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Abstract

We have performed quantum mechanical scattering calculations that describe colli-

sions between He or Ar and NaK (A 1Σ+) that change the rotational and magnetic

quantum numbers, j and m. These calculations involved determining ab initio po-

tential energy surfaces by using the GAMESS electronic structure code. The coupled

channel scattering formalism, developed by Arthurs and Dalgarno, was used with

the potential surfaces to calculate j and m-changing cross sections, along with the

transfer of moments of the m distribution. Our calculations show a propensity for

transitions with even values of ∆j; the strength of the propensity depends on the

perturber. These results are in good agreement with experimental data measured

by the Lehigh group. We identify a region of the potential that tends to diminish

the propensity and develop a simple model to explain why such a region arises. We

develop a semiclassical model that leads to closed form expressions for semiclassical

m-changing cross sections (where m is a continuous variable) and the distribution

of final polar angles θ′ = m′/
√
j′(j′ + 1). We compare our calculated semiclassical

and quantum mechanical cross sections, and we identify special cases which admit

analytic approximations to the polar angle distribution. One special case leads to a

near-Lorentzian distribution, peaked where θ′ = θ. Many results for He+NaK and

Ar+NaK are well described by this case.

1



Chapter 1

Introduction

1.1 Motivation

Lehigh’s atomic, molecular, and optical physics group, led by Profs. Hickman and

Huennekens, has for several years performed theoretical and experimental studies of

the following thermal collision process:

NaK (v, j,m) + X→ NaK (v′, j′,m′) + X X = He or Ar, (1.1)

where v is the vibrational quantum number, and j and m are the quantum numbers

that define the rotational state of the molecule. For the experiments of current in-

terest, NaK is in the A 1Σ+ electronic state. The potential energy curve for this state

is shown by the solid curve in Fig. 1.1; the state dissociates into Na(3s) + K(4p).

Hickman and coworkers [1–3] have performed calculations to model these col-

lisions when v = v′ in Eq. 1.1. Calculations are also underway to provide cross

sections for v-changing collisions in collaboration with R. C. Forrey at Penn State

Berks.

Experimental studies have been carried out by Huennekens and coworkers at

Lehigh and in collaboration with the group of A. J. Ross at Université Lyon 1

[4–7]. The experiments at Lehigh have addressed j- and m-changing collisions, and

those at Lyon have provided information about v- and j-changing collisions. In
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Section 1.2, we will discuss the experimental methods used. Here we highlight some

experimental results and discuss our work within the context of those results.
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Figure 1.1: Some potential curves calculated by Magnier et al. [8] representing the first
several electronic singlet states of NaK.

Wolfe et al. [4] and Jones [5] measured rates at which vibrationally elastic

(∆v = 0) collisions with helium or argon change j by ∆j. The rates are higher

for transitions that change j by an even ∆j than by an odd ∆j. That is, they

show a propensity for ∆j even transitions. Moreover, the relative rates depend

on the perturber. Jones [5] and Richter [6] extended this work and performed

measurements for both vibrationally elastic and vibrationally inelastic collisions.

In the former case they confirmed the previously observed propensity for ∆j even

transitions [5, 6]. They found no propensity for even ∆j in vibrationally inelastic

collisions.

In the case of a homonuclear diatomic molecule with no nuclear spin, there is a

strict selection rule for ∆j even transitions. When such a transition is induced by

a collision with an atom, the selection rule is based on parity due to the inversion

symmetry of the interaction with the atom and of the molecular states involved [9].

One might expect an approximate symmetry for a molecule like NaK consisting of
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two similar atoms, leading to the propensity but not a strict selection rule. The

selection rule for homonuclear diatomics involves the interaction of the molecule

with the atom, and a semiclassical analysis by McCurdy and Miller [10] connects

the propensity to that interaction as well. Their analysis suggests the propensity

is sensitive to the degree to which the interaction potential deviates from inver-

sion symmetry. The analysis, however, is semiclassical and assumes a specific form

for the interaction potential. We were able to investigate the propensity quantum

mechanically and with our calculated potentials.

The experiments performed by Wolfe et al. [4] and Jones [5] also provided infor-

mation about vibrationally elastic m-changing collisions. The experiments involved

preparing a rovibrational level (v, j) with a non-zero average m. Jones [5] measured

the extent to which collisions with helium or argon changed the average value of m

and found the change was greater for collisions involving argon.

In this dissertation we describe our calculations of v-, j-, and m-changing colli-

sions and show how our results compare with the experimental data. We will also

describe our investigation of the sensitivity of the propensity to changes in the in-

teraction potential. Additionally, we address the discussion in the literature about

whether the polar angle θ = cos−1
(
m/
√
j(j + 1)

)
in the vector model for the ro-

tational angular momentum is approximately conserved during inelastic collisions

of atoms with small molecules [11, 12]. We develop a semiclassical model that pre-

dicts that θ is conserved in certain special cases and gives physical insight into this

problem [3].

1.2 Overview of experimental methods

This section provides a brief overview of the experiments performed by Wolfe et

al. [4] at Lehigh, by Jones [5] at Lehigh and at Université Lyon 1, and by Richter [6]

at Université Lyon 1.

At the core of each experiment is a heat pipe oven where a cold buffer gas of

argon or helium atoms can mix with NaK vapor at 600 K [13]. The oven may be
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considered a cell environment because the NaK molecules experience collisions with

buffer gas atoms coming from all possible directions.

1.2.1 Fluorescence spectroscopy

Wolfe et al. [4] and Jones [5] measured rates for vibrationally elastic j-changing

collisions using laser-induced fluorescence (LIF) spectroscopy [14]. The experiment

was performed at Lehigh using an optical-optical double resonance technique.

The experimental method is illustrated schematically in Fig. 1.2(a). First, a

pump laser excites the NaK molecules from the ground state to a ro-vibrational

level of the A 1Σ+ excited state called the “directly pumped” level. Then a weak

probe laser is scanned through the frequencies that correspond to excitation of the

pumped level to another ro-vibrational level of a higher electronic state. The violet

fluorescence from the decay of the higher electronic state is monitored as a function

of the probe laser frequency (excitation scan). Strong signals (called direct lines) are

observed at frequencies corresponding to specific transitions. Rotationally inelastic

collisions may also occur while NaK is in the A 1Σ+ state, as indicated by the curved

arrows. The probe laser can also excite the collisionally populated levels, leading to

weaker “satellite” or “collisional” lines in the spectra.

Figure 1.2(b) shows examples of the observed excitation scans. The top and

bottom traces show total fluorescence versus probe laser frequency showing the

effects of collisions of NaK with He and Ar, respectively. The large peaks (which

actually go far off scale) at approximately 12446 cm−1 correspond to direct lines and

the peaks labeled by ±1,±2, . . . are the collisional lines corresponding to collisionally

induced transitions with those values of ∆j. The peaks associated with even values

of ∆j are generally larger than those associated with odd ∆j. The spectra show a

propensity for vibrationally elastic collisions with He or Ar to change j by an even

∆j.

The measurements of Wolfe et al. [4] used argon as the buffer gas and initial

state A 1Σ+(v = 16, j = 30). These were extended by Jones [5] to study helium

collisions, other initial states, and also NaCs + He or Ar collisions. Jones [5] and
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Figure 1.2: Panel (a) shows the optical-optical double resonance scheme used at Lehigh
[5]. Panel (b) shows excitation scans for NaK [A 1Σ+(v = 16, j = 30)] with
argon and helium perturbers [13].
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Figure 1.3: Fluorescence spectroscopy technique used in Lyon. The radiative transitions
from the A state to the ground state satisfy the selection rule ∆j = ±1. Only
the transitions with ∆j = +1 (P lines) are shown in the figure.

Richter [6] determined rates for j- and v-changing collisions at low initial v (= 0, 1, 2)

using Fourier transform spectroscopy [15]. This latter experiment was performed at

Université Lyon 1 using a single-step excitation scheme.

The experimental method used in Lyon is illustrated in Fig. 1.3. A pump laser

excites the NaK molecules to the directly pumped level (v, j) in the A 1Σ+ state.

Collisions with He or Ar can transfer population to neighboring levels (v′, j′) in the A

state. A few such transitions are represented by blue arrows in Fig. 1.3. Radiative

transitions from the directly pumped level and from the collisionally populated

levels to the ground state are labelled “Fluorescence Direct” and “Fluorescence

Collisions”, respectively. The fluorescence from all levels of the A state to many

different levels of the ground state is analyzed by a Fourier Transform Spectrometer

(FTS), which provides the intensity of the fluorescence as a function of frequency.
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The observed spectra are similar to those shown in Fig. 1.2(b) but exhibit weak lines

not seen at Lehigh corresponding to much larger values of ∆j and to vibrationally

inelastic collisions. The weak lines imply that rates for v-changing collisions are

an order of magnitude less than for j-changing collisions. The weaker lines can be

resolved because the FTS collects fluorescence from all transitions simultaneously,

eliminating issues related to the frequency drift of the laser. This feature allows for

longer collection times than at Lehigh and therefore a higher signal-to-noise ratio.

Richter [6] used ratios of line intensities to extract rates for collisionally induced

transitions within the A state. For vibrationally elastic collisions, the data show

a propensity for collisions to change j by an even ∆j. For vibrationally inelastic

collisions, this propensity is absent.

1.2.2 Polarization labeling spectroscopy

Wolfe et al. [4] and Jones [5] also obtained information about m-changing collisions

using polarization labeling (PL) spectroscopy [16] at Lehigh. First, they prepared

an ensemble of molecules in the same rovibrational level such that the average value

of m for the ensemble was not zero (as it would be if all m-values were equally

populated). Then, they measured the average value of m′ for those molecules that

underwent a collisionally induced transition to the level (v, j′). The change in the

average value of m provided information about the degree to which collisions mixed

the values of m.

In the PL experiment they again used an OODR technique [14], but this time se-

lection rules related to the polarization of the laser beams were exploited. Figs. 1.4(a)

and 1.4(b) illustrate the method. Figure 1.4(a) shows the optical transitions in-

volved. First, a circularly polarized pump laser excites NaK molecules from the

ground state (also called the X state) to the directly pumped level (v, j) in the A 1Σ+

state. For circularly polarized light, there is a selection rule for ∆m = ±1, depend-

ing on the helicity. When the probe laser is on resonance, it creates a non-uniform

distribution of m levels in the ground and A states, as illustrated in Fig. 1.4(b). The

lower and upper horizontal lines represent the j levels of the initial (X) electronic
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(a) (b)

Figure 1.4: Panel (a) shows the polarization spectroscopy technique. Panel (b) shows a
schematic of m-changing transitions caused by the pump laser.

state and the intermediate (A) state, respectively. The diagonal arrows represent

transitions allowed by the selection rule for right circular polarization. One can see

that the distribution of m levels in the A state will be weighted toward larger values

of m. This distribution can be interpreted as an average “orientation” of the angular

momentum vectors j of the molecules.

The second transition in Fig. 1.4(a) is driven by a weak linearly polarized probe

laser. The linear polarization can be thought of as equal parts left and right cir-

cularly polarized light with respect to the propagation axis of the laser. When the

scanned probe laser is tuned to an available transition to the upper 3 1Π electronic

state, these two components will be unequally absorbed because of the non-uniform

distribution of m levels created by the pump. The unequal absorption of the two

components causes the transmitted probe beam to pick up a slight elliptical po-

larization. The uneven absorption can be detected by passing the probe beam

through a polarizer oriented 90◦ to the probe’s initial polarization. When the probe

is off-resonance, it is completely blocked by the crossed polarizer. On resonance,
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the strength of the light passing through the second polarizer is related to the ori-

entation or average value of m of the ensemble. Comparing the strength of the

transmitted probe for the direct lines (no collisions) and for satellite lines (for which

a j-changing collision has taken place) provides information about the average value

of m before and after collisions.

Wolfe et al. [4] performed measurements with argon perturbers and Jones [5]

extended the experiments to include both helium and argon perturbers. Jones’ [5]

analysis incorporated the measurements made by Wolfe et al. [4] and he found argon

was more likely to destroy orientation than helium.

1.3 Overview of dissertation

In this dissertation we will describe a series of calculations designed to model the

collisions in Eq. 1.1. These calculations reproduce the main features of the experi-

mental results and provide insight into these results. We also describe the semiclas-

sical model we developed to investigate the approximate conservation of the polar

angle θ in rotationally inelastic collisions.

Scattering calculations such as those performed here generally consist of two

parts. First, one calculates a potential surface that determines the motion of the

nuclei. Then one uses this surface in a dynamics calculation that provides the desired

cross sections or rate constants.

Chapter 2 provides an overview of the theory behind the calculations. Our cal-

culations were performed within the Born-Oppenheimer approximation, which is

described in Section 2.1. We determined potential energy surfaces using techniques

outlined in Section 2.2 and using the long-range analytic form of the potentials dis-

cussed in Section 2.3. We used these surfaces to carry out fully quantum mechanical

scattering calculations using the Arthurs and Dalgarno formalism [17], which is sum-

marized in Section 2.4. We discuss the theory related to m-changing collisions in

Section 2.5.

In Chapter 3 we describe the calculation of our HeNaK and ArNaK potentials.
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We show our potential surfaces in Section 3.1 and make some comparisons with

experiment. In Section 3.3, we describe our fits to the analytic long-range potential.

Chapter 4 concerns the results of our scattering calculations. In Section 4.2, we

report the results obtained with the calculated potentials and compare these results

with experiment. Then in Section 4.4, we discuss how the propensity for ∆j even

transitions was affected by changes we made to the potentials, and we develop a

model that provides insight into the origin of the propensity.

Chapter 5 reports the semiclassical model we developed for m-changing colli-

sions. Sections 5.1–5.3 introduce the model and compare the results with quantum

mechanical calculations. For both the semiclassical and quantum mechanical re-

sults, we predict a propensity to conserve the polar angle θ = cos−1
(
m/
√
j(j + 1)

)
of the rotational angular momentum of NaK (A 1Σ+) in collisions with He or Ar.

In Section 5.4, we identify two special cases of our semiclassical model that allow

analytic approximations. Collisions of He and Ar with NaK are often well described

by one of those special cases.

Finally, in Chapter 6 we present concluding remarks and ideas for future projects.
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Chapter 2

Theory

2.1 Born-Oppenheimer approximation

Our calculations are based on the Born-Oppenheimer approximation, which uncou-

ples the electronic and nuclear motions of He-NaK or Ar-NaK [18]. All forces are

determined by the potential for He or Ar plus NaK (A 1Σ+), enabling us to perform

what would otherwise be intractable dynamics calculations. In this section, we sum-

marize the Born-Oppenheimer approximation and derive the equations for nuclear

motion.

The He-NaK and Ar-NaK systems can be thought of as molecules. Like all

molecules, they are composed of electrons and nuclei. Unless the nuclear kinetic

energy of the molecule is extremely high, the electrons move much faster than the

nuclei, because they are much lighter. Therefore the typical picture is that the wave

function of the electrons in a molecule can adjust very quickly to the instantaneous

position of the nuclei. The analysis leading to the Born-Oppenheimer approxima-

tion provides a framework for this physical picture. The result is that the electronic

energy depends only on the nuclear positions, and the nuclei move in a potential

determined by the electronic energy [18]. The Born-Oppenheimer approximation

allows us to determine our potentials by calculating the electronic energies of the
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HeNaK or ArNaK molecules as a function of the positions of fixed nuclei, as de-

scribed in Section 2.2.

Here we’ll follow the approach of Born [19] and Born and Huang [20] to derive

the equations for nuclear motion and to indicate explicitly the terms that are often

neglected. Although this approach is standard, and the approximation has been

around a long time, some of the mathematical subtleties are still under investigation

[21].

We start by defining the Hamiltonian for a molecule. Let the nuclei be labeled

by Roman subscripts (a, b, c, . . .) and the electrons by Greek subscripts (α, β, γ . . .).

Additionally, let the nuclei and electrons have positions Ra and rα, respectively,

relative to some coordinate system. For simplicity, we assume there are no external

fields and neglect magnetic interactions. Then the Hamiltonian for the molecule is

Ĥ = −~2

2

∑
a

∇2
a

Ma

− ~2

2m

∑
α

∇2
α −

∑
a,α

kZae
2

|Ra − rα|
+
∑
α<β

ke2

|rβ − rα|
+
∑
a<b

kZbZae
2

|Rb −Ra|
,

(2.1)

where k = 1/ (4πε0) is Coulomb’s constant, Ma denotes the mass of nucleus a, and

m is the electron’s mass. The first two terms in the equation are the kinetic energy

operators of the nuclei and electrons, respectively. The remaining three terms give

the potential energy operator. These terms correspond to attraction between nuclei

and electrons, repulsion between electrons, and repulsion between nuclei.

For our calculations, we solve the non-relativistic, time-independent Schrodinger

equation,

ĤΨ = EΨ. (2.2)

The standard approach starts by expanding the wave function Ψ in a complete set

of known states, which can in principle be obtained by solving the simpler problem

in which the nuclei are stationary. The Hamiltonian for the simpler system, called

the electronic Hamiltonian, is the full Hamiltonian in Eq. 2.1, except for the nuclear

kinetic operator:

Ĥe = − ~2

2m

∑
α

∇2
α −

∑
a,α

kZae
2

|Ra − rα|
+
∑
α<β

ke2

|rβ − rα|
+
∑
a<b

kZbZae
2

|Rb −Ra|
. (2.3)
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Section 2.2 outlines methods to find approximate solutions ψk and eigenvalues Ee,k

to the Schrodinger equation involving the electronic Hamiltonian,

Ĥeψk
(
r;R

)
= Ee,k

(
R
)
ψk
(
r;R

)
. (2.4)

In this equation, R is a set of fixed nuclear positions, r is the set of electron positions,

and Ee,k and ψk depend parametrically on R. The ψk form a complete basis set.

We assume they are normalized for each nuclear configuration R, and that each ψk

is a continuous, differentiable function of R.

Since the ψk form a complete basis set for each R, the wave function for the

system Ψ can be written exactly as a sum over the eigenfunctions ψk (or integral

for continuum states):

Ψ
(
r,R

)
=
∑
k

Fk
(
R
)
ψk
(
r;R

)
, (2.5)

where Fk(R) is an expansion coefficient. Note that we are not actually assuming that

the nuclei are stationary. We are simply expanding a wave function in a complete

set of well-defined states.

By substituting Eq. 2.5 into Eq. 2.2, we can derive the following Schrodinger

equation for the system:

− ~2

2

∑
a,k

1

Ma

[
ψk(r;R)∇2

aFk(R) + Fk(R)∇2
aψk(r;R) + 2∇aFk(R) · ∇aψk(r;R)

]
+
∑
k

(Ee,k(R)− E)Fk(R)ψk(r;R) = 0, (2.6)

By multiplying on the left by ψ∗k′ and integrating over the electronic coordinates,

we obtain a set of coupled differential equations for the nuclear functions Fk:(
−~2

2

∑
a

∇2
a

Ma

+ Ee,k′(R)− E

)
Fk′(R)

−~2

2

∑
a

1

Ma

∫
ψ∗k′(r;R)

∑
k

(
Fk(R)∇2

aψk(r;R) + 2∇aFk(R) · ∇aψk(r;R)
)
dr = 0.

(2.7)
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The coupling terms on the second line of Eq. 2.7 indicate that the solution for any Fk′

depends on all the other Fk as well as on the derivatives of the electronic functions

ψk with respect to the nuclear coordinates. If these terms could be dropped, the

equations would become uncoupled and greatly simplified. The Born-Oppenheimer

approximation amounts to neglecting these terms and is justified whenever the elec-

tronic functions ψk vary slowly with the nuclear coordinates. In fact, as will be

discussed below, even when the coupling terms are not negligible, their influence is

small when the electronic states are separated by a large gap [20], and this approxi-

mation can still be applied. When it applies, the Born-Oppenheimer approximation

reduces Eq. 2.7 to a set of uncoupled equations for the nuclear wave functions Fk(R),(
−~2

2

∑
a

∇2
a

Ma

+ Ee,k(R)− E

)
Fk(R) = 0. (2.8)

The electronic energies provide a potential in which the nuclei move, and the total

wave function for the kth electronic state is

Ψk(r,R) = Fk(R)ψk(r;R), (2.9)

so we can regard the expansion coefficient Fk(R) as a nuclear wave function.

The Born-Oppenheimer approximation is valid in many important cases, but it is

not justified when the electronic state of interest is degenerate or quasi-degenerate.

For example, two electronic states must often be included near an avoided crossing

[22]. Conversely, when the energy gaps are large, the coupling terms have little

influence even if they are not very small, extending the applicability of this approx-

imation [20].

An alternative analysis of Morrison et al. [23] leads to the conclusions men-

tioned above. Rather than assuming that the coupled terms are small, as in per-

turbation theory, Morrison et al. started with a series expansion of Ψ and E. The

leading term of the series expansion is Ψ(r,R) = F (R)ψ(r;R), the result of the

Born-Oppenheimer approximation. The first-order correction to the molecular wave

function is a sum of terms directly proportional to the coupling terms and inversely

proportional to the difference in total energy E between the state of interest Ψk and
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another state Ψk′ . If this first-order correction is small, we can assume the leading

term (the Born-Oppenheimer approximation) is a good approximation. This analy-

sis allows us to roughly say that the Born-Oppenheimer approximation is not valid

when the electronic states are degenerate or quasi-degenerate, and that it is valid

when the electronic states are very well separated.

For He-NaK and Ar-NaK, we expect the coupling terms to be negligible based

on mass ratios and on the separation of our electronic state from the others. Let

m be the electron mass and M be the total mass of the system. Then for He-

NaK, (m/M) ≈ 8.3 × 10−6, and for Ar-NaK it’s even smaller. Furthermore, we

are interested in the electronic state that corresponds asymptotically to He or Ar

(1S0) + NaK (A 1Σ+). The atomic states are well separated, and so are the singlet

states of NaK for most internuclear separations, as can be seen in Fig. 1.1, so we

expect that our electronic state is nondegenerate and that it is well separated from

the other electronic states. (Note that our calculations neglect fine-structure effects

[24].)

In the next two sections we will describe methods for calculating the intermolec-

ular potential. Then in Section 2.4 we show how we use Eq. 2.8 to perform scattering

calculations.

2.2 Electronic structure calculations

In this section we will summarize the methods used to calculate approximate solu-

tions of the electronic Schrodinger equation (Eq. 2.4) and to provide potential energy

surfaces (PESs) for our scattering calculations. The development of these methods

is described in a historical context in [25], and additional details are provided in

[26–32].
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2.2.1 Formation of the molecular orbitals and Slater deter-

minants

The starting point for calculating an approximate electronic wave function ψapprox

for a many-electron molecule is to define a set of single-electron wave functions called

molecular orbitals (MOs). In analogy to the simple shell model of a many-electron

atom, one assumes that up to two electrons may occupy each MO. Then one can

construct an approximate many-electron wave function using a Slater determinant

(or linear combinations of them).

For a molecule, a spin orbital is an MO that describes both an electron’s spin and

its spatial probability and amplitude distribution. It is defined to be a product of a

spin function and a spatial orbital φ(rα). The spin function, which depends on a spin

coordinate ω, is either α(ω) if the electron is spin up or β(ω) if the electron is spin

down. We will let the variable xα denote the combined space and spin coordinates

(rα, ω). Then for a given spatial orbital φk, one can form two possible spin orbitals:

χ2k−1(xα) = φk(rα)α(ω) (2.10)

χ2k(xα) = φk(rα)β(ω). (2.11)

The Slater determinant is defined in terms of the spin orbitals. We consider here

the restricted closed-shell case in which N is even and N/2 spatial MOs are doubly

occupied by electrons of opposite spin. Then the Slater determinant is

D0 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)
...

...
...

χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣
, (2.12)

where χk(m) is shorthand for χk(xm). The Slater determinant form of the electronic

wave function maintains the indistinguishability of the electrons. It is also antisym-

metric under exchange of the space and spin coordinates of two electrons, as a wave

function for indistinguishible fermions must be. An antisymmetric wave function

automatically satisfies the Pauli exclusion principle.
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The Slater determinant will be used as an approximate electronic wave function

in Section 2.2.3, and linear combinations of different Slater determinants will be

used to construct approximate electronic wave functions in Sections 2.2.4 and 2.2.5.

For the remainder of this section we discuss how the spatial parts of the spin

orbitals are determined. It is advantageous to expand the spatial orbitals in a known

set of states, or basis. In principle, for a complete set of states a spatial orbital φk(rα)

can be written exactly as a linear combination of the basis functions, ϕi(rα),

φk(rα) =
∑
i

Ckiϕi(rα). (2.13)

In practice, one must truncate the infinite sum to a finite set of basis functions. Se-

lecting the finite basis set requires judgement to balance the accuracy of the molec-

ular orbitals and the computational resources the calculation will require. Once

the basis set is selected, one can determine the optimal set of coefficients Cki using

methods described later in this chapter.

Each basis function is centered on a specific nucleus and has a simple analytic

form. Here we summarize several forms that have been widely used. The first is the

Slater-type orbital (STO), which has the form

s(ξ, rα −Rp) = P (x, y, z)e−ξ|rα−Rp| (2.14)

where x, y, and z are the cartesian coordinates of rα−Rp, P (x, y, z) is a polynomial

that depends on the angular momentum of the atomic orbital, and Rp is the position

of nucleus p.

STOs are appealing because they can represent hydrogenic orbitals exactly and

have the correct asymptotic behavior for any electron far from an ionic core. Most

calculations, however, use an alternative form called the gaussian-type orbital (GTO):

g(β, rα −Rp) = P (x, y, z)e−β|rα−Rp|2 . (2.15)

The preference for GTOs arises because much of the computational effort to solve

the electronic Schrodinger equation (Eq. 2.4) requires evaluating integrals. For large

molecules, the integrals can involve as many as four basis functions centered on four
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different atoms. These integrals can be done analytically with GTOs, but not with

STOs.

The asymptotic behavior of GTOs is less satisfactory than that of STOs because

the Gaussian exponential falls off very rapidly. This shortcoming can be offset,

however, by writing each basis function as a linear combination of “primitive” GTOs

called a contraction. A basis function ϕ that is a contraction of primitive Gaussian

functions g centered on nucleus p is written as

ϕ(rα) =
S∑
k=1

dkgk(βk, rα −Rp). (2.16)

The upper limit of the sum S is called the contraction length, the coefficients dk

are called contraction coefficients, and the Gaussian orbital exponents βk are called

contraction exponents. By optimizing S, the dk, and the βk, one can improve the

asymptotic behavior of the basis function.

Many different types of basis sets have been developed. To illustrate the con-

siderations involved in selecting one, we discuss several popular examples developed

by Pople and collaborators [25].

In the minimal (the smallest) basis set, each basis function ϕi corresponds to an

occupied atomic orbital of one of the atoms in the molecule. For example, in the

STO-3G basis, each atomic orbital is represented by a contraction of three GTOs

designed to approximate the best STO for that orbital. This basis set may also

include contracted GTOs to represent orbitals occupied in excited states. Since

each atomic orbital is described by one fixed basis function, this basis provides

limited flexibility for the wave function of one atom to respond to the positions of

the other atoms.

Larger basis sets provide greater flexibility. In double-zeta or triple-zeta basis

sets, there are two or three basis functions per atomic orbital, respectively. Split-

valence basis sets use one basis function per core atomic orbital and more for the

valence orbitals. For example, the split-valence 6-31G basis [33–36] uses contrac-

tions of 6 GTOs for each core orbital, and each valence basis function consists of a

contraction of 3 GTOs and an uncontracted GTO. With such a basis, the coefficients
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in the linear combination of valence basis functions can change when other atoms

are nearby.

Polarization basis functions allow the electron charge density within a molecule to

deform in response to intramolecular or external electric fields. One basis set which

includes these functions is the 6-31G∗∗ basis [37], where (∗∗) indicates the addition

of a set of uncontracted p-functions to hydrogen atoms and a set of uncontracted

d-functions to non-hydrogen atoms. The p-functions centered on hydrogen allow it

to have an induced dipole moment within the molecule, and the d-functions centered

on non-hydrogen atoms allow them to have induced quadrupole moments within the

molecule.

Diffuse functions are used for electrons that can be found far from the nucleus.

They are uncontracted Gaussians with small exponents. If they are included for

non-hydrogen atoms in a Pople basis set, then a “+” is added to the name of the

basis set, as in 6-31+G∗∗. If they are also included for hydrogen atoms, then a “++”

is added.

Chapter 3 gives more details of the specific calculations we performed for HeNaK

and ArNaK, including the basis sets used.

2.2.2 Variational principle

The variational principle underlies many methods for finding approximate solutions

to the electronic Schrodinger equation. The principle is that for any trial function

ψtrial, the expectation value of a system’s Hamiltonian for ψtrial is an upper bound

to the exact ground-state energy. This principle can be proved in the following way.

The orthonormalized eigenfunctions ψexact
k of the Hamiltonian constitute a com-

plete set of states, so any approximate wave function ψtrial can be expanded as

ψtrial =
∑
k

akψ
exact
k . (2.17)
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Then the approximate energy Etrial is

Etrial =

∫ (
ψtrial

)∗
Ĥψtrial dτ∫

(ψtrial)∗ ψtrial dτ
(2.18)

=

∑
k

Eexact
k |ak|2∑

k

|ak|2 ,
(2.19)

where the integrals are carried out over the relevant coordinates τ . Subtracting the

exact ground state energy from both sides of Eq. 2.19, one obtains

Etrial − Eexact
0 =

∑
k

(Eexact
k − Eexact

0 ) |ak|2∑
k

|ak|2
. (2.20)

Since (Eexact
k − Eexact

0 ) and |ak|2 are both greater than or equal to zero for all k,

Etrial ≥ Eexact
0 , (2.21)

with equality if and only if ψtrial = ψexact
0 .

The variational method is implemented by specifying a form for the trial function

that depends on a set of adjustable parameters and by varying the parameters to

minimize Etrial. The minimum value of Etrial is the variational estimate for the

exact energy. The parameters are intended to give the trial function the flexibility to

represent a likely form for the wave function based on physical or chemical intuition,

so that Etrial is as low as possible. Etrial is lowest when the trial function is the exact

wave function. Although one does not know the exact wave function, the accuracy

of the trial function can be assessed by using it to calculate known properties of the

system.

The linear variational method is a special case of the variational method. It is

used when ψtrial is a linear combination of Q linearly independent, square integrable

known functions fi,

ψtrial
k =

Q∑
i=1

ckifi. (2.22)

21



The linear variational method involves diagonalizing a matrix. When the fi are

orthonormal, this matrix is composed of elements Hij, where:

Hij =

∫
f ∗i Ĥfjdτ. (2.23)

The lowest eigenvalue gives the upper bound to the ground state energy, and the

corresponding eigenvector gives the expansion coefficients of the ground-state trial

function. One also obtains the eigenvalues for the next (Q− 1) excited states, and

these are upper limits to the exact excited state energies [38]. The corresponding

eigenvectors are the excited-state trial functions.

When the trial function is the exact wave function, Etrial − Eexact is zero. For

this reason, we assume that the lower the minimum value of Etrial, the “better” the

form of the trial function, even though a trial function with a lower minimum value

of Etrial might actually give worse results for some molecular properties than a trial

function of a different form with a higher minimum value of Etrial [39].

For electronic energies, the difference Etrial
k (R)−Eexact

k (R) may not be the same

for each nuclear configuration R. This can introduce an error in the relative energies

at two nuclear geometries R1 and R2. This error could increase even when the

individual energies are lowered [39], so “better” trial functions do not always imply

“better” relative energies. Of course, in the limit that the trial function is exact

for all nuclear configurations R, the energy differences will be exact. Therefore it’s

important to choose a trial wave function that is appropriate for all R involved in

the calculation.

2.2.3 Hartree-Fock approximation

This section discusses the variational Hartree-Fock method and its application to

closed-shell systems. In this special case, the number of electrons N is even, and

each spatial orbital is doubly occupied by electrons with opposite spins. The trial

function is a single Slater determinant:

ψHF = D0. (2.24)
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With this form of the wave function, one can variationally determine an ap-

proximate ground state energy for Eq. 2.4. To apply the method, one selects a

basis set composed of K ≥ N/2 basis functions. The variational parameters are

the expansion coefficients Cki of the spatial molecular orbitals (cf. Eq. 2.13). The

optimal parameters (and therefore the optimal spatial MOs) are found by an iter-

ative method [40]. The N/2 orbitals with the lowest energies are doubly occupied

and are used in the final ground state wave function, Eq. 2.24. The other orbitals

are unoccupied, and can be used to generate other Slater determinants that will be

useful in the next sections. In the Hartree-Fock limit, the basis set is considered

to be a complete set, and EHF
0 attains its lowest possible value for this form of the

wave function.

The optimal MOs determine the trial function ψHF for which the expectation

value of the electronic Hamiltonian, EHF
0 , is a minimum; this trial function is an

approximate solution of the electronic Hamiltonian. It can be shown that the trial

function ψHF is the exact solution to a simpler Hamiltonian, for which each electron

experiences an average field due to the other electrons [26].

The iterative procedure for solving for the optimal MOs is called the Self-

Consistent Field (SCF) method, and the nomenclature reflects the physical inter-

pretation of the method. The SCF method starts with an initial guess for the MOs

of the electrons. These MOs determine the charge density and average electrostatic

field felt by the electrons. Then one calculates the MOs for electrons in that field.

If the MOs are different from those specified in the initial guess, the process is

repeated. The process ends when the results are self-consistent, and the effective

field which produced the charge density is consistent with the field which would be

calculated from the charge density.

2.2.4 Configuration Interaction methods

Often a wave function more accurate than ψHF is needed. The Hartree-Fock method

neglects most electron correlation, which is the tendency for two electrons to avoid
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each other. Moreover, when a closed shell molecule dissociates into open-shell frag-

ments, the Hartree-Fock method leads to a trial function that is qualitatively incor-

rect for any R near the dissociation limit. In order to treat such effects, the trial

function is generalized to be a linear combination of Slater determinants Di:

ψtrial =
∑
i

ciDi (2.25)

In the Configuration Interaction (CI) method, the linear expansion coefficients ci are

obtained variationally and the orbitals contained in Di are fixed. For example, the

Single-Reference CI (SRCI) method starts with the Hartree-Fock (or an arbitrary)

“reference” Slater determinant D0. Additional Slater determinants are constructed

by promoting electrons from the occupied orbitals in the reference determinant to

unoccupied orbitals.

If one promotes an electron from an occupied spin orbital χa to an unoccupied

orbital χr, then χr appears in the Slater determinant rather than χa. We’ll denote

such a determinant asDra. Similarly, if one promotes two electrons from two occupied

spin orbitals χa and χb to two unoccupied spin orbitals χr and χs, we obtain the

determinant Drsab. Triple and higher excitations can be defined in a similar manner.

The SRCI trial wave function ψSRCI is written as a linear combination of the reference

and the additional determinants:

ψSRCI = c0D0 +
∑
ar

craDra +
∑

a<b,r<s

crsabDrsab + . . . , (2.26)

where the c’s are the coefficients in the linear combination. The SRCI method

constitutes a linear variational problem; the solution is determined by a matrix

diagonalization.

Often one uses linear combinations of Slater determinants that are eigenfunc-

tions of the total spin operator S2; these linear combinations are called spin-adapted

Configuration State Functions (CSFs). In that case the trial function is a linear com-

bination of CSFs rather than determinants, and the coefficients are still determined

by the linear variational method.

In principle, the accuracy achievable for ground and excited state energies using

the trial function in Eq. 2.26 is limited only by the amount of computer resources
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available. In practice, one usually truncates the expansion in Eq. 2.26 and retains

only certain excitations from the reference determinant. For example, only single

and double (SD) excitations are included in the SR-CISD method. That method can

provide excellent results for the ground state, but may be unreliable for excited states

or for certain nuclear configurations R of a closed-shell molecule that dissociates into

open-shell fragments.

To amend the situation, one can perform a multiconfiguration SCF (MCSCF)

calculation [29, 30] to determine MOs that give better results for excited state

energies or energies for which the Hartree-Fock reference determinant is qualitatively

incorrect. Like the CI method, the MCSCF method is variational and the MCSCF

trial wave function ψMCSCF is a linear combination of determinants:

ψMCSCF =
∑
i

ciDi. (2.27)

The MCSCF trial function typically involves a smaller number of determinants than

a CI trial function. This is because unlike a CI calculation an MCSCF calculation

involves varying the coefficients of the orbitals contained in Di and the linear ex-

pansion coefficients ci simultaneously. One can choose a state averaging approach

where the orbitals are optimized for multiple electronic states rather than one spe-

cific state. Energies and expansion coefficients ci for different electronic states can

be obtained.

One type of MCSCF calculation is the Complete Active Space SCF (CAS-SCF)

method. This method involves selecting an “active” set of orbitals, usually those

occupied by valence electrons and a few low-lying unoccupied orbitals. All possible

determinants Di (or CSFs) obtained from distributing electrons within the active

space are used to construct the trial function ψMCSCF.

The MCSCF energies incorporate only some correlation and typically are not

sufficiently accurate. The MCSCF trial function, however, provides multiple ref-

erence determinants with which one can perform a generalized Multireference CI

(MRCI) calculation [29] to obtain more accurate energies.

In the MRCI procedure, each determinant (or CSF) obtained in the MCSCF

calculation can be used as a reference determinant (or CSF). The computer time
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(which is already quite large for SRCI) increases by more than a factor of the number

of reference states. The number of terms in a Multireference CI calculation that

only include single and double excitations (MR-CISD) can be quite large (millions

or more) and so larger systems cannot be treated with this method.

2.2.5 Coupled-Cluster methods

When the MRCI method is too computationally expensive, an attractive alternative

is the Equation-of-Motion Coupled-Cluster (EOM-CC) method [31]. In this section

we introduce the method using the bra-ket notation.

The EOM-CCSD method is very similar to the SR-CISD method. In the SR-

CISD method, one diagonalizes the electronic Hamiltonian in the space spanned by

the relevant Slater determinants. In the EOM-CCSD method, one diagonalizes a

similarity-transformed electronic Hamiltonian in the same space of Slater determi-

nants. As will be shown below, the similarity-transformed Hamiltonian “folds in”

the effect of excitations higher than just singles and doubles. It allows for excitations

such as a quadruple excitation that is the product of two double excitations, incor-

porating the correlation (that is, coupling) between pairs (or clusters) of electrons.

As with the Single-Reference CI method, the Coupled-Cluster method starts with

the Hartree-Fock (or an arbitrary) “reference” state |D0〉. Then additional states

are constructed by promoting electrons from occupied spin orbitals to unoccupied

spin orbitals. The cluster operator T̂ =
N∑
i=1

T̂i operates on the reference state to

promote electrons, with the T̂i defined as

T̂1 |D0〉 =
∑
ar

tra |Dra〉 , T̂2 |D0〉 =
∑

a<b,r<s

trsab |Drsab〉 , etc. (2.28)

The operator T̂1 promotes a single electron to an unoccupied orbital, T̂2 promotes

two electrons to two unoccupied orbitals, and so on. The coefficients t will be

determined in a manner described below and will be used to transform the electronic

Hamiltonian.

To obtain the Coupled-Cluster ground state wave function, one operates on the
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reference state with the wave operator eT̂ :∣∣ψCC
0

〉
= eT̂ |D0〉 =

(
1 + T̂ +

T̂ 2

2!
+ · · ·

)
|D0〉 . (2.29)

The Taylor expansion of the wave operator shows that it includes such operators as

T̂ 2, which for instance leads to quadruple excitations that are the product of two

double excitations.

Now, denote the additional states constructed by promoting electrons from oc-

cupied to unoccupied spin orbitals as |Dk>0〉, and define a transformed Hamiltonian

H̄e = e−T̂Hee
T̂ . Then one can derive the following Coupled-Cluster equations:

ECC
e,0 = 〈D0| H̄e |D0〉 (2.30)

0 = 〈Dk>0| H̄e |D0〉 . (2.31)

This nonlinear set of equations is solved iteratively for the parameters t and the

ground state energy.

Excited state energies can be obtained starting with the Coupled-Cluster ground

state wave function. In the Equation-of-Motion Coupled-Cluster method, one de-

fines an excitation operator R̂ =
N∑
i=0

R̂i that operates on the reference state (or the

Coupled-Cluster ground state), where R̂0, R̂1, etc. are defined as

R̂0 |D0〉 = r0 |D0〉 , R̂1 |D0〉 =
∑
ar

rra |Dra〉 , R̂2 |D0〉 =
∑

a<b,r<s

rrsab |Drsab〉 , etc (2.32)

relative to the reference state D0.

To obtain excited states, one applies the excitation operator R̂ to the Coupled-

Cluster ground state
∣∣ψCC

0

〉
: ∣∣ψCC

k

〉
= R̂

∣∣ψCC
0

〉
, (2.33)

One can use Eqs. 2.29 and 2.33 and the fact that R̂ commutes with T̂ to derive the

equation for the excited state energies in terms of the Hartree-Fock reference state

|D0〉,

He

[
R̂eT̂ |D0〉

]
= ECC

e

[
R̂eT̂ |D0〉

]
(
H̄e − ECC

e

)
R̂ |D0〉 = 0
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The non-Hermitian operator H̄e = e−T̂Hee
T̂ is then diagonalized to obtain excitation

energies. This differs from the SRCI method, for which He would be diagonalized

for the same set of determinants.

EOM-CC is an exact method if one does not truncate T̂ or R̂, but this is often im-

practical. When T̂ and R̂ are truncated such that T̂ ≈ T̂1+T̂2 and R̂ ≈ R̂0+R̂1+R̂2,

this constitutes the EOM-CCSD approach. The nonlinearity of the wave operator

is the reason that the EOM-CCSD results can be superior to the corresponding

SR-CISD results; for EOM-CCSD the eigenvalues of H̄e are different from those of

He.

Since this is a single-reference technique, its results are not to be trusted in the

dissociation limit for open-shell fragments. To obtain better results in that case, one

can include noniterative triples corrections [32]. Work is also underway to optimize

Multireference Coupled-Cluster calculations [41, 42].

Finally, we note that Coupled-Cluster methods are not variational but they are

size consistent. In a size consistent method, the energy of a system of isolated

fragments is the sum of the energies of each fragment. Truncated CI is not size

consistent. One can make a correction to make the energies size consistent, but

then the energies are no longer variational [29].

2.2.6 Counterpoise correction

Electronic structure calculations of a PES may exhibit what is called the Basis Set

Superposition Error (BSSE) [43, 44]. This section describes a method for correcting

for the BSSE called the Boys-Bernardi counterpoise correction [45]. The procedure

assumes that the method used to obtain the PES is size consistent.

Scattering calculations involve the interaction energy between the target (frag-

ment A) and the projectile (fragment B). This interaction energy is the energy of

the molecule composed of fragments A and B minus the energy of each isolated

fragment. The BSSE can arise when one performs a calculation for the energy of

an isolated fragment that only includes the basis functions associated with that

fragment.
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When the fragments are well separated in the molecule, their basis functions

overlap negligibly, and each fragment can only access its own basis functions. The

interaction energy, however, is calculated for many R for which the fragments are

not well separated. Then, the basis functions overlap and one fragment can access

the other fragment’s basis functions.

If the basis set is not sufficiently complete, fragment B’s basis functions provide

extra flexibility for fragment A, and the energy of fragment A is different than it

would have been if it could only access its own basis functions. The amount by

which this energy is different from what it would be if fragment A could only access

its own basis functions is the BSSE for fragment A, and it is different for every

nuclear configuration R.

The counterpoise procedure involves calculating the energy of each isolated frag-

ment differently. To calculate the energy of fragment A at a particular R, one leaves

the basis functions for fragment B centered where fragment B would be, but one

removes the fragment B. This gives the energy of the isolated fragment A for that

R. Then one does the same thing for fragment B. These two energies are subtracted

from the energy of the molecule at a given R to correct for BSSE. The resulting

interaction energy is the counterpoise corrected energy.

The size of the basis set influences whether this correction should be made or

not, because the error due to basis set incompleteness can compensate for the BSSE

[44]. For small basis sets, the results are better if one does not correct for BSSE. For

medium-sized basis sets, some researchers advocate performing a half-half correction

(that is, an average of the uncorrected and counterpoise corrected energies). The

BSSE is negligible for larger basis sets and there is no BSSE for a complete basis

set.

2.3 Long range potential theory

There are certain nuclear configurations R for which one cannot obtain a reliable in-

teraction potential using the methods described in Section 2.2. For large separations
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between the target and the projectile, the accuracy of the electronic wave functions

is limited by the Gaussian exponential form of the basis functions. Moreover, as

mentioned previously, one obtains the interaction energy by subtracting the energies

of the isolated fragments A and B from the energy of the molecule composed of A

and B at a given R. These individual energies are reported by quantum chemistry

codes with a certain precision, and eventually the interaction energy is within the

noise level of the calculation.

Long range potential theory allows one to calculate very small interaction ener-

gies. Pack [46] gives a long range analytic form for a system composed of an S-state

atom and a Σ-state linear molecule. In this section we will briefly summarize the

physical contributions to the long range potential. Then we will introduce the long

range analytic form provided by Pack.

2.3.1 Electrostatic, induction, and dispersion interactions

When fragments A and B are far apart, their electrostatic interaction can be con-

sidered a perturbation. The long range potential can be derived using perturbation

theory as described in detail in [47]. To second order, and neglecting relativistic

effects, one obtains the electrostatic, induction, and dispersion interactions summa-

rized in this section.

Assume we have two neutral fragments A and B so far apart that they do not

interact. For simplicity, assume they are both in nondegenerate ground electronic

states ψA0 and ψB0 , with corresponding energies EA
0 and EB

0 . Then the electronic

wave function is simply ψ = ψA0 ψ
B
0 , and the total energy is E0 = EA

0 + EB
0 .

As the fragments approach each other, one can represent their interaction by

an operator V̂int and obtain the following first and second order corrections to the

energy using perturbation theory:

Ee = E0 +
〈
ψA0 ψ

B
0 |V̂int|ψA0 ψB0

〉
−

∑
m orn6=0

∣∣∣〈ψAnψBm|V̂int|ψA0 ψB0 〉∣∣∣2
(EA

n − EA
0 ) + (EB

m − EB
0 )
. (2.34)

The interaction energy operator V̂int can be written in powers of 1/R, where R
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is the distance between the centers of masses of the two fragments. The interaction

energy operator has the form:

V̂int =
1

R3
(dipole− dipole interaction) (2.35)

+
1

R4
(dipole− quadrupole interaction)

+
1

R5
(quadrupole− quadrupole interaction)

+
1

R5
(dipole− octopole interaction)

+ · · ·

Although it has the form of the classical electrostatic interaction energy, V̂int is a

quantum mechanical operator. Thus the multipole moments are the expectation

values of multipole moment operators. For instance, the permanent dipole moment

for fragment A in its ground state is

µ =
〈
ψA0 |µ̂|ψA0

〉
. (2.36)

One only needs an operational definition of the multipole moment operators to

interpret the energy corrections.

The first order energy correction is the permanent-permanent multipole moment

interaction:

Wel =
〈
ψA0 ψ

B
0 |V̂int|ψA0 ψB0

〉
(2.37)

This term is present when both fragments possess permanent multipole moments.

The induction interaction is the permanent-induced multipole moment interac-

tion:

Wind = −
∑
m 6=0

∣∣∣〈ψA0 ψBm|V̂int|ψA0 ψB0 〉∣∣∣2
EB
m − EB

0

−
∑
n6=0

∣∣∣〈ψAnψB0 ∣∣∣V̂int∣∣∣ψA0 ψB0 〉∣∣∣2
EA
n − EA

0

(2.38)

The electrons of each fragment can reconfigure themselves in an electric field while

the nuclei remain fixed at a given R. In the electric field created by the permanent

multipole moments of fragment A, the electron cloud of fragment B distorts, and

vice versa.
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The dispersion interaction is the induced-induced multipole moment interaction:

Wdisp = −
∑
m,n 6=0

∣∣∣〈ψAnψBm|V̂int|ψA0 ψB0 〉∣∣∣2
(EA

n − EA
0 ) + (EB

m − EB
0 )

(2.39)

The dispersion interaction does not have a simple classical interpretation. It is

present even between two noble gas atoms (and causes deviations from the ideal gas

law).

Evaluating the expressions given in Eqs. 2.37–2.39 leads to the following expan-

sion for the total energy in inverse powers of R:

E = E0 +Wel +Wind +Wdisp (2.40)

= E0 −
∑
n≥3

Cn
Rn

. (2.41)

The coefficients Cn depend on the relative orientation of the fragments A and B.

2.3.2 Analytic form for the interaction between an S-state

atom and a Σ-state linear molecule

Pack [46] gives the first three terms of the analytic form for the long-range poten-

tial between an S-state atom and a Σ-state linear molecule (excluding relativistic

effects). He also provides a procedure for determining higher order terms. In this

case, the Cn coefficients in Eq. 2.41 depend on the angle θ between the internuclear

axis of the molecule and the vector associated with the distance R. Expanding these

coefficients in Legendre polynomials, Pack [46] showed that:

C6(cos θ) = C
(0)
6 P0(cos θ) + C

(2)
6 P2(cos θ)

C7(cos θ) = C
(1)
7 P1(cos θ) + C

(3)
7 P3(cos θ) (2.42)

C8(cos θ) = C
(0)
8 P0(cos θ) + C

(2)
8 P2(cos θ) + C

(4)
8 P4(cos θ)

The coefficients depend on multipole moments of the molecule and the polarizabil-

ities of both partners, and include the effects of both the induction and dispersion

interactions.
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2.4 Scattering theory

The methods of the last two sections can be used to calculate a PES that determines

all of the forces between two molecules. Once these forces are obtained, a scattering

calculation can be performed to determine solutions to the equation for nuclear

motion, Eq. 2.8. In this section, we will discuss the formalism we use for scattering

calculations.

2.4.1 Classical ideas

The classical scattering of structureless particles by a fixed central potential is illus-

trated in Fig. 2.1. In the figure, a particle approaches the potential parallel to the

z-axis with some energy E. The particle’s perpendicular distance from the z-axis

is called the impact parameter b. When the particle is scattered by the potential,

it is deflected by a polar angle θ called the scattering angle. If we assume that

the deflection is a continuous, smooth function of the impact parameter, then all

particles with impact parameter between b and b+db scatter into a solid angle dΩ.

Classical scattering theory allows one to determine θ as a function of b and E.

The point of comparison between experiment and theory is typically the cross

section. In the figure, an infinitesimal cross section dσ(θ, φ) can be defined as the

infinitesimal area b db dφ containing all the trajectories that result in scattering into

the solid angle dΩ:

dσ =
The number of particles deflected into dΩ per second

Flux of incident particles
. (2.43)

Since the flux is the number of particles that pass through the infinitesimal area

b db dφ in a given time, the infinitesimal cross section has units of area. The cross

section is the integral of dσ(θ, φ) over solid angle.
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Figure 2.1: Classical scattering of a structureless particle by a fixed potential [48].
Reprinted with permission of John Wiley & Sons, Inc.

In the case of a two-particle collision, it is often convenient to perform scat-

tering calculations in the center of mass system. In this system, the two-particle

collision reduces to a one-particle problem. The effective particle has reduced mass

µ = m1m2/(m1 +m2), is moving with relative momentum p = µv where v is the

relative velocity, and is scattered by a fixed potential. The cross section is the same

in the center of mass frame as it is in the laboratory frame.

2.4.2 Introduction to quantum mechanical scattering

There are many cases for which one would wish to determine quantum mechanical

cross sections. Some examples include scattering events for which the particles have

de Broglie wavelengths sufficiently large compared to the scattering region, or for

which the collision partners are indistinguishable, or for events that involve tunneling

or interference. In such calculations, one must find a solution to the Schrodinger

equation of the system for a specified positive energy and then relate that solution

to a cross section. Additional details are provided in texts on quantum mechanics,

and some references are [49–53].
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Just as in classical scattering, collisions between two particles can be reduced

to one-particle problems by working in the center of mass frame. When the po-

tential energy depends only on the relative coordinates of the particles, the Born-

Oppenheimer nuclear wave function of Eq. 2.8 for the system can be expressed as

the product of a function u describing the relative motion between the two particles

and another function describing the motion of the center of mass.

In this section, we consider elastic collisions between structureless “particles”,

which could be elementary particles without spin or noble gas atoms. Letting V

denote the interparticle potential, we can write the Schrodinger equation for the

relative motion as

− ~2

2µ
∇2u+ V u = Eu. (2.44)

Cross sections can be found using the wave function u. The incident particle is

represented by a plane wave with well-defined energy E, or momentum ~k =
√

2µE.

In this section we will restrict ourselves to central potentials V = V (r) that go to

zero faster than 1/r2.

So that the problem will have azimuthal symmetry, one can define the z-axis

parallel to the direction along which the incident plane wave approaches the poten-

tial. The incident plane wave is scattered by the potential, producing an outgoing

spherical wave modulated by an angular amplitude f(θ). For a beam of incident

particles, this model gives the steady-state, asymptotic wave function

u(r, θ) ≈ A

{
eikz + f(θ)

eikr

r

}
r →∞. (2.45)

The quantity f(θ) is called the scattering amplitude and is related to the cross

section by

σ =

∫
|f(θ)|2 dΩ, (2.46)

where |f(θ)|2 gives the intensity of the scattering at each angle. By finding a solution

to the Schrodinger equation (Eq. 2.44) and matching its asymptotic form to Eq. 2.45,

one can determine f(θ) and therefore σ.

For a central potential, angular momentum is conserved. If we use separation of
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variables to solve Eq. 2.44 we expect to find solutions

ulm(r, θ) =
ylm(r)

r
Ylm(θ, φ) (2.47)

Since the plane wave approaches from the z direction, the problem has azimuthal

symmetry and m = 0. Thus we can find solutions of the form

ul(r, θ) =
yl(r)

r

√
2l + 1

4π
Pl(cos θ) (2.48)

where yl(r) is a solution to the equation for radial motion,(
− d2

dr2
+
l(l + 1)

r2
+

2µ

~2
V (r)− k2

)
yl(r) = 0. (2.49)

One can write a general solution to the Schrodinger equation as a linear combi-

nation of these solutions

u(r, θ) =
∑
l

yl(r)

r
Pl(cos θ) (2.50)

where the expansion coefficients are contained in yl(r), as will be shown below.

One can determine the asymptotic form of yl(r) by looking at the form of the

solution to Eq. 2.49 in the limit where r is large enough that V (r) � 1/r2 can be

neglected: (
− d2

dr2
+
l(l + 1)

r2
− k2

)
yl(r) = 0. (2.51)

The general solution to this equation is a linear combination of two linearly inde-

pendent solutions, which may be chosen to be the real spherical Bessel functions of

the first and second kinds, jl(kr) and nl(kr) [54], multiplied by r:

yl(r)

r
= Al [jl(kr) +Rlnl(kr)] (2.52)

The quantity Rl is the reactance R matrix, which is a 1 × 1 matrix in this case.

Then the general solution Eq. 2.50 is, at large r where the potential is negligible,

u(r, θ) =
∞∑
l=0

Al [jl(kr) +Rlnl(kr)]Pl(cos θ). (2.53)
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First, we will discuss how we relate Al and Rl to the asymptotic form specified by

Eq. 2.45 to determine f(θ) in terms of the Rl. Then, we will discuss determining

the solution to Eq. 2.49 and matching it to the form specified by Eq. 2.52 at large

r where the potential is negligible. This matching determines the numerical values

of the Rl and leads to the value for the cross section.

The asymptotic forms of jl(kr) and nl(kr) are [54]:

jl(kr) ≈
sin(kr − lπ/2)

kr
=
ei(kr−lπ/2) − e−i(kr−lπ/2)

2ikr
(2.54)

nl(kr) ≈
cos(kr − lπ/2)

kr
= i

(
ei(kr−lπ/2) + e−i(kr−lπ/2)

2ikr

)
. (2.55)

Using Eqs. 2.54 and 2.55, we see that as r →∞, Eq. 2.53 has the asymptotic form

u(r, θ) ≈ 1

kr

∞∑
l=0

Al [sin(kr − lπ/2) +Rl cos(kr − lπ/2)]Pl(cos θ) (2.56)

≈ 1

2ik

∞∑
l=0

Al

[
(1 + iRl)

ei(kr−lπ/2)

r
− (1− iRl)

e−i(kr−lπ/2)

r

]
Pl(cos θ)

≈ 1

2ik

∞∑
l=0

Al(1− iRl)

[(
1 + iRl

1− iRl

)
ei(kr−lπ/2)

r
− e−i(kr−lπ/2)

r

]
Pl(cos θ).(2.57)

To determine f(θ) in terms of the Rl, we must write the model asymptotic wave

function given in Eq. 2.45 as a sum over l. The incident plane wave can be written

as a superposition of its angular momentum components using Rayleigh’s formula,

eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ), (2.58)

and the scattering amplitude can be expanded in Legendre polynomials:

f(θ) =
∞∑
l=0

(2l + 1)flPl(cos θ). (2.59)

Each term in Eqs. 2.56–2.58 is called a partial wave. Since the angular momentum

is conserved, each partial wave scatters independently, and the scattering ampli-

tude is a sum over all partial wave contributions. By rewriting Eq. 2.45 using
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Eqs. 2.58 and 2.59, the form of jl(kr) for large r, and the relationship il = eilπ/2,

one finds that asymptotically:

u(r, θ) ≈ A
1

2ik

∞∑
l=0

(2l+1)il
{

(1 + 2ikfl)
ei(kr−lπ/2)

r
− e−i(kr−lπ/2)

r

}
Pl(cos θ). (2.60)

Equating the coefficients of the corresponding exponential terms for each l in

Eqs. 2.57 and 2.60 leads to the equations

1 + 2ikfl =

(
1 + iRl

1− iRl

)
(2.61)

A(2l + 1)il = Al(1− iRl). (2.62)

One can solve Eq. 2.61 to find fl in terms of Rl:

fl =
1

k

(
Rl

(1− iRl)

)
. (2.63)

Before we proceed to the determination of cross sections, we will identify three

useful quantities related to Rl.

Equations 2.57 and 2.60 involve an incoming spherical wave e−i(kr−lπ/2)/r and

an outgoing spherical wave ei(kr−lπ/2)/r multiplied by a factor (1 + iRl)/(1− iRl) =

(1 + 2ikfl). This factor is conventionally called Sl, the scattering S matrix:

Sl = 1 + 2ikfl =

(
1 + iRl

1− iRl

)
, (2.64)

When there is no scattering, fl = Rl = 0 for all l, and Sl = 1. From Sl, one can

define Tl, the transition T matrix, as

Tl = 1− Sl =
−2iRl

1− iRl

, (2.65)

which is zero for all l when there is no scattering. By rearranging Eq. 2.64, one finds

that

fl =
Sl − 1

2ik
= − Tl

2ik
. (2.66)

Equation 2.64 shows that Sl is unitary, so that one can write

Sl = e2iδl . (2.67)
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The real coefficient δl, which is called the phase shift, has a simple physical interpre-

tation. The result of the scattering is a phase change 2δl of the outgoing spherical

wave in Eq. 2.60. When there is no scattering, δl = 0; the outgoing wave is not

phase shifted.

The fl can be written in terms of the phase shift by using Eqs. 2.66 and 2.67:

fl =

(
e2iδl − 1

2ik

)
e−iδl

e−iδl
=

(
eiδl − e−iδl

2ik

)
1

e−iδl
=
eiδl

k
sin(δl). (2.68)

By inverting Eq. 2.64 to write Rl in terms of Sl, one can show that

Rl = i

(
1− Sl
1 + Sl

)
= i

(
1− e2iδl
1 + e2iδl

)
e−iδl

e−iδl
=

1

i

eiδl − e−iδl
eiδl + e−iδl

= tan δl. (2.69)

We have defined four different quantities: the phase shift δl, and the R, S, and

T matrices. As we have shown, they are all related, and the cross section can be

expressed in terms of any one of them. We will show this by writing the cross section

in terms of the fl by using Eqs. 2.46 and 2.59 and the orthogonality of the Legendre

polynomials,
1∫

−1

Pl(cos θ)Pl′(cos θ) dcos θ =
2

2l + 1
δll′ . (2.70)

One finds that the cross section in terms of fl is

σ =

∫
|f(θ)|2 dΩ = 2π

π∫
0

f ∗(θ)f(θ) sin θ dθ (2.71)

= 2π

1∫
−1

(
∞∑
l=0

(2l + 1)f ∗l Pl(cos θ)

)(
∞∑
l′=0

(2l′ + 1)fl′Pl′(cos θ)

)
dcos θ (2.72)

= 2π
∞∑
l=0

∞∑
l′=0

(2l + 1)(2l′ + 1)f ∗l fl′

1∫
−1

Pl(cos θ)Pl′(cos θ) d cos θ (2.73)

= 4π
∞∑
l=0

|fl|2 (2l + 1). (2.74)

The cross section contains no interference terms between the partial waves.
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To determine the cross section, one uses Eq. 2.74 and the expression relating fl

to the appropriate quantity (Eq. 2.63, 2.66, or 2.68). The cross section can then be

written in any of the following forms:

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2(δl) (2.75)

σ =
4π

k2

∞∑
l=0

(2l + 1)
R2
l

1 +R2
l

(2.76)

σ =
π

k2

∞∑
l=0

(2l + 1) |1− Sl|2 (2.77)

σ =
π

k2

∞∑
l=0

(2l + 1) |Tl|2 . (2.78)

The problem of determining the cross sections has been reduced to determining

either δl, Rl, Sl, or Tl. To determine any of these quantities, one must solve(
− d2

dr2
+
l(l + 1)

r2
+

2µ

~2
V (r)− k2

)
yl(r) = 0 (2.79)

for each l with the boundary condition yl(0) = 0. One integrates this equation from

r = 0 to a radius rmax at which the potential V is negligible. One can match the

asymptotic solution to the form specified by Eq. 2.52.

In principle, it’s possible to determine Sl or Tl directly, but it is computationally

advantageous first to determine one of the real quantities δl or Rl rather than the

complex Sl or Tl. Then one doesn’t need to calculate complex solutions to the real

Schrodinger equation. Instead, one can determine real solutions, match to Rl, and

then at the end use complex arithmetic to transform to Sl if necessary.

One can identify each partial wave with an impact parameter using the classical

relation l = r× p. The magnitude of l is bp. By replacing the magnitude of l with

~
√
l(l + 1) and using p = ~k, one finds that b ≈ l/k or l ≈ bk. The sum over l

can be interpreted as a sum over the impact parameter. The maximum l needed to

achieve convergence will be approximately related to the range of the potential.

The phase shift δl is the simplest way to describe elastic scattering, but the

formulas cannot be generalized to the case where one of the collision partners has
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internal structure and the potential is noncentral. In the next section, we will show

how the R, S, and T matrices can be generalized to describe transitions among

several quantum states.

2.4.3 Scattering by a rigid rotator

We use the quantum mechanical scattering formalism developed by Arthurs and

Dalgarno [17] for the scattering of a structureless particle by a rigid rotator. This

model is appropriate for a noble gas atom scattering from a diatomic molecule in a
1Σ state with v = 0, in the case where vibrational excitation and nuclear spin can

be neglected. The goal of the scattering calculations is to determine state-to-state

cross sections for the rotational excitation of the molecule. Additional details are

provided in [55, 56].

The scattering by a rigid rotator introduces some extra complications into the

theory described in Section 2.4.2; the molecule has internal structure and the po-

tential is noncentral. In this problem the total angular momentum J is conserved,

where

J = j + l, (2.80)

the vector sum of the angular momenta j and l corresponding to the rotation of

the molecule and the orbital angular momentum of the particle. The Arthurs and

Dalgarno [17] formalism uses the total angular momentum representation, so the

wave function for the system can be written as a sum of partial waves each with a

definite J .

When a partial wave scatters from the potential, angular momentum can be

transferred between j and l as long as J stays fixed. We will find that the wave

function for a given J has contributions from basis functions for several different

values of j and l.

One can generalize the quantum scattering theory outlined in Section 2.4.2 for

systems with multiple internal states by introducing the notion of a “channel”.

Each channel represents a possible internal state. In the present case, for a given

value of J , the channels can be labelled by the pairs (j, l). In a multichannel system,
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there are several linearly independent solutions to the time-independent Schrodinger

equation. Each solution corresponds to a collision with a different initial state, or

entrance channel, and can be described using the same concepts that we discussed

in Section 2.4.2. For each value of J , and for each possible initial state, we have one

incoming spherical wave and several outgoing spherical waves, one for each possible

final channel.

The potential is expressed using Jacobi coordinates, which are shown in Fig. 2.2

for the He+NaK system. The coordinate r is the bond length of the molecule, which

K

He

Na

R

r

θ

c.m.

Figure 2.2: Coordinates for the He+NaK system. Reproduced from [2] with the permis-
sion of AIP publishing.

is considered fixed at r = r0 for the present discussion; R is the distance between

the atom and the center of mass of the molecule, and θ is the angle between the

internuclear axis of the molecule and the atom. The unit vectors r̂ and R̂ define the

orientations of the internuclear axis and the vector associated with the distance R.

The scattering is formulated in a space-fixed, center of mass frame. The Hamil-

tonian is similar to that defined by Eq. 2.44 in Section 2.4.2, except for an extra

term Ĥrot related to the internal structure of the molecule:

Ĥ = Ĥrot −
~2

2µ
∇2
R + V (R, r0, θ). (2.81)

In this equation µ is the reduced mass of the atom-diatom system. The first

term, Ĥrot, describes the rotational motion of the rigid rotator about its center

of mass. Its eigenfunctions are the spherical harmonics Yjm(r̂), with eigenvalues

~2j(j + 1)/(2Mr20). The quantity M is the reduced mass of the diatomic molecule;

j is the rotational quantum number, and m is the corresponding magnetic quantum
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number. The second term in Eq. 2.81 corresponds to the kinetic energy of the inci-

dent particle. Finally, the third term V (R, r0, θ) represents the interaction potential

of the system, which goes to zero as R goes to infinity.

At the beginning of this section, we mentioned that the incident plane wave is

a superposition of partial waves with definite J . Since J is conserved, each partial

wave scatters independently, so one can perform separate calculations for each J .

In these separate calculations, one solves the equation for the relative motion

(Ĥ − E)uJMjl = 0, (2.82)

where J is fixed.

The eigenfunctions for the angular motion of the incident particle are Ylml(R̂),

and combining them with the eigenfunctions of the rotator, one can define a set of

coupled angular eigenfunctions

YMJjl(r̂, R̂) =
l∑

ml=−l

j∑
m=−j

〈jlmml|jlJM〉Ylml(R̂)Yjm(r̂), (2.83)

where 〈· · · | · · · 〉 is a Clebsch-Gordan coefficient. These YMJjl(r̂, R̂) functions are eigen-

functions of the total angular momentum operator Ĵ2 and of Ĵz. The system is

symmetric with respect to rotation, and we will show that for a given J the results

are independent of M .

The wavefunction for the system can be expanded in the YMJj′l′(r̂, R̂):

uJjl =
∑
j′l′

(
1

R

)
XJjl
j′l′ (R)YMJj′l′(r̂, R̂). (2.84)

This equation is analogous to Eq. 2.48 in Section 2.4.2.

By substituting the expansion Eq. 2.84 into Eq. 2.82, multiplying by
(
YMJj′′l′′(r̂, R̂)

)∗
and integrating over the angular coordinates, one obtains a set of coupled equations

~2

2µ

(
− d2

dR2
+
l′′(l′′ + 1)

R2
− k2j′′

)
XJjl
j′′l′′(R)

+
∑
j′l′

[∫ ∫ (
YMJj′′l′′(r̂, R̂)

)∗
V (R, r0, θ)Y

M
Jj′l′(r̂, R̂) dr̂ dR̂

]
XJjl
j′l′ (R) = 0, (2.85)
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where we have used the square of the channel wave number kj′′ given by rearranging

the expression for the total energy of the system,

E =
~2k2j′′

2µ
+

~2j′′(j′′ + 1)

2Mr20
. (2.86)

Equation 2.86 shows that the total energy E is the sum of the initial kinetic energy

of the incident particle and the initial rotational energy of the molecule.

The angular integral in Eq. 2.85 can be simplified by using a Legendre expansion

of the interaction potential:

V (R, r0, θ) =
∑
n

vn(R, r0)Pn(cos θ). (2.87)

Substituting Eq. 2.87 into Eq. 2.85 leads to an expression for the integral in

terms of the so-called Percival-Seaton coefficients [57], which are defined as

fn(j′′l′′, j′l′; J) =

∫ ∫ (
YMJj′′l′′(r̂, R̂)

)∗
Pn(cos θ)YMJj′l′(r̂, R̂) dr̂ dR̂

= (−1)j
′′+j′−J

√
(2j′′ + 1)(2j′ + 1)(2l′′ + 1)(2l′ + 1)(

l′′ l′ n

0 0 0

)(
j′′ j′ n

0 0 0

){
j′′ j′ n

l′ l′′ J

}
, (2.88)

where ( ······ ) is a 3j coefficient and { ······ } is a 6j coefficient. The Percival-Seaton

coefficients are independent of M .

The integrals in Eq. 2.85 become∫ ∫ (
YMJj′′l′′(r̂, R̂)

)∗
V (R, r0, θ)Y

M
Jj′l′(r̂, R̂) dr̂ dR̂ =

∑
n

fn(j′′l′′, j′l′; J)vn(R, r0).

(2.89)

By inserting Eq. 2.89 into Eq. 2.85, one obtains the following set of coupled

differential equations:

~2

2µ

(
− d2

dR2
+
l′(l′ + 1)

R2
− k2j′

)
XJjl
j′l′ (R)

+
∑
j′′l′′

∑
n

fn(j′′l′′, j′l′; J)vn(R, r0)X
Jjl
j′′l′′(R) = 0. (2.90)
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In practice, the infinite sum over the channels (j′′, l′′) is truncated and one inves-

tigates convergence with respect to the number of channels. This is known as the

close-coupling approximation.

The component n = 0 in Eq. 2.87 gives the central part of the potential, since

P0(cos θ) = 1. One can use the Percival-Seaton coefficient [57] for n = 0,

f0(j
′′l′′, j′l′; J) = δj′′j′δl′′l′ (2.91)

to split off the central part of the potential in the coupled equations:

~2

2µ

(
− d2

dR2
+
l′(l′ + 1)

R2
− k2j′ +

2µ

~2
v0(R, r0)

)
XJjl
j′l′ (R)

+
∑
j′′l′′

∑
n=1

fn(j′′l′′, j′l′; J)vn(R, r0)X
Jjl
j′′l′′(R) = 0. (2.92)

If we only include the j = 0 state, the term on the second line of Eq. 2.92 vanishes,

and we recover Eq. 2.79.

One can interpret Eq. 2.90 as an equation involving Nchan×Nchan matrices, where

Nchan is the number of channels (j, l). Each column of the solution matrix XJjl
j′′l′′(R)

gives the expansion coefficients of the wave function for a different initial state jl,

as shown in Eq. 2.84; these Nchan solutions are linearly independent. The term on

the second line in Eq. 2.90 represents the coupling between various initial and final

states; it is the matrix product of a coupling matrix
∑

n=1 fn(j′′l′′, j′l′; J)vn(R, r0)

and the solution matrix.

For a given J , linear combinations of the solutions XJjl
j′′l′′(R) can be matched to a

known asymptotic form, just as was done with solutions yl(r) in Section 2.4.2. The

matching determines the cross sections for the rotational excitation of the molecule.

The asymptotic form is:

XJjl
j′l′ (R) = δjj′δll′jl(kjR) +

√
kj′

kj
RJ
jl,j′l′nl′(kj′R) (2.93)

One can compare this equation to Eq. 2.52 in Section 2.4.2. The R matrix is now

an Nchan × Nchan matrix, and there is a flux factor
√
kj′/kj that accounts for the

fact that each channel has its own wave number.
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As in Eq. 2.65 of Section 2.4.2, we can relate the R matrix to the T matrix,

T = −2i(1− iR)−1R. (2.94)

Partial cross sections for a fixed J can be given in terms of the T -matrix elements.

By summing over the cross sections for each partial wave J , one obtains the total

j → j′ cross section

σ(j → j′) =
π

(2j + 1)k2j

∑
J

∑
l,l′

(2J + 1)
∣∣T Jjl,j′l′∣∣2 , (2.95)

which one can compare with Eq. 2.78. The factor 1/(2j + 1) arises because one

averages over m and sums over the final m′ to obtain the j → j′ cross sections.

Using the same reasoning as in Section 2.4.2, one still has l ≈ bk. In order to relate

the convergence of the sum over J to the range of the potential, however, it’s more

useful to use J ≈ bk, although this relation is less accurate because a fixed J may

have contributions from several values of l between |J − j| and |J + j|.
It’s useful to define the Grawert coefficients [58] when one needs cross sections for

jm→ j′m′ transitions appropriate for a cell environment. The Grawert coefficients

can be expressed in terms of the T-matrix elements:

Bλ(j, j
′) =

∑
l,l′

∣∣∣∣∣∑
J

(2J + 1)(−1)J

{
j j′ λ

l′ l J

}
T Jjl,j′l′

∣∣∣∣∣
2

(2.96)

where here they are defined to be symmetric with respect to j and j′; in the litera-

ture, sometimes a factor π/k2j is included in the definition of the Grawert coefficients.

The jm→ j′m′ cross sections are [11]

σ(jm→ j′m′) =
π

k2j

j+j′∑
λ=|j−j′|

(2λ+ 1)

(
j j′ λ

−m m′ m−m′

)2

Bλ(j, j
′) (2.97)

One can also express the j → j′ cross sections in terms of the Grawert coefficients:

σ(j → j′) =
π

(2j + 1)k2j

j+j′∑
λ=|j−j′|

(2λ+ 1)Bλ(j, j
′). (2.98)

One can obtain this equation from Eq. 2.97, which is equivalent to Eq. 2.95, by

averaging over m and summing over the final m′.
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2.4.4 Vibrational dependence of the scattering

The Arthurs and Dalgarno [17] formalism was developed for a rigid rotator, where

the internuclear separation r of the molecule is fixed at its equilibrium value r0. One

can generalize the formalism [59, 60] to incorporate the vibration of the molecule

by modifying the Hamiltonian presented in Eq. 2.81. One must include the full

kinetic energy operator for the motion of the target molecule, and one must extend

the interaction potential V (R, r, θ) to include the dependence on the bond length

r. This extended potential will include the interatomic potential for the target

molecule, which we identify as

W (r) = lim
R→∞

V (R, r, θ). (2.99)

We can write the modified Hamiltonian in a form that isolates the term describing

the molecular target:

Ĥ =

[
−~2

2M
∇2
r +W (r)

]
− ~2

2µ
∇2
R + [V (R, r, θ)−W (r)] (2.100)

= Ĥvib−rot −
~2

2µ
∇2
R + [V (R, r, θ)−W (r)] (2.101)

The eigenfunctions of Ĥvib−rot are products of a vibrational eigenfunction χvj(r)/r

and Yjm(r̂). Therefore the total wavefunction for the system can be written in a

form analogous to Eq. 2.84:

uJvjl =

(
1

Rr

)∑
v′j′l′

XJvjl
v′j′l′(R)YMJj′l′(R̂, r̂)χv′,j′(r). (2.102)

The vibrational wave functions χvj(r) are solutions of[
− ~2

2M

d2

dr2
+

~2j(j + 1)

2Mr2
+W (r)− Evj

]
χvj(r) = 0, (2.103)

where Evj is the vibrational-rotational energy for a given v and j.

The total energy of the system is the sum of the initial kinetic energy of the

incident particle and the initial energy of the vibrating rotator:

E = Evj +
~2k2vj

2µ
. (2.104)
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By substituting Eq. 2.102 into the Schrodinger equation and following the deriva-

tion of Section 2.4.3, one finds the generalization of Eq. 2.90:

~2

2µ

(
− d2

dR2
+
l′′(l′′ + 1)

R2
− k2v′′j′′

)
XJvjl
v′′j′′l′′(R)

+
∑
v′j′l′

∑
n

fn(j′′l′′, j′l′; J)Vv′′j′′v′j′n (R)XJvjl
v′j′l′(R) = 0, (2.105)

where

Vv′′j′′v′j′n (R) =

∫
χv′′j′′(r)ṽn(R, r)χv′j′(r) dr. (2.106)

Equation 2.105 has the same form as Eq. 2.90, with the vibrationally averaged

Vv′′j′′v′j′n (R) replacing vn(R, r0). The ṽn(R, r) are the Legendre components of the

coupling function introduced in Eq. 2.101:

V (R, r, θ)−W (r) = Ṽ (R, r, θ) =
∑
n

ṽn(R, r)Pn(cos θ) (2.107)

Subtracting W (r) ensures that the Legendre components ṽn(R, r) all go to zero in

the limit of large R. We note that ṽn(R, r0) reduces to the vn(R, r0) defined in

Section 2.4.3.

2.5 Multipole expansion of m-changing collisions

The most straightforward way to analyze m changing collisions is in terms of

jm → j′m′ cross sections that describe the individual changes in m. An elegant

alternative is to consider the distribution of m levels of an ensemble of molecules in

a cell environment with the same j. This distribution can be expressed in terms of

moments, which are defined below. The discussion follows previous work presented

by ourselves [2] and others [11, 12, 61].

Let N j
m be the number of molecules in the state |jm〉. For a fixed j the values

of N j
m define a distribution of m levels. One can transform the m distribution to a

moment distribution [61] using the orthogonal transformation T j with elements

T jmK = (−1)K+m+j
√

2K + 1

(
j K j

m 0 −m

)
, (2.108)
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where K is an integer between 0 and 2j. We can use this transformation to define

the moment distribution njK as [11, 12, 61]

njK =

j∑
m=−j

N j
mT

j
mK , (2.109)

or in terms of the two row matrices nj and Nj,

( n0 . . . n2j ) = ( N−j . . . Nj )


T j−j,0 . . . T j−j,2j

...
. . .

...

T jj,0 . . . T jj,2j

 . (2.110)

The first three moments (K = 0, 1, and 2) are proportional to the population,

the orientation and the alignment. Using explicit expressions in [2], one can show

that

Population = N j =

j∑
m=−j

N j
m (2.111)

Orientation = Oj =
1√

j(j + 1)

j∑
m=−j

mN j
m

j∑
m=−j

N j
m

=

〈
m√

j(j + 1)

〉
(2.112)

Alignment = Aj =

〈
3m2 − j(j + 1)√

j(j + 1)
[
j(j + 1)− 3

4

]
〉
. (2.113)

In these definitions 〈. . .〉 indicates an average over the molecules. Population is the

total number of molecules with a given j, orientation is proportional to the average

m level, and alignment involves the squares of the m levels of the molecules.

By evaluating Eq. 2.109 for the first three moments, one can show that the

proportionality factors are

N j =
√

2j + 1nj0 (2.114)

Oj =

√
2j + 1

3

nj1
N j

(2.115)

Aj =

√
2j + 1

5

2nj2
N j

(2.116)
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Since the orientation Oj and the alignment Aj depend on nj1/N j and nj2/N j, they

are properties that do not depend on the total number of molecules in the level j.

We note that Zare [62] introduced an extra factor of 2 in the proportionality factor

of Aj by defining alignment (Eq. 2.113) so that −1 ≤ Aj ≤ 2 for large j.

Figure 2.3 shows some possible distributions of m levels for j = 2, each charac-

terized by a different linear combination of moments.

Figure 2.3: Examples of distributions of m for j = 2 [61]. Panel (a) shows a population
uniformly distributed among the m levels. Panel (b) shows a population
plus an orientation. Panel (c) shows a population plus an alignment. Panels
(d), (e), and (f) show m distributions that involve linear combinations of
more than two moments.

The moments can be interpreted within a semiclassical vector model, in which

the angular momentum vector j precesses about the z axis with cone angle θ. The

length of j is ~
√
j(j + 1), the square root of the eigenvalue of ĵ2. The projection of

j onto the z axis is ~m, the eigenvalue of ĵz. The cone angle is related to m and j

by

cos θ =
m√

j(j + 1)
. (2.117)

Since m/
√
j(j + 1) already appears on the right-hand side of Eq. 2.112, one sees

that orientation is the average value of cos θ over all of the molecules with a given

j. In terms of Legendre polynomials, it is the average value of P1(cos θ) within the

level j.
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For large j, in this approximation theKth moment is proportional to 〈PK (cos θ)〉;
the m distribution can be written as a Legendre polynomial expansion of the cor-

responding cos θ distribution. This interpretation follows from an approximation

from Edmonds [63] that relates 3j coefficients to Legendre polynomials. Using the

approximation leads to

T jmK ≈

√
2K + 1

2j + 1
PK

(
m√

j(j + 1)

)
. (2.118)

The approximation is best for K � j and is exact for K = 0 and 1. Using this

identity and Eq. 2.109, one can show that the moments are

njK ≈ N
j

√
2K + 1

2j + 1
〈PK (cos θ)〉 . (2.119)

Orientation is 〈P1 (cos θ)〉 and alignment is 2 〈P2 (cos θ)〉 (because of the extra factor

of 2 discussed earlier). Within this approximation, we can define similar quantities

for K > 2 to be 〈PK (cos θ)〉. By Eq. 2.119, these quantities will be proportional to

the moments njK by the factor N j
√

(2K + 1)/(2j + 1).

A distribution with only a population corresponds to angular momentum vectors

j pointed in random directions. A distribution with an orientation corresponds to a

tendency for the angular momentum vectors j to point in one general direction. A

distribution with an alignment corresponds to a tendency for the angular momentum

vectors j to point either in some direction r̂ or in the opposite direction −r̂; one can

then think of j as a two-headed arrow.

Figure 2.4 shows a comparison between several discrete quantum mechanical

distributions of m levels for j = 2, plotted as a function of m/
√
j(j + 1), and the

continuous semiclassical distributions, plotted as a function of cos θ. Each panel

shows a distribution

N j
m =

∑
K

njKT
j∗
Km (2.120)

that is composed of only one moment K as a function of cos θ. The quantum

mechanical distributions are points calculated for values of cos θ = m/
√
j(j + 1)
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and the Legendre polynomial approximations are lines. The agreement is fairly

good for the higher moments, even though this is a low j.

Let us now consider a cell environment with an initial distributionN j
m of molecules

in m levels for a given j. Collisions will lead to the population of other levels j′m′.

We can relate the distribution of the molecules in the final m′ levels of a specific j′

to N j
m using the cross sections σ(jm → j′m′). The relation can be given explicitly

by defining a dimensionless probability matrix Pjj′ , with elements

Pjj
′

mm′ =
k2j
π
σ(jm→ j′m′). (2.121)

The probability matrix relates the two distributions such that

N j′

m′ =
∑
m

N j
mP

jj′

m,m′ , (2.122)

or in terms of matrices

Nj′ = NjPjj′ . (2.123)

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

j ( j +1)

m

m
d
is

tr
ib

u
ti
o
n

q = 1

orientation

q = 2

alignment

q = 3 q = 4

Figure 2.4: Distributions of m levels for j = 2 as a function of cos θ. (In this figure, q
is used instead of K to denote the moment.) To obtain a physical distri-
bution, one must add a population moment. The points were determined
from Eq. 2.120 with njK = 1 (that is, they are T j∗Km), while the lines were
determined from Eq. 2.118; the agreement is fairly good even for K = 4.
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We can transform this equation to the moment basis by first inserting

T j(T j)† = I, (2.124)

where I is the identity matrix, into Eq. 2.123. Then

Nj′ = NjT j(T j)†Pjj′ . (2.125)

By multiplying by T j′ on the right and using Eq. 2.109, one finds

Nj′T j′ = NjT j(T j)†Pjj′T j′ (2.126)

nj
′

= nj
{

(T j)†Pjj′T j′
}
. (2.127)

The term in curly brackets in Eq. 2.127 is the transformation of the probability

matrix to the moment basis:

Qjj′ = (T j)†Pjj′T j′ . (2.128)

The matrix Qjj′ is rectangular and of dimension (2j + 1) × (2j′ + 1). Its elements

are

Qjj
′

KK′ = δKK′dK(j, j′) K = 0, . . . , 2j, K ′ = 0, . . . , 2j′ (2.129)

so that the matrix (for j′ > j) is

Qjj′ =


d0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . d2j 0 . . . 0

 . (2.130)

The moment distribution is a more elegant way to analyze m-changing collisions

because of the diagonal form of the probability matrix in this basis; the moments

are completely independent of each other.

Now we can express Eq. 2.127 as

nj
′
= njQjj′ , (2.131)

or

nj
′

K =
∑
K′

njK′Q
jj′

K′K = δKK′njK′dK′(j, j′) = njKdK(j, j′), (2.132)
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which shows that the probability dK(j, j′) = nj
′

K/n
j
K .

By using the definitions of Oj and Aj (Eqs. 2.115 and 2.116) and the fact that

d0(j, j
′) =

nj
′

0

nj0
=

N j′

√
2j′ + 1

√
2j + 1

N j
=
N j′

N j

√
2j + 1

2j′ + 1
, (2.133)

one can determine that the fraction of orientation = 〈P1 (cos θ)〉 retained by the

molecules in j′ after many molecules have undergone collisional transitions from j

is
Oj′

Oj
=
d1(j, j

′)

d0(j, j′)
. (2.134)

Similarly, the fraction of alignment = 2 〈P2 (cos θ)〉 retained is

Aj′

Aj
=
d2(j, j

′)

d0(j, j′)
. (2.135)

Moreover, by using Eqs. 2.119 and 2.133, one can show that in general

〈PK (cos θ)〉j′
〈PK (cos θ)〉j

=
dK(j, j′)

d0(j, j′)
, (2.136)

where 〈PK (cos θ)〉j′ is the average value of PK over all the molecules with the rota-

tional quantum number j′.

Using Eq. 2.130 along with a paper by Derouard [12], one can show that the

dK(j, j′) are related to the Grawert coefficients:

dK(j, j′) =

j+j′∑
λ=|j−j′|

(−1)j+j
′+λ+K(2λ+ 1)

{
λ j j′

K j′ j

}
Bλ(j, j

′) (2.137)

Bλ(j, j
′) =

2j<∑
K=0

(−1)j+j
′+λ+K(2K + 1)

{
λ j j′

K j′ j

}
dK(j, j′), (2.138)

where j< = min(j, j′). The dK and Bλ are analogous to alternative basis sets con-

nected by an orthogonal transformation. Therefore, if one determines the Grawert

coefficients, one has all the information needed to determine the fraction of a mo-

ment preserved after many collisions.

54



One can use Eqs. 2.138 and 2.98 to show that the j → j′ cross sections are

proportional to d0,

σ(j → j′) =
π

k2j

√
2j′ + 1

2j + 1
d0(j, j

′), (2.139)

which defines the cross section for the collision transfer of population from j to j′.

One can define [64] similar cross sections for the transfer of any Kth moment

σK(j → j′) =
π

k2j

√
2j′ + 1

2j + 1
dK(j, j′). (2.140)

The rate constant k(j → j′) for transitions at temperature T is the following

convolution of the energy-dependent cross section (see Section 4.2.1):

k(j → j′) =

√
1

πµ

(
2

kT

)3
∞∫
0

σ(j → j′;Ekin)Ekin e
−Ekin/(kT ) dEkin. (2.141)

In this equation, we explicitly included the dependence of the cross section on Ekin,

the kinetic energy of the incident particle, but usually we will suppress it. To

generalize Eqs. 2.134 and 2.135 to a cell environment where the molecules have a

thermal distribution of energies, one would need to evaluate the ratios

∞∫
0

dK(j → j′;Ekin)Ekin e
−Ekin/kT dEkin

∞∫
0

d0(j → j′;Ekin)Ekin e−Ekin/kT dEkin

. (2.142)
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Chapter 3

Potential energy surface

calculations

We have calculated potential energy surfaces (PESs) for the excited states of the

HeNaK and ArNaK molecules that correspond asymptotically to He (1S0) or Ar

(1S0) + NaK (A 1Σ+). Our calculations were performed on the Stampede super-

computer at the University of Texas using the GAMESS code [65].

In this chapter we will describe each calculation, present comparisons between

the different surfaces, and describe fits of some surfaces to the long range analytic

form discussed in Section 2.3.2.

3.1 Electronic structure calculations

We have calculated a total of four PESs (two for HeNaK and two for ArNaK) for

the following reasons. At first, we used an MCSCF/MR-CISD method to calculate

the HeNaK PES, but similar calculations for ArNaK would have required too many

resources. Instead we performed what were quicker EOM-CCSD calculations, and

to facilitate comparison we calculated PESs with this method for both HeNaK and

ArNaK. Since the calculations took less computer time, we were able to use a larger

basis set. We also performed counterpoise corrections.
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By performing the counterpoise corrections, we could assess how much our poten-

tials (and our scattering cross sections) were affected by the basis set superposition

error. In addition, we have started to examine basis set convergence by performing

new EOM-CCSD calculations for ArNaK with a larger basis set.

To distinguish between the PESs within the text, we will establish the follow-

ing convention: The MCSCF/MR-CISD PES will be referred to as PES I: He, the

EOM-CCSD PESs comparable for HeNaK and ArNaK as PES II: He and PES II: Ar,

and the ArNaK PES with the larger basis as PES III: Ar.

3.1.1 Details of the calculations

First, we describe our MCSCF/MR-CISD [29, 30] calculation for the HeNaK PES

[2] (PES I: He). We used a 6-311G (Pople’s valence triple zeta) basis set with extra

polarization functions. The basis set for He was 5s2p/3s2p [66]. (This notation

means that five primitive s-type and two primitive p-type GTOs were contracted

into three s-type basis functions and two p-type basis functions.) The basis set for

Na was 13s9p3d1f/6s5p3d1f [66, 67] and for K it was 14s11p6d1f/8s7p4d1f [68].

The polarization functions are listed in Table 3.1.

Table 3.1: Gaussian type polarization basis functions used for PES I: He. Column three
gives the coefficients of the normalized GTO in the contracted orbital.

Na AOs Exponent Coefficient K AOs Exponent Coefficient
d 0.7000000 1.000000000000 d 13.3700000 0.062591844459
d 0.1750000 1.000000000000 3.4210000 0.310723063593
d 0.0437500 1.000000000000 1.0630000 0.773607911982
f 0.1500000 1.000000000000 d 0.6870000 1.000000000000

d 0.2290000 1.000000000000
d 0.0763333 1.000000000000
f 1.1100000 1.000000000000

We performed an MCSCF calculation with fifteen frozen core orbitals (1s for He,

1s, 2s, 2px,y,z for Na, and 1s, 2s, 2px,y,z, 3s, 3px,y,z for K) and two active orbitals

(3s for Na and 4s for K), for a total of 3 CSFs. Using those CSFs, we performed
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an MR-CISD calculation. There were six frozen core orbitals (1s for Na, and 1s,

2s, 2px,y,z for K) and eleven orbitals in the active space (1s for He, 2s, 2px,y,z, 3s

for Na, and 3s, 3px,y,z, 4s for K). All single and double excitations from any CSF in

the active space were included, for a total of 5,673,309 CSFs of A′ symmetry in the

Cs symmetry of our calculations.

As we mentioned, we weren’t able to perform a comparable MCSCF/MR-CISD

calculation for ArNaK. Instead we performed EOM-CCSD [69] calculations

(PES II: He and PES II: Ar), and we treated HeNaK and ArNaK in a parallel fash-

ion [3]. Later we will discuss the differences between these two methods.

The basis set was obtained using the EMSL basis set library [70, 71] for a

6-311+G∗∗ basis set [67, 68, 72, 73]. This basis set differs from that used in the

MCSCF/MR-CISD calculation in the following ways. As the ‘+’ indicates, diffuse

basis functions were included in the calculation. We split the f functions centered

on Na [66] and K [68] in our MCSCF/MR-CISD basis set using the same factors

that had been used to split the d functions. Moreover, we added one d function to

He [66] with exponent 2.0 and one f function to Ar [74] with exponent 0.89. This

resulted in a 5s2p1d/3s2p1d basis for He, a 14s11p2d1f/7s6p2d1f basis for Ar, a

14s10p3d3f/7s6p3d3f basis for Na, and a 15s12p6d3f/9s8p4d3f basis for K. The

polarization functions are listed in Table 3.2.

For the HeNaK calculation we froze the same six core orbitals as in the

MCSCF/MR-CISD calculation (1s for Na and 1s, 2s, 2px,y,z for K). For the ArNaK

calculation, there were eleven frozen core orbitals: 1s for Na, 1s, 2s, 2px,y,z for

Ar, and 1s, 2s, 2px,y,z for K. The HeNaK potential was size consistent to within

10−10 Eh, where Eh denotes a Hartree, and the ArNaK potential was size consistent

to within 10−9 Eh (both errors are within the noise level of the calculation). We

used the counterpoise method to correct for basis set superposition error [45].

Finally, we obtained an ArNaK EOM-CCSD PES with a larger basis set

(PES III: Ar). We used the cc-pCVTZ basis set (Dunning’s correlation consis-

tent core-valence triple zeta basis set) for Na [75], Feller’s CVTZ basis set for K

[76, 77] and an aug-cc-pCVTZ basis set for Ar (where aug means diffuse func-

tions were included) [78, 79]. This gave an 18s12p4d2f/7s6p4d2f basis for Na, a
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Table 3.2: Gaussian type polarization basis functions used for PES II: He and
PES II: Ar. Column three gives the coefficients of the normalized GTO in
the contracted orbital.

He AOs Exponent Coefficient Ar AOs Exponent Coefficient
d 2.0000000000 1.00000000 d 1.7000000000 1.00000000

d 0.4250000000 1.00000000
f 0.8900000000 1.00000000

Na AOs Exponent Coefficient K AOs Exponent Coefficient
d 0.70000000 1.000000000000 d 13.3700000 0.062591844459
d 0.1750000 1.000000000000 3.4210000 0.310723063593
d 0.0437500 1.000000000000 1.0630000 0.773607911982
f 0.6000000 1.000000000000 d 0.6870000 1.000000000000
f 0.1500000 1.000000000000 d 0.2290000 1.000000000000
f 0.0375000 1.000000000000 d 0.0763333 1.000000000000

f 3.3300000 1.000000000000
f 1.1100000 1.000000000000
f 0.3700000 1.000000000000

Table 3.3: Gaussian type polarization basis functions used for PES III: Ar. Column
three gives the coefficients of the normalized GTO in the contracted orbital.

Na AOs Exponent Coefficient K AOs Exponent Coefficient
d 0.1473000 1.000000000000 d 1.75000000 1.000000000000
d 0.0623000 1.000000000000 d 0.50500000 1.000000000000
d 5.4229000 1.000000000000 d 0.10400000 1.000000000000
d 1.6074000 1.000000000000 d 0.04700000 1.000000000000
f 0.1284000 1.000000000000 f 1.20000000 1.000000000000
f 3.4291000 1.000000000000 f 0.09000000 1.000000000000

Ar AOs Exponent Coefficient Ar AOs Exponent Coefficient
d 0.4100000 1.000000000000 d 0.1690000 1.000000000000
d 1.2540000 1.000000000000 f 0.8900000 1.000000000000
d 11.9380000 1.000000000000 f 13.6740000 1.000000000000
d 32.2140000 1.000000000000 f 0.4060000 1.000000000000

60s25p4d2f/8s7p4d2f basis for K, and an 18s12p5d3f/8s7p5d3f basis for Ar. The

polarization functions are listed in Table 3.3.

The frozen core orbitals were the same as in the other calculations. The PES was
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size consistent to within 10−9 Eh, and we used the counterpoise method to correct

for BSSE [45].

We calculated the energies as a function of the Jacobi coordinates shown in

Fig. 2.2. The NaK bond length is r, and R and θ are the distance and angle of the

incident particle from the center of mass of NaK. In our initial calculations the value

of r was fixed at r0 = re = 7.935 a0, the experimental value [7] of the equilibrium

internuclear separation. This value was appropriate for the rigid rotator scattering

calculations that will be described in Chapter 4. For these surfaces, we included

21 values of R between 3.5 and 25.0 a0 for HeNaK, and 21 values between 4.5 and

30 a0 for ArNaK. For each R we typically calculated 13 angular points evenly spaced

between 0◦ and 180◦ (every 15◦). The MR-CISD method is not size consistent, and

for this reason all relative energies for PES I: He were calculated with respect to the

energy of HeNaK with a large He - NaK distance and not with respect to the sum

of the energies of the fragments.

The rigid rotator potentials we obtained are shown in Fig. 3.1. Each PES is

predominantly repulsive with very shallow van der Waals wells at long range. At the

experimental temperature of 600 K, the average energy is kT ≈ 0.002 Eh (440 cm−1).

The well depths are much smaller than the average energy; depending on the surface,

the deepest wells ranged from 1.4× 10−5 Eh to 1.8× 10−4 Eh (3 cm−1 to 41 cm−1).

3.1.2 Comparison between methods

Table 3.4 lists the time in processor-hours required to calculate energies at 100

geometries for each surface, including the additional time required to perform the

counterpoise correction.

We performed calculations for several r with R set to a very large number

(10,000 a0) to determine the spectroscopic constants of NaK (A 1Σ+); the results are

tabulated in Table 3.5. In the table, re is the equilibrium internuclear separation,

we quantifies the curvature of the potential at its minimum, and wexe quantifies

the anharmonicity of the potential. For PES III: Ar, the value of wexe is smaller

than that given by our other surfaces and the experimental data; we optimized this
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Figure 3.1: Rigid rotator PESs (r = 7.935 a0) as a function of R for fixed values of
θ. Panel (a) is PES I: He, Panels (b) and (c) are PES II: He and PES II:
Ar, and Panel (d) is PES III: Ar. Panel (a) reproduced from [2] with the
permission of AIP publishing. Panels (b) and (c) reprinted from [3] with
permission from Elsevier.
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Table 3.4: Timing in processor-hours for every 100 geometries. Most calculations used
16 cpu’s.

PES I PES II PES III

HeNaK 2667a 38a

53b N/A

ArNaK N/A
59a

92b
243a

285b

aNo counterpoise correction
bTime for the two additional surfaces needed to determine the counterpoise correction

Table 3.5: Spectroscopic constants for NaK (A 1Σ+)

re (a0) we (cm−1) wexe (cm−1)
PES I: He 7.72 93.8 0.250
PES II: He and PES II: Ar 7.95 84.0 0.266
PES III: Ar 7.87 90.1 0.140
Experiment, Ross et al. [7] 7.935 81.25 0.2747

basis set for smaller R where Ar interacts with NaK. The results are the same for

PES II: He and PES II: Ar (as they should be), and these surfaces gave the best

agreement with experiment for all three spectroscopic constants.

Figure 3.2 compares our NaK (A 1Σ+) potentials with a Rydberg-Klein-Rees

(RKR) potential determined from experimental data [7]. Panel (a) shows PES I,

II, and III for a wide range of bond lengths. For most bond lengths, PES II agrees

the best with experiment. All three potentials are similar near the equilibrium

value but gradually diverge from the RKR curve as the bond stretches. The poor

value of PES II: He (and PES II: Ar) near r = 12 a0 is likely due to limitations of

the method used to calculate the PES; PES II and PES III were calculated using

EOM-CCSD, which is a single-reference method, and that means the results may

not be as accurate for higher bond lengths of NaK. We note that PES III does not

have an anomalous point at r = 12 a0; it is not easy to predict where the method will

fail. The single-reference nature of EOM-CCSD is part of the reason the calculations

are quicker, and most of the experimental data is for low vibrational levels of NaK,
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Figure 3.2: Comparison of the experimental NaK (A 1Σ+) potential of Ross et al. [7]
with the potentials obtained from our PESs. All potentials were shifted ver-
tically so that their zeroes of energy are at their respective re. In Panel (a),
we show the comparison for many bond lengths r. PES II agrees the best
with experiment for most bond lengths but fails at r = 12 a0 because of
limitations in the method used to calculate the PES. In Panel (b), we show
the potential only for bond lengths near the bottom of the well, since most
of the experimental data is for low vibrational levels. In this region PES II
agrees the best with experiment.

for which EOM-CCSD works well. Panel (b) shows that near r0 PES II agrees the

best with experiment.

We now make some comparisons between our surfaces, noting again that at 600 K

the average initial kinetic energy of He or Ar is kT ≈ 0.002 Eh (440 cm−1) and that

the potential wells are fairly small compared to the collision energy.

First, we compare PES II: He and PES II: Ar to probe differences between Ar

and He’s interactions with NaK. Panel (a) of Fig. 3.3 shows that the ArNaK PES

tends to have steeper repulsive walls. The ArNaK PES also has deeper wells; argon

is more polarizable and the long range van der Waals attraction will be stronger

between Ar and NaK. For ArNaK the deepest well is about 18 cm−1, while for

HeNaK it is 3 cm−1; these wells are both near θ = 90◦ and R = 11 a0. Panels (b)

and (c) of Fig. 3.3 show that in general the ArNaK potential is more asymmetric with

respect to cos θ = 0 (θ = 90◦) than the HeNaK potential; a homonuclear diatomic

molecule would have an atom-diatom potential that was exactly symmetric with
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Figure 3.3: Comparison between the rigid rotator PES II: He and PES II: Ar. In
Panel (a) we present the comparison for fixed angles θ as a function of
R. In Panels (b) and (c) we present comparisons for fixed R as a function
of cos θ.

respect to cos θ = 0. One therefore intuitively expects that He+NaK will show

more of a propensity for ∆j even transitions than Ar+NaK will.

Next, we make three more comparisons to assess the uncertainties in the PESs.

First, we compare counterpoise corrected and uncorrected PESs. Then, we compare

our HeNaK surfaces obtained with different methods and basis sets. Finally, we

compare our ArNaK surfaces obtained with the same method but different basis

sets, where both surfaces have been counterpoise corrected. The small differences

between the surfaces due to these uncertainties can be important. Later in Chapter 4
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we will see that the propensity depends very sensitively on the surface, and we will

try to correlate differences in the surfaces with differences in the cross sections.

As discussed in [44], two often compensatory errors are associated with finite

basis sets. These are BSSE and basis set convergence error. Correcting for BSSE

tends to decrease the well depths of a PES, while using a larger basis set tends to

increase them. Comparing our two counterpoise corrected ArNaK surfaces is a first

step in assessing our basis set convergence error, and indeed we will see that the

larger basis yields a counterpoise corrected PES with deeper wells.

In Fig. 3.4, we compare the counterpoise corrected and uncorrected PES II: He

and PES II: Ar. The counterpoise correction shifted the repulsive walls to higher

R and, as expected, decreased the well depths of each surface. For HeNaK, the

deepest well decreased by a factor of six, from 18 cm−1 to 3 cm−1. For ArNaK, the
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Figure 3.4: Comparison between the counterpoise corrected (solid lines) and uncorrected
(dashed lines) rigid rotator PES II: He and PES II: Ar. Panel (a) shows the
comparison for HeNaK and Panel (b) for ArNaK.

deepest well decreased by a factor of about two and a half, from 46 cm−1 to 18 cm−1.

Sometimes the corrections were as large as the uncorrected energies. For instance,

for HeNaK for R = 8 a0, θ = 90◦, the uncorrected energy was about 1.3× 10−4 Eh

(29 cm−1) and the correction was 1.26× 10−4 Eh (28 cm−1).

Next we comment on the differences between our HeNaK potentials (PES I: He

and PES II: He). From Panel (a) of Fig. 3.5, we see that while each potential is
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predominantly repulsive, the positions of the repulsive walls vary depending on the

surface. PES II: He shows less repulsion and a shallower well (3 cm−1 vs. 10 cm−1)

at θ = 90◦ and R = 11 a0, the position of PES II: He’s deepest well. PES I: He had

its deepest well of 11 cm−1 near θ = 105◦ and R = 11 a0.

The difference in well depths between the two HeNaK surfaces is partly due to the

fact that PES II: He was counterpoise corrected while PES I: He was not. Perhaps

a better comparison of the potentials would be between the uncorrected PES II: He

and PES I: He (Panel (b) of Fig. 3.5). The uncorrected PES II: He actually had a

deeper well (18 cm−1 vs. 11 cm−1) but the surfaces still show similar differences in

their repulsive walls.

Panels (c)–(e) of Fig. 3.5 show that for R ≥ 10 a0, PES II: He is more symmetric

with respect to cos θ = 0, and we expect this system to show more of a propensity

for ∆j even transitions.

Finally, in Fig. 3.6 we present a comparison between the two ArNaK potentials

obtained with different basis sets but the same method (PES II: Ar and PES III: Ar).

PES II: Ar is more repulsive at any given R and has a shallower deepest well

(18 cm−1 vs. 41 cm−1). The deepest wells also occur near different geometries.

For PES III: Ar, the deepest well occurs near θ = 75◦ and R = 8.50 a0, as opposed

to θ = 90◦ and R = 11 a0 for PES II: Ar. In Panels (b)–(d), neither PES looks to

be obviously more symmetric with respect to cos θ = 0 than the other.

3.1.3 Dependence on NaK bond length

Most of our scattering calculations were for a rigid rotator with r = r0. Additional

calculations are needed to handle vibrational excitation. Therefore we calculated

the r-dependence of PES I: He and PES II: He and Ar by determining the potential

for many values of R and θ at NaK bond lengths r = 6, 7, 8, 9, 10, and 11 a0 (and

also r = 12 and 13 a0 for PES I: He).

Here we present the interaction energies for HeNaK and ArNaK obtained for

different bond lengths r of NaK. For Figs. 3.7–3.12, we choose the zero of energy to

be at large values of R, regardless of the bond length r. This convention corresponds
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to the description of the coupling terms given in Section 2.4.4.

Figs. 3.7 and 3.8 show the interaction energies obtained from PES II: He and

PES II: Ar side by side to facilitate comparison. In both figures, the left column

shows the HeNaK surfaces and the right column shows the ArNaK surfaces. For

every r, the ArNaK PES tends to have steeper repulsive walls and it also has deeper

wells. For both surfaces a “shoulder” begins to appear at r = 9 a0 for θ = 45◦, and

when r = 11 a0 this shoulder has become a secondary well.

Figs. 3.9 and 3.10 show the interaction energies for PES I: He and PES II: He.

The left column shows PES I: He and the right column PES II: He. For bond lengths

r = 6 − 9 a0 PES I: He is more repulsive at θ = 90◦ and for bond lengths r =

10 − 11 a0 it is less repsulsive. PES I: He also has a “shoulder” for r = 11 a0 and

θ = 45◦.

Fig. 3.11 shows the interaction energies for PES I: He for the bond lengths r = 12

and 13 a0. At larger bond lengths, the shoulder for r = 11 a0 and θ = 45◦ transitions

to a secondary well, just as it did for PES II: He and Ar at r = 11 a0.

In Fig. 3.12 we take a closer look at the secondary wells that appeared for large

bond lengths in Figs. 3.8 and 3.11; there are secondary wells for θ = 45◦, 60◦,

and 75◦. Due to the single-reference nature of the EOM-CCSD calculation and its

failing at r = 12 a0, we are wary of the results for r = 10 and 11 a0. For this

reason, it is interesting to see that the secondary wells appear in the multireference

CI calculation as well, albeit for a higher bond length r.
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Figure 3.5: These panels compare our rigid rotator PES I: He (solid lines) and
PES II: He (dashed lines). In Panels (a) and (c)–(e), we compare our
PES I: He and counterpoise corrected PES II: He. In Panel (b) we compare
our PES I: He and uncorrected PES II: He.
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Figure 3.6: These panels compare the rigid rotator PES II: Ar and PES III: Ar. In each
panel, the label ‘ArNaK’ corresponds to PES II: Ar and ‘ArNaK, l.b.’ to
PES III: Ar. Panel (a) shows the PESs for fixed angles θ as a function of R.
Panels (b)–(d) show the PESs for fixed R as a function of cos θ.
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Figure 3.7: This figure shows the PES II: He and PES II: Ar interaction energies for
r = 6 to 8 a0, plotted as a function of R for fixed values of θ. The HeNaK and
ArNaK interaction energies are shown side by side to facilitate comparison;
the HeNaK interaction energies are shown in Panels (a), (c), and (e), while
the ArNaK interaction energies are shown in Panels (b), (d), and (f).
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Figure 3.8: This figure shows the PES II: He and PES II: Ar interaction energies for
r = 9 to 11 a0, plotted as a function of R for fixed values of θ. The HeNaK
interaction energies are shown in Panels (a), (c), and (e), while the ArNaK
interaction energies are shown in Panels (b), (d), and (f).
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Figure 3.9: This figure shows the PES I: He and PES II: He interaction energies side by
side for r = 6 to 8 a0, plotted as a function of R for fixed values of θ. The
PES I: He interaction energies are shown in Panels (a), (c), and (e), while
the PES II: He interaction energies are shown in Panels (b), (d), and (f).
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Figure 3.10: This figure shows the PES I: He and PES II: He interaction energies for
r = 9 to 11 a0, plotted as a function of R for fixed values of θ. The
PES I: He interaction energies are shown in Panels (a), (c), and (e), while
the PES II: He interaction energies are shown in Panels (b), (d), and (f).
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Figure 3.11: This figure shows the PES I: He interaction energies for r = 12 and 13 a0,
plotted as a function of R for fixed values of θ.
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Figure 3.12: In this figure, the HeNaK and ArNaK interaction energies are plotted as
a function of R for fixed r and selected angles θ. Panel (a) shows the
PES I: He interaction energies, Panel (b) shows the PES II: He interaction
energies, and Panel (c) shows the PES II: Ar interaction energies. For each
surface there are secondary wells for θ = 45◦, 60◦, and 75◦.
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3.1.4 Conclusions

We have calculated four different PESs, two of which we have examined with and

without the counterpoise correction. With each PES we can calculate scattering ob-

servables and compare them with experimental data. The differences in observables

obtained with each PES can help us correlate features of the PES with the relative

propensity for ∆j even transitions.

One may wish to know which PESs we consider our “best”. If one is interested

in comparing HeNaK and ArNaK, then PES II: He and Ar are best; they were

calculated in a parallel fashion. Outside of that comparison, we now discuss the

accuracy of our PESs.

For ArNaK we expect PES III: Ar to be better because it has a larger basis set.

For HeNaK we used similar basis sets but two different methods, so it is harder

to say. Correcting for BSSE is considered to be important, but EOM-CCSD fails

for higher bond lengths of NaK. Therefore one might expect PES II: He to be the

better PES for low vibrational levels of NaK and for PES I: He to be better for

higher vibrational levels of NaK.

We have shown how our results for the NaK (A 1Σ+) potential compare with

the high precision spectroscopic constants and RKR potential. PES II: He and Ar

compare best for bond lengths between r = 6 and 11 a0. PES I: He is best, however,

if one is interested in bond lengths of 12 a0 and higher.

In Section 4.2 we will compare scattering observables obtained from the different

rigid rotator PESs. We will find that PES II: He and PES III: Ar agree the best

with the available experiments.

3.2 Legendre expansion of the potential

For the scattering calculations one must expand the interaction energy

Ṽ (R, r, θ) = V (R, r, θ)−W (r) (3.1)

in terms of Legendre polynomials (see Eqs. 2.87 and 2.107). The method used in

previous work [1] had some disadvantages, so for the present work we developed an
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alternative procedure.

Originally [1] the angular dependence of Ṽ (R, r, θ) for fixed R and r was fit

using a polynomial function of x = cos θ. The fit in terms of x0, x2, . . . , xn could

easily be transformed into a sum of Legendre polynomials P0(x), P1(x), . . . , Pn(x).

If there are n angular points, one can find an n-term Legendre expansion that

matches every point exactly. There may be, however, unphysical oscillations between

points, especially when the potential becomes highly repulsive at some angles. This

situation often arose at θ = 0◦ or 180◦ when the distance between Na or K and the

noble gas became very small.

To avoid this type of problem, we interpolated the angular dependence Ṽ (R, r, θ)

for fixed R and r using a taut spline routine [80], which is designed to eliminate

ringing (that is, extraneous inflection points) between calculated points. Then to de-

termine the Legendre components we evaluated the standard expression for ṽn(R, r)

with numerical integration:

ṽn(R, r) =
2n+ 1

2

π∫
0

Pn(cos θ)Ṽ (R, r, θ) sin θ dθ. (3.2)

We used Simpson’s rule for the numerical integration and integrated over cos θ. We

found that a step size of 10−4 was sufficiently small.

The angular dependence Ṽ (R, r, θ) for fixed R and r can be very strong if one

includes highly repulsive points and will then require a large number of Legendre

components. These repulsive points, however, can be well above the collision energy.

We avoided this problem by replacing the calculated energy Ecalc = Ṽ (R, r, θ) with

the modified energy Emod whenever Ecalc was greater than a prescribed threshold,

using the following formula:

Emod =

 Ecalc if Ecalc ≤ E0

E0

[
1 + β tan−1

(
Ecalc/E0 − 1

β

)]
if Ecalc > E0

(3.3)

Figure 3.13 shows a plot of Emod/E0 as a function of Ecalc/E0 for several β.

The function defined in Eq. 3.3 and its first and second derivatives are continuous

at E0, so the modified energies join the unmodified energies very smoothly. For large
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Figure 3.13: Modified energies plotted as Emod/E0 versus Ecalc/E0 for several β.

Ecalc, Emod approaches the limit E0(1 + βπ/2). We typically chose E0 = 0.004 Eh

and β = 2. For these values, the potential is not changed in any region of physical

interest for calculations with E ≤ 0.002 Eh. In Chapter 4, we will report some

energy-dependent calculations and for some of the higher energies we changed E0

and β; we will indicate whenever this was the case.

Since we typically only calculated 13 angles for each pair of r and R, we can

only reliably obtain 13 Legendre components (that is what we would be able to

obtain from an exact polynomial fit to all the calculated points). We will discuss

convergence of the scattering results with respect to the number of Legendre com-

ponents in Chapter 4; typically we included components up to n = 10 and n = 15

and found there was no appreciable difference between the results. We also found

that we could reproduce the essential features of the cross sections for He+NaK and

Ar+NaK by only including up to n = 2 (Section 4.1).

After determining the expansion coefficients ṽn(R, r) at several values of R (for

fixed r), we again used the taut spline routine to interpolate as a function of R. For

HeNaK, we tabulated ṽn(R, r) at intervals of 0.25 a0 for points between R = 3.5 and

10 a0 and 0.50 a0 for points between R = 10 and 25 a0. For ArNaK, we tabulated

the expansion coefficients at intervals of 0.25 a0 between all points.
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Figure 3.14 shows several of the splined Legendre components vn(R, re) for the

different rigid rotator PESs. They are plotted as a function of R and all look a bit

different from one another.

In Fig. 3.15, we compare the Legendre components of the rigid rotator PES II: He

and PES II: Ar. The size of v1(R, re) at a given R is different, and we have found

that for HeNaK small changes in v1(R, re) can make a significant difference in the

cross sections for transitions with ∆j = ±1 [2]. The v1(R, re) component of ArNaK

is larger than the v1(R, re) component of HeNaK for R > 13 a0.

For a homonuclear diatomic molecule, the atom-diatom potential will only have

even Legendre components. The relative sizes of the even and odd Legendre com-

ponents may help one to predict the relative cross sections for rotationally inelastic

transitions for odd and even values of ∆j [10]; this idea will be discussed more in

Chapter 4. In Panel (a) of Fig. 3.15, v0(R, re) is generally larger than v1(R, re) for

HeNaK, while for ArNaK v1(R, re) > v0(R, re) for R ≈ 14 a0. For R > 13 a0,

v1(R, re) is a greater fraction of v2(R, re) for ArNaK than for HeNaK.

Next in Figs. 3.16 and 3.17, we compare the counterpoise corrected and uncor-

rected rigid rotator PES II: He and PES II: Ar. For HeNaK, the correction pushes

v1(R, re) and v2(R, re) apart and has little effect on the higher Legendre components.

For ArNaK, the correction has a bigger effect, but still pushes v1(R, re) and v2(R, re)

apart. The correction causes v1(R, re) and v0(R, re) to intersect at a larger R (and

makes them more similar) and it eliminates the intersection between v1(R, re) and

v2(R, re) near R = 13 a0.

In Fig. 3.18, we compare our HeNaK rigid rotator PESs; the odd Legendre com-

ponents show the most differences. Finally, in Fig. 3.19, we compare our ArNaK

rigid rotator surfaces. Unlike the HeNaK surfaces, here the even Legendre compo-

nents show the most differences; the odd components tend to look the same.
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Figure 3.14: Legendre components of our rigid rotator PESs as a function ofR. Panel (a)
corresponds to PES I: He, Panel (b) to PES II: He, Panel (c) to PES II: Ar,
and Panel (d) to PES III: Ar. Note the horizontal scale is different in
Panels (a) and (b) than in Panels (c) and (d). Panel (a) reproduced from
[2] with the permission of AIP publishing.
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Figure 3.15: Comparison between the Legendre components of the rigid rotator
PES II: He and PES II: Ar. The v1(R, re) component of the ArNaK PES
is larger for R > 13 a0, and unlike for the HeNaK PES v1(R, re) > v0(R, re)
for R > 14 a0. Moreover, the ratio v1(R, re)/v2(R, re) is generally greater
for ArNaK than for HeNaK. The relative sizes of the Legendre components
may help one to predict the relative propensity for ∆j even transitions [10].
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Figure 3.16: Comparison between the Legendre components of the counterpoise cor-
rected and uncorrected rigid rotator PES II: He. The label ‘CP corrd. vn’
means the nth Legendre component of the counterpoise corrected PES,
while the label ‘vn’ means the nth Legendre component of the uncorrected
PES. The correction pushes v1(R, re) and v2(R, re) apart and has little
effect on the higher Legendre components.
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Figure 3.17: Comparison between the Legendre components of the counterpoise cor-
rected and uncorrected rigid rotator PES II: Ar. The label ‘CP corrd. vn’
means the nth Legendre component of the counterpoise corrected PES,
while the label ‘vn’ means the nth Legendre component of the uncorrected
PES. The correction has a bigger effect for ArNaK than it did for HeNaK;
it dramatically changes the relative sizes (and intersections) of v0(R, re),
v1(R, re), and v2(R, re).
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Figure 3.18: Panels (a) and (b) compare the Legendre components of the rigid rota-
tor PES I: He and counterpoise corrected PES II: He, labeled ‘MRCI’ and
‘CC’, respectively (CC stands for Coupled-Cluster). Panel (c) shows a
similar comparison but for the uncorrected PES II: He. The odd Legendre
components are the most different.
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Figure 3.19: Panels (a) and (b) compare the Legendre components of the rigid rotator
PES II: Ar and PES III: Ar. The label ‘vn’ corresponds to PES II: Ar,
while the label ‘vn, l.b.’ corresponds to PES III: Ar (l.b. stands for larger
basis). The even Legendre components show the most differences between
the two PESs, and the odd Legendre components are fairly similar.

84



3.3 Fits to the long range part of the potential

When R is very large, the interaction energy between He or Ar and NaK is difficult

to calculate with conventional electronic structure methods because the Gaussian

exponential form of the basis functions limits the accuracy of the electronic wave

functions far from each nucleus. Long range potential theory provides the correct

form of the potential in this limit. If there is an intermediate range of R where the

potential is reliable, and the long range form is also appropriate, then one can fit

the calculated potential to an analytic function that can be extended to the limit

R→∞.

There are two reasons we wanted to obtain interaction energies for large values of

R. First, one can more effectively investigate convergence of scattering observables

with respect to the range of integration, as will be discussed in Chapter 4. Moreover,

the extended PES is necessary for low energy scattering calculations where one must

integrate to very large R.

We fit PES II: He and PES II: Ar to the first three terms (R−6, R−7, R−8)

of Pack’s analytic form for the long range potential (Eq. 2.42) by noting that

R6Ṽ (R, r, θ) is a polynomial function of 1/R:

R6Ṽ (R, r, θ) = C6(r, cos θ) + C7(r, cos θ)/R + C8(r, cos θ)/R2 (3.4)

where the angular dependence of C6, C7, and C8 is given by

C6(r, cos θ) = C
(0)
6 (r)P0(cos θ) + C

(2)
6 (r)P2(cos θ)

C7(r, cos θ) = C
(1)
7 (r)P1(cos θ) + C

(3)
7 (r)P3(cos θ) (3.5)

C8(r, cos θ) = C
(0)
8 (r)P0(cos θ) + C

(2)
8 (r)P2(cos θ) + C

(4)
8 (r)P4(cos θ).

In this section we describe our fits. Although we have included enough polarization

functions in the GAMESS calculations to expect C6, C7, and C8 to play a role in

the long range potential, we do not claim to know these coefficients to experimental

accuracy because of uncertainties in the PESs.

We used a code [81] based on the Levenberg-Marquardt algorithm to perform

these fits. For each bond length r, we performed a separate fit by adjusting seven
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parameters (C
(0)
6 , C

(2)
6 , C

(1)
7 , C

(3)
7 , C

(0)
8 , C

(2)
8 , and C

(4)
8 ) to fit R6Ṽ (R, r, θ) at 39 pairs

of points R, θ. For HeNaK and 6 a0 ≤ r ≤ 10 a0, we fit the calculated points at 13

values of θ for R = 30, 32.5, and 35 a0. For r = 11 a0, we fit the calculated points

for R = 35, 37.5, and 40 a0. For all bond lengths of the ArNaK surface, we fit the

calculated points for R = 25, 27.5, and 30 a0.

Figure 3.20 shows the fits for r = 8 a0. For this reduced plot, the vertical axis is

R6 times the interaction energy, and the horizontal axis is 1/R. Figure 3.21 shows

the fits in a conventional plot of the potential versus the perturber distance R.

Using the calculated points and the long range analytic form, we can evaluate

the Legendre components ṽn(R, r) at all values of R. To ensure a smooth join, we

first performed a spline of all the calculated points plus additional points evaluated

using the analytc formula for selected values of R. Figure 3.22 shows the splines for

HeNaK for r = 8 and 11 a0 and for ArNaK for r = 8 a0. For HeNaK, the analytic

points included were for R = 37.5 to 50 a0 in steps of 2.5 a0 for 6 a0 ≤ r ≤ 10 a0

and for R = 42.5 to 52.5 a0 in steps of 2.5 a0 for r = 11 a0. For ArNaK, the analytic

points included were for R = 30 to 30.9 a0 in steps of 0.1 a0 and from R = 32.5 to

42.5 a0 in steps of 2.5 a0 for all bond lengths.

When we evaluated ṽn(R, r), we switched over from the spline to the analytic

form at different values of R. Then, we performed small scattering calculations

to check whether the results were sensitive to the value of R. We found that for

HeNaK, joining to the spline with an analyic fit at R = 35 a0 showed little difference

from a join at 37.5 or 40 a0. For ArNaK, joining to the spline with an analytic fit

at R = 30 a0 showed little difference from a join at 35 or 40 a0.
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Figure 3.20: Fits to the long range interaction energies for r = 8 a0 for PES II: He
(Panel (a)) and PES II: Ar (Panel (b)). The rms deviations of the fits were
0.98496 and 5.3351 Eha

6
0, respectively. The fit is a solid line for θ ≤ 90◦ and

a dashed line for θ > 90◦. The calculated values are shown as points; the
solid points (for R = 20.0 and 22.5 a0 for ArNaK and R = 25.0 and 27.5 a0
for HeNaK) were not included in the fit and are included to demonstrate
that we were in the long range region of the potential. In the plot, Ṽ (R, r, θ)
is labeled ‘V (R, r, θ)’.
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Figure 3.21: The analytic fits to the potential (lines) are shown for some angles
against the calculated interaction energies for PES II: He (Panel (a)) and
PES II: Ar (Panel (b)) for r = 8 a0. We note that each panel has a different
vertical scale. In the plot, Ṽ (R, r, θ) is labeled ‘V (R, r, θ)’.
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Figure 3.22: Splined calculated (circles) and analytic (squares) Legendre components for
PES II: He and PES II: Ar for selected r. The spline is shown as a solid line
and the analytic fit as a dotted line. Note the vertical scale changes between
HeNaK and ArNaK. Panel (a) shows the spline for HeNaK, r = 8 a0. Panel
(b) shows the spline for HeNaK, r = 11 a0. Panel (c) shows the spline for
ArNaK, r = 8 a0.
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Chapter 4

Coupled channel scattering

calculations

We have performed coupled channel scattering calculations for He (1S0) or Ar (1S0)

and NaK (A 1Σ+) using the rigid rotator formalism developed by Arthurs and Dal-

garno [17]; the bond length of NaK was fixed at the experimental value [7] for the

equilibrium internuclear separation, re = 7.935 a0. The calculations involved solving

a set of coupled differential equations (Eq. 2.90) and were performed using a code

developed by Prof. Hickman [82]. The code is based on the log-derivative method

[83] and features adaptive step size selection. All of the calculations were performed

on the Stampede supercomputer at the University of Texas.

In this chapter we first describe the details of the numerical calculations to

solve the coupled channel equations. Then we discuss our rigid rotator results for

the average collision energy and compare them with experimental data from the

experimental group at Lehigh [4–6]. The data are collected in an environment with

a Maxwellian distribution of energies and for different initial vibrational levels. For

this reason, we present additional theoretical results for the energy dependence of

the rigid rotator cross sections, and for the dependence on initial v of vibrationally

elastic, rotationally inelastic cross sections and fractions of orientation retained.

Using these results, we estimate how energy and vibrational dependences affect our
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comparison with experiment. Our calculations reproduce one of the key features

of the data, the propensity for ∆j even transitions, and in the last section of this

chapter we explore the role played by different features of the PES in determining

the propensity.

4.1 Details of the numerical calculations

Many details of the calculations were carefully considered to balance the desire for

numerical accuracy with the constraints of available resources. We considered the

number of channels, the integration grid and number of partial waves, and the num-

ber of terms in the Legendre expansion of the PES included in the calculation. We

will discuss our considerations, focusing on the results we compare with experiment,

and limiting the discussion to those results involving PES II: He and PES II: Ar (we

came to the same conclusions with the other PESs).

Number of channels

The general expression (Eq. 2.90) for the coupled channel expansion must be trun-

cated to a finite number of channels for any specific calculation. For a given total

angular momentum J , the channels are labeled by j and l; one typically includes all

channels that can be constructed from the target rotational levels j between jmin and

jmax. We normally took jmin = 0, so jmax is the crucial parameter. Since the orbital

angular momentum l is an integer between |J − j| and J + j, for every J > jmax

the number of possible l is the same and the number of channels can be determined

from jmax alone. One can show that for J > jmax, the number of channels Nchan is

Nchan = (jmax + 1)2, (4.1)

and that for J ≤ jmax there are less. The channels can be divided into two uncoupled

sets because of conservation of the parity symmetry p = (−1)J+j+l, corresponding

to the change of sign of all coordinates. This uncoupling allows one to perform two

separate calculations, each with about half the number of channels. For J > jmax
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and p = +1 there are (jmax + 1)(jmax + 2)/2 channels, while for p = −1 there are

jmax(jmax + 1)/2.

The rotational energy levels of NaK (A 1Σ+) are shown in Fig. 4.1. For a total

energy of 0.002 Eh (440 cm−1), any level up to about j = 80 is accessible. Channels

which are energy inaccessible (closed) at large R can also contribute to the scatter-

ing, and accurate results for successively higher initial j’s require successively more

channels.
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Figure 4.1: Rotational energy levels of NaK (A 1Σ+), where Ej = Bj(j + 1) was cal-
culated with the experimental rotational constant B = 3.013 × 10−7 Eh

(0.066 cm−1) [7]. For the collision energy of 0.002 Eh (440 cm−1), any level
up to about j = 80 is energy accessible. Reproduced from [2] with the
permission of AIP publishing.

Computational resources limit the number of channels that can be included

in these large scale calculations; the number of processor-hours required scales as

N3
chan ≈ j6max, so computational work goes up very rapidly with jmax. Fortunately,

one does not always need to include all of the energy accessible channels. This is

true for our calculations. Most of our results converge with respect to the number

of channels for jmax = 50 or 60.

In Figs. 4.2 and 4.3, we show cross sections for transitions from j = 14 and 30

for different jmax. For each increase in jmax, the cross sections decrease by a smaller
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percentage. We find that the Ar+NaK results for j = 14 and j = 30 are similar

enough for jmax = 50 and 60 that a calculation for jmax = 70 is not warranted.

(We recently performed a calculation for jmax = 70, however, to assure ourselves

that the Ar+NaK orientation results for high j were converging; we will discuss

orientation results a little later on.) For He+NaK, for similar reasons, we determine

that jmax = 50 is sufficient for j = 14. For j = 30, on the other hand, the results for

some values of ∆j (−6 ≤ ∆j ≤ +10) are more different than in the other cases; this

is because for jmax = 40, values near j = 40 are less reliable. Nonetheless, judging

from the trends in the other three cases, it is likely that the He+NaK results would

be quite similar with those for jmax = 60.

For j = 14, the cross sections for He+NaK decrease by less than 5.0% between

jmax = 40 and 50 and by less than 3.6% for Ar+NaK between jmax = 60 and 70. For

j = 30, the cross sections show a little more of a difference, which is to be expected

since one must include channels up to a jmax that is larger than the initial j by some

amount. For He+NaK, the odd cross sections are as much as 25% different, while

the even cross sections differ by less than 12%. For Ar+NaK, the cross sections are

all less than 4.5% different.

In Fig. 4.4 we show results for the fraction of orientation retained for different

values of jmax. There is very little difference in the He+NaK values for jmax = 40

and 50; the percent differences are all within about 1% for the transitions of interest.

For Ar+NaK, the values are also quite similar for jmax = 60 and 70, and they differ

by less than 3%.
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Figure 4.2: Cross sections for transitions from j = 14 to j′ obtained using PES II: He
(Panel (a)) and PES II: Ar (Panel (b)). The label ‘j = 0 − 30’ means that
jmax = 30. To obtain the same level of convergence for the cross sections,
we needed jmax = 50 for He+NaK and jmax = 60 for Ar+NaK. The other
parameters were fixed; the number of Legendre components nmax+1 was 11,
the tolerance was 10−3, there were 128 and 448 partial waves for He+NaK
and Ar+NaK, and we integrated from 3.5 a0 to 25 a0 for He+NaK and from
4.5 a0 to 30 a0 for Ar+NaK.
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Figure 4.3: Cross sections for transitions from j = 30 to j′ obtained using PES II: He are
shown in Panel (a) and using PES II: Ar in Panel (b). The label ‘j = 0−40’
means that jmax = 40. He+NaK and Ar+NaK do not show the same level
of convergence; some transitions are less converged for He+NaK. The other
parameters were fixed; the number of Legendre components nmax+1 was 11,
the tolerance was 10−3, there were 128 and 448 partial waves for He+NaK
and Ar+NaK, and we integrated from 3.5 a0 to 25 a0 for He+NaK and from
4.5 a0 to 30 a0 for Ar+NaK.
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Figure 4.4: Fractions of orientation preserved are plotted for different values of |∆j| as a
function of average j = (j + j′)/2. The results corresponding to PES II: He
are shown in Panels (a) and (b) and to PES II: Ar in Panels (c) and (d). Even
values of |∆j| are shown in Panels (a) and (c), while odd values are shown in
Panels (b) and (d). Each curve for a given |∆j| corresponds to a calculation
with a different number of channels; ‘j=0-40’ means that jmax = 40. We
note that when the average j is close to jmax, the results are not reliable
since jmax must be larger than the initial j by some amount, and oscillations
in results in these cases are artifacts. Artifacts appear in Panels (b)–(d),
where the curves for jmax = 40 show unphysical oscillations near average
j = 40. Another artifact appears in Panel (c), where the curve for jmax = 50
oscillates for values of average j near 50. The other parameters are listed in
the caption of Fig. 4.2. The He+NaK results are very similar, and are less
than 1% different for the transitions of interest. The Ar+NaK results are
also very similar; they are less than 3% different.
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Integration parameters and number of partial waves

An appropriate integration grid must be used to ensure accurate numerical solutions

to the coupled equations. The starting point of the integration (Rmin) is chosen au-

tomatically by considering an approximate WKB solution to the diagonal equations

and requiring that this solution be several orders of magnitude smaller at Rmin than

at the classical turning point for each channel. For R ≥ Rmin, an adaptive step size

algorithm selects the step size based on a tolerance parameter selected by the user.

This algorithm allows the code to adjust the step size to the local rate of variation

of the solutions. Finally, the integration is terminated at some Rmax that must be

larger than the range of the electronic potential. The user must choose a lowest

possible Rmin, which we will refer to as R0
min, Rmax, and the tolerance parameter.

We chose R0
min to be 3.5 a0 for He+NaK and 4.5 a0 for Ar+NaK. At these R the

electronic potentials are highly repulsive for all angles and the Legendre component

v0(re, R) has a value of about 0.013 Eh (2800 cm−1) for both systems, which is

over six times the collision energy of 0.002 Eh (440 cm−1). In addition to the

electronic potential, the effective potential also includes the repulsive centrifugal

term in Eq. 2.90, and the classical turning point for channels with l > 0 will occur

at larger R than for those with l = 0. Therefore our R0
min are sufficient for all

channels.

The value of Rmax depends on the maximum partial wave Jmax that must be

included in the calculation. Roughly speaking, Jmax can be related to the impact

parameter b of the collision by J = bkj, where kj is related to the initial kinetic

energy Ekin by Ekin = ~2k2j/(2µ). (This relation follows from J ≈ l = r×p = r×~k.)

For large values of J , the physical picture is that the trajectory of the incident

particle is approximately a straight line that passes the center of the potential at

a distance b. At sufficiently large b, the interaction potential will be negligible, so

the corresponding J will not contribute strongly to the scattering. For each J , one

determines a partial cross section σJ(j → j′), and the sum of these partial cross
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sections is the total cross section:

σ(j → j′) =
∞∑
J=0

σJ(j → j′). (4.2)

One must try to choose a sufficiently large Jmax so that partial waves with J > Jmax

make a negligible contribution to the scattering. Then one can approximate the

cross sections as

σ(j → j′) ≈
Jmax∑
J=0

σJ(j → j′). (4.3)

The previous arguments imply that Jmax is related to the range of the interaction

potential. Once Jmax is set, it follows that the upper limit of integration Rmax should

be at least b in order to include the regions where the interaction potential is most

likely to modify the trajectory.

Figure 4.5 shows several calculations that illustrate the relation between Jmax

and Rmax. For selected transitions of He+NaK and Ar+NaK, the panels show

(k2j/π)σJ(j → j′) as a function of J on a log-log plot for several different values of

Rmax. The curves for a given Rmax tend to be well behaved up to a certain J and

then to fall off precipitously. This fall off starts roughly at the value of J where the

corresponding impact parameter b is larger than Rmax. In other words, after the

fall off, the integration is not carried out far enough to include the most important

region of the interaction, so the partial cross section decreases dramatically.

We compared the cross sections and fractions of orientation preserved for the

values of Rmax and Jmax used to obtain the different curves in Fig. 4.5. For He+NaK,

integrating to 25 a0 and including partial waves up to J = 127 is sufficient. The

cross sections of interest differ only slightly in the fourth significant figure between

Rmax = 25 and 30 a0 and the fractions of orientation preserved are identical to four

significant figures. Between Rmax = 30 and 40 a0 only the elastic cross sections

differ in the fourth significant figure. The Ar+NaK results show small differences in

the fourth significant figure between Rmax = 30 and 40, except for transitions with

|∆j| = 2, for which the results differ in their third significant figures.

The straight line labelled “fit” in each panel of Fig. 4.5 indicates that the partial

cross sections for large values of J (each calculated using a sufficiently large Rmax)
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Figure 4.5: Log-log plot of (k2j /π)σJ(j → j′) in units of a20meEh for p = +1 obtained
using PES II: He (Panels (a) and (b)) and PES II: Ar (Panels (c) and
(d)). Panels (a) and (c) show partial cross sections for j = 14 → 16, while
Panels (b) and (d) show results for j = 14 → 15. Within each panel, each
curve corresponds to a different upper limit of integration. For a given
upper limit of integration, the partial cross sections roughly fall off at the
J for which the impact parameter b ≈ J/kj is larger than the upper limit
of integration. Increasing the upper limit of integration allows for more
accurate results for the same J . The fits, labeled “fit”, were performed for
regions where the partial cross sections display a power law dependence. For
these calculations, the number of Legendre components was nmax + 1 = 11,
the tolerance was 10−3, and jmax = 50. For He+NaK, we used Jmax = 127,
175, 223, and 271 for the upper limits of 25, 30, 40, and 50 a0, respectively.
For Ar+NaK, we used Jmax = 447, 543, and 672 for the upper limits of 30,
40, and 50 a0.
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would follow a power law behavior:

σJ(j → j′) ≈ AJ−c. (4.4)

Each calculation for a fixed Rmax follows the fit up to a point, and then falls sharply

when J becomes too large for that value of Rmax. One can use the power law

determined by the fitted curve to estimate the cross sections in the limit of summing

all the partial cross sections to infinity (and in the limit of infinite Rmax):

σ(j → j′) =
∞∑
J=0

σJ(j → j′) (4.5)

≈
Jmax∑
J=0

σJ(j → j′) + A

∞∫
Jmax+1

J−cdJ (4.6)

=
Jmax∑
J=0

σJ(j → j′) +
A

c− 1
(Jmax + 1)1−c, c > 1. (4.7)

We determined the power law dependence of selected partial cross sections by

performing linear fits of log10 σ
J(j → j′) as a function of log10 J . We performed

these fits for each parity for transitions from j = 14 to 15–18 and from j = 30 to

31–34. We fit to the curve corresponding to Rmax = 50 a0 in the region where the

curves appeared to follow the same straight line. Our values for c ranged from 7 to

24; in Panels (a)–(d), c was 11.6, 13.3, 11.4, and 12.3, respectively. For He+NaK,

the correction was so small that the effect on the cross sections was negligible. For

instance, for 14→ 16 and 30→ 32, the difference was on the order of 10−4%. (We

obtained these results by adding the correction to the cross sections for Jmax = 223

and Rmax = 40 a0; we have already shown the cross sections for Rmax = 25 a0,

Jmax = 127 and Rmax = 40 a0, Jmax = 223 are almost identical to four significant

figures.) For Ar+NaK, the only non-negligible differences were for the transitions

14 → 16, shown in Panel (c) of Fig. 4.5, and 30 → 32. For those transitions,

integrating from J = 448 to ∞ and using the cross section for Rint = 30 a0 gave

about a 2% difference for the transition from j = 14 to 16 and about a half of

a percent difference for j = 30 to 32. Of course, we must be wary of the fact
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that the partial cross sections for Rmax = 30 a0 were falling steeply near J = 447,

as Panel (c) of Fig. 4.5 shows, and σ(14 → 16) might be a little smaller than it

would be if Rmax were higher. To estimate this additional contribution, we fixed

Jmax = 447 and integrated to Rmax = 30 and 40 a0 (with jmax = 30). For the

transition j = 14→ 16, the cross sections changed by about 1%. Even with this

correction, we estimate that integrating to Rmax → ∞ and including Jmax → ∞
would yield cross sections that were about 2% different from those obtained with

Rmax = 30 a0 and Jmax = 447 for Ar+NaK for j = 14 → 16. We expect the result

for j = 30 → 32 to also be unaffected by this change, and for the cross sections to

remain within about 0.5% different.

We also investigated the effect of separately fixing Jmax or Rmax on the cross

sections for j = 14 and on the fractions of orientation preserved; we performed

these tests for jmax = 30 and expect similar results for higher jmax. For He+NaK,

fixing Jmax = 127 and integrating to 25 a0 and to 40 a0 made no noticable difference

in the results, with small changes in the fourth significant figures. Likewise, fixing

Rmax at 25 a0 and setting Jmax = 128 or 159 gave results that were virtually identical

to their fourth significant figures. For Ar+NaK, fixing Jmax = 447 and integrating

to 30 a0 and 40 a0 also made no noticeable difference, except for |∆j| = 2 for which

there were differences in the third significant figure; we have already discussed the

effect on the |∆j| = 2 cross sections. For Jmax = 447 and Rmax = 30 a0, the partial

cross sections near Jmax were quite small and decreased as a power of ten for each

increase by one in J ; we expect the results to be well converged with respect to J .

Finally, we performed calculations with different tolerances for the adaptive step

size selection. The code determines the step size for integration by taking a certain

step, ∆R, and a step of half that size, ∆R/2. The tolerance is a measure of the

desired accuracy of the solution, and the next step size will be larger if the previous

step led to “too accurate” of a solution. On the other hand, if the solutions for ∆R

and ∆R/2 are not accurate enough, then the code will take a step size of ∆R/4,

and so on, until the desired accuracy is achieved.

We must compromise between accuracy and computer time constraints. For

instance, we have found that for He+NaK using a tolerance of 10−2 increases the
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calculation time by about 50 percent compared to a tolerance of 10−1, and for

Ar+NaK it increases the time by about a factor of three. We generally chose the

largest tolerance that would give four significant figures of accuracy.

We have compared results for tolerances of 10−3, 10−2, and 10−1, with jmax = 50

and nmax = 10. For He+NaK, we integrated from 3.5 to 25 a0 and included partial

waves up to Jmax = 127. For Ar+NaK, we integrated from 4.5 to 30 a0 and included

up to Jmax = 447. For He+NaK, the cross sections for j = 14 and 30 are identical

to within the fourth significant figure for 10−3 and 10−2, and are also identical

except for small changes in the fourth significant figures of the elastic cross sections

between 10−2 and 10−1. The fractions of orientation retained for j = 30 are identical

to within four significant figures for all tolerances. For Ar+NaK, the cross sections

for j = 14 and 30 are identical to within four significant figures for 10−3 and 10−2,

and differ in the third and fourth significant figures between 10−2 and 10−1. In the

latter case, the percent differences were all less than a percent, but we note that

there are unphysical oscillations in some of the partial cross sections for a tolerance

of 10−1. The fractions of orientation retained are identical to the fourth significant

figure between all three tolerances.

Legendre expansion of the PES

We considered the number of terms needed in the Legendre expansion of the po-

tential (Eq. 2.87). We have compared results for an 11- and 16-term expansion; we

calculated V (R, r, θ) at thirteen values of θ for each R and therefore can’t expect

to determine accurately many more than that number of components. For these

comparisons we let jmax be 50 and fixed the other parameters at what we will use

for our final values. We do not expect the results to change much with jmax. For

He+NaK, the results differ slightly in the fourth significant figure; the cross sections

of interest (j = 14 and 30) are less than 0.7% different, while the fractions of orien-

tation retained for j = 30 are less than 0.2% different. For Ar+NaK, the relevant

cross sections differ in their third and fourth significant figures and are also less than

0.7% different. The fractions of orientation retained for transitions from j = 30 are
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Figure 4.6: Cross sections in units of a20 for transitions from j = 14 to j′ for nmax = 10
(labelled “11-term expansion”) and nmax = 2. In Panels (b) and (c), we
show results for PES II: He and PES II: Ar. (We have also included results
for PES I: He and PES III: Ar in Panels (a) and (d) to refer to in a later
section.) For both He+NaK and Ar+NaK, the cross sections for nmax = 2
reproduce the essential features of the results we obtained for nmax = 10. For
these calculations, the other parameters were fixed; these cross sections were
obtained for jmax = 30, a tolerance of 10−3, 128 and 448 partial waves for
He+NaK and Ar+NaK, and upper limits of integration of 25 a0 for He+NaK
and 30 a0 for Ar+NaK.

less than 1.4% different.

We have also identified the minimum number of terms in the Legendre expansion

needed to reproduce the essential features of the results. In Figs. 4.6 and 4.7, we

show that nmax = 2 is sufficient for both the cross sections and the fractions of

orientation retained. The computer time does not change significantly with nmax, so

for our final results we use the better converged values for nmax = 10. This result is
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Figure 4.7: Fraction of orientation retained for fixed |∆j| as a function of average j for
nmax = 10 and nmax = 2. Panels (a) and (b) show results for PES II: He
and PES II: Ar. For both He+NaK and Ar+NaK, the general trends are
reproduced for nmax = 2, but more Legendre components are needed for
converged values. The results shown here were obtained for jmax = 30, and
so the results for average j near 30 are artifacts. We also used a tolerance
of 10−3, 128 and 448 partial waves for He+NaK and Ar+NaK, and upper
limits of integration of 25 a0 for He+NaK and 30 a0 for Ar+NaK.
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useful, however, in Section 4.4 when we investigate the dependence of the propensity

on the PES.

Summary

The most significant of the (small) uncertainties discussed in this section are asso-

ciated with the number of channels included in the calculation. For a given jmax,

these uncertainties are the smallest when the initial j is much less than jmax and

then increase with j. We compared jmax = 40 and 50 for He+NaK and jmax = 60

and 70 for Ar+NaK, both sets at E = 0.002 Eh. The cross sections for j = 14

for each pair of calculations were within 5.0% for He+NaK and within 3.6% for

Ar+NaK. For j = 30, the corresponding changes were 25% for He+NaK and 4.5%

for Ar+NaK. The fractions of orientation retained for transitions from j = 30 were

within 1% for He+NaK and within 3% for Ar+NaK.

The partial wave sum was truncated at Jmax = 127 for He+NaK at E = 0.002 Eh,

and the integration was carried out from at least R0
min = 3.5 a0 to Rmax = 25 a0.

For Ar+NaK, these values were Jmax = 447, R0
min = 4.5 a0, and Rmax = 30 a0.

Using an analytic fit to the large-J behavior of the partial wave cross sections, we

confirmed that the effect of truncating the sums at Jmax was very small. There was

one exception and this was for Ar+NaK for transitions with |∆j| = 2, where the

cross sections increase by about 2.0% for j = 14 and by about 0.5% for j = 30. For

both systems, we used a tolerance of 10−3, which gave results that were identical to

four significant figures with the results for a tolerance of 10−2.

For most calculations we used an 11-term Legendre expansion of the poten-

tial. Comparison with the 16-term expansion showed small differences in the fourth

significant figures for He+NaK and in the third and fourth significant figures for

Ar+NaK. Remarkably, additional tests showed that three terms (n = 0, 1, 2) were

enough to reproduce the essential features of the results.
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4.2 Comparison with experimental results

In this section we will compare our results with available experimental data provided

by the group of Prof. Huennekens [4–6].

4.2.1 Cross sections and rate constants

The experiments were conducted at a temperature of 600 K and, assuming thermal

equilibrium, the cell environment contains a Maxwellian distribution of energies;

cross sections for several different energies contribute to the data collected. That is

why the experiments actually determine rate constants ki→f (T ), which are defined

as the thermal average of the product of the relative velocity and the cross section:

ki→f (T ) =

√
2

π

( µ

kT

)3 ∞∫
0

vσi→f (v) v
2e−µv

2/(2kT ) dv. (4.8)

We can express the rate constants in terms of energy by using the relationship be-

tween the relative velocity and the kinetic energy of the incident particle, Ekin = µv2/2.

By using this relation, one can express Eq. 4.8 as

ki→f (T ) =

√
1

πµ

(
2

kT

)3
∞∫
0

σi→f (Ekin)Ekin e
−Ekin/(kT ) dEkin. (4.9)

If the cross section is independent of energy, say σ0
i→f , then one can greatly

simplify Eq. 4.9:

ki→f (T ) =

√
1

πµ

(
2

kT

)3

σ0
i→f

∞∫
0

Ekin e
−Ekin/(kT ) dEkin (4.10)

= σ0
i→f v̄, (4.11)

where v̄ is the average thermal velocity,
√

8kT/πµ. Our calculations reported in

Section 4.3.1 show that the cross sections depend weakly on energy, so in this section

we will use Eq. 4.11 to compare our cross sections with experimental rate constants.

Large energies require an enormous amount of resources, so we have made some

estimates of the rate constants one would obtain by using Eq. 4.9 based on possible

extrapolations to larger energies; these results will be presented in Section 4.3.1.
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4.2.2 Rates for initial levels (v, j) = (0, 14), (1, 26), and (0, 30)

In Figs. 4.8–4.10, we present a comparison between the experimental [6] and theoret-

ical rate constants for initial levels (v, j) = (0, 14), (1,26), (0,30). The experimental

error bars shown are for the absolute rate constants, and there is less uncertainty in

the relative rates. An iterative procedure was used [6] to correct the experimental

rate constants for so-called multiple collision effects, which may arise at higher den-

sities when there is a contribution to the j → j′ rate from a two-step process through

an intermediate level. The iterative procedure is not exact, but it provides an upper

limit for the error due to neglect of multiple collision effects. Thus we determined

the experimental error bars as follows: the upper bound is the rate constant that

was not corrected for multiple collision effects plus its uncertainty, while the lower

bound is the rate constant estimated by correcting for multiple collision effects.

Panels (a) and (b) of Figs. 4.8–4.10 compare results for He+NaK, where the

theoretical results were obtained using PES I: He and PES II: He, respectively. For

j = 14 and 26, there is better agreement with absolute rate constants for PES II: He,

while for j = 30 there is better agreement for PES I: He. We note, however, that

the data for He+NaK for (v, j) = (0, 30) was based on a smaller set of observations

than for the other levels. The experiments indicate that the propensity for ∆j even

transitions persists to high |∆j|, and we reproduce that behavior with PES II: He.

With PES I: He an inverse propensity (that is, a tendency for ∆j odd rates to be

larger than those for ∆j even) appears for higher |∆j|. We will say more about this

inverse propensity in Section 4.4. Meanwhile, Panels (c) and (d) of Figs. 4.8–4.10

compare results for Ar+NaK for PES II: Ar and PES III: Ar, respectively. In all

cases, we obtain the best agreement for PES III: Ar. The experiments observed a

propensity for ∆j even transitions that persists to about |∆j| = 6, after which there

is no propensity. We predict the development of an inverse propensity at higher

|∆j| that is much more pronounced for PES II: Ar. This is another reason that the

results for PES III: Ar agree better with experiment.
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Figure 4.8: Panels (a) and (b) compare approximate theoretical rate constants for
He+NaK for PES I: He and PES II: He, respectively, with experimental val-
ues for j = 14 and v = 0 [6]. Panels (c) and (d) show similar comparisons
for Ar+NaK for PES II: Ar and PES III: Ar. For He+NaK, the results for
PES II: He agree the best with experiment, while for Ar+NaK the results
for PES III: Ar agree the best.
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Figure 4.9: Panels (a) and (b) compare approximate theoretical rate constants for
He+NaK for PES I: He and PES II: He, respectively, with experimental val-
ues for j = 26 and v = 1 [6]. Panels (c) and (d) show similar comparisons
for Ar+NaK for PES II: Ar and PES III: Ar. Our calculations are for v = 0,
but we have found that the cross sections depend weakly on the vibrational
level [2]. The experimental results for ∆j = 6 and ∆j = 12–19 were affected
by spin-orbit coupling with the b 3Π electronic state; since our calculations
neglect fine structure effects, we do not predict such effects. Ignoring these
transitions, for He+NaK the results for PES II: He agree the best with ex-
periment, while for Ar+NaK the results for PES III: Ar agree the best; this
is also what we found for j = 14.
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Figure 4.10: Panels (a) and (b) compare approximate theoretical rate constants for
He+NaK for PES I: He and PES II: He, respectively, with experimental
values for j = 30 and v = 0 [6]. Panels (c) and (d) show similar comparisons
for Ar+NaK for PES II: Ar and PES III: Ar. For He+NaK, the results for
PES I: He agree the best with experiment, in contrast with j = 14 and 26;
we note that the experimental results for He+NaK for (v, j) = (0, 30) are
based on a smaller number of observations. For Ar+NaK, the results for
PES III: Ar agree the best, just as they did for j = 14 and 26.
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4.2.3 Relative cross sections

In Fig. 4.11 we present our cross sections as a function of average j = (j + j′)/2 for

fixed ∆j. For both systems and for each PES, we predict that there is a difference

between σ(j → j+∆j) and σ(j → j−∆j) that is more pronounced for lower average

j. Moreover, we predict a qualitatively different behavior for He+NaK between the

odd and even ∆j transitions, as shown in Panels (a) and (b) of Fig. 4.11.
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Figure 4.11: Cross sections in units of a20 as a function of average j for fixed ∆j are
shown for He+NaK in Panels (a) and (b) and for Ar+NaK in Panels (c)
and (d). Each panel corresponds to a different PES. We predict that the
difference between σ(j → j+∆j) and σ(j → j−∆j) is more pronounced at
lower average j, and that for He+NaK the odd and even transitions show
qualitatively different behaviors.
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We can compare these results with experiment. The cross sections (Eq. 2.95)

can be rewritten in terms of two factors. The first depends only on the initial j. The

second is symmetric under the interchange of j and j′ and thus depends only on the

average j (or for short, j̄) and |∆j|. We can therefore express the cross sections as

σ(j → j′) =
π

(2j + 1)k2j

∑
J

∑
l,l′

(2J + 1)
∣∣T Jjl,j′l′∣∣2 =

π

(2j + 1)k2j
f(j̄, |∆j|). (4.12)

One can show that

σ(j → j + ∆j)− σ(j → j −∆j) ≈ π

k2j

∂f

∂j̄
(j̄, |∆j|) ∆j

2j + 1
. (4.13)

Therefore, the more pronounced difference σ(j → j + ∆j) − σ(j → j − ∆j) that

we predict at lower average j could be related to the slope of f(j̄, |∆j|), the factor

(2j + 1)−1, or both.

In Fig. 4.12 we show experimental and theoretical values for f(j̄, |∆j|) for both

He+NaK and Ar+NaK; this comparison is a way to look at the trends predicted by

all four experimental data sets. Panels (a) and (b) show the results for He+NaK.

For both PESs, we predict that the slope of f is approximately constant, and so does

experiment within the error bars (with the possible exception of |∆j| = 2). Thus

experiment and theory both predict differences in σ(j → j + ∆j) and σ(j → j −∆j)

that increase as j̄ decreases, and these differences are primarily due to the factor

1/(2j + 1) in Eq. 4.13. We obtain better agreement for the slope of f for odd |∆j|
transitions with PES II: He and for even |∆j| with PES I: He. Additionally, the

values of f we predict for PES II: He for different |∆j| are in the same order as the

experimental data for each average j. Meanwhile, in Panels (c) and (d) of Fig. 4.12

we show results for Ar+NaK. Our results indicate that the slope of f is constant

when |∆j| 6= 2, and this is consistent with experimental error bars. For |∆j| = 2,

we predict that the slope of f is not constant; there’s a change around j̄ = 30.

The experimental error bars could be consistent with that; they do not appear to

lie along one line. Therefore for |∆j| = 2 the differences between σ(j → j + ∆j)

and σ(j → j −∆j) are related to both the factor of 1/(2j + 1) in Eq. 4.13 and

to the change in the slope of f(j̄, |∆j|) near j̄ ≈ 35. The agreement is better for
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Figure 4.12: Comparison between theoretical and experimental f(j̄, |∆j|) for He+NaK
and Ar+NaK for each PES. The lines show the theoretical values and the
vertical bars show the experimental values. We extracted approximate val-
ues of f from experiment by converting rate constants [6] to cross sections
with Eq. 4.11 and multiplying them by (2j + 1)k2j /π. The experimental
data was for (v, j) = (0, 14), (0, 30), (1, 26), and (2, 44); we have found
there is little dependence on v for the cross sections [2] and will discuss this
more in Section 4.3.2. We note once more that the experimental data for
He+NaK for (0, 30) is based on a smaller set of observations.

PES III: Ar than PES II: Ar, with more points lying within experimental error bars

for |∆j| = 2 and 3. It is difficult to say whether we predict a different ordering of

the curves than the experiments do because of the way the error bars overlap.
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4.2.4 Quenching rates

Some of our results have provided input for the experimental analysis [6]. The

analysis involves rate equations with unknown quenching rates, and the primary

contribution to the quenching rate for a given j is rotationally inelastic collisions.

Figure 4.13 shows that we predict that
∑

j 6=j′ σ(j → j′) is fairly constant with

respect to j. This prediction was incorporated in the experimental analysis [6],

and different possible values for a constant quenching rate were determined using

different methods. In Fig. 4.13, we have plotted the lowest and highest experimental

quenching cross sections, connected them with an error bar, and compared them with

our results for
∑

j 6=j′ σ(j → j′). Our quenching cross sections are always higher than

the experimental values, regardless of the PES, but they are closer for Ar+NaK.
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Figure 4.13: Comparison of quenching cross sections as a function of j. We converted
the experimental rate constants [6] to approximate cross sections using
Eq. 4.11. By using different methods, the experimentalists obtained differ-
ent constant values for the quenching rates. We plotted their lowest and
highest constant values, connected them with an error bar, and compared
with our results for

∑
j 6=j′ σ(j → j′). In all cases, our quenching cross

sections are higher than the data points, although the difference is smaller
for Ar+NaK.
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4.2.5 Transfer of moments

In addition to cross sections, we have also compared fractions of orientation retained

with experimental values for transitions from j = 30 [4, 5]. The comparison is not

perfect; the data are for v = 16 while our calculations are for v = 0. In Section 4.3.2

we will discuss what we estimate to be the vibrational dependence of the transfer of

orientation. Moreover, we mentioned in Section 2.5 that to evaluate the fraction of

orientation preserved in a cell environment (that is, to generalize Eq. 2.134) where

the molecules have a thermal distribution of energies, one would need to evaluate

the ratios
∞∫
0

d1(j → j′;Ekin)Ekin e
−Ekin/kT dEkin

∞∫
0

d0(j → j′;Ekin)Ekin e−Ekin/kT dEkin

. (4.14)

We have not yet done this, and our approximation d1(j, j
′)/d0(j, j

′) will be more

accurate if σ0(j → j′) and σ1(j → j′) do not depend strongly on the energy; so far,

we have found this is true for σ0(j → j′).

In Fig. 4.14 we compare theoretical and experimental [4, 5] fractions of orienta-

tion retained for transitions from j = 30 as a function of ∆j. The He+NaK results

are shown in Panel (a), and the Ar+NaK results are shown in Panel (b). In both

cases, the results do not indicate much sensitivity to the PES. For He+NaK, we are

within error bars for ∆j odd transitions and for |∆j| = +4, but we are outside of the

error bars for ∆j = ±2 and −4. However, the experimental data point at ∆j = −4

looks like an outlier. For Ar+NaK, we predict a greater fraction of orientation is

preserved than the data suggests. For instance, for ∆j = −4, we predict a fraction

that is about 0.7, while the lower bound for the data is about 0.3, which means

experiment and theory are around 80 percent different for ∆j = −4. Nonetheless,

both theory and experiment predict that less orientation is preserved for Ar+NaK

than for He+NaK.

The fraction of orientation retained is symmetric in j and j′, so one can plot

the results in terms of the average j = (j + j′)/2 and the absolute value of ∆j. In

Panels (a) and (b) of Fig. 4.15 we present such plots for He+NaK for each PES,
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Figure 4.14: Comparison between theory and experiment of the fraction of orientation
retained after many collisions for He+NaK, Panel (a), and for Ar+NaK,
Panel (b), as a function of ∆j for j = 30. The experimental data [4, 5] is
shown as a black vertical bar, and in each panel there are theoretical results
for two different PESs. Panel (a) shows that for He+NaK the theoretical
results are within error bars for ∆j odd transitions and for ∆j = +4, and
that the data for ∆j = −4 looks like an outlier. Panel (b) shows that for
Ar+NaK we predict a greater fraction of orientation is preserved for all
transitions.
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and in Panels (c) and (d) we present them for Ar+NaK. In every case, we predict

that it’s easier for the projectiles to destroy orientation when the rotational energy

of the molecules is low (low average j). As the molecules rotate with more energy,

though, it becomes more difficult to destroy orientation and a greater fraction is

preserved. With additional data, we could confirm this prediction. For He+NaK we
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Figure 4.15: Comparison between theory and experiment [4, 5] for the fraction of ori-
entation retained after many collisions as a function of the average j for
He+NaK and Ar+NaK. Panel (a) shows the result for PES I: He, Panel (b)
for PES II: He, Panel (c) for PES II: Ar, and Panel (d) for PES III: Ar.
There is more of a difference between the results for the two He+NaK
PESs than the results for the two Ar+NaK PESs, and we predict different
trends for He+NaK than for Ar+NaK.

predict that as the average j decreases, there will be an enhanced difference between

117



fractions of orientation preserved for odd and even |∆j|. Moreover, we predict that

this difference is more pronounced for PES II: He than PES I: He. At present,

however, experimental data is needed for comparison in this region. For Ar+NaK,

we don’t predict the same difference between odd and even |∆j|. Instead, we see a

switchover point between average j = 20 and 30 where the fraction of orientation

retained becomes higher for |∆j| = 3 than for |∆j| = 4, and another switchover

point for PES II: Ar between average j = 40 and 50 where the fraction becomes

higher for |∆j| = 1 than |∆j| = 2; additional data are needed to confirm these

predictions. Each Ar+NaK PES shows very similar results, with small changes in

the average j at which the switchovers occur.

Finally, we show that the trends in the orientation results are distinct from the

trends in the population results, which we should expect since the orientation in a

level (v, j) is independent of the population in that level. In Fig. 4.16, we present

our values for the population moment, d0(j, j
′), as a function of the average j. In

Panel (a) we show that for PES I: He, d0(j, j
′) is fairly similar for |∆j| = 1, 2, and 3,

in contrast with the difference between fractions of orientation preserved for odd and

even |∆j| shown in Panel (a) of Fig. 4.15. In Panel (c) of Fig. 4.16, there is a different

ordering of the d0(j, j
′) with respect to |∆j| than the ordering of the fractions of

orientation retained (Panel (c) of Fig. 4.15), and there is no switchover point between

|∆j| = 3 and 4 in the results for d0(j, j
′). These examples are sufficient to show

that trends in the population moments do not determine the trends in the fractions

of orientation preserved.
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Figure 4.16: The population moment d0(j, j
′) for fixed |∆j| as a function of average

j is shown for PES I: He in Panel (a), for PES II: He in Panel (b), for
PES II: Ar in Panel (c), and for PES III: Ar in Panel (d). As expected, the
trends in d0(j, j

′) are different from the trends in the fraction of orientation
retained, d1(j, j

′)/d0(j, j
′).
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4.3 Additional theoretical results

4.3.1 Energy dependence of the cross sections

In this section we present calculations of the energy dependence of the j → j′ cross

sections and use them to estimate the rate constants one would obtain with the

exact expression, Eq. 4.9. We also examine the dependence of the quenching cross

sections (introduced in Section 4.2.4) on energy. The results we present are for

PES II: He and PES II: Ar.

The calculations for other energies were similar to those described in Section 4.1

for E = 0.002 Eh, except for the following points. First, we determined a different

upper limit of integration, Rmax, and highest partial wave, Jmax, for each total energy

E; their values are listed in Table 4.1. We selected each Rmax by positing that the

potential V (R, re, θ) is negligible when it is a certain fraction of the collision energy.

For simplicity, we examined the ratio between the zeroth Legendre component of the

PES, v0(R), which is the angle-averaged potential, and the total energy. Specifically,

for energies lower than 0.002 Eh, we chose Rmax by requiring that v0(Rmax)/E be the

same value as it is for E = 0.002 Eh and Rmax = 30 a0. For the He+NaK calculations

with E > 0.002 Eh, we let Rmax = 30 a0, which is more than sufficient by the same

argument. Then for each total energy we determined Jmax from Jmax ≈ Rmaxkj.

Second, for the He+NaK calculations with E = 0.004 and 0.008 Eh, we changed the

value of E0 at which the electronic energies were modified (Eq. 3.3) from 0.004 Eh to

0.010 Eh and kept β = 2. With this new E0, we reproduced results for E = 0.001 Eh

that we had obtained using E0 = 0.004 Eh to within 1.5%.

Rotationally inelastic cross sections

Figure 4.17 presents the calculated cross sections for He+NaK and Ar+NaK for sev-

eral initial kinetic energies and for initial j = 14. Both systems show a dependence

on the energy, especially for lower initial kinetic energies, while the propensity does

not change significantly. To determine rate constants using the exact expression,

Eq. 4.9, one must convolute the cross sections with the distribution Ej
kine

−Ejkin/kT for
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Table 4.1: Parameters used in the calculation of cross sections for PES II: He and
PES II: Ar for different total energies. Every calculation involved jmax = 50,
a tolerance of 10−3, and an eleven-term Legendre expansion of the PES. We
performed high energy calculations for He+NaK only, since the Ar+NaK cal-
culations require more resources.

He+NaK Ar+NaK
Total energy (Eh) R0

min (a0) Rmax (a0) Jmax R0
min (a0) Rmax (a0) Jmax

0.0080a 3.5 30 319 N/A N/A N/A
0.0040a 3.5 30 239 N/A N/A N/A
0.0025b 3.5 30 175 4.5 30 447
0.0015b 3.5 32 143 4.5 32 367
0.0010b 3.5 34 127 4.5 34 319
0.0005b 3.5 38 111 4.5 38 255

aE0 = 0.010 Eh and β = 2
bE0 = 0.004 Eh and β = 2

T = 600K; the distribution (scaled by an arbitrary constant) is shown as a solid

black line in Fig. 4.17. Since we calculated the He+NaK cross sections for a broader

range of energies, the He+NaK rate constants we predict will be less uncertain than

the Ar+NaK rate constants.

The cross sections (given earlier as Eq. 2.95) can be written as

σ(j → j′) =
π

k2j (2j + 1)

∑
J

∑
l,l′

(2J + 1)
∣∣T Jjl,j′l′∣∣2 . (4.15)

The energy dependence of the cross sections at low energies is often determined

largely by the 1/k2j factor. If this is the case, then the product of Ej
kin = 1

2
µk2j and

σ(j → j′) should be approximately a straight line. Indeed, Fig. 4.18 shows that

the values of Ej
kinσ(j → j′) for j = 14 do show an approximate linear behavior.

The points in Fig. 4.18 are the calculated Ej
kinσ(j → j′), and the lines are linear

fits to the calculated points for each transition. The results of the fits are listed in

Table 4.2.

We estimated rate constants ki→f (T ) by using the linear fits to extrapolate

Ej
kinσ(j → j′) to infinity and substituting the extrapolation into Eq. 4.9. The
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Figure 4.17: Energy dependence of j = 14 cross sections for fixed ∆j. Panel (a)
shows the cross sections for PES II: He, while Panel (b) shows them
for PES II: Ar. Both panels show the distribution Ejkine

−Ekin/kT for
T = 600K (multiplied by an arbitrary constant) as a solid curve labelled
“C1Eexp(-E/kT)” in Panel (a) and “C2Eexp(-E/kT)” in Panel (b). The
distribution is negligible for Ejkin ≈ 0.015 Eh, and one can see that there
are a broader set of He+NaK calculations than Ar+NaK calculations; the
rates we estimate for He+NaK will be less uncertain than for Ar+NaK.
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Figure 4.18: Calculated values of Ejkinσ(j → j′) for j = 14 and fixed ∆j, along with the
linear fits to the calculated points. Panel (a) shows results for PES II: He,
while Panel (b) shows results for PES II: Ar.
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Table 4.2: Linear fits to Ejkinσ(j → j′) for j = 14 and fixed ∆j, where Ejkinσ(j → j′) is
in units of Eha

2
0. The fits presented here are shown as lines in Fig. 4.18.

He+NaK Ar+NaK

∆j Ej
kinσ = a1E

j
kin + a0 rms Ej

kinσ = a1E
j
kin + a0 rms

1 5.77126Ej
kin + 0.00890 0.00236 29.0913Ej

kin + 0.02107 0.00234

2 65.2729Ej
kin + 0.01733 0.00306 45.3744Ej

kin + 0.02271 0.00244

3 5.53389Ej
kin + 0.00895 0.00246 21.2114Ej

kin + 0.01060 0.00112

4 32.9050Ej
kin + 0.01022 0.00176 18.9025Ej

kin + 0.00482 0.00134
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expression for the rate constant, with Ej
kinσ(j → j′) = a1E

j
kin + a0, is

ki→f (T ) ≈ v̄
(
a1 +

a0
kT

)
. (4.16)

In the column of Table 4.3 labelled “Eq. 4.16”, we present the rate constants we

estimated by using Eq. 4.16 and the values of a0 and a1 determined by the linear

fits shown in Fig. 4.18. We also present the rate constants shown in Section 4.2.2

that we estimated by using ki→f (T ) ≈ v̄σ0
i→f in the column labelled “v̄σ0

i→f .” For

He+NaK, the rate constants estimated from the linear fit to Ej
kinσ(j → j′) were less

than 8.2% different from those estimated from v̄σ0
i→f , while for Ar+NaK the rate

constants were less than 9.5% different.

Table 4.3: Rate constants in units of 10−11 cm3/sec for j = 14 and fixed ∆j that we
estimated from the approximate formula ki→f (T ) = v̄σ0i→f , as well as the rate
constants we estimated from Eq. 4.16 for the lines shown in Fig. 4.18.

He+NaK Ar+NaK
∆j v̄σ0

i→f Eq. 4.16 v̄σ0
i→f Eq. 4.16

1 5.831 5.261 7.951 8.023
2 38.61 38.05 11.29 11.49
3 5.739 5.151 5.211 5.367
4 19.76 19.57 4.025 4.315

Of course, for kinetic energies greater than those for which we’ve performed

calculations, the values of Ej
kinσ(j → j′) may not lie on the same straight line as

the calculated values (approximately) do. To test the sensitivity of the rate con-

stants to higher energy points, we used the following method, which is illustrated

by Figs. 4.19 and 4.20. We first generated three possible values of σ(j → j′) for

Ej
kin = 0.016 Eh, shown as open squares labelled “Dummy points” in Figs. 4.19 and

4.20, which we will call A, B, and C. We chose Ej
kin = 0.016 Eh because the distri-

bution Ej
kine

−Ejkin/kT for T = 600K is very small there, as can be seen from the solid

curves labelled either “C1Ee
−E/kT” or “C2Ee

−E/kT”. We generated A by using the

linear fit to the calculated Ej
kinσ(j → j′), shown as a solid curve labelled “Linear

fit to Eσ,” to extrapolate to Ej
kin = 0.016 Eh. Then we let B = 2A and C = A/2.
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With either A, B, or C and the calculated points, we determined possible extrapola-

tions of Ej
kinσ(j → j′), which are shown as dotted curves labelled “Extrapolations.”

The dotted lines begin when the kinetic energy is Ẽj
kin, the highest initial kinetic

energy for which we have performed a calculation. For j = 14, Ẽj
kin = 0.0079 Eh

for He+NaK and 0.0024 Eh for Ar+NaK, so the extrapolations are more extreme

for Ar+NaK. The extrapolations were determined by requiring that for Ej
kin > Ẽj

kin,

Ej
kinσ(j → j′) lie along the line connecting Ẽj

kinσ(j → j′) to either EkinA, EkinB, or

EkinC; let these lines be of the form Ej
kinσ(j → j′) = b1E

j
kin + b0. Thus we estimated

rate constants by using a piecewise functional form for Ej
kinσ(j → j′) given by

Ej
kinσ(j → j′) =

{
a1E

j
kin + a0 for 0 ≤ Ej

kin ≤ Ẽj
kin

b1(E
j
kin − Ẽ

j
kin) + a1Ẽ

j
kin + a0 for Ej

kin > Ẽj
kin

, (4.17)

where Ej
kinσ(j → j′) = a1E

j
kin + a0 is the linear fit to the calculated points, and

where b0 = (a1 − b1)Ẽj
kin + a0 by continuity arguments.

We determined the formula for the corresponding rate constants by inserting

Eq. 4.17 into Eq. 4.9 and evaluating the integral analytically to obtain

ki→f (T ) ≈ v̄
( a0
kT

+ a1 + (b1 − a1)e−Ẽ
j
kin/kT

)
. (4.18)

In Table 4.4, we present the rate constants that we have determined for j = 14.

The rate constants estimated with Eq. 4.18 for the calculated cross sections and

either ‘B’ or ‘C’ varied from those estimated from the linear fit to the calculated

Ej
kinσ(j → j′) by less than 3.3% for He+NaK and 26.4% for Ar+NaK. The Ar+NaK

rate constants that we estimate are more sensitive to higher energy points because

Ẽj
kin is smaller for Ar+NaK than for He+NaK.

In Fig. 4.21 we present the range of rates that we have estimated with the

extrapolations as a solid vertical bar. For clarity, the bar is displaced and lies

slightly to the right of the appropriate ∆j. The rates we estimated by using v̄σ0
i→f

are shown as points, and the experimental error bars are shown as dotted vertical

lines. For He+NaK, our uncertainty is small, and so the rates will likely not change

by much when one accounts for the energy dependence. We note that for odd ∆j

the range of rates we estimated from the extrapolations does not overlap with the
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Figure 4.19: Plots of σ(j → j′) as a function of Ejkin for PES II: He and j = 14. Each
panel shows a different ∆j. The vertical scale for ∆j odd transitions is half
that for ∆j even transitions, since the ∆j odd cross sections are smaller.
The calculated cross sections are shown as solid squares, while the generated
(non-calculated) points A, B, and C at Ejkin = 0.016 Eh are shown as
open squares. The generated point A is the middle open square, and was
obtained by using the linear fit to Ejkinσ(j → j′) (shown as the solid curve

labelled “Linear fit to Eσ”) to extrapolate to Ejkin = 0.016 Eh. The other
two points are B = 2A and C = A/2. We estimated rate constants by
extrapolating the cross sections as follows. For initial kinetic energies from
zero to the highest value for which we’ve performed a calculation, we let the
cross sections follow the curve labelled “Linear fit to Eσ.” (We note that
for the ∆j odd transitions the solid curve deviates more significantly from
the calculated point of lowest energy than it does for the even transitions.)
Then for higher energies we let the cross sections follow one of the dotted
curves labelled “Extrapolations.” We used the different extrapolations to
estimate the sensitivity of the rate constants to high energy points.
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Figure 4.20: Same as Fig. 4.20 but for PES II: Ar. The vertical scale for transitions
with ∆j = 3 and 4 transitions is half that for transitions with ∆j = 1 and
2. The extrapolations are more extreme than they were for He+NaK, since
the He+NaK calculations cover a broader range of energies.

rates we estimated from v̄σ0
i→f , probably because the fit labelled “Linear fit to Eσ”

in Fig. 4.19 deviates significantly from the calculated point of lowest energy. For

Ar+NaK, our uncertainty in the rate constants is greater and our range of rates

overlaps with experimental error bars for ∆j = 2, 3, and 4; the experimentally

observed propensity for ∆j = 4 in the rate constants could be a result of collisions

for E > 0.0025 Eh.
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Figure 4.21: Comparison between our estimated rate constants and experimental error
bars for j = 14 as a function of ∆j. Panel (a) shows the comparison for
PES II: He, while Panel (b) shows it for PES II: Ar. The range of rates
that we estimated by using different extrapolations of the energy dependent
cross sections is shown as a solid vertical bar. The bars are displaced to
the right by ∆j = 0.2 for clarity. The rate constants we estimated from
ki→f (T ) ≈ v̄σ0i→f are shown as points, and the experimental error bars are
shown as dotted vertical lines. For He+NaK, our estimated uncertainty in
the rate constants that we predict is very small. For He+NaK for the odd
∆j, the uncertainty estimated from the extrapolations does not overlap
with the points, which is likely due to the deviation of the fit from the
calculated point of lowest initial kinetic energy in Fig. 4.19. For Ar+NaK,
the uncertainty in the rates is larger, and this leads to agreement with
experiment for ∆j = 2 through 4. One can see that for Ar+NaK our
estimated rates for ∆j = 3 and 4 overlap; it’s possible that the propensity
for ∆j = 4 observed experimentally is present in our results as well.
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Table 4.4: Rate constants in units of 10−11 cm3/sec estimated from the fits shown in
Figs. 4.19 and 4.20. The initial j is 14.

He+NaK
∆j v̄σ0

i→f Eq. 4.16 Eq. 4.18 with value C Eq. 4.18 with value B

1 5.831 5.261 5.381 5.202
2 38.61 38.05 39.31 37.43
3 5.739 5.151 5.267 5.095
4 19.76 19.57 20.20 19.25

Ar+NaK
∆j v̄σ0

i→f Eq. 4.16 Eq. 4.18 with value C Eq. 4.18 with value B

1 7.951 8.023 10.12 6.985
2 11.29 11.49 14.71 9.880
3 5.211 5.367 6.875 4.619
4 4.025 4.315 5.629 3.649

130



Quenching cross sections

We examined quenching cross sections (sums of inelastic cross sections) as a function

of total energy. We had predicted in Section 4.2.4 that the quenching cross sections

were approximately constant with respect to j. Figure 4.22 shows
∑

j′ 6=j σ(j → j′)

as a function of the total energy. Since the initial kinetic energies are similar to the

total energies (Ej
kin = E−3.013×10−7j(j+1) Eh), we expect that the results would

show the same trends if plotted against initial kinetic energy; we used the total

energy to avoid performing many calculations for slightly different initial kinetic

energies. For He+NaK, the results are approximately constant with respect to j

for each total energy, except for the two lowest total energies, E = 1 × 10−4 and

5 × 10−4 Eh. For those two energies, the channels are closed when j ≥ 18 and

41, respectively. The quenching cross sections are approximately constant with

respect to j until j is near the value for which the channels become closed. At

that point, the cross sections drop precipitously. This behavior will likely not affect

the quenching rates very much at T = 600K, since Ej
kine

−Ejkin/kT emphasizes higher

energies, and we expect the quenching rates to be fairly constant with respect to

j, as we predicted in Section 4.2.4. For Ar+NaK, results near the average collision

energy are approximately constant with respect to j, but for lower energies the

dependence on j is somewhat stronger. Without higher energy points, it is difficult

to say whether the quenching rates for Ar+NaK would be approximately constant

with respect to j.
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Figure 4.22: Energy dependence of quenching cross sections,
∑

j 6=j′ σ(j → j′), for
He+NaK (Panel (a)) and Ar+NaK (Panel (b)) as a function of the ini-
tial j. For the energies 1 × 10−4 and 5 × 10−4 Eh, channels are energy
inaccessible for j ≥ 18 and 41, respectively. For He+NaK, The quenching
cross sections for those values of E drop precipitously before reaching a
value of zero. Aside from the precipitous drops, the quenching cross sec-
tions are fairly constant with j. We expect the quenching rate constant
to be constant with j, as we predicted in Section 4.2.4. For Ar+NaK, the
lower energy curves show more of a dependence on the energy, and we do
not have calculations for E = 0.004 and 0.008 Eh like we did for He+NaK.
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4.3.2 Vibrational effects

We have estimated how the results for vibrationally elastic transitions (vj → vj′)

depend on v. This section presents the approximations made to obtain these es-

timates and then compares the results with experimental data. We note that our

collaborator, Prof. Forrey from Penn State Berks, is in the process of estimating the

vibrational dependence by making different approximations than those used here.

Simplified coupling terms

In Section 2.4.4, we showed that in order to incorporate the vibration of the molecule

in the scattering calculation, one must include vibrational wave functions in the ex-

pansion of the target wave function. When one does this, the number of channels

(and hence the computational effort required) becomes much larger than for the

rigid rotator, because there are rotational levels for every vibrational level included.

In order to perform a tractable calculation, we made the approximation of including

only one vibrational wave function for the target state. A separate calculation can

then be performed for each initial vibrational level; the physical assumption is that

the collision does not change the vibrational level. There is some justification for

this approach in the experimental data [6]; for small values of v, the vibrationally in-

elastic rate constants are about an order of magnitude smaller than the vibrationally

elastic rate constants for both He+NaK and Ar+NaK.

The coupled equations including vibrational excitation were given in Eq. 2.105.

In the limit that the sum over vibrational levels has only a single term, these equa-

tions have the same form as the rigid rotator equations (Eq. 2.90); the coupling

terms are the Legendre components of the interaction potential averaged over the

appropriate wave functions:

Vvjvj′n (R) =

∫
χvj(r)Ṽn(R, r)χvj′(r) dr. (4.19)

We make the further approximation that the vibrational-rotational wave functions

χvj (which are solutions to Eq. 2.103) are independent of j. The coupling terms are

then much simpler to evaluate, and one can also show that they reduce to the rigid
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rotator limit. If we consider v = 0 and replace the squared ground vibrational wave

function by a δ-function centered at the equilibrium internuclear separation re, we

have

V0j0j′

n (R) ≈
∫
χ0(r)Ṽn(R, r)χ0(r) dr (4.20)

=

∫
Ṽn(R, r)δ(r − re) dr (4.21)

= Vn(R, re). (4.22)

The final expression, Vn(R, re), is the same as the rigid rotator coupling term,

Eq. 2.87, confirming that our approximations lead to a sensible expression in the

v = 0 limit.

The computational details of the vibrational averaging of the Legendre compo-

nents are as follows. We determined the Legendre components, Ṽn(R, r), for the

six bond lengths r = 6, 7, 8, 9, 10, and 11 a0 by using the procedure described in

Section 3.2. Then, for each n and R, we used a least squares fitting routine [84] to

fit Ṽn(R, r) to a fifth degree polynomial in r. This fit provides the derivatives [85]

of Ṽn(R, r), which can be used to expand each component in a Taylor series about

re:

Ṽn(R, r) = Ṽn(R, r)
∣∣∣
re

+
∂Ṽn(R, r)

∂r

∣∣∣∣∣
re

(r−re)+
1

2!

∂Ṽn(R, r)
2

∂2r

∣∣∣∣∣
re

(r−re)2+. . . . (4.23)

Now one can express the vibrational average in terms of the average values of powers

of (r − re):∫
χ∗v(r)Ṽn(R, r)χv(r) dr = Ṽn(R, r)

∣∣∣
re

+
∂Ṽn(R, r)

∂r

∣∣∣∣∣
re

∫
χ∗v(r)(r − re)χv(r) dr

+
1

2!

∂Ṽn(R, r)
2

∂2r

∣∣∣∣∣
re

∫
χ∗v(r)(r − re)2χv(r) dr + . . . . (4.24)

For each v, we evaluated Eq. 4.24 by using the first six terms of the Taylor expansion

given by Eq. 4.23. We calculated the average values of (r − re)n numerically with

Morse wave functions [86] for j = 0 constructed by using the experimental value for

re [7], and the we and wexe for NaK (A 1Σ+) determined from PES II.
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We calculated vibrationally averaged Legendre components for vibrational levels

up to v = 16. We have verified that the Morse vibrational wave functions for

v = 16 do not contain significant contributions from bond lengths r < 6 a0 or

r > 11 a0, as can be seen in Panel (a) of Fig. 4.23. Moreover, Panel (b) shows that

the corresponding Morse potential does not deviate significantly from our calculated

potential for NaK (A 1Σ+) in the energy range of interest.
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Figure 4.23: Panel (a) shows that the Morse vibrational wave function for v = 16 is neg-
ligible outside of the range of bond lengths (6 ≤ r ≤ 11 a0) included in our
PESs. Thus we can safely average Legendre components using Morse wave
functions for levels up to v = 16. Panel (b) shows that the correspond-
ing Morse potential does not deviate significantly from the NaK (A 1Σ+)
potential calculated from PES II in the relevant energy range. The black
horizontal line labelled “v = 16, J = 0” corresponds to the energy for
v = 16 and j = 0 calculated from Evib = we(v + 1/2)− wexe(v + 1/2)2.

Figs. 4.24 and 4.25 show the first three vibrationally averaged Legendre com-

ponents for different values of v for PES II: He and PES II: Ar, respectively. (In

Section 4.1, we showed that for the rigid rotator a three-term Legendre expansion of

the PES was sufficient to reproduce the essential features of the results of an eleven-

term expansion.) Within each figure, Panel (a) shows Legendre components for the

rigid rotator and for v = 0, 1, and 2; they are all very similar. Panel (b) shows

components for v = 7 and Panel (c) shows components for v = 16. As v increases,

the n = 0 component becomes more repulsive (perhaps because NaK seems “bigger”
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when it is in a higher vibrational level), and the separation between the n = 1 and

n = 2 components increases within the range of R shown. For some values of R,

the magnitude of the n = 1 component decreases with an increase in v; that is, the

averaged potential becomes less asymmetric with respect to inversion symmetry in

these regions. One might therefore expect an enhancement in the propensity for ∆j

even transitions as v increases, if these regions of the potential contribute strongly

to the scattering.

Vibrationally elastic cross sections σ(vj → vj′)

Figure 4.26 shows cross sections for the rigid rotator and for v = 0. They are

virtually identical, confirming Eq. 4.22, and supporting the comparisons we made

between our rigid rotator results and experimental [6] rate constants for v = 0 in

Figs. 4.8, 4.10, and 4.12. We also compared our rigid rotator results with experiment

[6] for v = 1 and 2 in Figs. 4.9 and 4.12; Figure 4.27 shows that our cross sections

for the rigid rotator and for v = 2 are very similar.

Figure 4.28 presents a comparison between cross sections for the rigid rotator

and for v = 16. There is more of a difference than there was for v = 0 and 2. For

instance, He+NaK cross sections shown in Panel (a) are 80% different (≈ 2 a20) for

0 → 1 and 61% different (≈ 5 a20) for 14 → 15. Additionally, for v = 16 there

is a propensity for ∆j even transitions for large ∆j that was not present in the

rigid rotator results. Nonetheless, the cross sections still show the same essential

features, and the changes appear relatively minor in the figure. Panel (b) shows that

the differences between cross sections for the rigid rotator and for v = 16 are more

pronounced for Ar+NaK than they were for He+NaK, but that these differences do

not radically alter the results. The biggest change is that the inverse propensity (for

∆j odd) present in rigid rotator results for high ∆j is absent for v = 16; instead

the propensity for ∆j even persists to high ∆j.

Figure 4.29 shows cross sections for j = 14 and fixed ∆j ≤ 4 as a function

of v. The points on the left-hand side of the vertical bar are for the rigid rotator.

Panel (a) shows results for PES II: He, while Panel (b) shows results for PES II: Ar.
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Figure 4.24: Comparison between the PES II: He Legendre components used in the rigid
rotator calculation and vibrationally averaged Legendre components for dif-
ferent values of v. Within each panel, there are three sets of curves labeled
‘n = 0’, ‘n = 1’, and ‘n = 2’; these are the first three Legendre compo-
nents. For each such set of curves, the Legendre components are shown as
a solid line and labelled “Rigid rotator”, while the vibrationally averaged
Legendre components each have their own line type and are labelled by
v. Panel (a) shows the comparison for averaged components obtained for
v = 0, 1, and 2. The separation between the n = 1 and 2 components
increases as v increases. There is hardly an effect on the Legendre compo-
nents, but the odd Legendre components are affected a bit more than the
even components. Panel (b) shows the comparison for v = 7, and Panel (c)
for v = 16; the n = 1 component is most affected. The overall trend is that
as v increases, the separation of the n = 1 and n = 2 components increases.
For some values of R, the magnitude of the n = 1 component decreases
with an increase in v; such a decrease indicates the averaged potential is
less asymmetric with respect to inversion symmetry in these regions.
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Figure 4.25: Same as in Fig. 4.24 except for PES II: Ar. The results are very similar to
the He+NaK results.
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Figure 4.26: Comparison between cross sections for the rigid rotator and for v = 0,
both obtained for jmax = 30. Panel (a) shows results for PES II: He, while
Panel (b) shows results for PES II: Ar. In both cases, the cross sections
are very similar, confirming Eq. 4.22 and supporting comparisons made in
Sections 4.2.2 and 4.2.3 between our rigid rotator results and experimental
rate constants [6] for v = 0.

139



 0

 20

 40

 60

 80

 100

 120

 140

 0  5  10  15  20  25  30

C
ro

s
s
 s

e
c
ti
o
n
 (

a
0

2
)

j’

He+NaK, PES II: He, vib. dependence of cross sections

v=2, j=  0
v=2, j=14

Rigid rotator, j=  0
Rigid rotator, j=14

(a)

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30

C
ro

s
s
 s

e
c
ti
o
n
 (

a
0

2
)

j’

Ar+NaK, PES II: Ar, vib. dependence of cross sections

v=2, j=  0
v=2, j=14

Rigid rotator, j=  0
Rigid rotator, j=14

(b)

Figure 4.27: Same as Fig. 4.26 except the rigid rotator cross sections are compared with
the cross sections for v = 2. The similarity between the cross sections
supports our comparison of rigid rotator results with experimental rate
constants [6] for v = 1 and 2 in Sections 4.2.2 and 4.2.3.
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Figure 4.28: Same as Fig. 4.26 except the rigid rotator cross sections are compared
with the cross sections for v = 16, and jmax = 50 for He+NaK and 60 for
Ar+NaK. The results for the rigid rotator and for v = 16 are more different
than they were for v = 0 and 2, particularly for Ar+NaK. Nonetheless,
there are no major changes in the behavior of the cross sections for He+NaK
or for Ar+NaK, aside from some differences in the propensity for ∆j even
transitions. For He+NaK, there is a propensity for high ∆j transitions for
v = 16 where there was no propensity for the rigid rotator. For Ar+NaK,
the inverse propensity seen at higher ∆j for the rigid rotator is no longer
seen for v = 16. Instead, the propensity persists to high ∆j.
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Figure 4.29: Cross sections for j = 14 are shown for fixed ∆j ≤ 4 as a function of v.
The points to the left of the vertical bar are the cross sections for the rigid
rotator. For He+NaK, shown in Panel (a), there is little dependence on v
for these small ∆j, although one can still discern an enhancement in the
propensity as v increases. For Ar+NaK, there is more of a dependence,
with a propensity for ∆j = 4 present for higher v.
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As v increases, the ∆j even cross sections increase, while the ∆j odd cross sections

decrease; the propensity for ∆j even transitions becomes stronger. This is not very

noticeable in Panel (a); most of the change in the relative rates occurs for higher

∆j than those shown. In Panel (b), though, it is more noticeable, since the trends

cause the curves to change order, with cross sections for ∆j = 4 larger than for

∆j = 1 or 3 at higher v.

Figure 4.30 shows experimental rate constants [4–6] for vibrationally elastic tran-

sitions from (v, j) = (0, 30) (red vertical lines) and from (v, j) = (16, 30) (black

vertical lines displaced horizontally by ∆j = +0.2). The figure also shows our cal-

culated rate constants for v = 0 (red circles) and for v = 16 (black squares displaced

horizontally by ∆j = +0.2). We reproduce the general trends of the data for v = 0

and 16, with the exception being that we reproduce the experimentally observed

propensity for |∆j| = 4 transitions for Ar+NaK for v = 16 but not v = 0. Despite

some differences, there is not a significant dependence on v in the experimental data

or in our calculated rate constants for these values of ∆j.

Equation 4.12 shows that the expression for the rotationally inelastic cross sec-

tions contains a factor f(j̄, |∆j|) that is symmetric under the interchange of j and

j′; the values of f(j̄, |∆j|) are identical for two transitions vj → vj′ and vj′ → vj.

We wish to demonstrate that the experimental data for v = 1 is not very different

from v = 0, in agreement with our predictions. One way to do this is to show that

f(j̄, |∆j|) is identical for transitions v′j → v′j′ and vj′ → vj, where v and v′ are

either zero or one. To this end, Fig. 4.31 shows experimental values of f(j̄, |∆j|) for

pairs of transitions with the same average j and |∆j| as vertical bars. The vertical

bars for transitions with j′ < j are, for clarity, displaced by average j = +0.4 and

dotted. The f(j̄, |∆j|) for 0, 14→ 0, 30 and 0, 30→ 0, 14 are shown as blue vertical

bars for average j = 22 and |∆j| = 16. Of course, these bars overlap, and the values

of f(j̄, |∆j|) are identical. The red bars for average j = 20 and |∆j| = 12 corre-

spond to transitions 0, 14 → 0, 26 and 1, 26 → 1, 14; these bars also overlap, which

indicates that there is not much difference between cross sections for v = 1 and for

v = 0. Similarly, the black bars for average j = 28 and |∆j| = 4, which correspond

to transitions 1, 26 → 1, 30 and 0, 30 → 0, 26, overlap. Thus we conclude that, at
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Figure 4.30: Comparison of theory with experiment [4–6] for rotationally inelastic cross
sections from (v, j) = (16, 30) and (v, j) = (0, 30). Rate contants for v = 0
are red, while the rate constants for v = 16 are black and displaced by
∆j = 0.2 (for clarity). We estimated rate constants from our cross sections
by using the approximate formula ki→f (T ) ≈ v̄σ0i→f . Panel (a) shows
the comparison for PES II: He, while Panel (b) shows the comparison for
PES II: Ar. For both v = 0 and v = 16 we reproduce the general trends
in the data, except that for Ar+NaK we predict a propensity for |∆j| = 4
for v = 16 but not v = 0. For these ∆j, the experimental data and our
calculated rate constants are fairly insensitive to v.
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least for these transitions, there is not much difference between the experimental

rate constants for v = 0 and v = 1, in agreement with our results. We have also

plotted our calculated f(j̄, |∆j|) for v = 0 (they are virtually identical for v = 1),

for comparison. The calculated values and experimental error bars do not overlap

for |∆j| = 4, but there is overlap for |∆j| = 12 and 16.
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Figure 4.31: Values of f(j̄, |∆j|) as a function of average j for fixed |∆j|. Theoretical
values for v = 0, which are virtually identical for v = 1, are shown as
lines, while the experimental values for v = 0 and v = 1 are shown as
vertical bars. Experimental data for transitions with j′ < j are plotted
as dotted bars and displaced by average j = 0.4 for ease of comparison.
Experimental values for 0, 30 → 0, 14 and 0, 14 → 0, 30 overlap, as they
should, since f(j̄, |∆j|) is symmetric under the interchange of j and j′ for
a given v. The other pairs of vertical bars are for transitions vj → vj′

and v′j′ → v′j, which will only overlap if the cross sections for v and v′ are
fairly similar. Since the values of f(j̄, |∆j|) do overlap for these transitions,
we conclude that there is little difference between data for v = 0 and 1, in
agreement with our calculations. We also note that theory and experiment
overlap for |∆j| = 12 and 16.

Quenching cross sections

Figure 4.32 shows that for PES II: He and PES II: Ar, the quenching cross sections

(which were introduced in Section 4.2.4) for the rigid rotator and for v = 7 are very

similar. In both cases they are approximately constant with respect to j, supporting

the assumption made in the experimental analysis [6] that the quenching rates are
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the same constant value for v = 0, 1, and 2.
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Figure 4.32: Sums of rotationally inelastic cross sections,
∑

j 6=j′ σ(j → j′), as a function
of j for the rigid rotator calculation and for v = 7. Panel (a) shows this
comparison for PES II: He, while Panel (b) shows it for PES II: Ar. In
both cases, the quenching cross sections do not depend much on v, and
are approximately constant with j. We note that in Panel (b) the range
of j is smaller than in Panel (a) because for Ar+NaK we performed the
calculation with jmax = 30. This value for jmax was chosen simply to save
computer time; the trends in the quenching cross sections are not affected
by this choice.

Transfer of moments

In Fig. 4.33, we present a comparison between experiment and theory for the frac-

tions of orientation preserved, d1(j, j
′)/d0(j, j

′), in transitions from j = 30. The

experimental data [4, 5] is for v = 16. The boxes show our d1(j, j
′)/d0(j, j

′) for

v = 16, while the asterisks show them for v = 0. Panel (a) shows results for

PES II: He. We predict that the d1(j, j
′)/d0(j, j

′) for ∆j even transitions are very

similar for v = 0 and 16, and that for ∆j odd transitions they are lower for v = 16

than v = 0. The level of agreement with experiment does not change; in both

cases we are within the same experimental error bars. Panel (b) shows results for

PES II: Ar. While the d1(j, j
′)/d0(j, j

′) are smaller for ∆j odd transitions, we are

still outside of the experimental error bars for all transitions. Theory and experi-

ment agree that a greater fraction of orientation is preserved in collisions with He
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than with Ar.

In Fig. 4.34, we present theoretical results for d1(j, j
′)/d0(j, j

′) as a function

of average j for fixed |∆j|. Panels (a) and (b) show results for He+NaK. The

even |∆j| transitions shown in Panel (b) are hardly affected, but less orientation is

preserved for odd |∆j| transitions for v = 16 than for the rigid rotator, as shown in

Panel (a). Panels (c) and (d) show results for Ar+NaK. As with He+NaK, the even

|∆j| transitions shown in Panel (d) are very similar, but the odd |∆j| transitions

show more of a difference. In general, we predict the same trends in the orientation

results; the fraction of orientation preserved increases with average j.
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Figure 4.33: Comparison of our calculated d1(j, j
′)/d0(j, j

′) for v = 0 (asterisks) and 16
(squares) with experimental data [4, 5] for v = 16 (vertical bars). (There
is no available experimental data for v = 0.) The initial j is 30. Results
for He+NaK are shown in Panel (a) and results for Ar+NaK are shown
in Panel (b). The boxes show our d1(j, j

′)/d0(j, j
′) for v = 16, while the

asterisks show them for v = 0. For He+NaK, we predict that, for odd ∆j,
less orientation is preserved for v = 16 than for the rigid rotator. The level
of agreement with experiment, however, does not change. For Ar+NaK,
as with He+NaK, we predict that less orientation is preserved for odd ∆j
transitions for v = 16 than for the rigid rotator. Despite these differences,
the level of agreement with experiment does not change by much, and
experiment and theory agree that collisions with Ar destroy orientation
more effectively than collisions with He.

148



0.0

0.2

0.4

0.6

0.8

1.0

 0  10  20  30  40  50

F
ra

c
ti
o
n
 o

f 
o
ri
e
n
ta

ti
o
n
 p

re
s
e
rv

e
d

average j

He+NaK, PES II: He

|∆j=1|, rigid rot.
|∆j=1|,      v=16
|∆j=3|, rigid rot.
|∆j=3|,      v=16

(a)

0.0

0.2

0.4

0.6

0.8

1.0

 0  10  20  30  40  50
F

ra
c
ti
o
n
 o

f 
o
ri
e
n
ta

ti
o
n
 p

re
s
e
rv

e
d

average j

He+NaK, PES II: He

|∆j=2|, rigid rot.
|∆j=2|,      v=16
|∆j=4|, rigid rot.
|∆j=4|,      v=16

(b)

0.0

0.2

0.4

0.6

0.8

1.0

 0  10  20  30  40  50

F
ra

c
ti
o

n
 o

f 
o

ri
e

n
ta

ti
o

n
 p

re
s
e

rv
e

d

average j

Ar+NaK, PES II: Ar

|∆j=1|, rigid rot.
|∆j=1|,      v=16
|∆j=3|, rigid rot.
|∆j=3|,      v=16

(c)

0.0

0.2

0.4

0.6

0.8

1.0

 0  10  20  30  40  50

F
ra

c
ti
o

n
 o

f 
o

ri
e

n
ta

ti
o

n
 p

re
s
e

rv
e

d

average j

Ar+NaK, PES II: Ar

|∆j=2|, rigid rot.
|∆j=2|,      v=16
|∆j=4|, rigid rot.
|∆j=4|,      v=16

(d)

Figure 4.34: Fractions of orientation retained are shown for the rigid rotator and for
v = 16. Panels (a) and (b) show results for PES II: He, while Panels (c) and
(d) show results for PES II: Ar. For both the rigid rotator and v = 16, we
predict that the orientation is harder to destroy as the average j increases,
even though the absolute magnitude of these fractions is different.
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4.4 Connection between the PES and the ∆j even

propensity

One of our objectives is to understand what determines the strength of the propen-

sity for ∆j even transitions exhibited by He+NaK and Ar+NaK. For an atom inter-

acting with a homonuclear diatomic molecule, such as Na2, there is a selection rule

for ∆j even transitions. Since K is the closest alkali atom to Na, one might suppose

that the propensity would be related to the “almost homonuclearity” of NaK. That’s

part of the story, but it’s not the whole story; experimental data [5, 6] show that

He+NaK exhibits a stronger propensity for ∆j even than Ar+NaK, so the degree

of this propensity cannot be explained by properties of the molecule alone. Rather,

the strength of the propensity is related to the deviation of the atom-diatom PES

from symmetry under the exchange of Na and K.

In this section, we identify a region in the PES that tends to be very asymmetric.

The propensity can be greatly affected if this region is in a part of the potential that

contributes strongly to the scattering. Moreover, we develop a model which provides

a simple way of understanding why a very asymmetric region should arise, and the

predictions of the model agree well with our calculations.

4.4.1 Background

For homonuclear diatomic molecules, the strict selection rule for ∆j even transitions

(in the absence of nuclear spin) is a consequence of symmetry under exchange of

the two atoms of the molecule. The rule derives from the parities of the wave

functions of the two states connected by the transition, as well as the symmetry of

the interaction that caused the transition [9].

The PES contains all the details of the interaction needed to treat a collision,

including symmetry properties. Panel (a) of Fig. 4.35 depicts the geometry of an

atom interacting with a homonuclear molecule, using Jacobi coordinates. The two

nuclei are indistinguishible, so the PES is symmetric with respect to θ = 90◦ for allR.

The corresponding Legendre expansion of the PES contains only even components,

150



(a) (b)

Figure 4.35: Schematic of the interaction between a generic atom (labelled “Perturber”)
and a diatomic molecule, using Jacobi coordinates. Panel (a) illustrates
the interaction when the molecule is homonuclear. The center of mass is
at the midpoint of the molecule and the PES is symmetric about θ = 90◦.
Panel (b) illustrates the interaction when the molecule is heteronuclear.
The center of mass shifts towards the heavier atom, which in this figure is
Atom B. The PES is no longer symmetric about θ = 90◦, because atoms A
and B are different.

since even and odd Legendre polynomials are symmetric and antisymmetric with

respect to θ = 90◦:

Pn(cos θ) = (−1)nPn
(

cos(π − θ)
)
. (4.25)

Panel (b) of Fig. 4.35 depicts the geometry of a heteronuclear diatomic molecule

interacting with an atom. The PES is no longer totally symmetric with respect

to θ = 90◦, and the Legendre expansion includes a symmetric portion with even

components and an antisymmetric portion with odd components.

The strength of the propensity for ∆j even transitions should depend on the rel-

ative contributions to the scattering by the symmetric and antisymmetric portions

of the PES; a semiclassical analysis by McCurdy and Miller [10] supports this con-

clusion. McCurdy and Miller looked at this problem using a very simple potential

with a three-term Legendre expansion of the form

V (R, θ) = V0(R)

[
1 + a1P1(cos θ) + a2P2(cos θ)

]
, (4.26)

where the ratio of the n = 1 and n = 2 Legendre components is independent of R.

McCurdy and Miller took V0(R) to be a Lennard-Jones potential and investigated
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several cases where a1, a2 > 0. There is only one antisymmetric Legendre component

in the expansion, P1(cos θ), and McCurdy and Miller varied its coefficient a1 to see

how the propensity was affected. First they set a1 = 0 and reproduced the selection

rule for ∆j even transitions. Then, they let a1 be much smaller than a2, so that

the PES was only very slightly asymmetric, and there was a very strong propensity

for ∆j even transitions. Next, they let a1 be a little smaller than a2, and there

was a propensity at low ∆j and an inverse propensity (for odd ∆j) at high ∆j.

Finally, they let a1 be larger than a2, so that the PES was very asymmetric, and

the propensities washed out.

4.4.2 Dependence of the propensity on the size of |v1(R)|

Motivated by the previous considerations, we performed a quantum mechanical

study to correlate features of the PES with the propensity for ∆j even transitions.

Our potentials are more general than the form used by McCurdy and Miller [10],

Eq. 4.26. We typically expanded V (R, θ) in 11–16 Legendre components (Eq. 2.87),

and the ratio of v1(R) and v2(R) depends on R, so applying their results to our

situation is not straightforward. We first performed several test calculations that

included only the first three terms in the Legendre expansion:

V (R, θ) = v0(R) + v1(R)P1(cos θ) + v2(R)P2(cos θ). (4.27)

These calculations reproduced many of the essential features of our original results

(see Fig. 4.6) and led us to perform further tests using only three terms.

Then we tried a series of three-term calculations in which we scaled our v1(R)

by a constant factor. Panels (a) and (b) of Fig. 4.36 show the results of decreasing

the asymmetry of the PES by decreasing v1(R). For both He+NaK and Ar+NaK,

decreasing v1(R) led to a stronger propensity for ∆j even for all ∆j; Ar+NaK’s

slight inverse propensity (for odd ∆j) turned into a regular propensity. When we

let v1(R) = 0, we reproduced the selection rule for ∆j even transitions. Next, we

increased the asymmetry in the same manner. Panels (c) and (d) of Fig. 4.36 show

the resulting cross sections. For He+NaK, increasing v1(R) caused the cross sections
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Figure 4.36: Effect of modifying the coefficient v1(R) on rotationally inelastic cross sec-
tions. The initial j is zero. The label ‘v0, v1, v2’ corresponds to the
unmodified three-term expansion of the PES. Panels (a) and (b) show the
effect of decreasing the asymmetry present in PES II: He and PES II: Ar;
the propensity is enhanced as v1(R) decreases, until v1(R) is zero and there
is a strict selection rule for ∆j even. Panels (c) and (d) show the effect
of increasing v1(R). For He+NaK, the cross sections start to exhibit in-
verse propensities for ∆j odd transitions for some values of ∆j, while for
Ar+NaK, increasing v1(R) washes out any propensities.

to exhibit an inverse propensity for some values of ∆j, while for Ar+NaK, increasing

v1(R) led to cross sections without a propensity.
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These results confirm that, for our systems, the strength of the propensity is

linked to the size of the antisymmetric portion of the PES. Nonetheless, we expect

that the ratio |v1(R)|/|v2(R)| plays a role, as McCurdy and Miller [10] demonstrated

with their surface. Since each of our Legendre components depends on R differently,

we must take a different approach to assess how the relative magnitudes of |v1(R)|
and |v2(R)| affect the propensity.

4.4.3 Dependence of the propensity on the relative sizes of

|v1(R)| and |v2(R)|

We found it useful to identify regions of the potentials in which |v1(R)| > |v2(R)|,
which we will refer to as “regions of greatest asymmetry” (RGAs). We then ex-

amined our results to assess whether the effect of these regions was sufficient to

diminish the propensity for ∆j even transitions.

In many cases, we were able to isolate the effect of RGAs by looking at partial

cross sections σJ(j → j′) for certain values of J . We can roughly associate each J

with an impact parameter b ≈ J/kj (see Section 4.1, page 97). If b is large enough,

we can take the corresponding classical trajectory to be a straight line, and the

classical turning point will be equal to b. Figure 4.37 illustrates the situation. The

shaded region shows a possible RGA defined by a minimum (R1) and a maximum

(R2) value of R; a trajectory with impact parameter b < R2 will pass through the

RGA, but the RGA has the greatest influence on trajectories with R1 ≤ b < R2,

because the probability density of the partial wave is maximum near the classical

turning point of the trajectory. Therefore for our calculations, as long as the RGA

occurs at large enough R, we can associate a certain range of partial waves with

trajectories that preferentially sample the potential in the RGA.

The shaded rectangles in Panels (a) and (b) of Fig. 4.38 highlight the RGAs of

PES II: He and PES III: Ar. The RGA for HeNaK occurs at a larger R than for

ArNaK. At our collision energies, however, both RGAs occur at large enough R to

justify considering straight-line trajectories, so we can probe their effects.

The shaded rectangles in Panels (a) and (b) of Fig. 4.39 show the range of impact
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Figure 4.37: Relation between the impact parameter b ≈ J/kj and the region of the
potential sampled by the partial wave. For large b, the trajectory is ap-
proximately a straight line and the impact parameter is a classical turning
point. The shaded area is an RGA. Trajectories with impact parameters
R1 ≤ b < R2 preferentially sample the RGA; those with b < R1 still en-
counter the RGA, but it has less of an influence.
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Figure 4.38: The RGAs of PES II: He (left) and PES III: Ar (right), highlighted by
shaded rectangles. The RGAs both occur at relatively large R, although
each has a different position and thus (as we discuss in the text) a different
effect.

parameters for which trajectories are most influenced by the RGA. We can assess

whether these trajectories contribute significantly to the scattering cross sections by

looking at the dotted curve in Panels (a) and (b); the dotted curve shows the sum

of all inelastic partial cross sections for ∆j ≤ jmax as a function of J/kj ≈ b. For

He+NaK, trajectories that preferentially sample the RGA do not contribute much

to the inelastic cross sections, so the RGA has little effect. For Ar+NaK, however,
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the RGA is in a region of the potential that influences the results more. The dashed

and solid curves in Panel (b) show the Ar+NaK partial cross sections for 0→ 1 and

0→ 2; the RGA clearly diminishes the propensity for ∆j = 2 transitions.

Panels (a) and (b) of Fig. 4.39 show that the total inelastic partial cross sections

for large J are dominated by contributions from 0→ 1 and 2; the interaction is not

strong enough to change ∆j by much more than two. On the other hand, for small

J there is strong mixing, so that the partial cross sections for each ∆j are roughly

the same size. For both He+NaK and Ar+NaK, trajectories that never reach the

RGA have large impact parameters associated with large J , and we will now discuss

how such trajectories contribute to the exhibited propensities for ∆j = 2.

The solid circles in Panels (c) and (d) of Fig. 4.39 are sums of all partial cross

sections for trajectories that never reach the RGA. For PES II: He, the trajectories

that don’t reach the RGA sample the potential where the coupling is very weak,

and they contribute negligibly to the scattering cross sections. For PES III: Ar,

however, trajectories that don’t reach the RGA contribute much more, and the

solid circles in Panel (d) show a strong propensity for ∆j = 2 transitions. The

squares in Panels (c) and (d) are sums of the rest of the partial cross sections

(trajectories that reach the RGA). For PES II: He, the squares show a propensity

for all ∆j even transitions; although these trajectories reach the RGA, the RGA

has a very small effect on the results. On the other hand, the RGA of PES III: Ar

has a stronger influence, and the squares in Panel (d) do not show a propensity for

∆j = 2. The open circles in Panels (c) and (d) are the total cross sections σ(j → j′),

obtained from summing over all the partial cross sections. For He+NaK, the total

cross sections are determined from trajectories that reach the RGA; the total cross

sections show a strong propensity for ∆j even that persists to high ∆j because the

RGA is inconsequential. For Ar+NaK, the contribution from trajectories that never

reach the RGA leads to a spike in the total cross sections where ∆j = 2, while the

cross sections for ∆j 6= 2 are mostly determined from trajectories that probe the

(consequential) RGA. This is why Ar+NaK doesn’t show a strong propensity for

higher ∆j like He+NaK does.

All cross sections presented in this section were determined by using three-term
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Figure 4.39: Connection between the propensity and features of the potential for
PES II: He (left) and PES III: Ar (right). Panels (a) and (b) show par-
tial cross sections as a function of impact parameter b. The dotted curve
shows the total inelastic partial cross section, which is the sum of all partial
cross sections for j = 0 to any j′ in the range 1–30. The rectangle shows
the range of impact parameters that preferentially sample the RGA. Based
on the sizes of the inelastic partial cross sections, the ArNaK RGA has
a greater influence on Ar+NaK scattering than the HeNaK RGA has on
He+NaK scattering. The dashed and solid curves show partial cross sec-
tions for j = 0 to j′ = 1 and 2; the effect of the ArNaK RGA is to diminish
the propensity, so that there is a range of b for which there is no propensity
for ∆j = 2. Panels (c) and (d) show sums of partial cross sections for dif-
ferent ranges of J . The solid circles correspond to trajectories that don’t
probe the RGA and the squares to trajectories that reach the RGA. The
open circles are total inelastic cross sections (partial cross sections summed
over all J). For He+NaK, trajectories that probe the RGA make up most
of the total cross sections, but the RGA has very little influence. Thus,
there is a strong propensity for all ∆j even transitions. For Ar+NaK, the
total cross sections exhibit a spike at ∆j = 2 because of trajectories that
never reach the RGA. The other cross sections, for ∆j 6= 2, are determined
by trajectories that probe the RGA, and thus there is not really a strong
propensity for higher ∆j.
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Legendre expansions of the potentials, but we have verified that the results of the

eleven-term Legendre expansions look similar. The partial cross sections for tra-

jectories that never reach the RGAs or which have classical turning points in the

RGAs are almost identical for the eleven- and three-term expansions. The other

partial cross sections (for smaller J) show some differences, leading to differences in

the cross sections (Fig. 4.6). Nonetheless, the general trends are the same.

Each RGA in Fig. 4.38 contains a zero of v2(R). This observation is not surpris-

ing. Any point R where v2(R) = 0 will satisfy |v1(R)| ≥ |v2(R)|, so such a point

will likely correspond to an RGA. The question then arises, what causes a zero of

v2(R)? We address this question by considering Fig. 4.40, which shows the poten-

tials given by the three-term Legendre expansions of our PESs as a function of cos θ,

for several fixed values of R near to or in the RGA. The potentials all have negative

values in this region. For the largest R, there are two local minima near the ends of

the molecule (cos θ = ±1). As R decreases, however, the potentials exhibit a single

minimum near the middle, where cos θ = 0. In other words, there is a change in

sign of the curvature of the potential in the RGA. Since P2(cos θ) is the only term in

the three-term expansion that is quadratic in cos θ, this sign change occurs as v2(R)

passes through zero. In the next section we will develop a simple model to explain

why the zero occurs.
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Figure 4.40: Potentials plotted as a function of cos θ for fixed values of the atom-molecule
distance R near or in an RGA; the potentials were determined from the
three-term Legendre expansion of the corresponding PES. Panel (a) cor-
responds to PES II: He, and Panel (b) to PES III: Ar. Since P2(cos θ) is
quadratic in cos θ, the n = 2 component changes sign as the ends of the
molecule become less attractive than the region near the middle of the
molecule.
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4.4.4 Model for zeros of v2(R)

We have developed a very simple model, based on the interaction of a homonuclear

molecule with a distant perturber, that provides a way to estimate where a zero of

v2(R) should arise. We will find that averaging the predictions of this model for He

(or Ar) interacting with Na2 and K2 gives a back-of-the-envelope explanation for

the difference in the locations of the RGAs of HeNaK and ArNaK.

Fig. 4.41 shows the geometry of an atom interacting with a homonuclear diatomic

molecule. The distance from the perturber to the center of mass of the molecule is

R, the bond length of the molecule is 2a, and the distances of the perturber from

each atom of the molecule are r1 and r2.

Figure 4.41: Interaction of a perturbing atom with a homonuclear diatomic molecule.

Our model assumes the three-body PES is the sum of the two-body interactions

between the perturber and each atom of the homonuclear diatomic molecule:

Vtot(R, θ) = V (r1) + V (r2). (4.28)

We can express r1 and r2 in terms of R, a, and cos θ by using the law of cosines:

r21 = R2 + a2 − 2aR cos θ (4.29)

r22 = R2 + a2 + 2aR cos θ. (4.30)

Then, with u = cos θ, we have

Vtot(R, u) = V
(
r1(u)

)
+ V

(
r2(u)

)
. (4.31)
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The premise of the model is that v2(R), the n = 2 Legendre component of

Vtot(R, u), is zero at the R where the curvature of the PES is zero at u = 0. We will

therefore identify v2(R) = 0 with the R at which

∂2Vtot(R, u)

∂u2

∣∣∣∣
u=0

= 0. (4.32)

This approximation is exact if v0(R) and v2(R) are the only terms, and should be

reasonable if the terms for n = 4, 6, etc. are small.

By taking the second derivative of Eq. 4.31 with respect to u and evaluating at

u = 0, one finds that the condition given by Eq. 4.32 is satisfied when

d2V (r)

dr2
=

1

r

dV (r)

dr
, (4.33)

where, as illustrated by Fig. 4.42,

r = r1(0) = r2(0) =
√
R2 + a2. (4.34)

Eq. 4.33 is an algebraic equation to determine a particular r for a known potential

V (r). Once r has been determined, one can solve for R by using Eq. 4.34.

Figure 4.42: Interaction of a perturbing atom with a homonuclear diatomic molecule for
θ = 90◦ (u = 0).

We will show that in some cases the term on the right hand side of Eq. 4.33 is

very small. Then Eq. 4.32 is satisfied when V (r) has an inflection point:

d2V (r)

dr2
≈ 0. (4.35)
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For a typical two-body potential, with an attractive well and a repulsive wall, the

inflection point occurs where the long-range attractive forces start to compete with

short-range forces.

Special Case: Lennard-Jones potential

Analytic results can be determined if V (r1) and V (r2) are Lennard-Jones potentials,

given by

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (4.36)

where ε is the well depth and σ is the position where the potential is zero.

By inserting the first and second derivatives of V (r),

dV (r)

dr
= 4ε

[
−12σ12

r13
+

6σ6

r7

]
(4.37)

d2V (r)

dr2
= 4ε

[
156σ12

r14
− 42σ6

r8

]
, (4.38)

into Eq. 4.33, one finds that Eq. 4.32 is satisfied where

r ≈ 1.23σ. (4.39)

This is very close to the inflection point, for which

r ≈ 1.24σ. (4.40)

Generalization to our PESs

Since our model involves a homonuclear diatomic molecule, we used a simple pro-

cedure to apply the results of the model to our heteronuclear systems.

First, we approximated the two-body potentials between the perturber and either

Na or K, using the eleven-term expansion of our PES, V (R, θ), for the angles θ = 0◦

and 180◦. Panel (a) of Fig. 4.43 illustrates the idea for θ = 0◦; we assume that for

large R, the shape of the PES is dominated by the two-body interaction between K

and the perturber. The atom-atom potential depends on the interatomic distance

r, rather than the distance from the center of mass R, so we expressed the potential
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in terms of r. Then, we repeated this procedure for θ = 180◦ to approximate the

potential between Na and the perturber.

(a)

(b)

Figure 4.43: Procedure for applying our model, appropriate for an atom interacting with
a homonuclear molecule, to our systems, which involve a heteronuclear
molecule. Panel (a) shows the collinear geometry where the perturber is to
the right of K (θ = 0◦). We assume that the PES for this geometry, with the
perturber far away, is approximately the interatomic potential between the
perturber and K. The interatomic potential would depend on the distance
r between the perturber and K. Panel (b) shows the interaction between
the perturber and K2 for u = 0 (θ = 90◦).

Once we had approximated the interatomic potentials, we estimated the first and

second derivatives of each potential numerically, with respect to the interatomic

distance. Then we determined where Eq. 4.33 was satisfied for the interaction

between the perturber and K2 (depicted in Panel (b) of Fig. 4.43) and between the

perturber and Na2. For the perturber + K2 system, we calculated R =
√
r2 − a2 by

using the bond length 2a of the first excited singlet state of K2; this state corresponds

to NaK in the A 1Σ+ electronic state. Correspondingly, for the perturber + Na2

system we calculated R by using the bond length of the first excited singlet state of

Na2. Finally, we averaged our two values of R to estimate the point at which the
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model predicts v2(R) = 0 for He+NaK and Ar+NaK.

The estimated values for the R at which v2(R) = 0 are given in Table 4.5, along

with the R obtained from the calculated Legendre components. The results of the

model agree well with our ab initio calculations, with differences not exceeding 1 a0.

We also note that Eqs. 4.33 and 4.35 gave similar results.

We have shown that for He+NaK and Ar+NaK the zero of v2(R) (and therefore

the RGA of the potential) depends on the inflection points of the PES for θ = 0◦

and θ = 180◦. This part of the potential is difficult to calculate, since it requires an

accurate balance of long-range and short-range forces. Therefore it is not easy to

nail down the details of the propensity, and the strength of the propensity can be

sensitive to seemingly small changes in the potential.

Table 4.5: Estimates and calculated values for the R where v2(R) = 0 for different PESs.

R where v2(R) = 0 in a0
from V ′′(r) = V ′(r)/r from V ′′(r) = 0 from ab initio calculations

PES II: He 21.3 21.7 21.4
PES II: Ar 15.7 15.9 16.7
PES III: Ar 14.5 14.8 15.2
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Chapter 5

Semiclassical model for

m-changing transitions in

rotationally inelastic collisions

5.1 Introduction

We recently published a semiclassical model [3] for the change in the polar angle

θ = cos−1
(
m/(j + 1

2
)
)

in rotationally inelastic collisions in a cell-type experiment.

This model addressed discussion in the literature [11, 12] concerning whether θ is

approximately conserved in such collisions. We reported that many of our calcula-

tions for He or Ar with NaK showed that θ was nearly conserved, and we presented

a simple analysis for a special case that yielded a Lorentzian-like distribution, cen-

tered at θ′ = θ, for the final θ′. The polar angle distribution from our semiclassical

model also led to a remarkably accurate formula for the semiclassical cross sections

σsc(jm→ j′m′), in which m and m′ are treated as continuous variables.

In this chapter we will summarize the work presented in [3] and also present ad-

ditional calculations and derivations that identify the precise mathematical approx-

imations that lead to the semiclassical formulas. We will present additional results

for analytic approximations to our expression for the polar angle distribution; in
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one case, we will derive the Lorentzian-like distribution from [3] more rigorously.

5.2 Physical model for polar angle distribution

In order to discuss our semiclassical model, we must first introduce the notion of a

“tipping angle distribution.”

Derouard [12] has discussed a semiclassical interpretation of collisions that change

j to j′. The basis of this interpretation is that transitions from a rotational state j

to a state j′ can be represented by vector coupling diagrams as shown in Fig. 5.1 [2].

The initial and final rotational angular momenta j and j′ are coupled by the angular

momentum transferred in the collision, j− j′. The lengths of j and j′ are the same

in all three diagrams shown in Fig. 5.1, but the angular momentum transferred in

the collision depends on the final orientation of j′. This angular momentum, λ, is

j'
j'

j'

j jj

λmin = |j - j'|

λ λ

λ

λmax = j + j'

α

Figure 5.1: Vector coupling diagram [12] illustrating transfer of angular momentum λ
in transitions from j to j′. The lengths of j and j′ are the same in all three
diagrams. The angular momentum transferred is related to the “tipping
angle” α between j and j′. Reproduced from [2] with the permission of AIP
publishing.

related to the angle α between j and j′, which we will refer to as the “tipping angle,”

by the law of cosines:

λ(λ+ 1) = j(j + 1) + j′(j′ + 1)− 2
√
j(j + 1)j′(j′ + 1) cosα. (5.1)
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For large j and j′, one can consider α a continuous variable. The semiclassical

counterpart of the Grawert coefficients (see Eq. 2.96) is the distribution of tipping

angles α [12].

The tipping angle distribution B(j, j′; cosα) can be expressed in terms of the

dK(j, j′), where the dK(j, j′) are related to the transfer of moments of the distribu-

tion of m levels. By starting with Eq. 2.138,

Bλ(j, j
′) =

2j<∑
K=0

(−1)j+j
′+λ+K(2K + 1)

{
λ j j′

K j′ j

}
dK(j, j′), (5.2)

and replacing the 6j symbol by using the approximation [63]

PK(cosα) ≈ lim
j,j′�1

(−1)j+j
′+λ+K

√
[j][j′]

{
λ j j′

K j′ j

}
, (5.3)

where [j] = 2j + 1, one finds that

B(j, j′; cosα) =
1√

[j][j′]

2j<∑
K=0

(2K + 1)dK(j, j′)PK(cosα). (5.4)

Eq. 5.4 shows that for j, j′ � 1 the tipping angle distribution can be expanded

in Legendre polynomials in cosα, with the details of the system contained in the

expansion coefficients (2K + 1)dK(j, j′). We will use this result in our semiclassical

model. By integrating both sides of Eq. 5.4 over sinα dα and invoking the relation

between d0(j, j
′) and σ(j → j′) given in Eq. 2.139, one can show that

σ(j → j′) =
π(j′ + 1

2
)

k2j

∫ π

0

B(j, j′; cosα) sinα dα, (5.5)

which confirms Derouard’s interpretation [12] that the semiclassical Grawert coeffi-

cients give the distribution of tipping angles.

In Fig. 5.2, we present our vector model interpretation of jm→ j′m′ transitions

[3]. In this model, the initial rotational angular momentum vector j precesses about

the z-axis with a cone angle of θ = cos−1
(
m/(j + 1

2
)
)
. A collision tips j by an angle

α, giving rise to the final rotational angular momentum j′, which precesses about

the z-axis with a cone angle of θ′. One can determine the relationship between the
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j

j'

φ − φ'

θθ'

z

x

α

y

Figure 5.2: Definitions of the angles θ, θ′, and α related to the initial and final angular
momenta j and j′. The azimuthal angles of j and j′ are φ and φ′, respectively.
Reprinted from [3] with permission from Elsevier.

tipping angle α and the other angular variables by noting that cosα = ĵ · ĵ′, or

cosα = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (5.6)

We are interested in the probability Pjj′(θ, θ′) sin θ′ dθ′ that an average collision

changes θ to a final value in the range between θ′ and θ′ + dθ′. The premise of

our model is that Pjj′(θ, θ′) is the average value of B(j, j′; cosα) as j and j′ sweep

around their circular paths in the diagram. Since values of φ− φ′ between 0 and π

cover the whole range of possible values of α, the expression for Pjj′(θ, θ′) is

Pjj′(θ, θ
′) =

1

π

∫ π

0

B(j, j′, cosα) d(φ− φ′). (5.7)

Following Vilenkin [87], one can evaluate the integral in Eq. 5.7 by changing the

integration variable from (φ− φ′) to α. Using Eq 5.6, we obtain

d(φ− φ′) =
sinα dα√

(cosα− cos(θ + θ′))(cos(θ − θ′)− cosα)
. (5.8)

By substituting Eq. 5.8 into Eq. 5.7, one obtains an integral expression for Pjj′(θ, θ
′)

in terms of α,

Pjj′(θ, θ
′) =

1

π

∫ αmax

αmin

B(j, j′; cosα) sinα dα√
(cosα− cos(θ + θ′))(cos(θ − θ′)− cosα)

, (5.9)
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where the condition that 0 ≤ α ≤ π yields

αmin = |θ − θ′|, αmax =

{
θ + θ′ if θ + θ′ ≤ π

2π − (θ + θ′) if θ + θ > π
. (5.10)

The range of integration includes the values of α for which the radicand in the

denominator of Eq. 5.9 is nonnegative. A further change of variable to x = cosα

leads to

Pjj′(θ, θ′) =
1

π

∫ cos(θ−θ′)

cos(θ′+θ)

B(j, j′;x) dx√
(x− cos(θ + θ′))(cos(θ − θ′)− x)

(5.11)

One can evaluate Eq. 5.11 by using a special case of a result due to Vilenkin [87],

1

π

∫ cos(θ′−θ)

cos(θ+θ′)

PK(x)dx√
(x− cos(θ′ + θ))(cos(θ′ − θ)− x)

= PK(cos θ)PK(cos θ′), (5.12)

and the Legendre expansion of B(j, j′;x) in x given by Eq. 5.4, to obtain a closed

form expression for Pjj′(θ, θ′),

Pjj′(θ, θ′) =
1√

[j][j′]

2j<∑
K=0

(2K + 1)dK(j, j′)PK(cos θ)PK(cos θ′). (5.13)

This expression has the correct limiting behavior for the limiting case θ = 0. Then

the tipping angle α = θ′; all the PK(cos(0)) are equal to one, and Eq. 5.13 reduces

to Eq. 5.4, so that

Pjj′(0, θ′) = B(j, j′; cos θ′) = B(j, j′; cosα). (5.14)

We can also show that the total cross section for changing j to j′ is a constant times

the integrated probability for changing θ to any θ′, independent of θ. Integrating

Eq. 5.13 over θ′ and using the relationship between σ(j → j′) and d0(j, j
′), Eq. 2.139,

leads to

σ(j → j′) =
π

k2j
(j′ + 1

2
)

∫ π

0

Pjj′(θ, θ′) sin θ′ dθ′. (5.15)

Equation 5.15 is consistent with the quantum result for collisions in a cell-type

experiment: when one averages over the direction of the incident particle, the sum
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over m′ of the cross sections for the jm → j′m′ transitions is independent of the

initial m.

If one treats m and m′ as continuous variables, then one can transform the

angular distribution Pjj′(θ, θ′) sin θ′ dθ′ into a semiclassical distribution of m′ levels.

The final polar angle θ′ is related to m′ by

cos θ′ =
m′√

j′(j′ + 1)
≈ m′

j′ + 1
2

, (5.16)

and by taking differentials on both sides of Eq. 5.16, we have

d(cos θ′) = − sin θ′ dθ′ =
dm′

j′ + 1
2

. (5.17)

The relationships given by Eqs. 5.16 and 5.17 lead to a semiclassical cross section

for the change in the continuous variable m,

σsc(jm→ j′m′) =

π

k2j
√

[j][j′]

2j<∑
K=0

(2K + 1)dK(j, j′)PK

(
m

j + 1
2

)
PK

(
m′

j′ + 1
2

)
. (5.18)

We will refer to Eqs. 5.13 and 5.18 as the “exact semiclassical” formulas.

5.3 Alternate derivation of Pjj′(θ, θ′)

Invoking the vector model provides an appealing physical interpretation of jm→ j′m′

transitions, but the mathematical approximations behind the results are not obvi-

ous. This section presents an alternate derivation of Eqs. 5.13 and 5.18 that clarifies

the point. One can start with an alternate expression for jm→ j′m′ cross sections,

σ(jm→ j′m′) =
π

k2j
(−1)m+m′+j+j′

∑
K

(−1)2K(2K + 1)dK(j, j′)

×

(
j K j

m 0 −m

)(
j′ K j′

m′ 0 −m′

)
. (5.19)
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This formula is exact and was presented in [11]; it can be derived by inverting

Eq. 2.128 in Section 2.5, leading to

Pjj′ = T jQjj′(T j′)†. (5.20)

Using Eq. 2.129 to write this equation in terms of matrix elements gives

Pjj
′

mm′ =
∑
K

T jmKdK(j, j′)T j
′

Km′ . (5.21)

By using Eqs. 2.108 and 2.121, one obtains Eq. 5.19.

We now invoke Edmonds’ [63] relation between 3j coefficients and Legendre

polynomials, which can be written

(−1)K+m+j

(
j K j

m 0 −m

)
≈
√

1

2j + 1
PK

(
m

j + 1
2

)
, (5.22)

Using this expression allows us to replace the discrete quantum numbers m in the 3j

coefficients by the continuous variable used in the semiclassical model and thereby

obtain Eqs. 5.18 and 5.13.

This analysis clearly demonstrates that Eq. 5.22 provides the mathematical jus-

tification for the semiclassical model. As Malenda et al. [2] discussed, Eq. 5.22 is

most accurate for K � j and is exact for K = 0 and 1. Figure 2.4 showed that it

works fairly well even for low j with K ≈ j.

5.3.1 Selected results for He and Ar collisions with NaK

In Figs. 5.3 and 5.4, we present some typical angular distributions Pjj′(θ, θ′) sin θ′ dθ′

for He+NaK and Ar+NaK, respectively; we determined the dK(j, j′) quantum me-

chanically, but classical trajectories could also be used [88]. Each panel of the figures

shows a different transition j → j′. Within each panel, angular distributions for sev-

eral fixed initial θ are shown; each distribution has its own color. For angles not too

close to θ = 0◦ or 180◦, the θ′ distributions have a peak when θ′ = θ and, for a given

transition, tend to have a very similar shape and height. Based on the behavior

of the dK(j, j′), we were able to derive an analytic approximation to the angular
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distribution that accounts for these features, which we will discuss in Section 5.4.1.

The angular distribution in Eq. 5.13 satisfies

Pjj′(θ, θ′) = Pjj′(π − θ, π − θ′), (5.23)

which accounts for the obvious symmetry of the distributions for θ = 45◦ and

θ = 135◦ in Figs. 5.3 and 5.4. For the same reason, the curves for θ = 90◦ are

symmetric about θ′ = 90◦. When θ = 0, Eq. 5.14 shows that the angular distribution

is the tipping angle distribution. For He+NaK, the even (right) and odd (left) ∆j

transitions shown in Fig. 5.3 have probability distributions with a strikingly different

character. For Ar+NaK, the difference between the probability distributions for the

even and odd ∆j transitions shown in Fig. 5.4 is not as striking as it was for

He+NaK. We also note that the distributions broaden as the average j decreases

for both systems.

Figures 5.5 and 5.6 show a comparison of quantum mechanical distributions of

m′ levels (points) with the corresponding exact semiclassical distributions (lines)

for He+NaK and Ar+NaK, respectively. In these figures, the average j is about

30. In Figs. 5.7 and 5.8, we show another comparison for an average j of about 5.

The agreement is quite good, even for low initial j’s, which reflects the accuracy

of Eq. 5.22. In Fig. 5.7, He+NaK showed large secondary peaks for the ∆j odd

transitions (left side); the nature of these peaks is not yet known. They are not

present for the same transitions for Ar+NaK, as Fig. 5.8 shows.
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Figure 5.3: Angular distributions for PES II: He. Each panel corresponds to a different
transition, and within each panel, distributions of different color correspond
to different initial θ. The odd ∆j distributions (left) have a different char-
acter than the distributions for even ∆j (right). Distributions with θ not
too close to 0o or 180o have a peak where θ′ = θ, and they tend to have the
same shape and height for a given transition.
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Figure 5.7: Quantum mechanical distributions of m′ levels for PES II: He are shown as
points and semiclassical distributions as lines. The average j is around 5,
and one can see that for each m the semiclassical approximation agrees quite
well, even for these low j. The primary peaks of the distributions are for
values of m′ near where θ′ = θ, and there are large secondary peaks for the
∆j odd transitions shown on the left hand side of the figure.
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Figure 5.8: Same as Fig. 5.7 but for PES II: Ar. Unlike for He+NaK, there are no large
secondary peaks for the ∆j odd transitions shown on the left hand side of
the figure.

5.4 Analytic results for special cases and compar-

ison with calculations

We have identified two special cases that admit analytic approximations to the

distribution of final polar angles θ′ (Eq. 5.13). These cases correspond to particular

functional forms of dK(j, j′). If dK(j, j′) has an exponential dependence on K, then

one can derive a near-Lorentzian angular distribution that is peaked at θ′ = θ when

θ is not too close to 0◦ or 180◦. Several transitions for He+NaK and Ar+NaK can be

described by this model. The other special case corresponds to a strong attractive

interaction between the molecule and its perturber. This case leads to a near-

random distribution of the direction of the final j′, or equivalently to a distribution
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of final θ′ dominated by the geometrical factor sin θ′. We present a model system

that illustrates this behavior.

5.4.1 Lorentzian polar angle distribution

This section considers the special case that the dK(j, j′) follow an exponential form:

dK(j, j′) = Ae−βK . (5.24)

If we substitute Eq. 5.24 into Eq. 5.13 and extend the upper limit of the sum over

K to infinity, then we obtain a closed form expression. Changing the upper limit

should be justified as long as the exponential decay constant β is large enough to

make exp(−βK) very small for K > 2j<.

By following the steps in Appendix A, one finds

Pjj′(θ, θ′) sin θ′ ≈ A sin θ′√
[j][j′]

∞∑
K=0

(2K + 1)e−βKPK(cos θ)PK(cos θ′)

=
A√
[j][j′]

eβ/2 sinh β sin θ′

4
(
sinh2 (β

2
) + sin2 ( θ−θ

′

2
)
)3/2

× 2F1

(
3
2
, 1
2
; 1;

− sin θ sin θ′

sinh2 (β
2
) + sin2 ( θ−θ

′

2
)

)
, (5.25)

where 2F1 (· · · ) is a Gauss hypergeometric function and [n] = 2n+ 1. We will show

below that for typical values of β, the shape of this function depends primarily on

θ/β and θ′/β. Figure 5.9 illustrates this behavior. Except for θ/β and θ′/β less

than about one, the distribution is peaked near θ′ = θ.

Now we consider the limiting behavior of Eq. 5.25 for angles θ and θ′ not too

close to 0◦ or 180◦. For our systems the argument of the hypergeometric function in

Eq. 5.25 is then typically a real, negative number with a large magnitude. In that

case the asymptotic behavior is

2F1(
3
2
, 1
2
; 1;−|x|)

|x|�1
≈ 2

π

(
1

1 + |x|

)1/2

≈ 2

π
|x|−1/2, (5.26)

where the first form of the asymptotic limit follows from the linear transformation

formulas in Abramowitz and Stegun [54] (see §15.3.8); we have confirmed the accu-
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Figure 5.9: False color plot of Eq. 5.25 (without the factor A/
√

[j][j′]) for β = 0.05.
For θ = 0, the function is proportional to the analytic approximation to the
tipping angle distribution, with a peak value at θ′/β =

√
2/2 (which we will

discuss in a later section). As θ increases, the distribution becomes narrowly
peaked at θ′ = θ.

racy of Eq. 5.26 by numerical calculation. By using Eq. 5.26 and assuming β and

θ′ − θ are small, we reduced Eq. 5.25 to the following near-Lorentzian form:

Pjj′(θ, θ′) sin θ′ ≈
(

sin θ′

sin θ

)1/2

eβ/2
2A√
[j][j′]

{
1

π

β

(θ′ − θ)2 + β2

}
(5.27)

≈
(

sin θ′

sin θ

)1/2
eβ/2

β

2A√
[j][j′]

 1

π

1(
θ′

β
− θ

β

)2
+ 1

 (5.28)

The factor in curly brackets in Eq. 5.27 is a Lorentzian centered at θ′ = θ with a

full width half maximum of 2β. This result provides justification a posteriori for

assuming (θ′ − θ)� 1. In addition, β � 1 is well satisfied for the systems we have

investigated.

For He+NaK, the dK(j, j′) for many of the even ∆j transitions can be fit to

a single exponential. A representative example is shown in Fig. 5.10, where the
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dK(j, j′) are plotted on a semi-log scale. The plus signs in Fig. 5.10 show the

dK(j, j′) for He+NaK for j = 29 to j′ = 33, and the solid line is an exponential fit to

the dK(29, 33). The exponential fits the points fairly well. In other cases, He+NaK

transitions with odd ∆j were often well approximated by a sum of two exponentials,

and for Ar+NaK, the dK(j, j′) were best fit by a sum of two exponentials for all values

of ∆j. In this situation, Eqs. 5.25 and 5.27 are easily generalized to a sum of terms.

The circles in Fig. 5.10 show the dK(j, j′) for Ar+NaK for j = 28 to j′ = 33. For

small K, the dK(j, j′) rapidly decay and approximately follow a steep straight line in

the plot, or a “fast” exponential. For large K, the dK(j, j′) follow a different straight

line in the plot with a more gradual slope, or a “slow” exponential. The dotted line in

Fig. 5.10 shows the sum of a fast and a slow exponential. Physically, the exponential

decay of the dK(j, j′) means that one is less likely to retain higher moments of the

m-distribution. As the average j decreases, we find that the dK(j, j′) decay more

rapidly; higher moments are less likely to be preserved for transitions with a smaller

j and j′. (We note that the dK(j, j′) do not always decay exponentially; Fig. 5.11

shows an unusual oscillatory structure.)

Figure 5.12 compares the Lorentzian approximations (shown as dashed curves)

with the exact semiclassical θ′ distributions, Eq. 5.13, (shown as solid curves) for

the fits to the dK(j, j′) shown in Fig. 5.10. Results are shown for θ = 90◦, but

they are similar for other angles not too close to θ = 0 or 180◦. The panel on

the left shows the single Lorentzian corresponding to the one-exponential fit to

dK(29, 33) for He+NaK. The Lorentzian agrees reasonably well with the exact semi-

classical distribution, and the agreement improves if one includes the extra factors√
sin θ′/ sin θ exp(β/2) in Eq. 5.27. The panel on the right shows the sum of the

two Lorentzians corresponding to the two-exponential fit to dK(28, 33) for Ar+NaK,

which also agrees well with the exact semiclassical distribution. As with He+NaK,

the agreement improves upon inclusion of the extra factors in Eq. 5.27. Also shown

in the panel on the right are the separate Lorentzian terms as dotted lines. The

narrow Lorentzian is most important at small values of θ′ − θ and arises from the

slow exponential that dominates the large-K behavior of the dK(28, 33) shown in

Fig. 5.10. Conversely, the much broader Lorentzian that dominates the angular
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Figure 5.10: Values of dK(j, j′) for fixed transitions j → j′ as a function of K. For
PES II: He, the dK(j, j′) for the transition 29→ 33 are shown as blue plus
signs. The corresponding one-exponential fit is shown as a solid red line.
For PES II: Ar, the dK(j, j′) for 28→ 33 are shown as black circles, along
with the two-exponential fit shown as a dotted red line. The dK(j, j′) for
most transitions were best fit by a sum of two exponentials, except for even
transitions for He+NaK, which were often best fit by a single exponential.
Reprinted from [3] with permission from Elsevier.

distribution for large θ′ − θ comes from the rapid decay of dK(28, 33) at small K.

The analytic approximations may provide valuable qualitative understanding of

the shape of the polar angle distribution, but a one- or two-exponential fit will

not always accurately represent the behavior of the dK(j, j′), as the example in

Fig. 5.11 shows. For quantitative results, the exact semiclassical formula Eq. 5.13

is more accurate.
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Figure 5.11: Values of dK(j, j′) for PES II: He for the transition j = 5 to j′ = 6 shown
on a semi-log scale. For this transition, the dK(j, j′) do not decrease ex-
ponentially in K. Instead, there is a propensity to retain even moments
of the m distribution after many collisions. The even terms are typically
about twice as large as the odd terms.
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Figure 5.12: Comparison of exact semiclassical distributions, Eq. 5.13, (solid curves)
with the Lorentzian approximations to them (dashed curves) for θ = 90◦.
Each Lorentzian was determined from Eq. 5.27 without the factor√

sin θ′/ sin θ exp(β/2). The figure on the left is for PES II: He, and the
Lorentzian approximation was determined by using the exponential fit to
the dK(29, 33) shown in Fig. 5.10. The figure on the right is for PES II: Ar,
and the dashed curve is the sum of the two Lorentzians (each shown as a
dotted curve) corresponding to the two-exponential fit to the dK(28, 33)
shown in Fig. 5.10. In both cases, the Lorentzian approximations agree
fairly well with the exact semiclassical distributions, and using the full ap-
proximation given by Eq. 5.27 leads to better agreement. Reprinted from
[3] with permission from Elsevier.
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5.4.2 Random orientation of final j′

If dK = d0δK0, another special case arises, which can be regarded as the β →∞
limit of dK(j, j′) = Ae−βK . In this special case, the only moment of the m′ distri-

bution retained after many collisions is the population, so all m′ levels are equally

populated, and

σ(jm→ j′m′) =
σ(j → j′)

(2j′ + 1)
. (5.29)

One can confirm Eq. 5.29 by inserting dK = d0δK0 into Eq. 5.19 and using the

identity [89](
j 0 j

m 0 −m

)
= (−1)2j

(
j j 0

m −m 0

)
= (−1)2j

(−1)j−m√
2j + 1

, (5.30)

as well as the relationship between σ(j → j′) and d0(j, j
′) given by Eq. 2.139. The

semiclassical and quantum mechanical m′ distributions are identical in this case,

since Eq. 5.22 is exact for K = 0:

σ(jm→ j′m′) = σsc(jm→ j′m′). (5.31)

Therefore the angular distribution is

Pjj′(θ, θ′) sin θ′ =
d0(j, j

′) sin θ′√
(2j + 1)(2j′ + 1)

=
k2j
π

σ(j → j′)

2j′ + 1
sin θ′, (5.32)

which one can confirm from Eq. 5.13 by noting that P0(· · · ) = 1. In this case, the

final j′ is equally likely to be oriented in any direction, and the angular distribution

is dominated by the geometrical factor sin θ′.

We were able to realize the special case dK = d0δK0 by choosing a model potential

with very deep wells (on the order of 0.16 Eh, or about 4.4 eV). To determine the

model potential, we started with an analytic fit to a PES for LiCN provided by

Essers et al. [90]. We started with this fit to ensure that the angular dependence and

curvature of the wells in our model potential would be reasonable. We emphasize,

however, that our model PES is not intended to be an accurate representation of

LiCN. The analytic fit of Essers et al. approaches its asymptotic (large R) value very
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slowly and would lead to a lengthy scattering calculation. To reduce the amount of

computer time involved, we replaced the fit provided by Essers et al. with a Morse

potential for each angle, with the constraint that each Morse potential have the

same asymptotic (large R) value. Figure 5.13 shows the fit of Essers et al. (solid

line) and the corresponding Morse potential (dashed line) for a fixed Jacobi angle

θ = 0 (see Fig. 2.2).
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Figure 5.13: A PES with a deep well [90] and the corresponding Morse potential for the
collinear geometry C-N-Li. Using Morse potentials for each angle leads to
a faster scattering calculation.

Panel (a) of Fig. 5.14 shows the first five Legendre components of our model PES.

They are quite different from those of PES II: He, which are shown in Panel (b) on

a vertical scale that is ten times smaller than in Panel (a). The angular dependence,

determined by components with n > 0, is somewhat different; the n = 2 component

has a well for the model PES but not for He+NaK, and the n = 1 components have

a different sign for some values of R. The most notable difference, however, is in

the n = 0 component. The n = 0 component of the model PES has a deep well

even when R is relatively small, while the n = 0 component of the He+NaK PES is

repulsive, with a very shallow well at larger R.

We performed scattering calculations using our deep well model PES for a to-

tal energy of E = 0.002 Eh. The rotational energy levels were determined from

Ej = Bj(j + 1) with the rotational constant B = 8.655 × 10−6 Eh appropriate for
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Figure 5.14: The first five Legendre components of our deep well model PES, shown
in Panel (a), and of PES II: He, shown in Panel (b). The vertical scale
in Panel (b) is a factor of ten smaller than the vertical scale of Panel (a).
The angular dependence is different between the two PESs, since the n = 2
component has a well in Panel (a) but not Panel (b), and the n = 1 com-
ponent is positive in Panel (a) and mostly negative in Panel (b). The most
significant difference between the two PESs is that the n = 0 component of
the model PES is deeply attractive even at close range, whereas the n = 0
component of PES II: He is mostly repulsive.

187



CN. Our scattering calculations were performed such that the dK(j, j′) were con-

verged with respect to the different parameters involved in the calculation.

Panel (a) of Fig. 5.15 shows dK(j, j′)/d0(j, j
′) for j = 10 and j′ = 12. The

value for K = 1 is about an order of magnitude smaller than for K = 0 and

the dK(j, j′) for K ≥ 5 are negligible. These values approach the special case

where dK(j, j′) = d0(j, j
′)δK0, as do the dK(j, j′) for other transitions as well. The

quantum mechanical and semiclassical m′ distributions are very broad and nearly

constant; an example is shown in Panel (b) of Fig. 5.15. Figure 5.16 shows that

the corresponding angular distributions for different initial θ are dominated by the

factor sin θ′.

The results are just what one might expect. The attractive well is very deep,

so in any collision the atom and the molecule get very close together and interact

strongly, randomizing the final m′ levels of the molecule.
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Figure 5.15: Results of the scattering calculation with the deep well model PES for the
transition j = 10 to j′ = 12. Panel (a) shows that dK(j, j′)/d0(j, j

′) is
approaching the special case where dK(j, j′) = d0(j, j

′)δK0, with only a few
small but non-negligible higher moments. Panel (b) shows the correspond-
ing quantum mechanical (points) and semiclassical (lines) m′ distributions
for m = 0, 5 and 10. Both the quantum mechanical and semiclassical
m′ distributions are fairly constant with respect to m and m′, with the
distribution for m = 10 being the least constant for large m′.
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5.4.3 Tipping angle distribution (finite sum)

We have shown that the distribution of final polar angles θ′ when θ = 0 is the tipping

angle distribution. This result is exact semiclassically, but requires evaluation of

the finite sum in Eqs. 5.4 or 5.13. By assuming dK ≈ Ae−βK and using the results

obtained by extending the upper limit of the sum to infinity, we obtained a simple

closed form expression for the tipping angle distribution. In this section, we present

additional analysis that allows us to approximate the finite sum as well.

The closed form approximation to the polar angle distribution, Eq. 5.25, can be

evaluated for θ = 0 by noting that 2F1(
3
2
, 1
2
; 1; 0) = 1, which follows from §15.1.1 in

A&S [54]. Then the analytic approximation to the tipping angle distribution is

Pjj′(0, θ′) sin θ′ ≈ A√
[j][j′]

eβ/2 sinh β sin θ′

4
(
sinh2(β/2) + sin2(θ′/2)

)3/2 . (5.33)

Alternatively, a direct evaluation of Eq. 5.33 is in Appendix B. For small θ′ and β,

Eq. 5.33 reduces to

Pjj′(0, θ′) sin θ′ ≈ A√
[j][j′]

eβ/2

β

{
2(θ′/β)[

1 + (θ′/β)2
]3/2

}
. (5.34)

The expression in curly brackets depends only on θ′/β and determines the shape

of the distribution. The other factors depend on the transition and determine the

height. The maximum of Eq. 5.34 occurs at θ′/β =
√

2/2 ≈ 0.707; thus β is a

characteristic tipping angle.

We were able to determine an analytic approximation to the tipping angle dis-

tribution for the case where the dK(j, j′) behave exponentially but with the upper

limit of the sum K = 2j<, as in Eq. 5.4, rather than infinity, as was the case for

Eq. 5.34. We did this in the following way. First, we approximated the portion of

the sum for which K0 ≤ K ≤ ∞, where K0 is an arbitrary constant. The steps are
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given in Appendix C, and the resulting expression is

A sin θ′√
[j][j′]

∞∑
K=K0

(2K + 1)e−βKPK(cos θ′) ≈

2A√
[j][j′]

(
2

π

sin θ′

β

)1/2
eβ/2

β
Re

exp
[
i
(
π/4− 3

2
tan−1(θ′/β)

)]
Γ
(
3
2
, K0 (β + iθ′)

)
(1 + (θ′/β)2)3/4

,

(5.35)

where Γ(a, z) denotes the incomplete gamma function. Then, we subtracted Eq. 5.35

from the approximation to the infinite sum, Eq. 5.34, for K0 = 2j< + 1.

Figure 5.17 shows the analytic approximation given by Eq. 5.34 for He+NaK for

j = 29 to j′ = 33 as a solid black curve. Figure 5.17 also shows the correspond-

ing exact semiclassical tipping angle distribution determined by Eq. 5.4 as a blue

dashed line (and it passes between the quantum mechanical points shown as solid

circles). While the exact semiclassical distribution oscillates in θ′/β, the analytic

approximation does not. The analytic approximation to the finite sum for He+NaK

for j = 29 to j′ = 33 is the curve labelled “Analytic approx., finite sum” in Fig. 5.17.

The analytic approximation to the infinite sum passes between the oscillations in

the analytic approximation to the finite sum; the sum to infinity averages out the

oscillations. Moreover, the oscillations in both the analytic approximation to the

finite sum and the exact semiclassical distribution occur at similar θ′/β. The re-

maining discrepancy between the analytic approximation to the finite sum and the

exact semiclassical distribution is due primarily to the fact that dK(29, 33) is only

approximately exponential, since Eq. 5.35 is very accurate for K0 = 59 (as Fig. C.1

in Appendix C demonstrates for this particular value of β).

Eq. 5.34, the infinite sum approximation to the tipping angle distribution, was

derived from Eq. 5.25. Eq. 5.25 is the infinite sum approximation to Eq. 5.13, the

exact semiclassical polar angle distribution. Even though Eq. 5.34 washes out the

oscillations in the exact semiclassical tipping angle distribution, integrals are done

over the tipping angle distribution to determine Eq. 5.13, and so the oscillations

don’t matter much for most angles. This is evidenced by the agreement between the

approximate and exact semiclassical polar angle distributions shown in Section 5.4.1,
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approximations to it as lines. The exact semiclassical distribution was de-
termined from Eq. 5.4 with α = θ′. The solid curve labelled “Analytic
approx., infinite sum” was determined from Eq. 5.34. There are no oscil-
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finite sum” was determined by subtracting Eq. 5.35 from Eq. 5.34. The
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with the oscillations in the exact semiclassical distribution; the remaining
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nential. One can see from the solid curve that summing to K =∞ averages
out the oscillations in the distribution.

in conjunction with the good agreement between the quantum mechanical and exact

semiclassical m′ distributions.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have performed quantum mechanical scattering calculations of He and Ar colli-

sions with NaK (A 1Σ+). The work has mainly focused on the v = 0 vibrational state

of the NaK molecule, although we have estimated cross sections for vibrationally

elastic transitions for higher vibrational states. We determined HeNaK and ArNaK

PESs by using ab initio methods as implemented by GAMESS. Then we performed

coupled-channel scattering calculations for jm → j′m′ cross sections and for the

fractions of moments retained after collisions.

We compared our calculated j → j′ cross sections with experimental data [6].

The absolute magnitudes of the rate constants agree well, and we reproduce the

experimentally observed propensity for ∆j even transitions. We have correlated the

strength of the propensity with the position of a very asymmetric region of the PES

that tends to diminish the propensity. We developed a simple model that illustrates

that such an asymmetric region may arise near the point where short range forces

start to compete with long range forces in the shallow wells. An accurate calculation

of the potential in this region is critical because the propensity can be very sensitive

to it.

We have also determined fractions of orientation retained by an ensemble of
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molecules that experience collisions in a cell environment for He+NaK and Ar+NaK

for v = 0, and we approximated them for v = 16. We compared our results with

experimental data for v = 16 [4, 5]. For He+NaK, many of our calculated values

for v = 0 and 16 are within experimental error, while for Ar+NaK we predict

that more orientation is retained than the data suggest. In agreement with the

experimental data, which is for high average j, we predict that collisions with Ar

destroy orientation more effectively than collisions with He. We also predict that

He and Ar destroy less orientation as the average j (of j and j′) increases, and that

for many values of the average j, collisions induced by He with |∆j| even are more

likely to preserve orientation than with |∆j| odd. Future experiments involving

transitions with average j in the range 10–20 would test these predictions.

We also developed a semiclassical model for m-changing collisions. The model

leads to closed form expressions for semiclassical jm → j′m′ cross sections (where

m and m′ are continuous variables) and for the corresponding distributions of final

polar angles θ′ = m′/
√
j′(j′ + 1). The semiclassical cross sections agree well with

our calculated quantum mechanical cross sections for He+NaK and Ar+NaK, even

for low j. The polar angle distributions for He+NaK and Ar+NaK are typically

peaked where θ′ = θ when θ is not too close to 0 or 180◦, in agreement with

discussions in the literature that the polar angle θ tends to be conserved for collisions

between atoms and small molecules in a cell environment.

We have identified two special cases for which the final polar angle distribution

admits analytic approximations. In the first, the distribution is near-Lorentzian and

peaked where θ′ = θ for most angles; the He+NaK and Ar+NaK results exhibited

this behavior. In the second case, the m′ levels are completely randomized by

collisions, and we used a model potential with very deep wells to realize this special

case.
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6.2 Future Work

A collaboration with Dr. Robert Forrey at Penn State Berks is underway to calculate

vibrationally inelastic rate constants using PES II: He and PES II: Ar. Once the

calculations are completed, we will compare the results with available experimental

data [6].

We would like to identify a system which shows a propensity for ∆j even at

low ∆j and an inverse propensity (for ∆j odd) at higher ∆j. For this reason, we

propose future calculations and experiments for Ne + NaK and Kr + NaK. Another

idea would be to apply an external electric field to He+NaK and Ar+NaK to alter

the PES and change the exhibited propensity. Comparison between experiment and

theory for different electric field strengths would be a sensitive test of the accuracy

of the PES.

In addition, we would like to correlate features of the jm→ j′m′ cross sections

with regions of the PES to understand what governs the transfer of moments. Work

should be done to determine if there is a fundamental significance to our empirical

observation that for He+NaK and Ar+NaK the dK(j, j′) are often well approxi-

mated by one- or two-exponentials in K. When we assumed dK(j, j′) ≈ Ae−βK , our

analytical approximations to the polar angle distributions often involved (θ′− θ)/β,

indicating this might be a characteristic quantity.

By using a model potential with a very deep well, we showed that a strong inter-

action can randomize the m′ levels of the molecule. Experimental data is available

for the strongly interacting system K + NaK (A 1Σ+) [4–6], and the data show that

collisions with K destroy orientation much more effectively than with He or Ar.

Future work would involve performing calculations for this system to determine the

extent to which the other moments are destroyed; we hypothesize that the m′ levels

of NaK will be completely randomized by the interaction with K.

For He+NaK and for small j, some of the polar angle distributions show a peak

where θ′ = θ and an unexplained secondary peak near θ′ = π−θ. Future experiments

might verify these predictions and a model could be developed to understand this

behavior.
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Should additional computational resources become available, we have identified

the most important uncertainties in the calculations to reduce. The cross sections are

most sensitive to the PES, and one should focus resources on calculating new surfaces

with larger basis sets. Of secondary importance would be determining higher energy

cross sections and including more channels in the scattering calculation.
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Appendix A

Here are the details of the derivation of Eq. 5.25. We would like to determine an

analytic approximation to Eq. 5.13 given the following two assumptions. We assume

that dK ≈ A exp(−βK), and that the sum in Eq. 5.13 can be extended from K = 2j<

to infinity without affecting the results very much. Thus we wish to evaluate

Pjj′(θ, θ′) sin θ′ ≈ A√
[j][j′]

Dβ(θ, θ′) sin θ′, (A.1)

where [n] = 2n+ 1 and

Dβ(θ, θ′) =
∞∑
K=0

(2K + 1)e−βKPK(cos θ)PK(cos θ′). (A.2)

To evaluate Eq. A.1, one must determine Dβ(θ, θ′). (We note that a simpler equation

is evaluated by a similar method in Appendix B.)

Equation A.2 can be evaluated exactly given the following two identities. The

first is the generating function for the product of two Legendre polynomials (Eq. 2

in [91]),

∞∑
K=0

tKPK(cos θ)PK(cos θ′)=
1√

1+t2−2t cos(θ − θ′)2
F1

(
1
2
, 1
2
; 1;

−4t sin θ sin θ′

1+t2−2t cos(θ − θ′)

)
,

(A.3)

where 2F1(· · · ) is a Gauss hypergeometric function. The second identity is the
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derivative of Eq. A.3 with respect to t,

∞∑
K=1

KtK−1PK(cos θ)PK(cos θ′)=

cos(θ − θ′)− t
(1+t2−2t cos(θ − θ′))3/2 2

F1

(
1
2
, 1
2
; 1;

−4t sin θ sin θ′

1+t2−2t cos(θ − θ′)

)
+

(t2 − 1) sin θ sin θ′

(1+t2−2t cos(θ − θ′))5/2 2
F1

(
3
2
, 3
2
; 2;

−4t sin θ sin θ′

1+t2−2t cos(θ − θ′)

)
, (A.4)

which we determined from Eq. A.3 with the identity (15.2.1 in A&S [54])

d

dz
2F1 (a, b; c; z) =

ab

c
2F1 (a+ 1, b+ 1; c+ 1; z) . (A.5)

Given Eqs. A.3 and A.4, the evaluation of Eq. A.2 can proceed as follows. One

starts by expressing Eq. A.2 as

Dβ(θ, θ′) = 2e−β
∞∑
K=1

K
(
e−β
)K−1

PK(cos θ)PK(cos θ′)+
∞∑
K=0

(
e−β
)K

PK(cos θ)PK(cos θ′).

(A.6)

Then, by letting t = e−β and inserting Eqs. A.3 and A.4 into Eq. A.6, one finds that

Dβ(θ, θ′) =
1− e−2β

(1 + e−2β − 2e−β cos(θ − θ′))3/2
(
2F1

(
1
2
, 1
2
; 1; z

)
+
z

2
2F1

(
3
2
, 3
2
; 2; z

))
,

(A.7)

where z = −4e−β sin θ sin θ′/(1 + e−2β − 2e−β cos(θ− θ′)). One can simplify Eq. A.7

with the identification

2F1

(
3
2
, 3
2
; 2; z

)
=

1

1− z 2F1

(
1
2
, 1
2
; 2; z

)
, (A.8)

which follows from (15.3.3) in A&S [54],

2F1 (a, b; c; z) = (1− z)c−a−b2F1 (c− a, c− b; c; z) . (A.9)

Then by Eq. A.8, the factor
(
2F1

(
1
2
, 1
2
; 1; z

)
+ z

2 2F1

(
3
2
, 3
2
; 2; z

))
in Eq. A.7 becomes

2F1

(
1
2
, 1
2
; 1; z

)
+

z

2(1− z)
2F1

(
1
2
, 1
2
; 2; z

)
= 2F1

(
3
2
, 1
2
; 1; z

)
, (A.10)
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where the term on the right hand side follows from (15.2.16) in A&S [54],

c(a− (c− b)z) 2F1 (a, b; c; z) + (c− a)(c− b)z 2F1 (a, b; c+ 1; z)

= ac(1− z) 2F1 (a+ 1, b; c; z) . (A.11)

Thus one can reduce Eq. A.7 to an expression that depends on only one hypergeo-

metric function:

Dβ(θ, θ′) =
(1− e−2β)

(1 + e−2β − 2e−β cos(θ − θ′))3/2 2
F1

(
3
2
, 1
2
; 1;

−4e−β sin θ sin θ′

1 + e−2β − 2e−β cos(θ − θ′)

)
(A.12)

Equation A.12 can be cast into a more illuminating form by using the trigono-

metric identities (4.5.1, 4.5.2, 4.5.16, and 4.3.10 in A&S [54])(
ex − e−x

)
= 2 sinhx (A.13)(

ex + e−x
)

= 2 coshx (A.14)

coshx− 1 = 2 sinh2 (x/2) (A.15)

1− cosx = 2 sin2 (x/2), (A.16)

where x is real, and after some manipulations one finds that

Dβ(θ, θ′) =
1

4

eβ/2 sinh β(
sinh2 (β

2
) + sin2 ( θ−θ

′

2
)
)3/2 2F1

(
3
2
, 1
2
; 1;

− sin θ sin θ′

sinh2 (β
2
) + sin2 ( θ−θ

′

2
)

)
.

(A.17)

Finally, by inserting Eq. A.17 into Eq. A.1, one arrives at Eq. 5.25.
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Appendix B

Here are the details of the derivation of Eq. 5.33. We would like to determine an

analytic approximation to Eq. 5.4, with α = θ′, given the following two assumptions.

We assume that dK ≈ A exp(−βK), and that the sum in Eq. 5.4 can be extended

from K = 2j< to infinity without affecting the results very much. Thus we wish to

evaluate

Pjj′(0, θ′) sin θ′ ≈ A√
[j][j′]

Dβ(0, θ′) sin θ′, (B.1)

where [n] = 2n+ 1 and

Dβ(0, θ′) =
∞∑
K=0

(2K + 1)e−βKPK(cos θ′). (B.2)

Equation B.2 can be evaluated exactly given the generating function for the

Legendre polynomial (18.12.11 in [92]) and its derivative with respect to t:

∞∑
n=0

Pn(x)tn =
1√

1− 2xt+ t2
(B.3)

∞∑
n=1

nPn(x)tn−1 =
x− t

(1− 2xt+ t2)3/2
. (B.4)

One starts by expressing Eq. B.2 as

Dβ(0, θ′) = 2
∞∑
K=1

K(e−β)KPK(cos θ′) +
∞∑
K=0

(e−β)KPK(cos θ′) (B.5)

= 2e−β
∞∑
K=1

K(e−β)(K−1)PK(cos θ′) +
∞∑
K=0

(e−β)KPK(cos θ′). (B.6)
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Then, by letting t = e−β and inserting Eqs. B.3 and B.4 into Eq. B.6, one finds that

Dβ(0, θ′) = 2e−β
(

cos θ′ − e−β

(1−2 cos θ′e−β+e−2β)3/2

)
+

1√
1−2 cos θ′e−β+e−2β

(B.7)

=
1− e−2β

(1− 2 cos θ′e−β + e−2β)3/2
(B.8)

One can simplify Eq. B.8 by rewriting part of the denominator as follows:

1− 2 cos θ′e−β + e−2β = e−β
[(
eβ − 2 + e−β

)
+ 2(1− cos θ′)

]
(B.9)

= e−β
[(
eβ/2 − e−β/2

)2
+ 4 sin2(θ′/2)

]
(B.10)

= 4e−β
[
sinh2(β/2) + sin2(θ′/2)

]
, (B.11)

where we have used the identity 1− cos θ′ = 2 sin2(θ′/2). Similarly, we can rewrite

the numerator of Eq. B.8 as

1− e−2β = e−β
(
eβ − e−β

)
= 2e−β sinh β. (B.12)

By inserting Eqs. B.11 and B.12 into Eq. B.8 and rearranging terms, one finds that

Dβ(0, θ′) =
eβ/2 sinh β

4
[
sinh2(β/2) + sin2(θ′/2)

]3/2 . (B.13)

Finally, by inserting Eq. B.13 into Eq. B.1, one arrives at Eq. 5.33. This completes

the derivation.

We note that by using the following approximations, valid for θ′ � 1 and β � 1,

we can determine Eq. 5.34 from Eq. 5.33:

sinh β ≈ β sinh(β/2) ≈ β/2 sin θ′ ≈ θ′. (B.14)

This leads to

Dβ(0, θ′) sin θ′ ≈ eβ/2θ′β

4 [(β/2)2 + (θ′/2)2]3/2
=
eβ/2

β

2(θ′/β)

[1 + (θ′/β)2]3/2
. (B.15)

Eq. 5.34 follows from inserting Eq. B.15 into Eq. B.1.

202



Appendix C

Here are the details of the derivation of Eq. 5.35. We would like to determine an

analytic approximation for the portion of Eq. A.2 for which K ≥ K0, where K0 is

an arbitrary nonnegative integer. Thus we wish to evaluate

Tβ(K0, θ
′) = sin θ′

∞∑
K=K0

(2K + 1)e−βKPK(cos θ′). (C.1)

There is a factor of A/
√

[j][j′] which we have omitted in Eq. C.1 for clarity; we will

multiply our final result for Tβ(K0, θ
′) by this factor to determine Eq. 5.35.

We can evaluate Eq. C.1 approximately by noting that for large K, the Legendre

polynomial behaves approximately as (8.10.7 in A&S [54])

PK(cos θ′) =
Γ(K + 1)

Γ(K + 3
2
)

(
2

π sin θ′

)1/2

cos
(
(K + 1

2
)θ′ − π/4

)
+O(K−1). (C.2)

By inserting Eq. C.2 into Eq. C.1 and using

Γ(K + 1)

Γ(K + 3
2
)

=
2√
π

K∏
j=1

j

j + 1
2

≈ 1√
K + 1

, (C.3)

which follows from the asymptotic formula (6.1.39) in [54], along with

2K + 1√
K + 1

=
2(K + 1

2
)√

(K + 1
2
) + 1

2

≈ 2
√
K + 1

2
, (C.4)
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one finds that

Tβ(K0, θ
′) = 2

√
2 sin θ′

π

∞∑
K=K0

√
K + 1

2
e−βK cos

(
(K + 1

2
)θ′ − π/4

)
(C.5)

= 2

√
2 sin θ′

π
eβ/2

∞∑
K=K0

√
K + 1

2
e−β(K+1/2) cos

(
(K + 1

2
)θ′−π/4

)
(C.6)

This sum may be interpreted as the numerical evaluation of an integral over x using

finite steps. Each interval from x = K to x = K + 1 is multiplied by the functional

value at the center of each step, x = K + 1/2. (See the extended midpoint rule,

Eq. 4.1.19 in [93], and note the step size h = 1.) Therefore we take

Tβ(K0, θ
′) = 2

√
2 sin θ′

π
eβ/2

∞∫
K0

√
x e−βx cos(θ′x− π/4) dx (C.7)

For later use it will be convenient to change the variable of integration to y = βx.

Then we have

Tβ(K0, θ
′) = 2

√
2

π

sin θ′

β

eβ/2

β

∞∫
βK0

√
y e−y cos

(
θ′

β
y − π/4

)
dy (C.8)

= 2

√
2

π

sin θ′

β

eβ/2

β

∞∫
βK0

√
y e−y

sin
(
θ′

β
y
)

√
2

+
cos
(
θ′

β
y
)

√
2

 dy (C.9)

This integral can be evaluated by using 3.944.2 and 3.944.4 of G&R [94]:

∞∫
u

xµ−1e−βx sin(δx) dx =

i

2
(β + iδ)−µΓ(µ, (β + iδ)u)− i

2
(β − iδ)−µΓ(µ, (β−iδ)u) (C.10)

∞∫
u

xµ−1e−βx cos(δx) dx =

1

2
(β + iδ)−µΓ(µ, (β + iδ)u) +

1

2
(β − iδ)−µΓ(µ, (β−iδ)u), (C.11)
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which are valid for Re β > |Im δ|, and where Γ(a, z) denotes the upper incomplete

gamma function. We emphasize that the β in Eqs. C.10 and C.11 is not the same

β as in dK(j, j′) ≈ A exp(−βK).

By using Eqs. C.10 and C.11 to evaluate the integral in Eq. C.9, we find

Tβ(K0, θ
′) =

2√
2

√
2

π

sin θ′

β

eβ/2

β

[
1 + i

2

(
1 + i

θ′

β

)−3/2
Γ

(
3
2
,

(
1 + i

θ′

β

)
βK0

)

+
1− i

2

(
1− iθ

′

β

)−3/2
Γ

(
3
2
,

(
1− iθ

′

β

)
βK0

)]
. (C.12)

By using Γ(3
2
, z∗) = (Γ(3

2
, z))∗, we find that the term in square brackets in Eq. C.12

is the sum of a complex number and its complex conjugate. Since Re(z) = (z+z∗)/2,

one can express Eq. C.12 as

Tβ(K0, θ
′) =

2√
2

√
2

π

sin θ′

β

eβ/2

β
Re

(1 + i) Γ
(

3
2
,
(

1 + i θ
′

β

)
βK0

)
(

1 + i θ
′

β

)3/2
 . (C.13)

Then, by noting that
√

2 eiπ/4 = (1 + i), one can rewrite Eq. C.13 as

Tβ(K0, θ
′) = 2

√
2

π

sin θ′

β

eβ/2

β
Re

eiπ/4Γ
(

3
2
,
(

1 + i θ
′

β

)
βK0

)
(

1 + i θ
′

β

)3/2
 . (C.14)

Part of the denominator of Eq. C.14 can be written as(
1 + i

θ′

β

)3/2

=

(
1 +

(
θ′

β

)2
)3/4

exp

(
i

(
3
2

tan−1
(
θ′

β

)))
, (C.15)

which one can show by utilizing the relationships(
eix
)b

= (cosx+ i sinx)b (C.16)

cos(tan−1(a)) =
1√

a2 + 1
(C.17)

sin(tan−1(a)) =
a√
a2 + 1

(C.18)

205



Finally, by inserting Eq. C.15 into Eq. C.14, one finds that

T approx
β (K0, θ

′) = 2

√
2

π

sin θ′

β

eβ/2

β
Re

exp
[
i
(
π/4− 3

2
tan−1(θ′/β)

)]
Γ
(
3
2
, K0 (β + iθ′)

)
(1 + (θ′/β)2)3/4

(C.19)

By multiplying Eq. C.19 by A/
√

[j][j′], we arrive at Eq. 5.35, which completes the

derivation. When K0 = 0, the incomplete gamma function Γ(a, 0) reduces to the

gamma function Γ(a). By using this fact and noting that

Γ
(
3
2

)
=

√
π

2
, (C.20)

one finds that

T approx
β (0, θ′) =

eβ/2

β

√
2 sin θ′

β

cos
(
π/4− 3

2
tan−1(θ′/β)

)(
1 + (θ′/β)2

)3/4 . (C.21)

Now we consider the accuracy of Eq. C.19, which approximates the sum of terms

in Eq. C.1 from K = K0 to ∞. We already know, from Eq. B.15, the exact sum for

the case K0 = 0. Therefore the exact sum from K = 0 to∞ should be approximately

equal to the explicit sum of the first K0 terms, plus the approximate sum of all the

rest. We can write this condition as follows:

2(θ′/β)[
1 + (θ′/β)2

]3/2 ≈ βe−β/2 sin θ′
K0−1∑
K=0

(2K + 1)e−βKPK(cos θ′)

+ 2

√
2

π

sin θ′

β
Re

exp
[
i
(
π/4− 3

2
tan−1(θ′/β)

)]
Γ
(
3
2
, K0 (β + iθ′)

)
(1 + (θ′/β)2)3/4

(C.22)

We have scaled the terms in Eq. C.22 by dropping the factor eβ/2/β from Eqs. B.15

and C.19 and multiplying the discrete sum above by βe−β/2. The sum in Eq. C.22

should be understood to be zero if K0 = 0. We can assess the accuracy of Eq. C.19 by

evaluating the right hand side of Eq. C.22 for different values of K0 and comparing

with the exact result on the left hand side. The comparison is shown in Fig. C.1

for β = 0.057. We plot several distributions as a function of θ/β, because the left

hand side of Eq. C.22 depends only on θ′/β, as does the right hand side for K0 = 0
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(assuming sin θ′ ≈ θ′). Figure C.1 shows that the approximation is reasonable even

for K0 = 0 and gets progressively better as K0 increases. The agreement is quite

good for K0 = 10 and nearly exact for K0 = 20.
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Figure C.1: Comparison of the exact infinite sum for the tipping function (the left hand
side of Eq. C.22) with approximations based on using several different values
of K0 to evaluate the right hand side of Eq. C.22.
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