels, a series of

splittings were determined for each of five angles between the c-axis and the magnetic

field. Effective g factors listed in the tables in this chapter were determined from

direct measurement, rather than interpolating. It is difficult to discern between a

level that does not split and a level with a small splitting. Even with perfect ability

to discern this from spectra, errors in angles and higher-order interactions may cause

splittings in a level expected to have no splittings from C3v symmetry.

Site A

Following the same idea as in the previous portion on polarization, site A is first

examined in an attempt to determine what might constitute a typical site. Recall

that the polarization data suggested that this site is a good candidate for exhibiting

C3v symmetry. Unfortunately, this site has the issue of what appears to be an energy

transfer with site B. Specifically, when either site A or site B is excited, a less intense

emission is observed for the other site. While this can be managed for determining

which transition is from which site (by observing which emission is stronger for a

given excitation), it is not easy to remove the closely spaced peaks from the site of

less interest for fitting individual spectra. Thus, plots in this section show sites A

and B simultaneously fitted.

For a parallel field, it is apparent that sharp peaks seem to split quite visibly.

There are issues in resolving splittings for broader, dimmer peaks. For the per-

pendicular field case, it is difficult to identify any peaks sufficiently split to enable
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Figure 5.20: Fitted Zeeman split peaks from an excitation spectrum for sites A and B.
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Figure 5.21: Fitted Zeeman split peaks from an excitation spectrum for sites A and B.

determination of the splittings for several levels. As discussed in Appendix A, an ad-

ditional data set from a run with a higher field magnitude (estimated to be roughly

1.25T) yielded similar difficulties in determining a splitting for the ground state.

There was originally an intent to determine some of these levels by fitting split-

tings as a function of magnetic field angle. However, for levels for which splittings

could be found for all the field angles selected, it was found that issues of field

magnitude may render this difficult to perform with much precision. As discussed
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Figure 5.22: Fitting of splitting of a level for site A as a function of magnetic field angle
relative to the c-axis. Error bars represent a 95 percent confidence interval
from the fitting algorithms used, and in the second case, an inclusion of an
estimate of possible field magnitude error.

in Chapter 6, nonlinear effects would also affect this, meaning that trying to solve

these issues with larger magnetic field strengths may lead to other issues.
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All Sites

To summarize the data obtained for all the sites, rather than presenting figures of

plots, a table of determined effective g factors is given. Errors given are derived

from 95 percent confidence intervals from the fitting algorithms used. It can be seen

that many of the effective g factors for the same level from different sites are within

the listed error of one another. This suggests similar levels for all the sites. It can

be argued that the error within the same measurement set is less than the errors

presented here (which includes an estimate of 8mT error in the magnetic field).

It is suggested that if the reader wishes to examine these differences more closely,

the appendix includes splittings in units of meV, without this extra source of error

considered.

Generally, the splittings observed seem to confirm the crystal-field number as-

signments suggested by the polarization, but there are significant shortcomings due

to the incompleteness of the data. For example, no splittings for the ground state

were found in the data for the perpendicular field orientation for any site. Visually,

they were all similar to the plots shown for site A, in that no splittings could be

seen by eye. Ideally, if this state, as suggested by results so far, has a 3
2

crystal-field

number, its splitting may give a good measure of the deviation from C3v symmetry.

Interestingly, it appears that the lowest energy levels in each of the lowest three

multiplets are predominantly of the character of the largest mj states for each mul-

tiplet. This is in contrast to the majority site for erbium in gallium nitride, whose

effective g factors are discussed in Chapter 6.
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Table 5.3: Shown are fitted g factors for sites A-D.

Site A B C D

Ground (A1) g‖ 15.04± 0.64 15.04± 0.64 14.67± 0.64 14.75± 0.64
g⊥ 0? 0? 0? 0?

Second 4I 15
2

(A2) g‖ 3.60± 0.44 4.12± 0.38 3.52± 0.33 3.85± 0.33

g⊥ 7.67± 0.94 7.56± 0.56 7.8± 2.0
First 4I 13

2
(B1) g‖ 12.65± 0.59 13.26± 0.62 12.31± 0.60 12.44± 0.59

g⊥
First 4I 11

2
(C1) g‖ 10.20± 0.82 10.10± 0.64 10.08± 0.85

g⊥
Second 4I 11

2
(C2) g‖ 5.6± 1.3

g⊥ 2.05± 0.65
Third 4I 11

2
(C3) g‖ 3.32± 0.30 3.51± 0.31 2.76± 0.31

g⊥ 4.87± 0.36 4.46± 0.67
Forth 4I 11

2
(C4) g‖ 1.34± 0.23

g⊥ 4.12± 0.36 4.05± 0.68 4.58± 0.76
Fifth 4I 11

2
(C5) g‖ 2.90± 0.88 3.1± 1.2

g⊥
Sixth 4I 11

2
(C6) g‖ 1.6± 2.1 1.3± 2.5

g⊥ 6.56± 0.44 4.29± 0.93
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Table 5.4: Shown are fitted g factors for sites E, H1, H2, and I.

Site E H1 H2 I

Ground (A1) g‖ 14.39± 0.62 14.05± 0.64 14.91± 0.82 15.21± 0.82
g⊥ 0? 0?

Second 4I 15
2

(A2) g‖ 3.92± 0.48 3.71± 0.35 3.70± 0.49 3.66± 0.33

g⊥
First 4I 13

2
(B1) g‖ 12.01± 0.60 12.03± 0.60 12.93± 0.78 12.14± 0.61

g⊥ 1.69± 0.23
First 4I 11

2
(C1) g‖ 10.42± 0.83

g⊥
Second 4I 11

2
(C2) g‖

g⊥
Third 4I 11

2
(C3) g‖

g⊥ 4.28± 0.36 4.28± 0.43
Forth 4I 11

2
(C4) g‖

g⊥ 3.92± 0.36 4.2± 1.1
Fifth 4I 11

2
(C5) g‖

g⊥
Sixth 4I 11

2
(C6) g‖

g⊥ 5.75± 0.92
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Table 5.5: Shown are fitted g factors for sites J-M.

Site J K L M

Ground (A1) g‖ 13.68± 0.93 15.17± 0.78 15.31± 0.65
g⊥ 0? 0?

Second 4I 15
2

(A2) g‖ 5.43± 0.41 4.02± 0.95 4.2± 1.8 4.61± 0.36

g⊥ 7.39± 0.45 7.32± 0.99
First 4I 13

2
(B1) g‖ 11.10± 0.66 11.20± 0.91 12.47± 0.91

g⊥
First 4I 11

2
(C1) g‖ 11.62± 0.61

g⊥
Second 4I 11

2
(C2) g‖

g⊥
Third 4I 11

2
(C3) g‖

g⊥ 4.74± 0.69
Forth 4I 11

2
(C4) g‖

g⊥ 4.20± 0.59
Fifth 4I 11

2
(C5) g‖

g⊥
Sixth 4I 11

2
(C6) g‖

g⊥
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5.3.4 Polarization of Zeeman Split Peaks

Before continuing, some discussion of polarizations of transitions under the influence

of an applied magnetic field is merited.

5.3.5 Expected Behavior

Recall the results derived for the half-integer J case for C3v symmetry for electric

dipole allowed transitions.

E 3
2

E 3
2

′ E 1
2

E 3
2

π σ

E 3
2

′ π σ

E 1
2

σ σ πσ

If the E 3
2

and E ′3
2

representations are truly treated as components of a single rep-

resentation, nothing in the above suggests polarizations should change. However, if

the addition of a magnetic field is treated as a perturbing symmetry, the symmetry

group, C3v, becomes more and more incorrect as the effects of the magnetic field

become more significant than those of the crystal-field. Thus, whether these po-

larization rules still apply after application of a magnetic field is dependent on the

relative magnitudes of the crystal-field and magnetic field terms in the Hamiltonian.

Site A in Erbium Doped Lithium Tantalate

Only the site which seemed to best obey selection rules for C3v symmetry was consid-

ered, on the grounds that the selection rules for the others are less well understood.

Somewhat unsurprisingly, the polarization plots for the split peaks appear very

similar to the plots before the splitting, which were discussed earlier in this chapter.

The magnetic fields are believed to be the same as the fields used for calculating

Zeeman splittings for this material earlier in this chapter (0.75T). If anything, some

of the transitions under the influence of a magnetic field appear more polarized than

was the case without a magnetic field. Unfortunately, because the setup for this
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Figure 5.23: Fitted excitation polarizations for the Zeeman split transitions for a field
parallel to the c-axis. This is for the lowest doubly degenerate level of 4I 15

2

to the lowest doubly degenerate level of 4I 11
2

. The shown transitions were

σ polarized in the zero magnetic field case.

experiment and the experiments which produced the plots in the previous chapter

may be slightly different, a true comparison may be flawed. There were difficulties in

correctly normalizing for variations in power as a function of excitation polarization

angle.

The transitions shown here were selected for their having a clear π or σ bias in

the zero field data. Some levels did not split appreciably, and so only two, rather

than four peaks are shown. If anything, some of the peaks appear more strongly

polarized than in the zero field case.

It should be pointed out that for the magnetic fields used for this portion, there

should not be significant mixing of the states considered here. The data appears to

confirm that the character of the states is roughly the same. This implies that for

this magnetic field magnitude, the C3v symmetry of the crystal-field term is still a

dominating influence on the selection rules.
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Figure 5.24: Fitted excitation polarizations for the Zeeman split transitions for a field
parallel to the c-axis. This is for the lowest doubly degenerate level of 4I 15

2

to the second lowest doubly degenerate level of 4I 11
2

. The shown transitions

were π polarized in the zero magnetic field case.

5.3.6 Conclusions

Based on the polarization and magnetic splitting results, a table of crystal-field

numbers was developed. If a level showed appreciable magnetic splitting, it was

inferred that that level was assigned to ±1
2
. If the parallel effective g factor for

a level suggested the level was mostly made up of an mj state with mj = ±j for

the multiplet, the assignment that would be given for that mj state was used. C3v

symmetry was assumed correct. The polarization results were already discussed. It

should be noted that site A was used in particular to develop these assignments.

Imperfect polarization results may suggest that none of the sites has perfect C3v

symmetry, but evidence suggests site A is possibly the site that adheres best to

this symmetry. As suggested in prior work, charge compensation, balancing the +3

charge of the erbium ion in the host crystal, likely prevents perfect symmetry. [45]

Differences in symmetry are likely due to whether this compensation occurs in a
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way that preserves C3v symmetry, such as a change along the c-axis of the crystal

immediately next to the dopant.
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Table 5.6: Shown are suggested crystal-field number assignments

Level µ
Ground (A1) 3

2

Second 4I 15
2

(A2) ±1
2

First 4I 13
2

(B1) ±1
2

First 4I 11
2

(C1) ±1
2

Second 4I 11
2

(C2) 3
2

Third 4I 11
2

(C3) ±1
2

Forth 4I 11
2

(C4) ±1
2

Fifth 4I 11
2

(C5) 3
2

Sixth 4I 11
2

(C6) ±1
2
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5.4 Erbium in Lithium Niobate

The sample was provided by Dr. László Kovács of the Wigner Research Centre for

Physics in Budapest, Hungary. It is a stoichiometric lithium niobate sample doped

with 2 molar percent erbium.

The results presented here are mainly to compare whether a similar crystal-field

number assignment is applicable to this similar host. Therefore, not all sites are

considered, only a select few for which a fairly complete level assignment was found.

Prior work exists for classifying sites for erbium in lithium niobate. [9] [65] Only

a select few sites (2,3,4,7, and 9) were analyzed, due to difficulty in separating out

and identifying said sites.

5.4.1 Polarization without a Magnetic Field

Reviewing the polarization data for excitation from 4I 15
2

to 4I 11
2

, it appears that the

data for site 4 bears close resemblance to the data for site A in lithium tantalate,

that is, the second and fifth excitations appear to be π polarized, and the rest σ

polarized. It appears that the other sites for which a fairly complete identification of

these excitations seems possible, the fifth excitation appears σ polarized, to varying

degrees. This feature also appeared in the other sites in lithium tantalate. As was

the case for lithium tantalate, the emission polarization for 4I 13
2

to 4I 15
2

transitions

do not seem as dramatically polarized.
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Figure 5.25: Fitted amplitudes as a function of polarization for several transitions for
site 2. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.
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Figure 5.26: Fitted amplitudes as a function of polarization for several transitions for
site 3. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.
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Figure 5.27: Fitted amplitudes as a function of polarization for several transitions for
site 4. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.
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Figure 5.28: Fitted amplitudes as a function of polarization for several transitions for
site 7. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.
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Figure 5.29: Fitted amplitudes as a function of polarization for several transitions for
site 9. 0 degrees corresponds to π polarization, assuming correct angling
of the sample and setup.
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5.4.2 Polarization with a Magnetic Field

As for lithium tantalate, only the site which seemed to best adhere to C3v selection

rules was considered, site 4.

The results for site 4 in lithium niobate are essentially identical to the results for

site A in lithium tantalate, in line with the observation that the two seem to have

similar polarization and magnetic splitting behavior. Only the excitation transitions

from the lowest level of 4I 15
2

(A1) to the levels of 4I 11
2

were considered, because these

appeared to have more definitive results. All the polarizations which were examined

appear to be unchanged by the application of a magnetic field. Unfortunately, it was

difficult to isolate the A1 to C5 transition, but all the other excitation transitions

from A1 to C levels seemed to indicate the same polarization behavior under the

influence of a magnetic field.
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Figure 5.30: Fitted excitation polarizations for the Zeeman split transitions for a field
parallel to the c-axis. These are the transitions which were σ polarized for
the zero magnetic field case. This is for the lowest doubly degenerate level
of 4I 15

2
to the lowest doubly degenerate level of 4I 11

2
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Figure 5.31: Fitted excitation polarizations for the Zeeman split transitions for a field
parallel to the c-axis. These are transitions which were π polarized for the
zero magnetic field case. This is for the lowest doubly degenerate level of
4I 15
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5.4.3 Magnetic Splittings

Appendix B contains more information regarding the splittings measured for the

sites. The analysis was less complete than for erbium doped lithium tantalate, but

the results appear very similar. Shown here is the list of effective g factors for site

4, the site thought to best correspond to C3v symmetry.

5.4.4 Conclusions

As was done for site A in lithium tantalate, site 4 was used to develop a list of

crystal-field numbers. The two are essentially identical, which seems reasonable,

given that the two hosts are themselves similar.

Imperfect polarization results may suggest that none of the sites has perfect

C3v symmetry, but evidence suggests site 4 is possibly the site that adheres best

to this symmetry. As suggested in prior work, charge compensation, balancing the

+3 charge of the erbium ion in the host crystal, likely prevents perfect symmetry.

[45] Differences in symmetry are likely due to whether this compensation occurs in

a way that preserves C3v symmetry, such as a change along the c-axis of the crystal

immediately next to the dopant.
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Table 5.7: Fitted effective g factors for site 4, magnetic field parallel to c-axis.

Site 4

Ground (A1) g‖ 15.51± 0.66
Second 4I 15

2
(A2) g‖ 4.57± 0.34

First 4I 13
2

(B1) g‖ 10.69± 0.55

First 4I 11
2

(C1) g‖ 10.01± 0.66

Second 4I 11
2

(C2) g‖ 7.28± 0.46

Forth 4I 11
2

(C4) g‖ 2.10± 0.45

Table 5.8: Suggested crystal-field number assignments for erbium-doped lithium tanta-
late

Level µ
Ground (A1) 3

2

Second 4I 15
2

(A2) ±1
2

First 4I 13
2

(B1) ±1
2

First 4I 11
2

(C1) ±1
2

Second 4I 11
2

(C2) 3
2

Third 4I 11
2

(C3) ±1
2

Forth 4I 11
2

(C4) ±1
2

Fifth 4I 11
2

(C5) 3
2

Sixth 4I 11
2

(C6) ±1
2
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5.5 Suggested Future Work

As was stated already, a less complete analysis of the erbium doped lithium niobate

system was completed here. However, what was done suggests that this and the

same dopant in lithium tantalate result in erbium sites with essentially identical

levels in terms of crystal-field numbers and zeeman splittings.

This cataloging of erbium sites in lithium tantalate also aids future work of other

types, such as how the distribution of these sites changes from sample to sample,

or attempts to establish a direct correspondence between these sites and those in

lithium niobate.

This process can also be applied to other systems to identify comparatively higher

symmetry sites, as well as to characterize the states of the dopant in a site-specific

way.
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Chapter 6

Transitions in Erbium Doped

Gallium Nitride

6.1 Experimental Measurements of Zeeman Split-

tings as a Function of Applied Field in Erbium

Doped Gallium Nitride

6.1.1 Introduction

Past work on energy levels for the majority site in erbium doped gallium nitride

has yielded some interesting features and results. First, there is some disagreement

regarding the effective g factor for the ground state. [57] [30] Second, there exist

prior results in Ref. [44] seeming to yield curvature in the transition energies as a

function of magnetic field strength. This led to the question of whether the latter

could explain the former. In order to do so, ultimately, energy levels as a function

of magnetic field must be extracted from optical spectra.
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6.1.2 Motivation

As discussed in the second chapter, it is reasonable to expect nonlinear effects,

like avoided crossings, to occur between crystal-field split levels when an additional

perturbation is applied. It is also of interest to determine at what point linear

approximations for Zeeman splittings break down, and to what degree. This informs

what experimental parameters produce data in this regime. CEES is well-suited to

examining a range of energy levels (and separating them by site) via their transitions,

and should be a useful tool for examining details of level interactions experimentally.

As discussed in Chapter 2, crystal-field splitting (at least for C3v symmetry) is also

expected to produce some doubly degenerate levels which do not split under a field

applied perpendicular to the symmetry axis (the c-axis of the crystal) for odd half

integer values of J . A detailed analysis of splittings would also give insight into

the nature of the levels. All of this information is potentially useful for confirming

incorporation site symmetry.

Our group has produced large data sets showing emission spectra as a function

of applied magnetic field magnitude over a period of years. In this chapter, detailed

information on the energy levels is extracted from these spectra, creating data on

energy level positions as a function of applied field.

Objectives

• Confirm or correct existing level assignments for the transitions

• Determine the energy levels as a function of applied magnetic field for fields

both parallel and perpendicular to the c-axis

• Use this information to assign effective g factors

• Investigate nonlinearities in Zeeman splitting using this information

• Determine whether such nonlinearities can explain or cause discrepancies in

the literature
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6.1.3 Approach

The basic process is to create a model using input parameters describing energy

levels, rather than peak positions, then fit the spectra using a least-squares fitting

algorithm, such as Levenberg-Marquardt. [41] The advantage in describing energy

levels rather than individual peak positions is redundancy in information, allowing

for situations in which individual transitions may be difficult to pick out from one

another, but transitions sharing an energy level may not be overlapping.

This approach has a weakness in that it is required that one have a very good

understanding of the origins of every peak in the emission spectrum being fitted, in

terms of the energy levels that produce them. It is also required that one have good

estimates for starting parameters for successful fitting. To accomplish this, a spec-

trum without any applied field is examined. Differences in energy levels produce the

transitions, and the correct differences in transition energies should produce energy

level spacings. Using other data, such as CEES, one obtains information on transi-

tions between other multiplet sets, and finding transitions sharing a multiplet with

the same differences in transition energies suggests that those differences correspond

to energy level spacings in the shared multiplet.

Once this is done, a spectrum without any applied perturbations should be

possible to fit using only the energy levels involved, labeling the lowest energy as zero.

After this, portions of the spectra set are examined to develop starting parameters

for effective g factors. It should be noted that depending on the choice of system,

some of this work in developing initial estimates may already have been done, and

one merely needs to check the result.

6.1.4 4I 13
2

to 4I 15
2

Emission

A Note on Samples

All the data in this chapter were obtained using a sample labeled A2373, whose

growth conditions are described in [73]. It is a thin film (0.5 µm) of erbium doped
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Figure 6.1: Emission transitions for Er+3 observed in the data used for this work.

gallium nitride on a layer of undoped gallium nitride, grown by Metal-Organic Chem-

ical Vapor Deposition (MOCVD) on 0001 polished sapphire. Of the samples avail-

able to our group, this one produces the sharpest transition peaks, making detailed

analysis of small changes in energy levels feasible.

Developing Initial Estimates

Previous similar work on this particular system has been completed for the same

levels. [44] However, only a single number was recorded to characterize the split-

tings. This system is of particular interest with regards to possible level interactions

because of a small splitting between the doubly degenerate ground state and the

doubly degenerate state immediately above it (roughly 0.55 meV, as opposed to

splittings of a few meV). This refers to A1 and A2 in the diagram of transitions

indicated in Figure 6.1. This could mean that measurements for the magnetic prop-

erties of the ground state could be influenced by interactions with this next level at

comparatively low fields.

Existing level assignments appear to reproduce the emission spectra rather well,
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Multiplet [75] [44] [39] ‖ Field Data ⊥ Field Data
0 0 0 0 0

4I 15
2

(meV) 0.63 0.62 0.56 0.556± .021 0.546± 0.005

4.3 4.3 4.20 4.144± .025 4.123± 0.006
0.8063 0.8063 0.80649 0.806504± .000019 0.806519± 0.00005

4I 13
2

(eV) 0.8072 0.8072 0.80736 0.807341± .000023 0.807347± 0.00005

0.8094 0.8094 0.80954 0.809532± .000036 0.809548± 0.00008

Table 6.1: Results for the energy levels of the main site in Er doped GaN from various
sources. The last two columns are from two different sets of data fitted for this
work. The errors in those columns are from estimated 95 percent confidence
intervals from the fitting algorithm used, and do not take into account errors
from sources such as calibration of the emission axis.

and values obtained here. This enables the next portion of the work, which is to

estimate Zeeman splitting parameters. Each of nine transitions is thought to be a

transition between two doubly degenerate levels. This means that each transition

can become four new transitions. Fitting a relatively isolated transition on its own

yields two splittings, one for each level. Assigning each splitting to one of two doubly

degenerate levels requires comparison of transitions with only one doubly degenerate

level in common. By repeating this, one can determine initial guesses for effective

g factors for each level. To reduce the number of free parameters for fitting, it

was assumed that the widths of the split peaks are identical. The model to predict

the centers of peaks used three parameters. The first was the difference in energy

between the centers of the two split levels. The other two were the differences in

energy from the center of each split level to each level (or, half the total splitting).

It is worth noting that the center of the transitions would sometimes shift in

what appeared to be a nonlinear way even while the splittings of each level involved

would appear to remain linear with field, as shown in Figure 6.3 for one transition,

suggesting that curvature in the transitions as a function of applied field may not

correspond to significant curvature in splittings (at least at the level of precision

achievable by this approach and equipment).
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Figure 6.2: Fitting of an emission spectrum from the majority site in erbium doped
gallium nitride. Five parameters are used to describe the positions of nine
emission peaks.

An Avoided Crossing

The most notable feature observed in the available data sets was a discernible

avoided crossing in the parallel field data set. The involved transitions shared one

level in common in the 4I 13
2

multiplet, but had as their other levels the lowest two

observed levels of the 4I 15
2

multiplet (A1 and A2). To examine this, this portion

of the spectra was fitted using two peaks for each field. The result was that the

peaks appear to show signs of an avoided crossing. The result of this is shown in
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Figure 6.3: Result of fitting the splitting of a transition near 0.8032eV. In this case, the
field was applied parallel to the c-axis. The linear fits shown in green for
the splittings were not forced to have a particular intercept. Error bars are
from 95 percent confidence intervals from the fitting algorithm.

Figure 6.4. Fitting the peaks in this way also allowed for an estimate of a cross-term

for the levels involved to describe the avoided crossing. This feature was added to

the initial guess model.

Specifically, if the crystal-field splitting is viewed as a mixing of sets of levels

(of the same crystal-field quantum number) with distinct mj values, if two crystal-

field levels Φ1 and Φ2 share component mj states, 〈Φ1|Hz|Φ2〉 may contain terms like

c1c
?
2 〈mj|Hz|mj〉 = c1c

?
2mjgJµBB. This implies that there may be terms linear in the
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Figure 6.4: Spectra for a parallel applied field in the vicinity of what is believed to be
an avoided crossing. Portions of spectra in this region were fitted using two
peaks for each field. The results of that fitting are overlaid here. Error bars
are from 95 percent confidence intervals from the fitting algorithm.

applied field between different crystal-field states without much added complication

in the theoretical model. The new method for calculating energy levels, then, is to

create a matrix containing terms corresponding to effective g factors on its diagonal,

with the cross term mentioned added to that. Then, the matrix is diagonalized.

While, in principle, there may be nonzero terms for many pairs of levels, here, only

one cross term is known, so only the diagonalization of a 2x2 matrix is required.

The Actual Fitting

After determining estimates for parameters, and successfully fitting the zero field

case, the next step is to fit each spectrum individually, allowing the parameters to

vary. Unfortunately, there were some issues with this approach in certain regimes.
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Spectra for Ramping of a Magnetic Field Applied Parallel to the c-axis with

an Overlay of a Model with Initial Parameter Estimates
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Figure 6.5: This is data for A2373 showing spectra as a function of applied field, with
lines indicating the transitions centers as predicted by the initial guesses
obtained to this point.

At low fields, both changes in widths and changes in splittings produce a similar

result in the model, increasing error in splittings at lower fields. The cross term used

for fitting the avoided crossing has much less effect far from the avoided crossing,

and error in that becomes large far from the avoided crossing. The former prob-

lem cannot be easily resolved without finding means of improving resolution and

sharpness of the lines, or forcing peak widths to a static value. The latter prob-

lem is made more difficult because within the context of an individual spectrum,

parameters given for the splitting and centers of lines can duplicate the effects of a

cross term. Thus, the initial parameter for this cross term is used as a fixed value

in fitting. It can be recalculated from the resulting fitted energy levels later, and

stating a fixed value for this allows for better initial guesses for other parameters.

For the data set for a perpendicular field, the range of the applied field was
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Level [44] From Fitting [57] (around 90mT) [30] (around 65mT)
A1 6.94± .35 7.58± .16 7.645± .003 8.806± .005
A2 0 3.03± .12
A3 4.83± .24 1.86± .13
B1 5.70± .29 5.79± .25
B2 0 4.91± .08
B3 4.52± .23 5.64± .18

Table 6.2: Effective g factors for a magnetic field applied perpendicular to the c-axis.
The values in the column corresponding to results obtained here were deter-
mined by averaging the g factors determined from each spectrum, using the
errors from the fitting algorithm for weighting. Listed errors in that column
correspond to one standard deviation.

limited to 1T , and no such avoided crossing was observed. No level was observed

to have zero splitting, implying at least one of several things is likely true: none of

the levels are of crystal-field number 3
2
, the symmetry group is not C3v, the sample

was not well angled relative to the applied field, or higher order terms are present

to allow significant splitting of levels of crystal-field number 3
2
.

The results of these fittings for the energy levels as a function of applied mag-

netic field are shown in Figures 6.6 and 6.7. The parallel field case, due to the

avoided crossing, and higher resolution, is promising for further analysis. Using the

fitted results, it is reasonable to examine features like small curvatures in the tran-

sitions and the avoided crossings, but in terms of the actual levels producing those

transitions.

Effective g Factors- Perpendicular Field Case

Note that the data used in Ref. [44] for the perpendicular field case is the same

as the data used in this analysis. That work suggested that the large discrepancies

between results reported in Ref. [57] and Ref. [30] for the ground state g factor

could be explained by a substantial nonlinear interaction. This was argued because

it appeared that the results in those works suggested a trend in which the effective
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Figure 6.6: Fitted energy levels for A2373 with a magnetic field applied perpendicular to
the c axis. Error bars correspond to a 95 percent confidence interval, using
values from the fitting algorithm.
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Figure 6.7: Fitted energy levels for A2373 with a magnetic field applied parallel to the c
axis. Error bars shown correspond to a 95 percent confidence interval, using
values from the fitting algorithm.
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g factor decreased with applied field. However, the result obtained in this analysis

strongly favors one of those two values. However, if a large nonlinear effect were to

be present at values below 100 mT, it might be experimentally difficult to determine

a g factor without an attempt to extrapolate to zero field, and it would call into

question all values determined here, taken at field magnitudes of 200mT and above.

While one effective g factor for the perpendicular field case is notably smaller

than the other five determined here, it is certainly nonzero. There are certainly

enough levels in each multiplet left undetermined that it could be that C3v symmetry

is applicable, there are no significant higher order effects causing Zeeman splitting

in levels not expected to split, and the sample was correctly angled relative to the

applied field. This suggests that determination of other g factors in the ground

multiplet is of interest.

Supposing that all of the levels which can be observed from this emission scheme

are of the same crystal-field number (at least in the sense that each doubly degen-

erate level contains both a +1
2

and a −1
2

crystal-field quantum number state), this

implies that all of these levels could conceivably have a cross term between one

another from simply sharing mj labeled states in common, as described earlier.

Effective g Factors- Parallel Field Case

Before continuing, it is important to make abundantly clear that although several

times in this chapter, it is implied that effective g factors are changing with the

applied magnetic field, the correct framework in which to consider these results is

such that plots in this portion might be more accurately labeled, “number which

might näıvely be thought to be the effective g factor, if one assumed that all magnetic

splittings were perfectly linear and only one data point from a level splitting at a

particular magnetic field magnitude and orientation were considered in order to

calculate this number”. Here, it will be called the apparent effective g factor.

The parallel field case is complicated by the presence of an avoided crossing.

Otherwise, the comparatively high resolution of the parallel field data set allows

for a more interesting analysis for obtaining the effective g factors. There is visible
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curvature in the level splittings as a function of applied field. The correct effective

g factor should be the value obtained infinitely close to zero applied field, for which

direct measurement is clearly not possible with this approach. Fitting cannot be

handled in a correct manner without developing a matrix involving cross terms

(which may involve more terms than can easily be calculated from the data). A

simple solution is to consider the effective g factor as corresponding to the first

nonzero term in a Taylor expansion for the energy level splitting. The next term

for the magnetic splitting in the field would be proportional to the square of the

applied field.

∆EB ≈ geffµBB + g2µBB
2

Here, the quantity labeled g2 would correspond to the ratio of the change in the

apparent effective g factor (assuming one were not aware of nonlinearities) calculated

to the applied field. If this approximation is accepted, then the desired g factor in the

limiting case of small applied field is the geff term. So, using the fitted energy levels,

one merely fits pairs of split levels to second order polynomials, forcing identical

values for doubly degenerate values at zero applied field which agree with the zero

field results obtained earlier (within error). Then, the differences in coefficients must

correspond to the differences in the coefficients of B in the above equation.

This approach, however, runs into some problems for the levels experiencing

an observed avoided crossing, because the quadratic term can replace some of the

features of the matrix diagonalization, but may not exactly replace its functional

form. Results presented here for the lowest two doubly degenerate levels of 4I 15
2

to extrapolate to zero field use an alternate fitting approach, effectively setting g2

equal to zero and relying on the cross terms to model the nonlinear behavior. This g2

approach is applied to other levels, which still gives some indication of how apparent

effective g factors vary with applied field. It is important to note that while much

of this analysis ultimately depends on the linearity of the magnetic field with time

(as the field was continuously ramped in the parallel field data set) produced by the

magnet, such an effect would not explain shifts in the center of gravity of transitions.

151



Level [44] 0T [57] [30]
Extrapolated (around 230mT) (around 240mT)

A1 2.88± .14 2.77± .12 2.861± .003 2.952± .005
A2 9.28± .46 9.17± .20
A3 5.27± .26 5.48± .12
B1 2.88± .14 3.335± .059
B2 7.96± .40 8.13± .14
B3 4.52± .23 4.332± .095

Table 6.3: Effective g factors for a field applied parallel to the c-axis. Only levels ap-
pearing in transitions in the data set used are included. Listed errors in the
extrapolated and interpolated columns correspond to a 95 percent confidence
interval calculated from a covariance matrix from the fitting algorithm.

Level 0T 1T 2T 3T
Extrapolated Interpolated Interpolated Extrapolated

A1 2.77± .12 2.588± .058 3.153± .020 3.203± .026
A2 9.17± .20 9.14± .13 9.434± .051 9.286± .056
A3 5.48± .12 5.488± .066 5.496± .045 5.503± .089
B1 3.335± .059 3.148± .035 2.960± .026 2.771± .044
B2 8.13± .14 8.138± .081 8.143± .051 8.149± .081
B3 4.332± .095 4.222± .052 4.110± .055 4.00± .10

Table 6.4: Values for apparent effective g factors determined using fits of the fitted ener-
gies as a function of fields for the parallel field case (with a small fitted offset
for the zero field). Listed errors in the extrapolated and interpolated columns
correspond to a 95 percent confidence interval calculated from a covariance
matrix from the fitting algorithm.

If this were an issue, it is expected that a similar effect would appear for all the

levels (that is, fitted values for this g2 parameter of the same sign, and of similar

value when scaled by geff ).

Even when simply using this fit to interpolate energy levels, it appears that some

levels, which were not observed to have an avoided crossing in this range of fields,

may have statistically significant changes in apparent effective g factor as function of
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Level Fitted g2 Parameter
A1
A2
A3 .008± .064
B1 −.187± .020
B2 .007± .062
B3 −.111± .058

Table 6.5: Values for the g2 parameters described in this chapter from fits of the fitted
energies as a function of fields for the parallel field case (with a small fitted
offset for the zero field). Listed errors in the extrapolated and interpolated
columns correspond to a 95 percent confidence interval calculated from a
covariance matrix from the fitting algorithm.

field. Of course, this may be an indication that these levels experience similar anti-

crossings at higher fields. Some levels appear not to have a statistically significant

change in apparent effective g factor as a function of applied field, but this may

be slightly affected by the ability of the fitting algorithm to offset the zero field

point (an attempt to handle the problem of imperfect synchronizing of the taking

of spectra and the start of the field ramping in this particular experimental setup).

This g2 idea and the parameters given here should probably only be considered as a

tool to demonstrate that measurable changes of a particular magnitude in apparent

effective g factors are present, rather than a specific value to use in further analysis.

As was the case for the perpendicular data, the data shown here from two other

sources involving electron spin/paramagnetic resonance results appear to disagree

with one another, despite using similar field magnitudes to make their measure-

ments. [57] [30] It seems unlikely that differences of a few hundredths of a tesla

would be sufficient to cause such a discrepancy, comparing to fluctuations seen in

data here. The data fitted here seems to favor the results in Ref. [57]. The reason

for this discrepancy could be due to nonlinear splittings, but it is not entirely clear

that this is the case.
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from 99 percent confidence intervals derived from Monte Carlo error esti-
mation, using a covariance matrix from the fitting algorithm, as well as an
estimate for the error in field magnitude.

Complications for Measuring the Ground State Effective g Factor

Avoided crossings raise complications for measurement of the ground state. At a

sufficiently high applied magnetic field, the two lowest energy states may not corre-

spond to the doubly degenerate ground level in the absence of an applied field. Near

an avoided crossing involving the ground state, the levels involving the ground state

are mixed with other states, and the separations may not reflect the effective g factor

of the ground state. The numeric consequences of this ambiguity are demonstrated

in Figure 6.8. While this technique of measuring g factors does not give precisions

comparable to electron spin resonance type experiments at lower field magnitudes,
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as in Refs. [57] and [30], it does shed light on the cases in which these problems

occur, due to its giving information on several (presumably) adjacent levels, and

how splittings vary with applied field magnitude.

An attempt to calculate the apparent ground state effective g factor as a function

of field using the fittings for the parallel field case reveals several interesting features.

First, it appears that there is an offset on the order of parts in ten in the apparent

effective g factor on both sides of the avoided crossing that persists for a significant

fraction of a tesla. If correct, this implies that an avoided crossing might still have

an effect on measurements with comparatively much larger step sizes in the applied

field. Second, the closest approach of the two possible calculations for the apparent

effective g factor (depending on the level used) in the region of the avoided crossing

is quite large. Unfortunately, while it appears that the apparent effective g factor is

increasing to a value closer to values reported by others [57] [30], the errors in the

technique used here increase too quickly as the field decreases to make a meaningful

comment on disagreements between previously measured values at magnetic fields

of 0.1T or less. Of course, it is still possible to fit the values already obtained using

the simple matrix diagonalization model to attempt to extrapolate to the zero field

case.

Using the determined effective g factors for the three lowest observed doubly

degenerate levels for the main site, it is possible to plot as a function of magnetic

field strength and angle relative to the c-axis approximately where these intersections

occur. Note that since not all avoided crossings are known, this assumes a simple

linear model for Zeeman splitting. It is advised that any experiment measuring the

Zeeman splitting of the ground state either avoid these regions (ideally, by staying

in a low field magnitude regime), or be aware of them when analyzing data.

This exercise reveals several interesting things. First, the only reason that these

crossings are relevant is because of the close spacing of the first two doubly degen-

erate levels. The next (third) doubly degenerate level is not expected to have any

such crossings until the applied field exceeds 10T. Also, the expected point of the

crossing from assuming this simplified linear model appears to predict crossings at

lower fields than actually is the case, so this threshold is likely higher. Next, there
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exists a pair of crossings that corresponds to one set of levels having a higher value

for the effective g factor than the other, which presumably does not take place if

their effective g factors are equal. Only one of these crossings would appear if for all

angles, one g factor were greater than the other. Because this crossing is expected

to occur for the ground state and the first excited doubly degenerate level, and a

crossing of this type occurs, there is a potential problem for measurements involving

fairly continuous rotation of the sample. If a threshold field magnitude is exceeded,

there will always be a field angle at which there is a level crossing, due to both

crossing points tending to infinite field magnitude as the field angle approaches the

angle at which the g factors are equal. Inspection of the fitting results for individual

levels suggests that this threshold is probably around or above 3T.

Still, it must be noted that the question of how relevant this is to an experiment

cannot be answered without knowing the precision associated with that experiment,

and the specific values for the crossing. Since only one such level crossing for one

field angle has been observed here, it may be misleading to assume all such crossings

behave similarly to the one observed.

Shifts in Centers of Transitions

By visual inspection, the transitions in the original data set show curvature, which

often appears similar for all of the magnetically split lines from one original transition

between doubly degenerate levels. This likely implies that the centers of energy

levels are shifting. The previous analysis discussed nonlinear effects in splittings of

transitions, corresponding to differences in levels. The logical next step for analyzing

this data is to consider nonlinear effects (or even linear shifts) in averages (sums) of

split levels.

This is complicated by levels being determined relative to the ground state,

which is itself undergoing nonlinear effects, due to an avoided crossing, as already

discussed. Subtracting out the lowest energy level from the fit results obtained

earlier would effectively add an increasing term to all the other level centers. So, it

may be preferable to compare differences in centers of levels to one another. This
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Figure 6.10: Fitted center energies as a function of applied field strength. Note that the
ground state center is fixed to be zero.

ultimately means comparing shifts in sets of split transitions, of which we have nine.

As was done in the previous sections, only the data for the parallel field case

will be considered, due to higher resolution, higher maximum field, and readily

apparent nonlinear effects. Since all the energies shown here appear to move in the

same direction, and the value for the ground state center energy is fixed at zero, this

data may be taken to mean that this avoided crossing is decreasing the energy of

the ground state relative to all the other states. Of course, variations in the degree

of this shift also imply additional processes are in effect.
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Figure 6.11: The transitions which were observed in this data set are indicated, with
corresponding levels. The level scheme corresponds to the one used in this
work.

6.1.5 4I 15
2

to 4I 11
2

Excitation

Assignment of Levels

Level assignments for the 4I 11
2

multiplet were initially less certain. Three sources

of level assignments based on experimental data [75] [44] [17] have conflicting as-

signments which all claim to have identified all six crystal-field split energy levels.

While there are some conflicts regarding the level assignment for the emission of the

majority site, [15], the level assignment which will be discussed here appears to fit

data well, and agrees with the level assignments for the 4I 15
2

multiplet used in the

previous portion.

The author of Ref. [44] claims not to observe a peak corresponding to what is

here labeled as C2. However, in data collected by that author, and additional data

collected for this work, the level assignment used fails to assign a rather sharp peak

near 1.2579eV, shown in Figure 6.12. In Ref. [75], this particular peak is assigned

its own level in the crystal-field multiplet, but this assignment omits a peak near
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Figure 6.12: Excitation profile taken from CEES data collected by the author of [44],
believed to be from sample A2373, using the level scheme suggested in that
work. The arrow indicates the peak not assigned.

1.2550eV.

Subsequent experiments are believed to have been conducted at a lower tem-

perature. This is due to the added use of a heat shield and the absence or severe

relative reduction of peaks associated with the third doubly degenerate level of 4I 15
2

,

A3. They also showed that a peak assigned to an excitation from A1 to the lowest

of the C levels (1.2550eV) in Ref.[44] disappears from the excitation data at lower

temperatures, as shown in Figure 6.13. For transitions starting from the ground

state, a decrease in temperature is not expected to cause a such decrease in inten-

sity. Such a decrease however, appears typical of transitions involving A3 whose

assignment is not in conflict.

This suggests that the 1.2550eV peak is associated with a thermally excited level

in the 4I 15
2

multiplet. Noting this, and the similar decay in intensity with decreasing

temperature for levels thought to involve A3, inspired an assignment in which the
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Figure 6.13: Excitation spectra as a function of platform temperature. The 1.2550eV
peak is marked with an arrow. Scaling is accomplished by dividing by the
amplitude of the highest intensity peak.

energy corresponding to the A1 to C2 nearly overlaps with the A2 to C3 transition.

This explains why the author of [44] was not able to observe a separate transition

for this level using the same sample. Subsequent fitting using the energy levels as

parameters shows that this assignment allows fitting of all the observed peaks in this

data using only six levels for the 4I 11
2

multiplet, and the same three levels of the 4I 15
2

used in the previous section. A plot showing this fitting and the level assignments

is shown in Figure 6.14.

The fact that this assignment assigns all the peaks seen in this data without

issues in assigning too many levels to the 4I 11
2

multiplet, contradicting results already

obtained for the 4I 15
2

multiplet, or having to rely on more exotic mechanisms, such

as phonons or transfers of energy between sites, suggests that this is probably the

correct assignment.

Comparison of Level Assignment with Literature

This assignment appears to resolve issues with Refs. [75] and [44], but not with

Refs. [17] and [18]. The last two initially appear to be a mystery. However, if an
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offset value is added to the values from these two papers for this multiplet, the levels

can be made to match levels presented here. Comparison of spectra presented in

Ref. [18] using this offset reveal that their results and assignments are essentially

identical to the ones presented here. This, and the inconsistency between the two

papers with the same first author suggests an axis calibration issue for this particular

range of energies.

After adding offsets, those two works appear to have no conflict with the assign-

ments given here, or with each other. This also implies that the level assignment

proposed here is not new. It can also be seen in these papers that the thermal behav-

ior of the 1.2550eV peak has been reported previously. A comparison of assignments

and levels is shown in Table 6.6.

Temperature Dependence of Peak Centers

The temperature dependence data also permits the analysis of changes in peak

centers as a function of temperature, which will give an indication of the relative

importance of temperature. Fitting these profiles and plotting the fitted energies as a

function of temperature resulted in Figure 6.15. It appears that most of the energies
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[75] [44] As given [18] As given [17] Offset [18] Offset [17] This Work
1.2550

1.2564 1.2564 1.25417 1.25318 1.25631 1.25636 1.25639
1.2579

1.25632 1.25530 1.25846 1.25848 1.25851
1.2592 1.2592 1.25704 1.25605 1.25918 1.25923 1.25911
1.2607 1.2607 1.25850 1.25742 1.26064 1.26060 1.26062
1.2611 1.2611 1.25881 1.25773 1.26095 1.26091 1.26098
1.2628 1.2628 1.26068 1.25961 1.26283 1.26279 1.26277

Table 6.6: Comparison of values (in eV) for the assignment of the levels of 4I 11
2

.

do not fluctuate with more than random noise at the lower end of the temperature

range here. There also seems to be some evidence of the energies changing over

the whole range. It is likely that additional error is introduced by factors like small

power fluctuations and imperfect precision of the wavelength meter. Errors on the

order of a few hundredths of a meV appear to be typical, and should be considered

when reviewing data presented here.

For the most part, however, it appears that comparing data at slightly differ-

ent temperatures in the Montana Instruments Cryostation should not significantly

impact the energies measured in this range.

If a Boltzmann distribution is assumed for the relative amplitudes of the peaks

involving A3, with an associated energy of 4.13meV, one can make a rough estimate

of the actual temperature of the point being measured. By interpolating by eye, at

around 30K for the platform temperature, the relative amplitude appears to attain

about half of its maximum value. This corresponds to T = 4.13×10−3eV

(ln 2)(8.617×10−5 eV
K )

= 69K.

Of course, it is not unreasonable that the temperature at a point farther from the

cooling apparatus than the platform thermometer (and with a laser focused on it)

has a significantly higher temperature than that thermometer reads.
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Figure 6.15: Fitted energies vs. platform setpoint temperature, with errors taken from
the fitting algorithms used

Fitting Results- Parallel Field Case

In order to prevent issues arising from broader peaks, the fitting was conducted at

the lowest possible temperature, which prevented observation of transitions from

the A3 level.

The data were collected by ramping the magnetic field using the Montana Instru-

ment Cryostation’s Magneto-Optic option magnet at each excitation wavelength.

Unfortunately, this could create issues involving hysteresis, as discussed in Chapter

4. Of course, this ideally should produce a similar nonlinearity for all levels, and

should be detectable. Fitting the apparent effective g factors using the scheme men-

tioned for the emission case, it appears that only one level in the upper multiplet

may potentially have detectable nonlinearity, but this may have more to do with

errors in the fitting than a real nonlinearity, given the similar magnitude of the

error. The lowest two states do not seem to show appreciable nonlinearity, but this

may be due to issues in field-step resolution, fluctuations in magnetic field values

over time while using an electromagnet, and the comparatively low magnetic field
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magnitude. Non-linearity, however, was observed in emission, as already discussed.

It should be noted that not all spectra were used to calculate these values for each

level. Some were excluded due to large errors or inconsistency with the rest of the

fitted values.

It is worth noting that one effective g factor is close to 11 in this multiplet,

implying that if C3v symmetry applies, and since the Landé g factor for this multiplet

is close to unity, this level would almost certainly need to be of crystal-field number
1
2
, as this level would need to be mostly of the character of the mj = 11

2
state for this

result. Similar reasoning suggests that the level with the second highest effective

g factor, nearly 9, would be a likely candidate for 3
2
. These possible crystal-field

number assignments will be discussed later in this chapter.

Slight disagreements in the fitted effective g factor for the lowest two doubly

degenerate levels may also reveal issues in calibrating the magnetic field between the

two experiments, with differences on the order of ten percent. It should be noted that

the hysteresis effects mentioned in the Chapter 4 would slightly increase calculated

effective g factors for intermediate field values for this set of data, but not the

emission data previously discussed (because of the different magnets used for each).

The existence, however, of small discrepancies, implies that these measurements are

unlikely to be able to determine which of two close values for an effective g factor

is correct.

Fitting Results- Perpendicular Field Case

Generally, effective g factors were much smaller for this field orientation. The g2

parameters described earlier were not fitted, partly for this reason. The fitted g fac-

tors for the lowest two doubly degenerate states of 4I 15
2

matches the emission results

shown earlier reasonably well, but it is worth pointing out that both experiments

were conducted with the same cryostat and magnet. If correct, the results imply

issues for the validity of C3v symmetry, in that two of these levels should have an

effective g factor close to zero. Some of the levels did not appear to show significant

splittings upon visual inspection, implying that this method is using restrictions
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Figure 6.16: Fitted energy levels for A2373 with a magnetic field applied parallel to the
c axis. Error bars correspond to a 95 percent confidence interval, using
values from the fitting algorithm.
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Multiplet Energy (eV) Fitted g Parameter Fitted g2 Parameter
4I 15

2
0 3.10± .08

0.0005614± .0000006 9.97± .05 −.22± .36
1.2563899± .0000018 2.19± .35 −2.34± 2.4
1.2585213± .0000014 2.81± .10 .40± .33

4I 11
2

1.2591095± .0000018 4.10± .30 .47± 3.5

1.2606201± .0000008 3.76± .19
1.2609935± .0000009 4.72± .10 0± .72
1.2627745± .0000005 9.14± .05 .38± .34

Table 6.7: These are fittings for the effective g factors, energy levels, and g2 parameters
for the parallel field case for excitation from 4I 15

2
to 4I 11

2
. g2 factors which

seemed unrealistic are not included here. While fitting g factors given here, it
was assumed g2 values were zero. Errors are 95 percent confidence intervals
derived from fitting algorithms.

Multiplet Energy (eV) Fitted Effective g Factor
4I 15

2
0 7.65± .28

0.0005511± .0000004 3.67± .25
1.2563870± .0000007 1.65± .28
1.2584822± .0000084 ∗

4I 11
2

1.2590971± .0000008 4.81± .79

1.2606116± .0000004 2.33± .16
1.2609795± .0000008 1.54± .30∗∗

1.2627602± .0000005 1.60± .19∗∗

Table 6.8: Fittings for the effective g factors, energy levels, and g2 parameters for the
perpendicular field case for excitation from 4I 15

2
to 4I 11

2
. Errors are 95 percent

confidence intervals derived from fitting algorithms. ∗ For this level (the
1.2585eV peak), while a number with a nonzero error was returned by the
fitting, it appeared to be fitting noise for this peak, due to low signal as
the field magnitude increased. ∗∗ For these levels, visible splittings were not
readily apparent in the spectra.

from other peaks to fit these peaks.
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Figure 6.17: Fitted energy levels for A2373 with a magnetic field applied perpendicular
to the c axis. Error bars correspond to a 95 percent confidence interval,
using values from the fitting algorithm.
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6.2 Polarizations

The majority site for Er doped GaN has already been investigated, some of which

result in disagreements in the levels of the 4I 11
2

multiplet, as was discussed earlier in

this chapter.[75] [44] Also earlier in this chapter, it was found that a level claimed

in Ref. [44] not to split under a magnetic field applied perpendicular to the c-axis of

the crystal, did, in fact, split substantially. This calls into question the crystal-field

numbers presented in that work. This uncertainty makes polarization measurements

in this material of importance.

It has now been shown that the levels do not have effective g factors similar

to the erbium doped materials discussed in Chapter 5, implying that the ordering

and character of individual levels may be significantly different. There could be a

different degree of mixing of mj states with the same crystal-field number.

6.2.1 Without a Magnetic Field

The emission transitions for 4I 13
2

to 4I 15
2

show no especially strong polarization, as

seen in Figure 6.18, which appears to be typical in these measurements. The most

striking results for the 4I 15
2

to 4I 11
2

polarizations, as seen in in Figure 6.19, are the

two transitions involving A2 which appear to be strongly π polarized. given that

two out of six levels of the upper multiplet have this behavior, it seems reasonable

that this means that C2 and C5 should be assigned crystal-field numbers of 3
2
, while

the other four should be assigned ±1
2
. Of course, this reasoning also implies that A2

also has this crystal-field number (despite a large perpendicular effective g factor).

If it is considered for the moment that perhaps C3v symmetry is broken to some

degree, the assignment can continue on the basis of these polarizations. Since A1

does not seem to have this behavior for the excitation transitions, it is assigned ±1
2
.

The emission polarizations seem to suggest that A2 and A3 have similar behavior,

but A1 and A2 do not. If the crystal-field number assignments suggested earlier are

continued, and the slight biases in the emission polarization results are considered as

the result of imperfect selection rules, this implies a crystal-field number assignment
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Figure 6.18: Emission polarizations for some of the transitions observed in Er doped
GaN. Labels indicate assigned transitions. σ polarization corresponds to
90 degrees, and π to 0 degrees.
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Figure 6.19: Excitation polarizations for some of the transitions observed in Er doped
GaN. Labels indicate assigned transitions. σ polarization corresponds to
90 degrees, and π to 0 degrees.

of 3
2

for A3, B1, and B2. As already mentioned, all of these levels have non-zero

effective g factors for a field applied perpendicular to the c-axis.

It is still somewhat unclear what the correct crystal-field number assignments

are, largely because of magnetic splitting results for the lowest energy multiplet

which seem at odds with the assignments arrived at by polarization measurements.
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The next subsection discusses polarization measurements for Zeeman split peaks,

and provides more convincing evidence suggesting that the ground state must be

assigned as ±1
2
.

As discussed earlier in this chapter, there is an avoided crossing between A1 and

A2 between 1 and 2 tesla. If this is treated as a first order effect due to overlap in

states (that is, shared states labeled with mj quantum numbers) between these two

levels, this implies the symmetry cannot be perfect. Near that magnetic field, of

course, it is expected that these selection rules would break down, as the two states

(A1 and A2) would mix, and the pure version of each state has differing selection

rules.

6.2.2 With a Magnetic Field

Whereas the two materials in Chapter 5 produced sharp peaks which could be easily

separated at relatively low magnetic field magnitudes, erbium doped gallium nitride

presents difficulties in that regard. Thus, for the data presented here, spectra were

fitted to obtain amplitudes. To accomplish this, four spectra for each of four polar-

ization angles were fitted with parameters pertaining to peak centers, shapes, and

widths shared in common, but unique amplitudes for each peak in each spectrum.

While some peaks (A1 to C2, for example), appear not to fit well due to low signal

to noise ratios, others (such as A1 to C6) appear to fit very well. The result of this

fitting is shown in Figure 6.20.

The peak assigned to A1 to C6 in particular seems to have an interesting behav-

ior, shown in Figures 6.21 and 6.22, with the peaks appearing to exhibit differing

polarization behaviors. This is already visible in the raw data, without performing

any fitting of amplitudes. It is not alone in this regard. A1 to C1 shows a similar

result in the fitted data, also shown in Figure 6.22. A1 to C3 shows something

similar, shown in Figure 6.23, but with different pairings. A1 to C5 shows all the

peaks as σ polarized, shown in Figure 6.25. A1 to C4 is probably of this type of

transition, but shows three π and one σ transition at face value, seen in Figure 6.24.
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Figure 6.20: Fitted spectra for four excitation polarization angles for the A2373 sample.
The magnetic field is parallel to the c-axis. This shows transitions involving
from the lower levels of 4I 15

2
to the levels of 4I 11

2
.

It is important to note that errors in closely spaced peaks may still adversely af-

fect amplitude measurements, even with peak fitting in use. Two peaks for A1 to

C2 were not judged sufficiently greater than noise to merit including, but the two

remaining appear π polarized, also shown in Figure 6.25.

This raises a few questions. First, for the zero field case, this peak seemed to

be somewhat more biased towards π polarization. Some sense could be made of

the result if it is accepted that a crystal-field number of ±1
2

describes both A1 and

C6, and changes involving opposite vs. same sign crystal-field numbers produce

different polarizations. Strictly speaking, this result is not disallowed for such a

crystal-field number assignment under C3v symmetry for electric dipole transitions.

This difference in crystal-field number assignment between this and the previous

two materials would justify why this phenomenon did not occur in those materials.
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Figure 6.21: Fitted spectra for four excitation polarization angles for the A2373 sample.
The magnetic field is parallel to the c-axis. This shows four split peaks
from the level assigned as A1 to C6.
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Figure 6.22: Excitation polarizations for the four peaks originating from magnetic split-
ting of the A1 to C6 and A1 to C1 transitions for the majority site for Er
in GaN. These are expected to be π and σ polarized.
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Figure 6.23: Excitation polarizations for the four peaks originating from magnetic split-
ting of the A1 to C3 transition for the majority site for Er in GaN. These
are expected to be π and σ polarized.
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Figure 6.24: Excitation polarizations for the four peaks originating from magnetic split-
ting of the A1 to C4 transition for the majority site for Er in GaN. These
are expected to be π and σ polarized.
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Figure 6.25: Excitation polarizations for the four peaks originating from magnetic split-
ting of the A1 to C5 and A1 to C2 transitions for the majority site for Er
in GaN. These are expected to be π polarized.

This may simply suggest that the portion of the selection rules corresponding

to transitions between crystal-field numbers ±1
2

ought to be expanded to separate

these into +1
2

and −1
2

under the influence of a magnetic field. Requiring that the

representation for z, corresponding to the dipole operator for π polarization, still acts

like the identity operator in multiplication, transitions between levels of the same

crystal-field number must be π allowed. It should be noted that since in this case,

the rotation axes for the magnetic field and the crystal-field match, the irreducible

representation for z acts in this way for both SO(2) symmetry of the magnetic field

and C3v symmetry of the crystal-field. This would imply for the above transition

that the upper (lower) level of C6 and the lower (upper) level of A1 are of the same

sign of crystal-field number, whereas the lower (upper) level of C6 and the lower

(upper) level of A1 are of different signs of crystal-field number.

Following through, the σ polarization of all the split levels for A1 to C5 (the

latter of which was assigned a crystal-field number of 3
2
), and the argument above

strongly suggest the ground state must have crystal-field number ±1
2
. This also

suggests that the selection rules for C3v symmetry are still valid at this magnetic

field.

It appears that the selection rules predicted for C3v symmetry generally continue
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to describe the polarization results at an applied magnetic field of about 0.75T to

a degree comparable to the zero magnetic field case. There was also some ad-

ditional insight into the polarizations involving A1 for erbium in gallium nitride

which seemed to confirm a crystal-field number of ±1
2
.

6.3 Conclusions and Future Work

6.3.1 Nonlinear Zeeman Splittings

This work suggests that several avoided crossings may be present at higher fields, and

provides starting parameters that should enable similar analysis of higher resolution

(in magnetic field) data, and data going to higher magnitude applied magnetic field.

It is suggested that a high quality sample (in the sense of having sharp, discernible

transitions) be used. A similar approach could also be applied to other multiplets

as a means of confirming energy level assignment.

So far, however, it appears that the apparent nonlinearity described qualitatively

in Refs. [44] and [75] may be predominantly due to shifting of centers of levels rather

than significant changes in the effective g factors. Of course, while this could be

indicative of other interesting interactions, it does not successfully explain differences

in measured effective g factors. Even the avoided crossing involving the ground state

does not seem to be sufficient to account for the discussed discrepancies in the ground

state effective g factors. It also appears that it is difficult for this method to measure

these g factors at field magnitudes less than a few tenths of a tesla, suggesting that

if significant nonlinearities appear between 60 and 90mT, this setup likely would

not be able to identify them.

The observed avoided crossing involving the ground state also gives potentially

useful restrictions (in terms of field magnitude) for measuring the ground state

effective g factor in a valid way. In addition, this process has also provided strong

verification for the assignments of the levels discussed in this section, specifically,

the lowest three doubly degenerate levels of 4I 15
2

and 4I 13
2

, and all the levels of 4I 11
2

.

From the point of view of someone seeking to determine the exact properties of
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the ground state, these avoided crossings might be highly advantageous, as fittings

of these avoided crossings could be used to determine or at least restrict how mj

states might be shared between crystal-field split levels.

6.3.2 Level Assignments and Properties

The success in fitting spectra confirms that the energy levels listed in this chapter are

likely to be correct. It appears possible to assign crystal-field numbers consistent

with the polarization data. However, there seem to be conflicts with assigning a

crystal-field number of 3
2

to A2 and A3, because while the polarization data appears

to require this, the magnetic splitting data suggests a significant, non-zero effective

g factor for a magnetic field applied perpendicular to the c-axis of the crystal. This

may suggest either some breaking of C3v symmetry, or an unusual case in which the

comparatively small spacing between A1 and A2 ( 0.55meV, compared to a typical

value of about 7meV for the same levels in the other two systems) causes higher

order effects to be more relevant.

This has an important ramification, if correct, that the perpendicular effective

g factor being nonzero is not sufficient evidence for a crystal-field number of ±1
2

for

closely spaced levels.
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Table 6.9: Suggested crystal-field number assignments for the majority site for erbium
in gallium nitride. A ? indicates that the assignment is in apparent conflict
with the effective g factors measured for a magnetic field perpendicular to the
c-axis.

Level µ
Ground (A1) ±1

2

Second 4I 15
2

(A2) 3
2

?

Third 4I 15
2

(A3) 3
2

?

First 4I 13
2

(B1) 3
2

?

Second 4I 13
2

(B2) 3
2

?

First 4I 11
2

(C1) ±1
2

Second 4I 11
2

(C2) 3
2

Third 4I 11
2

(C3) ±1
2

Fourth 4I 11
2

(C4) ±1
2

Fifth 4I 11
2

(C5) 3
2

Sixth 4I 11
2

(C6) ±1
2
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Chapter 7

Investigation into an Asymmetry

in Zeeman Split Peaks

7.1 What is this Asymmetry?

It was previously observed that reversing the direction of an applied magnetic field

oriented parallel to the c-axis of some samples led to differences in amplitudes of

observed emission spectral lines. Since this reversal amounts to running time back-

wards, this was not expected unless some other source of asymmetry is present

(presumably, one which would also change sign with time-reversal, preserving that

symmetry overall). This was observed in both Nd and Er doped GaN epitaxial films.

A figure from [75] demonstrates this result.

To give a short description of the effect, it is the change of relative amplitudes

of Zeeman split spectroscopic peaks when only the sign of an applied magnetic field

is changed. Ultimately, this implies a change in transition probabilities.

So far, it appears that no other research group has reported the same effect.

It is not obvious how it could arise. Magnetic fields, arising from the motion of

electrons, reverse direction when the direction of time is reversed. A CPT symmetry

operation, a reversal of signs of charges, parity of particles, and the direction of flow

of time, is required to be a symmetry. Reversing the signs of charges does not
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Figure 7.1: Comparison of spectra taken for a Nd doped GaN sample with a magnetic
field applied parallel and antiparallel to the c-axis. The figure is taken from
Ref. [75].

appear to change whether an electric field is attractive or repulsive, because both

the charges producing and experiencing a field change sign, so this operation is not

quite equivalent to simply reversing the signs of electric fields. It also does not

change the relative positions of ions in the crystal. One solution is that the root

cause of the asymmetry also changes sign with time-reversal, such as an intrinsic

magnetic field. In short, the effect initially looks like a potential violation of T

symmetry, and one possible solution would be an interesting discovery.

The initial thinking was that this may have something to do with ferromag-

netism, such as a linear magnetostriction mechanism, or perhaps some special prop-

erty derived from the samples being strained films. The latter was suspected due

to a result suggesting that the degree of strain in the epitaxial film correlated with
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the degree of difference in the spectra for Er doped GaN. [74]

Several new results were obtained which suggest a reexamination of these ideas

is merited.

7.2 Theoretical Difficulties

7.2.1 Transition Probabilities

Ultimately, calculating a change in amplitude of a peak requires a calculation of

transition probabilities. As was suggested in the previous chapters, electric dipole

moments were thought to be the primary contributions to several transitions, par-

ticularly those which obey the electric dipole selection rules for the associated sym-

metry group. Since the transitions discussed in this work all involve 4f electrons

with the same parity, in vacuum, electric dipole moments are expected to be zero.

This implies that the transition probabilities must be largely due to the perturbing

terms associated with the crystal-field.

A framework for these calculations does exist, Judd-Ofelt Theory, which ties

relative intensities to three parameters (in addition to parameters used to calculate

energy levels discussed in Chapter 2). [24] Some drastic assumptions are made in

order to calculate the dipole moments, including that all sublevels of a given even

parity state have the same energy. It comes to the following result for the oscillator

strength of an electric dipole transition.

fabsED =
8π2me

3h

ν

2J + 1

χabsED
n

∑
λ=2,4,6

Ω(λ)

(
〈lNSLJ ||U (λ)||lNS ′L′J ′〉

)2

χabsED is a constant, ν is the frequency corresponding to the transition, n is the

number of electrons, the Ω values are the intensity parameters mentioned, and the

reduced matrix elements for U were discussed in the second chapter. Notice that

the above does not give any clear insight into what happens when a magnetic field is

added or reversed. The situation is similar for the magnetic dipole moment. Here,

g is the gyromagnetic ratio for the electron, roughly equal to two.
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fabsMD =
hν

6mec2

n

2J + 1

(
〈lNSLJ ||L+ gS||lNS ′L′J ′〉

)2

The framework is considered largely successful, with a handful of problem cases,

such as Pr+3. Extensions often attempt to add terms, perhaps at the cost of physical

meaning of the parameters. [24]

Still, it would be surprising to find that a basic theory of oscillator strengths

produces different values depending on the sign of an applied magnetic field. Note

that the energy levels themselves are determined by whether the magnetic moments

associated with the electrons have a particular angle relative to an applied field, so

an explanation based on such a breaking being due to reversed relative angles of

magnetic fields would not work either. This implies a source of symmetry breaking

that is not expected to appear in this framework.

7.2.2 Crystal-Field Distortions

One possible approach is to assume that something happens to change the crystal

host structure in such a way that there are essentially two configurations of the local

environment for the dopant ion for each sign of the magnetic field. This is, however,

not straightforward to establish. To do so, one would need to identify a quantity

that changes with magnetic field which is likely to correlate with changes in the

structure, such as strain. The use of Raman spectroscopy to identify strain will be

discussed later.

Magnetostriction

Magnetostriction has been known for well over a century, an effect in which applying

a magnetic field causes physical deformation in a material. [27] The effect is a

property of ferromagnetic materials, and typically proportional to the square of a

magnetic field. [33] Both of those points raise potential issues. For the former, as

will be seen, a variety of host materials appear to exhibit this effect, and it would

be surprising if all of them exhibit ferromagnetism with comparatively high Curie

temperatures (in excess of 120K for the erbium doped lithium tantalate sample
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used). For the latter, an effect proportional to the square of the magnetic field

would not cause a difference for different signs of an applied field.

Effects can be envisioned which depend on the magnetic field, but what is ul-

timately required is an effect which depends on the sign of the magnetic field. It

is known that materials which are antiferromagnetic and belonging to one of 35

magnetic crystal classes can exhibit magnetostriction with a linear term. [2] These

classes include the symmetry groups associated with the crystal hosts used in this

chapter. Of course, this also implies that a type of ferromagnetic ordering is required

to be present in all these materials .

This inspired an investigation into how the effect varies as a function of the

applied magnetic field.

Piezoelectrics and Ferroelectrics

If some mechanism like magnetostriction is in fact present, it is possible to establish

that this can couple with changes in electric fields via piezoelectricity or ferroelec-

tricity. This inspired an investigation into whether the c-axis of a ferroelectric has

some special importance with regard to this effect.

7.2.3 Numeric Measure

To adequately answer questions about dependence on other variables, a numeric

measure of the degree of the effect is required. It was observed in erbium doped

lithium tantalate that the effect seemed to occur in pairs of the four peaks magnet-

ically split from an original peak. This inspired the following measure.

First, identify the aforementioned four peaks from one original transition for the

same site. Next, subtract their spectra, and fit the difference using 4 peaks, which

can have negative amplitude (using only three parameters to describe their centers,

as was done in chapters 5 and 6). Then, subtract the sum of the amplitudes of one

pair of peaks with similar behavior from the sum of the amplitudes of the other pair

of peaks. Scale this number by the average intensity of the original peaks.

Of course, one has to select a convention which may reverse the sign of the
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Figure 7.2: Typical difference in spectra for a field applied in one direction, and then
reversed. Data fitted to determine a measure of the asymmetry. Spectra
from Site A in erbium doped lithium tantalate.

measure. In the example shown here, if the second and fourth peaks (numbering

starting from the lowest energy peak) give a positive value for the difference, the first

and third give a negative difference. If a positive value is desired, using the results

of fitting this data (and for the moment, ignoring questions of exact precision),

(∆A2 + ∆A4)− (∆A1 + ∆A3)

A1 + A2 + A3 + A4

=
(.111 + .066)− (−.099 +−.070)

0.636 + 0.405 + 0.261 + 0.423
= 0.200

In the above, A refers to a peak’s amplitude, and ∆A to the difference in am-

plitudes when the two spectra are subtracted. Thus, for this particular peak in this

spectrum, a value of 0.2 would be used to describe the degree of asymmetry. This

combines the behavior of several peaks. If the ratios of the difference to the average

amplitude of each peak are considered separately, one obtains -0.156, 0.244, -0.268,

0.156, in order of increasing energy. It was decided that combining behaviors of
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several peaks was advantageous in determining what other variables might correlate

with the overall effect.

7.3 Results to Date

Investigation into this effect led to a large number of specific measurements and

results. Lacking a definitive reason for the asymmetry to appear at all, some of

these were attempted simply to determine whether or not they played a role. Others

were attempted with a particular potential mechanism in mind, such as determining

whether the asymmetry was somehow tied to the c-axis for the crystal hosts used.

Unless otherwise noted, all experiments using the Montana Instruments Cryosta-

tion with Magneto-Optic option were conducted at the lowest temperature achiev-

able at the time of the experiment, which typically corresponded to temperatures

measured on the platform thermometer between 4K and 15K, with the complica-

tion that different thermal shielding, sample mounts, and remounting of the plat-

form thermometer over the course of years may mean that some differences in this

measured temperature may not be particularly meaningful in terms of the actual

temperature of the sample.

7.3.1 Consistency Issues with Neodymium doped Gallium

Nitride

A large, obvious instance of the effect was observed in emission in [75]. Originally,

it was hoped to use this material in order to determine a number of additional

properties of the effect.

The samples used for this work are the same as those used in [75], grown by

Plasma Assisted Molecular Beam Epitaxy (PA-MBE), as described in [62]. They

are all 1µm thick layers of GaN:Nd of varying concentration, on a 200nm undoped

GaN layer on c-plane sapphire.

This material presented a stubborn problem of inconsistency in the asymmetry

results. Possible reasons for this will be discussed later, but include a temperature
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Figure 7.3: Comparison of scaled excitation profiles taken from CEES data for +4T
and -4T magnetic fields applied parallel to the c-axis, using the the Janis
brand cryostat and helium immersion superconducting magnet, thought to
be at helium vapor temperatures (tens of K). Samples are Nd doped GaN
epitaxial films. Emission energy was 1.355eV. Data shown was taken from
three different samples in the same run of the experiment on the same day.

dependence for the effect, variations in angling of the sample relative to the applied

magnetic field, and a possible aging of the sample.

Consider the ratio of the difference in the peaks to their sum. The results

reported in Ref. [75] are quite large, with changes of tens of percent. Some runs

conducted for this work showed no detectable asymmetry in emission, but significant

asymmetry in excitation. This can be seen in Figure 7.5 and Figure 7.6. Some runs

with multiple samples in the same run showed some samples had this effect, while

others did not. This last point is shown in Figure 7.3, in which only one of the three

samples showed what appeared to be a significant asymmetry effect in the excitation

axis.
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Recent results obtained using a Janis brand cryostat with an Oxford brand

helium immersion superconducting magnet never showed the emission asymmetry,

but often showed the excitation asymmetry. In one run with multiple samples, some

samples which had previously shown an excitation axis effect showed neither effect,

while other samples did show the excitation axis effect. In a result using the Montana

Instruments Cryostation with Magneto-Optic option, emission axis asymmetry was

observed, but of lesser degree than shown in Ref. [75], perhaps a few percent.

Unfortunately, a simple subtraction of spectra may be misleading for a small

result, due to inhomogeneous line broadening, discussed earlier. If the center of an

emission peak varies with excitation wavelength, it may be difficult to discern the

difference between asymmetries resulting in small differences in amplitude of only

slightly split peaks. and small shifts in the peaks relative to one another. This should

not be much of an issue in the case of the Montana Instruments Cryostation results,

in which changes in the sign of the magnetic field are conducted in seconds, rather

than tens of minutes. However, the magnet used for that cryostat has limitations

on field magnitude (not much more than 1-2T).

Although excitation axis asymmetry was not explicitly considered and measured

in those past results showing strong emission axis asymmetry, it can be seen from

a portion of a CEES under the influence of a magnetic field that it appears there

may be one present. This can be seen clearly in a comparison of excitation profiles

shown in Figure 7.5. There appears to be a trend where the split peaks decrease and

increase together along the emission and excitation axes in a region with four split

peaks in the CEES data, as shown in Figure 7.7. Of course, this is not definitive,

but there does seem to be a similar behavior in data taken later.

Polarization control is probably not as significant in explaining the inconsisten-

cies in the Janis cryostat results, because the geometry for these experiments was

typically such that only σ polarized excitations and emissions should be possible.

The result shown at the beginning of this chapter is thought to have been conducted

in this way as well. Relative temperature can be compared by examining relative

transitions involving thermally excited peaks. By this measure, results from the

Janis brand cryostat I obtained are generally at higher temperature than the results
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Figure 7.4: Excitation profiles from CEES data for sample E185-R1-N, for fields applied
both parallel and anti-parallel to the c-axis with the indicated magnitudes.
The two sets with lower field values were conducted on the Montana In-
struments Cryostation setup, and the remaining two with the Janis brand
cryostat setup.

in Ref. [75], but results I obtained using the Montana Instruments Cryostation are

lower in temperature than either. Thus, a single threshold temperature for the effect

cannot explain the absence of the emission axis effect.

One suggested idea for explaining this lack of emission axis asymmetry was a

spatial dependence. If this were the case, it would be expected that the magnetically

split emission peaks near 1.353eV would change in relative amplitude as the focal

point of the confocal microscope moved across the sample. To test this, Attocube

brand linear steppers were installed in the Janis cryostat system. A laser was kept

at a fixed wavelength while a magnetic field was applied. The experiment had

two components. First, a few lines across each sample were traversed, and the
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Figure 7.5: Comparisons of the asymmetry effect in excitation profiles from CEES data
for two GaN:Nd samples.
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Figure 7.6: Comparisons of the asymmetry effect in emission profiles, taken from the
same CEES data as the excitation profiles in Figure 7.5.

spectra were inspected visually. No discernible difference in relative amplitudes in

the spectra was seen for any sample tried. Second, a small range spatial scan was

conducted. It is estimated that the increment size used was at least one micron,

and likely much more, but this is not known definitively. Then, the amplitudes of

these peaks were determined by fitting them, and their ratios for each spatial point

were examined. It appears that any fluctuations observed are likely random noise.

Unfortunately, if both on a large and small scale, no discernible changes are evident,

it would seem likely that there either is no significant spatial variation, or there exist

small special spots which were not found.

This could be explained rather neatly if one posits that some sort of aging of

the samples occurred over years, such as a relaxation of strain. The temperature

differences in my own results may affect how well slight differences in spectra can
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Figure 7.7: Portion of CEES under applied magnetic field from data taken by the author
of [75]. Emission axis is approximate. Neodymium doped gallium nitride,
but specific sample unknown.

Figure 7.8: Comparison of portion of CEES for magnetic field applied parallel and an-
tiparallel to the c-axis for sample E176-R2-J.
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be detected. If the former is the case, this may be further evidence that strain plays

a role.

7.3.2 Different Effects in Erbium Doped Gallium Nitride

Samples

As already mentioned, previous results had shown this asymmetry in Er doped GaN,

and noted a correlation between strain and the degree of asymmetry observed. Con-

tinuing on these observations, it was found that the asymmetry effect appears not

only in the emission, but also in the excitation. There were some inconsistencies in
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the excitation effect measurement, until equipment to control the excitation polar-

ization was added, finding that this changed the asymmetry observed. Polarization

dependence will be discussed in more detail later. The primary result was that dif-

ferent excitation and emission schemes exhibited the effect in different samples to

different degrees.

It should be noted that some of the data shown here were generated in a

regime (significantly above 1T, and sometimes above values mentioned as possi-

ble by the manufacturer) in which spatial variations in magnetic field produced

by the Magneto-Optic module of the Montana Instruments Cryostation may cause

some noticeable discrepancies between the magnetic field magnitude values shown

here and the actual values of the magnetic field. It is in general thought to be the

case that the actual magnetic field magnitudes were smaller than the values shown

here. This should not be an issue with regards to comparing spectra for two signs

of the same magnitude of field.

Samples used were the same as the samples used in Ref. [74], a set of epitax-

ial films of GaN:Er on various substrates, allowing differing strains. Results from

experiments shown here were conducted differently from the results shown in prior

works. In prior works, a particular applied field was first selected, and then a CEES

map was taken at that field. This was repeated for the reverse field. Here, the steps

in CEES described earlier were modified. At each excitation wavelength step, an

emission spectrum was taken at each of the two applied magnetic fields. This was

made possible by the use of a non-superconducting magnet for the Montana Instru-

ments Cryostation. The advantage of this is that the same excitation wavelength

steps (and ideally, laser power) should be used in comparing the two resulting CEES

maps, permitting direct subtraction of emission spectra for comparison, without in-

terpolation.

It should be noted that two particular forms of the asymmetry appear in CEES

maps. One is along the emission axis, and the other is along the excitation axis.

Curiously, while the [111] Si substrate showed very little in the way of changes in

emission, it still showed significant changes in the excitation. The sapphire substrate

sample, however, showed evidence of emission axis asymmetry in both situations,
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Figure 7.10: CEES data differences of CEES data for application of a magnetic field
parallel and antiparallel to the c-axis. The sample used is the GaN:Er on
sapphire substrate sample used in Ref. [74].
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Figure 7.11: CEES data differences of CEES data for application of a magnetic field
parallel and antiparallel to the c-axis. The sample used is the GaN:Er on
AlN substrate sample used in Ref. [74].

and what appears to be an additional excitation axis effect for σ excitation. The

results for the AlN substrate sample were similar to those for the sapphire substrate

sample. It is difficult to say much definitively from the results shown here for

the GaN substrate sample, owing to a much lower signal to noise ratio. These

experiments were conducted with the beam path from the microscope to the sample

orthogonal to the c-axis, which should allow both π and σ emissions to be collected.

Emission polarization was not controlled at this point, but may have been affected

by bias in the system.

These results can be examined in individual spectra as well. These comparisons

of slight changes in field led to a question of whether these changes might be ascribed

to small differences in maximum field intensity for each field direction. This was

addressed by conducting a similar experiment, in which the applied field remained
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Figure 7.12: CEES data and differences of CEES data for application of a magnetic field
parallel and antiparallel to the c-axis. The sample used is the GaN:Er on
111 plane Si substrate sample used in Ref. [74].

of the same sign, but its magnitude was changed by an amount thought to be larger

than the precision of the magnet used. CEES were conducted for 1300mT and

1250mT on the [111] Si substrate sample. While no similar features appeared for

this, signal was not especially high. Results shown later for other materials are far

more convincing.

Results were also taken for the sample A2373, which was the sample used else-

where in this work for measuring nonlinearities in magnetic splittings. This sample

was used in that case for its sharp spectral lines. The fact that it displays this effect

suggests that this appears even in samples thought to be of high quality.
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Figure 7.13: CEES data and differences of CEES data for application of a magnetic field
parallel and antiparallel to the c-axis. The sample used is the GaN:Er on
GaN substrate sample used in Ref. [74].

7.3.3 Bulk Crystal Hosts

The samples just discussed and which were used for prior measurements were thin

films of gallium nitride grown on substrates. Other erbium doped host materials

which were bulk single crystal also displayed the effect.

Er doped LiTaO3

Lithium tantalate (and lithium niobate, to be discussed next) was chosen as a host

material for this work for a few reasons. First, the samples available resulted in

very sharp peaks, enabling the use of smaller magnetic fields. Second, the samples

available were bulk crystals, giving insight into whether strained films are needed

to observe the effect. Third, as a ferroelectric, the c-axis can be inverted by poling.
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Figure 7.14: Comparison of excitation profiles from CEES data for GaN:Er on [111] Si
sample

Fourth, the presence of a large number of sites enables comparison of the degree of

local site symmetry with the degree of the asymmetry.

Samples for this material, erbium doped stoichiometric lithium tantalate, were

purchased from the OXIDE Corporation. Data for this material was all obtained

with the Montana Instruments Cryostation with Magneto-Optic option, using a

process in which spectra for both positive and negative magnetic field values were

obtained for each excitation wavelength step in a CEES measurement.

Initially, results seemed to show that Er doped LiTaO3 did not have much of

this asymmetry. However, once polarization was controlled, in both the emission

and excitation axes, it was found that this material not only had this effect, but

relative changes in peak amplitudes could be reversed by examining polarizations

both parallel and perpendicular to the c-axis.
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Figure 7.15: Comparison of two sets of CEES data for GaN:Er on [111] Si sample, with
difference of 50mT in applied field magnitude, in same direction

Having found a system which appeared to exhibit these effects in a reproducible

way, one of the first concerns was to definitively address whether the observed asym-

metries were attributable to some sort of asymmetry in the setup, rather than an

asymmetry in the sample itself. To do so, experiments were done to examine asym-

metries for a sample in two orientations, such that the c-axis was reversed, as well

as for two emission polarizations. The result was that the asymmetry flipped with

the sample being flipped, reducing the number of possible external causes, and that

the polarization dependence appeared to persist in both cases.

Er doped LiNbO3

This material seemed a natural next step after Er doped LiTaO3, changing only

one element in the host crystal, and keeping similar properties. The key result for
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Figure 7.16: CEES data and differences of CEES data for application of a magnetic field
parallel and antiparallel to the c-axis. The sample used is A2373, also a
GaN:Er epitaxial film on a sapphire substrate.

this material was that the measurements made indicated that this material was

essentially identical to Er doped LiTaO3, in that there is a similar polarization

behavior, and all sites seem to show the same sort of result. The sample used is the

same as the one in chapter 5.
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Figure 7.17: Differences in CEEs data for a magnetic field applied parallel and antipar-
allel to the c-axis for σ and π emission polarizations, and for flipping of the
sample in the mount relative to the the magnetic field for LiTaO3:Er
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Figure 7.18: Differences in CEES data for a magnetic field applied parallel and antipar-
allel to the c-axis for π and σ polarized emission in erbium doped lithium
niobate.
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7.3.4 Local Symmetry

Lithium tantalate has a large number of distinguishable incorporation sites for er-

bium, [45] and all the sites for which a reliable comparison in spectra could be made

appeared to show this same feature. This includes site A, thought to be the site

best conforming to C3v symmetry selection rules, based on measurements presented

in Chapter 5, and to a similar degree. Results in the same chapter suggested that

sites B and C appear to conform least to C3v symmetry. If anything, site A appears

to have nearly double the effect of that of the (presumed) lower symmetry sites,

as shown in Figure 7.19. This suggests the specifics of the site symmetry are not

crucial to the appearance of the asymmetry, and if anything, greater symmetry may

increase the degree to which it appears.

To compare the three sites, CEES measurements were conducted in a small ex-

citation range. The technique was combined with polarization control and magnetic

field control to develop a series of data as a function of emission polarization, exci-

tation energy, emission energy, and the designation of positive or negative magnetic

field. Then, spectra corresponding to excitation showing the best signal and sep-

aration from other sites for each site were used for analysis with the asymmetry

measure described earlier.
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Figure 7.19: Comparison of asymmetry effect for three different sites (A, B, and C)
for Er in LiTaO3. Results were obtained by comparing the Zeeman split
transitions corresponding to the assigned transition from B1 to A2.

7.3.5 Magnetic Field Magnitude Dependence

A result for erbium doped lithium tantalate indicated that the angle of the magnetic

field relative to the c-axis seems not to affect the presence of the asymmetry. The

logical next question is whether the magnitude of the field matters.

For the excitation peak exhibiting the asymmetry in Nd doped GaN, it was

decided to attempt to determine the field magnitude dependence. This was done

by modifying the aforementioned measure for the asymmetry for use with only two

peaks (as one effective g factor was small, so only two split peaks were clearly

separated). The result was that there was no obvious dependence on the field

magnitude. Note that if certain measures are used, such as sums of differences

of spectra, for peaks which overlap, some of the effect from the two peaks cancel,

creating the appearance of an increase in the measure until the peaks are clearly

separated.

This would seem to imply that two Zeeman split levels are not equivalent at

any magnetic field, which seems questionable. Still, it is possible that whatever

mechanism is responsible for the effect saturates at a low magnetic field. However,

this yields difficulties similar to those discussed in previous chapters, that it is

extremely difficult to conduct high precision measurements at low magnetic fields

on Zeeman split peaks, due to peak overlap in optical spectra. Thus, if such a
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Figure 7.20: Numeric measure of asymmetry vs. applied field magnitude for an excita-
tion peak for the E176-R2-J sample, which is a neodymium doped gallium
nitride sample. Error bars correspond to one standard deviation.

mechanism were to saturate at 10mT or so, it may be impossible to determine this

using this equipment and method.

Fortunately, ramping data was available from the author of [75], which shows

far more significant emission axis asymmetry than was recently observed. This also

allowed comparison of multiple runs. Since it is difficult to establish the precise

magnetic field, the axes are unfortunately approximate. Lacking precise ability to

compare positive and negative fields, it was decided to examine relative amplitudes

as a function of applied field. To analyze this data, the two split peaks shown at the

beginning of the chapter (an emission near 1.353eV) were fitted, and the ratio of

the difference in amplitudes to the sum of their amplitudes was calculated. Multiple

data sets were available.

Initially, this analysis appears to support the notion that there is some measur-

able dependence of the asymmetry effect on the field magnitude, if only one sign of
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Figure 7.21: Modified numeric measure of asymmetry vs. applied field magnitude for
an emission peak for an unknown Nd doped GaN sample. Error bars cor-
respond to one standard deviation.

the field is considered. However, this analysis did not take into account an approxi-

mate thermal population of the starting state. This did not affect direct comparison

of spectra with positive and negative fields of the same magnitude, because the rela-

tive spacings of energy levels remain the same in that comparison. If a temperature

of about 70K is estimated, this dependence essentially vanishes.

So far, it appears that it is likely that whatever causes this effect saturates at

a magnetic field which is smaller than the fields at which reliable comparisons can

be made easily. It is also important to note that different scaling and saturation

behaviors could conceivably occur for each particular transition and host material.
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Figure 7.22: Modified numeric measure of asymmetry vs. applied field magnitude for
an emission peak for an unknown Nd doped GaN sample. Error bars cor-
respond to one standard deviation.

7.3.6 Polarization Dependence and Magnetic Field Angle

Dependence

A dependence of the effect on polarization angle was found which resembled the sum

of a constant and a squared sine or cosine function, suggesting that the split peaks

have different degrees of π and σ polarization. Polarization dependence experiments

were analyzed by fitting this measure of asymmetry to a function of the following

form:

f(θ) = A+B cos2 (θ − θ0)
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Figure 7.23: Numeric measure of asymmetry vs. polarization angle for several orienta-
tions of the magnetic field relative to the c-axis for the B1 to A2 transition
for site A in LiTaO3:Er. Dotted lines are added to give an indication of
the change in sign of the data. The angle axes indicate the angle of the
linear polarizer, and the magnetic field is always applied at an angle corre-
sponding to zero degrees. The sample is rotated relative to these for each
experiment. Thus, in the parallel case, the c-axis of the crystal is also along
zero degrees (with some error), and in the perpendicular case, the c-axis of
the crystal is along 90 degrees.
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Erbium doped lithium tantalate was used for these experiments, owing to conve-

nience resulting from its sharp peaks, and a transition with relatively high effective

g factors for both parallel and perpendicular magnetic fields, and clear results for

asymmetry in emission. Results were obtained by examining the split peak corre-

sponding to the assigned transition from B1 to A2 for site A. Similar results are

present for other sites, but site A was selected for its relatively higher intensity.

This particular transition was selected for ease in identifying all four split peaks,

relatively high intensity, and experimental ease in controlling emission polarization

rather than excitation polarization. Results are shown in Figure 7.23. In a devia-

tion from what might be implied by the earlier description of the numeric measure,

the added and subtracted peaks were followed as the rotation in field moved these

peaks. That is, signs in the numeric measure for the asymmetry were kept the same

for a peak involving the same two levels, even if this changed the ordering of the

peaks in terms of energy.

Several important results came from these polarization experiments. First, the

asymmetry seems somehow intrinsically linked to the c-axis of the crystal. Note

how rotating the c-axis relative to the magnetic field results in the polarizations

giving the maximum and minimum asymmetry rotating with the c-axis, not the

magnetic field. Second, it appears that these asymmetries may be present for any

field orientation relative to the crystal, not just fields parallel and antiparallel to

the c-axis. If anything, it appears that the maximum values for the asymmetry

measure appear at neither the parallel nor the perpendicular orientation. Third,

as shown in previous data for the case of a magnetic field parallel to the c-axis,

the fitting function which appears appropriate for the asymmetry measure seems to

be a Malus’ Law type of function, [23] rather than some complicated form which

explicitly takes into account the relative angles of the magnetic field and the c-axis.

This last point led to an alternative method for determining these asymmetry

measures which would ideally be less subject to problems of noise. Rather than

fit each spectrum for each polarization angle individually, a series of spectra are

fit simultaneously, with the amplitudes for the peaks being described by a Malus’

Law type form. A visual display of the data and the fit is shown in Figure 7.24.
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Figure 7.24: Example fitting of sums and differences of spectra for one Zeeman split
peak, using a Malus’ Law type form to describe amplitudes and differences
for positive and negative magnetic fields. The data is identical to the data
used to produce the plot for the parallel case in Figure 7.23. The sums and
differences refer to combining spectra for positive and negative magnetic
fields.

This permitted fitting of individual polarization parameters for each of the four split

peaks, and a straightforward method of determining errors in the results. For an

individual Zeeman split peak, the measure was simply defined as the ratio of the

difference in peak amplitudes to the average peak amplitudes.

The results, shown in Figure 7.23, suggest that although the measure does vary

with field angle, it does not appear to ever reach a value of zero. They also suggest

that maximum values can be obtained for angles around 45 degrees, which may be

useful for examining the role of other variables. An example fitted spectrum for this

angle is shown in Figure 7.26, from the same data set and transition used for the

figures presented here.

It must be noted that in order to perform the above experiments, for angles of 45,

67.5, and 90 degrees, a different heat shield was used (due to issues regarding sample

mounting), which makes it likely that the temperatures for these measurements are
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Figure 7.25: Maximum magnitude (signs removed) of asymmetry measure for both over-
all asymmetry numerical measure and measures for individual peaks as a
function of applied field angle. Values with unusually high errors in the fit-
ting are omitted. Error bars correspond to a 95 percent confidence interval.

not the same as those for 0 and 22.5 degrees. Further, there may be issues involving

the relative alignment of the magnetic field axis, the crystal c-axis, and the polarizer

axis. Still, even if these relative alignments allow for a magnetic field perpendicular

to the c-axis to result in no effect, it is still puzzling why a maximum would appear

for an angle near 45o between the c-axis and the magnetic field.

The data shown here for an angle of 45o between the c-axis and the magnetic

field allows for a great enough difference between the amplitudes for the two peaks

to easily demonstrate changes in polarization behavior of each individual peak. See

Figure 7.28. It is worth noting that in this case, the primary change is in σ polarized

emission, with little change in π polarization (which, as was shown in Figure 7.23, is

not always the case, at least to this relative degree). The summed data, if anything,

appears somewhat more even in polarization than the data for the case without a

magnetic field applied, shown in Figure 7.27. Of course, a more valid comparison
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Figure 7.26: Example fitting of +/- magnetic field spectra and their difference for 45
degrees between the c-axis and the magnetic field. Note the rather large
effect.

would involve measuring polarizations with and without an applied magnetic field

in the same experiment and run.

7.3.7 Crystal-Field Numbers

A comparison of the effect for different crystal-field numbers requires a number of

sharp transitions involving levels with known crystal-field numbers exhibiting the

effect. Ideally, this would be the 4I 15
2

to 4I 11
2

transitions in erbium doped lithium

tantalate or lithium niobate, but no experimental data for those systems has yet

indicated an effect for that transition.

The transition which seems to be most useful for those two systems for evaluating

the dependence on other variables, is the transition from B1 to A2. All four split

peaks can be easily seen (refer to data shown earlier), and there is a clear behavior
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Figure 7.27: Fitted emission polarization for the B1 to A2 transition for site A in er-
bium doped lithium tantalate without an applied magnetic field. Here, 0o

corresponds to the c-axis of the crystal.

for each split peak. Both of these levels have been assigned as ±1
2
. Further, the

increase and decrease in the pairs of peaks seems to depend on whether the energy

is associated with a higher or lower level of B1. However, the transition assigned

to B1 to A1 seems to have a similar behavior in lithium tantalate, with A1 being

assigned 3
2
. This would suggest that the effect can occur for emissions starting from

±1
2

levels.

The emission peak for neodymium doped gallium nitride which exhibited a large

effect was assigned to a transition between two levels of crystal-field number ±1
2

[75], and the two visible split peaks corresponded to a difference in energy from the

lower level. The two excitation peaks in that system, near 2.056eV and 2.051eV,

which exhibited the effect, involved the same lower level assigned ±1
2
, and the two

upper levels were not assigned any crystal-field number in Ref. [75]. For both of

those, there were also two visible split peaks whose splitting was due to the lower
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Figure 7.28: Comparison of polarizations of Zeeman split peaks for the B1 to A2 transi-
tion for site A in erbium doped lithium tantalate for an angle of 45o between
the c-axis and the magnetic field. Here, 0o corresponds to the orientation
of the magnetic field, and the c-axis of the crystal is oriented along 45o.
The angles show data as a function of polarization angle.
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Figure 7.29: Plots demonstrating asymmetry effect for site A in LiTaO3 for the transi-
tions assigned as B1 to A1 and B1 to A2, with an overlapping pair of peaks
from site B appearing to the right in the former.
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Figure 7.30: Plots demonstrating asymmetry effect for site C in LiTaO3 for the transi-
tions assigned as B1 to A1 and B1 to A2

level.

It is not yet certain whether the crystal-field numbers have a significant role to

play, owing to a small number of transitions for which high quality data showing the

effect is available. Even comparing the degree of the effect for just two transitions

may fail to account for other differences between them than just the crystal-field

number assignment. This is also complicated by the already discussed possibility

of a much more symmetric symmetry group (Oh) giving rise to the same effect.

How the crystal-field numbers influence the effect is currently considered an open

question.

7.3.8 Raman Spectroscopy

As mentioned earlier, one possible mechanism proposed to explain this effect was

magnetostriction. However, since magnetostriction typically depends on the square

of the magnetic field, a particular type, linear magnetostriction, would be required.

Linear magnetostriction, a linear relation between an applied magnetic field and

strain in a material, is known to be possible in antiferromagnetic material. [5] This

effect is specifically a property of ferromagnetic materials, so its existence would

hint at ferromagnetic semiconductors.

Raman spectroscopy was conducted on a sample of Er doped LiTaO3 with no

applied magnetic field, and magnetic fields applied with a positive and negative
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amplitude. It was expected that strain might be detectable using peak shifts in

these spectra, due to changes in phonon energies as the crystal lattice changed.

No such peak shifts were detected, in comparing either the reversed field direction

spectra, or in comparing those to the zero field spectrum. The width of a pixel in

this data corresponds to roughly 1.5 cm−1. The spectra can be seen in Figure 7.31.

Using data from Ref. [26], an estimate for the Young’s modulus of about 100GPa,

and grossly oversimplifying issues of directionality for the purpose of an order of

magnitude estimate, one can make an estimate that 103 cm−1 is a feasible strain

shift for peaks for this material. This would suggest any strains involved in this

material as a result of the application of a magnetic field would need to be on the

order of 10−3 or less. This is comparable to the amount of strain which results from

growing GaN films on various substrates. Data for lithium niobate suggest that

this estimate, while not unreasonable, may be an upper estimate for the detection

threshold. [71] It was found that strains of about 2 parts in a thousand correlated

with nearly an order of magnitude enhancement in photoluminescence efficiency.

[14] Thus, while this particular experiment failed to show the presence of strain, its

existence at a level which could affect transition probabilities significantly has not

been definitively ruled out.

7.3.9 Temperature Dependence

Since ferromagnetism has been suggested as part of a possible mechanism, there

should exist a phase transition temperature above which the effect ceases to appear.

Such a temperature should be the same for all instances of the asymmetry effect,

since it would be a property of the overall material.

First, note that the temperatures discussed here refer to the platform thermome-

ter temperature in the Montana Instruments Cryostation, which may be a lower

value than the sample temperature, owing to the sample being more distant from

the cooling stages than this thermometer, or, if the thermal contact of this ther-

mometer is poor, perhaps a higher value.

To examine temperature dependence, the Montana Instruments Cryostation was
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Figure 7.31: Comparison of Raman spectra for an applied magnetic field parallel and
perpendicular to the c-axis, as well as without an applied magnetic field,
for erbium doped lithium tantalate.
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Figure 7.32: Differences in CEES for applied magnetic fields parallel and antiparallel to
the c-axis for higher temperatures.

set to various platform temperatures. It should be noted that the temperature of the

sample at the laser focus is expected to be higher than this set value, especially for

insulating sample materials. It was found that the effect definitively persisted with a

very similar appearance to 85K, and it is possible that a small excitation axis effect

appeared at 120K, which suggests a similar situation to that mentioned for some

results in GaN:Nd. A comparison for those two temperatures with a fixed emission

polarization is shown in Figure 7.32. Ultimately though, higher temperatures lead

to lower signals, wider peaks, and more peaks, and this reduces signal to noise ratio.

A more thorough investigation was performed after noting that the asymmetry

appeared to be greater for a 45o angle between the c-axis and the applied magnetic

field than for a parallel orientation. There was still an issue involving poor signal to

noise ratio while conducting CEES spectroscopy above a platform temperature of

about 120K. To address this, a non-tunable laser (ThorLabs CLD 1015 with a laser

diode outputting about 974nm light) with higher power output (hundreds of milli-

watts) was used. This potentially created an analysis issue, in that emissions from a

large number of incorporation sites were measured simultaneously. In practice, what

appeared to be a single pair of Zeeman split peaks in the spectra was identified and

used to calculate the asymmetry measures. The result of this, as shown for a few

select temperatures in Figure 7.33, is that it appears that the asymmetry persists to
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Figure 7.33: Fitted differences in emission spectra of erbium lithium tantalate as a func-
tion of emission polarization angle for select temperatures. The magnetic
field was applied along 0o, while the c-axis was aligned along 45o. The
fitting model assumes that the amplitudes of the peaks can be described
using a Malus’ law type dependence, with the same offset angle for both
peaks. This also assumes this portion of the spectra can be accurately
modeled with only two peaks.

room temperature, but differently for π and σ polarized light. The fitting procedure

here attempts to fit all of the spectra for each polarization angle together, as was

done for the magnetic field angle dependence data.

Combining the data from this technique for higher temperatures with data from

CEES maps for lower temperatures results in Figure 7.34. This plot shows a few

interesting features. Most importantly, it appears that the effect persists to high

temperatures. Second, the degree of the effect appears to change dramatically from
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Figure 7.34: Values of the asymmetry measure for π and σ polarized emission from
erbium doped lithium tantalate as a function of platform temperature.
Error bars correspond to 95% confidence intervals.

low (10K) to high (about 300K) temperatures, particularly for the σ polarized emis-

sion light. This was also visible in the data shown in Figure 7.33. Finally, there

is an appearance of phase-transition like behavior, in that there is a sharp change

in the measure of the effect near 70K which seems to be supported by data from

both experimental methods. This last point probably requires additional verifi-

cation, because it is possible that factors like temperature dependent conductivity

and uncertainty in biases of the platform thermometer temperature in this mounting

configuration are making this change seem more dramatic than it actually is.

If there is a phase transition, it could be a sign of a ferromagnetic critical temper-

ature mentioned earlier. However, this would also be problematic, as the implication

of this would be that while ferromagnetism can contribute to the asymmetry, the

asymmetry is still present without ferromagnetism.
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Figure 7.35: A measure of the asymmetry vs. excitation power for two emission polar-
izations.

7.3.10 Laser Power Dependence

While attempting to determine the reason for inconsistency in the Nd doped GaN

data, one suggestion was to examine whether the input laser power had any effect

on the emission axis asymmetry. To test this, neutral density filters were used to

vary the power for a system which showed this effect consistently, erbium doped

lithium tantalate. Comparisons of the emission asymmetry for the same emission

peak as a function of excitation power suggested that there was no obvious trend.

7.4 Additional Preliminary Results

7.4.1 Appearance in a Crystal with Cubic Symmetry

This effect seems to be present in Er doped Cs2NaYF6. This material was obtained

mostly by a chance opportunity, and was studied because it represents a different

material entirely. These samples were provided by Dr. Henk Vrielinck of Ghent

University. The sample used here had 3 percent nominal doping of erbium.

The previous materials are thought likely to have C3v symmetry for the majority

incorporation site for the rare-earth ions. The erbium incorporation site for this

material is expected to have Oh symmetry, perhaps with some perturbations from

cubic symmetry.[40] While fewer results have been obtained for this material, one
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Figure 7.36: Difference in CEES data for an applied magnetic field and an applied mag-
netic field in the opposite direction, for erbium doped Cs2NaYF6, with
unknown orientation.

measurement showed that asymmetry is present in this material as well. This sug-

gests that C3v symmetry (or a slightly broken version of it) is not particularly vital

to the presence of the asymmetry effect.

Unlike for the other materials discussed here, other results to determine specific

sites and levels in detail were not collected, the orientation of the crystal was not

known during the experiment, and a cubic symmetry adds complications. If, for

example, a particular incorporation site breaks from this symmetry due to some

change along an axis, the same defect could occur along three axes, presumably

resulting in the same energy levels in the absence of a magnetic field. However,

the addition of a magnetic field to such a system would add the complication of

the relative angle of the magnetic field and the broken symmetry axis. This could

potentially lead to what is essentially one site exhibiting magnetic splittings as if

there are multiple sites with the same energy level. Thus, such work is expected to

be more difficult than for the other materials discussed in this work.
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Figure 7.37: Difference in CEES data for an applied magnetic field parallel and antipar-
allel to the c-axis of erbium doped lithium tantalate, for what are believed
to be two differently ferroelectric poled regions of erbium doped lithium
tantalate.

7.4.2 Reversing the c-axis in a Ferroelectric

Preliminary results suggest that reversing the polarity of Er doped LiTaO3 also

reverses the direction of the asymmetry. If correct, this would strongly suggest

the importance of an electric field in establishing the direction of the asymmetry.

This is perhaps one of the more interesting lines of reasoning to pursue for future

experiments, and in principle, some such experiments should be relatively easy to

perform.
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7.5 Possible Mechanisms

7.5.1 Faraday Effect

There is a known effect in which left and right polarized light are transmitted with

different refractive indices in a material with a magnetic field applied parallel to the

direction of travel of the light. This results in rotation of linearly polarized light.

This has been considered as a possible explanation. It is not entirely satisfying. In

some of the experiments (all those conducted with the Montana Instruments Cryo-

station), the magnetic field is applied perpendicular to the path of the emission and

excitation light. Similar magnitudes of degree of asymmetry were seen in excitation

in experiments done in the Janis brand cryostat (field parallel to light propagation)

and the Montana Instruments Cryostation (field perpendicular to light propaga-

tion). In the case of emission, this would imply that the optical setup is sensitive

to circularly polarized light in a consistent way, in that experiments done several

times over the course of months show a consistent result. It seems surprising that

epitaxial films with a thickness of a micron would allow enough distance traveled in

a material to cause differences of tens of percent as would have to be the case in Nd

doped GaN.

For the purpose of developing a Fermi-type estimate, suppose that a difference

of ten percent in intensity corresponds in some way to a rotation in polarization

angle at which the square of a cosine function is equal to 0.9. This angle is about

0.32 radians. This corresponds to results taken at 4T on samples in which the

signal comes from epitaxial films about one micron thick, so dividing this out, the

obtained Verdet constant is on the order of 8× 105 rad
T ·m , orders of magnitude higher

than for terbium gallium garnet (∼ 2×102 rad
T ·m), a material used for its unusually high

Verdet constant. [6] This makes this explanation seem highly implausible, at least

for the case of earlier results in epitaxial films of neodymium doped gallium nitride.

The bulk crystal samples, however, are millimeters thick. However, most of the bulk

crystal results presented involved the direction of light propagation as perpendicular

to the magnetic field, yielding further difficulties. Definitive refutation of this idea
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would require more thorough polarimetry.

7.5.2 Thermal Gradient

One considered possible cause for the effect in the bulk crystal ferroelectrics was

the existence of a thermal gradient. This was not suggested with an explanation

for how this could occur. To test this, an attempt was made to make a symmetric

mounting, in the sense that the mounting was roughly symmetric about the plane

perpendicular to the c-axis in the middle of the crystal for Er doped LiTaO3. This

was accomplished though applying copper tape to each of two sides of the sample

which was in contact with the heat sink. Roughly the same degree of asymmetry

was observed as when the sample was mounted on only one side, suggesting this

was not the cause.

Furthermore, the results shown earlier for erbium in lithium tantalate showed

that remounting the sample in a flipped orientation resulted in the reversal of the

asymmetry effect, suggesting that the effect tracks some orientation of the crystal

itself.

7.5.3 Strain and Magnetostriction

Strain alone appears insufficient as an explanation for the origin of this asymmetry,

as ferroelectric bulk crystals believed to be of high quality exhibit the effect to a

similar degree.

The Raman spectroscopy results suggest that the application of a magnetic field

sufficient to observe this effect does not cause a detectable amount of additional

strain, let alone a difference in strain for opposite field directions. However, as

discussed earlier, it is reasonable that an amount of added strain below the limits

of detection could cause significant changes in peak amplitudes.
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7.5.4 Role of an Additional Electric Field

The presence of the effect in ferroelectric bulk crystals (LiTaO3 and LiNbO3) and

strained piezoelectic crystals (GaN), [38] with a correlation between strain and the

effect, suggests that an electric field may play some role in the mechanism leading

to this effect. Furthermore, the aforementioned behavior in which the polarization

angles which give maximum asymmetry rotate with the c-axis of the crystal, rather

than with rotation of a magnetic field, suggests that this asymmetry is closely tied

to some asymmetry in the crystal itself. Additional experiments are suggested to

examine this. Initial results involving poling the lithium tantalate samples seem to

support this idea.

Of course, this is not in and of itself a complete explanation, but thus far seems

the most promising hypothesis of the ones considered here upon which to base

further work. It would likely be tied to another effect, such as the previous one

discussed.

7.6 Suggested Future Work

The ferroelectic poling result should be confirmed. If correct, it suggests an im-

portant relationship between electric fields in the host material and the magnetic

field.

There is still the issue of inconsistency in the neodymium doped gallium nitride

samples. Suggested reasons for this, temperature dependence and aging effects,

should be investigated for this material to see if these can explain this. For the

former, data for temperature dependence in erbium doped lithium tantalate suggests

this is a very realistic explanation. For the latter, if the samples age over time, this

may indicate that whatever is responsible for the effect may decrease over time in

epitaxial films. Testing this would require obtaining new samples exhibiting the

effect, and testing them periodically over the course of years. Additionally, one

could attempt anneal samples we already possess, performing measurements of the

effect before and after the annealing, to determine whether this tends to remove the
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effect further.

One possible hypothesis is that larger scale defects in the host crystal may be

present, such as spiral discontinuities. It is not entirely clear, however, what ad-

vantages this has over ascribing a root cause of the asymmetry to ferroelectricity or

strain. Still, this is advanced as another possible source of asymmetry. It is feasi-

ble that the rotation in Czochralski crystal growth could introduce a left or right

handed bias of some kind in crystal growth in bulk samples. This suggests a search

for these defects in bulk crystals.

In order to determine whether the crystal as a whole rather than specific loca-

tions with rare-earth dopants shows signs of asymmetry, a search for effects such as

changes in index in refraction for left and right circularly polarized light in one of

the materials exhibiting this effect are suggested. Measurements which may identify

evidence of specific defects in the host crystal, such as atomic force microscopy of

the surface, are suggested for the bulk crystals exhibiting the effect. A variety of

defects may be expected in strained thin film samples, so defects in the bulk crystal

samples may be more likely to be relevant to the problem.

The results for whether the sample becomes strained as a result of applying a

magnetic field, and strained differently for reversed orientations of the magnetic

field were not entirely conclusive. To rule out a magnetostriction mechanism, it is

suggested that an alternate method for determining strain be found and applied.

The temperature dependence effect for erbium doped lithium tantalate suggests

two additional experiments. First, it should be determined whether or not these

samples are ferromagnetic at room temperature. If not, ferromagnetism and mag-

netostriction are poor candidates for a complete explanation. Second, an alternate

means of measuring temperatures should be employed while performing similar ex-

periments to verify the appearance of a sharp change at a critical temperature. One

suggestion is to add a thermometer closer to the sample itself. Another, potentially

much more accurate approach, would be to identify a laser which can be used for

both Raman spectroscopy, and exciting the dopant in such a way that this asym-

metry can be identified in some emission peak. This would allow measurement of

the temperature at the laser focus without changing variables like the laser power
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and wavelength used to perform the associated asymmetry measurements.

7.7 Conclusions

First and foremost, the effect is highly reproducible in erbium doped lithium tan-

talate, which seems to suggest that it is not merely an artifact of the way the

experiment is conducted. Second, it is present at room temperature in at least one

sample.

The effect clearly has polarization dependence, and an interesting temperature

dependence. So far, the most convincing result is that the effect is somehow tied to

the c-axis of the crystals (ignoring the cubic crystal host for the moment, for which

results to examine this were not obtained). It does not appear that a specific type

of symmetry or crystal-field number is required for the effect.

At the moment, the most promising (but still very much unproven) explanation

considered here seems to be that some sort of coupling involving an electric field

in the crystal and the magnetic field (possibly via a piezoelectricity and a linear

magnetostriction-like mechanism) is responsible for a difference in the local environ-

ments of the rare-earth dopants, which gives rise to these differences in transition

probability. A simple scalar product term of the magnetic field and the electric

field would likely be inadequate, given the earlier results which suggested the ef-

fect is present for angles from 0 to 90 degrees between the c-axis and the magnetic

field, and seems greatest near 45 degrees. Something of that type, however, would

potentially explain how reversing magnetic and electric fields changed the result.

Assuming that the transition probabilities become zero in the limit of zero applied

magnetic field, any effect must saturate at low fields compared to the fields used in

this work (less than hundreds of mT).

Results suggest that the effect may be greater for a site with greater adherence

to selection rules for C3v symmetry, which implies a need to explain how a magnetic

field perpendicular to the c-axis can cause a difference between two magnetic field

directions. This is still unresolved. It is recommended that future work involve
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measuring angular position with higher precision and smaller angle step size to

determine the form of the angular dependence.
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Chapter 8

Summary

8.1 Major Points

Progress or genuine success was made on each of the objectives of this work.

• While it has now been demonstrated that the presence of magnetic hysteresis

curves can be observed spectroscopically using Zeeman splitting of emissions

from rare earth dopants, its detection threshold is probably not anywhere near

what what is needed for the samples of interest here.

• Some discrepancies for energy level assignments for the majority site in erbium

doped gallium nitride have now been clarified, especially for the 4I 11
2

multiplet.

While the crystal field number assignments given here are not entirely certain,

results as a whole for the material confirm that the energy levels are very

different in nature from those in erbium doped lithium niobate or erbium

doped lithium tantalate.

• While a convincing explanation for the asymmetry effect discussed in Chapter

7 is still lacking, a number of additional results have been obtained which

constrain any future attempts at explanation, and may help to explain some

discrepancies.
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• A technique for analyzing energy levels as a function of magnetic field mag-

nitude was developed which appears to be rather successful in providing in-

sight into nonlinear behaviors in Zeeman splittings, and also sheds light on an

avoided crossing between the two lowest energy doubly degenerate levels for

the majority site for erbium in erbium doped gallium nitride.

• An experimental technique and data analysis were successfully developed to

determine crystal field numbers, effective g factors, and some sense of relative

degrees of symmetry for several sites in erbium doped lithium tantalate and

erbium doped lithium niobate. This was also applied to the majority site in

erbium doped gallium nitride.

8.2 Peak Fitting vs. Method of Moments

Several projects in this work, such as the fitting of energy levels as a function of

applied magnetic field, employed peak fitting, and would likely have been more

difficult or impossible with the method of moments approach suggested by prior

work in this research group [75]. It is suggested that peak fitting, including with an

approximated Voigt profile, should be considered as an important tool in continuing

this work in the future.

8.3 Uniqueness of Erbium Doped Gallium Nitride

Whereas erbium doped lithium niobate and lithium tantalate seemed to show a

tendency for the lowest doubly degenerate state in each of the multiplets studied

to have an effective g factor similar to that of the j value for the multiplet, the

ground state for the majority site in erbium doped gallium nitride appears to have

an effective g factor somewhat less than three for a magnetic field parallel to the

c-axis.

The spacing between the two lowest energy doubly degenerate levels in the latter

system of about 0.58 meV also seems unusual compared to the other systems studied.
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This close spacing has consequences for measurements of the ground state as a

function of magnetic field, as the presence of an avoided crossing between the ground

state and the next higher energy level means that state mixing with other energy

levels occurs as a function of applied magnetic field.

Taken together, this implies some care must be taken in examining erbium doped

gallium nitride which may not have been warranted in systems like erbium doped

lithium tantalate and lithium niobate.

8.4 The Asymmetry Effect

The results for the asymmetry effect suggest that in at least one system (erbium

doped lithium tantalate), it is highly reproducible, and appears not to be easily

dismissed as an artifact. Since this effect does not appear to have been reported by

other groups, it may be an interesting, new research problem for the future. A num-

ber of specific properties of the effect were identified, and some analysis techniques

were developed which should be considered for future work. Of particular note is

the finding that the effect persists to room temperature in erbium doped lithium

tantalate, which may restrain mechanisms relying on ferromagnetic properties.

While the goal of identifying crystal-field quantum numbers was to determine

whether these numbers played a role in the asymmetry effect, not enough specific

transitions exhibiting the effect were found to allow this sort of analysis. Still, this

work does provide a basis for pursuing that goal in the future.
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Appendix A

Additional Data for Erbium

Doped Lithium Tantalate

The erbium doped lithium tantalate project, by its very nature, resulted in large

lists of numbers. Tables thought to be less immediately relevant, but still important

to report, are displayed here. It should be noted that the rated accuracy of the

wavelength meter used to measure these energies was 3 ppm, so any error less than

that should be questioned.

A.1 Energy Levels

Errors in energies listed here are derived from fitting algorithms, and may be smaller

than systematic errors associated with the equipment used to measure them. Specif-

ically, the wavelength meter used to measure the excitation wavelengths reported in

this section has a rated accuracy of about 3 ppm.

In the tables giving energy levels for sites, only some of the levels for the 4I 15
2

multiplet which could be derived from the observed transitions are given. The

reasoning for this a combination of a lack of data, and a concern about avoiding the

possibility of phonon-assisted transitions when examining especially broad transition

peaks.
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Table A.1: Fitted transitions observed for sites A-D. All values are given in eV. Errors
are 95 percent confidence intervals derived from the fitting algorithm used.

Site A B C D
4I 9

2
to 1.534655± .000008 1.534552± .00001 1.534031± .000005 1.536213± .000004

4I 15
2

1.535612± .000002 1.534786± .000007
4I 15

2
1.265782± .000037 1.266270± .000001 1.266106± .000006 1.265924± .000007

to 1.270577± .000067 1.271726± .000005 1.270497± .000003 1.270838± .000002
4I 11

2
1.271748± .000002 1.273457± .000001 1.271298± .000054 1.272246± .000002

1.276134± .000003 1.278279± .000002 1.274953± .000005 1.274540± .000006
1.277939± .000017 1.279938± .000021 1.277022± .000006 1.276764± .000003
1.279229± .000004 1.281842± .000008 1.278669± .000005 1.279753± .000026

4I 11
2

1.265816± .000006 1.266283± .000002 1.266108± .000004 1.265937± .000003

to 1.259218± .000010 1.258686± .000003 1.260347± .000006 1.259059± .000013
4I 15

2
1.24975± .00018 1.25022± .00014 1.25141± .00051 1.250053± .000036

1.24875± .00019 1.24792± .00030
1.241211± .000016

4I 13
2

0.810424± .000003 0.810456± .000004 0.811080± .000008 0.810411± .000007

to 0.80380± .00034 0.802834± .000004 0.805315± .000005 0.803568± .000010
4I 15

2
0.79444± .00066 0.794529± .000004 0.796494± .000010 0.794763± .000026

0.793354± .000017 0.79062± .00065 0.795455± .000023 0.792554± .000037
0.78686± .00012 0.785550± .000007 0.793749± .000011 0.790554± .000042
0.786029± .000009 0.785221± .000006 0.78585± .00030 0.785372± .000029
0.785000± .000010 0.784864± .000010 0.785749± .000008

0.785328± .000016
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Table A.2: Fitted transitions observed for sites E, H1, H2, and I. All values are given
in eV. Errors are 95 percent confidence intervals derived from the fitting
algorithm used.

Site E H1 H2 I
4I 9

2
to 1.534464± .000002 1.535402± .000054 1.533905± .000002

4I 15
2

1.535603± .000003
4I 15

2
1.266092± .000005 1.266425± .000011 1.266151± .000007 1.266175± .000058

to 1.270737± .000013 1.270716± .000006 1.270227± .000006
4I 11

2
1.271802± .000003 1.272028± .000002 1.272006± .000004 1.270495± .000007

1.273305± .000016 1.274439± .000004 1.273992± .000016
1.275785± .000002 1.276535± .000010 1.276464± .000005
1.277767± .000019 1.279526± .000020 1.277464± .000019

4I 11
2

1.266105± .000007 1.266409± .000010 1.266153± .000006

to 1.259668± .000006 1.259759± .000076 1.613528± .000015
4I 15

2
1.250464± .000089

4I 13
2

0.810828± .000008 0.810301± .000003 0.810640± .000007 0.811353± .000004

to 0.804375± .000008 0.803437± .000005 0.803827± .000008 0.806606± .000011
4I 15

2
0.795409± .000017 0.794831± .000013 0.797438± .000023

0.793369± .000060 0.792753± .000015 0.794780± .000014
0.786199± .000010 0.786342± .000041
0.785755± .000009 0.785746± .000019
0.785265± .000015
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Table A.3: Fitted transitions observed for sites J-M. All values are given in eV. Errors
are 95 percent confidence intervals derived from the fitting algorithm used.

Site J K L M
4I 9

2
to 1.534011± .000057 1.534031± .000011 1.535482± .000004

4I 15
2

4I 15
2

1.266433± .000004 1.267014± .000005 1.266646± .000006 1.266526± .000021

to 1.270722± .000011 1.270015± .000001 1.270431± .000003 1.274525± .000002
4I 11

2
1.271346± .000002 1.270768± .000008 1.270933± .000002 1.279683± .000015

1.274692± .000014 1.272934± .000003 1.273710± .000007
1.276852± .000017 1.27462± .00020
1.27869± .00016 1.27790± .00017

4I 11
2

1.266424± .000007 1.266613± .000015 1.266540± .000003

to 1.26086± .00032 1.262116± .000030 1.258244± .000008
4I 15

2
1.253168± .000046 1.245769± .000054

4I 13
2

0.811543± .000011 0.812470± .000003 0.812021± .000025 0.810403± .000007

to 0.806006± .000020 0.808931± .000017 0.807591± .000008 0.80209± .00024
4I 15

2
0.799346± .000033 0.79337± .00029 0.79338± .00023

0.79660± .00013 0.789804± .000010 0.789832± .000021
0.785579± .000036 0.786010± .000014

0.785356± .000007

Table A.4: Fitted energy levels for sites A-D. All values are given in eV. Errors are 95
percent confidence intervals derived from the fitting algorithm used.

Site A B C D
0 0 0 0

4I 15
2

0.00662± 0.00015 0.007611± 0.000008 0.006872± 0.000026 0.006872± 0.000016

0.01601± 0.00034 0.015997± 0.000079 0.01463± 0.00028 0.015779± 0.000026
0.01707± 0.00010 0.01983± 0.00033 0.015624± 0.000012 0.01794± 0.00017

4I 13
2

0.81043± 0.00012 0.810476± 0.000029 0.81109± 0.00010 0.810473± 0.000017

1.265792± 0.000064 1.266266± 0.000014 1.266100± 0.000051 1.265900± 0.000025
1.270577± 0.000068 1.271725± 0.000005 1.270498± 0.000003 1.270838± 0.000002

4I 11
2

1.271748± 0.000002 1.273457± 0.000001 1.271305± 0.000052 1.272247± 0.000002

1.276133± 0.000003 1.278279± 0.000002 1.274954± 0.000006 1.274541± 0.000005
1.277937± 0.000018 1.279939± 0.000023 1.277022± 0.000006 1.276764± 0.000006
1.279229± 0.000004 1.281842± 0.000008 1.278669± 0.000005 1.279753± 0.000005

4I 9
2

1.534655± 0.000007 1.534552± 0.000001 1.534031± 0.000005 1.536213± 0.000004

1.535612± 0.000002 1.534786± 0.000007
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Table A.5: Fitted energy levels for sites E, H1, H2, and I. All values are given in eV.
Errors are 95 percent confidence intervals derived from the fitting algorithm
used.

Site E H1 H2 I
0 0 0 0

4I 15
2

0.006452± 0.000008 0.00665± 0.00011 0.006812± 0.000011 0.004785± 0.000021

0.015541± 0.000056 0.015809± 0.000015 0.013915± 0.000012
0.017459± 0.000061 0.017886± 0.000017 0.016573± 0.000015

4I 13
2

0.810868± 0.000020 0.810301± 0.000003 0.810640± 0.000007 0.811371± 0.000010

1.266079± 0.000064 1.266417± 0.000007 1.266151± 0.000007 1.266155± 0.000024
1.270739± 0.000068 1.270712± 0.000007 1.270228± 0.000005

4I 11
2

1.271802± 0.000002 1.272028± 0.000002 1.272006± 0.000004 1.270495± 0.000007

1.275785± 0.000003 1.274438± 0.000008 1.273990± 0.000006
1.277776± 0.000021 1.276535± 0.000010 1.276464± 0.000005 1.275528± 0.000016
1.279430± 0.000013 1.279526± 0.000020 1.279384± 0.000012 1.277462± 0.000017

4I 9
2

1.534655± 0.000007 1.535402± 0.000054 1.533905± 0.000002

1.535612± 0.000002

Table A.6: Fitted energy levels for sites J-M. All values are given in eV. Errors are 95
percent confidence intervals derived from the fitting algorithm used.

Site J K L M
0 0 0 0

4I 15
2

0.00553± 0.00019 0.003583± 0.000017 0.004483± 0.000020 0.008306± 0.000014

0.013124± 0.000033 0.013444± 0.000025 0.017023± 0.00022
0.01587± 0.00013 0.01865± 0.00012 0.02067± 0.00014

4I 13
2

0.811541± 0.000097 0.812470± 0.000003 0.812043± 0.000020 0.810403± 0.000007

1.266429± 0.000048 1.267014± 0.000051 1.266619± 0.000010 1.266525± 0.000012
1.270721± 0.000013 1.27001± 0.00070 1.270431± 0.000003 1.270837± 0.000002

4I 11
2

1.271346± 0.000002 1.270771± 0.000006 1.270932± 0.000002

1.274692± 0.000015 1.272934± 0.000008 1.273709± 0.000008 1.274526± 0.000005
1.276854± 0.000016 1.27509± 0.00043
1.27869± 0.00016 1.277719± 0.000032 1.27792± 0.00018 1.279686± 0.000028

4I 9
2

1.534011± 0.000057 1.534031± 0.000011 1.535482± 0.000004
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A.2 Magnetic Splittings

Magnetic splittings had the complication of possibly different maximum field magni-

tudes from experiment to experiment. Thus, each excitation/emission scheme, and

each mounting angle relative to the magnetic field has associated splittings listed

separately in the tables shown here. For all data shown in this section, the target

magnetic field was set to 750mT , and subsequent measurements suggested that this

field tended to stabilize around 740mT as the magnet reached an equilibrium tem-

perature, with an error due to spatial variation and fluctuations over time likely less

than 10mT .

For the tables in this section, all values are given in meV, except for the energy

levels themselves, which are in eV. Errors are 95 percent confidence intervals derived

from the fitting algorithm used. The columns correspond to the expected angle

in degrees between the c-axis of the crystal and the applied magnetic field. The

rows give results for each associated energy level. Splittings which were not clearly

identified or resulted in very high fitted errors were omitted. If a level is marked 0?,

there was no visible splitting of the associated transition in the data, which should

simply be taken as implying it is likely smaller than some detection threshold.

For reasons discussed in Chapter 6 describing nonlinearities in magnetic split-

tings of levels in erbium in gallium nitride, ideally, lower magnetic field strengths

are generally preferable in the determination of g factors. However, in an effort

to improve the ability to measure splittings for the perpendicular field case for the

ground state, an additional data set with a higher field strength (but initially un-

known magnitude) was collected. However, splittings for the ground state were

not observed in this data set, despite a significantly higher field strength (estimated

about 1.25T from comparison). Thus, that data is not used to generate the numbers

here, but does suggest that the ground states are not splitting appreciably.
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Table A.7: Fitted level splittings for site A.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.322± 0.001 0.302± 0.001 0.239± 0.001 0.136± 0.001 0?
1.2658 0.221± 0.001 0.161± 0.001 0.090± 0.001 0?
1.2706 0.066± 0.006
1.2718 0.071± 0.001 0.071± 0.001 0.085± 0.001 0.091± 0.001 0.104± 0.001
1.2761 0.036± 0.002 0.033± 0.001 0.061± 0.003 0.086± 0.001 0.088± 0.001
1.2779
1.2793 0.141± 0.005
4I 13

2
to 4I 15

2

Ground 0.323± 0.003 0?
0.0066 0.079± 0.001 0.090± 0.001 0.124± 0.003 0.155± 0.003 0.164± 0.035
0.8104 0.271± 0.003 0.254± 0.001 0.201± 0.002 0.117± 0.002 0?
4I 11

2
to 4I 15

2

Ground
0.0066 0.075± 0.002
1.2658 0.216± 0.002

Table A.8: Fitted level splittings for site B.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.322± 0.002 0.319± 0.001 0.238± 0.001 0.141± 0.001 0?
1.2663 0.212± 0.003 0?
1.2718 0.156± 0.008 0.130± 0.012 0.119± 0.037 0?
1.2734 0.075± 0.003 0.088± 0.001 0.083± 0.001 0.093± 0.001
1.2783 0.029± 0.006 0.037± 0.003 0.061± 0.003 0.083± 0.002
1.2799 0.062± 0.035
1.2818
4I 13

2
to 4I 15

2

Ground 0.334± 0.006 0?
0.0076 0.088± 0.008 0.098± 0.001 0.128± 0.005 0.149± 0.004 0.162± 0.014
0.8105 0.284± 0.006 0.260± 0.002 0.218± 0.008 0.116± 0.004

239



Table A.9: Fitted level splittings for site C.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.314± 0.006 0.295± 0.001 0.233± 0.002 0.136± 0.001 0?
1.2661 0.212± 0.006 0.202± 0.002 0.094± 0.001 0?
1.2705 0.119± 0.052 0.104± 0.006 0.070± 0.030 0.044± 0.025
1.2713 0.059± 0.006 0.066± 0.001 0.078± 0.002 0.091± 0.001 0.096± 0.024
1.2750 0.062± 0.008 0.086± 0.001 0.098± 0.028
1.2770 0.058± 0.026
1.2786 0.092± 0.036
4I 13

2
to 4I 15

2

Ground 0.314± 0.007 0.136± 0.001 0?
0.0058 0.075± 0.004 0.112± 0.020 0.161± 0.004 0.164± 0.010
0.8111 0.264± 0.007 0.192± 0.012 0.111± 0.003 0?
4I 11

2
to 4I 15

2

Ground
0.0058 0.076± 0.007
1.2661 0.220± 0.008

Table A.10: Fitted level splittings for site D.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 13
2

to 4I 15
2

Ground 0.316± 0.004 0?
0.0068 0.082± 0.004 0.110± 0.003 0.119± 0.006 0.137± 0.009 0.167± 0.083
0.8104 0.266± 0.004 0.256± 0.004 0.205± 0.005 0.129± 0.008 0?
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Table A.11: Fitted level splittings for site E.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.308± 0.001 0.297± 0.002 0.232± 0.001 0.141± 0.001 0?
1.2661 0.211± 0.001 0.201± 0.002 0?
1.2707 0.143± 0.012 0.112± 0.005 0.074± 0.006
1.2718 0.060± 0.001 0.068± 0.002 0.079± 0.001 0.091± 0.001 0.092± 0.006
1.2757 0.067± 0.003 0.090± 0.006 0.094± 0.006
1.2778 0.082± 0.012
1.2794 0.110± 0.007 0.123± 0.035
4I 13

2
to 4I 15

2

Ground 0.310± 0.007 0.297± 0.030 0?
0.0065 0.077± 0.005 0.093± 0.007 0.116± 0.001 0.153± 0.002 0.143± 0.007
0.8109 0.257± 0.007 0.255± 0.009 0.199± 0.001 0.113± 0.002 0?
4I 11

2
to 4I 15

2

Ground
0.0065 0.091± 0.003
1.2661 0.235± 0.003

Table A.12: Fitted level splittings for site H1.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 13
2

to 4I 15
2

Ground 0.301± 0.008
0.0069 0.080± 0.006
0.8103 0.247± 0.008

Table A.13: Fitted level splittings for site H2.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 13
2

to 4I 15
2

Ground 0.319± 0.022
0.0068 0.079± 0.016
0.8106 0.277± 0.022
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Table A.14: Fitted level splittings for site I.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.295± 0.005 0.132± 0.004 0?
1.2662 0.199± 0.010
1.2702 0.102± 0.019 0?
1.2705 0.087± 0.002 0.092± 0.011
1.2740 0.089± 0.007 0.091± 0.042
1.2755
1.2775
4I 13

2
to 4I 15

2

Ground 0.326± 0.022
0.0047 0.078± 0.004 0.092± 0.002 0.125± 0.002
0.8114 0.257± 0.007 0.240± 0.003 0.191± 0.002

Table A.15: Fitted level splittings for site J.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.293± 0.005 0.143± 0.006 0?
1.2664 0.201± 0.005 0?
1.2707
1.2713 0.104± 0.006 0.102± 0.025
1.2747 0.090± 0.021
1.2768
1.2787
4I 13

2
to 4I 15

2

Ground
0.0056 0.077± 0.005 0.091± 0.008 0.153± 0.002
0.8115 0.238± 0.016
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Table A.16: Fitted level splittings for site K.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.288± 0.002 0.290± 0.006 0.201± 0.002 0.110± 0.003 0?
1.2670 0.249± 0.038 0.236± 0.008 0?
1.2700
1.2708
1.2729
1.2751
1.2772
4I 13

2
to 4I 15

2

Ground 0.298± 0.014
0.0035 0.086± 0.038 0.102± 0.009 0.117± 0.015
0.8125 0.240± 0.031 0.229± 0.010 0.187± 0.018

Table A.17: Fitted level splittings for site L.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.283± 0.004 0.222± 0.004 0.122± 0.004 0?
1.2667 0.192± 0.008
1.2704 0.081± 0.011
1.2709 0.092± 0.005
1.2737 0.086± 0.008
1.2745
1.2779 0.195± 0.058
4I 13

2
to 4I 15

2

Ground 0.324± 0.019
0.0044 0.090± 0.075 0.100± 0.014 0.115± 0.007 0.149± 0.007
0.8120 0.267± 0.030 0.249± 0.021 0.189± 0.009 0.095± 0.006
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Table A.18: Fitted level splittings for site M.

Field Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

4I 15
2

to 4I 11
2

Ground 0.235± 0.031
1.2665
1.2708
1.2745 0.083± 0.053
1.2797
4I 13

2
to 4I 15

2

Ground 0.328± 0.005 0.276± 0.006 0.229± 0.009
0.0083 0.099± 0.003 0.114± 0.005 0.134± 0.009
0.8104
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Appendix B

Additional Data for Erbium

Doped Lithium Niobate

As was the case for the erbium doped lithium tantalate project, tables thought to

be less immediately relevant, but still important to report, are displayed here. Less

extensive data was taken for this material. Note that sites 1 and cluster were not

clearly identified, and that additional peaks not assigned to a site are present in the

original data. Data shown is that which could be related to previously studied sites.

It should be noted that the rated accuracy of the wavelength meter used to measure

these energies was 3 ppm, so any error less than that should be questioned.

B.1 Energy Levels

The comments in the previous corresponding portion on erbium doped lithium tan-

talate are relevant.
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Table B.1: Fitted transitions for sites 2-5. All values are given in eV. Errors are 95
percent confidence intervals derived from the fitting algorithm used.

Site 2 3 4 5
1.264540± 0.000006 1.264676± 0.000005 1.264425± 0.000006

4I 11
2

1.269253± 0.000004 1.269593± 0.000053 1.269425± 0.000008

to 1.270856± 0.000002 1.271377± 0.000003 1.271287± 0.000003 1.271191± 0.000009
4I 15

2
1.275861± 0.000004 1.276574± 0.000003 1.278352± 0.000003

1.277392± 0.000007 1.278038± 0.000010 1.278352± 0.000007
1.278833± 0.000029 1.279615± 0.000003 1.279336± 0.000004
0.809280± 0.000016 0.809203± 0.000015 0.808857± 0.000004 0.809055± 0.000025

4I 13
2

0.802850± 0.000001 0.802392± 0.000016 0.802046± 0.000004 0.802343± 0.000002

to 0.794063± 0.000016 0.793604± 0.000053 0.793216± 0.000011
4I 15

2
0.793460± 0.000036 0.792616± 0.000023

0.787375± 0.000012 0.787312± 0.000021

Table B.2: Fitted transitions for sites 6-9. All values are given in eV. Errors are 95
percent confidence intervals derived from the fitting algorithm used.

Site 6 7 8 9
1.264595± 0.000005 1.264980± 0.000002

4I 11
2

1.270328± 0.000010 1.269732± 0.000003 1.270539± 0.000002

to 1.271777± 0.000009 1.271733± 0.000003 1.272854± 0.000002 1.272854± 0.000002
4I 15

2
1.275343± 0.000013 1.278749± 0.000006

1.277485± 0.000008 1.280007± 0.000005
1.279907± 0.000012 1.281657± 0.000010

0.809279± 0.000009 0.808920± 0.000005 0.809332± 0.000022 0.809018± 0.000012
4I 13

2
0.802404± 0.000042 0.801929± 0.000007 0.802110± 0.000005 0.801342± 0.000003

to 0.793977± 0.000006 0.793376± 0.000020 0.793612± 0.000006
4I 15

2
0.791660± 0.000010 0.789548± 0.000018

0.787304± 0.000021 0.786433± 0.000020
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Table B.3: Fitted transitions for sites 10-11. All values are given in eV. Errors are 95
percent confidence intervals derived from the fitting algorithm used.

Site 10 11
4I 11

2
1.265298± 0.000003

to
4I 15

2
1.273742± 0.000013 1.273848± 0.000010

4I 13
2

0.809149± 0.000006 0.809060± 0.000013

to 0.801175± 0.000014 0.800863± 0.000008
4I 15

2
0.792668± 0.000018
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B.2 Magnetic Splittings

Splittings were determined only for some levels of sites 2, 3, 4, and 9, and only for

field orientation parallel to the c-axis of the crystal. The expected field is expected

to match that for the erbium doped lithium tantalate data. The result of this data

was that the states generally seem to show agreement with splittings and effective

g factors for the erbium doped lithium tantalate data.
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Table B.4: Fitted splittings for sites 2, 3, 4 and 9, for a magnetic field applied parallel
to the c-axis, with an expected magnitude of 740mT. All values are given
in meV. Errors are 95 percent confidence intervals derived from the fitting
algorithm used.

Site 2 3 4 9

Ground 0.327± 0.006 0.332± 0.005 0.322± 0.006
2nd 4I 15

2
0.091± 0.009 0.103± 0.005 0.098± 0.003 0.114± 0.004

1st 4I 13
2

0.282± 0.009 0.289± 0.008 0.229± 0.005 0.234± 0.004

1st 4I 11
2

0.221± 0.007 0.214± 0.005

2nd 4I 11
2

0.164± 0.007 0.156± 0.004

3rd 4I 11
2

0.092± 0.006

4th 4I 11
2

0.045± 0.016
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