
Lehigh University
Lehigh Preserve

Theses and Dissertations

2017

Leveraging Structural Flexibility to Predict Protein
Function
Ziyi Guo
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Guo, Ziyi, "Leveraging Structural Flexibility to Predict Protein Function" (2017). Theses and Dissertations. 2945.
https://preserve.lehigh.edu/etd/2945

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2945&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/2945?utm_source=preserve.lehigh.edu%2Fetd%2F2945&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


Leveraging Structural Flexibility to Predict Protein

Function

by

Ziyi Guo

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Science

Lehigh University

August 2017



c© Copyright by Ziyi Guo 2017

All Rights Reserved

ii



Approved and recommended for acceptance as a dissertation in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

Date

Committee Members:

Brian Chen, Committee Chair

Ting Wang

Xiaolei Huang

Katya Scheinberg

iii



Acknowledgements

I would like to show my deepest gratitude to my Ph.D. advisor, Prof. Brian Chen,

for his guidance in past five years. I am especially grateful for his patience in train-

ing me to be an independent researcher and a qualified collaborator, the freedom he

gave in Informatics Lab and caring beyond academia. Without his efforts, this work

is definitely impossible. I would like to thank my committee members, Prof. Ting

Wang, Prof. Xiaolei Huang and Prof. Katya Scheinberg, for their precious sugges-

tions on my Ph.D. proposal, general exam and dissertation. I would also like to

show my thanks to Prof. Soutir Bandyopadhyay and Prof. Katya Scheinberg whom

I have worked with at Lehigh. Prof. Bandyopadhyay provided insightful comments

on statistical modelling for protein structure comparison and Prof. Scheinberg’s

expertise in mathematical optimization greatly helped our work on protein electro-

static analysis.

I am tremendously thankful to my friends at Lehigh, Yuhai Hu, Mengtao Sun,

Wenjia Ruan and Yujie Liu. Studying as a Ph.D. student in a foreign country is

never easy, full of challenges, failure and depression. Life in the past five years could

be more difficult without countless help and sharing from these friends and I have

always enjoyed to talk to them, wherever it was, Saxbys Coffee at campus or Izakaya

restaurants in NYC.

Lastly, thanks to my parents, Shaojian Guo and Chunxiao Li, should be never-

ending for their unconditional support and love.

The work presented in this thesis is supported in part by National Science Foun-

dation Grant NSF-1320137. The experiments were made possible with Corona and

iv



Sol servers, Lehigh University.

v



Contents

Acknowledgements iv

List of Tables ix

List of Figures x

Abstract 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 What Exactly is Protein Function? . . . . . . . . . . . . . . . . . . . 4

1.3 The Problem of Protein Function Prediction . . . . . . . . . . . . . . 5

1.3.1 Specific Problems Studied in This Thesis . . . . . . . . . . . 6

1.3.2 Proteins are not Rigid Molecules . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Methods for Aggregate Prediction . . . . . . . . . . . . . . . 10

1.4.2 Methods for Individual Prediction . . . . . . . . . . . . . . . 10

1.5 Thesis Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Works 12

2.1 Protein Structure Comparisons . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Rigid Structure Comparison . . . . . . . . . . . . . . . . . . . 12

2.1.2 Flexible Structure Comparison . . . . . . . . . . . . . . . . . 14

2.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



2.3 Electrostatic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Datasets 21

3.1 Protein Family Selection . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Protein Structure Selection . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Protein Structure Simulation . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Binding Cavities Vary Considerably . . . . . . . . . . . . . . . . . . 25

4 Aggregate Prediction Pipelines Development 29

4.1 FAVA: A Volumetric Method for Flexible Protein Structure Compar-

isons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 Generating Frequent Regions . . . . . . . . . . . . . . . . . . 31

4.1.3 Evaluating Frequent Region Approximation . . . . . . . . . . 34

4.1.4 Comparing Frequent Regions . . . . . . . . . . . . . . . . . . 34

4.1.5 Testing FAVA . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.6 Isolating Frequently Influential Amino Acids . . . . . . . . . 38

4.1.7 Testing Influential Amino Acids . . . . . . . . . . . . . . . . . 38

4.2 PEAP: A Point-based Ensemble for Aggregate Prediction . . . . . . 41

4.2.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Structural Motif Construction . . . . . . . . . . . . . . . . . . 44

4.2.3 Base Clustering Generation . . . . . . . . . . . . . . . . . . . 45

4.2.4 Ensemble Clustering . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.5 Testing PEAP . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Individual Prediction Pipelines Development 53

5.1 An Atomic Point Representation . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.2 Motif Propagation . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.3 Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . 55

vii



5.1.4 Cluster analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.5 Comparisons with State-of-the-art Methodologies . . . . . . . 58

5.1.6 Testing Atomic Point Representation . . . . . . . . . . . . . . 60

5.2 A Volumetric Lattice Representation . . . . . . . . . . . . . . . . . . 68

5.2.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Solid Binding Cavity Generation . . . . . . . . . . . . . . . . 69

5.2.3 The Lattice Model Construction . . . . . . . . . . . . . . . . 70

5.2.4 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.5 Testing Volumetric Lattice representation . . . . . . . . . . . 71

5.3 An Electrostatic Lattice Representation . . . . . . . . . . . . . . . . 76

5.3.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Solid Representation of Electrostatic Isopotentials . . . . . . 77

5.3.3 The Lattice Model Construction . . . . . . . . . . . . . . . . 80

5.3.4 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.5 Testing Electrostatic Lattice Representation . . . . . . . . . . 80

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusions and Future Works 87

Bibliography 90

Biography 107

viii



List of Tables

3.1 EC number used in the data set . . . . . . . . . . . . . . . . . . . . . 23

4.1 The template motif . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Clustering comparison with volumetric lattice representation and elec-

trostatic lattice representation on negative isopotentials. . . . . . . . 85

ix



List of Figures

1.1 An illustration of protein ligand binding. . . . . . . . . . . . . . . . 7

1.2 Illustration of definition of two specificity prediction problems. The

star symbols represent conformation structures of the first input pro-

tein and diamond symbols represent conformation structures of the

second input protein. The question marks represent the output in-

formation about the predicted binding specificity. . . . . . . . . . . 9

2.1 Conformational samples (grey) of the whole structure of pseudomonas

mandelate racemase (pdb: 1mdr) with respect to its original struc-

ture (teal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The molecular surface of a Vibrio cholerae RTX cysteine protease

(pdb:3eeb) where the electrostatic potential energy was mapped onto

the surface. The area of the binding cavity is strongly positively

charged (blue) which is surrounded by areas of neutral charge (white)

and areas of negative charge (red). The inositol-hexakisphosphate

(IHP) ligand, which is strongly negatively charged and attracted by

the positive binding cavity of 3eeb, is shown in sticks. . . . . . . . . 19

3.1 The crystal structure of a cold-adapted fish species trypsin (pdb:1a0j)

is shown above. The binding ligand is shown in red surface represen-

tation. This figure is generated with UCSF Chimera [1]. . . . . . . 22

3.2 PDB codes used in the data set. . . . . . . . . . . . . . . . . . . . . 23

x



3.3 Conformational samples of the binding cavity in pseudomonas man-

delate racemase (pdb: 1mdr). A) The position of the binding ligand

(teal) is mapped on to the tertiary structure of racemase protein

(white) where top 20 amino acids that are nearest to the binding

cavity is also visualized (yellow). B) The binding cavity in the naive

crystal structure. C) The binding ligand (teal) within the same bind-

ing cavity (transparent) in B). D-G) Binding cavities from selected

conformational samples that are generated by MD simulations. All

these cavities are rendered from the same perspective. . . . . . . . . 26

3.4 Aggregate variations in cavity volume in our whole data set. Cavity

of almost all proteins varied considerably. . . . . . . . . . . . . . . . 27

4.1 The CSG operations used by VASP, with input regions (light grey,

dotted outline) and output regions (solid outline). . . . . . . . . . . 30

4.2 A comparison of frequent regions. A,B) Frequent regions α⋆
k (teal)

and β⋆
k (light blue). C) Conserved frequent region, FC(A,B) (yel-

low). D,E) unconserved frequent regions (teal, light blue). . . . . . 32

4.3 Volumes of frequent regions in serine protease (A) and enolase (B)

cavities, computed at varying thresholds. . . . . . . . . . . . . . . . 33

4.4 Comparison of clusterings of frequent regions and of individual cavi-

ties from serine protease structures. A) Clustering of frequent regions.

B) Clustering of cavities from individual conformational samples. In

both trees, topology is calculated based on volumetric distance. Col-

oring, which is independent of clustering topology, indicates the lig-

and binding preference of the protein. . . . . . . . . . . . . . . . . . 36

xi



4.5 Comparison of clusterings of frequent regions and of individual cav-

ities from enolase structures. A) Clustering of frequent regions. B)

Clustering of cavities from individual conformational samples. In

both trees, topology is calculated based on volumetric distance. Col-

oring, which is independent of clustering topology, indicates the lig-

and binding preference of the protein. . . . . . . . . . . . . . . . . . 36

4.6 Intersection volume of amino acids from conformational samples of

porcine pancreatic elastase (pdb: 1b0e) with cavities from conforma-

tional samples of salmon trypsin (pdb: 1bzx). A) The trypsin cavity

(teal). B) One snapshot of Val216 and Thr226 from 1b0e, relative to

the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 The ensemble clustering based prediction pipeline. . . . . . . . . . . 42

4.8 The molecular surface of a cold-adapted fish species trypsin (pdb:1a0j)

with its respect to its binding ligand (red stick). The solid represen-

tation of the binding cavity generated by VASP is shown in teal region 43

4.9 An example of the template motif in a cold-adapted fish species

trypsin (pdb:1a0j) and the motif propagation to the porcine pan-

creatic elastase (pdb:1b0e). A) The structure of the template motif

(pink sticks) in protein 1a0j (green) where the binding ligand is shown

in red sticks. B) Protein 1b0e (blue) is structurally superposed onto

1a0j using FATCAT. C-D) The motif propagation by detecting amino

acids (teal stick) that matches to each amino acid in the template mo-

tif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 CSPA Ensemble Clustering Algorithm. . . . . . . . . . . . . . . . . . 48

xii



4.11 Superposition of sampled template motifs and propagated motifs of

serine proteases shown in A) and the enolases shown in B) where 5

samples were randomly selected for each protein subfamily. The cor-

lor of each aligned substructure indicate the ligand binding specificity.

Substructures in propagated motifs of proteins with identical bind-

ing specificity can group into structurally co-located clusters (dotted

rectangle). The figure is generated with Pymol [2]. . . . . . . . . . 49

4.12 Comparison of UPGMA clustering of the ensemble method and of

FAVA from serine proteases. A) Clustering of the ensemble method

using propagated motifs. C) Clustering of frequent regions using

FAVA. In both UPGMA trees, the dotted blue line is used to specify

the number of subfamilies to generate predictive clusters. Coloring,

which is independent of clustering topology, indicates the ligand bind-

ing preference of each protein. . . . . . . . . . . . . . . . . . . . . . 50

4.13 Comparison of UPGMA clustering of the ensemble method and of

FAVA from the enolases. A) Clustering of the ensemble method using

propagated motifs. C) Clustering of frequent regions using FAVA.

In both UPGMA trees, the dotted blue line is used to specify the

number of subfamilies to generate predictive clusters. Coloring, which

is independent of clustering topology, indicates the ligand binding

preference of each protein. . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 The atomic point representation pipeline. . . . . . . . . . . . . . . . 54

5.2 A) The Ser-His-Asp catalytic triad bound to the structure of chy-

motrypsins. B) The hydrogen bounds within the catalytic triad,

which is illustrated in [3]. . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Clustering performance comparisons with the catalytic triad on serine

protease superfamily. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Clustering performance comparisons with the catalytic pentad on the

enolase superfamily. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



5.5 A binding cavity conformation space map of serine protease super-

family where the size of motif is set to be 8 and each protein is

presented with 600 conformations. The top figure shows the NMF

reduced space and the bottom figure shows the PCA reduced space.

The coloring indicates the binding specificity of each conformation

that is defined by EC number. . . . . . . . . . . . . . . . . . . . . . 64

5.6 A binding cavity conformation space map of the enolase superfamily

where the size of motif is set to be 8 and each protein is presented

with 600 conformations. The top figure shows the NMF reduced space

and the bottom figure shows the PCA reduced space. The coloring

indicates the binding specificity of each conformation that is defined

by EC number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Clustering performance in three different feature space with respect

to the size of structure motif on serine protease superfamily. . . . . 66

5.8 Clustering performance in three different feature space with respect

to the size of structure motif on the enolase superfamily . . . . . . . 67

5.9 The volumetric lattice representation pipeline. . . . . . . . . . . . . . 69

5.10 The lattice model construction. A) The CSG operations used by

VASP, with input regions (light grey, dotted outline) and output re-

gions (solid outline). B) The molecular surface of a given conforma-

tion sample(grey region) with respect to the binding border (dotted

line). C) The solid representation of the binding site. D) The bound-

ing cuboid that covers the binding cavity. E) The cubic lattice inside

the bounding cuboid. F) Volume calculation in each lattice cube. . 70

5.11 Clustering comparison in accuracy (top) and normalized mutual in-

formation (bottom) with respect to the number of amino acids in the

structural motif on serine proteases. . . . . . . . . . . . . . . . . . . 72

xiv



5.12 Clustering comparison in accuracy (top) and normalized mutual in-

formation (bottom) with respect to the number of amino acids in the

structural motif on the enolases. . . . . . . . . . . . . . . . . . . . . 73

5.13 The performance of the volumetric lattice representation vs. the lat-

tice resolution r on serine proteases (top) and the enolases (bottom). 74

5.14 The electrostatic lattice representation pipeline. . . . . . . . . . . . . 77

5.15 An overview of the electrostatic lattice model construction. A) The

structure of a given protein conformation. B) The positive electro-

static potentials generated by VASP-E. C) Both positive and negative

potentials with respect to the geometric structure. D) The positive

electrostatic isopotential selected by k kT/e. E) The bounding box

that covers isopotential from all conformations. F) Electrostatic voxel

calculation in each lattice cube. . . . . . . . . . . . . . . . . . . . . 78

5.16 A) Electrostatic isopotential of Arginine, a positively charged amino

acid, at +2.5 kT/e. B) Electrostatic isopotential of Aspartate, a

negatively charged amino acid, at −2.5 kT/e. C) Electrostatic isopo-

tential surfaces of the Atlantic salmon trypsin (pdb:1a0j). The red

surface indicates the negative isopotential generated at −2.5 kT/e

and blue indicates the positive isopotential generated at +2.5 kT/e.

The surfaces are highly convoluted and pass very closely to each other,

but do not come in contact. The geometric structure of 1a0j is also

visualized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.17 Clustering comparison in accuracy (top) and normalized mutual in-

formation (bottom) with respect to the number of residues in the

structural motif on serine proteases. . . . . . . . . . . . . . . . . . . 81

5.18 Clustering comparison in accuracy (top) and normalized mutual in-

formation (bottom) with respect to the number of residues in the

structural motif on the enolases. . . . . . . . . . . . . . . . . . . . . 82

xv



5.19 The performance of the electrostatic lattice representation vs. the

lattice resolution r on serine proteases (top) and the enolases (bot-

tom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xvi



Abstract

Proteins are essentially versatile and flexible molecules and understanding protein

function plays a fundamental role in understanding biological systems. Protein

structure comparisons are widely used for revealing protein function. However,

with rigidity or partial rigidity assumption, most existing comparison methods do

not consider conformational flexibility in protein structures. To address this issue,

this thesis seeks to develop algorithms for flexible structure comparisons to predict

one specific aspect of protein function, binding specificity. Given conformational

samples as flexibility representation, we focus on two predictive problems related to

specificity: aggregate prediction and individual prediction.

For aggregate prediction, we have designed FAVA (Flexible Aggregate Volu-

metric Analysis). FAVA is the first conformationally general method to compare

proteins with identical folds but different specificities. FAVA is able to correctly

categorize members of protein superfamilies and to identify influential amino acids

that cause different specificities. A second method PEAP (Point-based Ensemble

for Aggregate Prediction) employs ensemble clustering techniques from many base

clustering to predict binding specificity. This method incorporates structural mo-

tions of functional substructures and is capable of mitigating prediction errors.

For individual prediction, the first method is an atomic point representation

for representing flexibilities in the binding cavity. This representation is able to

predict binding specificity on each protein conformation with high accuracy, and

it is the first to analyze maps of binding cavity conformations that describe pro-

teins with different specificities. Our second method introduces a volumetric lattice

1



representation. This representation localizes solvent-accessible shape of the bind-

ing cavity by computing cavity volume in each user-defined space. It proves to be

more informative than point-based representations. Last but not least, we discuss a

structure-independent representation. This representation builds a lattice model on

protein electrostatic isopotentials. This is the first known method to predict binding

specificity explicitly from the perspective of electrostatic fields.

The methods presented in this thesis incorporate the variety of protein con-

formations into the analysis of protein ligand binding, and provide more views on

flexible structure comparisons and structure-based function annotation of molecular

design.
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Chapter 1

Introduction

1.1 Motivation

Protein functions refer to all types of biochemical activities that a protein play in

biological systems, and they are essential to living organisms. For example, an-

tibodies bind to specific particles to protect human body [4]. Messenger proteins

transmit signals to coordinate biological activities between different cells, tissues

and organs [5]. With extensive knowledge of protein function, many practical goals,

such as boosting identification of drug targets, reducing side effects in protein en-

gineering and designing synthesis of new types of bio-materials, can be achieved.

In addition, understanding protein function is fundamental to expanding biological

research. Studies on protein-protein interactions, protein-DNA/RNA interactions

and protein network construction can be accelerated in a broader way with under-

standing function of individual proteins.

A variety of genome sequencing and structural genomics projects provide us

an increasing amount of high throughout protein sequences and structures. Un-

fortunately, function of many proteins is not available yet. About 40% of protein

structures in the NCBI database, for example, are not assigned with functional in-

formation [6]. To close the gap between available protein sequences/structures and

unknown protein function, biologists carry out biochemical experiments to deter-

3



mine the function of each protein. However, these experimental efforts are costly

and time-consuming and cannot automate the elucidating of protein function be-

cause they highly rely on the insights of skilled biologists and involve in a large-scale

experimentation. Hence, developing computational methods for automatic protein

function annotation is a challenging problem in modern bioinformatics.

1.2 What Exactly is Protein Function?

Proteins are extremely versatile and the concept of protein function is highly context-

sensitive and is not always well-defined. Therefore, to refine the protein function

definition, this section includes a discussion of protein function from various per-

spectives and many efforts that standardize protein function description.

Protein function can be understood from different levels: from specific molecular

biochemical reactions up to actions of the organism as a system. Here, we take a

categorization of the types of protein function that is suggested by Bork et al. [7].

• Molecular Function: The biochemical function performed by a single pro-

tein, such as ligand binding, biochemical reaction catalysis and conformational

changes.

• Cellular Function: Multiple proteins work jointly to perform more complex

physiological functions, such as metabolic pathways, signal transduction and

cellular localization , to keep a specific component of the organism in good

condition.

• Phenotypic Function: With integration of biological stimuli from the envi-

ronment, many physiological subsystems come together to determine pheno-

typic properties of the organism.

From the above discussion, protein function appears to be a very subjective

concept. To standardize protein function definition, many protein classification sys-

tems have been proposed. One early work Enzyme Classification (EC) [8] focused on

4



the classification of enzymes which are macromolecules for catalysing biochemical

reactions. The EC was proposed by the International Union of Biochemistry and

Molecular Biology in 1992, and it provides a hierarchical classification of enzymes

based on the chemical reactions they catalyze. The EC classification is a sequence

of four numbers separated by periods that gives a progressively finer definition of

a specific enzyme family: from the class of the reaction, the substrate, the type of

chemical bonds to other binding specificities. Nevertheless, EC has a limited scope

where only enzyme proteins get defined and classified. Many other similar classi-

fication, subsequent to EC, were proposed for a wider scope of function definition.

However, they focused on specific organisms, such as EcoCyc [9] for E. coli genes

and SubtiList [10] for B. subtilis genes. One general function description system

is Gene Ontology (GO) [11]. Go provides an ontology of defined terms represent-

ing gene product properties that covers three parts: cellular component, molecular

function and biological process. GO uses controlled vocabularies and is machine-

readable, and has been recognized as the most commonly used system for functional

annotation.

1.3 The Problem of Protein Function Prediction

From the above discussion, it is obvious that protein function can be understood

from multiple perspectives, and this variation will generate a wide variety of bi-

ological data. Depending on the type of biological data, computational methods

for protein function prediction are greatly diversified. Thus, this section discusses

different categories of function prediction methods. After that, we introduce the

specific problem studied in this thesis with highlight on how it is different from

existing works.

Protein function prediction assigns specific information that indicates biologi-

cal or biochemical roles to proteins. Protein function prediction methods take the

following interface:

• Input: A given protein P and K, any extra biological knowledge about P.

5



• Output: Specific information at the level of a defined biological function.

Function prediction methods can be categorized depending on the data type of

K, such as genomic sequences [12, 13, 14, 15], phylogenetic profiles [16, 17, 18],

gene expression [19, 20], protein interaction networks [21, 22] or even text mining

from literature [23, 24]. Unfortunately, in many cases, extra information about

the input protein is not always available. Computational methods that only take

P as input generally involve two main types: the sequence-based approaches and

the structure-based approaches. The sequence-based methods [25, 26, 27, 28, 29]

compare one protein with unknown function to another with known function in the

database, such as GenBank [30], in search of sequence similarity that is sufficient

to indicate similar function. It was found that homologous proteins with more

than 40% sequence identity tend to have identical function [31]. However, there

always exist exceptions when the similarity is below 40% and only sequence is not

robust enough for function prediction. It is well-known that protein structures are

more evolutionarily conserved than protein sequences [32, 33, 34], and thus protein

structures could be better predictive markers to be related to protein function,

leading to structure-based methods.

The Protein Data Bank [35] is by far the most comprehensive repository of

experimentally determined protein structures. As of April 2017, Protein Data Bank

contains about 129,000 structures that are assigned by various experimentations,

such as X-ray crystallography, NMR spectroscopy and electron microscopy. The 3D

structure of each protein comes in the form of PDB file where the coordinate of each

atom is recorded. Structure-based methods detect structural similarities in protein

whole structure [36, 37, 38], substructure [39, 40, 41], molecular surfaces [42, 43] et

al., to infer similar protein function.

1.3.1 Specific Problems Studied in This Thesis

Within the broader classes of function prediction methods, this thesis studies one

specific aspect of molecular function, called binding specificity, as a subproblem.
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Figure 1.1: An illustration of protein ligand binding.

The thesis focuses on geometric comparisons to predict binding specificity. These

comparisons come from two governing assumptions. First, different geometries of

protein structures imply different specificities. Second, different geometries of pro-

tein electrostatics imply different specificities.

Proteins usually perform their biochemical function by attaching or binding to

other molecules. While there are thousands of unique molecules, most proteins only

attach to very specific binding partners. This property, of preferentially forming

interactions with selective molecules, is called binding specificity. Building an un-

derstanding of the mechanism that achieves specificity is a common goal in many

areas of molecular biology because it could reveal how teams of molecules function

and how they might be manipulated or reengineered for medical purposes. Inves-

tigators, examine how mutations change specificities of cancer proteins to achieve

drug resistance or produce artificial antibodies that selectively attach proteins of

exotic bacteria to improve human immune systems. In this thesis, we study inter-

actions between proteins and small molecules (ligand) as shown in Figure 1.1. The

region where the ligand binds a protein is called the binding cavity or the binding

site. Many observations show that binding cavities with similar geometries may be

essential for accommodating identical ligand, while subtle structural variations in

binding cavities could cause different binding specificities [43, 44].
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1.3.2 Proteins are not Rigid Molecules

Proteins are generally thought to adopt unique structures that are determined by

their amino acid sequences [45] and, as we will describe in the related works section

4.2.1, protein structures are usually taken as rigid objects in structure comparisons

for function prediction. However, proteins are constantly in motion and are not

strictly static molecules, but rather populate ensembles of conformations. In such

cases, flexibility could affect protein structures at multiple levels: from local struc-

tures in individual atoms and amino acids [46], regional structure in intra-domains

and multiple amino acid coupling [47] to global structures in multiple domains [48].

Studying protein structure flexibility is significantly important because it has been

directly linked to functionally relevant phenomena such as allosteric signalling [48]

and enzyme catalysis [49]. This thesis focuses on small structural motion within

the binding cavity and design novel algorithms to analyze these motions to predict

binding specificity. It is noted that structural changes resulting from these motions

do not change specificity, but they create sources of errors for prediction methods.

With conformational flexibility of protein structures being considered, the input

for specificity prediction is not only a protein A but all its conformations. Depend-

ing on how conformations of the same protein can be understood, two specificity

prediction problems are investigated. First, all conformations of the same protein

can be regarded as one unit of input. The specific problem to be addressed in this

context is: we compare different proteins to predict their binding specificities where

all conformations of the same protein must be considered, and we call it aggregate

prediction. The problem of aggregate prediction can be formulated as follows:

• Input: A protein structure A and all its conformations {A1, A2, . . ., AN}.

• Output: Predictive label of binding specificity on A.

Second, each conformation snapshot of a given protein can be taken as an inde-

pendent source of input and we compare all conformations of different proteins to

predict specificity on each conformation. We call this problem individual prediction.
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Figure 1.2: Illustration of definition of two specificity prediction problems. The star
symbols represent conformation structures of the first input protein and diamond
symbols represent conformation structures of the second input protein. The question
marks represent the output information about the predicted binding specificity.

The individual prediction can be formulated as follows:

• Input: A protein structure A and all its conformations {A1, A2, . . ., AN}.

• Output: Predictive label of binding specificity on each conformation Ai.

These two problems are further illustrated in Figure 1.2. It is emphasized that these

two problems are essentially different from existing function prediction because we

leverage protein conformational flexibility to predict binding specificity.

1.4 Contributions

This thesis introduces several fundamental approaches to solve the aggregate pre-

diction and the individual prediction. Instead of treating protein structures as rigid

or partially rigid objects, our approaches leverage structural diversities in simulated

protein conformations to predict binding specificity. We evaluate these approaches

with application on two protein superfamilies.
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1.4.1 Methods for Aggregate Prediction

The Flexible Aggregate Volumetric Analysis (FAVA) is the first conformationally ro-

bust tool for comparing proteins with similar binding cavities but different binding

preferences. FAVA examines a large number of conformational samples to charac-

terize local flexibility within the binding cavity. In particular, FAVA is capable of

identifying the frequently conserved regions which is essential for accommodating

the binding ligand and causing steric hindrance. FAVA provides an unsupervised

learning tool that allows for the automatic detection of subfamilies with different

binding specificities. FAVA also detect influential amino acids associated with dif-

ferences in binding, predicting established experimental results.

Point-based Ensemble for Aggregate Prediction (PEAP) is a novel approach to

enhance binding specificity prediction. This method identifies protein substructure

matches to extract atomic positions of influential amino acids across all protein con-

formations. This capacity provides a novel representation of molecular flexibility in

the binding cavity using conformational samples. Additionally, our method employs

ensemble clustering techniques to incorporate the diversity of structural motions in

the binding cavity, which helps to mitigate prediction errors. Although there are

several works that apply ensembles of machine learning classifiers to predict protein

function [50, 51, 52], our method is the first ensemble-based procedure to predict

binding specificity in an unsupervised way.

1.4.2 Methods for Individual Prediction

The first individual prediction method is an atomic point representation. This is

the first known to analyze maps of binding cavity conformations in order to perform

an unsupervised specificity prediction. This representation detects coordinates of

selected amino acids to represent the binding cavity of a protein conformation as a

high dimensional point. Effective dimension reduction methods map each point in

a lower embedding feature space. This map visualizes a high level organization of

binding cavity conformations and makes specificity prediction with high accuracy.
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The second individual prediction model is a volumetric lattice representation.

Different from the atomic point representation that only describes Carbon alpha

atoms, this model enables an all-atom motion representation of the binding site.

Furthermore, the volumetric lattice representation localizes the binding cavity into

many tiny user-defined cubes for feature extraction. This representation proves to

be more informative than traditional point-based representations for binding cavity

comparisons, and could be a general tool for protein structure analysis.

In the end, we introduce an electrostatic lattice model fore specificity representa-

tion. This representation builds a lattice model on protein electrostatic isopotentials

to compute discriminative features. By ignoring atomic points or molecular surfaces,

this representation provides the first method to predict binding specificity which is

independent of protein structure comparisons.

1.5 Thesis Schedule

Chapter 2 includes a summary of protein structure comparisons. Chapters also dis-

cusses why molecular dynamics simulation and electrostatic potentials are used in

this thesis. Chapter 3 introduces the data sets and demonstrates the considerable

structural variations in the binding site. Chapter 4 introduces two methods for

aggregate prediction: FAVA and PEAP. Chapter 5 introduces methods for individ-

ual prediction: an atomic point representation, a volumetric lattice representation

and an electrostatic lattice representation. Chapter 6 summarizes the thesis and

proposes several future works.
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Chapter 2

Related Works

Ligand binding specificity is a property that is fundamentally defined by compar-

isons: A protein prefers one ligand because it binds with less affinity to other ligands,

not because of absolute affinity. These preferences arise because the preferred ligand

has a geometric shape or an electrostatic distribution that is more complementary to

the protein than other ligands. The comparative nature of binding preference makes

protein structure comparison an ideal class of methods for examining specificity.

We begin with describing existing approaches for protein structure comparisons.

One challenge for these comparative methods is the assumption of treating pro-

tein structures as rigid or partially rigid objects, but they cannot fully represent

flexibilities of protein structures. For this reason, we then discuss molecular dy-

namics simulation, which is a more comprehensive way for flexibility representation.

Finally, we introduce protein electrostatic potentials because electrostatic charges

could selectively influence ligand binding.

2.1 Protein Structure Comparisons

2.1.1 Rigid Structure Comparison

The comparison of protein structures depends highly on how they are represented.

Most comparison approaches take the rigidity assumption that protein structures

12



are treated as rigid objects. These methods can be further categorized into three

types: point-based representation, surface-based representation and learning-based

representation.

Point-based representations extract coordinates of atoms or amino acids and es-

timate mappings between the function of a protein and atomic points it contain.

For example, DALI [53], transforms an input protein into a matrix of distances

between all their Carbon alpha atoms, and overlaps along the matrix diagonal in-

dicates similarity in adjacent fragments. DALI builds sets of submatrices of fixed

size by segmenting the original matrix into regions of overlap. In such a represen-

tation, submatrix matches can be assembled into a final superposition between two

protein structures. The optimal superposition can be obtained using the branch

and bound algorithm Other representative methods model protein whole structures

using points in three dimensional space [54, 55, 37, 56, 57, 41] or nodes in geo-

metric graphs [58, 59]. A second type of point-based representation encodes atom

positions in protein substructures, such as amino acids in functional sites or bind-

ing sites [60, 61, 62], evolutionarily influential amino acids [63] or pseudo atoms

[64]. These selected amino acids or atoms can be generated by expert manual se-

lection [39, 63], literature search [65] or database retrieval [66, 67, 68] and they can

be further refined for better functional annotation [69, 70, 71, 72, 73]. Point-based

methods achieve extreme efficiency, and is capable of searching proteins with similar

structures from a large dataset.

Point-based representation takes the assumption that molecular interactions that

affect protein function can be traced back to the position of atoms or amino acids.

However, in many case studies, ligand binding occurs due to complementarity of

molecular surface. How proteins interact with other molecules highly depends on the

shape of surface clefts or binding cavities because they provide more space to form

complementary hydrogen bonds, hydrophobic contacts or electrostatic interactions

[74, 75]. All observations inspire the design of surface-based representation. Surface-

based methods employ closed surfaces or surface patches to approximate solvent-
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accessible shape of protein clefts or cavities for accommodating solvent within the

binding cavity. The approximation can be built using triangular meshes [76, 77,

43, 78], alpha shapes [42, 79], three dimensional grids [80] and spherical harmonics

[81, 82]. Surface-based methods are essentially specification of protein structure

using a finer resolution than that of selected atoms or amino acids and protein

structure comparisons are based on matching patterns between solvent-accessible

surfaces.

Protein structures can also be represented as feature vectors because of the nat-

ural mapping of function prediction to building machine learning models. The first

type of learning-based methods explicitly calculate each feature attribute that can

be extracted from protein structures [83, 84, 85] or structural datasets [86]. For

example, SCREEN [84] collected a list of 408 structural and physiochemical prop-

erties, such as number of atoms, maximum depth and average curvature, of the

binding cavity with application on drug-binding prediction. Instead of computing

protein features explicitly, the second type of learning-based methods describe pro-

tein structures with higher level of abstraction, such as random work on graphs [87],

structural kernels on user-defined geometric shapes [88, 40] and pairwise similarity

via structure matches [89, 90, 70]. Due to the exponentially increasing number of

protein structures, comparisons that rely on machine learning has attracted more

attention and has been largely applied to the recent large-scale protein function

prediction assessment [91]. It is also noted that methods introduced in this thesis

generally belong to learning-based approaches because of feature representation of

protein structures.

2.1.2 Flexible Structure Comparison

One issue of protein structure comparisons is that, in many cases, the rigidity as-

sumption cannot be taken for granted. For example, conformational changes in

structures of exotic proteins could cause drug resistance and how these flexibilities

should be represented is the key to manipulate the specificity we desire. In the
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meanwhile, without rigid simplification, structure comparisons could become more

difficult. First, structural flexibility creates comparison errors because conforma-

tions of the same protein may get falsely recognized as different proteins. Second,

comparative analysis requires more computational efforts where all flexible struc-

ture elements must get considered. Many works reported comparisons that tolerate

flexible representation of protein structures. Ye and Godzik developed a flexible

structure comparison tool called FATCAT [92]. FATCAT is different from rigid

comparisons because it adds a limited number of structural twists between aligned

protein fragments which are taken as rigid bodies. The final similarity between

two proteins includes the score between aligned fragments and alignment penalty

of twists that connect the fragments. Other flexible comparisons employ hinges

[93, 94], graphs [95, 96] or dynamics programming [97, 98, 99] to encode protein

structures as rigid substructures that are joint by flexible linkers.

However, these representations are essentially partially rigid representations, and

they cannot examine every flexible element that influences specificity. For example,

rigid or partially rigid representations do not examine small motions in backbone

atoms or motions in sidechain atoms, but these structural motions could change the

shape of the binding cavity and affect specificity [43].

2.2 Molecular Dynamics

The previous section reveals the limitations of existing methods for flexible structure

comparisons. It is clear that a more comprehensive way for flexibility representation

is to treat every protein atom as a flexible component. Therefore, we will introduce

molecular dynamics (MD), a computational simulation system for studying physical

movements of molecules. In this thesis, MD simulation generates inputs for our

trainable methods that accommodate for motion in every protein atom.

Using molecule snapshots generated by MD simulations as a flexible structure

representation, enjoys several advantages. First, MD simulations generate the time-

dependent trajectory of every atom, which is a more general description of steric
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movement of every molecular component. Coordinates of every atom may produce

functionally related elements that could be overlooked by rigid or partially rigid

representations. Second, protein conformations generated by MD simulations are

constrained by biophysical properties. Therefore, every snapshot is a semi-realistic

conformation, which cannot be guaranteed by existing representations because they

only consider motions of fragment linkers. Figure 2.1 shows the structural flexibility

of the pseudomonas mandelate racemase protein using conformational samples that

are generated by MD simulations. It reveals that the motion of every atom is

represented using selected conformations.

In the classical molecular mechanics molecular dynamics (MM-MD) simulation,

the state of every atom, e.i. the position, the velocity and the acceleration, is

determined by the Newtonian laws of motion equation. The forces and potential

energies between all atoms are computed using molecular mechanics force fields,

including spring forces capturing bonds, angles and dihedral angles, Van der Waals

interactions and electrostatic Coulomb contributions. Given initial conditions, MM-

MD simulation iteratively moves the system to a local optimal by minimizing the

energy landscape in finite steps where derivative based optimizations, such as the

steepest descent and the conjugate gradient, are often applied.

Besides MM-MD, many other types of MD have been proposed depending on dif-

ferent systematic considerations. In coarse-grained (CG) models [100], the molecule

structure can be alternatively represented into a simplified form. For example, ad-

jacent amino acids may move sufficiently in concert to be encoded as a single point.

CG simulations are much more computationally fast and are suitable for modelling

dynamics of large-scale molecular systems. Different from MM-MD that is based on

Newton equations, the quantum mechanics molecular dynamics (QM-MD) studies

simulation using Schrödinger equations where an electron is described as a unique

wave function for describing the quantum state. Although QM-MD becomes much

more computationally intensive, the increase of accuracy in molecular modelling

usually requires its application in simulating key parts of a protein [101]. Instead of
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Figure 2.1: Conformational samples (grey) of the whole structure of pseudomonas
mandelate racemase (pdb: 1mdr) with respect to its original structure (teal).
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relying on physical laws, a system can alternatively utilize Monte Carlo simulation

to randomly move atoms and accept resulting atoms by examining the associated

energy. Monte Carlo MD is less computationally costly but the simulation could

become too flexible due to its stochastic nature [102].

In this thesis, we apply the classical MM-MD to simulate protein structures for

flexible representation. In Chapter 3.3, we will present more technical details of our

simulations.

2.3 Electrostatic Potentials

Protein comparisons reported above use either atomic positions or molecular sur-

faces to compare protein structures. They exploit the facts that protein structures

define patterns of steric hindrance that is imposed on potential binding partners,

so they are logical choice for comparative analysis. Nonetheless, when considering

all influences on molecular recognition, longer distance electrostatic effects can have

a selective influence on binding partners even before they come into contact with

molecular surfaces. In such cases, a comparison of electrostatic potentials may re-

veal complementary information for binding preferences that may not be encoded

in structure comparisons. An example of electrostatic effects is shown in Figure 2.2.

Protein electrostatic potential, the summation over all atom charges, is the po-

tential energy of a proton at a particular location near the protein surface. Negative

electrostatic potentials represent the attraction of the proton by the concentrated

electron density while positive potentials represent repulsion of the proton. The unit

of electrostatic potential is kT/e where k is Boltzmann constant, T is temperature

in Kelvin and e is the charge of an electron. In practice, electrostatic potentials can

be computed by solving the Poisson-Boltzmann equation [103].

Several efforts have been made to analyze molecular electrostatic potentials that

reveal protein function. Some quantified charge distributions over whole protein

structures [104, 105] or local regions such as protein domains [106], active sites [107]

protein-protein binding interfaces [108] or structural motifs [109]. Few more methods
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Figure 2.2: The molecular surface of a Vibrio cholerae RTX cysteine protease
(pdb:3eeb) where the electrostatic potential energy was mapped onto the surface.
The area of the binding cavity is strongly positively charged (blue) which is sur-
rounded by areas of neutral charge (white) and areas of negative charge (red). The
inositol-hexakisphosphate (IHP) ligand, which is strongly negatively charged and
attracted by the positive binding cavity of 3eeb, is shown in sticks.
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compared electrostatic potentials directly by computing a similarity index [110] or

constructing tree-based structures [111]. Kinoshita et al. compared electrostatic

potentials on molecular surfaces to infer protein function [112, 113]. However, these

methods did not focus on ligand binding specificity. To deal with this issue, in

section 5.3, we will discuss a structure-independent approach to predict specificity

using protein electrostatic potentials.

20



Chapter 3

Datasets

This chapter describes the data sets used in the following chapters. The data sets

consist of two nonredundant enzyme superfamilies: serine protease superfamily and

the enolase superfamily. These two sets were selected based on established results

recording the existence of distinct subfamilies in each superfamily with different

binding preferences. Within serine proteases, we selected trypsin, chymotrypsin,

and elastase subfamilies. In the enolase superfamily, we selected enolase, mandelate

racemase, and muconate lactonizing enzyme subfamilies.

3.1 Protein Family Selection

The serine proteases hydrolyze peptide bonds by recognizing a set of adjacent amino

acids with specificity subsites that are numbered S4, S3, S2, S1, S
′
1, S

′
2, S

′
3, S

′
4. Each

subsite has binding preferences on one amino acid before or after the S1 − S′
1 hy-

drolyzed bond. In this work, we focus on three different binding specificities of the

S1 subsite: positively charged amino acid [114] for trypsins, large and hydrophobic

amino acid [115] for chymotrypsins and small hydrophobics [116] for elastases.

The enolase superfamily proteins catalyze reactions by abstracting a proton

from a carbon adjacent to a carboxylic acid [117] near the C-terminal domain of

beta sheets of the conserved TIM-barrel structures. In this work, we study three

different catalysts. The enolase subfamily converts 2-phosphoglycerate (2-PG) to
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Figure 3.1: The crystal structure of a cold-adapted fish species trypsin (pdb:1a0j)
is shown above. The binding ligand is shown in red surface representation. This
figure is generated with UCSF Chimera [1].

phosphoenolpyruvate (PEP) [118], the mandelate racemases convert between (S)-

mandelate and (R)-mandelate [119] and the muconate-lactonizing enzymes convert

lignin-derived aromatics, catechol and protocatechuate to citric acid cycle interme-

diates [117].

For example, the protein structure of the Atlantic salmon trypsin (pdb:1a0j)

(Figure 3.1) has been labelled as EC class 3.4.21.4. The definition of each component

is:

• EC 3 enzymes are hydrolases

• EC 3.4 are hydrolases acting on peptide bonds
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• EC 3.4.21 are hydrolases that cleave peptide bonds in which serine serves as

the nucleophilic amino acid

• EC 3.4.21.4 are those that cleave peptide chains mainly at the carboxyl side

of the amino acids lysine or arginine

The EC classification for serine proteases and the enolases is shown below:

Protein Superfamily EC Number Enzyme Family

Serine Proteases
3.4.21.1 Chymotrypsins
3.4.21.36 Elastases
3.4.21.4 Trypsins

The Enolases
4.2.1.11 Enolases
5.1.2.2 Mandelate Racemases
5.5.1.1 Muconate Lactonizing Enzymes

Table 3.1: EC number used in the data set

Our data sets contain families of proteins with highly similar enzymatic function

(e.g. 3.4.21.1 and 3.4.21.4) and families of proteins that differ in function at all 4

levels (e.g. 4.2.1.11 and 5.1.2.2).

3.2 Protein Structure Selection

Serine protease and enolase structures were selected from the protein data bank

(PDB) [35] on 6.21.2011. Based on enzyme classifications (EC), the PDB contained

676 serine proteases and 66 enolases in the families selected for our data set. From

these structures, mutants, structures with disordered regions, and enolases with

closed or partially closed capping domains were removed. Next, one structure from

Serine Protease Superfamily:

Chymotrypsins: 1ex3
Elastases: 1b0e, 1elt
Trypsins: 1a0j, 1ane, 1aq7, 1bzx, 1fn8, 1h4w, 1trn, 2eek, 2f91
Enolase Superfamily:

Enolases: 1ebh, 1iyx, 1te6, 3otr
Mandelate Racemase: 1mdr, 2ox4
Muconate Lactonizing Enzyme: 2pgw

Figure 3.2: PDB codes used in the data set.
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any pair of structures with greater than 90% sequence identity was removed, with a

preference for keeping structures associated with publications. Technical problems

with simulation prevented proteins 8gch, 1aks, and 2zad from being added. From

the 12 serine protease and 7 enolase structures that remained, ions, waters, and

other non-protein atoms were removed. Hydrogens, unavailable in some structures,

were also removed, but non-canonical amino acids (e.g. selenomethionines) were

not removed. All the structures are shown in Figure 3.2 by their PDB code and are

classified into subfamilies by their binding specificities.

Alignment. We superposed all structures and conformational samples in each

superfamily. All serine proteases and their samples were superposed onto 8gch,

a chymotrypsin, and all enolases and enolase samples were superposed onto 1mdr

using ska [57]. These structures were selected because of the presence of a bound

ligand, which we used to define the binding cavity.

3.3 Protein Structure Simulation

The conformational samples of each protein structure were simulated using GRO-

MACS 4.5.4 [120]. The input structure was centered inside a cubic waterbox using

a 3-point solvent model SPC/E [121]. The waterbox was set so that there is at least

10 Å between the protein and the nearest part of the box. Charge balanced sodium

and potassium were then added at a low concentration (< 0.1% salinity). Steepest

descent was used to minimize energy on the entire simulation system. Isothermal-

Isobaric (NPT) equilibration was performed in four 250 picoseconds steps for tem-

perature and pressure equilibration before the primary simulation. Over the four

250 picosecond minimization period, at 1000 kJ/(mol ∗nm), each equilibration step

reduced the position restraint force by 250 kJ/(mol ∗ nm). Backbone positions

constraints were released during the NPT simulation and system energies were com-

puted in the beginning of the equilibration phase. Temperature was set to 300

Kelvin and pressure was set to 1 bar. Temperature coupling was computed us-

ing Nosé-Hoover thermostat [121] and pressure coupling was computed using the
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Parrinello-Rahman algorithm [122, 123]. The simulation used P-LINCS [124] to

update bonds and used particle mesh Ewald summation (PME) [120] to calculate

electrostatic interaction energies. The primary MD simulation was started using the

atomic positions and velocities of the final equilibrium state.

The simulation was maintained for 100 nanoseconds with 1 femtosecond timesteps

on multiple 16 core nodes of the Lehigh corona server where OpenMPI was used

for parallel communications. The trajectory file was convert to the PDB format

with only atomic positions. 600 samples were selected of each protein structure at

uniform intervals.

3.4 Binding Cavities Vary Considerably

As shown in Figure 2.1 as an example, conformations of the same protein used in our

data set exhibit identical folds and highly similar whole structures. Nevertheless, the

globally structural similarity does not indicate the similarity in the binding cavity

and we will show that binding cavities in both serine proteases and the enolases

vary considerably.

Figure 3.3 exhibits structural variations in selected conformational samples of

pseudomonas mandelate racemase (pdb:1mdr) from the 100 nanosecond simulation

as described earlier. It is observed that smaller backbone motions and side chain

motions could shrink, enlarge or separate the binding cavity. The pseudomonas

mandelate racemase is no the most flexible structure in our dataset, and similar

motions in the binding cavity can be found in almost all other structures in our

data sets.

In Figure 3.4, we plot the volumes of binding cavities in conformational sam-

ples of the entire dataset. Among the serine proteases, samples of trypsin cavities

ranged from 248 Å3 to 692 Å3, chymotrypsin cavities ranged from 276 Å3 to 568

Å3, and elastase cavities ranged from 126 Å3 to 552 Å3, despite the general princi-

ple that chymotrypsin S1 cavities are larger to accommodate aromatic sidechains,

and elastase cavities are smaller to accommodate amino acids like alanine or valine.
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Figure 3.3: Conformational samples of the binding cavity in pseudomonas mandelate
racemase (pdb: 1mdr). A) The position of the binding ligand (teal) is mapped on to
the tertiary structure of racemase protein (white) where top 20 amino acids that are
nearest to the binding cavity is also visualized (yellow). B) The binding cavity in the
naive crystal structure. C) The binding ligand (teal) within the same binding cavity
(transparent) in B). D-G) Binding cavities from selected conformational samples
that are generated by MD simulations. All these cavities are rendered from the
same perspective.
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Similar variations can be seen amongst the ligand binding cavities of the enolase

superfamily. Enolase cavities ranged from 90 Å3 to 507 Å3, mandelate racemases

ranged from 225 Å3 to 673 Å3, and cavities sampled from muconate lactonizing

enzyme were between 89 Å3 and 343 Å3. This degree of structural variation demon-

strates the fundamental difficulty of accurately comparing binding site geometry in

the presence of flexibility.

Statistical modelling with a rigid model for classification does not add precision

to the structural comparison of flexible binding sites. We used VASP-S [44], a

statistical modelling tool that isolates structural element between protein cavities

that may influence preferential binding, to generate structural fragments between

pairs of cavities sampled from serine proteases. It was observed that more than

65 percent of all fragments were incorrectly classified as being so large as to be

consistent with different binding preferences, and it suggests that a comparison of

individual structures has a high probability of being inaccurate.

1a0j 1ane 1aq7 1bzx 1fn8 1h4w 1trn 2eek 2f91 1b0e 1elt 1ex3 1ebh 1iyx 1te6 3otr 1mdr 2ox4 2pgw
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Figure 3.4: Aggregate variations in cavity volume in our whole data set. Cavity of
almost all proteins varied considerably.

From these observations, it is clear that the flexibility of serine proteases and

the enolases creates significant variations between different samples of binding cav-

ities from the same protein. Because of the variability in the data, flexible protein

comparisons within the binding cavity, which is the specific problem studied in this

thesis, is not a trivial problem. Thus, techniques that will be introduced in the

following two chapters, which incorporate flexibility from conformational samples
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into the analysis, are essential for accurate general comparison.
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Chapter 4

Aggregate Prediction Pipelines

Development

In this chapter, we will introduce two fundamental methods for the aggregate pre-

diction. The input is a superfamily of protein structures with different specificities

where each structure is presented with a set of conformational samples and the

aggregate prediction outputs the predictive label on each input protein.

FAVA is a novel volumetric method for geometric comparisons of similar binding

cavities with different specificities. FAVA integrates randomly selected samples into

a three dimensional conserved region of the binding cavity as an aggregate represen-

tation and hierarchical clustering is then applied to categorize proteins to predict

specificity. However, the conserved region does not necessarily exist in highly flexible

binding sites. To enhance specificity prediction, a second method PEAP randomly

selects one conformational sample from each protein for generating a base predic-

tion, and ensemble clustering integrates base predictions from many samplings for

a consensus prediction.
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Input Union 

Intersection Di�erence

Figure 4.1: The CSG operations used by VASP, with input regions (light grey,
dotted outline) and output regions (solid outline).

4.1 FAVA: A Volumetric Method for Flexible Protein

Structure Comparisons

4.1.1 Method Overview

In section 3.4, it was observed that binding cavities in both serine proteases and the

enolases vary considerably. To mitigate comparison errors caused by flexibilities of

the binding cavity, our approach with FAVA is to represent the a conserved region

that is frequently, but not universally, within the ligand binding cavity. We call this

region the frequent region because it ignores the geometry of unusual conformations

that can obfuscate the solvent-accessible region. Below, we first describe how com-

pute frequent regions using a series of Constructive Solid Geometry (CSG) [125]

operations, such as union, intersection and differences (Figure 4.1) in which the de-

scription of each individual CSG operation can be found in [43]. We then describe

how we compare frequent regions from multiple proteins to identify conserved and

varying space within frequent regions for predicting binding specificity. Finally, we

explain how we use solid representations to characterize the flexibility of individual
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amino acids and their steric impingement on nearby binding cavities.

4.1.2 Generating Frequent Regions

Solid Representation of Binding Cavities

As input, we require the overlap threshold k, N conformational samples of a protein

structure A, and a ligand l bound to A. We refer to the conformational samples as

{A0, A1, . . . AN}. First, every sample Ai is superposed onto A by minimizing the

root mean squared distance between identical amino acids. Next, in every Ai, we

use GRASP2 [126] to generate the molecular surface m(Ai). This surface is defined

by the classical rolling probe algorithm [127] with the standard probe size of 1.4Å.

Since every conformational sample is superposed onto A, we use l to locate the

ligand binding site in every superposed m(Ai).

Second, at every atom in l, we center a sphere with radius 5 Å . The CSG union

of the spheres defines a neighbourhood, Sl, that defines the vicinity of the ligand

binding cavity in every sample. Next, we generate the envelope surface e(Ai) for

every sample. This procedure is similar to molecular surface generation except that

the envelope surface is calculated with a 5.0 Å radius probe. Since we are taking a

much larger probe size, the envelope surface does not roll into small binding cavities,

thereby making the envelope surface the boundary that separates the cavity from

the solvent. To mitigate the cavity shape variations that caused by envelope surface

differences from multiple samples, we compute intersection of all envelope surfaces,

E(A) =
⋂

∀i e(Ai), which is referred as the global envelope surface.

Finally, for every sample, we compute the intersection of the global envelope

surface and what remains of ligand spheres in the molecular surface, ai = (Sl −

m(Ai)) ∩ E(A). ai is a solid representation of the binding cavity on the sampled

structure Ai. This solid cavity generation procedure is more detailed in [128]. The

solid representation is selected because it describes geometries of all atoms that can

sterically hinder binding.
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E)

Figure 4.2: A comparison of frequent regions. A,B) Frequent regions α⋆
k (teal) and

β⋆
k (light blue). C) Conserved frequent region, FC(A,B) (yellow). D,E) unconserved

frequent regions (teal, light blue).

Solid Approximation of Frequent Regions

We use the sampled cavities ai together to approximate the frequent region αk.

Before we approximate this region, it is critical to recognize first that computing

αk explicitly, on a protein with many sampled conformations, is computationally

impractical for many k. Consider, for example, the simple case of k = 30. The

region α30 includes the CSG intersection of a0, a1, a2, . . . , a30, because any point

inside all of these regions is inside at least 30 ai, and thus inside α30. The same

is true for any thirty member subset of {a0, a1, . . . , aN}, so α30 is the union of all

intersections of thirty distinct sample cavities:
(

N
30

)

intersections. WhereN is several

hundred samples and k is nontrivial, the exponential size of the calculation is clearly

impractical, given the number of combinations.

FAVA approximates αk by randomly selecting subsets of size k. We call the

approximated result α⋆
k, and compute it in the following manner: given any k, we

randomly select 500 distinct subsets of {a0, a1, . . . , aN} of size k, and compute their

CSG intersection. Finally, we compute the CSG union of the resulting intersections,

α⋆
k. While random selections of different sizes were tested, frequent regions based

on different random subsets of 500 had consistent volumes. We deemed 500 samples

to be sufficient for accurate representations.
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Figure 4.3: Volumes of frequent regions in serine protease (A) and enolase (B)
cavities, computed at varying thresholds.
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4.1.3 Evaluating Frequent Region Approximation

FAVA approximates frequent regions using random selections of conformational sam-

ples. Actual frequent regions cannot be computed on realistic data because of their

combinatorial nature. This situation prevents a direct evaluation of the accuracy of

our approximation technique, but it does not prevent us from evaluating the geo-

metric consistency of the approximations generated. Specifically, when considering

conformational samples from the same protein, frequent regions with higher overlap

thresholds must always have equal or smaller volume than frequent regions with

lower overlap thresholds. This fact holds logically because regions where k cavities

overlap are also, by definition, a region where fewer than k cavities overlap.

We evaluated the degree to which this rule holds for our approximation by com-

puting the volumes of frequent regions at a wide range of overlap thresholds for all

proteins in our data set. Figure 4.3 indicates that volumes of frequent regions are

almost monotonically descending as overlap thresholds increase. They also indicate

that frequent regions from some proteins remain consistently larger than others, sug-

gesting fewer conformational changes that interfere with the shape of the binding

cavity. It is noted that, though not inconsistent, that volumes of frequent regions

from sampled cavities of Atlantic salmon elastase (pdb: 1elt) become zero above

overlap thresholds of 25, indicating that conformational flexibility radically alters

the shape of that cavity. Overall, these observations suggest that FAVA is generating

stable, logically consistent approximations of frequent regions.

4.1.4 Comparing Frequent Regions

Given two proteins A and B, we use their frequent regions α⋆
k and β⋆

k, to evaluate

the similarities and differences of their ligand binding sites over time (Figure 4.2).

These calculations are only performed once both structures and all conformational

samples are structurally aligned, to avoid errors from poor superposition (e.g. poor

registration). We use the frequent regions to identify conserved frequent regions.

The conserved frequent region between the samples of A and B is α⋆
k∩β

⋆
k (Figure.
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4.2C). Because the conserved region is the space intersecting two frequent regions,

it approximates a binding cavity region that is solvent accessible in both proteins in

more than k conformational samples. We measure the volumetric distance, D(A,B),

between the frequent regions of two proteins using the following expression:

D(A,B) = 1−
|α⋆

k ∩ β⋆
k|

|α⋆
k ∪ β⋆

k|
, (4.1)

where the expression |x| denotes the volume within a solid region x.

To compute the volume of the a 3D solid region represented by a boundary

surface that is composed of oriented triangles, we first calculate the centroid c of

all triangle corners. For every triangle, we compute the centroid tc and the normal

vector tn. We then decide if the selected triangle faces away from c or towards c by

measure the dot product between tn and tc − c. Next, we connect three corners of

the triangle and c to generate the tetrahedron. We add the tetrahedron volume if

the triangle faces towards the global centroid c and subtract the tetrahedron volume

otherwise. The volume of a tetrahedron can be evaluated by Tartaglia’s Rule [129].

To evaluate FAVA, we generated frequent regions with an overlap threshold of 50,

and measured volumetric distance between all pairs of frequent regions in the same

superfamily. Given a protein superfamily F = {f1, f2, ..., fm}, the volumetric feature

vi for protein fi is a vector defined as vi = {D(fi, f1), ...,D(fi, fm)}. The feature

space of all-against-all volumetric distance within the protein superfamily can be

represented by a matrix V = {v1, ...,vm}. We then perform UPGMA clustering

(Unweighted Pair Group Method with Arithmetic mean) [130], an agglomerative

hierarchical clustering method with average linkage, to generate clustering based on

the feature matrix.

Since frequent regions avoid inaccuracies that may be derived from individual

conformational samples, we compared frequent region clustering against 10 cluster-

ings of individual binding cavities from conformational samples selected randomly

from each simulation. All clustering hierarchies were visualized using Newick Utili-

ties [131].
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Figure 4.4: Comparison of clusterings of frequent regions and of individual cavities
from serine protease structures. A) Clustering of frequent regions. B) Clustering
of cavities from individual conformational samples. In both trees, topology is cal-
culated based on volumetric distance. Coloring, which is independent of clustering
topology, indicates the ligand binding preference of the protein.
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Figure 4.5: Comparison of clusterings of frequent regions and of individual cavities
from enolase structures. A) Clustering of frequent regions. B) Clustering of cavi-
ties from individual conformational samples. In both trees, topology is calculated
based on volumetric distance. Coloring, which is independent of clustering topology,
indicates the ligand binding preference of the protein.
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4.1.5 Testing FAVA

We hypothesize that similarities and differences between frequent regions can be

used to classify samples of ligand binding cavities based on their binding preferences.

Frequent regions of proteins with identical binding specificity are expected to be

grouped into into the same cluster.

Figure 4.4A illustrates a UPGMA clustering of serine protease frequent regions

based on volumetric distance. 10 out of total 12 serine protease were correctly pre-

dicted. Trypsins were correctly clustered away from other serine proteases. Elastases

were also separated, but Atlantic salmon elastase was placed as an outlier because

it has zero volume. Chymotrypsin was correctly separated from both trypsins and

elastases. Figure 4.4B is an example of a UPGMA clustering generated from ran-

domly selected conformational samples of each protein. We can see that one salmon

elastase (pdb: 1elt) is classified as more similar to the trypsins than it is to porcine

elastase (pdb: 1b0e), and that 1b0e is more similar to the chymotrypsin than any-

thing else. This kind of miscategorization was typical of other clusteriings of cavities

from randomly selected conformational samples.

A UPGMA clustering of frequent regions derived from enolase binding cavities

is shown in Figure 4.5A. Totally, 6 out of total 7 enolases were correctly clustered.

Frequent regions from enolase and muconate lactonizing enyzyme were correctly

separated, as were frequent regions from mandelate racemase, except that the man-

delate racemase from Pseudomonas putida (pdb: 1mdr) was clustered with yeast

enolase instead of with mandelate racemase from Zymomonas mobilis (pdb: 2ox4).

Clusterings of individual conformational samples of enolase cavities (e.g. Figure

4.5B) showed similar errors.

Overall, UPGMA clustering of frequent regions in the serine proteases and eno-

lases generally reflected similarities and differences in specificity with equal or greater

accuracy than clusterings of individual conformational samples. This result demon-

strates that a flexible representation of binding cavities exhibits fewer classification

errors caused by conformational flexibility.
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4.1.6 Isolating Frequently Influential Amino Acids

Variations in the ligand binding cavities can cause different binding specificities

and such variations can occur for many reasons. For example, the protrusion of one

amino acid in one binding cavity that does not exist in another could prevent certain

ligand from binding. Therefore, we are not only interested in predicting specificity

within different proteins but in detecting influential amino acids that create changes

of binding preferences. In this section, we explain how FAVA characterizes the

flexible geometry of individual amino acids and their steric impingement on nearby

binding cavities.

Given two proteins A and B, if the cavity of A is frequently different from B,

then some set of amino acids is responsible for making these cavities different on a

frequent basis. We identify such amino acids with FAVA.

At the level of individual samples, consider two samples of A and B, called Ai

and Bj, and an amino acid r in A. We say that r makes the cavity ai different from

the cavity bj if the intersection of the molecular surface of r in Ai, called m(ri),

has a nonempty intersection with bj. If so, then m(ri) occupies a region that is not

solvent accessible in ai but solvent accessible in bj . Between these two samples ri is

thus one cause for the difference between ai and bj .

To evaluate how frequently r, an amino acid of A, creates differences between

the cavities of A and B, we compute INTr(A,B), the median volume of intersection

|m(ri) ∩ bj |, for all pairs of samples Ai and Bj. When INTr(A,B) is large, then

r frequently makes the cavity of A different from B; small values indicate that it

rarely does.

4.1.7 Testing Influential Amino Acids

To evaluate how accurately FAVA can detect amino acids that create such changes,

we compute the median intersection volume INTr(A,B), for all amino acids r in all

elastase structures (A), and all non-elastase serine protease cavities (B). For each

conformational sample of each elastase amino acid and each serine protease cavity,
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we also measured the minimum, 25th percentile, 75th percentile, and maximum

volume of intersection.

Most amino acids exhibited zero or very small intersection with any serine pro-

tease cavity, including cavities from the same protein, because the amino acid is

distant from cavity. Nonetheless, some amino acids do occasionally intersect with

binding cavities of the same protein. For example, among amino acids of porcine

pancreatic elastase (pdb: 1b0e), the amino acid that most intersects the binding

cavity of 1b0e is serine 195, the nucleophilic serine responsible for catalysis in serine

proteases [132]. It occupies an median of 5 Å3 inside samples of binding cavities in

1b0e.

When considering intersections between elastase amino acids and cavities from

trypsins, different amino acids exhibited much larger median volumes of intersection.

As an example, Figure 4.6 illustrates the degree of intersection between amino acids

of porcine elastase (pdb: 1b0e) and cavities from conformational samples of salmon

trypsin (pdb: 1bzx). Samples of valine 216 exhibited a median intersection volume

of 45 Å3 with trypsin cavities. Threonine 226 exhibited median intersection volumes

of 29 Å3. These findings correspond to experimental verification: Both V216 and

T226 are known to occupy parts of the S1 pocket (inset, Figure 4.6), shortening it

accommodate small hydrophobic amino acids [133]. We observed similar volumes of

intersection between elastase amino acids and other trypsin cavities as well.

Finally, we also measured median intersection volumes between elastase amino

acids and the sampled cavities of bovine chymotrypsinogen (pdb: 1ex3). Again,

most amino acids exhibited small or zero median volumes of intersection with cavity

samples. Serine 195, valine 216 and threonine 226 exhibited larger median volumes,

at 16 Å3, 20 Å3, and 15 Å3, respectively. These results again illustrate that amino

acids that alter cavity geometry can be detected despite conformational flexibility

in both the amino acids and the cavity.
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4.2 PEAP: A Point-based Ensemble for Aggregate Pre-

diction

Although FAVA proved to be a conformationally robust method for comparing pro-

tein binding cavities, it has its limits. For example, clustering results on serine

proteases showed that the Atlantic salmon elastase (pdb: 1elt) was separated from

another elastase protein (pdb: 1b0e). This error was caused because the binding

cvity of 1elt is highly flexible. The flexibility makes 1elt incomparable when the

frequent region does not exist and its volume becomes zero as shown in Figure 4.3.

To solve this problem, we introduce a second method PEAP that employs ensemble

clustering techniques to examine if it could better predict binding preferences.

4.2.1 Method Overview

To avoid the empty frequent region generated by solid representations of molecular

surfaces, PEAP turns to the point-based representations as described in section

. We enjoy several advantages using point-based representations. First, atomic

points of amino acids selected by PEAP are all adjacent to the ligand, and they

could characterize the shape of the binding site and the specificity. Second, PEAP

requires selected amino acids to be k-sized, and the same length of atomic points

makes it robustly comparable among all protein structures.

Overall, PEAP takes the same input as FAVA, which are conformational samples

of one family of protein structures. First, we designate one protein structure as

the template and explain how to compute a special substructure structural motif :

the amino acids that are adjacent to the ligand surface. We also call it template

motif because this is the structural motif of the template structure. The template

motif is close to the binding cavity and its motion may alter the shape of the

binding site. Second, we describe how we compute structural matches to identify

similar substructures in other input proteins, generating the propagated motif for

each family member.
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Figure 4.7: The ensemble clustering based prediction pipeline.

Given one sampled conformation of each protein, we compute all-against-all least

root mean square distance (LRMSD) similarities between propagated motifs. These

similarities create geometric feature vectors that correspond to high dimensional

points in the geometric feature space. We continue to build a hierarchical clustering

from geometric features, which outputs a clustering label one each protein.

Due to the nondeterministic nature of protein conformation sampling, the clus-

tering could be highly unstable and no single clustering is guaranteed to be reliable

across all conformational samples of all protein structures. Ensemble learning [134],

as a one way to mitigate prediction errors caused by randomness, integrate multiple

base methods to obtain better predictive performance than could come from any

of the constituent performance alone. Therefore, we applied ensemble clustering

techniques. Given a set of base clusterings, ensemble clustering output a consensus

prediction that shares as much information as possible with all base clusterings [135].

Finally, we discuss how to compute such a consensus clustering to predict ligand

binding specificity. The schedule is shown in Figure 4.7 and each step is detailed in

section 4.2.2-4.2.4.
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Figure 4.8: The molecular surface of a cold-adapted fish species trypsin (pdb:1a0j)
with its respect to its binding ligand (red stick). The solid representation of the
binding cavity generated by VASP is shown in teal region
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4.2.2 Structural Motif Construction

Template Motif Construction

Within the input family of proteins, we select one structure T as the template and

refer to its conformational samples as {T1,T2,...,Tn}. We define the molecular surface

of each sampled ligand binding cavity as {t1,t2,...,tn} using VASP [43]. The binding

cavity of protein 1a0j, as an example, is illustrated in Figure 4.8. Following our

earlier work [128] as described in Section 4.1, we compute the average intersection

volume of each amino acid r between the sampled amino acid ri of Ti and the

sampled ligand binding cavity tj for all pairs of samples i and j. The large average

intersection volume indicates that r frequently changes the shape of the binding

cavity. In this work, we rank all the amino acids by their average intersection volume

and return the top k as the template motif S = {S1, S2, ..., Sk} where Sx is the

sequence number for the xth top amino acid. The positions of motif S characterize

the atomic geometry of the binding site. It is noted that our method is independent

of intersection volume calculation and adapting other reasonable motif generation

methods, such as expert manual selection [39, 61, 63], literature search [65] and

motif database retrieval [136, 66, 67, 68], could also be successful.

Motif Propagation

The computed template motif S is matched against a family of protein structures

F = {f1, f2, ..., fm}, yielding a set of matchesMS→F = {MS→f1 ,MS→f2 , ...,MS→fm}.

In this work, FATCAT [95] is used between the template structure T and each pro-

tein structure fi to identify substructure matches by searching every amino acid in

motif S and returning the matched amino acid in fi. FATCAT was selected be-

cause of the availability and compatibility to flexible structure comparisons. Every

substructure match MS→fi is a mapping between S and a substructure of fi, and

all the amino acids in the substructure are returned as a propagated motif, Sfi . If

any arbitrary amino acid Si in S is aligned to a gap, Si will be removed from the

template motif.
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Substructure Difference: A Case Study

We selected 1a0j as the template structure for serine protease superfamily and 1ebh

as the template structure for the enolase superfamily. All the structures in the same

superfamily have identical protein folds and the choice of the template structure

is of little difference in generating propagated motifs. We ranked all the amino

acids by the average intersection volume with the binding cavity and selected top

8 amino acids as a case study. In table 4.1, we show all amino acids in the tem-

plate motif. Figure 4.9A illustrates the atomic positions of the template motif in

one conformational sample structure of protein 1a0j. It is observed that all amino

acids are close to the ligand, and their motions may enlarge, shrink or even separate

binding cavities. Figure 4.9B-D illustrate the motif propagation by detecting sub-

structure matches by whole structure superposition. We hypothesize that geometric

differences of structural motifs cause different specificities.

4.2.3 Base Clustering Generation

To create a base clustering, we take a random sampling of protein conformations

F ′ = {f1i , f2i′ , ..., fmi′′
} as input where fxy indicates the yth conformation of the

structure fx. All these conformations are superposed onto one selected structure

fx by minimizing the overall root mean square distance (RMSD). We write the

pairwise LRMSD between two propagated motifs as L(Sfj , Sfk). The LRMSD is

obtained by computing Cα atom RMSD of all amino acids in propagated mo-

tifs on F ′. The geometric feature gj for protein fj is a vector defined as gj =

{L(Sfj , Sf1), ..., L(Sfj , Sfm)}. The geometric feature space of all-against-all LRMSD

alignment within a protein family can be represented by a matrix G = {g1, ...,gm}.

Each gj is a point in the feature space. We hypothesize that proteins with identical

PDB Motifs

1a0j S190 G193 S195 V213 W215 G216 K224 P225

1ebh D246 C247 Q295 D320 K345 H373 R374 K396

Table 4.1: The template motif
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A) B)

C) D)

Figure 4.9: An example of the template motif in a cold-adapted fish species trypsin
(pdb:1a0j) and the motif propagation to the porcine pancreatic elastase (pdb:1b0e).
A) The structure of the template motif (pink sticks) in protein 1a0j (green) where
the binding ligand is shown in red sticks. B) Protein 1b0e (blue) is structurally
superposed onto 1a0j using FATCAT. C-D) The motif propagation by detecting
amino acids (teal stick) that matches to each amino acid in the template motif.
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binding specificity should be nearby in the feature space and be clustered into the

same group.

To test our hypothesis, we continue to use the UPGMA to generate a base

clustering using geometric features. The UPGMA outputs one base clustering as

a label vector λ by specifying the number of clusters where the ith element λi ∈

{1, 2..., c} indicates the cluster assignment for each feature gi.

4.2.4 Ensemble Clustering

In this step, we have r base clustering vectors {λ(1), λ(2), ..., λ(r)} using conformation

sampling with replacement. In order to ensemble all the base clusterings, we need a

combination function Γ to create a consensus clustering λ∗ = Γ({λ(1), λ(2), ..., λ(r)}).

Given m protein structures and n conformations of each structure, the number of

all possible samplings is nm, and the exponential size of combination is impractical

even for very small n and m. Therefore, the brute force search over all possible

samplings is infeasible and a heuristic strategy is needed.

Here, we adopt a cluster-based similarity partitioning algorithm (CSPA) to com-

pute a consensus clustering. Essentially, if two objects are in the same cluster, they

are considered to be fully similar, and if not they are fully dissimilar. To achieve

this, we convert a base clustering vector λ(q) of size m to an m×m base similarity

matrix M(q) by:

M
(q)
(i,j) =











0 if λ
(q)
i = λ

(q)
j

1 otherwise
(4.2)

we average all the base similarity matrices, yielding an averaged similarity matrix

M. Here, the less M(i,j) is, the more possibility that the ith object and the jth

object will be grouped into the same cluster. Finally, we form a consensus UPGMA

clustering based on the averaged similarity matrix. The general process of CSPA is

illustrated in Figure 4.10. For more details about ensemble clusterings and CSPA,

see [137, 135].
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Input: Data set G = {g1, ...,gm};
Base UPGMA clusters Ω(q), q = 1, ..., r;
The consensus UPGMA cluster Ω;

Process:

1. For q = 1, ..., r :
2. λ(q) = Ω(q)(G);
3. Form an m×m base similarity matrix M(q) from λ(q) using
Equation (4.2);
4. End

5. M = 1
r

∑r
q=1M

(q);
6. λ∗ = Ω(M);
Output: Ensemble clustering vector λ∗.

Figure 4.10: CSPA Ensemble Clustering Algorithm.

4.2.5 Testing PEAP

Figure 4.11A illustrates superposition of propagated motifs generated by top 8 amino

acids in serine proteases using selected conformational samples for each protein sub-

family. The superposition exhibits geometric diversities and motif structures in

proteins with the same binding specificity tend to form closely-located substruc-

ture clusters. Atomic positions of Glycine 193, as a notable example, in trypsin

samples (green sticks in the dotted box) are separated from those of elastase and

chymotrypsin samples, and consequently Glycine 193 could an effective marker for

discriminative analysis of binding specificity. The structural motif superposition in

the enolases is shown in Figure 4.11B. Only 6 amino acids were selected because As-

partate 246 and Cysteine 247 were aligned to gaps during the motif propagation and

were removed from the template motif. Again, closely-located substructure clusters

that indicate specificity can be detected. These observations show that motif prop-

agation could identify subtle variations in local structures to compare proteins that

have identical folds but bind to different substrates.

We expect that proteins with the same binding preference are grouped into the

same cluster in PEAP prediction. We also expect that PEAP could enhance speci-

ficity prediction compared to FAVA. To test PEAP, we continue to select 1a0j and

1ebh as the template structure in each protein superfamily and choose top 8 amino
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Figure 4.11: Superposition of sampled template motifs and propagated motifs of
serine proteases shown in A) and the enolases shown in B) where 5 samples were
randomly selected for each protein subfamily. The corlor of each aligned substruc-
ture indicate the ligand binding specificity. Substructures in propagated motifs of
proteins with identical binding specificity can group into structurally co-located
clusters (dotted rectangle). The figure is generated with Pymol [2].
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Figure 4.12: Comparison of UPGMA clustering of the ensemble method and of
FAVA from serine proteases. A) Clustering of the ensemble method using propagated
motifs. C) Clustering of frequent regions using FAVA. In both UPGMA trees, the
dotted blue line is used to specify the number of subfamilies to generate predictive
clusters. Coloring, which is independent of clustering topology, indicates the ligand
binding preference of each protein.

acids with the largest average intersection volume with the binding cavity. Fig-

ure 4.12A demonstrates the ensemble UPGMA clustering of propagated motifs on

serine protease structures. Proteins in the same subfamily are correctly clustered

into the same group. Figure 4.12B demonstrates the UPGMA clustering of frequent

regions using FAVA. We observe that the only chymotrypsin protein, 1ex3, was

misclassified into the trypsin cluster and two elastases were separated into different

clusters. Moreover, ensemble UPGMA clustering exhibits a greater similarity be-

tween trypsins than FAVA clustering. This indicates that structural motifs could

be better markers to distinguish proteins with different binding preferences.

Figure 4.13A shows the ensemble clustering of propagated motifs on enolase

superfamily structures. Three subfamilies are all correctly clustered by their binding
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Figure 4.13: Comparison of UPGMA clustering of the ensemble method and of
FAVA from the enolases. A) Clustering of the ensemble method using propagated
motifs. C) Clustering of frequent regions using FAVA. In both UPGMA trees, the
dotted blue line is used to specify the number of subfamilies to generate predictive
clusters. Coloring, which is independent of clustering topology, indicates the ligand
binding preference of each protein.

specificities. Figure 4.13B shows the clustering using FAVA. We can see that two

mandelate racemases were separated and one of them, 1mdr, was misclassified into

the enolase subfamily cluster. Similarly, greater similarities between the enolases

and between mandelate racemases was detected using the ensemble clustering.

Overall, UPGMA clusterings reveal that PEAP improves the specificity predic-

tion and it could be a robust tool for flexible protein structure comparisons despite

great conformational flexibilities in the binding cavity.

4.3 Conclusion

In this chapter, we have presented two novel approaches to solve the problem of

aggregate prediction that have been defined in section 1.3.2. FAVA is the first con-

formationally general method to compare proteins with identical folds but different

binding specificities. FAVA permits detailed volumetric comparisons of binding cav-

ities despite considerable structural variations. PEAP presents a computational tool

to compare protein cavities based on ensemble clustering. Different from FAVA with

solid representation of molecular surfaces, PEAP identifies functional atomic points

to avoid empty frequent regions. PEAP also ensembles multiple base clusterings for

a consensus clustering to predict the binding specificity.
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We evaluated FAVA and PEAP on serine protease and enolase superfamilies.

FAVA was able to classify members of both superfamilies with equal or superior

performance than classifications where only a single conformation had to be selected

at random. Measuring the median volume of intersection between sampled amino

acids of one protein and the sampled cavities of another, FAVA was capable of

identifying amino acids that have an experimentally established influence on binding

specificity. Experimental results of PEAP revealed that all protein structures in both

superfamilies can be correctly predicted. The results indicate that PEAP enhances

the specificity prediction by mitigating prediction errors.

As practical tools for flexible comparisons of the binding cavity, both FAVA and

PEAP have considerable potentials for wider applications. In many cases, efforts to

create proteins with engineered binding preferences already involve the simulation

of protein structures. Our methods introduce an analysis of the resulting simulation

data that might yield more detailed comparisons of frequently conserved regions or

selected amino acids, which can be changed for a desired binding preference.
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Chapter 5

Individual Prediction Pipelines

Development

In this chapter, we introduce methods that focus on the individual prediction prob-

lem. Individual prediction is important because an analysis of individual snapshots

might, for example, reveal subtle structural dissimilarities between proteins with

different specificities, and these st ructural variations could be further altered to

change specificity of each conformation. The individual prediction takes each con-

formation as an independent source while, in aggregate prediction, all conformations

of the same protein are taken as one unit of input. The expected output that solves

the individual prediction problem is grouping each protein snapshot into categories

with different specificities.

Here, we introduce three representations, an atomic point representation, a vol-

umetric lattice representation and an electrostatic lattice representation, for repre-

senting protein flexibility. The atomic point representation identifies positions of

selected amino acids to describe geometric motions in the binding site. The volu-

metric lattice representation calculates cavity volume in a user-defined cube within

the binding site. The electrostatic lattice representation computes the volume of

protein electrostatic isopotentials in a a user-defined cube. All these representations

convert each protein conformation into a feature vector.
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Figure 5.1: The atomic point representation pipeline.

As we have discussed in section 1.3.2, small motions that come from a 100

nanosecond simulation used in this thesis do not change specificity and each protein

conformation thus takes the same specificity as the native structure. To test all three

representative models, we hypothesize that conformations of proteins with identical

binding specificity are close together while conformations with different specificities

separate apart. We evaluate these methods on the same data sets, serine proteases

and the enolases.

5.1 An Atomic Point Representation

5.1.1 Method Overview

Overall, this representation accepts conformational samples of one superfamily of

protein structures as input. Each conformation of the binding cavity will be mapped

into an embedded feature space and we call this the conformation space map. This

space map enables comparisons of every protein snapshot to predict its binding speci-

ficity. First, we leverage motif propagation to detect template motifs and propagated

motifs among all input protein structures as we have described in section 4.2. We ex-

tract three dimensional Carbon alpha coordinates of each amino acid in structural

motifs. Therefore, each conformation can be characterized with a feature vector.
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Since structural motifs are propagated by detecting substructural matches, causing

some selected amino acids to be highly similar in geometry. These similar structures

will increase the dimensionality of the feature vector but do not provide discrim-

inative information on specificity. Hence, in the next step, we perform dimension

reduction techniques to reduce dimensionality. Here, we select two effective reduc-

tion methods, Non-negative Matrix Factorization (NMF) and Principal Component

Analysis (PCA). Finally, we perform data clustering to generate predictions that

correspond to the problem of individual prediction. The outline of our approach is

shown in Figure 5.1.

5.1.2 Motif Propagation

The motif propagation consists of two parts: the template motif construction and

motif propagation to other protein structures. This step has been detailed in Section

4.2.2. The meaning of motif propagation is to identify selected amino acids, which

are comparable among all protein conformations, for characterizing flexibilities in

the binding site. We applied FATCAT [95] to identify substructure matches for

motif propagation and other substructure matching algorithms, such as LabelHash

[138] and Match Augmentation [63], could substitute for FATCAT as well.

5.1.3 Dimension Reduction

Once propagated motifs have been generated, one conformation of the binding cavity

can be characterized as a geometric feature vector where each value is x or y or z

direction coordinate of Carbon alpha atom. The feature matrix X = {x1, ..., xn} ∈

R
m×n represents geometric features of all protein conformational samples where n is

the total conformation number and m is the feature dimensionality, and the matrix

will be taken as input for dimension reduction.

Non-negative matrix factorization (NMF) [139] is a matrix decomposition algo-

rithm for parts-based data representation of matrices with non-negative elements.

Given an input matrix X, NMF aims to find two non-negative components W ∈
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R
m×r and H ∈ R

r×n to minimize the objective function where r is the reduced

dimensionality:

min
W,H

F = ||X −WH||2

s.t. Wij ≥ 0,Hij ≥ 0 (5.1)

The objective is convex with respect to either W or H, but not convex to both

together so that the global optimal is difficult to find. Starting from random ini-

tialization of W and H, Lee and Seung [140] presented an algorithm to find a local

minimum by iteratively update W and H:

Wij = Wij

(XHT )ij
(WHHT )ij

Hij = Hij

(W TX)ij
(W TWH)ij

(5.2)

Usually, we have r ≪ m and r ≪ n. NMF can be understood as trying to discover

latent structures using a few dimensions in a compressed representation. If there

exists negative elements in the matrix, we add negative minimum value of the matrix

to guarantee the non-negative constraint.

Principal Component Analysis (PCA) [141] is one of the most popular dimension

reduction methods. PCA orthogonally project a set of data points onto a lower

dimensional subspace such that variances between projected data are maximized.

The projection vectors can be computed as a set of eigenvectors with top r largest

eigenvalues.

Both NMF and PCA provide methods for reducing the dimensionality of feature

space. We then perform clustering on both reduced latent space.

5.1.4 Cluster analysis

We apply the canonical K-means clustering to detect data clusters in the feature

space. The number of clusters is equal to the number of different protein subfamilies.
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K-means outputs predicted cluster label li on each conformational sample. The

clustering is evaluated with two metrics, clustering accuracy (AC) and normalized

mutual information (MI).

Given the predicted cluster label li and the ground truth gi defined by EC

number, AC is defined as:

AC =

∑n
i=1 δ(gi,map(li))

n
(5.3)

Where δ(·) is the delta function that equals to one for identical comparison and

equals to zero otherwise andmap(·) is a permutation mapping function that matches

clustering label set to the equivalent label from ground truth label set as much as

possible. This can be done using the Kuhn-Munkres method ([142]).

Given the set of predicted clusters C and the set of ground truth clusters C ′,

the mutual information MI(C,C ′) is defined as:

MI(C,C ′) =
∑

ci∈C,cj∈C′

p(ci, cj) · log2
p(ci, cj)

p(ci) · p(cj)
(5.4)

where p(ci) and p(cj) are the probabilities that a sampled data belongs to cluster ci

and cj respectively and p(ci, cj) is the joint probability that a sampled data belongs

to cluster ci and cj at the same time. In our experiments, we use the normalized

mutual information MI to scale MI between 0 and 1 as follows:

MI(C,C ′) =
MI(C,C ′)

max(H(C),H(C ′))
(5.5)

where H(C) and H(C ′) are the entropies of cluster set C and C ′ respectively, and

the entropy is defined as H(C) = −
∑

ci∈C
p(ci)log2p(ci). MI equals to one only if

two cluster sets are identical and equals to zero only if two sets are independent.
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5.1.5 Comparisons with State-of-the-art Methodologies

To our best knowledge, we did not find any previous work that takes the same input

and output as we do here to predict the binding specificity in an unsupervised way.

Therefore, direct comparisons to existing methods are not possible here. However,

to demonstrate the effectiveness of the atomic point representation, we compare with

existing point based methods, which are documented structural motifs in previous

literature studies.

The catalytic triad is a group of three amino acids that function together within

the active site of serine proteases. Catalytic triads are representative examples of

local substructures that indicate functionally convergent evolution. For example,

subtilisin and chymotrypsin have no sequence identity and very different folds, but

they exhibit the same Ser-His-Asp catalytic triad, so they bind the same enzyme

inhibitor [143]. In chymotrypsin, the catalytic triad is made of histidine 57, aspartate

102 and serine 195 (Figure 5.2). The side chain of the serine 195 is bounded to the

imidazole ring of the histidine which accepts a proton from serine to form a strong

alkoxide nucleophile when a ligand is binding. The aspartate 102is attracted by

the histidine via hydrogen bound and electrostatic interaction to make it a better

proton acceptor (Figure 5.2A).

Five core amino acids directly mediate the conserved reaction within the enolase

superfamily. These amino acids are Lys 164, Asp 195, Glu 221, Glu 247 and His

297 in a mandelate racemase structure (pdb:2mnr) [144], and they were used by two

substructure matching algorithms, SPASM [145] and LabelHash [138], to identify

members of the whole enolase superfamily with high sensitivity and specificity. We

call these five amino acids the catalytic pentad.

We selected {57,102,195} from our only chymotrypsin structure 1ex3 as the

template motif and applied motif propagation to obtain amino acid triads in other

trypsins and elastases. In the enolase superfamily, we selected another mandelate

racemase structure (pdb:1mdr) as the template structure because it has identical

amino acid sequence as 2mnr. Then, we extracted the catalytic pentad and prop-

58



Ser195

His57

Asp102

A)

B)

Figure 5.2: A) The Ser-His-Asp catalytic triad bound to the structure of chy-
motrypsins. B) The hydrogen bounds within the catalytic triad, which is illustrated
in [3].
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agated to other structures in the enolases. We took the catalytic triad and the

catalytic pentad as baseline point based representations by selecting coordinates of

Carbon Alpha atoms and compared with the atomic point representation.

5.1.6 Testing Atomic Point Representation

First, we compare the atomic point representation with baseline point based meth-

ods. Second, we visualize the conformation space map of binding cavity and evaluate

its clustering performance quantitatively.

Comparing with State-of-the-art Methodologies

We selected 1a0j and 1ebh as the template structure in each protein superfamily

and propagate top k amino acids which have the largest average intersection volume

with the binding cavity to other proteins. Figure 5.3 and Figure 5.4 report the

clustering on top k propagated amino acids with respect to the catalytic triad of

serine proteases and the catalytic pentad of the enolases respectively. The number

of selected amino acids k ranging between 1 and 20 was used because amino acids

beyond reveal almost zero average intersection volume with the binding cavity. For

each k, 20 K-means runs were conducted and the average performance was reported.

These two figures reveal several insights. First, using the atomic point represen-

tation, 98.5% of serine proteases (k = 10) and 85.7% of the enolases (k = 7−11) were

correctly predicted as best results. This shows that our method is able to correctly

categorize protein conformations that correspond to different binding specificities.

Second, performance increased as more amino acids were added but suddenly de-

creased when the size of motif was larger than a threshold. This means that, if the

size of the structural motif is too small, the binding cavity will be under-represented

because some other influential amino acids are not included. If the motif size is too

large, the binding cavity will be over-represented with systematic noises because

amino acids that are irrelevant to binding are included. Third, in most k values, the

motif used in our method largely overperformed the catalytic triad or the catalytic
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Figure 5.3: Clustering performance comparisons with the catalytic triad on serine
protease superfamily.
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pentad. These documented amino acids proved to be effective in characterizing

the functional site catalysis, but they are not necessarily to be the best choice for

predicting specificity in the context of binding cavity motions.

Conformation Space Map Visualization

As a case study, we project each data input into a 3D lower space in both NMF

and PCA. The conformation space map of the binding cavity on serine proteases is

illustrated in Figure 5.5. It is observed that, in both NMF and PCA conformation

space maps, conformational samples of proteins with identical binding preference

are represented by spatially adjacent points and tend to be grouped into the same

predictive cluster. These specificity-sensitive clusters can be further evaluated by

comparing to ground truth values. The conformation space map on the enolases

is illustrated in Figure 5.6 where a similar data distribution pattern is observed.

These visualizations reveal a high level organization for classification of the binding

cavity, and they provide a more straightforward system for protein classification

than traditional hierarchical classifications, including EC [146], CATH [147] and

SCOP [148], because our mappings are presented in a continuous space.

Evaluation in Different Feature Space

We continued to conduct clustering evaluations in three different feature space with

k values. Figure 5.7 and Figure 5.8 report clustering results in the original feature

space (K-means), 3D PCA reduced space (PCA+K-means) and 3D NMF reduced

space (NMF+K-means) on our date sets. Since NMF is highly dependent of data

initialization, 100 NMF runs with random initialization were conducted and the best

K-means result was reported.

In most cases (except when k ranged between 8 to 12 on serine proteases and

equalled to 13 on the enolases), PCA+K-means achieves comparable or even better

performance to K-means in the original space. This suggests that PCA extracts

most data variances that are sufficient enough to distinguish protein conformations
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Figure 5.5: A binding cavity conformation space map of serine protease superfamily
where the size of motif is set to be 8 and each protein is presented with 600 con-
formations. The top figure shows the NMF reduced space and the bottom figure
shows the PCA reduced space. The coloring indicates the binding specificity of each
conformation that is defined by EC number.
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the size of structure motif on serine protease superfamily.
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Figure 5.8: Clustering performance in three different feature space with respect to
the size of structure motif on the enolase superfamily
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with different specificities. NMF+K-means achieves similar performance on ser-

ine proteases except when k ranged between 7 to 12 to compare with K-means.

NMF+K-means achieves obviously better performance than other two methods on

the enolases. These results validate the power of NMF in identifying latent topic

structures that may be embedded in the original feature space, which has been

discussed in other data clustering tasks [149, 150, 151, 152].

Overall, our conformation space map reveals a high-level representation of bind-

ing cavity conformations. The clustering results show that our method is able to

correctly distinguish similar proteins but with different specificities. Our method

proves to be an effective tool for flexible protein structure comparisons.

5.2 A Volumetric Lattice Representation

We have presented a atomic point representation for representing the flexibility in

the binding site where atomic positions of influential amino acids are extracted.

However, this method only considers the coordinates of Carbon alpha atoms and

ignores sidechain atoms motions around the binding cavity because sidechains of

different amino acids have different number of atoms, making it impossible to find

a one-to-one alignment between all atoms. Second, the atomic point representa-

tion aligns protein substructures by positions of atoms rather than comparisons of

the shape of the binding cavity. However, it is the open space within the cavity

that accommodates binding partners and the similarity of that space provides more

direct evidence for the same binding specificity. To deal with this issue, this sec-

tion will introduce a volumetric lattice representation which aims for an all-atom

representation for the binding cavity.

5.2.1 Method Overview

First, for every conformational sample, we define the shape of the ligand binding

cavity as a solid object. The solid representation is selected because it describes

geometries of all adjacent atoms that could sterically hinder binding while the atomic
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Figure 5.9: The volumetric lattice representation pipeline.

point representation only considers Carbon alpha atoms. Second, we describe how

we build a lattice model on binding cavity solids with many user-defined cubes.

The volumetric voxel, which is the cavity volume in each cube, is then calculated in

order to localize geometric changes in each spatial unit. Volumetric voxels resemble

digital image pixels that describe color values in every physical point. All volumetric

voxels can be combined into a feature vector and each binding cavity conformation

is then represented as a high dimensional point. In the last step, we perform K-

means clustering to predict specificity on each conformation. The overview of the

volumetric lattice representation is shown in Figure 5.9

5.2.2 Solid Binding Cavity Generation

Given the PDB structure of each protein conformation and a binding ligand, we

compute the space of the binding cavity as a solid in the form of triangle meshes.

We have already described this part step by step in Section 4.1.2. The solid rep-

resentation enables a direct comparison of the shape of the binding cavity. The

binding cavity of protein 1a0j has been illustrated in Figure 4.8.
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A) B) C)

D) E)

Figure 5.10: The lattice model construction. A) The CSG operations used by VASP,
with input regions (light grey, dotted outline) and output regions (solid outline). B)
The molecular surface of a given conformation sample(grey region) with respect to
the binding border (dotted line). C) The solid representation of the binding site.
D) The bounding cuboid that covers the binding cavity. E) The cubic lattice inside
the bounding cuboid. F) Volume calculation in each lattice cube.

5.2.3 The Lattice Model Construction

As input, we need solid representations of binding cavities of all protein conforma-

tions(Figure 5.10B) and a lattice resolution r. First, a bounding cuboid (Figure

5.10C) is constructed to cover all binding cavity solids where the length, the width

and the height are all integral multiples of r. Second, we build an axis aligned cubic

lattice (Figure 5.10D) inside the bounding box so that each cube has the identical

size length of r. The lattice can interpreted as a grid of lattice points that are

equally spaced along the primary axes, or as a set of lattice segments that connect

the co-axial lattice points, or as a collection of lattice cubes that adjacent cubes

share four lattice segments. Last, using the Surveyor’s formula ([153]), we measure

the cavity volume of every snapshot in each lattice cube (Figure 5.10E).
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5.2.4 Cluster Analysis

Given volumetric voxel representation, each conformation of the binding cavity can

be characterized as a geometric feature vector xi ∈ R
m where the feature value

computes the cavity volume in one cube and m is the total number of cubes within

the bounding box. All feature vectors are normalized so that each data point has

unit norm. The feature matrix X = {x1, ..., xn} thus represents all protein confor-

mations, and it will be taken as input for data clustering.

We continue to perform the canonical K-means clustering, which is evaluated us-

ing clustering accuracy (AC) and normalized mutual information (MI) as described

before.

5.2.5 Testing Volumetric Lattice representation

We compare the volumetric lattice representation with the atomic point representa-

tion. In the atomic point representation, we select top 20 amino acids with largest

average intersection volume with the binding cavity (The pseudomonas mandelate

racemase, as an example, is illustrated in Figure 3.3A). In order to identify geomet-

ric features among all possible combinations of amino acids, all k-sized combinations

(i.e.,
(20
k

)

combinations) are generated on all possible selections of k. For example,

when k = 10, all
(

20
10

)

= 184756 feature subsets are generated. Then, clustering per-

formance on each subset is examined. The strategy of k-sized combinations is used

because all possible geometric features get considered and the volumetric lattice

representation is not compared by chance.

For each feature subset, 20 K-means runs with random initialization were con-

ducted and their average performance was reported. Figure 5.11 and Figure 5.12

illustrate clustering performance of the volumetric lattice representation where the

lattice resolution equals to 0.50. Given a variety of k values, the performance of

the atomic point representation is shown in boxplot on all k-sized subsets while

the performance of the volumetric lattice representation is constant because it is

independent of the number of amino acids.
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Figure 5.11: Clustering comparison in accuracy (top) and normalized mutual infor-
mation (bottom) with respect to the number of amino acids in the structural motif
on serine proteases.
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Figure 5.12: Clustering comparison in accuracy (top) and normalized mutual infor-
mation (bottom) with respect to the number of amino acids in the structural motif
on the enolases.
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Figure 5.13: The performance of the volumetric lattice representation vs. the lattice
resolution r on serine proteases (top) and the enolases (bottom).
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First, the volumetric lattice representation outperforms the atomic point repre-

sentation on both superfamilies. Specifically, on serine proteases, the lattice model

performs better than 1048547 (100%) atomic point feature subsets in both accuracy

and normalized mutual information evaluation. This shows that, even in the case

where the best specificity-sensitive atomic point feature can be found from millions

of amino acid combinations, the atomic point representation can only achieve close

performance but not as good as the volumetric lattice representation. On the eno-

lases, the volumetric lattice representation performs better than 928641 (88.56%)

atomic point feature subsets in clustering accuracy and 903868 (86.20%) atomic

point feature subsets in normalized mutual information. All these results prove that

volumetric features could learn a better geometric representation of the binding

cavity than atomic points. Second, the performance of the atomic point features

varies considerably on almost all k values on both superfamilies. This shows that

the quality of amino acid subset, which involves in calculating how many amino

acids should be selected and which amino acids should be selected, largely influ-

ence cavity representation, thus substantially affecting specificity prediction. The

volumetric lattice representation, which does not rely on amino acid selection, is

obviously more straightforward and user-friendly.

Finally, we analyze the sensitivity to the lattice resolution value. As resolution r

decreases, the lattice model approximates the binding cavity using finer cubes, thus

leading to more precise representation but computing higher dimensions. Figure

5.13 shows how various resolution values affect specificity prediction. The resolu-

tion range between 0.50 and 2.50 is selected in this work because they are more

computationally tractable than r < 0.50 while they allow for relatively accurate

representation. The clustering achieves consistent good performance when the res-

olution is smaller than 1.50 on serine proteases and when the resolution is smaller

than 2.25 on the enolases, respectively.

75



5.3 An Electrostatic Lattice Representation

Approaches we have introduced so far detect atom coordinates or molecular surface

solids for comparative analysis. However, as explained in section 2.3, longer distance

electrostatic potentials could selectively affect binding and a comparison of protein

electrostatic potentials may explore more depths into specificity analysis. In this

section, we will introduce a lattice representation to solve the problem of individual

prediction from an electrostatic perspective. It is noted that the electrostatic lattice

representation is not intended to analyze dynamics of electrostatic fields because

our method does not rely on the order in which the conformations occur.

5.3.1 Method Overview

The electrostatic lattice representation is similar to the volumetric lattice repre-

sentation, but the core difference is that the electrostatic model builds lattices on

protein electrostatic fields rather than molecular surfaces. In this thesis, we cal-

culate electrostatic isopotentials as one way to encode protein electrostatic fields.

Electrostatic isopotentials represent geometric surfaces where every point on the

surface has the same electrostatic potential, and it was shown that optimizing su-

perposition of electrostatic isopotentials reveals patterns of the binding specificity

[154].

First, for each protein conformation, we apply VASP-E [78] to calculate electro-

static isopotentials as solid objects. Second, we describe how we build a lattice model

on isopotentials using user-defined cubes. To distinguish from the volumetric lattice

representation that computes volumes of binding cavity solids, we called this an

electrostatic lattice representation. We then compute the electrostatic voxel, which

is the isopotential solid volume in each cube, to localize electrostatic charge distribu-

tions in the spatial unit. Finally, all electrostatic voxels are combined into a feature

vector and the K-means clustering is performed to output specificity prediction on

each protein conformation. The overview of the electrostatic lattice representation

is shown in Figure 5.14.
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Figure 5.14: The electrostatic lattice representation pipeline.

5.3.2 Solid Representation of Electrostatic Isopotentials

As input, VASP-E requires a protein conformation structure, the electrostatic field

and the isopotential threshold p kT/e. When p is positive, VASP-E represents re-

gions of electrostatic potentials greater than p within a solid region, and when p is

negative, regions with potentials less than p are represented. This rule prevents the

generation of infinitely large isopotential solids, which lead to degenerate compar-

isons(Figure 5.15C).

To generate the electrostatic field, we first remove all hydrogens and then pro-

tonate the protein structure using the reduce tool of the MolProbity package [155]

and the protonated structure is given as input to DelPhi [156] to compute a numer-

ical solution of the Poisson-Boltzmann Equation (PBE). DelPhi approximates the

electrostatic field AE within a bounding box that covers the protein structure. As

output, VASP-E generates electrostatic isopotentials as solid objects.

The resulting isopotential solids can have highly convoluted shape. While isopo-

tentials at different thresholds never overlap, they can be formed in close proximity

to each other, as can be seen in Figure 5.16C.
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C)

A) B)

D)

E) F)

Figure 5.15: An overview of the electrostatic lattice model construction. A) The
structure of a given protein conformation. B) The positive electrostatic potentials
generated by VASP-E. C) Both positive and negative potentials with respect to
the geometric structure. D) The positive electrostatic isopotential selected by k
kT/e. E) The bounding box that covers isopotential from all conformations. F)
Electrostatic voxel calculation in each lattice cube.
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A) Arginine Aspartate-2.5 

Isopoten!als 

near Arginine

Isopoten!als 

near Aspartate

B)

C) PDB:1a0j Isopoten!als of 1a0j

Figure 5.16: A) Electrostatic isopotential of Arginine, a positively charged amino
acid, at +2.5 kT/e. B) Electrostatic isopotential of Aspartate, a negatively charged
amino acid, at −2.5 kT/e. C) Electrostatic isopotential surfaces of the Atlantic
salmon trypsin (pdb:1a0j). The red surface indicates the negative isopotential gen-
erated at −2.5 kT/e and blue indicates the positive isopotential generated at +2.5
kT/e. The surfaces are highly convoluted and pass very closely to each other, but
do not come in contact. The geometric structure of 1a0j is also visualized.
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5.3.3 The Lattice Model Construction

The input for constructing the electrostatic lattice are isopotential solids of all pro-

tein conformations and a lattice resolution r. Similar to the volumetric lattice

representation, a bounding box (Figure 5.15E) is constructed to cover all isopoten-

tial solids where the length, the width and the height are all integral multiples of

r. Then, we build an axis aligned lattice inside the bounding box so that each cube

has the size of r. In the end, we compute the volume of the electrostatic isopotential

in each lattice cube (Figure 5.15F).

5.3.4 Cluster Analysis

This step is almost the same as the that of the volumetric lattice representation.

The only difference is that we collect all electrostatic voxels rather than volumetric

voxels. We also perform the K-means clustering with clustering accuracy (AC) and

normalized mutual information evaluation (MI).

5.3.5 Testing Electrostatic Lattice Representation

We compare the electrostatic lattice representation with geometric structure based

methodologies that have been discussed in previous sections. These methods include

the catalytic triad or the catalytic pentad, the atomic point representation and the

volumetric lattice representation. However, we emphasize here that we are not ar-

guing that the electrostatic based approaches are definitely superior to geometric

structure based ones, or vice versa. What we would like to show is that the electro-

static lattice representation is a novel representation and it is comparable to many

existing methods. K-means clustering set the number of clusters to be 3 and 20

runs with random initialization were conducted to report the average performance.

Figure 5.17 and Figure 5.18 compare specificity prediction of the electrostatic

lattice representation against point-based methods where the isopotential threshold

p equals to +2.5 kT/e because it was shown to be logical selection for isopotential

comparisons [154, 78] and the lattice resolution r equals to 2.5. The performance
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Figure 5.17: Clustering comparison in accuracy (top) and normalized mutual infor-
mation (bottom) with respect to the number of residues in the structural motif on
serine proteases.
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Figure 5.18: Clustering comparison in accuracy (top) and normalized mutual infor-
mation (bottom) with respect to the number of residues in the structural motif on
the enolases.
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of k-sized atomic point subset is shown in boxplot on all k-sized feature combina-

tions while the electrostatic lattice representation and the catalytic triad/pentad

representation is shown in constant. First, it is obvious that the electrostatic lat-

tice representation outperforms the catalytic triad/pentad on both superfamilies.

The catalytic triad and catalytic pentad are well-known examples for characterizing

functional sites but they may not be the best selection for predicting specificity. Sec-

ond, the electrostatic lattice representation outperforms most k-sized atomic point

subsets. On serine proteases, it performs better than 586923 (55.97%) atomic point

subsets in clustering accuracy and 725974 (69.23%) in normalized mutual informa-

tion. On the enolases, the electrostatic lattice representation performs better than

965156 (92.05%) atomic point features in clustering accuracy and 1047833 (99.93%)

in normalized mutual information. This shows that electrostatic isopotentials could

be effective and structure-independent signals for protein comparisons.

We continue to make comparisons to the volumetric lattice representation, elec-

trostatic lattice representations on negative charges and electrostatic representations

that concatenate positive with negative features in Table 5.1. The positive electro-

static representation performs as not well as the volumetric representation on serine

proteases, but it achieves better performance on the enolases. In addition, The

positive electrostatic representation outperforms the negative electrostatic repre-

sentation and the electrostatic concatenation. One possible explanation could be

that the ligand binding of both superfamilies is more affected by positive charges

and electrostatic lattice models built on negative charges contain many noises that

are not relevant to specificity.

All these results show that the electrostatic lattice representation, which is inde-

pendent of amino acid selection and structure comparisons, proves to be an effective

representation and provides new insights for specificity prediction.

Finally, we conduct sensitivity analysis to the value of the electrostatic lattice

resolution. Figure 5.19 shows how the resolution affects clustering performance

on +2.5 kT/e isopotentials where the resolution is ranged from 2.0 to 6.0. The

83



Electrostatic Lattice Resolution
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

C
lu

s
te

ri
n

g
 E

v
a

lu
a

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Resolution Calibration on serine proteases

Accuracy
Normalized Mutual Information

Electrostatic Lattice Resolution
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

C
lu

s
te

ri
n

g
 E

v
a

lu
a

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Resolution Calibration on the enolases

Accuracy
Normalized Mutual Information

Figure 5.19: The performance of the electrostatic lattice representation vs. the
lattice resolution r on serine proteases (top) and the enolases (bottom).
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Serine Proteases
+2.5 kT/e −2.5 kT/e feature concatenation volumetric lattice

AC 0.863 0.750 0.749 0.999

MI 0.682 0.422 0.422 0.989

The Enolases
+2.5 kT/e −2.5 kT/e feature concatenation volumetric lattice

AC 0.875 0.714 0.714 0.856

MI 0.793 0.680 0.682 0.675

Table 5.1: Clustering comparison with volumetric lattice representation and elec-
trostatic lattice representation on negative isopotentials.

resolution value used here is much larger than the value used in the volumetric lat-

tice representation because protein isopotential solids are much larger than binding

cavity solids. The performance achieves consistent good performance when the res-

olution is smaller than 5.0 on serine proteases and on almost all selected resolutions

on the enolases.

5.4 Conclusion

In this chapter, we demonstrate three highly modular methods that correspond to

the problem of individual prediction. They extract different types of geometric fea-

tures from either protein structures or protein electrostatic isopotentials to binding

specificity on each protein conformation. The atomic point representation identifies

coordinates of selected amino acids that are adjacent to the binding cavity. This

representation provides the first analysis of map of binding cavity conformations on

proteins with different specificities. The volumetric lattice representation extracts

volumetric voxels within binding cavity solids, presenting an all-atom motion repre-

sentation. The electrostatic lattice representation calculates electrostatic voxels to

build a lattice model, providing a comparative method that is independent of struc-

ture comparisons. By ignoring atomic points or molecular surfaces, the electrostatic

lattice representation exclusively reflect conserved or varied regions of electrostatic

charge distributions.

The applications of representations investigated in this chapter exist in cases
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where individual protein conformations are compared. These representations iden-

tify the partner that each conformation will preferentially bind. They are also

capable of pointing to structural components, e.i. selected amino acids, user-defined

cubes in the binding cavity or the electrostatic potential, that could be altered for

the design of a desired specificity.

The substructure matches or lattice construction techniques described in this

chapter will facilitate protein comparisons with increasing number of protein struc-

tures. The high modularity nature of our methods allow for more customized de-

velopments with wider applications beyond protein ligand binding.

86



Chapter 6

Conclusions and Future Works

This thesis focuses on two predictive problems on binding specificity, aggregate pre-

diction and individual prediction, in the context of protein conformational flexibility.

We study two superfamilies, serine proteases and the enolases, of protein structures

that exhibit identical folds but different binding specificities.

FAVA demonstrates the first conformationally general tool for predicting speci-

ficity by comparing frequent regions of the binding cavity. FAVA also provides the

capability to detect amino acids that are influential for specificity. PEAP identifies

atomic positions of influential amino acids via motif propagation. The ability of this

method to enhance specificity prediction by integrating structural motions in the

binding site was demonstrated.

We develop three representative models to solve the the problem of individual

prediction. The atomic point representation characterizes the binding cavity with

atomic points of selected amino acids. The volumetric lattice representation mea-

sures volumes of the binding cavity in user-defined cubes. These two representations

reflect geometric changes of binding cavities to compare conformations of different

proteins. The electrostatic lattice representation, ignoring atomic points or molecu-

lar surface solids, computes volumes of the electrostatic isopotential in user-defined

cubes, providing structure-independent techniques for binding analysis.

Together, the methods presented in this thesis leverage protein conformational
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flexibility to predict binding specificity. Instead of assuming protein structures to

be rigid or partially rigid objects, these methods incorporate diversities of simulated

protein conformations, providing more depths into flexible protein comparisons.

The works shown here can be further extended from many directions and we

list some that are of particular interest to us. First, the fractional voxels and elec-

trostatic voxels in two lattice models, resembling digital image pixels that compute

color values at every physical point, provide an image-like representation for protein

comparison. Inspired by the success of convolutional neural networks (CNN) in im-

age recognition [157, 158, 159], we hope that CNN models can also be advantageous

to predict binding specificity. CNN is a special type of feed-forward artificial neu-

ral network where the individual neuron responds to overlapping regions tiling the

local field. A CNN architecture is formed by distinct layers, such as convolutional

layers, pooling layers and fully connected layers, and is capable of learning object

representation in a increasingly finer way. In the context of specificity prediction,

CNN classifiers extract fractional voxels or electrostatic voxels as features to learn

CNN parameters from training data sets and output categorical labels to predict

binding specificities on testing data sets.

Second, in the electrostatic model, we build lattices on the whole surfaces of

electrostatic isopotentials. However, in many cases, selective binding may come from

electrostatic effects in a local space, especially near the binding region [106, 113].

To address this issue, we could build a local electrostatic lattice model in the space

of binding cavity.

Third, the problem studied in this thesis only output predictive label itself,

but ignore partial order between all protein conformations. The partial order is

significant because in many application, such as web search, online advertising and

recommender systems, we prefer to extract items that are most relevant to input.

Similarly, in the context of protein binding, given a ligand as the query, we would

like to rank all protein conformations so that conformations of the protein that

binds to the ligand should be returned as top results. To deal with this issue, many
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learning to rank techniques [160, 161] can be employed.
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