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Abstract

In the present work, we investigate possible solutions to the capacity limits of

optical communication systems. Just as wavelength division multiplexing (WDM)

has been used in the past twenty years, spatial division multiplexing (SDM) is now

being explored to further increase the transmission capacity of fibers. In SDM, the

spatial dimension of the fiber is the degree of freedom that is being exploited. SDM

makes use of several spatial modes propagating in a single core multi-mode fiber or

in a multi-core fiber in which the cores are coupled with each others. However for

SDM to become a reality in transmission systems, the problem of amplification must

be addressed. If the power is increased in these fibers, nonlinear effects will emerge

within and between different modes of the multi-mode or multi-core fibers which

can degrade the transmission performance. On the other hand, nonlinear effects

such as stimulated Raman Scattering can be utilized to build optical amplifiers for

multi-mode and multi-core fibers.

In this thesis, we study theoretically and experimentally the inter-modal non-

linear effects of four-wave mixing (FWM) and Raman scattering in a graded-index

few-mode fiber which supports 6 spatial and polarization modes. The efficiency of

the four-wave mixing processes between the fundamental and higher order modes

is experimentally measured for the non-degenerate four-wave mixing configuration

with two pumps and one signal. The effect of the relative polarizations of the three

waves involved in the four-wave mixing process is also studied to understand the

fluctuations in the idler powers generated through the nonlinear intermodal process.

Finally, experiments are performed in a 70 km graded-index few-mode fiber with 3

spatial modes to understand the effect of different pumping schemes in a distributed

Raman amplifier. We demonstrate experimentally that equalized gain in all three

spatial modes is achieved by coupling the pump source into the higher order modes

instead of the fundamental mode of a few-mode fiber. Distributed Raman ampli-

fication is then used in recirculating the signal through the fiber span and data

transmission is successfully achieved over 1050 km.
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Chapter 1

Introduction

1.1 Literature Review

The number of devices that connect to the internet is increasing everyday and that

requires an increase in the bandwidth and capacity of optical communication sys-

tems. The capacity of optical fiber communication links is determined by the spec-

tral efficiency of the optical fiber itself limited by nonlinear effects in fibers, the

total bandwidth determined by the current gain bandwidth of the Erbium-doped

fiber amplifiers (C-band: 1530-1565 nm), and the number of spatial channels in the

fibers, i.e. the fiber two modes in single-mode optical fibers (one for each polariza-

tion). Therefore, to increase the amount of data that can be transmitted through

fibers we must look at different solutions, all based on the three limiting factors of

fiber capacity mentioned above. One solution is parallelism: more single mode fiber

cables are used in parallel, but the increasing the number of fibers requires lower

powers per fiber to avoid increase in cost and energy consumption. This requires

silicon photonics integration along with architectural innovations such as software

defined networking. Increasing the bandwidth by utilizing L-band (1568-1605 nm)

Erbium-doped fiber amplifiers in addition to the C-band can also help to increase

the bandwidth. Moving to 2 µm wavelength, where amplifiers with bandwidth larger

than Erbium-doped fiber amplifiers exist, is also an option.

In recent years, Space-Division Multiplexing (SDM) has been proposed as an-

other solution to overcome the Single-Mode Fiber (SMF) capacity limit imposed

by a combination of Shannon’s information theory and the nonlinearities in optical

2



fibers [6, 7]. This limit can be exceeded with SDM by making use of few-mode

(FMFs), multi-mode (MMFs), or multi-core fibers (MCFs). These fibers offer sig-

nificant advantages for SDM, because the spatial modes used for transmission are

tightly packed and can be processed together. This is particularly advantageous for

building optical components like optical amplifiers that are essential in SDM trans-

mission systems. Raman amplification in particular is very appealing as it does not

require any special active fiber since the transmission fiber is itself the distributed

gain medium. Raman amplification has been extensively studied and has become

an established technology in SMF systems [8, 9]. Developing cost-effective MMF

devices such as inline amplifiers is a necessity for SDM to be successful. Raman

amplification in MMFs has been studied to understand the gain in different modes

as well as the mode evolution [10, 11]. It has also been studied theoretically in

MMFs by Antonelli and colleagues [12]. In order to design a Raman amplifier in

MMFs with equal gain in all modes is important and the intensity overlap inte-

gral of different modes is a crucial element to realize suitable pump configuration

for a specific MMF with different refractive index profile. The conditions for gain

equalization in MMFs has been studied in [13] for step index MMF and distributed

Raman amplification with counter pumping has been demonstrated in [14] to reach

equal amplification in all the modes of a graded-index FMF by coupling the pump

in the higher order mode instead of the fundamental mode.

Kerr nonlinear effects in fibers have also been studied extensively in SMFs and

MMFs [15, 16, 17, 18]. In MMFs four-wave mixing (FWM) between waves in the

same mode is called Intra-modal FMF and FWM between waves in different guided

modes of the fiber called Inter-modal four-wave mixing. Inter-modal four-wave mix-

ing (IM-FWM) has been observed in FMFs as early as 1974 [19] by Stolen and

colleagues in the form of partially-degenerate IM-FWM in FMFs, taking advan-

tage of the different group velocity dispersions of various spatial modes to achieve

phase-matching. Observations of various intermodal nonlinearities, including IM-

FWM, have been reported in photonic crystal fibers [20, 21, 22, 23] and MMFs [24].

These observations have been made using relatively short lengths of fibers, up to

a few tens of meters. However, fibers of several kilometers are required for SDM

applications. Numerical investigations have been published on intermodal nonlinear
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effects in very long fibers that support multiple spatial modes [25] but few exper-

imental studies exist on this topic [5, 26, 27]. Yet, a detailed characterization of

IM-FWM occurring in real communication-length FMFs remains of great interest

to correctly account for nonlinear interactions and ascertain their impact on SDM

systems. IM-FWM in graded-index FMFs is of particular interest because of its

implications on the capacity of space-division multiplexed systems [6, 7], as well as

its applications to wavelength conversion and parametric amplification. IM-FWM

was recently reported for the multiple-mode pumps configuration, explained later in

the text, in a graded-index FMF that only supported LP01 and LP11 modes [26],

and the phase-matching bandwidth was also calculated numerically [28]. LP modes

are the linearly polarized modes of the fibers under study: LP01 is the fundamental

mode and LP11a and LP11b are the degenerate higher order modes.

In this chapter, the modes of MMFs are studied, and nonlinear effects in fibers

are discussed. In particular, FWM and Raman scattering effects are studied in

detail and the governing equations solved analytically.

1.2 Background

This section describes the modes in MMFs, the wave equation for the real modes of

the fiber, and the wave equation solutions in the undepleted pump approximation,

introducing linearly polarized modes. The different nonlinear processes in optical

fibers are briefly described, including the Kerr and scattering processes such as

self- and cross-phase modulation, four-wave mixing as well as the Brillouin and

Raman scattering processes. Since Four-wave Mixing and Raman scattering are

experimentally investigated in the next chapters, a more detailed presentation of

the equations leading to these two processes are made in the following sections with

particular focus on their gain efficiency.

1.2.1 Modes of MMFs

The optical fibers used in telecommunication systems are based on silica (SiO2).

These fibers have low loss in the 1550 nm wavelength range which makes them

suitable for data transmission. They usually have germanium doped cores and/or

pure silica cores with depressed cladding. The refractive index of these fibers can

be engineered, the simplest case being step-index fibers [29]. Here, the modes of a
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silica-based MMF with step-index profile will be discussed and the results extended

to graded-index fibers with a few well-defined modes. The exact solution of the

wave equation for MMFs yields the true modes of the fiber which are TE, TM, HE

and EH modes. These modes are orthogonal to each other, non-degenerate and each

travels with a different speed in the fiber. They can combine with each other due to

imperfections introduced in the fiber during the fiber drawing, to generate different

intensity profiles along the fiber . TE and TM stand for the transverse electric

(Hz = 0) and transverse magnetic (Ez = 0), respectively while EH and HE modes

are hybrid modes and have non-zero E and H field z-components. If the fiber is

weakly-guiding, as a result of a very small refractive index difference between the core

and cladding, these modes can be approximated by linearly-polarized,LP modes [30,

31, 32]. LP modes can be written as a linear combination of the real modes of the

fiber as discussed later in this chapter. The propagation of electromagnetic waves

in fibers is governed by Maxwell’s equations shown below:

∇×
−→
E (−→r , t) =

∂
−→
B

∂t
(1.1)

∇×
−→
H =

−→
J +

∂
−→
D

∂t
(1.2)

∇.
−→
D = ρf (1.3)

∇.
−→
B = 0, (1.4)

where
−→
E and

−→
H are the electric and magnetic field vectors,

−→
D and

−→
B the electric

and magnetic flux densities, and
−→
J and ρf the current density vector and charge

density respectively [33]. The quantity
−→
D = ε0

−→
E +

−→
P where ε0 and

−→
P are the

vacuum permittivity and induced electric polarization respectively. The quantity
−→
P can be written in the form of

−→
PL +

−−→
PNL, where

−→
PL is the linear part and

−−→
PNL

the nonlinear part due to nonlinear effects in the fiber. In order to study the modes

of optical fibers, we assume a linear regime and only the linear part of the induced

polarization is therefore in the wave vector calculation:

∇2−→E − 1

c2

∂2−→E
∂t2

= µ0
∂2−→PL
∂t2

. (1.5)
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From Eq. 1.5 and neglecting birefringence, we obtain the Helmholtz equation in the

frequency domain also known as the wave equation (WE):

∇2Ẽ(−→r , ω) + n2(ω)
ω2

c2
Ẽ(−→r , ω) = 0, (1.6)

where c is the speed of light in vacuum, and Ẽ(−→r , ω) the Fourier transform of the

electric field,
−→
E (−→r , t). The solution of Eq. 1.6 yields the fiber modes. If Ẽ(−→r , ω) is

written in cylindrical coordinates as
−→
E = Eρ(ρ, φ, z)ρ̂ + Eφ(ρ, φ, z)φ̂ + Ez(ρ, φ, z)ẑ,

Eq. 1.6 is then scalar for Ez because it does not couple to the radial and azimuthal

components of the E-field. In cylindrical coordinates it can be written as:

1

ρ

∂

∂ρ
(ρ
∂Ez
∂ρ

) +
1

ρ2

∂2E2
z

∂φ2
+
∂2E2

z

∂z2
+ n2k2

0Ez = 0, (1.7)

where k0 = ω/c = 2π/λ. Note that the same wave equation can be written for the

z-component of the magnetic field (H-field). The other components of the E and

H-fields can be calculated from the Ez and Hz components.

Eρ =
−i

k2n2(ρ)− β2
(
ωµ0

ρ

∂Hz

∂φ
+ β

∂Ez
∂ρ

), (1.8)

Eφ =
−i

k2n2(ρ)− β2
(
β

ρ

∂Ez
∂φ
− ωµ0

∂Hz

∂ρ
), (1.9)

Hρ =
−i

k2n2(ρ)− β2
(β
∂Hz

∂ρ
− ωεiε0

ρ

∂Ez
∂φ

). (1.10)

Hφ =
−i

k2n2(ρ)− β2
(ωεiε0

∂Ez
∂ρ

+
β

ρ

∂Hz

∂φ
) (1.11)

Separating the variables of the E-field such as Ez(ρ, φ, z) = R(ρ)Φ(φ)Z(z) where

Z(z) = exp(−iβz), the wave equation can be divided into two parts responding

depending on ρ and φ only:

1

R

[
ρ2d

2R

dρ2
+ r

dR

dρ

]
+ (k2

0 − β2)ρ2 = − 1

Φ

d2Φ

dφ2
= ν2. (1.12)

The quantity β is the propagation constant of the wave [4]. From Eq. 1.12, Ez can

be calculated. The other two components of the E-field and H-field, Eρ, Eφ, Hρ, and
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Hφ can be calculated the same way using Eqs. 1.8 to 1.10 in a step-index profile.

The general solution for Ez and Hz are:

Ez(ρ, φ, z) =

{
AJn(u

a
ρ)einφe−iβz, ρ < a,

A Jn(u)
Kn(w)

Kn(w
a
ρ)einφe−iβz, ρ > a,

(1.13)

Hz(ρ, φ, z) =

{
CJn(u

a
ρ)einφe−iβz, ρ < a,

C Jn(u)
Kn(w)

Kν(αrρ)einφe−iβz, ρ > a,
(1.14)

where Jn is the Bessel function of the first kind and Kn is the modified Bessel

function of the second kind with n = 0, 1, 2, ... representing the order of the Bessel

functions. The quantities u = a
√
k2n2

core − β2, u = a
√
β2 − k2n2

clad, and u2 + w2 =

k2(n2
core − n2

clad)a
2 with a the core radius. The variables A,C, and β can be found

using four boundary conditions satisfying continuity conditions on Ez, Eφ, Hz, and

Hφ and the total mode amplitude. The boundary conditions result in the dispersion

equations for each mode groups which are listed in Tab. 1.1. Three different sets of

real modes can be found using the above equations, TE (Ez = 0), TM (Hz = 0),

and HE and EH (Ez 6= 0 & Hz 6= 0). Figure 1.1 show the intensity profile of the

real vector modes of a MMF with 6 modes, designated as a few-mode fiber (FMF).

These modes are TE01, TM01, HE11x, HE11y, HE21a, and HE21b.

Table 1.1: Dispersion equations for the real modes of the fiber, TE, TM, and hybrid
modes [4].

modes Dispersion Equation

TE J1(u)
uJ0(u)

= − K1(w)
wK0(w)

TM J1(u)
uJ0(u)

= −
(
nclad

ncore

)2 K1(w)
wK0(w)

Hybrid [ J
′
n(u)

uJn(u)
+ K′n(w)

wKn(w)
][ J

′
n(u)

uJn(u)
+ (nclad

ncore

)2 K′n(w)
wKn(w)

] = n2( 1
u2

+ 1
w2 )[ 1

u2
+ (nclad

ncore

)2 1
w2 ]
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Figure 1.1: Mode profiles of (a) HE11x,(b) HE11y, (c) HE21a, (d) HE21b, (e) TE01, (f)
TM01 modes of a FMF with 6 modes. The colors represent the intensity
of the electric field and the arrows represent the polarization which is the
direction of the electric field in the xy-plane.
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As mentioned before, if the difference between cladding and core refractive in-

dices is very small, of the order of 1%, then we can assume ncore ∼= nclad in the

equation of Tab. 1.1 where ncore and nclad are the refractive indices of core and

cladding respectively. Since in this approximation modes are not tightly confined

in the core, it is called the weakly-guiding approximation and the fiber modes in

this limit are the linearly polarized (LP) modes [30, 31, 32]. In the limit of weakly-

guiding approximation, some of the real modes of the fiber that are non-degenerate,

will have the same effective indices and can therefore linearly combine to generate

the LP modes. The resulting LP modes have two degenerate polarizations in the

x and y directions. To calculate the LP mode profiles, the wave equation can be

rewritten for the scalar case, where Ez is negligible and therefore the WE only needs

to be solved for Ex, Ey, Hx, and Hy [29]. Rewritten in the ncore ∼= nclad approxi-

mation, the dispersion equations for the LP modes are shown in Tab. 1.2. Based

on this approximation, each LPlm mode can be constructed as a combination of two

real modes of the fiber when they become degenerate. LP0m modes are HE1m modes

LP1m modes are a superposition of TE0m, TM0m and HE2m modes and LPlm modes

are a combination of HEl+1,m and EHl-1,m modes. Figure 1.2 shows an example of

how a superposition of TE01 and HE21 results in the LP11ax mode [1, 34].

Table 1.2: Dispersion equations for the LP modes of the fiber [4].

modes Dispersion Equation Corresponding Real Modes

LP0,m
J0(u)
uJ1(u)

= K0(w)
wK1(w)

HE1,m and TE0,m

LP1,m
J1(u)
uJ0(u)

= − K1(w)
wK0(w)

HE2,m and TM0,m

LPl,m
Jl(u)

uJl−1(u)
= − Kl(w)

wKl−1(w)
HEl+1,m and EHl−1,m

9



Figure 1.2: The LP11 mode is a superposition of the TE01 and HE21 modes. Note that
the LP mode is linearly polarized, in contrast to the electric fields of the
two constituent modes. Ex polarization is shown, although with appropriate
superposition, an Ey polarized mode could been created [1].

1.2.2 Nonlinear Effects in Optical Fibers

Although the nonlinear coefficient (γ) of silica-based fibers is small compared to

that of other fibers (such as doped and non-silica fibers), when the optical fiber

is long enough and the power injected is high enough, nonlinear effects can occur

along the fiber and become significant enough to affect the propagation of light in

silica fibers. Some of these nonlinear effects are due to the fiber material, the fiber

acting as the active nonlinear medium to generate effects such as Brillouin scattering

and Raman scattering. The latter will be explained in greater details in Sec. 1.2.2.

These scattering nonlinearities involve the vibrational modes of the glass material

called phonons. The phonons involved in Raman scattering are optical phonons and

those involved in Brillouin scattering are acoustic phonons. Optical phonons are

out-of-phase vibrations of neighboring atoms in a unit cell and acoustic phonons are

in phase vibrations between neighboring atoms within the unit cell. The new waves

generated through the emission of a phonon are called Stokes waves and their fre-

quencies are downshifted from the incident wave. In Brillouin scattering, the Stokes

waves are generated at ∼10 GHz lower frequencies or ∼0.2 nm higher wavelengths

as shown in Fig. 1.3(a). Anti-Stokes waves that are upshifted in frequency from

the incident wave are also allowed by absorption of a phonon of the right energy

and momentum. In Raman scattering in silica, the Stokes waves are generated at

∼13.2 THz lower frequencies relative to the incident light or ∼90 nm higher wave-

lengths as shown in Fig. 1.3(b). The Stokes waves generated in a Raman scattering

process offer a very large gain bandwidth, which makes Raman attractive for ampli-

fication. If the fiber is seeded with a signal at the Stokes wavelength, the effects will
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Figure 1.3: (a) The generated Stokes Wave due to the Brillouin scattering in a fiber with
a single wavelength pump in the fiber at ∼1546.2 nm, (b) the generated
Stokes Wave due to the spontaneous Raman scattering in a fiber with a
single pump in the fiber at ∼1545 nm.

be stimulated resulting in stimulated Brillouin scattering (SBS) and stimulated Ra-

man scattering (SRS) gain. Backward SBS in fiber transmission systems is mostly

undesirable. It can be avoided by using different methods, e.g. by broadening the

pump spectral bandwidth to increase the threshold for Stokes-wave generation as

discussed in Sec. 3.3.

Other nonlinear effects such as four-wave mixing (FWM), self- (SPM) and cross-

(XPM) phase modulations are due to the interaction between different optical waves

in the fiber. These nonlinear effects, known as Kerr nonlinearities, are due to a

light induced change in refractive index of the fiber. This change occurs due to

the deformation of the electron orbits by the strong electric field of the optical

wave (|E|2) [4, 33, 35]. The refractive index then changes to n = n0 + n2|E|2,

where n0 is the linear refractive index and n2 is the Kerr coefficient which is of the

order of 10−20 m2/W for silica fibers. The quantity n2 is related to the third-order

susceptibility, χ(3), of the glass material through n2 = 3
8∗n0

Re
(
χ(3)
)

equation. The

Kerr and scattering nonlinear effects have been extensively studied in single-mode

fibers (SMFs) [36, 37, 38, 39, 40].

In this thesis, I will focus on studying intermodal nonlinear effects such as FWM

and SRS in FMFs to understand these effects in the presence of more than one spatial
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Figure 1.4: (a) Partially degenerate and (b) non-degenerate FWM pump-probe config-
urations.

mode. In the following, the theory of FWM and SRS is presented for the general

case of a MMF when different waves included in these processes can be in different

modes of the fiber. In the following, first the partially degenerate and non-degenerate

FWM cases will be introduced along with their conservation laws, including energy

and momentum conservation laws. Then, the coupled wave equations for the more

general case of non-degenerate FWM in a MMF will be theoretically solved. At

the end, the SRS will be discussed in more detail and the time-averaged equations

for dual pumping of a MMF will be theoretically solved and the results will be

interpreted.

Four-Wave Mixing

Four-wave mixing (FWM) is one of the Kerr nonlinear effects in fibers in which three

waves combine to generate a fourth one, such that the total energy is conserved and

phase-matching is satisfied. Energy conservation determines the frequency of the

idler and the phase-matching condition determines whether the FWM effect will be
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coherently added to itself as the wave propagates along the fiber. This effect can be

observed in a SMF or a MMF with all the waves in the same mode, a single high

power pump and a low power signal. A fourth wave is then generated with frequency

ωI where ωI = 2ωp−ωB , and ωp and ωB are the frequencies of pump and signal (or

probe), respectively. This effect is called partially degenerate FWM. In the case of

non-degenerate FWM with two high power pumps and a low-power signal all in the

same mode, three combinations of the frequencies of these three waves are possible.

The schematics of these effects are shown in Figs. 1.4(a) and (b). In the following,

the general case of the non-degenerate FWM in a MMF is studied theoretically and

the equation for the FWM efficiency is derived [41, 42]. In the presence of high-

power pumps in the fiber, the induced polarization (
−→
P ) will have a nonlinear term

in addition to the linear term used to derive Eq. 1.6 (
−→
P =

−→
PL +

−−→
PNL). The linear

part was used previously along with Eq. 1.1 to find the modes of the MMFs. To

study nonlinear effects, the nonlinear part of the polarization (
−−→
PNL) must also be

taken into account to include the effect of Kerr nonlinearities in the wave equation:

∇2−→E − 1

c2

∂2−→E
∂t2

= µ0
∂2−→PL
∂t2

+ µ0
∂2−−→PNL
∂t2

. (1.15)

For the general case of a MMF, if the electric fields of all the waves involved in the

FWM are co-polarized, the total electric field can be written as a linear superposition

of the individual fields (pumps, probe and idler) as in Eq. 1.16:

−→
E =

1

2
x̂

4∑
j=1

Ejexp[i(βjz − ωjt)] + c.c. (1.16)

The resulting induced nonlinear polarization written in Eq. 1.17 has many terms

including the ones related to Kerr effects such as SPM (|Ei|2Ei), XPM (|Ei|2Ej),
sum frequency combination (Ei Ej Ek exp[i(βi+βj+βk−βl)z−i(ωi+ωj+ωk−ωl)t])
and FWM (Ei Ej E

∗
k exp[i(βi + βj − βk − βl)z − i(ωi + ωj − ωk − ωl)t]).

−−→
PNL = ε0χ

(3)...
−→
E
−→
E
−→
E

= ε0χ
(3)[

1

2
x̂

4∑
j=1

Ejexp[i(βjz − ωjt)] + c.c.]3.
(1.17)
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If we then substitute Eqs. 1.16 and 1.17 into Eq. 1.15 and use Ej(
−→r ) = Fj(x, y)Aj(z),

a set of four coupled equations for the electric field amplitudes of the four waves will

be derived that can then be studied numerically or theoretically. The resulted four

equations for the field amplitudes Aj(z) are [33, 41]:

dA1

dz
=
in2ω1

c

[(
f1111|A1|2 + 2

∑
k 6=1

f11kk|Ak|2
)
A1 + 2f1234A

∗
2A3A4e

i∆βz

]
, (1.18)

dA2

dz
=
in2ω2

c

[(
f2222|A2|2 + 2

∑
k 6=2

f22kk|Ak|2
)
A2 + 2f2134A

∗
1A3A4e

i∆βz

]
, (1.19)

dA3

dz
=
in2ω3

c

[(
f3333|A3|2 + 2

∑
k 6=3

f33kk|Ak|2
)
A3 + 2f3412A1A2A

∗
4e
−i∆βz

]
, (1.20)

dA4

dz
=
in2ω4

c

[(
f4444|A4|2 + 2

∑
k 6=4

f44kk|Ak|2
)
A4 + 2f4312A1A2A

∗
3e
−i∆βz

]
, (1.21)

where ∆β is the phase mismatch, the difference between the propagation constants

of the four waves involved in the FWM process (∆β = β4−β1−β2+β3) corresponding

to the energy conservation law of ω4 = ω1 + ω2 − ω3. In these equations, ω1, β1,

ω2, and β2 are the frequencies and propagation constants of the two pumps with

amplitudes A1 and A2 along the z-axis, ω3 and β3 correspond to the probe or signal

(A3) and ω4 and β4 correspond to the idler (A4). The quantity fijkl is defined as:

fijkl =

∫ ∫ −∞
∞ F ∗i (x, y)F ∗j (x, y)Fk(x, y)Fl(x, y)dxdy

[IiIjIkIl]1/2
, (1.22)

where for m = {i, j, k, l}, Im =
∫ ∫ −∞
∞ |Fm(x, y)|2dxdy and Fm(x, y) is the transverse

electric field profile. It represents the degree overlap of the transverse electric field

profiles of the four waves involved in the process. In Eqs. 1.18 to 1.21, the first

terms in the parenthesis correspond to SPM for each wave, the second term to XPM

between the four waves included in the process and the third term to FWM. In the

case of two strong pumps, the first two terms will be important but they can be

neglected for the signal and the idler in the undepleted pump approximation because

of their low powers. In the undepleted pump approximation, Eqs. 1.18, 1.19, 1.20,

and 1.21 can be simplified and the solution to the first two equations, Eqs. 1.18
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and 1.19 are A1(z) = A1(0) eiδk1 z, and A2(z) = A2(0) eiδk2 z. The quantities δk1

and δk2 are written below:

δk1 =
n2ω1

c

(
f1111P1 + 2f1122P2

)
, (1.23)

δk2 =
n2ω2

c

(
f2222P2 + 2f2211P1

)
, (1.24)

where P1 = |A1(0)|2 and P2 = |A2(0)|2 are the input powers of the two waves.

Substituting the solution for A1(z) and A2(z) into Eqs. 1.20 and 1.21 leads to these

two equations:

dA3

dz
' iδk3A3 + iC3A

∗
4e
−i(∆β−δk1−δk2)z, (1.25)

dA∗4
dz
' −iδk4A

∗
4 − iC4A3e

i(∆β−δk1−δk2)z, (1.26)

where P = P1 + P2 is the total input pump power and

δk3 =
2n2ω3

c
(f3311P1 + f3322P2), (1.27)

δk4 =
2n2ω4

c
(f4411P1 + f4422P2), (1.28)

C3 =
2n2ω3

c
f3412

√
P1P2, (1.29)

C4 =
2n2ω4

c
f4312

√
P1P2. (1.30)

Using A3 = B3e
iδk3z and A4 = B4e

iδk4z, Eqs. 1.20 and 1.21 become:

dB3

dz
= iC3B

∗
4e
−iκz (1.31)

dB∗4
dz

= −iC4B3e
iκz, (1.32)

where κ = ∆β − δk1 − δk2 + δk3 + δk4. The solutions to Eqs. 1.31 and 1.32 are

B3 =
[
aegz + be−gz

]
e−iκz/2 (1.33)

B∗4 =
[
cegz + de−gz

]
eiκz/2, (1.34)
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where g is called the gain parameter defined as

g =

√
C3C4 −

(κ
2

)2
. (1.35)

It can be shown that the ratio of the generated idler to the input signal power is:

P4

P3

∝ sinh2(gL)

(gL)2
(1.36)

which can be approximated to Eq. 1.37 when P4 � P3 � P :

P4

P3

∝ sin2(κL/2)

(κL/2)2
. (1.37)

This expression determines the efficiency of the idler generated in the FWM process

of ω4 = ω1 +ω2−ω3. It is the ratio of the idler power to the signal (or probe) power

in the FWM process and shows that the FWM efficiency changes as a function of the

phase-mismatch. The efficiency of the FWM in a FMF is measured experimentally

in Sec. 3.2 and Eq. 1.37 is then used to fit the experimental data as will be discussed

later.

Stimulated Raman Scattering

As mentioned earlier in this chapter, the Raman scattering effect in fibers is a

result of the interaction of light (photons) with the vibrational dynamics of the

glass material (phonons). A pump photon can excite a vibrational transition in the

glass material as a result of which a photon with a lower frequency is emitted, as

illustrated in Fig. 1.5. Raman scattering can be stimulated by seeding the fiber

with a signal at the Stokes wave frequency resulting in stimulated Raman scattering

(SRS). Through SRS, the signal will be amplified by coherently coupling to the

Raman pump. Therefore, the fiber itself acts as an amplifier. The Raman gain only

depends on the wavelength separation between the pump and the signal, ∼13.2

THz in silica. The advantage of SRS is that it does not depend on the exact

frequencies of the pump and signal but only on their difference. In addition, Raman

amplification does not only occur in one direction inside the fiber, so that the signal

and pump do not have to be propagating in the same direction. If the signal wave
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Figure 1.5: Stokes and Anti-Stokes waves generation in a spontaneous Raman scattering
process.

propagates in the opposite direction of the pump wave, it will be amplified through

the Raman process as well as if the signal wave propagates in the same direction

as the pump wave. For both forward and backward Raman, the momentum is

conserved through
−→
ksw =

−→
kp −

−→
ks , where

−→
ksw is the wave vector of the phonons,

and
−→
kp and

−→
ks are the wave vectors of the pump and signal, respectively [8, 43]. It

should be noted that Raman gain is polarization dependent, therefore if the signal

and pump are co-polarized, the gain will be maximum and itwill be minimum when

they are orthogonally polarized with respect to each other. In silica fibers the Raman

gain coefficient gR ∼ 1×10−13m/W is much smaller than the SBS gain coefficient of

gB ∼ 5 × 10−11m/W . Therefore, SRS in fibers requires much higher pump powers

than SBS but it offers a much broader gain spectrum as shown in Fig. 1.3(b). The

Stokes peak is a very wide peak of 100 nm so that a flat spectral gain can be achieved

in a wavelength-division multiplexed (WDM) channel by combining several Raman

pumps at nearby wavelengths. Raman amplifiers are also interesting since they can

provide a larger bandwidth for amplification than Erbium-doped fiber amplifiers.

Increasing the gain bandwidth is a solution to the capacity problem of SMFs as

mentioned before. Figure 1.6 shows the schematics of a Raman fiber amplifier with

forward and backward Raman pumps.

If two Raman pumps at the same frequency are launched into the same mode

of a MMF, respectively in the forward and backward directions, along with a signal

wave in a specific mode, the total electric fields in the fiber can be written as

a superposition of the electric fields of the signal and pumps in different modes

as written in Eq. 1.16. Assuming that all waves have the same polarization and

that this polarization does not change as the waves propagate, the wave equation,
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Figure 1.6: Schematic of a Raman amplifier using a fiber that is pumped in both back-
ward and forward directions.

Eq. 1.15, including PNL corresponding to Raman scattering will lead to the following

time-averaged equations for the powers of the pumps and signal (or Stokes waves)[8,

12, 13, 42, 44, 45, 46]:

dP s
j

dz
= −αsP s

j + γR

(∑
i

fij(P
p+
i + P p−

i )
)
P s
j , (1.38)

dP p+
i

dz
= −αpP p+

i −
ωp
ωs
γR

(∑
i

fijP
s
j P

p+
i

)
, (1.39)

dP p−
i

dz
= +αpP

p−
i +

ωp
ωs
γR

(∑
i

fijP
s
j P

p−
i

)
, (1.40)

where P s
j is the signal power in mode j, P p+

i is the pump power in mode i in the

forward direction, and P p−
i is the pump power in mode i in the backward direction.

ωs and ωp are the frequencies of the signal and pumps, respectively. We assume

that both pumps have the same frequency. γR is related to the cross section for

spontaneous Raman scattering and αs and αp are the absorption or loss coefficients

of the fiber at the signal and pump frequencies, respectively. The coefficient fij

is a simplified form of Eq. 1.22 for the case of two modes. The intensity overlap

integrals, fij, are defined as:

fij =

2π∫
0

+∞∫
0

|Fi(r, φ)|2|Fj(r, φ)|2r dr dφ

2π∫
0

+∞∫
0

|Fi(r, φ)|2r dr dφ
2π∫
0

+∞∫
0

|Fj(r, φ)|2r dr dφ
, (1.41)
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where Fi and Fj are the transverse electric field profiles of two waves in the ith

mode and jth mode, respectively, written in cylindrical rather than cartesian coor-

dinates [11]. The solutions to Eqs 1.39 and 1.40 in the undepleted pump approxi-

mation are

P p+
i = P p+

0 e−αpz (1.42)

P p−
i = P p−

L e−αp(L−z), (1.43)

where P p+
0 is the initial input power for the forward pump and P p−

L for the backward

pump. Substituting them in Eq. 1.38 and solving it analytically results in:

P s
j (z) = P s

j (0) exp

[
− αsz +

γR
αp
e−αp(L+z)

(
eαpz − 1

)(
eαpL

∑
i

P p+
0 + eαpz

∑
i

P p−
L

)]
,

(1.44)

in which L is the length of the fiber. The Gon-off is defined as [8]:

Gon-off =
P on
s (L)

P off
s (L)

(1.45)

where P on
s (L) and P off

s (L) are the signal power at the fiber output when the pumps

are on and off, respectively. In a MMF with negligible mode coupling, and assuming

the small signal approximation, the signal power in a particular mode j will grow

exponentially with a Raman gain of

Gon−off = exp

[
γR
αp
e−2αpL

(
eαpL − 1

)(
eαpL

∑
i

P p+
0 + eαpL

∑
i

P p−
L

)]
(1.46)

= exp

(
gRLeff

[∑
i

fijP
p+
i +

∑
i

fijP
p−
i

])
, (1.47)

where gR is the Raman gain coefficient, Leff the effective fiber length defined as

Leff = (1− e−αpL)/αp [8, 11], and P p+
i the co-propagating pump power coupled into

mode i, and P p−
i the counter-propagating pump power in mode i. Equation 1.47

shows that the gain of each mode in a multi-mode Raman amplifier depends on

its spatial overlap with the pump modes, fij. This will be discussed further in

Sec. 4.2 when the gain of the signal in different modes is measured in both backward,
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forward, and bi-directional pumping configurations in FMFs. In multi-mode Raman

amplifiers, gain equalization is an important factor in selecting a certain pump

configuration and has been studied in [10, 11, 47]. Ryf et al. have shown that it

is possible to achieve equal amplification in MMFs by launching the pumps in the

higher order modes [13]. The pumping scheme for equalized gain in all modes may

change based on the refractive index profile of the fiber which changes the mode

profiles and therefore the overlap integrals.

In the following chapters the nonlinear effects of FWM and SRS are character-

ized and studied experimentally in a MMF with only 3 spatial modes called FMF.

In chapter 2, the FMF used in the experiments is characterized and its dispersion

and transfer function are presented. The experimental free-space multiplexer setup

is presented and the mode evolution inside the fiber is discussed. In chapter 3, the

IM-FWM is studied in the graded-index FMF characterized in chapter 2 and the ex-

perimental results for FWM efficiency measurements are presented. The full FWM

efficiency bandwidth measurement is presented for pump and probe detuning in the

case of non-degenerate FWM with pumps in the higher order mode and the signal

or probe in the fundamental mode. The impact of the relative polarization states

of pumps and probe is also characterized. In chapter 4, Raman amplification in a

70-km FMF is measured for three different pump configurations in order to achieve

equal amplification in all modes and a transmission experiment is performed in a

loop of up to 1050 km of the same fiber and the results are discussed in Appendix A.
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Chapter 2

Linear Properties of Few-Mode

Fibers

2.1 Introduction

In this chapter, we report on the characterization of the FMF we have used to carry

out our experiments. This fiber supports 3 spatial modes known as LP01, LP11a and

LP11b and two polarization states in the x and y directions for each one of them,

resulting in a total number of 6 modes labeled as: LP01x, LP01y, LP11ax, LP11ay,

LP11bx and LP11by. The LP11a and LP11b modes are degenerate modes that couple

linearly to each other along the fiber and have the same propagation constant and

group velocity. In the text we simply refer to these modes as LP11 modes or mode

group. One advantage of the FMF used in our experiments is the limited number

of modes, which enables a fundamental study of nonlinear effects without having to

include complex effects due to the presence of higher order modes such as LP02 or

LP12. The results of this study of the linear and nonlinear effects between LP01 and

LP11 modes can nonetheless be straightforwardly extended to MMFs with additional

higher order modes.

In the following, we first characterize the linear properties of the fiber such as

group velocity and the chromatic dispersion through a time-of-flight measurement

using a 100 picosecond pulse generated with a continuous wave (CW) laser, a pulse

pattern and an intensity modulator. Next, the transfer matrices that characterize
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the mutual energy exchange between all 6 modes of the FMF are presented. The

6 × 6 transfer matrix reveals the linear coupling between different modes in the

fiber-under-test. It has been measured using a heterodyne measurement setup.

2.2 Fiber parameters

One of the most important quantities characterizing FMFs and MMFs is the inten-

sity overlap integral between two different modes, fij, defined in Eq. 1.41 because

it determines the magnitude of the energy exchange between modes. The fij coeffi-

cients are calculated for a graded-index FMF with 3 spatial modes as is the case of

the FMFs used in this work [5]. The inverse of the intensity overlap integral 1/fii

is the effective area Aieff of the ith mode. The results are shown in Tab. 2.1 for the

LP01, LP11a, and LP11b modes. For the degenerate LP11 mode group, we can use the

complex notation LP11± = LP11a ± iLP11b which results in a ring shaped intensity

profile that is representative of the average intensity produced by the beating of

the real vector modes TE01, TM01, and the two-fold degenerate HE21 modes that

compose the LP11a and LP11b modes. This will later be explained in detail. In

order to generate the higher order LP11 mode group in the fiber, the approximate

mode profile of LP11a and LP11b modes are generated using 0/π phase plates. The

coupling of these beam profiles into the fiber will generate a linear superposition of

the real modes of the fiber that makes up the LP11 mode group. These real modes

of the fiber include TE01, TM01, and the two-fold degenerate HE21 modes and all

have a ring-shaped profile but different group velocities resulting in beating along

the fiber [13]. Figure. 2.1 shows how the LP modes are generated from the real

modes of the 6-mode FMF under study in this work. Fiber imperfections can also

cause coupling between the degenerate modes in the LP11 mode group [46, 48, 49].

The results for fij are shown in Tab. 2.2 for the LP01, LP11+, and LP11- modes.

In order to characterize the linear properties of the fiber for the LP01 and de-

generate LP11 modes, a time-of-flight measurement of the chromatic dispersion was

conducted for the two modes. The results of an intensity transfer measurement

between different modes is also presented in order to determine the transfer matrix

components, as explained later in Sec. 2.5.
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2.3 Fiber Chromatic Dispersion

In MMFs, each mode travels with a different propagation constant, β(ω), which is

wavelength or frequency dependent. The propagation constant can be expanded in

a Taylor series around an arbitrary frequency, ω0 as:

β(ω) = β0 + β1(ω − ω0) +
β2

2
(ω − ω0)2 +

β3

6
(ω − ω0)3 + ...

= β(ω0) +
(ω − ω0)

vg(ω0)
− (ω − ω0)2

ω2
0

πcD(ω0)

+
(ω − ω0)3

ω3
0

πcλ0

3

(
2D(ω0)

λ0

+ S(ω0)

)
+ ...,

(2.1)

where

β1 = (dβ/dω)|ω=ω0 = (1/vg)|ω=ω0 , (2.2)

β2 = (d2β/dω2)|ω=ω0 = −2πc

ω2
0

D(ω0), (2.3)

β3 = (d3β/dω3)|ω=ω0 =
2πcλ0

ω3
0

(
2D(ω0)

λ0

+ S(ω0)). (2.4)

The quantity vg is the group velocity of the wave at frequency ω0 with λ0 = 2πc/ω0.

The parameters D(ω0) and S(ω0) respectively designate the dispersion and disper-

sion slope at ω0, where S = dD/dλ. In order to study intermodal effects in a FMF,

we need to know the group velocity vg(λ) or vg(ω) of the fiber for wavelengths in

the C-band for both modes in the FMF. The group velocity dispersion can then be

calculated as:

D =
−2πc

λ2

dβ1

dω
, (2.5)

where c is the speed of light in vacuum and λ is its wavelength and β1 as in Eq. 2.2.

The relative group velocities of the LP01 and LP11 modes are measured using the

time-of-flight method. The experimental setup for this measurement is shown in

Fig. 2.2. In this experiment, a 100 picosecond pulse is generated and coupled into the

LP01 and LP11 modes of the fiber using the free-space multiplexer setup described

later in this chapter in Sec. 2.4. Since the two modes travel at different group

velocities, two separate pulses are observed at the fiber output, related to the two
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different modes as shown in Fig. 2.3. The differential group delay (DGD) which is

the difference between the propagation times between these two pulses, is measured

to be 11 ns for this 4.7 km long fiber. Sweeping the carrier wavelength of the pulse

in the C-band (1530-1565 nm), we can measure the wavelength dependence of the

group velocity and calculate the chromatic dispersion of the fiber using Eq. 2.5.

Table 2.1: 1/fij (µm2) for LP01, LP11a, and LP11b modes of a graded-index FMF with
six spatial and polarization modes [5].

modes LP01 LP11a LP11b

LP01 59.6 120.2 120.2

LP11a 120.2 79.8 239.4

LP11b 120.2 239.4 79.8

Table 2.2: 1/fij (µm2) for LP01, LP11+, and LP11− modes of a graded-index FMF with
six spatial and polarization modes [5].

modes LP01 LP11−/LP11+

LP01 56.9 120.2

LP11−/LP11+ 120.2 119.7

In order to generate a 100 picosecond pulse, a tunable External Cavity Laser

(ECL) is intensity modulated using a Mach-Zehnder modulator (MZM). The MZM

is driven by a train of 100 picosecond electrical pulses generated by a Pulse Pattern

Generator (PPG) and a 9-volt bias voltage. The bias voltage enables the adjustment

of the intensity modulation on the transfer curve of the MZM at the Quadrature

bias point which is the 50% transmission point or the region between the maximum

and minimum of the transfer curve to transform the digital electric signal to a

digital optical signal. Since intensity modulators based on LiNbO3 are polarization
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Figure 2.1: The different combinations of the real modes of the FMF under study, degen-
erate HE11a and HE11b, HE21a and HE21b, TM01 and TE01, that generate
the LP modes: the degenerate LP01x and LP01y, and degenerate LP11ax,
LP11ay, LP11bx and LP11by. The x and y symbols in the subscripts represent
the polarization direction of the modes in the xy-plane.
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Figure 2.2: Experimental setup to measure the inverse of group velocities, 1/vg, for both
LP01 and LP11 modes.

Figure 2.3: (a) Input and (b) output pulses of the 4.5-km-long FMF under study as mea-
sured using an oscilloscope. The DGD of the fiber at 1550 nm is measured
to be 11 ns. The smaller peak corresponds to the LP11 mode group and the
larger one to the LP01 mode; the LP11 mode group has a smaller vg than
the LP01 mode.
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sensitive, a polarization controller (PC) is placed before the modulator to obtain the

desired polarization orientation at the input of the modulator chip. The generated

pulse is then amplified by an Erbium-doped fiber amplifier (EDFA) and coupled into

the fiber using the LP01 port of the free-space mode multiplexer (Mode-MUX). The

output of the fiber through the same LP01 port of the mode demultiplexer (Mode-

DEMUX) is detected and converted to an electrical signal through an optical-to-

electrical converter (O/E) and detected on an oscilloscope as shown in Fig. 2.3(b).

The ECL wavelength is swept from 1530 nm to 1565 nm (C-band). The relative

group delays between the two pulses is measured for each wavelength and the relative

1/vg (ps/km) is calculated. Figure 2.4(a) shows the relative 1/vg (ps/km) versus

laser wavelength. It is fitted by a Taylor expansion as in Eq. 2.1 up to the β3 term

in the C-band for both modes. These dispersion curves show that the LP01 mode

should be generated at a ∼16 nm longer wavelength than the LP11 modes for both

to have the same group velocity. The calculated chromatic dispersion (D) is shown

in Fig. 2.4(b). β2 and β3 can be calculated from the measurement of Figs. 2.4(a)

and 2.4(b) using Eqs. 2.3 and 2.4. Based on the data of Fig. 2.4(a) and Eqs. 2.3

and 2.4, β2 and β3 of the two modes are calculated for a wavelength of 1550 nm and

presented in Tab. 2.3.

Table 2.3: β2 and β3 values at 1550 nm for LP01, LP11a, and LP11b modes of a graded-
index FMF with six spatial and polarization modes.

modes β2[ps2/km] β3[ps3/km]

LP01 −22.8561 0.1674

LP11a/LP11b −23.9055 0.1658

2.4 Free-Space Mode-Multiplexer Setup

As mentioned in Sec. 2.3, in order to study intermodal effects between LP01 and

LP11 mode group, we need to couple in and detect each mode separately in the
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Figure 2.4: (a) Measured relative average inverse group velocities of the LP01 and LP11

modes as a function of wavelength for the 4.7-km FMF, (b) Chromatic dis-
persion curves for the two modes, LP01 (blue) and LP11 (red), calculated
from the relative delay measurement between the modes.

fiber. The fiber we are using is a graded-index FMF in which, due to its radial

symmetry, the true modes are of the Laguerre-Gaussian (LG) form, including LG00,

LG01 and LG10 [50, 51]. LG modes are approximation for infinite parabolic profile,

but the graded-index FMF under study has a trench between the two claddings of

the fiber and therefore its exact modes have to be calculated numerically. However,

these modes can be approximated by the LP modes of a step-index fiber including

LP01, LP11a, and LP11b modes [50, 52]. Because both the collimated laser beam

and the LP01 fiber mode have a Gaussian intensity profile, we only need to reduce

the laser beam waist in order to couple it in to the fiber and excite its fundamental

mode. As mentioned before, since LP modes are a superposition of the true modes

of the fiber, the input beam propagates as a superposition of the true modes of

the fiber (Fig. 2.1). However, these true modes of the fiber are non-degenerate and

travel with different propagation constants (β). This results in the beating between

them along the fiber, generating the LP mode profiles at beat length interval of

the true modes. The beating between TE01 and twofold degenerate HE21 generates

LP11ay and LP11bx modes and the beating of TM01 and HE21 generates LP11ax and
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Figure 2.5: Mode profiles and phases for three spatial modes of a FMF.

LP11by modes. To generate higher order modes LP11a and LP11b in this FMF, 0/π

phase plates can be used as shown in Fig. 2.5 [53]. No phase plate is needed for

the LP01 mode which corresponds to a true mode of the fiber, HE11. We note that

when using the phase plate the beam profile at the output is a superposition of the

TE01 or TM01 and HE21 as shown in Fig. 2.1. Therefore, a ring shape profile is

more appropriate to represent the spatial intensity profile of the LP11 mode group

along the fiber [13]. Figure 2.6(a) shows the measured beam profile of the LP01

mode at the fiber output and Figs. 2.6(b) and 2.6(c) the beam profile of the LP11a

mode after the phase plate at the input and right at the fiber output, respectively.

For the LP11b, the phase plate is rotated by 90◦, but the output beam profiles is

found to be similar to the ring-shaped profile shown in Fig. 2.6(c). This is another

indication that a ring shape profile (LP11± = LP11a ± iLP11b) is more suitable to

represent the higher order LP11 mode group profiles in this fiber than LP11a and

LP11b modes alone.

Figure 2.7 shows the free-space Mode-MUX setup used in our experiments. The

Galilean telescope system used to reduce the beam diameter before launching into

the fiber core is shown in Fig. 2.8. The focal lengths of the lenses are 75 mm

and 1.49 mm. The beam waist of the GRIN lenses used as the collimators at the

output of the SMFs is 0.5 mm. Therefore, the diameter of the beam (d) is found by

D × f2 / f1 = 5 mm × 1.49 mm / 75 mm = 9.9 µm which is comparable to the core

diameter of the graded index fiber (∼ 15µm) required for efficient launching. Two
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Figure 2.6: (a) LP01 mode profile of the fiber, (b) beam profile after the phase plate
that couples into the fiber to excite the LP11a mode, (c) mode profile of the
LP11a mode taken by an Infrared (IR) camera.

50:50 beam couplers are used to align the LP11a and LP01 beams and a mirror is

used for bending the LP11b through a 50:50 coupler and therefore aligning all three

beams together before going through the Galilean telescope system. The mirror

and the couplers cause a loss in each path, thus reducing the maximum power that

can be launched into the fiber. For LP01 this loss is 8 dB, for LP11a path without

the phase plate 7 dB and for the LP11b path without the phase plate 6 dB. With

the phase plates the losses in the LP11a and LP11b paths will increase by 2-4 dB.

If more power needed to be launched into the fiber through either one of the LP11

modes, the Mode-MUX setup can be slightly modified by removing the mirror and

replacing the two 50:50 beam splitters by one 30:70 beam splitter, sending 70% of

the LP11a beam into the fiber which reduces the loss in this arm by at least 3 dB.

This modification helps launch more pump power into the fiber in the LP11 modes

as will be discussed in Chap. 3. The same setup is used as Mode-DEMUX; the fiber

output travels through the Galilean telescope system and 50:50 beam splitters to

measure the power in each mode.

2.5 Linear Transfer Matrix Measurement

To understand the coupling between different modes in the fiber, a measurement

was performed using an interferometric technique. The result of this measurement

is a complex amplitude transfer matrix in which each element of the matrix indi-

cates the strength of the coupling between two particular modes. The 6×6 transfer

matrix, T(ω), of the FMF was measured using the swept-wavelength interferometry
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Figure 2.7: Experimental setup for Mode-MUX and mode-DEMUX for a FMF with
three spatial modes.

Figure 2.8: The Galilean telescope system used to reduce the beam diameter before
launching into the fiber core.
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Figure 2.9: Experimental setup for the SDM-OVNA for a FMF [2].

technique in the linear regime where
−→
E out = T(ω)

−→
E in. The measurement was done

using an optical vector network analyzer with a spatial division multiplexer (SDM-

OVNA), allowing a complete characterization of the 6×6 transfer matrix of the

system in a single scan, including the 6 modes, LP01x, LP01y, LP11ax, LP11ay, LP11bx

and LP11by [2]. This method is based on swept wavelength interferometry (SWI) used

for measuring the 2×2 Jones matrix in single mode systems. In single mode systems,

the low power output from a tunable laser is coupled into the fiber and the transfer

to all possible modes and polarizations is characterized at the output [54, 55]. The

experimental setup for this measurement is shown in Fig. 2.9 where PBS stands for

polarization beam splitter. The output of the tunable laser source is divided into

two paths, one is the reference path to a PBS and two detectors and the other path

is through a polarization multiplexer (Pol.MUX) after which the orthogonally po-

larized beams are separately coupled into different modes and propagated through

the FMF. The transmitted beams at the Mode-DEMUX are then recombined and

split between two orthogonal polarizations by another PBS, with each polarization

going to a different detector where it interferes with one arm of the reference beam.

Through this interferometric heterodyne detection technique, the coupling between

different modes and polarizations is detected by measuring phase and amplitude.

Figures 2.10, 2.11, and 2.12 show a subset of 24 of the 36 transfer functions

versus wavelength for all possible linear couplings between the 6 linearly polarized
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fiber modes. Figure 2.10(a) shows transmission versus wavelength for all four input-

output combinations between LP01x and LP01y. A small wavelength dependence of

the transfer functions is observed over 4-nm wavelength sweep. Figure 2.10(b) shows

the transfer function for the case in which the input is in the LP01x or LP01y and

the transmission is measured in the LP11ax and LP11ay modes. These measurements

reveal the very weak coupling that exists between LP01x or LP01y on the one hand

and all the LP11 modes on the other.

In contrast, Fig. 2.11(a) shows the transfer matrix elements for the case in which

the input wave is coupled into the LP11ax mode and output is measured in the LP11ax,

LP11ay, LP11bx, and LP11by modes, while Fig. 2.11(b) shows the transfer matrix el-

ements for the case when the input is in LP11ay: a definite wavelength dependent

power transfer is observed between these LP11 modes. Figures 2.12(a) and 2.12(b)

illustrate a similar power transfer between LP11bx or LP11by and other LP11 modes.

One observes a very strong linear coupling between these modes as well as a pro-

nounced wavelength dependence of the transfer. These measurements are consistent

with calculations of the linear transfer between higher order LP modes in an ideal

FMF that does not possess the random birefringence of the FMF under study. As

mentioned earlier, the LP11a and LP11b modes are not the real modes of the fiber but

a superposition of the non-degenerate real modes. Non-degenerate real modes have

different group velocities, which results in beating between them. The difference in

the group velocities of the real modes is the cause of the wavelength dependence

of the transfer coefficients between higher order LP modes. Such sharp wavelength

dependence results in very different evolutions of waves that are closely spaced in

wavelength, independent of their relative polarization states. Based on the strong

wavelength dependence of the linear transfer function between LP11a and LP11b

modes, one should expect a strong wavelength dependence of FWM involving these

modes. In addition, for any specific wavelength and input polarization of the LP11a

and LP11b modes, there also exists a linear coupling between the various polariza-

tions of the same mode. Therefore, as will be discussed in Chapter 3, although the

relative polarization states of two waves in the FWM experiment can be set in the

Mode-MUX, there will be a strong coupling between all the polarization states of

the mode, a coupling that may affect the FWM efficiency.
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Figure 2.10: Measured amplitude transfer functions between various modes of the 6-
mode FMF as a function of wavelength: (a) Four coupling combinations
between LP01x and LP01y; (b) Four coupling combinations between LP01x

and LP01y with LP11ax, and LP11ay modes.

Figure 2.11: Measured amplitude transfer functions between various modes of the 6-
mode FMF as a function of wavelength: (a) Four coupling combinations
for coupling from (a) LP11ax and (b) LP11ay to all four modes of LP11ax,
LP11ay, LP11bx, and LP11by.
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Figure 2.12: Measured amplitude transfer functions between various modes of the 6-
mode FMF as a function of wavelength: (a) Four coupling combinations
for coupling from (a) LP11bx and (b) LP11by to all four modes of LP11ax,
LP11ay, LP11bx, and LP11by.

2.6 Conclusion

In this chapter we have characterized the linear properties of the FMF under study,

including group delay, dispersion and dispersion slope. Characterizing these prop-

erties is necessary in order to determine the phase mismatch between LP modes,

as is discussed in Chapter 3, and find the perfect phase-matched condition for in-

termodal FWM. We also presented the results of a transfer function measurement

that represent the coupling between different modes of the fiber at different polar-

izations and wavelengths. The LP01 mode doesn’t exhibit significant wavelength

dependent transmission but the modes in the LP11 mode group do show consider-

able wavelength dependent transmission. The transmission matrix measurement is

in the linear regime for laser power less than 0 dBm but the results are also impor-

tant to understand the mode behavior in the nonlinear regime. In Chapter 3, the

intermodal FWM effect is studied in the same FMF that was characterized in this

chapter.
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Chapter 3

Four-Wave Mixing in Few-Mode

Fibers

3.1 Introduction

In this chapter, first a theoretical study of the Inter-modal Four-Wave Mixing (IM-

FWM) efficiency bandwidth is presented for the non-degenerate FWM pump-probe

configuration as shown in Fig. 1.4(b). Two different pump and probe configurations

are possible: first pump in the LP01 mode and the second pump and the probe

in the LP11 mode or two pumps in the LP11 mode and the probe in the LP01

mode. We refer to these configurations as “multiple-mode pumps configuration”

and “same-mode pumps configuration”, respectively. In the “same-mode pumps

configuration” we can study the effect of the relative polarizations of the two pumps

on the IM-FWM. The ∆β = 0 equation is solved and the efficiency bandwidths

are calculated. The IM-FWM for the “same-mode pumps configuration” is then

experimentally studied and the results of measurements in a 4.7 km graded-index

FMF is presented. In the non-degenerate IM-FWM experiment, two pumps are

injected in the same higher order spatial mode and a probe in the fundamental

mode. This will generate IM-FWM effects in the fundamental mode, therefore

only the port corresponding to the fundamental mode needs to be monitored in the

demultiplexer. The fluctuations of IM-FWM is then investigated for a 1 nm detuning

of the probe with a higher resolution of the OSA (0.01 nm resolution). The effect

of polarization is also investigated by respectively scrambling the polarization of
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the pumps and probe. In the following, first the theoretical analysis of IM-FWM is

discussed and then the experimental setup and results are presented.

3.2 Theoretical Analysis of IM-FWM

In order to observe the FWM nonlinear effect, the energy and momentum conser-

vation laws must be simultaneously satisfied. The latter is known as the phase-

matching condition. The phase-mismatch, ∆β, defined as the difference between

the propagation constants of the idler and the three waves involved in the process,

may be due to the waveguide dispersions, material dispersion, and nonlinear effects.

In order to maximize FWM this phase-mismatch should be zero (∆β = 0) for the

phase-matching condition to be fully satisfied and idlers generated at frequencies

that follow their respective energy conservation laws. In SMFs, the phase-matching

condition can only be satisfied if the pump wavelength is close to the zero dispersion

wavelength (ZDW) and in the anomalous dispersion regime, so that the waveguide

and nonlinear dispersion cancel the material dispersion [36, 43, 56]. In a FMF how-

ever, one can take advantage of the different dispersion curves of the supported

spatial modes such that their respective group velocities satisfy the overall phase-

matching condition for a particular FWM process [4, 17]. This provides much more

flexibility and an opportunity to study different experimental conditions in which

these effects can be observed, modified or eliminated. In the case of non-degenerate

IM-FWM in FMFs, phase-matching conditions can be achieved by either launching

both pumps in the same mode and the probe in a different mode (same-mode pumps

configuration), or one pump and the probe in the same mode and the second pump

in a different mode (multiple-mode pumps configuration) as shown in Fig. 3.1. Using

the fact that the different modes have different group velocities and propagation

constants, intermodal phase-matching can be achieved through a suitable choice of

wavelengths. In each of these configurations, it is also possible to control the relative

polarization of the two waves in the same mode by sending them through a coupler

and polarization beam splitter (PBS) before launching them into the fiber as shown

in Fig. 3.5.

As seen from Eq. 1.21, the propagation equations in FMFs are governed by the

coefficients fijkl defined in Eq. 1.22 [50, 57, 58]. In order to calculate fijkl, the spatial
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field distributions of the higher-order modes, LP11a and LP11b, can be written as

a linear combination, F±(x, y) = F11a(x, y) ± iF11b(x, y), because these two spatial

modes linearly couple to each other as they propagate along the fiber. F11a(x, y) and

F11b(x, y) are the respective spatial electric field distributions of the two orthogonal

and degenerate LP11a and LP11b modes. It is of great importance to mention that

LP modes are not the real modes of the fiber but a combination of the real vector

modes all of which have a ring-shaped intensity profile. From the intensity overlap

integrals, fijkl, we can determine the various possible IM-FWM processes and find

the spatial distribution of the resulting idler waves [49]. For non-degenerate FWM

in FMFs, based on symmetry, if the two pumps are coupled into the LP11a or LP11b

modes and the probe into the LP01 mode, the overlap intensity integral, fijkl, will be

nonzero only for the idler in the LP01 mode [49]. In the present study, both pumps

are coupled in either one of the LP11 modes and the probe in the LP01 mode and the

idlers are only observed in the LP01 mode of the Mode-DEMUX. This configuration

will then help simplify the measurements by only monitoring the LP01 port of the

Mode-DEMUX. If both pumps are coupled into the LP01 mode and the probe into

one of the LP11 modes, the idlers can be observed in both LP11a and LP11b ports of

the Mode-DEMUX shown in Fig. 2.7 because of their linear coupling along the fiber.

Therefore, a simultaneous measurement of the LP11 ports in the demultiplexer is

needed to fully characterize the IM-FWM effect in the fiber.

Based on the IM-FWM analysis in [26], three different first-order idlers should be

observed corresponding to the three possible processes numbered in Fig. 3.1. These

processes and the corresponding energy conservation relations with their respective

phase-matching conditions are as follows:

(proc. 1) ωI1 = ωp1 − ωB + ωp2, βI1 = βp1 − βB + βp2, (3.1)

(proc. 2) ωI2 = ωp1 + ωB − ωp2, βI2 = βp1 + βB − βp2, (3.2)

(proc. 3) ωI3 = −ωp1 + ωB + ωp2, β
I3 = −βp1 + βB + βp2. (3.3)

The labels p1 and p2 designate the first and second pumps and B the probe, while

ωi and βi with i ∈ {Ii, p1, p2, B} are the angular frequencies and propagation con-

stants of the respective waves. Ii with i = {1, 2, 3} corresponds to idlers generated in

processes 1 (proc.1), 2 (proc.2), and 3 (proc.3), respectively. For the measurement
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Figure 3.1: (a) Same-mode pumps configuration with two pumps in the LP11 mode and
a probe in the LP01 mode. (b) Multiple-mode pumps configuration with a
pump and the probe in the LP11 mode and the second pump in the LP01

mode. The three possible idlers are shown as dashed arrows and numbered
(lower index) according to the IM-FWM process that generates them (see
text).

performed in the same-mode pumps configuration as shown in Fig. 3.1(a), only pro-

cesses 2 and 3, corresponding respectively to Eqs. (3.2) and (3.3) were observed [59]

and for the measurement performed in the multiple-mode pumps configuration as in

Fig. 3.1(b), only processes 1 and 2, corresponding respectively to Eqs. (3.1) and (3.2)

were observed [48]. Process 1 in the same-mode pumps configuration and process

3 in the multiple-mode pumps configuration were not observed possibly because of

the greater sensitivity of their phase-matching conditions to fluctuations in the fiber

which will be discussed later in this section. In summary, it can be possibly ex-

plained by the Taylor expansion of the phase-matching conditions of these processes

using Eq. 2.1. As will be shown later in this chapter, the Taylor expanded phase-

mismatch for the missing processes in both configurations includes the first term (β0)

that makes the phase-matching conditions more sensitive to the index fluctuations

in the fiber. In the following, the phase-mismatch for the one of the configurations

shown in Fig. 3.1 will be theoretically calculated as an example and the efficiency of

the FWM effects will be studied for different cases to find its dependency to pump

and probe wavelengths.
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3.2.1 Same-mode Pumps Configuration

In order to find the FWM efficiency bandwidth theoretically, it is necessary to

calculate the phase-mismatch in the FMF. In this section the phase-mismatch in

the FMF under study is derived theoretically for processes 1, 2 and 3. In order

to find the IM-FWM bandwidth which is proportional to Sinc2(κL/2) as shown in

Eq. 1.37, it is necessary to calculate the phase-mismatch, ∆β, in the FMF because

κ = ∆β − δk1 − δk2 + δk3 + δk4. Since δk1, Eq. 1.23, δk2, Eq. 1.24, δk3, Eq. 1.27,

and δk4, Eq. 1.28, are proportional to the total pump power and intensity overlap

integral between the modes in the fiber, they can be ignored considering that they

are the nonlinear modification of phase-mismatch. It will be shown later in this

section that they don’t have a significant effect on the IM-FWM bandwidth. The

FWM efficiency can therefore be calculated from Sinc2(L∆β/2). For all processes in

Eqs. 3.1-3.3, the phase-mismatch due to dispersion can be calculated by expanding

the βs in a Taylor expansion as in Eq. 2.1 around an arbitrary frequency (ω0)

truncated at the third-order term. As in Fig. 3.1(a) for the same-mode pumps

configuration, designating ωp1 and ωp2 the frequencies of the two pumps in the LP11

mode group and ωB the frequency of the probe in the LP01 mode, and taking into

account that the idler, ωI , is generated in the LP01 mode group due to symmetry

as mentioned earlier in this chapter, the phase-mismatch for process 1 as defined in

Eq. 3.1 can be written as:

∆β(proc. 1) = βI1 − βp1 + βB − βp2

≈ βI10 + βI11 ∆ωI1 +
βI12

2
∆ω2

I1 +
βI13

6
∆ω3

I1 − β
p1
0 − β

p1
1 ∆ωp1 −

βp12

2
∆ω2

p1

− βp13

6
∆ω3

p1 + βB0 + βB1 ∆ωB +
βB2
2

∆ω2
B +

βB3
6

∆ω3
B − β

p2
0 − β

p2
1 ∆ωp2

− βp22

2
∆ω2

p2 −
βp23

6
∆ω3

p2.

(3.4)

where ∆ωi = ωi−ω0 with i ∈ {I, p1, p2, B}, and βjk(ω0) = dkβj/dωk evaluated at ω0

with k = {1, 2, 3} and j ∈ {11, 01} in the Taylor expansion defined in Eqs. 2.2-2.4.

ω0 is an arbitrary frequency chosen for the Taylor expansion of the propagation

constants of the waves. Since the pumps are in the same LP11 mode, and the probe

and idler in the LP01 mode in our experiments, we can write βI10 (ω0) = βB0 (ω0) = β01
0
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and βp10 (ω0) = βp20 (ω0) = β11
0 . The same equations apply to β

01/11
1 ,β

01/11
2 , and β

01/11
3 .

Therefore, the phase-mismatch for process 1 can be written as

∆β(proc. 1) ≈ 2β01
0 + β01

1 (∆ωI1 + ∆ωB) +
β01

2

2
(∆ω2

I1 + ∆ω2
B) +

β01
3

6
(∆ω3

I1 + ∆ω3
B)

− 2β11
0 − β11

1 (∆ωp1 + ∆ωp2)− β11
2

2
(∆ω2

p1 + ∆ω2
p2)− β11

3

6
(∆ω3

p1 + ∆ω3
p2).

(3.5)

The phase-mismatch equations can similarly be calculated for processes 2 and 3

that are observed in the experiments (see Sec. 3.3). For processes 2 and 3, the

phase-mismatches ∆β(proc.2) and ∆β(proc.3) are written as:

∆β(proc. 2) ≈ β01
1 (∆ωI2 −∆ωB) +

β01
2

2
(∆ω2

I2 −∆ω2
B) +

β01
3

6
(∆ω3

I2 −∆ω3
B)

− β11
1 (∆ωp1 −∆ωp2)− β11

2

2
(∆ω2

p1 −∆ω2
p2)− β11

3

6
(∆ω3

p1 −∆ω3
p2),

(3.6)

∆β(proc. 3) ≈ β01
1 (∆ωI2 −∆ωB) +

β01
2

2
(∆ω2

I2 −∆ω2
B) +

β01
3

6
(∆ω3

I2 −∆ω3
B)

+ β11
1 (∆ωp1 −∆ωp2) +

β11
2

2
(∆ω2

p1 −∆ω2
p2) +

β11
3

6
(∆ω3

p1 −∆ω3
p2).

(3.7)

Because the signs for ωp1 and ωp2 are inverted in processes 2 and 3, therefore in

process 3, ωp1 is phase conjugate while in process 2, ωp3 is phase conjugate. At the

perfect phase-matching condition ∆β should be zero for these processes. Eqs. 3.6

and 3.7 will later be used to calculate and plot the FWM efficiency for different

pump and probe wavelengths. In the following, two different cases are discussed to

find the FWM efficiency. In one case the wavelength of the two pumps are fixed

and the wavelength of the Probe is changing (probe detuning) and in another case

the wavelengths of one pump and probe are fixed and the wavelength of the second

pump is changing (pump detuning).

Probe Detuning

As seen earlier in this section, ∆β(proc.1) in Eq. 3.5 depends on β01
0 and β11

0 which

are the first terms in the Taylor expansion of the propagation constants of the

waves involved in the process. As mentioned earlier, process 1 is not observed in
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the experiments for the same-mode pumps configuration possibly due to its phase-

matching condition dependency on the β01
0 and β11

0 , making it more sensitive to

fiber birefringence. From Eqs. 3.6 and 3.7 we can calculate the FWM efficiencies for

processes 2 and 3, respectively using Sinc2(Lκ/2) or Sinc2(L∆β/2) equation. If we

choose a configuration for process 2 where ωp1 = 1541 nm, ωp2 = 1542 nm and we

choose ω0 = 1550 nm, Eq. 3.6 will take the form shown below in Eq. 3.8:

∆β(proc.2) ≈ (β01
2 ωp1 − β01

3 ωp1ω0 +
1

2
β01

3 ω
2
p1 − β01

2 ωp2 + β01
3 ω0ωp2 − β01

3 ωp1ωp2

+
1

2
β01

3 ω
2
p2)ωB + (

1

2
β01

3 ωp1 −
1

2
β01

3 ωp2)ω2
B,

(3.8)

which is a second order polynomial in terms of ωB, resulting in two different probe

frequencies that can satisfy the ∆β(proc.2) = 0 equation with only one solution in the

C-band at 1557.6 nm. The FWM efficiency of process 2 is plotted in Fig. 3.2(a) as

a function of probe frequency, ωB, yielding a full width at half maximum (FWHM)

of ∼0.06 nm. The solid line refers to the Sinc2(L∆β(proc.2)/2) and the dashed line

refers to the Sinc2(Lκ/2). If we choose the same configuration for process 3 as for

process 2 with pumps at 1541 nm and 1542 nm, Eq. 3.7 results in Eq. 3.9 shown

below:

∆β(proc.3) ≈ (−β01
2 ωp1 + β01

3 ωp1ω0 +
1

2
β01

3 ω
2
p1 + β01

2 ωp2 − β01
3 ω0ωp2 − β01

3 ωp1ωp2

+
1

2
β01

3 ω
2
p2)ωB + (−1

2
β01

3 ωp1 +
1

2
β01

3 ωp2)ω2
B,

(3.9)

which is a quadratic polynomial with respect to ωB and has two solutions for the

perfect phase-matching equation ∆β(proc.3) = 0 with one in the C-band at 1556.64

nm. The FWM efficiency for process 3 is plotted in Fig. 3.2(b) as a function of

probe frequency, yielding a FWHM of ∼0.06 nm for the probe frequency detuning

in the C-band. If we keep one of the pumps at 1542 nm and change the wavelength

of the first pump to 1540 nm to have a pumps separation of 2 nm, perfect phase

matching condition happens at 1557.69 nm for process 2 and 1555.64 nm for process

3. Similarly, for 4 nm of pump separation with the first pump at 1538 nm, process

2 will have perfect phase matching at 1557.74 nm and process 3 at 1553.65 nm.

For a pumps separation of 8 nm with the first pump at 1534 nm, the perfect phase
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Figure 3.2: The FWM efficiency, Sinc2(Lκ/2) (dashed line) and Sinc2(L∆β(proc.2)/2)
(solid line) as a function of probe frequency, ωB, for (a) process 2 and (b)
process 3, resulting in a FWHM of ∼0.06nm centered at 1557.6 nm for
process 2 and a FWHM of ∼0.06nm centered at 1556.64 nm for process 3.

matching condition is satisfied at 1557.84 nm for process 2 and 1549.68 nm for

process 3. For a pump separation of 32 nm with first pump at 1532 nm and the

second pump at 1564 nm, process 2 and 3 will have their peak power at 1579.88

and 1547.23 nm. As the separation of the two pumps increases, the FWHM of the

FWM efficiency is decreased.

Pump Detuning

If we choose a configuration for process 2 where ωp1 = 1540 nm, ωB = 1556 nm and

ω0 = 1550 nm, then Eq. 3.6 will lead to a third order polynomial equation in terms

of ωp2 as shown below in Eq. 3.10:

∆β(proc. 2) ≈ Const.+

[( 1

v11
g

− 1

v01
g

)
+ (β01

2 − β11
2 )ω0 +

1

2
(−β01

3 + β11
3 )ω2

0
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3 ω0 +
1

2
β01

3 ωp1)ωp1 + (−β01
2 + β01

3 ω0 − β01
3 ωp1 −

1

2
β01

3 ωB)ωB

]
× ωp2 +

1

2

(
β01

2 + β11
2 − β01

3 ω0 − β11
3 ω0 + β01

3 ωp1 + β01
3 ωB

)
ω2
p2

+
1

6
(β11

3 − β01
3 )ω3

p2,

(3.10)

which has three solutions for the perfect phase-matching condition, ∆β(proc.2) = 0,

with two of them in the C-band, 1540 nm and 1540.3 nm. The corresponding FWM
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Figure 3.3: The FWM efficiency, Sinc2(Lκ/2) (dashed line) and Sinc2(L∆β(proc.2)/2)
(solid line) as a function of pump frequency, ωp2, for (a) process 2 and (b)
process 3, yielding a FWHM of ∼0.5nm for process 2 and ∼0.2nm for process
3.

efficiency for process 2 is plotted in Fig. 3.3(a) as a function of pump frequency, ωp2,

yielding a FWHM of ∼0.5 nm. The solid line refers to the Sinc2(L∆β(proc.3)/2) and

the dashed line refers to the Sinc2(Lκ/2) which includes the nonlinear modification

to the phase-mismatch. If we choose the same configuration for process 3 as for

process 2 where ωp1 = 1540 nm, ωB = 1556 nm with ω0 = 1550 nm, then Eq. 3.7 is

a cubic polynomial in terms of ωp2:

∆β(proc. 3) ≈ Const.+

[
−
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3 )ω3
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(3.11)

From Eq. 3.11, the perfect phase-matching (∆β = 0) for this specific case happens at

two different frequencies/wavelengths in the C-band which are 1540 nm and 1531.58

nm, as shown in Fig. 3.3(b) yielding a FWHM of ∼0.2 nm for pump (P2) detuning

at both wavelengths.
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3.3 IM-FWM Bandwidth Measurement

3.3.1 Experiment Description

The pump-probe spectral configurations and the experimental setup are shown in

Figs. 3.1 (a) and 3.5, respectively. The two pumps go through a 50:50 coupler and

their relative polarizations are set to be co-polarized using a polarization beam split-

ter (PBS) and two polarization controllers (PC-1 and PC-2) as shown in Fig. 3.5.

The pump beams are sent through a Waveshaper (WS) which is a programmable

optical band pass filter (OBPF) to reduce the background noise and increase the ex-

tinction ratio, and the probe beam through a programmable Wavelength Selective

Switch (WSS) also used as a programable and tunable filter. The WSS is pro-

grammed to tune the filter as the probe wavelength sweeps in the C-band, therefore

always moving along with the probe and keeping the background noise low enough

for the experiment. The spectra of one pump and the signal with and without filter-

ing are shown in Fig. 3.4. The background noise levels are reduced by 4-6 dB for the

pumps and the probe. A phase modulator connected to three Voltage-Controlled

Oscillators (VCOs) at 60 MHz, 120 MHz, and 240 MHz are used to suppress stim-

ulated Brillouin scattering (SBS) of the pump beams. The phase modulator adds

new frequencies around the central frequency of each pump, resulting in spectral

broadening due to a cascaded effect. This also leads to a 3 dB reduction in the

maximum pump power as shown in Fig. 3.6 (a). The threshold for SBS is presented

in Fig. 3.6 (b) for the LP11 mode group. An Erbium-doped fiber amplifier (EDFA)

then amplifies the pumps power before launching them into the fiber. The fiber is

a FMF supporting three spatial modes: LP01, LP11a and LP11b. The Mode-MUX

and Mode-DEMUX are free-space phase-plate-based multiplexers in this setup as

shown in Fig. 2.7 [53]. The chromatic dispersions (CDs) of the LP01 and LP11 modes

range from 17 to 22 ps/(nm-km) as a function of wavelength and have similar slopes

in the C-band as shown in Fig. 2.4. The 1/vg curve of the LP01 mode is shifted

to longer wavelengths by ∼16 nm relative to that of the LP11 mode group. More

detailed information on the fiber is provided in chapter 2 as well as references [26]

and [49]. The total pump power coupled into the fiber is measured to be 21 dBm

and the launched power of the probe 0 dBm. The devices were connected to a

general purpose interface bus (GPIB) and a computer and were controlled through
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Figure 3.4: (a) Spectrum of one pump and (b) the spectrum of the probe with (blue)
and without (red) filtering using Waveshaper (WS) and Wavelength Selective
Switch (WSS), respectively.

a MATLAB program which automatized the data acquisition for the experiment.

The IM-FWM effect is observed in the fiber when the two pumps with parallel po-

larizations (co-polarized) are coupled into the LP11 mode and the probe is coupled

into the LP01 mode. Figure 3.7 shows the output spectra from the LP01 port of

the Mode-DEMUX, measured using an OSA for four different pump separations of

1 nm, 2 nm, 4 nm, and 8 nm. Figure 3.8 shows the spectra for pump separations

of 16 nm and 32 nm. In all cases, the pumps are launched into the LP11 mode

group of the fiber and the pump peaks observed in the LP01 output port of the

Mode-DEMUX are leakage due to crosstalk between the two modes of the fiber.

Processes 2 and 3 are observed simultaneously in the spectrum of Fig. 3.7, but only

one process is observed in Fig. 3.8 due to the high background noise outside of the

C-band. Process 1 was not observed, presumably because its phase-matching condi-

tion in Eq. 3.5 depends on the zeroth order propagation constant, β0, of the Taylor

expansion which makes it more sensitive to fluctuations due to fiber imperfections.
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Figure 3.5: Experimental setup used to observe IM-FWM in a graded index FMF supporting the LP01 and LP11 modes.
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Figure 3.6: (a) The spectrum of a pump with and without SBS suppression and (b) the
power of the back-scattered light for the LP11 modes in the FMF versus the
input power with (blue) and without (red) SBS suppression.

3.3.2 Probe Detuning

Figures 3.9(a) and 3.9(b) show the results of the full bandwidth measurements

for processes 2 and 3 as a function of probe wavelength. The two LP11 pumps

have fixed wavelengths of 1541 nm and 1542 nm respectively (1 nm separation).

The red line shows the Sinc2(L∆β/2) fit function of the experimental data that

is plotted with dots. The probe wavelength was swept over ∼12 nm around the

optimal phase-matched IM-FWM conditions (∆β = 0) for both processes. The

pumps interact equally with the probe, maintaining near-phase-matching conditions

over a large bandwidth for these processes. As expected from the respective modal

dispersions, the maximum idler power is obtained when the average wavelength of

the two LP11 pumps is ∼16 nm shorter than the average wavelength of the LP01

probe and generated idler [26]. As it is shown in Figs. 3.2(a) and 3.2(b), the perfect

phase-matching condition is calculated to happen at probe wavelength of 1557.6 nm

for process 2 and 1556.64 nm for process 3 and both efficiencies are expected to

have a FWHM of 0.06 nm. However, in the experimental data the Sinc2(L∆β/2)

fits have a FWHM of ∼1.8 nm for both processes. In other measurements, the pump

wavelengths are fixed at 2 nm, 4 nm, and 32 nm apart, and the probe wavelength

is swept about the optimal FWM condition. The FWM efficiencies for 2 nm pumps
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Figure 3.7: Power spectra of the fiber output from the LP01 port of Mode-DEMUX,
with the second pump (P2) fixed at 1542 nm wavelength and for a pump
separation of (a) 1 nm with the first pump (P1) at 1541 nm; (b) 2 nm with
P1 at 1540 nm; (c) 4 nm with P1 at 1538 nm, and (d) 8 nm with P1 at
1534 nm. Peaks marked as “x” are the idlers generated due to intra-modal
FWM effect between two pumps in the same mode (LP11 mode group. B
designated the probe and I2 and I3 designate processes 2 and 3, respectively.
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Figure 3.8: Power spectra of the fiber output from the LP01 port of Mode-DEMUX for
a pump separation of (a) 16 nm with the first pump (P1) at 1534 nm and
the second pump (P2) at 1550 nm; (b) 32 nm with P1 at 1532 nm and P2 at
1564 nm. Peaks marked as “x” are the idlers generated due to intra-modal
FWM effect between two pumps in the same mode. B designated the probe
and I2 and I3 designate processes 2 and 3, respectively.

separation are shown in Fig. 3.10, for 4 nm pumps separation in Fig. 3.11 and

for 32 nm pumps separation in Fig. 3.12. The FWM efficiency bandwidth is ∼1.8

nm for all three pumps separations. The maximum observed power of the idlers

is reduced by about 20 dB when increasing the wavelength separation of the two

pumps from 1 nm to 32 nm. The reason for equal bandwidth for both processes

is that the idlers generated from the two processes shift in the same direction and

by the same amount when sweeping the probe wavelength. For processes 2 and 3

with the two pumps fixed at a specific frequency/wavelenth, a small detuning of

the probe to ωB − δω will change the idlers to ωI2 − δω and ωI3 − δω, respectively.

The two pumps, remaining at fixed wavelengths, interact equally with the probe.

The relative sign of the phase contributions of the two pumps is therefore central

to the FWM process. Thus phase-matching is maintained over an almost equal

bandwidth for both processes as in the experimental results of Fig. 3.9, 3.10 and

3.11. The difference between the theoretical and experimental efficiency bandwidth

of the two processes may be explained by the dispersion of the fiber. Measurements

of dispersion on several segments coming from the same fiber draw indicates that

the wavelength separation where waves of different spatial modes have the same
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Figure 3.9: The full bandwidth measurement for processes (a) 2 and (b) 3, when the
pumps separation is 1 nm (with pump wavelengths of 1541 and 1542 nm).

dispersion can vary by many nanometers. This suggests that such variations are

present within each fiber segment and that the dispersion measurements are an

average over the fiber length. Also, it may indicate that the Inter-modal effects are

not as simple as intra-modal effects and there require more work to identify the

possible effects that cause larger bandwidths for IM-FWM effects in FMFs.

In all these measurements, we observe strong fluctuations of the idler powers

for both processes as a function of probe wavelength. This appears as “noise” in

Fig. 3.9, 3.10, 3.11 and 3.12. However, these large and relatively regular fluctuations

are not observed when the three waves (two pumps and one probe) are all in the

LP01 mode and co-polarized as discussed in Sec. 3.4.1.

3.3.3 Pump Detuning

When the probe (B) and one pump (P1) are fixed at 1556 nm and 1540 nm, respec-

tively, and the second pump (P2) is swept from 1530 nm to 1550 nm, the observed

processes display a bandwidth of sim1.2 nm for process 2 and sim0.6 nm for process

3, as shown in Figs. 3.13(a) and 3.13(b). The solid red lines are the Sinc2(L∆β/2)

fit function of the experimental data that is plotted with dots. The theoretical

values for the FWHM of the FWM efficiency for these processes as shown in Fig.
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Figure 3.10: The full bandwidth measurement for processes (a) 2 and (b) 3, when the
pumps separation is 1 nm (with pump wavelengths of 1540 and 1542 nm).

Figure 3.11: The full bandwidth measurement for processes (a) 2 and (b) 3, when the
pumps separation is 1 nm (with pump wavelengths of 1538 and 1542 nm).
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Figure 3.12: The full bandwidth measurement for process 2 when the pumps separation
is 32 nm.

3.3(a) and 3.3(b) are 0.5 nm and 0.2 nm for processes 2 and 3, respectively. In

addition to the detailed Taylor expansion of the phase-mismatch, the difference of

the bandwidth of the two processes can be explained by how the two processes are

changing in the frequency domain. When the pump frequency is varied to ωP2−δω,

the idler frequency shifts as ωI2 − δω for process 2 and to ωI3 + δω, for process 3.

Therefore, the phase contributions tends to cancel out for process 2, which is there-

fore maintaining phase-matching for a larger frequency detuning than for process 3.

In conclusion, we have shown that the efficiency bandwidths for these processes can

be different due to different phase-matching relations for different conditions.

3.4 IM-FWM Fluctuations

This section is based on the conference paper [59] presented at ECOC2015. In

this section, we report high-resolution measurements of IM-FWM for the same-

mode pumps configuration as before, in which both pumps are coupled into one

of the LP11 higher-order modes while the probe is launched into the fundamental

LP01 mode. Strong variations of the idler power are observed when tuning the

probe wavelength and for various relative polarizations of the pumps and signal.
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Figure 3.13: Powers of (a) process 2 and (b) process 3 when pump P1 is fixed at 1540
nm, the probe fixed near 1556 nm and pump P2 is swept about 20 nm
around 1540 nm.

These large variations are found to persist in time but do not occur when all waves

are injected in the fundamental mode LP01. We study the stability of the idler

amplitude for various experimental conditions and compare with intra-modal FWM

in the LP01 mode. The results are compared with the results of amplitude and phase

frequency-resolved measurements obtained using a swept-wavelength interferometry

technique [2] presented in Sec. 2.5, which help provide an understanding of the

observed fluctuations in IM-FWM. Possible implications for future SDM systems

are discussed.

3.4.1 Observation of the Intramodal-FWM

In order to understand the behaviour of the FMF when used as a single mode fiber

(SMF), we first couple both pumps and the probe into the LP01 mode of the fiber,

and measure intra-modal FWM. The experimental setup for the FWM experiment

is shown below in Fig. 3.14. Two high power continuous wave (CW) pumps and a

low power CW probe are coupled into the same mode after they all are combined

first using two couplers, a 50:50 coupler to couple the two pumps together and then

a 10:90 coupler to couple the pumps (90%) with the probe (10%). The total power

of the pumps is 22 dBm and the power of the probe is 6 dBm. As mentioned
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before, FWM is a polarization dependent effect. The power of the generated new

frequencies depends on the relative polarizations of the different waves and if all

parallel, the maximum idler power is expected. Therefore, using the polarization

beam splitter (PBS), the polarizations of the two pumps and probe are set to be

parallel to each other in order to maximize the FWM nonlinear effect. The SBS

suppression raises the SBS power threshold for the LP01 mode as well as for the

LP11 modes. The three coupled waves are then launched into the fiber using the

LP01 port of the mode multiplexer. To measure the bandwidth of the generated

idlers (process 2 and 3), the wavelengths of the two pumps are fixed at 1550 nm and

1551 nm, and the probe is swept over a wide range of wavelengths.
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Figure 3.14: Experimental setup for measuring the intera-modal FWM in the FMF.
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Figure 3.15: The spectrum of the LP01 port of the Mode-DEMUX for the probe at
1546.4 nm. The small peak next to the probe corresponds to the wavelength
generated through SBS process because of the high power probe.

Fig. 3.15 shows the spectrum of the LP01 port of the Mode-DEMUX for the probe

at 1546.4 nm. Processes 2 and 3 give rise to very small peaks over the background

noise. Two peaks are also observed next to each pump, which are due to the FWM

effect between the two pumps. Figs. 3.16 and 3.17 show the bandwidth of the

processes 2 and 3 for a probe sweep from 1541 nm to 1549 nm.

3.4.2 High-Resolution Measurements of IM-FWM

In a second experiment, a more detailed measurement of IM-FWM efficiency was

performed with the two co-polarized LP11 pump wavelengths fixed at 1540 nm

and 1541 nm and the independently polarized probe, swept from 1555.15 nm to

1556.15 nm in 0.01 nm steps. This wavelength range was selected so as to achieve

near-phase-matching conditions. First, we notice strong variations in the idler

power with wavelength for both processes. Wavelength fluctuations as large as

15 dB are observed for a probe detuning as small as .0.1 nm. To determine the

temporal variations of the idler powers, we performed several measurements over

time. Figure 3.18(a) shows the different frequency patterns observed for process 2,
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Figure 3.16: The bandwidth of the process 2 for a probe sweep from 1541 nm to 1550
nm.

and Fig. 3.18(b) for process 3. During these measurements, we avoided disturb-

ing the FMF. The second measurement was performed 20 minutes after the first

measurement and the third one much later (a few hours). As seen in Figs. 3.18(a)

and 3.18(b), the wavelength patterns of the idler are highly correlated between the

first and second measurements for both processes. The third measurement shows

a few differences with the first two measurements but the overall pattern has not

changed significantly. Additional measurements (not shown) performed after mov-

ing the FMF or heating it (by placing a soldering iron next to the fiber) changed the

frequency pattern significantly but remained regular as seen in the high-resolution

sweep of the probe. To verify that our experimental apparatus allowed reliable mea-

surements of the wavelength dependence, we injected all three waves in the LP01

mode to observe intra-modal FWM. The fluctuations of the idler were dramatically

reduced to ∼2 dB. This shows that IM-FWM processes result in a substantially

different behavior than that intra-modal FWM processes in real telecommunication-

length SDM fibers. This high-resolution measurement was repeated several times

and the same fluctuations were observed to persist for several tens of minutes if the

experimental setup was left undisturbed. However, touching or heating the fiber

completely changed the pattern observed in Fig. 3.18, which is known to occur in

randomly birefringent fibers.
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Figure 3.17: The bandwidth of the process 3 for a probe sweep from 1541 nm to 1550
nm.

In a separate experiment designed to characterize the effect of polarization, IM-

FWM was measured in the same fiber but with a polarization scrambler added right

after EDFA-2 in the pump path shown in Fig. 3.5 to scramble the polarization of the

pumps. The wavelength of the probe was again swept over the same 1 nm interval

in 0.01 nm increments. The IM-FWM spectra for the two cases, scrambled versus

unscrambled polarizations, are shown in Fig. 3.19. Scrambling the polarization

of the two pumps is seen to reduce the fluctuations in the idler power for both

processes 2 and 3. This is an indication that polarization plays an important role

in the generation of the high noise observed previously in Figs. 3.9, 3.10, 3.11 and

3.12. However, adding a polarization scrambler into the probe path did not reduce

the fluctuations in the idler power in Fig. 3.20 when the LP01 probe wavelength was

swept over 1 nm in 0.01 nm increments. This is understandable since there is little

or no correlation between the polarization evolution of the pumps and the signal in

the experiment.

3.5 Conclusion

In conclusion, we have performed detailed measurements of the wavelength and po-

larization dependence of IM-FWM in a 6 mode FMF. The FWM efficiency has been
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Figure 3.18: Idler amplitudes when the probe is tuned from 1555.15 nm to 1556.15 nm
by steps of 0.01 nm (101 measurements superposed) for (a) process 2 and
(b) process 3 for three sets of measurements separated by 20 minutes and
a few hours.

Figure 3.19: (a) Probe and the two idlers generated by processes 2 and 3 when the probe
is tuned from 1555.15 nm to 1556.15 nm by steps of 0.01 nm (101 measure-
ments superposed) with (blue) and without (red) polarization scrambling
of the pumps.
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Figure 3.20: Idlers generated by process 2 when probe is tuned from 1555.15 nm to
1556.15 nm by steps of 0.01 nm with (blue) and without (red) polarization
scrambling of the probe.

measured for different wavelength separations of the pumps, 1 nm, 2 nm, 4 nm,

and 8 nm. A strong wavelength dependence of the idler powers is observed in both

cases. To understand the origin of the power fluctuations, the linear behavior of

the FMF as well as the effect of the relative polarization of pumps and probe have

been studied. The IM-FWM wavelength pattern observed is found to be relatively

stable and lasting several minutes if the fiber is left undisturbed, but it changes

dramatically with small mechanical or thermal disturbances. Of particular signifi-

cance, the IM-FWM is shown to be strongly dependent on the relative polarization

of the pumps in the LP11 mode group. This is demonstrated by the reduced noise

observed in IM-FWM efficiency upon scrambling the polarization of the pumps.

However, scrambling the polarization of the LP01 probe does not affect the idler

powers. This is further supported by the observation of the absence of such noise in

intra-modal FWM observed in the same fiber in LP01 mode. These fluctuations are

the result of the beating between the real modes of the fiber, when LP11 modes are

launched into the fiber a superposition of real modes of the fiber including TE01,

TM01, and HE21 which are non-degenerate is generated. The beating between these

real modes of the fiber and the modal birefringence due to fiber imperfections are
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the origins of the fluctuations observed in IM-FWM.
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Chapter 4

Intermodal Distributed Raman

Amplification in Few-Mode Fibers

4.1 Introduction

This chapter and the subsequent Appendix A are based on the conference paper

and its subsequent Journal paper [60] and [61]. Raman scattering was first observed

in [62], stimulated Raman scattering (SRS) was first demonstrated in [63], and

since then the SRS effect has been extensively studied in optical waveguide and

fibers [9, 64, 65, 66, 67]. In silica fibers, Raman scattering can be stimulated by

having a pump and a signal in the fiber at the appropriate wavelengths. Maximum

gain is observed when the signal is at an approximately 90 nm longer wavelength

than the pump [8, 45]. Therefore, pump and signal are coupled to each other through

the Raman process and the signal will be amplified by the Raman pump. Note that

SRS is a polarization dependent effect and the Raman gain depends on the relative

polarization between the pump and the signal. Raman amplification in FMFs has

been experimentally demonstrated in a backward pumping configuration with an

unpolarized pump, mostly to overcome the loss of the free-space phase-plate-based

mode multiplexers [14]. The theory of Raman amplification in FMFs is developed

in [13] and [46], which predicts that, for both step-index and graded-index FMFs

with 3 spatial modes, the same modal gain for all the modes could be achieved if the

pump was injected into the higher-order mode, the LP11a and LP11b modes in the

present case. The LP11 modes offer two degenerate spatial modes, each having two
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polarization states, in which to inject the Raman pumps. Because the LP11 modes

are degenerate, perturbation of the index profile is expected to cause a strong linear

coupling between them, or more precisely, between the underlying vector modes

which are TE01, TM01, and the degenerate HE21 modes. The superposition of the

real modes that generated the LP01 and LP11 modes are shown in Fig. 2.1.

In this chapter and the subsequent Appendix A we provide the first experimen-

tal demonstration of distributed Raman amplification in FMFs supporting 3 spatial

modes, LP01, LP11a, and LP11b, with more than 0 dB net gain for forward, backward

and bi-directional pumping schemes, using low-loss (less than 2 dB) mode-selective

photonic lanterns (MS-PLs) as mode multiplexers [68, 69, 70]. These MS-PLs have

replaced the free-space Mode-MUX and Mode-DEMUX used in the FWM experi-

ments in Chapter 3. They are fiber concertized at one end and spliced to the FMF at

the other end. 0 dB net gain corresponds to absolute gain that exactly compensates

for the loss of the fiber, so the fiber becomes “transparent”. Modal gain equalization

is obtained by selectively coupling the Raman pump lasers into the LP11 modes of

the FMF [13, 46]. We demonstrate an absolute gain of 20 dB for the LP01, LP11a,

and LP11b modes, for a pump power of 2 W and a differential mode-dependent gain

(DMDG) of 1.5-2 dB. We also perform optical transmission over 1050 km in a recir-

culating loop made of a 70-km fiber span made by splicing multiple fiber segments

to compensate the differential-group-delay (DGD). A transmission experiment that

is explained in Appendix A is then performed where We achieve a net gain of 0 dB

for a combined wavelength-division and spatial-division multiplexed (WDM/SDM)

signal with 60 wavelengths spaced 33.33 GHz apart, and 6 spatial and polarization

modes modulated at 30 Gbaud with quaternary-phase-shift keying (QPSK) signals.

The total transmitted capacity is 18 Tb/s and the spectral efficiency (SE) which is

the information rate transmitted over a given bandwidth is 9 bit/s/Hz.

4.2 Raman Amplification Experiment

The 70-km-long graded-index FMF used in our experiments had effective areas of

59.6 µm2 for the LP01 mode and 120.2 µm2 for the LP11 modes as shown in Tab. 2.1

and 2.2. The absorption coefficients were measured using the optical time-domain

reflectometer (OTDR) shown in Fig. 4.1. We obtained losses of 0.238 dB/km and
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0.224 dB/km at a wavelength of 1550 nm for the LP01 and LP11 modes respec-

tively, and 0.317 dB/km at a wavelength of 1455 nm for the LP11 modes. It results

in a span loss of ∼16 dB at the signal wavelength in the C-band. The 70 km

DGD-compensated fiber span was built by splicing four fiber spools with lengths

of 12.5 km, 25 km, 12.5 km and 20 km and DGDs of -2 ns, 1.64 ns, -1.17 ns and

1.52 ns, respectively. It resulted in a total DGD of <200 ps, which was verified with

a time-of-flight measurement using a 100 ps test pulse. The transmitted 100 ps pulse

through this fiber spool and MS-PLs is shown in Fig. 4.2. It also shows the coupling

between the LP11a and LP11b modes. When LP01 is launched into the fiber, the LP11

modes are not excited and when LP11 modes are launched into the fiber using the

MS-PLs, LP01 mode is not excited. Two MS-PLs were used as mode multiplexers

and directly spliced to the FMF, resulting in a small coupling loss of 1 dB for the

LP01 mode and 1.7 dB for each one of the LP11 modes. The photonic lantern-based

mode multiplexers were fabricated by tapering three dissimilar SMFs, one with a

slightly different core diameter than the other two to ensure mode-selectivity, in-

side a low-refractive-index capillary that acted as the cladding of the adiabatically

tapered lantern [69]. The light coupled into the SMF with larger core diameter,

SMF-1 in Fig. 4.4, at the input of the MS-PL converts into the LP01 and the light

coupled into each one of the two similar SMFs, SMF-2 and SMF-3 in Fig. 4.4,

converts to LP11a or LP11b modes selectively. Therefore, each SMF at the MS-PL

corresponds to generating one of the three spatial modes before coupling into the

fiber. This can be understood by looking at the modal analysis of a similar three

SMF multiplexer (or photonics lantern) using the coupled mode theory as in a three

core MCF with one dissimilar core. During the tapering process the cores get closer

to each other along the fiber and therefore the modes convert along the fiber [68].

Figure 4.3 shows the simulation of the mode conversion during the tapering process

of the three SMF in a capillary using COMSOL Multiphysics software. The dissim-

ilar SMF ensures the mode selectivity of the photonic lantern and Fig. 4.4 shows

the captured mode profiles of the lanterns used in our experimental setup with an

infrared (IR) camera.

Two Raman pumps were available for the experiment: the first pump had a

central wavelength at 1545 nm, was unpolarized and had a maximum output power

of 33 dBm. The second pump had a central wavelength at 1545.5 nm, was polarized
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Figure 4.1: The OTDR trace of the 70 km FMF spool for both LP01 and LP11 modes
at 1550 nm.

Figure 4.2: The transmitted 100 ps pulse through 70 km FMF spool and the MS-PLs
for different input/output ports of the photonic lantern-based Mode-MUX
and Mode-DEMUX.
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Figure 4.3: Modal analysis of a tapered three core multiplexer which includes three
SMF in a capillary. There are three spatial modes (or supermodes) for this
configuration, these modes are the solutions to the wave equation. This
modal analysis is similar to the modal analysis of a three-core MCF that has
three spatial modes. Each row represents the mode profile of the three fiber
system for different distances or pitches between the fibers (or the cores in
a MCF). The pitch is 19.5 µm in (a), 10.5 µm in (b) and 6.5 µm in (c). It
shows the mode conversion along a tapered three fiber system.
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Figure 4.4: Output mode profiles of a three core/mode photonic lantern for inputs in
(a) SMF-1 with a larger core diameter than SMF-1 and SMF-2 (b) SMF-2
and (c) SMF-3.

and had a maximum output power of 37 dBm. Both pumps had a wavelength

of 1455 nm providing gain in the 1545 nm to 1566 nm wavelength range of the C-

band. A wider wavelength range and flat spectral gain can be obtained by combining

multiple pumps at different pump wavelengths. In order to reduce the polarization

dependence of the signal gain, the polarized pump is used in the backward direction

in the bi-directional pumping scheme shown in Fig. 4.5. As discussed in Sec. 1.2.2, in

order to achieve equal amplification for all the modes in a Raman fiber amplifier [13]

providing 3 spatial modes, the pumps are launched into the LP11 modes. In Eq. 1.47,

it is shown that the signal depends on the overlap integral fij of the signal and pump

modes. Since the FMF under test has three spatial modes, the signal gain in LP01

and LP11 modes will be equal if the pumps are coupled into LP11 modes only. This

can be understood from the overlap integrals of Tab. 2.2 that shows almost equal

values for pumps in LP11 modes and signal in LP01 and LP11 modes. As shown in

the experimental setup shown in Fig. 4.5, using 50:50 couplers, the Raman pump

power is split between two arms, each coupled to the corresponding LP11 mode of

the MS-PLs through a dichroic combiner. An additional advantage of using MS-PLs

in the set up is that they can withstand the higher power of the Raman pump laser,

avoiding the problem of handling high power beams in free space. In this experiment,

we compare forward, backward, and bi-directional Raman pumping schemes. In the

68



Figure 4.5: Experimental setup for Raman amplification in a FMF with three spatial
modes using two MS-PLs as mode- multiplexer and de-multiplexer. The
dashed boxes show where the MS-PLs are spliced to the fiber spool. The
blue and red arrows represent the Signal and the pumps direction in the
fiber.

forward and backward pump configurations, the total pump power is coupled in

one direction and for the bi-directional pump configuration, the pump powers are

adjusted to produce near optimum performance as described in [71] 30% of the total

pump power is coupled in the forward and 70% is coupled in the backward direction.

The total pump power is 2 W for all three configurations of the pumps, resulting in

almost the same gain in all three cases, with a maximum of 22 dB gain for signal in

the LP01 mode and 20 dB gain for signal in either one of the LP11 modes. There is

a 2 dB DMDG in the fiber as measured.

4.3 Experimental Results

The Raman gain of the 70 km FMF span is measured with broadband light cover-

ing the C-band as the test signal. The broadband signal is generated by amplified
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spontaneous emission (ASE) of an EDFA and its spectrum is flattened by a Wave-

shaper (WS) between 1545 nm and 1566 nm as shown in Fig. 4.6. The signal is

coupled into each mode successively and the output of the corresponding mode cap-

tured on an OSA. The resulting on-off gain, Gon-off, defined in Eq. 1.45 is plotted

in Figs. 4.7(d), 4.7(e), and 4.7(f) for all three modes, and all three pump configura-

tions. As described in [13] and [46], the gain in all three modes is expected to be the

same if the pumps are coupled into the LP11 modes, but the measurements reported

in Figs. 4.7(d), 4.7(e), and 4.7(f) show ∼1.5-2 dB higher gain for LP01 mode than

for the LP11 modes. In a FMF with negligible linear mode coupling and assuming

the small signal approximation, the signal power in a particular mode i will grow

exponentially with pump power. As shown in Eq. 1.47 for the Gon-off, the signal

gain depends on the overlap integral of the three modes of the FMF. Therefore, to

understand the origin of this mode dependent gain, we look at the overlap integrals

of the fiber and calculate the fraction of the pump power that needs to be coupled in

the LP01 mode to generate the ∼1.5-2 dB observed higher gain. The fij is calculated

for a graded-index FMF with 3 spatial modes as in this experiment assuming a fixed

wavelength of 1550 nm for both the signal and the pump transverse electric fields.

This is because the exact refractive index profile as a function of wavelength was

not available and also the shape of the transverse modes is expected to change only

weakly in the wavelength range from 1455 to 1560 nm. The results are shown in

Tab. 2.2 [5]. The inverse of the intensity overlap integral 1/fii corresponds to the ef-

fective area Aeff
i of the ith mode. For the degenerate LP11 mode, we use the complex

notation LP11±. This notation results in a ring shaped intensity profile that is very

closely matched to the intensity profiles of the real vector modes TE01 and TM01 but

also of the degenerate HE21 modes if the appropriate linear combination is used. In

the situation where all modes composing the LP11 mode are excited with the same

amount of power and assuming decorrelation between all modes caused either by

modal dispersion or fiber imperfections, the resulting intensity profiles will be ring

shaped and unpolarized, and therefore provide uniform gain to both LP01 and LP11

modes. A formal and more rigorous treatment can be found in [12]. The assumption

that all modes composing the LP11 mode group are decorrelated is expected to be

practically fulfilled in distributed Raman amplification, where amplification occurs

over multiple-kilometer-long distances.
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Figure 4.6: Broadband signal that is the ASE of an EDFA and flattened by a WS in the
LP01 mode after the fiber with (Red) and without (Blue) Raman pumping
in LP11 mode.

Figure 4.7: Raman ASE, power spectral density (PSD), and Raman gain (Gon-off) mea-
surement as function of the wavelength and plotted for each spatial mode,
reported for (a) and (d) counter-pumping, (b) and (e) co-pumping, and (c)
and (f) bi-directional pumping configurations.
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The signal power in every mode is observed to grow exponentially. Although the

high power Raman pump is fully coupled into the LP11 modes initially, a fraction of

this power eventually leaks into the LP01 mode due to coupling between the LP01

and LP11 modes after 70-km long fiber and the crosstalk of the MS-PLs spliced

at both ends of the fiber spool. This fraction can be calculated from the data in

Tab. 2.2:

Gain11
on-off = Gain01

on-off

(
Pf21 + (1− P )f22

Pf11 + (1− P )f12

)
= 22 dB×

(
0.10× 0.8319 + 0.90× 0.8354

0.10× 1.677 + 0.90× 0.8319

)
= 20 dB,

where P is the fraction of pump power in LP01 mode and fij are shown in Tab. 2.2.

There are signal waves in both LP01 and LP11 modes. When the signal gain in

the LP11 modes reaches a value of 20 dB and the signal gain of the LP01 mode

reaches a value of 22 dB, 10% of the pump power is found coupled into LP01 mode,

resulting in the ∼1.5-2 dB higher LP01 signal gain. The 10% of the pump that

appears in the LP01 mode is the result of a 10.8 dB crosstalk due to the mode

coupling present in the FMF as well as the splice between the MS-PL multiplexer

and the FMF. The total measured crosstalk including the 70-km FMF and the MS-

PL is 9.8 dB, which is consistent with the observed gain difference between LP01

and LP11 modes. Figures 4.7(a), 4.7(b), and 4.7(c) show the measured amplified

spontaneous emission (ASE) in each mode for the above-mentioned configurations.

For the counter- and the bi-directional pump configuration, the difference in ASE

follows the gain measurement, resulting in around 2 dB higher ASE for the LP01

mode compared to the LP11 modes. In the co-pumping configuration, the ASE for

the LP01 mode is 3 dB higher than for the LP11 modes, which is approximately 1 dB

larger than the corresponding modal gain difference.

As mentioned above, homogeneous amplification within the LP11 mode group is

expected when all modes of the mode group are excited with the same power. In

our experiment, this is clearly fulfilled by using an unpolarized pump, split in two

non path-length matched paths and subsequently coupled into both LP11 ports of

the mode multiplexer. This is because we inject four uncorrelated pumps (two from

polarization and two uncorrelated by path-length difference). In order to check the
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importance of exciting all modes of the group, we measured the Raman gain for

the worst case scenario where only one polarized pump is co-propagating with a

polarized signal injected into exactly the same LP11 mode. We modified our setup

accordingly by connecting the polarized pump to a polarization controller that was

then connected to the WDM combiner attached to one of the LP11 mode ports of

the MS-PL, therefore bypassing the 50:50 coupler used in the previous experiments.

Subsequently, the co-propagating signal power consisting of a polarized laser line at

1556 nm wavelength, was monitored for different polarization states of the pump for

a pump power of 1 W. The maximum gain was measured to be 9 dB with a maximum

variation in power of 1 dB. This represents a 11% variation in exponential gain which

is a small but non-negligible effect. Note that the use of an unpolarized pump or

the use of the 50:50 coupler to excite both LP11 ports can easily suppress the effect.

4.4 Conclusion

In conclusion, a net Raman gain exceeding transparency has been demonstrated in

a few-mode fiber for all spatial modes using three different pump configurations.

The maximum gain variation between modes is found to be <2 dB for a maximum

gain of 22 dB, caused by crosstalk in the fiber span. A transmission experiment

including the Raman pumped FMF is performed and explained more in Appendix

A.

73



Chapter 5

Conclusion and Outlook

In this final chapter, we state the conclusion of the study presented in this disserta-

tion as well as the outlook and future work that can further this investigation. The

measurements that are presented in this work contribute detailed information on

the IM-FWM effect and the distributed Raman amplification in FMFs and MMFs.

For the first time, we have fully characterized the IM-FWM and SRS effects in a

FMF with three spatial modes. We have shown that the IM-FWM in FMFs and

MMFs can happen at any wavelength range and one does not need to be only around

the zero dispersion wavelength to satisfy phase-matching condition like in SMFs. In

Chapter 3, the phase-matching condition for the non-degenerate IM-FWM is studied

theoretically and the efficiency of the IM-FWM effect is calculated correspondingly.

On the other hand, the efficiency of the IM-FWM effect is measured for probe and

pump detuning and the results are discussed. It is shown also that the IM-FWM

is a polarization dependent effect and therefore the efficiency of the FWM effect is

related to the relative polarization of the pumps and the probe. The effect of the

polarization on IM-FWM is studied experimentally and the results are discussed. In

Chapter 4, the distributed Raman amplification is experimentally characterized in a

FMF with three spatial modes but a relatively longer length (70 km) than the fiber

used in the FWM experiment (4.7 km). The two fibers have the same properties

including the number of the modes, their refractive index and modes effective areas,

Aeff. We have demonstrated equal gain for the distributed Raman amplification in

the 70-km FMF with three spatial modes. The Raman pumps are solely coupled

into the higher order mode, LP11 mode group, to ensure the equal gain in all modes
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because the on-off Raman gain is related to the pump power and the overlap inte-

gral of the modes that the pump and signal are coupled into. The circumstances

in which all modes in the FMF under study will be amplified by the same gain are

discussed in detail in Chapter 4 and it is shown that if the pumps in this case are

fully coupled into the higher order mode, the signals in all the modes are amplified

by the same gain. The small differential mode-dependent gain of 1.5-2 dB is also

explained by 10% pump that eventually ends up in the LP11 mode after 70 km fiber.

It is clear that much additional work on FMFs, MMFs, and MCFs is required to

fully characterize the nonlinear effects in these fibers that are candidates for SDM.

Measuring the efficiency bandwidth for the multiple-mode pumps configuration will

help fully characterize the IM-FWM in the FMF and understand the differences

between pump and probe detuning. A very detailed polarization study of the IM-

FWM in a FMF can be performed using the MS-PLs in the FWM experiment

instead of the free-space setup where the exact polarization state of all the waves

in all the modes can be determined easily by a Polarization State Analyzer. This

will help fully understand and characterize the polarization related fluctuations in

the FWM efficiency presented in Chapter 3. Also, studying the equalized gain in

Raman amplification of a MMF with more than 3 spatial modes will help expand

and discuss the ways to achieve equal gain in all the modes in different fibers with

different number of the modes and different refractive indices because the Raman

gain is directly related to the overlap integral of the modes which is determined

by the index profile of the fiber. On the other hand, the nonlinear effects can be

studied in the pulsed lasers in these fibers where an autocorrelation setup as well

as a FROG setup can be used to determine the pulse propagation. The FROG and

autocorrelation systems are commercially available and they can also be setup in

the laboratory. In MCFs using the pulsed laser will ensure enough power in all the

cores specially if the MCF has strongly coupled cores.
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Appendix A

Transmission Experiment with

Raman Gain

The transmission performance of the Raman-pumped FMF span discussed in Chap-

ter 4 is investigated by transmitting a signal to study the transmission for distances

exceeding 1000 km by circulating the light through a single 70-km-long FMF span.

The setup for the transmission experiment is shown in Fig. A.1. The signal is made

by twenty distributed feedback lasers spaced 100 GHz apart and covering a wave-

length range from 1546.92 nm to 1562.23 nm in the C-band. The signal is then

sent through a LiNbO3 MZM driven to generate a 33.33 GHz sinusoidal tone. The

signal that now is a broadband signal including 60 wavelengths, 33.33 GHz apart

from each other, is then polarization multiplexed. It is first sent though a 50:50

splitter and the splitted signals are recombined as orthogonal polarizations by a

PBS. We adjusted the Raman pump powers to obtain a total gain of 16 dB, with

6 dB supplied by the forward pump and 10 dB by the backward pump, providing

near optimum transmission performance according to [71]. Note that the Raman

amplified fiber span is now optically transparent. Other amplifiers (EDFAs) in ad-

dition to the Raman amplifier are used as the loop amplifiers which are only used

to overcome the loss due to the loop components.

The impulse response of the recirculating loop and the broadband signal is also

investigated [72]. The impulse response is the transmission of the signal through the

fiber in different modes resulting in 36 different measurements related to 6 different

modes of the fiber similar to the transmission matrix measurement presented in
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Figure A.1: Schematic setup for mode-multiplexed transmission experiment over 70-km
bidirectionally pumped Raman-amplified few-mode fiber. The arrangement
of the Raman pumps is highlighted by the dashed box [3].

Chapter 2. The impulse response shown in Fig. A.2 for transmission distances of

210, 350, 700, and 1400 km is obtained by averaging over the intensities of all 36

individual impulse responses. A strong ∼5 nsec central peak with a surrounding

∼5 ns plateau is clearly visible at the center of the impulse response for the 70-

km distance. The peak gradually disappears for longer distances and the impulse

response becomes more bell shaped. Based on the cascaded impulse response in

Fig. A.2, good performance is expected up to 1400 km and all the transmitted data

should thus be successfully recovered.

The transmission performance is further assessed by the quality factor known

as Q-factor as a function of the input power reported in Fig. A.3(b). Q-factor is a

measure of the bit error rate (BER) and represents the quality of the eye diagram.

It is the ratio of the difference in mean values of the signal levels (0 and 1) in the

eye diagram and the sum of the noise levels. The larger the difference in the signal

level mean values are, the larger the Q-factor, therefor the lower the noise overlap

and better BER will be. For this experiment, the optimum launch power per wave-

length and spatial channel was found to be -7 dBm, and the Q-factors for all 60

WDM channels at optimum launch power are reported in Fig. A.3(a) for distances

of 1050 km and 1400 km. A Q > 7 dB is observed for all the WDM channels for

a distance up to 1050 km and all the transmitted data should thus be successfully

recovered if forward-error correction (FEC) is applied. In conclusion, the perfor-

mance of the Raman amplified few-mode fiber span studied in Chapter 4 has been

77



Figure A.2: Average-intensity impulse response (|a|2) of a 70-km DGD compensated
FMF span, after 70, 210, 350, 700, and 1400 km, respectively.

confirmed by a combined wavelength-division / space-division multiplexed transmis-

sion experiment in a recirculating loop, where a transmission distance of 1050 km

has been achieved for a polarization-division multiplexed signal. The experiments

demonstrate a single-wavelength channel capacity of 300 Gbit/s, a spectral efficiency

of 9 bit/s/Hz for a transmission distance of 1050 km. This is the first reported

transmission experiment that uses bidirectionally pumped distributed Raman am-

plification in a FMF and a spectral-efficiency-distance product of 9450 bit/s/Hz-km,

which is the second largest demonstrated in FMFs to date.
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a) b)

Figure A.3: Q-factor as function of the (a) wavelengths for all the 60 different channels
and (b) input power per wavelength.
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