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Abstract 

 

    The role played by hydrogen impurities in the conductivity of indium oxide (In2O3) 

has been controversial. Some studies, based on the effect of oxygen partial pressure 

in growth or annealing environments, argue that oxygen vacancies are the cause of 

the conductivity of In2O3. However, there is a growing body of theoretical and 

experimental work which suggests that hydrogen centers can be important shallow 

donors in In2O3. Muon-spin-resonance experiments indicate that implanted muons, 

whose properties mimic those of hydrogen, form shallow donors in In2O3. In2O3 thin 

films containing hydrogen show n-type conductivity with high mobility, and theory 

states that interstitial hydrogen (Hi
+) and hydrogen trapped at an oxygen vacancy (HO

+) 

are shallow donors that can give rise to n-type conductivity or compensate acceptors 

in In2O3.  

 

    We have performed a series of IR absorption experiments and complementary 

theory to determine the properties of OH and OD centers in In2O3 single crystals. 

Annealing In2O3 samples in H2 or D2 at temperatures near 450oC produces an n-type 

layer≈0.06 mm thick with an n-type doping of 1.6×1019 cm-3. The resulting 

free-carrier absorption is correlated with an OH center with a vibrational frequency of 

3306 cm-1 that we associate with interstitial H+, which is thermally stable around 

600oC. Additional O-H (O-D) vibrational lines are assigned to metastable 

configurations of the interstitial H+ (D+) center and complexes of H (D) with In 
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vacancies. Unlike other oxides studied recently where H trapped at an oxygen 

vacancy is the dominant shallow donor (ZnO and SnO2, for example), interstitial H+ is 

found to be the dominant H-related shallow donor in In2O3. In addition, the diffusion of 

hydrogen defects has been studied by thinning experiments and isothermal anneals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Chapter 1: 

Transparent Conducting Oxides 

1.1: Introduction to Transparent Conducting Oxides 

    Transparent conducting oxides (TCOs) have unusual but highly useful properties, 

combining transparency in the visible region of the spectrum with high electrical 

conductivity. Glass fibers have high transmission of light but are electrical insulators, 

while silicon and compound semiconductors are electrical conductors but with dopant 

dependence. Transparent conducting oxides form a highly flexible intermediate class 

of materials with both these characteristics. They are usually prepared with thin film 

technologies and are used in opto-electrical devices such as solar cells, displays, 

opto-electrical interfaces, and transparent circuits [1.1]. Typically, these applications 

use electrode materials that have greater than 80% transmittance of incident light as 

well as conductivities higher than 103 S/cm for efficient carrier transport. TCOs for use 

as thin-film electrodes in solar cells should have a minimum carrier concentration on 

the order of 1020 cm−3 for low resistivity and a band-gap energy above approximately 

3.0 eV to avoid absorption of light over most of the solar spectrum [1.2]. 

 

    Indium tin oxide (ITO, 90% In2O3, 10% SnO2 by weight) is the most widely used 

transparent conducting oxide because of its electrical conductivity (103 S/cm) and 

optical transparency (85%-90%). It is transparent and colorless in thin film form while 

yellowish to grey in bulk. Figure 1.1 shows In2O3 crystals, which appear to be 

yellowish. ITO is often used to make transparent conductive coatings for displays 
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such as flat panel displays and plasma displays. The absorption spectrum of ITO 

coated glass is similar to that of regular glass (Fig. 1.2). One common application 

involves ITO films deposited on aircraft windshields that are used for defrosting [1.3]. 

Heat is generated by applying voltage across the film. ITO thin films can be deposited 

with ion assisted plasma evaporation [1.4], electron beam evaporation [1.5-1.7], direct 

current (DC), pulsed DC (PDC) or thermal evaporation [1.8]. 

 

 

 

FIG. 1.1. In2O3 as-grown crystals appear to be yellowish. They have high transmission 

in the visible region of the spectrum and high electrical conductivity. 
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FIG. 1.2. ITO coated glass has a low absorption (high transmission) in the visible 

region. An absorption spectrum for ITO coated glass (Red) and absorption spectrum 

of uncoated glass (black). 

 

 

 

 

FIG. 1.3. ZnO crystal showing high light transmission [1.9]. 
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    ZnO is another popular TCO in industry (Fig. 1.3) [1.9]. ITO is the most popular 

TCO in the current market because it is superior to ZnO in terms of transmittance and 

conductivity. However, since ITO is priced several times higher than ZnO, ZnO is a 

lower cost alternative to ITO in applications such as display technology and solar cells. 

Between 50% and 60% of ZnO is also used in the rubber industry [1.10]. The ceramic 

industry also consumes a significant amount of ZnO in ceramic glazes and frit 

compositions. 

 

    SnO2 is another typical example of a TCO. Similar to ZnO, SnO2 is a lower cost 

substitute to ITO with comparable performance in transparency and conductivity after 

proper treatments. SnO2 has long been used as a glass coating and an opacifier or 

white colorant in ceramic glazes [1.11]. SnO2 wires are also commonly used as the 

detecting element in carbon monoxide detectors [1.12]. The unique properties of 

transparent conducting oxides will lead to their wider use in the optoelectronics and 

energy industries. 

 

1.2: Crystal Structures of Transparent Conducting Oxides 

 

    To investigate the properties and applications of TCOs, their crystal structures 

must be known. Various types of crystal structures result in different metal oxides 

properties and host-impurity bonds.  
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    SnO2 has the rutile crystal structure with a direct band gap of 3.6 eV. The unit cell 

of SnO2 is shown in Fig. 1.4. Each Sn atom is surrounded by six oxygen neighbors, 

which form a distorted octahedron. Each oxygen atom is surrounded by three 

coplanar Sn atoms to form an almost equilateral triangle.  

 

 

FIG. 1.4. Rutile crystal structure of SnO2. Each Sn atom (grey) is surrounded by six 

oxygen neighbors. Each oxygen atom (red) is surrounded by three coplanar Sn 

atoms. 

 

    The conventional wisdom has been that the conductivity of TCOs is due to 

oxygen vacancies or cation interstitials [1.13-1.15]. As with other TCOs, the 

assumption that native defects are responsible for the n-type conductivity of SnO2 has 

been challenged recently [1.16][1.17]. For example, Interstitial hydrogen (Hi) and 

hydrogen at an oxygen vacancy (HO) have been predicted to be shallow donors in 

SnO2. Interstitial hydrogen is not thermally stable in SnO2 near room temperature, 

while HO is a more thermally stable defect than Hi and decays upon annealing near 
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500oC [1.18].  

    Titanium dioxide (TiO2) also has the rutile crystal structure and an indirect band 

gap of 3.0 eV. TiO2 is being investigated for photo-catalytic applications. H in TiO2, 

unlike in ZnO or SnO2, gives rise to electrons that are self trapped as small polarons. 

 

 

 

FIG. 1.5. Zinc Oxide crystal structures. (a) hexagonal wurtzite; (b) cubic zincblende 

[1.19]. 

 

    ZnO has two possible crystal lattice structures, hexagonal wurtzite and cubic 

zincblende (Fig. 1.5) [1.19]. The wurtzite structure is most stable at ambient 

conditions. The zincblende form can be stabilized by growing ZnO on substrates with 

cubic lattice structure. In the wurtzite structure, each Zn atom is bonded to four 

oxygen atoms and each oxygen atom is bonded to four Zn atoms. ZnO has a band 

gap of 3.4 eV at room temperature. Historically, it was reported that as-grown ZnO is 

n-type because of native defects. However, recent experiments and theory have 

shown that oxygen vacancies are deep donors and H impurities are the most likely 

(a) (b) 
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cause of n-type conductivity in ZnO [1.17]. These new results for H confirm results in 

the old literature for ZnO that were mostly forgotten [1.20]. Interstitial H has been 

observed by IR spectroscopy, while H at an oxygen vacancy has been seen by 

photo-thermal ionization spectroscopy [1.21].  

 

 

FIG. 1.6. In2O3 Bixbyite crystal structure with 80 atoms in a conventional cell. In atom 

(grey); O atom (red) [1.23]. 

 

    In2O3 has a complicated cubic crystal structure called bixbyite with 80 atoms in a 

conventional cell [1.22]. The crystal structure is shown in Fig. 1.6 [1.23]. There are two 

inequivalent In sites, each of which is surrounded by six O atoms. A quarter of the In 

atoms occupy the 8b positions (In1) while the remaining three quarters occupy the 

24d positions (In2) in Wyckoff notation [1.22]. Fig. 1.7 shows the calculated local 
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structures of O atoms (red) and the In1 and In2 atoms (grey). All O sites are 

equivalent and are surrounded by four In atoms. The local structure of an In1 atom is 

quite symmetrical, in which all six In-O bonds are equivalent with a bond distance of 

0.2% smaller than the average value of all In-O bonds. The In2 local structure is less 

symmetrical and the six In-O bonds can be divided into three groups of two equivalent 

In-O bonds [1.22]. 

 

  

 

FIG. 1.7. Local structures of In atoms (In1 and In2) surrounded by six O atoms. All O 

sites are equivalent and are surrounded by four In atoms. (a) The 8b In site (In1). (b) 

The 24d In site (In2). (c) The O site [1.22]. 

 

1.3: H as a source of conductivity in oxides 

1.3.1: Hydrogen in ZnO 

    The high electrical conductivity of TCOs has been attributed to native defects 

such as oxygen vacancies and cation interstitials based on early experimental work 

[1.13][1.15]. However, recent calculations and experiments have shown that native 

defects are not the major sources of n-type conductivity. It has been confirmed that 
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the hydrogen impurity increases the conductivity of TCOs and also gives rise to 

several hydrogen-containing centers. Hydrogen acts as a shallow donor and 

contributes to the n-type conductivity of TCOs [1.18]. 

 

    Zinc oxide is a wide-band-gap semiconductor that exhibits n-type conductivity 

with many technological applications. It provides a good example of an oxide that can 

be doped n-type with hydrogen. A first-principles investigation, based on density 

functional theory, predicted that hydrogen behaves as a shallow donor and acts as a 

source of conductivity [1.24]. Fig. 1.8 shows the sites on which interstitial hydrogen 

can be incorporated in the ZnO wurtzite structure. 

 

 

 

FIG. 1.8. ZnO wurtzite structure and the sites on which interstitial hydrogen can be 

incorporated. BC indicates a bond-center site, and AB indicates an antibonding site 

[1.24]. 
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    The DFT calculations predicted that for all charge states, the BCǁ configuration 

(bond centered in a bond that is parallel to the c axis) is most stable with minimum 

formation energy [1.25]. This theoretical result also agrees with an experimental study 

of ZnO by infrared absorption spectroscopy [1.26]. The corresponding formation 

energies of all charge states are shown in Fig. 1.9 [1.24]. After correction of the 

calculated band gap, H+ is the lowest-energy state throughout the experimental band 

gap. The formation energy of H+ is low enough to give rise to a high concentration of 

hydrogen in n-type ZnO. Thus, in ZnO, H+ is the stable charge state for all Fermi-level 

positions, which acts as a shallow donor.  

 

 

FIG. 1.9. Formation energies of interstitial hydrogen in ZnO, as a function of Fermi 

level, obtained from DFT-LDA calculations. The zero of Fermi energy is chosen at the 

top of the valence band. The theoretical (Eg
th = 1.91 eV, dotted line) and experimental 

(Eg
exp = 3.4 eV) band gaps are indicated. The energies for H0 and H- are shown in 

dashed lines to indicate they are underestimated in the LDA calculations [1.24]. 
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FIG. 1.10. Coupling between the H 1s orbital and the Zn 4s 'dangling bonds' (Zn dbs) 

to form the hydrogen multicenter bond in ZnO [1.27]. 

 

    Recent research has provided evidence that hydrogen as a substitutional 

impurity (HO) in ZnO, that is, as H trapped at an oxygen vacancy, also contributes to 

its conductivity [1.27]. Oxygen vacancies are low-energy defects and may form in 

large concentrations in ZnO, which are neutral and electrically inactive. Hydrogen on 

a substitutional oxygen site forms multicenter chemical bonds with all of its 

metal-atom nearest-neighbors (Fig. 1.10) [1.27]. In wurtzite structure ZnO, the 

removal of an oxygen atom from the lattice breaks four bonds. The H 1s orbital 

combines with the a1 state and results in a fully symmetric bonding state in the 

valence band (VB), and an antibonding state in the conduction band (CB). The 
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electron that would occupy this antibonding state is then transferred to the 

conduction-band minimum, making the substitutional hydrogen HO a shallow donor. 

 

 

 

FIG. 1.11. Formation energies as a function of the Fermi-level position for hydrogen in 

the multicenter bond configuration HO, interstitial hydrogen Hi and the oxygen vacancy 

VO in ZnO (a) and MgO (b) [1.27]. 

 

    Similarly, Fig. 1.11 shows the formation energy of HO, based on DFT calculations, 

and indicates that substitutional hydrogen is most stable in ZnO and MgO [1.27]. HO 

acts as a shallow donor in ZnO and only the +1 charge state is stable over the entire 

bandgap (Fig. 11a). In ZnO, interstitial hydrogen has a low formation energy resulting 

in a high concentration, which also gives rise to a shallow-donor level. However, Hi 

has a low diffusion barrier and is unstable at high temperatures, favoring HO as the 
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dominant source in annealed samples. The oxygen vacancy is a deep donor. In MgO, 

the formation energy of HO is lower than Hi (Fig. 11b), so HO is expected to be the 

predominant form of hydrogen.  

 

1.3.2: Hydrogen in In2O3 

    In In2O3, interstitial H (Hi) has positive, neutral and negative charge states. Similar to 

ZnO, Hi
+
 exhibits local minima at the bond center (BC) and anion antibonding (ABO) sites. 

In In2O3, there are four inequivalent BC and four inequivalent ABO sites (Fig. 1.12) [1.22]. 

Hi
+
 is found to not be stable at the BC sites. Calculated formation energies of all the Hi

+
 

configurations showed that Ef(ABO1) = -2.09 eV has the lowest energy and makes ABO1 

site the preferred site [1.22]. 

 

 

 

FIG. 1.12. The possible sites for interstitial H in the In2O3 crystal structure. Red: bond 

center sites; green: anion anti-bonding sites [1.22]. 
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FIG. 1.13. Relaxed geometry of H defects in In2O3. (a) Hi
+
 at ABO1 site; (b) Hi

-
 at the 16c 

site; (c) H at oxygen vacancy (HO
+
) [1.22]. 

 

    The relaxed geometry of Hi
+
 at the ABO1 site is shown in Fig. 1.13 (a). In the 

negative charge state, Hi prefers interstitial sites closer to the cations, referred to as 8a 

and 16c in Wyckoff notation. The formation energy of the 16c site Hi
-
 is lower by 0.9 eV 

than at the 8a site and the relaxed geometry of the 16c site Hi
-
 is shown in Fig. 1.13 (b). 

Fig. 1.14 shows the calculated formation energies of hydrogen defects as a function of 

Fermi energy, which predicts Hi
+
 has the lowest formation energy. In addition to Hi

+
, the 

formation energy of HO
+
 is higher than Hi

+
, which suggests that Hi

+
 will be the preferred 

configuration. 

 

    Recent research indicates that muonium forms a shallow-donor state in In2O3, 

and by analogy, so would hydrogen [1.28]. Fig. 1.15 shows the amplitude of the 

paramagnetic fraction and diamagnetic fraction of muonium in In2O3 as a function of 

temperature.  
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FIG. 1.14. The formation energies of hydrogen defects and oxygen vacancies in In2O3 

as a function of Fermi energy [1.22]. 

 

 

 

FIG. 1.15. Amplitude of the paramagnetic fraction Mu0 and diamagnetic fraction Mu+ 

of muonium in In2O3 as a function of temperature. The fits to an ionization model give 

an activation energy of 47±6 meV [1.28].  
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All quantities derived are within a factor of two of values estimated from a simple 

hydrogenic model. By analogy, these results suggest that hydrogen will form a 

shallow-donor state which significantly contributes to the conductivity of In2O3.  

 

    Furthermore, H-doped In2O3 thin films have been deposited and high mobility and 

high near IR transparency have been achieved [1.29]. The deposition involved a 

sputtering process performed at room temperature and with a post-annealing 

treatment at 200oC. The H composition could be controlled by varying the water vapor 

pressure during the deposition. H-doped thin films showed large mobility, as high as 

98-130 cm2/(V-s), and carrier concentration of 1.4-1.8×1020 cm-3. In addition, high 

transparency in the near IR was realized. Therefore, it was proposed that H-doped 

In2O3 has the potential to improve optoelectronic devices such as thin-film solar cells 

and photodetectors. 

 

    Studies of cation vacancies and their complexes with hydrogen impurities in In2O3 

by first-principles calculations have also suggested a low formation energy for cation 

vacancies and their complexes with hydrogen [1.16]. Fig. 1.16 shows interstitial 

hydrogen donors and their complexes with various cation vacancies in In2O3. IR 

spectroscopy has indicated that cation vacancies strongly interact with H in TCOs 

resulting in complexes that are stable up to temperatures over 700oC [1.30]. 

Formation energies for vacancies and their complexes with hydrogen in In2O3 are 

shown in Fig. 1.17 [1.16]. It was realized that the isolated hydrogen interstitial acts as 
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a shallow donor with a low formation energy, which allows Hi
+ to be present with high 

concentration and mobility. While cation vacancies have high formation energies, their 

complexes with hydrogen were predicted to be much more favorable with lower 

formation energy. Thus, the vacancy–hydrogen complexes have low enough 

formation energies to potentially be incorporated during growth in a 

hydrogen-containing environment.  

 

Oxygen vacancies traditionally have been suggested to be the cause of 

conductivity of In2O3 in some studies [1.31-1.33]. However, a growing body of 

theoretical and experimental work listed in this chapter finds that hydrogen centers, 

which have been ignored for decades, can be important shallow donors in TCOs like 

In2O3. Since the role played by hydrogen impurities in conductivity of In2O3 has been 

controversial, infrared (IR) spectroscopy, Hall effect measurements, and theory are 

used to investigate the microscopic properties of hydrogen centers in In2O3 single 

crystals and their relationship to conductivity in our research. 
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FIG. 1.16. Interstitial hydrogen donors and their complexes with various cation 

vacancies in In2O3. (a) Hi
+, (b) (VIn-H)-2 on the 24d site, and (c) (VIn-H)-2 on the 8d site 

[1.16]. 

 

 

 

FIG. 1.17. Predicted formation energies for vacancies and their complexes with 

hydrogen in In2O3, shown in the limit of (a) O-rich and (b) In-rich conditions [1.16]. 
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Chapter 2: Experimental Methods 

2.1: Local Vibrational Modes (LVMs) 

    With the increasing demand of semiconductors in industry, it is important to attain 

controlled doping of semiconductors along with tunable conductivity. In addition to 

altering the electronic properties and even transparency of semiconductors, impurities 

also affect the vibrational modes. Atoms in a crystalline solid collectively oscillate 

about their equilibrium positions, resulting in phonon vibrational modes. Introducing 

an impurity into a crystal breaks the translational symmetry and new vibrational 

modes may appear. Local vibrational modes are the characteristic vibrational modes 

of the atoms in a defect, which can be localized in real space and frequency space. If 

a defect replaces a heavier host atom, its vibrational frequency is likely to be higher 

than the upper-most phonon frequency. For example, hydrogen defects have 

vibrational frequencies 5-10 times the maximum phonon frequency, giving rise to 

sharp peaks in infrared-absorption and Raman-scattering spectra [2.1].  

 

    In the following, key results for local vibrational modes are summarized, following 

the recent review written by McClusky [2.1]. Considering a monatomic linear chain as 

a model, the local vibrational frequency can be written as,  

2
2 2

max 22

M

Mm m
 


                        (2.1) 

where ωmax=(4k/M)1/2 is the maximum frequency of the unperturbed linear chain, M is 

the lattice mass and m is the defect mass. Therefore, if m<M, there exists a LVM 

frequency above the highest phonon frequency.  
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    In a compound semiconductor, numerical calculations in matrix form determine 

the eigenvalues ω and eigenvectors un (the displacement of the nth atom from its 

equilibrium position). The phonon density of states can then be plotted in a diagram 

as a function of eigenvalue ω. Figure 2.1 shows the density of vibrational states for 

undoped and 12C-doped GaP (MGa=70, MP=31, and with the carbon atom replacing 

phosphorus) by numerical calculation in the linear-chain model [2.1].  

 

 

FIG. 2.1. Density of vibrational states for undoped and 12C-doped GaP (M1=70, M2=31) 

by numerical calculation in a linear-chain model. A local vibrational mode due to 12C 

appears at ω=510 cm-1 [2.1]. 
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    The diatomic molecule is also an effective empirical model that describes the 

frequencies and isotope shifts of LVMs [2.2][2.3]. An impurity atom with mass m is 

attached to a host atom with mass M. To account for the other host atoms, M is 

multiplied by an empirical constant x [2.2]. Therefore, the vibrational frequency of this 

diatomic molecule is, 

(1/ 1/ ) /k xM m k                        (2.2) 

where μ is the reduced mass. Figure 2.2 shows the harmonic-oscillator and Morse 

potential energy functions for HCl, showing that the potential for a diatomic molecule 

is nearly harmonic at small amplitude.  

 

    If the defect atom is replaced with an isotope of itself, it will have a different mass, 

resulting in a different vibrational frequency ω (Fig. 2.3) [2.1]. For example, when 

hydrogen (m=1 amu) is replaced by deuterium (m=2 amu), the isotopic frequency 

ratio is given by  

1
/ 2

2
H D

xM
r

xM
 


 


                     (2.3) 

where ωH and ωD are the hydrogen and deuterium frequencies. Therefore, r is slightly 

less than, but close to, 2 , which agrees with experimental results.  
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FIG. 2.2. The harmonic-oscillator (dashed line) and Morse (solid line) potential energy 

functions for HCl.  

 

 

FIG. 2.3. The harmonic-oscillator (dashed line) and Morse (solid line) potential energy 

functions. Energy levels of hydrogen and deuterium are indicated by horizontal lines 

[2.1].  

H ground state 

D ground state 
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2.2: infrared absorption and free carrier absorption 

    One of the important experimental techniques for probing the defect vibrational 

frequencies is IR absorption spectroscopy. The defect atom absorbs a photon, which 

excites a vibrational mode and gives rise to a peak in the IR absorption spectrum.  

 

    This technique can be explained by an oscillating dipole model (two masses M 

and m, electric charge ±q), in which two masses are attached to each other by a 

spring with a spring constant k. Then the equation of motion is  

2

0 ( ) /x qE tx x  
 

                        (2.4) 

where γ is a damping constant, 
0= k


is the natural angular velocity, μ=1/(1/M 

+1/m) is the reduced mass and E(t) is the electric field. The solution of this differential 

equation gives the absorption cross section,  

 

 

2 2

2 2
2 2 2 2

0
0

4 1
=

8

P q

ncE n c

  


    



 

             (2.5) 

where σ is the absorption cross section, <P> is the time-averaged power dissipation, 

and n is the index of refraction. The peak in an IR spectrum appears at frequency 

ω=ω0 and shows the maximum amplitude. Equation (2.5) indicates that σ is also 

related to the damping factor γ. σ as a function of ω and γ is shown in Fig. 2.4 [2.1]. 
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FIG. 2.4. The absorption cross section as a function of frequency ω and damping 

factor γ. γ is approximately the FWHM of the absorption peak [2.1].  

 

The integrated absorption coefficient AI is defined as  

0 0

( ) ( )IA d N d     
 

                      (2.6) 

where N is the defect concentration and α=σN is the absorption coefficient in units 

cm-1. Combining Equations (2.5) and (2.6), yields, 

2

2I

q
A N

n c




                             (2.7) 

Equation (2.7) shows the relationship between the integrated absorption coefficient 

and defect concentration, which will be utilized in Chapter 3.  

 

    Free carriers are electrons or holes that are free to move within the conduction or 

valence band. Free carrier absorption occurs when an electron (or hole) in the 
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semiconductor conduction (or valence) band absorbs a photon, making a transition to 

a higher energy state within the same band and is proportional to the carrier 

concentration [2.4]. Therefore, free carrier absorption is stronger in semiconductors 

with high free carrier concentrations (heavily doped semiconductors).  

 

    Free carrier absorption was thought to have a negative impact on the 

performance of devices such as silicon solar cells [2.5], thermophotovoltaic cells [2.6], 

and infrared photodetectors [2.7]. However, free carrier absorption is a strong function 

of the free carrier concentration and wavelength, which provides a means to 

characterize electron-hole plasmas and doped semiconductors. Free carrier 

absorption is important for our work because (1) doped semiconducting oxides with 

high free carrier concentration give rise to absorption in the IR frequency range, (2) 

the IR free carrier absorption can be correlated with the defects that introduce 

conductivity.  

 

    The classical theory of free carrier absorption is derived from Drude's model for 

the harmonic oscillation of unbound electrons in a fixed array of scattering nuclei [2.8]. 

The theory finds the free carrier absorption coefficient to be  

2

* 2

0

1
FC

Ne

m nc


  
                         (2.8) 

where N is the concentration of free carriers, e is the fundamental charge, m* is the 

conductivity effective mass of the free carrier, ε0 is the vacuum permittivity, n is the 

index of refraction, c is the speed of light, and τ is the mean time between collisions of 
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the oscillating particles and the nuclei. Equation (2.8) shows that the free carrier 

absorption coefficient is directly proportional to the free carrier concentration N. In 

addition, the absorption coefficient is inversely proportional to ω2, meaning that the 

absorption is concentrated at lower frequencies, that is, in the infrared region that we 

focus on.  

 

    Figure 2.5(a) shows the absorption coefficient of a hydrogen doped ZnO crystal 

sample that had been annealed at elevated temperatures (50oC to 700oC) for the 

2000 cm-1 to 3000 cm-1 frequency range [2.9]. Upon annealing, the absorption 

coefficient decays and is stable around 700oC. The free carrier absorption coefficient 

was calibrated with Hall measurements and was used to determine the free carrier 

concentration shown in Fig. 2.5(b). 

 

FIG. 2.5. A hydrogen doped ZnO crystal sample was annealed in flowing N2 at 

elevated temperature from 50oC to 700oC. (a) the absorption coefficient at around 

2000 cm-1 to 3000 cm-1; (b) free carrier concentration as a function of annealing 

temperature [2.9].  
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2.3: Experimental Techniques 

2.3.1: Fourier-transform infrared spectroscopy (FTIR) 

    Fourier transform infrared spectroscopy (FTIR) is a technique which is used to 

obtain an infrared spectrum of absorption, emission, or photoconductivity of a solid, 

liquid or gas. Compared to dispersive spectrometers, FTIR has the advantages of 

high spectral resolution, high signal-to-noise ratio, and the ability to collect spectral 

data in a wide spectral range within a short amount of time [2.10].  

 

    A FTIR spectrometer is based on the principle of the Michelson interferometer, 

which is shown in Fig. 2.6. 

 

 

FIG. 2.6. Schematic diagram of a FTIR spectrometer. 
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A light beam from the IR source is directed at the beamsplitter and separated into two 

components. One component travels toward a fixed mirror and then is reflected back 

to the beam splitter. The other component is sent to the moving mirror and is then also 

reflected back to the beam splitter. These two components interfere with each other 

and recombine at the beamsplitter, travel through the sample, and finally impinge 

upon a detector. This beam is due to a superposition of the two light beams which 

have travelled along different optical paths. The optical path difference induced by the 

movable mirror leads to a phase difference of the two recombining waves. 

 

    To simplify this problem, consider a monochromatic light source at first. If the 

optical path difference between the fixed and movable mirrors is an integer multiple of 

the light wavelength (nλ), the two components will interfere constructively to give rise 

to maximum signal. On the contrary, if the optical path difference between the fixed 

and movable mirrors is an odd integer multiple of half of a wavelength ((n+1/2)λ), the 

two components will interfere destructively and give rise to a minimum signal. If we 

assume the moving mirror scans at a constant velocity, the signal intensity collected 

by the detector will be a cosine wave due to a continuous cycle of constructive and 

destructive interferences. The intensity recorded by the detector is, 

 0 0

2
1 cosI I






  
   

  
                     (2.9) 

where λ is the wavelength, δ is the optical path difference, and I0 is half of the intensity 

of incoming light. The Fourier Transform of the cosine wave results in a single sharp 

line (Fig. 2.7(a)).  
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FIG. 2.7. Interferograms and their corresponding Fourier transformed spectra for (a) a 

single frequency, (b) two close frequencies, (c) broad continuous frequencies. 

Especially at the zero optical path difference (ZPD) position in the interferogram (c), a 

large signal is observed because all wavelengths contribute constructively. 

(a)

(c)

(b)
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    If the IR source emits additionally a second wavelength with a very small 

wavelength difference, we will get an interferogram, which is the superposition of the 

two single interferograms (Fig. 2.7(b)). If the radiation source emits a broad 

continuous spectrum, the result now will be the superposition of all single wavelength 

interferograms and looks significantly more complex (Fig. 2.7(c)). 

 

    Considering a monochromatic light source again, Equation (2.9) has the first term 

as a constant and the second term I0cos(2πδ/λ) as the interferogram. In a FTIR 

spectrometer, an IR light source has a continuum of frequencies. Therefore, the 

interferogram is given by 

 ( ) ( )cos(2 )I I d   



                    (2.10) 

with  =1/λ. A symmetric interferogram can be converted into its corresponding 

spectrum by a Fourier transform: 

( ) ( )cos(2 )I I d   



                    (2.11) 

 

    The following is an example of a Fourier Transform spectrum. Fig. 2.8(a) shows 

an interferogram obtained from an In2O3 sample measurement and Fig. 2.8(b) is its 

corresponding raw spectrum after Fourier transform. To eliminate the influence of the 

atmosphere and optical properties of the spectrometer on the spectrum, the raw 

spectrum is divided by a reference spectrum, which produces the transmission 

spectrum. The absorbance spectrum is more often used, which is determined by 

taking the -log10 of the transmission spectrum. For different cases, the reference 
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spectrum might have different forms. For example, it can be a raw spectrum 

measured with no sample (empty cryostat), or it can also be a raw spectrum 

measured for a sample without defects to emphasize the emergence of defect 

absorption peaks after the sample is doped. A reference spectrum (no-sample 

condition) is shown in Fig. 2.8(c). Fig. 2.8(d) shows the absorbance spectrum of the 

raw spectrum (Fig. 2.8(b)) that results from using Fig. 2.8(c) as a reference spectrum. 

The spectrum in Fig. 2.8(d) is dominated by the absorption due to free electrons in the 

In2O3 sample. 
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FIG. 2.8. A hydrogen doped In2O3 sample; (a) interferogram, (b) sample raw spectrum, 

(c) reference spectrum, (d) absorbance spectrum 

 

2.3.2: Instrumentation 

    In our study, measurements were performed with a Bomem DA 3.16 FTIR 

spectrometer which is controlled by a computer via a PCDA3INT VAX interface. The 

spectrometer configuration and parameters can be controlled through the Bomem 
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PCDA data acquisition software which allows a user to select and modify 

experimental parameters, collect the interferogram and perform a Fast Fourier 

Transform (FFT) to get the corresponding raw spectrum. Thermo Scientific 

GRAMS/32 software is then used to process and analyze the raw spectrum 

(absorbance spectrum, baseline correction, smoothing, etc.). In addition, other 

software packages like Peak Fit V4 and Origin 8 are also used for data analysis, curve 

fitting, and curve plotting in this study.  

 

 

 

FIG. 2.9. The optical configuration of Bomem DA 3.16 spectrometer. 
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    Fig. 2.9 shows the optical configuration of the Bomem spectrometer. There are 

two light sources used in the Bomem spectrometer at Lehigh that cover wide 

frequency ranges, a silicon carbide globar source (mid-IR) and a quartz halogen 

source (near IR-visible). In our study, the silicon carbide globar source is primarily 

used since the mid-IR frequency range, which contains the free carrier absorption and 

defect absorption information, was of interest for our analysis. The light from the 

source passes through a six-position rotary filter and an iris which has different 

diameter settings between 0.5 - 10 mm. Before the measurement, PCDA software is 

used to select the desired aperture and filter type to communicate with the set-up so 

that the optimal throughput can be achieved. The light is then reflected from a 

collimating mirror and transferred to the beam splitter. Two types of beam splitters 

were available to cover different frequency ranges, a KBr beam splitter coated with 

Ge/ZnSe (used primarily in this study) for the 450 cm-1-5000 cm-1 range and a quartz 

beam splitter coated with TiO2 for the 4000 cm-1-27000 cm-1 range. The light is split 

into two components by the beam splitter, which interfere with each other and 

recombine at the beam splitter. Then the light is focused and directed toward the 

sample with the use of a set of parabolic mirrors and finally to the detector. Three 

types of detectors are available for different frequency ranges to be measured. An 

InSb detector measures IR radiation in the range 1800 cm-1-8000 cm-1 (covering the 

free carrier absorption and the hydrogen defect absorption characteristic of metal 

oxides) and was used in most experiments. The other two detectors, a HgCdTe (MCT) 

detector and a Si bolometer, are available to cover different ranges, 800-5000 cm-1 
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and 350-2500 cm-1, respectively.  

 

Most of the measurements were performed at 4K or 77K temperatures in order to 

reduce the thermal vibration of the host crystal lattice. The sample was mounted 

inside one of the two available cryostats, which can transfer liquid He or N2 to the 

sample. The cryostat used most is an Air Products Heli-Tran cryostat, which is a 

continuous flow cryostat that has input and output CaF2 windows transmitting more 

than 90% of the light from the visible to the near IR range. CsI windows are also 

available for measurements in the far IR. This cryostat was used in our In2O3 studies. 

The second cryostat is an Oxford model CF1204, which is also a continuous flow 

cryostat that cools the sample space with He exchange gas. A schematic of this 

cryostat is shown in Fig. 2.10. The design of this cryostat separates the vacuum layer 

and the sample chamber, which speeds up the transition between consecutive 

experiments using different samples. The Oxford Cryostat has 6 windows, 2 outer 

vacuum case windows, 2 inner sample windows, and 2 radiation shield windows. The 

radiation shield between the outer vacuum and inner sample windows is also cooled 

to cryogenic temperature. Therefore, the temperature in the sample chamber is better 

protected from the effects of thermal radiation due to entering light that is at room 

temperature. Compared to the Air Products cryostat, the Oxford cryostat has a more 

accurate temperature and better temperature stability, which enables a series of 

experiments with measurement temperature steps as low as 0.5 K. Measuring an IR 

spectrum of the sample under stress with polarized light is a useful method to 
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investigate the sample crystal structure and possible defect sites. The Oxford cryostat 

can be combined with a stress apparatus. 

 

In order to maintain the vacuum in IR spectroscopy and minimize the effects of 

background features, such as absorption of light by water vapor, CO2 and oil, a 

mechanical pump is used for generating a vacuum in the spectrometer and a turbo 

pump is used for the cryostat. Liquid nitrogen cold traps inside the spectrometer and 

also on the turbo pump vacuum line are used to further reduce the absorption by 

water vapor, oil, and CO2. 
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FIG. 2.10. Illustration of Oxford CF1204 cryostat 

 

 

 

 

 



43 

 

2.3.3: Other Techniques - Raman spectroscopy & Hall effect 

Raman Spectroscopy 

    Raman spectroscopy is a measurement technique that can be used to observe 

vibrational, rotational, and other low-frequency modes in a system, which relies on 

inelastic scattering of monochromatic light, usually from a laser in the visible, near 

infrared, or near ultraviolet range.  

 

    A Raman system typically consists of four major components (Fig. 2.11); an 

excitation source (laser); a sample illumination system and collection lenses; a 

wavelength selector (a Filter and Spectrophotometer); and a detector (CCD array). A 

sample is illuminated with a laser beam in the ultraviolet, visible, or near infrared 

range. Scattered light is collected with lenses and sent through an interference filter 

and a scanning double spectrophotometer to obtain a Raman spectrum. 

 

 

 

FIG. 2.11. Configuration of a Raman system 
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    When monochromatic radiation is incident upon a sample, this light will interact 

with the sample. A photon excites the molecule in either the ground state or an 

excited state, which results in the molecule being in a virtual energy state for a short 

period of time before light is scattered. Light scattered from a molecule has several 

components - Rayleigh scattering (elastic, same energy) and the Stokes (inelastic, 

lower energy) and Anti-Stokes (inelastic, higher energy) Raman scattering (Fig. 2.12).  

 

 

 

FIG. 2.12. Transitions for Rayleigh (elastic) and Raman (inelastic) Scattering. 

 

    For Stokes scattering, the energy s of a scattered photon differs from that of 

the incoming photon L  by  

s L LVM   h h h                       (2.12) 
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where LVM  is the frequency of the local vibrational mode. 

 

    A schematic diagram of a Stokes Raman shift is shown in Fig. 2.13. In our study, 

Raman spectroscopy was used to investigate the phonon modes in In2O3, which are 

not easy to measure by IR spectroscopy.  

 

 

 

FIG. 2.13. Schematic diagram of Raman shift (Stokes scattering). A Raman shift gives 

the local vibrational mode frequency.  

 

Hall Effect 

    The Hall effect is the production of a voltage difference across an electrical 

conductor, transverse to an electric current in the conductor and a magnetic field 

perpendicular to the current, which is a standard method to study the carrier 

concentration and mobility in semiconductors [2.11]. 
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    Fig. 2.14 shows a schematic of a Hall Effect measurement. Initially, the carriers 

experience a Lorentz force and follow the curved arrow, due to the magnetic force. 

Moving charges accumulate on one face of the material. This leaves equal and 

opposite charges exposed on the other face, which creates an electric field. In 

steady-state, the electric field will be strong enough to cancel out the Lorentz force, so 

that the carriers follow the straight arrow. 

 

 

 

FIG. 2.14. Hall Effect measurement geometry. 

 

In a Hall effect measurement, the Hall coefficient is defined as  

y

H

x

E
R

j B
                              (2.13) 

where Ey is the induced electric field, jx is the current density of the carriers and B is 

the magnetic field.  

 

    Semiconductors usually have a more complicated Hall coefficient than 

conductors since both electrons and holes may be present in different concentrations 
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and have different mobilities. For moderate magnetic fields, the Hall coefficient is 

[2.12], 

2 2

2( )

h e
H

h e

p n
R

e p n

 

 





                      (2.14) 

where the n is the electron concentration, p is the hole concentration, μe is the 

electron mobility, μh is the hole mobility and e is the absolute value of the electronic 

charge. In our study, Hall effect measurements were performed to determine the free 

carrier concentration, which will be discussed when we calibrate the IR lines in 

Chapter 3. 

 

2.4: Diffusion 

Atomic diffusion is one of the most important processes employed in the 

semiconductor industry. It is used at least once in the manufacture of most devices. 

As for fundamental research, there are two main reasons for studying diffusion in 

solids [2.13]. First, understanding diffusion benefits the understanding of the changes 

in solids at high temperatures. The second reason for studying diffusion is to learn 

more about how atoms move in solids. Diffusion experiments are used to investigate 

the diffusion coefficient, which is theoretically related to the concentration and 

movement of point defects in semiconductors. In this section, a few results are 

summarized from popular monographs on diffusion [2.13][2.14]. 

 

Fick's first law states that the diffusion flux is proportional to a concentration 

gradient and defines the diffusion coefficient D.  
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Fick's second law predicts how diffusion causes the concentration to change with 

time [2.14]. In one dimension, 

2

2

C C
D

t x

 


 
                            (2.16) 

Here, C is the concentration, t is time, x is the diffusion depth, and D is the diffusion 

coefficient. 

 

2.4.1: Indiffusion experiments 

Imagine plating a thin film of a diffusant onto the flat face of a semiconductor slice. 

The film then becomes the diffusion source while it is annealed for time t. The thin-film 

solution of this equation is a Gaussian function:  

2

1/2
exp( )

4

A x
C

t Dt
                          (2.17) 

 

    Now consider a pair of semi-infinite specimens, one occupying the space 

0x  , the other occupying 0 x   . They are joined at the plane x=0, which 

is perpendicular to the length of the bars. The first bar is homogenously doped with 

some solute to a concentration C', the other contains no solute. In this case, the 

solution to Eq. (2.16) can be written as the complementary error function. 

 1/2

'
erfc

2 2( )

C x
C

Dt
                         (2.18) 
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    Indiffusion experiments for H in In2O3 are described in Section 3.3.4 and were 

performed by thinning a bulk H-doped In2O3 sample. To investigate the distribution of 

hydrogen concentration among each sample layer, the H-doped sample was thinned 

on both sides and the IR spectrum was measured to show the hydrogen absorbance, 

which is related to the hydrogen concentration C. With this procedure, the diffusion 

coefficient D could be determined. More details about our indiffusion experiments and 

data will be shown in Chapter 3.3.4. 

 

2.4.2: Outdiffusion experiments 

Outdiffusion occurs from an initially homogeneously doped sample. It is first 

assumed that there exist solutions which are the product of a function only of time T(t) 

and a function of distance X(x). That is, it is assumed that  

( , ) ( ) ( )c x t X x T t                         (2.19) 

If Eq. (2.19) is substituted into Fick's second law Eq. (2.16), the result is  

2

2

1 1dT d X

DT dt X dx
                          (2.20) 

Since x and t can be varied independently, Eq. (2.20) can be satisfied only if both 

sides of the equation are equal to a constant. This constant will be designated as -λ2. 

The differential equations in time and distance are then 

21 dT
D

T dt
                             (2.21) 

2
2

2
0

d X
X

dx
                            (2.22) 

Solving these two equations gives the most general form of the product solution,  
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Considering diffusion out of a slab of thickness h, the boundary conditions to be 

assumed are 

c=c0  for 0<x<h, at t=0 

c=0  for x=h and x=0, at t>0 

By setting Bn equal to zero, An and λn can be solved. The solution is  

2

0

0
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j h h
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





  
  

  
      (2.24) 

 

    After a short time t' has elapsed, c(x,t) can be represented by only a few terms 

and can be given by a sine wave. Considering the ratio of the maximum values of the 

first and second terms, this ratio R is given by  

2

2

8 '
3exp

Dt
R

h


                          (2.25) 

For 2h Dt , R is about 150, which means for 
2 / 4t h D , the error in using the 

first term to represent c(x,t) is less than 1% at all points. In reality, it is difficult to 

determine the concentration at various depths in a slab, and what can be 

experimentally determined is the average defect concentration c  remaining in the 

slab. Integrating (2.24) yields  
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    (2.26) 

For 
00.8c c , the first term is an excellent approximation to the solution. Therefore, 

the solution can be written as  
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where 
2 2/h D   is called the relaxation time.  

    For outdiffusion experiments, an as-grown In2O3 sample was hydrogenated by an 

anneal (1h) in an H2 ambient at 500oC. The sample was then annealed isothermally 

(400oC) in a flowing N2 ambient for different accumulated times (30min, 1h, 2h…). The 

O-H centers and free carriers were reduced for accumulated annealing times, and the 

outdiffusion coefficient D could be determined from the relaxation time, τ, and sample 

layer thickness, h, that were measured. Chapter 3.3.4 will show the outdiffusion 

experiments and data analysis in more detail. 
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Chapter 3: 

Hydrogen centers and the conductivity of In2O3 single crystals 

3.1: Introduction 

The transparent conducting oxides (TCO’s) combine high electrical conductivity 

with transparency in the visible region of the spectrum [3.1-3.4]. In spite of their 

decades-long applications as transparent electrical contacts, in circuitry, and as 

coatings for low-emissivity windows, the mechanisms for the conductivity of TCO’s 

are only now being clarified. Oxygen vacancies and cation interstitials traditionally 

have been invoked as the sources of conductivity. In recent studies, however, 

hydrogen impurities have been found to be the dominant shallow donors in several 

important cases [3.5-3.10]. 

In2O3, a prototypical transparent conducting oxide, has the cubic bixbyite structure 

with a conventional unit cell that contains 80 atoms [3.11]. The oxygen sites are all 

equivalent. There are two inequivalent In sites, In(1) (25%) and In(2) (75%). The In(1) 

site is more symmetrical and has six equivalent In-O bonds. The In(2) site is less 

symmetrical and has three inequivalent pairs of In-O bonds with no linear O-In-O 

bonds.  Ref. 3.12 provides further details regarding the bixbyite structure. 

The role played by hydrogen impurities in the conductivity of indium oxide (In2O3) 

has been controversial. Some studies, based on the effect of oxygen partial pressure 

in growth or annealing environments, argue that oxygen vacancies are the cause of 

the conductivity of In2O3 [3.12-3.15]. However, there is a growing body of theoretical 

and experimental work which finds that hydrogen centers can be important shallow 
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donors in In2O3. Muon-spin-resonance experiments find that implanted muons, whose 

properties mimic those of hydrogen, form shallow donors in In2O3 [3.16]. In2O3 thin 

films containing hydrogen show n-type conductivity with high mobility [3.17], and 

theory finds that interstitial hydrogen (Hi
+) and hydrogen trapped at an oxygen 

vacancy (HO
+) are shallow donors that can give rise to n-type conductivity or 

compensate acceptors in In2O3 [3.12]. 

 In the present chapter, infrared (IR) spectroscopy, Hall effect measurements, and 

theory are used to investigate the microscopic properties of hydrogen centers in In2O3 

single crystals and the role that hydrogen plays in giving rise to conductivity. 

 

3.2: Experimental Procedures 

The In2O3 samples used in our experiments were bulk single crystals grown by the 

flux method [3.18] at the Oak Ridge National Laboratory (ORNL) by Lynn Boatner and 

had typical dimensions of 3 x 3 x 1 mm3. Most as-grown samples were pale yellow in 

color. The properties of similar In2O3 crystals, also grown at ORNL, have been 

reported recently [3.19]. The as-grown crystals were found to have a high resistivity (2 

x 105 Ω-cm). A few additional In2O3 samples that were gray or green in color were also 

examined in our experiments. 

To introduce additional hydrogen or deuterium, In2O3 samples were placed in 

sealed quartz ampoules filled with H2 or D2 gas (2/3 atm at room temperature), 

annealed at elevated temperature, and cooled to room temperature by withdrawing 

the sealed ampoule from the furnace. These anneals in H2 or D2 produced an opaque 
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layer of In at the sample surface that could be removed by soaking in a 1:4 mixture of 

HNO3/H2O. 

IR absorption spectra were measured with a Bomem DA.3 Fourier transform 

infrared spectrometer.  O-H and O-D vibrational modes were measured for In2O3 

samples held at 4.2 or 77 K with an InSb detector. Samples were cooled with a 

Helitran continuous-flow cryostat. The absorption due to free carriers [3.20] was 

measured for the In2O3 samples to provide a contact-free method to probe the 

free-carrier concentration that is convenient for annealing experiments. 

Raman measurements were performed by Sandro Koch at the Dresden University 

of Technology. A 90° geometry was used with the frequency doubled 532 nm line of a 

Nd:YVO4 laser for excitation. The scattered light was analyzed using a single grating 

spectrometer with a cooled Si CCD detector array. 

To probe the reactions and thermal stabilities of the various hydrogen-containing 

centers, annealing treatments were performed in a tube furnace with a flowing He 

ambient. 

 

3.3: Experimental Results 

As-grown In2O3 single crystals that were initially pale yellow in color showed no 

substantial IR absorption arising from free carriers. Samples were annealed in H2 or 

D2 ambients to introduce H or D. For long annealing treatments in H2 or D2 (>1 hr) at 

temperatures above 500 °C, samples became dark in color and were opaque in the 

mid-IR spectral region of interest to us here. We selected temperatures near 450 to 
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500 °C and H2 or D2 treatment times near 30 to 60 min to produce hydrogenated (or 

deuterated) samples that were deep red in color and sufficiently transparent for IR 

measurements.   

 

3.3.1: Free-carrier absorption and O-H vibrational lines 

The introduction of H or D into In2O3 produced the broad absorption characteristic 

of free carriers that increases in strength at low frequency [Fig. 3.1(a)] [3.20]. 

Furthermore, several O-H stretching modes were also introduced [Fig. 3.1(b)].  

 

FIG. 3.1. A selection of IR absorption spectra (T = 4.2 K, resolution = 1 cm-1) for an 

In2O3 sample that initially had been hydrogenated by an anneal (30 min) in an H2 

ambient at 500°C. The sample was then annealed sequentially in flowing He at the 

temperatures shown in °C. (a) The absorption due to free carriers. (b) The IR 

absorption lines in the O-H stretching region. These spectra were baseline corrected 

to remove the contribution from free carriers. 
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FIG. 3.2. IR absorption spectra (4.2 K, resolution = 1 cm-1) for In2O3 samples 

containing D and H. Spectra were baseline corrected to remove the contribution from 

free carriers.  The sample for the upper spectrum in (a) had been deuterated by 

annealing in a D2 ambient (60 min) at 500°C. It was then annealed in flowing He at 

550°C to increase its transparency and to produce the O-D lines that are shown. The 

sample for the upper spectrum in (b) had been hydrogenated by annealing (30 min) in 

an H2 ambient at 500°C and subsequently annealed (30 min) at 550°C. [The lower 

spectrum in (a) shows the D-stretching region for a hydrogenated sample and the 

lower spectrum in (b) shows the H-stretching region for a deuterated sample.] 

 

Figure 3.2 shows IR spectra (4.2 K) for In2O3 samples that had been treated in D2 

or H2. The upper spectrum in Fig. 2(a) for the deuterated sample shows 9 resolved IR 

lines. The upper spectrum in Fig. 2(b) for the hydrogenated sample also shows 9 IR 

lines. The dominant IR lines are at 3306 cm-1 for H and at 2464 cm-1 for D. The line at 
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2464 cm-1 has a partially resolved shoulder at 2469 cm-1. The line at 3306 cm-1 is 

slightly asymmetric, suggesting the presence of an unresolved line at 3316 cm-1 that 

is the isotopic partner of the shoulder at 2469 cm-1. [The lower spectrum shown in Fig. 

3.2(a) for a hydrogenated sample is featureless in this region.  The lower spectrum in 

Fig. 3.2(b) shows the spectral features arising from H that typically remained in 

samples even after treatment in a D2 ambient.] 

 

Table 3.1. Vibrational frequencies of O-H (O-D) modes seen for hydrogenated 

(deuterated) In2O3 single crystals. A possible shoulder giving rise to the asymmetry of 

the 3306 cm-1 line is unresolved. 

 

ωH  (cm-1) ωD  (cm-1) r 

3225 2407   1.340 

3271   2436 1.343 

3290 2455 1.340 

3306 2464 1.342 

3316 (unres.) 2469  1.343 

3357 2494 1.346 

3373 2504 1.347 

3390 2516 1.347 

3398 2521 1.348 

3411 2530 1.348 
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The vibrational frequencies of these lines are listed in Table 3.1. The ratios of the 

corresponding line frequencies in the H and D spectra are near 1.35, consistent with 

vibrational modes of H or D bonded to a light element like oxygen [3.21]. The high 

frequency of the vibrational lines and the value of the isotopic ratio r lead to the 

assignment of the lines listed in Table 3.1 to O-H and O-D stretching modes. 

 

3.3.2: Annealing and thinning experiments 

Figure 3.1 shows that both the free-carrier absorption and the 3306 cm-1 O-H line 

are annealed away together for annealing temperatures in the 500 to 600°C range. 

Similar annealing experiments were performed for a sample treated in a D2 ambient 

(Fig. 3.3).  (Samples annealed in H2 or D2 were red in color following treatment and 

returned to pale yellow after the H or D had been annealed away.) The correlation 

between the free-carrier absorption and the intensities of the O-H and O-D lines at 

3306 and 2464 cm-1 in annealing experiments leads us to assign these vibrational 

lines to interstitial H+ and D+ shallow-donor centers predicted by theory [3.12]. 

Isothermal anneal experiments were performed to investigate the correlation 

between the free carrier absorption and the hydrogen defects in more detail. An 

as-grown In2O3 yellow sample had been hydrogenated by an anneal (1h) in an H2 

ambient at 500oC. This sample was then annealed isothermally (400oC) in a flowing 

N2 ambient for different accumulated times (30min 1h, 2h…). The raw spectra were 

measured after each isothermal anneal and the air reference spectrum (empty 

sample holder) was measured before all annealing treatments. Absorbance spectra 
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were plotted in Fig. 3.4(a) with the total annealing time labeled for each. The 

corresponding IR absorption lines in the O-H stretching region are shown in Fig. 

3.4(b). The sample was annealed (step by step) for 24 hours in total at 400oC. A 

significant decay of the free carrier absorption and of the intensity of the O-H lines 

was observed.  

 

FIG. 3.3 A selection of IR absorption spectra (T = 77 K, resolution = 1 cm-1) for an 

In2O3 sample that initially had been annealed (60 min) in flowing He at 850°C to 

remove any hydrogen that might have been present and was subsequently 

deuterated by an anneal (1 hour) in an D2 ambient at 500°C. The sample was then 

annealed sequentially in a flowing He ambient at the temperatures shown in °C. (a) 

The absorption due to free carriers.  (Free carrier absorption spectra measured 

following anneals from 50 to 250°C are indistinguishable from the results shown for 

the D-treated sample and also following the anneal at 200°C.) (b) The IR absorption 

lines in the O-D stretching region. These spectra were baseline corrected to remove 

the contribution from free carriers. 

(a) (b) 
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FIG. 3.4. A selection of IR absorption spectra (T = 77 K, resolution = 1 cm-1) for a 

hydrogenated In2O3 sample that was annealed sequentially in flowing N2 at 400oC for 

different accumulated times. (a) The absorption due to free carriers. (b) The IR 

absorption lines in the O-H stretching region. 

 

The difference in the IR absorbances at 3500 cm-1 and 5000 cm-1 is used as a 

measure of the strength of the free carrier absorption and was determined for all 

absorbance spectra in Fig. 3.4(a). These differences are plotted as a function of 

accumulated annealing time in Fig. 3.5(a). The corresponding intensities (peak areas) 

of the 3306 cm-1 O-H line are plotted in Fig. 3.5(b). These two datasets were then fit 

by Excel Solver with the sum of two exponential functions. Fig. 3.5 produced with 

OriginLab software shows independent best fits to the data for the free carrier 

absorption and for the 3306 cm-1 O-H line intensity. The best fits to the combination of 

the free-carrier absorption data and the 3306 cm-1 O-H line intensity were then 

(a) (b) 
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determined by Excel Solver and plotted as Fig. 3.6, which shows that the same decay 

rates (higher decay rate and lower decay rate) can be used to fit both datasets. This 

series of experiments shows a strong correlation between the free carrier absorption 

and interstitial O-H line at 3306 cm-1.  

 

FIG. 3.5. The decay of free carrier absorption and the intensity of the interstitial O-H 

line at 3306 cm-1 for isothermal anneal experiments (400oC) plotted on a Log10 scale. 

(a) best fit to free carrier absorption; (b) best fit to the intensity of the interstitial O-H 

line at 3306 cm-1. Both datasets were fit by Excel Solver and then plotted by 

OriginLab. 

(a) (b) 
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FIG. 3.6. Best fit to both the free carrier absorption (a) and the intensity of the 

interstitial O-H line at 3306 cm-1 (b) for isothermal annealing experiments (400oC). 

The same decay rates τ-1 (0.678 h-1 and 0.017 h-1) are used for both datasets. 

 

Fig. 3.7 shows the best fit to the combination of the free-carrier absorption and the 

area of the 3306 cm-1 O-H line on a linear scale. The fits were also produced with 

Excel Solver and plotted in OriginLab, which found the best decay rates to match our 

experimental data. The fit shown on a linear scale indicates a good match to both 

datasets.  

The decay of the free carrier absorption and the intensity of the interstitial O-H line 

both showed the same decay rates. For the free carrier absorption, we find,  

1 10.678( ) 0.017( )0.901 0.478h t h tN e e
                   (3.1) 

For the area of the interstitial O-H line, we find, 

1 11 1 0.678( ) 1 0.017( )( ) 0.585( ) 0.703( )h t h tN cm cm e cm e
           (3.2) 

 

(a) (b) 
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FIG. 3.7. Best fit to data for the free carrier absorption (a) and the peak height of the 

interstitial O-H line at 3306 cm-1 (b) for isothermal annealing experiments (400oC). Fits 

made with the same decay rates (-0.678 h-1 and -0.017 h-1) are shown on a linear 

scale. 

 

Experiments were performed to investigate how far H had penetrated into an In2O3 

sample following a hydrogenation treatment in H2. An as-grown sample was initially 

annealed at 1000°C for 30 min in flowing He to eliminate any H that might be present. 

There was no IR absorption observed that might be due to free carriers or O-H 

centers following this treatment [see the bottom spectra in Figs. 3.8(a) and 3.8(b) 

labeled H-free].  This sample was then annealed in an H2 ambient at 450°C for 30 

min. 

Layers were then successively removed from the sample surfaces by lapping and 

(a) (b) 
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polishing. The sample thickness was measured with a micrometer as the sample was 

thinned. IR spectra [Figs. 3.8(a) and 3.8(b)] were measured as layers were removed 

to monitor both the free-carrier and O-H vibrational absorption. The total thickness 

removed from the two surfaces after each thinning step is indicated in Fig. 3.8 in units 

mm. 

 

FIG. 3.8. A selection of IR absorption spectra (T = 77 K, resolution = 1 cm-1) for an 

In2O3 sample that initially had been annealed (30 min) in flowing He at 1000°C to 

remove any hydrogen that might have been present and was subsequently 

hydrogenated by an anneal (1 hour) in an H2 ambient at 450°C. The sample was then 

sequentially thinned by lapping and polishing the front and back surfaces. The 

thickness removed following each thinning step (both sides) is shown in mm. (a) 

shows free-carrier absorption spectra for the H-treated sample and for the sample 

following thinning. (b) shows baseline-corrected IR spectra of the O-H absorption 

lines. 

(a) (b) 
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The decrease in both the free-carrier absorption and the area of the 3306 cm-1 line 

intensities are plotted together in Fig. 3.9. The free-carrier absorption and the 3306 

cm-1 O-H line are removed together as the sample is thinned. The hydrogenated layer 

is removed from the near-surface region of the sample when 0.06 mm is lapped from 

the surface of the In2O3 sample. These experiments show that both the free carriers 

and OH centers arise from a thin layer near the sample surface, further supporting the 

assignment of the 3306 cm-1 O-H line to an interstitial H+ shallow donor that gives rise 

to the free-carrier absorption seen for H treated samples. 

 

 

FIG. 3.9. Strength of free-carrier absorption and O-H vibrational absorption for the 

In2O3 sample whose IR data are shown in Fig. 3.8 as a function of thickness removed 

from the sample. The left scale (filled circles) shows the difference in the free-carrier 

absorption at 2500 and 4000 cm-1 for each thickness removed. The right scale (open 

circles) shows the integrated absorbance for the 3306 cm-1 O-H stretching line 

assigned to the interstitial H+ shallow donor for each thickness removed. 
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3.3.3: Calibration of IR lines  

Infrared absorption and Hall effect measurements were performed for the same 

deuterated In2O3 sample to approximately calibrate the strengths of the 3306 and 

2464 cm-1 vibrational absorption lines assigned to shallow donor centers. An In2O3 

sample was annealed (60 min) in a D2 ambient at 450°C to produce OD shallow 

donors. IR absorption measurements were made to determine the integrated areas of 

the O-D and O-H lines at 2464 and 3306 cm-1. Hall effect measurements performed 

by collaborators at the University of Florida yielded a sheet carrier concentration of 

1.6 x 1017 cm-2 for this D-treated sample. Following the Hall measurements, this 

sample was thinned in steps to remove the O-H and O-D line absorption and also the 

free carrier absorption, similar to the results shown in Fig. 3.8, to determine the 

thickness of the doped layer. The total thickness of the doped layer (sum of front and 

back surfaces) was found to be 0.10 mm. The local carrier concentration in a doped 

layer is, therefore, ~1.6 x 1019 cm-3.  

    319
217
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106.1 
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n

layer

s
layer             (3.3) 

(This result is not the upper limit for the free-carrier density that can be produced by 

hydrogenation. Treating samples at higher temperatures or for longer times produced 

substantially stronger free-carrier absorption that made the samples opaque.) 

The concentration N of defects (cm-3) is proportional to the integrated absorption 

coefficient for the corresponding vibrational absorption line and is given by [3.22], 

 

N = (m η c2 / π qeff
2)                            (3.4) 



68 

 

Here, m is the mass of the oscillating impurity, H or D; η is the refractive index [taken 

to be η = 2.0 for In2O3 (refs. 1 and 11)]; α is the absorption coefficient; σ is the 

frequency in wavenumbers; and qeff is an effective oscillating charge, given in terms of 

the electron charge in esu. [Eq. (3.4) is written in CGS units to be consistent with the 

absorption coefficient, conventionally expressed in units of cm-1, and the frequency in 

wavenumber units, also cm-1.]  

   The oscillating effective charge for our experiments is then given by, 

2

2

2
( 2 )

( )

p

eff OH OD

OH OD

m c
q d d

e N N


   


 

               (3.5) 

Here, NOH and NOD are the concentrations of H and D defects, the sum of which is 

nlayer given in Eq. (3.3). αOH and αOD are the corresponding absorption coefficients. The 

integrated absorption coefficient d   is related to the integrated absorbance (IA) 

by the relationship, 

2.303 IA
d

d
 


                        (3.6) 

In this equation, IA has units cm-1 and the deuterated layer thickness d has units cm, 

yielding the quantity d   in units cm-2. IR absorption line areas were determined 

with Peakfit software by fitting with Lorentzian or Gaussian line shapes to determine 

peak areas. Fits to our spectra gave OHd  =68.9 cm-2 for the 3306 cm-1 O-H line 

and ODd  =94.8 cm-2 for the 2464 cm-1 O-D line. These results yield an effective 

charge of qeff = 0.26 e for the 3306 and 2464 cm-1 vibrational absorption lines 

assigned to the interstitial hydrogen and deuterium shallow donors in In2O3. This 

result for qeff is similar to that found previously for the O-H line at 3611 cm-1 in ZnO, 
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whose effective charge is 0.28 e [3.23].  

We have Hall and infrared data for a second In2O3 sample treated with D2. In this 

case, we have not made a measurement of the deuterated layer thickness. However, 

if we assume a layer thickness of 0.05 mm similar to that of the sample discussed 

above (since they were both annealed in a D2 ambient at 450°C for 60 min), we can 

make a rough calculation of the oscillating effective charge as a cross-check of our 

results. In this case, fits to our IR spectra give OHd  =35.6 cm-2 and ODd 

=180.8 cm-2. The sheet carrier concentration was found by Hall measurements to be 

1.3×1017 cm-2. These results yield an oscillating effective charge of qeff = 0.34 e. This 

rough value is approximately equal to the result given in the paragraph above and 

provides a cross-check of our calibration. 

 

3.3.4: Hydrogen diffusion in In2O3 crystals 

    Hydrogen diffusion into In2O3 crystals can be treated as one of the cases in 

semiconductor diffusion, which is due to Fick's second law: 

                   

2

2

C C
D

t x

 


 
                           (3.7) 

Here, C is the concentration, t is time, x is the diffusion depth, and D is the diffusion 

coefficient.  

 

Constant Surface Concentration 

Experimentally, this corresponds to the common case of plating a thin film of the 

diffusant on to the flat face of a semiconductor slice with a constant surface 
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concentration. The film then becomes the diffusion source. The initial condition at t=0 

is  

( ,0) 0C x                              (3.8) 

The boundary conditions are  

(0, ) sC t C                            (3.9) 

and 

( , ) 0C t                            (3.10) 

where Cs is the surface concentration (at x=0), which is independent of time.  

    The solution of Fick's diffusion equation that satisfies the initial and boundary 

conditions is given by a complementary error function, 

1/2
erfc

2( )
s

x
C C

Dt
                         (3.11) 

 

Constant Total Dopant 

    For this case, a fixed amount of dopant is deposited onto the semiconductor 

surface in a thin layer, and the dopant subsequently diffuses into the semiconductor. 

The initial condition is the same as Eq. (3.8). The boundary conditions are  

0

( , )C x t S



                            (3.12) 

and  

( , ) 0C t                             (3.13) 

The solution of the diffusion equation that satisfies the above conditions is 
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2

( , ) exp
4

S x
C x t

DtDt

 
  

 
                 (3.14) 

 

    As for our doping procedures, In2O3 samples were placed in sealed quartz 

ampoules filled with H2 or D2 gas, which corresponds to a constant surface 

concentration case with a complementary error function. 

 

    Considering the previous thinning experiments with hydrogen in-diffusion, the 

diffusion depth x shown in Eq. (3.11) is just half of the thickness removed for each 

step. Also, based on Eq. (3.6), the absorption coefficient d   can be calculated 

for each layer thickness removed. In this case, for each layer removed,  

1

1

2.303( )
n nx x

OH

n n

IA IA
d

x x
  




 

                (3.15) 

where IAxn and IAxn-1 are the integrated absorbance of hydrogen within the rest of the 

sample when sample thicknesses xn and xn-1 have been removed. Then, based on Eq. 

(3.4), the hydrogen defect concentration can be solved for each sample surface layer 

removed by taking qeff = 0.28 e, which was discussed in section 3.3.3.  

 

    Therefore, the thinning experimental data show the hydrogen concentration as a 

function of diffusion depth after annealing the sample in H2 at 450oC for one hour [Fig. 

3.10]. This dataset has been fit by a complementary error function [Fig. 3.10] in Excel 

Solver and plotted by OriginLab software. The average hydrogen concentration has 

also been obtained to be about 2.2×1018 cm-3 by calculating Eq. (3.15) in terms of the 
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whole defect layer thickness. The diffusion coefficient D was found to be about 5×

10-9 cm2/s at 450oC. 

 

FIG. 3.10. The hydrogen defect concentration for an In2O3 sample (annealed in H2 at 

450oC for 1 hour) as a function of diffusion depth (layer thickness removed from one 

side). The experimental data were fit with a complementary error function. 

 

    We developed an alternative method to probe the diffusion of H. Two exponential 

decay rates were found for the annealing data shown in Figs. 3.5, 3.6 and 3.7. One 

possible explanation for two decay rates would concern the interconversion between 

different hydrogen defects. In this case, the higher decay rate might be from the decay 

of interstitial hydrogen with its IR line at 3306 cm-1. The lower decay rate might be 

from an electrically inactive hydrogen species (H2 or other inactive hydrogen centers) 

which could be converted into the interstitial hydrogen center at 3306 cm-1 by thermal 



73 

 

treatment at 400oC. 

    However, we favor an alternative explanation that involves the out-diffusion of H 

(or D) from the In2O3 samples. The out-diffusion of a defect from a finite slab of 

material obeys the approximate relationship,  

/

0 2

8
/ tC C e 



                         (3.16) 

where C  is the average concentration in the slab, C0 is the initial concentration and 

2

2

l

D



  is the relaxation time. Here l is the thickness of the slab and D is the 

diffusivity of the defect. 

    Our hydrogenated samples have two characteristic thicknesses. There is the 

thickness of the in-diffused layer and there is the thickness of the sample itself. 

Out-diffusion of H from the thin hydrogenated layer has a smaller time constant and 

therefore a faster rate. After several decay times, H becomes spread out through the 

entire sample thickness. Now, H out-diffusion from the entire sample occurs with a 

time constant characteristic of the sample thickness. In our experiments, the 

hydrogenated layer is typically 0.05 mm thick and the In2O3 samples are typically 0.5 

mm thick. The out-diffusion time constant is proportional to the square of the layer 

thickness, so the out-diffusion rates should differ by a factor of 100, consistent with 

our experimental results for the slow and fast decay rates of the 3306 cm-1 line.  

    The thinning experiments (Figs. 3.8 and 3.9) provide data for the hydrogen 

in-diffusion case, while the isothermal annealing experiments (Figs. 3.5, 3.6, 3.7) 

provide data for the out-diffusion of hydrogen. Fig. 3.5(b) showed the best fit curve to 
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the absorbance of hydrogen with higher decay rate 0.646/h (due to the thin 

hydrogenated layer diffusion) and lower decay rate 0.0085/h (due to bulk diffusion). 

The out-diffusion from a slab shows the following decay rate and its dependence on 

the diffusion coefficient D: 

2
1

2

l
D 



                            (3.17) 

l is the diffusion depth and   -1 is the decay rate. The higher decay rate 0.646/h at 

400oC with diffusion depth (layer thickness) l=0.006 cm, yielded D1=6.54×10-10 cm2/s. 

The lower decay rate 0.0085/h at 400oC with diffusion depth (sample bulk thickness) 

l=0.05 cm, yielded D2=5.98×10-10 cm2/s. Therefore, D1 agreed with D2 in layer 

out-diffusion and bulk out-diffusion at 400oC. Also, D1 and D2 are both smaller than D 

(5×10-9 cm2/s) at 450oC found from our thinning experimental results, which is 

consistent with diffusion being faster at higher temperature. 

 

    The method outlined above is an approximate attempt to relate the diffusion 

coefficient D to the higher and lower rates of the out-diffusion vs. time curve. We can 

also numerically solve the diffusion equation [Eq. (3.7)] and integrate this solution 

over the diffusion depth x to generate the time dependence of hydrogen out-diffusion. 

This numerical method was performed by Mathematica programming, which solved 

the diffusion coefficient D for both the O-H line at 3306 cm-1 and the free carriers (Fig. 

3.11). The detailed Mathematica codes are listed in appendices.  
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    The strategy of the Mathematica program is to solve the diffusion equation, Fick's 

Second law, for the time evolution of the hydrogen concentration vs. depth during 

annealing at a fixed temperature. The initial condition for the diffusion problem is the 

complementary-error-function concentration profile that is produced by a hydrogen 

indiffusion treatment performed in an H2 ambient. This error-function profile then 

evolves as the sample is annealed in N2, with H in the near surface layer diffusing 

both out of the sample and into the bulk. The calculated concentration profile is then 

integrated over depth for each annealing time to simulate the magnitudes of the IR 

signals for both the intensity of the 3306 cm-1 O-H line and the concentration of free 

carriers. The shape of the plot of concentration vs. annealing time calculated by the 

Mathematica program matches the quantitative shape of our experimental data, Figs 

3.5 to 3.7. We determined the value of the diffusion coefficient in the Mathematica 

code that produced the best least-squares fit to our experimental data. 

 

    The diffusion coefficient of hydrogen D(OH) was determined to be 7.22×10-10 

cm2/s for our out-diffusion experiments, which showed agreement with D1 (6.54×10-10 

cm2/s) and D2 (5.98×10-10 cm2/s) by the two decay rates method. Furthermore, D(OH) 

and D(fc) by numerical method differed by just a factor of 3, which indicated a close 

relationship. Therefore, it seems reasonable to relate the out-diffusion coefficient D to 

the higher and lower rates of hydrogen intensity vs. time curve in the isothermal 

annealing data. This possible relationship will be investigated further in future 

research of the diffusion of H in In2O3.  
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FIG. 3.11. The out-diffusion coefficient D determined by integrating the numerical 

solution to generate the time dependence of hydrogen (normalized) and free carrier 

out-diffusion. The O-H (blue) and free carrier (black) out-diffusion experimental data 

points were fit by Mathematica simulation curves (green and red) separately. A 

representative error bar is shown in the O-H experimental data that is due to 

uncertainty in the choice of baseline in the spectra. The orange curve is the best 

numerical integration fit to both two experimental datasets. 

 

3.3.5: HO shallow donors? 

Most of the conductivity changes produced by the introduction of H (or D) into 

In2O3 in our experiments can be explained by an interstitial H+ (or D+) center that acts 

as a shallow donor. However, there is some experimental evidence for “hidden 

hydrogen” that does not give rise to O-H vibrational absorption but that remains 

electrically active, nonetheless. The data in Fig. 3.1 show that for a hydrogenated 
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sample annealed at 100°C, the free-carrier absorption remained unchanged while the 

3306 cm-1 O-H line was decreased in intensity by ~40%. Annealing at higher 

temperatures caused the intensity of the O-H absorption to recover. This result 

suggests that interstitial H+ can be partially converted by annealing near 100°C into an 

electrically active H center that gives no observable O-H vibrational absorption. The 

shallow donor center with H trapped at an oxygen vacancy (HO
+) predicted by theory 

[3.12] is a candidate for such a defect. The vibrational absorption arising from the HO
+ 

center is expected to lie at a frequency too low to be observed by IR transmission 

measurements [3.7][3.24], as predicted by theory to be discussed below (Table 3.3). 

(Figure 3.3 shows a similar result for an In2O3 sample containing D when it was 

annealed near 150°C. The O-D line intensity is decreased by ~40% while the 

free-carrier absorption remains unchanged, suggesting conversions between 

interstitial D+ and DO
+ shallow donors.). 

Interstitial H+ and HO
+ shallow donor centers have been found to coexist in other 

oxides, ZnO and SnO2, for example [3.23][3.25]. In these cases, HO
+ is more thermally 

stable than interstitial H+ and is the dominant donor in the material. Our results for 

In2O3 indicate that, in this case, it is interstitial H+ that is the dominant H-related 

shallow donor. 

 

3.3.6: Other IR absorption lines 

A number of O-H and O-D absorption lines in addition to the lines at 3306 and 

2464 cm-1 (Table 3.1) were seen in spectra measured for as-grown samples of In2O3 
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and for samples treated in H2 or D2 [3.26]. These lines might be due to metastable 

interstitial H configurations [3.12] or H associated with a native defect such as the In 

vacancy [3.27]. These additional vibrational lines appeared in different samples with 

different relative intensities, depending on the sample treatment with one exception. 

The O-D lines at 2469 and 2521 cm-1 (Fig. 3.12) were introduced together and were 

annealed away together (around 550oC) in our experiments. (Of the corresponding 

O-H lines at 3316 and 3398 cm-1, only one is resolved, making these O-H lines difficult 

to study.)   

 

FIG. 3.12. IR absorption spectrum (T = 4.2 K, resolution = 1 cm-1) for an In2O3 sample 

deuterated by an anneal (60 min) in a D2 ambient at 500°C.   

 

    The correlation between the O-D lines at 2469 and 2521 cm-1 is confirmed by the 

results shown in Fig. 3.13 and Table 3.2. Fig. 3.13 shows that these two peaks were 

introduced together in all four deuterated samples (samples were deuterated and then 

annealed in flowing N2 around 400oC to partially recover IR transparency). The 

intensities of the two peaks have been determined by fitting with Peakfit software. 
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Results are shown in Table 3.2. The ratios between the areas of O-D lines at 2469 

and 2521 cm-1 are all near 1, showing a good correlation and strongly supporting the 

observation that these two lines are introduced and annealed away together.  

 

FIG. 3.13. IR absorption spectra in the O-D stretching region for four deuterated In2O3 

samples, which then have been annealed in flowing N2 to partially recover IR 

transparency. The O-D lines at 2469 (the shoulder) and 2521 cm-1 were introduced 

together into sample spectra.  

 

Both H and D were introduced together into In2O3 samples to investigate whether 

or not defects containing more than one H (or D) atom could be produced. In spite of 

several attempts to diffuse H and D into In2O3 layers of similar thickness, no new 

absorption lines that might arise from centers containing both H and D were found 

[3.22]. Implications of this result are discussed in section 3.4.  
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Table 3.2. The intensities of O-D lines at 2464, 2469 (the shoulder) and 2521 cm-1 for 

four different deuterated In2O3 sample. The intensities of the 2521 cm-1 and 2469 cm-1 

D lines are approximately equal.  

 

D-treated 

sample 

2464 cm
-1

 

intensity (cm
-1

) 

2469 cm
-1

 

intensity (cm
-1

) 

2521 cm
-1

 

intensity (cm
-1

) 

intensity ratio 

between 2469 cm
-1
 

and 2521 cm
-1
 

#1 0.437 0.098 0.099 1.010 

#2 0.357 0.068 0.064 0.941 

#3 0.781 0.132 0.111 0.841 

#4 0.377 0.159 0.163 1.025 

 

3.3.7: In2O3 phonons 

    In2O3 samples that had been deliberately hydrogenated or deuterated by an 

anneal in H2 or D2 gas at 500°C were found to be opaque in the spectral region with 

frequency near 2000 cm-1 and below. However, following annealing treatments at 

temperatures near 400°C that reduced the free carrier concentration, an additional 

strong IR absorption line emerged at 1890 cm-1 as the sample increased in 

transparency [Fig. 3.14]. We found that this line showed no H vs D isotope effect.  
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FIG. 3.14. A strong IR absorption line at 1890 cm-1 (a) existed in an as-grown In2O3 

sample but disappeared after a sample had been deliberately hydrogenated or 

deuterated. This line emerged again as the sample turned more transparent upon 

annealing (b). 

 

                (a)                      (b)                      (c) 

FIG. 3.15. Raman Spectra of an as-grown In2O3 sample. (a) shows the fundamental 

region. (b) and (c) show spectra for the overtone regions. Line frequencies and 

suggested assignments are presented in Table 3.3.  

(a) (b) 
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    We attribute the 1890 cm-1 line to the third harmonic of an In2O3 lattice phonon 

with frequency 630 cm-1 that can be seen with Raman spectroscopy. If the 3rd 

harmonic of the 630 cm-1 phonon can be observed, it is natural to wonder if the 2nd 

harmonic might also be present. Another strong line at 1254 cm-1 was observed by 

Raman spectroscopy, which can be attributed to the second harmonic of the In2O3 

lattice phonon at 630 cm-1 [Fig. 3.15(b)]. Table 3.3 shows frequencies of the lines seen 

in Raman measurements performed by Sandro Koch at the Dresden University of 

Technology. Assignments to the combination modes of different phonon frequencies 

are suggested in the Table.  

 

Table 3.3. Frequencies of lattice vibrational lines seen with Raman measurements. 

Assignments of combination modes are suggested.  

peak number frequency (cm-1) possible combination 

c 133 c 

d 306 d 

e 366 e 

f 495 f 

g 627 g 

h 1179 f+g+e+a 

i 1254 g*2 

j 1551 g*2+d 

k 1731 f+g+d*2 

i 1948 c*3+j 

m 2119 b+d+l 
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3.3.8: Other shallow donors and deep compensating centers 

While most of the samples we studied were pale yellow in color, a few as-grown 

samples had different colors. IR spectra are shown in Fig. 3.16 for an as-grown 

sample that was gray in color and for an as-grown sample that was green. In this case, 

several O-H absorption lines are seen along with substantial free-carrier absorption. 

Annealing experiments [Fig. 3.16(a)] found that the free-carrier absorption in the 

gray-colored sample was thermally stable for an annealing temperature of 700°C 

where H centers and their associated O-H lines are annealed away. Fig. 3.16(a) also 

showed a relatively weaker free carrier absorption in an as-grown sample that was 

green in color. In this case, the free carrier absorption was stable around 800oC where 

associated O-H lines were annealed away. These annealing results indicate that 

these gray-colored and green-colored samples contain thermally stable shallow 

donors other than interstitial hydrogen. The weaker free carrier absorption in the 

green sample indicates a lower donor concentration than for the gray sample. 

 

The as-grown In2O3 samples we studied, whether pale yellow in color or 

gray/green, showed weak absorption at 3306 cm-1 in addition to other O-H absorption 

lines, similar to the 3306 cm-1 line seen in Fig. 3.16. From the areas of the 3306 cm-1 

line seen in typical as-grown samples and the calibration of this absorption given in Eq. 

(3.9), we estimate an interstitial hydrogen donor concentration between 2x1016 and 

1017 cm-3 that is due to hydrogen that was introduced unintentionally into In2O3 

samples during the growth process that was carried out in the air. 
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FIG. 3.16. IR spectra of colored as-grown samples (gray and green samples). The 

gray sample was 0.825 mm thick and the green sample 1.160 mm thick. Samples 

were annealed at the temperature shown. (a) free carrier absorbance of gray and 

green In2O3 samples. (b) IR absorption lines in the O-H stretching region for the grey 

sample. (c) IR absorption lines in the O-H stretching region for the green sample. 

 

(a) (b) 

(c) 
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Samples that are pale yellow in color did not show substantial free-carrier 

absorption in our experiments, and similar samples, also grown at Oak Ridge, were 

found in another study to have high resistivity [3.19]. Our infrared results for the 

concentrations of Hi
+ shallow donors in as-grown In2O3 samples suggest that for such 

samples to have high resistivities, they must contain compensating defects - also at 

the ~1017 cm-3 level. 

 

The concentrations of hydrogen (or deuterium) shallow donors introduced 

intentionally into thin layers by annealing in an H2 (or D2) ambient at 500°C in our 

experiments are near 1019 cm-3 and would dominate the n-type doping in these layers, 

even if these In2O3 samples contained compensating centers at the 1017 cm-3 level. 

 

We attempted to produce free carriers in In2O3 samples by annealing in reducing 

ambients that did not include hydrogen. Annealing samples in flowing He at 800°C did 

not produce free-carrier absorption that is at all comparable to that shown in Figs. 3.1 

and 3.3. Similarly, annealing In2O3 samples in a flowing CO ambient at 700°C for 2 hrs 

did not produce substantial free-carrier absorption. 

 

3.4: Defect Modeling 

Professor Fowler (Lehigh University) has carried out calculations of H defect 

structures in In2O3 with the CRYSTAL06 code [3.29] using density functional theory 

(DFT).  
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FIG. 3.17. Defect models. (a) The lowest energy antibonding configuration (AB01) for 

Hi
+. (b) Metastable Hi

+ antibonding configurations (AB02 to AB04). Defect labeling 

follows Ref. 12. (c) Lowest energy configuration for [VIn(24d)-H]2-. Larger (blue) atoms 

represent O, smaller (black) atoms represent In, and the smallest (red) atom is H. This 

was constructed by MOLDRAW (P. Ugliengo, Torino 2006, available at 

http://www.moldraw.unito.it) and POV-Ray (http://povray.org). 

 

Similar calculation have been reported previously in Ref. 12 and 27. Ref. 12 

predicts that the four inequivalent BC configurations for H+ are unstable. Of the four 

antibonding configurations, Fowler's results (Table 3.4) and those of Ref. 12 predict 

that the structure shown in Fig. 3.17(a) is lowest in energy, while the remaining three 

configurations shown in Fig. 3.17(b) are metastable. Thus the O-H (O-D) line at 3306 

(2464) cm-1 is assigned to the lowest energy antibonding configuration shown in Fig. 

3.17(a). 

 

Fowler's calculations agree with those of Ref. 12 in predicting that Hi
+ is 

energetically favored over H+ substituted for a neutral oxygen, while given an H+ and 

1 

2 
3 4 

http://www.moldraw.unito.it/
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an existing O vacancy, the substitutional configuration is favored over a separated Hi
+ 

and an O vacancy. These results are in agreement with our experimental results that 

show that Hi
+ is the dominant H-related shallow donor in In2O3. Furthermore, our 

results also suggest that HO
+ may coexist with Hi

+ following annealing treatments near 

100°C.  Except in this brief annealing window between 100 to 200°C, Hi
+ can explain 

the free-carrier absorption we have observed as well as the shallow donors from 

which it arises without the need for invoking additional shallow H centers. This is 

different from the situation for H in ZnO and SnO2 where HO
+ has been found to be the 

more thermally stable H-containing shallow center and Hi
+ is only marginally stable at 

room temperature. 

 

There are several lines in the O-H and O-D spectra in addition to the 3306 and 

2464 cm-1 lines attributed to the lowest energy interstitial H and D centers. Candidates 

for these additional lines include the metastable antibonding configurations for Hi
+ 

shown in Fig. 3.15(b), centers with H in VIn [3.27], and hydrogen defects that contain 

more than one H atom. 

 

The metastable AB configurations have predicted vibrational frequencies that are 

substantially higher than the 3306 cm-1 line (Table 3.4) and are, therefore, candidates 

for the H lines observed between 3375 and 3425 cm-1. These configurations, however, 

are at least 0.5 eV higher in energy than the stable configuration, so it is not clear that 

they will be populated.   
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Table 3.4. Calculated vibrational frequencies and formation energies relative to the 

most stable configurations for H centers in In2O3. Defect labeling follows that of Refs. 

12 and 27. Frequencies for Hi and VIn-H centers include the effect of anharmonicity.  

The results shown for HO and DO are harmonic frequencies. 

 

Defect 

Energy 

(eV) ωH (cm-1) ωD(cm-1) 

Hi
+(AB01) 0 2931 2193 

Hi
+(AB02) 0.51 3125 2325 

Hi
+(AB03) 0.82 3283 2449 

Hi
+(AB04) 0.82 3453 2555 

    [VIn(24d)-H]-2 (eq:S) 0 3026 2253 

[VIn(24d)-H]-2  (ax) 0.56 3340 2473 

[VIn(24d)-H]-2 (eq:L) 0.58 3313 2453 

[VIn(8b)-H]-2 

 

3434 2540 

    HO  800 566 

    

[VIn(24d)-2H]-1 

 

range from 

3150 to 3525 

range from 

2225 to 2500 

    

 

There are two inequivalent In sites, In(1) and In(2), or 8b and 24d, respectively, in 

Wyckoff notation. One of the 24d sites for H in an In vacancy (24d eq:S in the notation 

of Ref. 27) has the lowest energy and also has the lowest predicted vibrational 

frequency of the three possible sites. Ref. 27 predicts this frequency to be 13 cm-1 

higher than that of Hi
+, while Fowler predicts it to be 90 cm-1 higher (Table 3.4). This 

defect is a candidate for one of the vibrational lines seen between 3225 and 3290 

cm-1. 
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Other, metastable VIn-H configurations have predicted vibrational frequencies 

approximately 200 cm-1 higher than Hi
+ and are also candidates for the vibrational 

lines observed between 3375 and 3425 cm-1. Again, the circumstances in which these 

metastable sites are populated are not clear. 

 

We also consider configurations with more than one H or D atom. The vibrational 

lines at 2469 and 2521 cm-1 are seen together in the spectra that we have measured 

for different deuterium-introduction treatments and following annealing treatments. 

These results suggest that both lines arise from the same D-containing center. If this 

were the case, one might expect the lines to shift if one of the D is replaced by an H. 

This, however, has not been observed in experiments on mixed H-D samples.  

 

To consider this further, Professor Fowler has carried out calculations for two H in 

an In vacancy. There are three pairs of equivalent sites at the In(2) vacancy. Fowler 

finds that if the two H are attached to an equivalent pair, even though the coupling is 

weak, the degeneracy of these sites predicts that lines for H-D will be displaced by ~ 

10 to 15 cm-1 from those predicted for H-H or D-D. However, this is not seen 

experimentally. If the two H are attached to an inequivalent pair, the new lines 

predicted for H-D will be displaced from the H-H or D-D lines by less than 1 cm-1, i.e., 

by a value too small to be resolved. And, the lowest-energy situation predicted by 

Fowler does involve hydrogens on inequivalent sites. Therefore, the possibility of two 

(or more) H in an In vacancy remains as a possibility. But alternatively, one line of the 
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pair of lines could be an O-D stretching mode and the second could be due to the 2nd 

harmonic mode of an O-D wag mode associated with the same defect and with an 

intensity that is strengthened by Fermi resonance [3.22]. 

 

3.5: Conclusions 

The effect that hydrogen impurities have on the conductivity of In2O3 single 

crystals has been studied by IR spectroscopy and theory. Annealing In2O3 crystals in 

an H2 or D2 ambient at temperatures near 500°C was found to produce a thin 

conducting layer near the sample surface with a thickness ≈ 0.06 mm and with a 

carrier concentration determined by Hall measurements to be 1.6 x 1019 cm-3. An OH 

vibrational line at 3306 cm-1 has been assigned to the interstitial H shallow-donor 

center that is responsible for the hydrogen-related conductivity. The corresponding Di 

center has an OD line at 2464 cm-1. The Hi center was found to be thermally stable up 

to ≈ 500°C. 

 

Several additional OH lines were produced by the treatment of In2O3 in H. 

Additional configurations for interstitial H with higher formation energies or defects 

with H trapped by In vacancies that have been investigated by theory are candidates 

for these OH lines. A comparison of experiment with the relative vibrational 

frequencies for these H-containing defects predicted by theory (Ref. 27 and Table 3.2) 

suggests specific assignments. 
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Investigations of hydrogen shallow-donor centers in other conducting oxides 

studied recently, ZnO and SnO2 for example[3.23] [3.25], find that Hi is only marginally 

stable at room temperature and that HO is a more thermally stable donor that 

dominates the n-type conductivity of hydrogenated samples of these materials stored 

for substantial times at room temperature. Our experimental results and 

complementary theory show that the conductivity produced by the thermal treatment 

of In2O3 in hydrogen can be explained primarily by a thermally stable Hi center, 

consistent with theoretical predictions that HO has a higher formation energy. 
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Chapter 4:  

Conclusion 

    Traditionally, the high electrical conductivity of TCOs has been attributed to native 

defects such as oxygen vacancies and cation interstitials, while hydrogen was 

recognized as a passivating defect to the conductivity in most common 

semiconductors. However, recent theoretical and experimental work have indicated 

that hydrogen centers can be important shallow donors in the bixbyite-structure, 

transparent-conducting-oxide In2O3. 

 

    In this study, the effect that hydrogen impurities have on the conductivity of In2O3 

single crystals has been studied by IR spectroscopy and theory. We found that 

annealing In2O3 single crystal in an H2 or D2 ambient at temperatures near 500°C 

produces a thin conducting layer near the sample surface, which has been 

determined as about 0.06 mm in a 1 mm thick sample by thinning experiments. An OH 

vibrational line at 3306 cm-1 has been assigned to the interstitial H shallow-donor 

center that is responsible for the hydrogen-related conductivity. Annealing 

experiments following H treatment showed both free carriers and an O-H IR 

vibrational line at 3306 cm-1 that were thermally stable up to ≈ 600°C, which indicated 

a correlation between them. 

 

    The diffusion of hydrogen impurities is important to determine in order understand 

the chemical reactions of H. Out-diffusion and in-diffusion of hydrogen have been 
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investigated by isothermal annealing and thinning experiments. The fast and slow 

decay rates of Hi found in isothermal annealing experiments at 400oC were explained 

as the out-diffusion of hydrogen in the conducting layer and sample bulk, which yields 

an out-diffusion coefficient of about 6×10-10 cm2/s. The relationship between the two 

decay rates and the out-diffusion of hydrogen is supported by numerical calculations 

in Mathematica which found the out-diffusion coefficient to be 7.22×10-10 cm2/s. (The 

in-diffusion coefficient in our thinning experiments was found to be about 5×10-9 

cm2/s for a 450oC hydrogen treatment by fitting our experimental data with the 

complementary error function.  

 

Several additional OH lines were produced by the treatment of In2O3 in H. 

Additional configurations for interstitial H with higher formation energies or defects 

with H trapped by In vacancies have been investigated by theory are candidates for 

these OH lines.   
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APPENDIX I  

Mathematica code to best fit O-H out-diffusion  

 

Df = 2.6*10^-6; x2 = 0.1; t2 = 24; 

s1 = NDSolve [{D[y[t, x], t] == Df D[y[t, x], x, x],  

    y[0, x] == 3.77*10^19*(Erfc[x/0.01] - Exp[-100000x])*(1 - Exp[-1000(x2 - x)]), 

    y[t, 0] == 0, y[t, x2] == 0}, y, {t, 0, t2}, {x, 0, x2}, Method → {"MethodOfLines", 

    "SpatialDiscretization" → {"TensorProductGrid", "MinPoints" → 200}}]; 

Plot3D[Evaluate[y[t, x] /. s1], {x, 0, x2}, {t, 0, t2}, PlotRange → {0, 4*10^19}] 

 

 

 

Df = 2.6*10^-6; x2 = 0.1; t2 = 24; 

f = 5; 

s1 = NDSolve [{D[y[t, x], t] == Df D[y[t, x], x, x],  

    y[0, x] == 3.77*10^19*(Erfc[x/0.01] - Exp[-100000x])*(1 - Exp[-1000(x2 - x)]), 

    y[t, 0] == 0, y[t, x2] == 0}, y, {t, 0, t2}, {x, 0, x2}, Method → {"MethodOfLines", 

    "SpatialDiscretization" → {"TensorProductGrid", "MinPoints" → 100}}]; 

Plot[{Evaluate[y[t2/f/f/f/f/f/f/f, x] /. s1, Evaluate[y[t2/f/f/f/f/f/f, x] /. s1,  

    Evaluate[y[t2/f/f/f/f/f, x] /. s1, Evaluate[y[t2/f/f/f/f, x] /. s1,  

    Evaluate[y[t2/f/f/f, x] /. s1, Evaluate[y[t2/f/f, x] /. s1, Evaluate[y[t2/f, x], 

    Evaluate[y[t2, x] /. s1], {x, 0, x2}, PlotRange → {0, 4*10^19}] 
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Table[Integrate[Evaluate[y[t, x] /. s1], {x, 0, 0.1}][[1]], {t, 0, 24}] 

{2.08823 × 1017, 1.54892 × 1017, 1.3677 × 1017, 1.24824 × 1017, 1.15916 × 1017, 

1.08854 × 1017, 1.03037 × 1017, 9.81193 × 1016, 9.38799 × 1016, 9.01699 × 1016, 

8.68839 × 1016, 8.39442 × 1016, 8.12925 × 1016, 7.88834 × 1016, 7.66813 × 1016, 

7.46576 × 1016, 7.2789 × 1016, 7.10563 × 1016, 6.94436 × 1016, 6.79375 × 1016, 

6.65265 × 1016, 6.5201 × 1016, 6.39525 × 1016, 6.27738 × 1016, 6.16586 × 1016} 

 

ListPlot[%] 
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APPENDIX II  

Mathematica code to best fit free carrier out-diffusion  

 

Df = 7.6*10^-6; x2 = 0.1; t2 = 24; 

s1 = NDSolve [{D[y[t, x], t] == Df D[y[t, x], x, x],  

    y[0, x] == 3.77*10^19*(Erfc[x/0.01] - Exp[-100000x])*(1 - Exp[-1000(x2 - x)]), 

    y[t, 0] == 0, y[t, x2] == 0}, y, {t, 0, t2}, {x, 0, x2}, Method → {"MethodOfLines", 

    "SpatialDiscretization" → {"TensorProductGrid", "MinPoints" → 200}}]; 

Plot3D[Evaluate[y[t, x] /. s1], {x, 0, x2}, {t, 0, t2}, PlotRange → {0, 4*10^19}] 

 

 

 

Df = 7.6*10^-6; x2 = 0.1; t2 = 24; 

f = 5; 

s1 = NDSolve [{D[y[t, x], t] == Df D[y[t, x], x, x],  

    y[0, x] == 3.77*10^19*(Erfc[x/0.01] - Exp[-100000x])*(1 - Exp[-1000(x2 - x)]), 

    y[t, 0] == 0, y[t, x2] == 0}, y, {t, 0, t2}, {x, 0, x2}, Method → {"MethodOfLines", 

    "SpatialDiscretization" → {"TensorProductGrid", "MinPoints" → 100}}]; 

Plot[{Evaluate[y[t2/f/f/f/f/f/f/f, x] /. s1, Evaluate[y[t2/f/f/f/f/f/f, x] /. s1,  

    Evaluate[y[t2/f/f/f/f/f, x] /. s1, Evaluate[y[t2/f/f/f/f, x] /. s1,  

    Evaluate[y[t2/f/f/f, x] /. s1, Evaluate[y[t2/f/f, x] /. s1, Evaluate[y[t2/f, x], 

    Evaluate[y[t2, x] /. s1], {x, 0, x2}, PlotRange → {0, 4*10^19}] 
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Table[Integrate[Evaluate[y[t, x] /. s1], {x, 0, 0.1}][[1]], {t, 0, 24}] 

{2.08897 × 1017, 1.25613 × 1017, 1.03867 × 1017, 9.09852 × 1016, 8.20806 × 1016, 

7.54164 × 1016, 7.0174 × 1016, 6.59046 × 1016, 6.23377 × 1016, 5.9298 × 1016, 

5.66664 × 1016, 5.43587 × 1016, 5.23131 × 1016, 5.04832 × 1016, 4.88335 × 1016, 

4.73362 × 1016, 4.5969 × 1016, 4.47142 × 1016, 4.3557 × 1016, 4.24855 × 1016, 

4.14894 × 1016, 4.05604 × 1016, 3.96913 × 1016, 3.88757 × 1016, 3.81085 × 1016} 

 

ListPlot[%] 

 

 

  



101 

 

APPENDIX III  

Mathematica code to best fit both free carrier and O-H 

out-diffusion  

 

Df = 4.5*10^-6; x2 = 0.1; t2 = 24; 

s1 = NDSolve [{D[y[t, x], t] == Df D[y[t, x], x, x],  

    y[0, x] == 3.77*10^19*(Erfc[x/0.01] - Exp[-100000x])*(1 - Exp[-1000(x2 - x)]), 

    y[t, 0] == 0, y[t, x2] == 0}, y, {t, 0, t2}, {x, 0, x2}, Method → {"MethodOfLines", 

    "SpatialDiscretization" → {"TensorProductGrid", "MinPoints" → 200}}]; 

Plot3D[Evaluate[y[t, x] /. s1], {x, 0, x2}, {t, 0, t2}, PlotRange → {0, 4*10^19}] 

 

 

 

Df = 4.5*10^-6; x2 = 0.1; t2 = 24; 

f = 5; 

s1 = NDSolve [{D[y[t, x], t] == Df D[y[t, x], x, x],  

    y[0, x] == 3.77*10^19*(Erfc[x/0.01] - Exp[-100000x])*(1 - Exp[-1000(x2 - x)]), 

    y[t, 0] == 0, y[t, x2] == 0}, y, {t, 0, t2}, {x, 0, x2}, Method → {"MethodOfLines", 

    "SpatialDiscretization" → {"TensorProductGrid", "MinPoints" → 100}}]; 

Plot[{Evaluate[y[t2/f/f/f/f/f/f/f, x] /. s1, Evaluate[y[t2/f/f/f/f/f/f, x] /. s1,  

    Evaluate[y[t2/f/f/f/f/f, x] /. s1, Evaluate[y[t2/f/f/f/f, x] /. s1,  

    Evaluate[y[t2/f/f/f, x] /. s1, Evaluate[y[t2/f/f, x] /. s1, Evaluate[y[t2/f, x], 

    Evaluate[y[t2, x] /. s1], {x, 0, x2}, PlotRange → {0, 4*10^19}] 
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Table[Integrate[Evaluate[y[t, x] /. s1], {x, 0, 0.1}][[1]], {t, 0, 24}] 

{2.08848 × 1017, 1.4081 × 1017, 1.20428 × 1017, 1.07652 × 1017, 9.84712 × 1016, 

9.14015 × 1016, 8.57158 × 1016, 8.10029 × 1016, 7.70078 × 1016, 7.35619 × 1016, 

7.0548 × 1016, 6.78815 × 1016, 6.54997 × 1016, 6.33548 × 1016, 6.14096 × 1016, 

5.96347 × 1016, 5.80064 × 1016, 5.65054 × 1016, 5.5116 × 1016, 5.38248 × 1016, 

5.26207 × 1016, 5.14943 × 1016, 5.04376 × 1016, 4.94437 × 1016, 4.85064 × 1016} 

 

ListPlot[%] 
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