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Abstract

We theoretically study the near-field electromagnetic effects of a single-walled car-

bon nanotube (SWNT) antenna. We develop a model for plasmon resonances on

the SWNT surface by treating the SWNT as a transmission line (TL). By defin-

ing TL parameters such as resistance, capacitance, and inductance per unit length

of the SWNT antenna, we effectively model the plasmon resonances which have

fundamental modes in the THz frequency range.

We also include excitonic effects into our SWNT antenna to model the antenna

response in the visible/NIR frequency range. A quasi-classical expression for the

excitonic conductivity is derived. From Maxwell’s equations, an integral equation

for the induced current distribution due to an external field is solved. The scattered

field from the excitonic antenna can be calculated from the current distribution

and localized hotspots are observed. By placing rare earth ions (REIs) in the local

hotspots of the SWNT antenna, we can calculate the excitation enhancements of

multiple REI transitions and multiple chirality SWNT antennas. REI excitation

enhancements ranging from 1-200% are calculated. Evidence of exciton-polariton

modes due to the coupling of photons to the antenna resonances are also observed.

These modes are allowed when the real part of the complex dielectric function is

negative. The polariton modes follow a π/L wave vector dependence.

1



Chapter 1

Introduction

1.1 Carbon Nanotubes

1.1.1 Uses and Applications

Carbon nanotubes (CNTs) were theoretically proposed long before they were ex-

perimentally discovered. In 1959, Roger Bacon visualized graphite whiskers which

were helically wrapped graphene sheets [16]. In 1990, Richard Smalley, who won

the 1996 Nobel Prize in Chemistry for the discovery of buckminsterfullerenes [17],

or ”buckyballs,” proposed that if buckyballs get big enough, they could potentially

form cylinders. Then, in 1991, CNTs were first experimentally discovered by Sumio

Iijima [18]. In his work, he took high resolution electron micrographs from a trans-

mission electron microscope (TEM) which showed lattice fringes - multiple parallel

lines on the image which were symmetric about the center. He came to the conclu-

sion that what he was seeing were cross sections of a multi-walled tubular structure

of rolled graphene. Since their experimental discovery, CNTs have been the focus of

many scientific studies to learn about their unique optical and electronic properties,

as well as applications of these materials to many fields of science and engineering.

Lately, single-walled carbon nanotubes (SWNTs) have shown increased interest

in the fields of medical and bio-imaging. Many different types of SWNT sensor de-

vices have been developed including transistor based sensors [19, 20], electrochemical
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sensors [21, 22, 23], single defect sensors [24, 25, 26], and even sensors on fabric [27].

Label-free bio-imaging was also achieved using SWNTs [28, 29, 30, 31].

Even more recently, SWNT emission energy was measured to shift when in the

presence of the electrostatic potential of the cell surface [12]. Understanding the in-

teraction between SWNT excitations and the electrostatic environment are crucial

for developing SWNT bio-sensors. SWNT sensors have been used as a label-free

detector of cardiac troponin T (cTnT), which is is a biomarker used as a standard

indicator of heart attacks [32]. SWNTs have also been used to characterize the

permeability of living multicellular environments such as tumor spheriods [33]. A

hyperspectral imaging technique was also developed to image single SWNT fluores-

cence in live cells [34].

1.1.2 Structure

The structure of carbon nanotubes begins with a single sheet of graphene. Graphene

is a single layer sheet of carbon atoms arranged in a hexagonal lattice structure [8].

Figure 1.1 shows the different carbon materials that graphene can form [8]. It can

be rolled into a 0D ”buckyball”, rolled into a 1D nanotube, or stacked to form 3D

graphite. A single-walled carbon nanotube (SWNT) is a single layer of graphene

rolled into a cylinder as shown in the middle of Figure 1.1. As you could imagine,

there are many different ways to roll a sheet of graphene into a cylinder. The optical

and electronic properties of the SWNT are determined by how the graphene sheet

is rolled. SWNTs can be either semiconducting, semi-metallic, or metallic in nature

depending on how the graphene sheet is rolled. Figure 1.2 shows the unit cell of a

SWNT projected onto the flat surface of a graphene sheet. The unit cell of graphene

contains two equivalent carbon atoms. The unit vectors (a1, a2) of the unit cell are

indicated and project the equivalent carbon atoms to the next. The length of the

unit vector is a =
√

3ac−c = 2.49 Å with the carbon-carbon distance in graphene

ac−c = 1.44 Å. To roll up a flat sheet of graphene, we must define two vectors. Ch is

the chiral vector whose length becomes the circumference of the SWNT when rolled

and T is the translational vector which is directed along the SWNT axis. The chiral
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vector can be expressed by integer multiples of the unit vectors as

Ch = na1 +ma2 = (n,m) (1.1)

where n and m are integers. These indices are used to label (n,m) SWNTs. If

n = m, we classify that type of nanotube to be ”armchair”, if m = 0, we classify

that nanotube as zigzag, and the general case of n and m being different integers is

classified as ”chiral”. These three classifications can be seen in Figure 1.3 and are

listed in Table 1.1.

Type θ Ch

armchair 30◦ (n, n)
zigzag 0◦ (n, 0)
chiral 0◦ < |θ| < 30◦ (n,m)

Table 1.1: Classification of carbon nanotubes [1].

The (n,m) indices determine many of the properties of the SWNT. They deter-

mine the diameter of the SWNT. The diameter is related to the length of the chiral

vector

d = |Ch|/π =
a

π

√
n2 +m2 + nm (1.2)

The indices also determine if the SWNT is semiconducting or metallic. If the

GCD(n−m,3) = 1, then the SWNT is a semiconductor, but if the GCD(n−m,3)

= 3 the SWNT is metallic. Here, GCD means the greatest common divisor.

SWNTs are quasi-1D structures due to their large length/diameter aspect ratio of

the cylinder, which can be as high as 104−105. SWNTs have diameters ranging from

approximately 0.5 - 2 nm, while multi-walled carbon nanotubes can have diameters

much larger. The lengths of SWNTs can vary between tens of nanometers up to

centimeters in length.
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Figure 1.1: Graphene as a 2D building material for carbon structures. It can be wrapped
into a 0D buckyball, a 1D SWNT, or stacked into 3D graphite [8].

1.1.3 Single Particle Electronic Structure

The electronic structure of SWNTs begins with that of 2D graphene. For a single

sheet of graphene, three σ bonds hybridize in the sp2 configuration which forms

the in-plane bonds. These are from the 2s, 2px, and 2py orbitals of each carbon

atom in the graphene unit cell (2 atoms - 6 orbitals). The leftover 2pz orbitals are

perpendicular to the graphene plane and form the covalent π bonds. These π energy

bands are what determines the electronic properties of graphene, as well as SWNTs.

Due to the translational symmetry of the lattice, any wave function of the elec-

tron must satisfy Bloch’s theorem [1]

Tai
Ψ = eik·aiΨ (1.3)

where Tai
is a translational operation along the lattice vector ai and k is the wave

vector. One functional form of the wave function that satisfies Equation (1.3) is the
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Figure 1.2: Unit cell of a SWNT projected onto a flat graphene surface. The unit vectors
(a1,a2) of the unit cell are indicated. Ch is the chiral vector whose length
becomes the circumference of the SWNT when rolled, T is the translational
vector which is directed along the SWNT axis, R is a symmetry vector, and
θ is the chiral angle. The unit cell is given by the rectangle made by Ch and
T [9].

tight binding Bloch function

Φj(k, r) =
1√
N

N∑
R

eik·Rφj(r−R), (j = 1, · · · , n). (1.4)

Here, R is the position of the atom and φj denotes the atomic wave function in state

j. The eigenfunctions satisfying Equation (1.3) are a linear combination of Bloch

wave functions

Ψj(k, r) =
n∑

j′=1

Cjj′(k)Φj′(k, r) (1.5)

The electronic structure comes from solving the secular equation, which is the

eigenvalue equation

det[H− ES] = 0 (1.6)
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Figure 1.3: Schematic diagram of the three types of SWNTs. (a) is the metallic armchair
tube; (b) is the zigzag tube which can be either semiconducting or metallic;
and (c) the chiral nanotube which can also be either semiconducting or
metallic [9].

which gives all n eigenvalues of Ej(k), (j = 1, · · · , n) for a given k. The j−th

eigenvalue can be expressed as

Ej(k) =
〈Ψj |H|Ψj〉
〈Ψj|Ψj〉

=

∫
Ψ∗jHΨjdr∫
Ψ∗jΨjdr

(1.7)

Substituting Equation (1.5) into Equation (1.7) and making a change in subscripts,

we get

Ei(k) =

n∑
j,j′=1

C∗ijCij′ 〈Ψj |H|Ψj′〉

n∑
j,j′=1

C∗ijCij′ 〈Ψj|Ψj′〉
=

n∑
j,j′=1

Hjj′(k)C∗ijCij′

n∑
j,j′=1

Sjj′(k)C∗ijCij′

(1.8)

where we can define the transfer integral and overlap integral matrices, respectively,

as

Hjj′(k) = 〈Φj |H|Φj′〉 , Sjj′(k) = 〈Φj|Φj′〉 (j, j′ = 1, · · · , n) (1.9)

For 2D graphene, the 2pz orbitals of the two carbon atoms in the unit cell provide

the basis functions for the wave function. In the graphene unit cell, there are two
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inequivalent carbon atoms, A and B. Due to the hexagonal arrangement of the

carbon atoms, each A atom is bonded with three B atoms, and likewise each B

atom is bonded to three A atoms. For the dispersion calculation, we consider the

case of the nearest neighbor interactions. In this approximation, we assume that

each A atom only interacts with the three nearest B atoms it is bonded to and

each B atom only interacts with the three neighboring A atoms. Therefore, our

transfer and overlap matrices can be reduced to 2 x 2 matrices. The diagonal terms

of the transfer matrix, HAA and HBB, involve integration over a single atom so that

HAA = HBB = ε2p. For the off diagonal matrix elements, we need to consider the

three nearest-neighbor B atoms relative to an A atom which are denoted by the

vectors R1, R2, and R3. Then,

HAB = γ0

(
eik·R1 + eik·R2 + eik·R3

)
= γ0

(
eikxa/

√
3 + 2e−ikxa/2

√
3 cos

(
kya

2

))
= γ0f(k) (1.10)

where γ0 is the value of the transfer integral (≈ 2.7− 3 eV), and we have used the

unit vectors of the graphene hexagonal lattice

a1 =

(√
3

2
a,
a

2

)
, a2 =

(√
3

2
a,
−a
2

)
(1.11)

where a =
√

3aC−C = 0.249 nm is the length of the graphene unit vector. Note here

also that HAB = H∗BA. The matrices can be expressed as

H =

(
ε2p γ0f(k)

γ0f
∗(k) ε2p

)

and

S =

(
1 sf(k)

sf ∗(k) 1

)
where s is the value of the overlap integral as in Equation (1.9). For the case where

the overlap integral, s, becomes zero (Slater-Koster scheme), the expression for the

electronic structure for the graphene layer, from the secular equation in Equation
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Figure 1.4: Energy dispersion of 2D graphene in the Brillouin zone [9].

(1.6), takes a simple form

Eg2D(kx, ky) = ±γ0

[
1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)]1/2

(1.12)

Now that we have the electronic structure of graphene, we can analyze the elec-

tronic structure of SWNTs. To account for the rolling of the graphene sheet, we

must use periodic boundary conditions in the circumferential direction denoted by

Ch. By doing this, the wave vector associated with the azimuthal direction becomes

quantized, while the wave vector in the axial direction (along T) remains continuous

for an infinite tube. Therefore, the energy bands of SWNTs are a set of one dimen-

sional energy dispersion relations which are cross sections of 2D graphene. The 1D

dispersion relations after performing the zone folding scheme are

Eµ(q) = Eg2D

(
q

K2

|K2|
+ µK1

)
, (µ, 0, · · · , N − 1) and

(
−π
T

< q <
π

T

)
(1.13)

where N is the number of hexagons in the unit cell given by

N =
2(n2 +m2 + nm)

GCD(2n+m, 2m+ n)
, (1.14)

9



T is the length of the translational vector given by

T =

√
3a
√
n2 +m2 + nm

GCD(2n+m, 2m+ n)
, (1.15)

µ is the quantized azimuthal quantum number, and K1 and K2 are the reciprocal

lattice vectors for the circumferential and axial directions, respectively.

To obtain analytic expressions for the dispersion of SWNTs, we first consider the

nanotubes with the highest symmetry: armchair and zigzag. For armchair SWNTs,

Ea
µ(q) = ±γ0

[
1± 4 cos

(µπ
n

)
cos
(qa

2

)
+ 4 cos2

(qa
2

)]1/2

(1.16)

(−π < qa < π), (µ = 1, · · · , 2n)

and for zigzag SWNTs,

Ez
µ(k) = ±γ0

[
1± 4 cos

(√
3qa

2

)
cos
(µπ
n

)
+ 4 cos2

(µπ
n

)]1/2

(1.17)

(−π/
√

3 < qa < π/
√

3), (µ = 1, · · · , 2n)

Figure 1.5 shows the calculated dispersion of a (11,11) armchair SWNT calculated

from Equation (1.16). Since all armchair SWNTs are metallic, there is no band

gap between the conduction and valence bands where there is a band degeneracy.

For armchair SWNTs, this occurs at q = ±2π/3a. Figure 1.6 shows the calculated

dispersion of a (11,0) semiconducting zigzag SWNT calculated from Equation (1.17).

Since this is a semiconducting SWNT, there is a band gap at q = 0. In contrast,

Figure 1.7 shows a metallic (12,0) zigzag SWNT. This zigzag tube is metallic because

n − m is a multiple of 3. At q = 0 there is a degeneracy between the conduction

and valence band illustrating the metallic behavior.

For the case of chiral SWNTs, the dispersion is given, in general, by Equation

(1.13). Chiral nanotubes can be classified into three categories depending on the

greatest common divisor of n − m. The three classifications of SWNTs are sum-

marized in Table 1.2. Metallic zigzag tubes always fall into the category of Metal-1

while all armchair tubes are Metal-2.
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Figure 1.5: Calculated energy dispersion of a (11,11) armchair SWNT in the Brillouin
zone from −π/T to π/T .
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Figure 1.6: Calculated energy dispersion of a (11,0) semiconducting zigzag SWNT in
the Brillouin zone from −π/T to π/T .

Thus far, we have considered the single electron picture of SWNTs. However,

their experimentally measured optical properties, such as absorption and photolumi-

nescence (PL), show something different. Due to the quasi-1D nature of SWNTs, the

11



-6 -4 -2 0 2 4 6

-5

0

5

q Hnm-1L

E
n
er

g
y

HeV
L

Figure 1.7: Calculated energy dispersion of a (12,0) metallic zigzag SWNT in the Bril-
louin zone from −π/T to π/T .

Properties gcd(n−m,3) dR Degeneracy
Semiconductor 1 d 0

Metal-1 3 d 4 at k = 0
Metal-2 3 3d 2 at k = ±2π/3T

Table 1.2: Classifications of (n,m) SWNTs [1]. Here, d is the gcd(n,m).

SWNT has very strong quantum confinement and weak dielectric screening. There-

fore, Coulomb effects are stronger in 1D SWNTs than in other materials. When an

electron is promoted from the valence band to the conduction band, it leaves a hole

in the valence band. This electron and hole are strongly coupled in the 1D structure

via a Coulombic coupling. The correlated electron and hole pair become bound and

act as a new quasi-particle known as an exciton. Excitons will be discussed further

in Section 1.2.
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Figure 1.8: Absorption spectra of an (8,4) SWNT showing the first excitonic transition.
The red line shows the free electron absorption ignoring Coulomb effects.
The green line shows the band gap renormalization due to the electron-
electron coupling (blue shift). The blue line shows the formation of an
exciton by including electron-hole attraction (red shift and reshaped into a
Lotentzian lineshape) [10].

1.2 Excitons

Excitonic effects dominate the optical spectra of SWNTs. The single particle picture

of SWNTs is not sufficient to describe the experimentally observed absorption and

PL. Figure 1.8 shows an example of how the Coulomb effects greatly affect the

optical structure. The red line shows the absorption calculated without Coulomb

effects. The absorption line resembles the Van Hove singularities of the 1D DOS.

Including the electron-electron interaction renormalizes the band gap resulting in

a blue shift of the absorption line and is shown by the green line. Including the

electron-hole attractive Coulomb interaction red shifts the energy resulting in the

excitonic absorption. Figure 1.9 shows a schematic diagram of the lowest excitonic

band (red line) which is below the electron-hole continuum (black dashed line).

The exciton energy is red shifted from the electron-hole continuum as seen in
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Figure 1.9: Schematic representation of the energy diagram (left) and DOS (right). The
red line shows the lowest excitonic energy band (with correlated electron-
hole pair) and the black dashed curve shows the electron-hole continuum
[11].

Figures 1.8 and 1.9. The difference in energy between the exciton and the electron-

hole continuum is called the binding energy, Eb. Because of the strong Coulomb

interaction in the 1D structure, the binding energies of excitons in SWNTs are much

larger than the binding energies in other semiconducting materials. The binding

energy for a SWNT with a 1 nm diameter is approximately 0.5 - 1 eV [10, 35]. The

binding energy is related to the size of the excitons. Exciton diameters have been

calculated to be between 1 - 3 nm [36, 37].

In semiconducting SWNTs, there are multiple optically active singlet exciton

energy levels to excite. The S1 level, which is the lowest singlet level, is in the

IR frequency range and the S2 level is in the visible range for different chirality

SWNTs. There are also higher levels such as the S3 and S4 levels which require

UV excitation. Recently, the S3 and S4 levels of SWNTs were used in a study of

DNA ionization, since DNA is excitable by UV light. The study was performed using

two color spectroscopy of ssDNA functionalized SWNTs showing fast autoionization

rates between the DNA and SWNT [38].
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Figure 1.10: PLE map of a SWNT sample. Each chirality NT has a particular absorp-
tion and emission wavelength. Generating a PLE map will help determine
which chirality SWNTs are in your sample [12].

When exciting a SWNT, we use visible light to promote the exciton from the

ground state to the S2 level. From there, the exciton undergoes fast non-radiative

relaxation down to the S1 level. There, it can either decay radiatively back to the

ground state giving off a NIR photon, or decay non-radiatively back to the ground

state depending on the experimental circumstances.

Exciton absoption and PL are most easily characterized by PL/PLE (photolumi-

nescence/photoluminescence excitation) maps. Figure 1.10 shows an example of a

PL/PLE map. The excitation wavelength is plotted on the y-axis and the emission

wavelength is plotted on the x-axis. Each chirality SWNT has its own specific ab-

sorption and emission wavelength. By making a PL/PLE map, you can determine

which chiralities of SWNTs are in your sample.

The theory of SWNT excitons will be discussed in more detail in Chapter 2.
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1.3 Surface Plasmons

In nanophotonics and plasmonics, electromagnetic fields can be confined to dimen-

sions on the order of or smaller than the wavelength [39]. Such an effect can follow

from the interaction of electromagnetic radiation and free conduction electrons in

metals or small nanostructures. This interaction leads to the creation of surface

modes that generate an enhanced optical near field. One particular application of

these confined electromagnetic fields is allowing better optical resolution of nano

scale systems that visible wavelengths of light can not resolve. To begin to under-

stand the basics of this field, we start with a simple description of metals.

We start with the classical Drude-Sommerfeld theory of a free electron gas:

me
∂2r

∂t2
+meΓ

∂r

∂t
= eE0e

−iωt (1.18)

where e and me are the charge and effective mass of the free conduction electron,

E0 and ω are the amplitude and frequency of the applied field, and Γ is a damp-

ing term proportional to vF/l where vF is the Fermi velocity and l is the mean

free path between scattering events [13]. The displacement, r, can be obtained

from solving Equation 1.18. From there, we can define the polarization density

P(ω) = ε0χe(ω)E(ω) with electric susceptibility, χe(ω). The susceptibility can then

be related to the dielectric function through ε(ω) = 1 + χe(ω). Solving Equation

1.18 with the ansatz r(t) = re−iωt, we arrive at the dielectric function

εDrude(ω) = 1−
ω2
p

ω2 + iΓω
= 1−

ω2
p

ω2 + Γ2
+ i

Γω2
p

ω(ω2 + Γ2)
(1.19)

where ωp =
√
ne2/(meε0) is the plasma frequency.

This definition works well for metals in the infrared region. However, in the

visible range, we need to consider interband transitions. This is because photons

at this higher energy can promote a valence electron into the conduction band.

Therefore, we need to include the response of the bound electrons in the quasi-

electrostatic and quasi-classical approximations by adding a restoring force:

m
∂2r

∂t2
+mγ

∂r

∂t
+ αr = eE0e

−iωt (1.20)
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Figure 1.11: Contribution of bound electrons to the dielectric function of gold. The
parameters used here are ω̃p = 45 × 1014 s−1, γ = 9 × 1014 s−1, and
ω0 = 2πc/λ with λ = 450 nm from [13].

where m is now the effective mass of the bound electron, γ is the damping constant

(including radiative decay of the bound electron), and α is the effective ”spring

constant” of the potential that keeps the electron in place. Using the same ansatz,

we can obtain the dielectric function

εinterband(ω) = 1 +
ω̃2
p

(ω2
0 − ω2)− iγω

= 1 +
ω̃2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

+ i
γω̃2

pω

(ω2
0 − ω2)2 + γ2ω2

(1.21)

where now ω0 =
√
α/m and ω̃p =

√
ñe2/(mε0) where ñ is the density of bound

electrons. Figure 1.11 shows an example of the bound electron contribution to the

dielectric function of gold. Resonant behavior is seen in the imaginary part while

dispersion behavior is seen in the real part. To more accurately model the behavior

of metals over a larger frequency range, the interband contribution can be added to

the Drude-Sommerfeld model.

Now, we seek to derive the surface plasmon-polariton dispersion. We begin

with a classical model of two semi-infinite nonmagnetic media with local dielectric

functions ε1 and ε2 separated by a planar interface at z = 0 [14]. Maxwell’s equations
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can be written for this system as (Gaussian units)

∇×Hi = εi
1

c

∂

∂t
Ei (1.22)

∇× Ei = −1

c

∂

∂t
Hi (1.23)

∇ · (εiEi) = 0 (1.24)

∇ ·Hi = 0 (1.25)

where the index i represents the different media: i = 1 for z < 0 and i = 2 for

z > 0. There are two classifications of solutions of Maxwell’s equations: s-polarized

and p-polarized electromagnetic modes where E and H are parallel to the interface,

respectively. In order for waves to be formed that propagate along the surface, there

must be a component of the electric field normal to the surface. Therefore, we seek

p-polarized solutions where the magnetic field is parallel to the surface. If we choose

the x-axis as the propagation direction, we can write the fields as

Ei = (Eix, 0, Eiz) e
−κi|z|ei(qix−ωt) (1.26)

and

Hi = (0, Hiy, 0) e−κi|z|ei(qix−ωt) (1.27)

where qi represents the magnitude of the wave vector that is parallel to the surface.

Plugging these fields into Maxwell’s equations gives

iκ1H1y =
ω

c
ε1E1x (1.28)

iκ2H2y = −ω
c
ε2E2x (1.29)

and

κi =

√
q2
i − εi

ω2

c2
(1.30)

Boundary conditions state that the component of the electric and magnetic fields

parallel to the surface must be continuous. Applying this boundary condition, we

get

κ1

ε1
H1y +

κ2

ε2
H2y = 0 (1.31)

H1y −H2y = 0 (1.32)
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which has a solution only if the determinant is zero. This gives

ε1
κ1

+
ε2
κ2

= 0 (1.33)

which is the surface plasmon condition. This equation can be rewritten in terms of

q from Equation (1.30) as

q(ω) =
ω

c

√
ε1ε2
ε1 + ε2

(1.34)

For the case of a Drude semi-infinite metal in vacuum, ε2 = 1 and the expression for

the dielectric function ε1 was given in Equation (1.19). Plugging this into Equation

(1.34) gives

q(ω) =
ω

c

√
ω2 − ω2

p

2ω2 − ω2
p

(1.35)

This dispersion can be seen in Figure 1.12. The upper dispersion line (solid) rep-

resents dispersion of light in the solid while the lower dispersion line (solid) is the

surface plasmon polariton mode.

SWNTs can support surface plasmons. However, it is not only metallic SWNTs

that exhibit surface plasmon resonances, but doped semiconducting SWNTs exhibit

them as well. Figure 1.13 shows attenuation spectra (− log10 T ) for enriched samples

of semiconducting and metallic SWNTs [15]. Their data shows a broad peak across

the THz frequency range. One explanation for this THz peak was that it was caused

by the van Hove singularity coming from a curvature induced band gap. On a flat

sheet of graphene, the π-orbitals are orthogonal to the in-plane σ-orbitals. Because

they are orthogonal, there are no overlaps between them and we can treat the π-

orbitals by themselves in the TB approximation, as we did earlier in our derivation

of the TB method for graphene. However, when the sheet of graphene is rolled

into a SWNT, curvature effects become significant - especially for smaller diameter

SWNTs. The curvature of the SWNT leads to a hybridization of the π- and σ-bonds

and can alter the band structure of the SWNT. For the case of metallic SWNTs,

as shown in Figure 1.5 for a metallic armchair SWNT and Figure 1.7 for a metallic

zigzag SWNT, without curvature effects, there is no band gap because there exists a

degeneracy between the conduction and valence bands. Including curvature effects
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Figure 1.12: Plasmon dispersion (solid lines) with ωp = 15 eV. Dashed lines indicate the
light line and the non-retarded surface plasmon frequency. The upper solid
line is the dispersion of light in the solid while the lower dispersion line is
the surface plasmon polariton mode [14].

can lead to a curvature induced band gap ranging from 1-100 meV in non-armchair

SWNTs [40, 41].

The results of [15] conclude that the THz peaks are not caused by the curvature

induced band gap [42, 43, 44, 45, 40, 46, 41], but instead by plasmon resonances,

quantized due to the finite length of the SWNT [47, 48, 49, 50, 51]. The reason for

seeing only a broad THz peak and not individual resonances is due to the variations

of SWNT lengths in experimental samples. Since plasmon resonances form standing

waves on the surface, they must obey the condition

Re(kp) =
nπ

L
(1.36)

where kp is the plasmon wave vector, L is the length of the SWNT, and n is an

integer. Plasmon resonances in SWNTs are heavily determined by the finite length

of the SWNT [52, 51]. Therefore, even two SWNTs of the same chirality can have

different plasmon resonances if their lengths are not equal. So even highly enriched

20



Figure 1.13: Attenuation spectra of both metallic and semiconducting SWNTs from THz
to UV. A broad THz peak is observed in both samples indicating plasmon
resonances [15].

samples like those in [15] will exhibit a broad THz peak rather than distinguishable

resonances due to the length differences in the SWNTs.

1.3.1 Energy Transfer

Surface plasmon resonances can influence energy transfer rates to and from the

SWNT in both the Förster resonance energy transfer (FRET) mechanism [53] as

well as in the Dexter mechanism [54]. The FRET mechanism is a resonant dipole-

dipole interaction between two objects. The rate of energy transfer in the FRET

mechanism from a donor A to an acceptor B is given by [55]

WAB =
9κ2c4

8πτAR6

∫
FA(ω)σB(ω)

dω

ω4n4(ω)
(1.37)

where κ is an orientational factor describing the alignment of the dipole moments

between A and B, τA is the radiative lifetime of the donor A, R is the distance
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between donor and acceptor, FA(ω) is the emission spectrum of the donor, σB(ω)

is the absorption spectrum of the acceptor, and n(ω) is the refractive index of the

medium. The integral over the spectral shapes calculates the amount of spectral

overlap between the two systems. In order for FRET to occur, there must be a

significant spectral overlap between the donor and acceptor, and the donor and

acceptor must be in close proximity to each other given by the 1/R6 dependence

on the distance between them. The 1/R6 dependence comes from the fluctuation

interaction of two point dipoles. The fields of the dipoles drop off as 1/R3 and

the interaction goes as the square of the fields giving the well known 1/R6 distance

dependence.

The Dexter mechanism goes beyond the limitations of the Förster model. While

the FRET mechanism is only valid for dipole-dipole (D-D) interactions, Dexter the-

ory incorporates quadrupole (Q) interactions such as D-Q, Q-D, and Q-Q transitions.

Whereas FRET is used to calculate the energy transfer between optically allowed

states (transitions that have a nonzero dipole moment), Dexter theory can be used

to calculate the energy transfer between states that may not be optically active (no

transition dipole moment but they may have nonzero quadrupole moments).

Molecules near solid state particles with plasmon resonances were theoretically

calculated to have accelerated rates of energy transfer if the molecule’s transition

frequency was in resonance with the plasmon frequency [56, 57, 58]. It was cal-

culated that in the presence of a metallic nanoparticle with a plasmon resonance,

the FRET transfer rate obtains an additional amplitude factor, A(ω), in the spec-

tral overlap integral which gives the enhancement of the energy transfer rates [56].

This has also been measured experimentally with fluorophore molecules embedded

in a silica shell around a core nanoparticle of gold or silver [59]. Also, the effect

of nanoparticle concentration on the rate of energy transfer has been experimen-

tally measured [60]. They were able to measure enhancement of energy transfer

between quantum dots when mediated by gold nanoparticles. However, at higher

concentrations of nanoparticles, they observed quenching of emission despite faster

energy transfer rates due to a competition between the energy transfer and gold

nanoparticle quenching effects [61].
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1.4 Rare Earth Ions

Rare Earth Ions (REIs) are members of the lanthanide series on the periodic table.

They are primarily trivalent, meaning they have a maximum +3 charge (Ln3+).

REIs have excellent photoluminescent properties [62, 63] and many useful applica-

tions including lighting and LEDs [62, 64, 65, 66, 67], solar cells [68, 69, 70, 71],

temperature sensors [72], optical sensors [73], medical diagnostics and biological

imaging [74, 75]. Terbium (Tb) and Europium (Eu) have also been used to per-

form confocal imaging of proteins [62, 76, 77]. Recently, REIs have been shown

to form complexes with DNA functionalized SWNTs in solution [6]. Energy trans-

fer between the systems was measured by observation of a shortening of the decay

time of the REI. This provides evidence that SWNT/REI complexes have potential

applications in the area of biosensing.

1.4.1 Judd-Ofelt Theory

In 1962, Brian Judd [78] and George Ofelt [79] independently published papers on

the intensities of optical transitions in rare earth ions. At the time, neither knew

of the other’s work and the two papers were published in different journals within

weeks of each other. Today, we refer to the theory of optical transitions in rare earth

ions as Judd-Ofelt theory. The introduction of their theory was a breakthrough for

rare earth spectroscopy in 1962 and continues to be a centerpiece of the work done

in that field today.

To understand the basics of Judd-Ofelt theory, we begin with the free ion Hamil-

tonian [80],

HF = − ~2

2m

N∑
i=1

∇2
i −

N∑
i=1

Ze2

ri
+

N∑
i<j

Ze2

rij
+

N∑
i=1

ξ(ri)(si · li) (1.38)

The first term is the sum of the kinetic energies of the electrons of a 4f ion, the

second term is the attractive Coulomb potential of all the electrons in the field of

the nucleus, the third term is the repulsive Coulomb interaction between pairs of
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electrons, and the final term is the spin-orbit interaction. In the central field ap-

proximation, each electron is considered to be moving independently in the field

of the nucleus and a spherically averaged potential of all the other electrons. The

Coulomb interaction produces different SL terms with different energies, but is in-

dependent of the total angular momentum J. The spin-orbit interaction allows for

coupling between states of different SL and therefore depends on J. This means that

the Coulomb interaction removes the degeneracy in S and L, and the spin-orbit in-

teraction removes the degeneracy in J. The degeneracy in mJ remains and can only

be lifted by a crystal field.

In the free ion, there is spherical symmetry and each level is then reduced to

2J+1 degeneracy. When the ion is placed into a crystal environment, the spherical

symmetry is destroyed and each level splits due to the crystal field. The perturbed

free ion Hamiltonian for an ion in a crystal or solution is

H = HF + VCF (1.39)

where VCF is the perturbation Hamiltonian produced by the crystal environment

surrounding the ion. The eigenfunctions of the free ion Hamiltonian possess spherical

symmetry and can be expressed in terms of spherical harmonics. Therefore V can

be expanded in terms of spherical harmonics,

VCF =
∑
kq

Akq
∑
i

rki Y
∗
kq(θi, φi) (1.40)

where the summation over i involves all electrons of the ion of interest. The Akq

are structural parameters in the static crystal field expansion. They depend on the

crystal host and can be calculated in a point charge lattice sum using crystallo-

graphic data and charges of the host lattice. The point charge model assumes that

the charges of the host lattice are all point charges. The Akq are given by,

Akq = −qe
∑
i

ZiYkq(θi, φi)

Rk+1
i

(1.41)

where qe is the electronic charge and Zi is the size of the charge at position Ri

corresponding to the surrounding atoms comprising the crystal.
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The Judd-Ofelt theory is based on the static, free-ion, and single configuration

approximations. In the static model, the central ion is affected by the surrounding

host ions via a static electric field - the crystal field. In the free-ion model, the

host environment provides the static crystal field and it is treated as a perturbation

on the free-ion Hamiltonian. In the single configuration model, the interaction of

electrons between configurations is neglected. The Judd-Ofelt theory describes the

intensities of lanthanide transitions in solids and solutions. The utility of the theory

is that it provides a theoretical expression for the linestrength, given by

SED(J ; J ′) =
∑

λ=2,4,6

Ωλ

∣∣∣〈f 2[SL]J
∣∣∣∣∣∣U(λ)

∣∣∣∣∣∣ fn[S ′L′]J ′
〉∣∣∣2 (1.42)

where the Ωλ are the Judd-Ofelt parameters. The terms in the brackets are dou-

bly reduced matrix elements for intermediate coupling. The intermediate coupling

regime refers to the situation when the mutual Coulomb repulsion interaction be-

tween 4f electrons is of the same order of magnitude as the spin-orbit coupling.

This is incorporated by expanding the wave functions of the 4f states in a linear

combination of Russel-Saunders, or LS coupled states. The coupling coefficients

are found by diagonalizing the combined electrostatic, spin-orbit, and configuration

interaction energy matrices to obtain the full intermediate coupled wave functions

|fn[SL]J〉.
The matrix elements

∣∣∣〈f 2[SL]J
∣∣∣∣∣∣U(λ)

∣∣∣∣∣∣ fn[S ′L′]J ′
〉∣∣∣2 are integrals of the dipole

operator between the upper and lower wave functions of the transition, where inte-

gration takes place over the volume of the atom. The U(λ) in Equation (1.42) are

the irreducible tensor forms of the dipole operator. During the transition, the atom

can be considered an electric dipole oscillating at some frequency whose amplitude

is proportional to the value of this matrix element. It is the interaction of this

dipole moment with the electric field of the electromagnetic wave that induces the

transition.

In free ions, the electric dipole (ED) transitions within the 4f shell are for-

bidden. This is due to the fact that the total parity for an electron system is

P = (−1)l1+l2+...+ln , where l is the angular quantum number. Regardless of the

number of electrons, all states in the 4f shell always have a definite parity (either
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+1 for an odd number of electrons or -1 for an even number). Since the dipole op-

erator is odd under reflection, the ED transitions between 4f states are forbidden.

However, these ED transitions can be forced if opposite parity states from higher

lying configurations outside the 4f shell are mixed into the upper state. This is

possible when the ion is placed in a noncentrosymmetric perturbing field such as

in a crystal lattice or in solution. This can not happen in a central field because

the Hamiltonian is invariant under coordinate inversion and the states will retain

definite parity. The odd order parts of the crystal field, expanded in a series of

spherical harmonics, perturb the system and produce mixed parity states in which

dipole transitions are allowed. This is the starting point of the Judd-Ofelt theory.

From the theory, we can derive an expression for the oscillator strength

f =
8π2mc

3hλ̄(2J + 1)
n

(
n2 + 2

3n

)2 ∑
λ=2,4,6

Ωλ

∣∣∣〈ϕa ∣∣∣∣∣∣U(λ)
∣∣∣∣∣∣ϕb〉∣∣∣2 (1.43)

where m is the mass of the electron, c is the speed of light, h is the Planck constant,

J is the total angular momentum quantum number, and n is the refractive index of

the medium. The (2J + 1) term is a degeneracy factor and the term with the index

of refraction, n, is part of the Onsager-Lorentz correction factor for the refractive

index. The summation over λ is known as the linestrength, which was presented

earlier in Equation (1.42).

Now, the transition probabilities A(J ; J ′) of all excited states can be calculated

from

A(J ; J ′) =
64π4e2

3h(2J + 1)λ̄3

[
n

(
n2 + 2

3

)2

SED + n2SMD

]
(1.44)

where n is the refractive index of the solid/solution, SED and SMD are the electric

and magnetic dipole linestrengths, and J ′ is the total angular momentum of the

upper excited state. The ED linestrength is calculated from Equation (1.42). Table

1.3 show the selection rules that the electric dipole, magnetic dipole, and electric

quadrupole transitions must satisfy.

Once the transition probabilities are known, we can then calculate the radiative
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S L J (no 0→ 0) Parity
ED ∆S = 0 ∆L ≤ 6 ∆J ≤ 6 Opposite

∆J = 2, 4, 6 (J or J ′ = 0)
MD ∆S = 0 ∆L = 0 ∆J = 0,±1 Same
EQ ∆S = 0 ∆L = 0,±1,±2 ∆J = 0,±1,±2 Same

Table 1.3: Selection rules for JO theory.

lifetime, τr, and the branching ratio, β

1

τr
=
∑
J

A(J ; J ′) (1.45)

βJJ ′ =
A(J ; J ′)∑
J

A(J ; J ′)
(1.46)

It is possible to calculate the Judd-Ofelt parameters, Ωλ, ab-initio, but it requires

accurate values of radial integrals and crystal field parameters which are not known

to a high level of precision. Usually, the Judd-Ofelt parameters are treated as a set of

phenomenological parameters to be determined from fitting experimental absorption

measurements [2, 5, 81].

Carnall performed these ab-initio calculations of the energy levels of trivalent

lanthanides [2]. He used an approximate model which included the effective inter-

actions that reproduced the observed structure,

E =
6∑

k=0

F k(nf, nf)fk + ξ4fASO + ECI + ECF (1.47)

where the sum over k is for even values, fk and ASO represent the angular parts of

the electrostatic and spin-orbit interactions respectively, the F k are Slater integrals:

F 2 = 225F2, F 4 = 1089F4, F 6 = 184041/25F6 representing the purely electrostatic

interaction between the 4f electrons, and ξ4f is the spin-orbit coupling constant.

ECI represents the two-body and three-body effective operators to account for the
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effects of configuration mixing, and ECF is the crystal (or ligand) field interaction

term.

The term ECI in Equation (1.47) has included the effects of configuration in-

teraction as expressed in the Trees correction αL(L + 1), and the parameterized

Casimir operators βG(G2) and γG(G7). The additional terms represent those ef-

fects of configuration interaction that can be accounted for by two-body effective

operators that do not transform as the fk in Equation (1.47). For configurations of

three or more equivalent f-electrons, the three particle operators of Judd [82], T iti

(i = 2, 3, 4, 6, 7, 8) where T i are the parameters and ti are the operators, have been

included to account for the perturbing influence of those configurations that differ

from fN in the quantum numbers of a single electron. The effects represented by

ECI are not small and may shift the energies of individual terms by several hundred

wavenumbers. The parameters used in Carnall’s calculations are shown in Table 1.4.

Table 1.5 shows the calculated radiative lifetimes of Eu and Tb. Table 1.6 shows

how the intensities, energies, and lifetimes change when Tb and Eu are in H2O

compared to D2O. Table 1.7 show calculated and experimentally measured energy

level assignments for Tb in water.

F 2 F 4 F 6 ξ4f α β γ
Eu3+ 83162 61245 41526 1326.0 25.336 -580.25 1155.7
Tb3+ 90358 66213 44262 1709.5 20.131 -370.21 1255.9

Table 1.4: Energy level parameter values calculated for the R3+ aquo ions in cm−1 [2].
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Excited Eu Tb
State 5D0

5D4

Energy of Excited State (cm−1) 17277 20500
τR(ψJ) (msec) 2.4 2.3

Table 1.5: Calculated radiative lifetimes of excited states of R3+ (aquo) [2].

ID/IH
a ∆E b (cm−1) τH2O

c (msec) τD2O
c (msec)

Tb3+ 7.8± 0.8 14700 0.39 (0.48)d 3.3 (4.0)d

Eu3+ 18.0± 1.8 12300 0.10 (0.12)d 1.9 (4.0)d

Table 1.6: Fluorescence Intensities and Lifetimes of Lanthanide excited states in H2O
and D2O [2].
aSolutions were 0.1M R(NO3)3 in H2O or D2O, and the intensity of fluores-
cence in D2O was normalized to unity in H2O in each case.
b∆E is the difference in energy between the excited (resonance) level and the
next lower energy level.
cThe results are from [3] except as indicated.
dFrom [4]

S’L’J’ Eexpt (cm−1) Ecalc (cm−1) ∆E (cm−1)
7F6 85 74 11
7F5 2100 2112 -12
7F4 3356 3370 -14
7F3 4400 4344 56
7F2 5038 5028 10
7F1 5440 5481 -41
7F0 5700 5703 -3
5D4 20500 20545 -45
5D3 – 26336 –

Table 1.7: Energy level assignments for Tb3+ (aquo) [5].
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Chapter 2

Excitons in SWNTs

In the previous chapter, we discussed the single-particle excitation of SWNTs. Then,

we introduced excitons and how they dominate the optical spectra as well as some

basic properties of SWNT excitons. In this chapter, we will go into more detail

about what research has been conducted on SWNT excitons both experimentally

and theoretically. Then, we derive for ourselves the Bethe-Salpeter equation for

SWNT excitons.

2.1 Experimental Work

Schöppler, et al. used fluorescence tagging along with atomic force microscopy

(AFM) measurements to measure the molar extinction coefficient of SWNTs which

is directly related to the oscillator strength per carbon atom [37]. Malapanis, et

al. used SWNTs as p-n diodes and performed photoconductivity measurements to

extract the optical cross section and oscillator strengths of the E11 and E22 tran-

sitions of SWNTs [83]. Streit, et al. were able to directly count the number of

SWNTs in a known sample volume using short-wave IR fluorescence microscopy

[7]. They were able to very accurately measure the absorption cross sections per

carbon atom for multiple chiralities of SWNTs. Wang, et al. were able to experi-

mentally show the existence of excitons in metallic SWNTs [84]. They showed that

the exciton binding energies of metallic SWNTs of approximately 50 meV exceeds
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that of semiconducting SWNT excitons and agrees with ab initio theoretical pre-

dictions. Liu, et al. used a polarization based homodyne technique with broadband

super-continuum excitation to measure absorption cross sections for over 50 differ-

ent chirality SWNTs [85]. Dyatlova, et al. used PL/PLE spectroscopy to measure

transition energies of SWNTs in solution as well as in vertical forests of SWNTs

[86]. The purpose was to observe energy shifts of the transitions due to the different

dielectric screening of the two environments. Lefebvre, et al. measured the pho-

toluminescence of SWNTs suspended in air between pillars and encapsulated into

solvent micelles [87]. They measured a 28 meV blueshift of emission peaks for the

suspended SWNTs as compared to the encapsulated ones. They also measured a 16

meV blueshift of the absorption peaks at the second set of van Hove singularities.

Liu, et al. performed a systematic study to establish a structure property ’atlas’ of

over 200 SWNT structures [88]. They used simultaneous electron diffraction mea-

surements of the chiral indices and Rayleigh scattering measurements of the optical

resonances. Fantini, et al. studied the Raman spectra of 46 different SWNTs in solid

bundles or in aqueous solution [89]. They found the resonant window for SWNTs

in bundles are broadened and red-shifted as compared to the SWNTs in solution.

Also, the E22 energies were either red-shifted for S1 types ((2n + m)mod3 = 1) or

blue-shifted for S2 types ((2n+m)mod3 = 2). Cambré, et al. studied the influence

of water filling of SWNTs on their PL properties [90]. They measured a red-shift

of PL when the SWNTs are filled with water molecules due to the change in the

dielectric environment on the excitons. Recently in 2016, Mann and Hertel used

femtosecond time-resolved pump-probe spectroscopy to determine the electron-hole

correlation length, or exciton size, for (6,5) SWNTs [91]. They measured an exciton

size of 13 ± 1 nm for vacuum suspended SWNTs which is roughly six times larger

than previous measurements on the exciton size of (6,5) SWNTs [36, 37].
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2.2 Theoretical Considerations

The theoretical treatment of excitons in SWNTs that is most relevant to our ap-

proach was that of Dresselhaus [1, 92, 93]. In this solid-state approach, the exciton

wave function is expressed as a linear combination of single particle wave functions

at many wave vectors kc and kv of the conduction and valence bands, respectively.

The linear combination is needed because the exciton wave function is localized in

real space by the Coulomb interaction, so the wave vector of the electron or the

hole is no longer a good quantum number. The mixing of these wave vectors by the

Coulomb interaction is calculated from the Bethe-Salpeter equation. Also in this

method, the singular 1D Coulomb kernel is regularized by the phenomenological

Ohno potential, which will be discussed in more detail later.

The methods of Reich and Knorr use the carbon nanotube Bloch equations to

determine the excitonic absorption coefficient [10, 94, 95]. They derive the Bloch

equation for the microscopic polarizability from the Heisenberg equation of motion

where they can then calculate the absorption coefficient. They also use the regular-

ized Ohno potential instead of the singular Coulomb kernel.

A different approach from that of Dresselhaus and Reich is that of Ando [96,

97, 98]. He uses the k · p method to derive the excitonic optical spectra. The k · p
method is another solid state approximation method used to calculate the band

structure of materials where the Hamiltonian can be separated into a perturbative

term proportional to k · p.

Goupalov derived analytical expressions for the optical matrix elements of in-

terband transitions of SWNTs [99]. He also showed how to separate the Coulomb

interaction into its short range and long range parts [100, 101]. He used the Fourier

transform of the Coulomb potential, which gives Bessel functions, to show that only

a finite number of terms contributes to the infinite sum. Therefore, the full Coulomb

kernel can be used instead of using the regularized Ohno potential.

Miyauchi, et al. calculated the change in optical transition energy due to the

change in the dielectric constant of the surrounding medium [102]. They solved

the Bethe-Salpeter equation with the screened Ohno potential. Nugraha, et al.
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also studied the dielectric screening effect on exciton energy levels and were able to

present an analytical fit to their data [103]. Ando also studied the environmental

screening effects using the k ·p method [104]. He also studied the effects of screening

on cross polarized excitons where the incident light is polarized perpendicularly

to the tube axis [105]. He calculated that the intensity of the brightened dark

exciton normalized by the bright exciton is strongly enhanced by the environmental

screening.

Excitonic effects in metallic SWNTs were studied by Deslippe, et al. where they

calculated excitonic bound states with binding energies of around 50 meV [106].

Kinder, et al. calculated that SWNTs have a uniform peak optical conductivity

of 8 e2/h independent of radius, chiral angle, or whether the SWNT is metallic or

semiconducting [107].

2.3 Bethe-Salpeter Equation

Here, we derive the Bethe-Salpeter equation for SWNT excitons to obtain energy

dispersions as well as exciton wave functions for any chirality SWNT.

2.3.1 Electron Hamiltonian

We begin by using the Hamiltonian of an electron subsystem in a solid which is

defined as:

Ĥ =

∫
Ψ̂†(r)H0(r)Ψ̂(r)d3r +

1

2

∫
Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r)d3rd3r′ (2.1)

where

Ĥ0(r) = −~2∇2

2m
+ U(r) (2.2)

is the Hamiltonian of an electron moving in the periodic potential of the crystalline

lattice. Single electron energies and wavefunctions are defined by:

Ĥ0(r)Φkjσ(r) = εj(k)Φkjσ(r) (2.3)
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where j = c, v and σ denotes the spin index. Wave functions include both spin and

coordinate parts and can be separated as

Φkjσ(r) = φkj(r)χσ(s) (2.4)

where the spin function χσ(s) = δσs.

We can expand the the electron operators Ψ̂(r) and Ψ̂†(r) using the single elec-

tron wave functions (2.4) as a basis:

Ψ̂(r) =
∑
k,j,σ

ck,j,σΦkjσ(r), Ψ̂†(r) =
∑
k,j,σ

c†k,j,σΦ∗kjσ(r). (2.5)

By substituting the electron operator expansions into the electron Hamiltonian in

Equation (2.1) and rearranging terms for proper operator ordering, we obtain,

Ĥ =
∑
k,j,σ

εj(k)c†k,j,σck,j,σ

+
1

2

∑
{kj}σ1σ2

c†k1,j1,σ1
c†k2,j2,σ2

ck3,j3,σ2ck4,j4,σ1 〈k1j1; k2j2 |V |k3j3; k4j4〉 (2.6)

where

〈k1j1; k2j2 |V |k3j3; k4j4〉 =

∫
φ∗k1j1

(r)φ∗k2j2
(r′)V (|r− r′|)φk3j3(r

′)φk4j4(r)d3rd3r′.

(2.7)

is the matrix element of the potential. This term will be expanded in more detail

in the coming sections.

2.3.2 Redefining the Hamiltonian in terms of electrons and

holes

Let us define the electron operators in the conduction band as

akσ = ckcσ a†kσ = c†kcσ. (2.8)

Instead of operators for electrons in the valence band, we introduce hole operators

as follows:

dk(−σ) = c†kvσ d†k(−σ) = ckvσ. (2.9)
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Here, we have taken into account that the destruction of an electron with spin σ

creates a hole with spin −σ.

Anti-commutation relations for these Fermionic operators can be summarized as

follows:

{aα, aβ} = {a†α, a
†
β} = {dα, dβ} = {d†α, d

†
β} = 0

{aα, a†β} = {dα, d†β} = δαβ

{a†α, dβ} = {aα, d†β} = 0

{aα, dβ} = {a†α, d
†
β} = δαβ

Kinetic Energy term of the Hamiltonian Here, we examine the first term

of Equation (2.6) and express it in terms of the electron and hole operators

ĤKE =
∑
k,j,σ

εj(k)c†k,j,σck,j,σ =
∑
k,σ

εC(k)a†k,σak,σ −
∑
k,σ

εV (k)d†k,σdk,σ +
∑
k,σ

εV (k)

(2.10)

The first term is the kinetic energy of the electron in the conduction band, the

second term is the kinetic energy of the hole in the valence band, and the last term

in the expression is the energy of the filled valence band.

Electron-Electron Interaction Now we turn our attention to the second

term of the Hamiltonian in Equation (2.6). Taking into consideration that we have

only one electron in the conduction band and one hole in the valence band, the only

non-zero contributions to the interaction term

Ĥ int =
1

2

∑
{kj}σ1σ2

c†k1,j1,σ1
c†k2,j2,σ2

ck3,j3,σ2ck4,j4,σ1 〈k1j1; k2j2 |V |k3j3; k4j4〉 ,

are the following combinations:

1. j1 = j4 = C; j2 = j3 = V

2. j1 = j4 = V ; j2 = j3 = C

3. j1 = j3 = C; j2 = j4 = V
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4. j1 = j3 = V ; j2 = j4 = C

5. j1 = j2 = j3 = j4 = V .

We neglect the case where j1 = j2 = j3 = j4 = C because that corresponds to the

term a†k1,σ1
a†k2,σ2

ak3,σ2ak4,σ1 where there are two destruction operators standing to

the right. When this term acts on the state containing one conduction electron, we

get zero.

Now, let us rewrite the interaction terms by substituting the electron and hole

operators and rearrange terms for proper ordering.

Electron-Electron Interaction 1: j1 = j4 = C; j2 = j3 = V

Ĥ(1) =
1

2

∑
{kσ}

a†k1,σ1
dk2,(−σ2)d

†
k3,(−σ2)ak4,σ1 〈k1C; k2V |V |k3V ; k4C〉

=
∑

k1,k2,k4,σ1

a†k1,σ1
ak4,σ1 〈k1C; k2V |V |k2V ; k4C〉

−1

2

∑
{kσ}

a†k1,σ1
d†k3,(−σ2)dk2,(−σ2)ak4,σ1 〈k1C; k2V |V |k3V ; k4C〉 (2.11)

Electron-Electron Interaction 2: j1 = j4 = V ; j2 = j3 = C

Ĥ(2) =
1

2

∑
{kσ}

dk1,(−σ1)a
†
k2,σ2

ak3,σ2d
†
k4,(−σ1) 〈k1V ; k2C |V |k3C; k4V 〉

=
∑

k1,k2,k3,σ2

a†k2,σ2
ak3,σ2 〈k1C; k2V |V |k2V ; k1C〉

−1

2

∑
{kσ}

a†k2,σ2
d†k4,(−σ1)dk1,(−σ1)ak3,σ2 〈k1V ; k2C |V |k3C; k4V 〉

= Ĥ(1) (2.12)
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Electron-Electron Interaction 3: j1 = j3 = C; j2 = j4 = V

Ĥ(3) =
1

2

∑
{kσ}

a†k1,σ1
dk2,(−σ2)ak3,σ2d

†
k4,(−σ1) 〈k1C; k2V |V |k3C; k4V 〉

=
1

2

∑
k1,k2,k3,σ1

a†k1,σ1
ak3,σ1 〈k1C; k2V |V |k3C; k2V 〉

−1

2

∑
{kσ}

a†k1,σ1
d†k4,(−σ1)dk2,(−σ2)ak3,σ2 〈k1C; k2V |V |k3C; k4V 〉 (2.13)

Electron-Electron Interaction 4: j1 = j3 = V ; j2 = j4 = C

Ĥ(4) =
1

2

∑
{kσ}

dk1,(−σ1)a
†
k2,σ2

d†k3,(−σ2)ak4,σ1 〈k1V ; k2C |V |k3V ; k4C〉

=
1

2

∑
k1,k2,k4,σ1

a†k2,σ1
ak4,σ1 〈k1V ; k2C |V |k1V ; k4C〉

−1

2

∑
{kσ}

a†k2,σ2
d†k3,(−σ2)dk1,(−σ1)ak4,σ1 〈k1V ; k2C |V |k3V ; k4C〉

= Ĥ(3) (2.14)

Electron-Electron Interaction 5: j1 = j2 = j3 = j4 = V

Ĥ(5) =
1

2

∑
{kσ}

dk1,(−σ1)dk2,(−σ2)d
†
k3,(−σ2)d

†
k4,(−σ1) 〈k1V ; k2V |V |k3V ; k4V 〉

= −2
∑

k1,k2,k3,σ1

d†k3,(−σ1)dk1,(−σ1) 〈k1V ; k2V |V |k2V ; k3V 〉

+
∑

k1,k2,k3,σ1

d†k3,(−σ1)dk1,(−σ1) 〈k1V ; k2V |V |k3V ; k2V 〉 (2.15)

Here, we neglected constant terms and terms containing two destruction operators

to the right.

Total Hamiltonian: Combining the kinetic energy and interaction terms gives

us the final Hamiltonian of Equation (2.6) written in terms of the electron and hole
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operators:

Ĥ =
∑
k,σ

εC(k)a†k,σak,σ −
∑
k,σ

εV (k)d†k,σdk,σ +
∑
k,σ

εV (k)

+
∑

k1,k2,k3,σ1

a†k3σ1
ak1σ1 [2 〈k1C; k2V |V |k2V ; k3C〉 − 〈k1C; k2V |V |k3C; k2V 〉]

−
∑

k1,k2,k3,σ1

d†k3(−σ1)dk1(−σ1)

× [2 〈k1V ; k2V |V |k2V ; k3V 〉 − 〈k1V ; k2V |V |k3V ; k2V 〉]

+
∑
{k,σ}

a†k1,σ1
d†k4(−σ1)dk2,(−σ2)ak3,σ2 〈k1C; k2V |V |k3C; k4V 〉

−
∑
{k,σ}

a†k1,σ1
d†k3(−σ2)dk2,(−σ2)ak4,σ1 〈k1C; k2V |V |k3V ; k4C〉 (2.16)

2.3.3 Singlet and Triplet Wavefunctions

By taking the total spin σ = σ1 + σ2, we can separate the singlet wave function

operator (total spin = 0)

Ψs =
∑
ke,kh

Cke,kh

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
(2.17)

and the three triplet wavefunction operators (total spin =±1)

ΨT =



∑
ke,kh

Ake,kh
a†ke↑d

†
kh↑∑

ke,kh

Bke,kh

(
a†ke↑d

†
kh↓ − a

†
ke↓d

†
kh↑

)
∑
ke,kh

Dke,kh
a†ke↓d

†
kh↓

(2.18)

In order to obtain the Bethe-Salpeter equation, we need to act the total Hamil-

tonian in Equation (2.16) on the exciton wavefunction. First, the total Hamiltonian
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(2.16) will be rewritten in a more condensed manner.

Ĥ =
∑
k,σ

EC(k)a†k,σak,σ −
∑
k,σ

EV (k)d†k,σdk,σ

+
∑
{k,σ}

a†k1,σ1
d†k4(−σ1)dk2,(−σ2)ak3,σ2 〈k1C; k2V |V |k3C; k4V 〉

−
∑
{k,σ}

a†k1,σ1
d†k3(−σ2)dk2,(−σ2)ak4,σ1 〈k1C; k2V |V |k3V ; k4C〉 (2.19)

where we have combined terms with a†a and d†d, and

EC(k) = εC(k) +
∑

k1,k2,k3,σ1

[2 〈k1C; k2V |V |k2V ; k3C〉 − 〈k1C; k2V |V |k3C; k2V 〉]

(2.20)

EV (k) = −εV (k)−
∑

k1,k2,k3,σ1

[2 〈k1V ; k2V |V |k2V ; k3V 〉 − 〈k1V ; k2V |V |k3V ; k2V 〉]

(2.21)

are the self-energies of the electron and the hole. The electron self-energy is the

interaction of an electron in the conduction band with the full valence band. The

hole self-energy is the interaction of the hole with the valence band. The self-energy

terms renormalize the the single particle energies εC(k) and εV (k).

2.3.4 Singlet Bethe-Salpeter Equation

Acting the Hamiltonian in Equation (2.19) onto the singlet wave function in Equa-

tion (2.17), we obtain the singlet Bethe-Salpeter Equation:

(EC(ke) + EV (kh))Cke,kh
+
∑
k,k′

Ck′
e,k

′
h

[2 〈ke,k′h |V |k′e,kh〉 − 〈ke,k′h |V |kh,k′e〉]

= ΩCke,kh
(2.22)

where EC(ke) is the electron energy term, EV (kh) is the hole energy term, and

we have broken up the coulomb integral into two parts: the exchange term (first

term in square brackets) and the direct term (second expression in square brackets).

The direct term describes the scattering of an electron by a hole. The exchange
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interaction describes the interaction of an electron in the conduction band with a

hole in the valence band.

To show how we got to Equation (2.22), here were the steps taken. The electron

energy term was calculated by∑
kσ

EC(k)a†kσakσ
∑
ke,kh

Cke,kh

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
=
∑
ke,kh

Cke,kh

∑
kσ

EC(k)a†kσδke,k

(
δσ↑d

†
kh↓ + δσ↓d

†
kh↑

)
=
∑
ke,kh

Cke,kh
EC(ke)

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
.

The hole energy term was calculated by∑
kσ

EV (k)d†k(−σ)dk(−σ)

∑
ke,kh

Cke,kh

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
=
∑
ke,kh

Cke,kh

∑
kσ

EV (k)d†k(−σ)δkh,k

(
−δ(−σ)↓a

†
ke↑ − δ(−σ)↑a

†
ke↓

)
=
∑
ke,kh

Cke,kh
EV (kh)

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
.

The direct interaction was calculated by∑
{k,σ}

a†k1,σ1
d†k3(−σ2)dk2,(−σ2)ak4,σ1 〈k1C; k2V |V |k3V ; k4C〉

×
∑
ke,kh

Cke,kh

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
=
∑
ke,kh

Cke,kh

∑
{k,σ}

δk4,keδk2,kh
a†k1,σ1

d†k3(−σ2) (δσ1,↑δ−σ2,↓ + δσ1,↓δ−σ2,↑)

×〈k1C; k2V |V |k3V ; k4C〉

=
∑
ke,kh

Cke,kh

∑
k1,k3

(
a†k1↑d

†
k3↓ + a†k1↓d

†
k3↑

)
〈k1C; khV |V |k3V ; keC〉

=
∑
k′
e,k

′
h

Ck′
e,k

′
h

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
〈ke; k′h |V |kh; k′e〉 .
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The exchange interaction was calculated by∑
{k,σ}

a†k1,σ1
d†k4(−σ1)dk2,(−σ2)ak3,σ2 〈k1C; k2V |V |k3C; k4V 〉

×
∑
ke,kh

Cke,kh

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
=
∑
ke,kh

Cke,kh

∑
{k,σ}

δk3,keδk2,kh
a†k1,σ1

d†k4(−σ1) (δσ2,↑δ−σ2,↓ + δσ2,↓δ−σ2,↑)

×〈k1C; k2V |V |k3C; k4V 〉

= 2
∑
ke,kh

Cke,kh

∑
k1,k4,σ1

a†k1,σ1
d†k4(−σ1) 〈k1C; khV |V |keC; k4V 〉

= 2
∑
ke,kh

Cke,kh

∑
k1,k4

(
a†k1↑d

†
k4↓ + a†k1↓d

†
k4↑

)
〈k1C; khV |V |keC; k4V 〉

= 2
∑
k′
e,k

′
h

Ck′
e,k

′
h

(
a†ke↑d

†
kh↓ + a†ke↓d

†
kh↑

)
〈ke; k′h |V |k′e; kh〉 .

2.3.5 Matrix Elements of Bethe-Salpeter Equation

Here we use a simplified exciton wave function where we suppress the spin indices

and express the total singlet wave function as a linear combination of single particle

tight-binding wave functions

Ψ(re, rh) =
∑

µe,µh,qe,qh

C(µe, µh; qe, qh)ψµe,qe(re)ψ
∗
µh,qh

(rh) (2.23)

where C(µe, µh; qe, qh) are the wave function amplitudes to be determined. This

wave function comes from defining the exciton creation operator

B† =
∑

µe,µh,qe,qh

C(µe, µh; qe, qh)a
†
µe,qed

†
µh,qh

(2.24)

The wave function can then be derived from

Ψ(re, rh) =
〈
re, rh

∣∣B†∣∣ 0〉 (2.25)

where |0〉 is the excitonic ground state, i.e. the state where no excitons are present.
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Direct Coulomb

Using the wave function of Equation (2.23), we obtain an expression for the direct

Coulomb interaction term defined earlier,

〈ke,k′h |V |kh,k′e〉 =

∫
dr1dr2ψ

∗
ke

(r1)ψ∗k′
h
(r2)

e2

|r1 − r2|
ψkh

(r2)ψk′
e
(r1) (2.26)

where

ψk(r) =
1√
N

∑
j=A,B

Cj(k)
∑
Rj

eik·Rjφ(r−Rj). (2.27)

is the tight-binding Bloch function. Plugging this in yields:

〈ke,k′h |V |kh,k′e〉 =
∑
j1,Rj1

∑
j2,Rj2

∑
j3,Rj3

∑
j4,Rj4

C∗j1(ke)C
∗
j2

(k′h)Cj3(kh)Cj4(k
′
e)

×ei(−ke·Rj1
−k′

h·Rj2
+kh·Rj3

+k′
e·Rj4)

×
∫
dr1dr2φ

∗(r1 −Rj1)φ
∗(r2 −Rj2)

e2

|r1 − r2|
φ(r2 −Rj3)φ(r1 −Rj4)

≈ 1

N 2

∑
j1,Rj1

∑
j2,Rj2

C∗j1(ke)C
∗
j2

(k′h)Cj2(kh)Cj1(k
′
e)

×ei((k′
e−ke)Rj1

+(kh−k′
h)Rj2)

∫
dr1dr2 |φ(r1 −Rj1)|

2 e2

|r1 − r2|
|φ(r2 −Rj2)|

2

≈ 1

N 2

∑
j1,Rj1

∑
j2,Rj2

C∗j1(ke)C
∗
j2

(k′h)Cj2(kh)Cj1(k
′
e)

×ei((k′
e−ke)(Rj1

−Rj2
)+(k′

e−ke+kh−k′
h)Rj2)

×
∫
dr1dr2 |φ(r1 −Rj1)|

2 e2

|r1 − r2|
|φ(r2 −Rj2)|

2

≈
δk′

e−ke,k
′
h−kh

N
∑
j1

∑
j2

C∗j1(ke)C
∗
j2

(k′h)Cj2(kh)Cj1(k
′
e)
∑
Rj1

ei(k
′
e−ke)(Rj1

−rj2 )

×
∫
dr1dr2 |φ(r1 −Rj1)|

2 e2

|r1 − r2|
|φ(r2 −Rj2)|

2

≈
δk′

e−ke,k
′
h−kh

N
∑
j1

∑
j2

C∗j1(ke)C
∗
j2

(k′h)Cj2(kh)Cj1(k
′
e)

×
∑
Rj1

ei(k
′
e−ke)(Rj1

−rj2 )v (|Rj1 − rj2|) , (2.28)
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where

v (|Rj1 − rj2|) =
U√

(U/e2) |Rj1 − rj2|+ 1
. (2.29)

is the regularized Ohno potential [92, 108]. The reason for replacing the Coulomb

potential with the Ohno potential is to avoid the numerical difficulties associated

with the logarithmic divergence of the Coulomb potential. Instead of being infinite

at r1− r2 = 0, the Ohno potential approaches a finite value of U = 11.3 eV which is

the energy cost of putting two electrons at the same position for π orbitals. Here, rj2

are the coordinates of one A atom and one B atom on the carbon nanotube surface,

and

|Rj1 − rj2| =
√

(Zj1 − zj2)2 + d2 sin2((Φj1 − ϕj2)/2) (2.30)

The expression for the direct Coulomb interaction in Equation (2.28) can be further

simplified. It now takes the form,

〈µe, qe;µ′h, q′h |V |µh, qh;µ′e, q′e〉 =
δq′e−qe,q′h−qhδµ′e−µe,µ′h−µh

N
×
∑
j1

∑
j2

C∗j1(µe, qe)C
∗
j2

(µ′h, q
′
h)Cj2(µh, qh)Cj1(µ

′
e, q
′
e)

×uj1,j2(qe − q′e, µe − µ′e), (2.31)

where the following function is defined:

uj1,j2(q,m) =
∑
Rj1

e−iq(Zj1
−zj2 )e−im(Φj1

−ϕj2
)v (|Rj1 − rj2|) = u∗j1,j2(−q,−m) (2.32)

Exchange Coulomb

Likewise, using the wave function of Equation (2.23), we obtain an expression for the

exchange Coulomb interaction term defined earlier. The exchange Coulomb matrix
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element is given by

〈ke,k′h |V |k′e,kh〉 =

∫
dr1dr2ψ

∗
ke

(r1)ψ∗k′
h
(r2)

e2

|r1 − r2|
ψk′

e
(r2)ψkh

(r1)

=
1

N 2

∑
j1,Rj1

∑
j2,Rj2

∑
j3,Rj3

∑
j4,Rj4

C∗j1(ke)C
∗
j2

(k′h)Cj3(k
′
e)Cj4(kh)

×ei(−ke·Rj1
−k′

h·Rj2
+k′

e·Rj3
+kh·Rj4)

×
∫
dr1dr2φ

∗(r1 −Rj1)φ
∗(r2 −Rj2)

e2

|r1 − r2|
φ(r2 −Rj3)φ(r1 −Rj4)

≈ 1

N 2

∑
j1,Rj1

∑
j2,Rj2

C∗j1(ke)C
∗
j2

(k′h)Cj2(k
′
e)Cj1(kh)e

i((kh−ke)Rj1
+(k′

e−k′
h)Rj2)

×
∫
dr1dr2 |φ(r1 −Rj1)|

2 e2

|r1 − r2|
|φ(r2 −Rj2)|

2

≈ 1

N 2

∑
j1,Rj1

∑
j2,Rj2

C∗j1(ke)C
∗
j2

(k′h)Cj2(k
′
e)Cj1(kh)

×ei((kh−ke)(Rj1
−Rj2

)+(k′
e−k′

h−ke+kh)Rj2)v (|Rj1 −Rj2|)

≈
δk′

e−ke,k
′
h−kh

N
∑
j1,j2

C∗j1(ke)C
∗
j2

(k′h)Cj2(k
′
e)Cj1(kh)

×
∑
Rj1

ei(kh−ke)(Rj1
−rj2 )v (|Rj1 − rj2|) (2.33)

Again, the expression for the exchange Coulomb interaction can be simplified simi-

larly to the direct term. This gives,

〈µe, qe;µ′h, q′h |V |µ′e, q′e;µh, qh〉 =
δq′e−qe,q′h−qhδµ′e−µe,µ′h−µh

N
×
∑
j1

∑
j2

C∗j1(µe, qe)C
∗
j2

(µ′h, q
′
h)Cj2(µ

′
e, q
′
e)Cj1(µh, qh)uj1,j2(qe − qh, µe − µh)

(2.34)

Dielectric Function

We consider the dielectric screening effect in the random phase approximation

(RPA). We can express the screened Coulomb interaction as

w(q) =
v(q)

κε(q)
(2.35)

44



where v(q) is the unscreened Coulomb interaction, κ is a static dielectric constant for

the core states, σ bonds, and the surrounding environment, and ε(q) is the dielectric

function that describes screening from the π electrons. The reason for this choice is

as follows. The Coulomb interaction in a medium with static dielectric constant κ is

given as v(q)/κ. When we further consider the screening effect from the electrons,

the interaction v(q)/κ is further reduced under the RPA and is scaled by a dielectric

function 1/ε(q), so we get v(q)/κε(q). For this work, we include the screening effects

from the core states, σ bonds, and the surrounding environment in the dielectric

constant κ. Good agreement with experimental values is achieved when using κ = 2

[92]. The dielectric function, ε(q), in the static limit (ω → 0) describing the effects

of the polarization of the π bands and can be expressed as

ε(q) = 1 + v(q)Π(q) (2.36)

where

v(q) =
1

4N
∑
j1,j2

uj1,j2(q), (2.37)

Π(q) = −2
∑
k,a,a′

fk+q,a′ − fk,a
εk+q,a′ − εk,a

∣∣∣∣∫ Ψ∗k,a(r)e−iq·rΨk+q,a′(r)dr

∣∣∣∣2 (2.38)

and a, a′ = c, v. From here on, we assume that fk,c = 0 and fk,v = 1 meaning that

the conduction band is empty and the valence band is full. The polatization, Π, can

then be rewritten as,

Π(q) = 2
∑
k

1

εk+q,c + εk,c

(∣∣∣∣∫ Ψ∗k,c(r)e−iq·rΨk+q,v(r)dr

∣∣∣∣2
+

∣∣∣∣∫ Ψ∗k,v(r)e−iq·rΨk+q,c(r)dr

∣∣∣∣2
)

(2.39)
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where ∫
Ψ∗k,c(r)e−iq·rΨk+q,v(r)dr =

1

N
∑
j1,Rj1

∑
j2,Rj2

C∗j1,c(k)Cj2,v(k + q)e−ik·Rj1e−i(k+q)·Rj2

×
∫
φ∗(r−Rj1)e

−iq·rφ(r−Rj2)dr

≈
∑
j1,Rj1

∑
j2

C∗j1,c(k)Cj2,v(k + q)e−ik·Rj1e−i(k+q)·rj2

×
∫
φ∗(r−Rj1)e

−iq·rφ(r− rj2)dr

≈
∑
j

C∗j,c(k)Cj,v(k + q) (2.40)

Therefore,

Π(q) = 2
∑
k

1

εk+q,c − εk,c

∣∣∣∣∣∑
j

C∗j,c(k)Cj,v(k + q)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
j

C∗j,v(k)Cj,c(k + q)

∣∣∣∣∣
2


=
1

2

∑
k

1

εk+q,c + εk,c

(∣∣1− ei(ϕ(k+q)−ϕ(k))
∣∣2 +

∣∣1− ei(ϕ(k+q)−ϕ(k))
∣∣2)

=
∑
k

1

εk+q,c + εk,c

∣∣1− ei(ϕ(k+q)−ϕ(k))
∣∣2

= 4
∑
k

1

εk+q,c + εk,c
sin2

(
ϕ(k + q)− ϕ(k)

2

)
(2.41)

For our calculations, we will be using the following form for the dielectric function:

ε(q,m) = 1 + u(q,m)Π(q,m), (2.42)
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where

u(q,m) =
∑
j1,j2

uj1,j2(q,m), (2.43)

Π(q,m) =
1

N
∑
k,µ

1

εc(k + q,m+ µ) + εc(k, µ)
sin2

(
ϕ(k + q,m+ µ)− ϕ(k, µ)

2

)
(2.44)

Electron Self-Energy

Now, let us revisit the self-energy terms and express them in terms of the single

particle tight binding wave functions in Equation (2.23). We start with the electron

self-energy,

Σe(ke) =
∑
k′
h

〈kek′h |V |ke,k′h〉

=
∑
k′
h

∫
dr1dr2ψ

∗
ke

(r1)ψ∗k′
h
(r2)

e2

|r1 − r2|
ψke(r2)ψk′

h
(r1)

=
1

N
∑
j1,j2

C∗j1(ke)C
∗
j2

(k′h)Cj2(ke)Cj1(k
′
h)

×
∑
Rj1

ei(k
′
h−ke)(Rj1

−rj2 )v (|Rj1 − rj2 |) (2.45)

Like the direct and exchange terms, the electron self-energy can be rewritten as

Σe(µe, qe) =
∑
µ′h,q

′
h

∑
j1,j2

C∗j1(µe, qe)C
∗
j2

(µ′h, q
′
h)Cj2(µe, qe)Cj1(µ

′
h, q
′
h)uj1,j2(qe−q′h, µe−µ′h)

(2.46)
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Performing the sum over j1 and j2 gives four terms:

Σe,AA(µe, qe) =
1

4N
∑
µ′h,q

′
h

uAA(qe − q′h, µe − µ′h)

Σe,BB(µe, qe) =
1

4N
∑
µ′h,q

′
h

uBB(qe − q′h, µe − µ′h)

Σe,AB(µe, qe) = − 1

4N
∑
µ′h,q

′
h

ei(ϕ(µ′h,q
′
h)−ϕ(µe,qe))uAB(qe − q′h, µe − µ′h)

Σe,BA(µe, qe) = − 1

4N
∑
µ′h,q

′
h

ei(ϕ(µe,qe)−ϕ(µ′h,q
′
h))uBA(qe − q′h, µe − µ′h)

Hole Self-Energy

As we did for the electron self-energy, we express the hole self-energy in terms of

the single particle tight binding wave functions in Equation (2.23)

Σh(kh) =
∑
k′
h

〈khk′h |V |kh,k′h〉

=
∑
k′
h

∫
dr1dr2ψ

∗
kh

(r1)ψ∗k′
h
(r2)

e2

|r1 − r2|
ψkh

(r2)ψk′
h
(r1)

=
1

N
∑
j1,j2

C∗j1(kh)C
∗
j2

(k′h)Cj2(kh)Cj1(k
′
h)

×
∑
Rj1

ei(k
′
h−kh)(Rj1

−rj2 )v (|Rj1 − rj2|) (2.47)

This can be rewritten as

Σh(µh, qh) =
∑
µ′h,q

′
h

∑
j1,j2

C∗j1(µh, qh)C
∗
j2

(µ′h, q
′
h)Cj2(µh, qh)Cj1(µ

′
h, q
′
h)

×uj1,j2(qh − q′h, µh − µ′h) (2.48)
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Performing the sum over j1 and j2 again gives four terms:

Σh,AA(µh, qh) =
1

4N
∑
µ′h,q

′
h

uAA(qh − q′h, µh − µ′h)

Σh,BB(µh, qh) =
1

4N
∑
µ′h,q

′
h

uBB(qh − q′h, µh − µ′h)

Σh,AB(µh, qh) =
1

4N
∑
µ′h,q

′
h

ei(ϕ(µ′h,q
′
h)−ϕ(µh,qh))uAB(qh − q′h, µh − µ′h)

Σh,BA(µh, qh) =
1

4N
∑
µ′h,q

′
h

ei(ϕ(µh,qh)−ϕ(µ′h,q
′
h))uBA(qh − q′h, µh − µ′h)

2.3.6 Bright and Dark Excitons

Previously, we separated the singlet and triplet wave functions and derived the

Bethe-Salpeter equation for the singlet exciton which is responsible for the optical

absorption of SWNTs. However, even the singlet exciton has optically allowed and

disallowed states. We distinguish these states as bright (optically active) and dark

(optically disallowed) states. The stipulation of being optically allowed comes from

parity. If the states have a dipole moment, they are optically allowed. Hence, a

photon can excite an exciton to that state. If the state does not have a dipole

moment, a photon can not promote an exciton to that level. Calculations of the

dipole moments of the bright and dark excitons will be derived later in Section

2.3.8. To distinguish the bright and dark states, we make a change of variables:

qe = q +Q/2 and qh = q −Q/2. For the bright (optically active) exciton:

[Σc(µ, q +Q/2) + Σv(µ, q −Q/2)]AQµ,B(q) +
∑
q′

AQµ,B(q′) [4Vx(µ, q,Q;µ, q′)

−(Vd(µ, q,Q;µ, q′) + Vd(µ, q,Q;−µ,−q′))] = EB(Q)AQµ,B(q) (2.49)

and for the dark (optically inactive) exciton:

[Σc(µ, q +Q/2) + Σv(µ, q −Q/2)]AQµ,D(q)

+
∑
q′

AQµ,D(q′) [−(Vd(µ, q,Q;µ, q′) + Vd(µ, q,Q;−µ,−q′))]

= ED(Q)AQµ,D(q) (2.50)
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where the exciton wave function for the bright and dark excitons is given by

Φα,Q(re, rh) =
∑
q

AQµ,α(q)
(
Ψµ,q+Q/2,e(re)Ψ

∗
µ,q−Q/2,h(rh)

+(−1)αΨ−µ,−q+Q/2,e(re)Ψ
∗
−µ,−q−Q/2,h(rh)

)
(2.51)

where α = 0, 1 for bright/dark.

Direct Coulomb, µe = µh = µ′e = µ′h

Here, we rewrite the expressions for the direct Coulomb interaction with our change

of variables,

Vd(µ, q,Q;µ, q′) = 〈µ, qe;µ, q′h |V |µ, qh;µ, q′e〉

=
1

N
∑
j1

∑
j2

C∗j1,e(µ, q +Q/2)C∗j2,h(µ, q −Q/2)Cj2,h(µ, q −Q/2)

×Cj1,e(µ, q +Q/2)uj1,j2(q − q, 0).

and,

VAA(µ, q,Q;µ, q′) =
1

4N
ei(ϕ(µ,q′+Q/2)+ϕ(µ,q−Q/2)−ϕ(µ,q′−Q/2)−ϕ(µ,q+Q/2))

×uAA(q − q′, 0),

VBB(µ, q,Q;µ, q′) =
1

4N
uBB(q − q′, 0),

VAB(µ, q,Q;µ, q′) =
1

4N
ei(ϕ(µ,q′+Q/2)−ϕ(µ,q+Q/2))uAB(q − q′, 0),

VBA(µ, q,Q;µ, q′) =
1

4N
ei(ϕ(µ,q−Q/2)−ϕ(µ,q′−Q/2))uBA(q − q′, 0).

Direct Interband Coulomb, µe = µh = µ, µ′e = µ′h = −µ

Vd(µ, q,Q;−µ,−q′) =
1

N
∑
j1

∑
j2

C∗j1,e(µ, q +Q/2)C∗j2,h(−µ,−q
′ −Q/2)

×Cj2,h(µ, q −Q/2)Cj1,e(−µ,−q′ +Q/2)uj1,j2(q + q′, 2µ).
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VAA(µ, q,Q;−µ,−q′) =
1

4N
ei(ϕ(µ,−q′+Q/2)+ϕ(µ,q−Q/2)−ϕ(µ,−q′−Q/2)−ϕ(µ,q+Q/2))

×uAA(q + q′, 2µ),

VBB(µ, q,Q;−µ,−q′) =
1

4N
uBB(q + q′, 2µ),

VAB(µ, q,Q;−µ,−q′) =
1

4N
ei(ϕ(µ,−q′+Q/2)−ϕ(µ,q+Q/2))uAB(q + q′, 2µ),

VBA(µ, q,Q;−µ,−q′) =
1

4N
ei(ϕ(µ,q−Q/2)−ϕ(µ,−q′−Q/2))uBA(q + q′, 2µ).

Exchange Coulomb, µe = µh = µ′e = µ′h

Vx(µ, q,Q;µ, q′) = 〈µ, qe;µ, q′h |V |µ, q′e;µ, qh〉

=
1

N
∑
j1

∑
j2

C∗j1,e(µ, q +Q/2)C∗j2,h(µ, q
′ −Q/2)Cj2,e(µ, q

′ +Q/2)

×Cj1,h(µ, q −Q/2)uj1,j2(Q, 0).

VAA(µ, q,Q;µ, q′) =
1

4N
ei(ϕ(µ,q′+Q/2)+ϕ(µ,q−Q/2)−ϕ(µ,q′−Q/2)−ϕ(µ,q+Q/2))uAA(Q, 0),

VBB(µ, q,Q;µ, q′) =
1

4N
uBB(Q, 0),

VAB(µ, q,Q;µ, q′) = − 1

4N
ei(ϕ(µ,q−Q/2)−ϕ(µ,q+Q/2))uAB(Q, 0),

VBA(µ, q,Q;µ, q′) = − 1

4N
ei(ϕ(µ,q′+Q/2)−ϕ(µ,q′−Q/2))uBA(Q, 0).

2.3.7 Exciton Wave Function

We expand the bright and dark exciton wave function in terms of the single particle

wave functions.

Φ
(n)
α,Q(re, rh) =

∑
q

A
(n)
α,Q(q)

(
Ψµ,q+Q/2,e(re)Ψ

∗
µ,q−Q/2,h(rh)

+(−1)αΨ−µ,−q+Q/2,e(re)Ψ
∗
−µ,−q−Q/2,h(rh)

)
(2.52)
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=
1

N
∑
jj′

∑
Rj ,Rj′

eiQ(zj+zj′ )/2
∑
q

Anα,Q(q)

×
[
Cj,e(µ, q +Q/2)C∗j′,v(µ, q −Q/2)eiq(zj−zj′ )eiµ(ϕj−ϕj′ )

+ (−1)αCj,e(−µ,−q +Q/2)C∗j′,v(−µ,−q −Q/2)e−iq(zj−zj′ )e−iµ(ϕj−ϕj′ )
]

×φ(re −Rj)φ
∗(rh −Rj′)

=
1

N
∑
jj′

∑
Rj ,Rj′

eiQ(zj+zj′ )/2
∑
q

Anα,Q(q)

×
[
Cj,e(µ, q +Q/2)C∗j′,v(µ, q −Q/2)eiq(zj−zj′ )eiµ(ϕj−ϕj′ )

+ (−1)αC∗j,e(µ, q −Q/2)Cj′,v(µ, q +Q/2)e−iq(zj−zj′ )e−iµ(ϕj−ϕj′ )
]

×φ(re −Rj)φ
∗(rh −Rj′)

(2.53)

where α = 0, 1 for bright/dark. The relation Cj,s(µ, q) = C∗j,s(−µ,−q) has been

applied to simplify the expression in the second part. In the case where Q = 0 we

see that

Φ
(n)
α,0(re, rh) =

∑
q

A
(n)
α,0(q)

(
Ψµ,q,e(re)Ψ

∗
µ,q,h(rh) + (−1)αΨ−µ,−q,e(re)Ψ

∗
−µ,−q,h(rh)

)
=

1

N
∑
jj′

∑
Rj ,Rj′

∑
q

Anα,0(q)
[
Cj,e(µ, q)C

∗
j′,v(µ, q)e

iq(zj−zj′ )eiµ(ϕj−ϕj′ )

+ (−1)αC∗j,e(µ, q)Cj′,v(µ, q)e
−iq(zj−zj′ )e−iµ(ϕj−ϕj′ )

]
φ(re −Rj)φ

∗(rh −Rj′)

(2.54)

This can be further simplified by separating the bright and dark wave functions

and exploiting the fact that the two terms in the brackets are complex conjugates

of one another which leaves:

Φ
(n)
B,0(re, rh) =

2

N
∑
jj′

∑
Rj ,Rj′

∑
q

AnB,0(q)Re
[
Cj,e(µ, q)C

∗
j′,v(µ, q)e

iq(zj−zj′ )eiµ(ϕj−ϕj′ )
]

×φ(re −Rj)φ
∗(rh −Rj′) (2.55)
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and

Φ
(n)
D,0(re, rh) =

2i

N
∑
jj′

∑
Rj ,Rj′

∑
q

AnD,0(q)Im
[
Cj,e(µ, q)C

∗
j′,v(µ, q)e

iq(zj−zj′ )eiµ(ϕj−ϕj′ )
]

×φ(re −Rj)φ
∗(rh −Rj′) (2.56)

2.3.8 Exciton Dipole Matrix Elements

Here, we derive the dipole moments for the bright and dark excitons. The dipole

moment operator in second quantization can be written as

p̂ =
∑

µ′,q′,µ′′,q′′

a†µ′,q′d
†
µ′′,q′′ 〈c, µ

′, q′ |p| v, µ′′, q′′〉 . (2.57)

The exciton wave function in Equation (2.52) can be written in terms of electron

and hole creation/annhilation operators:

Φn
α,Q =

∑
q

Anα,Q(q)
[
a†µ,q+Q/2d

†
µ,q−Q/2 + (−1)αa†−µ,−q+Q/2d

†
−µ,−q−Q/2

]
. (2.58)

where α = 0, 1 for the bright (B) and dark (D) excitons. We can evaluate the

transition dipole matrix element of an excitonic state with the ground state (state

with zero excitons):〈
Φn
α,Q |p̂| 0

〉
=

∑
q

Anα,Q(q)
∑

µ′,q′,µ′′,q′′

[〈
0
∣∣∣dµ,q−Q/2aµ,q+Q/2a†µ′,q′d†µ′′,q′′∣∣∣ 0〉

×〈c, µ′, q′ |p| v, µ′′, q′′〉

+(−1)α
〈

0
∣∣∣d−µ,−q−Q/2a−µ,−q+Q/2a†µ′,q′d†µ′′,q′′∣∣∣ 0〉

×〈c, µ′, q′ |p| v, µ′′, q′′〉] .

Using the anti-commutation rules derived earlier for the electron and hole operators,

the operators can be rearranged into normal ordering to obtain the result〈
Φn
α,Q |p̂| 0

〉
=

∑
q

Anα,Q(q) [〈c, µ, q +Q/2 |p| v, µ, q −Q/2〉

+(−1)α 〈c,−µ,−q +Q/2 |p| v,−µ,−q −Q/2〉] (2.59)
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We can define:

p1(Q) = 〈c, µ, q +Q/2 |p| v, µ, q −Q/2〉 =

∫
dr Ψ∗c,µ,q+Q/2(r) r Ψv,µ,q−Q/2(r)

=
1

N

∑
j,Rj

C∗c,j(µ, q +Q/2)Cv,j(µ, q −Q/2) eiQzjRj

p2(Q) = 〈c,−µ,−q +Q/2 |p| v,−µ,−q −Q/2〉

=

∫
dr Ψ∗c,−µ,−q+Q/2(r) r Ψv,−µ,−q−Q/2(r)

=
1

N

∑
j,Rj

C∗c,j(−µ,−q +Q/2)Cv,j(−µ,−q −Q/2) eiQzjRj

where the definitions for the single particle wavefunctions were used. We can take

the relations for the TB coefficients into account:

CB,v(µ, q) = CB,c(µ, q) =
1√
2

(2.60)

CA,v(µ, q) = −CA,c(µ, q) =
eiφ(µ,q)

√
2

(2.61)

φ(µ, q) = −φ(−µ,−q) (2.62)

to find that

p1(Q) = p2(Q) =
1

2N

[
−
∑
RA

ei[φ(µ,q−Q/2)−φ(µ,q+Q/2)]e−iQzARA +
∑
RB

e−iQzBRB

]
.

(2.63)

Plugging this back into the expression for the transition dipole matrix element gives

the final results:〈
Φn
B,Q |p̂| 0

〉
=

1

N

∑
q

AnB,Q(q)

×

[
−
∑
RA

ei[φ(µ,q−Q/2)−φ(µ,q+Q/2)]e−iQzARA +
∑
RB

e−iQzBRB

]
〈
Φn
D,Q |p̂| 0

〉
= 0. (2.64)

We can now see that the bright exciton has a dipole moment which allows it to be

optically active. However, the dark exciton has no dipole moment so it can not be

accessed by single photon excitation.
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2.3.9 Bound Exciton

Up to this point, we have considered a free exciton on the SWNT surface. However,

when SWNTs are placed in a complex environment such as in solution with water

molecules and ions, the potential felt by the exciton changes due to the change in

the dielectric environment. Because of this change in potential, excitons can become

trapped, or bound, to the site where the perturbation exists. Such a perturbation

could be caused, for example, by trivalent rare earth ions. In this section, we include

the potential of an ion placed in the vicinity of the SWNT and derive expressions

to calculate the bound states that form due to the charged impurity [109].

We start with the exciton wave function

Φ
(n)
α,Q(re, rh) =

∑
q

A
(n)
α,Q(q)

(
Ψµ,q+Q/2,e(re)Ψ

∗
µ,q−Q/2,h(rh)

+(−1)αΨ−µ,−q+Q/2,e(re)Ψ
∗
−µ,−q−Q/2,h(rh)

)
, (2.65)

where α = 0, 1 for bright and dark states, respectively.

Let us consider an impurity with total charge Ze. The Schrödinger equation for

the exciton in the presence of the impurity is

(HBS +Hint) Ψ(ξ)(re, rh) = E(ξ)Ψ(ξ)(re, rh), (2.66)

where the interaction Hamiltonian is given by

Hint(re, rh) = Hh(rh) +He(re) =
Ze2

|rh − rp|
− Ze2

|re − rp|
. (2.67)

where the first term is the repulsive hole-impurity Coulomb term and the second

term is the attractive electron-impurity Coulomb term (the impurity charge, Z, is

positive). We look for a solution which is a linear combination of exciton wave

functions:

Ψ(ξ)(re, rh) =
∑

n′,α′,Q′

U
(ξ)
n′,α′,Q′Φ

(n′)
α′,Q′(re, rh). (2.68)

where U is the new amplitude of the scattered wave function. Plugging this wave

function into the Schrödinger equation in Equation (2.66) gives us the scattering
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equation:

Ω(n)
α (Q)U

(ξ)
n,α,Q +

∑
n′,α′,Q′

Sn,n
′

α,α′(Q,Q
′)U

(ξ)
n′,α′,Q′ = E(ξ)U

(ξ)
n,α,Q (2.69)

where Ωα are the eigenvalues of the Bethe-Salpeter equation, E(ξ) are the new scat-

tered eigenvalues, and the scattering matrix is defined by

Sn,n
′

α,α′(Q,Q
′) =

∫
dredrhΦ

(n)∗
α,Q (re, rh)Hint(re, rh)Φ

(n′)
α′,Q′(re, rh)

=
∑
q,q′

A
(n)∗
α,Q (q)A

(n′)
α′,Q′(q

′)

×
(
GKK + (−1)α

′
GKK′ + (−1)αGK′K + (−1)α+α′

GK′K′

)
(2.70)

where we break the interaction into four components:

GKK =

∫
dredrhΨ

∗
µ,q+Q/2,e(re)Ψµ,q−Q/2,h(rh)

×Hint(re, rh)Ψµ,q′+Q′/2,e(re)Ψ
∗
µ,q′−Q′/2,h(rh)

GKK′ =

∫
dredrhΨ

∗
µ,q+Q/2,e(re)Ψµ,q−Q/2,h(rh)

×Hint(re, rh)Ψ−µ,−q′+Q′/2,e(re)Ψ
∗
−µ,−q′−Q′/2,h(rh)

GK′K =

∫
dredrhΨ

∗
−µ,−q+Q/2,e(re)Ψ−µ,−q−Q/2,h(rh)

×Hint(re, rh)Ψµ,q′+Q′/2,e(re)Ψ
∗
µ,q′−Q′/2,h(rh)

GK′K′ =

∫
dredrhΨ

∗
−µ,−q+Q/2,e(re)Ψ−µ,−q−Q/2,h(rh)

×Hint(re, rh)Ψ−µ,−q′+Q′/2,e(re)Ψ
∗
−µ,−q′−Q′/2,h(rh)

(2.71)
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Calculation of G

Here, we evaluate the scattering matrix components in terms of the exciton wave

functions:

GKK =

∫
dredrhΨ

∗
µ,q+Q/2,e(re)Ψµ,q−Q/2,h(rh)

×Hint(re, rh)Ψµ,q′+Q′/2,e(re)Ψ
∗
µ,q′−Q′/2,h(rh)

= δq−q′,(Q−Q′)/2

∫
dreΨ

∗
µ,q+Q/2,e(re)He(re)Ψµ,q′+Q′/2,e(re)

+δq−q′,(Q−Q′)/2

∫
drhΨµ,q−Q/2,h(rh)Hh(rh)Ψ

∗
µ,q′−Q′/2,h(rh) (2.72)

GK′K′ =

∫
dredrhΨ

∗
−µ,−q+Q/2,e(re)Ψ−µ,−q−Q/2,h(rh)

×Hint(re, rh)Ψ−µ,−q′+Q′/2,e(re)Ψ
∗
−µ,−q′−Q′/2,h(rh)

= δq−q′,(Q′−Q)/2

∫
dreΨ

∗
−µ,−q+Q/2,e(re)He(re)Ψ−µ,−q′+Q′/2,e(re)

+δq−q′,(Q−Q′)/2

∫
drhΨ−µ,−q−Q/2,h(rh)Hh(rh)Ψ

∗
−µ,−q′−Q′/2,h(rh)

(2.73)

Recall, the single electron tight-binding wave function is defined as

Ψµ,q,s(r) =
1√
N

∑
j=A,B

Cj,s(µ, q)
∑
Rj

eiµϕjeiqzjφ(r−Rj) (2.74)

Now, we can express the scattering matrix components in terms of the single-particle
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TB wave function. This gives

GKK =
δq−q′,(Q−Q′)/2

N
∑
j,j′

C∗j,e(µ, q +Q/2)Cj′,e(µ, q
′ +Q′/2)

×
∑

Rj ,Rj′

eiµ(ϕj′−ϕj)ei((q
′+Q′/2)zj′−(q+Q/2)zj)

×
∫
dreφ

∗(re −Rj)He(re)φ(re −Rj′)

+
δq−q′,(Q′−Q)/2

N
∑
j,j′

Cj,h(µ, q −Q/2)C∗j′,h(µ, q
′ −Q′/2)

×
∑

Rj ,Rj′

eiµ(ϕj−ϕj′ )ei((q−Q/2)zj−(q′−Q′/2)zj′ )

×
∫
drhφ(rh −Rj)Hh(rh)φ

∗(rh −Rj′)

≈
δq−q′,(Q−Q′)/2

N
∑
j

C∗j,e(µ, q +Q/2)Cj,e(µ, q
′ +Q′/2)

∑
Rj

ei(Q−Q
′)zjHe(Rj)

+
δq−q′,(Q′−Q)/2

N
∑
j

C∗j,h(µ, q
′ −Q′/2)Cj,e(µ, q −Q/2)

∑
Rj

ei(Q
′−Q)zjHh(Rj)

=
Ze2

N
[δq−q′,(Q′−Q)/2

×
(
C∗A,h(µ, q

′ −Q′/2)CA,h(µ, q −Q/2)ΦA(Q′ −Q)

+C∗B,h(µ, q
′ −Q′/2)CB,h(µ, q −Q/2)ΦB(Q′ −Q)

)
− δq−q′,(Q−Q′)/2

×
(
C∗A,e(µ, q +Q/2)CA,e(µ, q

′ +Q′/2)ΦA(Q−Q′)

+C∗B,e(µ, q +Q/2)CB,e(µ, q
′ +Q′/2)ΦB(Q−Q′)

)
] (2.75)

(2.76)

where

Φj(Q) =
∑
Rj

eiQzj

|Rj − rp|
(2.77)
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In a similar calculation, GK′K′ is

GK′K′ =
Ze2

N
[δq−q′,(Q−Q′)/2

×(C∗A,h(−µ,−q′ −Q′/2)CA,h(−µ,−q −Q/2)ΦA(Q′ −Q)

+C∗B,h(−µ,−q′ −Q′/2)CB,h(−µ,−q −Q/2)ΦB(Q′ −Q))

−δq−q′,(Q′−Q)/2

×(C∗A,e(−µ,−q +Q/2)CA,e(−µ,−q′ +Q′/2)ΦA(Q′ −Q)

+C∗B,e(−µ,−q +Q/2)CB,e(−µ,−q′ +Q′/2)ΦB(Q′ −Q))]

(2.78)

CA,B Coefficients

From the tight-binding hamiltonian of graphene, the coefficients are given by

CB(µc, qc) =
1√
2
, CA(µc, qc) =

−eiϕ(µc,qc)

√
2

, (2.79)

CB(µv, qv) =
1√
2
, CA(µv, qv) =

eiϕ(µv ,qv)

√
2

. (2.80)

Substituting these into Equations (2.76) and (2.78) gives,

GKK =
Ze2

2N
[δq−q′,(Q′−Q)/2

(
ei(ϕ(µ,q−Q/2)−ϕ(µ,q′−Q′/2))ΦA(Q′ −Q) + ΦB(Q′ −Q)

)
− δq−q′,(Q−Q′)/2

(
ei(ϕ(µ,q′+Q′/2)−ϕ(µ,q+Q/2))ΦA(Q′ −Q) + ΦB(Q′ −Q)

)
]

(2.81)

GK′K′ =
Ze2

2N
× [δq−q′,(Q−Q′)/2

(
ei(ϕ(−µ,−q−Q/2)−ϕ(−µ,−q′−Q′/2))ΦA(Q′ −Q) + ΦB(Q′ −Q)

)
− δq−q′,(Q′−Q)/2

(
ei(ϕ(−µ,−q′+Q′/2)−ϕ(−µ,−q+Q/2))ΦA(Q′ −Q) + ΦB(Q′ −Q)

)
]

(2.82)
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Zigzag CNTs

For zigzag (n, 0) nanotubes, the scattering matrix components can be further simpli-

fied. We note that ϕ(µ, q) = ϕ(−µ, q) and ϕ(µ,−q) = −ϕ(µ, q) for zigzag SWNTs.

Therefore, we can simplify the scattering matrix components as

GK′K′ =
Ze2

2N
[δq−q′,(Q−Q′)/2

(
ei(ϕ(µ,q′+Q′/2)−ϕ(µ,q+Q/2))ΦA(Q′ −Q) + ΦB(Q′ −Q)

)
− δq−q′,(Q′−Q)/2

(
ei(ϕ(µ,q−Q/2)−ϕ(µ,q′−Q′/2))ΦA(Q′ −Q) + ΦB(Q′ −Q)

)
]

= −GKK .

(2.83)
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Chapter 3

SWNT Plasmonic Antenna

There have been a few theoretical treatments of SWNT antennas thus far. Nakan-

ishi and Ando calculated the optical response of finite length carbon nanotubes [51].

They calculated the induced current distribution in a self-consistent manner and

showed that the main resonance, caused by the excitation of the fundamental plas-

mon mode, had a length dependent resonance wave vector of π/L, where L is the

length of the SWNT antenna. Burke et al. treated the metallic SWNT antenna

as a flared out transmission line [110]. The main drawback to their method is that

interband excitations are not included in their model. Therefore, they are restricted

to the low-frequency regime below the interband transitions. The method developed

by Hanson [111] numerically solves the Hallén integral equation. However, like the

other model, interband transitions are not included so we are again restricted to the

low frequency regime. Also, the thin wire kernel was used in the calculation to avoid

singularities [112]. The solution of the Hallén equation with the thin wire kernel

is not well defined as it generates non-physical oscillations near the edges of the

SWNT [113, 114]. The work by Slepyan et al. included interband transitions of the

SWNT derived from quantum transport theory [115, 116]. Using that, they were

able to solve the integro-differential equation for the current distribution from both

the Hallén equation as well as derive an approximate analytical expression when

using the Leontovich-Levin equation. Their model uses the full, singular kernel and

provides results for both semiconducting and metallic SWNTs. In the work done by
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Joh et al., they used a quantum mechanical description of the exciton conductivity

from the Bethe-Salpeter equation and showed experimentally that the intensity of

the scattered fields was determined by the exciton dynamics when excited in the

optical range [117]. Furthermore, radiative coupling between two excitonic wires

was observed.

3.1 Transmission Line Model

To begin our model, we consider a line of charge with charge density λ = λ0 + δλ

where λ0 is the static charge density on the CNT and δλ is the change in the charge

density due to an external perturbation given by δλ = es(z, t) where e is the electron

charge and s(z, t) is a displacement. We can define a dipole moment induced by the

perturbation as P = eλ0s. From that, we can arrive at an expression for the current

density:

j =
dP
dt

= eλ0
ds

dt
= eλ0v =

eλ0

m
p (3.1)

where p here is the 1D momentum of the particle.

3.1.1 Equation of Motion for Charged Particle

We start by writing the classical equation of motion for a charged particle:

dp

dt
= F − p

τp
(3.2)

where τp is a relaxation time of the momentum due to dissipative, non-conserving

forces and F is the force on the particle given by

F = FQ + Felec = FQ + Fxt + Find (3.3)

FQ is a quantum component of the force which is related to the electrochemical

potential. The electric force is broken up into two components: a classical external

force Fxt = eExt and Find which is caused by fluctuations in the charge density.
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3.1.2 Quantum Capacitance

The quantum component of the force is related to the electrochemical potential ξ:

FQ = −∇ξ (3.4)

The excess charge density is related to the 1D density of states by:

eδλ = e

ξ∫
0

g(E)dE =
4e

~πvF
e

e
ξ =

4e2

~πvF
ξ/e = CQξ/e (3.5)

where we define the quantum capacitance

CQ =
4e2

~πvF
=

4c

πvF
α = ~g0cα =

4G0

vF
(3.6)

with the Fermi velocity vF ≈ 108 cm/s, g0 = 4/(π~vF ) is the constant density of

states for a metallic CNT, α = 1/137 is the fine structure constant, and G0 = 2e2/h

is the quantum of conductance. Therefore, Equation (3.4) can be rewritten as:

FQ = −e2C−1
Q ∇δλ (3.7)

3.1.3 Geometric Capacitance

The induced force is given as

Find = −e∇φind (3.8)

where the induced potential is given by the Poisson integral

φind(z) =

L∫
0

eδλ(z′)G(z − z′)dz′ (3.9)

The fluctuation of the charge density along the length of the tube eδλ(z′) is inte-

grated with the 1D Coulomb kernel G(z − z′) =
∫
dθ/
√

(z − z′)2 + 2R2(1− cos θ)

where R is the radius of the CNT. We can integrate out the θ dependence because we

assume any angular dependence of the charge density is negligible. In other words,
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we are neglecting the perpendicular polarization of the CNT. The Fourier compo-

nents of the 1D Coulomb kernel are given by the Bessel functions I0(kR)K0(kR)

with R being the cutoff parameter.

If we assume a slow dependence of δλ(z′), we can use a Taylor expansion:

δλ(z′) = δλ(z) +
�
�
��7

0
∂δλ

∂z
(z′ − z) (3.10)

Using this expansion, the charge density can be moved outside the integral and the

result becomes

φind(z) = C−1
g eδλ(z) (3.11)

The leading term in the geometric capacitance C−1
g is logarithmic due to the log-

arithmic divergence of the 1D coulomb kernel. A series expansion of the Bessel

functions shows the logarithmic dependence

I0(x)K0(x) = const + log(x) +O(x2) (3.12)

Since R is the cutoff parameter, a series expansion gives C−1
g ∝ log λ

R
where λ

is a characteristic screening length. Since the dependence of this parameter is weak

due to the logarithm, we can replace it with the SWNT length L and we get

C−1
g =

1

4πε0
2 log

L

R
(3.13)

Plugging the result of Equation (3.11) into Equation (3.8) gives:

Find = −eC−1
g ∇δλ (3.14)

3.1.4 TL Conductivity

Now, we take the results from Equations (3.7) and (3.14) and plug them back into

the equation of motion, Equation (3.2), to get:

dp

dt
= eExt − eC−1

g ∇δλ− eC−1
Q ∇δλ−

p

τp
(3.15)
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Recall the relation between j and p given in Equation (3.1). Plugging this in gives:

m

eλ0

dj

dt
= Ext −

(
C−1
g + C−1

Q

)
e∇δλ− m

e2λ0τp
j (3.16)

We can eliminate δλ by using the Continuity Equation:

∇ · j + e
d

dt
δλ = 0 (3.17)

and by taking the time derivative of Equation (3.16). Doing this gives us a telegra-

pher’s equation:

m

eλ0

d2j

dt2
=
dExt
dt
−
(
C−1
g + C−1

Q

)
∇2j − m

e2λ0τp

dj

dt
(3.18)

We perform a time Fourier transform and seek solutions of the form j ∼ e−iωt:

−iωm
e2λ0

j = Ext +
1

−iω(C−1
g + C−1

Q )−1
∇2j − m

e2λ0τp
j (3.19)

The last term in the right hand side is due to Joule losses in the transmission line:

the classical Drude conductivity of a 1D wire is given by Gd = e2λ0τp/m. Therefore

that last term is a resistance per unit length, R. The second term on the right is due

to the displacement current associated with the capacitance per unit length of the

transmission line: C = 1/(C−1
g +C−1

Q ). The term on the left hand side is the classical

kinetic inductance per unit length of the 1D wire: L = m/(e2λ0). Rewriting gives,

−iωLj = Ext +
1

−iωC
∇2j −Rj (3.20)

We can rearrange terms and arrive at an expression equivalent to Ohm’s Law

j =
iωL−1

ω2 + iωRL−1 + L−1C−1∇2
Ext (3.21)

or, in terms of the original variables,

j =
iω e2λ0

m

ω2 + i ω
τp
− e2λ0

m
(C−1

g + C−1
Q )(−∇2)

Ext (3.22)
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Cg 8.15 aF/µm
Cq 77.5 aF/µm
Lk 16 nH/µm
R 16 kΩ/µm*

Table 3.1: Table of TL parameters and their values. (* Resistance value calculated with
τ=1000 fs corresponding to a mean free path of 1 µm.)

Figure 3.1: Geometry of the problem. A SWNT aligned along the z-axis with the coordi-
nate origin at the center. The external field is a plane wave with magnitude
E0 and wave vector k incident at an angle θ with the z-axis.

3.1.5 Solution of the TL Differential Equation with Plane

Wave Excitation

The geometry can be seen in Figure 3.1. Rearranging Equation (3.21), the differen-

tial equation we look to solve is(
ω2 + iωRL−1 + L−1C−1∂2

z

)
j(z) = iωL−1E0 sin θeikz cos θ (3.23)
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which is the solution of the TL equation for the current distribution with an external

plane wave excitation (inhomogeneous term). For simplicity, let k2
p = LC(ω2 +

iωRL−1) and B = iωCE0 sin θ so the inhomogeneous differential equation can be

rewritten as

j′′(z) + k2
pj(z) = Beikz cos θ (3.24)

To solve this equation, we first begin by obtaining the general solution by solving

the homogeneous equation

j′′(z) + k2
pj(z) = 0 (3.25)

This equation has a solution

jg(z) = C1 cos(kpz) + C2 sin(kpz) (3.26)

To find the particular solution, we first use a trial solution in the form of the right

hand side of the differential equation. We start with

jp(z) = Deikz cos θ (3.27)

where D is a constant to be determined by plugging this solution back into the

differential equation. Doing this gives

−Dk2 cos2 θeikz cos θ + k2
pDe

ikz cos θ = Beikz cos θ

−Dk2 + k2
pD = B

D =
B

k2
p − k2 cos2 θ

(3.28)

So the particular solution is now

jp(z) =
B

k2
p − k2 cos2 θ

eikz cos θ (3.29)

The full solution is a sum of the general and particular solutions:

j(z) = jg(z) + jp(z) = C1 cos(kpz) + C2 sin(kpz) +
B

k2
p − k2 cos2 θ

eikz cos θ (3.30)
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This solution is now subject to the boundary conditions that j(±L/2) = 0. Applying

these, we can solve for the constants C1 and C2

C1 =
−B cos(kL cos(θ)/2) sec(kpL/2)

k2
p − k2 cos2(θ)

(3.31)

C2 =
−B sin(kL cos(θ)/2) csc(kpL/2)

k2
p − k2 cos2(θ)

(3.32)

Note that the term k cos θ appears in the expressions for the coefficients. This is

just the component of the incoming electric field wave vector k parallel to the axis of

the tube - the z axis. Therefore, to simplify the expressions, we can let k‖ = k cos θ.

The coefficients can be rewritten as

C1 =
−B cos(k‖L/2) sec(kpL/2)

k2
p − k2

‖
(3.33)

C2 =
−B sin(k‖L/2) csc(kpL/2)

k2
p − k2

‖
(3.34)

Plugging these coefficients back into the expression for j in Equation (3.30) and

simplifying gives the full solution for the current distribution:

j(z) =
B csc(kpL/2) sec(kpL/2)

(
−eik‖L/2 sin(kpL) + eik‖(L+z) sin(kp(L− 2z)/2)

)
2(k2
‖ − k2

p)

+
B csc(kpL/2) sec(kpL/2)eik‖z sin(kp(L+ 2z)/2)

2(k2
‖ − k2

p)
(3.35)

λmfp τp R
10 nm 10−14 s 1600 kΩ/µm
100 nm 10−13 s 160 kΩ/µm
1 µm 10−12 s 16 kΩ/µm
3 µm 3×10−12 s 5.33 kΩ/µm

Table 3.2: Table of NT resistances with their corresponding scattering times and mean
free path lengths.
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Figure 3.2: Calculated TL current of the SWNT at the Tb resonance at 2.54 eV for a
50 nm long SWNT. TL parameters used are from Table 3.1.

3.1.6 Special Case: θ = π/2

If θ = π/2, the expression in Equation (3.35) for the full current distribution can be

simplified:

j(ω, z) =
iωCE0 (cos(kpz) sec(kpL/2)− 1)

k2
p

(3.36)

and the coefficients C1 and C2 can be simplified to

C1 =
−iωCE0 sec(kpL/2)

k2
p

(3.37)

C2 = 0 (3.38)

In this case, the conductivity of the NT can be written

σ(ω, z) =
iωC (cos(kpz) sec(kpL/2)− 1)

k2
p

(3.39)

and the current distribution is just

j(ω, z) = σ(ω, z)E0 (3.40)
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In Figure 3.2, we show the calculated current from the TL model for a 50 nm

long SWNT at the Terbium resonance of 2.54 eV. The real (red) and imaginary

(blue) components are shown. The current distribution goes to zero at the ends of

the SWNT as governed by the boundary conditions we implemented in the model.

3.2 Dielectric Function

We can define a phenomenological unitless dielectric function of the NT as

ε(ω) = 1 +
1

ε0

α(ω)

2πRcnLd
(3.41)

where α(ω) = iσ(ω)/(ε0ω). Since the polarizability, α, has units of volume, we

need to divide it by an effective volume to make it unitless. In SWNTs, we can

only accurately define that to the surface area which is 2πRcnL. That leaves one

dimension of length undefined which we have called d. Here, we take d = 2 nm

which is the effective size of an exciton. Figure 3.3 shows the dielectric function of

Equation (3.41) in the THz range. The peaks show the frequencies of the plasmon

resonances and it can be seen that the fundamental plasmon modes are in the low

THz range which are well below the frequencies of the REI transitions.

3.3 Summary

We have derived a model for SWNT plasmon resonances by treating the SWNT

as a transmission line. The model accurately replicates the plasmon resonances

calculated by other models. The benefit of our model is that it is an analytic and

inexpensive model as compared to numerical models used by others.

The fundamental plasmon resonances for SWNTs are in the THz frequency range

as can be seen by Figure 3.3. However, in the visible/NIR range where REI transi-

tions occur, we need to excite higher plasmon modes. The currents generated at the

resonance frequency of Terbium have a sub-nanoamp magnitude. This magnitude

of current will not have a large scattered field so the total field will be dominated

by the external field. Therefore, we will not have any local field enhancements.
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Figure 3.3: Log-log plot of the imaginary part of the dielectric function ε-1 as a function
of frequency in the THz range.

There exists another problem when considering excitation in the visible/NIR

range. By exciting the system in that range, we will also be exciting exciton reso-

nances. These exciton resonances are not considered in the present TL model for

plasmons. Therefore, in order to properly consider the local enhancements due to

scattering in that frequency range, we need to include excitons into our model. This

will be done in Chapter 4.
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Chapter 4

SWNT Excitonic Antenna

In this chapter, we incorporate excitonic effects into SWNT antenna theory to obtain

the antenna current distribution in the visible to NIR frequency range. From there,

we can calculate the scattered and total fields around the SWNT antenna to observe

locally enhanced hotspots of the polarization field. The spatial correlation of these

hotspots are due to the light-matter interaction between the excitation field and the

SWNT antenna. In these local hotspots, we calculate the excitation enhancements

of multiple REI transitions with the most predominant SWNT chiralities used in

experiments.

4.1 Historical Context

In 1947, T. Holstein published a theoretical paper on the imprisonment of resonance

radiation in gases [118]. The basis of that paper was that a resonance quantum

(photon) is highly absorbed by an atom. But if we were to place many of these

atoms into a gas-filled enclosure, the escape of that quantum from the enclosure

would require a large number of repeated absorptions and emissions as it traveled

through. He formulated this radiative transport of excitation using a Boltzmann-

type integro-differential equation,

∂n(r)

∂t
= −γn(r) + γ

∫
n(r′)g(r, r′)dr′ (4.1)
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where n(r) is the density of excited atoms, γ is the inverse radiative lifetime of the

excited state, and g(r, r′) is the Green’s function that is specified for certain cases

such as Doppler and dispersion broadening of the resonance line in an infinite slab

of gas. In his studies, he assumes isotropic emission of the particles. Therefore he

is neglecting polarization effects because he states that “imprisonment has a strong

depolarizing effect on resonance radiation emanating from a region originally excited

by a polarized beam.” By making this assumption, he arrives at an expression for

his Green’s function as

g(r, r′) = − 1

4πρ

∂T (ρ)

∂ρ
(4.2)

where T (ρ) is the transmission coefficient related to the mean free path λ by

λ = −
∞∫

0

ρ
∂T (ρ)

∂ρ
dρ. (4.3)

where ρ is the distance traveled by the radiation. The transmission coefficient can

be written explicitly for the specific cases of Doppler and dispersion broadening that

he discusses.

In 1951, Holstein published the second part of his original paper [119]. There, he

extended his treatment to a new type of enclosure geometry which was an infinite

cylinder. His results for the cylindrical geometry were not much different from his

results for the infinite planar 1D treatment because the symmetry between the two

problems was the same so we should not expect a different result.

So far, the theory has been applied to systems with no order in polarizable

matter. What Holstein did is valid for gas enclosures or color centers in glasses. To

be more relevant to our system, we seek solutions for crystal lattices. The equation

of motion for the electromagnetic interaction of identical oscillators which form a

crystal of finite dimensions was derived by Muzikar in 1962 [120]. There, each single

molecule dipole was acted on by four forces: (1) the elastic and dissipative forces

associated with the dynamics of the isolated dipole with a particular frequency and

broadening, (2) the retarded electric field of all the other dipoles, (3) the dipole’s

own field, and (4) the force of the driving field that causes the dipoles to be excited.
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This equation of motion was expanded upon by Dubovskii in 1998 [121]. He

theoretically studied superradiance of polaritons in 1D crystals. Superradiance is a

quantum optics phenomenon that occurs when a dense group of N emitters interacts

coherently with a common light field. When the wavelength of the light is much

larger than the separation of the emitters (lattice constant of the crystal), then the

emitters interact with the light in a collective and coherent fashion leading to an

increase in emission with rate ∝ N2. This increase in emission is greater than that

expected from spontaneous emission alone which has a rate ∝ N . Dubovskii took

Muzikar’s expression for the equation of motion of a system of dipole emitters and

wrote it in the form(
ω2 − ω2

0 + 2iγ0ω0

)
pjn =

e2

2π2µ

∫
dq
qjqj − (ω2/c2)δjk
q2 − (ω2/c2)− iε

×
∑
m 6=n

pkm exp
[
iq1a(n−m)

]
(4.4)

where ω0 is the resonant frequency of the dipole oscillators with charge e, mass µ,

dipole moment pn at node n with displacement rn, γ0 = e2ω2
0/3µc is the intrinsic

radiative half-width, j, k = 1, 2, 3 indicate the polarization indices (index 1 lies along

the 1D crystal), and the term with q2−(ω2/c2)−iε in the denominator is the photon’s

Green’s function with iε→ +0. This Green’s function comes from the quantization

of the vector potential due to molecular dipole transitions and derivations can be

found in [122] and [123]. From there, he was able to derive a dispersion relation for

the polaritons(
ω2 − ω2

0 + 2iγ0ω0

)
=

4ω0 |P |2

~a3(N + 1)

∑
n6=m

[(
1

|n−m|3
− iωa/c

|n−m|2

)
(1− 3 cos3 θ)− (ωa/c)2

|n−m|
(1− cos2θ)

]
× exp

(
i
iωa

c
|n−m|

)
sin(kjn) sin(kjm) (4.5)

where P is the atomic dipole matrix element, N is the number of dipole oscillators,

and θ is the angle of inclination of the dipoles relative to the crystal axis. There

appears a term proportional to (|n−m|−3) which corresponds to the dipole-dipole
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interaction of the Coulomb kernel at short distances (near-field), a term proportional

to (|n−m|−2) for the interaction in the intermediate zone, and a term proportional

to (|n−m|−1) which is the interaction in the far-field zone. The kj come from the

orthonormalized eigenfunctions of a system of N nodes,

ψn(kj) =

(
2

N + 1

)1/2

sin(kjn), kj =
πj

N + 1
(4.6)

where j = 1, 2, · · · , N . It is worthy to note that the frequency, ω, appearing in the

dispersion equation (4.5) appears in a complex form ω = ωj = ω′j − iω′′j , with real

(ω′j) and imaginary (ω′′j ) parts. Dubovskii goes on to evaluate the evolution of the

dispersion curve for a number of dipoles ranging from N = 2 to N = 70. He traces

the appearance and evolution of the radiative (ω > kc) and non-radiative (ω < kc)

polariton branches.

Studies of superradiance are continuing even today. Marlan Scully’s group pub-

lished a paper in 2016 that examined superradiance and radiation trapping at the

single photon level [124]. In his study, he began with an equation of motion which is

almost identical to that used by Holstein. Scully’s equation of motion was written

as an eigenvalue equation

−iγ
∫
dr′n(r′)

exp(ik0|r− r′|)
k0|r− r′|

β(r′) = Γβ(r) (4.7)

where β(r, t) = exp(−Γt)β(r) is the probability amplitude of finding the atom at

position r excited at time t, γ is the single atom decay rate, k0 = ω/c is the wave

number associated with the atomic transition, and n(r) is the atomic density. Here,

Γ is the eigenvalue which determines the evolution of the atomic system. The real

part gives the decay rate and the imaginary part describes the frequency (Lamb) shift

of the collective excitation. He solved this equation for the spherical shell, spheroidal

shell, and infinite cylinder geometries. Here, we will discuss the cylindrical geometry

since it is of most relevant interest to our problem. The geometry is an infinitely

long cylinder of radius R along the z-axis. He found an interesting result for the

eigenvalues:

Γ =
πγn0

k0

Jn

(√
k2

0 − k2
zR

)
H(1)
n

(√
k2

0 − k2
zR

)
(4.8)
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where n0 is the number of atoms per unit length, kz is the wave number of the mode

along the cylinder axis, Jn is the Bessel function of the first kind, and H
(1)
n is the

Hankel function of the first kind. For the case where kz � k0, he found radiative

modes (Re[Γ] > 0), while for kz > k0, (Re[Γ]=0). In other words, when the wave

vector along the axis is greater than the cutoff wave vector, the superradiant mode

is trapped and can no longer decay radiatively.

4.2 Derivation of Exciton Conductivity

4.2.1 Semi-Classical Description

We begin with the equation of motion for a single damped dipole in an external field

p̈ + γṗ + ω2
0p =

e2

m
E(t) (4.9)

where the first term corresponds to the acceleration, the second term is damping,

the third is the harmonic force which incorporates resonant transitions, and the

right side of the equation is the driving field which consists of the self-consistent

combination of the external field as well as the influence of the dipole distribution’s

own local field on itself. The solution of this equation for the dipole gives

p(x) =
e2

m

1

ω2
0 − ω2 − iγω

E0(x) (4.10)

This is the equation for the contribution of a single oscillator. If the number density

of the oscillators is N and we assume a 3D uniform, continuous distribution of

excited dipoles, we can write the complex dielectric displacement vector as

D(x) = ε0E(x) + P(x) = ε0E(x) + ε0χeE(x) = ε0(1 + χe)E(x) = εE(x)

= ε0

(
1 +
N e2

m

1

ω2
0 − ω2 − iγω

)
E(x) (4.11)

Here, we can define the complex dielectric function ε as

ε(ω)

ε0
=

(
1 +
N e2

ε0m

1

ω2
0 − ω2 − iγω

)
(4.12)
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From this definition of ε and the above relations, we can define the polarizability of

the exciton (in units of fs2C2/kg):

α(ω) = ε0χe =
Ne2

m

1

ω2
0 − ω2 − iγω

(4.13)

where now, N is the number of carbon atoms given by

N =
4L(n2 + nm+m2)

a0

√
3(n2 + nm+m2)

(4.14)

and the conductivity (units of nm2/Ω) is

σ(ω) = −iωα =
Ne2

m

−iω
ω2

0 − ω2 − iγω
(4.15)

So far, we have only considered one resonant transition. However, in a SWNT,

there are multiple exciton resonances to consider. Including more than one reso-

nance, we can express the conductivity as

σ(ω) =
Ne2

m

∑
j

−ifjω
ω2
j − ω2 − iγjω

(4.16)

where fj are the oscillator strengths per carbon atom. We can expand this into its

real and imaginary parts

<[σ(ω)] =
Ne2

m

∑
j

ω2fjγj
(ω2

j − ω2)2 + γ2
jω

2
(4.17)

and

=[σ(ω)] =
Ne2

m

∑
j

−ωfj(ω2
j − ω2)

(ω2
j − ω2)2 + γ2

jω
2

(4.18)

4.2.2 Quantum Description: Two-Level System

In quantum mechanics, the behavior of a system of N particles is described by the

system’s wave function

Ψ(r, t) = Ψ(r1, r2, · · · , rN , t) (4.19)
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where ri denotes the coordinate of particle i at time t. This wave function is a

solution of the time dependent Schrödinger equation

ĤΨ(r, t) = i~
d

dt
Ψ(r, t) (4.20)

where Ĥ is the Hamiltonian operator. For an isolated atom with no perturbations,

the Hamiltonian is time independent and we can separate the spatial and temporal

dependence of the wave function as

Ψ(r, t) =
∞∑
n=1

e−iEnt/~ψn(r) (4.21)

Inserting this wave function into Equation (4.20) and using Ĥ = Ĥ0 gives the time

independent Schrödinger equation

Ĥ0ψn(r) = Enψn(r) (4.22)

where En are the eigenvalues of the stationary states |n〉. Let us now restrict our-

selves to the case of a two-level system (n = 1, 2). We can write the two stationary

wave functions as

Ψ1(r, t) = e−iE1t/~ψ1(r) (4.23)

Ψ2(r, t) = e−iE2t/~ψ2(r) (4.24)

Now, we can include the radiation field. This enters as an external, time-

dependent perturbation, Ĥ ′(t). The total Hamiltonian is then,

Ĥ = Ĥ0 + Ĥ ′(t) (4.25)

Since the radius of our SWNT and exciton size are much less than the wavelength

of light, Rcn, Rexciton � λ, we can assume that the electric field is constant across

the dimensions of our system. Using a time harmonic field, we have

E(r, t) = Re
(
E(r)e−iωt

)
≈ E0 cos(ωt) (4.26)

The interaction of a dipole with an external field is given by

Ĥ ′ = −p(r) · E0 cos(ωt). (4.27)
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To solve the time dependent Schrödinger equation (4.20) for our perturbed sys-

tem, we write the total wave function of the system as a superposition of our two

states

Ψ(r, t) = c1(t)Ψ1(r, t) + c2(t)Ψ2(r, t) (4.28)

where the coefficients c1 and c2 are chosen such that the normalization condition

〈Ψ|Ψ〉 =
∫

Ψ∗ΨdV = |c1|2 + |c2|2 = 1 is fulfilled. Plugging this wave function into

Equation (4.20) gives

Ĥ ′ (c1(t)Ψ1(r,t) + c2(t)Ψ2(r,t)) = i~
(
ċ1Ψ̇1(r,t) + ċ1Ψ̇1(r,t)

)
(4.29)

To remove the spatial dependence, we multiply Equation (4.29) on the left by Ψ∗1

and integrate over all space. Then we exploit the normalization and orthogonality

of the wave functions, i.e. 〈Ψ1|Ψ2〉 = 0 and 〈Ψ1|Ψ1〉 = 1. We then repeat this by

multiplying Equation (4.29) on the left by Ψ∗2 and integrating over all space. This

gives us two coupled time dependent equations

ċ1(t) = c2(t)
i

~
p12 · E0 cos(ωt)e−i(E2−E1)t/~ (4.30)

ċ2(t) = c1(t)
i

~
p21 · E0 cos(ωt)ei(E2−E1)t/~ (4.31)

where we have introduced the dipole matrix element

pij = 〈i|p|j〉 =

∫
ψ∗i (r)p(r)ψj(r)dr (4.32)

It is worthy to note that due to p being a Hermitian operator, the dipole matrix

elements must satisfy p12 = p∗21. This can be further simplified by conveniently

choosing the phases of the eigenfunctions ψ1 and ψ2 such that the matrix elements

are real, i.e. p12 = p21. We can also introduce the transition frequency defined by

ω0 = (E2 − E1)/~ = ∆E/~ (4.33)

One aspect of the problem which our derivation thus far has not included is

spontaneous emission. This term would come from including a quantized radiation

field term in the total Hamiltonian. To account for spontaneous emission without
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including the quantized radiation field, we can introduce it by a phenomenological

damping term into the equation for ċ2. Our coupled differential equations now take

the form

ċ1(t) = c2(t)
i

~
p12 · E0 cos(ωt)e−iω0t/~ (4.34)

ċ2(t) + γc2(t) = c1(t)
i

~
p21 · E0 cos(ωt)eiω0t/~ (4.35)

where 1/γ is the damping parameter. The inclusion of the damping term ensures

that the excited state must decay to its ground state. If the radiation field is absent

(E0 = 0), then Equation (4.35) can be integrated directly to give

c2(t) = c2(0)e−γt (4.36)

where 1/γ = τ is the lifetime of the excited state. To solve the full set of coupled

equations with the external field present, we seek an iterative method. To get the

first order term, we can set c1(t) = 1 and c2(t) = 0 (so the system is completely

in the ground state) on the right hand side of the coupled equations. Then those

solutions can be plugged back in to get the second order correction, and so forth.

Here, we will restrict ourselves to the first order case. The solution for c1 is c1(t) = 1

which indicates that the system always resides in the ground state. To get the first

order solution for c2, we express the result as a sum of the homogeneous equation

(4.36) and a particular solution from Equation (4.35). We obtain for the first order

solution for c2,

c2(t) =
p21 · E0

2~

[
ei(ω0+ω)t

ω0 + ω − iγ
+

ei(ω0−ω)t

ω0 − ω − iγ

]
+ c2(0)e−γt (4.37)

where we have used the relation

cos(ωt) =
eiωt + e−iωt

2
(4.38)

Now, we can express the dipole moment in terms of these coefficients. The

expectation value of the dipole moment is given by

p(t) = 〈Ψ|p|Ψ〉 =

∫
Ψ∗(r, t)p(r)Ψ(r, t)dr. (4.39)
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Using the wave function in Equation (4.28), the expectation value becomes

p(t) = c∗1c2p12e
−iω0t + c1c

∗
2p21e

iω0t (4.40)

Plugging in our first order expressions for c1 and c2, we get

p(t) =
p12(p21 · E0)

2~

[
eiωt

ω0 + ω − iγ
+

e−iωt

ω0 − ω − iγ
+

e−iωt

ω0 + ω + iγ
+

eiωt

ω0 − ω + iγ

]
.

(4.41)

We can write the external field as

E =
E0

2

(
eiωt + e−iωt

)
(4.42)

so we can simplify the dipole moment as

p(t) =
1

2

[
α∗(ω)eiωt + α(ω)e−iωt

]
E0 = Re

[
α(ω)e−iωt

]
E0, (4.43)

where α(ω) is the polarizability tensor

α(ω) =
p12p21

~

[
1

ω0 − ω − iγ
+

1

ω0 + ω + iγ

]
. (4.44)

Here, p12p21 is the outer product of the real transition moments. A final simplifi-

cation can be made. We can represent the terms in brackets as one denominator.

While doing this, we drop terms in γ2 because it is much less than ω0. Also, we

generalize the equations to account for more than just two levels by summing over

the states, n. Doing this gives the final form

α(ω) =
∑
n

e2

m

fn
ω2
n − ω2 − iγnω

(4.45)

where e is the electron charge, m is the electron mass, and we define the oscillator

strength as

fn =
2mωn
e2~

p1npn1 (4.46)

The expression for the polarizability given here in Equation (4.45) is equivalent

to the expression derived in the previous section using the classical driven damped

oscillator model as shown in Equation (4.13).
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4.2.3 Rotating Wave Approximation

Recall Equation (4.44):

α(ω) =
p12p21

~

[
1

ω0 − ω − iγ
+

1

ω0 + ω + iγ

]
In this expression, we have two terms: the first term has ω0− ω− iγ in the denom-

inator while the second has ω0 + ω + iγ. Near resonance, the term with 1/(ω0 − ω)

will be very much larger than the term with 1/(ω0 +ω). Therefore, we can drop the

second term in the expression since 1/(ω0 + ω)� 1/(ω0 − ω). This is known as the

Rotating Wave Approximation (RWA). We are then left with

α(ω) =
p12p21

~

[
1

ω0 − ω − iγ

]
(4.47)

which gives for a final form (defining the oscillator strength as we did before)

α(ω) =
∑
n

e2

m

fn
ωn − ω − iγn

(4.48)

Near resonance, the RWA is a valid approximation. It is used frequently in

quantum electrodynamic (QED) calculations where it greatly simplifies susceptibil-

ity tensors [125]. However, the RWA is not only restricted to QED calculations. It

is also used in semiclassical theory near resonance.

For our calculations, we do not use the RWA for our polarizability or conduc-

tivity. We examine the behavior of our system at a wide range of frequencies going

from well below resonance to well above resonance. Therefore, the RWA is not nec-

essary for our model and we proceed with the Lorentzian polarizability in Equation

(4.45).

If we return to the left hand side of Equation (4.4) for Dubovskii’s equation of

motion, it is evident that the RWA was not used in his derivations.

4.2.4 Distribution Function

If we specify the excitonic wave function, we can further evaluate Equation (4.39)

to obtain a position dependence of the expectation value of the dipole moment. We
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start with a localized exciton wave function

ΨnR
α (x) = C

∑
q

∫
dr

∫
dQ exp

(
−(r−R)2

2σ

)
exp (iQr)AnαQ(q)φq(x) (4.49)

where C is a constant determined from the normalization, exp (iQr) is the free

exciton plane wave, AnαQ(q)φq(x) is the free exciton envelope wave function which

depends on the electron-hole separation distance x, and we localize the exciton at

a position R with a Gaussian envelope. Recall from Equations (2.59) and (2.63),

the expectation value of the dipole operator. However, in terms of the localized

excitonic wave function above in Equation (4.49), the expectation value takes the

following form

〈
ΨnR
α

∣∣p†∣∣ 0〉 =

∫
dr

∫
dQ exp

(
−(r−R)2

2σ

)
exp (−iQr)

∑
q

p1(q)AnαQ(q)

=

∫
dr

∫
dQ exp

(
−(r−R)2

2σ

)
exp (−iQr) pnα(Q)

where we have defined pnα(Q) =
∑
q

p1(q)AnαQ(q). We can now approximate pnα(Q) ≈

pnα(0) because the dipole moment has a weak dependence on Q. Doing this gives,

〈
ΨnR
α

∣∣p†∣∣ 0〉 ≈ Cpnα(0)

∫
dr

∫
dQ exp

(
−(r−R)2

2σ

)
exp (−iQr)

= Cpnα(0)

∫
dQ
√
σ exp (−iQR) exp

(
−Q2σ

2

)
= Cpnα(0) exp

(
−R2

2σ

)
= P (R) (4.50)

where P (R) is the localized dipole matrix element, or, equivalently, the dipole dis-

tribution function.
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4.3 Integral Equation for NT Current

4.3.1 Derivation of Integral Equation

From Maxwell’s equations and the Lorentz gauge, we can define the inhomogeneous

wave equation for the vector potential as(
∇2 + k2

)
A(r) = −µ0J(r) (4.51)

where A(r) is the vector potential, J is the source current, and k = ω/c is the free

space wave vector. We can solve for the scalar Green’s function for the Helmholtz

operator by replacing the source term with a delta function(
∇2 + k2

)
G0(r, r′) = −δ(r− r′) (4.52)

In free space, the solution of this equation is

G0(r, r′) =
exp(ik|r− r′|)

4π|r− r′|
(4.53)

which we can use to solve for the vector potential by

A(r) = µ0

∫
J(r′)G0(r, r′)dr′ (4.54)

Everything to this point was defined for the vector potential. To describe what

happens to the fields, we need to use tensors. The reason is that for the vector

potential, a source current in the x-direction leads to a vector potential in the x-

direction. But a source current in the x-direction leads to electric and magnetic

fields with x-, y-, and z-components. The same is true for a source current in y- or

z-directions. Therefore, we need a Green’s function that relates all components of

the source with all components of the fields. Again from Maxwell’s equations, we

can obtain the wave equation for the electric field

∇×∇× E(r)− k2E(r) = iωµ0J(r) (4.55)

We can obtain the dyadic Green’s function for the vector Helmholtz equation simi-

larly to before by replacing the source term with a delta function:

∇×∇×G(r, r′)− k2G(r, r′) = Iδ(r− r′) (4.56)
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Doing this gives,

G(r, r′) =

(
I +

1

k2
∇∇

)
exp(ik|r− r′|)

4π|r− r′|
(4.57)

where k = ω/c is the free space wavenumber, c is the speed of light in free space,

and I is the identity dyadic. The electric field can be obtained from

E(r) =
iω

ε0c2

∫
G(r, r′) · J(r′)dr′ (4.58)

We can rewrite the wave equation in terms of the dyads as[
(∇× I) · (∇× I)− k2I

]
· E(r) =

iω

ε0c2
J(r) (4.59)

Let the SWNT be aligned parallel to the z-axis of a cartesian coordinate system

(x, y, z) with the centroid of the SWNT at the origin of the coordinate system as

shown in Figure 3.1. Any point on the SWNT surface can be found from

rcn = Rcn (cosφx̂+ sinφŷ) + zẑ, φ ∈ [0, 2π), z ∈ [−L/2, L/2] (4.60)

We assume that the induced surface current density, J, is independent of φ and is

purely axial: J(z) = J(z)ẑ. This assumption smears the exciton distribution over

the circumference of the SWNT. This is a valid assumption because the Bohr radius

of the excitons, aB, is larger than the radius of the SWNT: aB > Rcn, and S1 bright

excitons correspond to the m = 0 angular momentum component of the two particle

wave function. Also, for plane wave excitation, the source field is homogeneous along

the SWNT circumference because the wavelength of light, λ, is much greater than

the radius and greater than the length of the SWNT: λ & L � Rcn. The current

density also needs to satisfy the boundary condition at the edges

J(±L/2) = 0 (4.61)

which ensures there no current density at the edges.

The total electric field can be expressed as

E(r) = Einc(r) + Esc(r) (4.62)
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where Einc(r) is the incident field (which will be defined later), and the scattered

field is given by

Esc(r) =
iω

ε0c2

∫
G(r, r′) · J(z)dr′. (4.63)

We can obtain an axial surface conductivity by relating the current distribution

to the axial electric field from

Ez(r) =
Jz(z)

σ(ω)
(4.64)

where we have used the local continuum approximation where we take σ to be

coordinate independent. Taking the z-component of Equation (4.63), we get

Esc
z (r) =

iω

ε0c2

∫
Gzz(r, r

′)Jz(z
′)dr′ (4.65)

Combine with Equation (4.62) to get

Ez(r) = Einc
z (r) +

iω

ε0c2

∫
Gzz(r, r

′)Jz(z
′)dr′

J(z)

σ(ω)
= Einc

z (z) +
iω

ε0c2

∫
Gzz(r, r

′)Jz(z
′)dr′

J(z)

σ(ω)
− Einc

z (z) =
iω

ε0c2

∫
Gzz(ρ,Φ, z, ρ

′,Φ′, z′)Jz(z
′)δ(ρ′ −Rcn)ρ′dρ′dΦ′dz′

=
iωRcn

ε0c2

L/2∫
−L/2

π∫
−π

Gzz(ρ,Φ, z, Rcn,Φ
′, z′)Jz(z

′)dΦ′dz′

where we have used dr′ = ρ′dρ′dΦ′dz′ and we have restricted the current distribu-

tion to only exist at the surface of the SWNT by implementing the delta function
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relationship δ(ρ′ −Rcn). Further simplifying gives,

=
iωRcn

ε0c2

L/2∫
−L/2

π∫
−π

(
1 +

1

k2
∂2
z

)
exp[ik

√
4R2

cn sin2(φ′/2) + (z − z′)2]

4π
√

4R2
cn sin2(φ′/2) + (z − z′)2

Jz(z
′)dφ′dz′

=

(
1 +

1

k2
∂2
z

)
iωRcn

4πε0c2

L/2∫
−L/2

Jz(z
′)dz′

π∫
−π

exp[ik
√

4R2
cn sin2(φ′/2) + (z − z′)2]√

4R2
cn sin2(φ′/2) + (z − z′)2

dφ′

=
(
k2 + ∂2

z

) iRcn

4πε0ω

L/2∫
−L/2

Jz(z
′)dz′

π∫
−π

exp[ik
√

4R2
cn sin2(φ′/2) + (z − z′)2]√

4R2
cn sin2(φ′/2) + (z − z′)2

dφ′

(4.66)

where we have made the substitution (Φ−Φ′)→ φ′. Here, we can define the scalar

Hertz potential as

Π(z) =
iRcn

4πε0ω

L/2∫
−L/2

Jz(z
′)dz′

π∫
−π

exp[ik
√

4R2
cn sin2(φ′/2) + (z − z′)2]√

4R2
cn sin2(φ′/2) + (z − z′)2

dφ′ (4.67)

so that
J(z)

σ(ω)
− Einc

z (z) =
(
k2 + ∂2

z

)
Π(z) (4.68)

This is an integro-differential equation that needs to be solved for the induced cur-

rent. From Arfken and Weber pg. 598 (noting his definition of the Green’s function

being defined for −δ(z − z′) so we get a negative sign for this Green’s function), an

equation of this form has a solution(
k2 + ∂2

z

)
ψ(z) = g(z)(

k2 + ∂2
z

)
F (z, z′) = δ(z − z′)

F (z, z′) =
1

2ik
eik|z−z

′| (4.69)

Therefore, the formal solution for the scalar Hertz potential is

Π(z) = C1e
−ikz + C2e

ikz +
1

2ik

L/2∫
−L/2

eik|z−z
′|
(
J(z)

σ(ω)
− Einc

z (z)

)
dz′ (4.70)
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Combining Equations (4.67) and (4.70), we get

iRcn

4πε0ω

L/2∫
−L/2

Jz(z
′)dz′

π∫
−π

exp[ikR]

R
dφ′ = C1e

−ikz + C2e
ikz

+
1

2ik

L/2∫
−L/2

eik|z−z
′|
(
J(z)

σ(ω)
− Einc

z (z)

)
dz′ (4.71)

where R =
√

(z − z′)2 + 4R2
cn sin2(φ′/2). Rearranging, gives

C1e
−ikz + C2e

ikz +

L/2∫
−L/2

K(z − z′)J(z′)dz′ =
1

2ik

L/2∫
−L/2

eik|z−z
′|Einc

z (z′)dz′ (4.72)

where C1 and C2 are to be determined from the edge conditions and where the

kernel K is given by

K(z − z′) =
eik|z−z

′|

2ikσ
+

Rcn

4πε0iω

π∫
−π

exp
[
ik
√

(z − z′)2 + 4R2
cn sin2(φ′/2)

]
√

(z − z′)2 + 4R2
cn sin2(φ′/2)

dφ′ (4.73)

4.3.2 Incident Field

For our excitation field, we use a plane wave given by

Ez
0 = E0 cos(θ)ei(kx cos(θ)−kz sin(θ)) (4.74)

For the special case of perpendicular incidence where the field is polarized along the

z-axis and travels along x, θ = 0 and Ez
0 = E0e

ikx.

The integral on the RHS of Equation (4.72) can be analytically solved for plane

wave excitation. For the case of perpendicular incidence where Einc
z (z) = E0,

1

2ik

L/2∫
−L/2

eik|z−z
′|E0dz

′ =
E0

k2

(
1− eikL/2 cos(kz)

)
(4.75)
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For the case of an arbitrary incidence angle θ,

1

2ik

L/2∫
−L/2

eik|z−z
′|E0 cos(θ)e−ik sin(θ)dz′ =

−E0 sec(θ)

2k2
e−ik(sin(θ)(L+4z)−L+4z)/2

×
(
sin(θ)

(
eikz(2 sin(θ)+1) − eik(sin(θ)(L+2z)+3z)

)
+ eik(sin(θ)(L+2z)+3z)

−2e
1
2
ik(sin(θ)(L+2z)−L+4z) + eikz(2 sin(θ)+1)

)
(4.76)

4.3.3 Solving by Quadrature

We have a Hallen type integral equation of the form

L/2∫
−L/2

Z(z − z′)J(z′)dz′ = C1e
−ikz + C2e

ikz +

L/2∫
−L/2

F (z − z′)Einc
z (z′)dz′ (4.77)

where we can define

Z(z − z′) =
eik|z−z

′|

2ikσ
+

Rcn

4πε0iω

π∫
−π

exp
[
ik
√

(z − z′)2 + 4R2
cn sin2(φ/2)

]
√

(z − z′)2 + 4R2
cn sin2(φ/2)

dφ (4.78)

as the impedance kernel, and

F (z − z′) =
1

2ik
eik|z−z

′| (4.79)

To numerically solve this equation for the current density J, we use a numerical

quadrature method to transform this integral equation into a matrix equation [112].

First, we replace the current distribution and the incident field by their sampled

versions, sampled at N = 2M + 1 equally spaced points along the length:

J(z′) =
M∑

m=−M

J(zm)δ(z′ − zm)∆z (4.80)

and

Einc
z (z′) =

M∑
m=−M

Einc
z (zm)δ(z′ − zm)∆z (4.81)
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where for −M ≤ m ≤M ,

zm = m∆z, ∆z =
L/2

M
=

L

N − 1
(4.82)

The kernels Z(z − z′) and F (z − z′) can be discretized, and this yields N × N

matrices:

Znm = Z(zn − zm)∆z = ∆z

(
eik∆z(n−m)

2ikσ

+
Rcn

4πiε0ω

π∫
−π

exp
[
ik
√

∆z2(n−m)2 + 4R2
cn sin2(φ/2)

]
√

∆z2(n−m)2 + 4R2
cn sin2(φ/2)

dφ

 (4.83)

and

Fnm = F (zn − zm) =
1

2ik
eik∆z|n−m| (4.84)

Now, we can express the discretized integral equation as

M∑
m=−M

ZnmJm = C1e
−ikzn + C2e

ikzn +
M∑

m=−M

FnmE
inc
m (4.85)

where we have denoted Einc
m = Einc(zm). This can be written in an even more

compact form

ZJ = C1s1 + C2s2 + FEinc (4.86)

where s1 and s2 are vectors with elements s1(n) = e−ikzn and s2(n) = eikzn . We

can define a N × 2 matrix S = [s1, s2] and the two dimensional vector of constants

C = [C1, C2]T . With these definitions, the matrix equation becomes even more

simplified

ZJ = SC + FEinc (4.87)

The constants C must be found by imposing two separate edge conditions J(zM) =

J(z−M) = 0. This boundary condition can be expressed compactly as

UTJ = 0 (4.88)

where U = [utop,ubot] and utop = [1, 0, · · · , 0]T selects the top entry of the vector J

while ubot = [0, · · · , 0, 1]T selects the bottom entry. We can now solve the matrix
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equation for the current density J

J = Z−1SC + Z−1FEinc (4.89)

If we multiply from the left by UT , we obtain the condition

UTJ = UTZ−1SC + UTZ−1FEinc = 0 (4.90)

which can be solved for the coefficients

C = −
(
UTZ−1S

)−1 (
UTZ−1F

)
Einc (4.91)

Equation (4.91) is used to calculate the coefficients that satisfy the edge con-

ditions. Once these are calculated, Equation (4.89) can be solved for the current

density. Note that the current density J is related to the linear current I by the

relation

I(z) =
J(z)

2πR
(4.92)

4.3.4 Handling the Singularity in Znm
We begin by separating the kernel

eik|r−r
′|

|r− r′|
=

1

|r− r′|
+
eik|r−r

′| − 1

|r− r′|
(4.93)

Now, we can analytically integrate the first term with the singularity around φ

π∫
−π

dφ′

|r− r′|
=

π∫
−π

dφ′√
4R2

cn sin2(φ′/2) + (z − z′)2
=

4K [4R2
cn/(4R

2
cn + (z − z′)2)]√

4R2
cn + (z − z′)2

(4.94)

where K[x] is the elliptic integral of the first kind. Note that this term still has

a logarithmic singularity at (z − z′) = 0. However, this logarithmic singularity is

integrable. The second term in the separated kernel is calculated numerically with

no issues since it is a slowly varying function with no singularities.
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Performing our quadrature technique to this elliptic integral term will still give

−∞ when n = m in the impedance matrix. However, since the singularity is

integrable, we can replace the n = m term in the matrix with

Z0 =

1∫
−1

4K [4R2
cn/(4R

2
cn + ∆z2(x)2)]√

4R2
cn + ∆z2(x)2

dx (4.95)

where x is a dummy index representing the singular part between n = m − 1 and

n = m+ 1. We are integrating over the singularity to obtain a value for the n = m

impedance matrix element. The full impedance kernel now reads

Znm = ∆z

[
eik∆z(n−m)

2ikσ
+

Rcn

4πiε0ω

(
4K [4R2

cn/(4R
2
cn + ∆z2(n−m)2)]√

4R2
cn + ∆z2(n−m)2

+

∫
exp(ik

√
4R2

cn sin2(φ′/2) + ∆z2(n−m)2)− 1√
4R2

cn sin2(φ′/2) + ∆z2(n−m)2
dφ′

)]
(4.96)

for when n 6= m and

Z00 = ∆z

 1

2ikσ
+

Rcn

4πiε0ω

 1∫
−1

4K [4R2
cn/(4R

2
cn + ∆z2(x)2)]√

4R2
cn + ∆z2(x)2

dx

+

∫
exp(ik

√
4R2

cn sin2(φ′/2))− 1√
4R2

cn sin2(φ′/2)
dφ′

)]
(4.97)

when n = m.

4.3.5 PL Enhancement

The PL rate of a two-level molecule can be expressed as [126]

γPL = γexc

(
γr
γ

)
(4.98)

where γexc is the rate of excitation, γr is the radiative decay rate, and γ = γr + γnr

is the total decay rate of the molecule. Radiative losses should be negligable for

REIs. However, other non-radiative mechanisms not associated with the SWNT
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may play a signficant role. In that case, the total decay rate of the REI would then

be γ = γr +γnr +γother. In our system, we assume that the only non-radiative decay

channel of the REI is due to dissipative losses. Therefore,

γnr =
1

2

∫
Re [E∗(x) · j(x)dx] (4.99)

where E∗(x) is the conjugate of the total electric field and j(x) is the current density.

Without any objects in the environment, the molecule is simply excited by the

external field E0. Having the NT antenna in the vicinity generates an additional

field which interacts with the molecule. Therefore, the excitation rate is proportional

to the ratio of the total field intensity (incident plus scattered field) to the incident

field intensity:

γexc =

∣∣∣∣ E(r0)

E0(r0)

∣∣∣∣2 (4.100)

where r0 is the position of the REI.

4.4 REI Excitation Enhancements

Figure 4.1 shows the fitted excitonic conductivity for a (6,5) semiconducting SWNT

including the S1 and S2 transitions. The parameters used for the conductivity

fitting are shown in Table 4.1. The S1 transition has a maximum conductivity of

approximately 7G0, where G0 = e2/h is the quantum of conductance. This value

fits within the range of values calculated for many other SWNTs using quantum

mechanical calculations [117].

Figure 4.2 shows the calculated linear current for a 50 nm long (6,5) SWNT

excited at perpendicular incidence at the 5D0 → 7F0 Eu3+ transition at 2.14 eV.

In the center of the SWNT, the current distribution is flat due to the external field

having no spatial variance along the tube at perpendicular incidence (Ext
z (z) = E0).

Figure 4.3 shows a density plot of the normalized scattered field from Equation

(4.63) as a function of distance away from the SWNT surface. The hotspots are

located around the tube edges. The field enhancements decay as you move farther

away and virtually disappear at a distance of 5 nm. This shows that these hotspots
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Figure 4.1: Fitted exciton conductivity for (6,5) semiconducting SWNT using Equation
(4.16) with experimental parameters.[6, 7] The black dashed lines indicate
range of REI transitions overlapping with the S2 level of the (6,5) SWNT.
The green dashed line corresponds to the 5D0 → 7F0 Eu3+ transition at 2.14
eV.
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Figure 4.2: Calculated linear current for L = 50 nm (6,5) semiconducting SWNT reso-
nant with the 5D0 → 7F0 Eu3+ transition at 2.14 eV with the external field
perpendicularly incident (θ = 0◦).
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(n,m) S1 (eV) (a) f1
(b) γ1 (meV) S2 (eV) (a) f2

(b) γ2 (meV)
(6,5) 1.25 0.01 27.3 2.17 0.0061 76.9
(7,5) 1.19 0.0064 20.8 1.91 0.0058 66.6
(7,6) 1.09 0.008 19.4 1.90 0.0047 64.1
(8,6) 1.04 0.0054 19.1 1.72 0.0049 55.4
(8,7) 0.96 0.0065 17.8 1.68 0.0036 45.9

Table 4.1: Experimentally measured parameters used for the fitting of the exciton con-
ductivity.
(a) from [6].
(b) from [7].

are extremely localized to the near field around the antenna. Figure 4.4 shows the

scattered electric fields around the edge of the SWNT. From the red line in Figure

4.5, it can be seen that the main contribution for this field enhancement comes

from the radial (x) component of the scattered field which can also be verified

from Figure 4.4. For REI/SWNT complexes, it was experimentally measured that

the Förster distance in solution was approximately 1 nm from the SWNT surface

[6, 127]. Therefore, when forming complexes, REIs are in very close proximity to

the SWNT and will be experiencing these field enhancements.

Figure 4.6 shows the total normalized field (incident plus scattered). This shows

an area just prior to the tube ends where the total field magnitude is less than the

incident field. The cross section of this field at 1 nm can be seen in Figure 4.7.

This is due to the z-component of the scattered field. Because the magnitude of

Esc
z + Einc

z is larger than Esc
x , the total field mostly follows the dependence of the

z-component of the scattered field. This means that for a REI sitting in the vicinity

of the tube edge, depending on where along the tube it is, it could either see an

enhanced field or a diminished field which leads to an enhancement of PL emission

or a decrease of PL emission, respectively. Figure 4.7 shows the cross section of the

total field 1 nm away from the SWNT surface.
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Figure 4.3: Density plot of the normalized scattered field of a 50 nm long (6,5) SWNT
at the 5D0 → 7F0 Eu3+ transition at 2.14 eV as a function of distance away
from the SWNT surface. Note that the SWNT lattice is not to scale.

Figure 4.8 shows the integrated total field,

L/2∫
−L/2

((
Etot(z)

E0

)2

− 1

)
dz (4.101)

as a function of energy where we have integrated over the length of the SWNT. The

black, dashed lines indicate the S1 and S2 peaks. If we were to assume uniform

coverage of the SWNT by REIs, this can give us a good estimate of the quantum

yield due to the SWNT we should expect. The S1 resonance shows the best average

difference in enhancement. The average enhancements around the S2 peak do not

show as strong enhancements as around the S1.

Once the field enhancements are calculated, we can then proceed to calculate
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Figure 4.4: Vector density plot of the normalized scattered field of a 50 nm long (6,5)
SWNT at the 5D0 → 7F0 Eu3+ transition at 2.14 eV showing the electric
field lines at the edge of the SWNT.

the excitation enhancement of the REIs from Equation (4.100). These calculations

were done not only for one particular SWNT and one particular REI transition:

we calculated excitation enhancements for the five most predominant chiralities of

SWNTs found in solution with a range of REI transitions that overlap with the S1

and S2 transitions. The results for the S2 resonances can be seen in Figure 4.9. We
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Figure 4.5: Cross section of the normalized scattered fields in Figure 4.3. The cross
section is taken at a distance of 1 nm away from the surface of the SWNT.
The red line is the magnitude of the radial field, the blue line is the magnitude
of the axial field, and the black line is the magnitude of the total scattered
field. The antenna edges are shown by the vertical, dashed, black lines.

calculate the percentage excitation enhancement (calculated excitation enhancement

normalized by the excitation rate in the external field alone) for the REIs sitting

in the location of maximum enhancement of Figure 4.6. We obtain a wide range

of values for different chiralities and transitions. We can see maximum excitation

enhancements of approximately 40% for the 6F1/2 → 6H15/2 Dy3+ transition with

the (8,6) and (8,7) SWNTs.

The results for the S1 enhancements can be seen in Figure 4.10. The magnitudes

of the currents are larger around the S1 resonances so they scatter a stronger electric

field leading to larger local enhancements. Excitation enhancements of over 200%

can be seen for certain REI transitions.
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Figure 4.6: Density plot of the normalized total (incident plus scattered) field of a 50
nm long (6,5) SWNT at the 5D0 → 7F0 Eu3+ transition at 2.14 eV as a
function of distance away from the SWNT surface. Note that the SWNT is
not to scale.
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Figure 4.7: Cross section of the normalized total (incident plus scattered) field of Figure
4.6 taken at 1 nm away from the surface of the SWNT.
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Figure 4.8: Total integrated field intensity 1 nm away from (6,5) SWNT surface inte-
grated along the SWNT as a function of energy ranging from below S1 (left
dashed line) to above S2 (right dashed line).
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Figure 4.9: Calculated percentage excitation enhancements of multiple REI transitions
with various S2 transitions of predominant SWNT chiralities.
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Figure 4.10: Calculated percentage excitation enhancements of multiple REI transitions
with various S1 transitions of predominant SWNT chiralities.
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4.5 Oscillatory Patterns

Figure 4.11 shows the conductivity in units of the conductance quantum around

the S1 transition of the (6,5) SWNT. The dashed vertical lines indicate particular

frequencies used to evaluate the current distribution. The frequencies were chosen to

be symmetric about the S1 conductivity peak. Figures 4.12, 4.13, and 4.14 show the

calculated current distributions at the frequencies indicated in Figure 4.11 with the

color coding remaining the same. The maximum currents are observed to be at the

S1 transition as we should expect due to the conductivity being a maximum there.

However, different behavior is seen below the resonance than above the resonance.

Below S1, the current distributions are flat and show no features. Approaching

S1, the currents increase in magnitude, but also begin to show some structure.

On resonance, a dip can be seen in the middle of the tube. Above resonance,

definite oscillatory patterns appear. As we get further away from the resonance, the

amplitude decreases and the wavelength of oscillations becomes smaller.

1.1 1.2 1.3 1.4

-2

0

2

4

6

E HeVL

G
0

H6,5L ΣHΩL

Re@ΣD
Im@ΣD

Figure 4.11: Real and imaginary parts of the (6,5) conductivity with the energies (fre-
quencies) used in the current calculations.
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Figure 4.12: Calculated real part of the current at the frequencies indicated on Figure
4.11. The maximum current is obtained when on resonance with the E11
transition.
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Figure 4.13: Calculated imaginary part of the current at the frequencies indicated on
Figure 4.11.

These oscillations occur above the S2 transition as well. The transitions between

non-oscillatory and oscillatory currents above and below both resonances can be

seen in Figure 4.15.
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Figure 4.14: Calculated magnitudes of the currents at the frequencies indicated on Fig-
ure 4.11.

Figure 4.15: Surface plot of calculated current distributions over a frequency range cov-
ering the S1 and S2 transitions of the (6,5) SWNT. The continuous tran-
sition between non-oscillatory and oscillatory currents when passing over
the exciton resonances can be seen.

To understand how material parameters change these oscillatory patterns, we

chose a frequency that exhibits oscillatory behavior at 1.3 eV. We then calculated
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Figure 4.16: Oscillatory current calculated at 1.27 eV as a function of length of SWNT.
As the length is increased, so is the wavelength of oscillations.

the current distribution at this frequency as a function of SWNT length. The

results can be seen in Figure 4.16. As L is increased, the wavelength of oscillations

decreases. Figure 4.17 shows a fit of the measured wave vector, k, as a function

of the length. The data was fitted with a power law and the fit shows an exact

dependence of L−1.

To analyze the observed oscillatory behavior when passing over a resonance, we

fit the calculated current distributions with a function

A+BeiKz (4.102)

where A and B are complex parameters and K = k + iκ is the complex wave

vector accounting for the oscillatory behavior (real component) and the damping

(imaginary component). Figure 4.18 shows the fitted values of the real component

of the complex wave vector as a function of frequency at an energy range just after

the S1 where the oscillatory behavior begins. Deviations from a linear dependence

is observed. When the value of k passes an odd multiple of π/L, the line flattens

for a moment before continuing to the next odd multiple of π/L.
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Figure 4.17: Fit of the wave vector as a function of length for the oscillations in Figure
4.16. The fit shows a 1/L fit showing that k is inversely proportional to
the length.

Figure 4.19 shows the fitted values of the imaginary component of the complex

wave vector as a function of frequency. Two distinct behaviors can be observed.

The first is the overall trend which shows that the damping is higher when we are

close to the S1 resonance, and κ decreases as we go further away. The second trend

is the oscillatory behavior. The local minima that are observed in the oscillations

correspond to the positions where k crosses multiples of π/L. The local maxima

positions are when k is between multiples. When k lies on an odd multiple of π/L,

the damping is smaller than when k is not an odd multiple of π/L. This behavior

can be more easily seen in Figure 4.20.

From this Figure 4.18, a linear fit can be made to extract the slope which by

definition is the inverse of the group velocity: vg = ∂ω/∂k. From the fit, we calculate

a group velocity of 0.175vF , where vF = 1 nm/fs is the Fermi velocity of carbon

materials. The Fermi velocity is approximately 300 times smaller than the speed of

light in vacuum. More analysis is required to explain why the group velocity is only
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Figure 4.18: Fitted values of the real component of the complex wave vector of oscilla-
tions as a function of energy.

a fraction of the Fermi velocity.

The behavior of the system in the complex plane can be observed by making an

Argand plot. We fit the k dependence on energy from Figure 4.18 and subtracted

that linear dependence to form a new variable which we denoted as k′. That value

is plotted along the real axis while κ is plotted along the imaginary axis. The third

axis is energy. This 3D Argand plot can be seen in Figure 4.21. Spirals can be

observed from the plot which illustrate the phase behavior of the system. Between

the energies where k crosses odd multiples of π/L, the system goes through a phase

change of 2π which is shown from the spirals of the Argand plot.

We also wanted to calculate the dependence of these oscillations on the width of

the excitonic transition, γ. To do this, we increased the quality factor, or Q factor,

of the transitions. The quality factor is defined as the frequency of the transition

divided by the full width at half maximum (FWHM) of the transition. We chose

an arbitrarily high Q factor of 1000 to compare our results. The resulting excitonic

conductivity can be seen in Figure 4.22. The transition lines are now very sharp and
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Figure 4.19: Fitted values of the imaginary component of the complex wave vector of
oscillations as a function of energy.

their magnitudes are almost two orders of magnitude higher than they were when

using the experimental values.

We then fitted the currents calculated with the increased quality factor and the

results for the fitted values of k and κ can be seen in Figure 4.23. A striking difference

in the behavior as compared Figure 4.20 can be seen. Now, k plateaus on the odd

multiples of π/L for an extended energy range. Again, the local minima of κ occur

when k is a multiple of π/L and the local maxima are when k is transitioning between

the multiples. This is now showing us evidence that what we are calculating are

polaritonic modes. The exciton line is crossing the antenna resonance line, creating

an exciton polariton.

We also calculated the effect of the exciton conductivity on the current oscilla-

tions. Figure 4.24 shows the calculated real part of the (6,5) current distribution

at 1.35 eV (this corresponds to the purple dashed line in Figure 4.11). By inde-

pendently changing the real and imaginary components of the conductivity, we see

that the oscillations with the least amount of damping occur when Im[σ] is higher.
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Figure 4.20: Fitted values of both the real and imaginary component of the complex
wave vector as a function of energy.

This agrees with the increased Q factor data. By increasing the Q value, we have

increased the imaginary component of the conductivity and we observe oscillations

with lower damping. By decreasing the imaginary component of the conductivity,

we increase the damping in our system.

The behavior of this system also exhibits behavior seen in non-Hermitian Hamil-

tonians. For a discrete, two level quantum system with non-vanishing interaction

strength, we observe anti-crossing of the two levels as can be seen in Figure 4.25.

The two levels without interaction are shown as the black, dashed lines. Due to

their interaction, the two levels repel one another. However, when the Hamiltonian

has complex energies,

H =

(
ε1 − iγ1 g

g ε2 − iγ2

)
=

(
e1 g

g e2

)
(4.103)

where ε1 and ε2 are the energies of the two levels, γ1 and γ2 are the widths of the two

levels, and g is the interaction strength, the eigenvalues of the Hamiltonian become
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complex:

Ei − iΓi =
e1 − e2

2
± 1

2

√
(e1 − e2)2 + 4g2 (4.104)

where the real part of the eigenvalue gives the energies while the imaginary part

gives the widths.

When γ is small, the levels exhibit anti-crossing similar to the case where γ = 0.

This can be seen in Figure 4.26 for the energy and in Figure 4.27 for the widths.

However, when γ becomes significant, the levels begin to cross as can be seen in

Figures 4.28 and 4.29. The energy levels now allowed to cross at a point.

Further evidence that we are calculating exciton-polaritonic modes can be ex-

tracted from properties of phonon-polaritons. It is a known property of phonon

polaritons that they can only exist in a certain region known as the Reststrahlen

band [128, 129, 130]. The Reststrahlen band is defined as the region where the real

part of the complex dielectric function, Re[ε]< 0. Outside of that region, phonon-

polaritons are not allowed to propagate. In our system, the Reststrahlen band is the

region following the S1 and S2 transitions. Outside of that range, we observe fea-

tureless current distributions. However, inside of that region where the real part of

our dielectric function is negative, we observe these polaritonic modes which follow

a π/L wavevector dependence.
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Figure 4.21: A 3D Argand plot of the complex wave vector versus energy. The linear
dispersion of k was subtracted to illustrate the deviations from the linear
fit.
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Figure 4.22: Excitonic conductivity for Q = 1000. The transitions are now very sharp
peaks.
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Figure 4.23: Dependence of k and κ versus energy for Q = 1000.
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Figure 4.25: Anti-crossing of two quantum states. The parameters used in this calcula-
tion are ε1 = 1− k/2, ε2 = k, γ1 = 0, γ2 = 0, and g = 0.05.
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Figure 4.26: Energy behavior of a two level system with small imaginary components.
The parameters used in this calculation are ε1 = 1− k/2, ε2 = k, γ1 = 0.7,
γ2 = 1.1γ1, and g = (1 + i)0.05.
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Figure 4.27: Width behavior of a two level system with a small imaginary components.
The parameters used in this calculation are ε1 = 1− k/2, ε2 = k, γ1 = 0.7,
γ2 = 1.1γ1, and g = (1 + i)0.05.
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Figure 4.28: Energy behavior of a two level system with large imaginary components.
The parameters used in this calculation are ε1 = 1− k/2, ε2 = k, γ1 = 1.2,
γ2 = 1.1γ1, and g = (1 + i)0.05.
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Figure 4.29: Width behavior of a two level system with a large imaginary components.
The parameters used in this calculation are ε1 = 1− k/2, ε2 = k, γ1 = 1.2,
γ2 = 1.1γ1, and g = (1 + i)0.05.
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4.6 Discussion

We were able to calculate the scattered electric fields from a SWNT antenna by

solving an integral equation for the induced current distribution. The scattered

fields generated localized hotspots of field intensity in the near-field of the SWNT

antenna. REIs sitting in these hotspots could experience excitation enhancements

upwards of 200%.

The behavior we observe with the current distributions over the frequency range

of the S1 and S2 SWNT transitions resembles what Scully observed [124]. He saw

that the resonant transition wave vector has a cutoff between the superradiance

regime and the radiation trapping regime. Here, we observe that once the frequency

of light is greater than the transition frequency, oscillations occur as can be seen in

Figure 4.15. In this range, Re[σ(ω)] > 0 which means that the SWNT creates gain

for light quanta.

Our fitting procedure of using a complex exponential function with complex wave

vector K = k + iκ resembles what Dubovskii saw in his dispersion relation for the

1D crystal in Equation (4.5). There, he saw a dependence on a complex frequency

corresponding to damped solutions as we see above the excitonic resonances. It is

likely that the quantization of k ∝ π/L is similar in our case to Fabri-Perot modes

of a 1D resonator, a wave guide, a fiber, or most closely related to an open antenna

resonator. Such antenna resonances are being enhanced in the region where the

antenna medium has a positive gain.

A recent experiment on Boron Nitride nanotubes (BNNTs) observed phonon-

polariton resonances [131]. The behavior of the dielectric function for the phonon

resonances in these experiments was similar to our excitonic dielectric function, al-

though in a different frequency range. They used scattering based scanning near

field optical microscopy (s-SNOM) to visualize the mid-IR phonon polaritons. What

they observed was that below the phonon resonance, they saw no propagating po-

lariton modes. However, upon crossing the resonance, they saw the appearance of

standing wave modes which they classified as phonon polariton modes which exist

within the Reststrahlen band.
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We calculate that below the exciton resonance, no oscillations are observed.

When passing the resonance, we see the formation of standing wave patterns along

the surface of the SWNT that decrease in wavelength as the frequency is increased.

This is similar to what Xu, et al. saw with the BNNT phonon polaritons. As they

increased the excitation frequency, the oscillatory modes decreased in wavelength,

as well.

Therefore, we have come to the conclusion that what we are calculating are

exciton-polariton modes. The photon is coupling the exciton with the antenna

resonances to form the polaritonic modes. These modes can be calculated in the

region where the real part of the dielectric function is negative which agrees with

previous work done on phonon-polaritons.
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Chapter 5

Conclusions and Future Work

In Chapter 3, we derived an analytic model for SWNT surface plasmons by treat-

ing the SWNT as a transmission line. The results of this model illustrate that the

model indeed replicates the plasmon resonances on SWNTs with less computational

expense than more rigorous, numerical models. However, because the plasmon res-

onant frequencies for SWNTs are in the THz range, they do not contribute to any

enhancements for excitations with visible/NIR frequencies for REI applications.

Since we have a working model, there are two directions this project can go in the

future. The first is to continue using the model for SWNT plasmons and find other

ions/molecules/dyes that could have resonant frequencies closer to the THz range.

The other direction is to replace the SWNT with a different material. Materials

such as gold or silver nanowires, or even boron nitride nanotubes will have different

plasmon resonant frequencies. Doing this would require changing the TL parameters

for each different material and calculating the plasmon resonance frequencies. If any

of those materials have resonances in the visible or NIR, then they can be used with

the REIs to see what mangitude of enhancements can be seen. If the resonances are

elsewhere, one could find molecules or dyes that have similar resonance frequencies.

In Chapter 4, we derived a numerical model for calculating the induced current

distribution on the surface of the SWNT including excitonic resonances for use

in the visible and NIR range to couple with the REIs. By incorporating a semi-

classical, analytic model for the excitonic conductivity, we were able to calculate the
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scattered fields around the SWNT antenna. We found hotspots of field enhancement

around the antenna and were able to calculate the excitation enhancements of REI

transitions for various chirality SWNTs. Excitation enhancements of over 200%

were calculated for particular transitions.

In addition to the REI enhancements, we also observed oscillatory behavior

of the current distributions in the region of gain in the response function of the

exciton resonances. This behavior resembles that of superradiance and radiation

trapping as calculated by Holstein [118, 119], Dubovskii [121], and Scully [124]. It

also resembles the behavior of phonon polaritons in BNNTs as measured by Xu, et

al [131]. Therefore, we conclude that the oscillatory behavior we are calculating are

due to exciton-polariton modes. The photon is coupling the exciton modes with the

antenna resonance modes to form the polariton.

The next step in this project would be to further analyze the polaritonic modes.

Also, an approximate analytical expression for the current distribution could be

obtained and used to explain what we see in the dispersion and compare to the

dispersion equation calculated by Dubovskii [121].

Our model can also apply to BNNTs to simulate the phonon polariton modes Xu

observed [131]. Our model needs to be altered to account for the thick, multi-walled

structure of the BNNTs as compared to the the single layer structure of the SWNT.

An additional step in this project would be to include non-radiative decay chan-

nels for the REIs. So far, we have only considered excitation enhancements. How-

ever, once REIs are excited, they non-radiatively recombine to a lower energy level

before re-emitting a photon. Including these non-radiative recombinations will allow

us to calculate the full PL enhancement of the REI in the presence of the SWNT

antenna.

Also, thus far we have not considered that a REI sitting in these enhanced fields

will experience a shift in energy levels (Stark splitting). The energy levels used here

were the free-ion energy levels of REIs in aqueous solution. Experiencing such large

electric fields will surely alter their energy level structures. Calculations will need to

be performed to see if these fields can be treated perturbitavely. If so, perturbative

methods can be applied. If not, we must consider adding an electric field term to
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the REI Hamiltonian. Solving that Hamiltonian will not be an easy task since just

solving the free-ion Hamiltonian with the crystal field perturbation is not a simple

thing to do.

One more aspect that we have not considered up to this point is the shifting of

exciton transition frequencies due to changes in the dielectric environment. Placing

a REI in the near field of the SWNT antenna will alter the potential felt by the

exciton. This potential could either scatter the exciton or trap it in a bound state

local to the position of the REI as seen in Ref [109]. The resonant frequencies of

the excitons on the SWNT antenna may also change over the length of the tube,

depending on the specific environment it is sitting in. A more accurate approach

would be to apply the formalism of Section 2.3.9 to calculate the shifts in energy

due to the presence of the REI. This is not a simple adjustment to make to the

model and the exact method on how to properly apply it will require some thought

and time.

Source code for all calculations is available upon request.
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[90] Sofie Cambré, Silvia M. Santos, Wim Wenseleers, Ahmad R. T. Nugraha,

Riichiro Saito, Laurent Cognet, and Brahim Lounis. Luminescence properties

of individual empty and water-filled single-walled carbon nanotubes. ACS

Nano, 6(3):2649–2655, 2012.

133



[91] Christoph Mann and Tobias Hertel. 13 nm exciton size in (6,5) single-wall

carbon nanotubes. The Journal of Physical Chemistry Letters, 7(12):2276–

2280, 2016.

[92] J. Jiang, R. Saito, Ge. G. Samsonidze, A. Jorio, S. G. Chou, G. Dresselhaus,

and M. S. Dresselhaus. Chirality dependence of exciton effects in single-wall

carbon nanotubes: Tight-binding model. Phys. Rev. B, 75:035407, Jan 2007.

[93] Mildred S. Dresselhaus, Gene Dresselhaus, Riichiro Saito, and Ado Jorio. Exci-

ton photophysics of carbon nanotubes. Annual Review of Physical Chemistry,

58(1):719–747, 2007.
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