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Abstract

We investigate a family of pattern classification methodologies for image process-

ing usingiterated classification, that is, using a sequence of classifiers, each trained

separately on the training-data results of the preceding classifier, and each guided by

the same ground truth. We apply iterated classification to improve document image

content extraction: that is, the location and segmentationof handwriting, machine-

printed text, photographs, and blank space. We try to achieve high-accuracy pixel-

accurate segmentation: that is, each pixel in a document image is assigned a class;

there is no “region” model, and so results are not constrained to arbitrary region

shapes such as rectangles (a restriction which dominates most of the R&D liter-

ature). Because classification is pixel-accurate, the output image is “false color”,

where colors represent content classes: thus, both the input and output of our algo-

rithms are images. We describe large-scale experiments which reveal that iterated

classifiers can increase recall of all content types, with little loss of precision. We

also introduce two policy changes: (1) a multi-stage votingrule; and (2) a scoring

policy that considers blank pixels to be a “don’t care” class. These changes are

1



realistic and improve both recall and precision, achieving89% recall and 87% pre-

cision (at least) among three content types: machine-print, handwriting, and pho-

tographs. We have found that iterated classification is sensitive to the ground-truth

policy, such as “loose”, “tight”, and pixel-accurate policies. We have compared the

accuracy of all three truthing policies, and report that tight truth supports higher

accuracy than loose truth, and pixel-accurate truth yieldsthe highest accuracy. Ex-

periments on a diverse and highly challenging test set of 83 document images show

that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9%

to 21.4%). Latest experiment on a test set of 157 document images shows that it-

erated classifiers continue to drop per-pixel classification errors by 24.5% (from

20.2% to 15.2%). Evidence from both experiments and simulation suggests that it-

erated classification converges to the ground-truth; we have analyzed special cases

suggesting reasons why iterated classifiers tend to converge to the ground truth.

2



Principal Contributions of this

Dissertation

• We present a strategy for document image segmentation usinga series of post

classifiers: “iterated classification.”

• Our iterated classification approach allows pixel-accurate classification and

minimizes arbitrary manually chosen rules.

• We have carried out large-scale experiments on classifier systems implement-

ing this approach, showing that they are capable of reducingerrors – and,

increase both recall and precision – significantly on difficult test sets.

• We present a formal analysis of iterated classification, comparing it with “re-

peated classification,” and supported by simulations, which suggest reasons

why it tends, over a series of classification stages, to converge towards ground

truth.

• We compare and contrast the effects of choices of competing ground-truth

policies on classifier performance for document image classification.

3
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Figure 1: Schematic methodology of iterated classification. The same ground truth
is passed to every training phase. Classification results arepassed from one clas-
sifier to its successor for training and classification. Notethat each classifier is, in
general, different from one another.

5



Figure 2: Iterated classification example of an entertainment magazine image. Up-
per left is the full color original image, followed by the results of iterated classifi-
cation. The last three images are final MP, PH and HW masks.

6



Chapter 1

Introduction

Image processing is signal processing for which the input signal is an image, such

as photographs or video frames; the output of image processing can be either an

image or a set of characteristics or parameters related to the image. Most image-

processing techniques involve treating the image as a two-dimensional signal and

applying signal-processing techniques to it.

Image segmentation is one type of image processing. The goalof segmentation

is to simplify and/or change the representation of an image into something that

is more meaningful and easier to analyze [SS01]. Commonly, a segmentation is

defined as a partition of the image into disjoint subsets of pixels (subareas of the

image) such that each subset is of a single type, function, orcontent [HP74, HP76].

The vast and rapidly growing scale of document image collections has been

compellingly documented [WMB99]. Information extraction [Ish01] and retrieval

[MC00] from document images is an increasingly important R&D field at the inter-

face between document image analysis (DIA) and informationretrieval (IR).
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Our research has focused on investigating versatile algorithms for document

image content extraction, that is segmenting the images into machine printed text,

handwriting, photographs, etc.

Thedocument image content extractionproblem can be defined as:

Givenan image of a document,

find subsets of pixels containing machine-printed text, handwriting,

photographs, etc.

We approach this problem in its full generality, attemptingto cope with the richest

diversity of documents and image types. Colleagues in our labhave reported pre-

liminary results in the development of highly versatile [BMN+06] and voracious

[CB06, Cas06] classifiers for this problem domain. Types of document images that

we accept include color, grey-level, and bilevel (black-and-white); also, many sizes

or resolutions (digitizing spatial sampling rates); and inmany of a wide range of

file formats (TIFF, JPEG, PNG, etc). We convert all image file formats into a PNG

file in the HSL (Hue, Saturation, and Luminance) color space;bilevel and greylevel

images convert to HSL images with fixed values for hue and saturation. We have

access to a database of over 9000 sample page images containing the following

types of content: machine print (MP), handwriting (HW), photographs (PH), line

Art (LA), math notation (MT), maps (MA), engineering drawings (ED), chemical

drawings (CD), “junk” (JK,e.g. margin and gutter noise), and blank (BL). These

include samples of each content type across a wide range of languages (including

English, Chinese and Arabic) and image qualities and from several historical peri-

ods. The wide range of images is illustrated in Figure 3.2.

We have adopted the policy of classifying individualpixels, notregionsas most

8



previous document segmentation research have done. This avoids the arbitrariness

and restrictiveness of limited families of region shapes, as illustrated in Figure 1.1.

We are also strongly motivated by the work of Shafait, Keysers and Breuel on pixel-

accurate representation of segmentation results [SKB06].

In Figure 1.1, a test image is shown on the left and the resultsof classification

next on the right where the content classes are shown in color: machine print (MP)

in dark blue, handwriting (HW) in red, photographs (PH) in light blue-green, blank

(BL) in white, and unclassified in light grey. Each image possesses a thin border

of unclassified pixels (difficult to see at this resolution) due the fact that feature ex-

traction requires a region of a minimum size. Some other pixels remain unclassified

due to sparsity of training data.

Both training and test datasets consist of pixels labeled with their ground-truth

class (one of MP, HW, PH, BL). Each pixel sample is representedby scalar features

extracted by image processing of a small region centered on that pixel; these fea-

tures are discussed in detail in Section 4.4. Our work is built on two automatically

trainable classification technologies developed by other students in our lab: brute-

force 5-Nearest Neighbors (5NN) and fast approximate 5NN using hashed k-d trees

[CB06, Cas06, BMA07].

My work is built directly on the results of work by several other researchers in

our lab, earlier researchers’ contributions to my entire system are listed as below:

• Brute-force 5-Nearest Neighbors (5NN) Classifiers by Don Delorenzo [CB06];

• Approximate 5NN using hashed k-d trees by Matthew Casey [Cas06];

• Random decimation by Michael Moll [BMA07];

9



(a) color test image (b) “false color” classification result “im-
age”

Figure 1.1: A document image with a complex non-rectilinearpage layout. Our
policy of classifying pixels has the advantage of adapting to arbitrary layouts with
non-rectilinear region shapes (here, regions with circular-arc boundaries). The orig-
inal image (a) is in full color. In the results of classification (b), machine print (MP)
is dark blue, handwriting (HW) red, photographs (PH) light blue-green, blank (BL)
white, and unclassified pixels are shown in light grey.

10



• Feature Selection Focused within Error Clusters [WB08];

• Bin decimation by Dawei Yin [YBA10, YAB10].

The remainder of this dissertation is organized in the following manner: Chap-

ter 2 contains the literature review relevant to the motivation of our work. Chapter

3 discusses our proposed approach and details of its scheme.The details of algo-

rithms and implementation is described in Chapter 4. The investigation of com-

peting ground truth policies are discussed in Chapter 5. The results of most of our

experiments are discussed in Chapter 6. In Chapter 7, we present a formal analysis

of the performance of iterated classification. Chapter 8 is a discussion of policy

changes to enhance recall. Finally Chapters 9 highlight conclusions and future

work.

11



Chapter 2

Literature Review

In this Chapter we review other approaches that are relevant to the ones we investi-

gated.

2.1 Cascading Classifiers

Our technique of iterated classification is similar in broadoutline to cascading clas-

sifiers [AK98, KA00]. Cascading classifiers, introduced by Alpaydin and Kaynak,

are a sequence of classifiers ordered in terms of increasing complexity and speci-

ficity such that early classifiers are simple and general whereas later ones are more

complex and specific, being localized on patterns rejected by its preceding classifier.

An example of a cascading system is as follows. The first classifier is a single layer

perceptron (SLP) and the next classifier, is a multilayer perceptron (MLP), which

is trained by focusing on training patterns not covered by the SLP. The remaining

few patterns will be treated as exceptions and covered by an expensive instance-

based technique,e.g. kNN. The cascading algorithm was tested on eight different

12



2.2. CONDITIONAL RANDOM FIELDS

databases from the UCI repository [BM], The result showed thatMLP reached ac-

curacies of 76.4%, 89.1% and 95.2% on recognition of letters, optical-based hand-

written digits and pen-based hand-written digits respectively; kNN increased the

accuracies to 93.4%, 96.5% and 97.7%.

Cascading algorithm has the strength of increasing accuracywithout the con-

comitant increase in complexity and cost. However, determining the confidence

threshold needed for each stage is heuristic. Our iterated classifiers have these dif-

ferences with cascading classifiers: we train on the resultsof classification, not on

the original images; and we reclassify every sample, not merely rejected samples.

2.2 Conditional Random Fields

Conditional random fields [JLP01] (CRFs) are a framework for building proba-

bilistic models to segment and label sequence data. A CRF can beviewed as a

undirected graphical model that defines a single log-lineardistribution over label

sequences given a particular observation sequence [Wal04]. Formally, let G = (V,E)

be a graph such that there is a node vǫ V corresponding to each of the random vari-

ables representing an elementYv of Y, andX be the random variable representing

observation sequences. If each random variableYv obeys the Markov property with

respect to G, then (X,Y) is a conditional random field.

Other researchers have attacked this problem of fine-grain classification without

restricting region shape. Nicolas and Dardenneet al [SNH07] adapted and applied

conditional random fields (CRFs) to document image segmentation. In the phase

of feature extraction, they defined three feature functions: a local feature function

13



2.3. MATCHED WAVELETS

that takes only into account features extracted on the observed image, a contex-

tual feature function that takes only into account the localconditional probability

densities on the label field in a neighborhood, and a global feature functions that

extract the global label configuration over a larger neighborhood than that taken by

the contextual feature function. They used Multilayer Perceptron (MLP) to model

each feature function because they are fast and provide goodgeneralization prop-

erties even in high dimensional spaces. They also investigated the use of MLP as a

combination function, and used the backpropagation algorithm to train all the MLP

to determine the weights of each MLP.

Their insights of taking into account of neighborhood contextual information is

similar to ours. Another similarity is that they also extracted features on pixel level,

but they classified 3x3 region to decrease the computation. The drawback of their

method is the prohibitive time required for training the MLP. One limitation is that

they only experimented on handwritten drafts of Flaubert, not on versatile images

containing several content types. Still, we can learn from their method.

2.3 Matched Wavelets

Kumar and Guptaet al [KGK+07] used matched wavelets to develop the globally

matched wavelet filters. Their method works in two phases. Inthe first phase, the

matched wavelets scheme is extended for the segmentation ofdocument images

into text, background and picture components. They used three Fisher filters, each

optimized for a two-class classification problem. In the second phase, to refine the

obtained segmentation results, they exploited the contextual information by using

14



2.4. TEXTURE BASED SEGMENTATION

a Markov random field (MRF) formulation-based pixel labelingscheme; and they

attained MRF energy minimization using the alpha-expansionalgorithm proposed

in [YZ04, KZ04].

They coped with not only grey images but also color images, and classified per-

pixel. Another similarity with our work is that they did not need any information

about the font size or format of the text in the image. They tested their method

on a test set of 33 images taken from scanned images and different website. The

accuracy of their method is high – it reaches 93.8% in one of the images. The

average time of their approach on the test set is 158 seconds,which is considered

fast. However, because each filter they use only deals with two-class problem, as

the number of classes increases, the number of filters increases. We can learn from

their approach.

2.4 Texture Based Segmentation

Etemad and Doermannel al [EDC97] proposed a texture based algorithm for layout-

independent document page segmentation. They regarded text, image and graphics

regions in a document image as three classes of textures. In their approach a wavelet

packet tree is built for texture based multiscale feature extraction, and six features

are selected. A multilayer neural network is trained and decision integration is uti-

lized to obtain “soft classification”, that is, image subblocks can be classified as

belonging to multiple classes. Their approach performs well on complex document

layouts, and is robust to noise and page skew. This texture based document segmen-

tation scheme may be more complex than other methods, but it has a wider range of

15



2.5. CONSTRAINED CONNECTIVITY PARADIGM

applicability. This approach has the advantage that a majority of its calculation and

decisions are made independently and in parallel without iterative stages. Therefore

it can be well adapted to distributed and parallel architecture.

2.5 Constrained Connectivity Paradigm

Pierre Soille introduced an image partitioning and simplification method based on

the constrained connectivity paradigm [Soi08]. Accordingto this paradigm, two

pixels are said to be connected if they satisfy a series of constraints defined in

terms of simple measures such as the maximum gray-level differences over well-

defined pixel paths and regions. The resulting connectivityrelation generates a

unique partition of the image definition domain.

Soille’s method has the strength of avoiding the arbitrariness of region shapes,

on which aspect it is similar to our method. However, this method only offers a

“low-level” answer in the sense that they generate a partition of the image into

“puzzle pieces” that still need to be assembled for the purpose of detecting specific

objects defined in the context of application.

2.6 Hierarchical Threshold Segmentation

Peak and Tag presented a technique called hierarchical threshold segmentation

(HTS) to solve the problem of segmentation of satellite cloud images [PT94]. Their

approach applied artificial intelligence to reasoning about the sizes and shapes of

the emergent regions during the segmentation process. Two key features are used:

the first one is the number of pixels on the perimeter; the second is the ratio of the

16



2.7. MATHEMATICAL MORPHOLOGY

number of pixels inside the region to the number of boundary pixels.

Their idea of split and merging of regions is relevant to our problem in that

we need to obtain pure regions by reclassifying mixed pixelsof different content

classes. However, their problem is simpler than ours: the shape and the size of

clouds are restricted, while the shape and the size of image partitions are arbitrary.

2.7 Mathematical Morphology

Since we classify every pixel, our classifiers are similar tomany image process-

ing methods, such as mathematical morphology [SS94]. Morphological processing

refers to certain operations where an object ishit with a structuring elementand

thereby reduced to a more revealing shape [Jai89]. Most morphological operations

can be defined in terms of two basic operations,erosionanddilation [Ser82]. Use-

ful morphological transforms that are derived from the basic erosion and dilation

operations includehit-miss, opening, closing, boundary convex hull, skeletoning,

thinning, thickeningandpruning.

Park and Lee investigated features in 1-D signal on many scales and proved a

“causal” property of scale-space (i.e. no new feature points are created as scales get

larger) for each of the morphological operations: opening,closing, and alternating

sequential filtering [PL96]. In order to prove that, they refined the standard defini-

tion of zero-crossings so as to allow signals with a certain singularity, and use them

to define feature points. They claimed and explained that morphological opening

can not satisfy causality for two-dimensional gray-scale images.

Morphological transforms are sometimes considered “low-level” [Dou92b]. The
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2.8. COMPETING GROUND-TRUTH POLICIES

qualifier “low-level” means that the implementation of transformations are served

as elementary steps when solving practical image analysis problems. This does not

mean that these transformations are simple; on the contrary, some of the operations

are complex. However, from a user’s perspective, these transformations share the

characteristics of being easily and intuitively understandable.

2.8 Competing Ground-Truth Policies

The availability of a good ground-truth policy for evaluation is crucial to the suc-

cess of image analysis. Although many ground-truth policies have been proposed,

agreement on details has been hard to reach. Nevertheless, some researchers agree

that for different tasks, different ways for measuring overall performance are de-

sired [LL10]. In this section, we briefly summarize recent debates on competing

ground-truth policies.

Clavelli et al presented a nice survey of evaluation problemsfor the text ex-

traction [ACL10]. Several algorithms for text extraction from complex color im-

ages have been described in the literature [LZ00, KA07, PGM+04, KJK03, RM07].

Some papers use a subjective “eye-ball” standards for lack of ground-truthed datasets

and corresponding performance evaluation methods [LZ00, KA07]. Some other

papers rely on optical character recognition (OCR) error rateto evaluate text ex-

traction [PGM+04]; of course any defects in the OCR system are also reflected in

error rate, thereby affecting the evaluation of the text extraction.

Basically, text extraction approaches can be sorted into twomain categories:

texture-based [KJK03] and connected-component (CC) based [RM07]. Texture
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based approaches aim to locate text zones in image. Performance evaluation of

texture based approaches is typically based on calculatingthe overlapping ratio be-

tween detected text zones and the ground truth [LPS+05, WJ06, RM07]. This eval-

uation scheme was originally conceived for layout analysisalgorithms [LPS+05,

LPH97, AKB06]. Since the results of text extraction are not necessarily in the form

of bounding boxes, it is difficult to quantify the effects of each step of an algo-

rithm, as pointed out in [RM07]. Connected component approaches aim to produce

a pixel-level segmentation of the image by separating text items (e.g. characters,

words, text-lines, etc) into CCs. The performance evaluationshould be able to as-

sess not only the text location step but also the post-processing steps towards text

extraction. Nevertheless, in [RM07] the authors have to revert to bounding box

overlapping measures that assess only the text location performance.

Clavelli et al then proposed a comprehensive framework for the evaluation

of text extraction methods at multiple levels: pixel-levelsegmentation, character

restoration, text localization, word and text-line extraction.

Existing performance evaluation frameworks for text extraction generally do

not work with pixel-accurate ground truth. Nitrogiannis etal [NGP08] proposed

a framework for the purpose of evaluating thresholding results. In [MBA08] we

discussed the challenges and difficulties of defining a pixel-accurate ground truth

for the purpose of document-image segmentation. We showed in large-scale ex-

periment that “tight” truth support better classification result than “loose” truth. A

PARC research team agreed with this notion, and built an efficient manual truthing

tool, PixLabeler [SLS09].

Utilizing PixLabeler, Barney Smith explored the variability that inevitably arises
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2.8. COMPETING GROUND-TRUTH POLICIES

when images are ground truthed by humans and how this might affect the evalua-

tion of automated binarization algorithms [Smi10]. A series of experiments were

run using test images of Document Image Binarization Contest (DIBCO 2009)

[GNP09], the ground truth images used in DIBCO, the re-ground-truthed images

generated at BSU, and the results of five competing binarization algorithms sub-

mitted to DIBCO. The semi-automatically generated ground truth images used in

DIBCO were compared with BSU’s fully manually ground truthed images. The

two sets did not match as closely as might have been expected.For a single image

that was ground truthed multiple times, a larger variability was observed among

different ground truthing operators. Four direct evaluation metrics were used in

this study: F-measure (FM), negative rate metric (NRM), peaksignal-to-noise ratio

(PSNR) and normalized cross correlation (NCC). The variable and inconsistent per-

formance of NRM indicates that it should not be used for this type of evaluation. It

was observed that the manually ground truthed images were onaverage comparable

to the top DIBCO competing results. On certain images the competing automatic

binarization alogrithms agreed with the DIBCO ground truth more closely than the

BSU manual ground truthed images. Barney Smith summarized this: “This may

indicate that in a contest, no differentiation among algorithms can be made above a

certain level of fit.”

We face similar issues as Barney Smith does when we use PixLabeler to extract

pixel-accurate ground truth. The first difficulty is the binarization of grey images

and color images, especially when ground-truthing handwriting images: it is some-

time hard to decide where the boundary between text and back ground is. The

second is the overlapping pixels of different foreground content types: a typical
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case is text (machine-print or handwriting) printed on photographs. One thing to

point out is that in color images (i.e. magazine pages), foreground pixels are not

necessarily darker than background pixels.

2.9 Summary and Discussion of Iterated Classifiers

In summary, few previous approaches attack the image segmentation problems

challenged by (a) versatility (i.e. content classes) and (b) arbitrariness (i.e. re-

gion shapes and boundary shapes) against a wide range of documents (i.e. black &

white, grey and color), (c) in a automatic way (i.e. trainable and data-driven). Pixel

accurate segmentation is growing in popularity because it avoids the arbitrariness

and restrictiveness of shapes. Our proposed iterated classification method gains its

strength from pixel-accurate segmentation, and has been tested on an extensively

wide range of documents; and it is data driven.

21



Chapter 3

The Proposed Approach: Iterated

Classification

We explain in this Chapter the motivation for and the design ofiterated classifica-

tion.

We showed in the Introduction that our document image content extraction

(DICE) algorithm is able to avoid arbitrariness and restrictiveness of region shapes.

Examples of typical DICE classification errors are shown in Figure 3.1. In these

examples, the ground truth is all of one content class, but the DICE classifica-

tion “mixes” content types together. Clearly, further improvement is desirable and

should be possible. For these kinds of errors, researchers might suggest image pro-

cessing technique of average voting within a window. We object to this approach

on the grounds that it requires engineering choices of arbitrary region shapes and

manually crafted rules such as window sizes. This observation motivates us to find

other approaches to improve the accuracy yielded by DICE algorithm.
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(a) (b)

(c) (d)

(e)

Figure 3.1: Examples of DICE classification errors. Example (a) shows clusters
of HW pixels that are heavily misclassified as MP. Example (b)shows HW pixels
misclassified as both MP and PH. Example (c) shows MP pixels lightly misclassi-
fied as both HW and PH. Example (d) shows PH pixels located in the center of a
photo are sparsely misclassified as MP; and those lying on or near the boundaries
are heavily misclassified as MP. Example (e) shows MP pixels of large font size
letters are heavily misclassified as PH, except for those lieon the boundaries.
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3.1. POST-CLASSIFICATION

Basically, we can approach the problem from three directions: one is to choose

better features, which Sui-Yu Wang had investigated in her research work [WB08];

another is to improve the algorithm of the classifiers, whichDawei Yin has investi-

gated [YBA10, YAB10]; a third is to use post-classification, which is my principal

contribution, and will be introduced in detail in this Chapter.

3.1 Post-Classification

We decided to choose post-classification as our approach fortwo reasons. The first

reason is that we want to avoid restricting arbitrary regionshapes; therefore, we

want the post-processing method to continue to produce pixel-accurate results. The

second reason is that we want to avoid unsuitable extra manual decisions when

recomputing pixel-accurate content classes. Since we wantthe post-processing

method to be scalable to large datasets, we want it to requireas few engineering

intervention as possible. In another word, we want this method to be data-driven as

much as possible.

We define the post-classification problem as follows:

Given: pixel-accurate classification results for a document image.

find: a reassigned labeling that yield higher accuracy.

We have designed a trainable post-classifier that operates on the output of the

preceding classifier, guided by the same ground truth. That is, we want the behavior

of the system to be determined by training data alone. Of course we can not escape

all engineering choices,e.g. we have to choose features, and the size of windows

within which features are extracted. A diagram of the post-classifier is shown in
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Figure 3.2: Examples of documents that are tested in our experiments.
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3.1. POST-CLASSIFICATION

Figure 3.3: Examples of “false-color” classification results of the wide range of
documents that are tested in our experiments.
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

Figure 3.4.

3.2 Repeated Classification Trained Only on First Stage

Results

As discussed in section 3.1, we have built a post-classifier that operates on the

output of the DICE classifier, guided by the same ground truth,and reclassifies the

test images. The post-classifier takes “false color” imagesas input and yields also

“false color” images as output. This characteristic suggested to us that we repeat

the post-classification process: put the output of the post-classifier back as its input,

as perform another round of classification. Of course this process can be repeated

indefinitely: we call this approachRepeated Classification(RC). We will call the

output of the DICE classifier thefirst stageoutput; the output of the immediately

following post-classifier is called thesecond stageoutput, followed by thethird

stageoutput, etc. Note that the second stage classifier and the third stage classifier

are the same, as well as the following stage classifiers. A diagram of repeated

classification is shown in Figure 3.5.

Repeated classifier can sometimes succeed in fixing errors from earlier stage.

An example of improved results on handwriting is shown in Figure 3.6. The test

image contains only handwriting text. In stage 1, we can see that many pixels are

misclassified as MP, especially these lying on the strokes. Most of their surrounding

neighbors are classified as HW. In stage 2, we can see the clusters of MP shrink,

that is, many pixels that are classified as MP in stage 1 are reclassified as HW.

This correction continues in following stages. By stage 5, almost all MP pixels are
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

(a) DICE Classification

(b) Post-Classification

Figure 3.4: Schematic methodology of post-classification.To enable post-
classification, DICE classifier is modified in the way that not only the test images
but also the training images are classified. The results, along with the ground truth,
are then passed to the post-classifier as input.
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

(a) Post-Classification

(b) Repeated Classification

Figure 3.5: Schematic Methodology of repeated classification. On the top is the
post-classifier, which operates on the output of DICE classifier. On the bottom is
the repeated classifier, which is trained on the results of the post-classifier. The
output of the post-classifier is put back as its input, and reclassified repeatedly.
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

corrected as HW. Note that as MP pixels are fixed, BL pixels thatare misclassified

as HW are also fixed gradually. Repeated classification allowssubsets of pixels that

are dominated by one content (here, HW) class to expand.

However, repeated classification can also fail; especiallyit allows subsets of

pixels that are dominated by incorrect content classes to expand. An example of

incorrect expansion of handwriting is shown in Figure 3.7. In stage 1, we can see

that most pixels lying within the text zone are correctly classified as MP. A few

pixels within the text zone are misclassified as HW; this typeof error happens to

occur more severely on the boundaries of the text zone. The bottom and right

margins of the image, which are blank, are erroneously dominated by HW. In stage

2, we can see that HW pixels within the text decrease. However, the HW clusters on

the boundaries and margins expand. This continues in following stages. By stage 5,

almost all HW pixels well inside the text are corrected as MP;but the HW clusters

around the edge have expanded significantly. (Pixels in the square graphic located

at the beginning of the text are misclassified MP almost all the time.)

This expansion of erroneous clusters suggested to us that repeated classifica-

tion is unstable in improving the results. It can reduce the errors in earlier stages,

but might increase the error in later stages. After careful examining of the “false-

color” images in the test set, and comparing them with the training set, we noticed

that repeated classifiers may not improve at all stages. Repeated classifiers implic-

itly assume that the errors made by the DICE classifier occur, unchanged, again

and again at every stage of post-classification. If this assumption were correct, re-

peatedly applying the same post-classifier would work fine atall stages. However,

this assumption does not hold in reality. Post-classifiers can make different types
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3.2. REPEATED CLASSIFICATION TRAINED ONLY ON FIRST STAGE RESULTS

(a) Test Image (b) Stage 1 (c) Stage 2

(d) Stage 3 (e) Stage 4 (f) Stage 5

Figure 3.6: Illustration of repeated classification improving on handwriting. The
test image contains only handwriting text. In stage 1, we cansee that many pixels
are misclassified as MP, especially these lying on the stokes. Most of their sur-
rounding neighbors are classified as HW. In stage 2, we can seethe clusters of MP
shrink, that is, many pixels that are classified as MP in stage1 are reclassified as
HW. This correction continues in following stages. By stage 5, almost all MP pixels
are corrected as HW.
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(a) Test Image (b) Stage 1 (c) Stage 2

(d) Stage 3 (e) Stage 4 (f) Stage 5

Figure 3.7: Illustration of repeated classification expanding handwriting erro-
neously. The test image contains only machine-print text. In stage 1, we can see
that most pixels lying within the text zone are correctly classified as MP. A few
pixels within the text zone are misclassified as HW. This typeof error occurs more
severely on the boundaries of the text zone, and the bottom and right margins of the
image, which are blank, are erroneously dominated by HW. In stage 2, we can see
that HW pixels within the text decrease. However, the HW clusters on the bound-
aries and margins expand. This continues in following stages. In stage 5, almost
all HW pixels within the text are corrected as MP; and the HW clusters expand
significantly.
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3.3. ITERATED CLASSIFICATION

of errors at each stage. Thus repeatedly classifying the test image using the same

post-classifier maybe unable to adjust to the changing situation. This thought moti-

vates us to try re-training the classifier again at each stage, and leads to the design

of iterated classification.

3.3 Iterated Classification

In previous section, we introduced repeated classification– we trained the second-

stage classifier using the first-stage classification results, and continued using the

same classifier for all following stages of classification. The flaw of repeated classi-

fication inspired us to tryiteratedclassification: a sequence of post-classifiers, each

trained separately on the training-data results of its preceding classifier, guided, as

always, by ground truth. We will call the initial stage classifier (the DICE classi-

fier) thefirst stageclassifier, the immediately following post-classifier is the called

thesecond stageclassifier, followed by thethird stageclassifier, etc. A diagram of

iterated classification is shown in Figure 3.8.

Our strategy has been to extract features from small local regions,e.g. circular

windows of radius 9, so that no single classification stage affects a large area. It it

worth emphasizing that we train each of the post-classifiersseparately on the results

from the training set of the previous stage. As we will show, this strategy appears

to prevent the clusters of wrongly classified pixel to expand, while allowing those

dominated by the correct class to expand slowly.

For the classification technology, we use approximate 5NN using hashed k-d

trees [Cas06]. The features for the post-classifiers are discussed in Section 4.5.
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3.3. ITERATED CLASSIFICATION

Figure 3.8: Schematic methodology of iterated classification. The same ground
truth is passed to every training phase. Classification results are passed from one
classifier to its successor for training and classification.Take the 2nd-stage classifier
for example, the classifier is trained on ground truth and thefirst-stage classification
results of the training images, and classifies both the training and test images. Note
that each classifier is, in general, different from one another.
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Chapter 4

Classification Algorithms

In this Chapter, we briefly introduce two automatically trainable classification tech-

nologies, developed by other students in our lab: brute-force k-Nearest Neighbors

(kNN) and fast approximate kNN using hashed k-d trees. We describe in detail the

features for DICE and iterated classification.

4.1 Brute-force k-Nearest Neighbors

We have implemented 5NN under the Infinity Norm using a brute-force algorithm.

We regard this as our “gold standard” and compare other faster but usually less

accurate methods to it.

4.2 Hashed k-D Tree Classifier

We have implemented our non-adaptive k-D tree classifier using fixed cuts, sped

up by hashing bit-interleaved addresses [CB06] [Cas06], whichruns up to several
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4.2. HASHED K-D TREE CLASSIFIER

hundred times faster than brute-force 5NN with only a small loss in accuracy in this

domain. The experimental results described here were achieved using this classifier,

hashing 24 bits of bit-interleaved address. We also sped it up by a technique of

“inverted classification” (“filtering” in [Cas06]), in whichtest data are read first

and hashed into the k-D tree; as the training data is read, data that hashes to an

empty cell (i.e. one that contains no test data) can be discarded, while thosethat

hash into occupied cells are of course used to “annotate” therelevant testing points

with their class and distance (each testing point owning a list of up tok nearest

neighbors so far). The principal advantage of this technique is that it allows us to

constrain memory usage toO(m), wherem is the testing set size, with no sacrifice

in accuracy and with the same computational cost (measured in numbers of distance

computations). As test and training sets grow, inverted classification scales well

since the test set can, with little or no loss in accuracy, be split into separate test sets

as needed to maintain memory footprints small enough to avoid thrashing.

Since inverted classification allowed us to avoid thrashing, observed runtime

was roughly proportional to the number of distance computations performed. For

example, given a testing set of 3.3 million samples and a training set of 35,247 sam-

ples (this training set is small due to the decimation). a brute-force kNN classifier

would perform over 110 billion computations, whereas the hashing classifier per-

formed only 7.5 billion, a speed-up of a factor of 15.5. This allowed the classifier

to run to completion in 47 CPU minutes, permitting frequent experiments which

allowed a more thorough investigation of effective combinations of features. These

results were typical of our experiments with the hashing inverted classifier.
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4.3. DECIMATION OF TRAINING DATA

4.3 Decimation of Training Data

Nearest Neighbor classification can be sped up simply by randomly throwing away

most of the training pixels. Experiments carried out by Michael Moll and reported

in [BMA07], showed that the loss of accuracy was significant byacceptable. to

support that this sacrificed an acceptable accuracy: Figure4.1 shows, on the left, a

test page image and, on the right, five results of classification (using the brute-force

5NN classifier) with fewer and fewer training samples. With adecimation factor

of 1000 (999 out of 1000 pixels omitted), per-pixel accuracyhad fallen from 80%

to 67% with a speed-up of a factor of over 350. As we scaled up our experiments,

we increased the decimation factor to maintain an acceptable trade-off between

accuracy and run-time. In experiments for iterated classification, when the size of

the training set reached 33 images, we chose a decimation factor of 9000.

4.4 Feature Extraction for DICE

Each pixel (the “target pixel”) is represented by scalar features extracted by image

processing of a small region centered on that pixel.

We have investigated more than 60 features, all extracted from the luminosity

channel (ignoring the hue and saturation channels): we selected twenty-six of these

for the experiments reported here, for reasons summarized below. All feature values

are scaled to lie within the (convenient but otherwise arbitrary) integer range 0-255.

• Average Region Luminosity(a group of four features): the average luminos-

ity values of NxN-subregions centered on the target pixel (for N=1,3,9,27).

The algorithm makes five successive passes. In the first pass,it simply copies

37



4.4. FEATURE EXTRACTION FOR DICE

Figure 4.1: The results of classifying an image when decimating the training file
used for classification. The first image on the left is the source image and from left
to right after that are the results of using every training pixel (80.4% correct), every
10th pixel (72.9%, speedup of 7.9x), every 100th pixel (76.2%, 57.9x), every 500th
pixel (70.0%, 212.5x), and every 1000th pixel (66.6%, 354.2x). Machine print
and handwriting segmentation quality is generally good even though the number of
unclassified (grey) pixels increases noticeably; but confusions between handwriting
and photographs are sometimes glaring.
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4.4. FEATURE EXTRACTION FOR DICE

all the pixel luminosity values in an array. In the second through fourth

passes, it calculates the sum of the luminosity values needed for the suc-

cessively larger boxes by taking the sums of the values held in the smaller

boxes (so 9 smaller boxes are added to create an larger one, ateach pass). A

final pass outputs the values to the feature array, dividing the values in each

of the boxes by the number of pixels summed in that box.

On small, relatively specialized, training and test datasets, these features dis-

criminated handwriting from machine print well, but their effectiveness less-

ened as the training set grew and diversified. Unsurprisingly perhaps, the

larger the NxN region the less discriminating they were.

• Region Luminosity Difference (a group of sixteen features): each is the

difference in total luminosity between halves of NxN regions cut in four di-

rections: horizontal, vertical, and the two diagonals.

These are effective in discriminating between BL (blank) andother content

classes, with the (still somewhat mysterious) exception ofHW (handwriting).

The following five groups of features extract features from straight lines of pix-

els centered on the target pixel, at each of the four directions. The length of these

lines (in pixels) is an essential parameter of course: we’llgive specifics of these

choices at the end of this section.

• Average Line Luminosity: the average of luminosity values along the line.

These assist in discriminating between handwriting and machine print. How-

ever, the diagonal features proved less effective than the horizontal and verti-

cal features and were discarded.
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• Line Luminosity Average Difference: The average of absolute differences

of luminosity between adjacent pairs of pixels along the line.

The diagonal variants of these proved to be effective especially in combina-

tion with the average line luminosity features. But the horizontal and vertical

variants were less effective and were discarded,

• Line Luminosity Max Difference : the maximum among absolute differ-

ences in luminosity between each pair of adjacent pixels along the line.

These are effective especially in combination with “Average Line Luminos-

ity” and “Line Luminosity Average Difference”. They help discriminate BL

(blank) from other classes.

• Distance to Max-difference Pair: the distance from the target pixel to the

closest pair of pixels that possess a maximum luminosity difference.

• Distance to Max-difference Pixel: the distance from the target pixel to the

closest one with a maximum absolute luminosity difference with the target

pixel. Early experiments suggested that the two groups of features (immedi-

ately above) were not helpful, but they improved when revised as discussed

next.

• Revised Distance to Max-difference Pair: these are features the same as

above computed in eight directions radiating out from the target pixel, rather

than in four directions centered on it.

• Revised Distance to Max-difference Pixel: same revision as discussed above.
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These two revised features were not effective unless used together. Used to-

gether, they were the best features for discriminating between PH and other

classes.

• Difference Between Two Distances: these are the differences between cor-

responding features “Revised Distance to Max-difference Pair” and “Revised

Distance to Max-difference Pixel”. They did not assist classification (and in

fact increased the error rate). We tried other ways to combine these two fea-

tures, including encoding the luminosity max-difference into the distance by

multiplication, but there was no improvement.

4.4.1 Feature Combination

Having tested many (but, of course, not all possible) combinations and variations of

the features described above, we gradually converged on thefollowing twenty-six:

Region luminosity average: 1x1 (pixel) region;

Line luminosity average: horizontal and vertical, line-length 25 pix-

els;

Line average difference: line-length 25;

Line luminosity average difference: diagonals only; line-length 25;

Line luminosity max difference: four directions, line-length 41;

Revised distance to max-difference pair:eight directions, line-length

41; and

Revised distance to max-difference pixel:eight directions, line-length

41.
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4.5 Feature Extraction for Iterated Classifiers

Each pixel (the “target pixel”) sample is represented by scalar features extracted by

image processing of a small region centered on that pixel[BMA07].

• Pixel Class: This feature is the content type value assigned by the earlier-

stage classifier to the pixel. Presently there are four content types:HW, MP,

PH and BL.

• Disk Class:This is a group of four features: each is the total number of pixels

of a special content type within the circle of radius 5 centered on the target

pixel.

• Disk Edge Detection:A group of thirty-two features: each is the total num-

ber of pixels of a content type within each half of circle of radius 5 cut in four

directions: horizontal, vertical, and the two diagonals.

• Disk Class Euclidean Distance Sum:A group of four features: each is the

sum of all distances from the target pixel to pixels of a content type within a

circle of radius 6.

• Pixel Content Type: A group of four features: extension of Pixel Class fea-

ture. For example, if the preceding classifier label the pixel MP, then the MP

feature is set to a non-zero value (here we use 186 based on ourexperiments

result), otherwise it is set to zero.

• Encoded Disk Edge Detection:A group of sixteen features: extension of

Box Edge Detection feature, each is the difference between two halves of the

circle radius 5.
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3 5 7 9 11 13
2nd-stage 0.162 0.158 0.148 0.151 0.166 0.174
3rd-stage 0.144 0.141 0.138 0.137 0.143 0.160
4th-stage 0.136 0.135 0.133 0.134 0.141 0.150

Table 4.1: Error rates for training set of each stage using different scale of features,
that is in radius of 3, 5, 7, 9, 11 and 13 pixels. Guided by the classification results
for the training set, we chose radius of 7 for the second stageclassification, 9 for
the 3rd-stage, and 7 for the 4th-stage.

• Neighbor Disk Class: A group of sixteen features: extension of Box Class

feature, each is extracted from the circular regions tangential to the center

circle in the direction of horizontal and vertical.

4.6 Systematic Exploration of Scale of Features

In earlier experiments, we extracted features from circlesof radius 5 pixels. Our

experiment show that the classification results are sensitive to the radius. We have

explored this sensitivity over a range of scales for each classifier stage separately.

The experiments show that the best scale of features changesfrom stage to stage,

as shown in Figure 4.1. Guided by the classification results for the training set, we

chose radius of 7 for the second stage classification, 9 for the 3rd-stage, and 7 for

the 4th-stage. The differences are not always statistically significant, but it is clear

that the sweet spot is somewhere between 6 and 10 pixels radius for these features.
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Chapter 5

Investigation of Ground-Truth

Policies

Discussions of methods for obtaining ground truth to support pixel-accurate seg-

mentations are reported in [AGB07, AKB06, PCHH93, SS03]. In [MBA08] we

showed in large-scale experiments that the tighter (the more pixel-accurate) the

truth, the better the resulting classifiers. Further discussion on pixel-accurate ground-

truth policies are recently reported in [ACL10, Smi10, CAB10].A PARC research

team agreed [SLS09] with this observation, and built an efficient manual truthing

tool, PixLabeler. We have applied this to our full-color andgreyscale images, and

compared it to earlier truthing policies we used.

5.1 What to Ground Truth?

The initial discussion of our ground-truth policy began with what classes we wanted

to classify. In the context of our problem of document image content extraction, we
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started with this initial list of content types: machine printed text (MP), handwriting

(HW), photograph (PH), blank (BL), line art (LA), math (MT), engineering draw-

ings (ED), chemical diagrams (CD), maps (MP) and junk (JK). Weused this list to

drive a systematic collection of document images for our database, containing each

content type in bitonal, greyscale and color formats, in a variety of languages (when

applicable). However, for initial testing of our classifierwe tested on a smaller set

of content types and we realized that some of these classes were possibly subsets of

others. Therefore, initial ground truth only labeled MP, HW, PH and BL content.

As mentioned previously, manual ground truthing makes pixel-accurate ground

truth infeasible, leading to a policy decision of what to classify. While we use

overlapping rectangles, this also applies to any other scheme that uses polygons or

any other shapes. Considering any form of text, handwritten or machine printed,

the next level up from pixel accurate ground truth would be atthe character level,

then the line level and finally the paragraph level. Since ourclassifier is labeling

each pixel based on a small window around each pixel, combined again with the

infeasibility of manual labor, we chose not to pursue character level ground truth.

Character level zoning also presents a challenge in determining where a character

begins and ends, as discussed in [KC94]. Some of the white pixels in between and

around the black pixels of a character must also be considered part of a character

and sometimes these regions may overlap. We chose to ground truth at the para-

graph level initially as this was the most efficient policy time wise and as we were

improving the classifier this yielded acceptable results. We will discuss alternatives

to this policy decision in later sections.
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5.2 Blank Space

As mentioned before, we chose to treat blank space as a uniqueclass and there-

fore we must also ground truth blank space like any other content class. An initial

idea was to label any pixel not explicitly “zoned” by the userin our tool as blank,

however there were multiple reasons for not making this policy. Some documents

may have types of content that we are currently not testing and we would like to

intentionally not ground truth or there may be ambiguous areas of the document

that contain multiple content types or that the user is unsure of how to label. For

the purpose of training data, these pixels can be left unlabeled and will be ignored

in training the classifier. Finally, since we treat blank space as an equal class to the

other classes we should use the same policy for obtaining ground truthed data as we

do for the other classes.

Our ground-truth policy however, created some problems forour classifier in

classifying blank space. At any level other than pixel accurate ground truth, some

amount of blank space will be included in the areas zoned as other content types

(i.e. the white space between lines of text, the white space insidethe letter o, etc).

If ground truth is particularly sloppy or loose, this can introduce what appears to be

noise in areas classified as blank space. Experiments with our classifier show that

this problem occurs most frequently with confusing blank space for handwriting

and in more limited cases also for machine print. This is due to the more free form

layout of handwriting samples, compared to the more uniformlayout of machine

print. Experiments discussed later confirm the idea that more careful, tighter ground

truth of handwriting samples, lead to less mistakes in classifying blank space.
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5.3 Overlapping Content

One problem that we have dealt with from the beginning of thisdissertation and

have yet to find a satisfying policy for is that of how to zone areas that contain

overlapping content areas. Part of our research goal is for our classifier to do well on

images with difficult, complex layouts. This includes images that have complicated

backgrounds, possibly photographs, with machine print over them. Other common

forms of this problem are machine printed documents with handwriting annotations.

Our policy has been to try to as tightly as possible zone the foreground pixels

(the MP over the PH, the HW over the MP) before labeling the background pix-

els. However, since we are not adopting a pixel-accurate ground-truth policy this

has the potential of introducing some “noise”’ pixels to theground truth for that

class. Current experiments have not shown any serious problems with this policy

for the classifier, however more experiments should be conducted using training

sets consisting of much larger amounts of overlapping data.An alternative policy

would be to assign two class labels to overlapping areas. No experiments have been

completed with this policy yet.

5.4 Machine Print in Photographs

A special form of the above problem is specifically how to handle machine print

and photographs when they overlap. The above mentioned example of a magazine

article with a photograph as background with a story printedover it or a caption

on a photograph seems straight forward. We try to tightly zone the MP and then

zone the PH around it. However, a unique case is that of a photograph that contains

47



5.5. DIFFICULT SHAPES

machine print. For example, an image taken from a handheld camera of a street

sign or even a newspaper article with a photograph of a football player showing his

name on his jersey. While the case of the street sign in the image obtained from a

digital camera seems straight forward, to label the text as machine print it quickly

becomes less clear if the street sign is not the focus of the photograph or the case of

the newspaper article with a photograph. In this case we consistently do not label

the text as machine print.

5.5 Difficult Shapes

We chose to use overlapping rectangles for our zoning to makeimplementation of

our zoning tool simpler, as well as simplifying the zoning process for the user. Many

of the documents we collected to train and test on contain difficult, non-rectangular

layouts. Even with a tool for zoning that uses polygons instead of simple rectangles

would have an imperfect representation of the actual layoutin the ground truth. The

policy we use for these areas are trying to capture as much of the detail and as little

noise as possible using many small rectangles. This is unfortunately a very time

consuming process for the person doing the zoning, and at best is still imprecise.

An alternative in our research program is to leave images like this out of the training

set, as our classifier does not learn from the layout of a page,but from the content

of a page. However, this is obviously not an acceptable policy for all research.

This also creates an evaluation problem that will be discussed later, as it will force

pages with these difficult layouts to be scored worse than they should be using some

evaluation metrics.
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5.6 The Effect of Tighter Zoning

Given the problems encountered with using a non-pixel-accurate ground-truth pol-

icy for a pixel level classifier, we began to experiment with using a tighter ground-

truth policy to try and reduce errors to improve overall classification. As discussed

and illustrated before, our initial ground-truth policy was designed to drive develop-

ment of the classifier and running experiments with very large numbers of training

and test images. This required a ground-truth policy that was not extremely labor

intensive and relatively simple for new people in our lab to adopt. However, as

performance of the classifier became more stable and test setsizes started growing

less slowly, we realized one area of our program that could potentially lead to great

increases in performance was our ground-truth policy.

5.7 Ground-truth Policies

In this section, we discuss the differences among three ground-truth policies.

We have developed a web-based user interface to zone document images in

PNG format, using overlapped rectangles. Using this, we cancapture loose and

tight ground truth. Loose ground truth is obtained by sweeping rectangles to enclose

entire block of a particular content type. This policy inevitably encloses blank space

that is inter-column, inter-paragraph, at the end of a paragraph. Therefore, loose

ground-truthing is an efficient manual task. Tight ground truth requires more care

to enclose individual textlines, sometime even hand-written strokes or large letters.

As a result, tens of times more rectangles, need to be swept. Pixel-accurate truth,

in which only foreground pixels are labeled, is obtained by applying the PARC
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PixLabeler [SLS09] tool; in our experience this tool was faster and easier than

loose truthing methods.

5.8 Morphological Expansions of Pixel-accurate Truth

To better understand the effectiveness of pixel-accurate ground truth, we generated

morphological expansions on it. We expanded foreground pixels by applying mor-

phological dilation operations [Dou92a] with a circular disk structuring element,

that is, background pixels within a distanced of a foreground pixel are labeled as

the same class as the foreground pixel. This choice of circular disk structuring el-

ement is justified by the notion that a circle does not imply bias to any particular

directions. We have generated four morphological expansions on pixel-accurate

ground truth, using MatlabR©, labeled by radii, in pixels, of the disks:d=1, d= 2;

d= 4, andd=8. The choice of any specific radii does not matter much here,as

long as there are several of them and obtained expansions aresomewhere between

pixel-accurate and tight truth.

5.9 Experiment Design

We have compared the effectiveness of loose and tight groundtruth in iterated clas-

sification [AB08], and found that tight truth reduces per-pixel classification errors

by 45% (from 38.9% to 21.4%). Now we add experiments on pixel-accurate ground

truth and its morphological expansions. We use a training set of 33 images and a

distinct test set of 83 images, which are the same images we used in [AB08]. To-

gether the two sets contain machine-print (MP), handwriting (HW), photograph
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(PH) and blank (“don’t care”) (BL). The training data was decimated randomly by

selecting one out of every 9000th training sample.

We evaluated performance using per-pixel accuracy, precision and recall. Per-

pixel accuracy is the fraction of all pixels in the document image that are correctly

classified. Unclassified pixels are counted as incorrect. Precision is defined as the

number of pixels correctly classified as belonging to a positive class divided by the

total number of pixels classified as belonging to the positive class. Recall is defined

as the number of pixels correctly classified as belonging to apositive class divided

by the total number of pixels that actually belong to the positive class.

For each truthing policy, we trained a classifier using that kind of ground truth,

then tested, and evaluated performance on the same type of ground truth.

5.10 Experimental Results

In this section, experiments comparing different ground-truth policies are presented.

The results of loose, tight and pixel-accurate truth are shown in the form of

per-pixel error rate in Figure 5.1(a), which indicates thatin each of the classifica-

tion stages, total error rate (averaging over all classes) decreases as the truth goes

from “loose” to “tight”, and finally to pixel-accurate (via PixLabeler). Notice that

the drop of error rate from tight to pixel-accurate is less significant than that from

loose to tight. The figure also show that the error rate decreases monotonically as a

function of stages. For the fourth stage, the difference between error rates of tight

and pixel-accurate is moderate. It seems like a clear win forpixel-accurate ground

truth.
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(a) Error rate

(b) Recall

Figure 5.1: On the left, (a) shows the total per-pixel error rate of loose, tight and
pixel-accurate ground truth as a function of stages of iterated classification. In each
stage, the error rate decreases as the truth goes from loose to tight, and finally to
pixel-accurate. For each ground-truth policy, the error rate also decreases mono-
tonically as a function of stages. On the right, (b) shows therecall for each content
class as a function of truthing policy: pixel-accurate (d=0); morphological expan-
sions by d=1,2,4,8; tight; loose.
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(a) Precision

(b) GT Pixels

Figure 5.2: On the left, (a) shows the precision for each content class as a function
of truthing policy, including morphological expansions onpixel-accurate ground
truth. Pixel-accurate ground truth is represented by “d=0”. On the right, (b) shows
the number of pixels in each content class by truthing policy.
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However, a closer look at each content class reveals problems. For one thing,

the overall error rate drops only slightly (from 16% to 14%) from tight to pixel-

accurate. More seriously, some classes suffer a catastrophic fall in recall in the final

move to pixel-accurate ground truth: for examples, handwriting recall drops from

70% to 2%.

The results of precision and recall for morphological expansions on pixel-accurate

truth, along with loose, tight and pixel-accurate, are shown in Figure 5.1(b), Figure

5.2(a) and Figure 5.2(b). In all the three figures, pixel-accurate truth is labeled as

“d=0”.

In Figure 5.1(b), the recall on handwriting (HW) increases asthe pixel-accurate

truth expanded, and reaches the highest with tight truth. The recall on machine-

print (MP) and photograph (PH) also increases as pixel-accurate truth is expanded

(i.e. d=1,2,4,8). Figure 5.1(b) also suggests that one of the pixel-accurate truth’s

morphological expansions, labeled as “d=8”, yields results similar to tight truth.

In Figure 5.2(a), we can see that some morphological expansions yield higher

precision on machine-print (MP) and photograph (PH) than pixel-accurate ground

truth. Note that precision on handwriting (HW) increases monotonically from pixel-

accurate truth to the morphological expansion of “d=8”. Figure (a) also suggests

that the morphological expansion of “d=8” is nearly equivalent to tight truth on MP

and PH. In Figure 5.2(b), notice that the number of MP pixels increases the most in

both quantity and percentage, and HW the least.

Consider this scenario: given a particular fixed test policy,and several compet-

ing training policies, it is conceivable that one of these training policies would score

54



5.10. EXPERIMENTAL RESULTS

the best. It would be interesting to see which training policy wins such a competi-

tion. Since we have several ground truth policies available, as well as the results,

we computed the scores and the results are shown in Table 5.1.Note that it makes

sense to read the table row by row, that is, given a test policy, how well and different

the classifier performs when trained with different training policies. When read col-

umn by column, the table presents the results with differentmeaning, that is, given

the output of particular classifier, how it scores when evaluated by different ground

truth. This does not make much sense though. This table indicates that for each

test policy, the highest accuracy is achieved by using the same policy for training. It

also suggests that the more similar the training policy is tothe test policy, the higher

the accuracy.

←−————————— Training Policies —————————−→
Pixel-Accurate W=1 W=2 W=4 W=8 Tight Loose

←
−

Te
st

P
ol

ic
ie

s−
→

Pixel-Accurate 0.864 0.833 0.804 0.759 0.645 0.637 0.440
W=1 0.823 0.832 0.826 0.795 0.695 0.686 0.495
W=2 0.782 0.820 0.831 0.815 0.730 0.719 0.534
W=4 0.734 0.790 0.817 0.825 0.767 0.754 0.578
W=8 0.616 0.680 0.723 0.770 0.836 0.817 0.681
Tight 0.623 0.677 0.720 0.761 0.822 0.836 0.685
Loose 0.349 0.406 0.453 0.505 0.630 0.639 0.699

Table 5.1: Row entries represent test policies, and column entries represent training
polices. For example, the numbers shown in the first row are accuracies of classi-
fiers trained on different GT policies, and evaluated with pixel-accurate GT. In each
row, the highest accuracy is shown in bold. This table indicates that for each test
policy, the highest accuracy is achieved by using the same policy for training. It
also suggests that the each test policy, the more similar of the training policy to the
test, the higher the accuracy.

So far we compared the error rates, precision and recall of different ground-truth

policies; and all results are from the fourth stage. We are also interested to examine

the effects of different ground-truth policies have on iterated classification. The

results, in the form of error rate as a function of stages of iterated classification,
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1st-stage 2nd-stage 3rd-stage 4th-stage
Pixel-Accurate 0.137 0.132 0.133 0.130

d = 1 0.171 0.154 0.168 0.168
d = 2 0.188 0.164 0.164 0.169
d = 4 0.211 0.173 0.178 0.175
d = 8 0.220 0.168 0.161 0.164
Tight 0.214 0.173 0.165 0.164
Loose 0.389 0.327 0.313 0.301

Table 5.2: Error rate as a function of iterated classification stages, and using differ-
ent ground-truth policies. Generally, iterated classification always reduce the error
rate for all ground-truth policies. For ground truth of “d=1”, the error rate decreases
by 1.7% from the 1st stage to the 2nd stage, but then bounces back by 1.4%. For
ground truth of “d=8”, the error rate decreases from 22.0% to16.4%, a drop of
25.5%, which is the most significant drop of all ground-truthpolicies.

are shown in Table 5.2 and Figure 5.3. For all ground-truth policies, the error rate

is reduced from the first stage to the fourth stage, although always monotonically.

This suggests thatiterated classifiers yield no worse results than the DICE classifier

no matter what the ground-truth policy is. Notice that the drop of error rate is slight

for pixel-accurate ground truth and its expansion of “d=1”;the drop becomes more

significant as the ground truth expands, the drop reaches themost significant when

the ground truth is loose.

5.11 Problems with Pixel-Accurate Ground Truth

Several things might have caused the problem we saw with pixel-accurate ground

truth: (1) imbalance in the training set (handwriting pixels were significantly fewer

than others); (2) confusion between foreground pixels and background pixels that
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Figure 5.3: Error rate as a function of stages of different ground-truth policies.

are inter-character, inter-word and inter-line, etc; and (3) bad fit with the features

(e.g. the radius of the feature extraction window is badly chosen).

Figure 5.1(b), Figure 5.2(a) and Figure 5.2(b) show that a moderate increase

(less than eight times) of ground-truthed HW pixels leads toa significant improve-

ment (more than 23 times) of recall (from 2% to 46%).

Random decimation, as discussed in Section 4.3 does not take into consideration

imbalances in the training set. In separate collaboration with Dawei Yin [YAB10],

we have explored another speed-up method, impurity-decimation that automati-

cally rebalances training data and estimates concentration in each K-d hash bin

separately, which then controls how many samples should be kept in each bin of the

hashed k-D tree. We do not include that research in this dissertation.

Our algorithms extract features from a circular window centered on target pix-

els. It is possible that the background pixels (inter-character and inter-word) have
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similar feature values as foreground pixels,e.g. handwriting. Such background

pixels would be hashed with foreground pixels into the same bin, thereby causing

classification mistakes.

We can not avoid choosing a test policy; but it is not clear which one is the “best”

for the purpose of evaluation and diagnosis. See earlier section 2.8 for detailed

discussion of competing ground-truth policies. The accuracy table 5.1 can not, of

course help us choose the “best” test policy.

From the perspective of training, the accuracy table indicates how different

ground-truth policies can affect classification results. Most noticeably, it suggests a

way to choose among different training policies when a test policy is given, that is,

train the classifier with the same policy.

Figure 5.3 might suggest that the closer the ground truth is to pixel-accurate, the

less iterated classification improves results. However, this is not as straightforward

as it seems. Recall that the feature extraction window we usedin this experiment has

a radius of 7 pixels; and the most three significant drops in error rate occur on the

loose, the tight, and the expansion of “d=8”. It seems likelythe iterated classifiers

perform better when the radius of the feature extraction window is smaller than the

expansion parameter of pixel-accurate ground truth. This does not mean we should

choose ground truth for testing to fit the feature extractionwindow of the classifier.
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5.12 Conclusion

We have compared performance among three ground-truth policies, loose, tight and

pixel-accurate, along with morphological expansions on pixel-accurate truth. Ex-

periments suggest that pixel-accurate ground truth can improve overall accuracy.

One consideration to take into account when comparing loose, tight and pixel-

accurate ground truth is the ground truthing effort (e.g. in hours of manual or semi-

automatic labor). Roughly, using our zoning tool, we averaged about 3 minutes per

image for loose ground truthing, 10 minutes per image for tight ground truthing;

and using PARC’s PixLabeler, we averaged about 2 minutes per image for pixel-

accurate ground truthing. With automatic morphological expansion, pixel-accurate

ground truth can cheaply provide variations that are similar to loose truth or tight

truth. Choice of ground-truth policies do not significantly affect runtime, either

for training or for testing. Therefore, we prefer PARC’s PixLabeler to our zoner.

For the choice of ground-truth policy for training using ourclassifier, based on the

comparison and experimental results, we recommend morphological expansion of

“d=8”.
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Chapter 6

Experiments

This Chapter presents the results of a series experiments, and generally a larger and

larger training and test set.

Our data sets contain MP, HW, PH, and BL content. Their text includes En-

glish, Arabic, Chinese, Hindi, and Korean characters each represented by bilevel,

greylevel, and color document image examples. The selection of test and training

pages was random except that for each test image there was at least one similar

(from the same source), but not identical, training image. Thus these experiments

test the discriminating power of the features and weak generalization (to similar

data) of the classifiers, but they do not test strong generalization to substantially

different cases.

We evaluated performance in two ways:

Per-pixel accuracy: the fraction of all pixels in the document image that are cor-

rectly classified: that is, whose class label matches the class specified by the
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ground truth labels of the zones. Unclassified pixels are counted as incor-

rect. This is an objective and quantitative measure, but it is somewhat arbi-

trary due to the variety of ways that content can be zoned. Some content—

notably handwriting—often cannot be described by rectangular zones. This

in some cases will lead to a per-pixel accuracy score being worse than an

image may subjectively appear to be. The overall per-pixel accuracy,O,

is calculated as shown in Equation 6.1, whereNi,j denotes the number of

pixels that are ground truthed as classi and classified asj (i, jǫC, C =

{MP,HW,PH,BL}), Ni,i is the number of pixels that are correctly clas-

sified, that is, classified as its ground truth class.

O =

∑

iǫC Ni,i
∑

iǫC

∑

jǫC Ni,j

(6.1)

Precision and recall: PrecisionPi of classi is calculated as shown in Equation

6.2, whereNi,i is the number of pixels that are correctly classifiedi, and
∑

jǫC Nj,i is the number of pixels that are classified as belonging to classi.

Pi =
Ni,i

∑

jǫC Nj,i

(6.2)

RecallRi of classi, is calculated as shown in Equation 6.3, whereNi,i is

the number of pixels that are correctly classified asi, and
∑

jǫC Ni,j is the

number of pixels that actually belong to classi.

Ri =
Ni,i

∑

jǫC Ni,j

(6.3)
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6.1 Instability and Workarounds

In this Section, we discuss an instability that occurred in an early small experiment.

In this experiment, we tested with 17 images: 8 images were placed in the train-

ing set, and 9 in the test set. We ran ten iterated classification stages. For the

first eight stages, the total error rate decreased almost monotonically from 34.4%

to 24.4%, except for a slight bounce of 0.2% at the seventh stage (from 24.8% to

25.0%). Then at the ninth stage, errors increased by 26.7% over the eighth stage

(from 24.4% to 30.9%). Large solid clusters of hand-writingwere suddenly mis-

classified as machine-print, an example is shown in Figure 6.1.

After locating the misclassification on test images, we examined the iterated

classification results for training images in order to find ifsimilar mistake took place

among them. We found that the error rate of training set also increased significantly

at the ninth stage (from 19.8% to 38.5%), cause by the misclassification of MP over

HW. The error rates on each stage for both test and training sets are shown in Figure

6.2.

Could we be notified of this kind of error in real application where no ground

truth for test set is unavailable? Given the representativeproperty between test set

and training set, that is, each test image is represented in training set. we are assured

that we can by tracking the error rate of training set.

The cause appears to be as follows as we take a close check up with training

images. As iterated classification proceeds, isolated pixels are relabeled, and clus-

ters become increasingly uniform. This effect aggregate asstage furthers. In one

training image, a thin “gutter” cluster separating MP blocks, which was in fact BL,

but was, for convenience, manually ground-truthed MP. Thiscluster was classified
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(a) mnotes in stage 8 (b) mnotes in stage 9

Figure 6.1: Classification “false color” images of a handwritten notes, which con-
tains only handwriting and blank. On the left is the result ofthe eighth stage, most
of the HW pixels are correctly classified. On the right is the result of the ninth
stage, HW pixels with in large solid clusters are misclassified as MP, except for
those lying on boundaries or within small clusters.
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Figure 6.2: Error rates as a function of stages for both test and training sets. Note
that for the first eight stages, the error rate of test set decreases as the error of
training set does. The test set’s curve is similar to the training set’s. At the ninth
stage, the errors of both sets increase significantly. The error rate of training set
increases twice as much as test set does.
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(a) GT of bw10 (b) bw10 in stage 8

Figure 6.3: Ground truth and classification “false color” images of a newspaper
crop in the training set. On the left is GT image, note that thethin “gutter” blank
space between the title and the paragraphs are ground-truthed MP. On the right is
the result of the 8th stage, the thin “gutter” blank space aremisclassified as HW.

HW by the eighth classifier, as shown in Figure 6.3. Thus the incorrectly classified

samples whitin the gutter fall at exactly the same point in feature space as correctly

classified MP. This led the NN classifier to mistake large clusters of MP for HW.

The essential problem is that incorrectly classified clusters, even small in area, once

purified to a certain threshold, can compete with large clusters that are consists of

correctly classified pixels.

We have found two engineering workarounds to reduce the incidence of this

instability. The first is to drop a training image out of the training set whenever its

classification error rate rises. The second is to increase the radius of the features.

The result of these to workarounds are shown in Figure 6.4.

We do not have a full enough understanding of this problem to propose guar-

anteed solutions. This problem is due to aggregation of several factors: the loose
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(a) Effect of Dropping bw10 (b) Effect of Increasing Radius

Figure 6.4: Illustration of two workarounds. In both figures, the misclassification
occurred in stage 9 of earlier experiment disappears. The figures indicates that
increasing radius of feature window outperforms the act of dropping the training
image of bw10.
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ground truth, classification error, and iterated classification. A small patch of er-

roneous ground truth plus a nuance error, which continues increasing as iterated

classification marches, can flip the dominating correct result. However, this insta-

bility issue suggests that defects in ground truth can lead to failure to the classifier.

6.2 Preliminary Experiment with Loose Ground Truth

In this experiment, we selected a training set of 33 images and a distinct test set of

83 images. Each content type was zoned manually (using closely cropped isothetic

rectangles, overlapped where needed to fit non-rectangularregions) and the zones

were ground-truthed. The training data was decimated randomly by selecting only

one out of every 9000th training sample.

Our results are illustrated in Figures 6.5 and 6.6. Each figure contains six images

of three types: (a) the original image; two classification images from stages one (b)

and four (c); and threemaskimages for MP (d), PH (e), and HW (f) content classes.

In the mask images—say, for example, the MP (machine-print)mask image, only

the regions that are classified as machine-print are extracted and displayed using

their original color pixel values; the pixels of other classes are shown as light grey.

Figure 6.5 shows results on a color image of a newspaper page containing non-

rectilinear handwriting regions. The first stage classifierlocates handwriting fairly

precisely, but mixes it with many machine-print misclassifications. We could read

most of the handwriting extracted by the handwriting mask image. The light blue

texture in the background is uniform from the start and does not worsen under post-

classification.
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(a) test image (b) 1st stage

(c) 4th stage (d) MP masked

(e) PH masked (f) HW masked

Figure 6.5: A color image containing rectilinear machine-print regions and non-
rectilinear hand-writing annotations. The error of the 1st-stage classifier is 37%;
the error of the 2nd-stage classifier is 36.4%; and the error of the 4th-stage classifier
is 34.2%. The MP mask extracts almost all of the MP except for alittle near the
(unclassifiable) page boundary. Almost all of the HW is extracted correctly, except
for patches where MP crowds it.
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Figure 6.6 shows results on a color image of a magazine page with a block

of handwriting on a yellow ruled background. The iterated post-classifiers cleans

much of the sparse light blue texture in the background, without causing the thicker

light blue texture to expand, in fact some of it shrinks, which is good. Note that

it cleans most of the red texture, both sparse and thick ones,in both the machine

print and photo regions. Meanwhile, the curvelinear boundaries of those large re-

gions are accurately detected, as well as the blank regions between paragraphs. The

post-classifiers also eliminate most of the erroneous handwriting areas in the yel-

low ruled background while enhancing the handwriting regions by removing the

machine-print texture within them. The mask images are highly promising in rep-

resenting handwriting, machine-print and photo layers.

Figure 6.7 gives the total error rate as a function of stages of classification.

Iterated classifiers reduce the error rate by 22.6%.

6.3 Preliminary Experiment with Tight Ground Truth

In this experiment, each content type was zoned manually (using closely cropped

isothetic rectangles) with careful and the zones were ground-truthed. The training

data was decimated randomly by selecting only one out of every 9000th training

sample.

We have experimented with 116 page images: 33 images were placed in the

training set, and the rest in the test set.

Experiments show great improvement on tighter ground truth. With loose ground

truth, for both training and testing, the error rate for the first stage of classification
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(a) test image (b) 1st stage (c) 4th stage

(d) MP masked (e) PH masked (f) HW masked

Figure 6.6: A magazine image with a complex non-rectilinearpage layout. The
per-pixel classification error of the 1st-stage classifier is 36.7%; and the error of
the 4th-stage classifier is 27.4%. The final MP, PH, and HW masks extract their
content types well, as shown in (d)-(f), with the exception afew small patches of
HW misclassified as MP.
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Figure 6.7: Total error rate averaged over the test set, as a function of stages of
classification. After four stages of classification, the error rate decreases from 0.39
to 0.30, a drop of 23%.
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was 38.9%; With tight ground truth, for both training and testing, the error rate for

the first stage of classification has decreased to 21.4%, a drop of 45%.

Our results are illustrated in Figure 6.8 and Figure 6.9. Each figure contains

nine images of four types: (a) the original image; classification images from stage

one using loose ground truth (b), classification images using tight ground truth from

stages one (c), two (d), three (e), and four (f); and threemaskimages for MP(g),

PH(h), and HW(i) content classes. In each of these two figures,the original images

are shown on the upper left. The results of classification areshown in (b)-(f), as

classification images where the content classes are shown incolor: machine print

(MP) in dark blue, handwriting (HW) in red, photographs (PH) in light bluegreen,

and blank (BL) in white.

Figure 6.8 shows results on a color image of a sports magazinepage containing

complex non-rectilinear regions. With tight ground truth,the per-pixel error of the

first-stage classifier is 22.9%; Figure 6.8(b) shows the result obtained with loose

ground truth: the per-pixel classification error of the first-stage classifier is 36.7%.

Note that BL regions are mixed with PH pixels, MP and PH regionsare mixed with

HW pixels, HW regions are mixed with MP pixels. Figure 6.8(c)shows the result

obtained with tight ground truth: the per-pixel error of thefirst-stage classifier is

22.9%; compared to Figure 6.8(b), BL regions are much purer, MP and PH regions

have less HW pixels in them, but HW regions are mixed with moreMP pixels. the

error of the second-stage classifier is 17.2%; the error of the third-stage classifier is

15.4%; and error of the fourth-stage classifier is 14.4%. Thefinal MP, PH and HW

masks extract their content types well, as shown in (g)-(i),except for some small

patches of HW misclassified as MP, and some small patches of PHmisclassified as
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(a) test image (b) 1st stage classifica-
tion (with loose GT)

(c) 1st stage classifica-
tion (with tight GT)

(d) 2nd stage classifi-
cation

(e) 3rd stage classifica-
tion

(f) 4th stage classifica-
tion

(g) MP masked (h) PH masked (i) HW masked

Figure 6.8: A document image with a complex non-rectilinearpage layout, contains
content of MP, HW, PH and BL. Tighter ground truth drops the error rate of this
image from 36.7% to 22.9%, a drop of 38%. The final MP, PH and HW masks
extract their content types well, as shown in (g)-(i).
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MP or HW.

Figure 6.9 shows results on a color image of a movie magazine page containing

complex non-rectilinear regions. With loose ground truth,the per-pixel classifica-

tion error of the first-stage classifier is 32.5%. And the background is mixed with

HW. With tight ground truth, the per-pixel error of the first-stage classifier is 25.2%;

the error of the second-stage classifier is 18.9%; the error of the third-stage classifier

is 17.7%; and error of the fourth-stage classifier is 17.7%. This error is possibly due

to the lack of training sample of MP written in red color on a yellow background.

For curvature preservation, notice the small red circles containing numbers: their

curvature changes slightly.

Figure 6.10 gives the representation of total error rate as afunction of stages of

classification. The post-classifiers reduce the error rate by 23.4%.

6.4 Statistical Significance of Claimed Improvements

We verify the statistical significance of improvements due to iterated classification

using a statistic two samplet-test [BD77]. Thet-test is commonly applied to assess

whether the means of two populations are statistically significantly different from

each other, using an estimate of standard deviation based onsample size. The null

hypothesis of at-test is that the two populations have equal means. When the two

populations are of the same size, as is true in our test, thet statistic is calculated as

follows:

t =
X1 − X2

√

S2

X1
+S2

X2

n

(6.4)
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(a) test image (b) 1st stage classifica-
tion (with loose GT)

(c) 1st stage classifica-
tion (with tight GT)

(d) 2nd stage classifica-
tion

(e) 3rd stage classifica-
tion

(f) 4th stage classifica-
tion

(g) MP masked (h) PH masked (i) HW masked

Figure 6.9: A magazine page with a complex non-rectilinear page layout, contain-
ing content of MP, PH and BL. The MP mask extracts its content class well, except
for three patches misclassified PH. For curvature preservation, notice the small red
circles containing numbers: their curvature changes slightly.
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Figure 6.10: Total error rate averaged over the test set of 83images, as a function
of the stages of classification. After four stages of classification, the error rate has
fallen from 0.214 to 0.164, a drop of 24%.
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whereX1, X2 are the means of the two populationsX1, X2, respectively; and

SX1
, SX2

are the sample standard deviations ofX1, X2. Once at value is deter-

mined, a p-value can be found using a table of values from Student’s t-distribution.

The p-value is the probability, under the null hypothesis, of observing a value

as extreme or more extreme than the test statistic. We perform the t-test using

MATLAB R©, and reportp-values here. The results of thet-test comparing the first

stage and the fourth stage of iterated classification, usingvarious ground-truth poli-

cies, are shown in Table 6.1. This table shows that the improvement is statistically

significant when iterated classifiers are trained with ground truth policies of “d=2”,

“d=4”,“d=8”, tight, and loose, but not for pixel-accurate and “d=1”.

This training instability suggests that iterated classifiers are sensitive to ground

truth, and do not work for pixel-accurate ground truth. We are not convinced that

the current feature extraction window is a good fit to pixel-accurate ground truth.

Our proposition of iterated classification starts with loose ground truth. The scale

of features we have been using is systematically chosen (seeSection 4.6) under the

guidance of ground truth that includes some blank pixels as part of foreground. The

success of the loose, tight, and morphological expansion ground truth shows the

effectiveness of such features. However, for iterated classifiers to work with pixel-

accurate ground truth, the scale of features should be re-explored. This can be done

using the the same method discussed in Section 4.6.
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h p-value
Pixel-Accurate 0 0.1795

d = 1 0 0.7946
d = 2 1 1.2740e-005
d = 4 1 1.2513e-009
d = 8 1 1.4500e-017
Tight 1 4.2537e-009
Loose 1 5.5349e-008

Table 6.1: The result of the t-test is returned in h: h = 1 indicates a rejection of the
null hypothesis at the 5% significance level. h = 0 indicates afailure to reject the
null hypothesis at the 5% significance level. This table shows that the improvement
is statistically significant when iterated classifiers are trained with ground truth poli-
cies of “d=2”, “d=4”,“d=8”, tight, and loose; but not for pixel-accurate and “d=1”.

6.5 Final Experiment

6.5.1 Motivation

The final experiment scaled our training and test set sizes upby nearly twice with a

goal of including images from more sources and writing systems, and challenging

iterated classifiers with more difficulties. We upgraded ourground truth technique

from swapping overlapping rectangles using zoner to labeling using Parc’s PixLa-

beler [SLS09] and expanding foreground pixel-accurately.This choice is justified

by the notion that the current feature set for iterated classifiers is a good fit for the

morphological expansion of “d=8”. The ground truth techniques and policies are

discussed in detail in Section 5.7 and 5.8.

We have experimented with 219 page images: 62 images were placed in the

training set, and 157 images in the test set. The scale of thisexperiment is nearly

twice as large as the previous experiment. We included images from more writing
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systems: we used to include English, Arabic and Chinese, now we added Hindi and

Korean.

In this experiment, the ground truth was obtained in two steps: in the first step,

we applied the PARC PixLabeler tool to generate pixel-accurate ground truth, in

which only foreground pixels are labeled; in the second step, we expanded fore-

ground pixels by applying morphological dilation operations [SS94] with a circular

disk structuring element, that is, background pixels within eight pixels of a fore-

ground pixel are labeled as the same class as the foreground pixel. The training

data was decimated randomly by selecting only one out of every 9000th training

sample, as usual.

6.5.2 Results

As shown in Figure 6.11 the overall per-pixel error rate of the fist-stage classifier

for this experiment is 20.2%; the error of the second-stage classifier is 15.7%; the

error of the third-stage classifier is 15.4%; the error of thefourth-stage classifier

is 15.4%; the error of the fifth-stage classifier is 15.2%. We see that the error

decreases monotonically, with a drop of 24.5% from the first stage to the fifth stage.

We carried out a statistical two-samplet-test (discussed in Section 6.4) to verify

the statistical significance of improvement in the final experiment. Thep-value is

7.8736e−16, which indicates that the improvement is statistically significant.

The following Figures 6.12, 6.13 and 6.14 are some sample test images from this

set, highlighting classifier successes and failures. In allthe examples, the test image

is shown on the upper left, followed by a sequence of five “false color” classification

images in the order of stages. Figure 6.12 shows that iterated classifiers successfully
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Figure 6.11: Total error rate averaged over the test set of 157 images, in a function
of the stages of classification. After four stages of classification, the error rate has
fallen from 0.202 to 0.152, a drop of 24.5%.
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correct misclassification of MP over PH, and vice versa. Figure 6.13 shows that

iterated classifiers improves the result on a hard case of misclassification between

HW and MP. Figure 6.14 shows an example of iterated classifiers fails to correct

the misclassification of MP over HW.

6.5.3 Run Times

Running our classifier on a test set with hundreds of test images is not feasible for

a single machine and we have become dependent on the use of a Beowulf cluster

of machines at Lehigh [HPC10] to complete large scale experiments. The Beowulf

cluster we use currently consists of 320 64bit Xeon processors. For the run time

of the final experiment, the classifier we have been using (discussed in Section

4.2) requires on average 220 CPU minutes per test image per iterated classification

stage. The runtime can be reduced by a factor of as least 20 using Dawei Yin’s

bin-decimation classifier [YBA10, YAB10].

6.5.4 Conclusions

This experiment successfully scaled up the size of our experiments to train on nearly

twice as many images and two more languages as previous experiments. Iterated

classifiers continue to drop the overall error rate, by 24.5%. As always, Arabic

handwriting and machine-print images introduce problems of mixing HW and MP.

Although the classifiers failed on some hard cases, overall,they can improve the

results. This increase our confidence that iterated classifiers can reduce the error

rate by a range of 22% - 25.5%.
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(a) test image (b) 1st stage (c) 2nd stage

(d) 3rd stage (e) 4th stage (f) 5th stage

Figure 6.12: A magazine page from the test set of ICDAR2009 PageSegmentation
Competition. The original image (a) is in full color. The results of classification are
shown (b)-(f). At the first stage, some MP pixels, especiallythese lying within the
titles or large font letters, are labeled PH. On the boundaryof the photo in the center
of the image, the PH pixels are labeled MP. By the fifth stage, most misclassified
MP pixels are correct labeled; almost all PH pixels on the boundary are correctly
labeled.

82



6.5. FINAL EXPERIMENT

(a) test image (b) 1st stage (c) 2nd stage

(d) 3rd stage (e) 4th stage (f) 5th stage

Figure 6.13: A minute page written in Chinese, containing HW and MP contents.
At the first stage, HW and MP text regions are located, but their pixels are labeled
as mixture of HW or MP. This is difficult, even for human readers, to distinguish
one content type from the other. By the fifth stage, most misclassified HW pixels
are correct labeled, except for several clusters of characters; most misclassified MP
pixels are corrected, except for these lying within the relatively large font title. Note
that the pixels on rules are labeled HW in the first stage, and corrected as BL by the
fifth stage.
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(a) test image (b) 1st stage (c) 2nd stage

(d) 3rd stage (e) 4th stage (f) 5th stage

Figure 6.14: A handwriting script from the test set of DIBCO09 (Document Image
Binarization Competition). At the first stage, most HW pixels are labeled MP or
PH. Some BL pixels are labeled PH, which is probably cause by bleed-through
from the other side. By the fifth stage, most HW pixels are labeled MP. The BL
pixels are correctly labeled.
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6.6 ICDAR 2009 Page Segmentation Competition

Our method (DICE and IC as a whole) was tested along with five others in the

ICDAR2009 Page Segmentation Competition and the results was reported by An-

tonacopouloset al in detail in [APBP09]. We summarize the results in this section.

Participating methods in this competition included the Fraunhofer Newspaper

Segmenter [GDPP05, ZLDP01, Bre02, JY98], the REGIM-ENIS method, the Tesser-

act method [Smi09], ABBYY FineReader EngineR©8.1, and OCRopus 0.3.1. It

should be noted that our DICE system is designed as a first step in document anal-

ysis, intended to be executed before “classical” layout analysis methods which de-

compose text into blocks, determine reading orders, etc. Therefore, precision/recall

metrics are appropriate for evaluating our algorithm, rather than higher-level met-

rics [AB07] that consider region structure and penalize violations of reading order.

The F-measure was chosen as one of the evaluation metrics in the competition. In

statistics, the F-measure is a measure of a test’s accuracy.It considers both the pre-

cision and the recall of the test to compute the score. The traditional F-measure is

the harmonic mean of precision and recall:

F = 2 ·
precision · recall

precision + recall
(6.5)

The F-measure report is shown in Figure 6.15. This shows thatour DICE system

is competitive: our system scored 90.09, while the highest score was 93.14 and the

lowest score 78.35.
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Figure 6.15: F-measure of the four methods submitted to the ICDAR 2009 Page
Segmentation Competition and two state-of-the-art methods. (Courtesy of ICDAR
2009 Page Segmentation Competition.)
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Chapter 7

Performance Analysis of

Iterated Classification

One of our previous experiments shows that the post-classifiers reduce the per-

pixel classification errors by 23%, running a four-stage classification on 83 test

images. Another experiment with fewer test images shows that per-pixel errors

can fall monotonically for as many as eight stages. We noticethat, as uniformity

improves in local regions, boundaries tend to remain stationary – that is, they do

not drift. This observation leads us to try to prove that there exist iterated classifiers

that are guaranteed to converge to the ground-truth boundary.

We begin the investigation by simulating an image containing two content-

classes, say MP and BL, and we have a classifier trained and tested on this im-

age. The ground truth and first-stage classification result for this image are shown

schematically in Figure 7.1(a)-(b); MP pixels are colored black, BL pixels are col-

ored white. In Figure 7.1(a)-(d),tg marks the horizontal coordinate of the boundary
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(a) ground truth (b) 1st-stage classification
result of the image

(c) discrepancy between
ground truth and 1st-stage
classification result, shows
in gray

(d) feature extraction win-
dows and new boundary

(e) the width of the dis-
crepancy is greater than the
radius of feature extraction
windows

(f) the width of the dis-
crepancy is smaller than
the radius of feature extrac-
tion windows

Figure 7.1: Analysis of convergence of iterated classification. Black represents MP,
white represents BL. In figure (c)-(e), the discrepancies between ground truth and
the classification results for the image are colored gray. Infigure (e) and (f), circles
represent feature extraction windows. In each figure,tg marks the horizontal coor-
dinate of the boundary in the ground truth andtr marks the horizontal coordinate of
the boundary in the classification results for the image. Initially, tg < tr.
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in the ground truth andtr marks the horizontal coordinate of the boundary in the

classification results for the image. In Figure 7.1(c)-(f),gray regions represent the

discrepancies between ground truth and the classification results for the training

image.

Given the ground truth and results of the first-stage classifier, we can analyze

how the second-stage classifier performs. Recall that features are extracted within

a local window (a circle of radiusR) centered on the target pixel.

7.1 Analysis of the Second-Stage Classifier

We start by analyzing the case where the width of the discrepancy is greater than

R, i.e. tr − tg > R, as shown in Figure 7.1(e). For the post-classifiers, we consider

one feature that we have been using in experiments: the number of BL pixels within

the right half of the feature extraction window. Recall that all features are extracted

from the results of classification.

Consider these different cases of a target pixel depending onits ground-truth

class, labeled class from classification results, and the number of BL pixels within

the right half of the feature window.

Case I: Target pixel is ground-truthed MP, classified MP, and contains no BL

pixels within the right half of its feature window.

Case II: Target pixel is ground-truthed BL, classified BL, and all pixels within

the right half of its feature window are BL.

Case III: Target pixel is ground-truthed BL, classified MP, and contains no BL

pixels within the right half of its feature window.
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Case IV: Target pixel is ground-truthed BL, classified MP, and contains at least

one BL pixel within the right half of its feature window.

For pixels that fall outside the discrepancy region, the classification is obvious:

pixels in case I,i.e those in the black region in Figure 7.1(c), are still labeledMP;

pixels in case II,i.e those in the white region in Figure 7.1(c), are still labeledBL.

For pixels within the discrepancy region (ground-truthed BLbut classified MP

by the first-stage classifier), part of them will be correctlyclassified using the fea-

ture, as follows:

If the right half of its feature extraction window contains any BL pixels – case IV

– the target pixel is then classified BL, because its feature value is different from

that of pixels in case I. For example: in Figure 7.1(e), the pixel centered on circle

b andc is labeled BL. If the right half of its feature extraction window contains no

BL pixel – case III – the pixel is still classified MP because itsfeature value is the

same as that of pixels in case I. For example: in Figure 7.1(e), the pixel centered on

circle a is labeled MP. Pixels that are less thanR pixels left from the boundarytr

are in case IV, and are thereby are labeled BL.

After the second-stage classification, the horizontal coordinate of the resulting

boundary would betr − R, which moves towards ground-truth boundarytg by a

distance ofR pixels.

7.2 Analysis of Classifiers Following Second-Stage

As long as the width of the discrepancy is greater thanR, each succeeding classifier

must behave the same as the second-stage classifier and causethe boundary to move
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again towardstg by R.

When the the width of the discrepancy is smaller thanR, i.e. tr − tg < R, we

must consider more cases, as follows:

Case V:Target pixel is on boundarytg, ground-truthed MP, classified MP, and

contains a number, sayB, of BL pixels within the right half of its feature window.

Case VI: Target pixel is ground-truthed MP, classified MP, and contains more

than one but less thanB of BL pixels within the right half of its feature window.

Case VII: Target pixel is within the discrepancy, ground-truthed BL, classified

MP, and contains more than thanB of BL pixels within the right half of its feature

window.

Pixels that fall outside the discrepancy are classified in this way: pixels in cases

I, V and VI are still labeled MP; pixels in case II are still labeled BL.

Pixels within the discrepancy will be classified BL: all of them are in case VII,

and their feature values are different from that of ground-truthed MP pixels in cases

I, V and VI, therefore the classifier must classify them BL. This is illustrated in

Figure 7.1(f): the center pixel of circlea lies on the left boundary of the discrepancy

area will be classified MP, following its ground-truthed content; circleb has more

BL pixels in its right half than circlea does, therefore the center pixel ofb can be

discriminated and classified BL; for the same reason, pixels in the discrepancy, but

not on its left boundary, are to be classified BL. Consequently,the boundary in the

classification result moves towardstg by tr − tg: the boundary of the classification

result has converged to ground truth.

Simulation shows the same behavior as the analysis above suggests. We simu-

lated a discrepancy of 174 pixels wide, and a feature extraction (circular) window

91



7.3. COMPARISON OF ITERATED CLASSICATION WITH REPEATED ONE

of radius 20. For the first eight stages, the boundary moved left by 20 pixels in each

stage of classification. At the ninth stage, the boundary moved left by 14 pixels,

which converged exactly to the ground-truth boundary.

In summary, analysis of special cases, experiments and simulations, behave as

the classifiers appear often to do. That is, with proper choice of features and guid-

ance by the ground truth, there exists a sequence of post-classifiers that refine the

obtained results and force them to converge to ground truth.This further implies

that post-classifiers can converge linear boundaries, oriented at any direction, to

ground truth. We conjecture that for all region shapes, whose radius of curvature is

bounded below, there exists a similar training methodologysuch that all boundaries

converge to ground truth. Some of the experiments show that the post-classifiers

also converged on regions with small radii of curvature. Forexample, in Figure 6.9

the small red circles containing numbers are preserved.

We also conjecture that to converge to ground truth, the number of post-classifiers

needed is proportional to the width of the discrepancies, and inversely proportional

to the radius of the feature extraction window.

7.3 Comparison of Iterated Classication

with Repeated One

Recall that iterated classification is proposed as a refinement to repeated classifica-

tion. Empirical results have shown that iterated classification is superior to repeated

classification. In this section, we analyze the causes of this using simulation.

One of our earlier experiment showed that repeated classification is unstable in
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improving the results of the DICE classifier. It can succeed insome images, but

fail in others. We conceive that this failure occurs becauserepeated classification

makes an unrealistic assumption: the same error will occur in the same context

again and again. To illustrate this, we again simulated an image containing only MP

and BL; the result and the ground truth had a discrepancy of 28 pixels wide. The

feature extraction (circular) window was in radius of 13 pixels. The post-classifier

was trained once, and then repeatedly applied to the result of the test image. The

sequence of the result is shown in Figure 7.2. As the test image is reclassified, the

boundary between MP and BL keeps moving left, each time by a width of 13 pixels.

This simulation suggests that repeated classification, unlike iterated classification,

may never converge to ground truth.
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(a) Output of Stage 1 (b) Output of Stage 2

(c) Output of Stage 3 (d) Output of Stage 4

(e) Output of Stage 3

Figure 7.2: Illustration of repeated classification.
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Chapter 8

High Recall Document Content

Extraction

In this Chapter, we focus on obtaining high recall masks for each of three con-

tent types—machine-print (MP), handwriting (HW), and photo(PH)—in order to

support downstream processing of each separately. We previously reported overall

per-pixel accuracy of 85% [AB08]; here, we report achieving at least 89% recall

and at least 87% precision among all three content types.

8.1 Iterated Classifiers Improve Recall and Precision

Recent experiments have indicated that iterated classifierscan increase accuracy

stage by stage [AB08]. The following analysis of the results shows that iterated

classifiers increase recall stage by stage without causing precision to decrease. In

Figure 8.1, the table and figure of recall are shown on the left, and precision on the

right. The recall of all three principal content types, MP, HW and PH, increases
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stage by stage, except for the fourth-stage of MP, which decreases by 0.2%. Mean-

while, the precision of these content types also increases.

1st-stage 2nd-stage 3rd-stage 4th-stage
BL 84.11% 88.28% 87.95% 86.33%
HW 26.06% 49.22% 59.01% 69.65%
MP 77.32% 80.64% 81.61% 81.41%
PH 73.46% 76.66% 79.89% 81.83%

1st-stage 2nd-stage 3rd-stage 4th-stage
BL 85.13% 86.09% 87.28% 88.91%
HW 17.08% 26.84% 29.31% 28.09%
MP 72.77% 80.95% 83.13% 82.76%
PH 81.89% 87.84% 87.05% 86.29%

(a) Recall (b) Precision

Figure 8.1: Recall and precision of each content type obtained in each stage of
iterated classification. The results suggest that the iterated classifiers improve the
recall of all content types. Especially, the recall of HW is significantly improved.
Note that the precision even improves a little when the recall increases as a function
of stages.

8.2 Proposed Testing Policy Changes

In this section, we first discuss a straightforward testing policy change, a multi-

stage voting rule, that can be utilized to increase recall. Afterwards, we introduce

a testing policy of accepting blank (“don’t care”) (BL) pixels as pixels of each

particular content types such as HW, MP and PH.
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8.2. PROPOSED TESTING POLICY CHANGES

8.2.1 Multistage Voting Rule

We investigated multistage voting rule which votes on the results of stages of the it-

erated classification, that is, given a test samplet and a content classi (iǫ{MP,HW,PH,BL}),

if in any staget is classified as classi, thent is finally classified as classi.

This technique increases the recall of single content classmoderately. As shown

in our previous experiments, iterated classifiers gradually and slowly expand or

shrink the areas of different content classes, without causing the boundaries shift

back and forth. Empirically, later classifiers are more confident than earlier one.

Another advantage of this technique is that voting from the results of each stage is

simple and fast – it merely requires voting for each one of thecontent classes.

However, the only concern is that the result of biased votingmight be insignifi-

cant compared to the result of the last stage of iterated classification. This concern

results from the observation that a four-stage iterated classification drops the error

rate by nearly a quarter. Therefore, we are not confident thatthis approach can lead

to as high recall as we want.

8.2.2 Truthing and Scoring Policy for Blank Pixels

There is growing debating on pixel-accurate ground truth. As discussed in detail

recently [MBA08, ACL10, Smi10], truthing policies for page segmentation seem

often to possess ambiguities and inconsistencies.

Blank pixels especially have an ambiguous status during manual ground-truthing:

blank regions often make up the “background” for MP and HW “foreground” pix-

els, and furthermore BL pixels often interpenetrate PH regions. Therefore, blank
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pixels are usually called “don’t care” pixels. This seems inevitable when ground

truth is loose (using, say, rectangular zones). Experiments with our earlier classi-

fier show that blank space are often confused with handwriting and in more limited

cases also with machine print.

We propose a modification in our training and testing methodsapplied to blank

pixels. During the training phase, blank pixels are inevitably treated as a distinct

class and so ground-truthed and trained separately from theother classes. However,

during the testing phase, pixels which are classified as blank are viewed as “don’t

care” pixels, and so are combined with each of the other classes: so, for example,

all pixels classified as BL are accepted also as MP pixels (and similarly for HW and

PH). Note that after this policy chagne, the masks obtained are no longer disjoint;

that is, they can share pixels.

Our modified policy, in which blank pixels are assigned to allthe other classes,

leads to intuitive results, which look natural to the eye and, we believe, will not

cause difficulties for any later stages of processing; this is illustrated in Figures 8.4

and 8.5.

8.3 Experimental Results

We use a training set of 33 images and a distinct test set of 83 images, which are the

same images we used in [AB08]. Together the two sets contain machine-print (MP),

handwriting (HW), photograph (PH) and blank (“don’t care”) (BL). The training

data was decimated randomly by selecting one out of every 9000th training sample

(as discussed in Section 4.3).
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Remember that, using the original scoring police, we evaluated performance

using per-pixel accuracy, precision and recall, defined as follows. Per-pixel accu-

racy is the fraction of all pixels in the document image that are correctly classified

(Equation 6.1). Unclassified pixels are counted as incorrect. Recall of a content

class is defined as the number of pixels that are correctly classified divided by the

total number of pixels that are ground truthed as belonging that class (Equation

6.3). Precision of a content class is defined as the number of pixels that are cor-

rectly classified divided by the total number of pixels classified as belonging to that

class (Equation 6.2).

Note that under the new “don’t care” BL pixel scoring policy, precision and

recall must now be computed differently. For example, the precision of HW is cal-

culated as shown in Equation 8.1, where classifying HW pixels as BL or BL pixels

as HW is not penalized, but classifying MP or PH pixels as HW orBL is penalized.

Under this policy, precisionPi of a foreground classi (iǫ{MP,HW,PH}), is now

calculated as shown in Equation 8.1, whereNi,j denotes the number of pixels that

are ground truthed as classi and classified as classj (jǫC = {MP,HW,PH,BL}).

PHW =

NHW,HW + NBL,BL + NHW,BL + NBL,HW

(Nj,i + Nj,BL)

Pi =
NHW,HW + NBL,BL + NHW,BL + NBL,HW

∑

jǫC(Nj,HW + Nj,BL)
(8.1)

Under this new policy, recallRi of a foreground classi (iǫ{MP,HW,PH}),
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is now calculated as shown in Equation 8.2, whereNi,j denotes the number of pixels

that are ground truthed as classi and classified as classj (jǫC = {MP,HW,PH,BL}).

Ri =
NHW,HW + NHW,BL

∑

jǫC Nj,HW

(8.2)

After applying the new blank truthing policy and rescoring accordingly, recall

improved inevitably on HW, as well as on the others, show in Figures 8.2 (the

BL scores are shown for comparison, and are unchanged from Figures 8.1). We

always knew that most confusions involving HW pixels also involved BL pixels;

this new way of interpreting the results has revealed the extent to which HW was

not significantly confused with either MP or PH. We were pleased that, at the same

time, rather surprisingly, precision improved for all three of MP, PH, and HW.

The second policy change was to the classifier, and involved voting among the

stages of iterated classifiers. The particular voting policy we report here was the

most aggressive one: if any classifier stage decided that a pixel was HW, then we

finally classified it as HW; and similarly for MP and PH. This policy can be imple-

mented independently of the blank pixel truthing policy, sothere are four cases of

combining these two changes: in Figures 8.3, we show the results on HW only; the

four cases are (a) the original method (labeled simply “HW”),(b) aggressive voting

among all stages (“H&S”), (c) accepting BL pixels as HW (“H&B”), and finally (d)

adopting both multi-stage voting and BL pixel accepting(“H&S&B”). Very pleas-

antly it turned out that the fourth technique achieved the highest recall, of 95.31%,

far higher than any previous result we have achieved on HW, and nearly tied with

the highest recall for either of MP and PH. Under the same conditions, precision on

HW fell slightly from 87.1% to 83.5%.
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1st-stage 2nd-stage 3rd-stage 4th-stage
BL 84.11% 88.28% 87.95% 86.33%
HW 59.56% 82.91% 90.67% 94.63%
MP 89.09% 90.30% 90.32% 89.02%
PH 86.36% 91.31% 92.93% 92.53%

1st-stage 2nd-stage 3rd-stage 4th-stage
BL 85.13% 86.09% 87.28% 88.91%
HW 84.48% 85.34% 86.26% 87.07%
MP 90.91% 92.17% 93.24% 93.97%
PH 90.79% 92.82% 93.48% 93.93%

(a) Recall (b) Precision

Figure 8.2: Recall and precision of each content type obtained in each stage after
combining with BL pixel; for example, the mask of HW contains all pixels that
are classified HW or BL; accordingly, a pixel is correctly classified if it is ground-
truthed HW /BL and classified HW/BL. The results suggest that theiterated classi-
fiers improve the recall of regions of each content type to about 90%. The recall of
handwritten regions is significantly improved to 94.63%. Note that the precisions
are nearly 90% under this policy.
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stage 1 stage 2 stage 3 stage 4
HW 26.06% 49.22% 59.01% 69.65%
H&S 26.06% 55.29% 71.01% 79.83%
H&B 59.56% 82.91% 90.67% 94.63%

H&S&B 59.56% 85.96% 92.01% 95.27%

stage 1 stage 2 stage 3 stage4
HW 17.08% 26.84% 29.31% 28.09%
H&S 17.08% 21.32% 21.97% 21.52%
H&B 84.48% 85.34% 86.26% 87.07%

H&S&B 84.48% 84.35% 84.84% 83.52%

(a) Recall (b) Precision

Figure 8.3: Recall and precision of handwritten regions obtained by different
method as a function of stages. HW is simply the result of eachstage, which is
our baseline. H&S is a voting results of all available stages, take the 2nd-stage as
an example, a pixel is classified HW if it is classified HW in either 1st-stage or
2nd-stage. H&B is described before, that is the results of combining HW with BL
pixels. H&S&B is the results of combining H&S with blank pixels. Similar to pre-
vious results, the precision remains or improves a little where as the recall increases
as a function of stages.
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8.4. DISCUSSION

The results of two image examples are illustrated in Figure 8.4 and Figure 8.5.

Note that neither of these images is well represented in the training set, but their

content is still extracted with high recall and good precision.

Note that the masks obtained from the fourth stage of iterated classification are

partitions of an original image. However, the new masks obtained by applying both

policy changes are no longer partitions. They now share pixels, which consist of

two types of pixels: (a) “don’t care” blank pixels; and (b) pixels that are assigned

to multiple classes.

Each figure contains nine images of three types: (a) the original image shown

on the upper-left; the “false-color” classification results of 1st-stage (b) and 4th-

stage (c), machine print (MP) is dark blue, handwriting (HW) red, photographs

(PH) light blue-green, and blank (BL) white;maskimages extracted from the 4th-

stage for MP(d), PH(e), and HW(f) content classes, and those finalmaskimages as

a result of the combination of policy changes for MP(g), PH(h), and HW(i) content

classes.

8.4 Discussion

We show that iterated classifiers increase both recall and precision on all three prin-

cipal content types, stage by stage. Two policy changes, themulti-stage voting rule

and blank truthing policy, improve the results of DICE on bothrecall and preci-

sion. This new policy yields results intuitively pleasing to the eye, and should not

cause ambiguity or confusion for downstream processing. This is justified by the

notion that iterated classification provides high recall and precision on BL pixels.
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8.4. DISCUSSION

(a) test image (b) 1st-stage (c) 4th-stage

(d) MP masked stage4(e) PH masked stage4(f) HW masked stage4

(g) MP masked final (h) PH masked final (i) HW masked final

Figure 8.4: Illustration of improved recall of each contenttypes. A skewed docu-
ment image with a complex non-rectilinear page layout contains content of MP, HW
(in English and Chinese, horizontal and vertical), PH and BL. The final MP, PH and
HW masks, extracted from the results of combining two policychanges, are shown
in (g)-(i), which yields higher recall than 4th-stage without causing confusion.
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8.4. DISCUSSION

(a) test image (b) 1st-stage (c) 4th-stage

(d) MP masked stage4 (e) PH masked stage4 (f) HW masked stage4

(g) MP masked final (h) PH masked final (i) HW masked final

Figure 8.5: A magazine page with a complex non-rectilinear page layout contains
content of MP, HW (in English and Chinese by different writers, horizontal and
vertical), PH and BL. Note that some HW is very close to MP. In this image, only
the English HW is represented in the training set, but the content of all types is
well extracted. Although a box of gray background is incorrectly labeled HW, the
foreground MP is correctly preserved.
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8.4. DISCUSSION

Combination of both policy changes greatly increases recall, especially on difficult

handwriting pixels, with little loss of precision. The masks obtained after policy

changes are no longer disjoint; that is, they can share pixels.
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Chapter 9

Conclusion

This research began by seeking improvements to Document Image Content Ex-

traction (DICE), that is the location and segmentation of handwriting, machine-

print text, photographs, and blank space. In evaluating candidate approaches, we

wished to minimize the role of arbitrary manual decisions, and to avoid arbitrary

restrictions on region shapes. After a long sequence of experiments, we decided

on pixel-accurate post-classification:i.e. each training and testing sample would

be an individual pixel in a document image. Our post-classifiers take “false color”

(the color represents content class of a pixel) images as input and so yields “false

color” images as output. This invited us to repeat the post-classification process

in series of stages, and led to the design of “repeated classification.” However, re-

peated classification failed after the first stage, due to an implicit, and erroneous,

assumption that errors made by classifiers will occur again and again at every stage

of post-classification. This failure of repeated classification motivated us to retrain

classifiers at each stage: iterated classification, using a sequence of post-classifiers,
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each different because each is trained separately on the training-data results of the

previous classifier guided, as always, by ground truth.

We have experimented with iterated classifiers on large testset (482M pixels

of 157 images). Experimental results show that iterated classifiers can drop the

error rate by 24%. Also, iterated classifiers increasebothrecall and precision on all

three principal content types, stage by stage. Two policy changes, a “multi-stage

voting” and a “blank truthing” policy, improve the performance of document image

content extraction on both recall and precision. This new policy yields realistic and

useful results, intuitively correct, causing no ambiguityor confusion to downstream

processing stages. The combination of both policy changes inevitably increases

recall, especially on difficult handwriting cases, but at the same time with little loss

of precision. The masks obtained from the policy changes areno longer disjoint:

they share pixels. We have carried out a formal analysis of special (and somewhat

artificial) cases suggesting why iterated-classification boundaries tend to converge

to the ground truth.

In one of our early experiments, we found that iterated classifiers failed catas-

trophically at the ninth stage. Analysis of this instability suggested that a small

cluster of failures, amplified by ground truth, had resultedin the failure. Thus we

looked carefully into a variety of methodological issues, such as the best choice

among competing ground-truth policies. Our original ground-truth policy was de-

signed to drive the development of the classifier and features, and was chosen to

minimize manual effort: since then, we have investigated potentially higher-effort

policies which are “tight” and more accurate, and we have seen that they reduce

classification errors.
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Pixel-accurate segmentation has, very recently, attracted more attention from

other researchers. PARC’s Saund et al developed a tool for pixel-accurate ground-

truthing; we have compared performance among three ground-truth policies: loose,

tight and PARC’s pixel-accurate, along with morphological expansions on pixel-

accurate truth. Our experiments suggest that pixel-accurate ground truth can be

captured for high-contrast document images as easily as loose ground truth, and

can improve overall accuracy. We have also compared accuracies when classifiers

for this problem are trained on one ground-truth policy and then evaluated using

a different policy. This indicates that for each test policy, the highest accuracy is

achieved by using thesamepolicy for training. Our experience also suggests that

for each test policy, the more similar of the training policyto the test, the higher the

resulting accuracy.

Our iterated classification is designed to be trainable and data-driven. Ground

truth and feature set decide the behavior of iterated classification. It requires little

change to the scheme except perhaps for some more features. Therefore, it may be

well adapted to other applications that could have different specification on ground

truth. One of the limitations of iterated classification is its sensitivity to ground

truth, that is, a feature set that works for one ground truth policy might not work for

another. This sensitivity can be tracked through computingthe overall error rate of

training set. We also suggested a systematic method for selecting the right size of

feature extraction window to fit the ground truth. In terms ofcomplexity, iterated

classification may be more time consuming than other methods. Collaborators in

our lab have proposed approximations that speed up the classification process. This

run time can be further reduced by classifying nxn “blocks” instead of individual
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pixels. The input and output of iterated classification are in the form of images. This

suggests that iterated classification can be applied as an image boosting technique.
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