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Abstract

Colloidal particles undergoing spontaneous aggregation are a system of interest.

Protein aggregation has been shown to be an important pathway to disease and

novel materials with new and desired properties can be synthesized quickly and ef-

fectively if they undergo self-assembly. Understanding this self-assembly and the

mechanisms that cause it are of tantamount importance to solving these problems

in biology and engineering. The simplest model particle is a hard, incompressible

sphere. Simulation studies of these types of particles display different behaviors

under different conditions illustrated on a phase diagram. Since this original study,

particles with additional levels of complexity, anisotropic shape or directional at-

tractive interaction have been studied in simulation and have demonstrated a wide

variety of behavior. In this work, anisotropic shape ellipsoids and directional patchy

interactions are combined in the model particle. The liquid-liquid phase transitions

of these patchy ellipsoids are mapped out via Monte Carlo simulation techniques.

Both increasing shape elongation and decreasing patchy surface act to depress the

location of the critical temperature on the phase diagram. Thermodynamic prop-

erties of the dense fluid phase of patchy ellipsoids are also calculated and finite

size effects are discussed. Additionally particle patch distribution is affected by

elongated shape and found to have an effect on resultant phase behavior.

1



Chapter 1

Introduction

One of the fundamental aims of statistical mechanics is to link particle-particle

type interactions to large scale thermodynamic behavior, such as the heat capacity,

thermal conductivity, chemical potential or especially the phase behavior. Phase

diagrams in particular are powerful because they provide a map that shows the

particular conditions under which a substance will exist in some particular phase.

Commonly known phases are liquid, solid, gas, but there is a plethora of research

that shows the existence of distinct phases in between.

In general, a phase in a material can be characterized by the degree of order. A

gas for example has little to no order, whereas a solid is a very ordered state. Self-

assembly occurs when particles spontaneously come together and acquire some order

from an initial state of less order. Therefore particles that undergo self assembly

are also said to experience a phase transition.

The nature of the particle itself is important in determining how a group of

particles react to certain thermodynamic conditions. It has been shown that real

sythesized particles interacting with each other via anisotropic interactions can self-

assemble into novel and interesting shapes. [26] [47] [68] [135] [136] [106]Additionally,

biological molecules, such as proteins, are highly anisotropic. Proteins can self-

assemble to a vast array of morphologies including crystals, gels, filaments and

amorphous aggregates. This self-assembly is fundamental in either the proper or

pathological expression in vivo.[78] For example the effect of anisotropic surface
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Figure 1.1: Anisotropy Dimensions used to categorize particles that interact via
anisotropic interactions due to key features shown.

morphology, known as roughness, can affect protein adsorption. [107] Also con-

formational changes affect the aggregation of amyloid beta protein to form fibrils.

[65]. Already there is a stunning array of particles that have been created and

characterized displaying a vast variety of behaviors. [63][68] [2] [106]

In 2006, Glotzer and Solomon summarized this then emerging research and cat-

egorized self-assembling particles via what they called anisotropy dimensions. At

the time they identified eight anisotropy dimensions. These are summarized in the

following Figure 1. [47]
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Particles with some type of anisotropy might be more or less likely to self-

assemble than another similar particle under the same conditions because of even

slight changes in anisotropy dimension changing the location and shape of the re-

sultant phase diagram. [119]

Computational studies have also been performed on particles undergoing self-

assembly. This has been on-going for many decades and proceeds the widespread

usage of the term self-assembly. For example one of the anisotropy dimensions

identified in 2006 was particle shape. Ellipsoidal particles have been studied via

computational means since the 1950s. [5]

The advantages of computational methods are numerous. Computers can per-

form many exhausting calculations quickly and efficiently. Simulation studies are a

type of computational method that aims to replicate a real physical system using the

number crunching power of computers. In a simulation study, an idealized system

with precisely the desired properties can be realized relatively quickly compared to

experiments that often encounter many challenges in acheiving the exact desired

conditions.

Computers work with as much or as little information as is given to them. Given

the right information, computers can perform calculations leading to exact numerical

results, and also overlook finer details of a system that are extraneous in the ultimate

calculation.

The creation of computational models is a non-trivial and nuanced task. Too

much information will slow down a calculation, leading to, at best, unnecessary

delays. If a model retains too little infomation, it may not be an effective model for

study. Knowing what features of a model are ultimately relevant, is often the work

of educated trial and error, but knowing what key features underlie a particular

behavior is critically important. For example Hungtinton’s disease is one of a set

of neurodegenerative diseases known to be related to an expanded polyglutamine

repeat sequence near the N-terminus in the associated Huntingtin protein. [99]

Therefore modeling efforts have focused on this and related parts of the protein.

[66] [31] [138]

Computational models therefore provide idealized systems that allow for the
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testing of theories and comparision with experiment.

In general there are two main types of computer simulation methods, Monte

Carlo and molecular dynamics. The main goal of the Monte Carlo method is to

investigate systems in equilibrium. Whereas molecular dynamics simulations study

the dynamic progression of a system, Monte Carlo methods are used to study a

system in equilibrium. Since phase diagrams represent the states of matter for some

material under equilibrium conditions, Monte Carlo methods were chosen for the

extent of this work.

Combining computer simulation with the study of anisotropy and its effect on

phase diagrams is the goal of this work. In particular, the two anisotropy dimensions,

called patchiness and shape are of interest.

Patchy particles form a whole class of particles that interact via highly directional

interactions that are isolated on specific regions of the particle surface area known

as a patch. Experimentally patchy spheres have been shown to self assemble into

interesting non-close-packed structures due to the presence of patchiness. [63][68]

[2] [106] For example triblock patchy hard spheres have been shown to self-assemble

into a kagome lattice which has a particularly desired porous structure. [26].

As for computer simulations of patchy particles, the seminal work of Kern and

Frenkel in 2003 provided the basis for many following studies on patchy spheres.[60]

[46] [114] [18] Simulation studies of this model has shown that patchy spheres can

assemble into wires, lamellae and other shapes. [84]

Further complexity is added when one considers shape anisotropy as well. As

previously mentioned, studies of particles with shape anisotropy have existed for

decades and have shown that anisotropic shape gives rise to novel phases that are

not present in the case of isotropic shape. [42] [41] [91] [50] [92] [13]

However it is only recently that both shape and patchy types of anisotropy have

been studied congruently. The work of the Gunton group has been instrumental in

these studies. Since it was found that patchy particles self-assemble into a diversity

of shapes, previous work in the Gunton group focused on either squeezing or elon-

gating the patchy sphere shape into a patchy ellipsoids and studying the resultant

aggregates. [74] [70] [71] [72] [115]
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This thesis is a continuation of that work, but is also distinct in that here the

phase diagram of patchy ellipsoids is explored extensively and with greater variety.

Previous work has focused solely on particles with one patch, covering half of the

particle surface, Janus particles. Here, we present work on particles with a variety

of patch coverages. Additionally the degree of shape anisotropy is also varied and

characterized by a quantity known as the aspect ratio. For these model particles

the liquid-vapor phase diagram is mapped. There is also a brief discussion of future

work on the isotropic to nematic phase transition.

In a liquid-vapor phase transition, under the right conditions, a fluid of particles

will spontaneously self-assemble into a particle-rich fluid and a particle-poor fluid.

This is the type of phase transition that has been studied most commonly in previous

studies of patchy particles. This type of phase transition is also the type most

commonly explored in experiments that aimed to determine the phase diagram of

real proteins such as lysozyme and bovine pancreatic trypsin inhibitor. [78], [45]

[48]

The liquid-vapor phase transition is characterized by the density of the equilib-

rium fluids. At temperatures above the critical point on the phase diagram the fluid

of particles is homogeneous. At cooler temperatures the fluid will spontaneously

separate. The densities of the resultant vapor phase and liquid phase at various

temperatures form a curve that is known as a binodal or coexistence curve.

The structure of this work is broken into seven chapters. In chapter 2, the com-

putational methods employed in the effort of studying phase diagrams is discussed

in detail. This chapter provides a brief overview of the statistical physics that un-

derlies the work, starting with the two main types of ensemble used NV T and NPT .

There is a brief introduction to random sampling and the Monte Carlo method in

general. The Metropolis algorithm in particular was employed and discussed as well

as the various move types that are fundamental to the algorithm. Detailed-balance,

microscopic reversibility and erogdicity, are explained as stipulations that must be

met in order to guarantee accurate sampling of parameter space and that the simula-

tion will eventually reach and stay in equilibrium. Special Monte Carlo techniques,

the Gibbs ensemble and Replica Exchange Method, used for these studies are also
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elucidated. Since computational simulation is only meaningful when connected with

the real world, brief comments of the role of units is also included.

Chapter 3 is an overview of history of simulations studies that were done before

and are relevant to this work. Starting with the simulation work on the phase

diagrams of hard spheres having nontrivial volume and moving towards greater

complexity. The hard ellipsoid problem is introduced. Limiting cases are discussed

such as the case of infinitely long needles and the hard sphere. Simulation work is

presented and discussed as there are two main studies on the hard ellipsoid problem.

The first was done in the 1980s [41] [42] and the problem was revisited again in

2012. [92] [13] Simulation studies of patchiness are discussed in greater detail as

is the type of interaction that is being modeled between any pair of interacting

particles. Interesting morphologies of patchy particles are described. Relevant,

existing phase diagrams are presented for all of these cases leading up to the case of

patchy ellipsoids. Chapter 3, provides the reader some perspective and context for

the rest of this work.

Chapter 4 begins the start of new work on the patchy ellipsoids. First we exam-

ined the liquid-liquid phase separation of particles with various elongations and with

various amounts of surface patch coverage and patch number. This work closely fol-

lows the original study of Kern and Frenkel and aims to extend their results into

the realm of ellipsoids. A standard NV T ensemble was used as well as the Gibbs

ensemble method in conjunction with the law of rectilinear diameters to make es-

timates for the critical points. Results were analyzed with particular emphasis on

the location of the critical point. It was found that the critical temperature Tc de-

pends inversely on the degree of ellipsoid elongation. The critical density did not

vary much. More elongated ellipsoids had lower critical temperatures. This Tc be-

havior was explained in several ways. Particle elongation seemed to correlate with

decreasing bond strength between particles even though on average inter-particle

distance did not seem to vary much with particle elongation. Additionally in or-

der to hold particle volume constant, but increase elongation, particle surface area

must necessarily increase. Therefore fractional patch coverage likely decreases with

particle elongation. Finally elongated particles with directional interactions might
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be inclined to undergo some sort of orientational change; so particle orientation was

examined and indeed more elongated particles were more likely to adopt some av-

erage orientation than semi-spheres. This work was done on model particles with

two patches and model particles with four patches.

Chapter 5 describes additional work that was done on the model in chapter

4 of patchy ellipsoid fluids for particles with two patches. Two thermodynamic

properties, the response function, also known as the isothermal compressibility was

examined as well as the specific heat. In the thermodynamic limit, these properties

should diverge near the criticial points. Finite size effects introduce rounding errors

and the divergence is smoothed out. These finite size effects are discussed as are

the roles of shape and patchiness. Again using standard NV T ensemble Monte

Carlo techniques, the dense fluid region of the phase diagram was explored. This

chapter further illustrates how starting from a particle description, thermodynamic

properties can be found.

In chapter 6, the phase diagram of patchy ellipsoids is examined again, but

with emphasis on patchy distribution instead of aspect ratio. Patch distribution

has not been a very well studied topic because in spheres particles with patches on

diametrically different sides are identical. Since particles are allowed to rotate in

simulation, a particle with patches on the top and bottom is identical to a particle

with patches on the front and back. In ellipsoids however changing the overall

particle shape necessities changes in the surface patches. A prolate ellipsoid with

patches on the two pointy ends is not identical to a particle with patches on the

two sides. The liquid-liquid phase separation of particles with two opposite patches

is mapped out. In one case the two opposite patches are found at the polar ends

of the model particle. In the second case, the two opposite patches are found at

on the model particle’s sides. Patch distribution is found to affect phase behavior

between these two cases of particles, especially for particles with higher values of

total patch coverage. Possible reasons underlying the differences between these two

patch configurations are examined.

Moving beyond the liquid-liquid phase transition, chapter 7 introduces future

work on the isotropic to nematic phase transition. The nematic phase is a distinct
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feature that appears in the phase diagram of sufficiently elongated particles that is

absent in the phase diagram for spheres. [41] [42] [92] [13] The transition point is

characterized by examining the order parameters as well as other metrics. Published

work on prolate ellipsoids in an encompassing attractive potential already exists.

[132] The goal of the future work will be to study the effect of patches.
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Chapter 2

Monte Carlo Methods

The advent of computer simulation brought about a huge advancement in science.

There exist many problems in statistical physics, such as investigation into collective

behavior, that require large data sets that would have been intractable without the

use of computers. For many non-trivial problems, analytic solutions are difficult or

impossible to attain so numerical calculation is necessary. Carrying out sums over

all possible configurations is one of the predominant tasks in computational studies.

The Monte Carlo method, named after the famous gambling destination, is a

method to simplify these calculations by generating a random sampling of possible

configuration states and averaging over them. The simplest Monte Carlo method

generates a random ensemble of all possible outcomes of a variable of interest and

takes an average over that ensemble. For example, suppose we are interested in

calculating the value of some definite integral over the range [a,b] (the area, of the

curve between a and b). ∫ b

a

f(x)dx (2.1)

Using a random set of N points within the area A, xi ∈ [a, b], we evaluate the value

of the function at each of those points f(xi). Taking an average over the values of

f(xi), we can approximate the value of f.

〈f〉 =
1

N

N∑
i=1

f(xi) (2.2)
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In the continuous limit this is:

〈f〉 =
1

(b− a)

∫
f(xi)dx (2.3)

As the number of random samples increases, then the accuracy of the expected

value obtained also increases. In the case of more complicated integrals, the conver-

gence of calculating such integrals via simple random Monte Carlo becomes increas-

ingly slow with complexity. Above, the probability distribution of the particles was

simply 1
(b−a) , which is a flat line.

In statistical mechanics, in a sufficiently large system (such as a large number of

identical particles), the Boltzmann distribution of the microstates of such a system

would be quite sharp. It is useful therefore to weight the sampling according to the

Boltzmann distribution.

A Monte Carlo method that uses what is called importance sampling relies upon

weighted probabilities based on the Boltzmann distribution to compute average

quantities such as the energy, magnetization or other thermodynamic quantities.

In classical statistical mechanics, the partition function, the sum of all Boltzmann

factors in a system, is constructed from an ensemble of all possible states of the

system and essentially counts the number of accessible states. Importance sampling

involves taking random samples where the Boltzmann factor is large and not sam-

pling as often where the Boltzmann factor is small. Since certain states are more

probable than others, an average over such an ensemble yields these quantities.

Before discussing details about how to schematically carry out importance sam-

pling it is important to discuss the ensembles, all possible configurations that a

system may occupy, that are used.

2.1 Ensembles

In statistical physics, a typical Monte Carlo simulation will be run in the canonical,

NV T , ensemble so named because simulations run in such an ensemble have the

number of particles N , volume V and temperature T fixed. Simulations in other

ensembles are also common. The NPT ensemble (particle number, pressure and
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temperature are fixed), for example, is also frequently used. In the thermodynamic

limit, it shouldn’t matter what ensemble is used; however different ensembles do

give different values when calculating the root mean square value of fluctuations

around desired thermodynamic quantities. Furthermore, the choice of ensemble

also dictates the acceptance criteria that is used in the implementation of Monte

Carlo programs in these ensembles. For example, simulations in a standard NV T

ensemble obviously do not involve changes in volume of the simulation cell as a

type of trial move so there is not acceptance criterion for this. However volume

changes are a necessary part of simulations in the NPT ensemble where changing

the volume is a means of keeping the pressure constant so the list of acceptance

criterion changes to accommodate volume moves. This will be explained more later.

The choice of which ensemble to use is based on convenience. The NV T ensemble

for example was the clear choice for simulation of the Ising model because the number

of spins, the size of the simulation cell and the temperature could all be set easily.

If one wants to compare the results from simulation directly with experiment, it

might be wise to simulate in the NPT ensemble because those are the conditions

often controllable in experiment.

Finally, before discussing more deeply each of the ensembles that were used,

note that there exists additional methods to further increase the sampling rate by

sampling more of the available configuration space at once as in the case of replica

exchange or to simulate two phase equilibrium in one simulation as in the Gibbs

ensemble method.

2.1.1 The Canonical (NVT) Ensemble

Consider the canonical ensemble of N identical particles. Particles in a NV T en-

semble are as if they are in contact with a heat bath. The energy of the system is

not constant and instead fluctuates around an average. It is also assumed that the

particles only interact via an inter-particle potential. There is no external force field

and the particles do not have some sort of extra internal energy.

If we wanted to calculate the expected value of some property, A, in the system,
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this would be given by:

〈A〉 =
1
N !

1
h3N

∫
drNdpNA(rN) exp [−H(r, p)/kBT ]

QNV T

(2.4)

Notice that in this equation the probability distribution function is given by

p =
exp [−H(r, p)/kBT ]

QNV T

(2.5)

and QNV T is the canonical partition function this is written as:

QNV T =
1

N !

1

h3N

∫
drNdpN exp [−H(r, p)/kBT ] (2.6)

rN denotes the position of all N particles. pN is the momentum of the particles.

h is Plank’s constant. H(r, p) = K(p)+U(r) is the Hamiltonian of that particles that

can be written as the sum of a kinetic part, that depends only the the momentum

(velocity) of the particles K(p), and a potential part that depends only the the

positions of the particles U(r).

Substituting this into the partition function, QNV T can be factorized such that

the kinetic contribution and the potential contribution.

QNV T =
1

N

1

h3N

∫
drNexp [U(r)/kBT ]

∫
dpNexp [K(p)/kBT ] (2.7)

The second part of the integral is just the well-known ideal gas contribution.

This is important because in simulation we do not need to deal with the momen-

tum/velocity of the particles. The first part of the integral, known as the configu-

ration integral is the part that remains important.

QNV T ∝
∫
drNexp [U(r)/kBT ] (2.8)

This means that we only need to look at the particle positions in simulation and the

inter-particle potential. Note that the probability distribution of random samples

is now given by a factor that depends on the exponential of the internal energy and

the partition function.

13



2.1.2 The Isobaric-Isothermal NPT Ensemble

Now consider the NPT ensemble, with constant pressure P in addition to constant

N and T . In this case, the system is in contact with both a thermostat and a

bariostat, and it is allowed to exchange volume (work) with the bariostat. This

means that the system is not at constant energy or volume, but both values fluctuate

around some average.

NPT ensemble methods are useful in the case of first-order phase transitions

because at constant pressure the system can transform into a state of lowest Gibbs

Free Energy. In a standard NV T ensemble, the system, may try to phase separate,

but is prevented from doing so because of finite-size effects.

For the most part, the NPT ensemble is similar to the NV T ensemble, except

the important difference is that volume is no longer fixed.

As before, to calculate some quantity, A, in the NPT ensemble one needs to

evaluate:

〈A〉 =
1
N !

1
h3N

1
V0

∫
drNdpNA(rN) exp [−(H(r, p) + PV )/kBT ]

QNPT

(2.9)

The partition function in the NPT ensemble is given by:

QNPT =
1

N !

1

h3N

∫
drNdpN exp [−(H(r, p) + PV )/kBT ] (2.10)

Since the volume in an NPT ensemble is variable it is useful to have some dimen-

sionless quantity in place of the coordinate r in the integral. Therefore assuming

that we are integrating in some space between -L/2 and L/2 then we can use the

dimensionless quantity s = r/L. Additionally, leaving out the kinetic part of the

integral leaves the configuration integral:

ZNPT =

∫
dsN exp

[
−U(sN)/kBT

] ∫
dV V N exp [−PV/kBT ] (2.11)

And (2.9) can be rewritten as:

〈A〉 =

∫∞
0
dV V N exp [−PV/kBT ]

∫
dsNA(sN) exp

[
−U(sN)/kBT

]
QNPT

(2.12)

This means that the probability distribution function is:

p =
exp

[
−(N ln(V )PV + U(sN))/kBT

]
QNPT

(2.13)
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2.2 Implementation

2.2.1 The Metropolis Algorithm

In simulation, the scheme to carry out this random but weighted sampling is called

the Metropolis method. First some configuration of the system is created with

a non-vanishing Boltzmann factor. Next, we create a second configuration which

differs from the first by some small trial move. The difference in energy between the

two trial moves is calculated. If the difference is found to be such that the trial move

lowered the system energy, the move is accepted. Otherwise, a random number if

generated. This number is then compared to the quotient of the Boltzmann Factor

of the two states. If the random number is greater than this quotient, the move is

rejected. If it is less than the quotient, the move is accepted. Whether the move

was accepted or not, the algorithm will repeat the process, generating another trail

move from whatever configuration it is in. Each step of this process is can be called

a Monte Carlo step. Each Monte Carlo step produces a new configuration and the

sequence of these configurations creates the ensemble of states. Furthermore, this

type of Monte Carlo algorithm is also an example of a Markov Chain Monte Carlo

since the probability of being in some state depends on the probability of being in

the state before.

Fig. 2.1 depicts these steps.

2.2.2 Trial Moves and Associated Acceptance Rules

For a system of particles in a box, the first and most obvious type of trial move

is that of particle translation.For the sake of being able to move from easily from

one configuration state to the next (and back), one particle is chosen in the box

and translated some distance ∆~r which is a function of some random number. For

example δrx = rx + (random − 0.5), δry = ry + (random − 0.5) and δrz = rz +

(random− 0.5) and random is a random number between 0 and 1.

To ensure equilibrium a property called detailed balance must hold. Therefore,
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Figure 2.1: Figure schematically depicting a typical Monte Carlo run

the probability of being in any particular state i, Pi times the probability of transi-

tioning out of it κ(i → j) of it must be equal to the probability of being a state j,

Pj and transitions back κ(j → i).

Piκ(j → i) = Pjκ(i→ j) (2.14)

The transition probability is itself a product of the probability to generate the

state i from j and the acceptance probability of such a move acc(i→ j).

κ(i→ j) = α(i→ j)acc(i→ j) (2.15)

Since α(i→ j) must equal α(j → i), substituting into (2.14) gives:

Piacc(i→ j) = Pj(j → i) (2.16)
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Since Pi = exp[−Ui/kBT ]
QNV T

and Pj =
exp[−Uj/kBT ]

QNV T
. This implies:

acc(i→ j)

acc(j → i)
=
Pj
Pi

= exp−(Uj − Ui/kBT ) (2.17)

Therefore the associated acceptance rule for a trial translation move is given by:

acc(i→ j) = min {1, exp−(Uj − Ui)/kBT} (2.18)

For an orientational move, such as a particle rotation, the associated acceptance

rule is the same as for translation since the probability distributions also come from

the NV T ensemble.

Using the NPT ensemble in a similar way, it follows that the associated accep-

tance rule for a trial volume change from a state with volume V to a state with

volume V ′ is V ′ = V +∆V where ∆V = 0.5V random and associated energy change

i to j is:

acc(i→ j) = min

{
1,

(
V ′

V

)N
exp [−(Uj − Ui) + P (V ′ − V )] /kBT

}
(2.19)

2.2.3 Ergodicity

In order for any simulation algorithm to be valid it is also important to note that

there must be some nonzero probability of visiting all possible system states in

whatever ensemble. This is called ergodicity. A system is called ergodic if it is

possible to reach every possible configuration in a finite number of Monte Carlo

steps. In a truly ergodic system whether or not a system reaches equilibrium also

does not depend upon the initial configuration of the system. That does not mean

that the efficiency of reaching equilibrium is not affected by initial conditions. For

example starting a system of particles in a crystal state with the intention of melting

into a liquid can become tricky near a metastable point where the system will spend

a very long time in a state other than equilibrium. If it is found that after a series of

Monte Carlo steps the system depends on the initial configuration either the system

was somehow non-ergodic, or more likely, the simulation simply has not been run

for long enough to reach equilibrium.
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2.2.4 Detailed Balance and Microscopic Reversibility

Another important aspect of Monte Carlo algorithms, as mentioned above, is that

they must satisfy detailed-balance. Detailed balance is important because it is the

condition that ensures that such a sampling will eventually lead the simulation to

equilibrium and stay there such that in equilibrium the simulation can be stopped

and measurements made at anytime.

In order to stay in equilibrium, the probability of the system moving from one

state, A, to another state, B, must exactly equal the probability of moving back to

A (from state B or any other state). This is similar to the principle of microscopic

reversibility which states that in a dynamic system, when one reaches equilibrium,

there may be activity at the atomic or molecular level, but the system as a whole is

observed to be unchanging.

In 1999, Manousiouthakis and Deem showed that strict detailed balance is not

necessary to reach equilibrium, that a weaker balance condition was sufficient. [77]

To explain the difference between strict detailed balance and just balance, con-

sider the one-dimensional Ising model where up or down spins are all in some sort of

configuration along a line. In a Monte Carlo scheme that obeys detailed balance, a

trial move would involve picking one of the spins in the line at random and flipping

it. After determining whether this move was accepted or not, in the next Monte

Carlo step, another spin would be selected at random, with the probability of the

original spin being selected again equal to the probability that all other spins are

selected for a trail move.

By contrast, in a Monte Carlo scheme that obeys just the balance condition,

one can move sequentially down the line selecting spins. This example illustrates

how the balance condition violates detailed balance since the probability of moving

from a state B back to A (the initial spin is chosen again and is flipped back to the

original configuration) is zero. In practice, simulations that do not follow detailed

balance are often wrong, especially in the case of Monte Carlo algorithms that

employ multiple types of moves so it is still considered good practice to follow the

detailed balance condition.
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Quantity Reduced Units Real Units
temperature T∗ = 1 T = 119.8K
density ρ∗ = 1 ρ = 1680kg/m3

pressure P*=1 P = 41.9MPa

Table 2.1: Table of relevant reduced units used in simulation and their connect to real
units.

2.2.5 Reduced Units

It is also important to consider the units of the results of any simulation. It is often

convenient to use what are called reduced units. The basic ideas behind reduced

units is that we pick convenient units based on convention and the specifics of our

problem and express all other quantities according to those units. For example, in

the following chapter on the fluid-fluid phase separation of patchy ellipsoids, we use

the 2a where a is one of the semi-axes of our model ellipsoids as the fundamental

length unit, σ = 2a and express all other lengths in terms of this unit.

By convention there are other standard versions of reduced units and these and

often denoted by the star notation. T∗ = kBT/ε is the reduced temperature in a

simulation. kB is the standard Boltzmann constant. ε is the chosen unit of energy.

u∗ = u/ε is the normalized reduced energy of the system. ρ∗ = ρσ3 is the reduced

density. P = Pσ3/ε is the reduced pressure.

One of the primary benefits of using reduced units is clear. The Boltzmann

constant in SI units is on the order of 1023. Carrying such a quantity around dur-

ing simulation would become very computationally expensive. The use of reduced

units therefore allows for quantities to remain within reasonable order. One other

important aspect of reduced units is that they allow for the possibility of direct

comparison between two systems using the law of corresponding states. If such a

correspondence existed between them, they would exhibit the same behaviors at the

same reduced units.

In their book, Frenkel and Smit offer a table to convert between reduced units

and standard SI units. The relevant aspects of are reproduced in Table 2.1.[43]
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2.2.6 Periodic Boundary Conditions and The Nearest Neigh-

bor Convention

Returning to the one-dimensional Ising model, suppose that one were to write a

Monte Carlo method that sampled using the balance condition. It has been proven

that doing this will eventually lead to the same result as in the detailed balance

case. However, since simulation size is finite, at some point, sampling sequentially,

one will reach the end of the line of spins. This is an example of a boundary effect.

At the boundaries, properties can be very different than in the bulk, so it is often

desirable to avoid boundary effects. A common method of doing this to implement

periodic boundary conditions. In the case of the one-dimensional Ising model, an

implementation of periodic boundary conditions would simply be to write within the

lines of the simulation code that if one comes to the end of a line of spins, take the

first spin in the line and treat that as the next spin and continue as before. Doing

so, creates a pseudo-infinite simulation space and avoids encountering the boundary.

For the case of a two or three-dimensional simulation, such as a box of fluid

particles, each dimension will be subjected to periodic boundary conditions indi-

vidually. In this case, one can imagine that a simulation cell is surrounded by an

infinite number of other simulation cells that are exactly like itself such that if a

particle moves towards the boundary of the simulation cell, it will simply reappear

again directly across from where it disappeared. Fig 2.2 gives an idea of what this

would look like.

Note that, this implies that the maximum range of an interaction potential

between two particles in simulation is one-half the size of the simulation cell. If

there exist only two particles, A and B, in a simulation, B to the left of A, and they

are separated by more than the one-half the size of the simulation cell, then particle

A does not interact with particle B, rather, particle As nearest neighbor is the

image of particle B to the right of A. Periodic boundary conditions are important,

because, like reduced units, they are necessary part of making computer simulations

tractable. The average computer can handle degrees of freedom on the order of

105 or 106. In a one-dimensional Ising model where spins can flip only one of two
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Figure 2.2: A schematic showing periodic boundary conditions for a two-dimensional
simulation of box with fluid particles

directions, up or down, a 100-spin system would have 2100 degrees of freedom which

is on the order of 1030, this would be intractable and 100 spins is pathetically short

of the thermodynamic limit.

2.3 Special Techniques

2.3.1 The Gibbs Ensemble

The Gibbs Ensemble method is a type of NV T simulation that is unique because it

allows for two phases to be simulated at once. In a real experiment, when a system

undergoes phase separation, one can see two distinct phases and a the boundary

between them and it is relatively straightforward to measure the properties of the

two phases. In simulation, because there are many fewer particles. Therefore the

boundary effects become significant since most particle would be at the boundary.

Thus one has to indirectly measure the thermodynamic properties at equilibrium.

The basic idea of the Gibbs ensemble method is that two simulation cells are run

simultaneously each with its own set of periodic boundary conditions. Particles are

dispersed inside the two boxes and the configurations are allowed to undergo a set
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of trial moves: particle translation, particle rotation, particle swapping and volume

change.

Since the Gibbs ensemble method is done in theNV T ensemble, the total number

of particles N and the volume V should remain constant. The number of particles

in one box is n1 and the other is n2 = N − n1. Also the volume in one box is V1

and the other box has volume V2 = V − V1. If a particle is moved out of one box,

it is necessarily transferred to the other simulation box. Likewise if the volume of

one box was scaled to become larger or smaller, the other box would also change

size becoming smaller or larger respectively. The temperature in simulation boxes

is the same.

Note that it is the particle swap move in particular from which the Gibbs ensem-

ble method derives its advantage in simulating phase separation. Since the order

parameter of an isotropic liquid is the difference in density, the connection between

particle insertion and liquid-liquid phase separation is obvious. However the Gibbs

ensemble method is only really useful for simulation of vapor-liquid or liquid-liquid

phase separation. Since a solid phase would be too dense the probability of particle

swapping in a very dense system would be very small.

The associated acceptance rules for these trial moves are as follows:

For translation and rotation:

acc(i→ j) = min
{

1, exp
[
−(U(sn1

j )− (U(sn1
i )
]}

(2.20)

For volume change:

acc(i→ j) = min

{
(V j

1 )n1(V − V j
1 )N−n1

(V i
1 )n1(V − V i

1 )N−n1
exp

[
−(U(sn1

j )− (U(sn1
i )
]}

(2.21)

And for particle exchange:

acc(i→ j) = min

{
1,

n1(V − V1)
(N − n1 + 1)V1

exp
[
−(U(sn1

j )− (U(sn1
i )
]}

(2.22)

The implementation of the Gibbs ensemble method follows the Metropolis algo-

rithm with the addition that before a trial move is chosen at random, first a trial

simulation box is chosen at random. If a particle exchange or volume change is
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made then both boxes are affected, otherwise the boxes run as if two independent

NV T simulations.

Fig. 2.3 depicts the Gibbs ensemble trial moves.

Figure 2.3: Figure depicting the two simulation boxes and the various types of trial
moves that occur during a Gibbs ensemble simulation

Note that in order to reach phase equilibrium with two phases in coexistence,

the intensive variables in each of the two boxes: pressure, temperature and chemical

potential, should be equal to one another. This is one way to determine that equi-

librium is reached. Another way to determine equilibrium is to make a graph of the

densities of the simulation boxes as a function of Monte Carlo steps. At the start

of the simulation, before equilibrium is reached the densities will gradually start to

change as the simulation goes through trial moves. Once equilibrium is reached, the

box densities will continue to fluctuate, but these fluctuations will be relatively small

and around some average. In equilibrium, the system essentially just samples one

of two configurations that correspond to equilibrium with some fluctuation. This

corresponds, on the graph, to a bifurcation of the densities, that plateaus out and

oscillates around some high density value and some low density value.

23



2.3.2 Law of Rectilinear Diameters

In the vicinity of critical points the curvature of the coexistence curve flattens out.

Therefore small external factors can lead to large fluctuations in density. At con-

ditions too close to the critical point, these fluctuations will become too large to

reliably use the Gibbs ensemble method. So other methods to calculate the critical

point are necessary such as the law of rectilinear diameters.

Proposed in 1886, the law of rectilinear diameters is a means of extrapolating

from coexistence data to the critical point. The idea behind the law is that the aver-

age of density of the coexisting liquid and gas are linear with respect to temperature

up to the critical point.In practice by solving a system of equations

(ρliq + ρgas)/2 = ρc − A · |T − Tc| (2.23)

(ρliq + ρgas) = B · |T − Tc|0.32 , (2.24)

A and B are parameters determined by a best fit to existing data. [21]

Although the law has been shown to be only approximate, it often overestimates

the curvature of the coexistence line and it does not work for a mixture, the law

has held up very well such that deviations from the law are often undetectable

in experimental work. The law of rectilinear diameters therefore remains a well

established means of determining critical points.

2.3.3 Parallel Tempering and Replica-Exchange

As a means of speeding up the sampling of a free energy landscape with many local

minima, the method of parallel tempering was introduced. The basic idea of the

method is to run n-copies of a system each at a different state that varies in some

parameter. The method of parallel tempering varies the temperature of the n copies

of an NV T ensemble. Low temperature ensembles probe local minima, but in order

to prevent them from getting stuck over long times, their configurations are periodi-

cally swapped with high temperature ensembles according to some probability again
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related to the Boltzmann distribution. The n-copies can then be ordered according

to temperature T1, T2...Tn.

The extended partition function of these n copies is given by

Qextended =
n∏
i=1

QNV Ti =
n∏
i=1

QNV Ti =
1

N !

1

h3Ni

∫
drNi dp

N
i exp [−H(ri, pi)/kBTi]

(2.25)

The NV T ensembles are then each run in parallel individually with standard

particle translation and rotation moves. Periodic swap moves between the n copies

must follow detailed balance. Using similar notation as before the probability of

swapping configurations between some ensemble i and another ensemble j is given

by

Piκ((i, βi)(j, βj)→ (j, βj)(i, βi)) = Pjκ((j, βj)(i, βi)→ (i, βi)(j, βj)) (2.26)

And again

κ((i, βi)(j, βj)→ (j, βj)(i, βi)) = α((i, βi)(j, βj)→ (j, βj)(i, βi))acc((i, βi)(j, βj)→ (j, βj)(i, βi))

(2.27)

Since swap trials α((i, βi)(j, βj)→ (j, βj)(i, βi)) must be equal for all i and j this

implies:

acc((i, βi)(j, βj)→ (j, βj)(i, βi))

acc((j, βj)(i, βi)→ (i, βi)(j, βj))
=
Pj
Pi

= exp−((βi − βj)(Uj − Ui)) (2.28)

Therefore the associated acceptance rule for a trial translation move is given by:

acc((i, βi)(j, βj)→ (j, βj)(i, βi)) = min {1, exp−((βi − βj)(Uj − Ui))} (2.29)

Note that if the temperature difference between any two copies is too large,

the probability of swapping between them, is small so it is important that the

incremental temperature between each copy is small.

This parallel tempering works for a system in which energy interactions are

dominant, but for hard-core systems in which excluded volume and entropy is also
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(or more) important, extending the ensembles in pressure can be more useful since

entropically driven structures are not as affected by temperature.

In the replica exchange method, n NPT ensembles are run in parallel with

standard translation and volume moves. The extended partition function is

Qextended =
n∏
i=1

QNPiT =
n∏
i=1

QNPiT =
1

N !

1

h3Ni

∫
drNi dp

N
i exp [−(H(ri, pi) + PiVi)/kBT ]

(2.30)

and associated swap acceptance

acc((i, Pi)(j, Pj)→ (j, Pj)(i, Pi))) = min {1, exp−((Pi − Pj)(Vj − Vi))} (2.31)

Where Vi − Vj is the volume difference between ensembles i and j and Pi − Pj is

the pressure difference. Notice that the energy between systems is not considered,

as in the parallel tempering method. And again, the difference in pressures should

be small enough that the probability of swapping is nontrivial. This is especially

important at phase transitions points where |Vi − Vj| can be large. Furthermore

there is a dependence on system size. Larger systems sizes can have a more narrow

density distribution such that the swap acceptance rate decreases.

In both parallel tempering and replica exchange, the methods above describe

the swapping of particle configurations. However in practice it is more efficient to

swap the temperature and pressure values during the course of a simulation run

since that means just swapping one number, instead of the entire configuration of

particles. The output of the simulation runs, can be collated at the end according

to the temperature or pressure.

2.4 Random Numbers Generators

Finally, the Monte Carlo method relies heavily on random number generators. In

truth, these generators are not perfect and can only produce pseudo-random num-

bers. Meaning that in the long run, in a sequence of generated random numbers, a

pattern will begin to emerge.
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The method by which a pseudo random number is generated depends upon the

use of some mathematical algorithm that is repeated extensively to create the next

number in the sequence as well as a starting number seed.

There are two major families of random number generators, linear and nonlinear.

The second, linear is much slower but can make much larger samples before some

pattern is observed. The Mersenne Twister algorithm developed in the late 1990s

relies upon a linear matrix recurrence method and is one of the most predominant

types of random number generators used in science today. This is because the

method is known for having a period of 219937 − 1 (the largest known prime in a

Mersenne sequence) which means that the Mersenne Twister method will create

that number of random numbers before a pattern will emerge.

For this reason the Mersenne Twister random number generator was the one

that was used for the content of this work.
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Chapter 3

The Patchy Ellipsoid Problem

Ellipsoids are a model system that is both interesting and useful. Ellipsoidal shape is

anisotropic, meaning that it has nonuniform behavior that depends on orientation.

Ellipsoids undergo more complex phase behavior than spheres. Many systems of

interest rely on ellipsoidal models. Systems as diverse as viruses [27] [6] and laponite

clays [30] [116] have been described by researchers employing ellipsoidal descriptions.

Models with increasing complexity from the most simple (spheres) to ellipsoids with

high anisotropy are an effort to capture the cogent properties of many interesting

problems.

3.1 The Hard Core Potential

3.1.1 Hard Spheres

The most idealized and simple system in thermodynamics is of course the ideal gas.

Moving towards a more realistic description of particles, one of the first advances

was the concept that particles could be more than just infinitesimally small, that

they could occupy some volume. Theoretically this idea has been around since van

der Waals, whose famous equation of state includes a term that accounts for the

volume of the particles.

Taking the particle volume idea alone, one of the first systems ever studied using
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the techniques of computer simulations was the hard sphere problem. In this system,

identical rigid spheres interact solely via a hard core potential that is defined:

U(r) =

{
∞ for r < σ

0 for r > σ
(3.1)

r is the distance between the spheres and σ is the diameter of the sphere. Since

the potential can either be 0 or infinity only, the Boltzmann Factor exp(−βU) is

either 0 or 1 and the partition function is independent of temperature. Therefore

the hard sphere system can be described by a parameter that depends only on the

volume of the spheres and how that relates to the box volume.

The earliest computational work that was done on the hard sphere problem was

done by Rosenbluth in 1954. He calculated the equation of state for a system of 256

3D hard spheres using Monte Carlo methods that he helped develop with Nicholas

Metropolis and others the year before. [111] [80]

Furthermore to quantify how the position of hard spheres deviate from those of

an ideal gas, the radial distribution function g(r) was examined in Fig 3.1. In units

of V/V0 where V0 = N π
6
σ3/φcp and φcp is the volume at close packing, it was found

that for V/V0=1.8 g(r) had the smeared out indistinct features of a liquid. Whereas

for V/V0=1.145 a much more dense system, the resulting g(r) showed the distinct

and regular shape of a crystalline solid. This study provided evidence that already

particle volume provides a level of complexity that is manifested in the necessary

existence of a phase transition in a system of hard spheres.

In 1957 Alder and Wainwright performed a Molecular dynamics simulation on

a system of hard spheres. It was found that the hard sphere system exhibits two

distinct phases at different ranges of volume fraction, φ. Since the hard-core poten-

tial includes solely a repulsive part, phase transitions in the system are the result of

entropy. For φ < 0.494 a system of hard spheres will behave as a stable fluid. For

φ > 0.545 the system will arrange themselves into an FCC lattice. Values of vol-

ume fraction in between these points correspond to metastable regions of two phase

coexistence between the liquid and crystal. [5] Note that the close packed volume

fraction for a 3 −D system of hard spheres is 0.74. Alder and Wainwright showed
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Figure 3.1: Radial distribution function g(r) from [111] for various simulated densities
in units of R particle diameter vs n the density of particles surrounding a
given particle. As the value of V/V0 increases system size increases thereby
decreasing system density.

that for values of volume fraction well below close packing the system crystallizes.

The well accepted phase diagram of packing fraction vs pressure for the hard sphere

system is shown in Fig 3.2. [83]

3.1.2 Hard Ellipsoids

The hard-sphere problem can be thought of as a special and distinct case of a more

general hard ellipsoid problem. In general the triaxial ellipsoid is defined in cartesian

coordinates as

x2

a2
+
y2

b2
+
z2

c2
= 1 (3.2)

a, b and c define the axis lengths of the ellipsoid. For a sphere a = b = c. For

the rest of this chapter the ellipsoids discussed are ellipsoids of revolution in which
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Figure 3.2: Accepted phase diagram of hard for the hard sphere system. For φ < 0.494
hard spheres exist in the fluid phase. For φ > 0.545 the system crytallizes,
well below close packing at phi = 0.74 [83]

two of three axes are equal, typically a = b 6= c.

The aspect ratio ε, a ratio of the length of the symmetry axis and the length

of any perpendicular axis for a sphere is 1. ε = c
a
. For oblate (disk-like) ellipsoids,

ε < 1. For prolate (lemon like) ellipsoids ε > 1 .

Like the hard-sphere problem, entropy drives phase transitions in systems of hard

ellipsoids. In 1949 Onsager studied hard spherocylinders, which are cylinders with

length L and diameter D and hemisphere caps at both ends. In particular Onsager

investigated the behavior of spherocylinders with L >> D. He showed that these

particles also undergo an entropy driven phase transition from an isotropic fluid to

anisotropic phases. [93]

The entropy that underlies Onsagers phase transitions are of two competing

types, translational entropy and orientational entropy. In a gas of hard rods, parti-

cles have both high translational entropy and orientational entropy. There is a lot of

room for particles to move around and be oriented in any direction. However with
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increasing particle density, particle orientational entropy is sacrificed for increas-

ing translational entropy. This is an isotropic to nematic phase transition. In an

isotropic phase, particles are without translational or orientational order. Particles

with an average orientational order, but no translational order are said to be in a

nematic phase. This phase transition occurs because in a system of rods, aligning

the rods in some direction, decreases the overall excluded volume of the system,

thus increasing the translational entropy. [38]

For a very dense system of rods, particles lack both orientational and transla-

tional entropy and crystallize into some sort of lattice. For densities in between a

gas phase and a crystalline solid phase, the competition between the two entropies

underpins the phase transitions that occur.

Although Onsagers original study was on spherocylinders, similar arguments can

be made for the case of hard-ellipsoids with very large ε >> 1 so called hard needles

and can also be considered a special limiting case of the hard ellipsoids problem.

To see this, it can be shown that in limit of L >> D Onsager’s infinitely long rods

have excluded volume Vexcl = L2D |sin(θ)| where θ is the angle between the rods.

Similarly it can be shown that for the infinitely long needles, their excluded volume

is Vexcl = 4πa2b |sin(θ)|. Again θ is the angle between adjacent needles. Comparing

these expressions for excluded volume, one can simply substitute 4πa2b for L2D and

apply the known results from Onsager’s model to to the hard ellipsoids in the limit

of very long length. [9]

Frenkel and Mulder

For aspect ratios between these two cases, however, phase behavior was not well

known until the work of Frenkel and Mulder.[42][41] In a series of seminal papers

from 1984 and 1985, Frenkel and Mulder used computer simulation, specifically,

constant-pressure Monte Carlo to characterize the phase behavior of both oblate

(ε < 1) and prolate ellipsoids (ε > 1) for the range of aspect ratios between ≈ 1
3

and

≈ 3. In their simulation study they used a system of approximately 100 particles that

were initially set on a FCC lattice. This lattice was allowed to melt and rearrange
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under various conditions until equilibrium was reached in about 103 steps. Another

104 configuration steps were averaged to get equilibrium statistics.

At the time of their work, it was known that for infinitely thin oblate spheroids

with ε → 0 at the freezing transition, the volume fraction φ = O(1). [41] Similar

knowledge was not known for ε → ∞. However the equilvalent volume fraction

values for spheres was known, φ = 0.545, as above.[5] So it was assumed that even

though the transition points depend on particle shape, for finite ε, volume fraction

φ at the transition between isotropic to nematic phase and nematic to crystal would

also be finite.

Furthermore, at close packing, hard-spheres assume an FCC structure. For hard

ellipsoids, Frenkel and Mulder knew that the crystal structure at close packing was

likely different, but they presumed at a simple compression or expansion of the FCC

into a stretched FCC lattice would be sufficient to closely pack hard ellipsoids.

Frenkel and Mulder also calculated the coexistence densities of their phases by

finding the free energy using thermodyanmic integration techniques, orientationally-

averaged pair distribution function, the short range second rank order parameter

and for the solid phases, the structure factor.

Compiling their work into a phase diagram of aspect ratio vs volume fraction,

they identified four distinct phases: a isotropic phase, a nematic phase, a solid phase

and, a plastic solid phase. Their phase diagram is shown below in Fig. 3.3. Notice

that for semi-spherical particles, there is no change from isotropic to nematic phase,

but there is a transition from an isotropic to plastic solid phase. Only with sufficient

anistropy, aspect ratio less than 1
2

or greater than 2 is a nematic phase observed.

[42]

Frenkel and Mulder also noticed that they saw a striking symmetry appear in

the phase diagram of oblate and prolate particles. They reasoned that this is logical

for semi-spheres with aspect ratios near 1 and at low densities because the lower

order virial coefficients are the same. However since knowledge of Onsagers work on

high aspect ratio hard rods and very low aspect ratio hard platelets was known at

the time, they knew that this symmetry was only approximate.

In furtherance of Frenkel and Mulders work in 1984, Allen et al. also studied
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Figure 3.3: Monte Carlo simulation results for the phase diagram of Hard Ellipsoids of
Revolution for both oblate and prolate shapes done by Frenkel and Mulder.
[42]

hard ellipsoids in 1996 with even greater aspect ratios. Their interest focused par-

ticularly on the isotropic to nematic phase transition, in which particles lose their

orientational randomness and being to align without translational order. [22]

Using the Gibbs-Duhem integration technique which find coexistence points as

some parameter such as temperature is varied. This technique involves numerically

solving a differential equation. They examined hard-prolate ellipsoids with aspect

ratios in the range of 5 to 20.

Their simulation studies showed that as the particle shape become more and more

elongated, the isotropic to nematic transition shifts to lower and lower densities.

This result follows from the arguments made before that as a particle comes less

and less spherical, the excluded volume of the particle is greater at higher densities

unless the particles adopt some alignment.
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Revisiting the Hard Ellipsoid

In 2012, Odriozola et al reexamined the phase transition of hard ellipsoids. [92] The

motivation for doing this was two fold. At the time of the study, a family of new

crystal structures, called SM2 were found. The SM2 unit cell is monoclinic with

three unequal axes and one at a right angle to the other two and with particles at

different orientations to each other. This structure appeared to have a lower free

energy and φ than the stretched FCC that Frenkel and Mulder assumed. [35] [128]

[104] This brought into question the original transition points. Reexamining the hard

ellipsoids therefore would mean relocating the phase transitions and determining if

the SM2 structure was the true equilibrium structure of a solid of hard ellipsoids.

Although it was not a part of the original motivation, since the Frenkel and

Mulder’s work, advances in finding an appoximation to the exact overlap distance

between adjacent ellipoids with some eccentricity had been made. Originally Frenekl

and Mulder’s work relied upon the earlier work of Viellard-Baron who originally used

spherocylinders to approximate the overlap distance between two adjacent ellipsoids.

[134]At the time of their paper in 1984, Frenkel and Mulder already acknowledged

the short-comings of is approximation and noted the work of Perram et al as more

accurate. [41]

Since then a modification by Rickayzen to the Gaussian overlap model that

approximates ellipsoid overlaps was proposed. This model adds a term to the the

original such that two ellipsoids colliding in the shape of a T could be modeled

correctly. The resulting expression for the closest approach between two ellipsoids

called the Rickayzen Berne and Pechukas model was used and is shown below. [108]

σRBP = σ⊥

(
1− 1

2
χ
[
A+ + A−

]
+ (1− χ)χ′

[
A+A−

]) 1
2

(3.3)

A± =
(r̂ · ûi ± r̂ · ûj)2

1 + χûi · ûj

χ =
ε2 − 1

ε2 + 1
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χ′ =
(
ε− 1

ε+ 1

)2

Here r̂ is the distance between particles and ûi is a normal vector pointing along

the axis of symmetry of particle i.

As a brief aside, in 1992, Monte Carlo simulations done by Zarragoichoechea et

al showed that a system of 256 prolate ellipsoids with ε = 3 did not transition into

a nematic phase at values of φ reported by Frenkel and Mulder. Their particles

were also put on an FCC lattice and statistics calculated over similar Monte Carlo

steps. In their paper they also studied a second system with 108 particles and found

transition points in agreement with Frenkel and Mulder, suggesting that there might

be some sort of density dependence in the original hard core results. [146]

Odriozola’s method therefore included 100 particles.

The study also employed a replica-exchange Monte Carlo in the NPT ensem-

ble. The advantage of the replica exchange method is that by running simulations

simultaneously at different pressures and periodically swapping configurations, the

system can more efficiently sample high density regions of the phase diagram to

reach equilibiurm and do so without imposing some crystal structure a priori. [50]

[91]

The replica exchange method uses an extended ensemble with replicas of varying

pressure.

Qextend =
nr∏
i=1

QNTPi
(3.4)

nr the number of replicas =64 and QNTPi
is the partition function of the ith

ensemble/replica and Pi is it’s pressure. Particles are initially placed in the simula-

tion box at random locations and with random orientations. Swaps are periodically

made between adjacent replicas.

Simulations ran for 2X1013 trial moves to get to equilibrium with another 2X1013

steps for sampling.

Various methods were used to determine phase transition points: dimensionless

pressure defined Z = βP
ρ

, the isothermal compressibility χ = N
(
〈ρ2〉 − 〈ρ〉2

)
/ 〈ρ〉2.
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The order parameter Q6 =
(
4π
13

∑m=6
m=−6

∣∣〈Y6m(θ, φ)〉2
∣∣)1/2, where Y6m(θ, φ) is the

ensemble average over all bonds of spherical harmonics of polar angles θ and φ.

Q6 is a measure of positional order and is 0 for random order and nonzero for

configurations that have positional order. The orientational order parameter P2(r) =〈
1
2

(3 (ûi · ûj)− 1)
〉

is zero for random particle orientations and nonzero if particles

adopt some alignment. [92]

For semi-spherical particles with longer axis up to 1.3 times the shorter axis for

both oblates ε ' 0.769 and prolates ε = 1.3 as density and pressure increase, the

system is epxcted to behave similarly to the hard sphere case with a transition from

an isotropic to plastic solid. The point at which this transition occurs appears via a

jump in a graph of the dimensionless pressure Z versus volume fraction φ. Addition-

ally χ is expected to diverge at the thermodynamic limit. Plots of χ vs φ also shows

a marked peak. Together these metrics indicate that the system underwent some

first order phase transition. The change in Q6 from zero to non-zero but only small

change in P2(r) indicate that the transition was from a isotropic fluid to a ordered

solid. At even higher pressures, orientational order does develop. Snapshots of the

solid regions reveal that the transition in the solid phase is between a plastic-solid

and an FCC-like crystal.

The point at which these transitions occurred depended on shape, and for in-

creasing anisotropy away from the hard sphere shape, the value of φ would shift

to the right. Indicating that for both oblates and prolates particles with more

anisotropic shape underwent transitions more readily.

For oblates with higher anisotropy up to particles with long axis twice as large as

the symmetry axis ε = 0.5, there appears to be a reluctance to crystallize, although

the crystal state is eventually found. For particles with ε = 0.5 at φ ≈ 0.634 an

isotropic to nematic transition starts to appear in which there is no appreciable

change in Q6 but P2(r) is nonzero.

For prolates with ε up to 2, the results are inconclusive, neither Z or χ indicate

a transition. For ε > 2 symmetric behavior to the oblates was found with the

emergence of an isotropic to nematic phase transition occurring at φ ≈ 0.64.
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Figure 3.4: Phase diagram for oblate and prolate hard ellipsoids aspect ratio vs vol-
ume fraction from simulation results performed by Odriozola et al. on hard
ellipsoids of revolution. [13]

In general for cases of the long axis being greater than 2 (both oblate and prolate)

up to 5, at low pressure a system of particles would exist in the isotropic phase,

increasing pressure the system would undergo a transition to a nematic phase and

eventually crystallize. Visual inspection of the crystal phase reveals that it does

have SM2 structure. The point at which these transitions occurred depended on

the shape of the particles, with more anisotropic particles undergoing transitions at

lower pressures and densities. Less anisotropic particles need to undergo additional

solid-solid transitions to get to the highest φ SM2 configuration.[104] [13]. Oblates

transitions also occured at slightly lower densities than prolates, but the found

transition points for both shapes and the overall symmetry of the ε vs φ phase

diagram that Frenkel and Mulder originally noted remains. A depiction of the

updated phase diagram is shown in Fig 3.4. [92]

38



3.2 Attractive Potentials

Thus far, the phases discussed that were found at various packing fractions φ of

hard-core particles exhibited behavior that could be characterized by the degree of

order: no order for the isotropic phase, orientational order for a nematic phase, and

both positional and orientational order for a solid phase. To get a richer variety

of phase behavior particles need to have both attractive and repulsive properties.

Furthermore until now, the intensive variable that was varied to achieve different

values of φ was the pressure. The addition of an attractive component to the

potential also add complexity by introducing the role of temperature.

3.2.1 The Square Well Potential

The most simple inter-molecular potential that encompasses both a repulsive and

attractive part is the square well-potential defined:

U(r) =


∞ for r < σ

−U0 for σ ≤ r < λσ

0 for r ≥ λσ

(3.5)

r is the center-to-center distance between particles, σ is the particle diameter,

λ is the range of the square-well attraction in units of σ and U0 is the well-depth,

a measure of the attractiveness of the interaction. The reduced temperature in a

Monte Carlo simulation is given in units relating to the well-depth U0. Particles are

attractive if they are within a certain distance from one another, but if the distance

is too small particles repel each other with a hard-core.

Note that the value σ is exact, but in the Rickayzen Berne and Pechukas equa-

tion σ is an approximation. Therefore, in ellipsoidal particle models that use this

approximation, the square-well potential can only really be a quasi-square-well. Nev-

ertheless, for the rest of this work, when referring to a square-well potential with

ellipsoidal particles, the quasi aspect is assumed.

The square-well model is often used in computer simulations since it has numer-

ous advantages. First the model is idealized so it it simple to implement. Square
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wells are also unambiguous with respect to the number contact particles because of

their sharp potential cutoffs. [133] The exhibited behavior of particles with square-

well potentials depends on both the range of interaction and the well-depth.

Using a Monte Carlo simulation, Vega et al looked at a the range of interaction

between isotropic particles for a simple square well spanning 1.25λ to 2λ. The

group found liquid-liquid phase transitions whose order parameter is the absolute

value of densities of the liquids. The critical points for these phase transitions and

the shape of the coexistence curves in the phase diagram depended on this range of

interaction. For 1.25λ ,1.375λ, 1.5λ and 1.75λ the shape of the coexistence curves

were most closely approximated as cubic, as expected by their critical exponents.

However for 2λ, the longest tested interaction range, the shape of the coexistence

curve was quadratic.[133]

Smaller ranges of interaction were investigated by Pagan and Gunton, who looked

at 1.15λ and 1.25λ The liquid/liquid coexistence line had already been well charac-

terized for ≥ 1.25λ.[94]

In 1996 Asherie et al. additionally showed that interaction range, along with

well-depth and number of contact particles can also affect the order of phases that

appear as one systematically lowers the temperature in a colloidal solution. For

most fluids that undergo cooling, gas followed by liquid followed by solid is the

normal order of phase transformation. However for colloids, a solution can go from

gas to solid without ever passing through a liquid state. The group attributed this

to requirements for metastability that included the range of interaction.[8]

Clearly range and well-depth of interaction is a means to affect the phase behav-

ior of systems.

There are other attractive type potentials that also include repulsive terms, most

notably the Lennard-Jones potential, but the focus here will be on models that use

the simple square-well potential.
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Figure 3.5: Snapshot of slab method used in [79]. Oblate particles are placed in the
center of the slab. After some simulation time, particles move outward and
phase coexistence is calculated.

3.2.2 Attractive Hard Ellipsoids

Following his groups work on Hard Ellipsoids, Odriozola et al turned their attention

to attractive hard ellipsoids with an attractive square well potential. He first looked

at just oblate ellipsoids with a short range attraction given by λ = 0.25 in units

of the shorter particle axis. Using Monte Carlo techniques and van der Waals type

perturbation theory, the group investigated the phase behavior that depended on

both temperature T , volume fraction φ and aspect ratio ε. [79]

Briefly, the slab method of Monte Carlo simulation was used which is a means of

investigating vapor-liquid coexistence. A 3D simulation box that has the length of

3 cubes put together is filled with particles in the middle cube. There is no barrier

between the 3 cubes. The two side cubes are empty. Monte Carlo steps progress as

particles move randomly from the center out to the sides. At equilibrium the center

of the simulation box gives the particle rich liquid phase and the two adjacent boxes

are the particle poor vapor phase. Between each phase is an interface.

One of the results of simulation under various conditions was that the critical

volume fraction φc, that is the volume fraction for which φ < φc vapor and liquid
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phases separate and for φ > φc is a homogeneous solution, was non-monotonic with

increasing aspect ratio.

For semi-spherical particles with elongation axis k < 1.3 (and symmetry axis =1),

φc was found to increase. For particles with elongation axis k > 1.5, φc decreased

with increasing aspect ratio. For values of φc in between a plateau was observed.

The non-monotonic behavior can be understood as a competition between energy

and entropy effects. For semi-spherical particles, as k increases, the relative square-

well range decreases. So particles need to be closer to one another to feel each other’s

attractive potential. Therefore φc increases. However as k increases, the excluded

volume per particle also increases, thereby increasing the inter-particle distance.

Apparently for small k semi-spheres, the square-well energy effect is dominant, but

beyond a certain aspect ratio, the excluded volume entropy effect is dominant.

Since hard-ellipsoids with square well attractions have been known to form smetic

liquid crystals, the isotropic to nematic phase transition was also examined using

the perturbation theory, which approximates the free energy with a contribution

from a Parsons-Lee term for anisotropic hard particles (including both a radial and

orientational part) as well as an attractive term via the second virial coefficient for

a square well potential.

Results showed that isotropic to nematic transition occurs at higher densities

than in a hard-oblate ellipsoid case. Reasoning that particles with an attractive

potential would want to maximize the number of bonds with other particles, ori-

entational ordering (i.e. parallel particle orientation) is not the most favorable for

high particle contact. Thus when the square well attraction is stronger, such as in

the case of lower temperature, a liquid phase or even vapor-liquid favored.

The prolate case was examined subsequently as well as an expanded square-well

range from λ = 0.25 to λ = 1 in units of the short ellipsoid diameter. Since it is

well known for spheres that the range of a square-well affects the resultant phase

behavior, it was demonstrated that the same is true for ellipsoids of both prolate and

oblate shape. Plots of the critical temperature Tc for a liquid-vapor phase separation

vs elongation k show that for both prolate and oblate ellipsoids the longest studied

range λ = 1 had the highest Tc. λ = 0.25 had the lowest Tc with λ ranges in between
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following the same order. [131]

Particles with a longer interaction range, can more easily interact with each other

and form bonds and undergo a particle dense and particle poor phase transition. A

higher temperature is required to break those bonds.

The observed result of varying square-well range is as predicted. Furthermore,

as in the case of oblates, in general, for greater elongation, particle shape decreases

φc.

The istropic/nematic transition for prolates was also examined using many pre-

viously mentioned metrics, Z the reduced pressure, χ the isothermal compressibility

and P2(r) the order parameter for orientational order. Additional metrics used were

P4(r) the second order orientational order parameter, < u > the average energy per

particle, and < m > the average cluster size.

These first first five metrics were a way of determining the transition point for the

isotropic to nematic transition. Note that as in the oblate case the competition be-

tween energy and entropy, wanting to maximize bonds and wanting to keep excluded

volume low, determines phase behavior. The nematic transition is destabilized by

the attractive potential and using configuration snapshots, special structures were

observed: aggregates that for oblates appeared cubatic and for prolates star-shaped.

These special structures, were characterized by the final metric, the < m > the

average cluster size. Again the role of temperature is important because at relatively

high T , aggregate shapes were not observed. Only at low T (strong attraction) were

clusters possible.

Phase diagrams depicting the studied vapor liquid and isotropic/nematic phases

for both oblates and prolates is shown in Fig. 3.6 [131]
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Figure 3.6: Phase diagram for attractive square-well hard ellipsoids from [131].
Liquid-vapor coexistence curve is shown (denoted by V, L) as well as
isotropic/nematic phase curve (denoted by I, N). Red curve shows short
range interaction with λ = 0.25, black curve shows long range interaction
with λ = 1. Aggregate phase in the prolate phase diagram is denoted by A.

3.3 Valence and Patchiness

Controlling directionality of particle interactions is another means of adding di-

versity to the behavior of a system of ellipsoidal particles. Atoms and molecules

already control the directionality of their interactions via valence electrons. So a

similar concept can be used for larger particles.

3.3.1 Directional Spheres

One way of adding directional interactions to a particle is to only apply an attractive

potential to only part of the particle. In the most simple cases some fraction of the

particle interacts with its neighbors as a hard body and the other fraction of the

particle interacts as a hard-body with an additional attractive potential. Particles
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Figure 3.7: Illustration of directional hard sphere proposed by Kern and Frenkel with
attractive patch and associated patch vector [60]

with regions of different physical properties are called patchy particles with the

region of particle surface area that carries the attractive potential known as an

attractive patch. In the parlance of colloidal particles, the concept of valence is

used to describe the number of patches on a particle.

The special case of a particle with only one patch such that the particle has two

different properties: repulsive and attractive is known as a Janus particle. (Typi-

cally Janus particle surface area is equally divided between repulsive and attractive

potentials).

As always, when adding complexity to a model it is easiest to start with the

case of spheres. Kern and Frenkel proposed a computationally simple, but effective

means of applying directional patchiness to hard spheres. [60]In their model, a hard

sphere with diameter σ has attractive square well patches. The percentage of total

surface area of a particle that is covered by its patches is defined by parameter

χ = n · sin2 (θ/2) where n is the number of patches and δ is the half angle that

subtends any particular patch. It is assumed in the model that all patches are of

the same size. This equation for χ can be found via simple surface integration of a

sphere.

The intermolecular potential between any two Kern and Frenkel model spheres

is given by
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Uij (rij, ûi, ûj) = Uij (rij) f (ûi, ûj) , (3.6)

Uij(rij is the radial part of the potential that accounts for inter-particle distance

r between particles i and j is the same as before in equation 3.5. f (ûi, ûj) is an

orientationally dependent part that depends on how particles aligned.

where U0 is the well depth.

f(ûi, ûj) =

{
1, ûi · r̂ij ≤ cos δ and ûj · r̂ji ≤ cos δ

0, otherwise
(3.7)

ûi is a normal vector that points outward from a patch on particle i. ûj is a

normal vector that points outwards from a patch on particle j.

In their original paper, Kern and Frenkel studied the liquid-liquid phase sepa-

ration of spheres with various patch numbers and coverages. Liquid-vapor phase

coexistence curves are shown in Figure 3.8. They found that both changing the

number of surfaces patches as well as the total patch coverage χ affected the loca-

tion of the phase transition points. In general, holding n constant, greater χ shifted

phase transition points to higher temperatures. Greater χ implied that the particles

were more attractive and more likely to bond even as increasing temperatures di-

minished the attraction between them. Similarly holding χ constant, greater n also

shifted transition points to higher temperatures which is likely the result of multiple

particle bonds being more easily accessible with more patches. It was later shown

that resultant liquid-vapor phase curves for these systems of varying n could not be

scaled according to a law of corresponding states. [19]

This simple but powerful model has been the basis for many other studies on

spheres with directional interaction. For example Sciortino et al performed a numer-

ical study on the liquid-vapor phase diagram of one-patch spheres with coverages

between χ = 1, isotropic attractive particles down to the Janus case, χ = 0.5. The

studied range of interaction was λ = 0.5σ. [118] Like Kern and Frenkel, it was

found that the critical temperature Tc of liquid-vapor transitions increased with χ.

Additionally more interesting shapes emerged as temperature decreased. In the gas

phase, orientationally ordered micelles and vesicles formed, in which the attractive
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Figure 3.8: Liquid-Vapor phase coexistence curves for a fluid system of directional
spheres with various values for total patch coverage χ and total patch num-
ber n. [60]

patches all turned in to face each other, exposing only the their repulsive surfaces.

At sufficiently low temperatures, these micelles were shown to be very stable such

that the system acted approximately as a fluid of micellar clusters interacting via

excluded volume suppressing the liquid-vapor phase behavior.

Additionally the phase diagram of particles with Janus type coverage showed

very anomalous behavior. In a plot of temperature vs density, the slope of the
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liquid-vapor separation had a negative slope. Additionally, using the Claperyon

equation dP
dT

was equated with dS
dV

and since Monte Carlo simulations were done in

the NVT ensemble, the entropy of the liquid and vapor phases were accessed with

the surprising results that the dense liquid phase had more entropy than the low

density vapor. [119] The phase diagram is shown in Fig. 3.10(b).

Other studies have shown that this simple model on hard spheres can yield a

vast array of behaviors. Small χ one patch particles for example have been shown

to cluster into other special shapes such as wires and lamellae. [84] Empty liquids,

liquids beneath the Tc critical point of liquid-vapor phase separation with vanishingly

small packing fraction φ were reported and studied as well for the Kern and Frenkel

model. [18]. Particles with various numbers of patches have been shown to undergo

gelation. [113] [120] Together with many other studies, the complexity that arises

from the addition of directionality to particle interaction is obvious.

3.3.2 Directional Ellipsoids

Although directionality was used in the last section on patchy spheres to discuss

only about inter-particle potentials, the elongated ellipsoidal shape also inherently

includes some concept of directionality. Combining these two concepts, interaction

directionality and shape directionality, patchy ellipsoids hold the potential for an

increasing display of complex behavior.

Studies on the self-assembly of Janus ellipsoids were done by Gunton et al

who used the Kern and Frenkel model of patchy inter-particle directional poten-

tial and applied it to oblate and prolate ellipsoids by modifying the original po-

tential. Uij (rij, ûi, ûj) = Uij (rij) f (ûi, ûj). The radial part Uij(rij) becomes more

complicated with ellipsoidal shape since σ is not as easily calculated.

Uij (rij) =

{
∞, (if particles overlap)

−U0H (σij + 0.5σ − rij) ,

and where U0 is the well depth, H(x) is the Heaviside function and σ represents

the total length of the longer axis. The effective separation parameter, σij, is the
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Figure 3.9: Illustration of two Janus oblate particles interacting. Attractive SW patches
are shown in red and hard core repulive parts are shown in blue. [74]

approximate distance between the two spheroids, as obtained from the Gaussion

overlap model of Pechukas and Berne [15], and is given by

σij = 2b

[
1− α

2

(
(ûi · r̂ij + ûj · r̂ij)2

1 + αûi · ûj
+

(ûi · r̂ij − ûj · r̂ij)2

1− αûi · ûj

)]−1/2
, (3.8)

where α = (ε2 − 1) / (ε2 + 1). This corresponds to an interaction range λ = 1.5σ.

The orientational part f (ûi, ûj) is the same as in equation4.3, with δ = π
2
.

Motivated in part by the previous work that found micelle and vesicle clusters

in Janus spheres,[118] [119] the goal of the work on Janus ellipsoids was to assess

how changes in aspect ratio ε affected cluster morphology. Using standard NV T

ensmeble Monte Carlo techniques, it was found that at low temperatures and low

densities, systems of oblate Janus ellipsoids were found to form monomers, small

oligomers, micelles and vesicles. Although Monte Carlo techniques are not able to

explore the kinetic pathways of structure formation, sampling time does give an

estimate of how long it takes to reach some structural configuration. In contrast to

the Janus spheres, Janus ellipsoids were able to reach cluster configurations more

quickly, but these clusters were less stable.

Also the distribution of the cluster size was affected by ε. Semi-spherical oblate

were more likely to be found in a greater variety of cluster types with smaller prob-

ability for each type. Oblates with smaller ε, those that are more flattened, had

clusters that were more uniform and in general were more likely to form larger clus-

ters. Even bonds between just two particle bonds were also affected by increasing
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ε with a similar behavior: semi-spherical particles were more likely to be oriented

in a variety of positions, flatter disks, had stronger preference for inter-particle

orientation.[74].

Prolate Janus ellipsoids too were found to self-assemble into various clustered

morphologies. As ellipsoids became more elongated an progressive order of struc-

tures was found. For semi-spherical particles with ε < 1.2 particles were found in

vesicle bilayers. For ε ≈ 1.3 tubular micelles appeared. Increasing ε the length of the

tubular micelle chain decreases above ε = 1.3 until around ε = 1.7 in which micelles

start to dominate. Above ε = 2.0 the micellar structure is stable and ”star” shaped.

In general higher ε, more elongated particles produced clusters with smaller cluster

sizes and the distribution of particle orientations was more disperse for particles

with greater elongation. [70].

These studies on Janus ellipsoids were done without knowledge of the phase

diagram. Following the work on Janus spheres, simulations were done at low tem-

perature and low density (ρ = 0.037 for Janus oblates and ρ = 0.02 for Janus

prolates). So it was assumed by the authors that they were in the gas phase.

In a later study the phase diagram for one specific type of Janus ellipsoid was

studied. Using an extended law of corresponding states from Noro and Frenkel,[90]

the authors studied the liquid-vapor phase diagram for Janus oblate ellipsoids with

ε = 0.6 and short ranged well-width λ = 0.2. The method of Noro and Frenkel

says that at the thermodynamics of a system does not depend upon details in the

potential and instead depend only on the second-virial coefficient B2 and the density.

Therefore, by calculting B2 for the spheroids and comparing it to the known value

of B2 for spheres obtained from earlier work by Sciortino et al., a procedure known

as B2 scaling, the authors came up with an estimate for the phase diagram. That

phase diagram is shown in Fig. 3.10 (a) as well as that of Sciortino from his study of

Janus spheres and is the only previously known phase diagram of ellipsoidal patchy

particles.[115].

One final note, although the advances in creating a more and more complex

model of ellipsoidal particles has been presented here as a linear progression from

hard spheres, to hard ellipsoids, to attractive spheres then ellipsoids, and finally
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Figure 3.10: a) Phase Diagram of Janus oblate ellipsoids with ε = 0.6 and λ = 0.2. [115]
b) Phase diagram of Janus spheres with λ = 0.5. [119]

directionally attractive spheres and ellipsoids, in truth advances in one study informs

the others. For example, after the empty liquid state was found and characterized

for spheres with directional attraction, oblate ellipsoids were also studied to and

found to exhibit empty liquid behavior. [79] [131] [132].

Also researchers continue to probe details of well-established problems. As shown

above the hard ellipsoid problem was revisited in 2012 [92] [13]. Even the hard

sphere problem is still being investigated. Packing fractions φ for randomly packed

structures of both ellipsoids and spheres are still being investigated. [35] [34]. At the
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time of this writing, it was recently shown that an equilibrium state fluid system

of hard spheres can have the same density as a non equilibrium jammed stated

indicating that the fluid branch of the phase diagram for hard spheres may extend

further than originally thought. [16]

Additionally how these particles of different types interact with each other is

another avenue of active research. The existence of micelles and vesicles in Janus

particles makes them a good candidate for encapsulating agents. Gunton et al

studied how a solution of Janus ellipsoids might be used to encapsulate isotropic

spheres at various ratios of ellipsoid to sphere concentration and with varying inter-

particle potential and elongated shaped. [71], [72].

Finally, the models, and particularly the square-well potential type discussed

here are only a fraction of the many models and variations on the sphere/ellipsoid

problem that exist and are currently being employed by researchers.
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Chapter 4

Phase Diagram of Patchy

Ellipsoidal Fluids

4.1 Introduction

The process of colloidal and protein self-assembly, which involves the aggregation

of particles to form a range of morphologies, has attracted considerable attention

owing to its potential in the fabrication of new materials [110] [147] [7] [144] [76] [143]

and in the study of protein condensation[53]. Indeed, based on both experimental

and simulation studies, several technologies that exploit self-assembly have been

identified, including photonic crystals and drug delivery.[97][57][72] . Similar studies

have been of great value in understanding how to grow high-quality protein crystals,

an important step in the determination of protein structure and function. [53]

In recent years, it has been recognized that particle anisotropy in the form of

orientationally-dependent interactions and varying particle shape is an important

factor dictating the complexity of aggregate morphologies [47]. For this reason,

various groups have developed techniques to manufacture colloids that have precisely

controlled particle size, shape and interactions [143] [98] [117].

While our focus here is on colloidal systems, it should be noted that anisotropic
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interactions play an important role in other systems as well. For example, protein-

protein interactions are often anisotropic owing to the non-uniformity of distributed

surface charges, the presence of hydrophobic/hydrophilic regions and the presence

of hydrogen bonds[75] [54]. An understanding of the mechanism of protein aggre-

gation is especially relevant since many diseases result from improper protein self-

assembly, including cataracts [124] and neurological disorders such as Alzheimer’s

[121], Parkinson’s and Huntington’s disease [112]. Thus, the study of the role of

anisotropy in in vivo protein self-assembly is of considerable interest.

Computer simulation is an important tool for the investigation of the energetics

and dynamics of particle aggregation. Fully atomistic models are prohibitively ex-

pensive due to the required simulation time scales and the size of the conformational

space. These models are too slow to map out phase diagrams and self-assembly of

colloidal/protein solution. Coarse-grained models that simplify yet preserve many

of the important characteristics are a tractable way to study collective behavior and

reach the time and size that allow for comparison between computation and exper-

iment. There exist many of these coarse-grained models that vary the amount of

preserved detail. These coarse-grained models have been used extensively to study

protein aggregation, crystallization, and folding. For more reviews we refer the

reader to [87],[129],[89],[141], [64] [1],[11],[32],[81],[14],[55],[10].

Kern and Frenkel developed a simplified description of a colloidal system based

upon hard spheres that are modified by surface patches [61]. The utility of this

model becomes evident when one considers the remarkably diverse behavior that it

exhibits. For example, one-patch particles having two chemically dissimilar hemi-

surfaces (i.e., Janus particles) have been shown to spontaneously self-assemble into

orientationally ordered micelles and vesicles [70][74]. Additionally decreasing the

patch surface coverage in a one-patch system, particles were found to self-asemble

into to wires and lamellae. [84]

However, despite the insights gained from this useful model, it cannot be em-

ployed to describe the effect of shape anisotropy on phase equilibrium, an important

characteristic of many new and important functional colloids. The role of shape

anisotropy in self-assembly cannot be overlooked since shape plays an important
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role in particle packing and density and even ligand binding.[86] [58] (The situation

may be analogous for proteins since these systems are often described by colloidal

models.[61]) We note that recent Monte Carlo simulation studies of Janus ellipsoids

have shown that the particle aspect ratio plays a significant role in determining the

size and structure of aggregates [142]. For example, oblate Janus ellipsoids tend

to form vesicle-like structures, whereas prolate Janus ellipsoids form ordered clus-

ters that can become tubular micelles and micelles with increasing aspect ratio.[71]

It should be noted, that other structures are also possible for the Janus ellipsoid

system, including for example, fibers and ribbons. [130] [123] In extreme cases,

such as systems comprising plate-like and rod-like particles, a range of behaviors

is observed.[143] [117]. In particular, low-aspect-ratio oblate ellipsoids have been

shown to have vanishing critical volume fraction and critical temperature with in-

creasing anisotropy, whereas high-aspect-ratio prolate ellipsoids have been shown to

have vanishing critical volume fraction (but not critical temperature) with increasing

anisotropy.[79][132]

The above discussion suggests the importance of anisotropy in determining the

equilibrium properties of self-assembled systems. Thus, in this paper, we examine

quantitatively the impact of shape anisotropy and particle interaction energy on the

phase behavior of a colloidal fluid comprising ellipsoidal particles, with an emphasis

on critical behavior. More specifically, we employ Gibbs ensemble Monte Carlo

[43][95] simulation to obtain the fluid-fluid equilibrium phase diagram of hard prolate

ellipsoids having Kern-Frenkel surface patches under a variety of conditions. For

concreteness, we consider particles of varying aspect ratios having the same volume,

and having two or four polar patches of constant size. Finally, we examine the

dependence of the critical temperature as a function of aspect ratio and patch area.
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4.2 Simulation Methodology

4.2.1 Model

Consider a system comprising N prolate ellipsoidal (spheroidal) particles with semi-

principal axes having lengths a = b < c and patches distributed on their surfaces

(see Fig. 1, panel I). The corresponding aspect ratio for these particles ε = c
a
. In this

work, we consider particles with ε = 1.1− 2 such that the volume V = (4/3) πa3ε is

held constant. It should be noted that the surface areas of the equi-volume ellipsoids

are, in fact, a function of ε, as indicated below.

In our model, two spheroids, i and j, displaced by ~rij ≡ ~ri − ~rj and having

patches with unit normals ûi and ûj interact via a “quasi-square-well” potential

given by [71]

Uij (rij, ûi, ûj) = Uij (rij) f (ûi, ûj) , (4.1)

where the radial part of the potential is given by

Uij (rij) =

{
∞, (if particles overlap)

−U0H (σij + 0.5σ − rij) ,

and where U0 is the well depth, H(x) is the Heaviside function and σ represents

the total length of the c axis. The effective separation parameter, σij, is the approx-

imate distance between the two spheroids, as obtained from the Gaussion overlap

model of Pechukas and Berne [15], and is given by

σij = 2b

[
1− α

2

(
(ûi · r̂ij + ûj · r̂ij)2

1 + αûi · ûj
+

(ûi · r̂ij − ûj · r̂ij)2

1− αûi · ûj

)]−1/2
, (4.2)

where α = (ε2 − 1) / (ε2 + 1). This corresponds to an interaction range λ = 1.5σ.

As is customary, quantities will be reported in reduced units (i.e., in terms of U0

and a).

The orientational f (ûi, ûj) for two patches is given by

f(ûi, ûj) =

{
1, ûi · r̂ij ≤ cos δ and ûj · r̂ji ≤ cos δ

0, otherwise
(4.3)
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The generalization of this factor to the four-patch case is straightforward. Thus,

particles interact if they are within the interaction range given by Uij (rij), and if

the dot product of the normals of the patch vectors ûi , ûj and the vector ~rij between

them is less than cos δ, where δ is the half-angle of the patch (i.e., the patches are

facing each other).

The half-angle δ subtends the patch radius, as shown in Fig. 1 (panel II). It is

convenient to define the ratio of the spheroidal patch area to the surface area of a

corresponding sphere having the same volume as the spheroid, namely χ (δ, ε, V ).

χ therefore reflects the (normalized) total surface of a spheroid that is covered by

patches and is given by

χ (δ, ε, V ) =
S (δ, ε, V )

S (δ = π, ε = 1, V )
(4.4)

The total spheroidal surface area, corresponding to a patch half-angle δ = π, is

S (δ = π, ε, V ) = 2π

(
3V

4πε

)2/3 [
1 +

ε sin−1 (e (ε))

e (ε)

]
, (4.5)

where e2 (ε) = 1 −
(
1
ε

)2
. So, the total surface area of a sphere (i.e., for ε = 1)

is S (δ = π, ε = 1, V ) = 4π
(
3V
4π

)2/3
. In this instance δ = π corresponds to one

hemisphere of the spheroid. So two times this value gives the total spheroid surface

area. And ε = 1 corresponds to the case of a sphere. It is worth noting that

maintaining constant particle volume while increasing ε necessitates a small, but

nontrivial, increase in total particle surface area. Thus, if patch sizes are held

constant, fractional patch sizes would decrease slightly.

The patch area for each of two polar patches, S (δ, ε, V ), is given by the surface

integral

S (δ, ε, V ) = 2π

(
3V

4π

)2/3

ε

∫ 1

umin

du
√

(1− e (ε)u2), (4.6)

where given a desired patch size, χ, umin is related to the size of the patch as

umin = (1/ε) /
√(

tan2 δ + (1/ε)2
)
. This integral can be evaluated to obtain

S (δ, ε, V ) = 2π

(
3V

8π

)2/3

ε

[
√

1− e−
√

1− eumin +
sin−1 (

√
e)√

e
−

sin−1
(√

eumin
)

√
e

]
.

(4.7)
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Parameter Definition
a, b, c semi-principal axes, a = b < c
δ half-angle that defines patch size
ε aspect ratio, ε = c

a

δ half-angle that defines patch size
λ interaction range, λ = 1.5σ
~rij displacement vector between two particles
σ total length of c axis
Tc critical Temperature
~ui, ~uj vectors normal to the patch surfaces
u average energy per particle
χ total patch area/surface area of a sphere of equivalent volume

Table 4.1: Summary of the relevant parameters and their definitions

For equatorial patches, such as in the four-patch case,

S (δ, ε, V ) = 2π

(
3V

4π

)2/3

ε

∫ δ

0

dθ sin2 θ

√
1 +

1

ε2
cot2 θ. (4.8)

where θ is the standard polar angle.

Our aim is to describe the impact of patchiness on the phase behavior of spheroidal

particles, with particular attention to the critical temperature.

4.2.2 Methodology

We employed both conventional Metropolis Monte Carlo (MC) and Gibbs ensemble

Monte Carlo simulation [95] to investigate single fluid phase and fluid-fluid phase

separation, respectively, in the aforementioned spheroid system. For the case of a

single fluid phase simulations were performed at temperatures slightly below the

critical the critical temperature Tc for a given aspect ratio ε and χ and at the

relatively high number density ρ = 0.62. The purpose of these simulations was

to determine the dependence of ensemble-averaged quantities, such as the internal
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Figure 4.1: Panel 1 shows particles with various patch coverages and aspect ratios,
namely (a) χ = 0.6, ε = 1.1, (b) χ = 0.7, ε = 1.3 (c) χ = 0.8453, ε = 1.5
(d)χ = 1, ε = 2. Panel 2 shows particles with semi-principal axes a and c.
This panel also illustrates sample polar and equatorial patches. A patch is
defined with solid angle δ. Panel 3 shows of two interacting particles with a
center to center distance of rij and patch normals ûi and ûj

energy per particle u, on ε. For the Gibbs ensemble simulation of phase coexistence

with a selected χ and ε, N = 256 particles were randomly distributed in each of

two simulation boxes such that the number density in each box ρ = 0.3. Each

box individually was subject to periodic boundary conditions. A Monte Carlo step

comprised N attempts to perform one of three possible particle moves in a randomly

chosen box, namely: 1.) displacement within a box, 2.) displacement to another

box, or 3.) change in orientation. In addition, the box size could also change. After

each move attempt, the change in energy of the system was calculated. If the change

in energy was less than or equal to zero, the move was accepted. Otherwise, the move
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would be accepted with a probability proportional to the Boltzmann factor. As we

are interested in phase coexistence, a starting temperature was selected based on

what was found for the case of Kern and Frenkel spheres [61], and the fluid energies

and densities in each box were monitored. If only a single phase was found, then

the temperature was systematically lowered until coexistence was observed and the

miscibility gap was mapped out.

It should be noted that this system typically requires relatively long equilibration

times, with the largest values of ε requiring the longest times. In particular, in our

studies roughly 5 × 105 Monte Carlo steps (MCS) were needed for equilibration of

a ε = 1.1 system, while approximately 2 × 106 MCS were necessary for ε = 2.0

system. Density, energy and particle configuration data were sampled every 250

MCS and, to obtain statistically meaningful results, the data was averaged over 5

equivalent runs for a given ε, χ and temperature that differed only in the value of

initial random seed.

Finally, once the coexistence curves are mapped, we estimate the critical tem-

perature, Tc, and critical density, ρc, for a given miscibility gap using the law of

rectilinear diameter [21]. This approximate method was employed here as small

parameter changes resulted in large box volume fluctuations that precluded sim-

ulations too close to a critical point. More specifically, given the liquid and gas

densities, ρliq and ρgas, respectively, one can determine the critical temperature and

density by solving the coupled system of equations

(ρliq + ρgas)/2 = ρc − A · |T − Tc| , (4.9)

(ρliq + ρgas) = B · |T − Tc|0.32 , (4.10)

where A and B are parameters to be determined based on a best fit to simulation

data.
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4.3 Results and Discussion

As stated above, our goal is to determine the effect of shape anisotropy on phase

equilibrium for spheroidal particles. Recall, we employed an interaction range of

λ = 1.5 as a prototype of long-ranged interactions that are characteristic of many

experimental systems. The impact of both two-patch and four-patch geometries on

phase behavior (i.e., patch valency) is also explored.

4.3.1 Particles with Two Patches

We first mapped the fluid-fluid coexistence curves as a function of aspect ratio, ε,

by varying the simulation temperature. Consider the case of a system of interacting

spheroids having two patches for which the spheroid volume, V , and the patch area

fraction, χ, are held constant for any aspect ratio. The liquid-liquid miscibility gaps

for this system for particles with ε = 1.1 and 1.5 are displayed in Figs. 2a and b,

respectively. In each figure, the bottom (top) curves depict the phase separation for

particles with χ = 0.6 (χ = 1.0) patchy spheres. This ordering of the phase dia-

grams is expected since greater attractive patch coverage results in greater available

surface area for bonding and implies that such liquids can coexist at higher temper-

atures. The locations of the critical points, Tc (ε, χ), for each coexistence curve were

estimated using the law of rectilinear diameter and are also indicated in the figures

(with diamonds).

The impact of patchiness and anisotropy on phase transitions in this system

are highlighted by examining the aforementioned critical points. The dependence

of Tc on ε at fixed χ and particle volume, V , for several effective patch coverages,

χ, is shown in Fig. 3. As is evident from the figure, Tc decreases roughly linearly

with increasing ε. This linear dependence can be understood, at least in part,

by examining the dependence of the energetics of this system on ε near Tc. For

convenience, we focus on the internal energy of the system as an indicator of the

strength of interparticle bonding. More specifically, to determine the dependence of

the internal energy on on ε near the critical temperature, we performed Metropolis
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Figure 4.2: Examples of phase diagrams obtained using Gibbs Ensemble MC for particles
with two patches and either ε = 1.1 (a) or ε = 1.5 (b). The patch area
fraction, χ, is given in the legend. The � symbols denote estimates of critical
temperatures, as obtained using the law of rectilinear diameter.

MC simulations of a dense fluid with ρ = 0.62 at temperatures just below the critical

temperatures, as determined by the analysis above. Figure 4 shows a plot of the

average energy per particle, 〈u〉, as a function of ε for coverages χ = 0.6− 1.0. As is

evident from the figure, 〈u〉 ∝ ε for the various patch areas. This linear increase in

〈u〉 with ε implies a decreasing effective bond strength. Thus, as particles become

more ellipsoidal, they are bonded, on average, more weakly with their neighbors

and, therefore, one expects a concomitant (linear) decrease in Tc with increasing ε.

It is useful to examine the dependence of Tc (ε) on ε from a somewhat different

perspective as well. We note that the observed behavior is dictated, at least in part,

by several geometric factors. In particular, the critical temperature depends on

the probability that a patch on a given particle subtends a patch on a neighboring

particle. This probability is associated with the square of the solid angle, γ (ε, χ),

associated with each patch. Thus, from these considerations, one might expect that

Tc (ε, χ) /Tc (ε = 1, χ) ≈ [γ (ε, χ) /γ (ε = 1, χ)]2. For a given χ, we obtain δ = δ (ε)

using Eqs. 4.4 and 4.5 and then calculate numerically the corresponding γ for the

two patches. Since δ is a decreasing function of ε, γ also decreases as ε increases.

The calculated values for [γ (ε, χ) /γ (ε = 1, χ)]2 for χ = 0.7 are shown in Fig. 5
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Figure 4.3: The critical temperature, Tc, versus aspect ratio, ε, for several values of the
effective patch coverage, χ, including: χ = 0.6 (blue squares), χ = 0.7 (red
asterisks), χ = 0.8453 (green crosses), χ = 1 (maroon circles). The dashed
lines are estimates of Tc from simulations of spherical particles in which, for
each value of ε, the patchy surface area of a sphere is equal to that of the
corresponding spheroid of the same volume, V .

(solid curve), along with Tc (ε, χ) /Tc (ε = 1, χ) from simulation. It should be noted

that the ratio of the squares of the solid angles only captures a small contribution

of the decrease of Tc with ε, and so this simple geometric argument does not fully

describe the behavior of Tc. This result suggests that the change in surface area

that attends an increase in ε may only be of minor importance here. To clarify this

point, we also include in Fig. 3 the dependence of Tc on ε for a series of spheres

as obtained from simulation such that, for each value of ε, the patchy surface area

of a sphere is equal to that of the corresponding spheroid of the same volume, V .

In short, we choose the patch angle for the sphere, δ◦, such that, from Eq. 4.5,

S (δ, ε, V ) = S (δ◦, ε = 1, V ). Thus, the small increase in surface area with ε plays
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Figure 4.4: The average energy per particle, 〈u〉, as a function of aspect ratio, ε, obtained
by conventional Metropolis MC simulation in a single liquid phase with
ρ = 0.62 at temperatures, T , slightly below the critical temperature. The
effective patch coverages shown correspond to: χ = 1 (circles), χ = 0.8453
(crosses), χ = 0.7 (asterisks), χ = 0.6 (squares). The dotted lines are a guide
to the eye.

a role in determining Tc, but it alone cannot account for the observed behavior.

Thus, the disparity between the values of Tc for the spheres and the corresponding

spheroids indicates that shape anisotropy is also an important factor in determining

critical behavior in this system.

The shape anisotropy and patchiness inherent in this system may also lead to

structural changes in the dense fluid and thereby determine critical behavior. To

see this more clearly, we characterized the fluid structure by calculating, for various

aspect ratios, both the radial distribution function, g (r), (Fig. 6 ) and the patch-

angle correlation probability, P (|ûi · ûj|) (Fig. 7), the latter a function of the cosine

of the angle between the patch normals for particles in the more dense fluid. As is

evident from Fig. 6, the distribution of inter-particle distances remains relatively
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Figure 4.5: The normalized critical temperature, Tc (ε, χ) /Tc (ε = 1, χ) , as a function
of aspect ratio, ε, as determined from simulation (points) and as estimated
from the square of the ratio of solid angles, [γ (ε, χ) /γ (ε = 1, χ)]2. For this
case, χ = 0.7. Clearly, the dependence on solid angle alone does not fully
explain the observed dependence of Tc on ε.

constant for different values of ε, at least for ε ≤ 1.5. However, as indicated in

Fig. 7, there is evidence for increasing orientational order with increasing values of

ε, as neighboring patch normals align either parallel or anti-parallel to each other.

Thus, for increasing ε constraints on patch orientation will lead to changes in phase

coexistence as these constraints will alter the ensemble average of the orientational

factor in the quasi-square well potential. (see Eq. (3)).

Finally, it is useful to determine whether a universal coexistence curve for the

two-patch system may be obtained by a simple scaling procedure. According to

the principle of corresponding states, for liquid-liquid phase coexistence the reduced

density, ρ/ρc, where ρc is the critical density, is a universal function of the reduced

temperature, T/Tc. All fluids that obey this principle should therefore behave iden-

tically when compared in terms of these reduced variables. [51] In Figs. 8 a and b
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Figure 4.6: The radial distribution function, g(r), as a function of particle separation for
systems having ε = 1.1 (green) ε = 1.5 (cyan) and ε = 2 (red). In each case
particles has coverage χ = 0.7 and simulation density ρ = 0.3. Distances are
measured in units of the diameter of a sphere, 2a, of constant volume.

we present the scaled phase diagrams for systems having aspect ratios ε = 1.5 and

ε = 1.1, respectively. One observes that this scaling works modestly well for the

low-density branches, but breaks down for the high-density liquids. This breakdown

is attributable to the fact that our choice of patch angles permits bonding of more

than one particle per patch and, at higher density, greater bonding is expected.

Thus, systems having different patch area fractions behave differently, particularly

at high densities.

4.3.2 Particles with Four Patches

Next we briefly consider the case of a system comprising four-patch spheroids for

which the spheroid volume, V , and the effective patch area, χ, are held constant
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Figure 4.7: The patch-angle correlation probability, P (|ûi · ûj |) as a function of the mag-
nitude of the dot product of patch normals. Two cases are considered,
namely: ε = 1.1 (blue circles) and ε = 2.0 (yellow triangles). In both cases
particles converage was χ = 0.7 and simulation density ρ = 0.3. The plot in-
dicates that, for greater aspect ratio ε, the particles have a greater tendency
to align parallel or anti-parallel to one another.

for any aspect ratio. Our aim is to highlight the role of patchiness (or valence)

on observed critical behavior. Recall that these patches are located on the polar

and equatorial ends of the particles. The four patches on such particles, unlike

the two-patch case, are not equidistant. The corresponding liquid-liquid miscibility

gaps for this system of particles with ε = 1.1 and 1.5 are displayed in Figs. 9 a

and b, respectively. Note that for particles with four patches, to hold χ constant,

each patch is itself smaller than in the case of particles with two patches. Smaller

patches imply that fewer particles can bond at any particular patch site. Therefore,

in relation to the two-patch case, the phase coexistence curves are lower on the

temperature scale even though, in general, greater attractive patch coverage implies

greater bonding.
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Figure 4.8: Scaled phase diagrams plotted in terms of the reduced temperature, T/Tc,
and density, ρl/ρc, for ε = 1.1 (a) and ε = 1.5 (b). This scaling works
modestly well for the low-density liquid, but less well for the high-density
liquid where there is greater bonding between particles.

Figure 4.9: Examples of phase diagrams obtained via Gibbs Ensemble MC for particles
with four-patch configurations and with ε = 1.1 (a) and ε = 1.5 (b). The
results for various patch sizes χ are shown. Individual patches are smaller
than in the two patch case, but they cover the same particle surface area.
Points marked with � symbols are again obtained from the law of rectilinear
diameter.

Figure 10a displays the dependence of Tc on ε for several values of χ. We observe

similar behavior to that observed for the two-patch case, with the four-patch case

showing a marked linear decrease in Tc with increasing ε. To compare the two- and
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four-patch cases more directly, we show in Fig. 10b a plot of the reduced critical

temperatures Tc/Tc(ε = 1) versus ε for these cases. The greater negative slopes for

the four-patch system implies that greater anisotropy evinces greater effect. This is

true for all values of coverage χ studied here.

Figure 4.10: a) The dependence of the critical temperature, Tc, on aspect ratio, ε, for
four-patch systems with χ = 0.6 (blue squares), χ = 0.7 (red asterisks),
χ = 0.8 (cyan pluses), χ = 0.8453 (green crosses). b) A comparison of the
reduced critical temperature, Tc/Tc(ε = 1), versus aspect ratio, ε, for two-
patch (solid lines) and four-patch (dashed lines) systems having different
values of χ.

Finally we determine whether a universal coexistence curve can be obtained for

the four-patch case. Figures 11 a and b show the scaled phase diagrams for systems

having aspect ratios ε = 1.1 and 1.5, respectively. A comparison of these figures

with the corresponding figures for the two-patch case (Figs. 8a and b) indicates

that this simple scaling works better in the four-patch case, especially at larger ε.

This behavior might be expected since individual patch areas are relatively smaller

and therefore multiple bonding per patch is suppressed.
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Figure 4.11: Scaled phase diagrams plotted in terms of the reduced temperature, T/Tc,
and density, ρl/ρc, for ε = 1.1 (a) and ε = 1.5 (b) for the four-patch case.
This simple scaling works better than in the corresponding two-patch case
(Fig. 8a and b).

4.4 Conclusions

In this work, we examined the impact of combined shape and interaction anisotropy

on phase behavior in a colloidal fluid. We modeled shape anisotropy in the form

of ellipsoidal particles characterized by their degree of elongation, ε, and interac-

tion anisotropy via a number of patches having various surface coverages. Monte

Carlo simulation was employed to obtain fluid separation curves for a solution of

these particles, and the corresponding critical behavior was analyzed. It was found

that particles interact less strongly with increased shape anisotropy and this was

attributable to decreased attractive patch coverage, and an increased likelihood for

particles to orient in parallel or antiparallel fashion. Moreover, an examination of

particles with four patches revealed that this anisotropy effect is more pronounced

in this system. This study highlights, then, the importance of both particle shape

and energetics on the thermodynamic behavior of colloidal particles, and by exten-

sion, proteins. From the results for the two-patch and the four-patch cases, it is

reasonable to conclude that, as patchiness increases, the critical temperature de-

creases more markedly with ε. In addition, given that the law of corresponding

states works better in the four-patch case relative to the two-patch case leads to the
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conclusion that scaling the phase diagram as in Figs. 8 works better as ε increases.

This behavior was explained by noting the relatively smaller individual patch areas

leading to suppression of multiple bonding per patch.

Our model underlines the dual role of both shape and interaction anisotropy. The

depression of critical points Tc with decreasing χ highlights the effect of patchiness

whereas the linear trend of decreasing Tc with ε highlights shape. Varga et al studied

the role of shape without patchiness [131] and the Kern and Frenkel patchy model

has been studied extensively, recently by Newton et al [85] who examined the role

of rotational diffusion independent of translational diffusion. As our model includes

surface patchiness and elongated shape, rotational motion will certainly be affected

as well. This is the first paper, to our knowledge, that examines both anisotropy

parameters in this way.

The extension of our analysis to other related systems deserves some comment.

For example, we expect that our results can be readily extended to the case of oblate

spheroids where aspect ratio ε < 1 and into regions of a phase diagram where one

might expect other types of structures, such as particles with nematic ordering [142]

[131]. In addition, as noted above, anisotropic interactions also dictate the phase

behavior of proteins due, in part, to the differences in exposed surface amino acid

groups. Thus, these systems are also amenable to patchy-model, coarse-grained

descriptions, and so it is expected we can also analyze their phase behavior using

the approach described here. Such studies are the subject of ongoing work.
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Chapter 5

Thermodynamic Properties of

Ellipsoidal Patchy Fluids

Statistical mechanics links microscopic, particle descriptions of a system to ther-

modynamic whole system measurable quantities. Two such measurable quantities

are the specific heat cV and isothermal compressibility βT . These quantities can be

explored experimentally and also through simulation. Experiments take averages

over time, whereas Monte Carlo simulations take averages over an ensemble of iden-

tically prepared but randomly different versions the system. In this chapter, cV and

βT are calculated from the results of NV T Monte Carlo simulations for a system of

patchy ellipsoidal fluids. The results of the patchiness and ellipsoidal elongation are

discussed.

5.1 Specific Heat

For any given substance, the heat capacity CV of that substance can be measured

experimentally. It is the amount of heat required to change the temperature of that

substance by 1 degree kelvin. This is an extensive quantity since it depends on

the amount of the given substance. Dividing out the dependence on mass, gives

the specific heat cV . This is a material’s property and depends on the substance.
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Examining the particles that make up the substance, statistical mechanics says

that the specific heat is related to the number of degrees of freedom available to

the particles under experimental conditions. By the equiparition theorem, each

accessible degree of freedom allows the particle to store energy and the more degrees

of freedom the higher the specific heat.

In previous chapters, the NV T ensemble was introduced. This an ensemble

which describes the plurality of states for a system of interest in thermal contact

with a much larger heat bath. In this system, the internal energy of the system

of interest is no longer fixed since energy is exchanged with the heat bath. Also

the heat bath is considered to be much much larger than the system of interest so

exchanges in energy do not affect the temperature of the heat bath.

According to fluctuation dissipation, if a system obeys detailed balance, particles

in contact with a heat bath will appear to move about at random, but the average

energy is known. Recalling from chapter 2, the expected value of the average energy

of a system in the NV T ensemble is given by:

〈U〉 =
1
N !

1
h3N

∫
drNdpNU(pN) exp [−H(r, p)/kBT ]

QNV T

(5.1)

where QNV T is the canonical partition function:

QNV T =
1

N !

1

h3N

∫
drNdpN exp [−H(r, p)/kBT ]

rN denotes the position of all N particles. pN is the momentum of the particles.

h is Plank’s constant. H(r, p) = K(p) + U(r) is the Hamiltonian of that particles.

The first law of thermodynamics states dU = δQ−PdV . Changes in a system’s

internal energy are the result of changes in heat Q added to the system and any work

that is done by the system. If the system does no work, volume is held constant and

dU = δQ. The heat capacity, as a measure of how much heat is required to change

the temperature of substance is therefore,

Cv =
∂Q

∂T
=
∂U

∂T
(5.2)
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Plugging in the expected value for the system energy and using the product rule

and chain rule:

∂ 〈U〉
∂T

= 1
QNV T

1
N !

1
h3N

∫
drNdpN U(pN )

2

kBT 2 exp [−H(r, p)/kBT ] +(
−1

Q2
NV T

∂QNV T

∂T

) (
1
N !

1
h3N

∫
drNdpNU(pN) exp [−H(r, p)/kBT ]

) (5.3)

The first term on the left hand side is just the expectation value of the energy

squared, 〈U2〉. Whereas

〈U〉 =
1
N !

1
h3N

∫
drNdpNU(pN) exp [−H(r, p)/kBT ]

QNV T

(5.4)

appears in the second term. This leaves

1

QNV T

∂QNV T

∂T
(5.5)

It can be shown that a first derivative of QNV T with respect to T

∂QNV T

∂T
=

1

N !

1

h3N

∫
drNdpN

U(pN)

kBT 2
exp [−H(r, p)/kBT ] =

< U >

kBTT 2
QNV T (5.6)

Rearranging this equation,

1

QNV T

∂QNV T

∂T
=
< U >

kBTT 2
(5.7)

Finally the heat capacity,

CV =
∂ 〈U〉
∂T

=
1

kBTT 2
< U2 > − < U >2 (5.8)

And the specific heat for a system of N particles is

cV =
∂ 〈U〉
∂T

=
1

NkBTT 2
< U2 > − < U >2 (5.9)

This equation relates the macroscopic property, the specific heat with the micro-

scopic fluctuations in the internal energy of the system. In a Monte Carlo simulation

in the NV T ensemble, once equilibrium is reached, fluctuations at various MC steps

of the internal energy of the system is used to calculate the specific heat.
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5.1.1 Model

Having previously studied the phase diagram for patchy ellipsoids in chapter 4, we

employed the same model for elongated ellipsoidal particles as described. Briefly,

spheroidal particles with one of three axes is longer than the others. The elongated

axis, c > a = b. The aspect ratio is defined ε = c/a. These particles are hard parti-

cles, meaning that they cannot overlap. In addition, these elongated particles, have

surface regions that interact via an attractive quasi-square well potential. These at-

tractive surface regions, called patches, are defined by the half angle δ that subtends

these patches. The amount of total surface area on any particular particle is given

by the variable χ(δ, ε, V ) that depends on the angle δ, the particle’s aspect ratio ε,

the total particle volume V and also the number of patches on the particle surface

n. Exact expressions for the surface area of a patch in terms of δ, and χ(δ, ε, V ) are

given in chapter 4.

In this work, we examine particles with ε = 1.1 and ε = 1.5. With two surface

patches on the two opposite polar (pointy) ends of the particles. For each value of

ε for coverage values χ were examined: χ = 1, χ = 0.8453, χ = 0.7, χ = 0.6.

5.1.2 Method

A monodisperse fluid of N particles in a simulation cell with volume V and temper-

ature T describes the NV T ensembles that were simulated. Two different sets of

simulations were performed at various temperatures both above and below the criti-

cal temperature Tc. Within a set, each individual NV T simulation can be identified

by its temperature. For both sets the total number of particles was held constant

at N across values of T . The total number of Monte Carlo steps taken for both was

1X106, and after every 250 steps, the total system energy was sampled and output

into a file for analysis.

The way that the two sets differ is in the chosen densities and subsequent volumes

across simulations. In the first set, for all values of T , simulations were done such

that the number volume ρ = N/V = 0.65. Doing this, the critical point on the

phase diagram was not approached. Instead simulations remained in the dense fluid
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region of the phase diagram for both the ε = 1.1 and ε = 1.5 particles.

Since volume was held constant, cV = ∂〈U〉
∂T

could also be calculated directly via

numerical differentiation techniques. Here < U > is the energy per particle.

The forward differencing method:

∂ < U(Ti) >

∂T
≈ U(Tj − Ti)− U(Ti)

|Ti − Tj|
(5.10)

for Tj > Ti points taken from simulation (i.e. the average energy per particle

results for different NV T simulation runs i and j at temperature Ti and Tj.

The central differencing method:

∂ < U(Ti) >

∂T
≈ U(Ti + |Ti − Tj|)− U(Ti − |Ti − Tj|)

2 |Ti − Tj|
(5.11)

And the method that uses interpolating second-order Lagrange polynomials

∂<U(T )>
∂T

≈
U(Ti−1)

2U(T )−U(Ti)−U(Ti+1)
(U(Ti−1)−U(Ti))(U(Ti−1)−U(Ti+1))

+

U(Ti)
2U(T )−U(Ti−1)−U(Ti+1)

(U(Ti)−U(Ti−1))(U(Ti)−U(Ti+1))
+

U(Ti+1)
2U(T )−U(Ti−1)−U(Ti)

(U(Ti+1)−U(Ti−1))(U(Ti+1)−U(Ti))

(5.12)

Note that in the equation above T is a temperature point that was not actually

simulated but taken between Tk and Tj, specifically T = (Tk + Tj)/2 where Tk >

Tj > Ti are simulated temperature points.

The first two methods were employed because they are amongst the simplest.

The last was employed because of its increase in accuracy having each derivative

point being the result of three found data points instead of two and because the

second-order Lagrange polynomial method allows for uneven spacing between sam-

pling points.

The second set of NV T simulations were done such that for a particular value

of T , if T < Tc the simulation was performed at the value of ρ given by the more

dense fluid phase on the phase diagram at that temperature. If T > Tc simulations

were done at the critical density ρc.
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5.1.3 Results

The purpose of the first set of simulations at constant ρ = 0.65 across values of T

was to check the agreement of our results against two methods of determining cV

presented above, i.e. via direct differentiation and also via the fluctuation formula.

Fig. 5.1 (a-d) show the results for the runs of ε = 1.1 particles. For all values

of χ shown, the fluctuation formula shows generally good agreement with the val-

ues obtained via the various methods of numerical differentiation. The qualitative

behavior of the derivatives and the results via fluctuations are generally the same.

Both methods produce results that are rather noisy with the results from the

forward differentiation and lagrange method appearing to be the noisiest. For the

numerical derivatives this could be the result of the large step size taken between

temperatures. Theoretically the range of error for the central differencing method

and the Lagrange method should be exactly the same if the difference between

different independent variables T is held constant, which is true for all values of χ

shown. However for most values of χ there is a marked difference in the results of the

central differencing derivatives and the Lagrange differencing method derivatives.

Indicating that the error range is at least the difference between the results of the

two methods.

The noisiness in the results via the fluctuation method could also be the result

of insufficient sampling. In this case, perhaps not enough ensemble average energies

contributed to the noisiness of the fluctuation results.

The purpose of the second set of simulations was to examine the behavior of cV

as the critical temperature Tc is approached. In the thermodynamic limit, for second

order phase transitions cV diverges at the critical point as cV is the derivative of an

ensemble averaged quantity. The divergence of cV behaves in a particular way that

is specific to a whole class of systems whose specific heats also diverge in the same

way. The set of all the systems that behave in the same way near their critical points

is called a universality class. And the behavior of the divergences can be described

by exponents, called critical exponents. In particular the critical exponent α relates

the behavior of cV near a critical point to the scaled temperature cV ∝ |T − Tc|−α.
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Figure 5.1: Specific heat cV vs temperature T graphs for ε = 1.1 particles for χ = 0.6 (a)
χ = 0.7 (b) χ = 0.8453 (c) and χ = 1 (d). For each graph, results shown via
line plot are the result of numerical differentiation with red lines the result
of forward differencing, green lines the result of central differencing and blue
lines the result of interpolation using the second order Lagrange polynomials.
The results shown as black ∗ are from finding cV using ensemble fluctuations
in the energy per particle.

These ideas come originally from those developed by Wilson called the renor-

malization group with the motivation of constructing connections between theories

at different length scales. [139] The renormalization group methods can describe

phase transitions involving discontinuous changes in physical parameters such as

divergence in thermodynamic derivatives such as the specific heat cV .

cV only shows true asymptotic behavior in the limit that the simulation box
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length L → ∞. In order to make simulations tractable, periodic boundary condi-

tions are used, but even so, finite size effects are introduced. It can be shown that

these finite size effects are proportional to the box length L−d where d is the number

of dimensions of the system. In this case d = 3. In simulation, the divergence of cV

is smoothed out as the result of finite size effects. A smaller simulation box is likely

to show a weaker divergence. [24]

To examine finite size effects, it is often useful to run the same simulation at

different values of L. Finite size effects both introduce rounding errors in finding

true divergence behavior and, at different values of L, peaks can appear shifted

with respect to each other. [43] [67] Fig 5.2 shows the result for ε = 1.1 and

χ = 1 particles. Since the size of the simulation cell was varied with each value

of T such that the densities in simulation would be the coexistence densities, the

number of particles N , rather than the actual box length L is given. Larger N values

correspond to larger L. Varying the number of particles, rather than the actual box

length was the method used by Panagiotopoulos when studying finite size effects on

the Lennard-Jones fluid using the Gibbs ensemble in which the size of the two boxes

fluctuates. [96].

For all values of N , the approximate behavior and location of the peak in cV

is similar, especially for values below Tc. Although the resultant peaks are not

very sharp and narrow, the fact that they appear across all simulation sizes at

approximately the same value of T indicates that cV would likely diverge in the

thermodynamic limit and for finite values of L it is expected that as L increases,

the peaks should both narrow and increase in height, approaching true asymptotic

behavior. This is not clearly shown in Fig. 5.2, however the variation in side

length L was not actually very big. The difference for example of the box length

L used to simulate critical density for the smallest simulation size and the largest

was ≈ 20%. A more accurate method would be to simulate systems with a much

greater difference in L and more specifically for values of L much larger than those

studied here. However since systems with large L generally take longer real time to

simulate, time constraints meant that smaller simulation sizes were used.

Fig 5.3 (a) shows the results of cV vs T for all χ for ε = 1.1 and 3 (b) shows
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Figure 5.2: Finite size effects for the specific heat for ε = 1.1 χ = 1 particles. N number
of particles was used as an approximate means of controlling the box length
L with larger N corresponding to larger L.

the results for all values of χ and ε = 1.5. These results are from the run with the

largest simulation size studied N = 500. Across all values of ε and χ studied, there

is a peak in the graph of cV at values of T → Tc. The largest peak appears to be at

ε = 1.1, χ = 0.8453. In general the difference between chosen values of T were 0.02

in reduced units. For the simulated values of T , perhaps for ε = 1.1, χ = 0.8453

the simulated value near Tc was closer to the actual value of Tc than in any other

simulation, hence the stronger divergence curve.

In general, the behavior of cV did vary with χ. For larger values of χ, cV was

smaller. This is likely because with larger values of χ, the attractive surface area

increases so the particles are more energetically linked together than for smaller

values of χ. These particles might be more stable to thermal fluctuations than their

counterparts with smaller χ values.

Additionally, across aspect ratios the differences in the values of cV between the

largest value χ = 1 and the smallest value χ = 0.6 is larger for greater ε. This
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behavior is reminiscent of that found for Tc vs ε which is that as ε increases the

particles in the system are less energetically connected.

Figure 5.3: Specific heat cV vs temperature for all studied values of χ for ε = 1.1 (a) and
ε = 1.5(b). Simulations done at coexistence densities ρ for the more dense
fluid for temperatures below Tc and at ρ = ρc for T > Tc. At T → Tc cV
diverges. This divergence is mitigated by finite size effects.

5.2 Isothermal Compressibility

Turning attention to the isothermal compressibility this is another property that

can be understood via measurement. It is the amount by which a given substance’s

volume changes with applied pressure at constant temperature. βT = − 1
V

(
∂V
∂P

)
T

The isothermal compressibility can also be expressed via another metric that is

indirectly related to experiment, the radial distribution. The radial distribution

function g(r) is a measure of the local order in a system of dense fluid. It can be

measured experimentally as it is the fourier transform of the structure factor.

Given some particle from a system of N particles, g(r) counts the number of

particles some distance r away relative to the number expected for an ideal gas.

Imagining the given particle at the origin, an infinitesimal shell of distance r from

the particle with thickness dr would approximately have a volume given by

V =
4

3
π(r + dr)3 − 4

3
πr3 ≈ 4πr2dr (5.13)
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The number of particles in that shell would then be related to the number density

of particles in the system ρ = N/V , but since the number density of particles may

not be homogenous g(r) gives the exact number of particles at some distance r.

Summing up all possible values of r from the center particle

N − 1 = 4πρ

∫ ∞
0

r2g(r)dr (5.14)

excluding the particle at the origin. The exact definition of the radial distribution

function for particles interacting with a pairwise potential is given by:

g(r) = (r1, r2) =
V 2(N − 1)

NZN

∫
dr3...drN exp(−βU(r1...rN)) (5.15)

Given g(r), it is possible to calculate the isothermal compressibility.

βT = − 1

V

(
∂V

∂P

)
T

=
1

ρ

(
∂ρ

∂P

)
T

(5.16)

=

(
1

ρkBT

)
+

4π

kBT

∫ ∞
0

[g(r)− 1] r2dr

5.2.1 Method

Using the NV T Monte Carlo simulation runs at T → Tc described above for the

specific heat cV the isothermal compressibility βT was calculated for aspect ratio

ε = 1.1 and ε = 1.5 particles. Like the system energy, configurations of all particles

were output every 250 Monte Carlo steps. After equilibrium, all the different particle

configurations comprise samples of an ensemble. Those samples were then averaged

in the calculation of g(r) for that value of T .

Once g(r) was known, the integral above for βT was calculated via a simple Monte

Carlo integrator where the values of the dependent variable βT (r) was evaluated at

random values of the independent variable r over the domain [0, L/2] were L is the

box length. In simulation when periodic boundary conditions are applied, particles

can be no further away from each other than L/2. The convergence of this simple

integrator was also evaluated with a variance that is on the order of 10−1% of the

computed value.
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5.2.2 Results

βT is also a derivative of an ensemble averaged quantity. Therefore, βT should

also diverge at values of T → Tc if L → ∞. Finite size effects were examined

for βT . Fig 5.4 depicts the result for βT at various values of N corresponding to

changing simulation box length L. The approximate behavior at each value of N is

similar. There is a peak in βT at for each simulation at nearly the same values of T .

Therefore, although the peaks are also not very sharp, βT looks like it would likely

diverge in the thermodynamic limit near the critical point.

Figure 5.4: Finite size effects for the isothermal compressibility for ε = 1.1 χ = 1 parti-
cles. N number of particles was used as an approximate means of controlling
the box length L with larger N corresponding to larger L.

As opposed to cV , the behavior of βT in the thermodynamic limit diverges with

a different critical exponent, βT ∝ |T − Tc|−γ. However for βT the peak increase at

T → Tc is larger than for cV . This is because critical exponent γ associated with

βT is larger than α associated with cV . At L → ∞ a stronger divergence for βT is

expected but even at the relatively small system sizes studied, the stronger peak is

shown. Furthermore, the larger and more narrow peak with increased system size
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is more obvious for βT Fig. 5.4 than for cV Fig. 5.2

The peak height vs system size Ld is plotted in Fig. 5.5. The straight line

behavior is predicted and explained by Challa, Landau and Binder [24]. Basically

peak height should increase with L. This is the result shown in the figure.

Figure 5.5: Peak height for isothermal compressibility βT near critical temperatures Tc
vs volume V = Ld. The values found from simulation are shown as black X.
The dashed line is the result of a least squared fit to these points.

Together the exponents γ, associated with strong divergence, and α, associated

with weak divergence, are often sufficient to determine the universality class. How-

ever exponents alone do not determine the universality class. As in the case of the

parameter T which is treated with renormalization methods using a type of scaling,

the Hamiltonian of a system also undergoes a type of scaling. These renormalizations

act to reduce the number of degrees of freedom and reveal underlying symmetries.

Members of the same universality class also must have these symmetries in their

reduced Hamiltonians. [39]

There are methods that exist to study the behavior of systems in the thermo-

dynamic limit despite finite size effects. These methods called finite size scaling
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depend upon finding a correction factor that relates parameters determined via fi-

nite simulation to the ”true” values found at L → ∞. With these methods, the

actual values of the critical exponents can be found as well as the locations of the

critical points if they are not already known.

Fig. 5.6 (a) and (b) show the results of βT vs T for all values of χ with ε = 1.1 and

ε = 1.5 respectively. As in the case of cV the largest peak was for ε = 1.1, χ = 0.8453.

For all calculated values, βT is small. This is expected as fluids, particularly dense

fluids undergo very little volume change with increased pressure. This is because in

a dense fluid, there is not much space between particles. Furthermore as the particle

are hard, there is an excluded volume which the total volume must exceed.

The graphs of βT vs T also show the same dependence on χ and ε as those

cV underlining the importance of the strength of the attractive energy interactions

between the particles. The dependence on ε for βT recalls one other aspect of ch.

4 which is that as ε increased there appeared to be a slight increase in a tendency

to align. If particles are more aligned than the spacing between the particles might

further decrease. Therefore large changes in pressure would affect an even smaller

change in volume.

Figure 5.6: Isothermal Compressibility βT vs temperature T for all studied values of χ
for ε = 1.1 (a) and ε = 1.5(b). Simulations done at coexistence densities ρ
for the more dense fluid for temperatures below Tc and at ρ = ρc for T > Tc.
At T → Tc βT diverges.This divergence is mitigated by finite size effects.
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5.3 Conclusion

cV and βT are thermodynamic quantities that can be measured through simulation.

Fluid systems of patchy ellipsoidal fluids were studied with Monte Carlo simulations

at conditions that approached the critical point on the phase diagram. Both cV

and βT were found to likely diverge as T → Tc in the thermodynamic limit with

the divergence of βT being greater. Even at the small system sizes studied the

peak beahvior of βT was greater than that of cV and present for even the smallest

system size. Specific values for cV and βT seemed to depend on energetic attraction

between particles. Particles with greater inter-particle attraction had smaller cV

and βT values. The role of ε seemed to be in hindering the effective interparticle

attraction.
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Chapter 6

Phase Diagrams of Patch

Ellipsoidal Fluids II: Patchy

Distribution

6.1 Introduction

Patchy particles have been an ongoing area of study for several years. There is

an entire class of simulation studies on patchy particles that are derived from the

original pioneering work on Kern and Frenkel who devised a computationally simple

but powerful model of hard spheres with well-defined surface regions of attractive

interaction. [60]Their original model has been used by many other researchers in a

variety of capacities and has demonstrated a stunning array of behaviors. [119] [46]

[109][84] [73][125] [101] [100]

The primary advantage of patchiness is that it allows particles to interact in a

directional manner. Patch distribution, meaning, the exact location of the patches

on the particle surface with respect to each other therefore is an important aspect

that should affect both the dynamic and equilibrium behavior. For example particle

contact angle is known to be important at fluid interfaces. Contact energy affects

the binding energies and the ways that particles move at the interface. [145].
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At the time of this writing although there have been simulation studies that

changed the total patch coverage, the number of patches, and range of interaction

of the surface patches, but there has not been much research into patch distribution.

In 2007, Fantoni et al did mention patch distribution as in important factor in

their studies of hard spheres with sticky surface patches interacting via a Baxter

type potential. They noted a distinct change in the location of the critical points

for the fluid-fluid transition with different patch distribution. However to change

patch distribution, the number of patches were also varied although patch coverage

was fixed.[37] In the original Kern and Frenkel work, although they did not make

a point to note the effect of changing distribution in that way, the location of the

critical points in their study of the fluid-fluid transition did vary significantly and

of note, non-monotonically, with changing distribution by way of changing patch

number, although total patch coverage was fixed. [60]

Since patch distribution was coupled with changing patch number, it is hard

to know the effect of just distribution. The only paper found that examines patch

distribution alone was performed by Khan, Haaga and Gunton where the model

particle was sphere with two patchy sites. The angle between the two patchy sites,

was varied between 30◦ and 150◦. They found that hinge angle plays a crucial role in

determining the dynamics and final morphology with micelles, rod-like structures,

gels, and larger aggregates all possible with varying hinge angle. [62]

In this work, the model particle is a patchy ellipsoid. Patch distribution is studied

by holding both the patch number and total surface coverage fixed. All particles

have two patches. The axis of symmetry for the polar patch particles is one of

the short semi-axes of the ellipsoids and the axis of symmetry for the side patch

particles is the long axis of the ellipsoids. The two patches are found on opposite

ends of the particles. For spheres, in simulations where particle rotation moves are

allowed, these two patch configurations would be identical, but not for ellipsoids.

The liquid-liquid phase separation is studied via Gibbs ensemble and the location

of the critical points is found.
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6.2 Model

The system studied is fluid comprised of N identical prolate ellipsoids of revolution

with semi-axes a = b < c. 2a the diameter of one of the short sides of an ellipsdoid

taken to be the fundamental unit of length in simulation. All other units are reported

in terms of this this unit. The aspect ratio, a measure of the elongation of the

ellipsoids is defined ε = c
a
. Values of ε studied here are ε = 1.1, 1.3, 1.5.

Two ellipsoids interact with potential.

Uij (rij, ûi, ûj) = Uij (rij) f (ûi, ûj) , (6.1)

The radial part of the potential is given by

Uij (rij) =

{
∞, (if particles overlap)

−U0H (σij + 0.5σ − rij) ,
and U0 is the well depth, H(x) is the Heaviside function. σ represents the total

length of the c axis. The approximate closest approach distance for two ellipsoids

is σij. This distance is as obtained from the Gaussion overlap model of Berne and

Pechukas. [15]

σij = 2b

[
1− α

2

(
(ûi · r̂ij + ûj · r̂ij)2

1 + αûi · ûj
+

(ûi · r̂ij − ûj · r̂ij)2

1− αûi · ûj

)]−1/2
, (6.2)

where α = (ε2 − 1) / (ε2 + 1). This corresponds to an interaction range λ = 1.5σ.

The orientational part of the potential that comprises the directional aspect and

depends on the patches f (ûi, ûj) is given by

f(ûi, ûj) =

{
1, ûi · r̂ij ≤ cos δ and ûj · r̂ji ≤ cos δ

0, otherwise
(6.3)

Thus, particles interact if they are within the interaction range given by Eq.

(4.2), and if the dot product of the normals of the patch vectors ûi , ûj and the

vector ~rij between them is less than cos δ, where δ is the half-angle of the patch (i.e.,

the patches are facing each other).
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The total patch area is found via surface integration.

The patch area for polar patches, patches where the symmetry axis is one of the

short semi-axes , S (δ, ε, V ), is given by

S (δ, ε, V ) = 2π

(
3V

4π

)2/3

ε

∫ 1

umin

du
√

(1− e (ε)u2), (6.4)

where given a desired patch size, χ, umin is related to the size of the patch as

umin = (1/ε) /
√(

tan2 δ + (1/ε)2
)
.

For side patches, where the symmetry axis is the long axis c,

S (δ, ε, V ) = 2π

(
3V

4π

)2/3

ε

∫ δ

0

dθ sin2 θ

√
1 +

1

ε2
cot2 θ. (6.5)

where θ is the standard polar angle.

Total fractional patch surface coverage is given by χ and defined as the total

surface area of the ellipsoid covered by all patches, divided by the total surface area

of the ellipsoid. Note that this is a different definition of χ than was used in ch.

4. Total surface area increases with ε and in the previous work, χ was held fixed

so that the total patch area was constant. In this case χ is allowed to vary with

increasing surface area as ε moves away from the spherical case.

The reason for this change is that the definition of χ that will be used here is

more simple to understand and for the range of ε values studied the difference in

actual patch size is not large. Also since the primary interest is in comparisons

between particle distributions not between different values of aspect ratio, keeping

a simple definition for χ makes sense.

Fig. 6.1 illustrates several of the types of particles studied as well as an image

depicting two interacting particles and vectors rij and patch normals ûi and ûj.
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Figure 6.1: Examples of the various types of ellipsoids studied. The top row of particles
have so called polar patches with varying fractional coverage. The bottom
row of particles have so called side patches. These particles comprise all
aspect ratios studied, ε = 1.1, ε = 1.3 and ε = 1.5 and χ = 0.6, χ = 0.7 and
χ = 0.8453.

6.3 Methodology

Gibbs ensemble Monte Carlo simulations were performed in order with map out

two-phase coexistence at various values of ε > 1 and χ. [95] Equilibration time was

between 5x105 and 1X106 Monte Carlo steps with higher ε value particles taking

longer to equilibrate. The results from ε = 1 are those from the original work

by Kern and Frenkel. N = 512 total particles, the sum of all particles in both

simulation boxes and Vbox the initial density of each box was chosen to be such that

ρbox = 0.3.

After coexistence curves are mapped via the Gibbs ensemble method estimate

of the critical temperature, Tc, and critical density, ρc, using the law of rectilinear

diameter was performed [21]. With found values for the liquid and gas densities,

ρliq and ρgas, respectively,the critical temperature and density was found by solving
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the coupled system of equations

(ρliq + ρgas)/2 = ρc − A · |T − Tc| , (6.6)

(ρliq + ρgas) = B · |T − Tc|0.32 , (6.7)

A and B are parameters to be determined based on a best fit to simulation data.

Standard Metropolis algorithm NV T ensemble simulations were performed in

the single-phase dense fluid region at ρ = 0.62 with the goal of finding ensemble

averaged energies. Further details are given in the previous work.

6.4 Results

The goal of this work was to examine the effect of changing patch distribution on

the phase behavior of a system of patchy ellipsoids. To that end, the Gibbs ensemble

method was used to map the fluid-fluid coexistence curves, by varying the simulation

temperature for each of two systems of equivalent ellipsoids at various aspect ratios

ε, one having polar patches and one having side patches.

Consider first the system of particles with two polar patches (i.e. patches at

the two pointy ellipsoid ends). The fractional patchy coverage is given by χ. The

resultant liquid-liquid miscibility gaps for this system for particles with ε = 1.1 and

1.5 are displayed in Figs. 6.2a and b, respectively with black curves.The locations

of the critical points, Tc (ε, χ), are also shown in the figures (with diamonds). In

each figure, the bottom (top) curves depict the phase separation for particles with

χ = 0.6 (χ = 0.8453)

Fig 6.3a and b depicts the found liquid-liquid miscibility gap for the system of

particles with two side patches with blue curves. The fractional patch coverage is

again given by χ. As in the previous graph, the results for ε = 1.1 and ε = 1.5

particles are shown.

For both sets of particle distributions, as in the previous work, greater attractive

patch coverage results in higher coexistence temperatures. Note again that the total
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surface area of the patch increases with ε. So a particle with χ = 0.6 and ε = 1.1 has

smaller patches than a particle with χ = 0.6 and ε = 1.5. However, since particles

with the same aspect ratios but different patch configurations have the same total

patch surface area, the results for the two patch distributions are comparable.

The Gibbs ensemble runs were done such that the range of temperatures investi-

gated for each type of run was similar across particle patch distributions. Although

the overall shape of the phase graphs are the same, particles with polar patches were

found to have a wider miscibility gap.

Figure 6.2: Examples of phase diagrams obtained using Gibbs Ensemble MC for particles
with two polar patches and either ε = 1.1 (a) or ε = 1.5 (b). The patch area
fraction, χ, is given in the legend. The � symbols denote estimates of critical
temperatures, as obtained using the law of rectilinear diameter.

In order to compare the effect on the phase diagram across the two patch dis-

tributions it is instructive to examine the critical points. Fig. 6.4 is a plot of the

critical temperature Tc as a function of aspect ratio ε for all values of χ studied.

For both types of patch configuration, Tc decreases with ε, which was the ex-

pected result from the previous work. Additionally, the discrepancy between the

blue and black curves reveals that indeed patch distribution does play a role in de-

termining phase behavior, the importance of which seems to increase with increasing

aspect ratio and patch coverage. For smaller values of χ, χ = 0.7 and χ = 0.6 there

is not much difference in Tc at the aspect ratios studied. In fact, the difference
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Figure 6.3: Examples of phase diagrams obtained using Gibbs Ensemble MC for particles
with two side patches and either ε = 1.1 (a) or ε = 1.5 (b). The patch area
fraction, χ, is given in the legend. The � symbols denote estimates of critical
temperatures, as obtained using the law of rectilinear diameter.

between critical temperatures is found to be zero at certain points for these smaller

values of χ. However, for the largest fractional patch coverage χ = 0.8453, there is

a marked difference between the results for the polar patch particles and the side

patch particles with the largest discrepancy at the largest value of ε.

The critical density ρc also seems to be affected by the change in patch distri-

bution. Fig. 6.5 shows ρc as a function of ε for the polar patch particles in black

and side patch particles in blue. Although the behavior of ρc is non-monotonic and

more jagged than Tc one key feature of this plot is that for all values of χ comparing

between ρc for the polar patch and ρc for the side patches, the side patch ρc is always

less than the equivalent polar patch ρc. This graph further underlines the fact that

patch distribution makes a difference in phase behavior and that side patches affect

a notable shift to lower density phase behavior.

To understand why this might be, the average internal energy per particle was

found via ensemble averages using a standard NV T ensemble in the high-density

fluid. In particular, the since χ = 0.8453 particles seemed to show the most differ-

ence in behavior with changing patch distribution, only those particles were simu-

lated.
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Figure 6.4: The critical temperature, Tc, versus aspect ratio, ε, for several values of χ.
The results for the polar patches is shown in black. Whereas results for the
side patches are shown in blue. Simulation results from this work comprise
all ε > 1. ε = 1 results are taken from literature [60].

As in the previous work, for both the polar and the side patches the linear

increase indicates that for both the side and polar patches, the particles are bonded

less strongly as the aspect ratio increases. However these results are surprising

because although the location of the critical temperature Tc seems to be lower for side

patches the average energy per particle, is higher overall for side patches. Indicating

that the difference in critical phase behavior is not just the number of bonds that

the particle is making but somehow the shape of the particle must be important

and exactly how those bonds are made is important.

The radial distribution function of the side and polar patches in the high-density

fluid at coexistence densities slightly below Tc is calculated for the case of ε = 1.5

and χ = 0.8453 particles where the difference in phase behavior is largest. The black

curve indicates the results for the polar patches. The blue curve shows results for

the side patches. The shape for both side and polar patches indicates a dense a fluid.
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Figure 6.5: The critical density, ρc, versus aspect ratio, ε, for several values of χ. The
results for the polar patches is shown in black. Results for the side patches
are shown in blue. Simulation results from this work comprise all ε > 1.
ε = 1 results are taken from literature [60].

There is a difference between the blue and black curves. As the radial distribution

function is a measure of the local order, for particles with side patches, given any

particular particle, there are a greater number of close neighbors than there are for

the polar patches.

This result supports the results from calculating the internal energy per particle.

Since the closer a particle is to its neighbors, the more likely a particle is to find

another particle with which to bind. Additionally, the radial distribution seems to

indicate that the distance between neighbors that are further away is greater for

particles with side patches.

To investigate the possibility that there may be some orientational ordering

taking place, the dot-product of the normal vectors of these patchy particles is

calculated vs the probability of finding that dot product. This rough estimate

for orientational ordering was used in the previous work, to find that for particles
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Figure 6.6: The average internal energy, versus aspect ratio, ε, for several values of
χ = 0.8453. The results for the polar patches is shown in black. Results for
the side patches are shown in blue. Results obtained via conventional NV T
ensemble Monte Carlo.

with increasing aspect ratio, there is a slightly greater tendency to adopt some

sort of orientation. However, this tendency was very small. The results for the

side and polar patches also very small. The orientational order parameter P2 =
1
2
〈3(ûi · ûj)2 − 1〉 was also calculated for both and found to be on the order of 10−4.
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Figure 6.7: Radial distribution function for ε = 1.5 and χ = 0.8453 particles for polar
(black) and side (blue) patch particles. Results obtained from Gibbs ensem-
ble configurations at densities for the high-density fluid slightly below Tc for
each patchy particle type.

6.5 Conclusions

Together these results indicate that there might be a difference in behavior at the

local particle level and at the fluid level. The stronger bonding between particles

with side patches and the increased local proximity indicate that particles with side

patches are at least locally bonded more strongly.

However at the fluid level, the greater width of the miscibility gap and the

higher values of Tc for the polar patches indicate that perhaps at longer ranges,

particles with polar patches can comprise a fluid with stronger bonding. This is also

supported by the radial distribution. As particles further away are closer to each

other for particles with polar patches.

Additionally the found result that smaller χ particles have a smaller difference in

patch distribution behavior is also surprising. Since in the limit of total χ→ 1 polar

patch particles and side patch particles should be exactly the same. This behavior
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was not really explored in this work as the focus was on the divergent results for

χ = 0.8453 but the similarity between side and polar patches for small χ is an area

of interest that should be explored in the future. At the very least, particle patch

distribution was shown to be a factor in determining phase behavior and that role

may be quite complicated.
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Chapter 7

Future Work: Isotropic to

Nematic Transition

7.1 Note

There is existing published work on the isotropic to nematic transition for ellipsoids

in an attractive quasi-square well. The goal of this chapter was originally to study

the effect of patchiness (i.e. particles with directional interactions that are not

completely encompassed by the attractive square-well). The results of the published

work could not be verified, so the patchy aspect has yet to be studied. Since so much

time was dedicated to this goal, the unverified simulation results are presented here.

7.2 Introduction

Ellipsoid models are an extensively studied class of models that have been used

to examine interesting properties of a wide variety of real systems. Ellipsoids, in

particular, ellipsoids of revolution which are defined by an elongation in one three

otherwise equal axes are the simplest non-spherical shape. The degree of elongation

is characterized by the aspect ratio ε = c/a with the three spheroid axes c > a = b.

This elongation from spherical to spheroidal is a type of anisotropy. There are
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many different types of anisotropy and isotropic particles have been the subject of

great interest and many reviews, [47],[29],[56],[4] the reason being that anisotropic

particles are known to self-assemble into materials with a wide variety of novel

and desired properties.[127], [49], [59],[82], [20] There are currently many new and

ongoing advances in simulation and synthesis of particles carrying some sort of

anisotropy. [88], [69], [135], [122], [52]

A colloidal fluid of shape anisotropic very elongated rods with solely hard core

interactions has been shown since the pioneering work of Onsager to undergo an

isotropic to nematic phase transition. [93]. Since then the simulation work of

Frenkel and Mulder showed that hard ellipsoids of revolution with elongated axes

as little as ≈ 3.7 times the length of the other two axes also undergoes the isotropic

to nematic transition.[42], [41] In more recent work materials that include, at least

in part, elongated colloids have significantly modified rheological properties such

as changes in elastic modulus and yield strength. [126][137] Additionally there are

many elongated rod or ellipsoid type particles found in nature including biological

ones such as: f-actin, fd-virus and tobacco mosaic virus, to inorganic particles such

as boehmite, hematite and laponite clays. [3], [103], [33], [44] [140], [102], [12]

Particles need not carry only one type of anisotropy. In fact particles with

more complex anisotropic properties often display a greater richness of behavior.

Furthermore natural materials rarely display one type of anisotropy. In the case

of both the viruses and the mentioned above, their elongated particle shapes also

include surface regions with charge interactions. [40] [102] One way that simulation

studies have used to capture this type of anisotropy on particles surfaces is via the

introduction of so called patchy surfaces. Particle patches were originally introduced

by Kern and Frenkel for spherical particles. In this model otherwise hard-core

spheres had surface regions that interact via an attractive square well potential. [60]

The power and flexibility of this patchy model has been demonstrated repeatedly

in many studies in which patch number, patch size, the range of patchy attractive

interaction, and patch orientation have been varied to produce an incredible array

of different behavior. [119], [84], [46], [109], [110], [100], [17],[23]

The isotropic to nematic phase transition is also independently an ongoing area
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of interest. The nematic phase is a type of liquid crystal, characterized simply by

particles having orientational ordering. Recent work that examined the isotropic to

nematic phase transition include work on the tobacco mosaic virus [40] simulation

studies of polymers undergoing the I/N transition [36] [28] and polydisperse solutions

of colloidal platelets. [25]Further studies on the ellipsoids were done by Odriozola et

al who showed that hard ellipsoids with attractive quasi-square well interactions and

elongation axis 5 times the length of the other two axes undergo the I/N transition

as shown originally by Frenkel and Mulder, [92][13] but also that the attractive

interparticle potential shifted the phase diagram to higher packing fractions. [131]

In this work, we aimed to expand on the model originally proposed by Odriozola

of hard ellipsoids with ε = 5 in an attractive quasi-square well by adding patchiness

as a modification and seeing how directional interactions given by both the shape

anisotropy and the interaction anisotropy affects the I/N phase behavior.

7.3 Model

We consider a system of N uniaxial hard ellipsoids with ε = 5. The short particle

axis diameters 2a = 2b are considered the fundamental unit of length, with all other

lengths given in terms of this unit. With ε = 5 the elongated particle axis is c = 2.5.

A fluid of these such particles interact via pairwise potential having both a radial

component Uij and a orientational component f (ûi, ûj)

Uij (rij, ûi, ûj) = Uij (rij) f (ûi, ûj) , (7.1)

Where two ellipsoids, i and j, displaced by ~rij ≡ ~ri − ~rj having patches with

unit normals ûi and ûj. The radial component that depends only on the distance

between particles ~ri − ~rj is given by:

Uij (rij) =

{
∞, (if particles overlap)

−U0H (σij + 0.5σ − rij) ,

and where U0 is the well depth, H(x) is the Heaviside function and σ represents

the total length of the c axis. The parameter σij is an approximation of the closest
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approach distance of the two ellipsoids. This approximation is made via a Gaussian

overlap model. In our previous work we have relied upon the model originally pro-

posed in 1972 by Berne and Pechukas.[15] However a modification to the original

closest approach approximation was made by Rickayzen in 1998 that added an ad-

ditional term that accounts for a mismatch in the exact value for closest approach

distance and that obtain from the approximation in the case of two elongated parti-

cles approaching one another in the shape of a T. [108] This modified approximation

to σij is given by:

σij = 2a

(
1− 1

2
χ
[
A+ + A−

]
+ (1− χ)χ′

[
A+A−

])1/2

(7.2)

A± =
(r̂ij · ûi ± r̂ij · ûj)2

1± χûi · ûj

χ =
ε2 − 1

ε2 + 1

χ′ =
(
ε− 1

ε+ 1

)2

Surface patches on the ellipsoids are assumed to be on the two polar (pointy)

ends of the ellipsoids. The orientational f (ûi, ûj) in Eq. (4.1) is given by

f(ûi, ûj) =

{
1, ûi · r̂ij ≤ cos δ and ûj · r̂ji ≤ cos δ

0, otherwise
(7.3)

As in the previous chapter δ is the half angle that subtends the particle patch size.

For δ = π this would imply that the entirety of one particle’s hemisphere’s is covered

in an attractive patch. Total patch number on a particle n would have to be n = 2

with both hemisphere’s having patches and δ = π to describe the original model of

Odriozola in which the entire particle is encompassed by an attractive square well.

As previously noted, if particle volume is held constant, particle surface area

increases with increased ε. Therefore the ratio of particle that is covered by a patch

is a function of ε. However for this work, ε is held constant at ε = 5. Further details

can be found in the preceding chapters.
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7.4 Methology

We employ a replica exchange Monte Carlo method in the an extended ensemble of

otherwise standard NPT systems , Qext =
∏nr

i=1QNPiT . Here nr number of replicas

of an NPT ensemble all have the same initial conditions except for pressure Pi.

Each replica is run in parallel with all the others. As the Monte Carlo progresses,

the pressure between these ensembles is periodically swapped with the following

acceptance rule.

Pacc = min(1, exp(β(Pi − Pj)(Vi − Vj)) (7.4)

This can be thought of as a type of parallel tempering except in pressure instead

of temperature. In practice, within each replica there are three types of Monte Carlo

moves: particle translation, rotation, and simulation box volume change. The only

inter-replica Monte Carlo trial move is the pressure swap. In our implementation,

over long times, translation moves are attempted about half the time, rotation moves

are attempted the other half and volume moves are attempted at every time. Addi-

tionally inter-replica pressure swaps are also attempted each time. Across replicas,

the acceptance rates of each trial move should be approximately the same.[105] As

the simulation progressed, the scale by which the a particle move was attempted was

regulated for intra-replica moves. For example in a translation move, the amount by

which a particle is moved is continuously modified such that if the acceptance rate

for that move type is too high, the particle would attempt a larger displacement the

next time that a translation move was attempted. Acceptance rates, defined as the

number of accepted trial moves divided by the number of attempted trial moves,

for intra-replica trial moves was approximately between 0.2− 0.4. For inter-replica

particle exchanges, pressure swaps were also made between a given replica and the

replica with adjacent pressure value. Pressure swap acceptance rates were also in

the same range.

Since the ensembles are NPT at the end of the simulation time, although pres-

sures were swapped periodically, configurations can be collated according to pressure

such that for each pressure final results are effectively the same as if the particle
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Figure 7.1: Visualization of the model particle, an ellipsoid with ε = 5 in the simulation
box. During initialization across all replicas, particles are placed on an FCC
lattice and are all made to point diagonally in the same direction across the
simulation box. As the simulation progresses, this structure melts. Some
replicas will end in an isotropic phase. Some replicas will end in a nematic
semi-ordered phase.

configurations have been swapped.

We want to explore the isotropic to nematic phase transition, so to do that, we

have to run a set of replicas over a set of pressures high enough to give a high enough

density to find the nematic transition. N = 256 particles are initialized on an FCC

lattice with all unit vectors points diagonally across the simulation box (Fig. 7.1)

This structure is allowed to melt and undergo the various Monte Carlo move types.

Linear spacing between values of P were chosen to provide accurate estimates of the

volume fraction φ of the phase transition point.

One Monte Carlo step is defined as each of N particles having a probability of

having attempted some move type. In the original Odriozola model, an initial round

of Monte Carlo sampling was done to 5X1012 Monte Carlo steps to ensure that the
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system had reached equilibrium. An additional, 1X1013 steps were reported for

sampling.

For practical reasons, these very long Monte Carlo simulation runs were not

feasible. So our chosen Monte Carlo simulation lengths were up to 2X107 steps.

The convergence of this length of Monte Carlo runs resulted in calculated values

having variance of 10−3%.

7.4.1 Results

We were unable to confirm the results published literature results of Odriozola et

al for ε = 5 attractive square well-particles. Fig. 7.2 shows our results in blue

superimposed upon those of Odriozla et al in black. For the one blue point shown,

the difference between the volume fraction and the equivalent temperature volume

fraction in black is ≈ 7%.

To ensure that the system had melted and no longer had signs of positional or-

dering, we examined the radial distribution function g(r) for several values of the

volume fraction. Using averages from multiple configurations after equilibrium and

across various values for volume fraction, the radial distribution function did not

show evidence of distinct positional ordering for any values of volume fraction ex-

amined. Fig. 7.3 shows an example of a calculated g(r). At other volume fractions,

g(r) was virtually indistinguishable.

We made several attempts to accurately determine the phase transition point

between the isotropic and nematic phase and employed several metrics. The order

parameter for a simple nematic phase is expressed as the second legengre polynomial

P2 = 1
2
3x2−1 where x is the director (average orientation of the long axis) of the par-

ticles. Using the results of our code P2 can be expressed as P2 = 1
2
〈3(ûi · ûj)2 − 1〉.

For a completely ordered nematic phase, in which all particles are exactly pointing

in the same direction P2 = 1, for an isotropic phase with no discernable preferred

direction P2 = 0

In the case of a non-uniaxial nematic phase, higher-order order parameters may

reveal more information about particle orientation. Therefore we also examined the
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Figure 7.2: Phase diagram for the isotropic to nematic phase transition of ε = 5 ellipsoid
particles in an attractive quasi-square well. Published results from [131] in
in black circles. Our results are shown by the blue square. Simulation
temperature for our results was T=7 in standard reduced units.

next order parameter, expressed as the fourth order Legendre polynomial, P4 =
1
8
(35x4 − 30x2 + 3) = P4 = 1

8
〈35(ûi · ûj)4 − 30(ûi · ûj)2 + 3〉. Like P2 a completely

order phase has P4 = 1 and an unordered phase has P4 = 0. Fig. 7.4 shows the

results of examining P2 and P4 vs volume fraction φ. Qualitatively, both P2 and P4

increase monotonically with φ indicating that the system is responsive to undergoing

a phase transition. For a phase transition to occur, there must be some spontaneous

symmetry breaking in the order parameter. This is illustrated by the clear uptick

in both P2 and P4 at nearly the same point indicating that a phase transition must

be in the vicinity of that value.

Another metric used to analyze the phase transition point was the isothermal

compressibility βT . Since it is known that βT diverges near the critical point, but
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Figure 7.3: Sample radial distribution function g(r) for a system of ellipsoidal particles
calculated from 1000 average final configurations. Number density for g(r)
shown is ρ = 0.1535 and volume fraction φ = 0.4018. Unit length is given
by the diameter of the short side of the ellipsoid.

that behavior can be smoothed out a bit by the finite nature of simulations, a peak

in a plot of the βT indicates a phase transition. In this case since the simulation

cell was allowed to change volume during the course of simulation, and the number

of particles was held constant, βT can be expressed via fluctuations in the number

of density βT = <ρ2>−<ρ>2

<ρ>2 . Fig.7.5 shows the results for βT vs φ. There is a clear

peak in βT at φ = 0.3901. This peak and the proximity of the changes in P2 and P4

were the primary methods by which the volume fraction φc of the phase transition

was determined.

And indeed for values of φ less than our determined transition point, visualiza-

tions of the final particle configuration appears to show an isotropic fluid. For values

of φ greater than the determined transition point, visualizations of the final particle

configuration clearly show orientational ordering. Fig. 7.6 (a) and (b) shows particle

visualizations for values less than φc and greater than φc respectively.
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Figure 7.4: Nematic order parameters P2 (cyan, squares) and P4 (magenta, circles) vs
volume fraction φ. Spontaneous change in order parameter indicate a phase
transition. For both P2 and P4 there is a marked increase at volume fraction
≈ 0.38− 0.39. For the smallest value of φ studied, the P2 = ..., whereas for
the largest value of φ, P2 = .... The upward trend of P2 and P4 indicate that
there is clearly an increase in ordering with larger values of φ.
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Figure 7.5: Isothermal Compressibility βT vs Volume fraction φ. A peak in this graph
indicates that a phase transition occurred. βT peak at φ = 0.3914 this
is ≈ 7% off from the value of the isotropic to nematic phase transition in
literature.

Figure 7.6: Examples of particle configurations visualized for a system in an isotropic
phase (a) and nematic phase (b). The chosen configuration for visualization
was the final configuration at the end of 2X107 Monte Carlo steps. The
volume fractions of the systems visualized are at 4% above and below our
determined phase transition point at φc = 0.3914
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7.5 Conclusion

The discrepancies between our data and that of the published literature could possi-

bly be the result of an extremely long equilibration time that was simply not able to

be reached with the computing resources and time available. Perhaps the unusually

long simulation times reported by Odriozola et al indicate that the system was not

in fact in equilibrium and that the equilibration time is very extensive. Any possible

reasons for this were not reported and unknown.

The problem of patchy ellipsoids undergoing an isotropic to nematic phase tran-

sition remains of interest, but at this time unsolved.
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[50] F de J Guevara-Rodŕıguez and G Odriozola. Hard ellipsoids: Analytically

approaching the exact overlap distance. The Journal of chemical physics,

135(8):084508, 2011.

[51] E Ao Guggenheim. The principle of corresponding states. The Journal of

Chemical Physics, 13(7):253–261, 1945.

[52] Florian Günther, Florian Janoschek, Stefan Frijters, and Jens Harting. Lattice

boltzmann simulations of anisotropic particles at liquid interfaces. Computers

& Fluids, 80:184–189, 2013.

[53] James D Gunton, Andrey Shiryayev, and Daniel L Pagan. Protein conden-

sation: kinetic pathways to crystallization and disease. Cambridge university

press, 2007.

[54] C Haas, J Drenth, and W William Wilson. Relation between the solubility of

proteins in aqueous solutions and the second virial coefficient of the solution.

The Journal of Physical Chemistry B, 103(14):2808–2811, 1999.

[55] T. X. Hoang, A. Trovato, F. Seno, J. R. Banavar, and A. Maritan. Proc. Natl.

Acad. Sci, 101:7960, 2004.

117



[56] Nikhil R Jana. Shape effect in nanoparticle self-assembly. Angewandte Chemie

International Edition, 43(12):1536–1540, 2004.

[57] Shan Jiang, Qian Chen, Mukta Tripathy, Erik Luijten, Kenneth S Schweizer,

and Steve Granick. Janus particle synthesis and assembly. Advanced materials,

22(10):1060–1071, 2010.

[58] Matthew R Jones, Robert J Macfarlane, Andrew E Prigodich, Pinal C Patel,

and Chad A Mirkin. Nanoparticle shape anisotropy dictates the collective

behavior of surface-bound ligands. Journal of the American Chemical Society,

133(46):18865–18869, 2011.

[59] Takashi Kato, Norihiro Mizoshita, and Kenji Kishimoto. Functional liquid-

crystalline assemblies: self-organized soft materials. Angewandte Chemie In-

ternational Edition, 45(1):38–68, 2006.

[60] Norbert Kern and Daan Frenkel. Fluid–fluid coexistence in colloidal systems

with short-ranged strongly directional attraction. The Journal of chemical

physics, 118(21):9882–9889, 2003.

[61] Norbert Kern and Daan Frenkel. Fluid–fluid coexistence in colloidal systems

with short-ranged strongly directional attraction. The Journal of chemical

physics, 118(21):9882–9889, 2003.

[62] Siddique Khan, Jason Haaga, and JD Gunton. Kinetics of aggregation of

an anisotropic model of self-assembling molecules. The Journal of chemical

physics, 143(2):024906, 2015.

[63] Jin-Woong Kim, Ryan J Larsen, and David A Weitz. Synthesis of nonspher-

ical colloidal particles with anisotropic properties. Journal of the American

Chemical Society, 128(44):14374–14377, 2006.

[64] Sebastian Kmiecik, Dominik Gront, Michal Kolinski, Lukasz Wieteska, Alek-

sandra Elzbieta Dawid, and Andrzej Kolinski. Coarse-grained protein models

and their applications. Chemical Reviews, 116(14):7898–7936, 2016.

118



[65] Tuomas PJ Knowles, Michele Vendruscolo, and Christopher M Dobson. The

amyloid state and its association with protein misfolding diseases. Nature

reviews Molecular cell biology, 15(6):384–396, 2014.

[66] Vinal V Lakhani, Feng Ding, and Nikolay V Dokholyan. Polyglutamine in-

duced misfolding of huntingtin exon1 is modulated by the flanking sequences.

PLoS computational biology, 6(4):e1000772, 2010.

[67] David Landau and Kurt Binder. A Guide to Monte Carlo Simulations in

Statistical Physics. Cambridge University Press, New York, NY, USA, 2005.

[68] Kyung Jin Lee, Jaewon Yoon, and Joerg Lahann. Recent advances

with anisotropic particles. Current opinion in colloid & interface science,

16(3):195–202, 2011.

[69] Na Li, Pengxiang Zhao, and Didier Astruc. Anisotropic gold nanoparticles:

synthesis, properties, applications, and toxicity. Angewandte Chemie Interna-

tional Edition, 53(7):1756–1789, 2014.

[70] Wei Li and James D Gunton. Self-assembly of janus ellipsoids ii: Janus prolate

spheroids. Langmuir, 29(27):8517–8523, 2013.

[71] Wei Li, Ya Liu, Genevieve Brett, and James D Gunton. Encapsulation by

janus spheroids. Soft Matter, 8(22):6027–6032, 2012.

[72] Wei Li, Donovan Ruth, James D Gunton, and Jeffrey M Rickman. Se-

lective encapsulation by janus particles. The Journal of chemical physics,

142(24):244705, 2015.

[73] Hongjun Liu, Sanat K Kumar, Francesco Sciortino, and Glenn T Evans.

Vapor-liquid coexistence of fluids with attractive patches: an application

of wertheims theory of association. The Journal of chemical physics,

130(4):044902, 2009.

[74] Ya Liu, Wei Li, Toni Perez, James D Gunton, and Genevieve Brett. Self

assembly of janus ellipsoids. Langmuir, 28(1):3–9, 2011.

119



[75] Aleksey Lomakin, Neer Asherie, and George B Benedek. Aeolotopic interac-

tions of globular proteins. Proceedings of the National Academy of Sciences,

96(17):9465–9468, 1999.

[76] Vinothan N Manoharan, Mark T Elsesser, and David J Pine. Dense packing

and symmetry in small clusters of microspheres. Science, 301(5632):483–487,

2003.

[77] Vasilios I Manousiouthakis and Michael W Deem. Strict detailed balance

is unnecessary in monte carlo simulation. The Journal of chemical physics,

110(6):2753–2756, 1999.

[78] Jennifer J McManus, Patrick Charbonneau, Emanuela Zaccarelli, and Neer

Asherie. The physics of protein self-assembly. Current Opinion in Colloid &

Interface Science, 22:73–79, 2016.

[79] E Meneses-Juarez, S Varga, P Orea, and G Odriozola. Towards understanding

the empty liquid of colloidal platelets: Vapour–liquid phase coexistence of

square-well oblate ellipsoids. Soft Matter, 9(21):5277–5284, 2013.

[80] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-

gusta H Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[81] A. Morriss-Andrews and Joan-Emma Shea. J. Phys. Chem. Lett., 5:1899,

2014.

[82] Milan Mrksich and George M Whitesides. Using self-assembled monolayers

to understand the interactions of man-made surfaces with proteins and cells.

Annual review of biophysics and biomolecular structure, 25(1):55–78, 1996.

[83] A. Mulero. Theory and Simulation of Hard-Sphere Fluids and Related Systems.

Lecture Notes in Physics. Springer Berlin Heidelberg, 2008.

120



[84] Gianmarco Munao, Zdenek Preisler, Teun Vissers, Frank Smallenburg, and

Francesco Sciortino. Cluster formation in one-patch colloids: low coverage

results. Soft Matter, 9(9):2652–2661, 2013.

[85] Arthur C Newton, Jan Groenewold, Willem K Kegel, and Peter G Bolhuis.

Rotational diffusion affects the dynamical self-assembly pathways of patchy

particles. Proceedings of the National Academy of Sciences, 112(50):15308–

15313, 2015.

[86] Trung Dac Nguyen, Eric Jankowski, and Sharon C Glotzer. Self-assembly

and reconfigurability of shape-shifting particles. ACS nano, 5(11):8892–8903,

2011.

[87] Steve O Nielsen, Carlos F Lopez, Goundla Srinivas, and Michael L Klein.

Coarse grain models and the computer simulation of soft materials. Journal

of Physics: Condensed Matter, 16(15):R481, 2004.

[88] Takasi Nisisako, Toru Torii, Takanori Takahashi, and Yoichi Takizawa. Synthe-

sis of monodisperse bicolored janus particles with electrical anisotropy using

a microfluidic co-flow system. Advanced Materials, 18(9):1152–1156, 2006.

[89] WG Noid. Perspective: Coarse-grained models for biomolecular systems. The

Journal of chemical physics, 139(9):090901, 2013.

[90] Massimo G Noro and Daan Frenkel. Extended corresponding-states behavior

for particles with variable range attractions. The Journal of Chemical Physics,

113(8):2941–2944, 2000.

[91] Gerardo Odriozola. Replica exchange monte carlo applied to hard spheres.

The Journal of chemical physics, 131(14):144107, 2009.

[92] Gerardo Odriozola. Revisiting the phase diagram of hard ellipsoids. The

Journal of chemical physics, 136(13):134505, 2012.

[93] Lars Onsager. The effects of shape on the interaction of colloidal particles.

Annals of the New York Academy of Sciences, 51(1):627–659, 1949.

121



[94] DL Pagan and JD Gunton. Phase behavior of short-range square-well model.

The Journal of chemical physics, 122(18):184515, 2005.

[95] Athanassios Z Panagiotopoulos. Direct determination of phase coexistence

properties of fluids by monte carlo simulation in a new ensemble. Molecular

Physics, 61(4):813–826, 1987.

[96] AZ Panagiotopoulos. Molecular simulation of phase coexistence: Finite-size

effects and determination of critical parameters for two-and three-dimensional

lennard-jones fluids. International journal of thermophysics, 15(6):1057–1072,

1994.

[97] Amar B Pawar and Ilona Kretzschmar. Multifunctional patchy particles by

glancing angle deposition. Langmuir, 25(16):9057–9063, 2009.

[98] Amar B Pawar and Ilona Kretzschmar. Fabrication, assembly, and application

of patchy particles. Macromolecular rapid communications, 31(2):150–168,

2010.

[99] Max F Perutz and AH Windle. Cause of neural death in neurodegenerative dis-

eases attributable to expansion of glutamine repeats. Nature, 412(6843):143–

144, 2001.
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