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Abstract

The amount of Semantic Web data is growing rapidly today. Individual users, academic

institutions and businesses have already published and are continuing to publish their data

in Semantic Web standards, such as RDF and OWL. Due to the decentralized nature of the

Semantic Web, the same real world entity may be described in various data sources with

different ontologies and assigned syntactically distinct identifiers. Furthermore, data pub-

lished by each individual publisher may not be complete. This situation makes it difficult

for end users to consume the available Semantic Web data effectively. In order to facilitate

data utilization and consumption in the Semantic Web, without compromising the freedom

of people to publish their data, one critical problem is to appropriately interlink such hetero-

geneous data. This interlinking process is sometimes referred to as Entity Coreference,

i.e., finding which identifiers refer to the same real world entity. In the Semantic Web, the

owl:sameAs predicate is used to link two equivalent (coreferent) ontology instances. An

important question is where these owl:sameAs links come from. Although manual inter-

linking is possible on small scales, when dealing with large-scale datasets (e.g., millions of

ontology instances), automated linking becomes necessary.

This dissertation summarizes contributions to several aspects of entity coreference re-

search in the Semantic Web. First of all, by developing the EPWNG algorithm, we advance

the performance of the state-of-the-art by 1% to 4%. EPWNG finds coreferent ontology

instances from different data sources by comparing every pair of instances and focuses on

achieving high precision and recall by appropriately collecting and utilizing instance con-

text information domain-independently. We further propose a sampling and utility function

based context pruning technique, which provides a runtime speedup factor of 30 to 75. Fur-

thermore, we develop an on-the-fly candidate selection algorithm, P-EPWNG, that enables
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the coreference process to run 2 to 18 times faster than the state-of-the-art on up to 1

million instances while only making a small sacrifice in the coreference F1-scores. This is

achieved by utilizing the matching histories of the instances to prune instance pairs that are

not likely to be coreferent. We also propose Offline, another candidate selection algorithm,

that not only provides similar runtime speedup to P-EPWNG but also helps to achieve

higher candidate selection and coreference F1-scores due to its more accurate filtering of

true negatives. Different from P-EPWNG, Offline pre-selects candidate pairs by only com-

paring their partial context information that is selected in an unsupervised, automatic and

domain-independent manner.

In order to be able to handle really heterogeneous datasets, a mechanism for automat-

ically determining predicate comparability is proposed. Combing this property matching

approach with EPWNG and Offline, our system outperforms state-of-the-art algorithms on

the 2012 Billion Triples Challenge dataset on up to 2 million instances for both coreference

F1-score and runtime. An interesting project, where we apply the EPWNG algorithm for

assisting cervical cancer screening, is discussed in detail. By applying our algorithm to a

combination of different patient clinical test results and biographic information, we achieve

higher accuracy compared to its ablations. We end this dissertation with the discussion of

promising and challenging future work.
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Chapter 1

Introduction

1.1 Motivation

The World Wide Web (WWW) has significantly changed the way people share and access

knowledge by building a global information space. Hypertext links on web pages allow peo-

ple to surf through this global information space using Web browsers. Search engines index

the documents to enable people to efficiently look up the information they are interested

in and are generally able to provide decent query results. This basic search functionality

has been enabled by the generic, open and extensible nature of the Web, which is also seen

as a key feature in the Web’s unconstrained growth. Even further, search engines now are

also able to analyze query logs in order to provide personalized results to end users. By

witnessing the success of the World Wide Web, particularly search engines giants such as

Google, Yahoo and Bing, people may start to believe that the Web has reached its full

potential as a global knowledge and information repository. However, with the amount of

data available on the Web rapidly increasing in recent years, some of people’s needs cannot

be really fulfilled by today’s most advanced web technologies.
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As a concrete example, suppose we are issuing the following query to the Web: “find

all conferences that Tim Berners-Lee have published in”. In this example, search engines

will have difficulties in finding the answers because contemporary search technologies are

primarily keyword-based. A document/web page is determined to be relevant to a user’s

query if its content is “similar” (enough) to the text (in the query) entered by users. The

basic determinant of this similarity is the one between textual representation of the words

in the user’s query and the documents in the web. However, search engines are not able

to understand the query correctly, particularly the relationships between those different

query conditions or “things” in it. Although it sounds like humans should be able to

understand the query and look up the answers from various different data sources, search

engines are currently not able to do this in an automated manner. Furthermore, the data

on the traditional web is represented as documents or free text, and there is no structure or

relationships between the data. Even if the query can be “understood” by search engines

so that the relationships between different conditions are parsed correctly, the data on the

current web is not designed for answering such structured queries.

In order to help the Web to really reach its full potential, the Semantic Web [1] has

suggested a way of extending the existing web with structure and providing a mechanism to

specify formal semantics that are machine-readable and shareable. In this way, the struc-

tured information on the Semantic Web can be readily interpreted by machines, so they can

perform more of the tedious work involved in finding, combining and acting upon informa-

tion on the web without human intervention. This is accomplished by using ontologies. An

ontology is a formal logic-based description of a vocabulary that allows one to talk about

a domain of discourse. The vocabulary is articulated using definitions and relationships

among the defined concepts. As ontologies use formal logic, they can describe a domain
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unambiguously as long as the information is interpreted using the same logic. Moreover,

the use of logic makes it possible to use software to “infer” implicit information in addition

to what is explicitly stated.

With the development and recognition of the Semantic Web, in recent years, more and

more people, academic institutions and even commercial companies have already started to

publish their data in Semantic Web formats, such as the Resource Description Framework

(RDF)1 and the Web Ontology Language (OWL)2. However, even when data is represented

in a structured way using Semantic Web formats, it still may not be sufficient for handling

the query discussed above. First of all, the nature of the Semantic Web is that data is

not hosted at a central place but rather stored in a distributed manner in many different

places/data sources. And different data publishers may publish their data by adopting

different ontologies or schemas. Moreover, one observation is that one real world entity

(e.g., people, geographical locations, organizations, musics, books, etc.) may be described

and published by many data publishers with syntactically distinct identifiers. For example,

CiteSeer [2] and DBLP [3] are two major academic databases where people can look up

academic publications in a variety of research fields. Each of the two databases identifies

Tim Berners-Lee, the inventor of the World Wide Web and the visionary of the Semantic

Web, with their own identifiers and describes him in distinct ways with complementary

information. However, such identifiers from different data sources are not linked to each

other and thus end users of such databases may have to query each individual data source

to obtain relatively comprehensive information for the entity of interest. Consequently, this

single conceptual query actually requires multiple physical queries to various data sources

in order to obtain a relatively comprehensive set of answers.

1http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
2http://www.w3.org/TR/owl-ref/
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One of the most exciting things about the Semantic Web is to drive the evolution of the

Web as a global information space from a Web of documents to a Web of data, where not

only documents but data is also linked. Linked Data3 [4] is one notable effort for people to

publish, share and connect data in the Semantic Web. These data are often independently

generated and distributedly stored in many locations, and are also heterogeneous, covering

diverse domains such as academia, entertainment, arts, biology, government, geography, etc.

In today’s Semantic Web, there are many billions of semantic data triples publicly available

in the above mentioned various domains. Linking Open Data (LOD)4 is a project that aims

to establish this huge, distributed, heterogeneous and connected data hub by publishing

various open datasets as RDF on the Web and by setting RDF links between data items

from different data sources.

According to the latest statistics5, there are currently 295 datasets from various domains

(e.g., People, Geographic, Publications, Media, etc.) in the LOD cloud with more than 31

billion triples and about 500 million links across different datasets. The links are out-

going links that connect each dataset to the others. One important type of such links

is the owl:sameAs links that connect equivalent ontology instances in the Semantic Web.

With the help of owl:sameAs links, a system will then be able to enter this interlinked

Semantic Web repository and then retrieve all available information for the same entity by

following such links. Take the above example again. As shown in Figure 1.1, without such

owl:sameAs links, end users will have to issue separate queries to various data sources to

obtain the information; while when owl:sameAs links do exist, a single query will then do

the same.

3http://linkeddata.org/
4http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
5http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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Figure 1.1: Data Browsing with Data Linkages

Talking from query perspective, such owl:sameAs links could also facilitate the query

answering process. Figure 1.2 demonstrates a concrete example. Here, we have two person

instances: Person1 and Person2 from two different data sources; each of them has some

associated information respectively, such as name, affiliation, publication, friendship, etc.

Suppose we issue the following query: “find people that are from MIT and also know

Jim Hendler”. Neither data source would be able to answer this query, since they only

contain partial information and thus are not able to satisfy all conditions specified in the

query. Now, if we set up an equivalence linkage between the two person instances, i.e.,

connecting them with the owl:sameAs predicate, things will become different. With such
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a linkage here, we actually construct a new virtual instance that covers the information

of both isolated instances, which enables the query constraints to be met. This example

clearly demonstrates the great benefits of having owl:sameAs links between instances across

different data sources.
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Figure 1.2: Facilitated Query Answering with Equivalence Relationship

The process of producing such owl:sameAs links, or interlinking, has been studied by

Natural Language Processing researchers as the Entity Coreference [5] and Entity Resolution

[6] problems and by Database researchers as the Deduplication [7] and Record Linkage [8]

problems. The purpose of entity coreference is to decide the real world entity that a mention

refers to. A mention could be an occurrence of a person name, a publication title or a

geographical location name in a document, a web page, etc. For example, in different news

articles, two or more mentions of the name James Henderson may exist and an entity

coreference algorithm should answer which real word person entity that these two mentions
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actually refer to. In the Semantic Web, we extend the concept of a mention to include

Semantic Web instances. An instance is identified with a Uniform Resource Identifier (URI)

while syntactically distinct URIs could actually represent the same real world entity. We

will use the term Entity Coreference to refer to the process of finding ontology instances

that refer to the same real world entity throughout this dissertation.

As recently reported by Halpin et al. [9], only 50% (± 21%) of the owl:sameAs links

in the LOD cloud are correct. Therefore, one big challenge for Linked Data and the Se-

mantic Web is to scalably establish high-quality coreference relationships between ontology

instances from different data sources, so that the datasets can be interlinked through such

equivalences in order to facilitate upstream applications, such as information integration

and query answering [10, 11]. Producing high quality equivalence relationships for the cur-

rent Semantic Web is a non-trivial task. Although it might be possible for performing

manual linking on small datasets [12], automatic approaches will be needed for detecting

equivalence linkages across large-scale heterogeneous datasets.

Given this target of interlinking large-scale and heterogeneous Semantic Web data, we

are facing several challenges. First of all, in order to detect coreferent instances precisely and

comprehensively, it is important to locate and utilize the relevant information (the context)

of the instances in an appropriate way. There are various situations that can mislead the

entity coreference results. Name variations, the use of abbreviations, and misspellings can

all play a role in the final results. Also, the collected data may come from heterogeneous data

sources and may not be complete. For instance, for a given person instance, different aspects

of this person may be described in different data sources. One source may provide the name

and affiliation of this person while another source can have other types of information, such

as name, date of birth, email address, etc. In addition, even though some information is

9



present, it may be noisy data. For example, some date information may be included in the

context of this person and is treated as date of birth; however, such date information could

simply be the date of a social event that this person attended. To ensure the quality of the

generated links, an entity coreference algorithm needs to be able to address such challenges

appropriately.

Furthermore, making this context selection and utilization process domain-independent

is equally important. A domain refers to the category (e.g., People, Geographic, Publica-

tions, Media, etc.) and the usage (e.g., academic people, politics, etc.) of the data. In the

past, domain-specific techniques have successfully helped to achieve good entity corefer-

ence results, e.g., relying on matching person names to identify coreferent person instances.

However, when considering various domains, humans may lack the knowledge or time to

specify what information to utilize and thus coreference tools are less likely to be available

for all domains end users deal with.

Last but not least, scalability issues need to be taken into account when designing

an entity coreference algorithm, considering the current scale (295 datasets and 31 billion

triples) of the data in the Semantic Web. Much of the prior work [13, 5, 14, 15, 16] has

adopted the simple approach of resolving the coreference relationships between instances

by comparing every pair of instances. However, a single dataset from Linked Data could

have millions of instances. For example, RKB6 [17], a well-known Semantic Web knowledge

base for academic publications, contains at least 3 million instances describing researchers.

In order to scale to such a large volume of data, one possible solution would be to adopt

a filtering process, i.e., selecting instance pairs that are likely to be coreferent through

a lightweight manner and then only applying the actual and expensive entity coreference

6http://www.rkbexplorer.com/data/
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algorithms on such similar pairs. Another possible direction to scaling entity coreference

systems might be to improve the efficiency of a single pairwise comparison. In other words,

an entity coreference algorithm should compute the similarity between a pair of instances

by only considering a selected portion of their context information and the key point here

is how to perform such context selection appropriately. Accuracy and efficiency need to be

balanced out well.

1.2 Contributions

Based upon the above discussions, this dissertation will summarize the accomplished re-

search for building a domain-independent and scalable entity coreference system on the

Semantic Web. The algorithms take heterogeneous Semantic Web data as input, collect in-

stance context and appropriately utilize it to detect equivalent instances. This dissertation

provides the following specific contributions to the research area of entity coreference in the

Semantic Web:

1. Developed a mechanism for automatically collecting and weighting context informa-

tion of ontology instances in a domain-independent manner. Based upon the collected

and weighted context information, an entity coreference algorithm, EPWNG, was de-

signed for detecting coreferent instances in the Semantic Web. EPWNG focuses on

achieving high precision and recall by appropriately utilizing instance context informa-

tion domain-independently and has been shown to outperform several state-of-the-art

algorithms on small-scale benchmark datasets, with 1% to 4% higher F1-scores. Fur-

thermore, a sampling and utility function based pruning algorithm, U-EPWNG, was

proposed in order to speed up the computation for a single pair of instances. Our
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experiments show that U-EPWNG provides a runtime speedup factor of 30 to 75

compared to EPWNG ;

2. In order to further improve the scalability of the entire coreference process on large-

scale Semantic Web datasets, an on-the-fly candidate selection algorithm, P-EPWNG,

was proposed. P-EPWNG relies on the hypothesis that coreferent instances are also

similar to the same set of other instances. The algorithm takes advantage of the

matching histories of the instances in the datasets to other instances in order to

prune instance pairs that are not likely to be coreferent. Compared to EPWNG, the

overall entity coreference process was sped up by 2 to 3 orders of magnitude while only

making a small sacrifice in the coreference F1-scores (at most 0.71% lower). Moreover,

when compared against state-of-the-art candidate selection algorithms, our on-the-fly

pruning technique leads to a speedup factor of 18 to 24 while maintaining competitive

F1-scores (at most 0.66% lower).

3. To improve the coverage on true matches of the on-the-fly pruning algorithm, a pre-

selection or offline candidate selection algorithm was further developed. This offline

candidate selection technique is unsupervised and pre-selects candidate pairs by only

comparing their partial context information. Such context is selected in an auto-

matic and domain-independent manner without human intervention. Compared to

P-EPWNG, this pre-selection technique achieves 1.7% to 4.5% higher coverage on

true matches and enables the entire coreference process to run 24% to 64% faster.

When compared against state-of-the-art candidate selection systems, the overall en-

tity coreference process was sped up by a factor of 16 to 61 and, somewhat surprisingly,

results in 0.3% to 0.5% higher F1-scores.
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4. Instead of manually specifying predicate comparability, a value-based property match-

ing technique was designed. This technique extracts tokens from the values of different

properties and treats two properties to be comparable or matched if their token sets

are sufficiently similar as measured by a modified version of the Jaccard similarity

measure. By applying this property matching algorithm to the Billion Triples Chal-

lenge 2012 (BTC) dataset, which has tens of thousands of predicates, and by adopting

our proposed EPWNG and Offline algorithms, our system outperforms other com-

parison and state-of-the-art systems, with about 7% higher F1-scores and a speedup

factor of 66 on up to 2 million randomly selected instances from BTC.

5. The EPWNG algorithm has been applied to a project for cervical cancer patient

classification, assisting cervical cancer screening. Instead of trying to find equivalent

patients, in this project, we compute the similarities between a testing patient case

and all training patient cases, and then utilize these similarity scores to determine

the label of the testing case with majority vote. Utilizing our Bag-Of-Chain approach

for similarity computation, by combining different types of information, such as basic

patient information, patient clinical test results and patient digital images, our pro-

posed system achieves 1.25% higher classification accuracy than the best accuracy of

the other comparison systems. Computationally, the current system takes about 3 to

4 seconds for classifying a given testing case. The results demonstrate the potential

of putting this technique into practical use.
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1.3 Dissertation Overview

The rest of the dissertation will describe the details of all developed algorithms and is

organized as following:

1. In Chapter 2, we will discuss the necessary background knowledge, including basic

information about the Semantic Web, related work on Entity Coreference, research

work about handling scalability issues for detecting coreference relationships for large-

scale datasets. We will also talk about those frequently used evaluation metrics and

well-adopted datasets for evaluating entity coreference systems.

2. In Chapter 3, we formally present our EPWNG algorithm for detecting coreference

relationships between ontology instances. All details about the design choices of the

algorithm will be discussed. Furthermore, we describe the sampling and utility func-

tion based pruning technique in Chapter 4 and compare it to EPWNG. The work here

has been published in CIKM 2010 [16], JDIQ [18], and FLAIRS 2012 [19].

3. In the next two chapters, Chapter 5 and Chapter 6, we propose the two different

candidate selection algorithms respectively. The details of the on-the-fly and offline

algorithms will be presented and also they will be compared against state-of-the-art

systems. These two algorithms correspond to my work published in Web Intelligence

2012 [20] and ISWC 2011 [21].

4. In Chapter 7, we describe how we modify the previous EPWNG and Offline algorithms

for performing entity coreference on up to 2 million instances randomly selected from

the Billion Triples Challenge 2012 dataset. And Chapter 8 presents how we apply

our coreference algorithms for assisting cervical cancer screening. Although no actual
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papers have been published, we have submitted a journal article describing this work

to the IEEE Transactions on Medical Imaging.

5. Finally, we summarize the accomplished research and demonstrate the overall ar-

chitecture of our proposed entity coreference system in Chapter 9. We also envision

potential future work to further advance the state-of-the-art of building an interlinked

data hub in the Semantic Web.
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Chapter 2

Background and Related Work

In this chapter, I review important technology and discuss work related to the accomplished

research. First, I provide a brief introduction to the Semantic Web and Linked Data. Fur-

thermore, I discuss entity coreference in the settings of both free text and the Semantic

Web, and describe existing techniques for building scalable entity coreference systems. Fi-

nally, I will introduce metrics and datasets that are frequently adopted for evaluating entity

coreference algorithms.

2.1 Semantic Web

2.1.1 Knowledge Representation in the Semantic Web

Representing Data in the Semantic Web

RDF is a graph based data model for describing resources and their relationships in the

Web. Although RDF is commonly described as a directed and labeled graph, as shown in

Figure 2.1, many researchers prefer to think of it as a set of triples, each consisting of a

subject, predicate and object in the form of <subject, predicate, object>. The subject is
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the source of an edge, the predicate is its label, and the object is its target. The subject

and predicate are always URIs, but the object can either be a URI or a literal. URIs that

appear as objects in some triples can also be the subjects in other triples. The terms subject

and object do not limit how the triples are viewed; by switching to another predicate which

is the inverse of the current one, the subject and object of a triple can be exchanged. A

literal could be plain, such as string, date, number, and even an arbitrary sequence of char-

acters; or it could be adorned with XML Schema datatype information1. RDF defines a

distinguished property called rdf:type to relate a subject to a class. For example, the follow-

ing triple, <http://rpi.edu/jah, rdf:type, http://www.example.com/university#professor>,

defines that “Jim Hendler”, who is identified by the subject URI, is an instance of the

professor class defined in some ontology.

In Figure 2.1, we show what an RDF graph actually looks like. In this example, we have

several instances represented with ovals: Person1, Paper1, Person2, and MIT, and a couple

of literal values drawn with rectangles, including “Tim Berners-Lee” and “Semantic Web”.

The edges are predicates that connect instances and literals. The meanings conveyed in the

graph are intuitive but note that Person2 links back to Person1 via the knows predicate,

making this a graph not just a tree.

Although essentially Semantic Web data are graphs as shown in Figure 2.1, various

formats are available for representing the data in text. RDF/XML is one that represents

data in the traditional XML format, which is also very verbose. N-Triples2 and Turtle 3 take

human readability into consideration for their design; and both formats are more compact

compared to RDF/XML. By using N-Triples or Turtle, users simply need to write down

1http://www.w3.org/TR/xmlschema-formal/
2http://www.w3.org/2001/sw/RDFCore/ntriples/
3http://www.w3.org/TR/turtle/
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“Tim Berners-Lee” 

“Semantic Web” 

Figure 2.1: An example of an RDF graph

RDF graphs by using triples; and then tools, such as Jena and OWL API, can be used to

load data in such formats to enable complicated queries. N-Quads4 is another format and

is very similar to N-Triples and Turtle. In addition to the traditional subject, predicate and

object fields, an optional context field is added to indicate the provenance (the source) of

each particular triple.

By adopting the Turtle format, in Figure 2.2, we show how to represent the above RDF

graph. There are several basic rules in Turtle. First of all, URIs are embraced with <

Turtle: 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

@prefix skos: <http://www.w3.org/2004/02/skos/> . 

 

<http://acm.org/~tbl> foaf:name ”Tim Berners-Lee”; 

                      skos:author <http://scienicam.com/semantic-web>; 

                      skos:affliation <http://www.mit.edu>. 

 

<http://scienicam.com/semantic-web> skos:title “Semantic Web”. 

                                    skos:coauthor <http://rpi.edu/~jah>. 

 

<http://rpi.edu/~jah> foaf:knows <http://acm.org/~tbl>. 

Figure 2.2: An example of Representing Semantic Web Data in Turtle Format

and >, while literal values are always in quotes. Also, in Turtle, statements typically end

4http://sw.deri.org/2008/07/n-quads/

18



with the punctuation “.” except for the following situation. Turtle allows users to ignore

the subsequent subjects if triples that describe the same subject are grouped together;

in this case, except for the last statement, the punctuation “;” is used instead of “.”.

As demonstrated in the above example, the first three statements are all about the subject

http://acm.org/-tbl and therefore the second and the third subjects are ignored; also, instead

of ending the two intermediate statements with “.”, “;” is adopted. Moreover, in Turtle, we

can use abbreviations of domain names throughout the whole document by defining prefixes

at the beginning. In the given example, three prefixes are defined: rdf, foaf and skos, which

are used for the rest of this little document.

Defining Ontologies

The goal of the Semantic Web is to automate machine processing of web documents by

making their meanings explicit. To this end, Semantic Web researchers have developed

languages and software that add explicit semantics to the content-structuring aspects of

the Extensible Markup Language (XML)5. A Semantic Web language allows users to create

ontologies [22], which specify standard terms and machine-readable definitions. Informa-

tion resources (such as web pages and databases) then commit to one or more ontologies,

thus stating which sets of definitions are applicable. Minimally, an ontology is an explicit

and formal specification of a conceptualization, formally describing a domain of discourse.

An ontology consists of a set of terms (classes) and their relationships (class hierarchies

and predicates). For example, an academic ontology (that models universities, colleges,

professors, students, courses, etc.) might state that both classes Master student and Ph.D.

student are subclasses of the Student class and that they are disjoint, i.e., no single student

5http://www.w3.org/TR/xml/
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can be a master student and PhD student at the same time. These definitions describe

some of the meaning of the terms at schema level. Because ontologies adopt formal logic,

the intended meaning of assertions using the vocabulary is unambiguous, and therefore, it

avoids the ambiguities of natural language.

There are several different languages available in the Semantic Web. As intro ducted

previously, RDF is a graph based data model for describing resources and their relationships

in the Web; however, it does not enable users to represent any actual semantics. One

step further, RDF Schema, or RDFS for short, can be thought of as a weakly expressive

ontology language and is used to provide some basic semantics for the classes and properties.

In particular, there are the properties rdfs:subclassOf and rdfs:subpropertyOf, which allow

class and property hierarchies to be defined, and rdfs:domain and rdfs:range which define

the classes of the subjects and objects of triples that use specific properties.

OWL is an ontology language designed specifically for the Web that is compatible with

XML, as well as other W3C standards. On one hand, syntactically, an OWL ontology is a

valid RDF document and a valid XML document. This enables ontologies and documents

written in OWL to be processed by the wide range of XML and RDF tools that are already

available, such as Jena [23] and OWL API [24]. On the other hand, OWL adds significant

expressivity for describing the semantics of RDF vocabularies. OWL is based on description

logics, a decidable fragment of first-order logic. Although most interesting description logics,

including OWL, have worst-case exponential complexity, there exist algorithms, such as

tableau-based reasoning, that are quite fast for typical ontologies. Description logics, and

therefore OWL, have a set theoretic semantics. Classes are defined as subsets of the domain

of interpretation (∆I) and properties are subsets of the Cartesian product ∆I×∆I . Mostly,

the logic perspective of OWL is not relevant to the research in this dissertation but full
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details can be found in several tutorials [25, 26, 27].

As a concrete example, Figure 2.3 demonstrates a little ontology that defines two classes

and one property. At the beginning of this ontology, we have a “Person” class, followed

by the definition of a property, called “hasChild”. The surface forms of these two also

convey their actual meanings. Note that the “hasChild” property is defined to connect

person to person, specified by its domain and range. Making an analogy to what we have in

Mathematics, these can be treated as the domain and range of a function. At the bottom

of the ontology, we also define the “Parent” class, whose definition is a little more complex.

To make things simple, the few lines of the definition simply say that a parent is whoever

that has at least one child. Overall, the design of RDF and OWL by groups of international

experts provided a set of standards for knowledge representation in the Semantic Web.

For the entity coreference problem to be addressed in this dissertation, the most rel-

evant part to OWL is the owl:sameAs predicate, which is used to express equivalence

between two ontology instances. This owl:sameAs predicate is transitive and symmetric, as

demonstrated in Figures 2.4(a) and 2.4(b). Given instances a, b and c, if a is equivalent to

b and b is equivalent to c, then a is equivalent to c, implied according to Transitivity. We

will also be able to imply that b is equivalent to a, c is equivalent to b, and c is equivalent

to a, all according to Symmetry. Practically, by using the owl:sameAs predicate, a user

might specify that a person instance in the ACM database with the name James Smith is

the same as another person named J. Smith in DBLP.

2.1.2 Linked Data

The Semantic Web is based on the idea that there are a number of ontologies, and different

information resources commit to the definitions in these ontologies (see Figure 2.5). When
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<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” 
xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#” 
xmlns:owl=”http://www.w3.org/2002/07/owl#”>       
     
    <owl:Class rdf:ID=”Person” />  
     
   <owl:ObjectProperty rdf:ID=”hasChild”> 
        <rdfs:domain rdf:resource=“#Person/> 
        <rdfs:range rdf:resource=“#Person/> 
    </owl:ObjectProperty> 
     
    <owl:Class rdf:ID=”Parent”>  
        <owl:equivalentClass>  
            <owl:Restriction>  

     <owl:onProperty rdf:resource=”#hasChild”>  
     <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger"> 
        1 
    </owl:minCardinality> 

            </owl:Restriction>  
        </owl:equivalentClass> 
    </owl:Class>  
 
</rdf:RDF>  

Person class 

Parent class 

hasChild 
property 

Figure 2.3: An Example of a Little Ontology

two sources commit to the same ontology (via owl:imports, or perhaps implicitly by simply

using the ontology’s namespace), then the same meaning is intended for any term from

that ontology. This vision is decentralized in that any source can commit to any ontology,

and any source can create a new ontology. Ontologies can be very source-specific, being

constructed for a particular application without consideration of future integration.

In the Semantic Web, Linked Data is about using the Web to connect related data that

wasn’t previously linked, or using the Web to lower the barriers to linking data currently

linked using other methods. For example, in Figure 2.5, the dashed lines between data

sources D4 and D6 represent the coreference relationships between their instances. Quoting

from Christian Bizer, Tom Heath and Tim Berners-Lee [4]:
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Turtle: 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

 

<http://www.example.org/a> owl:sameAs <http://www.example.org/b> . 

<http://www.example.org/b> owl:sameAs <http://www.example.org/c> . 

 

 

 
(a) Explicit owl:sameAs Statements

Turtle: 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

 

<http://www.example.org/b> owl:sameAs <http://www.example.org/a> . 

<http://www.example.org/c> owl:sameAs <http://www.example.org/b> . 

 

<http://www.example.org/a> owl:sameAs <http://www.example.org/c> . 

<http://www.example.org/c> owl:sameAs <http://www.example.org/a> . 

 

 

 

 
(b) Implied owl:sameAs Statements

Figure 2.4: An Example of owl:sameAs Statements

Figure 2.5: An example diagram of the relationships between ontologies and Semantic Web Data
Sources

linked data describes a method of publishing structured data so that it can be in-
terlinked and become more useful. It builds upon standard Web technologies such
as HTTP and URIs, but rather than using them to serve web pages for human
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readers, it extends them to share information in a way that can be read auto-
matically by computers. This enables data from different sources to be connected
and queried.

As quoted above, Linked Data is not only about exposing data using Web technologies,

nor is it simply an elegant way to solve interoperability issues. Linked data is fundamentally

about helping the web to transition from a web of documents to a data web. Tim Berners-

Lee set several principles about Linked Data6. Among these, the most important ones to me

are: 1) Use HTTP URIs to name things so that people can look up those things; 2) Include

Links to other URIs, so that users can discover more things. Adopting the first principle

enables entities or things to be identified and allows users to be able to find them on the Web.

The second principle is really significant in the sense that it meets the nature of the Web and

the Semantic Web where information is stored in a distributed manner in many different

places, and linkages from one identifier in one data source to identifiers in other data sources

give users the opportunity to browse and obtain more information. Take the following as

an example. If a single author has published in two different conferences, and both of

them expose their paper information as Linked Data, and DBpedia has the biographical

information of the author, an application can then easily mesh these information all together

with a simple query automatically, as if all the data was in a single database.

Currently, there already exist hundreds of different datasets on the Web, published ac-

cording to the Linked Data principles: hundreds of millions of different identifiers (ontology

instances) exist and people can rely on these instances to grab data about various kinds of

things, such as people, locations, organizations, books, movies, musics, actors, cities, and a

lot more. In other words, these datasets (from different domains and of various scales) form

a huge and global web-scale database that could be adopted to fuel real-world applications

6http://www.w3.org/DesignIssues/LinkedData.html
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in many different fields.

In recent years, the Open Data Movement that aims to release huge data sets, embraced

the Linked Data technologies and best practices to publish a plethora of different interlinked

data sets on the web. These datasets are usually from government authorities, such as

data.gov, data.gov.uk, etc. In general, these datasets are published with an open license

and are made available for everyone to use and to republish without restrictions from various

issues, including copyright, patents or others. When combined with Linked Data, we finally

have Linked Open Data, where data are publicly available and well interlinked to each other.

The most notable effort in this area is the Linking Open Data project7. After nearly 6

years of fast development, it currently hosts 295 datasets. The current statistics are collected

by Richard Cyganiak and Anja Jentzsch and are demonstrated with the well-known Linked

Open Data cloud diagram as shown in Figure 2.6. They update the diagram periodically,

trying to capture the latest status of all published data sets with their sizes and inter-links.

The diagram is automatically sketched using the CKAN API to get JSON for each of the

data sets and then manually clustered and colored by their characteristics.

One can also add his/her own datasets so that they will be included in the next version

of the diagram. Several conditions need to be satisfied before the data can be included.

Among these, the most important criteria are: 1) The data must be resolvable via http://

URIs; 2) The dataset should contain at least 1,000 triples; 3) At least 50 links should exist

between the dataset to be added and other existing datasets already in the cloud. The full

set of criteria can be viewed from their website8. Qualified datasets can be added to Data

Hub9, the open registry of data and content packages, and will be gone through the rest of

7http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
8http://lod-cloud.net/
9http://datahub.io/
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Figure 2.6: The Linked Open Data Cloud Diagram (as of 09/19/2011)

the process.

Commercial giants, such as Google, Facebook and Microsoft, have already adopted some

of the principles behind the Semantic Web and Linked Data, such as Google’s Knowledge
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Graph10, Facebook’s Open Graph Protocol11 and Schema.org12. The idea behind Google’s

Knowledge Graph is that there are nodes that represent distinct entities and also relation-

ships between these entities; and such nodes and their relationships actually form a graph.

The nodes and relationships can be borrowed from existing structured datasets (e.g., Free-

base) but are also continuously extracted from the Web, merged or added to the existing

graph. To me, RDF can be adopted for representing these information in the Knowledge

Graph and other research outcome of the Semantic Web field could also be applied, e.g.,

scalable reasoning. Schema.org holds a collection of schemas or html tags that data pub-

lishers could use to label things or entities they describe on the web. Because these tags are

recognized by major search engines, the meanings (presumably pre-agreed between search

engines) can be interpreted in order to provide better search results. This is like a set of

commonly used ontologies where classes and predicates are defined and aligned across these

ontologies to provide common semantics. All these efforts from industry show that the

Semantic Web and linked data is a new way of grabbing and utilizing structured data in

their own platforms. Moreover, semantic markup standards, such as Microformats13, Mi-

crodata14, and RDFa15, all allow structured data to be embedded into traditional HTML

pages. This pushes millions of pages containing structured data on to the Web, and all

these data can be linked and consumed for specific applications.

Although we do see the current fast growth and the potentially bright future of Linked

Data, we need to realize that a lot of these potentials rely on the existence of interlinked

datasets. Without the linkages across different datasets, systems will not be able to mesh

10http://www.google.com/insidesearch/features/search/knowledge.html
11http://ogp.me/
12http://schema.org/
13http://microformats.org/
14http://www.whatwg.org/specs/web-apps/current-work/#microdata
15http://www.w3.org/TR/xhtml-rdfa-primer/
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all information about the author from various sources together, and therefore end users will

still have to query those data sources individually to obtain a comprehensive description of

that author. Overall, one important issue in publishing datasets as Linked Data and really

utilizing Linked Data is to discover the links amongst the datasets. Such links can either

be manually identified or generated automatically. Manually identifying the links could

work for small datasets; however, automatic and scalable approaches are needed to manage

large-scale datasets. Such needs for interlinking heterogeneous and large-scale datasets in

the Semantic Web open the door for a new research direction. Before we dive into the

details of the accomplished dissertation research, in the rest of this chapter, we will firstly

review the current literature of entity coreference from different research fields and also

discuss the pros and cons of contemporary approaches.

2.2 A Brief Overview of Information Retrieval and Machine

Learning Techniques

Here, we briefly discuss information retrieval and machine learning techniques, since ma-

chine learning is closely related to some previous work and our research adopts information

retrieval techniques for improving the scalability of our entity coreference system.

2.2.1 Information Retrieval

Given a large collection of documents, Information Retrieval is a traditional technique that

allows users to quickly look up documents that contain some given words. Instead of

having to traverse through the whole document collection, an inverted index is built by

pre-processing all documents in the collection to speed up the query process. Figure 2.7

demonstrates an example of an inverted index.
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Figure 2.7: An Example of Inverted Index

From the upper part of this example, first of all, we see three documents, a document

collection, identified with ID 1 to 3 respectively; and each document has their own contents.

Furthermore, the lower part of this diagram shows the built inverted index, with two primary

components: Term List and Posting List. The Term List contains all tokens extracted from

the contents of all documents with stop words filtered out. Each term in the term list is

then associated with a posting list that includes all documents that have this term or token

in their contents. Specifically, in our example, “Dezhao” is a term and it appears in both

Document 1 and 3; therefore, the posting list of the “Dezhao” term has both documents

in it. Please note that some tokens, such as “in”, “the”, and “of”, were not included in
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the term list, since they frequently appear in many documents (in real world scenarios) and

are not sufficiently representing a document. Also, sometimes, a token in the content is

changed to another form. For example, in Figure 2.7, the token “graduated” was changed

to its original form “graduate” when building the index. This is typically referred to as

Stemming, a pre-processing or normalization step when building inverted index.

With this inverted index, users could easily perform fast index look-up to find documents

that satisfy certain constraints. As a concrete example, suppose we have the following query:

Find documents that contain term “Dezhao” and term “Lehigh”. Given this query, we first

obtain the posting lists of both terms: Document 1 and 3 for term “Dezhao” and Document

1, 2, and 3 for term “Lehigh”. Next, we perform an intersection of the two posting lists

and finally have the answer to the query to be Document 1 and 3. Disjunctive queries can

be performed in a similar way; instead of doing intersection, a union will be performed to

merge the posting lists of different terms from the query. According to the literature of

information retrieval research, techniques have been developed for index optimization, such

as index compression and adding location information into the index to support more types

of queries [28].

2.2.2 Machine Learning

Machine Learning is a well known technique for performing prediction by utilizing from

known information and knowledge. According to Alpaydin [29], “Machine learning is pro-

gramming computers to optimize a performance criterion using example data of past expe-

rience. We have a model defined up to some parameters, and learning is the execution of a

computer program to optimize the parameters of the model using the training data or past

experience. The model may be predictive to make predictions in the future, or descriptive
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to gain knowledge from data, or both.” Overall, machine learning is to use existing data

and knowledge to predict some currently unknown. There are primarily three types of ma-

chine learning techniques: Supervised Learning, Unsupervised Learning and Reinforcement

Learning.

For supervised learning, in general, we have training data and a mathematical model that

actually uses the training data to learn the parameters in the model. For a given machine

learning problem, we also need to define a set of features that are specifically designed for

a given problem. From the training data, values of the defined features are extracted and

are utilized by the mathematical model to learn the values of the parameters. To evaluate

machine learning algorithms, we also have testing data where we extract values for the

same set of features and let the learned mathematical model to do prediction by utilizing

the learned parameter values. Models for such approaches include Naive Bayes, Decision

Tree, Random Forest, etc. As a concrete example, we could try to predict if a customer

would buy diaper by considering several factors or features: 1) Does this customer have

a baby; 2) Gender of this customer; and 3) Is there a football game tonight? With these

features, we probably be able to learn the probability that a customer buys diaper under

each feature and combine them together for prediction. Note all these probabilities are

learned from the training data automatically.

Different from supervised approaches, there are also unsupervised approaches. Instead

of trying exploit training data or labelled data, such approaches operate directly on the

testing data and try to discover the structure of the data. Clustering algorithms would be

good examples of such category. The advantage of unsupervised approaches is that they do

not require any labeled data which could be difficult to obtain for certain domains. However,

because there is not any formal training process, unsupervised approaches can only rely on
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some similarity and distance measures for prediction.

Finally, reinforcement learning, different from previous two types of machine learning

algorithms, is concerned with how intelligent agents should act in an environment to max-

imize some notion of reward. The agent executes actions which cause the observable state

of the environment to change. Through a sequence of actions, the agent attempts to gather

knowledge about how the environment responds to its actions, and attempts to synthesize

a sequence of actions that maximizes a cumulative reward. Different from supervised learn-

ing, reinforcement learning based algorithms learn how to perform actions by considering

the outcome of previous actions in order to achieve the highest reward.

2.3 Entity Coreference

Entity coreference has drawn interests from researchers in a variety of fields, including

Natural Language Processing, Database and the Semantic Web. The purpose of entity

coreference16 is to determine if syntactically distinct or identical identifiers refer to the

same real world entity. An identifier is a string, such as a person name, a publication title,

a geographical location name, a company name, a URI, etc. Identifiers can appear in free

text, such as news articles and web pages, or in structured and semi-structured data sources,

including databases and the Semantic Web.

In free text, entity coreference is to decide which name mentions actually represent the

same real world entity. In the following example, coreference algorithms may be used to

determine if the pronoun he is referring to the name Dezhao Song.

Dezhao Song is a fifth-year Ph.D. student and he is working in the SWAT

16Entity coreference is also referred to as deduplication [7], entity disambiguation [15],
etc.
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lab of Lehigh University. For more details, please consult his LU website.

Moreover, entity coreference also detects equivalences between named entities. Here named

entities mean those identifiers that have been explicitly assigned a name, such as a person

name, a publication title, etc. In the above example, the name Lehigh University is actually

coreferent with LU, since the latter is an abbreviation of the former given this particular

context. In databases, entity coreference is better known as record linkage or deduplica-

tion and is used to detect duplicate database records where such records may come from

heterogeneous data sources and may even be represented with different schemas.

With the development of Semantic Web technology, there is rapidly growing interest on

entity coreference in the community. In the Semantic Web, entity coreference can happen

between a free text mention and an ontology instance or between ontology instances them-

selves. The latter has received more attention from the research community, since being

able to automatically provide high quality owl:sameAs links between heterogeneous and

large-scale datasets is recognized as one critical step toward transitioning the current Web

from a web of documents to an interlinked data web.

Before we start discussing the relevant techniques, let’s define some terminologies that

will be used throughout the dissertation:

• Identifier/mention [30, 31, 32, 33]. An identifier or a mention is a string that appears

in textual content and is a reference of a real world entity. For example, a person name

that appears in a free text document represents a real world person; the primary key

of database record represents this record; a URI of an ontology instance identifies this

instance in a particular RDF graph. Broadly, an identifier represents all aspects of a

reference in a given context.
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• Entity [30, 31, 32, 33]. In the rest of this dissertation, we use the term entity to

represent a real world entity. For example, Dezhao Song, the fifth-year Ph.D. stu-

dent at Lehigh University, Bethlehem, Pennsylvania, U.S.A. is an entity. The paper

titled Domain Independent Entity Coreference in RDF Graphs and published in the

CIKM2010 conference is another entity.

• Coreferent [31, 32] or Coreferential [30, 33]. Identifiers that refer to the same entity

are said to be coreferent. For instance, the following two syntactically distinct URIs

are from Semantic Web Dog Food and DBLP respectively while they both represent

the same real world person.

– http://data.semanticweb.org/person/dezhao-song/html

– http://www.informatik.uni-trier.de/ ley/db/indices/a-tree/s/Song:Dezhao.html

2.3.1 Standard Evaluation Techniques for Entity Coreference

In this section, I will describe the well-adopted metrics and datasets for evaluating entity

coreference systems. I will also give some comments on these current evaluation metrics

and propose a few more options.

Evaluation Metrics for Entity Coreference Systems

In the literature of entity coreference research, three metrics have been well adopted for

evaluating entity coreference systems [13, 34, 35, 36]: Precision, Recall and F1-score as

computed in Equations 2.1 to 2.3. Precision is measured as the number of correctly detected

coreferent pairs divided by the total number of detected pairs given a threshold t; Recall is

defined as the number of correctly detected coreferent pairs divided by the total number of

coreferent pairs given a set of ontology instances; F1-score gives a comprehensive view of
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how well a system performs:

Precisiont =
|correctly detected|
|all detected|

(2.1)

Recallt =
|correctly detected|
|true matches|

(2.2)

F1− Scoret = 2 ∗ Precisiont ∗Recallt
Precisiont +Recallt

(2.3)

where t represents threshold in all the above three equations.

Since it could be difficult to obtain perfect groundtruth for large datasets, sampled

precision (sP) and relative recall (relR) could be adopted. relR is calculated with Equation

2.4:

relR =
|correctly detected pairs from one system|
|correctly detected pairs from all systems|

(2.4)

To measure sP, we can manually check the correctness of a subset of the detected links.

The idea of wisdom of the crowd that we discussed previously can be adopted for assess-

ing precision, such as Amazon Mechanical Turk; however, having perfect groundtruth to

measure recall could still be challenging.

In some previous works, the metric accuracy was also adopted [37, 38, 39], which is

formally defined in Equation 2.5:

Accuracy =

|correctly detected coreferent pairs|+ |correctly detected non–coreferent pairs|
|all tested instance pairs|

(2.5)

where we have a number of instance pairs that need to be determined as coreferent or

non-coreferent; and the nominator here is the number of instance pairs that are correctly
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labeled by an algorithm.

Evaluating Blocking/Candidate Selection Techniques

As we will discuss in more details in Section 2.4, candidate selection technique is to scale

an entity coreference algorithm to large scale datasets. Instead of comparing every pair of

instances between two datasets. some pairs of instances will be selected and more expensive

coreference algorithms will only be applied to these selected pairs that are more likely to

be coreferent than others in order to reduce the overall computational cost.

To evaluate candidate selection algorithms, three traditional metrics have been fre-

quently used [40, 41, 42, 43, 44]: Pairwise Completeness (PC), Reduction Ratio (RR) and

F1-scorecs (Fcs) as shown in Equations 2.6 to 2.8. PC and RR evaluate how many true

positives are retained by a candidate selection algorithm and the degree to which it reduces

the number of pairwise comparisons needed respectively; and Fcs is the F1-score of PC and

RR, giving a comprehensive view of how well a candidate selection algorithm performs:

PC =
|true matches in candidate set|

|true matches|
(2.6)

RR = 1− |candidate set|
N ∗M

(2.7)

Fcs = 2 ∗ PC ∗RR
PC +RR

(2.8)

where N and M are the sizes of two instance sets that are matched to one another. The

preselector should have a high PC so that most of the true matches (coreferent instance

pairs) will be included in the candidate set and sent to the resolver. In the meanwhile, RR

is also important, since a candidate selection algorithm also needs to be able to reduce as

many instance pairs as possible to save the overall computational cost.
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Another important metric is the runtime of both candidate selection and the entire

entity coreference process. Due to the large scale of Semantic Web data today, we need

entity coreference systems that could really scale to large datasets (e.g., datasets with

millions of instances). Since candidate selection techniques are designed to scale entity

coreference algorithms, such techniques themselves need to scale to large datasets as well.

A balance between RR and PC is particularly important. Algorithms that only try to

maximize one aspect are not acceptable. One thing to note is that according to Equation

2.7, a large change in the size of the candidate set may only be reflected by a small change in

the RR due to its large denominator. Therefore, there is the need to adopt new evaluation

methods and metrics to perform a more fair comparison between different systems. One

option would be to apply the entity coreference resolver to the selected candidate pairs to:

1) measure the runtime of the entire process, including both candidate selection and entity

coreference; 2) check how the missing true matches can affect the final coreference results.

It is possible that even if those missing pairs were selected, the resolver would still not be

able to detect them. Furthermore, in order to cover the last few missing true matches,

more false positives could be selected, which would potentially add more computational

complexity to the entire process.

Evaluation Datasets

Another important aspect of the evaluation is about datasets. In this section, we will

introduce the frequently adopted datasets for evaluating entity coreference systems.

Freetext and Semi-structured Entity Coreference Datasets

John Smith . This dataset17 was developed by Bagga and Baldwin with groundtruth

17http://alias-i.com/lingpipe/demos/data/johnSmith.tar.gz
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provided and adopted for cross-document entity coreference [5, 14]. It consists of 197

articles from the 1996 and 1997 editions of New York Times, describing people named John

Smith. All articles contain either the exact name John Smith or some variation. Each

article mentions a single John Smith, i.e., all the names John Smith in the same article

are coreferent. One disadvantage is that, in total, there are only 197 articles. In order

to provide convincing experiment results, more data would be needed. Furthermore, with

more data, it would allow researchers to test the scalability of their systems.

Web People Search Task . The Web People Search Task [45] provides a dataset for

disambiguation of person names from web pages. Finding people and their information in

the World Wide Web is one of the most common activities of Internet users; Person names,

however, are highly ambiguous18 [46]. In most cases, therefore, the results are a mixture

of pages about different people that share the same name. The participating systems use

web pages retrieved from a web search engine (queried with a given person name) as input,

determine how many referents (different people) exist for a given person name, and assign to

each referent its corresponding documents. This dataset includes 79 distinct person names,

and 100 web pages are collected for each name with groundtruth.

DBWorld . This semi-structured dataset consists of 20 DBWorld posts19 [15]. A DB-

World post typically contains an introduction of the upcoming event, topics of interest,

important dates and a list of committee members and their affiliation information. The

general layout of the DBWorld post is rarely consistent in terms of its structure. For ex-

ample, sometimes the committee members of a conference are listed with their affiliation

information; while in some other situations, they are listed with more information, such as

country names. This variety gives the opportunity to entity coreference systems to explore

18http://www.census.gov/genealogy/www/data/1990surnames/index.html
19http://lsdis.cs.uga.edu/∼aleman/research/dbworlddis

38



how to utilize incomplete and/or heterogeneous information, which is common in general.

Groundtruth is provided where each person named in the dataset links to a URI in an

ontology populated from the DBLP bibliography. One issue of this dataset is that it only

contains 20 DBWorld posts with 758 entities; and, generating the groundtruth for larger

datasets can take a great amount of efforts.

CORA. Andrew McCallum created the CORA dataset20. The dataset contains research

paper citations with labeled segments, including authors, title, affiliation, venue, date, page

numbers and so on. Overall, 1,349 citations to 134 different research papers were included.

Weis et al. added some more duplicates of the research papers with incomplete information

21, giving a little larger datasets containing 1878 citations.

Entity Coreference Datasets in the Semantic Web

As I will present later, in my current work, three datasets: RKB person and publica-

tion22 [17] and SWAT person23, were used for evaluating the entity coreference algorithm.

These datasets contain up to three million instances, which is a reasonable scale to demon-

strate the scalability of the proposed system. However, these datasets generally fall under

the academia domain; in other words, they primarily describe researchers, academic pub-

lications, research institutions, etc. Therefore, it is important to find other datasets that

have more diverse types of instances and are outside of the academia domain. Further-

more, the groundtruth information needs to be provided along with the datasets in order

to evaluate our proposed algorithms, which means the datasets should have the coreference

relationships between instances either explicitly or implicitly stated. Manually labeling

20http://www.cs.umass.edu/∼mccallum/data/cora-ie.tar.gz
21http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG Naumann/projekte/repeatability/CORA/cora-

all-id.xml
22http://www.rkbexplorer.com/data/
23http://swat.cse.lehigh.edu/resources/data/
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groundtruth for large-scale datasets is time-consuming and may not be feasible considering

the current scale of the Semantic Web data today.

To my knowledge, currently, there are a few datasets that satisfy such requirements:

DBpedia [47, 48], New York Times and Freebase [49]. DBpedia is typically treated as a Se-

mantic Web version of the ordinary Wikipedia. It converts free text from Wikipedia pages

to its Semantic Web representation. New York Times now provides an RDF version of some

of its data about people, organizations and locations. Freebase has a more diverse variety of

instance types in its data, ranging from science to products and to arts and entertainment.

One important point is that these three datasets provide the needed groundtruth informa-

tion across themselves. For example, New York Times and Freebase describe the U.S. actor

Nicolas Cage with two distinct URIs and connect them with an owl:sameAs statement.

Furthermore, the Ontology Alignment Evaluation Initiative (OAEI)24 includes an in-

stance matching track that provides several benchmark datasets and the necessary groundtruth

information. Some of the datasets are primarily targeting on comparing the precision and

recall of the participating systems with only a few thousands instances, such as the Person1,

Person2 and Restaurant datasets in the PR track of OAEI2010 [50]. However, some larger

datasets are also provided.

Finally, we want to introduce the Billion Triples Challenge dataset which was also

adopted in our evaluations. The BTC 2012 dataset was crawled from the web and consists

of several subsets: Datahub25, DBpedia, Freebase, Timbl (Tim Berners-Lee), and rest (i.e.,

others). In general, the URIs in each subset were used as seeds for crawling with different

levels of expansion. For DBpedia and Freebase, no links were expanded; while rest, Datahub,

and Timbl were expanded to level 2, 4, and 6 respectively to get more triples. We summarize

24http://oaei.ontologymatching.org/
25http://datahub.io/dataset
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Table 2.1: Billion Triples Challenge Dataset Statistics

Number of Triples 1.4 Billion
Number of Instances 183 Million
Number of Predicates 57,000

Number of Classes 296,000
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Figure 2.8: Distribution of Ontology Instances of Explicit Classes

the basic statistics of this dataset in Table 2.1. We also show the distribution of instances

among the total 296K classes in Figure 2.8.

First of all, from Table 2.1, we can see that there are 57K predicates in this dataset,

thus making the BTC dataset appropriate for testing predicate matching algorithms to

see if the produced predicate mappings will enable an coreference algorithm to achieve

decent coreference results. Manually linking predicates on this scale would be impossible.

Furthermore, given the amount of the instances in this BTC dataset, it provides a perfect

testbed to study whether entity coreference algorithms will be able to provide precise and

comprehensive coreferent mappings in a scalable manner.

2.3.2 Word Sense Disambiguation and Database Deduplication

Word sense disambiguation (WSD) and duplicate record detection in databases are two

closely related topics to entity coreference. A word can have multiple meanings while the
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task of WSD is to choose the most appropriate one based upon the word’s context [51, 52],

such as a piece of free text. Duplicate record detection [7] or Merge/Purge [53] is to detect

duplicate tuples and remove redundancies from databases. Different database records can

give the same information but are distinct in their representations. For example, different

records can represent a person’s name differently, in the forms of full name or first initial

plus family name.

Dong et. al. [54] proposed an entity coreference algorithm that exploits the relationships

between different entities to improve system performance. They collectively resolve entities

of multiple types via relational evidence propagation in dependency graphs. They applied

the algorithm to multiple real world datasets and demonstrated its effectiveness. Kalash-

nikov and Mehrotra [55] proposed RELDC (Relational-based Data Cleaning), detecting

coreferent mentions by analyzing entity relationships. The mentions and their relationships

are viewed as a graph where edges represent the relationships between mentions. In gen-

eral, instead of only using author names and affiliation information for disambiguation, each

author identifier is enhanced with co-author information and others as well. As a concrete

example from the paper, suppose we have three mentions named “D. White”, “Dave White”

and “Don White” respectively, and we want to decide which of three mentions are actually

coreferent. From their surface names, it would be difficult to judge since they have the same

initial and last name. However, with the assistance of the relational graph, it was decided

that “Don White” is actually coreferent with “D. White”, because: 1) Both of them have

a co-author from MIT, while “Dave White” never had a MIT co-author; 2) Both mentions

have similar titles for their publications. In order to scale to large graphs, certain optimiza-

tion techniques were adopted, such as limiting the length of the relationships, constraining

the number of relationships to be considered, controlling runtime, etc. They demonstrated
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the effectiveness of their algorithm on real world datasets in different domains: author,

publication and movie. As a combination of collective and relational based approaches,

Bhattacharya and Getoor [56] developed a collective relational clustering algorithm that

uses both attribute and relational information to detect coreferent entities. Their algorithm

achieved 0.2% to 0.4% higher F1-score and ran about 100 times faster than state-of-the-art

systems on two real world datasets. Different from the methods discussed above, Ioannou

et. al. [57] proposed a novel framework for entity coreference with uncertainty, trying to

detect coreferent instances at query-time. In their system, possible coreferent relationships

are stored together with the data with some probability; then a novel query technique is

employed for answering queries by considering such probabilities. Their system achieves

better F1-score when comparing to some offline entity coreference systems on two datasets.

2.3.3 Entity Coreference in Free Text

Many researchers have been working on entity coreference in free text. Gooi and Allan

[14] adopted the Bag-of-Words [58] approach to collect context information for resolving

coreference relationships between person names in free text. In the Bag-of-Words model, a

text (such as a sentence or a document) is represented as an unordered collection of words,

disregarding grammar and word ordering. It is commonly used for document classification,

where the frequency of each word is used as a feature for training a classifier. The authors

employed different models, the incremental and agglomerative vector space models and

KL divergence. When collecting context information, for each person name, they chose a

window of 55 words centered on this name and used these words as context, called a snippet.

The 55-word range may actually go across multiple sentences. They chose the number of 55

because it appeared to give the best results based upon their experiments, which is actually
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one potential issue of this approach. For different datasets, the best window size may vary

and it could be very time-consuming to determine the appropriate threshold by trying out

those possible values in a brute-force manner. Pedersen et al. [59] and Hatzivassiloglou

et al. [60] chose a similar way of locating context information. In both of these works, a

window size of 50 words centered on the name mention was used.

Bagga and Baldwin [5] tried to resolve coreference relationships between person mentions

with the name John Smith across different documents. The name of an identifier could either

be John Smith or some variation with a middle initial/name, such as John A. Smith. In this

work, the context information (a bag of words) is collected as follows. Their system first

sends the documents to the CAMP system [61], a within document entity coreference system

for free text. CAMP will build the coreference chains for each of the input documents. In

the following example, the names John Perry and He will be output as coreferent. Note

that CAMP did not only resolve coreferences on named mentions but also pronouns.

John Perry, of Weston Golf Club, announced his resignation yesterday. He

was the President of the Massachusetts Golf Association.

In the next step, another module, called SentenceExtractor, was adopted. For each name

mention, it will extract all the sentences that contain this name or sentences that include

other names that are coreferent to it. In other words, the SentenceExtractor produces a

summary for each group of coreferent name mentions. The extracted summaries are then

used for cross-document coreference. Instead of picking a pre-defined range of sentences or

words as context information, in this work, the within-document coreference system, CAMP,

helped to identify and restrict the range for collecting context information. However, it may

depend on CAMP to perform well in order to collect high quality context. For example, if

CAMP would have either low precision or low recall, the collected sentences and thus the
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context information could be restrictive or noisy. Following a very similar fashion, Chen and

Martin [62] used the EXERT26 system for named entity detection and collecting context,

therefore their system may also suffer from the same problem.

Mann and Yarowsky utilize an unsupervised clustering technique over a feature space for

person name coreference [37]. Different from the previous approaches, they extracted more

representative information from web pages, such as biographical information, marriage and

parent/child relationships and so on. The general idea is that the system learns biographic

facts by adopting some patterns that are learned with bootstrapping. With some seeds,

such as (Mozart, 1756), a web query is firstly issued to retrieve matching web pages. Then,

in these returned web pages, sentences and their substrings in which this seed appears

in nearby association (e.g., Mozart was born in 1756) will be extracted. Finally, these

extracted substrings will be generalized to produce patterns. For instance, Mozart will be

replaced by <name>, and 1756 will be replaced by <birth year>. One example of the

extracted patterns will look like this:

• <name> (<birth year> - ####)

Each # represents a digit, and thus <birth year> needs to consist of four digits. These

patterns are then used to extract the needed information from freetext for coreference.

Han et al. deploy two supervised models, the Naive Bayes classifier and Support Vector

Machine (SVM) [38], to disambiguate author names in citations [39]. Given a citation, their

algorithm predicts if it is written by some author. Both classifiers have achieved reasonable

performance in terms of accuracy. One problem is that their approaches worked fine with

data from particular domains or types of data, such as academic publications and person

mentions. Switching to other domains or entity types, new features need to be identified,

26http://sds.colorado.edu/EXERT
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which sometimes requires specific domain expertise to design elegant features. Some graph

based approaches have been employed as well to disambiguate mentions in social networks

[63] and emails [64]. Other than pure free text, Wikipedia and Encyclopedia have also

been used to find context information [65, 66]. Special types of Wikipedia pages (e.g.,

disambiguation pages) and the embedded hyperlinks have been employed for exploiting

context information.

Named entity recognition [67] can be treated as a pre-processing step for entity coref-

erence. It recognizes different types of mentions, such as person, organization, etc. Having

such type information could be helpful for disambiguation. For example, when a person

and a company share very similar names, their similarity scores may be very high; however,

since their types are actually disjoint, i.e., no single instance can be a person and a company

at the same time, by utilizing such information, an entity coreference algorithm should be

able to differentiate them appropriately. The details of named entity recognition techniques

are out of the scope of this dissertation.

2.3.4 Interlinking Semantic Web Data

String Matching based Instance Matching

With the emergence of the Semantic Web technologies, researchers have started showing

interests in the entity coreference problem on the Semantic Web, essentially trying to realize

the Linked Data vision. Hassel, et al. [15] proposed an ontology-driven disambiguation al-

gorithm to match ontology instances created from the DBLP bibliography [3] to recognized

named entity mentions in DBWorld documents27. They use the information provided in

27http://www.cs.wisc.edu/dbworld/
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the triples of an ontology instance to match the context in free text. In this paper, the au-

thors adopt different types of features for coreference, such as Text-Proximity Relationships

and Text Co-occurrence. For Text-Proximity Relationships, in the ontology, one such rela-

tionship is affiliation. For example, if a person ontology instance, named John Smith, has

affiliation information of Stanford University and in a DBWorld document, John Smith and

Stanford University occur close to each other, then this adds some confidence that this per-

son instance is coreferent to the name mention in the DBWorld document. The nearness is

measured by the number of character spaces (i.e., word distance) between two literal values

(the name in the document and the affiliation information). White spaces are counted but it

is not mentioned how consecutive white spaces are treated. Text Co-occurrence is a similar

feature but is also different from Text-Proximity in the sense that it only requires the values

to be present in the document while having no specific requirements on where they should

occur or how close they should be to each other in the document. Their algorithm achieves

good performance: 97.1% in precision and 79.1% in recall. However, one problem is that

the authors manually and selectively picked some triples of the instances for the coreference

task, e.g., name and affiliation. The features (e.g., co-occurrence) were manually identified

and specifically designed for the chosen information. For domains where it is difficult to

obtain the necessary domain expertise, it may not be feasible to decide what information

would be important and useful; and thus it would also be difficult to identify useful features

for such domains. Similar approaches were also adopted by other researchers [68, 69, 70].

Instead of trying to match free text mentions to ontology instances, other researchers

developed algorithms for detecting coreferent ontology instances. These algorithms are

especially useful for producing owl:sameAs statements to connect different Semantic Web

datasets, providing the opportunity for accomplishing better data integration and query
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answering in the Semantic Web. To my knowledge, the earliest such work was by Alani et

al. [71]. They proposed using RDF triples of an instance and its neighborhood instances for

coreference. LogMap [72, 73] adopts a similar approach. The basic idea is that it computes

the similarity between the “labels” of two instances and picks the highest similarity between

any pair of labels of the two instances as their final similarity score. Here, “label” is broadly

defined but limited to objects of datatype properties. End users of LogMap can manually

specify what datatype properties they want to use during the entity coreference process

and LogMap will automatically extract their values before doing coreference. By default,

it will only use rdfs:label for instance matching. The advantage of LogMap is that it does

not require any sophisticated property matching algorithm as a pre-processing step, since it

will compare the values of all pairs of specified datatype properties. However, one potential

drawback would be that using the highest similarity score between values of any manually

determined property pairs as the final similarity measure for two instances could result

in too many false positives, because two non-coreferent instances might coincidently share

highly similar values for one or more properties.

One common problem of the two approaches discussed in the above paragraph is that

neither of them differentiates the importance of different triples. Without appropriately rec-

ognizing the importance of different types of triples, it would be difficult to achieve decent

performance. For example, in general, person name would be expected to be more useful in

disambiguating one person from others than other types of information, such as birth date,

birth place, living place, etc. RiMOM [35], differently from the previous two approaches,

incorporates manually specified weights for different properties. The core idea is that dif-

ferent properties may have quite different impact and thus for each property, a specific

weight is assigned. The similarity between two instances is computed by combining such
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property weights with string matching techniques. According to their evaluation results,

utilizing manually assigned property weights helped to achieve 2% to 6% higher coreference

F1-scores than other systems on two of three benchmark datasets for OAEI2010.

Aswani et al. [13] proposed another algorithm for matching ontology instances. Their

algorithm matches person instances from an ontology converted from the British Telecom-

munications (BT) digital library, containing 4,429 publications and 9,065 author names.

One of their focuses is to exploit the web as an external knowledge base to find information

to support the coreference process. Different from the work by Mann and Yarowsky [37]

where the evaluation data was web pages, here, the data is ontology instances and web is

utilized as an external information source for retrieving more information. For example,

they issue queries with the family name of a person instance and the title of a publication

instance to search engines and see if different author instances will finally come to have the

same full name. A positive answer adds confidence that the two person instances are coref-

erent. Some other clues include finding the publication page for different person instances,

measuring the similarities between the names of person instances and the titles of their

publications. The authors test their algorithm on author instances with identical family

names and achieve an accuracy from 90.48% to 100% on different datasets. Similar to the

paper by Hassel et al. [15], the feature set is manually identified. Also, some features require

special processing. For instance, the authors manually set up some rules to determine if a

returned web page is really a person’s publication page or simply a page from DBLP where

papers of distinct authors may co-exist.

One common feature of LogMap [72, 73], RiMOM [35], the algorithms by Alani et al. [71]

and by Aswani et al. [13] is that they only looked at the immediate triples of an ontology

instance. However, triples further away from the instance in an RDF graph may also be
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helpful, particularly when there are not sufficient immediate literal triples. Furthermore,

the algorithm developed by Aswani et al. and the RiMOM system both assign weights to

different properties in an ontology, trying to differentiate the significance of different types

of triples. However, one problem is that such property weights are manually designed.

Therefore, if we want to work on a new dataset that uses a different set of predicates,

additional human effort will be required to determine such weights. When there are a large

number of predicates (e.g., the BTC 2012 dataset), this could be a really time-consuming

process or even not feasible. In these two papers, the authors did not report any information

on how much efforts/time were spent to obtain the appropriate property weights.

Combing Logical Reasoning with String Matching

In addition to adopting string matching techniques to compute the similarity between sur-

face forms, logic based approaches were also proposed. ObjectCoref [34, 74] adopts a two-

step approach for detecting coreferent instances. First, it builds an initial set of coreferent

instances via reasoning, i.e., by using the formal semantics of OWL properties, such as

owl:sameAs, owl:InverseFunctionalProperty, owl:FunctionalProperty, owl:cardinality and

owl:maxCardinality. In a second step, ObjectCoref utilizes machine learning techniques

to learn the discriminability of property pairs based on the coreferent instance pairs used

for training. The discriminability reflects how well each pair of properties can be used to

determine whether two instances are coreferent or not. Similarly, Zhishi.me [75], LN2R

[76], CODI [77] and ASMOV [78] also utilize a combination of reasoning based and string

similarity or lexical similarity (e.g., WordNet [79]) based techniques for matching ontology

instances. One disadvantage of reasoning based approaches is that they highly depend on

the correct expressions of the ontologies. For example, as reported by ASMOV researchers,
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in one dataset, the surname property was declared to be functional while two instances

with different object values of this property are said to be coreferent by the groundtruth.

Another potential weakness of logic-based approaches is that they may not be applicable

to non-Semantic Web data, since there are no formal semantics. For instance, for data in

traditional databases and XML/CSV data, we do not have the properties listed above (e.g.,

owl:FunctionalProperty), thus making the logic layer to lose its power.

Ontology and Instance Matching with CrowdSourcing

The approaches discussed above are all automatic in the sense that except for having to

manually specify the weights of different types of triples in some algorithms, the coreference

results are achieved by an automatic system without human intervention. However, during

the past a couple of years, several algorithms that consider human involvement for improving

coreference results have been proposed. The whole idea behind such approaches is “The

Wisdom of Crowd” where the aggregation of ideas and information by groups can often

be better than those made by single individuals from groups. Typically, automatically

generated results are published on some crowdsourcing platforms as evaluation tasks, such

as Amazon Mechanical Turk28 and CrowdFlower29, and humans can then provide their

judgements on the tasks to earn a little money. The feedbacks can then be used to determine

the final coreference results with appropriate combination with the automatically calculated

similarity or can also be utilized for active learning.

CROWDMAP [80] and ZenCrowd [81] are two such systems. Although CROWDMAP

is designed for performing alignment at the ontology (schema) level, the essential crowd-

sourcing idea can still be applied to instance matching. However, since there are typically

28https://www.mturk.com/mturk/welcome
29http://crowdflower.com/
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many more ontology instances than classes and predicates, it might be more feasible to put

instance pairs of borderline matching confidence onto crowdsourcing platforms. Instances

pairs that are certainly coreferent or different do not need to be judged by humans. One

potential risk of utilizing crowdsourcing is that many of the evaluators are simply doing the

tasks for money and are often times not spending sufficient time to really understand the

tasks. This will then cause noisy results. Although some crowdsourcing services, like Ama-

zon Mechanical Turk, try to identify featured/high-quality turkers (evaluators), researchers

still need to spend lots of time filtering low-quality feedback.

2.4 Scaling Entity Coreference Systems

One of the common problems with the current approaches is scalability. Many current

systems adopt exhaustive pairwise comparison between instances and they mainly focus

on exploring appropriate features and metrics to compute instance similarity. However,

pairwise comparison will not fit for large-scale datasets (e.g., datasets with millions of

instances). Blocking is one method for subdividing mentions into mutually exclusive blocks

and only mentions within the same block will be compared. In database research, one

traditional method for identifying duplicate records in a database table is to scan the table

and compute the value of a hash function for each record. The hash values define buckets

to which each record will be assigned. Such hash values not only identify identical records

but also records that are approximately similar [82]. In the end, in order to find duplicate

records, it would be sufficient to compare only the records that fall into the same bucket.

Recently, instead of finding mutually exclusive blocks, blocking is also referred to as finding

a set of candidate pairs of mentions that could be coreferent [42].

Although blocking can substantially increase the speed of the comparison process in
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that it only compares identifiers in the same block, there are some problems with this

technique. First of all, it is not necessary that all coreferent identifiers have the same values

for a single blocking property; thus, typically multiple types of information will be used in

order to improve coverage on true matches. Furthermore, data quality problems need to

be considered. Having noise in the data can significantly impact blocking results, causing

blocking systems to place entries in the wrong buckets, and thereby preventing them from

being compared to actual matching entries. In addition to only computing string similarities

of the surface forms, phonetic algorithms, such as Soundex [83] and the New York State

Identification and Intelligence System (NYSIIS) [84], could be adopted for better handling

erroneous data. It is hoped that misspelled words will still have the same phonetic codes.

2.4.1 Blocking with Manually Identified Key

Many approaches rely on human experts to determine what information to use for blocking

and are generally very effective [85, 86, 41, 87, 88, 43]. Best Five [87] is a set of manually

identified rules for matching census data. Sorted Neighborhood (SN) [88] sorts all entities

on one or more key values (e.g., name for a person and title for a publication) and compares

identifiers in a fixed-sized window. Yan et al. [43] proposed a modified sorted neighborhood

algorithm, Adaptive Sorted Neighborhood (ASN), to learn dynamically sized blocks for each

record. The records are sorted based upon a manually determined key. For a record r, it

automatically finds the next N records that might be coreferent to r where N could vary

for different records. They claimed that changing to different keys didn’t affect the results

but didn’t report any experimental results.

Silk [89] and Oyster [90] are two general frameworks for users to specify rules for per-

forming record linkage, but it may be difficult for users to specify such rules for all domains.
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Compared to these systems, we try to reduce the need of human input in developing entity

coreference systems.

Although keys manually selected by domain experts can be very effective in many sce-

narios (e.g., census data), this manual process can be expensive, as the required expertise

may not be available for various domains. Moreover, even when people have the necessary

knowledge for identifying what information to use for blocking, they may lack the time to

sit down and write down the rules.

2.4.2 Automatic Blocking Key Selection

BSL [42] adopted supervised learning to learn a blocking scheme: a disjunction of conjunc-

tions of (method, attribute) pairs. Here, a “method” refers to how attribute values will be

compared. As a concrete example, a “method” could be “computing the Jaccard similar-

ity between two attribute values”. It learns one conjunction each time to reduce as many

pairs as possible; by running the learning process iteratively, more conjunctions would be

obtained in order to increase coverage on true matches. However, supervised approaches

require sufficient training data that may not always be available. As reported by Michelson

and Knoblock [42], when 1/5 of the groundtruth was used for training, 4.68% fewer true

matches were covered on the Restaurant dataset (described in Section 2.3.1). Even more

important, BSL was not able to scale to a dataset with only about 23,000 records [44], since

essentially it needs to try out every possible combination of (method, attribute) pairs and

picks the best one (that reduces the most pairs and covers the most true matches) at each

learning iteration. In order to reduce the needs of training data, Cao et. al. [8] proposed

a similar algorithm that utilizes both labeled and unlabeled data for learning the blocking

scheme; however the supervised nature of their method still requires a certain amount of
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available groundtruth.

Differently, Adaptive Filtering (AF) [91] is unsupervised and it filters record pairs by

computing their character level bigram similarity. Marlin [92] uses an unnormalized Jaccard

similarity on the tokens between attributes by setting a threshold to 1, which is essentially to

find an identical token between the attributes. Although it was able to cover all true matches

on some datasets, it only reduced the pairs to consider by 55.35%. Considering applying

this technique to large-scale datasets, this may not be a significant enough reduction to

make coreference with the remaining instance pairs feasible.

2.4.3 Speeding Up Entity Coreference with Indexing Techniques

The Information Retrieval (IR) style inverted index, a technique typically used for fast data

retrieval on the Web, has been widely adopted for speeding up the blocking process. An

IR-based inverted index is typically built for a collection of documents where each document

contains a set of terms. The index will have a term list that contains all the unique terms

in this document collection; and each term will be associated with a posting list with all

documents that contain this term.

PartEnum [93], BiTrieJoin [94], IndexChunk [95], FastJoin [96], All-Pairs [97], PP-

Join(+) [98] and Ed-Join [99] are all inverted index based approaches. PartEnum [93]

is a search based algorithm that adopts a two-level partitioning and enumeration based

on Hamming distance. BiTrieJoin [94] is a trie-based method to support efficient edit

similarity joins with sub-trie pruning. AllPairs [97] is a simple index based algorithm

with certain optimization strategies. PPJoin+ [100] adopts a positional filtering principle

that exploits the ordering of tokens in a record. Ed-Join [99] employed filtering methods

that explore the locations and contents of mismatching n-grams. Similarly, IndexChunk
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[95] computes asymmetric signatures on character-level n-grams as constraints for selecting

candidates. Instead of performing exact matching on tokens and/or character-level n-grams,

FastJoin [96] adopts fuzzy matching techniques that consider both token and character level

similarity.

The Semantic Web community has also started adopting similar techniques for blocking

and entity coreference. Ioannou et. al. [101] developed a system that focuses on query time

duplicate instance detection on RDF data. The key technique is to index RDF resources

to enable efficient look-ups. By adaptively determining the query to the index, similar

instances to the query instance can be efficiently retrieved.

2.4.4 Building Scalable Systems with Feature Selection

Most of the current research focuses on how to reduce the total number of pairwise compar-

isons between entity mentions; however, it is also important to speed up a single pairwise

comparison. This can be generalized as a pruning process where we prune the less important

parts of an instance’s context information. For example, when we compare the similarity

between a pair of instances, the system predicts if the remaining unconsidered context will

overturn the current decision made based upon what has already been compared. If it is

not worth continuing to explore the rest of the context, the system will simply stop and

continue with the next pair of instances. This is similar to the feature selection problem

[102] where algorithms are developed to select the right features for a specific problem in

order to reduce computational complexity. The key problem here is how to stop at the

right places (selecting the right features). Stopping too soon may cause the system to lose

some number of true matches; while going too far could potentially bring in unnecessary

computational costs.

56



Chapter 3

A Domain-Independent Entity

Coreference Resolver for Linking

Ontology Instances

We have developed and published a domain-independent entity coreference resolver for

detecting owl:sameAs links between ontology instances [16, 103]. I will describe this work

in the remainder of this chapter, formally presenting the algorithm and evaluation results.

Entity coreference in the Semantic Web can be modeled as following. Given an RDF

graph G and a set of ontology instances I, we find all the coreferent instance pairs EQ(G, I)

as represented in Equation 3.1:

EQ(G, I, t) = {(ei, ej)|(ei, ej) ∈ I × I ∧ InstanceSim(C(G, ei), C(G, ej)) > t} (3.1)

Where ei and ej represent two ontology instances; the function C(G, ei) extracts the context

information for instance ei in the given RDF graph G; InstanceSim is a function that
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computes the similarity score between the context information of two ontology instances

and t is a threshold on this similarity score. An entity coreference algorithm computes the

similarity scores between instance pairs in a given dataset and pairs whose similarity score

is higher than the given threshold t are treated as coreferent.

In order to find EQ(G, I, t), several steps have been employed and I will present the

details of each step in the rest of this chapter:

• We firstly find the context information of an ontology instance in a given RDF graph;

• Next, we automatically assign appropriate weights to different parts of the context;

• Finally, we develop an algorithm that could appropriately utilize such weighted con-

text information to compute the similarity score between instance pairs.

3.1 Selecting a Neighborhood RDF Graph

In our accomplished work [16, 103], we use the RDF graph as the sole source of context

information. We collect paths in an RDF graph within a certain distance to an instance

(the root node) that we do coreference on. We define a path as a sequence of nodes and

predicates in an expansion chain in Equation 3.2:

path =< i, predicate[1], node[1], predicate[2], node[2], ..., predicate[n], node[n] > (3.2)

where i is the instance, node[i] (i > 0) is any other expanded node from the RDF graph

and predicate[i] is a predicate that connects two nodes in a path. We define a function

depth(path) that counts the number of predicates in a path. We will use the operator +

for tuple concatenation, e.g., < a, b, c > + < c, d, e >=< a, b, c, d, e >.
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Algorithm 1 Neighborhood(G, i), i is an ontology instance and G is an RDF graph;
returns a set of paths for i collected from G

1. P ← all predicates in G
2. path←< i >
3. expansion set← {path}, paths← ∅
4. for all path′ ∈ expansion set do
5. last← last node in path′

6. if last is literal or (last is URI and depth(path′) = depth limit) then
7. paths← paths

⋃
path′

8. else if depth(path′) < depth limit then
9. / ∗ Expand from subject to object ∗ /

10. triples←
⋃

p∈P
{t|t =< last, p, o > ∧ t ∈ G}

11. for t =< s, p, o >∈ triples do
12. path new ← path′+ < p, o >
13. expansion set← expansion set

⋃
path new

14. / ∗ Expand from object to subject ∗ /
15. triples←

⋃
p∈P
{t|t =< s, p, last > ∧ t ∈ G}

16. for t =< s, p, o >∈ triples do
17. path new ← path′+ < p−, s >
18. expansion set← expansion set

⋃
path new

19. expansion set← expansion set− path′
20. return paths

Algorithm 1 formally presents this expansion process. Starting from an instance, we

search for triples whose subject or object equals to the URI of this instance and record

those expanded triples. With the expanded triples, if the objects or subjects are still URIs

or blank nodes, we repeat this search or expansion process on them to get further expanded

triples until we reach a depth limit or a literal value, whichever comes first. In an RDF

graph, a blank node (or anonymous resource) is a node that is neither identified by a URI

nor is a literal. Blank nodes have a node ID which is limited in scope to a serialization of a

particular graph, i.e., the node node[1] in one RDF graph does not represent the same node

as a node named node[1] in any other graph. At line 17, we use p− to denote a predicate p

when expanding from object to subject.

We implemented this expansion process as breadth-first search. In order to control the

number of paths generated, we set a depth limit (the maximum number of predicates in
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a path) of 2. With this limit, we’ve discovered that it is sufficient to get enough context

information. For example, in the RKB dataset1, given a person instance, we can find its

name, affiliation, and the URIs of this person’s publication instances at depth 1; going

further to depth 2, we will have the titles and dates of this person’s publications, the URIs

of the coauthors of these publications, etc.

With our expansion process, we end up having a set of paths for each ontology instance,

starting from that instance and ending with a URI or a literal value. When ending on a

blank node, we do not record that path because we cannot simply compare two blank nodes

and see if they are identical. However, we rely on paths that go through blank nodes to get

further literals and URIs before the stopping criteria is met. As illustrated in Figure 3.1,

starting from the root (an instance), we get to node 1, 2 and 3 by searching triples that use

the root node as subject or object; then we reach node 4, 5, 6 and 7 by further expanding

node 2, so on and so forth. We will explain P and F from Figure 3.1 in Section 3.2.
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Figure 3.1: Expansion Result

1This is one of the datasets that we use for evaluation in Section 3.4.
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3.2 Calculating Path Weights

In this section, we will present our approach for learning the discriminability of RDF triples,

explaining how we could utilize the collected context information appropriately. Generally,

each triple has its own importance, reflecting its possible level of discrimination to the ontol-

ogy instance from which it originally comes from2. Our discriminability learning approach

is domain-independent. Given a specific dataset, without a domain-independent and auto-

matic discriminability learning algorithm, we need to manually determine the importance

of each triple. When disambiguating person instances, we need to manually determine that

person name can be more discriminative than birthplace or hometown, and others like such.

Our approach, given a new dataset, takes the entire dataset (triples) as input and auto-

matically computes the discriminabilities regardless of the domain of that dataset, such as

academia domain or some others.

3.2.1 Predicate Discriminability

Thinking broadly, we can measure the discriminability of a triple by only looking at what its

predicate is. As for a predicate, the more diverse value set it has, the more discriminating it

will be. Triples with different predicates, such as has publication date and has author, could

have different discriminabilities. Equations 3.3 and 3.4 show how we compute predicate

discriminability:

Perpi =
|set of distinct objects of pi|
|set of triples that use pi|

(3.3)

where Perpi represents a percentage value for predicate pi, which is the size of pi’s distinct

object value set divided by its number of occurrences in the entire dataset. We record the

2This is related to finding the neighborhood graph for an instance as introduced in
Section 3.1.
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largest percentage value over all predicates as Permax, and then normalize such values so

that the most discriminating predicate has a discriminability of 1. The normalization is

shown in equation 3.4:

Ppi =
Perpi
Permax

(3.4)

where Ppi is the predicate discriminability for predicate pi.

Depending on what category of instances is being compared, a predicate may be used

in the subject-to-object direction or reversely. A predicate that discriminates well in one

direction may not do well in the other. This is related to how we expand an instance to

collect neighborhood triples in Section 3.1. Basically, when we do the expansion, we use a

URI both as the subject and the object, so a predicate has different discriminabilities to

the two directions.

To clearly represent discriminabilities, for a given predicate pi, we use Perpi and Per−pi

to denote the percentage values to the object and subject direction respectively; then the

predicate discriminabilities to the two directions are denoted as Ppi and P−pi respectively.

Equations 3.3 and 3.4 compute predicate discriminabilities to the object direction. The

discriminabilities to the subject direction can be computed in the same manner by replacing

appropriate variables.

Here, we show how to calculate our predicate discriminability with two concrete ex-

amples from the RKB dataset. In total, 6,313,274 triples use the predicate has author

(with domain of publication class and range of person class); among these triples, there are

3,986,181 distinct object values and 2,515,439 distinct subject values. From Equation 3.3,

we have:

Perhas author =
3, 986, 181

6, 313, 274
= 0.63, P er−has author =

2, 515, 439

6, 313, 274
= 0.398 (3.5)
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Because the maximum percentage values to both directions (Permax and Per−max) are both

1 in this dataset, based on Equation 3.4, we have:

Phas author =
Perhas author

Permax
=

0.63

1
= 0.63, (3.6)

P−has author =
Per−has author

Per−max
=

0.398

1
= 0.398 (3.7)

Therefore, when disambiguating between publication instances, having a common author

can be more discriminative than having a common publication when doing coreference

on person instances. Another example is the has publication year predicate (a datatype

property). 2,973 triples use this predicate with 152 distinct object values. So, we have:

Perhas publication year =
152

2, 973
= 0.05 (3.8)

Based on Equation 3.4, we have:

Phas publication year =
Perhas pub year

Permax
=

0.05

1
= 0.05 (3.9)

The intuition behind our predicate discriminability is that the discriminability of a triple

is determined by its predicate. And such discriminability will then contribute to the entity

coreference process. For example, if two publications happen to have the triples with the

same object value via predicate has publication year that only has a weight of 0.05, then

such a coincidence does not really add much value to determine if they are coreferent;

however, predicate has author shows a much higher discriminability to the object direction

(0.63), so that having equivalent object values for this predicate (having the same author)

will give a better idea that these two publications be coreferent.
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3.2.2 Weighted Neighborhood Graph

With triple discriminability and the context information, we assign each path in the neigh-

borhood graph a weight, indicating its importance to the root node. The weights combine

two elements, the learned discriminability and a discount value.

As previously shown in Figure 3.1, P1 and P2 represent the discriminabilities for the two

triples ending on node 2 and 5 respectively. We also add another parameter, called factor,

to each node, indicating how important a node is to its parent. For example, in Figure 3.1,

F1 is the factor of node 2 to the root node and its value is 1/3 because three triples get

expanded from the root. Each of the three nodes (node 1, 2 and 3) only represents one-third

of their parent conceptually. The underlying semantics of this factor is to portion out the

importance of one node to its expanded nodes in an equal manner.

With the factors and triple discriminability, we adopt a distance based discounting

approach to assign weights to paths in the neighborhood graph, with Equation 3.10:

Wpath =

depth(path)∏
i=1

Pi ∗ Fi (3.10)

where the function depth counts the number of predicates in a path; Pi and Fi represent

the discriminability and factor for each triple in the path respectively. The intuition here

is that as we expand further in the RDF graph, more noisy data could be introduced. In

order not to overwhelm the context, the discriminability of each expanded triple should be

appropriately adjusted. We call this a distance-based discounting approach.
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3.2.3 Predicate Discriminability Overestimation

Currently, when counting the size of the distinct object/subject value sets, we assume that

if any two objects/subjects are syntactically distinct, then they truly represent different

things. However, they could actually represent the same real world entity. With such

unknown coreferent objects/subjects, we are actually overestimating the discriminability.

But if we assume that for every predicate such unknown coreferent relationships occur

uniformly throughout the dataset, we actually overestimate all predicates by the same

proportion. Thus our current approach still gives reasonable discriminability.

Figure 3.2 gives an example of this situation. We have two predicates: PredicateA (PA)

(Instance1, PredicateA, Object1)

(Instance2, PredicateA, Object2)

(Instance3, PredicateA, Object3)

(Instance4, PredicateA, Object2)

(Instance5, PredicateA, Object4)

(Instance6, PredicateA, Object5)

(Instance1, PredicateB, Object6)

(Instance2, PredicateB, Object7)

(Instance3, PredicateB, Object8)

(Instance4, PredicateB, Object9)

(Instance5, PredicateB, Object10)

(Instance6, PredicateB, Object11)

PredicateA PredicateB

Figure 3.2: Predicate Discriminability Overestimation

and PredicateB (PB) from the same dataset; each of them is used by six triples as listed in

the two boxes respectively. Assuming Permax is 1 for this dataset, based on Equations 3.3

and 3.4, to the object direction, we can calculate their discriminability:

PPA
=

PerPA

Permax
=

5

6
= 0.83, PPB

=
PerPB

Permax
=

6

6
= 1 (3.11)
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Now, if we assume the underlined objects are actually coreferent, the predicate discrim-

inability of these two predicates will change to:

PPA
=

PerPA

Permax
=

3

6
= 0.5, PPB

=
PerPB

Permax
=

4

6
= 0.67 (3.12)

In this case, we are overestimating the predicate discriminability for both predicates

due to unknown coreferent instances. In our unsupervised method for learning predicate

discriminability, it is difficult to consider such unknown coreferent information; therefore,

we make the assumption that we overestimate the discriminability for every predicate by

about the same proportion. From our current experiments (to be presented in Section

3.4), adopting our proposed predicate discriminability does significantly improve system

performance compared to comparison systems (to be introduced in Section 3.4.3) that don’t

use it.

3.2.4 Missing Value

Currently, we don’t consider missing values when calculating our predicate discriminability

values. A version of Equation 3.3 that takes missing values into account is shown in Equation

3.13:

Per′pi =
|set of distinct objects of pi|+ 1

|triples that use pi|+ |instances that should use pi but don′t|
(3.13)

where Per′pi represents the percentage value for predicate pi.

Compared to Equation 3.3, the additional “1” in the numerator represents null value and

the second part (Missing = |instances that should use pi but don′t|) in the denominator

is the number of instances that should have a value for predicate pi but actually don’t. The
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problem here is how to determine Missing. In an ontology, a predicate may not have its

domain declared thus making it difficult to calculate Missing. Another option is to compute

predicate discriminability with respect to each individual class as shown in Equation 3.14:

Per′(C,pi)
=

|set of distinct objects of pi|+ 1

|triples that use pi|+ |instances of C that don′t use pi|
(3.14)

where C is an ontology class. With this option, we compute the discriminability of all

predicates for each individual class; thus a predicate may have different discriminabilities

when paired with different classes. As shown in Figure 3.1, during expansion, we need to

determine the discriminability of an edge (a predicate). However, the nodes to expand (e.g.,

the root node in Figure 3.1) may not have class types declared or may have multiple types;

therefore one problem here is that we may not be able to decide which discriminability to use

during the expansion process. For instance, in the RKB dataset, a person instance is also

declared to be an owl:Thing, Legal-Agent and Generic-Agent. For predicate pi, although we

could compute its discriminability by Equation 3.14 with respect to each of these classes, it is

difficult to decide which one to use when seeing an edge of pi. In our current work, we didn’t

implement these two alternate options due to the problems discussed above when applying

them generally to Semantic Web data. For future work, we will explore approaches for

calculating predicate discriminability by appropriately taking into account missing values.
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3.3 Exhaustive Pairwise Entity Coreference based upon Weighted

Neighborhood Graph

3.3.1 Algorithm Design

Algorithm 2 presents the pseudo code of our entity coreference algorithm for ontology

instances. In this description, x and y are two ontology instances; N(G, x) returns the

context (a set of weighted paths) of instance x in RDF graph G; E(path) returns the end

node of a path; the function PathComparable indicates if two paths are comparable; Sim

is a string matching algorithm that computes the similarity score between two literals.

Algorithm 2 Compare(Nx, Ny), Nx is the context N(G,x) and Ny is N(G,y); returns a
float number (the similarity of x and y)

1. total score← 0, total weight← 0
2. for all paths m∈Nx do
3. if ∃path n∈Ny, PathComparable(m,n) then
4. path score← 0, path weight← 0
5. if E(m) is literal then
6. path score← maxn′∈Ny ,PathComparable(m,n′) Sim(E(m), E(n′))
7. /* path n′ has the highest score with m */
8. path weight← (Wm +Wn′)/2
9. else if E(m) is URI then

10. if ∃path n′ ∈ Nb, PathComparable(m,n
′), E(m) = E(n′) then

11. path score← 1
12. /* path n′ has identical end node with m */
13. path weight← (Wm +Wn′)/2
14. total score← total score+ path score ∗ path weight
15. total weight← total weight+ path weight
16. return total score

total weight

The essential idea of our entity coreference algorithm is that we adopt the bag-of-paths

approach to compare paths between ontology instances. Information retrieval systems often

treat a document as a bag-of-words [104] where the text is treated as an unordered collection

of words. Analogously, we treat an instance as a bag-of-paths. Through the expansion

process (discussed in Section 3.1), for an instance, we find a collection of paths for it
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without considering the ordering of the paths.

As presented in Algorithm 2 and illustrated in Figure 3.3, for each path (m) of instance

x, we compare its last node to that of every comparable path of instance y and choose the

highest similarity score, denoted as path score. Also, we need to determine the weight of

this path score. Here, when considering the weight, we take into account both the weight

(Wm) of path m and the weight (Wn′) of the path n′ of instance y that has the highest

similarity to path m. Then we use the average of Wm and Wn′ as the path weight for path

m. We then repeat the process for every path of instance x. With the pairs of (path score,

path weight) for a pair of instances, we calculate their weighted average in order to have

the final similarity score between the two instances. The same process is repeated for all

pairs of ontology instances of comparable categories, i.e., person-to-person and publication-

to-publication. At line 16, the similarity score (a floating number) for a pair of instances is

returned.

Figure 3.3: An Example of Computing Comparable Paths between Two Weighted Neighborhood
Graphs

3.3.2 Path Comparability

As described, we compare the last nodes of instance a’s paths to those of the comparable

paths of instance b. One question here is how to determine if two paths are comparable.

For example, the following two paths are not comparable (predicates in bold and italic):
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• (personA, attend event, eventA, has event date, “2010-06-01”);

• (personA, has publication, article1, has publication date, “2010-06-01”).

Although the two last nodes are all date information and thus are comparable, they actually

come from paths with different underlying semantics.

In our current approach, two paths are comparable if they satisfy the condition shown

in Equation 3.15:

PathComparable(path1, path2) = true ≡

(depth(path1) = depth(path2)) ∧

(∀i ∈ [1, depth(path1)],

P redicateComparable(path1.predicate[i], path2.predicate[i]) = true) (3.15)

where PathComparable and PredicateComparable are two functions, indicating if two

paths or two predicates are comparable; depth counts the number of predicates in a path;

path1.predicate[i] and path2.predicate[i] return the ith predicate in two paths respectively.

There are several questions coming out from Equation 3.15. The first one is how to

determine the comparability of two predicates, which will help to determine path compa-

rability. In some situations, the comparability of predicates is not very clear. For instance,

the two predicates author on and edit on can be vague in their comparability. For a publi-

cation, a person that did some edits on it does not necessarily have to be listed as an author

of it. In such a circumstance, without letting such two predicates be comparable, we might

miss some true matches while adding them in might hurt precision.
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We say two predicates are comparable if the knowledge base (KB) entails that one is

the subproperty of another (obviously, this means equivalent properties are also compara-

ble). For our experiments, we created these mapping axioms manually. For example, the

two predicates are comparable: citeseer:fullname and foaf:name3. They are from different

ontologies, but both represent person name. Ontology alignment [105, 106, 107], a well

studied topic in the Semantic Web, can help automatically determine predicate and class

comparability across multiple ontologies, which is out of the scope of this dissertation. In

Chapter 7, we will present a value-based approach for automatically determining predicate

comparability.

Furthermore, when determining the comparability of two paths, we only care about the

predicates in the paths but to ignore the intermediate nodes. The reason is that in two

paths, intermediate nodes are URIs and distinct URIs do not necessarily represent distinct

real world entities. Distinct URIs can actually represent two coreferent instances. Since

we do not have the complete coreference knowledge between URIs, it is hard to involve

intermediate nodes when determining path comparability. One possible solution is that we

adopt an iterative entity coreference algorithm on all instances of comparable classes in a

dataset and then take the coreference results of the current iteration into account in further

iterations to help better determine path comparability. However, this will require certain

level of system scalability because a dataset can have millions of instances.

3.3.3 Node Similarity

Given that two paths are comparable, if the two last nodes are two literal values, e.g., person

names or publication titles, then we adopt the JaroWinklerTFIDF [108] string matching

3FOAF stands for Friend of a Friend. More details are available at http://www.foaf-
project.org/.

71



algorithm to compute their similarity unless otherwise specified. In another situation, if the

two nodes are both URIs in the RDF graph, then we will simply check if they are identical.

The similarity score between two literals ranges from 0 to 1 while the score between any

pair of URIs will be either 0 (not match) or 1 (identical). If the URIs do not match, the

similarity is computed by further expanding those URIs as we presented in Section 3.1.

3.3.4 Comparing All Nodes in Paths

One design choice we made is to compute the path score between two comparable paths by

only comparing their end nodes. Another option is to take into account those intermediate

nodes when calculating path score as shown in Algorithm 3.

Algorithm 3 Compare All Nodes(Na, Nb), Na and Nb are the context of instances a and
b collected with Algorithm 1; returns the similarity between a and b

1. total score← 0, total weight← 0
2. for all paths m∈Na do
3. if ∃path n∈Nb, PathComparable(m,n) then
4. path weight← 0, path score← 0
5. for all paths n′∈{p|p ∈ Nb ∧ PathComparable(p,m)} do
6. score← 0, count← 0
7. for i <= depth(m) do
8. if m.node[i] is literal and n′.node[i] is literal then
9. score← score+ Sim(m.node[i], n′.node[i])

10. count← count+ 1
11. else if m.node[i] is URI and n′.node[i] is URI then
12. if m.node[i] = n′.node[i] then
13. score← score+ 1
14. count← count+ 1
15. if score

count > path score then
16. path score← score

count
17. n′ ← path with the highest score compared to m
18. if m.node[last] is literal then
19. path weight← (Wm +Wn′)/2
20. else if m.node[last] is URI and path score 6= 0 then
21. /* path n′ has at least one identical intermediate URI node with m */
22. path weight← (Wm +Wn′)/2
23. total score← total score+ path score ∗ path weight
24. total weight← total weight+ path weight
25. return total score

total weight

72



From line 5 to 16, we calculate the path score between two comparable paths as the

average of all matching scores between nodes at corresponding positions; and we pick the

maximum path score between path m of instance a and all its comparable paths of instance

b. Note, intermediate nodes must either be URIs or blank nodes. Blank nodes have a node

ID which is limited in scope to a serialization of a particular graph, i.e., a blank node named

nodeA in one RDF graph does not represent the same node as a node with the same name

in any other graph. Therefore, we do not compare two blank nodes or a blank node and a

URI but only compare two URIs or two literals from line 8 to 14. At line 20, if two paths

whose nodes are all URIs or blank nodes have a path score of 0, meaning none of their

nodes match, we do not update path weight. Because path weight is initialized to be zero

at line 4, total score and total weight will not be updated either at line 23 and 24. In this

case, we are not applying any penalty to a path that ends on a URI and doesn’t match any

of its comparable paths from the other instance.

The rationale to only consider end nodes (as presented in Algorithm 2) is that the in-

termediate nodes from two paths could be syntactically different but are actually coreferent

instances. So, if we apply penalties to mismatching intermediate nodes, it is possible for the

system to miss some true matches. One potential advantage of matching intermediate nodes

is that it may improve the system’s precision because it is possible that the middle nodes are

indeed different instances but the end nodes are coincidentally the same. We hypothesize

that the improvement on precision cannot compensate the sacrificed recall when considering

intermediate nodes and we will experimentally compare Algorithm 2 and Algorithm 3 in

Section 3.4.4.
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3.3.5 The Open World Problem

Another challenge that we face is that we cannot make a closed-world assumption, instead

we need to deal with open-world [109]. We cannot assume something we don’t know is false,

everything we don’t know is undefined. Within a Semantic Web dataset, some information

can be missing. Our RKB dataset is composed of several subsets of the complete RKB

dataset, such as ACM, IEEE, DBLP, CiteSeer, etc. Each of them, in the case of person

instances, only includes a certain portion of their information. For instance, these datasets

might only contain some of these person instances’ publications.

In our entity coreference algorithm, we try to relieve this Open World problem. First of

all, we do not apply penalties to mismatches on URIs. As shown in Algorithm 2, if the last

node of path m of instance a is a URI but it doesn’t match any last node of comparable

paths of instance b, we do not add any weight to total weight. These mismatched URIs are

expanded to get further literals and other URIs to determine the similarity.

Second, we do not apply any penalties on missing information. If there are no paths

of instance b that are comparable to path m of instance a, we do not apply any penalties.

The intuition behind our approach is that we compare every path present in the context

and apply appropriate penalties; in the meanwhile, mismatches that are potentially caused

by information incompleteness cannot simply be treated as real mismatches. We would like

to investigate more sophisticated solutions to this problem in future work.

3.4 Evaluation Results

In this section, we will evaluate the proposed EPWNG algorithm for detecting coreferent

ontology instances. We will first introduce our evaluation datasets and metrics and then
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present our evaluation results.

3.4.1 Evaluation Datasets and Metrics

Datasets. We evaluate our entity coreference algorithm on two RDF datasets: RKB4 [17]

and SWAT5. For RKB, we use eight subsets of it: ACM, DBLP, CiteSeer, EPrints, IEEE,

LAAS-CNRS, Newcastle and ECS. This collected dataset has 82 million triples (duplicates

are removed), 3,986,676 person instances and 2,664,788 publication instances. The SWAT

dataset consists of RDF data parsed from the downloaded XML files of CiteSeer and DBLP.

The converted RDF files are then parsed and stored into database, resulting in a total of 26

million triples. Within our SWAT dataset, there are 904,211 person instances and 1,532,758

publication instances.

Although the two datasets share some information, the main difference is that they use

different ontologies, so that different predicates are involved. Their coverage of publications

could also be different. Additionally, some information may be ignored from the original

XML files for the SWAT dataset during transformation. Note that all owl:sameAs state-

ments in both datasets are ignored while we collect the context for instances as described

in Section 3.1. They are only used for evaluating our results but not for facilitating our

entity coreference process in any sense.

We evaluate on four instance categories: RKB Person, RKB Publication, SWAT Person

and SWAT Publication. The groundtruth was provided as owl:sameAs statements that can

be crawled from the RKB CRS service and downloaded from the SWAT website as an RDF

dump respectively. Due to scalability issues, we randomly picked 1,579 RKB Person, 2102

RKB Publication, 1010 SWAT Person, and 1,378 SWAT Publication instances.

4http://www.rkbexplorer.com/data/
5http://swat.cse.lehigh.edu/resources/data/
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Metrics. Our algorithm does entity coreference on every pair of instances in the test

sets and stores results in the form of (instanceA, instanceB, score). In our evaluations, we

use the standard measures: precision, recall and F1-score as computed in Equations 3.16

and 3.18:

Precisiont =
|correctly detected pairs|
|totally detected pairs|

, (3.16)

Recallt =
|correctly detected pairs|
|true matches in test set|

(3.17)

F1-Scoret = 2 ∗ Precisiont ∗Recallt
Precisiont +Recallt

(3.18)

where t represents threshold in all three equations.

There are a few things to note about our evaluations. First of all, in our current

work, we evaluate our algorithm on different instance categories from two different datasets.

Groundtruth of the RKB dataset can be downloaded from their website. To verify the

soundness of the RKB groundtruth, we manually verified 300 coreferent pairs of person

instances and publication instances respectively, while there are 81,556 and 148,409 in

total for person and publication respectively in our collected RKB dataset. For the SWAT

dataset, we manually labeled the groundtruth.

Furthermore, because the owl:sameAs predicate is transitive, i.e., if A is coreferent

with B which is also coreferent with C, we will also have A and C are coreferent due to

transitivity. In order to give the best correct evaluation results, we materialized all the

coreferent pairs that can be achieved through reasoning on transitivity. Please note that

we do not materialize reflexivity and symmetry.

Finally, in order to guarantee the completeness of the RKB groundtruth, we adopted a
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lazy or passive approach. We run our entity coreference algorithm on the two RKB test sets,

and apply thresholds from 0.3 to 0.9 to evaluate the results based upon the groundtruth

provided by RKB. Then we pick the comparison system (to be formally presented in section

3.4.2) that obtains the lowest precision, find out all the pairs that are detected by this system

but are said to be not coreferent according to the groundtruth. For these wrongly detected

pairs, we manually check each of them to see if any pair should be coreferent. We rely on the

authors’ DBLP and real homepages to perform such checks. Through this lazy-verification

step, we were able to find 295 missing coreferent pairs for the RKB person test set. Mostly,

RKB misses a coreferent pair of person instances because different subsets of RKB share

little common publications for the two instances.

3.4.2 Comparison Systems

In order to show the effectiveness of our proposed entity coreference algorithm, we compare

our algorithm to comparison systems that are not equipped with all the features we have

presented. In our proposed system, we have the following features: expansion (E#) (#

represents the depth of expansion), discriminability (P, representing predicate based triple

discriminability), discount (D) which is implemented by using the factor. For example,

the comparison system E2-D says it expands to depth 2, doesn’t use triple discriminability

but uses the discount of each expanded triple. So, for E2-D, Equation 3.10 will change to

Equation 3.19:

Wpath =

depth(path)∏
i=1

Fi (3.19)

where path depth is 2. For system E2-P, it uses predicate discriminability in the way that

it propagates the discriminabilities of the triples along the expansion chain. Although such

propagations can be viewed as one type of discount, our real discounting is from the factors.
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So, for this system, the weight of a path is computed with Equation 3.20:

Wpath =

depth(path)∏
i=1

Pi (3.20)

where Pi is the predicate discriminability of a triple at depth i. For systems E1 and E2,

the weight for every path in the neighborhood graph is set to 1. Our proposed algorithm,

E2-P-D, then uses depth 2 expansion and adopts discounts and predicate based triple dis-

criminability to form path weight.

3.4.3 Evaluating Different Context Weighting Schemes

Figures 3.4(a) to 3.4(d) show the F1-scores of our algorithm on the RKB publication, RKB

person, SWAT publication and SWAT person datasets respectively. The x-axes are thresh-

olds and the y-axes are F1-scores. In this experiment, we adopted the JaroWinklerTFIDF

string matching algorithm developed by Cohen et al. [108].

From the F1-scores, we can see that our distance-based discounting entity coreference

algorithm, E2-P-D, achieves the best performance on all four datasets. On SWAT Person,

although E2-P-D doesn’t dominate the other systems for all thresholds, its best performance

is higher than that of the other comparison systems. The F1-scores that our algorithm

achieves for RKB publication, RKB person, SWAT publication and SWAT person are 94.4%,

90.6%, 91.0% and 93.8% at threshold 0.7, 0.7, 0.9 and 0.9 respectively.

System E1 is our baseline system in the sense that there is no discriminability included,

no discounts at all and that it only considers adjacent triples. Compared to E1, E2 finds

neighborhood graphs in a broader range. But without discounts and discriminability, it is

clearly worse than E1 for RKB publication and RKB person and SWAT person (for RKB

Person, the E1 and E1-P curves are nearly overlapping and are both dominating the E2
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Figure 3.4: F1-scores for RKB Publication, RKB Person, SWAT Publication and SWAT Person.
In each subfigure, the x-axis is the threshold and the y-axis is the F-score.

curve); for SWAT publication, although E2 has better results at thresholds 0.8 and 0.9, its

best F1-score is much worse than that of E1. Such comparison shows that broader contexts

can actually have negative impact if not appropriately managed.

By comparing E1-P to E1, it is not very clear that if only adding triple discriminability

on adjacent triples gives better results. For the two publication datasets, adding such dis-

criminability did lead to better results (except for threshold 0.9 and 0.5 for RKB publication

and SWAT publication respectively); however, for the other two datasets, these two systems

achieve very similar performance. Note that sometimes the curves of the two systems on

the two person datasets are not very clear because they are overlapping.
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In general, E2-P is better than E2 for all datasets, though they achieve similar results

for RKB person at thresholds 0.8 and 0.9. Different from the comparison between E1 and

E1-P, adding triple discriminability to broader contexts significantly improved system per-

formance. This shows the effectiveness of using a broader context with better management.

The differences between E2 and E2-D show that by only applying factor discounts can also

give us a significant improvement on all datasets. This verifies the effectiveness of discount-

ing. For SWAT publication, although E2-D and E2 have similar results at thresholds 0.3

and 0.9, the best F1-score of E2-D is much higher than that of E2.

Finally, our proposed E2-P-D algorithm is able to achieve the best F1-score for all

datasets. Although E2-P-D is not as good as some other comparison systems at low thresh-

olds, its performance improves as threshold rises, often topping out higher than others in

the study. E2-P-D dominates E2-D on RKB publication at all thresholds and on RKB

person except at threshold 0.9; also, on SWAT publication, E2-P-D is clearly better than

E2-D from thresholds 0.7 to 0.9. Again, this verifies the effectiveness of using predicate

discriminability. E2-P-D shows significant improvement over E2-P for the two publication

datasets (thresholds 0.5 to 0.9 for RKB publication and thresholds 0.4 to 0.9 for SWAT

publication); for the two person datasets, it is not significantly better than E2-P but is able

to be on top at high thresholds. Such results demonstrate the effectiveness of combining

predicate discriminability and the discounting factor.

3.4.4 End Nodes Only vs. All Nodes in Paths

In Sections 3.3.1 and 3.3.4, we discussed two alternatives of computing the similarity be-

tween two comparable paths: only matching end nodes or matching all nodes of two paths.

In this section, we experimentally compare these two alternatives on our four test sets as
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Table 3.1: Matching End Nodes vs. Matching All Nodes. We bold the higher scores that a system
achieves than the other for each threshold on a dataset and also underline the best
F1-scores for all thresholds for each dataset.

Dataset Metric System
Threshold

0.5 0.6 0.7 0.8 0.9

RKB Publication

Precision
End-Node 58.75 87.74 95.42 97.71 99.71
All-Node 64.46 89.68 96.41 98.44 99.41

Recall
End-Node 100 99.28 93.42 89.29 82.72
All-Node 99.58 95.63 88.28 68.06 30.02

F1-score
End-Node 74.02 93.15 94.41 93.31 90.42
All-Node 78.26 92.56 92.16 80.48 46.12

RKB Person

Precision
End-Node 34.09 67.18 88.40 97.89 99.21
All-Node 43.18 75.76 89.39 98.06 97.31

Recall
End-Node 98.32 95.88 92.94 81.92 63.75
All-Node 96.38 91.76 78.64 59.46 21.28

F1-score
End-Node 50.63 79.00 90.61 89.19 77.62
All-Node 59.64 83.00 83.67 74.03 34.92

SWAT Publication

Precision
End-Node 33.16 41.72 49.51 63.79 84.13
All-Node 34.67 44.35 55.23 69.15 80.72

Recall
End-Node 100 100 99.90 99.69 99.07
All-Node 100 99.48 97.09 81.00 42.16

F1-score
End-Node 49.81 58.88 66.21 77.80 90.99
All-Node 51.48 61.35 70.41 74.61 55.39

SWAT Person

Precision
End-Node 13.74 16.93 39.27 83.64 91.09
All-Node 13.82 17.75 44.69 85.88 92.98

Recall
End-Node 97.85 97.42 97.42 96.57 96.57
All-Node 97.42 97.42 97.42 96.57 96.57

F1-score
End-Node 24.10 28.84 55.98 89.64 93.75
All-Node 24.21 30.03 61.27 90.91 94.74

shown in Table 3.1.

In general, only matching end nodes gives better recall while matching all nodes in paths

leads to better precision. For RKB publication, RKB person and SWAT publication, the

all-node version algorithm has better F1-scores at low thresholds due to its higher precision

and comparably good recall; however, for higher thresholds, the end-node version algorithm

wins out because of its less affected recall and improved precision. The end-node version

algorithm has the best F1-scores for these three datasets. For SWAT person, all-node has

the best F1-score because it has better precision than end-node and its recall doesn’t get
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affected significantly when applying high thresholds. Although end-node is not as good as

all-node on SWAT person, only about 1% difference in their best F1-scores was observed;

the best F1-scores of end-node are 1.85%, 6.94% and 16.38% higher than those of all-node

on RKB publication, RKB person and SWAT publication respectively, still showing its

advantage over the other alternative.

3.4.5 Comparing to State-of-the-art Entity Coreference Systems

To further demonstrate the capability of our proposed entity coreference algorithm, we

compare E2-P-D to other systems that participated the OAEI2010 (Ontology Alignment

Evaluation Initiative 2010) Campaign6 [50] on the Person-Restaurant (PR) benchmark de-

signed for ontology instance matching. We compare to RiMOM [35], ObjectCoref [34],

LN2R [76], CODI [77], and ASMOV/ASMOV D [78] on the three datasets of PR: Person1,

Person2 and Restaurant. Person1 and Person2 are two synthetic datasets where coreferent

records are generated by modifying the original records; Restaurant is a real-world dataset,

matching instances describing restaurants from Fodors (331 instances) to Zagat (533 in-

stances) with 112 duplicates7. Furthermore, we compare to the entity coreference system

proposed by Dey et. al. [36] on a synthetic census dataset generated with FEBRL [110].

We compare to these systems by referencing their published results.

In Table 3.2, on Person1 and Person2, our system achieves the best F1-score on both

datasets. Although RiMOM, ObjectCoref, LN2R and ASMOV also achieve good results

on Person1, their performances drop significantly on Person2. This is due to the difference

between how coreferent instances were generated in these two datasets. For Person1, each

original instance has at most one coreferent instance with a maximum of 1 modification per

6http://oaei.ontologymatching.org/2010/
7For full details of these datasets, please refer to the OAEI2010 report [50].
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Table 3.2: Comparing to State-of-the-Art Entity Coreference Systems

Dataset System Precision(%) Recall(%) F1(%)

Person1

E2-P-D 100 100 100
RiMOM [35] 100 100 100
ObjectCoref [74] 100 99.8 99.9
LN2R [76] 100 100 100
CODI [77] 87 96 91
ASMOV D [78] 100 76.6 87
ASMOV [78] 100 100 100

Person2

E2-P-D 98.52 99.75 99.13
RiMOM [35] 95.2 99 97.1
ObjectCoref [74] 100 90 94.7
LN2R [76] 99.4 88.25 93
CODI [77] 83 22 36
ASMOV D [78] 98.2 13.5 24
ASMOV [78] 70.1 23.5 35

Restaurant

E2-P-D 74.58 98.88 85.02
RiMOM [35] 86 76.8 81.1
ObjectCoref [74] 58 100 73
LN2R [76] 75.67 75 75
CODI [77] 71 72 72
ASMOV D [78] 69.6 69.6 69.6
ASMOV [78] 69.6 69.6 69.6

Census
E2-P-D 100 99.10 99.55
Dey et. al. [36] 99 98 98.50

coreferent instance and a maximum of 1 modification per attribute of the original instance.

Person 2 is created similarly but with a maximum of 3 modifications per attribute, and

a maximum of 10 modifications per instance. On the Restaurant dataset, both RiMOM

and LN2R achieve better precision than our algorithm, but their recall is much lower than

ours. E2-P-D has better precision than ObjectCoref while is only slightly worse on recall.

Although E2-P-D is not the best in either precision or recall, it has significantly better

F1-score than the other systems. Finally, on the census dataset, our algorithm achieves

better performance than that of Dey et. al. on all three metrics.
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3.4.6 Robustness of Similarity Computations

In our system, we heavily rely on string matching to obtain the similarity between each pair

of paths and thus the similarity between two instances. In the results presented in Section

3.4.3, we adopted the JaroWinklerTFIDF string matching algorithm from the secondstring

package [108] and we achieved good results. However, string matching algorithms should

not be the dominating factor in our system. In this section, we show that our proposed

system, E2-P-D, is robust in that it is able to achieve the best performance regardless of

the chosen string matching algorithm. Figures 3.5(a) to 3.6(d) show the F1-scores for RKB

publication, RKB person, SWAT publication and SWAT person datasets by adopting Edit

distance [111] and Jaccard [112] similarity measure respectively.

We can see that our system is not subject to different string matching algorithms. It is

true that the achieved F1-scores may vary, the shape of the curves may drift left or right

and some other systems are able to achieve equally good results. However, E2-P-D was able

to obtain the best F1-scores for all datasets with Edit distance and Jaccard similarity while

none of the other comparison systems was always able to achieve this.

3.4.7 System Scalability

In this section, we examine the scalability of our proposed system (E2-P-D). For all exper-

iments in this section, we use Jaccard similarity for string matching. First of all, Figure

3.7(a) shows the runtime by applying our algorithm to 2,000 to 20,000 instances. The y-axis

represents runtime in seconds and we use a logarithmic scale with base 10. From the results

of RKB person, RKB publication, SWAT person and SWAT publication, we can see that

E2-P-D doesn’t scale well since essentially it conducts an exhaustive pairwise comparison

on all pairs of instances in a given dataset. Considering applying this algorithm to even
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Figure 3.5: F1-Scores by adopting the Edit Distance string matching algorithm. In each subfigure,
the x-axis is the threshold and the y-axis is the F-score.

larger datasets, techniques that could help to scale the coreference process are desperately

needed.

In this scalability test, we parallelized our algorithm on 5 threads. Suppose we have N

instances, the number of needed comparisons will be M = N∗(N−1)
2 . We equally divide this

M comparisons to the five threads. We put the context information of the N instances into

memory and all threads fetch the context information from this in-memory data structure.

Figure 3.7(b) shows the speedup factor by distributing the M comparisons to one to eight

threads. The speedup factor is computed as Speedup Factork = T1
Tk

, where k is the number

of threads and Tk is the runtime by deploying k threads. Except for SWAT Person, the
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Figure 3.6: F1-Scores by adopting the Jaccard Distance string matching algorithm. In each sub-
figure, the x-axis is the threshold and the y-axis is the F-score.

100 

1000 

10000 

100000 

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 

R
u

n
ti

m
e
 (

s)
 

RKB Person RKB Publication 

SWAT Person SWAT Publication 

(a) System Runtime

!"

!#!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!" $" %" &" '" (" )" *"

,
-
.
.
/
0
-
"1
2
3
45
6"

7089.6"5:";<6.2/="

>?@"A.6=5B" >?@"A09CD32E5B" ,FG;"A.6=5B" ,FG;"A09CD32E5B"

(b) Speedup Factor with Different Number
of Threads

Figure 3.7: System Scalability

86



other three datasets didn’t get significant improvement on this speedup factor by switching

from 4 to 5 threads. With more than 5 threads, all datasets continue to achieve higher

speedup factors but with diminishing returns.

3.4.8 Discussion

The results show certain advantages of our approach; however, there are a few points to

discuss. First, as we described in Section 3.3.5, we are facing the Open World problem.

Different subsets of RKB or SWAT may not have complete information for an ontology

instance. So, two person instances from ACM RKB and DBLP RKB may be filtered out

by applying a high threshold because both of their contexts lack some relevant information.

One possible solution to this problem is to merge the contexts of two instances when we

have a very high similarity score for them. The intuition behind such merging is to make the

context more comprehensive as the algorithm progresses. By employing an iterative entity

coreference algorithm, we continue to compare the merged contexts, and therefore could po-

tentially reduce the chance to miss a true match caused by information incompleteness from

heterogeneous data sources. However we need to be very careful about doing such merges,

since it is easy to add noise to the data if the standard for merging is not appropriately set.

For example, two person instances (a and b) with names James Smith and John Smith

from the same institution co-authored a paper. In this case, the similarity between instances

a and b could be high because they share the same last name, work for the same institu-

tion and furthermore have the same publication whose title, publication date, venue, etc.

information might be available. If we decide to merge the contexts of these two instances to

make a combined instance c, the context of c actually contains information of two distinct

instances and thus is noisy. In the next iteration, when we compute the similarity between
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c and other instances, instances that shouldn’t have been merged if individually compared

to a and b could be merged due to some matchings provided by the noisy context of c. Iter-

atively, we could then have contexts that are more and more noisy, which could ultimately

affect precision.

Another problem is that, currently, we do not apply penalties for URI mismatches or

missing information. This would probably hurt the precision of our system. Syntactically

distinct URIs could actually represent distinct real world entities and appropriately penalize

instance pairs with distinct URIs in their context could potentially help the system to better

differentiate distinct entities. However, applying penalties in such scenarios may cause us

to have lower recall. So it is always the problem of keeping a balance between precision and

recall. Our choice is not to sacrifice recall while still having a good control on precision by

exploiting appropriate weights and context information. One possible way to apply penalties

on those situations might be to employ some iterative entity coreference algorithm. At

each pass, we record the instance pairs that are clearly not coreferent or clearly coreferent

(depending on how the algorithm is designed) and integrate the intermediate results into

further iterations until we are only gaining new results under some pre-defined level.
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Chapter 4

Context Pruning for Speeding Up

Pairwise Entity Coreference

In Chapter 3, we introduced the EPWNG algorithm for detecting the coreference rela-

tionships between ontology instances and have shown that it is able to outperform several

state-of-the-art entity coreference algorithms on small-scale benchmark datasets of different

domains. However, the biggest drawback of this algorithm is that it will not scale well to

large-scale datasets.

If we assume that multiple heterogeneous sources contain n instances in total, and

that the context graphs have branching factor b and depth d, then the time complexity

of EPWNG is O(n2b2d), making it prohibitively expensive for dealing with large contexts

and datasets. On one hand, EPWNG compares every pair of instances in a dataset thus

making the entity coreference process for large datasets prohibitively expensive. So, one

critical question is: Can we prune instance pairs that are unlikely to be coreferent

to reduce the overall complexity? On the other hand, for a pair of instances, EPWNG

compares all pairs of their comparable paths, therefore making it very time-consuming for
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handling large context. So, another interesting question here is: Can we only consider

the context that could potentially make a significant contribution to the final

similarity score between two instances to further speed up the process?

In the rest of this chapter, I will introduce a context pruning technique to reduce the

impact of the size of the context, which enables EPWNG to run 30 to 70 times faster.

4.1 Algorithm Design

As described in Section 3.3, we collect a set of paths for an instance. To determine if two

instances (x and y from a given RDF graph G) are coreferent, for each path (Path m)

of x, the entity coreference algorithm measures m’s similarity to all its comparable paths

from instance y and picks the maximum to be part of the final similarity measure between

the two instances; this process is then repeated for all paths of instance x. Our EPWNG

algorithm can be simplified to be Equation 4.1:

Sim(x, y) =
Σm∈paths(pwm ∗ psm)

Σm∈pathspwm
(4.1)

where paths denotes the paths of instance x; m is one of such paths; psm and pwm are

the maximum path similarity of path m to its comparable paths from instance y and the

corresponding path weight respectively.

In reality, although an instance may have a large number of paths in its context, only

those that could potentially make a significant contribution to the final similarity measure

should be considered. Based upon this idea, Equation 4.1 is changed to Equation 4.2:

Sim(a, b) =
Σi∈paths′(pwi ∗ psi) + Σj∈paths′′(pwj ∗ estj)

Σi∈paths′pwi + Σj∈paths′′pwj
(4.2)
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where i is one of the paths of instance a that have already been considered by the algorithm;

j is one of the paths that have not been covered; estj and pwj are the estimated similarity

(the potential contribution) of path j to its comparable paths from instance b and its path

weight respectively; the combination of paths′ and paths′′ form the entire context of a.

The intuition is that an entity coreference algorithm could safely ignore the rest of the

context of an instance when it reaches a boundary. This boundary is a place where the

contribution of the remaining context cannot over turn the current decision made based

upon the already considered context. In other words, with the estimated path similarity

estj for the remaining paths of instance a, if the similarity between the two instances cannot

be greater than a pre-defined threshold, the algorithm should stop at the current path to

save computational cost, i.e., it prunes the rest of the context.

Algorithm 4 ComparePruning(samplingOnly,Na, Nb), Na and Nb are the context col-
lected for instances a and b respectively; samplingOnly indicates if the algorithm will use
the utility function; returns the similarity between a and b

1. score← 0, weight← 0
2. for all paths m∈Na do
3. if Continue(samplingOnly, score, weight,Na, Pos(m)) then
4. if ∃path n∈Nb, PtCmp(m,n) then
5. n← Comparison(m,Nb);
6. if n 6= null then
7. ps← Sim(End(m), End(n))
8. pw ← (Wm +Wn)/2
9. score← score+ ps ∗ pw

10. weight← weight+ pw
11. else
12. return 0
13. return total score

total weight

Algorithm 4 shows the pseudo code of the modified algorithm. The key modification

is at line 3. The algorithm Continue determines if ComparePruning should continue to

process the next path in the context by estimating the similarity between a and b based

on the potential similarity score of the end node of each remaining path in instance a’s
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context. In the Continue algorithm, Utility denotes a utility function to determine if it

is worth performing such an estimation (line 5-14): 1) if we do not want to use the utility

function (i.e., samplingOnly is true), we will directly go to line 5 to perform an estimation;

2) if we use the utility function, we calculate the utility of performing an estimation (u).

If this utility is less than 0 (u < 0), we will return true to go ahead processing the next

path; otherwise, we perform an estimation. We shall present the details of the Continue

algorithm in the rest of this section.

4.2 End Node Similarity Estimation with Random Sampling

Algorithm 5 presents the details of the Continue function adopted in Algorithm 4. One

problem here is in what ordering should the algorithm consider the paths of an instance.

As discussed in Section 3.2, each path has a path weight that is calculated according to the

discriminability and the discounting factor of its comprising triples; therefore one approach

is to prioritize the paths based upon their weight, i.e., paths with higher weight will be

considered first. A perfect match on high-weight paths indicates that the algorithm should

continue to process the remaining context; while a mismatch on high-weight paths could

help the algorithm to stop at appropriate places for non-coreferent instance pairs before

wasting more efforts.

Here, score and weight are the sum of the end node similarity and their corresponding

path weight. They represent the similarity (current) between two instances based upon

the already considered context. When calculating the potential similarity score between

the two instances, we only consider the remaining paths whose estimated node similarity

(m′.est) is no less than current (line 7) since paths whose estimated end node similarity is

smaller than current will only lower the final similarity measure.
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Algorithm 5 Continue(samplingOnly, score, weight,Na, indexm), samplingOnly indi-
cates if the algorithm will use the utility function; score and weight are the sum of the
end node similarity and their corresponding weight of the already considered paths; Na is
the context of instance a; indexm is the index of path m; returns a boolean value

1. if samplingOnly is false then
2. u← Utility(indexm, |Na|)
3. if u < 0 then
4. return true
5. current← score

weight

6. for all paths m′∈Na do
7. m′.est← the estimated end node similarity for path m′

8. if m′ has not been considered and m′.est ≥ current then
9. score← score+m′.est ∗m′.weight

10. weight← weight+m′.weight
11. if score

weight > θ then
12. return true
13. else
14. return false

Our entity coreference algorithm (ComparePruning) computes coreference relation-

ships by measuring the similarity between end nodes of two paths. So, one key factor to

apply our pruning technique is to appropriately estimate the similarity that the last node

of a path could potentially have with that of its comparable paths of another instance (est

in Equation 4.2), i.e., the potential contribution of each path. The higher similarity that a

path has, the more contribution it could make to the final score between two instances.

4.2.1 Estimating URI Path Contribution

Since our algorithm only checks if two URIs are identical, Equation 4.3 is used to estimate

URI end node similarity for an object value of a set of comparable properties:

est(G,P, obj) =
{t|t =< s, p, obj > ∧ t ∈ G}
{t|t =< s, p, x > ∧ t ∈ G}

, p ∈ P (4.3)

where G is an RDF graph; P is a set of comparable object properties; obj is a specific object

for any property in P ; t is a triple and x represents any arbitrary object value of properties
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in P . It represents how likely one URI node would meet an identical node in RDF graph

G and we calculate it as the estimated similarity for each specific object of property p ∈ P .

Similarly, we could compute the estimated similarity for the subject values of all object

properties.

4.2.2 Estimating Literal Path Contribution

For literal paths, we could perform such estimation for each specific object value of every

predicate. Intuitively, for each object value o of predicate pi, we calculate its similarity

scores to all other object values of the same predicate, draw the distribution of these scores,

and choose the most likely score based upon the distribution.

However, considering applying this technique to large datasets where a predicate could

be associated with tens of thousands of or even millions of distinct literal values, this naive

approach could be extremely expensive. One alternative is that for each object value of

predicate pi, we only compare it to a subset of pi’s object values. This could speed up

the processing for each particular object but it will still be expensive when a predicate

has a large number of distinct object values. Essentially, this intuitive approach does the

estimation for every single distinct value per predicate.

In our approach, to estimate for literal nodes, we randomly select a certain number

(ε) of literal values of a property, conduct a pairwise comparison among all the selected

literals, and finally get the estimated similarity score as shown in Equation 4.4. Here, P

est(G,P ) = arg min
score

|{(o1, o2)|o1, o2 ∈ Subset(G,P ) ∧ Sim(o1, o2) ≤ score}|
|{(o1, o2)|o1, o2 ∈ Subset(G,P )}|

> γ (4.4)

is a set of comparable datatype properties; Subset(G,P ) randomly selects some number of

literal values of P , such as o1 and o2 whose similarity is computed with the function Sim;
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γ is a percentage value that controls how many pairwise comparisons should be covered in

order to give the estimated node similarity. The intuition here is to find a sufficiently high

similarity score as the potential similarity (contribution) between two literal values of P in

order to reduce the chance of missing too many true matches. We do not want to set γ

too high, since that way we are actually overestimating the potential contribution of paths

ending on predicates in P . To summarize, the estimation of literal paths is calculated with

respect to each individual property, not for every distinct property value.

One concrete example is given in Figure 4.1 about literal path similarity estimation

with Equation 4.4 for the full name predicate in the RKB Person dataset. In this example,
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Figure 4.1: Percentage based Path Similarity Estimation

1,000 object values of the full name predicate were randomly selected, and their pairwise

similarity scores are discretized to float values from 0.1 to 1 with an interval of 0.1. Figure

4.1 shows the estimated score (x-axis) by considering covering sufficient pairwise comparison

scores (y-axis). Looking at the similarity scores from left to right, when reaching 0.5, more

than 99% of the pairwise scores have been covered; thus, 0.5 could be used as the estimated

contribution for paths that end on the full name predicate.
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4.3 Utility Based Decision Making

As described in Algorithm 4, before we actually process each path in the context, we perform

an estimation (line 3, samplingOnly being true) such that if the potential similarity between

two instances would be below a threshold, we just stop considering the rest of the context.

However, performing estimations has a computational cost in the entity coreference process.

Suppose the algorithm stops after considering k paths, then k estimations were actually

performed according to the sampling based technique. However, if the algorithm knew

that it would stop after considering k paths, optimally, it should have only performed one

estimation at the kth path. To maximally avoid those unnecessary estimations, we ask:

Can we perform estimations only when needed?

4.3.1 Utility Function Design

Based upon the discussion above, in order to further reduce the overall complexity of the

entity coreference process, we define a utility function as shown in Figure 4.2. Suppose we

EST 

¬EST 

quit 

real  

computation 

pd 

1-pd 
d/n 

Rewards 

Cost(n-d) - Ce 

−Ce 

real  

computation 

1 
0 

Decision  
Node 

Chance  
Node 

Figure 4.2: Utility Function

reach a decision node d/n (there are n paths in total and the algorithm is now at the dth
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path), we would then need to decide whether we want to perform an estimation (EST vs.

¬EST ). The general decision making process is described as follows:

• If we choose not to do estimation (¬EST ), then the only choice is to perform a real

computation. For a path m of instance a, the algorithm will find all paths comparable

to m from the context of instance b and compute the similarity by following line 4 to

10 in Algorithm 4. We will not have any rewards by going this route;

• If we perform an estimation at node d/n (EST ), then there could be two different

outcomes as follows:

– One possibility is that the algorithm will quit (with probability pd) because it

estimates that this pair of instances are not similar to a pre-defined level (their

estimated similarity score is lower than θ in Algorithm 5). In this case, we have

rewards Cost(n− d), where n is the total number of paths of instance a, d is the

current path number, Cost(n − d) is the cost of performing real computations

for the rest n− d paths, i.e., Cost(n− d) = (n− d) ∗ Cr with Cr being the cost

of doing a real computation for a path. Here, we also spent some time (Ce) for

an estimation;

– If the algorithm continues based upon the estimation results, then the rewards

will be −Ce because there is no gain but an estimation has been performed.

Summarizing all these possibilities, the utilities for actions EST and ¬EST are formally

defined in Equations 4.5 and 4.6 respectively:

EU(EST ) = pd ∗ (Cost(n− d)− Ce) + (1− pd) ∗ (−Ce) (4.5)
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EU(¬EST ) = 0 (4.6)

where pd is the probability that the algorithm stops at the dth path. We perform an

estimation when the marginal utility given in Equation 4.7 is a positive value (line 2 of

Algorithm 5) otherwise a real computation is executed.

Utility = EU(EST )− EU(¬EST ) =

pd ∗ (n− d) ∗ Cr − pd ∗ Ce − Ce + pd ∗ Ce =

pd ∗ (n− d) ∗ Cr − Ce (4.7)

4.3.2 Parameter Value Estimation

To estimate the parameters for each category of instances, we randomly select a small num-

ber of instances (α) for each category and run the sampling based algorithm on them. Then,

we compute the average time for performing an estimation (Ce) and a real computation (Cr)

respectively. We adopt Equation 4.8 to estimate the probability that the algorithm stops

at the dth path (pd):

pd =
|The algorithm stopped at the dth path|
|The algorithm passed d paths|

(4.8)

One potential issue is that the estimated pd may not be accurate when d is large. Typically,

we would expect the algorithm to stop far before processing all the paths; therefore, for

large d values, there may not be enough samples to generate convincing probabilities.
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4.4 Evaluation

In this section, we evaluate our sampling and utility function based pruning methods. We

first introduce our evaluation datasets and metrics and then present the evaluation results.

4.4.1 Evaluation Datasets, Metrics and Methodology

Datasets and Metrics. We evaluate our pruning techniques on two RDF datasets: RKB

[17] and SWAT1, that were adopted in the previous chapter (Section 3.4.1). In order to

examine how the system will perform by applying our pruning techniques, we compare on

larger testing sets. We randomly selected 100K instances for each of the three instance

categories: RKB Person, RKB Publication and SWAT Person. We measure the precision,

recall, F1-score and runtime for our proposed algorithm on the three testing sets.

Evaluation Methodology and Comparison Systems. We compare the performance

of 3 systems: EPWNG [16], the sampling based algorithm (Sampling) and the system that

combines sampling and the utility function (Utility). We report a system’s best F1-Score

from threshold 0.3-0.9. We split each 100K dataset into 10 non-overlapping and equal-sized

subsets, run all algorithms on the same input and report the average. We also test the

statistical significance on the results of the 10 subsets from two systems via a two-tailed

t-test. On average, there are 6,096, 4,743 and 684 coreferent pairs for each subset of RKB

Person, RKB Publication and SWAT Person respectively.

1http://swat.cse.lehigh.edu/resources/data/
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4.4.2 Parameter Settings

We have the following parameters in our system: γ (Equation 4.4) is the percentage of

pairwise similarities to be covered to estimate literal node similarity; θ (Algorithm 5) de-

termines if an instance pair is still possible to be coreferent; ε is the number of literal values

selected for literal node similarity estimation; and α is the number of instances to be used

for estimating the parameters in our utility function. We set γ, θ, ε and α to be 0.95, 0.2,

1,000 and 200 respectively and use the same values for all experiments. It took 110 and 78

seconds to estimate literal end node similarity for the RKB dataset and the SWAT dataset

respectively.

4.4.3 Entity Coreference Results with Sampling and Utility Function

based Pruning Techniques

Table 4.1 shows the evaluation results by applying the three different entity coreference

algorithms on the ten subsets of the three 100K subsets. We also compare to a baseline

where we simply choose the top β% most disambiguating context.

With our proposed pruning techniques, both Sampling and Utility run much faster than

EPWNG. Particularly, with the utility function, the system Utility was able to achieve

even more runtime savings than Sampling. On the other hand, while successfully scaling

the EPWNG algorithm, both Sampling and Utility still maintain comparable F1-scores to

that of EPWNG on all datasets. Interestingly, they both achieve even higher F1-scores than

EPWNG on RKB Person. The improvements here come from higher precision since the

pruning techniques can help to remove some paths where non-coreferent instances happen

to have similar values (e.g., two distinct person instances could have identical date for their

publications). Although the F1-score of Sampling and Utility is slightly lower than that of
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Table 4.1: Entity Coreference Results. Precision and Recall represent precision and recall respec-
tively; F1 is the F1-score for Precision and Recall; Baseline(β%) means only using top
β% weighted paths

Dataset System Precision Recall F1 Total T ime (s)

RKB Person

EPWNG 93.04 90.93 91.96 6,296.91
Baseline (5%) 94.84 88.82 91.72 182.96
Baseline (10%) 94.18 89.4 91.72 304.66
Baseline (20%) 93.82 89.18 91.43 1143.13
Sampling 94.22 90.41 92.27 246.26
Utility 94.22 90.45 92.29 215.50

RKB Publication

EPWNG 99.78 99.37 99.58 63200.71
Baseline (5%) 99.78 99.28 99.53 760.90
Baseline (10%) 99.8 99.44 99.62 1577.50
Sampling 99.45 99.00 99.22 921.74
Utility 99.82 99.30 99.56 828.56

SWAT Person

EPWNG 99.45 90.93 94.99 16968.00
Baseline (5%) 99.37 90.93 94.95 286.64
Baseline (10%) 99.35 90.94 94.96 892.06
Baseline (20%) 99.29 90.96 94.93 3,911.65
Sampling 99.45 90.93 94.99 307.42
Utility 99.45 90.93 94.99 275.17

EPWNG on RKB Publication, a statistical test on the F1-scores shows that the difference

between EPWNG and Sampling/Utility on RKB Publication is not significant with P

values of 0.3240 and 0.3945 respectively.

Compared to the baseline, Utility achieves better F1-scores on both person datasets,

though it is not as good as the baseline on RKB Publication. On RKB Person, when

β=5%, the baseline was able to finish faster than Utility but with lower coreference F1-

score. When adopting higher β values, the baseline was overwhelmed by the low-weighted

context information and thus was not able to continue to achieve even higher F1-score; in the

meantime, as it considers more context, it needed much long runtime to finish than Utility.

On both RKB Publication and SWAT Person, the baseline (β=5%) achieves a comparable

or even slightly better runtime than Utility with minor difference in F1-score. One possible

reason could be that these two datasets are not as ambiguous as RKB person; thus simply
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cutting off those redundant paths by setting appropriate thresholds could greatly speed up

the process while still achieving good F1-scores.

Although we see significant speedup by applying our proposed pruning techniques, prob-

lems still exist. The most critical issue is still about scalability. Extrapolating from the

runtime on 10K instances, it will take around 36 hours to finish processing one million

instances. Considering the fact that we already have more than 100 million instances in

the BTC dataset, the current system is not sufficiently efficient. To further improve the

scalability of our entity coreference system, we will propose two other techniques that can

help us to achieve toward the goal of handing really large-scale datasets.
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Chapter 5

Accuracy vs. Speed: Scalable

Entity Coreference with

On-the-Fly Candidate Selection

The biggest problem of the previous algorithms is that they perform an exhaustive pairwise

comparison for every pair of instances, although some pruning techniques were applied

to the process. However, in a large-scale dataset with millions of instances, it would be

nearly impossible to perform pairwise comparison for every pair of instances in the dataset.

Computing the similarity of two un-coreferent instances is a waste of computing effort

without contributing anything to the final coreference results. To further improve the

scalability of our entity coreference system, we propose an on-the-fly candidate selection

algorithm to reduce the impact of the number of instances in a dataset. Candidate selection

refers to the process of selecting pairs of instances that could be coreferent, and then more

expensive entity coreference algorithms (e.g., EPWNG) will only be applied to the selected

pairs to save the overall computational costs. This candidate selection technique is also
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frequently referred to as Blocking in the database research field [43, 40, 41].

In this chapter, we describe in detail a pruning-based algorithm for reducing the com-

plexity of entity coreference within a dataset itself. Here, a “dataset” may contain compara-

ble instances from multiple heterogeneous sources. For example, different datasets may use

different terms to define the “Researcher” class and ontology instances of all such classes

are comparable. First, we design an on-the-fly candidate selection technique to reduce

the number of instance pairs to be computed. During the entity coreference process, each

instance is compared against other instances; and we hypothesize that two coreferent in-

stances should have similar matching histories, i.e., they should be similar to a sufficiently

common set of other instances. We further propose a sigmoid function based thresholding

method to automatically adjust the threshold on such history similarity in order to gain a

good balance between runtime and F1-score. To speed up the computation for a single pair

of instances, we evaluate the potential contribution of their context and only consider the

context that is likely to make a significant contribution to their final similarity measure.

By comparing to 9 state-of-the-art systems on three Semantic Web datasets, we show that

our algorithm runs 16 to 22 times faster with comparably good F1-scores. A scalability test

shows that the runtime difference becomes even more substantial as we increase the size of

the datasets.

5.1 Overview of the On-the-Fly Candidate Selection Algo-

rithm

Algorithm 6 presents the pseudo-code of our proposed pruning-based entity coreference

algorithm P-EPWNG. The proposed candidate selection algorithm consists of the following
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primary components and I will detail each individual component in the rest of this section:

• Share A Token Cosine: This step is used to filter instance pairs that do not even

share a single token and the cosine similarity of their most disambiguating context is

below a pre-defined threshold;

• Computing the similarity between the k% most disambiguating context of a pair of

instances: This step determines if one instance should be added to the history of

another;

• EPWNG: We finally adopt the previously discussed EPWNG algorithm to determine

the final similarity score between two instances with their full context.

At line 1 of Algorithm 6, we adopt a simple yet effective filtering method, i.e., we check if

two instances share a single token in the literals of their top k% most disambiguating context,

and if the cosine similarity of such instances’ top k% context is above a threshold δ. First,

two instances cannot be coreferent if they do not share at least one common word in their

context; also, the cosine similarity is used to better handle contexts with many tokens. For

example, for publication instances, their titles are generally very disambiguating and thus

included in the top k% context; however, only sharing a single token does not necessarily

indicate that they could be coreferent in many cases.

From line 3 to 10, we propose an on-the-fly candidate selection technique based upon

instances’ matching histories to effectively prune out instance pairs that are not likely to be

coreferent. Consider that during the entity coreference process, an instance is compared to

many other instances; the results of these prior comparisons could be useful in determining

whether two instances might be coreferent. At any point in time, each instance should have

a set of other instances that it is somewhat similar to. We define a function H(a) to denote
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Algorithm 6 P-EPWNG(Na, Nb, H(a), H(b)), Na and Nb are the context for instances a
and b; H(a) and H(b) are their histories; returns their similarity

1. if Share A Token(Na, Nb, k) = false then
2. return 0;
3. if HSim(H(a), H(b)) ≤ Thresholding(a) then
4. return 0;
5. else
6. sim k ← EPWNG(kdisc(Na, k), kdisc(Nb, k))
7. if sim k ≤ θ then
8. return 0;
9. else

10. H(b)← H(b) ∪ {a}
11. score← 0, weight← 0, scurr ← 0
12. context signif ← γ
13. for all paths m∈Na do
14. n← Compare(m,Nb);
15. if n 6= null then
16. ps← Sim(End(m), End(n))
17. pw ← (Wm +Wn)/2
18. sold ← scurr
19. score← score+ ps ∗ pw
20. weight← weight+ pw
21. scurr ← score

weight
22. context signif ← context signif − Eval(sold, scurr)
23. if context signif = 0 then
24. return scurr
25. return score

weight

the set of similar instances of instance a, i.e., the matching history. We hypothesize that two

coreferent instances should share a sufficient amount of common instances in their histories.

Therefore, the general idea behind our on-the-fly candidate selection technique is that before

we actually compute the similarity for instances a and b, we adopt a lightweight method

to examine if their histories are similar enough, i.e., if HSim(H(a), H(b)) is above some

threshold (line 3). Instead of utilizing a fixed threshold on HSim, we propose a sigmoid

function based thresholding method that gradually increases the threshold at runtime until

an upper bound is reached, since there is very little history to compare at the beginning.

HSim and the thresholding method are further presented in Section 5.2.
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In the next step, from line 6 to 10, after an instance pair passes the history check, we

should then apply a more expensive method to measure their similarity, which can also

be used to determine if we should add one instance to the history of another. In our

algorithm, at line 6, we make this decision by computing two instances’ similarity by using

the EPWNG algorithm only with their top k% most disambiguating context (as returned

by kdisc(Na, k)). Passing the history check does not necessarily mean the two instances are

coreferent and thus it might not make sense to use full context.

Finally, we propose a context pruning technique inspired by the idea of quiescence

search in game playing. The basic idea is that more time should be spent refining heuristic

evaluations when there appear to be significant fluctuations in the value. In this work,

we define an evaluation function to estimate if the remaining context would still make a

significant contribution to the final similarity score of two instances. At line 12, we initialize

context signif (context significance level) with a positive integer γ that can be interpreted

as the maximum times that we allow a new path to provide only a small contribution to

the final similarity score. Then, at line 22, an evaluation function Eval is used to check the

difference between scurr and sold, i.e., if considering one more path still makes significant

changes to the similarity score of two instances. We prune the rest of the context when

context signif reduces to 0. Eval is further discussed in Section 5.3.
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5.2 Measuring Instance Matching History Similarity with

Sigmoid Function based Thresholding Method

5.2.1 Measuring the Similarity between Instances’ Matching Histories

As shown in Algorithm 6, we compute the similarity (HSim, line 3) between the matching

histories of two instances. In our approach, we adopt a modified version of the well-utilized

Jaccard similarity measure [112] as defined in Equation 5.1:

HSim(H(a), H(b))=


+∞, H(a)=∅ or H(b)=∅ (5.1a)

|H(a) ∩H(b)|
|H(a) ∪H(b)|

, otherwise (5.1b)

where H(a) represents the matching history of instance a, i.e., a set of other instances that

a is similar to. Here, HSim is +∞ when either instance has an empty history, though

the traditional Jaccard similarity measure will give a 0 in this case. The intuition is that

the history we use for pruning is partial history in the sense that it does not contain a

complete set of other instances that the given instance is similar to. Imagine we have a list

of instances as shown below:

I = < i1, i2, i3, ..., im, in, ... , ilast >

To detect coreference relationships, we compare each instance with every other instance in

the order they are placed, i.e., compare i1 to i2, i3, ..., ilast and then similarly compare

i2 to all other instances after it. Therefore, when we attempt to compare im and in, each

of them has only been compared with instances that are placed to the left of them and

we still do not know their similarities to instances in {ik} (k>n). Due to such incomplete

knowledge, an instance pair should not be pruned when seeing an empty history.
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5.2.2 Sorting Instances as Pre-processing

At Line 3 of Algorithm 6, we prune a pair of instances if their history similarity is below

a threshold. In our algorithm, this threshold is automatically adjusted at runtime. One

approach for performing such adjustment is based upon how many groundtruth coreferent

pairs have already been covered by the processed instances at any given time. When more

coreferent pairs have been covered, we should adopt a higher threshold in order to prune

more un-coreferent pairs. This will lead to runtime savings, without the risk of missing too

many true matches. However, for this approach to work, we need a sufficiently sized sample

of groundtruth data, but obtaining such a sample for large-scale data is impractical.

To avoid labeling, we compute a Match Heuristic (MH ) for each instance before

executing Algorithm 3. MH is the number of potential matches of each instance in the

dataset. We sort the instances by their MH in descending order, and we call Algorithm

3 on all pairs of an instance with a subsequent instance in descending MH order. To

compute MH, we treat the context of each instance as a bag of words that we call doc.

For an instance, doc is extracted from all literal paths of length one, i.e., literal values from

immediate triples. We then compute a cosine similarity between the doc of each instance

and that of all other instances with Lucene1, a well-adopted Information Retrieval tool. We

first index all the docs as documents with Lucene. Then each document is treated as a

query q and issued to Lucene. We count a returned document doc′ as a potential match if

cosine(q, doc′) calculated by Lucene is above a threshold α.

1http://lucene.apache.org/core/3 6 0/api/core/org/apache/lucene/
search/Similarity.html
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5.2.3 A Sigmoid Function based Thresholding Approach

There could be different ways to adjust the threshold on the similarity of two instances’

matching histories. The simplest way is to use a fixed threshold for the entire coreference

process; however, this method may cause the system to miss a certain amount of coreferent

pairs at the starting stage since we put instances with the most potential matches at the

beginning of the instance list. Therefore, a thresholding approach that starts with a low

value but then gradually increases the threshold could potentially be a good choice.

After sorting, each instance is associated with a match heuristic. Intuitively, the match

heuristic of an instance can be considered as its weighting factor. When processing instance

im, Σm−1
k=1 MH(ik) gives the total weight of the already processed instances (i.e., their total

match heuristics), indicating how important they are and thus can be helpful for threshold-

ing.

Based upon the discussion above, we propose a sigmoid function based thresholding

method that utilizes such match heuristics. The traditional sigmoid function is defined

by Equation 5.2 and illustrated in Figure 5.1. The traditional sigmoid function provides a

continuous output with limit 1 as x approaches infinity, and limit 0 as x approaches negative

infinity.

F (x) =
1

1 + e−x
(5.2)

However, the traditional sigmoid function cannot be directly applied to our situation

due to the following two aspects. First of all, the traditional function gives a value of 0.5

when x=0; while we require the computed threshold should be 0 when input is 0. When x is

small, the entity coreference process is still in its early stage and thus we have very limited

knowledge about the matching histories of the instances. Also, since we sort instances based
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Figure 5.1: The Traditional and Proposed Sigmoid Curves

upon the number of their potential matches in the dataset in descending order, we want to

adopt a relatively low threshold at the early stage in the entire entity coreference process

to reduce the risk of missing too many true matches. Furthermore, the traditional function

has an upper bound of 1. However, in our situation, we may not want to set such a high

threshold for filtering and it would be useful if we could adjust the upper bound by setting

some parameter.

Based upon the discussion above, we propose a two-phased thresholding function as

shown in Equation 5.3:

Thresholding(im)=


0, x ≤ σ (5.3a)

K ∗ F (x(im)− 6), x > σ (5.3b)

where σ determines when to start introducing a threshold; K represents the upper bound of

the computed threshold. Input x is the ratio between match heuristics of already processed
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instances and that of all instances as computed in Eq. 5.4:

x(im) =
Σm−1
k=1 MH(ik)

Σ
|I|
k=1MH(ik)

∗ 10 (5.4)

where MH(i) is the match heuristic for instance i; the factor 10 enables x to have the

range [0, 10] to ensure the output (the computed threshold by Eq. 5.3) has the ability to

transition through most of the range. We shift the original sigmoid curve to the right by

replacing x in Equation 5.2 with x-6, thus the computed threshold gets very close to 0 when

x=0.

One alternative to Equation 5.3 is Bump, i.e., setting the history threshold to 0 at the

beginning and bumping it to the upper bound when x>σ. We shall compare these different

thresholding approaches in our evaluation.

5.3 Evaluation Function based Context Pruning

Another important question discussed in Chapter 2 is how to reduce the complexity of the

comparison for a single pair of instances. Although an instance may have a large number

of paths in its context, we should only consider those that can actually make significant

contribution to the final similarity score of two instances. Therefore, we define an evaluation

function in Equation 5.5 to judge if we should continue with the remaining paths given the

similarity between two instances from their already considered paths:

Eval(sold, scurr) =


1, scurr − sold ≤ β (5.5a)

0, otherwise (5.5b)
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where sold is the similarity between two instances by considering the most highly weighted

n-1 paths, and scurr is the similarity by considering the top n paths.

Our evaluation function provides a hint of how important the remaining context is.

Linking back to Algorithm 6, at line 12, context signif (context significance level) is ini-

tialized with γ, the maximum times we can tolerate when considering one more path does

not significantly increase the similarity of two instances, i.e., scurr-sold ≤ β. When this

happens, Eval will return 1 and consequently at line 22, we reduce our tolerance level of

such situations by 1. When the context significance level reaches 0, we suspect all remaining

context is insignificant, and we will then decide to ignore the rest of the context to save the

overall computational cost. We will show later that adopting our evaluation function can

save half of the overall runtime.

5.4 Evaluation

In this section, I present the evaluation results of the discussed on-the-fly candidate selection

technique. We conduct all experiments on a RedHat machine with a 12-core Intel 2.8GHz

processor and 60GB memory.

5.4.1 Evaluation Datasets, Metrics and Methodology

The RKB [17] and SWAT2 datasets are still adopted. Similarly, we continue to empoly the

standard metrics, including Precision: the number of correctly detected pairs divided by

the total number of detected pairs given some threshold; Recall : the number of correctly

detected pairs divided by the number of coreferent pairs according to the groundtruth; and

F1-score calculated as 2∗ Precision∗Recall
Precision+Recall . Furthermore, we compare the runtime of different

2http://swat.cse.lehigh.edu/resources/data/
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systems.

Evaluation Methodology. We compare P-EPWNG to state-of-the-art candidate se-

lection systems: AllPairs [97], PPJoin+ [100], EdJoin [99], FastJoin [96], IndexChunk [95],

BiTrieJoin [94] and PartEnum [93]. Although P-EPWNG performs both candidate selec-

tion and entity coreference, traditional candidate selection systems only do the first step.

Thus, to compare to state-of-the-art systems, we first run those systems on the same input

to select candidate instance pairs; and then we apply the EPWNG algorithm (the algorithm

that does not have our proposed pruning techniques) to the selected pairs. We directly run

our proposed algorithm P-EPWNG on the same input to get the final entity coreference

results.

We also compare to EPWNG [16] that performs a brute-force pairwise comparison on all

instance pairs without any pruning and to U-EPWNG [19] that prunes insignificant context

based upon sampling techniques and a utility function without doing candidate selection. A

baseline is also tested against where we only compare name (person) and title (publication)

for every pair of instances.

We randomly select 100K instances for each instance category. We split each 100K

instances into 10 non-overlapping and equal-sized subsets, apply all algorithms on each

subset and report their average. For coreference results, we report a system’s best F1-score

from threshold 0.1-0.9.

5.4.2 Parameter Settings

For all experiments, we use the same parameter settings as shown in Table 5.1. Adopting

higher k improves F1-score a little but slows down the process; using lower γ causes the
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Table 5.1: Parameter Settings.

Parameter Value Description

k (Alg. 6) 5% the percentage of context used for filtering
θ (Alg. 6) 0.3 whether to add one instance to the history of another
γ (Alg. 6) 5 the maximum tolerance level for context pruning
α (Sec. 5.2) 5 sorting: whether an instance is a potential match
K (Eq. 5.3) 0.2 the upper bound threshold for history-based pruning
σ (Eq. 5.3) 30% determining when to apply history based pruning
β (Eq. 5.5) 0.1 the expected contribution of computing one more path

system to have lower F1-score by pruning significant context; using a higher σ, i.e., intro-

ducing history-based filtering later, typically improves the F1-score. We will present a more

comprehensive evaluation for different parameter settings later in this section.

5.4.3 Evaluating Against Comparison Systems

We compare our proposed on-the-fly pruning techniques to our previous EPWNG algorithm

and the baseline system and show the comparison results in Table 5.2.

Baseline . The baseline is not as good as P-EPWNG on F1-score and runtime. It has

a much lower recall than others on RKB Person. On RKB publication, the baseline has

worse precision than P-EPWNG since candidate selection helps to filter out some potential

false positives. Although we only observed minor difference on F1-score for SWAT Person,

the baseline needed significantly more time. For both RKB datasets, both P-EPWNG and

the baseline have worse recall than EPWNG, showing the need to explore context beyond

just name and title and thus the need for appropriate context pruning techniques to balance

runtime and F1-score. Note that the baseline requires human input on what information

to compare; also, in the absence of discriminative labels (such as name and title), it may

not be able to achieve satisfying results.

EPWNG and U-EPWNG. Overall, compared to our previous entity coreference
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Table 5.2: Evaluating Against Comparison Systems and the Baseline System. Precision, Recall
and F1-score are the relevant measures for the actual entity coreference phase; Time:
the runtime for the entire process, including both candidate selection and entity coref-
erence.

Dataset System
Coreference

T ime(s)
Precision (%) Recall (%) F1 (%)

Person

P-EPWNG (Eq. 5.3) 95.02 89.52 92.18 7.66
RKB Baseline 95.47 83.66 89.15 36.69

EPWNG [16] 93.04 90.93 91.96 6,296.91
U-EPWNG [19] 94.22 90.45 92.29 215.50
S-EPWNG [19] 94.22 90.41 92.27 246.26

Person

P-EPWNG (Eq. 5.3) 99.49 90.88 94.99 8.61
SWAT Baseline 99.37 90.93 94.96 31.7

EPWNG [16] 99.45 90.93 94.99 16968.00
U-EPWNG [19] 99.45 90.93 94.99 275.17
S-EPWNG [19] 99.45 90.93 94.99 307.42

Pub

P-EPWNG (Eq. 5.3) 99.66 98.10 98.87 23.06
RKB Baseline 98.99 97.28 98.13 72.1

EPWNG [16] 99.78 99.37 99.58 63200.71
U-EPWNG [19] 99.82 99.30 99.56 828.56
S-EPWNG [19] 99.45 99.00 99.22 921.74

algorithms EPWNG and U-EPWNG, P-EPWNG achieves substantial runtime savings with

slightly worse recall and F1-score. The coreference process was sped up by 2-3 orders of

magnitude compared to EPWNG and by a factor of 28-36 compared to U-EPWNG. There

is no surprise that EPWNG always achieves the highest recall since no pruning was adopted.

Also, P-EPWNG achieves a little better precision on both person datasets because pruning

dissimilar instance pairs can help to reduce the chance of having false positives.

5.4.4 Evaluating Against State-of-the-Art Candidate Selection Systems

Table 5.3 shows the evaluating results when compared to state-of-the-art candidate selection

systems. Here, we compare the results of both the candidate selection phase and the actual

coreference phase.
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Generally speaking, when compared to state-of-the-art candidate selection systems, P-

EPWNG selects the fewest candidate pairs and thus is able to run the fastest for the entire

process, including both candidate selection and coreference. However, since P-EPWNG is

the most aggressive in pruning instance pairs, its recall and F1-score for the final coreference

results are generally slightly worse than that of most of the state-of-the-art systems.

On RKB Person, P-EPWNG selects 3 (EdJoin) to 13 (IndexChunk, BiTrieJoin and

PartEnum) times fewer pairs than other systems, which leads to a speedup factor of 7

(EdJoin) to 16 (IndexChunk) on runtime but also results in 0.83% lower F1-score than the

best (achieved by EdJoin). Although P-EPWNG needs more time for candidate selection,

the fact that it selects a lot fewer candidates enables it to achieve substantial runtime

savings for the overall process.

We observe similar results for SWAT Person. P-EPWNG selects about 5 (EdJoin) to

14 (IndexChunk) times fewer candidates than other systems; thus the entire process runs 10

(EdJoin) to 20 (IndexChunk) times faster. Although P-EPWNG has a little lower recall,

compared to AllPairs, PPJoin+ and FastJoin, it achieved identical F1-score due to a little

better precision.

On RKB Publication, in addition to runtime savings, P-EPWNG also achieves the

highest precision among all candidate selection systems. P-EPWNG prunes instance pairs

most aggressively, which helps to reduce the chance of having too many false positives. Note

that on this dataset, P-EPWNG spends much more time selecting candidates than needed

for the two person datasets because our Share A Token filtering is not very effective here.

Share A Token prunes an instance pair if they do not even share a single token in their

most disambiguating context. For person and publication instances, names and titles are

generally included in the partial context used by Share A Token; and it is relatively more
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common to share a token in titles than in names. So, more pairs can pass this check and

are then processed by other more expensive steps.

Our proposed P-EPWNG algorithm enables the entire coreference process to run 18 to

24 times faster than state-of-the-art candidate selection systems with a small sacrificing in its

coreference F1-scores. However, the small sacrificing on the final coreference F1-scores may

not accurately reflect the candidate selection capability of an algorithm. It could be the case

that the candidate selection algorithm does miss a significant number of coreferent instance

pairs according to the groundtruth while these missing pairs just cannot be detected by

the actual coreference algorithm even they were included. To examine the capability of our

proposed candidate selection algorithm in comprehensively selecting groundtruth instance

pairs, in Table 5.3, we also compare it to state-of-the-art algorithms with the frequently

adopted metrics for evaluating candidate selection systems as defined in Equations 5.6 and

5.7.

PC =
|true matches in candidate set|

|true matches|
(5.6)

RR = 1− |candidate set|
N ∗M

(5.7)

The results show that our proposed on-the-fly candidate selection algorithm was not able

to cover as sufficient groundtruth pairs as the the other systems did (as indicated by the

metric PC). Although these missing groundtruth pairs didn’t affect the final coreference

results significantly, when combined with other actual entity coreference systems that are

able to detect those missing pairs, there is still the risk that the final coreference F1-score be

impacted substantially. We will introduce in Chapter 6 a candidate pre-selection technique

that does not only provide comparably good coreference F1-score but also can achieve

similar PC and RR to those state-of-the-art candidate selection systems.
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5.4.5 Parameter Tuning

In this section, we would like to study the impact of the key parameters (as listed in Table

5.1) in our on-the-fly candidate selection algorithm.

Examining the Impact of Different Thresholding Approaches. First of all,

we examine the effectiveness of our proposed pruning techniques by comparing to their

alternatives. We compare different ways to adjust the threshold on instances’ matching

history similarity (Section 5.2): Fixed (using a fixed threshold), Bump (starting with 0 and

then bumping to a fixed value), Sigmoid (σ=0 in Eq. 5.3) and M-Sigmoid (σ=30% in Eq.

5.3). We also consider removing our context pruning strategy (M-Sigmoid\Eval) to study

its impact.

Table 5.4: Feature Evaluation. Precision, Recall and F1-score are the relevant measures for the
actual entity coreference phase; Time: the runtime for the entire process, including
both candidate selection and entity coreference.

Dataset System Precision (%) Recall (%) F1 (%) Time (s)

M-Sigmoid 95.02 89.52 92.18 7.66
RKB Sigmoid 95.05 89.22 92.04 7.56
Person Bump 95.14 88.76 91.83 7.51

Fixed 95.18 88.57 91.75 7.26
M-Sigmoid\Eval 95.23 89.28 92.15 14.48

M-Sigmoid 99.66 98.10 98.87 23.06
RKB Sigmoid 99.66 98.03 98.84 22.70
Publication Bump 99.66 97.91 98.78 22.66

Fixed 99.66 97.80 98.72 20.86
M-Sigmoid\Eval 99.49 98.09 98.79 51.00

M-Sigmoid 99.49 90.88 94.99 8.61
SWAT Sigmoid 99.49 90.88 94.99 8.58
Person Bump 99.49 90.88 94.99 8.32

Fixed 99.51 90.59 94.83 8.27
M-Sigmoid\Eval 99.49 90.88 94.99 19.78

In Table 5.4, comparing different thresholding methods, M-Sigmoid has better recall

than its alternatives; with similar precision to others, it achieves the best F1-scores. Fixed

runs the fastest by using the upper bound threshold along the whole process. Although
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the F1 results appear to be numerically close, they are in fact statistically significant. A

two-tailed t-test on the F1-scores of applying M-Sigmoid and its thresholding alternatives

to the 10 10K non-overlapping testing sets shows (10 F1-scores for each of the compared

alternatives): for RKB Person, the differences are statistically significant with P values of

0.0001; for RKB Publication, the differences between M-Sigmoid and Fixed, Sigmoid and

Bump are significant with P values of 0.0002, 0.0009 and 0.0001. Furthermore, M-Sigmoid is

about 1.8 to 2 times faster than M-Sigmoid\Eval, showing the effectiveness of our evaluation

function for context pruning.

Varying the Percentage of Context Used for Filtering (k in Table 5.1). In our

on-the-fly pruning based entity coreference algorithm (Algorithm 6), at line 6, after a pair of

instances pass the history similarity check, we compute their similarity based upon their top

k percent most important context (sorted based on path weight). In previous experiments,

we set k to be 5, i.e., we only use the top 5% context for this purpose. Here, we test our

algorithm on different k values and examine if by adopting more context information, we

could achieve higher recall and F1-score without slowing down the coreference process too

much.

First of all, we show the runtimes of different k values in Figure 5.2. As expected, when

we use more context information, the runtime of the coreference process takes longer. This

is more obvious for RKB Publication than for the other two person datasets, since an RKB

Publication instance has more paths than person instances have. Generally speaking, when

expanded to depth 2, a typical pattern for person instances is “person has publication,

first name, last name and publication has author, citation, title, date, proceeding/journal,

web address, etc.”. Because we stop the expansion process at depth 2, “proceedings and

journals” will not be further expanded. While for publication instances, we normally have
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Figure 5.2: Runtime of Tuning the Number of Paths (k)

“publication has author, citation, title, date, citation, proceeding/journal, web address;

author has publication, first name, last name; proceeding/journal has publication date,

issue number, etc; and citation is cited by other publications”. Here, first of all, at depth

2, “proceedings and journals” will be expanded to get more information. Furthermore,

a paper typically cites many other papers and could be cited many times at the same

time; essentially, for publication instances, we have two level of citation networks. Overall,

these cause publication instances to typically have much more number of paths than person

instances would have. In our datasets, on average, an instance has 31.97, 41.69 and 162.63

paths as its context in RKB Person, SWAT Person and RKB Publication respectively.

As a second part of the experiment, we show the precision, recall and F1-score on all

the three datasets in Table 5.5. It is interesting to see that we are not always getting higher

recall and F1-score as we use more and more context information. Given two instances

a and b, as we can see from line 6 to 10 in Algorithm 6, the similarity calculated with

the k% context will be used to determine if instance a should be added to the history of

instance b; and such history information is then used for initial filtering when considering
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Table 5.5: Testing the Impact of the Percentage of Context k Used for Filtering. We bold the best
scores of each metric among all tested k values.

Dataset Metric
k (%)

5 10 20 30 40

RKB Person
Precision 95.02 95.02 94.89 94.87 94.81
Recall 89.52 89.72 89.69 89.39 89.16
F1-Score 92.18 92.25 92.21 92.04 91.9

SWAT Person
Precision 99.49 99.48 99.49 99.49 99.49
Recall 90.88 90.9 90.88 90.87 90.87
F1-Score 94.99 94.99 94.99 94.98 94.98

RKB Publication
Precision 99.66 99.66 99.65 99.65 99.65
Recall 98.1 98.08 98.05 98.02 98.02
F1-Score 98.87 98.86 98.84 98.83 98.83

other instances placed after instance a (as determined by our Lucene-based unsupervised

sorting mechanism). Because our context information (paths) are sorted based on their

path weight, as we employ more context, we are actually starting to incorporate more and

more low-weight paths. Our coreference algorithm could then potentially be overwhelmed

by such low-weight information and therefore generate more inaccurate matches. Such

inaccurate matches could further pollute the history information of the instances, and finally

cause the histories of two coreferent instances to have insufficient overlap, i.e., the Jaccard

similarity between instances’ matching histories falls below threshold. For RKB Person

and SWAT Person, the best F1-scores are achieved when k=10%. The best F1-score for

RKB Publication happens at k=5%; and this is because for publication instances, the top

5% context includes publication titles which typically are the most useful information for a

coreference algorithm to disambiguate different instances.

Testing the Context Pruning Function. Another parameter in our P-EPWNG

algorithm is γ, the maximum tolerance level for context pruning as described in Section

5.3. In this experiment, we vary the value of this parameter to examine its impact. The

higher γ we use, the more context information (paths) we will use for the actual coreference.
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Figure 5.3 shows the runtime by employing different γ values. Here, All means that we
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Figure 5.3: Runtime of Tuning Context Pruning Tolerance (γ)

do not use our context pruning, i.e., our coreference algorithm will exhaust all the available

paths. As expected, by using more and more paths, we notice longer runtime. However,

because we still utilized our history-based filtering, even when we used all the available

context information, the runtime didn’t increase too dramatically.

Before seeing the actual measured values of precision, recall and F1-score, one hypothesis

that we may make is that as we make the cut earlier (using a lower tolerance level), we

would expect a lower recall. However, as demonstrated in Table 5.6, as we begin to tolerate

more and more context of potentially lesser value, not only does it result in longer runtime,

but we are not always getting better recall and F1-score in return.

On the RKB Publication dataset, we typically get higher recall as we adopt a higher γ

value, i.e., allowing the algorithm to consider more paths that may not contribute signifi-

cantly to the final similarity measure. However, in contradiction to our hypothesis, on the

RKB Person dataset, we are actually getting lower recall as we use more context informa-

tion. To be able to explain this interesting situation, let’s examine the following concrete
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Table 5.6: Testing the Impact of the Number of Paths γ Used for Actual Entity Coreference. We
bold the best scores of each metric among all tested γ values.

Dataset Metric
γ

3 4 5 6 7 All

RKB Person
Precision 94.89 94.97 95.02 95.07 95.1 95.23
Recall 89.61 89.56 89.52 89.49 89.48 89.28
F1-Score 92.16 92.18 92.18 92.18 92.19 92.15

SWAT Person
Precision 99.35 99.46 99.49 99.49 99.49 99.49
Recall 90.9 90.88 90.88 90.88 90.88 90.88
F1-Score 94.93 94.97 94.99 94.99 94.99 94.99

RKB Publication
Precision 99.62 99.66 99.66 99.66 99.66 99.49
Recall 98.05 98.06 98.1 98.1 98.1 98.09
F1-Score 98.83 98.85 98.87 98.87 98.87 98.79

example.

We have two instances identified as a and b, and we show their expanded neighborhood

graphs (their context) in Figures 5.4(a) and 5.4(b) respectively. These two instances are

coreferent according to the groundtruth. First of all, we can see that a and b share highly

similar full names, which is a very good indicator for them to be identified as coreferent.

However, the two instances actually come from two different data sources: instance a is

from DBLP, while instance b is from EPrints; and it is possible that instances from different

data sources do not share sufficient publication information, which is exactly the case in

the given example.

When we set γ to be 3, the paths above the red dashed line in Figure 5.4(a) will

be considered for detecting coreference. With these paths, we will get a good match on

their full names; while in the mean time, the similarity score will also be penalized by

having mismatches on their depth-two paths, i.e., titles and web addresses. Fortunately,

their similarity score can still exceed our threshold and thus they are treated as coreferent.

However, if we set γ to be 4, the paths below the red dashed line will also be considered. In

this case, we have more penalties by having more mismatches on titles and web addresses,
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Figure 5.4: An Example of Having Lower Recall by Utilizing More Context Information

which finally causes the similarity of a and b to fall under the threshold. The drawback

of applying penalties on both mismatched titles and web addresses is to cause the system

to lose one pair of true match; however, this could potentially help to filter out a pair of

non-coreferent instances that happen to share highly similar names.

Recall the way we calculate path score. We first check if the predicates at correspond-

ing depth of two paths are comparable; we then compute the similarity between the end
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nodes of comparable paths. The depth-two paths between the two instances shown above

certainly satisfy our path comparability condition; while the problem is really that: Are

Pub1/Pub2 and Pub3, the publications represented by different identifiers, coreferent?. If

Pub1 is coreferent with Pub3, then we should certainly apply the penalty; otherwise not.

This actually comes down to the question that whether we should take into account those

intermediate nodes, in addition to predicates, when we determine path comparability?

In order to perform this additional checking, we should firstly know whether two inter-

mediate nodes represent the same entity; however, we may not have such knowledge when

given a “brand new” dataset. Furthermore, as we have shown in a previous experiment

(Table 3.1 in Section 3.4.4), by simply checking if two intermediate nodes are syntactically

identical, we suffer from having much lower recall. One interesting future work would be to

adopt some kind of bootstrapping strategy to perform iterative entity coreference. Initially,

due to in-comprehensive coreference knowledge, we check intermediate nodes by only look-

ing at their syntactic form, which may enable the system to achieve high precision but low

recall. As we are obtaining more coreference information, in later iterations, we can then

apply penalties to real mismatches (those caused by having coreferent intermediate nodes

but distinct objects) to reduce the impact on recall.

When Should We Start Introducing the History-based Pruning. Another key

parameter in our system is σ, indicating when we start applying our history-based pruning.

In our previous experiment, we set σ to be 30%, meaning we start doing history-based

filtering after 30% of the estimated groundtruth pairs have been covered by the processed

instances. It would be natural to assume that as we adopt lower γ values, we would expect

lower recall, since we start the filtering early on in the coreference process.

Table 5.7 shows the results of applying different σ values, ranging from 10% to 50%.
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Here, we do not see any significant difference on runtime for different thresholds. The reason

Table 5.7: Testing the Impact of Starting Utilizing History-based Filtering at Different Estimated
Groundtruth Coverage. We bold the best scores of each metric among all tested σ
values.

Dataset Metric
σ (%)

10 20 30 40 50

RKB Person

Precision 95.04 95.03 95.02 94.96 94.93
Recall 89.32 89.43 89.52 89.63 89.8
F1-Score 92.08 92.14 92.18 92.21 92.29
Runtime (s) 7.22 7.57 7.66 8.17 8.15

RKB Publication

Precision 99.66 99.66 99.66 99.66 99.66
Recall 98.04 98.06 98.1 98.17 98.28
F1-Score 98.84 98.85 98.87 98.91 98.97
Runtime (s) 22.81 22.87 23.06 23.22 23.76

SWAT Person

Precision 99.49 99.49 99.49 99.49 99.49
Recall 90.88 90.88 90.88 90.88 90.88
F1-Score 94.99 94.99 94.99 94.99 94.99
Runtime (s) 8.11 8.65 8.61 8.62 8.62

is that even when we ignore history-based filtering for the first σ percent of the estimated

groundtruth, we still have other effective filtering components, including Share A Token

and top k% context-based filtering. If the history-based filtering is ignored for a pair of

instances (the Thresholding function at Line 3 of algorithm 6), we only compute their

similarity based on their top 5% weighted context, which is relatively fast. Therefore, we

do not see much difference on runtime here.

If we look at the precision, recall and F1-score of different σ values, the results are

generally consistent with our hypothesis. On the two RKB datasets, when we increase the

value of σ, we start to have higher recall. Higher σ values mean that we apply history-based

filtering at a later stage, thus fewer groundtruth instance pairs were falsely filtered out.

On the other hand, recall that one of the positive aspects of applying candidate selection

techniques is to be able to remove some of the potential false positives. As we adopt higher σ

values, we do filtering less aggressively; as a consequence, our system becomes less capable of
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filtering out false positives, which leads to the gradual decline of precision on RKB Person.

Varying this threshold did not impact the performance on SWAT Person, except that it

took a little longer as we adopt σ values higher than 10%.

Configuring the Upper bound of the History-based Filtering. In our modified

Sigmoid function (Equation 5.3), we use the parameter K to control the upper bound of

the history-based filtering. K determines the highest value that the Thresholding function

at Line 3 of Algorithm 6 would return. The higher K we adopt, the more aggressively we

would perform filtering.

In Table 5.8, we show the results of different K values, ranging from 0.1 to 0.5. As

Table 5.8: Varying the Filtering Upper bound of the Modified Sigmoid Function. We bold the best
scores of each metric among all tested K values.

Dataset Metric
K

0.1 0.2 0.3 0.4 0.5

RKB Person

Precision 94.97 95.02 95.07 95.09 95.09
Recall 89.74 89.52 89.32 89.17 88.99
F1-Score 92.27 92.18 92.09 92.03 91.93
Runtime (s) 8.52 7.66 7.25 7.03 6.86

RKB Publication

Precision 99.66 99.66 99.66 99.66 99.66
Recall 98.24 98.1 97.98 97.9 97.86
F1-Score 98.94 98.87 98.81 98.77 98.75
Runtime (s) 23.7 23.06 22.08 22.41 21.86

SWAT Person

Precision 99.49 99.49 99.49 99.81 99.81
Recall 90.88 90.88 90.87 90.34 90.32
F1-Score 94.99 94.99 94.98 94.83 94.82
Runtime (s) 8.93 8.65 8.58 8.52 8.52

we are applying higher upper bounds, we are performing filtering more aggressively and

will compute the top k% similarity for fewer pairs, therefore the length of the process is

shortened. Furthermore, the trends of precision, recall and F1-score of different K values

look intuitive. On all datasets, as we adopt higher K values, we typically achieve lower

recall; in some situations, we also achieve higher precision, due to the fact that candidate

selection helps to filter out some of the potential positives.
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Stripping Off the Share A Token and History Sim Module. A final test we

would like to perform is to study the impact of the Share A Token and History Sim modules.

In this experiment, we compare to two alternatives: each alternative drops one of the two

components. m sigmoid uses all of our proposed filtering techniques; m sigmoid\share a token

is a system where we do not use the Share A Token function at Line 1 of Algorithm 6;

m sigmoid\history sim is another system where we drop our history-based filtering module,

Line 3 and 4 in Algorithm 6.

First of all, we present the runtime comparison of the three systems in Figure 5.5. We
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Figure 5.5: Runtime Comparison of Dropping Share A Token and History Sim

use a logarithmic scale with base 10 for the y-axis. We can see that both modules actu-

ally have significant impact on the entire entity coreference process. Without using the

Share A Token function, the process was slowed down by a factor of 9, 8 and 15 on RKB

Person, SWAT Person, and RKB Publication respectively. Although dropping the His-

tory Sim component had less impact on runtime, the m sigmoid system was 35%, 53% and

26% faster than m sigmoid\history sim on RKB Person, SWAT Person and RKB Publica-

tion respectively, still showing its effectiveness in speeding up the coreference process.
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We also compare the precision, recall and F1-score of the three systems in Figures

5.6(a) to 5.6(c). On one hand, m sigmoid achieves the highest precision, since perform-
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Figure 5.6: Impact of Share A Token and History Sim on Precision, Recall and F1-score

ing filtering more aggressively could help to filter out some of the potential false posi-

tives. The improvement of precision on SWAT Person is not quite obvious: m sigmoid and

m sigmoid\share a token achieve the same precision of 99.49% while m sigmoid\history sim

has a precision of 99.45%.

On the other hand, we can see that m sigmoid\history sim has better recall than

m sigmoid, which indicates that our history-based approach is really an approximate or

imprecise way of filtering un-coreferent instance pairs; and this is consistent with the re-

sults in Table 5.3, where our system did not achieve as good Pairwise Completeness for the
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candidate selection phase as the other state-of-the-art systems did. However, given the fact

that m sigmoid did not sacrifice too much groundtruth pairs, it was still able to get decent

F1-score in general.

Compared to m sigmoid, m sigmoid\share a token actually achieved a little lower recall.

Presumably, we would not expect Share A Token to have any impact on recall, since we will

just be wasting some additional effort in computing instance pairs that do not even share a

single token in their top k% context (Line 6 of Algorithm 6). However, our Share A Token

module also has an additional Lucene-based filtering sub-component (described in the sec-

ond paragraph of Section 5.1). We only let two instances pass this check if they share at

least one common token and their top k% contexts are similar to a certain degree. Such

similarity scores are computed as part of the ranking processing of Lucene.

Let’s examine why m sigmoid\share a token achieves lower recall with the following

concrete example. Suppose we have a pair of coreferent instances: 46986 and 1657757 (we

use integers to identify instances in our database). When we do use Share A Token, the

histories of both instances only include instance 85970; thus, they pass the history check

and are deemed to be coreferent by our algorithm. However, without Share A Token, the

history of 1657757 includes many noisy instances, one of which is 80522. As a consequence,

46986 and 1657757 did not have sufficiently overlapping histories and were filtered out.

Here, in Figure 5.7, we show the top 5% context of 1657757 and 80522 to explain why

80522 was included in the history of 1657757. Recall that in our coreference algorithm, given

a path, we pick the highest similarity it could have with all comparable paths of another

instance. In this example, for the full-name path of 80522, we compute its similarity to all

three comparable full-name paths of 1657757; and the highest similarity happens between

“K Tanaka” and “K Datta”, because they share a common small token “K” as part of
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Turtle: 

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

 

<http://www.example.org/person#1657757> foaf:name “Amitava Datta” . 

<http://www.example.org/person#1657757> foaf:name “K Datta” . 

<http://www.example.org/person#1657757> foaf:name “Aman Datta” . 

 

<http://www.example.org/person#80522> foaf:name “K Tanaka” . 

 

 

 

 

Figure 5.7: Top 5% Context of Instances 1657757 and 80522

their full names (we used Jaccard similarity for string matching). Therefore, our top k%

similarity calculation function considers 80522 to be similar to 1657757 and thus is added

to the history of 1657757. With Share A Token, these two instances will not be able to

pass the Share A Token check. Even though they share one small token “K”, the Lucene

similarity score of their top k% context is not sufficiently high.

Through our parameter analysis, it is recommended that we use just enough context (k,

Table 5.5) for filtering. Using too much may not necessarily improve recall, since context of

lesser value will be included. Depending on the actual application scenarios, we may start

performing our history-based filtering (σ, Table 5.7) sooner or later. When runtime is really

critical, we could start the filtering early by sacrificing a reasonable level of recall; otherwise,

higher values should be employed to ensure better coverage on coreferent instance pairs.

Situated similarly, a lower upper bound (K, Table 5.8) for history-based filtering should be

used in order to not miss too many true matches but noticeable runtime improvement can

be achieved by adopting higher values for this parameter. Finally, our Share A Token and

History Sim components (Figures 5.6(a) to 5.6(c)) have been verified to be very effective in

scaling the system to large scale datasets, therefore both of them should be retained, even

though History Sim may falsely filter out true matches due to noisy matching histories.
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Chapter 6

Scaling Entity Coreference Using

Domain-Independent Candidate

Selection

One major drawback of the on-the-fly algorithm is that it does miss a non-trial amount

of groundtruth pairs during its filtering process. For entity coreference systems that can

actually detect those missing pairs, their performance could be significantly impacted. In

order to achieve both good coreference F1-score and decent candidate selection coverage

on true matches, in this chapter, we present another candidate selection algorithm that

pre-selects candidate pairs by only comparing their most disambiguating partial context

with a lightweight method to speed up the entire coreference process.

Several interesting questions then arise. First, manually choosing the information to

compare might not work for all domains due to limited availability of domain expertise.

Also, candidate selection algorithms should cover as many true matches as possible and

reduce many true negatives. Algorithms that only try to maximize one aspect are not ideal.

134



Finally, the candidate selection algorithm itself should scale to very large datasets.

The candidate selection algorithm to be presented in this chapter possesses the proper-

ties discussed above [21]. Although our algorithm is designed for RDF data, it generalizes to

any structured dataset. Given an RDF graph and the types of instances to do entity coref-

erence on, we discover a set of datatype properties as the key for candidate selection that

both discriminate and cover the instances well in an unsupervised and domain-independent

manner. In order to support efficient look-up for similar instances, we index the instances

on the discovered predicates’ object values and adopt a character level n-gram based string

similarity measure to select candidate pairs. We evaluate this algorithm on the same three

instance categories from the RKB and SWAT datasets and another three structured datasets

frequently used for evaluating entity coreference systems. In addition to using the tradi-

tional metrics: Pairwise Completeness, Reduction Ratio and Fcs, we perform the two-phase

evaluation and compare to state-of-the-art systems on the overall runtime and the final

coreference F1-score.

6.1 Iterative Candidate Selection Key Discovery

As discussed, candidate selection is the process of efficiently selecting instance pairs that

are possibly coreferent by only comparing part of their context information. Therefore,

the information we will compare needs to be disambiguating enough to the instances. For

example, a person instance may have the following triples as shown in Figure 6.1:

Intuitively, we might say that last name could disambiguate this instance from others

better than first name which is better than the place where he lives in. The reason could

be that the last name Henderson is less common than the first name James; and a lot

more people live in the United States than those using James as first name. Therefore, for
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Turtle: 

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

@prefix geo: <http://www.geonames.org/> . 

 

<http://www.example.org/person#100> foaf:lastname “Henderson” . 

<http://www.example.org/person#100> foaf:firstname “James” . 

<http://www.example.org/person#100> geo:livesin “United States” . 

 

 

Figure 6.1: Sample Triples of a Person Instance

person instances, we might choose the object values of has-last-name for candidate selection.

However, we need to be able to automatically learn such disambiguating predicate(s) in a

domain-independent manner. Furthermore, the object values of a single predicate may not

be sufficiently disambiguating to the instances. Take the above example again, it could be

more disambiguating if we use both last name and first name.

Algorithm 7 presents the process for learning the candidate selection key, a set of

datatype predicates, whose object values are then utilized for candidate selection. Triples

with datatype predicates use literal values as objects. The goal is to iteratively discover a

set of predicates (the candidate selection key) whose values are sufficiently discriminating

(discriminability) such that the vast majority of instances in a given dataset use at least one

of the learned predicates (coverage). The algorithm starts with an RDF graph G (a set of

triples, <i,p,o>) and it extracts all the datatype predicates (key set) and the instances (IC)

of certain categories (C) (e.g., person, publication, etc.) from G. Then, for each predicate

key ∈ key set, the algorithm retrieves all the object values of the key for instances in IC .

Next, it computes three metrics: discriminability, coverage as shown in Equations 6.1 and

6.2 respectively and a F1-score (FL) on them.

dis(key, IC , G) =
|{o|t =< i, key, o >∈ G ∧ i ∈ IC}|
|{t|t =< i, key, o >∈ G ∧ i ∈ IC}|

(6.1)
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Algorithm 7 Learn Key(G, C), G is an RDF graph, consisting a set of triples, C is a set
of instance types

1. key set← a set of datatype predicates in G
2. IC ← {i| < i,rdf:type, c >∈ G ∧ c ∈ C}
3. satisfied← false
4. while not satisfied and key set 6= ∅ do
5. for key ∈ key set do
6. discriminability ← dis(key, IC , G)
7. if discriminability < β then
8. key set← key set− key
9. else

10. coverage← cov(key, IC , G)
11. FL ← 2∗discriminability∗coverage

discriminability+coverage
12. score[key]← FL

13. if FL > α then
14. satisfied← true
15. if not satisfied then
16. dis key ← arg maxkey∈key set dis(key, IC , G)
17. key set← combine dis key with all other keys
18. G← update(IC , key set,G)
19. return arg maxkey∈key set score[key]

cov(key, IC , G) =
|{i|t =< i, key, o >∈ G ∧ i ∈ IC}|

|IC |
(6.2)

Note, i and o represent the subject and object of a triple respectively. If any predicate has

a FL higher than the given threshold α, the predicate with the highest FL will be chosen

to be the candidate selection key.

If none of the keys have a FL above the threshold α, the algorithm combines the pred-

icate that has the highest discriminability with every other predicate to form |key set|-1

virtual predicates, add them to key set and remove the old ones. Furthermore, via the

function update(IC , key set,G), for a new key, we concatenate the object values of differ-

ent predicates in the key for the same instance to form new triples that use the combined

virtual predicate as their predicate and the concatenated object values as their objects.

These new triples and predicates are added to G. The same procedure can then be applied

iteratively. In the learning process, we remove low-discriminability predicates. Because the

137



discriminability of a predicate is computed based upon the diversity of its object values,

having low-discriminability means that many instances have the same object values on this

predicate; therefore, when utilizing such object values to look up similar instances, we will

not get a suitable reduction ratio.

For determining the key for candidate selection, we re-use the proposed predicate dis-

criminability in Section 3.2 and differences are: 1) We do not determine a candidate key

only based on the discriminability of a predicate; instead, multiple predicates might be

combined as the key; 2) We introduce two new metrics, coverage and Fcs, which are used

in together with predicate discriminability in an unsupervised predicate discovery process

to learn the candidate selection key.

During the candidate selection key discovery process, we remove predicates whose dis-

criminability is lower than the threshold, β. On one hand, because the discriminability of

a predicate is computed based upon the diversity of its object values, low discriminabil-

ity means many instances have the same object values on this predicate; therefore, when

trying to utilize such object values to look up similar instances (to be described in Sec-

tion 6.2), more un-coreferent pairs could be selected. On the other hand, since such keys

do not contribute much in disambiguating the instances, it will help to reduce the overall

computational cost by removing them.

6.2 Indexing Ontology Instances for Efficient Lookup

With the learned predicates, for each instance, we present how to efficiently look up similar

instances and compute their similarity based upon the object values of the learned predi-

cates. One simple approach might be to conduct a pairwise comparison of the object values

of the learned predicates for all pairs of instances, e.g., comparing last names and first
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names for people instances. However, for a dataset with millions of instances, this simple

method might not even scale itself. Therefore, we need a technique that enables efficient

look-up for similar instances.

We adopt a traditional technique in the Information Retrieval (IR) research field, in-

verted index, to speed up the look-up process. Given an RDF graph G and the predicates

PR learned by Algorithm 7, we build an index as shown in Figure 6.2. For a learned pred-

Figure 6.2: Index Structure

icate p ∈ PR, we extract tokens from the object values of triples using p; for each such

token tk, we collect all instances that have triples with p and also at least one object value

of such triples contains tk.

Figure 6.3 demonstrates a concrete example of how we convert RDF triples to the corre-

sponding Information Retrieval style inverted index. Here, we have two ontology instances i

Figure 6.3: An Example of Converting RDF Triples to Information Retrieval Inverted Index

and j and let’s assume only one predicate full-name was selected as the candidate selection
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key. Both instances have a single triple for the full-name predicate with object values “John

Smith” and “James Smith” respectively, which is shown on the left side of the diagram.

Correspondingly, on the right side, we show the built inverted index. As we discussed be-

fore, for each selected predicate, we have one separate index. So, we see that we have the

Full name index. This index has two major components: term list and posting list. Each

token we extract from the object values of the full-name predicate, “John”, “James” and

“Smith”, is treated as a separate term; and each term is associated with a posting list that

stores all instances whose full name contains this term. In this given example, we know

that both instances i and j have the token “Smith” in their full name, thus they are both

in the posting list of the term “Smith”.

With the learned predicates and built inverted indices, each instance is associated with

tuple(s) in the form of (instance, predicate, value). We define a function search(Idx, q,

pred) that returns the set of instances for which the pred field matches the boolean query

q using inverted index Idx. Algorithm 8 presents our candidate selection process where t

is a tuple and t.v, t.p and t.i return the value, predicate and instance of t respectively. For

Algorithm 8 Candidate Selection(T,Idx), T is a set of tuples using predicates in the
learned key; Idx is an inverted index

1. candidates← ∅
2. for all t ∈ T do
3. query ← the disjunction of tokens of t.v
4. results←

⋃
p∈Comparable(t.p)

search(Idx, query, p)

5. for all t′ ∈ results do
6. if is sim(t, t′) then
7. candidates← candidates ∪ (t.i, t′.i)
8. return candidates

each tuple t, we issue a Boolean query, the disjunction of its tokenized values, to the index

to search for tuples (results) with similar values on all predicates comparable to that of t.

The search process performs an exact match on each query token. is sim(t, t′) returns true
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if the similarity between two tuple values is higher than a threshold.

We look up instances on comparable fields. For example, in one of our datasets used

for evaluation, we try to match person instances of both the CiteSeer:Person and the

DBLP:Person classes where the key is the combination of CiteSeer:Name and FOAF:Name.

So, for a tuple, we need to search for similar tuples on both predicates. Assuming we have

an alignment ontology where mappings between classes and predicates are provided, two

predicates p and q are comparable if the ontology entails p v q (or vice versa).

6.3 Refining Index Lookup Results

To further reduce the size of the candidate set, it would be necessary to adopt a second

level similarity measure between a given instance (i) and its returned similar instances from

the Boolean query. Otherwise, any instance that shares a token with i will be returned. In

this paper, we compare three different definitions of the function is sim. The first one is to

directly compare (direct comp) two tuple values (e.g., person names) as shown in Equation

6.3.

String Matching(t.v, t′.v) > δ (6.3)

where t and t′ are two tuples; String Matching computes the similarity (e.g., Jaccard)

between two strings. If the score is higher than the threshold δ, this pair of instances will

be added to the candidate set. Although this might give a good pairwise completeness by

setting δ to be low, it could select a lot of non-coreference pairs. One example is person

names. Person names can be expressed in different forms: first name + last name; first

initial + last name, etc.; thus, adopting a low δ could help to give a very good coverage on

true matches; meanwhile, certain amount of non-coreferent pairs could also be included.
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Another choice is to check the percentage of their shared highly similar tokens (token sim)

as shown in Equation 6.4:

|sim token(t.v, t′.v)|
min(|token set(t.v)|, |token set(t′.v)|)

> θ (6.4)

where token set returns the tokens of a string; sim token is defined in Eq. 6.5:

sim token(si, sj) =

{tokeni ∈ token set(si)|∃tokenj ∈ token set(sj),

String Matching(tokeni, tokenj) > δ)} (6.5)

where si/j is a string and tokeni/j is a token from it. Without loss of generality, we assume

that the number of tokens of si is no greater than that of sj . The intuition behind Eq. 6.4

is that two coreferent instances could share many similar tokens, although the entire strings

may not be sufficiently similar on their entirety. One potential problem with this similarity

measure is that it may take longer to calculate because the selected literal values for some

types of instances could be long (e.g., publication titles).

Instead of computing token level similarity, a third option is to check how many character

level n-grams are shared between two tuple values as computed in Equation 6.6:

|gram set(n, t.v)
⋂
gram set(n, t′.v)|

min(|gram set(n, t.v)|, |gram set(n, t′.v)|)
> θ (6.6)

where gram set(n, t.v) extracts the character level n-grams from a string. We hypothesize

that the n-gram based similarity measure is the best choice. The intuition is that we
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can achieve a good coverage on true matches to the Boolean query by examining the n-

grams (which are finer grained than both tokens and entire strings) while at the same time

effectively reducing the candidate set size by setting an appropriate threshold. We use min

in the denominator for Equations 6.4 and 6.6 to reduce the chance of missing true matches

due to missing tokens, spelling variations or misspellings (e.g., some tokens of people names

can be missing or spelled differently).

6.4 Evaluation

6.4.1 Evaluation Datasets and Methods

The three RDF datasets that we used in previous chapters are also used for evaluating the

proposed offline candidate selection algorithm. I randomly chose 100K instances for each

instance category (RKB Person, RKB Publication and SWAT Person), split each 100K

dataset into 10 non-overlapping and equal-sized subsets, run all algorithms on them and

report the average. This enabled us to conduct the two-tailed t-test to test the statistical

significance on the results of the 10 subsets from two systems. On average, there are 6,096,

4,743 and 684 coreferent pairs for each subset of RKB Person, RKB Publication and SWAT

Person respectively.

Similar to the way we evaluate our on-the-fly candidate selection algorithm, I still adopt

the two-phase approach here. In phase one, I use the three well adopted metrics PC, RR

and Fcs from previous works [43, 40, 41] as discussed in Section 2.3.1. For phase two, the

proposed entity coreference [16] (See Section 3) is used. I apply the proposed candidate

selection technique on the RDF datasets discussed in Section 3.4 to select candidate pairs

and run the proposed entity coreference algorithm on the candidate sets to measure the
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F-score of the coreference phase and the runtime of the entire process, including candidate

selection and coreference.

Table 6.1 shows the parameter setting for our evaluation. For the two key parameters α

Table 6.1: Parameter Settings.

Parameter Value Description

α (Alg. 7) 0.9 Whether a key will be used for candidate selection
β (Alg. 7) 0.2 Threshold for filtering low-discriminability predicates

θ (Eqs. 6.4, 6.6) 0.8 If a pair of instances should be chosen as a candidate
δ (Eqs. 6.3, 6.5) 0.1 to 0.9 Threshold for string similarity on their entirety

and β, we set them to be 0.9 and 0.2 respectively. When β is low, only a few predicates are

removed for not being discriminating enough; when α is high, then I only select keys that

discriminate well and are used by most of the instances. For direct comp and token sim, I

varied δ from 0.1 to 0.9 and report the best results. I extract bigrams and compute Jaccard

similarity for string matching in all experiments.

6.4.2 Evaluation Results on RDF Datasets

From Algorithm 7, the discovered candidate selection key for each RDF dataset is as fol-

lowing:

RKB Person: full-name, job, email, web-addr and phone

RKB Publication: title

SWAT Person: CiteSeer:name and FOAF:name

For RKB Person, full-name has good coverage but is not sufficiently discriminating; while

the other selected predicates have good discriminability but poor coverage. So, they were

combined to be the key. For SWAT Person, neither of the two selected predicates has

sufficient coverage; thus both were selected.
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The proposed candidate selection method bigram (Eq. 6.6) is firstly compared to

direct comp (Eq. 6.3) and token sim (Eq. 6.4) that use different string similarity mea-

sures. Also, we compare to our previous entity coreference algorithm P-EPWNG [20] that

employs the on-the-fly filtering mechanism discussed in Chapter 5, and compare to the EP-

WNG [16] algorithm proposed in Chapter 3 that does not perform any candidate selection

or context pruning, on the coreference results and runtime. Finally, we compare against

the state-of-the-art candidate selection systems: All-Pairs [97], PP -Join(+) [98], Ed-Join

[99], FastJoin [96], IndexChunk [95], and BiTrieJoin [94]. For coreference results, a system’s

best F-Score is reported by applying a threshold from 0.1 to 0.9.

Table 6.2 shows the results of different systems. We explain the meanings of the metrics

here: |Pairs|: candidate set size; CST : time for candidate selection; RR: Reduction Ratio;

PC: Pairwise Completeness; Fcs: the F1-score for RR and PC; F1: the F1-Score of Precision

and Recall for the coreference results; Total: the runtime for the entire entity coreference

process.

First of all, comparing within our own alternatives, in general, both bigram and token sim

has the best RR while direct comp commonly has better PC. Our proposed candidate selec-

tion technique bigram selected almost as few pairs as token sim on the two RKB datasets

and even fewer pairs for SWAT Person, and always had better PC. Moreover, bigram

enabled the entire coreference process to finish the fastest on all three datasets.

On RKB Person, for Fcs, bigram was not as good as direct comp but is able to outper-

form all compared state-of-the-art systems. Statistically, the difference between bigram and

direct comp and token sim is significant with P values of 0.0106 and 0.0004 respectively;

the difference between bigram and all state-of-the-art systems is also statistically signif-

icant with a P value of 0.0001. Furthermore, by applying our entity coreference system
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to the selected pairs, bigram has the best F1-score that is statistically significant com-

pared to that of direct comp, All-Pairs/PP-Join(+)/FastJoin, EdJoin/IndexChunk, and

BiTrieJoin/PartEnum with P values of 0.0433, 0.0093, 0.0482 and 0.0001 respectively.

We observed similar results on SWAT Person. For the candidate selection Fcs, the differ-

ence between bigram and direct comp/token sim/BiTrieJoin/PartEnum and EdJoin/All-

Pairs/PP-Join(+)/FastJoin is statistically significant with P values of 0.0001 and 0.0263

respectively. Similarly, P-EPWNG and bigram were able to run faster than all other com-

pared systems. As for the F1-score of the actual coreference results, we did not observe

any significant difference among the various systems.

On RKB Publication, bigram dominates the others in all aspects except for |pairs| and

candidate selection time. For Fcs, except for direct comp, the difference between bigram and

others is statistically significant with P values of 0.0001. As for the coreference results, al-

though no statistical significance was observed between bigram and direct comp/token sim,

statistically, bigram achieved a better F1-score than those state-of-the-art systems with a

P value of 0.0001.

One thing to note is that on both RKB datasets, token sim took longer to finish the

entire process than bigram even with fewer selected pairs because it takes longer to select

candidate pairs. It would potentially have to compare every pair of tokens from two strings,

which was time-consuming. This was even more apparent on RKB Publication where titles

generally have more tokens than people names.

Finally, we compare bigram to EPWNG [16], the algorithm that does pairwise com-

parison on all pairs of instances as introduced in Chapter 3. Table 6.2 shows that using

bigram enables the entire process to run 2-3 orders of magnitude faster than EPWNG ;

and by applying candidate selection, the F-scores of the coreference results on both RKB
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datasets did not drop and even noticeably better performance was achieved. For RKB

Person and RKB Publication, the improvement on the coreference F-score is statistically

significant with P values of 0.0001 and 0.0020 respectively. Such improvement comes from

better precision: by only comparing the disambiguating information selected by Algorithm

7, candidate selection filtered out some false positives that could have been returned as

coreferent by EPWNG. For instance, for RKB Person, one false positive could be detected

by EPWNG by considering two people’s publications that are accessible in the RDF graph

by getting distant triples [16]; however, only by considering their most disambiguating in-

formation (e.g., name, job, etc.), they could be filtered out by candidate selection. In this

case, candidate selection doesn’t only help to scale the entire entity coreference process but

also improves its overall F-score. This is consistent with what we observed for the on-the-fly

pruning technique in Chapter 5.

6.4.3 Evaluation Results Using Standard Coreference Datasets

To show the generality of our proposed algorithm, we also evaluate it on three non-RDF but

structured datasets frequently used for evaluating entity coreference algorithms: Restaurant,

Hotel and Census as described earlier. We learned the candidate selection key for each

dataset as following:

Restaurant: name

Hotel: name

Census: date-of-birth, surname and address 1

Here, we compare to five more systems: BSL [42], ASN [43], Marlin [92], AF [91] and Best

Five [87] by referencing their published results. We were unable to obtain the executables
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for these systems.

For this experiment, we apply candidate selection on each of the three full datasets.

First, the scale of the datasets and their groundtruth is small. Also, each of the Restaurant

and the Hotel datasets is actually composed of two subsets and the entity coreference task is

to map records from one to the other; while for other datasets, we detect coreferent instances

within all the instances of a dataset itself. So, it is difficult to split such datasets. We didn’t

apply any actual coreference systems to the candidate set here due to the small scale and the

fact that we couldn’t run some of the systems to collect the needed candidate sets. Instead,

in order to accurately reflect the impact of RR, we suggest a new metric RRlog computed

as 1 − log |candidate set|
log (N∗M) . In Table 6.2, on RKB Person, an order of magnitude difference in

detected pairs between bigram and Ed-Join is only represented by less than 1 point in RR;

however, a more significant difference in the total runtime was observed. With this new

metric, bigram and Ed-Join have an RRlog of 46.13% and 32.77% respectively where the

difference is now better represented by 13.36%. We also compute a corresponding Fcs log

using RRlog. For systems where we references reported results, we calculated |pairs| from

their reported RR; because BSL is supervised (thus the blocking was not done on the full

dataset), we assumed the same RR as if it was done on the full dataset.

Table 6.3 shows the results. Since not all systems reported results on all datasets, we only

report the available results here. Comparing within our own alternatives, for all datasets,

direct comp has the best PC; bigram and token sim have identical RR, but bigram always

has better PC. Furthermore, bigram always has the best Fcs log and has better RRlog on

Restaurant and Hotel but only slightly worse on Census than token sim.
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Table 6.3: Candidate Selection Results on Standard Coreference Datasets. bigram, direct comp
and token sim refer to Equations 6.6, 6.3 and 6.4 respectively.

Dataset System
Candidate Selection

|Pairs| RR(%) PC(%) Fcs(%) RR log(%) Fcs log(%)

Restaurant

bigram 182 99.90 98.21 99.05 56.92 72.07
direct comp 2,405 98.64 100.00 99.31 35.56 52.46
token sim 184 99.90 95.54 97.67 56.83 71.27
All-Pairs [97] 1,967 98.89 99.11 99.00 37.22 54.12
PP-Join [98] 1,967 98.89 99.11 99.00 37.22 54.12
PP-Join+ [98] 1,967 98.89 99.11 99.00 37.22 54.12
Ed-Join [99] 6,715 96.19 96.43 96.31 27.06 42.26
BSL [42] 1,306 99.26 98.16 98.71 40.61 57.45
ASN [43] N/A N/A <96 <98 N/A N/A
Marlin [92] 78,773 55.35 100.00 71.26 6.67 12.51

Hotel

bigram 4,142 97.21 94.26 95.71 30.06 45.58
direct comp 10,036 93.24 96.69 94.94 22.63 36.67
token sim 4,149 97.21 90.56 93.77 30.04 45.12
All-Pairs [97] 6,953 95.32 95.91 95.62 25.71 40.55
PP-Join [98] 6,953 95.32 95.91 95.62 25.71 40.55
PP-Join+ [98] 6,953 95.32 95.91 95.62 25.71 40.55
Ed-Join [99] 17,623 88.13 98.93 93.22 17.90 30.31
BSL [42] 27,383 81.56 99.79 89.76 14.20 24.86

Census

bigram 166,844 99.67 97.76 98.70 32.17 48.41
direct comp 738,945 98.52 98.08 98.30 23.77 38.27
token sim 163,207 99.67 96.36 97.99 32.30 48.38
All-Pairs [97] 5,231 99.99 100.00 99.99 51.70 68.16
PP-Join [98] 5,231 99.99 100.00 99.99 51.70 68.16
PP-Join+ [98] 5,231 99.99 100.00 99.99 51.70 68.16
Ed-Join [99] 11,010 99.98 99.50 99.74 47.50 64.30
AF [91] 49,995 99.9 92.7 96.17 38.97 54.87
BSL [42] 939,906 98.12 99.85 98.98 22.42 36.62
Best Five [87] 239,976 99.52 99.16 99.34 30.12 46.21

Compared to other systems, on both Restaurant and Hotel, bigram has the best RR,

Fcs, RRlog and Fcs log, though its Fcs log was only slightly better than that of All-Pairs/PP -

Join(+). Also, with betterRR, it only has slightly worse PC thanAll-Pairs/PP -Join(+)/Marlin

on Restaurant. Particularly, bigram has significantly better RR (15.65% and 9.08% higher)

than BSL and Ed-Join on Hotel; however it was not able to achieve a PC as good as these

two systems did. If we consider larger datasets, such a significant difference in RR may

save a great amount of runtime. Note that with the two new metrics, the impact of the

number of selected pairs becomes more apparent, which we believe more accurately reflects
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its impact. On Census, All-Pairs/PP -Join(+) achieved the best Fcs and Fcs log; while

bigram still achieved better RR than BSL and BestF ive with slightly worse PC. bigram

only has a PC of 97.76% because our method only performs exact look-ups into the index;

however, in this synthetic dataset, coreferent records were generated by modifying the orig-

inal records, including adding misspellings, removing white spaces, etc. Therefore, some of

the coreferent records could not even be looked up from the inverted index. In future work,

we will explore techniques for efficient fuzzy retrieval to overcome this problem.

6.4.4 Applying Other Actual Entity Coreference Algorithms for Phase II

Evaluation

As we noticed from Table 6.2, after applying our on-the-fly and offline candidate selection

techniques, the P-EPWNG and bigram systems achieved higher precision for the entire

coreference process; in the mean time, they were also able to maintain comparable recall

to the other systems, thus enabling them to achieve satisfying coreference F1-scores in gen-

eral. However, in the previous experiments, we used EPWNG [103], our own coreference

algorithm, as the actual coreference algorithm in the second phase of two-phase evaluation

process. In this section, we would like to explore more on this high-precision-low-recall phe-

nomenon by applying another state-of-the-art actual coreference algorithm to examine the

following questions: 1) If the other state-of-the-art systems can also be sped up significantly

with our pruning technique; 2) If the other state-of-the-art entity coreference algorithms

would also achieve higher precision after applying our candidate selection technique; 3) If

the other systems would be able to maintain decent recall given that our pruning technique

is bound to incorrectly filter out some of the groundtruth pairs.

For this experiment, we use another system LogMap [72, 73], as discussed in Section
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2.3.4. And we compare the following four systems:

1. LogMap that has a built-in candidate selection module that indexes values of manually

specified datatype properties and retrieves instances sharing at least one common

token;

2. LogMap NoCS is a modified version of LogMap with its own candidate selection mod-

ule disabled;

3. LogMap On-The-Fly uses our own on-the-fly candidate selection technique;

4. LogMap Offline adopts the pre-selection technique proposed in this chapter.

For the latter two systems, we firstly run the on-the-fly and offline algorithms respectively to

generate the candidate pairs and then apply LogMap NoCS on the selected pairs to detect

their coreference relationships.

Runtime Comparison

Figure 6.4 shows the runtime comparison of these four systems on RKB Person, SWAT

Person, RKB Publication respectively. The y-axis represents runtime in seconds, and we use

a logarithmic scale with base 10. First of all, after plugging in a candidate selection module,

both LogMap and LogMap On-The-Fly achieved significant runtime speedup compared to

LogMap NoCS. This verifies the need of adopting this additional filtering step in facilitating

entity coreference on large-scale datasets. Furthermore, by adopting our own on-the-fly

candidate selection algorithm, for RKB Person and SWAT Person, LogMap On-The-Fly was

able to run 25% and 60% faster than utilizing LogMap’s built-in candidate selection module,

showing the effectiveness of our proposed algorithm. Although LogMap On-The-Fly was not

running as fast as LogMap on the RKB Publication dataset, it indeed achieves substantially
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Figure 6.4: Runtime Comparison by Applying the LogMap Algorithm to Selected Candidate In-
stance Pairs

higher precision, recall and F1-score (to be presented in Figures 6.5(a) to 6.7(c)). Finally,

when adopting our offline candidate selection technique, LogMap Offline runs the fastest

among all systems. And it is about 3, 2 and 6 times faster than LogMap On-The-Fly on

RKB Person, SWAT Person and RKB Publication respectively. This is consistent with the

results in Table 6.2, where we see that the offline candidate selection algorithm selected

remarkably fewer candidate pairs than the on-the-fly algorithm did.

Precision, Recall, and F1-Score

In addition to runtime, we want to verify the other two hypotheses we discussed above:

whether other entity coreference systems can achieve higher precision and maintain decent

recall by applying our candidate selection technique.

RKB Person. Figures 6.5(a) to Figures 6.5(c) demonstrate the precision, recall, and

F1-score of the four systems on RKB Person. It is not surprising to see that LogMap NoCS

maintains the best recall for all thresholds, given that there is no candidate selection
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(b) RKB Person Recall
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(c) RKB Person F1-Score

Figure 6.5: Precision, Recall and F1-Score on RKB Person Dataset by Plugging Candidate Selec-
tion into LogMap

adopted. Due to the same fact, its precision is lower than the other two comparison sys-

tems; this shows that the utilizing candidate selection can effectively reduce the chance of

having false positives. Although LogMap NoCS could not achieve a decent F1-score at low

thresholds, it was able to catch up with the other three systems at high thresholds as shown

in Figure 6.5(c). However, if we take into account its high time complexity demonstrated

in Figure 6.4, LogMap NoCS is inferior to the other systems.

Comparing LogMap On-The-Fly and LogMap, LogMap On-The-Fly has clear advantage

on recall but is also less precise than the other system, particularly at low thresholds (0.3 to

0.7). Although LogMap has higher F1-scores than LogMap On-The-Fly from thresholds 0.3
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to 0.8 due to its high precision, LogMap On-The-Fly was able to achieve its highest F1-score

of 89.82% at threshold 0.9, 3.19% higher than that of LogMap at the same threshold, still

showing significant improvement. Considering the fact that LogMap On-The-Fly runs at

least 25% faster than LogMap, it could be a better choice.

Finally, we see that LogMap Offline achieves higher precision than LogMap On-The-Fly,

since it performs candidate selection more aggressively and therefore was able to filter out

more potential false positives. At the same time, because LogMap Offline is also more

capable of maintaining groundtruth matches as shown in Table 6.2, it was able to achieve

nearly as good recall as LogMap NoCS did. Overall, the best F1-score 90.43% was achieved

by LogMap Offline at threshold 0.9, compared to the highest F1-scores of 88.38%, 86.63%

and 88.93% for LogMap NoCS, LogMap and LogMap On-The-Fly respectively at the same

threshold. Taking into account the much shorter runtime of LogMap Offline, it appears to

be the best choice, at least for this dataset.

SWAT Person. Figures 6.6(a) to 6.6(c) show the results on the SWAT Person dataset.

We observe a very similar pattern to the previous RKB Person dataset for all four sys-

tems. Comparing the two our own algorithms, LogMap Offline has higher precision than

LogMap On-The-Fly on nearly all thresholds except for threshold 0.9. Similar to what we

notice for RKB Person, LogMap Offline was able to maintain a good recall for all thresholds.

The best F1-scores for LogMap Offline, LogMap NoCS, LogMap and LogMap On-The-Fly

are 93.74%, 93.76%, 93.77% and 93.85% respectively, all achieved at threshold 1.0. Although

the differences between their best F1-scores are not significant, LogMap actually has more

improvement in F1-score over the other systems on most of the evaluation thresholds.

RKB Publication. The results are shown in Figures 6.7(a) to 6.7(c) for all four

systems. First of all, the LogMap Offline system dominates the other systems on precision
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(b) SWAT Person Recall
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(c) SWAT Person F1-Score

Figure 6.6: Precision, Recall and F1-Score on SWAT Person Dataset by Plugging Candidate Se-
lection into LogMap

and F1-score on all tested thresholds. This clearly demonstrates the advantage of our offline

candidate selection algorithm. Combined with the substantial savings on runtime (Figure

6.4), LogMap Offline is the best choice for RKB Publication.

On the other hand, the results on RKB Publication are different from that of the

previous two person datasets, particularly when comparing LogMap and LogMap On-The-

Fly/LogMap Offline. Here, LogMap is dominated by the other two systems on all metrics

and tested thresholds. When comparing LogMap to its own precision on the two person

datasets (Figures 6.5(a) and 6.6(a)), it exhibits a much worse performance. Recall that

for LogMap, it computes the similarity between all pairs of “label”s between two instances
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(b) RKB Publication Recall
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(c) RKB Publication F1-Score

Figure 6.7: Precision, Recall and F1-Score on RKB Publication Dataset by Plugging Candidate
Selection into LogMap

and then picks the highest similarity score as the final similarity measure for the two in-

stances. For RKB Publication, “publication-title” was one of the “label” properties; and it

is more likely that different publications will have similar titles than different persons will

have similar names. This is because many common tokens can occur in titles, especially for

papers in related research areas. Combined with the fact that LogMap’s candidate selection

is not as capable as our on-the-fly and offline algorithms in terms of retaining groundtruth

matches, which causes low recall, it was not able to achieve a decent F1-score compared to

the other comparison systems.

To summarize, we verified our hypotheses that: 1) The candidate selection technique is
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an effective step in speeding up the entire entity coreference process; 2) At the same time,

candidate selection techniques can also help coreference systems to improve precision by

filtering out some of the potential false positives; 3) Finally, by applying appropriate candi-

date selection techniques, a decent amount of groundtruth pairs can be retained, providing

the possibility to achieve satisfying recall and F1-score for the overall process.

6.4.5 System Scalability

We apply different systems to 100K to 1 million instances to examine their scalability. All-

Pairs, PPJoin+ and FastJoin achieve very similar results, so we only compare to PPJoin+.

We also compare to EdJoin on both person datasets where it is better on both the number of

selected pairs and the overall runtime as shown in Table 5.3; we did not compare to EdJoin

on RKB Publication since it selects twice as many pairs as PPJoin+ does on 10K instances

and thus is not expected to have better scalability. There are only 500K instances in SWAT

Person, and PPJoin+ does not scale to 1 million instances on RKB Person; also, with 800K

instances, PPJoin+ already shows a clear exponential growth on RKB publication, so we

did not test it on the 1 million scale.

We perform this scalability test for both phases: candidate selection and the entire

coreference process. Figures 6.8(a) to 6.8(c) demonstrate the scalability of different systems

for the candidate selection phase. We can see that our proposed on-the-fly and offline

candidate selection algorithms are not as scalable as the other systems and this is consistent

with our previous experiments on small scale testing sets as shown in Table 6.2. However,

at the largest compared scale (1M for RKB person, 800K for RKB Publication, and 500K

for SWAT Person), the differences between offline and the other state-of-the-art systems

are still within an acceptable level: 0.21, 0.83 and 1.12 hours slower than the fastest system
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(a) RKB Publication (b) RKB Person

(c) SWAT Person

Figure 6.8: Candidate Selection Scalability

on RKB Person, RKB Publication and SWAT Person respectively.

In Figures 6.9(a) to 6.9(c), we show the scalability of all systems for the entire en-

tity coreference process, i.e., candidate selection plus entity coreference. When comparing

between our proposed systems, Offline shows better scalability than On-The-Fly, since it

selected much fewer candidate pairs in phase one. At the largest compared scale, on RKB

Person, RKB Publication and SWAT Person, Offline achieves a reduction ratio of 99.987%,

99.995% and 99.988% respectively; also, when compared to the system that selects the

second fewest pairs, Offline reduces the size of the candidate sets by a factor of 28 to 36.

Compared to On-The-Fly, Offline is about 3 times faster on RKB Publication and RKB

159



!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

$!!(" %!!(" &!!(" '!!(" #!!(" )!!(" *!!(" +!!("

,
-
.
/0
"

12304536701"

8(9":.;<=65>-3"

?@=37" ?3ABC7AD<E" ::F-=3G"

(a) RKB Publication

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

$!!(" %!!(" &!!(" '!!(" #!!(" )!!(" *!!(" +!!(" ,!!(" $-"

.
/
0
12
"

34526758923"

:(;"<912/5"

=>?59" =5@AB9@CDE" FGH/?5" <<H/?5I"

(b) RKB Person

!"

#!"

$!"

%!"

&!"

'!"

(!"

#!!)" $!!)" %!!)" &!!)" '!!)"

*
+
,
-.
"

/01.23145./"

6789":5-.+1"

;<=15" ;1>9?5>@AB" CDE+=1" ::E+=1F"

(c) SWAT Person

Figure 6.9: Scalability of The Entire Entity Coreference Process

Person, and is about 1.6 times faster on SWAT Person. When compared against the state-

of-the-art systems, for the overall process, our proposed systems Offline and On-The-Fly

demonstrate clearly better scalability. Specifically, Offline is at about 61, 16 and 18 times

faster than those systems on RKB Publication, RKB Person and SWAT Person respectively

on the highest compared scale. The other algorithms demonstrate a clear exponential curve;

although our two systems are also exponential, it has a much smaller exponent. Considering

applying these systems to even larger datasets, the runtime difference could become even

more substantial.
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6.4.6 Parameter Tuning

In this section, we tune the parameters of our offline candidate selection algorithm to study

their impact.

Testing the Similarity Threshold for Choosing a Candidate Pair. In our system,

the parameter θ, as part of the refining step, determines whether we should pick a pair of

instances to be a candidate. Table 6.4 shows the results by varying θ from 0.5 to 0.8. As

Table 6.4: Testing the Similarity Threshold for Choosing a Candidate Pair. We bold the best scores
of each metric among all tested θ values. |Pairs|: the number of selected candidate pairs;
PC: Pairwise Completeness; RR: Reduction Ratio; CS Time: time for the candidate
selection phase; Precision, Recall and F1-score are for the actual coreference results;
Total T ime is the runtime for the entire process (both phases).

Dataset Phase Metric
θ

0.5 0.6 0.7 0.8

RKB Person

|Pairs| 46,840 30,560 18,683 13,790
Candidate PC (%) 99.56 99.54 99.49 99.39
Selection RR (%) 99.91 99.94 99.96 99.97

CS Time 4.24 4.22 4.22 4.26
Precision (%) 95.01 95.21 95.34 95.41

Coreference Recall (%) 91.00 90.99 90.99 90.99
F1-score (%) 92.95 93.05 93.11 93.14
Total Time (s) 7.79 6.81 6.25 5.80

RKB Publication

|Pairs| 43,895 24,532 11,240 6,270
Candidate PC (%) 99.99 99.99 99.99 99.99
Selection RR (%) 99.91 99.95 99.98 99.99

CS Time 6.08 5.91 6.25 5.91
Precision (%) 99.64 99.66 99.68 99.72

Coreference Recall (%) 99.80 99.80 99.80 99.80
F1-score (%) 99.72 99.73 99.74 99.76
Total Time (s) 17.67 12.78 9.58 8.03

SWAT Person

|Pairs| 49,785 28,337 14,113 8,059
Candidate PC (%) 99.37 99.31 99.07 98.67
Selection RR (%) 99.90 99.94 99.97 99.98

CS Time 5.32 5.39 5.39 5.50
Precision (%) 99.40 99.46 99.46 99.46

Coreference Recall (%) 90.75 90.75 90.75 90.75
F1-score (%) 94.88 94.90 94.90 94.90
Total Time (s) 12.36 9.56 7.53 6.78

we adopt higher similarity thresholds, it is clear that our system selects fewer pairs, which
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leads to worse coverage on groundtruth pairs but at the same time enables it to reduce more

instance pairs. Although better coverage on groundtruth pairs was observed, this did not

translate into significant impact on recall for the actual coreference results. We only notice

very minor recall improvement for RKB Person but not on the other two datasets. However,

we do achieve better precision for higher θ values, since more potential false positives were

filtered out by setting more strict thresholds. As for runtime, because we need to process

much fewer pairs for higher θ values, clear runtime savings were achieved for the overall

process.

High values for θ are suggested when runtime is critical: the entire process could run

faster with certain gain in the coreference results, though we might not have the best PC.

When recall is emphasized, low thresholds should be adopted to ensure better PC with

tolerable runtime.

The Impact of Less Discriminating Properties and Different Stopping Cri-

teria for Candidate Selection Key Discovery. Recall that β (Line 7 of Algorithm 7)

is the threshold for filtering low-discriminability predicates and α (Line 13 of Algorithm

7) is the threshold for FL score, determining when to stop the key discovery process. As

we discussed before, during our candidate selection key discovery process, we remove pred-

icates that are not discriminating enough to avoid selecting too many un-coreferent pairs.

For RKB Publication, the “title” predicate itself is sufficiently discriminating (having a

discriminability of 0.92) and is used by every instance, giving a FL score of 0.96; thus, the

results will not be affected unless β is high enough such that “title” even gets removed.

For SWAT Person, foaf:name and CiteSeer:name are the only datatype properties used by

person instances with discriminability higher than 0.9, so varying β on this dataset from

0.1-0.9 will not affect the results; also, since both properties have a FL score of 0.85 and 0.05
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respectively, setting α lower than 0.85 (which will make CiteSeer:name the only property

for candidate selection) will not select any candidate pairs.

Table 6.5 shows the results on RKB Person by examining various value combinations

of α and β. First of all, when setting α to be 0.6, our system only uses the “full-name”

Table 6.5: Parameter Analysis: α and β on RKB Person. |Pairs|: candidate set size; RR: Reduc-
tion Ratio; PC: Pairwise Completeness; P and R represent the precision and recall of
the actual coreference results; CST and Total are the runtime for candidate selection
and the entire process respectively.

Low Stopping Candidate Selection Coref T ime (s)
Dis (β) Criteria (α) |Pairs| RR(%) PC(%) P (%) R(%) CST Total

0.4 0.7-0.9 13,790 99.97 99.39 95.41 90.99 4.32 5.87

0.3 0.7-0.9 13,790 99.97 99.39 95.41 90.99 4.26 5.80

0.2 0.7-0.9 14,670 99.97 99.48 95.20 91.00 5.36 7.09

0.1
0.8-0.9 21,843 99.96 99.52 94.71 91.02 6.42 8.89

0.7 20,945 99.96 99.43 94.89 91.01 5.70 7.96

0.1-0.4 0.6 13,687 99.97 99.39 95.41 90.99 3.99 5.56

predicate for candidate selection, which leads to the fewest selected pairs and shortest

runtime. Furthermore, the best Pairwise Completeness was achieved when α equals 0.8 and

0.9, and β equals 0.1. When β is low, we still retain some low-discriminability predicates;

while when α is high, our system goes through more iterations to combine more properties.

At this combination, we achieve the highest coreference recall and the lowest precision at the

same time, since we perform the filtering least aggressively. Finally, as we start to increase

β from 0.1 to 0.4, we gradually remove more non-discriminating properties and this enables

the system to be more selective for choosing candidates. As a consequence, by sacrificing a

little on recall, we gain a relatively large improvement on precision. In the meanwhile, since

we are applying the actual coreference algorithm to fewer pairs, we also reduce the overall

computational cost with greater β values.
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Chapter 7

Towards Linking the Entire

Semantic Web: A Pilot Study on

the Billion Triples Challenge

Dataset

In previous chapters, we presented four different algorithms for detecting coreferent ontology

instances. Although those algorithms have been shown to be effective on different datasets,

there are still several questions left unsolved. On one hand, in our previous algorithms, we

manually specified the comparability between predicates, which is then used to determine

the comparability between paths of two weighted neighborhood graphs. This was feasible

for the previously used datasets because there were only 92 and 51 predicates in the RKB

and SWAT datasets respectively. Manually determining predicate comparability on these

two datasets only took about 1 to 2 hours. However, when we start to work on more
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heterogeneous datasets where there could be tens of thousands of predicates, manually

specifying such comparability becomes nearly infeasible. First, given that the datasets could

be really heterogeneous with data coming from various domains, humans may not have the

necessary domain expertise to decide predicate comparability. Also, even if we have the

required domain knowledge, people may not have the time to do this manually. Therefore,

in order to be able to work on really heterogeneous datasets, we need an automatic approach

that will produce the comparability between predicates without human input.

On the other hand, although we have tested our algorithms on the RKB and SWAT

datasets, our previous testing sets (the ontology instances used for evaluation) are primarily

about researchers and their publications. Although the two datasets use different predicates

to describe instances, they share some common patterns in their data, e.g., “people have

publications”, “publications have titles”, etc. Therefore, we would like to examine the

effectiveness of our algorithms on more heterogeneous datasets that have a wider variety of

classes.

In order to meet our testing goals described above, we believe that the Billion Triples

Challenge dataset [113] is appropriate (previously discussed in Section 2.3.1). In the rest

of this chapter, we will firstly introduce a property matching mechanism for automatically

producing predicate comparability, and then discuss how we modify and apply our previ-

ously developed entity coreference algorithms to this much larger and more heterogeneous

dataset to test their performance.

7.1 A Value-based Property Matching Scheme

The first step towards being able to link the BTC dataset would be an automatic prop-

erty matching scheme that produces the comparability between various predicates. In the
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literature, there have been different types of approaches for matching properties. Stoilos

et. al. [114] proposed a property matching algorithm that computes the string similarity

between the extracted tokens from the URIs of the properties. Although there are many ex-

isting string matching algorithms, such as Levenstein [111], Needleman-Wunsch (assigning

different weights to different edit operations) [115] and Jaro-Winkler [116], a novel string

matching metric that combines Jaro-Winkler and string overlappings was proposed. Fur-

thermore, reasoning-based approaches were also adopted for ontology alignment [117, 118].

Such systems typically consist of two steps. In the beginning, they will compute syntac-

tic similarity between the labels or extracted tokens of the properties and generate initial

mappings. After this, a reasoner is usually utilized to check semantic inconsistency based

upon subsumptions and disjointness. Not only schema level information was used for ontol-

ogy matching, instance data can also be helpful for aligning properties from heterogeneous

schemas. Instance-level data can give important insight into the contents and meaning of

schema elements, particularly when useful schema information is limited. In general, for

such approaches [119, 120, 121], values of the properties from two data sources will be

examined and property pairs that share similar values are then treated as matches.

Previous algorithms have been shown to be effective, however they also have some

limitations. First of all, only computing the string similarity between extracted tokens from

property URIs or labels may not be sufficient. For example, two properties “rdfs:label” and

“foaf:name” may not share highly similar strings in their URIs or even labels; however,

the former is sometimes used for representing person names. Therefore, only by looking at

their URIs or labels would let a property matching system miss this pair of properties and

finally cause the recall of the final coreference results to be affected. Logic based approaches

have the advantage of being able to help to filter some property pairs that share similar
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value spaces but are actually logically disjoint. They may also help to complement property

mappings generated by using string matching techniques, when the extracted tokens from

URIs are not sufficiently similar. However, one potential drawback is that such approaches

heavily rely on the correctness of the utilized ontological axioms. Errors in the logical

axioms or ontologies could result in incorrect property mappings.

In our work, we developed a value-based property matching mechanism, which is similar

to some of the previous approaches [121]. But different from previous algorithms, we propose

a different similarity metric to assist filtering out some false positives. In general, given two

datatype properties that we want to match, we extract the tokens from the objects (i.e.,

literals) of triples of such properties. For object properties, we treat each URI as a token,

i.e., we do not tokenize URIs. Once we obtain the tokens, we then calculate the similarity

of two properties by examining their tokens and treat them as a match if their computed

similarity exceeds the given threshold. Our similarity measures are given in Equations 7.1

and 7.2. Here, p1 and p2 represent two properties that we want to match; G is an RDF

graph where these two properties are being used; token set(p1, G) is a function that extracts

the tokens of property p1 in graph G and forms a token set.

Sim(p1, p2, G) =
|{token set(p1, G)} ∩ {token set(p2, G)}|

min(|{token set(p1, G)}|, |{token set(p2, G)}|)
(7.1)

Ratio(p1, p2, G) =
min(|{token set(p1, G)}|, |{token set(p2, G)}|)
max(|{token set(p1, G)}|, |{token set(p2, G)}|)

(7.2)

To determine whether two properties match, we use two metrics: Sim and Ratio. Sim

calculates the similarity between the token sets of two properties. We may notice that

our Sim function is similar to the traditional Jaccard similarity measure; but instead of

using a union in the denominator, we use the min size of the two token sets. This is to
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ensure that subproperties can match with their superproperties. Let’s take the following

property pair “full name” and “label” as a concrete example. For person instances, the “full

name” predicate is typically used to represent people’s name information; however, in some

datasets/situations, data publishers may choose to use the “label” property for representing

names, which is perfectly fine and does not violate anything. In this given example, if we

adopt the Jaccard similarity measure, then “full name” may not be aligned with “label”,

because the union of their token sets could be much larger than the intersection. Without

this property pair, the performance of the overall coreference results, particularly recall,

could be significantly impacted.

In addition to Sim, we also employ an additional filtering metric, called Ratio. Given

two properties, this metric computes the ratio between the size of their token sets. If the

calculated Ratio value of two properties is below a threshold, then we do not consider the

properties comparable. The intuition here is that although we want to be able to cover as

many appropriate property mappings as possible by using the min size in the Sim function,

we would like to filter properties pairs that happen to share common tokens but differ

significantly in the size of their token size. To be more specific, let’s see the “title” and

“keyword” example. Intuitively, we may not say that these two properties are comparable,

since they actually represent different semantics. However, if we only use the Sim function

defined in Equation 7.1, they may be highly similar, because publication titles actually

cover the majority of the possible keywords. If we also adopt the Ratio metric, the two

properties will be filtered out, since the token set of “title” is actually much larger than

that of “keyword”. We will study the impact of setting different thresholds for both Sim

and Ratio in our evaluation.
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7.2 A Modified Graph Matching Algorithm for Detecting

Coreferent Ontology Instances for BTC

In order to apply our previous algorithms to the BTC dataset, we made a few modifications

through empirical study. First of all, in our previous algorithms and evaluations, we used

depth-2 neighborhood, i.e., we stop at depth 2 when getting the neighborhood graph (the

expansion process discussed in Section 3.1). However, for the BTC dataset, we only use

depth-1 neighborhood graph. For the previous RKB and SWAT datasets, we did not get

sufficient literal values at depth 1 to compare to achieve decent recall. However, for the

BTC dataset, sufficient literals can be obtained at depth 1, and expanding to depth 2 will

greatly slow down the coreference process without gaining much in return.

Another modification is that when working on the BTC dataset, we do not fully follow

the open world assumption. Recall our EPWNG algorithm described in Algorithm 2 and

Section 3.3.5. If the last node of path m of instance a is a URI but it does not match any last

node of comparable paths of instance b, we do not add any weight to total weight. While for

the BTC dataset, we do apply penalties to such scenarios. Having a comparable path in the

other graph indicates that the two neighborhood graphs share similar characteristics (having

comparable properties). When the object values of such comparable properties do not

match, this indicates a mismatch between the two instances to some degree. Furthermore,

in the BTC dataset, because we have the “rdfs:label” and “rdfs:comment” properties, which

do not exist for the majority of the instances in RKB and SWAT, it is more easily for two

non-coreferent instances to have a decent similarity score. Therefore, in this BTC dataset,

we do not fully follow the open world assumption and discount similarity scores for un-

matched URI paths. The modified algorithm is shown in Algorithm 9. Compared to the
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original algorithm, the only difference is that at Line 10, if there exists any comparable paths

for URI path m, no matter whether their end nodes are identical, we assign path weight to

the weight of path m and thus it will be used to update total weight (the denominator in

the weighted average at Line 16 and 17).

Algorithm 9 Compare(Nx, Ny), Nx is the context N(G,x) and Ny is N(G,y); returns a
float number (the similarity of x and y)

1. total score← 0, total weight← 0
2. for all paths m∈Nx do
3. if ∃path n∈Ny, PathComparable(m,n) then
4. path score← 0, path weight← 0
5. if E(m) is literal then
6. path score← maxn′∈Ny ,PathComparable(m,n′) Sim(E(m), E(n′))
7. /* path n′ has the highest score with m */
8. path weight← (Wm +Wn′)/2
9. else if E(m) is URI then

10. path weight←Wm

11. if ∃path n′ ∈ Nb, PathComparable(m,n
′) ∧ E(m) = E(n′) then

12. path score← 1
13. /* path n′ has identical end node with m */
14. path weight← (Wm +Wn′)/2
15. total score← total score+ path score ∗ path weight
16. total weight← total weight+ path weight
17. return total score

total weight

A last change is that we added special processing for the “wikiPageRedirects” property 1.

In the BTC dataset, we notice that many instances are not associated with any literal values

but a single triple on this “wikiPageRedirects” property. Suppose we have an instance a

that only has a “wikiPageRedirects” triple. Through our expansion process, we will obtain

literal values from the instance that a gets redirected to; thus, those literal paths will be

depth-2 paths. However, for instance b, which is coreferent with a, we may have its literal

values at depth-1. In this case, when comparing instances a and b, we will not produce a high

similarity score, since one of our path comparability conditions is that comparable paths

need to be of same length. In our current approach, we simply skip the “wikiPageRedirects”

1http://dbpedia.org/ontology/wikiPageRedirects
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property, i.e., moving the following nodes in the expanded chains/paths to an upper level.

We do this at the coreference time, so that we can easily switch between the two options to

compare their performance. To generalize this to other kinds of redirects, we could produce

a small mapping ontology. In this ontology, we first define a high level property, called

“redirect”. We then specify that all properties that represent redirecting are sub properties

of this top level “redirect” property and all such properties will not count towards the

length of a path. This small mapping ontology will be part of the inputs to our algorithm

to facilitate further processes.

7.3 Evaluation

In this section, we present how we prepared the testing datasets, evaluation metrics, com-

parison systems, and evaluation results.

7.3.1 Testing Dataset Preparation, Parameter Setting, and Evaluation

Metrics

Testing Dataset. The BTC dataset provides the groundtruth about instance coreference

relationships. We adopt the union-find algorithm [122, 123] to compute the transitive closure

of the complete set of owl:sameAs statements in the dataset. This generates 1,638,309

owl:sameAs clusters; within each cluster, each instance is coreferent to every other instance.

Although we evaluate all systems using the provided groundtruth, we did check its quality

on 100 randomly sampled instances. To check the soundness of the provided groundtruth of

these 100 instances, we examined 126 instance pairs that were missed by our system when

the evaluation threshold was set to 0.3, and found that 3 out of these 126 groundtruth

pairs should not be made coreferent. As for completeness, with the same 100 instances,
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by adopting an evaluation threshold of 0.9, we examined 29 pairs that were reported to be

coreferent by our system but were not included in the groundtruth; among these, 4 pairs

should actually have been included. With our quality check, though only applied on a small

amount of sampled data, I think the existing groundtruth is of decent quality but may need

to be augmented to measure recall better.

In order to prepare a testing dataset of size M, we firstly randomly pick M/2 instances

that do not have any coreference relationships; we call such instances non-gt instances2.

We then randomly choose some number of owl:sameAs clusters that have M/2 instances

in total; we call them gt instances. This way, we have an equal number of gt and non-gt

instances. In the collected context information for each instance, we use depth-1 triples

where the instance either takes the subject or the object place. On average, there are about

21 triples associated with each instance in our testing set.

Parameter Setting and Evaluation Metrics. Table 7.1 shows the parameters and

the values adopted in our experiments. A full parameter analysis will be presented in Section

7.3.6. As for evaluation metrics, we measure the precision, recall, F1-score and runtime of

the entire entity coreference process.

Table 7.1: Parameter Settings

Parameter Value Description

Sim (Eq. 7.1) 0.3 Predicate comparability: token set similarity
Ratio (Eq. 7.2) 0.03 Predicate comparability: the ratio between token sets

Depth 1 Neighborhood expansion depth limit
Lucene filter 0.2 Threshold for Lucene-based filtering in EPWNG Lucene

7.3.2 Comparison Systems

Here, we describe the details of our comparison systems as listed in Table 7.2. LogMap [72]

2Here, “gt” represents groundtruth
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Table 7.2: Comparison Systems

System Description

LogMap [72] Uses manually specified “label” properties for coreference
SERIMI [124] Automatically determines discriminating properties.

LogMap Offline LogMap with our own candidate selection module
EPWNG Lucene Use all literal values as context and adopt Lucene for filtering

EPWNG Offline EPWNG (Chap. 3) combined with candidate selection (Chap. 6)

and SERIMI [124] are two state-of-the-art algorithms in the Semantic Web for matching on-

tology instances. LogMap computes the similarity between the values of manually specified

“label” properties and picks the highest such similarity as the final similarity score between

two instances. SERIMI adopts a similar approach to LogMap. However, instead of letting

users to manually specify the “label” properties, SERIMI will automatically compute a dis-

criminability value (which is similar to our weighting mechanism as described in Chapter

3) for each property and pick the ones with the highest discriminability values. Another

difference between LogMap and SERIMI is that LogMap requires data to be present locally

while SERIMI runs over a SPARQL endpoint. In other words, SERIMI assumes that the

data to be matched is hosted in a distributed environment and there is some way through

which the data can be retrieved.

For the LogMap Offline system, we replaced LogMap’s candidate selection module with

our own technique proposed in Chapter 6. As demonstrated in Section 6.4.4, when applied

to the RKB and SWAT datasets, this modified version was able to achieve higher recall and

F1-score, and was running faster than the original LogMap system. The last comparison

system EPWNG Lucene adopts our EPWNG algorithm (Algorithm 9) for instance match-

ing and utilizes Lucene for performing a simple candidate selection. It indexes the instances

on their literal values (called Literal Context); during the coreference process, for each
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instance i, the system will issue a disjunctive query to the index with all the tokens ex-

tracted from i’s literal context as terms and retrieve other instances whose Lucene similarity

scores to i are above a threshold. Here, the literal context mixes values from different prop-

erties, i.e., this simple filtering mechanism does not utilize our property matching results.

Finally, the EPWNG Offline system is our proposed one that combines our own instance

matching and candidate selection techniques. Both EPWNG Lucene and EPWNG Offline

utilize the proposed property mapping mechanism to obtain property comparability; and

EPWNG Offline uses the offline candidate selection algorithm presented in Chapter 6.

7.3.3 Evaluating on Small Scale Testing Sets

In our first experiment, we evaluate these systems on some small scale testing sets: 10K,

30K, and 50K instances. Figures 7.1(a) to 7.1(c) demonstrate the precision, recall and F1-

score of the 5 comparison systems on each of the three testing sets; Figure 7.2 shows the

runtime on the 50K-instance testing set.

First of all, LogMap Offline dominates LogMap on all metrics, which is consistent with

our previous evaluation results on the RKB and SWAT datasets (Section 6.4.4). This

verifies the effectiveness of our proposed candidate selection algorithm over that of LogMap

on heterogeneous datasets. Another observation is that LogMap gets lower precision as we

increase the size of the dataset (particularly from 10K to 30K), because it picks the highest

similarity score between values of all specified “label” properties. With more instances, it

is more likely to have false positives. Also, although LogMap Offline takes a little longer

time than LogMap for candidate selection on 50K instances, its much shorter coreference

time enabled it to finish the entire process faster.

Furthermore, we compare our own alternatives: EPWNG Lucene and EPWNG Offline.
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(a) BTC 10K Results (b) BTC 30K Results

(c) BTC 50K Results

Figure 7.1: Precision, Recall and F1-score of Comparison Systems When They Achieve the Best
F1-score on Small Scale BTC Testing Sets

On one hand, EPWNG Offline only needs about one-third of EPWNG Lucene’s candidate

selection time; since it also selects much fewer candidate pairs, EPWNG Offline was able to

finish the overall process faster than the other system. Moreover, EPWNG Offline achieved

better or comparable F1-score to EPWNG Lucene on all three testing sets. One thing

to note is that since our proposed Offline candidate select algorithm performs pruning

more aggressively, we would expect EPWNG Offline to have better precision and lower

recall than EPWNG Lucene. However, for the 30K and 50K testing sets, we actually

observe contradictory results. This is because in these figures, we show the precision and
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Figure 7.2: BTC 50K Runtime

recall where a system achieves its best F1-score; and EPWNG Offline actually has its

best F1-scores at a lower threshold than the other. In Figures 7.3(a) to 7.3(c), we show

their precision and recall at each tested threshold. And we can see that, at the same

threshold, EPWNG Offline generally has better precision and a little worse recall than

EPWNG Lucene, which is consistent with our hypothesis.

We also compare EPWNG Offline and EPWNG Lucene to LogMap and LogMap Offline.

On one hand, both EPWNG-based algorithms run slower than the two LogMap-based algo-

rithms: 1) The LogMap-based algorithms do not need property matching as a pre-processing

step, thus saving a significant amount of time; 2) EPWNG Lucene indexes all literal values

at depth 1 for candidate selection while LogMap only indexes the values of some manu-

ally specified properties and therefore runs faster for the candidate selection phase. On

the other hand, both EPWNG-based algorithms achieve better F1-scores than the other
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(a) BTC 10K Results
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(b) BTC 30K Results
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(c) BTC 50K Results

Figure 7.3: Comparison of Precision and Recall at Corresponding Thresholds on Small Scale BTC
Testing Sets

two comparison systems on all three testing sets, although LogMap Offline comes close to

EPWNG Lucene on the 30K and 50K testing sets.

Finally, SERIMI has the best precision but also the worst recall among all comparison

systems on all testing sets. Even being able to achieve the best precision, it may not be the

best choice for situations when recall is really critical. In addition, compared to all other

systems, it took the longest time to finish the entire process. Considering applying this

system on even larger testing sets, it may not scale well.
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Figure 7.4: Precision, Recall, F1-Score on 100K Testing Sets

7.3.4 Evaluating on Larger BTC Testing Sets

In this experiment, we want to study the effectiveness of the systems on larger testing

sets. Following our data selection process described in Section 7.3.1, we produced 10 non-

overlapping testing sets, each of which consists of 100K instances. And we will report

the standard deviation and test the statistical significance between the results of different

comparison systems on these 10 100K-testing sets. Here, we compare the following two

systems: EPWNG Lucene and EPWNG Offline that achieved the best F1-scores in previous

small scale testings. We demonstrate their precision, recall and F1-score in Figure 7.4 and

also compare their runtime in Figure 7.5.

From the results, we can see that EPWNG Offline has clearly better precision than

EPWNG Lucene; by being able to achieve comparable recall, it has the best F1-score overall.

According to the results on the 10 testing sets, the standard deviation of the F1-scores of

EPWNG Offline and EPWNG Lucene on the best evaluation threshold are 2.3958 and

2.6682 respectively. Also, the difference between their F1-scores are statistically significant
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Figure 7.5: Runtime Comparison on 100K Testing Sets

with a P value of 0.0001. As for runtime, both systems require property matching and thus

there is no difference on this portion. However, since EPWNG Lucene indexes all literal

values and then issues disjunctive queries to find similar instances, it took much longer time

for performing candidate selection than querying an index that was built with automatically

and carefully selected information. Furthermore, because EPWNG Lucene utilizes more

irrelevant information for candidate selection, more candidate pairs were selected, which

causes it to also have longer coreference time. On these 100K datasets, EPWNG Lucene is

about 5.5 times slower than EPWNG Offline, and this could be translated to a much more

remarkable difference for datasets with millions of instances or more (to be presented in

Section 7.3.5).
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7.3.5 Scalability Test

As we did before on the RKB and SWAT datasets, here, we also perform a scalability

test on this BTC dataset but on an even larger scale. In this experiment, we test our

proposed systems on up to 2 million instances (randomly selected in the same way as

described in Section 7.3.1) to examine how well they scale on large datasets. First of all,

in Figure 7.6, we see that by adopting our proposed offline candidate selection technique,
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Figure 7.6: Runtime Comparison on 100K Testing Sets

EPWNG Offline has clear advantage on runtime over EPWNG Lucene which uses simple

Lucene-based filtering. For processing 500K instances, EPWNG Lucene already needed

127 hours, therefore was not expected to scale to even larger testing sets. Comparatively,

EPWNG Offline only required about 10 hours to finish processing 2 million instances.

Furthermore, as demonstrated in Figure 7.7, EPWNG Offline has significantly better

F1-scores on all tested scales. One observation is that as we increase the size of the testing
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Figure 7.7: Precision, Recall, F1-Score on 100K Testing Sets

set, both systems start to have lower precision, since it is more likely to have false positives

with more instances. However, because our offline candidate selection technique filters un-

coreferent instance pairs more aggressively and accurately than the Lucene-based filtering,

EPWNG Offline loses its precision more gradually.

7.3.6 Parameter Analysis

In this section, we study the impact of the parameters presented in Table 7.1 and we perform

the experiments on the 100K testing sets.

Sim (Equation 7.1) and Ratio (Equation 7.2). Recall that Sim determines whether

two properties should be made comparable; and Ratio helps us to filter out property pairs
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whose token sets are of unbalanced sizes. For the Sim parameter, we make two proper-

ties comparable if their Sim value is higher than a threshold. Figures 7.8(a) and 7.8(b)

demonstrate the comparison on precision and recall respectively. In both figures, x-axis rep-
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(b) Recall

Figure 7.8: Impact of Applying Different Thresholds for Sim

resents different thresholds for evaluating the final coreference results. As shown in Figure

7.8(b), in general, applying higher thresholds for Sim will cause the system to miss more

true matches, therefore producing lower recall. Unless we set the threshold to be 0.9, i.e.,

filtering too many truly comparable property pairs, we will still be able to get an acceptable

recall. The two curves when Sim=0.1 or 0.3 are overlapping. As for precision, we can see

from Figure 7.8(a) that adopting different thresholds for Sim did not have much impact on

precision, except when setting a very high threshold (Sim=0.9).

Figures 7.9(a) and 7.9(b) show the precision and recall comparison by setting different

thresholds for the Ratio parameter. More property pairs will be filtered out by using higher

threshold values. On one hand, when we adopt thresholds between 0 and 0.03, no significant

difference was observed for precision; while as even higher threshold values were applied,

more remarkable improvement was achieved at low evaluation thresholds from 0.3 to 0.5.
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Figure 7.9: Impact of Applying Different Thresholds for Ratio

On the other hand, for recall, unless we apply higher thresholds (i.e., Ratio=0.05/0.07),

our system was able to detect a decent amount of true matches. It is intuitive that recall

continues to drop for higher ratio thresholds, because this filters out matching properties

that might have led to a coreference result.

Comparing Different Neighborhood Size. A final test would be to explore the

impact of different neighborhood size, i.e., whether we need to collect depth-2 context in

our weighted neighborhood graph. We test the two variations, utilizing depth-1 and depth-

2 context, on 100K and 2M instances respectively to compare the precision, recall and

F1-score. The results here are obtained by employing the EPWNG Offline algorithm.

In Figure 7.10(a), we see that our system achieves slightly higher precision and lower

recall when using more context information. By using more context information, there is

higher chance that we find more comparable paths and thus the similarity score between

two instances is likely to be penalized more. At the same time, with more information,

we also have a lower chance to miss a pair of true matches. Overall, there is no significant

difference between the F1-scores of depth-1 and depth-2 on the two differently scaled testing
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Figure 7.10: Examining the Impact of Different Neighborhood Graph Size

sets.

If we look at the runtime comparison in Figure 7.10(b), on 100K testing set, only using

depth-1 context sped up the coreference process by 25%. The difference is even more

substantial on the 2M testing set, where adopting depth-1 context was 60% faster. Please

note that the entire coreference process consists of three steps: property matching, candidate

selection, and coreference; and the runtime here is only for the last step. Even if we adopt

depth-2 context, considering the overall runtime of 39,029 seconds for 2M instances, the

runtime for the actual coreference phase only accounts for about 12%. Depending on the

actual application scenarios, it may be beneficial to expand the depth and adopt more

context information accordingly.
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Chapter 8

Applying Entity Coreference

Techniques for Assisting Cervical

Cancer Screening and Diagnosis

In previous chapters, we proposed different techniques for detecting coreference relationships

between ontology instances. For entity coreference, the algorithms are calculating similarity

scores between pairs of identifiers and treat two instances the same if their score exceeds

a given threshold. Given such similarity scores, instead of finding equivalent things, we

could also potentially use them for finding similarity things (which does not require perfect

match). In this chapter, we will describe an interesting piece of work, where we adopt our

previous EPWNG coreference algorithm for calculating the similarity between patient cases

in order to assist the screening and diagnosis of cervical cancer.
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8.1 Background and Significance

Cervical cancer afflicts an estimated 12,340 women in the US 1 and 529,800 women world-

wide 2 every year. It can be cured if detected during its early stages and treated appropri-

ately. Screening can prevent cervical cancer by detecting Cervical Intraepithelial Neoplasia

(CIN), also known as cervical dysplasia. CIN is classified in grades: CIN1 (mild), CIN2

(moderate), and CIN3 (severe). This disease grading is the basis for follow-up treatment

and management of the patients. In clinical practice, one of the most important goals of

screening is to differentiate CIN1 from CIN2/3 or cancer (denoted as CIN2/3+ in the rest of

this chapter), since those lesions in CIN2/3+ will require treatment, whereas mild dyspla-

sia in CIN1 can be observed conservatively because it will typically be cleared by immune

response in a year or so.

8.1.1 Clinical Tests for Cervical Cancer Screening

The Pap test is the most widely used cervical cancer screening method3. It involves col-

lecting a small sample of cells from the cervix and examining it under a microscope for

squamous and glandular intraepithelial lesions (SIL). The result of a Pap test can be either

normal or abnormal. Pap tests are effective, but nevertheless require a laboratory infras-

tructure and trained personnel to evaluate the samples. Furthermore, it is well known in

the literature that Pap tests suffer from low sensitivity (20% ∼ 85%) in detecting CIN 2/3+

[125, 126, 127].

The automated Pap test is an alternative to the conventional Pap test (Pap smear).

1http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-
figures-2013

2http://www.cancer.org/research/cancerfactsfigures/globalcancerfactsfigures/global-
facts-figures-2nd-ed

3http://www.cancer.gov/cancertopics/factsheet/detection/Pap-test
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According to the literature, higher sensitivities have been achieved with automation-assisted

Pap tests: 79% ∼ 82% by using the ThinPrep Imaging System [128] and 81% ∼ 86% by

adopting the Becton Dickinson FocalPoint GS Imaging System [129]. However, studies

regarding the significance of the difference between automated Pap test and conventional

Pap test are inconclusive [130, 131].

The HPV test is another screening method that has been used in conjunction with the

Pap test either as an additional test or when Pap test results are inconclusive. It has been

well established that cervical dysplasia are caused by persistent infection with certain types

of human papillomavirus (HPV), thus DNA tests to detect HPV strains associated with

cervical cancer (i.e., HPV test) can be used for screening and triage of cervical abnormalities.

The sensitivity of the HPV test in detecting CIN 2/3+ lesions varied from 66% to 100% and

the specificity varied from 61% to 96% [125]. However, the HPV test is not recommended

as a primary screening method, because of its relatively high false positive rate, particularly

in younger women [132].

An abnormal Pap test result may also lead to a recommendation for Colposcopy of the

cervix, during which a doctor examines the cervix in detail through a magnifying device.

If an area of abnormal tissue is seen, the doctor may decide to remove a small sample of

tissue from that area (i.e., biopsy) and send it to a lab to be examined under a microscope.

CIN can be diagnosed by biopsy. Being a diagnostic procedure and often accompanied by

biopsy, Colposcopy is more costly than screening methods such as Pap and HPV tests.

8.1.2 Cervical Cancer Screening with Image Processing

Digital Cervicography [133] is another visual examination method; it takes a photograph

of the cervix (called a cervigram) after applying 5% acetic acid to the cervix epithelium.
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In the literature, Cervicography has been shown to effectively increase the sensitivity of

Pap test in detecting invasive cancer [134] and high-grade (CIN2-3) lesions in patients

with previous atypical squamous cells of undetermined significance (ASCUS) or low-grade

squamous intraepithelial lesion (LSIL) Pap result [135]. But questions remain regarding its

overall effectiveness because studies find poor correlation between visual lesion recognition

and disease as well as disagreement among experts for grading visual findings [136].

8.1.3 Overview of Our Approach

The combination of screening and diagnostic procedures has led to the sharp decline of

cervical cancer death rates in Western countries. However, in areas that lack laboratories

and trained personnel for conducting screening, diagnostic, and follow-up tests, cervical

cancer is still one of the leading causes of death in middle-aged women. In 2008, an esti-

mated 275,100 women died from cervical cancer, and nearly 90% of the deaths occurred in

developing parts of the world4. Consequently, there is a need for less expensive and more

automated screening methods, especially those applicable in low-resource regions.

Encouraged by recent developments in computer-assisted diagnosis such as automated

Pap tests, in this work, we develop a comprehensive algorithmic framework based on Multi-

Modal Entity Coreference for combining various types of information for detecting high-

grade (CIN2/3+) cervical lesions. The framework enables the efficient evaluation of the

performance of various combinatory tests involving basic patient information, clinical test

results and computer assisted cervigram interpretation. With our approach, using Pap test

alone gives sensitivity 37% and specificity 96%, and using HPV test alone gives sensitivity

57% and specificity 93%. Furthermore, A novel combinatory test that integrates Pap, HPV,

4http://www.cancer.org/research/cancerfactsfigures/globalcancerfactsfigures/global-
facts-figures-2nd-ed
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pH, patient age, and computer interpretation of cervical images yields 77% sensitivity and

91.2% specificity, a statistically significant improvement over its ablations; this indicates

the potential value of utilizing computerized approaches as an adjunctive screening and

diagnosis method for pre-cancerous lesions and invasive cancer.

8.2 Data and Materials

We carry out our study on 60,000 digitized uterine cervix images (cervigrams) collected by

the National Cancer Institute (NCI) in a longitudinal multi-year study in Guanacaste. NLM

MDT (U.S. National Library of Medicine Multimedia Database Tool) [137] is a database

tool for accessing these digital cervix images as well as clinical, cytologic, and molecular

information at multiple examinations of 10,000 women to study the evolution of lesions

related to cervical cancer. The women can be categorized as follows: patients with invasive

cancer, patients without cervical lesion at enrollment but later developed disease at follow-

up, and healthy women who never developed any pathological changes in the cervix. Some

statistics about the dataset are shown in Table 8.1.

Table 8.1: Dataset Statistics

Dataset Category Number of All Patients Used for Experiments

Guanacaste

<CIN2 7669 140
CIN2 62 60
CIN3 70 70
Cancer 10 10

Since our goal is to study the potential of using different types of information for screen-

ing, we use data only from the Pap test (i.e., cytologic data), the HPV test, and images

(i.e., cervigrams) of resolution 2891 by 1973 pixels. We also consider patient age and pH

value in some experiments. The “gold standard” groundtruth against which we evaluate
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our disease classification method is histologic data obtained from microscopic evaluation of

tissue samples taken during biopsy.

We evaluate our proposed multi-modal patient classifier on 280 randomly selected partic-

ipants from this Guanacaste database. We had to choose an unbalanced number of patient

cases for the four categories because only 10 cancer cases are available in the entire Gua-

nacaste dataset. However, since we are performing a binary classification, i.e., classifying

patient cases into one of the following two categories: <CIN2 and CIN2/3+, we do have an

equal number of patient cases in these two classes: 140 cases in <CIN2, and 140 cases in

CIN2/3+.

8.3 Methodologies

8.3.1 System Overview

Figure 8.1 demonstrates the architecture of our cervical dysplasia classification system:

1. Data Converter. The raw data is stored in a relational database and the data needs

to be converted and represented into a hierarchical format needed by our algorithm.

2. Similarity Calculator. Clinical cases are composed of multiple kinds of data including

not only the cervigrams but non-imaging data such as other test results and patient

history. Therefore, it is important to combine these multi-modal data sources for

reliable patient classification. In our system, the calculation of patient case similarity

has two sub-components: the data-level similarity involving numeric and symbolic

data such as Pap and HPV test results, and image similarity involving cervigrams. We

calculate a final similarity between two patient cases by taking the linear combination

of the two component similarities.
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Figure 8.1: Overall System Architecture

3. Patient Classifier. This is the multi-modal aggregation scheme that translates patient

case similarity to patient disease classification. We explored different aggregation

methods, such as nearest neighbor (i.e., maximum aggregation) and majority voting.

And we finally adopt an approach that retrieves the most similar cases from a training

database and let the top-cluster training cases to vote to determine the disease grade

of a test patient case.

The data structures and algorithms that we will propose are motivated by the challenges

presented in the data records. In the database, each patient may have data from multiple

clinic visits, and the number of visits differs from patient to patient. Although there are

cytology, HPV results and images of almost all patients, the types of cytology and HPV
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tests may differ, and there may be missing data for some visits. Thus, the classification

system should be able to handle highly unbalanced data, and measure similarity between

patients regardless of differences in number of visits and available information.

8.3.2 Patient Similarity Calculation with Entity Coreference Algorithm

Computing Data Level Similarity

In this section, we introduce how we convert the raw data from relational database records

to a hierarchical format and we then formally present our approach for measuring data-level

patient similarity.

Our data conversion is done in an intuitive way. As shown in Figure 8.2, Patient P1

has several visits denoted by V L = {V1, V2, ..., Vi}. Take the first visit V1 of patient P1

as an example. V1 stores some basic information about the patient such as age at this

visit, and it is also associated with information from some simple tests such as pH value,

cervigrams (Cerv), and colposcopy impression. Furthermore, V1 has two complex clinical

tests, C (Cytology) and H (HPV), which are further expanded to have some other simple

test results (e.g., HPV 16 and HPV 18 are child nodes of H). We use simple and complex

to refer to the type of the test result (whether it has sub-test results or not), rather than

the complexity of the procedure of the test itself. Finally, CL denotes a node that expands

to a list of cervical images (i.e., cervigrams), C1, ..., Cj , that were taken of the patient P1

during visit V1.

We adopt our previous EPWNG entity coreference algorithm (shown in Algorithm 10)

[16] to compute the similarity of two patients by taking into account their clinical test

results. In Algorithm 10, G is a function, retrieving the set of chains for a given patient;

comparable checks the comparability of two chains; the method l is used to get the leaf node
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Figure 8.2: Transformed Hierarchical Representation of Patient Data

of a chain; and Sim computes the similarity between two leaf nodes. In the hierarchical

representation of a patients data (Figure 8.2), a chain is the path from the root to a leaf

node. Two chains are comparable if they represent the same type of clinical test determined

by the type of edges in the hierarchy. For example, we can have a chain of patientA with

the following sequence of edges: Chain 1=(has visit list→has visit→has hpv→has hpv16).

A comparable chain from patientB will need to have the same sequence of edges in the

chain.

When computing the similarity between the leaf nodes of two comparable chains (the

Sim function at Line 6 in Algorithm 10), the comparison can be either between numeric

values (e.g., patient age and pH value), or strings (e.g., cytology result and HPV status).

The similarity between two numeric values is computed with Equation 8.1:
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Algorithm 10 Data Sim(G(a), G(b)), a and b are two patients

1. score← 0;
2. count← 0;
3. for c ∈ G(a) do
4. if ∃c′ ∈ G(b), comparable(c, c′) then
5. //t refers to the clinical test represented by c
6. chain score =

Averagec′∈G(b),comparable(c,c′)Sim(t, l(c), l(c′));
7. score← score+ chain score;
8. count++;
9. if count >0 then

10. score← score
count ;

11. return score

Simnumeric(n1, n2) = 1− |n1 − n2|
max(n1, n2)

(8.1)

where n1 and n2 are two numeric values and the function max returns the maximum between

them. The numeric values that we currently handle are all positive numbers.

As for strings, in the cervical cancer domain or the more general clinical care domain,

syntactically different strings could be semantically similar or vice versa. For example,

“CIN 1” and “CIN 3” are similar in their syntactic representation whereas clinically they

are two very different disease stages of cervical dysplasia. Therefore, instead of adopting

traditional string matching algorithms (e.g., Jaccard and Edit distance) that coreference

algorithms typically use [16, 138, 36, 13], we utilize domain knowledge about the semantic

similarity between the result strings of a test. Fortunately, such knowledge is available in

the NCI/NLM database. In NLM MDT [137], the possible results of a given clinical test

are indexed with some integer numbers indicating their degree or grade. For instance, for

Cytology result, “Normal” is given index 1; “ASCUS” is given index 3; “CIN1” is given

index 5; “CIN2” and “CIN3” are indexed with 6 and 7 respectively. Thus, utilizing such

available domain knowledge, string similarity is computed with Equation 8.2:
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Simstring(t, s1, s2) = 1− |Index(t, s1)− Index(t, s2)|
maxDist(t)

(8.2)

where t represents a particular clinical test; s1 and s2 are two possible results of this test

in string format; Index(t, s) retrieves the assigned integer index for string s of clinical test

t; maxDist(t) gives the maximum distance between all possible results of test t, which is

computed by subtracting the smallest assigned integer index from the largest one.

The similarity measures defined in Equations 8.1 and 8.2 provide a more semantic notion

of closeness than simply checking if two numeric values or two strings are identical; and thus

they allow us to calculate more accurately the similarity between patients whose clinical

test results are similar but not identical.

Computing Cervigram Similarity

Since image similarity computation was not implemented by this author5, we will not pro-

vide all the details. But in general, image features that highlight important visual charac-

teristics in cervigrams were adopted, such as color and texture information.

8.3.3 Patient Classification by Aggregating Image and Data Similarity

Here, we describe how to augment patient data that are traditionally used in clinical testing

with cervigram data. Our hypothesis is that the aggregation of these two sources of data

should significantly improve the sensitivity and overall accuracy of the classifier in detecting

high-grade cervical lesions compared to using either type of data alone.

5The author here developed the overall classification framework, applied the coreference
algorithm for computing patient similarity and conducted the experiments. Dr. Ed Kim
developed the algorithm for image similarity computation [139], which was then utilized by
the classification algorithm.
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For combining these two heterogeneous types of data, we define an aggregated similarity

metric over the data similarity Data Sim(G(a), G(b)) (computed by Algorithm 10) and

the image-based similarity Image Sim(a, b) (described in Section 8.3.2). The aggregated

similarity metric sim(a, b) for patients a and b is defined in Equation 8.3:

sim(a, b) = α×Data Sim(G(a), G(b)) + (1− α)× Image Sim(a, b) (8.3)

where α is a weighting factor. In our experiments (see Section 8.4.1), we set the α value to

be 0.5, which means we set equal weights to the data and the image similarities.

Our classification task is a binary classification task: whether a new patient pn will be

classified as <CIN2 (Negative) or CIN2/3+ (Positive). Conceptually our patient reposi-

tory can be seen as a case base (CB) of cases, where each case has the form (p, c) where c

is the class (i.e., Negative or Positive) of the patient p. We combine lazy and eager learning

Algorithm 11 Classification of a new patient pn given a case base CB

1. CBn ← ∅

2. for each (p, c) ∈ CB do

3. CBn ← CBn ∪ (sim(p, pn), c)

4. end for

5. CL← KMeansCluster(CBn)

6. tC ← topCluster(CL)

7. return majorityVote(tC)

approaches [140] for our classifier as shown in Algorithm 11. First we initialize an auxiliary

case base CBn (Step 1). Then, CBn is filled with pairs, in the format of (sim, c), of simi-

larities between each patient p in the case base CB and the new patient pn as well as the

class label for p (Steps 2-4). We then apply K-means clustering on CBn; the clusters are
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grouped by the similarity scores (Step 5). We then return the class that occurs the most

amongst cases in the top cluster (Steps 6 and 7). If there is a tie, a random selection is

done among the classes that most frequently occur in the top cluster.

8.4 Experiment

8.4.1 Evaluation Metrics

As stated above, we evaluate our proposed system in a binary classification scenario, i.e.,

we classify a patient to be either <CIN2 (Negative) or CIN2/3+ (Positive). We measure

the accuracy, sensitivity and specificity of our proposed multi-modal patient classifier (see

Algorithm 11). The definitions for these metrics are given as follows:

Accuracy =
|correctly classified patient cases|

|test cases|
(8.4)

Sensitivity =
|true positive|

|true positive|+ |false negative|
(8.5)

Specificity =
|true negative|

|true negative|+ |false positive|
(8.6)

where true positive refers to the set of patients of the class “Positive” and are correctly

classified; false negative refers to the set of patients who fall into the class “Positive” but

are misclassified as “Negative”; true negative and false positive are similarly defined.

Following a standard of evaluating machine learning systems, we perform a ten-round

ten-fold cross validation on our dataset of 280 patient cases (Table 8.1). In each round, we

randomly divide the patient cases into ten folds; in a rotational manner, we use one fold

for testing and the 9 remaining folds for training; the testing result for the round is the

average of the testing results for each of the ten folds. The final testing result is the average
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accuracy/sensitivity/specificity of the ten rounds.

We also test the statistical significance between the results of our proposed system and

other systems on our dataset. In this work, we compare each pair of systems through the

ten rounds and perform a two-tailed t-test on the two sets of results from the systems.

8.4.2 Multi-modal Entity Classifier vs. Data/Image-only

In this experiment, our goal is to examine the effectiveness of different types of information

in the cervical cancer patient classification task, including Cytology, HPV, patient age,

pH value and cervigrams (digital images). We first test the individual effectiveness of

Cytology, HPV and cervigram, i.e., only using one of the three types of information for

classification, and compare their performance. Furthermore, we perform classification by

combining different types of information, e.g., using Cytology, HPV, age, pH, cervigram

together, and then compare the classification accuracy using these combinatory tests with

that of using a single type of information.

In the Guanacaste dataset, the possible values for Cytology include Normal, Rctive,

ASCUS, Koil. Atyp, CIN 1/2/3, Micrinv Cncr and Inv Cancer. There are two components

to HPV: (1) HPV Signal, which is a floating value ranging from 0.0 to 5.0, and (2) HPV

Status, which can be either Negative or Positive. Patient age is a numeric value ranging

from 15 to 100. pH value is another numeric value ranging from 1.0 to 14.0.

Please note that the performance numbers in Table 8.2 are the average accuracy, sensi-

tivity, and specificity from the ten-round ten-fold cross validation using 280 patient cases.

The overall best accuracy was 84.04% and it was achieved by applying Multi-Modal pa-

tient classification using the combination of Cytology, HPV, pH, patient age, and images

(C+H+A+P+I). In comparison, using clinical data-only (C+H+A+P), the accuracy was
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80.07%; and using image-only (I), the accuracy was 81.93%. The results here are statis-

tically significant with 95% confidence. This demonstrates the effectiveness of combining

both data and image similarities for patient classification. For accuracy, a two-tailed t-test

on the results between “C+H+A+P+I” and “C+H+A+P” gave a P value of 0.0001 and the

results between “C+H+A+P+I” and “I” also gave a P value of 0.0001. For sensitivity, the

differences between “C+H+A+P+I” and “C+H+A+P” or “I” are statistically significant

with P values of 0.0001 and 0.0003 respectively. Finally, although no difference was ob-

served between “C+H+A+P+I” and “C+H+A+P” on specificity, both of them are better

than “I” on specificity, with P values of 0.0026 and 0.0032 respectively. Overall, compared

to systems that use textual/numeric data-only or use images-only for patient classification,

our proposed system that aggregates the data and image similarities significantly improves

accuracy over systems that use fewer information sources

Table 8.2: Performance of Multi-modal (both clinical data and image), Data-Only and Image-Only
classifications (C: Cytology; H: HPV; I: Image; A: Age; P: pH)

System Accuracy (%) Sensitivity (%) Specificity (%)

C 66.36 36.79 95.93

H 74.99 56.54 93.43

I 81.93 74.14 89.71

H+I 77.61 63.93 91.29

C+I 72.96 48.07 97.86

C+H 76.25 58.64 93.86

C+H+I 80.00 66.43 93.57

C+H+P 78.79 64.29 93.29

C+H+P+I 82.79 72.79 92.79

C+H+A 79.32 65.93 92.71

C+H+A+I 81.79 71.57 92.00

C+H+A+P 80.07 68.93 91.21

C+H+A+P+I 84.04 76.86 91.21
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8.4.3 Effectiveness of Domain Knowledge

In this experiment, we show that adopting domain knowledge (DK) for computing data-

level string similarity (Equation 8.2), can significantly improve the results as shown in Table

8.3. For this experiment, we combine Cytology, HPV, pH, and the patient age information

together. Since adding domain knowledge will not affect Image-Only classification, it is not

compared here.

Table 8.3: Impact of Domain Knowledge on Classification Results
(AC: Accuracy; SE: Sensitivity; SP: Specificity)

System AC (%) SE (%) SP (%)

Multi-Modal 84.04 76.86 91.21
Multi-Modal no DK 81.82 68.86 94.79

Data-Only DK 80.07 68.93 91.21
Data-Only no DK 76.36 61.21 91.50

We can see that adopting domain knowledge helped to achieve significant improvements

in accuracy and sensitivity for both “C+H+A+P+I” and “C+H+A+P” classification; the

differences here are statistically significant with a P value of 0.0001. This verifies our

assumption that in this domain, syntactically different strings could actually be semantically

close to each other; therefore, it is important to capture such semantic similarity. In our

current work, such semantic similarity is exploited by utilizing the index integers assigned

to strings in the NLM MDT database, assuming semantically similar test-result strings will

be assigned close indices. In future work, we plan to explore how to compute semantic

similarity of two strings by using some dictionaries or ontologies in the domain [141].
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8.4.4 Comparing Different Classification Schemes

As presented in Section 8.3.3, our classification scheme involves retrieving similar patient

cases from a case database, performing K-means clustering on the similar cases, and adopt-

ing the class label as voted by a majority of cases in the top cluster. For K-means clustering

(Step 5 of Algorithm 11), we tried different K values and found K=5 to be a good choice

given our training case base of size 252. Note that our training case base has a size of 252

because there are 280 cases in total and in each round of 10-fold cross validation, 1 fold (28

cases) is used for testing and 9 folds (252 cases) are used for training.

Alternatively, instead of majority voting by cases in the top cluster, we could compute

the average (or maximum) similarity between a test case and all training cases in each class,

and then assign to the test case the class label with maximum similarity. We compared these

alternatives in Table 8.4 for Multi-Modal classification using Cytology+HPV+pH+Age (as

Data) as well as images. The results show that majority voting by top cluster gives both

the best accuracy and sensitivity. Statistically, the differences between Cluster and other

classification schemes (Avg and Max) on accuracy and sensitivity are significant with a P

value of 0.0001.

Table 8.4: Performance Comparison for Multi-modal Classification with Different Classifiers
(AC: Accuracy; SE: Sensitivity; SP: Specificity.)
(Cluster: majority voting by cases in top cluster;
Avg: average similarity to cases in each class;
Max: maximum similarity to cases in each class.)

Classifier AC (%) SE (%) SP (%)

Cluster 84.04 76.86 91.21

Avg 82.46 73.14 91.79

Max 79.29 71.29 87.29
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8.5 Discussion

Through our evaluation, we have shown that integrating image interpretation with other

clinical information can improve the accuracy in differentiating low-grade cervical lesions

from high-grade lesions and invasive cancer. By using only digital cervigram images, our

proposed system achieved 74.14% sensitivity for detecting CIN2+ lesions; and by using

images and 4 other clinical test results (Cytology, HPV, pH, age), our system achieved

76.86% sensitivity. In comparison, the commonly used Pap test screening highly depends

on the expertise of laboratory personnel as well as workplace infrastructure; its sensitivity

for detecting CIN2+ lesions varies widely in different geographic regions: 22% in Chile [126],

55% in Canada [127], 57% in Africa and India [142], 63% in Costa Rica [143] , and 77% in

the United Kingdom [144]. As one can see, the sensitivity levels of our system match the

best results reported in clinical literature, which shows the potential of using our system

for cervical cancer screening and diagnosis.

Another interesting observation from our experimental results in Table 8.2 is that adding

patient age and pH value information improved the systems sensitivity by sacrificing some

specificity and therefore enabled the system to achieve better overall classification accu-

racy when combining all information together. Comparing “C+H+A+I” to “C+H+I” and

“C+H+A+P+I” to “C+H+P+I”, one can see that patient age information helped to im-

prove sensitivity and accuracy. In fact, patient age has been an important factor used in

cervical cancer screening guidelines for average-risk women [145]. For example, it is recom-

mended that women aged less than 21 should not be screened; for women between 21 and

29 years old, Cytology alone should be used every 3 years without HPV co-test; for women

between 30 and 65 years old, Cytology should be used every 3 years with HPV co-test every

5 years; and it is recommended that cervical cancer screening can stop for women aged >65
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years with adequate screening history. To seek further explanation for the improvement

in classification accuracy by adding patient age as a feature, we compiled statistics about

patient age from our 280 randomly selected patient cases, as shown in Table 8.5. Here

we can see that the distribution of disease does differ significantly from one age group to

another, thus making age a useful feature when comparing patients and performing disease

classification.

Table 8.5: Patient age distribution in 280 randomly selected patient cases.)

Category <21 21-29 30-40 41-65 >65

<CIN2 (Negative) 0 9 48 59 24

CIN2/3+ (Positive) 1 38 53 42 6

We also examined the computational complexity of our multi-modal classification sys-

tem. For the image part, the similarity between images can be finished in around 3 seconds

6. And then the multi-modal entity coreference algorithm takes about 33 milliseconds to

classify the patient case using all five sources of information on a laptop computer with 4GB

memory and 2.0GHz quad-core CPU. Theoretically, the complexity of our multi-modal en-

tity coreference algorithm depends on the number of chains in a patients data tree. In the

worst case, suppose a tree has p chains and each chain is comparable with all chains in the

other tree, the complexity for comparing two trees is then O(p2). For classification, each

test case is computed against all training cases and suppose we have n training cases in to-

tal, then the complexity for comparing a test case with all training cases is O(n ∗ p2). Once

the similarity scores are computed, it takes O(nlogn) time to sort the scores and obtain the

top cluster of most similar cases for classification.

To further improve the accuracy of our classification process, it would be interesting to

explore assigning different weights to different features, i.e., automatically determining the

6This is from Dr. Ed Kim’s experiments
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weights for different types of information: age, HPV results and Cytology results. Also,

currently we treat data similarity and image similarity equally important; in future work, we

could tune the α weight parameter in Equation 8.3, so that the weights of the two different

similarities can be adjusted to optimal levels. Finally, in addition to performing binary

classification, more fine-grained disease grading could be employed for better assisting the

screening and diagnosis process.
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Chapter 9

Conclusion and Future Work

We are on the verge of an explosion of RDF data. Individual users, academic institutions

and businesses now publish data in Semantic Web formats. BestBuy.com has started a

complete RDF/XML dump of their products and price information to the Web of Linked

Data, using the GoodRelations vocabulary for e-commerce. The data dump is updated

on a daily basis and contains detailed descriptions for roughly 450,000 individual items.

With about 60 triples per item, this totals to about 27 million RDF triples1. Global media

agencies like the British Broadcasting Corporation (BBC) and the New York Times (NYT)

have also began to expose their huge stores of data in RDF and link them to other Semantic

Web vocabularies and repositories. BBC Music provides RDF information about musicians

and it has about 388,398 artist pages, and 93,912 artist to artist relationships2. New York

Times publishes data about various types of entities in Semantic Web format3, currently

describing about 5,000 people, 1500 organizations and 2000 locations respectively. Using

natural language processing and information extraction techniques, academics have also

1http://stores.bestbuy.com/sitemap.xml
2One example is here: http://www.bbc.co.uk/music/artists/79239441-bfd5-4981-a70c-

55c3f15c1287.rdf
3http://data.nytimes.com/
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created an RDFized Wikipedia, called DBpedia4 [47], that describes about 4 million entities

with a total of 470 million triples. Freebase5 [49], similar to DBpedia but with a much larger

amount of 1.2 billion triples, covers entities of various types, ranging from entertainment,

sports to arts, musics, books and to medicine and biology. It is also promising to see that

the search engine giants, Google and Yahoo, have began to incorporate RDFa6 (a means of

embedding RDF directly in HTML pages) in their search results. Of particular interest, the

idea of Knowledge Graph by Google7, which is essentially the idea of the Semantic Web and

used to describe things and their relationships with a graph model, has been implemented

and adopted to power Google’s online search. Other search engine giants, such as Yahoo

and Bing, are also building their own knowledge graphs to facilitate search. Although not

explicitly Semantic Web, because a knowledge graph is a large graph with heterogeneous

links, research outcome in the Semantic Web field can be directly applied.

The original Semantic We vision of widely-distributed machine readable data is becom-

ing a reality, while exposing data as RDF is only an important first step. With RDF data,

we could then find the relationships between things, such as finding a list of researchers,

seeing the organizations those researchers are affiliated with, and other information as well.

However, in order to actually achieve the linked data vision we must create explicit RDF

links between data items within different data sources. This provides the means by which

we can discover more information about a given entity that is not available within any single

knowledge base. For example, after the New York Times index terms had been converted to

RDF, developers explained that “even though we can show you every article written about

“Colbert, Stephen”, our databases can’t tell you that he was born on May 13, 1964, or that

4http://dbpedia.org/About
5https://developers.google.com/freebase/data
6http://www.w3.org/TR/xhtml-rdfa-primer/
7http://www.google.com/insidesearch/features/search/knowledge.html
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he lost the 2008 Grammy for best spoken word album to Al Gore”8. In order to enable this

kind of sophisticated query, we must develop rich linking hubs to store information about

entities from multiple and very possibly heterogeneous data sources, so that queries can

actually go across different data sets.

To link instances between different data sources, one intuitive idea would be to find

the same identifier across those data sets. However, in reality, different data publishers are

indeed using their individual ontologies to represent and publish their data on the web, i.e.,

Semantic Web data is heterogeneous in the sense that the data is represented with different

classes and predicates at the schema level. More than that, at the data level, the same real

world entity can actually be represented by syntactically distinct URIs when described in

different data sources. This information heterogeneity problem is a major barrier for end

users who wish to process and consume the data effectively.

9.1 Summary of Research

In order to facilitate data consumption in the Semantic Web, without compromising the

freedom of people to publish their data, one critical problem is to appropriately interlink

such heterogeneous data. This interlinking process can also be referred to as Entity Coref-

erence, i.e., finding which identifiers refer to the same real world entity. In this dissertation,

a series of algorithms have been proposed that primarily target on how to automatically,

precisely, and comprehensively detect equivalent (i.e., owl:sameAs links) Semantic Web in-

stances from different data publishers in a scalable manner. In Figure 9.1, we show the

8http://open.blogs.nytimes.com/2009/10/29/first-5000-tags-released-to-the-linked-
data-cloud/? r=0
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overall architecture of the entire coreference system, so that each of the accomplished algo-

rithms can be placed in context.

Figure 9.1: An Overview of the Developed Entity Coreference System

As the core of the proposed entity coreference system, a novel entity coreference al-

gorithm is proposed to detect equivalences between ontology instances, which focuses on

achieving high precision and recall. For a given instance, we extract its neighborhood graph

from the entire RDF graph through an expansion process and we end up having a set of

paths starting from this instance and ending on another node in the RDF graph. We then

compute the discriminability of each triple, taking into account its predicate, and such

discriminability is then discounted according to the triples distance to the root node (the

ontology instance), constructing the weighted neighborhood. A bag-of-paths approach is

finally adopted to compute the similarity score between a pair of ontology instances. Our

system outperforms the state-of-the-art when applied to three benchmark datasets for on-

tology instance matching with 1% to 4% higher F1-scores. To improve the efficiency of

a single pairwise comparison between ontology instances, a sampling and utility function
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based pruning technique is proposed. By estimating the potential contribution of RDF

nodes in the context of an instance, the system prunes context that would not make sig-

nificant contribution to the final coreference similarity measure. Applying this pruning

technique leads to a speedup factor of 30 to 75 on three RDF datasets.

In order to scale entity coreference systems to the scale of the Semantic Web data to-

day [146], an on-the-fly candidate selection algorithm is presented to filter instance pairs

that are not likely to be coreferent by taking advantage instances’ matching histories. We

discard candidate pairs of instances that are not sufficiently similar to the same pool of

other instances. A sigmoid function based thresholding method is proposed to automati-

cally adjust the threshold for such commonality on-the-fly. We verify the effectiveness of

our algorithm by comparing to nine state-of-the-art systems and show that our algorithm

frequently outperforms those systems with a runtime speedup factor of 18 to 24 while main-

taining competitive F1-scores. For datasets of up to 1 million instances, this translates to

as much as 370 hours improvement in runtime. One problem of this method is that it was

not able to maintain perfect coverage on true matches while performing filtering; although

this did not impact the final coreference F1-scores of our proposed system significantly, the

recall of our overall system was indeed lower (about 1%) than that of the state-of-the-art

on the two RKB datasets (Table 5.3).

In order to improve the capability of covering true matches, a candidate pre-selection

algorithm is further proposed. In this algorithm, we select candidate instance pairs by com-

puting a character-level similarity metric on discriminating literal values that are chosen

using domain-independent unsupervised learning. Instances are then indexed on the chosen

predicates’ literal values to enable efficient look-up for similar instances. When evaluated
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against state-of-the-art candidate selection algorithms, our proposed algorithm was demon-

strated to be more capable of reducing the size of the candidate set while at the same time

it was also able to maintain comparable coverage on true matches. By applying an actual

entity coreference algorithm to the selected candidate pairs, the overall entity coreference

process was sped up by a factor of from 16 to 61 compared to the best-performing state-

of-the-art system on up to 1 million instances. Furthermore, by applying our candidate

selection technique prior to an entity coreference algorithm, we achieved an improved (0.3%

to 0.5% higher) F1-score, due to the fact that candidate selection helped to filter out some

of the potential false positives. The results demonstrate the effectiveness of our proposed

algorithm in scaling the entire coreference process.

Finally, in order to be able to work on datasets with a large number of predicates,

where manual specifying predicate comparability is not feasible, we developed a value-based

property matching mechanism. This approach extracts the token sets of two properties and

treat the two properties as comparable if there is sufficient overlapping between their token

sets. With this approach, we pre-compute the predicate comparability on the BTC 2012

dataset, and apply our proposed EPWNG and Offline algorithms to testing sets of various

scales. When compared against state-of-the-art and comparison coreference systems in the

Semantic Web, our algorithm achieved about 7% higher F1-score, and also demonstrated a

speedup factor of 66 in a scalability test of up to 2 million instances.

In addition to developing novel coreference algorithms, we also applied the algorithms

to an application scenario for cervical cancer patient classification. Instead of finding equiv-

alences, we utilized the computed similarity scores for grouping similar patient cases for

cervical cancer screening. Utilizing our Bag-Of-Chain approach, by combining different

types of information, our system achieved higher classification accuracy than its ablations.
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The big theme of the research work here is to evolve the Semantic Web into a real in-

terlinked scenario. I hope the outcome of the research could help us to achieve this goal to

facilitate high level applications, such as intelligent and efficient search, and would benefit

individuals by improving their ability to utilize the Internet for information needs. In addi-

tion, I hope it will also benefit the economy by allowing businesses to better interoperate,

both nationally and internationally, with their knowledge globally connected.

9.2 Future Work

Although the current algorithms have been shown to outperform several state-of-the-art

algorithms on datasets of various scales and different levels of heterogeneity, I would like to

shed light on some potential future directions.

9.2.1 Collective/Multitype Entity Coreference

In our current algorithms, we try to detect the coreference relationships between instances

of a single “type”, e.g., Person, Publication, etc. Although for the BTC dataset, we mix all

types of instances together and compute their coreference relationships, we still treat them

as instances of owl:Thing (the top class of all other classes). However, given that LOD covers

datasets from various domains, one might imagine how would the coreference results of one

type of instances impact the others. For example, academic publications and researchers

are generally correlated in academic datasets. Suppose we start from publications (since

titles are generally very discriminating), could we then be able to achieve higher recall on

matching person data by being able to provide better hints for person instance pairs with

non-discriminative names (due to abbreviation, misspelling, etc.) but sharing coreferent

publication instances (represented with syntactically distinct URIs) in their context? One
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step further, could we come up with approaches to automatically prioritize the domains to

process, i.e., determining which domains should be processed first so that the other domains

could benefit most? For scalability reasons, we could start with the existing linkages in the

most influential domain instead of detecting everything from scratch. Since the existing

links in LOD are of questionable quality [9], a lightweight verification step might be needed

to first check the correctness of such links.

9.2.2 Comparing Non-text and Non-discriminative Property Values

Another problem that I would like to explore is about how to better handle non-text data,

such as number and date. In my current algorithms [16, 21], the calculation of instance

similarity heavily relies on the utilization of string matching algorithms. I adopted Jaccard,

JaroWinklerTFIDF and Edit Distance to compute the similarity between person names,

publication titles, etc. However, using such string matching algorithms to compare non-

text values may not be the best choice. For example, two dates 09/02/2011 and 09/02/2001

should have a similarity of 0 while a string matching algorithm might give a very high score

for them. Another issue about date and number information is that they could use different

precision and units (though the units may not be explicitly stated).

Furthermore, in prior work [16, 21, 103, 19], the data we try to integrate generally con-

tains some discriminative labels, e.g., names for people, hotel and restaurant and titles for

publications. The question is what if we try to address domains that lack such discriminating

labels? Maybe all predicates would then have relatively the same weight and thus EPWNG

erroneously treats every piece of information the same? Or maybe all datatype properties

will be selected for candidate selection and therefore no reduction will be achieved by having

to deal with every single triple? One preliminary idea to handling non-discriminative data
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is to combine values from multiple properties, expecting the combined values could be more

discriminating than that of any individual property.

9.2.3 Handling Data Quality Issues

Data quality issues should be taken into consideration in developing future coreference

systems. Although a large amount of heterogeneous data is converted into RDF format by

a variety of tools and then made available as Linked Data, e.g., DBpedia, Freebase, RKB,

DBLP, Data.gov, etc., not all the data here is of high quality [147]. During the creation

or conversion of this data, numerous data quality problems can arise, such as misspellings

and errors; and such data quality issues may impact the coreference results. The proposed

candidate selection algorithm (Section 2.4) performs exact lookup into the instance index

on each query token of a given literal value; therefore, it may miss a certain amount of

groundtruth when the object values of the selected datatype properties of coreferent pairs

do not share any common tokens, which could be caused by data quality issues. For example,

two coreferent person instances may have the following values for the full name property:

J. Smith and John Smth. One of the names uses first initial while the other uses full first

name; also, there is one i missing in the last name of the second value. When querying the

instance index with either of two values, the other one cannot be retrieved since they do

not share any common tokens.

To handle such situations, for specific domains, we could design specialized methods.

For instance, for person names, in addition to indexing first name, we may also index the

initials at the same time. However, to be general, one possible solution would be to adopt

fuzzy matching techniques [148]. For the example given above, we employ Edit distance such

that instances will be retrieved when the distance between an index term and a query token
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is less than a pre-defined threshold. Thus, the token Smth could match Smith. However,

one important problem here is that such fuzzy matching must be performed in an efficient

way.

One potential approach is to group similar tokens together by utilizing some clustering

methods. During query time, the system will then expand one query token to include a

set of its similar tokens and do instance lookup with this expanded token set. To improve

the efficiency of this clustering step, we could compute certain hash values for each token

in the document collection, and tokens with the same hash value will be put into the same

cluster. In this manner, we then have non-overlapping clusters of similar tokens. In future

research, I will explore how to incorporate the outcome of data quality related research into

coreference systems to better handle noisy and low-quality data.

9.2.4 Improving Value-based Property Matching with Bootstrapping

One other interesting future work would be to develop a more precise and potential more

comprehensive property matching scheme. Our current approach is value-based and de-

termines property comparability based upon the token sets of two properties. However,

one risk of this approach is on numerical value predicates. For instance, the two predicates

birth-year and death-year could have very similar value spaces but are not comparable given

their actual semantics.

To alleviate such potential risk, rather than adopting this value-based approach, we

could try bootstrapping the entire coreference process. In general, instead of generating all

property comparability in one pre-processing step, we could gradually add more mappings

between properties during coreference. These new property pairs are selected from instance

pairs having high coreference score and need to be highly similar on their values for such
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instance pairs. Suppose we have some initial mappings between predicates. At the beginning

of the process, we utilize these mappings to compute the coreference relationships between

instances, and pick up the highly similar instance pairs. For such pairs, we figure out the

property pairs whose values are highly similar, and such property pairs receive a vote. We

finally choose and add those property pairs that receive the most votes into our property

mapping pool, and employ these updated mappings in future iterations. These newly added

property mappings are expected to improve recall (by enabling the system to match more

things) and precision (by allowing the system to apply more appropriate penalties) as well.

The entire coreference process will stop when some stopping criteria are met (e.g., no more

new property mappings can be found for a given number of iterations).

Take the birth-year and death-year example again. For highly similar instance pairs,

we would not expect that their values of the two properties to be similar for a significant

amount of times. Even if this property pair might receive votes due to some potential data

errors, it would not happen frequently. Eventually, these two properties, though having

highly overlapping value spaces, will not be considered comparable. One potential problem

of this bootstrapping approach is that it might take longer to finish, given that it will run

iteratively. Until we conduct actual experiments, it might be difficult to say whether its

longer runtime would be compensated well with higher F1-score.

9.2.5 Iterative Entity Coreference with Context Merging

As discussed earlier, the proposed entity coreference algorithm in Section 3 misses some true

matches because of information heterogeneity. For a particular ontology instance, different

data sources may only contain partial information of this instance. For example, different

academic databases only index a selected number of publications of an author. Therefore,
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when we build the contexts for different instances, only information provided within a

single data source can be utilized, assuming we do not utilize the existing owl:sameAs

linkages across those different datasets to collect context. Exploring the web can be one

possible solution to alleviate this information heterogeneity problem; however, for large

scale datasets, issuing queries to the web can add additional burden and complexity to the

system. Such approaches will also largely depend on the hypothesis that search engines can

provide good results. Even if this is the case, some human effort is still needed to clean up

the results returned by search engines. Aswani et al. [13] tried issuing queries to search

engines to check if two person instances are reported to have the same full name; however,

they needed to manually design rules to filter out noisy web pages, and to determine if a

name is a valid full name.

In future work, it would be interesting to develop iterative entity coreference algorithms

in order to utilize the results from previous iterations to facilitate the current matching

process. The algorithm can bootstrap in a way that it gradually merges the context infor-

mation of highly similar instances in order to reduce the negative impact of information

heterogeneity. The key point is to improve recall of the system while trying to minimize

the possible negative impact on precision. If two instances are similar to a certain degree,

then we merge their contexts to form a new and virtual instance as if it were one that exists

in the dataset. This new instance will then be more capable of absorbing other coreferent

instances that were not able to exceed a similarity threshold due to insufficient context

overlap. Such an iterative algorithm is essentially a clustering algorithm but it is differ-

ent in that it tries to form new instances with more comprehensive context rather than

treating clustered instances separately. Traditional entity coreference research has adopted

clustering algorithms but they lack this merging process [5, 14].
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However, we need to be careful of setting the criteria for context merging. One simple

idea is to compute the full transitive closure. After one iteration, we set a threshold and

pick all instance pairs whose similarity scores exceed the threshold; we then compute the full

transitive closure, and merge all instances included. The problem is that it is easy to pollute

the clusters because the negative impact of a single mistaken link could be magnified. How

to intelligently determine the merging criteria would be an interesting future work.

9.3 A Vision of the Semantic Web

The World Wide Web has altered the way we share knowledge by lowering the barrier to

publishing and accessing documents as part of a global information and knowledge space.

The past and current success of search engines (such as Google and Yahoo) may lead people

to believe that the Web has already reached its full potential. However, as we discussed at

the very beginning of this dissertation, search engines are not able to meet our information

needs due to its limitations of keyword matching and the document based Web.

The Semantic Web is suggesting a way of extending the existing web with structure

and providing a mechanism to specify formal semantics that are machine-readable and

shareable. By organizing the information better on the Web, and by adopting the Linked

Data techniques and principles, we are transitioning the current document based web (a

global information space of linked documents) to one where both documents and data are

linked. As an interlinked data hub, the Semantic Web is really allowing people to aggregate,

discover, and reuse information. Within Linked Data, the heavy reasoning or the AI vision

of the Semantic Web has been replaced by a networked and user-driven Semantic Web. This

new view of the Semantic web will be more lightweight, and geared toward the application

of a far less structured and more organic approach to dealing with the complexities of the
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diverse data present in the Web.

In order to achieve the goal of transitioning the current document web to an interlinked

data hub, one important technique would be data interlinking or entity coreference. The

decentralized nature of the Semantic Web allows data publishers to publish their in their

own ontologies with their own identifiers. Without being able to appropriately discover the

linkages across instances distributedly published in different data sources, the interlinked

vision of the Semantic Web would be an illusion. Our research in this dissertation targets

minimizing this gap by developing algorithms to interlink and disambiguate ontology in-

stances in different data sources. In addition to trying to achieve high precision and recall

for this interlinking process, we also focused on improving the scalability of our algorithm,

aiming to handle the current scale of the Semantic Web. Based on the work I (and others)

have done, if the research challenges highlighted in Section 9.2 can be adequately addressed,

I expect that Semantic Web and the Linked Data idea will enable a significant evolutionary

step in leading the Web to its full potential.
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