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Abstract

We investigate a family of pattern classification methodase for image process-
ing usingiterated classificationthat is, using a sequence of classifiers, each trained
separately on the training-data results of the precedasdier, and each guided by
the same ground truth. We apply iterated classification frave document image
content extraction: that is, the location and segmentatidrandwriting, machine-
printed text, photographs, and blank space. We try to aetheyh-accuracy pixel-
accurate segmentation: that is, each pixel in a documergdrnsaassigned a class;
there is no “region” model, and so results are not constdatnearbitrary region
shapes such as rectangles (a restriction which dominatss ahthe R&D liter-
ature). Because classification is pixel-accurate, the oumpage is “false color”,
where colors represent content classes: thus, both theamploutput of our algo-
rithms are images. We describe large-scale experimentshwhveal that iterated
classifiers can increase recall of all content types, witle lioss of precision. We
also introduce two policy changes: (1) a multi-stage voting; and (2) a scoring

policy that considers blank pixels to be a “don’t care” cla3fhese changes are



realistic and improve both recall and precision, achiedfgpo recall and 87% pre-
cision (at least) among three content types: machine;graridwriting, and pho-
tographs. We have found that iterated classification isise®$o the ground-truth
policy, such as “loose”, “tight”, and pixel-accurate padis. We have compared the
accuracy of all three truthing policies, and report thabtiguth supports higher
accuracy than loose truth, and pixel-accurate truth yildshighest accuracy. Ex-
periments on a diverse and highly challenging test set o8 hent images show
that tighter ground-truth reduces per-pixel classificagaors by 45% (from 38.9%
to 21.4%). Latest experiment on a test set of 157 documergemahows that it-
erated classifiers continue to drop per-pixel classificagoors by 24.5% (from
20.2% to 15.2%). Evidence from both experiments and sinomauggests that it-
erated classification converges to the ground-truth; we banalyzed special cases

suggesting reasons why iterated classifiers tend to coavertpe ground truth.



Principal Contributions of this

Dissertation

e We present a strategy for document image segmentation asieges of post

classifiers: “iterated classification.”

e Our iterated classification approach allows pixel-acaudssification and

minimizes arbitrary manually chosen rules.

e We have carried out large-scale experiments on classifiess implement-
ing this approach, showing that they are capable of redueingys — and,

increase both recall and precision — significantly on diffitest sets.

e We present a formal analysis of iterated classification,gammg it with “re-
peated classification,” and supported by simulations, wkisggest reasons
why it tends, over a series of classification stages, to ageMewards ground

truth.

e We compare and contrast the effects of choices of competiogng-truth

policies on classifier performance for document image iflagason.
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Iterated Classification

T’afning

Classify

o

1st-stage

Testing

3rdstage

Figure 1: Schematic methodology of iterated classificatidre same ground truth
is passed to every training phase. Classification resultpassed from one clas-
sifier to its successor for training and classification. Nbt each classifier is, in
general, different from one another.



Figure 2: Iterated classification example of an entertaimtmeagazine image. Up-
per left is the full color original image, followed by the tats of iterated classifi-
cation. The last three images are final MP, PH and HW masks.
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Chapter 1

Introduction

Image processing is signal processing for which the ingrtadiis an image, such
as photographs or video frames; the output of image praugssin be either an
image or a set of characteristics or parameters relatecetortage. Most image-
processing techniques involve treating the image as a tme+tsional signal and
applying signal-processing techniques to it.

Image segmentation is one type of image processing. Theofjsagmentation
is to simplify and/or change the representation of an image something that
is more meaningful and easier to analyze [SS01]. Commonlggaentation is
defined as a partition of the image into disjoint subsets xélpi(subareas of the
image) such that each subset is of a single type, functiocgment [HP74, HP76].

The vast and rapidly growing scale of document image catlesthas been
compellingly documented [WMB99]. Information extractioshD1] and retrieval
[MCO00] from document images is an increasingly important R&dfiat the inter-

face between document image analysis (DIA) and informagtrmeval (IR).



Our research has focused on investigating versatile ahgosi for document

image content extractigrihat is segmenting the images into machine printed text,

handwriting, photographs, etc.

Thedocument image content extractiorproblem can be defined as:

Givenan image of a document,
find subsets of pixels containing machine-printed text, harohgy

photographs, etc.

We approach this problem in its full generality, attemptiagope with the richest
diversity of documents and image types. Colleagues in ouhdafe reported pre-
liminary results in the development of highly versatile [BMOB] and voracious
[CBO06, Cas06] classifiers for this problem domain. Types of duent images that
we accept include color, grey-level, and bilevel (blackl-avhite); also, many sizes
or resolutions (digitizing spatial sampling rates); andriany of a wide range of
file formats (TIFF, JPEG, PNG, etc). We convert all image filerfats into a PNG
file in the HSL (Hue, Saturation, and Luminance) color spadeyel and greylevel
images convert to HSL images with fixed values for hue andrataum. We have
access to a database of over 9000 sample page images augtiiaifollowing
types of content: machine print (MP), handwriting (HW), psgraphs (PH), line
Art (LA), math notation (MT), maps (MA), engineering draws (ED), chemical
drawings (CD), “junk” (JK,e.g. margin and gutter noise), and blank (BL). These
include samples of each content type across a wide rangagidges (including
English, Chinese and Arabic) and image qualities and frorers¢istorical peri-
ods. The wide range of images is illustrated in Figure 3.2.

We have adopted the policy of classifying individpatels notregionsas most

8



previous document segmentation research have done. Tdigdsdhe arbitrariness
and restrictiveness of limited families of region shapes|lastrated in Figure 1.1.
We are also strongly motivated by the work of Shafait, Keyserd Breuel on pixel-
accurate representation of segmentation results [SKBO06].

In Figure 1.1, a test image is shown on the left and the restilttassification
next on the right where the content classes are shown in:aolachine print (MP)
in dark blue, handwriting (HW) in red, photographs (PH) irhligplue-green, blank
(BL) in white, and unclassified in light grey. Each image pssss a thin border
of unclassified pixels (difficult to see at this resolutionedhe fact that feature ex-
traction requires a region of a minimum size. Some otherlgpenain unclassified
due to sparsity of training data.

Both training and test datasets consist of pixels labeleld thtir ground-truth
class (one of MP, HW, PH, BL). Each pixel sample is represelnyestalar features
extracted by image processing of a small region centeretiatrpixel; these fea-
tures are discussed in detail in Section 4.4. Our work ig builtwo automatically
trainable classification technologies developed by otheatents in our lab: brute-
force 5-Nearest Neighbors (5NN) and fast approximate 5SNhgusashed k-d trees
[CBO06, Cas06, BMAQ7].

My work is built directly on the results of work by several etlresearchers in

our lab, earlier researchers’ contributions to my entirgteay are listed as below:
e Brute-force 5-Nearest Neighbors (5NN) Classifiers by Don Bxino [CB06];
e Approximate 5NN using hashed k-d trees by Matthew Casey [Gas06

¢ Random decimation by Michael Moll [BMAOQ7];
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(a) color testimage (b) “false color” classification result “im-
age”

Figure 1.1: A document image with a complex non-rectilinpage layout. Our

policy of classifying pixels has the advantage of adaptigrbitrary layouts with

non-rectilinear region shapes (here, regions with cireata boundaries). The orig-
inal image (a) is in full color. In the results of classificati(b), machine print (MP)
is dark blue, handwriting (HW) red, photographs (PH) lightdslgreen, blank (BL)

white, and unclassified pixels are shown in light grey.
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e Feature Selection Focused within Error Clusters [WB08];
e Bin decimation by Dawei Yin [YBA10, YAB10].

The remainder of this dissertation is organized in the ¥alhg manner: Chap-
ter 2 contains the literature review relevant to the moidrabf our work. Chapter
3 discusses our proposed approach and details of its schiEmeedetails of algo-
rithms and implementation is described in Chapter 4. Thestiyation of com-
peting ground truth policies are discussed in Chapter 5. &belts of most of our
experiments are discussed in Chapter 6. In Chapter 7, we pieefamal analysis
of the performance of iterated classification. Chapter 8 issaudsion of policy
changes to enhance recall. Finally Chapters 9 highlight lasiums and future

work.
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Chapter 2

Literature Review

In this Chapter we review other approaches that are relesdhetones we investi-

gated.

2.1 Cascading Classifiers

Our technique of iterated classification is similar in broadline to cascading clas-
sifiers [AK98, KA0O]. Cascading classifiers, introduced byp&}din and Kaynak,
are a sequence of classifiers ordered in terms of increasimglexity and speci-
ficity such that early classifiers are simple and general edselater ones are more
complex and specific, being localized on patterns rejecteis preceding classifier.
An example of a cascading system is as follows. The firstifiass a single layer
perceptron (SLP) and the next classifier, is a multilayecgetron (MLP), which
is trained by focusing on training patterns not covered leyShP. The remaining
few patterns will be treated as exceptions and covered bykpensive instance-

based technique.g. KNN. The cascading algorithm was tested on eight different

12



2.2. CONDITIONAL RANDOM FIELDS

databases from the UCI repository [BM], The result showed =R reached ac-
curacies of 76.4%, 89.1% and 95.2% on recognition of lettgBcal-based hand-
written digits and pen-based hand-written digits respebtj kNN increased the
accuracies to 93.4%, 96.5% and 97.7%.

Cascading algorithm has the strength of increasing accwébput the con-
comitant increase in complexity and cost. However, deteirmgi the confidence
threshold needed for each stage is heuristic. Our iterdésgitiers have these dif-
ferences with cascading classifiers: we train on the restiltfassification, not on

the original images; and we reclassify every sample, notlpeejected samples.

2.2 Conditional Random Fields

Conditional random fields [JLPO1] (CRFs) are a framework foldog proba-
bilistic models to segment and label sequence data. A CRF catelved as a
undirected graphical model that defines a single log-limkstribution over label
sequences given a particular observation sequence [Wé&lbdhally, let G = (V,E)
be a graph such that there is a nodeWcorresponding to each of the random vari-
ables representing an eleméntof Y, andX be the random variable representing
observation sequences. If each random varigblebeys the Markov property with
respect to G, thenX(Y) is a conditional random field.

Other researchers have attacked this problem of fine-glassi@ication without
restricting region shape. Nicolas and Dardeatal [SNHO7] adapted and applied
conditional random fields (CRFs) to document image segmentatn the phase

of feature extraction, they defined three feature functien®cal feature function

13



2.3. MATCHED WAVELETS

that takes only into account features extracted on the wvbddamage, a contex-
tual feature function that takes only into account the lamaiditional probability

densities on the label field in a neighborhood, and a glolsUfe functions that
extract the global label configuration over a larger neighbod than that taken by
the contextual feature function. They used Multilayer Bptmon (MLP) to model

each feature function because they are fast and provide g@oeralization prop-
erties even in high dimensional spaces. They also invastighe use of MLP as a
combination function, and used the backpropagation algarto train all the MLP

to determine the weights of each MLP.

Their insights of taking into account of neighborhood cahial information is
similar to ours. Another similarity is that they also extextfeatures on pixel level,
but they classified 3x3 region to decrease the computatibe.dfawback of their
method is the prohibitive time required for training the MiFe limitation is that
they only experimented on handwritten drafts of Flaubest,an versatile images

containing several content types. Still, we can learn frbeirtmethod.

2.3 Matched Wavelets

Kumar and Guptat al [KGK 707] used matched wavelets to develop the globally
matched wavelet filters. Their method works in two phaseghérfirst phase, the
matched wavelets scheme is extended for the segmentatidacoiment images
into text, background and picture components. They usestthisher filters, each
optimized for a two-class classification problem. In theosephase, to refine the

obtained segmentation results, they exploited the camiéxtformation by using

14



2.4. TEXTURE BASED SEGMENTATION

a Markov random field (MRF) formulation-based pixel labelsapheme; and they
attained MRF energy minimization using the alpha-expanalgaorithm proposed
in [YZ04, KZ04].

They coped with not only grey images but also color imaged clessified per-
pixel. Another similarity with our work is that they did noead any information
about the font size or format of the text in the image. Theyetésheir method
on a test set of 33 images taken from scanned images ancdediffi@ebsite. The
accuracy of their method is high — it reaches 93.8% in one efitages. The
average time of their approach on the test set is 158 secotis is considered
fast. However, because each filter they use only deals wibhctass problem, as
the number of classes increases, the number of filters isese&Ve can learn from

their approach.

2.4 Texture Based Segmentation

Etemad and Doermaretal[EDC97] proposed a texture based algorithm for layout-
independent document page segmentation. They regardedriage and graphics
regions in a document image as three classes of texturdeitrapproach a wavelet
packet tree is built for texture based multiscale featuteaekion, and six features
are selected. A multilayer neural network is trained andsige integration is uti-
lized to obtain “soft classification”, that is, image subiie can be classified as
belonging to multiple classes. Their approach performs$ evetomplex document
layouts, and is robust to noise and page skew. This textwedi@document segmen-

tation scheme may be more complex than other methods, bag @ vider range of

15



2.5. CONSTRAINED CONNECTIVITY PARADIGM

applicability. This approach has the advantage that a nityjifrits calculation and
decisions are made independently and in parallel withetaiive stages. Therefore

it can be well adapted to distributed and parallel architexct

2.5 Constrained Connectivity Paradigm

Pierre Soille introduced an image partitioning and simgifion method based on
the constrained connectivity paradigm [S0i08]. Accordiaghis paradigm, two
pixels are said to be connected if they satisfy a series o$tcaints defined in
terms of simple measures such as the maximum gray-levelréif€es over well-
defined pixel paths and regions. The resulting connectingtgtion generates a
unique partition of the image definition domain.

Soille’s method has the strength of avoiding the arbites#of region shapes,
on which aspect it is similar to our method. However, thishodtonly offers a
“low-level” answer in the sense that they generate a pantitf the image into
“puzzle pieces” that still need to be assembled for the paed detecting specific

objects defined in the context of application.

2.6 Hierarchical Threshold Segmentation

Peak and Tag presented a technique called hierarchicalhtbice segmentation
(HTS) to solve the problem of segmentation of satellite dlonages [PT94]. Their
approach applied artificial intelligence to reasoning dlibea sizes and shapes of
the emergent regions during the segmentation process. &wektures are used:

the first one is the number of pixels on the perimeter; thersgtothe ratio of the

16



2.7. MATHEMATICAL MORPHOLOGY

number of pixels inside the region to the number of boundawlp.

Their idea of split and merging of regions is relevant to otobtem in that
we need to obtain pure regions by reclassifying mixed pigéldifferent content
classes. However, their problem is simpler than ours: tlapetand the size of

clouds are restricted, while the shape and the size of imaggipns are arbitrary.

2.7 Mathematical Morphology

Since we classify every pixel, our classifiers are similami@ny image process-
ing methods, such as mathematical morphology [SS94]. Miggjical processing
refers to certain operations where an objedbitswith a structuring elemenand
thereby reduced to a more revealing shape [Jai89]. Mostmatwgical operations
can be defined in terms of two basic operati@rssionanddilation [Ser82]. Use-
ful morphological transforms that are derived from the ba&sbsion and dilation
operations includdit-miss opening closing boundary convex hyliskeletoning
thinning thickeningandpruning

Park and Lee investigated features in 1-D signal on manescaaid proved a
“causal” property of scale-spadeg( no new feature points are created as scales get
larger) for each of the morphological operations: openahgsing, and alternating
sequential filtering [PL96]. In order to prove that, theymefi the standard defini-
tion of zero-crossings so as to allow signals with a certaigudarity, and use them
to define feature points. They claimed and explained thaphwogical opening
can not satisfy causality for two-dimensional gray-scalages.

Morphological transforms are sometimes considered “level’ [Dou92b]. The

17



2.8. COMPETING GROUND-TRUTH POLICIES

gualifier “low-level” means that the implementation of tsfwrmations are served
as elementary steps when solving practical image analysideams. This does not
mean that these transformations are simple; on the cons@me of the operations
are complex. However, from a user’s perspective, thesaftremations share the

characteristics of being easily and intuitively underdtsie.

2.8 Competing Ground-Truth Policies

The availability of a good ground-truth policy for evaluatiis crucial to the suc-
cess of image analysis. Although many ground-truth pditiave been proposed,
agreement on details has been hard to reach. Neverthedess researchers agree
that for different tasks, different ways for measuring @eperformance are de-
sired [LL10]. In this section, we briefly summarize recenbales on competing
ground-truth policies.

Clavelli et al presented a nice survey of evaluation problémnghe text ex-
traction [ACL10]. Several algorithms for text extractiomrin complex color im-
ages have been described in the literature [LZ00, KA07, PGMKJIK03, RMO07].
Some papers use a subjective “eye-ball” standards for fegitoand-truthed datasets
and corresponding performance evaluation methods [LZFDHA Some other
papers rely on optical character recognition (OCR) error t@atevaluate text ex-
traction [PGM04]; of course any defects in the OCR system are also reflested i
error rate, thereby affecting the evaluation of the textastton.

Basically, text extraction approaches can be sorted intorh&o categories:

texture-based [KJKO03] and connected-component (CC) basedTRMTexture

18



2.8. COMPETING GROUND-TRUTH POLICIES

based approaches aim to locate text zones in image. Perfoenevaluation of
texture based approaches is typically based on calculttengverlapping ratio be-
tween detected text zones and the ground truth flA5$WJ06, RMO7]. This eval-
uation scheme was originally conceived for layout analgsi®rithms [LPS 05,
LPH97, AKBOG6]. Since the results of text extraction are natassarily in the form
of bounding boxes, it is difficult to quantify the effects adah step of an algo-
rithm, as pointed out in [RM07]. Connected component appresieim to produce
a pixel-level segmentation of the image by separating texts €.9. characters,
words, text-lines, etc) into CCs. The performance evaluaftwuld be able to as-
sess not only the text location step but also the post-psougsteps towards text
extraction. Nevertheless, in [RMO07] the authors have torteeebounding box
overlapping measures that assess only the text locatidorpemnce.

Clavelli et al then proposed a comprehensive framework fer éfaluation
of text extraction methods at multiple levels: pixel-legelgmentation, character
restoration, text localization, word and text-line extra.

Existing performance evaluation frameworks for text esticmm generally do
not work with pixel-accurate ground truth. Nitrogiannisa@fNGPO08] proposed
a framework for the purpose of evaluating thresholding ltesun [MBAO8] we
discussed the challenges and difficulties of defining a gaxeurate ground truth
for the purpose of document-image segmentation. We showéatge-scale ex-
periment that “tight” truth support better classificati@sult than “loose” truth. A
PARC research team agreed with this notion, and built an effichanual truthing
tool, PixLabeler [SLS09].

Utilizing PixLabeler, Barney Smith explored the varialyilihat inevitably arises
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2.8. COMPETING GROUND-TRUTH POLICIES

when images are ground truthed by humans and how this miftgutdhe evalua-
tion of automated binarization algorithms [Smil0]. A serd experiments were
run using test images of Document Image Binarization Conel QO 2009)
[GNPO09], the ground truth images used in DIBCO, the re-gramnthed images
generated at BSU, and the results of five competing binapizatigorithms sub-
mitted to DIBCO. The semi-automatically generated grounthtimnages used in
DIBCO were compared with BSU’s fully manually ground truthecages. The
two sets did not match as closely as might have been expdéte single image
that was ground truthed multiple times, a larger variapiitas observed among
different ground truthing operators. Four direct evalatmetrics were used in
this study: F-measure (FM), negative rate metric (NRM), pghkal-to-noise ratio
(PSNR) and normalized cross correlation (NCC). The varialddrasonsistent per-
formance of NRM indicates that it should not be used for thpetgf evaluation. It
was observed that the manually ground truthed images weasearage comparable
to the top DIBCO competing results. On certain images the ctingpautomatic
binarization alogrithms agreed with the DIBCO ground truthrendosely than the
BSU manual ground truthed images. Barney Smith summarized thhis may
indicate that in a contest, no differentiation among alfpons can be made above a
certain level of fit.”

We face similar issues as Barney Smith does when we use Pildrab@xtract
pixel-accurate ground truth. The first difficulty is the hization of grey images
and color images, especially when ground-truthing hartdwyrimages: it is some-
time hard to decide where the boundary between text and baxknd is. The

second is the overlapping pixels of different foregroundteat types: a typical
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2.9. SUMMARY AND DISCUSSION OF ITERATED CLASSIFIERS

case is text (machine-print or handwriting) printed on plgoaphs. One thing to
point out is that in color images.€. magazine pages), foreground pixels are not

necessarily darker than background pixels.

2.9 Summary and Discussion of Iterated Classifiers

In summary, few previous approaches attack the image sdgtitan problems
challenged by (a) versatilityi.e. content classes) and (b) arbitrariness. (re-
gion shapes and boundary shapes) against a wide range ahdotzi(.e. black &
white, grey and color), (c) in a automatic waye( trainable and data-driven). Pixel
accurate segmentation is growing in popularity becauseoida the arbitrariness
and restrictiveness of shapes. Our proposed iteratedfeiaien method gains its
strength from pixel-accurate segmentation, and has begedten an extensively

wide range of documents; and it is data driven.

21



Chapter 3

The Proposed Approach: Iterated

Classification

We explain in this Chapter the motivation for and the desigrievated classifica-
tion.

We showed in the Introduction that our document image carggtraction
(DICE) algorithm is able to avoid arbitrariness and restréstess of region shapes.
Examples of typical DICE classification errors are shown iguFé 3.1. In these
examples, the ground truth is all of one content class, baitDICE classifica-
tion “mixes” content types together. Clearly, further impement is desirable and
should be possible. For these kinds of errors, researchighg suggest image pro-
cessing technique of average voting within a window. We dlje this approach
on the grounds that it requires engineering choices ofrarygitregion shapes and
manually crafted rules such as window sizes. This obsenvaiotivates us to find

other approaches to improve the accuracy yielded by DICHi#hgo.
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@) (b)

() (d)

Figure 3.1: Examples of DICE classification errors. Exampleshows clusters
of HW pixels that are heavily misclassified as MP. Examplestigws HW pixels

misclassified as both MP and PH. Example (c) shows MP pixgilyi misclassi-

fied as both HW and PH. Example (d) shows PH pixels locatedearcémter of a

photo are sparsely misclassified as MP; and those lying oear the boundaries
are heavily misclassified as MP. Example (e) shows MP pixelarge font size

letters are heavily misclassified as PH, except for thosenithe boundaries.
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3.1. POST-CLASSIFICATION

Basically, we can approach the problem from three directions is to choose
better features, which Sui-Yu Wang had investigated in ésearch work [WBO08];
another is to improve the algorithm of the classifiers, widawei Yin has investi-
gated [YBA10, YAB10]; a third is to use post-classificatiomhieh is my principal

contribution, and will be introduced in detail in this Chapte

3.1 Post-Classification

We decided to choose post-classification as our approadivéoreasons. The first
reason is that we want to avoid restricting arbitrary regibapes; therefore, we
want the post-processing method to continue to producé-po@irate results. The
second reason is that we want to avoid unsuitable extra rha®eessions when

recomputing pixel-accurate content classes. Since we th@npost-processing
method to be scalable to large datasets, we want it to regsifew engineering

intervention as possible. In another word, we want this wetb be data-driven as
much as possible.

We define the post-classification problem as follows:

Given pixel-accurate classification results for a document ienag

find: a reassigned labeling that yield higher accuracy.

We have designed a trainable post-classifier that operatéseooutput of the
preceding classifier, guided by the same ground truth. Fhate want the behavior
of the system to be determined by training data alone. Ofseowe can not escape
all engineering choice®.g. we have to choose features, and the size of windows

within which features are extracted. A diagram of the pdassifier is shown in
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3.1. POST-CLASSIFICATION

af

Figure 3.2: Examples of documents that are tested in ourgmests.
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3.1. POST-CLASSIFICATION

Figure 3.3: Examples of “false-color” classification resudf the wide range of
documents that are tested in our expsg’ments.



3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

Figure 3.4.

3.2 Repeated Classification Trained Only on First Stage
Results

As discussed in section 3.1, we have built a post-classifigr operates on the
output of the DICE classifier, guided by the same ground tiank, reclassifies the
test images. The post-classifier takes “false color” imagesput and yields also
“false color” images as output. This characteristic sutgge$o us that we repeat
the post-classification process: put the output of the plasssifier back as its input,
as perform another round of classification. Of course thiegss can be repeated
indefinitely: we call this approacRepeated ClassificatiofiRC). We will call the
output of the DICE classifier thiérst stageoutput; the output of the immediately
following post-classifier is called theecond stageutput, followed by thethird
stageoutput, etc. Note that the second stage classifier and titedtaige classifier
are the same, as well as the following stage classifiers. §raia of repeated
classification is shown in Figure 3.5.

Repeated classifier can sometimes succeed in fixing errarsdeolier stage.
An example of improved results on handwriting is shown inuFéy3.6. The test
image contains only handwriting text. In stage 1, we can lsaerhany pixels are
misclassified as MP, especially these lying on the strokexst g their surrounding
neighbors are classified as HW. In stage 2, we can see therdwdtMP shrink,
that is, many pixels that are classified as MP in stage 1 atassfied as HW.

This correction continues in following stages. By stage Bt all MP pixels are
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

DICE Classification
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(b) Post-Classification

Figure 3.4: Schematic methodology of post-classificatioio enable post-
classification, DICE classifier is modified in the way that nolyahe test images
but also the training images are classified. The resultagaith the ground truth,
are then passed to the post-classifier as input.
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

Post-Classification
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Figure 3.5: Schematic Methodology of repeated classifinatiOn the top is the
post-classifier, which operates on the output of DICE clagsifdn the bottom is
the repeated classifier, which is trained on the results efpibst-classifier. The
output of the post-classifier is put back as its input, anthestfied repeatedly.
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

corrected as HW. Note that as MP pixels are fixed, BL pixelsdhaimisclassified
as HW are also fixed gradually. Repeated classification akmsets of pixels that
are dominated by one content (here, HW) class to expand.

However, repeated classification can also fail; especialijlows subsets of
pixels that are dominated by incorrect content classes parek An example of
incorrect expansion of handwriting is shown in Figure 317 stage 1, we can see
that most pixels lying within the text zone are correctlyssified as MP. A few
pixels within the text zone are misclassified as HW; this tgperror happens to
occur more severely on the boundaries of the text zone. Therbcand right
margins of the image, which are blank, are erroneously datathby HW. In stage
2, we can see that HW pixels within the text decrease. HowdweHW clusters on
the boundaries and margins expand. This continues in folpgtages. By stage 5,
almost all HW pixels well inside the text are corrected as liR;the HW clusters
around the edge have expanded significantly. (Pixels indhare graphic located
at the beginning of the text are misclassified MP almost alkitme.)

This expansion of erroneous clusters suggested to us theated classifica-
tion is unstable in improving the results. It can reduce thers in earlier stages,
but might increase the error in later stages. After carefah@ning of the “false-
color” images in the test set, and comparing them with thaitrg set, we noticed
that repeated classifiers may not improve at all stages. Rapekassifiers implic-
itly assume that the errors made by the DICE classifier ocawhanged, again
and again at every stage of post-classification. If thisragsion were correct, re-
peatedly applying the same post-classifier would work firedlatages. However,

this assumption does not hold in reality. Post-classifiarsmake different types
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

(a) Test Image

M W el

(d) Stage 3 (e) Stage 4 (f) Stage 5

-

Figure 3.6: lllustration of repeated classification impngvon handwriting. The
test image contains only handwriting text. In stage 1, wessnthat many pixels
are misclassified as MP, especially these lying on the stokésst of their sur-
rounding neighbors are classified as HW. In stage 2, we cathsezusters of MP
shrink, that is, many pixels that are classified as MP in sfagee reclassified as
HW. This correction continues in following stages. By stagalfost all MP pixels
are corrected as HW.
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

AD SANCTIS

SISKVM DOMINVM PAV.
Ly 1in S imys,

adliberale tudium philofophiz excitentur, amen propter

Lehigh University Digital Library.

(a) TestImage

(d) Stage 3 (e) Stage 4 (f) Stage 5

Figure 3.7: lllustration of repeated classification expagdhandwriting erro-
neously. The test image contains only machine-print textsthge 1, we can see
that most pixels lying within the text zone are correctlyssified as MP. A few
pixels within the text zone are misclassified as HW. This tgferror occurs more
severely on the boundaries of the text zone, and the bottamigim margins of the
image, which are blank, are erroneously dominated by HWdges2, we can see
that HW pixels within the text decrease. However, the HW telisson the bound-
aries and margins expand. This continues in following ftade stage 5, almost
all HW pixels within the text are corrected as MP; and the H\Wstdrs expand
significantly.
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3.3. ITERATED CLASSIFICATION

of errors at each stage. Thus repeatedly classifying theniege using the same
post-classifier maybe unable to adjust to the changingtgtuarhis thought moti-
vates us to try re-training the classifier again at each stagkleads to the design

of iterated classification.

3.3 lterated Classification

In previous section, we introduced repeated classificatio trained the second-
stage classifier using the first-stage classification resaftd continued using the
same classifier for all following stages of classificatioheTlaw of repeated classi-
fication inspired us to triteratedclassification: a sequence of post-classifiers, each
trained separately on the training-data results of itsquigw classifier, guided, as
always, by ground truth. We will call the initial stage cldies (the DICE classi-
fier) thefirst stageclassifier, the immediately following post-classifier ig ttalled
the second stagelassifier, followed by thé¢hird stageclassifier, etc. A diagram of
iterated classification is shown in Figure 3.8.

Our strategy has been to extract features from small logadms, e.g. circular
windows of radius 9, so that no single classification stafgctef a large area. It it
worth emphasizing that we train each of the post-classiigpsrately on the results
from the training set of the previous stage. As we will shdws strategy appears
to prevent the clusters of wrongly classified pixel to expamuiile allowing those
dominated by the correct class to expand slowly.

For the classification technology, we use approximate 5NiNgusashed k-d

trees [Cas06]. The features for the post-classifiers aresied in Section 4.5.
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3.3. ITERATED CLASSIFICATION

Iterated Classification
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Figure 3.8: Schematic methodology of iterated classificatiThe same ground
truth is passed to every training phase. Classification tesué passed from one
classifier to its successor for training and classificati@ke the 2nd-stage classifier
for example, the classifier is trained on ground truth anditbestage classification
results of the training images, and classifies both theitrgiand test images. Note

that each classifier is, in general, different from one amoth
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Chapter 4

Classification Algorithms

In this Chapter, we briefly introduce two automatically tedbfe classification tech-
nologies, developed by other students in our lab: bruteeférNearest Neighbors
(kNN) and fast approximate kNN using hashed k-d trees. Werittesin detail the

features for DICE and iterated classification.

4.1 Brute-force k-Nearest Neighbors

We have implemented 5NN under the Infinity Norm using a bfatee algorithm.
We regard this as our “gold standard” and compare otherrféstieusually less

accurate methods to it.

4.2 Hashed k-D Tree Classifier

We have implemented our non-adaptive k-D tree classifierguked cuts, sped

up by hashing bit-interleaved addresses [CB06] [Cas06], whink up to several
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4.2. HASHED K-D TREE CLASSIFIER

hundred times faster than brute-force 5NN with only a snaak lin accuracy in this
domain. The experimental results described here wereathiesing this classifier,
hashing 24 bits of bit-interleaved address. We also speg liyua technique of
“inverted classification” (“filtering” in [Cas06]), in whiclest data are read first
and hashed into the k-D tree; as the training data is read, tdat hashes to an
empty cell {.e. one that contains no test data) can be discarded, while thase
hash into occupied cells are of course used to “annotate’®legant testing points
with their class and distance (each testing point owningstaot up tok nearest
neighbors so far). The principal advantage of this techmigtthat it allows us to
constrain memory usage €(m), wherem is the testing set size, with no sacrifice
in accuracy and with the same computational cost (measnrashnbers of distance
computations). As test and training sets grow, invertedsifi@ation scales well
since the test set can, with little or no loss in accuracypieiato separate test sets
as needed to maintain memory footprints small enough taatoashing.

Since inverted classification allowed us to avoid thrashotgserved runtime
was roughly proportional to the number of distance comparnatperformed. For
example, given a testing set of 3.3 million samples and aitrgiset of 35,247 sam-
ples (this training set is small due to the decimation). a@efarce kNN classifier
would perform over 110 billion computations, whereas thehinag classifier per-
formed only 7.5 billion, a speed-up of a factor of 15.5. THlsvaed the classifier
to run to completion in 47 CPU minutes, permitting frequemezxments which
allowed a more thorough investigation of effective combovss of features. These

results were typical of our experiments with the hashingited classifier.
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4.3. DECIMATION OF TRAINING DATA

4.3 Decimation of Training Data

Nearest Neighbor classification can be sped up simply byoahdthrowing away
most of the training pixels. Experiments carried out by MiehMoll and reported
in [BMAOQ7], showed that the loss of accuracy was significantabgeptable. to
support that this sacrificed an acceptable accuracy: Figydrshows, on the left, a
test page image and, on the right, five results of classificgtising the brute-force
5NN classifier) with fewer and fewer training samples. Witdeximation factor
of 1000 (999 out of 1000 pixels omitted), per-pixel accurheg fallen from 80%
to 67% with a speed-up of a factor of over 350. As we scaled ugpperiments,
we increased the decimation factor to maintain an acceptabte-off between
accuracy and run-time. In experiments for iterated clasdifin, when the size of

the training set reached 33 images, we chose a decimatitor f2©000.

4.4 Feature Extraction for DICE

Each pixel (the “target pixel”) is represented by scalatuezs extracted by image
processing of a small region centered on that pixel.

We have investigated more than 60 features, all extractad the luminosity
channel (ignoring the hue and saturation channels): wetseléwenty-six of these
for the experiments reported here, for reasons summaraedbAll feature values

are scaled to lie within the (convenient but otherwise &aby) integer range 0-255.

e Average Region Luminosity(a group of four features): the average luminos-
ity values of NxN-subregions centered on the target pi@i §=1,3,9,27).

The algorithm makes five successive passes. In the firstipagsply copies
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4.4. FEATURE EXTRACTION FOR DICE

i 2 | | 3'|
L |

Figure 4.1: The results of classifying an image when dedigahe training file
used for classification. The firstimage on the left is the seimage and from left
to right after that are the results of using every traininggp(80.4% correct), every
10th pixel (72.9%, speedup of 7.9x), every 100th pixel (¥8.87.9x), every 500th
pixel (70.0%, 212.5x), and every 1000th pixel (66.6%, 3&%1.2Machine print
and handwriting segmentation quality is generally goodhelieugh the number of
unclassified (grey) pixels increases noticeably; but cginfis between handwriting
and photographs are sometimes glaring.
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4.4. FEATURE EXTRACTION FOR DICE

all the pixel luminosity values in an array. In the secondtigh fourth
passes, it calculates the sum of the luminosity values meéatethe suc-
cessively larger boxes by taking the sums of the values Imetda smaller
boxes (so 9 smaller boxes are added to create an larger aeglapass). A
final pass outputs the values to the feature array, dividiegvalues in each

of the boxes by the number of pixels summed in that box.

On small, relatively specialized, training and test datgtbese features dis-
criminated handwriting from machine print well, but theffeetiveness less-
ened as the training set grew and diversified. Unsurprigipgrhaps, the

larger the NxN region the less discriminating they were.

e Region Luminosity Difference (a group of sixteen features): each is the
difference in total luminosity between halves of NxN regiaut in four di-

rections: horizontal, vertical, and the two diagonals.

These are effective in discriminating between BL (blank) atiter content

classes, with the (still somewhat mysterious) exceptidd\Wf(handwriting).

The following five groups of features extract features fraraight lines of pix-
els centered on the target pixel, at each of the four direstidhe length of these
lines (in pixels) is an essential parameter of course: vgakk specifics of these

choices at the end of this section.

e Average Line Luminosity: the average of luminosity values along the line.

These assist in discriminating between handwriting anchinaqorint. How-
ever, the diagonal features proved less effective thandhedntal and verti-

cal features and were discarded.
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4.4. FEATURE EXTRACTION FOR DICE

e Line Luminosity Average Difference: The average of absolute differences

of luminosity between adjacent pairs of pixels along the.lin

The diagonal variants of these proved to be effective eaflg@n combina-
tion with the average line luminosity features. But the hamtal and vertical

variants were less effective and were discarded,

e Line Luminosity Max Difference: the maximum among absolute differ-

ences in luminosity between each pair of adjacent pixelsgalbe line.

These are effective especially in combination with “Avexdgne Luminos-
ity” and “Line Luminosity Average Difference”. They helpstiriminate BL

(blank) from other classes.

¢ Distance to Max-difference Pair. the distance from the target pixel to the

closest pair of pixels that possess a maximum luminosifemdihce.

e Distance to Max-difference Pixel the distance from the target pixel to the
closest one with a maximum absolute luminosity differendth whe target
pixel. Early experiments suggested that the two groupsaitifes (immedi-
ately above) were not helpful, but they improved when reVise discussed

next.

e Revised Distance to Max-difference Pair these are features the same as
above computed in eight directions radiating out from tigewpixel, rather

than in four directions centered on it.

o Revised Distance to Max-difference Pixelsame revision as discussed above.
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4.4. FEATURE EXTRACTION FOR DICE

These two revised features were not effective unless uggsdhter. Used to-
gether, they were the best features for discriminating betwPH and other

classes.

¢ Difference Between Two Distancesthese are the differences between cor-
responding features “Revised Distance to Max-differende Bad “Revised
Distance to Max-difference Pixel”. They did not assist siisation (and in
fact increased the error rate). We tried other ways to coentiiase two fea-
tures, including encoding the luminosity max-differenemithe distance by

multiplication, but there was no improvement.

4.4.1 Feature Combination

Having tested many (but, of course, not all possible) coatimns and variations of

the features described above, we gradually converged doltbeing twenty-six:
Region luminosity average: 1x1 (pixel) region;

Line luminosity average: horizontal and vertical, line-length 25 pix-

els;
Line average difference: line-length 25;
Line luminosity average difference: diagonals only; line-length 25;
Line luminosity max difference: four directions, line-length 41;

Revised distance to max-difference pair:eight directions, line-length

41: and

Revised distance to max-difference pixeleight directions, line-length

41.
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4.5. FEATURE EXTRACTION FOR ITERATED CLASSIFIERS

4.5 Feature Extraction for Iterated Classifiers

Each pixel (the “target pixel”) sample is represented byassdaatures extracted by

image processing of a small region centered on that pixel[BMA

e Pixel Class: This feature is the content type value assigned by the earlie
stage classifier to the pixel. Presently there are four conypes:HW, MP,

PH and BL.

e Disk Class: This is a group of four features: each is the total numbendlpi
of a special content type within the circle of radius 5 cesdeon the target

pixel.

¢ Disk Edge Detection:A group of thirty-two features: each is the total num-
ber of pixels of a content type within each half of circle aditgs 5 cut in four

directions: horizontal, vertical, and the two diagonals.

e Disk Class Euclidean Distance SumA group of four features: each is the
sum of all distances from the target pixel to pixels of a contgpe within a

circle of radius 6.

¢ Pixel Content Type: A group of four features: extension of Pixel Class fea-
ture. For example, if the preceding classifier label thelpgii@, then the MP
feature is set to a non-zero value (here we use 186 based @xpenments

result), otherwise it is set to zero.

e Encoded Disk Edge Detection:A group of sixteen features: extension of
Box Edge Detection feature, each is the difference betweerhalves of the

circle radius 5.
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4.6. SYSTEMATIC EXPLORATION OF SCALE OF FEATURES

3 5 7 9 11 13
2nd-stage| 0.162| 0.158| 0.148| 0.151| 0.166| 0.174
3rd-stage | 0.144| 0.141| 0.138| 0.137| 0.143| 0.160
4th-stage | 0.136| 0.135| 0.133| 0.134| 0.141| 0.150

Table 4.1: Error rates for training set of each stage usifigrdnt scale of features,
that is in radius of 3, 5, 7, 9, 11 and 13 pixels. Guided by tlssification results
for the training set, we chose radius of 7 for the second st&gsification, 9 for
the 3rd-stage, and 7 for the 4th-stage.

e Neighbor Disk Class: A group of sixteen features: extension of Box Class

feature, each is extracted from the circular regions taigeto the center

circle in the direction of horizontal and vertical.

4.6 Systematic Exploration of Scale of Features

In earlier experiments, we extracted features from cirofesadius 5 pixels. Our
experiment show that the classification results are seadiithe radius. We have
explored this sensitivity over a range of scales for eacbsdiar stage separately.
The experiments show that the best scale of features chamgestage to stage,
as shown in Figure 4.1. Guided by the classification resaltghie training set, we
chose radius of 7 for the second stage classification, 9 éBtd-stage, and 7 for
the 4th-stage. The differences are not always statistisahificant, but it is clear

that the sweet spot is somewhere between 6 and 10 pixelsradithese features.
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Chapter 5

Investigation of Ground-Truth

Policies

Discussions of methods for obtaining ground truth to suppiel-accurate seg-
mentations are reported in [AGB07, AKB06, PCHH93, SS03]. In AB] we
showed in large-scale experiments that the tighter (theerpotel-accurate) the
truth, the better the resulting classifiers. Further disicuson pixel-accurate ground-
truth policies are recently reported in [ACL10, Smi10, CAB1R]PARC research
team agreed [SLS09] with this observation, and built aniefiicmanual truthing
tool, PixLabeler. We have applied this to our full-color agr@yscale images, and

compared it to earlier truthing policies we used.

5.1 What to Ground Truth?

The initial discussion of our ground-truth policy beganiwithat classes we wanted

to classify. In the context of our problem of document imagetent extraction, we
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5.1. WHAT TO GROUND TRUTH?

started with this initial list of content types: machinerped text (MP), handwriting
(HW), photograph (PH), blank (BL), line art (LA), math (MT), g@neering draw-
ings (ED), chemical diagrams (CD), maps (MP) and junk (JK).uaked this list to
drive a systematic collection of document images for oualbase, containing each
content type in bitonal, greyscale and color formats, inreetaof languages (when
applicable). However, for initial testing of our classifige tested on a smaller set
of content types and we realized that some of these classegpassibly subsets of
others. Therefore, initial ground truth only labeled MP, H"A and BL content.
As mentioned previously, manual ground truthing makeslgxeurate ground
truth infeasible, leading to a policy decision of what tossidy. While we use
overlapping rectangles, this also applies to any othermsehtbat uses polygons or
any other shapes. Considering any form of text, handwrittemachine printed,
the next level up from pixel accurate ground truth would béhatcharacter level,
then the line level and finally the paragraph level. Sincedaassifier is labeling
each pixel based on a small window around each pixel, cordbagain with the
infeasibility of manual labor, we chose not to pursue chardevel ground truth.
Character level zoning also presents a challenge in detergmvhere a character
begins and ends, as discussed in [KC94]. Some of the whitéspixbetween and
around the black pixels of a character must also be considead of a character
and sometimes these regions may overlap. We chose to grouthcat the para-
graph level initially as this was the most efficient poliané wise and as we were
improving the classifier this yielded acceptable results. WMl discuss alternatives

to this policy decision in later sections.
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5.2 Blank Space

As mentioned before, we chose to treat blank space as a ucigs® and there-
fore we must also ground truth blank space like any otheresdrdlass. An initial
idea was to label any pixel not explicitly “zoned” by the ugeour tool as blank,
however there were multiple reasons for not making thiscgolsome documents
may have types of content that we are currently not testirgves would like to
intentionally not ground truth or there may be ambiguousam@ the document
that contain multiple content types or that the user is unsfihow to label. For
the purpose of training data, these pixels can be left utddbend will be ignored
in training the classifier. Finally, since we treat blank@pas an equal class to the
other classes we should use the same policy for obtaininghgrsuthed data as we
do for the other classes.

Our ground-truth policy however, created some problemstorclassifier in
classifying blank space. At any level other than pixel aataground truth, some
amount of blank space will be included in the areas zonedlss abntent types
(i.e. the white space between lines of text, the white space inkiléetter o, etc).
If ground truth is particularly sloppy or loose, this carratuce what appears to be
noise in areas classified as blank space. Experiments witblassifier show that
this problem occurs most frequently with confusing blankafor handwriting
and in more limited cases also for machine print. This is dué& more free form
layout of handwriting samples, compared to the more uniftayout of machine
print. Experiments discussed later confirm the idea thaeroareful, tighter ground

truth of handwriting samples, lead to less mistakes in flaeg blank space.
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5.3 Overlapping Content

One problem that we have dealt with from the beginning of thssertation and
have yet to find a satisfying policy for is that of how to zoneas that contain
overlapping content areas. Part of our research goal isfdazlassifier to do well on
images with difficult, complex layouts. This includes imagieat have complicated
backgrounds, possibly photographs, with machine print the@m. Other common
forms of this problem are machine printed documents witldiaaiting annotations.
Our policy has been to try to as tightly as possible zone thegfound pixels
(the MP over the PH, the HW over the MP) before labeling thekgemund pix-
els. However, since we are not adopting a pixel-accuratengraruth policy this
has the potential of introducing some “noise™ pixels to tireund truth for that
class. Current experiments have not shown any serious pnghbigth this policy
for the classifier, however more experiments should be octeduusing training
sets consisting of much larger amounts of overlapping dataalternative policy
would be to assign two class labels to overlapping areas xNeraments have been

completed with this policy yet.

5.4 Machine Print in Photographs

A special form of the above problem is specifically how to Handachine print
and photographs when they overlap. The above mentionedmearha magazine
article with a photograph as background with a story prirdeer it or a caption
on a photograph seems straight forward. We try to tightlyezthe MP and then

zone the PH around it. However, a unique case is that of a ghagib that contains
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5.5. DIFFICULT SHAPES

machine print. For example, an image taken from a handhetkeof a street
sign or even a newspaper article with a photograph of a félgitzeyer showing his
name on his jersey. While the case of the street sign in thearohtpined from a
digital camera seems straight forward, to label the text ashime print it quickly
becomes less clear if the street sign is not the focus of theoghaph or the case of
the newspaper article with a photograph. In this case weistemsly do not label

the text as machine print.

5.5 Difficult Shapes

We chose to use overlapping rectangles for our zoning to nmagkementation of
our zoning tool simpler, as well as simplifying the zoninggess for the user. Many
of the documents we collected to train and test on contaiicdif, non-rectangular
layouts. Even with a tool for zoning that uses polygons edtef simple rectangles
would have an imperfect representation of the actual layathie ground truth. The
policy we use for these areas are trying to capture as mudteafdtail and as little
noise as possible using many small rectangles. This is wmfately a very time
consuming process for the person doing the zoning, and &idssll imprecise.
An alternative in our research program is to leave imageshils out of the training
set, as our classifier does not learn from the layout of a gagdrom the content
of a page. However, this is obviously not an acceptable pdbc all research.
This also creates an evaluation problem that will be disdisster, as it will force
pages with these difficult layouts to be scored worse thangheuld be using some

evaluation metrics.
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5.6 The Effect of Tighter Zoning

Given the problems encountered with using a non-pixeldatelground-truth pol-
icy for a pixel level classifier, we began to experiment wisting a tighter ground-
truth policy to try and reduce errors to improve overall slisation. As discussed
and illustrated before, our initial ground-truth policyswdesigned to drive develop-
ment of the classifier and running experiments with verydargmbers of training
and test images. This required a ground-truth policy that m@& extremely labor
intensive and relatively simple for new people in our lab tloat. However, as
performance of the classifier became more stable and tesizeststarted growing
less slowly, we realized one area of our program that coulerially lead to great

increases in performance was our ground-truth policy.

5.7 Ground-truth Policies

In this section, we discuss the differences among threengrtruth policies.

We have developed a web-based user interface to zone dotimmasyes in
PNG format, using overlapped rectangles. Using this, wecozgoture loose and
tight ground truth. Loose ground truth is obtained by swegpéectangles to enclose
entire block of a particular content type. This policy irtably encloses blank space
that is inter-column, inter-paragraph, at the end of a paggty Therefore, loose
ground-truthing is an efficient manual task. Tight groundhrequires more care
to enclose individual textlines, sometime even hand-emidtrokes or large letters.
As a result, tens of times more rectangles, need to be swesl-&curate truth,

in which only foreground pixels are labeled, is obtained pplging the PARC
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PixLabeler [SLS09] tool; in our experience this tool wastéasand easier than

loose truthing methods.

5.8 Morphological Expansions of Pixel-accurate Truth

To better understand the effectiveness of pixel-accunatergl truth, we generated
morphological expansions on it. We expanded foregrounelpixy applying mor-
phological dilation operations [Dou92a] with a circulasklistructuring element,
that is, background pixels within a distand®f a foreground pixel are labeled as
the same class as the foreground pixel. This choice of a@raisk structuring el-
ement is justified by the notion that a circle does not impBshtio any particular
directions. We have generated four morphological expaissan pixel-accurate
ground truth, using Matlap), labeled by radii, in pixels, of the diskst=1, d= 2;
d= 4, andd=8. The choice of any specific radii does not matter much hese,
long as there are several of them and obtained expansiossi@@vhere between

pixel-accurate and tight truth.

5.9 Experiment Design

We have compared the effectiveness of loose and tight grisutidin iterated clas-
sification [AB08], and found that tight truth reduces pergbiglassification errors
by 45% (from 38.9% to 21.4%). Now we add experiments on paxedrate ground
truth and its morphological expansions. We use a trainings83 images and a
distinct test set of 83 images, which are the same images acin§AB08]. To-

gether the two sets contain machine-print (MP), handvgi(HW), photograph
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(PH) and blank (“don’t care”) (BL). The training data was deated randomly by
selecting one out of every 9000th training sample.

We evaluated performance using per-pixel accuracy, poecend recall. Per-
pixel accuracy is the fraction of all pixels in the documenage that are correctly
classified. Unclassified pixels are counted as incorre@cifion is defined as the
number of pixels correctly classified as belonging to a pesttlass divided by the
total number of pixels classified as belonging to the pasitiass. Recall is defined
as the number of pixels correctly classified as belonginggositive class divided
by the total number of pixels that actually belong to the fiesiclass.

For each truthing policy, we trained a classifier using thiadl lof ground truth,

then tested, and evaluated performance on the same typewfdjtruth.

5.10 Experimental Results

In this section, experiments comparing different groundktpolicies are presented.
The results of loose, tight and pixel-accurate truth arevshim the form of
per-pixel error rate in Figure 5.1(a), which indicates tima¢ach of the classifica-
tion stages, total error rate (averaging over all classesjedses as the truth goes
from “loose” to “tight”, and finally to pixel-accurate (viai®.abeler). Notice that
the drop of error rate from tight to pixel-accurate is legggicant than that from
loose to tight. The figure also show that the error rate deseemonotonically as a
function of stages. For the fourth stage, the differencevben error rates of tight
and pixel-accurate is moderate. It seems like a clear wipifai-accurate ground

truth.
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Total Per-Pixel Error Rate as a Function of Stages
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Figure 5.1: On the left, (a) shows the total per-pixel eragerof loose, tight and
pixel-accurate ground truth as a function of stages oftiéeralassification. In each
stage, the error rate decreases as the truth goes from lmaght, and finally to
pixel-accurate. For each ground-truth policy, the erroe @so decreases mono-
tonically as a function of stages. On the right, (b) shows#uwall for each content
class as a function of truthing policy: pixel-accurate (J=@orphological expan-
sions by d=1,2,4,8; tight; loose.
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Precision of Different Ground-Truths
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Figure 5.2: On the left, (a) shows the precision for eacheruntlass as a function
of truthing policy, including morphological expansions pixel-accurate ground
truth. Pixel-accurate ground truth is represented by “d=€I¥i the right, (b) shows
the number of pixels in each content class by truthing policy
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However, a closer look at each content class reveals prabl&or one thing,
the overall error rate drops only slightly (from 16% to 14%9Qrh tight to pixel-
accurate. More seriously, some classes suffer a catagtratihn recall in the final
move to pixel-accurate ground truth: for examples, hantilvgirecall drops from
70% to 2%.

The results of precision and recall for morphological exgpaims on pixel-accurate
truth, along with loose, tight and pixel-accurate, are simowFigure 5.1(b), Figure
5.2(a) and Figure 5.2(b). In all the three figures, pixelaate truth is labeled as
“d=0".

In Figure 5.1(b), the recall on handwriting (HW) increasethaixel-accurate
truth expanded, and reaches the highest with tight truthe réleall on machine-
print (MP) and photograph (PH) also increases as pixel+ateuruth is expanded
(i.e. d=1,2,4,8). Figure 5.1(b) also suggests that one of thd-po®urate truth’s
morphological expansions, labeled as “d=8", yields ressilnilar to tight truth.

In Figure 5.2(a), we can see that some morphological expasgiield higher
precision on machine-print (MP) and photograph (PH) thaelpaccurate ground
truth. Note that precision on handwriting (HW) increases atonically from pixel-
accurate truth to the morphological expansion of “d=8". Ufey(a) also suggests
that the morphological expansion of “d=8" is nearly equavlto tight truth on MP
and PH. In Figure 5.2(b), notice that the number of MP pixetseases the most in
both quantity and percentage, and HW the least.

Consider this scenario: given a particular fixed test pohcy] several compet-

ing training policies, it is conceivable that one of thesdéring policies would score
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the best. It would be interesting to see which training goliins such a competi-
tion. Since we have several ground truth policies availadewell as the results,
we computed the scores and the results are shown in Tabl&lbté.that it makes
sense to read the table row by row, that is, given a test pdimy well and different

the classifier performs when trained with different tragnpolicies. When read col-
umn by column, the table presents the results with diffemegining, that is, given
the output of particular classifier, how it scores when eat#d by different ground
truth. This does not make much sense though. This tableatetidhat for each
test policy, the highest accuracy is achieved by using thmegaolicy for training. It

also suggests that the more similar the training policy théaest policy, the higher

the accuracy.

Training Policies

Pixel-Accurate | W=1 | W=2 | W=4 | W=8 | Tight | Loose

i Pixel-Accurate 0.864 0.833 | 0.804 | 0.759 | 0.645 | 0.637 | 0.440

a w=1 0.823 0.832 | 0.826 | 0.795| 0.695 | 0.686 | 0.495

© W=2 0.782 0.820 | 0.831 | 0.815| 0.730 | 0.719 | 0.534

ZO W=4 0.734 0.790 | 0.817 | 0.825 | 0.767 | 0.754 | 0.578

7 W=8 0.616 0.680 | 0.723 | 0.770 | 0.836 | 0.817 | 0.681

° Tight 0.623 0.677 ] 0.720| 0.761] 0.822 | 0.836 | 0.685

| Loose 0.349 0.406 | 0.453 | 0.505 | 0.630 | 0.639 | 0.699
T

Table 5.1: Row entries represent test policies, and colurtrresmepresent training
polices. For example, the numbers shown in the first row acaracies of classi-
fiers trained on different GT policies, and evaluated wittepaccurate GT. In each
row, the highest accuracy is shown in bold. This table ingisahat for each test
policy, the highest accuracy is achieved by using the sartieygor training. It
also suggests that the each test policy, the more simildredtr&ining policy to the
test, the higher the accuracy.

So far we compared the error rates, precision and recalffefeint ground-truth
policies; and all results are from the fourth stage. We ase iaterested to examine
the effects of different ground-truth policies have onated classification. The

results, in the form of error rate as a function of stageserhied classification,
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1st-stage | 2nd-stage| 3rd-stage | 4th-stage
Pixel-Accurate | 0.137 0.132 0.133 0.130
d=1 0.171 0.154 0.168 0.168
d=2 0.188 0.164 0.164 0.169
d=4 0.211 0.173 0.178 0.175
d=8 0.220 0.168 0.161 0.164
Tight 0.214 0.173 0.165 0.164
Loose 0.389 0.327 0.313 0.301

Table 5.2: Error rate as a function of iterated classificasitages, and using differ-
ent ground-truth policies. Generally, iterated classiftcaalways reduce the error
rate for all ground-truth policies. For ground truth of “d=the error rate decreases
by 1.7% from the 1st stage to the 2nd stage, but then bouncisblyal.4%. For
ground truth of “d=8", the error rate decreases from 22.0%8a1%, a drop of
25.5%, which is the most significant drop of all ground-trpdticies.

are shown in Table 5.2 and Figure 5.3. For all ground-truticigs, the error rate
is reduced from the first stage to the fourth stage, altholways monotonically.
This suggests thakerated classifiers yield no worse results than the DICE dfass
no matter what the ground-truth policy. islotice that the drop of error rate is slight
for pixel-accurate ground truth and its expansion of “d=tlh& drop becomes more

significant as the ground truth expands, the drop reachendesignificant when

the ground truth is loose.

5.11 Problems with Pixel-Accurate Ground Truth

Several things might have caused the problem we saw with-po@irate ground
truth: (1) imbalance in the training set (handwriting pscelere significantly fewer

than others); (2) confusion between foreground pixels auk@round pixels that
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Error Rate as a Function of Stages
of Different Ground-Truth Policies

03 e —— wp==Dixe|-Arcurate
- == 1
=2

e = 4

Error Rate

—= g

weilieTightt

01 w1 QOFE

Stage 1 Stage I Stage 3 Siage 4

Figure 5.3: Error rate as a function of stages of differenugd-truth policies.

are inter-character, inter-word and inter-line, etc; aB)db@ad fit with the features
(e.g.the radius of the feature extraction window is badly chosen)

Figure 5.1(b), Figure 5.2(a) and Figure 5.2(b) show that aemate increase
(less than eight times) of ground-truthed HW pixels leads sognificant improve-
ment (more than 23 times) of recall (from 2% to 46%).

Random decimation, as discussed in Section 4.3 does notitakeoinsideration
imbalances in the training set. In separate collaboratiim Bawei Yin [YAB10],
we have explored another speed-up method, impurity-deémmahat automati-
cally rebalances training data and estimates concentrati@ach K-d hash bin
separately, which then controls how many samples shouleé ik each bin of the
hashed k-D tree. We do not include that research in this rdigtg®.

Our algorithms extract features from a circular window eeatl on target pix-

els. It is possible that the background pixels (inter-cbtmaand inter-word) have
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similar feature values as foreground pixedsg. handwriting. Such background
pixels would be hashed with foreground pixels into the samgethereby causing
classification mistakes.

We can not avoid choosing a test policy; but it is not clearohluine is the “best”
for the purpose of evaluation and diagnosis. See earlidiose2.8 for detailed
discussion of competing ground-truth policies. The acoytable 5.1 can not, of
course help us choose the “best” test policy.

From the perspective of training, the accuracy table indxdow different
ground-truth policies can affect classification result@sihoticeably, it suggests a
way to choose among different training policies when a teltypis given, that is,
train the classifier with the same policy.

Figure 5.3 might suggest that the closer the ground trutihpsédel-accurate, the
less iterated classification improves results. Howevés,igmot as straightforward
as it seems. Recall that the feature extraction window weingbd experiment has
a radius of 7 pixels; and the most three significant dropsnoreate occur on the
loose, the tight, and the expansion of “d=8". It seems likbly iterated classifiers
perform better when the radius of the feature extractiordawnis smaller than the
expansion parameter of pixel-accurate ground truth. Toesahot mean we should

choose ground truth for testing to fit the feature extractiamdow of the classifier.
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5.12 Conclusion

We have compared performance among three ground-truttigglioose, tight and
pixel-accurate, along with morphological expansions owlpaccurate truth. Ex-
periments suggest that pixel-accurate ground truth camowepoverall accuracy.
One consideration to take into account when comparing |otigkt and pixel-
accurate ground truth is the ground truthing efferg(in hours of manual or semi-
automatic labor). Roughly, using our zoning tool, we avedegj@out 3 minutes per
image for loose ground truthing, 10 minutes per image fdnttgyound truthing;
and using PARC'’s PixLabeler, we averaged about 2 minutes psgearfor pixel-
accurate ground truthing. With automatic morphologicglamsion, pixel-accurate
ground truth can cheaply provide variations that are simddoose truth or tight
truth. Choice of ground-truth policies do not significantfeat runtime, either
for training or for testing. Therefore, we prefer PARC’s Pikketer to our zoner.
For the choice of ground-truth policy for training using alasssifier, based on the
comparison and experimental results, we recommend margiwall expansion of

“d=8".
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Chapter 6

Experiments

This Chapter presents the results of a series experimentgieanerally a larger and
larger training and test set.

Our data sets contain MP, HW, PH, and BL content. Their texuges En-
glish, Arabic, Chinese, Hindi, and Korean characters eaptesented by bilevel,
greylevel, and color document image examples. The sefeofitest and training
pages was random except that for each test image there waasatdne similar
(from the same source), but not identical, training imaglkuslthese experiments
test the discriminating power of the features and weak géization (to similar
data) of the classifiers, but they do not test strong gerzetan to substantially
different cases.

We evaluated performance in two ways:

Per-pixel accuracy: the fraction of all pixels in the document image that are cor-

rectly classified: that is, whose class label matches trss dpecified by the
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ground truth labels of the zones. Unclassified pixels arentamlias incor-
rect. This is an objective and quantitative measure, bgtsomewhat arbi-
trary due to the variety of ways that content can be zoned. eSmmtent—
notably handwriting—often cannot be described by rectiargiones. This
in some cases will lead to a per-pixel accuracy score beingevthan an
image may subjectively appear to be. The overall per-pixeueacy,O,

is calculated as shown in Equation 6.1, whéfg, denotes the number of
pixels that are ground truthed as clasand classified ag (i, jeC,C =
{MP,HW,PH, BL}), N, is the number of pixels that are correctly clas-

sified, that is, classified as its ground truth class.

0 = _ duicc Ni
ZieC ZjeC Nivj

(6.1)

Precision and recall: PrecisionP; of class: is calculated as shown in Equation
6.2, wherelN;; is the number of pixels that are correctly classifiegnd

Zjec N;,; is the number of pixels that are classified as belonging ®s¢la

N

Pi=
Z]EC N]ﬂ'

(6.2)

Recall R, of class, is calculated as shown in Equation 6.3, whéfg is
the number of pixels that are correctly classified,aand}_; . N;; is the

number of pixels that actually belong to class

Ny

Ry =
> jec Nij

(6.3)
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6.1 Instability and Workarounds

In this Section, we discuss an instability that occurredhiearly small experiment.

In this experiment, we tested with 17 images: 8 images were=pl in the train-
ing set, and 9 in the test set. We ran ten iterated classditatiages. For the
first eight stages, the total error rate decreased almosbtooically from 34.4%
to 24.4%, except for a slight bounce of 0.2% at the seventiesiaom 24.8% to
25.0%). Then at the ninth stage, errors increased by 26.#¥%tbe eighth stage
(from 24.4% to 30.9%). Large solid clusters of hand-writimgre suddenly mis-
classified as machine-print, an example is shown in Figure 6.

After locating the misclassification on test images, we @ranch the iterated
classification results for training images in order to finsimhilar mistake took place
among them. We found that the error rate of training set alseased significantly
at the ninth stage (from 19.8% to 38.5%), cause by the misfileetion of MP over
HW. The error rates on each stage for both test and trainisgse shown in Figure
6.2.

Could we be notified of this kind of error in real applicationewvé no ground
truth for test set is unavailable? Given the representatioperty between test set
and training set, that is, each testimage is representediirirtg set. we are assured
that we can by tracking the error rate of training set.

The cause appears to be as follows as we take a close checkhupaiming
images. As iterated classification proceeds, isolatedpae relabeled, and clus-
ters become increasingly uniform. This effect aggregatstage furthers. In one
training image, a thin “gutter” cluster separating MP blsckhich was in fact BL,

but was, for convenience, manually ground-truthed MP. Thister was classified
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(a) mnotes in stage 8 (b) mnotes in stage 9

Figure 6.1: Classification “false color” images of a handigritnotes, which con-
tains only handwriting and blank. On the left is the resulthef eighth stage, most
of the HW pixels are correctly classified. On the right is tkeult of the ninth
stage, HW pixels with in large solid clusters are misclasgdiths MP, except for
those lying on boundaries or within small clusters.
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Error Rate as a Function of Stages
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Figure 6.2: Error rates as a function of stages for both tedtteaining sets. Note

that for the first eight stages, the error rate of test setedmses as the error of
training set does. The test set’s curve is similar to theningi set’s. At the ninth

stage, the errors of both sets increase significantly. Tior eate of training set

increases twice as much as test set does.
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(&) GT of bw10 (b) bw10 in stage 8

Figure 6.3: Ground truth and classification “false color’aiges of a newspaper
crop in the training set. On the left is GT image, note thatthue “gutter” blank
space between the title and the paragraphs are grounedridP. On the right is
the result of the 8th stage, the thin “gutter” blank spacaw@selassified as HW.
HW by the eighth classifier, as shown in Figure 6.3. Thus therectly classified
samples whitin the gutter fall at exactly the same point atdee space as correctly
classified MP. This led the NN classifier to mistake large teltssof MP for HW.
The essential problem is that incorrectly classified chsstven small in area, once
purified to a certain threshold, can compete with large ehssthat are consists of
correctly classified pixels.

We have found two engineering workarounds to reduce thel@mce of this
instability. The first is to drop a training image out of thaitring set whenever its
classification error rate rises. The second is to increaseaitiius of the features.
The result of these to workarounds are shown in Figure 6.4.

We do not have a full enough understanding of this problenropgse guar-

anteed solutions. This problem is due to aggregation ofrakfectors: the loose
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(a) Effect of Dropping bw10 (b) Effect of Increasing Radius

Figure 6.4: lllustration of two workarounds. In both figurése misclassification
occurred in stage 9 of earlier experiment disappears. Theelgindicates that
increasing radius of feature window outperforms the actropding the training
image of bw10.
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ground truth, classification error, and iterated clasdifica A small patch of er-
roneous ground truth plus a nuance error, which continue®asing as iterated
classification marches, can flip the dominating correctltesiowever, this insta-

bility issue suggests that defects in ground truth can leddilure to the classifier.

6.2 Preliminary Experiment with Loose Ground Truth

In this experiment, we selected a training set of 33 imagdsaadfistinct test set of
83 images. Each content type was zoned manually (usinglglosgped isothetic
rectangles, overlapped where needed to fit non-rectangegaons) and the zones
were ground-truthed. The training data was decimated rahdby selecting only
one out of every 9000th training sample.

Our results are illustrated in Figures 6.5 and 6.6. Eachdigantains six images
of three types: (a) the original image; two classificatiomages from stages one (b)
and four (c); and thremaskimages for MP (d), PH (e), and HW (f) content classes.
In the mask images—say, for example, the MP (machine-pmiaigk image, only
the regions that are classified as machine-print are egttaand displayed using
their original color pixel values; the pixels of other classre shown as light grey.

Figure 6.5 shows results on a color image of a newspaper [argaising non-
rectilinear handwriting regions. The first stage classlieates handwriting fairly
precisely, but mixes it with many machine-print misclassifions. We could read
most of the handwriting extracted by the handwriting mas&gm The light blue
texture in the background is uniform from the start and da¢svorsen under post-

classification.
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Figure 6.5: A color image containing rectilinear machimeypregions and non-
rectilinear hand-writing annotations. The error of the-dtsige classifier is 37%;
the error of the 2nd-stage classifier is 36.4%; and the efitiecith-stage classifier
is 34.2%. The MP mask extracts almost all of the MP except fittla near the
(unclassifiable) page boundary. Almost all of the HW is extgd correctly, except
for patches where MP crowds it.
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6.3. PRELIMINARY EXPERIMENT WITH TIGHT GROUND TRUTH

Figure 6.6 shows results on a color image of a magazine patieanblock
of handwriting on a yellow ruled background. The iteratedtpdassifiers cleans
much of the sparse light blue texture in the background,aitlcausing the thicker
light blue texture to expand, in fact some of it shrinks, whis good. Note that
it cleans most of the red texture, both sparse and thick ondgth the machine
print and photo regions. Meanwhile, the curvelinear bouiegeof those large re-
gions are accurately detected, as well as the blank regetmgelen paragraphs. The
post-classifiers also eliminate most of the erroneous hahdgvareas in the yel-
low ruled background while enhancing the handwriting ragiby removing the
machine-print texture within them. The mask images arelhigiromising in rep-
resenting handwriting, machine-print and photo layers.

Figure 6.7 gives the total error rate as a function of stadedassification.

Iterated classifiers reduce the error rate by 22.6%.

6.3 Preliminary Experiment with Tight Ground Truth

In this experiment, each content type was zoned manuallggudosely cropped
isothetic rectangles) with careful and the zones were grdaurthed. The training
data was decimated randomly by selecting only one out ofye®@00th training
sample.

We have experimented with 116 page images: 33 images wecedla the
training set, and the rest in the test set.

Experiments show great improvement on tighter ground t\itth loose ground

truth, for both training and testing, the error rate for thistfstage of classification
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e L

(a) testimage (b) 1st stage (c) 4th stage

(d) MP masked (e) PH masked () HW masked

Figure 6.6: A magazine image with a complex non-rectilineage layout. The
per-pixel classification error of the 1st-stage classife86.7%; and the error of
the 4th-stage classifier is 27.4%. The final MP, PH, and HW maskract their
content types well, as shown in (d)-(f), with the exceptioiew small patches of

HW misclassified as MP.
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Total per-pixel error rate as a function of the
stages of classification
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Figure 6.7: Total error rate averaged over the test set, ascion of stages of
classification. After four stages of classification, theerate decreases from 0.39
to 0.30, a drop of 23%.
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6.3. PRELIMINARY EXPERIMENT WITH TIGHT GROUND TRUTH

was 38.9%; With tight ground truth, for both training anditeg, the error rate for
the first stage of classification has decreased to 21.4% peofidb%.

Our results are illustrated in Figure 6.8 and Figure 6.9. hHagure contains
nine images of four types: (a) the original image; clasdificeimages from stage
one using loose ground truth (b), classification imagesgusyit ground truth from
stages one (c), two (d), three (e), and four (f); and thmaskimages for MP(Q),
PH(h), and HW(i) content classes. In each of these two figtinesyriginal images
are shown on the upper left. The results of classificatiorsamvn in (b)-(f), as
classification images where the content classes are showesian machine print
(MP) in dark blue, handwriting (HW) in red, photographs (PHl}ight bluegreen,
and blank (BL) in white.

Figure 6.8 shows results on a color image of a sports magpaige containing
complex non-rectilinear regions. With tight ground trutie per-pixel error of the
first-stage classifier is 22.9%; Figure 6.8(b) shows thelredtained with loose
ground truth: the per-pixel classification error of the fstdge classifier is 36.7%.
Note that BL regions are mixed with PH pixels, MP and PH regemesmixed with
HW pixels, HW regions are mixed with MP pixels. Figure 6.8%bpws the result
obtained with tight ground truth: the per-pixel error of tlinst-stage classifier is
22.9%; compared to Figure 6.8(b), BL regions are much purérakid PH regions
have less HW pixels in them, but HW regions are mixed with niRepixels. the
error of the second-stage classifier is 17.2%; the erroreoftiind-stage classifier is
15.4%; and error of the fourth-stage classifier is 14.4%. firred MP, PH and HW
masks extract their content types well, as shown in (g)efizept for some small

patches of HW misclassified as MP, and some small patches dfiBtiassified as
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6.3. PRELIMINARY EXPERIMENT WITH TIGHT GROUND TRUTH

(a) testimage  (b) 1st stage classificde) 1st stage classifica-
tion (with loose GT) tion (with tight GT)

(d) 2nd stage classifie) 3rd stage classificgf) 4th stage classifica-
cation tion tion

(g) MP masked (h) PH masked (i) HW masked

Figure 6.8: A document image with a complex non-rectilinegge layout, contains
content of MP, HW, PH and BL. Tighter ground truth drops theerate of this
image from 36.7% to 22.9%, a drop of 38%. The final MP, PH and H¥$kn

extract their content types well, as shown in (g)-(i).
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MP or HW.

Figure 6.9 shows results on a color image of a movie magazge pontaining
complex non-rectilinear regions. With loose ground tralie per-pixel classifica-
tion error of the first-stage classifier is 32.5%. And the lgmokind is mixed with
HW. With tight ground truth, the per-pixel error of the fistiage classifier is 25.2%;
the error of the second-stage classifier is 18.9%; the eftbedhird-stage classifier
is 17.7%; and error of the fourth-stage classifier is 17.7%s €rror is possibly due
to the lack of training sample of MP written in red color on dlgw background.
For curvature preservation, notice the small red circlegaining numbers: their
curvature changes slightly.

Figure 6.10 gives the representation of total error ratefasetion of stages of

classification. The post-classifiers reduce the error na2304%.

6.4 Statistical Significance of Claimed Improvements

We verify the statistical significance of improvements duédrated classification
using a statistic two sampteest [BD77]. Thet-test is commonly applied to assess
whether the means of two populations are statisticallyiaamtly different from
each other, using an estimate of standard deviation bassdmple size. The null
hypothesis of d-test is that the two populations have equal means. When the tw
populations are of the same size, as is true in our test,dtaistic is calculated as
follows:

X -X;
t=———= (6.4)

/5%, +5%,
n
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(a) testimage  (b) 1st stage classificge) 1st stage classifica-
tion (with loose GT) tion (with tight GT)

(d) 2nd stage classificde) 3rd stage classificgf) 4th stage classifica-
tion tion tion

(g) MP masked (h) PH masked (i) HW masked

Figure 6.9: A magazine page with a complex non-rectilineayeplayout, contain-
ing content of MP, PH and BL. The MP mask extracts its conteagsclvell, except
for three patches misclassified PH. For curvature presernvatotice the small red
circles containing numbers: their curvature changes tjigh
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Total per-pixel error rate as a function
of the stages of classification
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Figure 6.10: Total error rate averaged over the test set ah@8es, as a function
of the stages of classification. After four stages of classiion, the error rate has
fallen from 0.214 to 0.164, a drop of 24%.
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whereX;, X, are the means of the two populatioNs, X, respectively; and
Sx,,» Sx, are the sample standard deviationsXaf, X,. Once at value is deter-
mined, a p-value can be found using a table of values frome®itigit-distribution.
The p-value is the probability, under the null hypothesis, of evgrg a value
as extreme or more extreme than the test statistic. We perfioe t-test using
MATLAB (®), and reporp-values here. The results of théest comparing the first
stage and the fourth stage of iterated classification, usngus ground-truth poli-
cies, are shown in Table 6.1. This table shows that the inggn@nt is statistically
significant when iterated classifiers are trained with gdbinath policies of “d=2",
“d=4","d=8", tight, and loose, but not for pixel-accurateda“d=1".

This training instability suggests that iterated classsfare sensitive to ground
truth, and do not work for pixel-accurate ground truth. We @aot convinced that
the current feature extraction window is a good fit to pixettaate ground truth.
Our proposition of iterated classification starts with le@gsound truth. The scale
of features we have been using is systematically choserSgeen 4.6) under the
guidance of ground truth that includes some blank pixelsaaisgh foreground. The
success of the loose, tight, and morphological expansioongr truth shows the
effectiveness of such features. However, for iteratedstiass to work with pixel-
accurate ground truth, the scale of features should bepl@d. This can be done

using the the same method discussed in Section 4.6.
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6.5. FINAL EXPERIMENT

h p-value

Pixel-Accurate | 0 0.1795

d=1 0 0.7946
d=2 1| 1.2740e-005
d=4 1| 1.2513e-009
d=8 1| 1.4500e-017
Tight 1 | 4.2537e-009
Loose 1| 5.5349e-008

Table 6.1: The result of the t-test is returned in h: h = 1 iatis a rejection of the
null hypothesis at the 5% significance level. h = 0 indicatéasilare to reject the
null hypothesis at the 5% significance level. This table shthat the improvement
is statistically significant when iterated classifiers aagied with ground truth poli-
cies of “d=2", “d=4",“d=8", tight, and loose; but not for pét-accurate and “d=1".

6.5 Final Experiment

6.5.1 Motivation

The final experiment scaled our training and test set sizdxwy uygarly twice with a
goal of including images from more sources and writing syisteand challenging
iterated classifiers with more difficulties. We upgraded gnaund truth technique
from swapping overlapping rectangles using zoner to lagalising Parc’s PixLa-
beler [SLS09] and expanding foreground pixel-accuratéhis choice is justified
by the notion that the current feature set for iterated dlass is a good fit for the
morphological expansion of “d=8". The ground truth teclugg and policies are
discussed in detail in Section 5.7 and 5.8.

We have experimented with 219 page images: 62 images weredla the
training set, and 157 images in the test set. The scale oéxpisriment is nearly

twice as large as the previous experiment. We included isy&igen more writing
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6.5. FINAL EXPERIMENT

systems: we used to include English, Arabic and Chinese, nrmadsed Hindi and
Korean.

In this experiment, the ground truth was obtained in twost@pthe first step,
we applied the PARC PixLabeler tool to generate pixel-adeugaound truth, in
which only foreground pixels are labeled; in the second,stepexpanded fore-
ground pixels by applying morphological dilation operasdSS94] with a circular
disk structuring element, that is, background pixels witbight pixels of a fore-
ground pixel are labeled as the same class as the foregroxeld fhe training
data was decimated randomly by selecting only one out ofye®@00th training

sample, as usual.

6.5.2 Results

As shown in Figure 6.11 the overall per-pixel error rate & fist-stage classifier
for this experiment is 20.2%; the error of the second-stdagsdier is 15.7%; the
error of the third-stage classifier is 15.4%; the error of finath-stage classifier
is 15.4%; the error of the fifth-stage classifier is 15.2%. We that the error
decreases monotonically, with a drop of 24.5% from the ftegges to the fifth stage.
We carried out a statistical two-samgheest (discussed in Section 6.4) to verify
the statistical significance of improvement in the final ekpent. Thep-value is
7.8736e~16, which indicates that the improvement is statisticallyngfigant.

The following Figures 6.12, 6.13 and 6.14 are some samplatages from this
set, highlighting classifier successes and failures. lthalexamples, the test image
is shown on the upper left, followed by a sequence of five &alslor” classification

images in the order of stages. Figure 6.12 shows that itbcddssifiers successfully
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Total per-pixel error rate as a function of the
stages of classification
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Figure 6.11: Total error rate averaged over the test set dirhages, in a function
of the stages of classification. After four stages of classiion, the error rate has
fallen from 0.202 to 0.152, a drop of 24.5%.
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correct misclassification of MP over PH, and vice versa. FEdil13 shows that
iterated classifiers improves the result on a hard case alaswfication between
HW and MP. Figure 6.14 shows an example of iterated classiféels to correct

the misclassification of MP over HW.

6.5.3 Run Times

Running our classifier on a test set with hundreds of test is&geot feasible for
a single machine and we have become dependent on the use oialBeloster

of machines at Lehigh [HPC10] to complete large scale expmrima The Beowulf
cluster we use currently consists of 320 64bit Xeon proassseor the run time
of the final experiment, the classifier we have been usingdised in Section
4.2) requires on average 220 CPU minutes per test image peeiteclassification
stage. The runtime can be reduced by a factor of as least 8§ OD&iwei Yin's

bin-decimation classifier [YBA10, YAB10].

6.5.4 Conclusions

This experiment successfully scaled up the size of our @xygerts to train on nearly
twice as many images and two more languages as previousireems. Iterated
classifiers continue to drop the overall error rate, by 24.586 always, Arabic
handwriting and machine-print images introduce problefrimaiging HW and MP.
Although the classifiers failed on some hard cases, ovéhaly, can improve the
results. This increase our confidence that iterated clessifian reduce the error

rate by a range of 22% - 25.5%.
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(a) testimage (b) 1st stage (c) 2nd stage

g P g Vo) [ ezt T
Cur maginary, Hotter Sedves | Our oaginary, Hotter Sdwes  Cuar Eaginary, Hotaer Scboes

(d) 3rd stage (e) 4th stage (f) 5th stage

Figure 6.12: A magazine page from the test set of ICDAR2009 Bagenentation
Competition. The original image (a) is in full color. The réswf classification are
shown (b)-(f). At the first stage, some MP pixels, especidise lying within the
titles or large font letters, are labeled PH. On the boundétiye photo in the center
of the image, the PH pixels are labeled MP. By the fifth stagestmosclassified
MP pixels are correct labeled; almost all PH pixels on thentlauy are correctly
labeled.
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(d) 3rd stage (e) 4th stage (f) 5th stage

Figure 6.13: A minute page written in Chinese, containing HWl MP contents.
At the first stage, HW and MP text regions are located, but thigels are labeled
as mixture of HW or MP. This is difficult, even for human reajdp distinguish
one content type from the other. By the fifth stage, most nssdi@ad HW pixels
are correct labeled, except for several clusters of chersianost misclassified MP
pixels are corrected, except for these lying within thetieddy large font title. Note

that the pixels on rules are labeled HW in the first stage, ane:cted as BL by the
fifth stage.
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(a) testimage

(d) 3rd stage

(b) 1st stage (c) 2nd stage

(e) 4th stage (f) 5th stage

Figure 6.14: A handwriting script from the test set of DIBCO@®¢ument Image
Binarization Competition). At the first stage, most HW pixete &abeled MP or
PH. Some BL pixels are labeled PH, which is probably cause bgdthrough
from the other side. By the fifth stage, most HW pixels are edd@IP. The BL

pixels are correctly labeled.

84



6.6. ICDAR 2009 PAGE SEGMENTATION COMPETITION

6.6 ICDAR 2009 Page Segmentation Competition

Our method (DICE and IC as a whole) was tested along with fiverstin the
ICDAR2009 Page Segmentation Competition and the results wasteel by An-
tonacopoulo®t alin detail in [APBP09]. We summarize the results in this settio
Participating methods in this competition included theurRfzofer Newspaper
Segmenter [GDPPO05, ZLDPO01, Bre02, JY98], the REGIM-ENIS webtthe Tesser-
act method [Smi09], ABBYY FineReader Eng(®8.1, and OCRopus 0.3.1. It
should be noted that our DICE system is designed as a firstrstigcument anal-
ysis, intended to be executed before “classical” layoutyamamethods which de-
compose text into blocks, determine reading orders, eteréefre, precision/recall
metrics are appropriate for evaluating our algorithm, eathan higher-level met-
rics [ABO7] that consider region structure and penalizeatiohs of reading order.
The F-measure was chosen as one of the evaluation metries sompetition. In
statistics, the F-measure is a measure of a test’s accuraoysiders both the pre-
cision and the recall of the test to compute the score. Thigivaal F-measure is

the harmonic mean of precision and recall:

precision - recall

F=2 (6.5)

precision + recall

The F-measure report is shown in Figure 6.15. This showsoimaDICE system
is competitive: our system scored 90.09, while the highesteswas 93.14 and the

lowest score 78.35.
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EDICE 66.22 92.21 90.09
Li Fraunhofer 75.15 95.04 93.14
H REGIM-ENIS 67.13 91.73 87.82
kd Tesseract 74.23 92.50 91.04
E FineReader 71.75 93.09 91.20
B OCRopus 51.08 84.18 78.35

Figure 6.15: F-measure of the four methods submitted to @®AR 2009 Page
Segmentation Competition and two state-of-the-art meth(@isurtesy of ICDAR
2009 Page Segmentation Competition.)
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Chapter 7

Performance Analysis of

lterated Classification

One of our previous experiments shows that the post-classifeduce the per-
pixel classification errors by 23%, running a four-stagessifecation on 83 test
images. Another experiment with fewer test images showsgbepixel errors
can fall monotonically for as many as eight stages. We ndkiag as uniformity
improves in local regions, boundaries tend to remain statyp— that is, they do
not drift. This observation leads us to try to prove thatéhexist iterated classifiers
that are guaranteed to converge to the ground-truth boundar

We begin the investigation by simulating an image contgrmiwo content-
classes, say MP and BL, and we have a classifier trained aradi testthis im-
age. The ground truth and first-stage classification resulthis image are shown
schematically in Figure 7.1(a)-(b); MP pixels are coloréathk, BL pixels are col-

ored white. In Figure 7.1(a)-(d), marks the horizontal coordinate of the boundary
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(a) ground truth (b) 1st-stage classificatidie) discrepancy between
result of the image ground truth and 1st-stage
classification result, shows

in gray

(d) feature extraction winfe) the width of the dis{f) the width of the dis-

dows and new boundary crepancy is greater than ticeepancy is smaller than
radius of feature extractiotihe radius of feature extrac-
windows tion windows

Figure 7.1: Analysis of convergence of iterated classificatBlack represents MP,
white represents BL. In figure (c)-(e), the discrepanciesséen ground truth and
the classification results for the image are colored grafiglre (e) and (f), circles
represent feature extraction windows. In each figtyrenarks the horizontal coor-
dinate of the boundary in the ground truth andnarks the horizontal coordinate of
the boundary in the classification results for the imagdiallfy, ¢, < .
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in the ground truth and. marks the horizontal coordinate of the boundary in the
classification results for the image. In Figure 7.1(c)-gfgy regions represent the
discrepancies between ground truth and the classificaéisults for the training
image.

Given the ground truth and results of the first-stage classifie can analyze
how the second-stage classifier performs. Recall that festane extracted within

a local window (a circle of radiug) centered on the target pixel.

7.1 Analysis of the Second-Stage Classifier

We start by analyzing the case where the width of the diso®pe greater than
R,i.e.t, —t, > R, as shown in Figure 7.1(e). For the post-classifiers, weidens
one feature that we have been using in experiments: the mohBé& pixels within
the right half of the feature extraction window. Recall tHafeatures are extracted
from the results of classification.

Consider these different cases of a target pixel dependinigs @round-truth
class, labeled class from classification results, and thabeu of BL pixels within
the right half of the feature window.

Case |: Target pixel is ground-truthed MP, classified MP, and carstanio BL
pixels within the right half of its feature window.

Case II: Target pixel is ground-truthed BL, classified BL, and all ps<elithin
the right half of its feature window are BL.

Case lllI: Target pixel is ground-truthed BL, classified MP, and corgaia BL

pixels within the right half of its feature window.
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Case IV: Target pixel is ground-truthed BL, classified MP, and corgaihleast
one BL pixel within the right half of its feature window.

For pixels that fall outside the discrepancy region, thesifecation is obvious:
pixels in case lj.e those in the black region in Figure 7.1(c), are still labd\&d;
pixels in case llj.e those in the white region in Figure 7.1(c), are still labeld

For pixels within the discrepancy region (ground-truthedl®it classified MP
by the first-stage classifier), part of them will be correctigssified using the fea-
ture, as follows:

If the right half of its feature extraction window containsyaBL pixels — case IV
— the target pixel is then classified BL, because its featuigevia different from
that of pixels in case |. For example: in Figure 7.1(e), theepcentered on circle
b andcis labeled BL. If the right half of its feature extraction wime contains no
BL pixel — case Il — the pixel is still classified MP becausef@ature value is the
same as that of pixels in case I. For example: in Figure 7,.ft{e)pixel centered on
circle ais labeled MP. Pixels that are less thAmixels left from the boundary,
are in case |V, and are thereby are labeled BL.

After the second-stage classification, the horizontal dioate of the resulting
boundary would be, — R, which moves towards ground-truth boundagyby a

distance ofR? pixels.

7.2 Analysis of Classifiers Following Second-Stage

As long as the width of the discrepancy is greater tRarach succeeding classifier

must behave the same as the second-stage classifier andimbeandary to move
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again towards, by R.

When the the width of the discrepancy is smaller tilgn.e. t, — t, < R, we
must consider more cases, as follows:

Case V:Target pixel is on boundary,, ground-truthed MP, classified MP, and
contains a number, sdy, of BL pixels within the right half of its feature window.

Case VI: Target pixel is ground-truthed MP, classified MP, and cargtanore
than one but less thal of BL pixels within the right half of its feature window.

Case VII: Target pixel is within the discrepancy, ground-truthed Blassified
MP, and contains more than thahof BL pixels within the right half of its feature
window.

Pixels that fall outside the discrepancy are classifiedigwiay: pixels in cases
[, V and VI are still labeled MP; pixels in case Il are still Elbd BL.

Pixels within the discrepancy will be classified BL: all of there in case VII,
and their feature values are different from that of groundkied MP pixels in cases
I, V and VI, therefore the classifier must classify them BL. STt illustrated in
Figure 7.1(f): the center pixel of circkelies on the left boundary of the discrepancy
area will be classified MP, following its ground-truthed temt; circleb has more
BL pixels in its right half than circle does, therefore the center pixellmtan be
discriminated and classified BL; for the same reason, pixetlse discrepancy, but
not on its left boundary, are to be classified BL. Consequethiéyboundary in the
classification result moves towartjsby ¢, — t,: the boundary of the classification
result has converged to ground truth

Simulation shows the same behavior as the analysis abogesisg We simu-

lated a discrepancy of 174 pixels wide, and a feature extra¢tircular) window
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of radius 20. For the first eight stages, the boundary mowetdye0 pixels in each
stage of classification. At the ninth stage, the boundaryeddeft by 14 pixels,
which converged exactly to the ground-truth boundary.

In summary, analysis of special cases, experiments andations, behave as
the classifiers appear often to do. That is, with proper ehofdeatures and guid-
ance by the ground truth, there exists a sequence of pasHidas that refine the
obtained results and force them to converge to ground trlitlis further implies
that post-classifiers can converge linear boundariesntedeat any direction, to
ground truth. We conjecture that for all region shapes, whadius of curvature is
bounded below, there exists a similar training methodokgsh that all boundaries
converge to ground truth. Some of the experiments show ltigapost-classifiers
also converged on regions with small radii of curvature. &@mple, in Figure 6.9
the small red circles containing numbers are preserved.

We also conjecture that to converge to ground truth, the mumipost-classifiers
needed is proportional to the width of the discrepancied,jiarersely proportional

to the radius of the feature extraction window.

7.3 Comparison of Iterated Classication
with Repeated One

Recall that iterated classification is proposed as a refinetoeapeated classifica-
tion. Empirical results have shown that iterated clasdificas superior to repeated
classification. In this section, we analyze the causes sfusing simulation.

One of our earlier experiment showed that repeated clastificis unstable in

92



7.3. COMPARISON OF ITERATED CLASSICATION WITH REPEATED ONE

improving the results of the DICE classifier. It can succeedame images, but
fail in others. We conceive that this failure occurs becaepeated classification
makes an unrealistic assumption: the same error will oatuhé same context
again and again. To illustrate this, we again simulated agaontaining only MP
and BL; the result and the ground truth had a discrepancy ofix@8spwide. The

feature extraction (circular) window was in radius of 13gksx The post-classifier
was trained once, and then repeatedly applied to the restiiedest image. The
sequence of the result is shown in Figure 7.2. As the testenmsargeclassified, the
boundary between MP and BL keeps moving left, each time by thwidl 3 pixels.

This simulation suggests that repeated classificationkeirterated classification,

may never converge to ground truth.
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7.3. COMPARISON OF ITERATED CLASSICATION WITH REPEATED ONE

(a) Output of Stage 1 (b) Output of Stage 2
(c) Output of Stage 3 (d) Output of Stage 4

(e) Output of Stage 3

Figure 7.2: lllustration of repeated classification.
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Chapter 8

High Recall Document Content

Extraction

In this Chapter, we focus on obtaining high recall masks faheaf three con-
tent types—machine-print (MP), handwriting (HW), and ph{®&l)—in order to
support downstream processing of each separately. Weopidyireported overall
per-pixel accuracy of 85% [ABO8]; here, we report achievihdeast 89% recall

and at least 87% precision among all three content types.

8.1 Iterated Classifiers Improve Recall and Precision

Recent experiments have indicated that iterated classd@rsncrease accuracy
stage by stage [ABO8]. The following analysis of the resutisvgs that iterated
classifiers increase recall stage by stage without causiajsion to decrease. In
Figure 8.1, the table and figure of recall are shown on thedefi precision on the

right. The recall of all three principal content types, MRVHand PH, increases
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8.2. PROPOSED TESTING POLICY CHANGES

stage by stage, except for the fourth-stage of MP, whichedesars by 0.2%. Mean-

while, the precision of these content types also increases.

1st-stage | 2nd-stage | 3rd-stage | 4th-stage 1st-stage | 2nd-stage | 3rd-stage | 4th-stage
BL 84.11% 88.28% 87.95% 86.33% BL 85.13% 86.09% 87.28% 88.91%
HW 26.06% 49.22% 59.01% 69.65% HW 17.08% 26.84% 29.31% 28.09%
MP 77.32% 80.64% 81.61% 81.41% MP 12.77% 80.95% 83.13% 82.76%
PH 73.46% 76.66% 79.89% 81.83% PH 81.89% 87.84% 87.05% 86.29%
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Figure 8.1: Recall and precision of each content type obdaineeach stage of
iterated classification. The results suggest that thetédrelassifiers improve the
recall of all content types. Especially, the recall of HW igngficantly improved.

Note that the precision even improves a little when the f@oaleases as a function
of stages.

8.2 Proposed Testing Policy Changes

In this section, we first discuss a straightforward testinficy change, a multi-

stage voting rule, that can be utilized to increase recdtlervards, we introduce

a testing policy of accepting blank (*don’t care”) (BL) pisels pixels of each

particular content types such as HW, MP and PH.
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8.2. PROPOSED TESTING POLICY CHANGES

8.2.1 Multistage Voting Rule

We investigated multistage voting rule which votes on tiseilts of stages of the it-
erated classification, that is, given a test samated a content clasie{ M P, HW, PH, BL}),
if in any stage is classified as clagsthent is finally classified as class

This technique increases the recall of single content aegerately. As shown
in our previous experiments, iterated classifiers gragiuatid slowly expand or
shrink the areas of different content classes, withoutiogubie boundaries shift
back and forth. Empirically, later classifiers are more abstit than earlier one.
Another advantage of this technique is that voting from treailts of each stage is
simple and fast — it merely requires voting for each one ottir@ent classes.

However, the only concern is that the result of biased vatinght be insignifi-
cant compared to the result of the last stage of iterateditilzegtion. This concern
results from the observation that a four-stage iteratessdiaation drops the error
rate by nearly a quarter. Therefore, we are not confidenthimapproach can lead

to as high recall as we want.

8.2.2 Truthing and Scoring Policy for Blank Pixels

There is growing debating on pixel-accurate ground trutls. discussed in detail
recently [MBAO8, ACL10, Smil0], truthing policies for pagegnentation seem
often to possess ambiguities and inconsistencies.

Blank pixels especially have an ambiguous status during algnaund-truthing:
blank regions often make up the “background” for MP and HWéfground” pix-

els, and furthermore BL pixels often interpenetrate PH megjiol herefore, blank
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8.3. EXPERIMENTAL RESULTS

pixels are usually called “don’t care” pixels. This seemavitable when ground
truth is loose (using, say, rectangular zones). Experiseith our earlier classi-
fier show that blank space are often confused with handwraimd in more limited
cases also with machine print.

We propose a modification in our training and testing mettaquaigied to blank
pixels. During the training phase, blank pixels are indlhtareated as a distinct
class and so ground-truthed and trained separately frootiiee classes. However,
during the testing phase, pixels which are classified akldam viewed as “don’t
care” pixels, and so are combined with each of the other etasso, for example,
all pixels classified as BL are accepted also as MP pixels (amthgly for HW and
PH). Note that after this policy chagne, the masks obtaimedha longer disjoint;
that is, they can share pixels.

Our modified policy, in which blank pixels are assigned tafadl other classes,
leads to intuitive results, which look natural to the eye,and believe, will not
cause difficulties for any later stages of processing; thikustrated in Figures 8.4

and 8.5.

8.3 Experimental Results

We use a training set of 33 images and a distinct test set ah&8es, which are the
same images we used in [AB08]. Together the two sets contathimeprint (MP),
handwriting (HW), photograph (PH) and blank (“don’t careBL{). The training
data was decimated randomly by selecting one out of ever@tBGfaining sample

(as discussed in Section 4.3).
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8.3. EXPERIMENTAL RESULTS

Remember that, using the original scoring police, we evatligierformance
using per-pixel accuracy, precision and recall, definecblsvs. Per-pixel accu-
racy is the fraction of all pixels in the document image that@orrectly classified
(Equation 6.1). Unclassified pixels are counted as incarrBecall of a content
class is defined as the number of pixels that are correctbsifiad divided by the
total number of pixels that are ground truthed as belongnag tlass (Equation
6.3). Precision of a content class is defined as the numbeixelspghat are cor-
rectly classified divided by the total number of pixels cifssd as belonging to that
class (Equation 6.2).

Note that under the new “don’t care” BL pixel scoring policyepision and
recall must now be computed differently. For example, treeision of HW is cal-
culated as shown in Equation 8.1, where classifying HW piaslIBL or BL pixels
as HW is not penalized, but classifying MP or PH pixels as HWBlois penalized.
Under this policy, precisio®; of a foreground class(ie{ M P, HW, PH }), is now
calculated as shown in Equation 8.1, whéfg denotes the number of pixels that

are ground truthed as clasand classified as claggjeC = {M P, HW, PH, BL}).

Puw =

Nuw.aw + Ner.sr + Naw,sr + Ner. aw
(Nji + NjpL)

P — Nuw,aw + Npr,sr + Naw,sr + Npr.aw
' > o (Njuw + Njpr)

(8.1)

Under this new policy, recalk; of a foreground class (ie{ M P, HW, PH}),
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8.3. EXPERIMENTAL RESULTS

is now calculated as shown in Equation 8.2, whEye denotes the number of pixels

that are ground truthed as clasad classified as claggjecC = {M P, HW, PH, BL}).

N N
R, — HW,HW + Ngw,BL 8.2)
Zjec vaHW

After applying the new blank truthing policy and rescorirggardingly, recall

improved inevitably on HW, as well as on the others, show iguFes 8.2 (the
BL scores are shown for comparison, and are unchanged froordsi@.1). We
always knew that most confusions involving HW pixels alseoimed BL pixels;
this new way of interpreting the results has revealed thergtb which HW was
not significantly confused with either MP or PH. We were péshthat, at the same
time, rather surprisingly, precision improved for all taref MP, PH, and HW.

The second policy change was to the classifier, and involeéidy among the
stages of iterated classifiers. The particular voting gole report here was the
most aggressive one: if any classifier stage decided thateh\was HW, then we
finally classified it as HW; and similarly for MP and PH. Thidlipg can be imple-
mented independently of the blank pixel truthing policytlsere are four cases of
combining these two changes: in Figures 8.3, we show thétsesuHW only; the
four cases are (a) the original method (labeled simply “HW{§) ,aggressive voting
among all stages (“H&S"), (c) accepting BL pixels as HW (“H&B3nd finally (d)
adopting both multi-stage voting and BL pixel accepting(“6&B”). Very pleas-
antly it turned out that the fourth technique achieved tlgést recall, of 95.31%,
far higher than any previous result we have achieved on HWnaarly tied with
the highest recall for either of MP and PH. Under the sameitiond, precision on

HW fell slightly from 87.1% to 83.5%.
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8.3. EXPERIMENTAL RESULTS

1st-stage | 2nd-stage | 3rd-stage | 4th-stage 1st-stage | 2nd-stage | 3rd-stage | 4th-stage
BL 84.11% 88.28% 87.95% 86.33% BL 85.13% 86.09% 87.28% 88.91%
HW 59.56% 82.91% 90.67% 94.63% HW 84.48% 85.34% 86.26% 87.07%
MP 89.09% 90.30% 90.32% 89.02% MP 90.91% 92.17% 93.24% 93.97%
PH 86.36% 91.31% 92.93% 92.53% PH 90.79% 92.82% 93.48% 93.93%
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Figure 8.2: Recall and precision of each content type obdaimeach stage after
combining with BL pixel; for example, the mask of HW contairlsaxels that
are classified HW or BL; accordingly, a pixel is correctly sidigd if it is ground-
truthed HW /BL and classified HW/BL. The results suggest thattdrated classi-
fiers improve the recall of regions of each content type tayaB6%. The recall of
handwritten regions is significantly improved to 94.63%.té&that the precisions

are nearly 90% under this policy.
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8.3. EXPERIMENTAL RESULTS

stage 1 | stage2 | stage 3 | stage 4 stage 1 | stage2 | stage 3 | stage4d

HW 26.06% | 49.22% | 59.01% | 69.65% HW 17.08% | 26.84% | 29.31% | 28.09%
H&S 26.06% | 55.29% | 71.01% | 79.83% H&S 17.08% | 21.32% | 21.97% | 21.52%
H&B 59.56% | 82.91% | 90.67% | 94.63% H&B 84.48% | 85.34% | 86.26% | 87.07%
H&S&B | 59.56% | 85.96% | 92.01% | 95.27% H&S&B | 84.48% | 84.35% | 84.84% | 83.52%

Recall of HW as a function of stages,
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Figure 8.3: Recall and precision of handwritten regions iobth by different
method as a function of stages. HW is simply the result of esiabe, which is
our baseline. H&S is a voting results of all available stagaise the 2nd-stage as
an example, a pixel is classified HW if it is classified HW inheit 1st-stage or
2nd-stage. H&B is described before, that is the results ofleoing HW with BL
pixels. H&S&B is the results of combining H&S with blank pige Similar to pre-
vious results, the precision remains or improves a littlesglas the recall increases

as a function of stages.
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8.4. DISCUSSION

The results of two image examples are illustrated in Figudea®d Figure 8.5.
Note that neither of these images is well represented inrtieing set, but their
content is still extracted with high recall and good premisi

Note that the masks obtained from the fourth stage of itdrelessification are
partitions of an original image. However, the new masksiabthby applying both
policy changes are no longer partitions. They now sharegixehich consist of
two types of pixels: (a) “don’t care” blank pixels; and (bxeis that are assigned
to multiple classes.

Each figure contains nine images of three types: (a) ther@ignage shown
on the upper-left; the “false-color” classification resutif 1st-stage (b) and 4th-
stage (c), machine print (MP) is dark blue, handwriting (HWl,r photographs
(PH) light blue-green, and blank (BL) whitepaskimages extracted from the 4th-
stage for MP(d), PH(e), and HW(f) content classes, and thnaénfiaskimages as
a result of the combination of policy changes for MP(g), PHémd HW(i) content

classes.

8.4 Discussion

We show that iterated classifiers increase both recall agxlgion on all three prin-
cipal content types, stage by stage. Two policy changesnthe-stage voting rule
and blank truthing policy, improve the results of DICE on batall and preci-
sion. This new policy yields results intuitively pleasirgthe eye, and should not
cause ambiguity or confusion for downstream processings iEhustified by the

notion that iterated classification provides high recall @recision on BL pixels.
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8.4. DISCUSSION

(a) testimage (b) 1st-stage (c) 4th-stage

(g) MP masked final (h) PH masked final (i) HW masked final

Figure 8.4: lllustration of improved recall of each contgyges. A skewed docu-
ment image with a complex non-rectilinear page layout doasteontent of MP, HW
(in English and Chinese, horizontal and vertical), PH and Bie final MP, PH and
HW masks, extracted from the results of combining two paticgnges, are shown
in (9)-(i), which yields higher recall than 4th-stage witth@ausing confusion.
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Figure 8.5: A magazine page with a complex non-rectilineayeplayout contains
content of MP, HW (in English and Chinese by different writemsrizontal and
vertical), PH and BL. Note that some HW is very close to MP. lis thage, only
the English HW is represented in the training set, but theesurof all types is
well extracted. Although a box of gray background is incotiselabeled HW, the
foreground MP is correctly preservecl.05



8.4. DISCUSSION

Combination of both policy changes greatly increases reeglecially on difficult
handwriting pixels, with little loss of precision. The mas8btained after policy

changes are no longer disjoint; that is, they can sharegixel
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Chapter 9

Conclusion

This research began by seeking improvements to Documerger@antent Ex-
traction (DICE), that is the location and segmentation ofdwaiiting, machine-
print text, photographs, and blank space. In evaluatinglidate approaches, we
wished to minimize the role of arbitrary manual decisiong] & avoid arbitrary
restrictions on region shapes. After a long sequence ofrempats, we decided
on pixel-accurate post-classificatione. each training and testing sample would
be an individual pixel in a document image. Our post-clamsftake “false color”
(the color represents content class of a pixel) images ag anpd so yields “false
color” images as output. This invited us to repeat the plassification process
in series of stages, and led to the design of “repeated fitag&in.” However, re-
peated classification failed after the first stage, due tavgiicit, and erroneous,
assumption that errors made by classifiers will occur agaihagain at every stage
of post-classification. This failure of repeated classifaramotivated us to retrain

classifiers at each stage: iterated classification, usiegaence of post-classifiers,
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each different because each is trained separately on theng-alata results of the
previous classifier guided, as always, by ground truth.

We have experimented with iterated classifiers on largesets(482M pixels
of 157 images). Experimental results show that iteratedsdiars can drop the
error rate by 24%. Also, iterated classifiers increastrecall and precision on all
three principal content types, stage by stage. Two poli@ngks, a “multi-stage
voting” and a “blank truthing” policy, improve the performee of document image
content extraction on both recall and precision. This nelicpgields realistic and
useful results, intuitively correct, causing no ambiguityconfusion to downstream
processing stages. The combination of both policy changeatably increases
recall, especially on difficult handwriting cases, but & same time with little loss
of precision. The masks obtained from the policy changesarenger disjoint:
they share pixels. We have carried out a formal analysis @fiap(and somewhat
artificial) cases suggesting why iterated-classificationrtaries tend to converge
to the ground truth.

In one of our early experiments, we found that iterated diass failed catas-
trophically at the ninth stage. Analysis of this insta@ilguggested that a small
cluster of failures, amplified by ground truth, had resuitethe failure. Thus we
looked carefully into a variety of methodological issuescls as the best choice
among competing ground-truth policies. Our original griruth policy was de-
signed to drive the development of the classifier and feafuaed was chosen to
minimize manual effort: since then, we have investigatemtially higher-effort
policies which are “tight” and more accurate, and we have skat they reduce

classification errors.
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Pixel-accurate segmentation has, very recently, atdlattere attention from
other researchers. PARC’s Saund et al developed a tool forgixarate ground-
truthing; we have compared performance among three grtrutidpolicies: loose,
tight and PARC'’s pixel-accurate, along with morphologicgb@axsions on pixel-
accurate truth. Our experiments suggest that pixel-ateg®eund truth can be
captured for high-contrast document images as easily a&lgmund truth, and
can improve overall accuracy. We have also compared adesrathen classifiers
for this problem are trained on one ground-truth policy amehtevaluated using
a different policy. This indicates that for each test pqlithye highest accuracy is
achieved by using theamepolicy for training. Our experience also suggests that
for each test policy, the more similar of the training polioythe test, the higher the
resulting accuracy.

Our iterated classification is designed to be trainable atd-driven. Ground
truth and feature set decide the behavior of iterated ¢ieason. It requires little
change to the scheme except perhaps for some more featlnwafdre, it may be
well adapted to other applications that could have diffespecification on ground
truth. One of the limitations of iterated classification s $ensitivity to ground
truth, that is, a feature set that works for one ground traticp might not work for
another. This sensitivity can be tracked through computiegoverall error rate of
training set. We also suggested a systematic method fartsgjehe right size of
feature extraction window to fit the ground truth. In termscomplexity, iterated
classification may be more time consuming than other meth@dd#laborators in
our lab have proposed approximations that speed up thefedagen process. This

run time can be further reduced by classifying nxn “blocksstead of individual
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pixels. The input and output of iterated classification athe form of images. This

suggests that iterated classification can be applied asageitmoosting technique.
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