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Abstract

Classification is a supervised learning problem in which a classifier is trained on a set of

data labeled with predefined categories and then applied to label future examples. It plays

a fundamental role in a number of essential tasks in information retrieval and manage-

ment. Advanced classification approaches will benefit systems that search or manage web

information, as well as other types of information in general.

In this dissertation, we investigate methods to improve classification from two aspects:

feature enhancement and hierarchy adaptation. For feature enhancement, information

from the neighboring pages on the web graph is studied. Novel methods to effectively

utilize such neighboring information to improve classification are proposed and analyzed.

For hierarchy adaptation, evolutionary computation methods are used to search for better

hierarchies in order to improve hierarchical classification. We also investigate problems

that impede user navigation in hierarchies, and propose novel methods to facilitate ef-

ficient navigation. Experiments on multiple real-world datasets show that the proposed

approaches can significantly outperform previous state-of-the-art methods.
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Chapter 1

Introduction

1.1 Motivation

Classification is a supervised learning problem in which a classifier is trained on a set

of data labeled with predefined categories and then applied to label future examples.

It plays a fundamental role in a number of essential tasks on information retrieval and

management. On the Web, classification of page content is essential to focused crawling

[31], to assist development of web directories such as those provided by Yahoo [208] and

the Open Directory Project (ODP) [140], to topic-specific web link analysis [84, 136, 162],

to analysis of the topical structure of the Web [30], and to contextual advertising [21, 22].

A classifier is usually evaluated with regard to how accurately it can label unseen

instances. The accuracy of the classifier often directly affects the performance of the system

built on top of it. Inaccurate classification results will lead to an overall performance

2



1.1. MOTIVATION

degradation, which in turn adversely affects user experience, and sometimes causes direct

monetary loss. For example, in a ranking system, if an important page is incorrectly

classified into a category that has no connection with the query, it will be considered less

relevant by the ranking algorithm, and thus not be ranked as high as it should be. In

contextual advertising, if a page about a car racing game is incorrectly categorized as an

auto dealer, the advertisement matching system will display irrelevant advertisements on

the page, losing the clicks it could have attracted using correct classification.

Since many information retrieval tasks depend on accurate classification, research in

advanced classification approaches will benefit systems that search or manage information

on the Web, as well as other types of information in general. In this dissertation, two

important topics related to classification are proposed and studied: web page classification

and hierarchy adaptation.

1.1.1 Web page classification

Since its emergence, the World Wide Web has changed people’s lives in almost every

possible way. In less than two decades, the Web has evolved from an information repository

into a powerful platform that supports a wide variety of essential tasks and applications.

Information and applications on the Web range from education to entertainment, from

home decoration to space technology, from photo sharing among friends and family to

world-wide events that attract global attention. Classification on the Web means much

more than merely assigning category labels and organizing information. It supports at

3



1.1. MOTIVATION

least two core applications on the Web: web search and advertising, making it an important

topic of broad interest.

Traditional web page classification treats web pages as text documents without consid-

ering the additional features that the Web can provide (e.g., hyperlinks, markups). Such

an approach usually yields suboptimal performance as web pages themselves often con-

tain inadequate information for classification. In our preliminary experiment in which we

applied support vector machines to a 3,600-page ODP dataset, merely 77% of the pages

were correctly classified into one of the twelve broad categories when only on-page textual

features are used. The low performance can be caused by various reasons. Unlike text

documents, web pages no longer rely on text to present its information. Some pages are

mainly composed with pictures and flash media where text can be missing, misleading, or

not enough for a text classifier to make a reasonable prediction.

Previous research shows that incorporating link information along with the content of

web pages can enhance classification. However, existing approaches either rely heavily on

labeled pages, or only utilize certain types of neighbors. In this dissertation, we propose

the Neighboring Algorithm which uses the class or topic vector of neighboring pages to

help in the categorization of a web page. Our approach does not require labeled pages in

the neighborhood, and can take into consideration multiple types of neighboring pages.

When using content of neighbors, existing work typically uses information from neigh-

boring pages as a whole. We argue that different fields of information on the neighboring

pages bear different importance. Inspired by the success of the fielded extension to BM25

4
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in information retrieval [163], we conjecture that permitting text from different fields of

neighboring pages to contribute differently may improve classification performance. In this

dissertation, we propose the F-Neighbor Algorithm, as a fielded extension to our Neigh-

boring Algorithm which uses class information and full content of neighboring pages. In

particular, we break up neighboring web pages, as well as the page to be classified into

several text fields (e.g., title, anchor text, body text), and combine the text fields according

to the individual importance they have.

1.1.2 Hierarchy adaptation

The second topic in this dissertation, hierarchy adaptation, evolves from our interest in

classification, with the subject focused on hierarchical classification.

A hierarchy, or a taxonomy, is a hierarchical structure that organizes concepts or

topics according to their relations. Classification can be performed based on a flat set

of categories, or on categories organized as a hierarchy. Classification based on a flat set

of categories is called flat classification, whereas hierarchy-based classification is called

hierarchical classification. Hierarchical classification has been shown to offer superior

performance than flat classification (e.g., [58, 117, 16]). By classifying objects first into

high level categories, and then iteratively into finer-grained subcategories, the classifier

at each branching point should have an easier task than classifying into all categories at

once.

Hierarchical classification is typically performed based on human-defined hierarchies.

5



1.1. MOTIVATION

Since such hierarchies reflect a human view of the domain, they are easy for people to

understand and utilize. However, these hierarchies are usually created without consider-

ation for automated classification. As a result, hierarchical classification based on such

hierarchies is unlikely to yield optimal performance. Previous research on improving hi-

erarchical classification mostly focused on making classification methods more effective or

utilizing additional features that are made available by the hierarchical structure, without

any change to the predefined hierarchy. In most applications, we are only interested in the

target category into which an instance is classified, regardless of the internal process of

how an instance is classified at each level and iteratively passed to a descendant category.

This gives us the opportunity to improve classification accuracy by using a different inter-

nal hierarchical structure that better suits automatic classification. In this dissertation,

we propose a new method based on evolutionary computation to create hierarchies with

better classification accuracies.

Besides their utility in automatic classification, hierarchies are usually used in the

organization of information to assist human browsing. We next investigate adaptation of

hierarchies for better navigation. A major drawback of hierarchies is that they require

users to have the same view of the topics as the hierarchy creator. That is, when a user

follows a top-down path to find the specific topic of her interest, she has to make choices

along the constrained sequence that is present in the hierarchy. As a result, users who

do not share that mental taxonomy are likely to have additional difficulties in finding

the desired topic. For example, in one hierarchy, information about Emacs, an open

6



1.1. MOTIVATION

source text editor, can be organized under /Software/OpenSource/Editors/Emacs. Such

a hierarchy will not be helpful for a user who looks for information about Emacs but does

not know that Emacs is an open source package. This problem can be somewhat reduced

by remedies like cross-topic links (as used in ODP). However, after adding such links,

the target nodes of the links will have more than one parent, making the hierarchy no

longer a tree. Under this approach, nodes are not replicated—links are just added to the

graph. Logically, such links are only appropriate when the alternative path also applies

to all descendants of the topic. Furthermore, such links bring dependencies among topics

and increase editing cost: editing one topic may result in changes in its linked topics and

then the linked topics of those topics. In this dissertation, we propose a new approach to

hierarchy expansion which is able to provide more flexible views to better assist human

browsing for desired information. Based on an existing hierarchy, our algorithm finds

possible alternative paths and generates a new, expanded hierarchy with flexibility in user

browsing choices.

In summary, web page classification and hierarchy adaptation are important and inter-

esting topics that need further study. In this dissertation, we propose various algorithms

to improve web classification by incorporating neighboring information, and to adapt hi-

erarchies for better classification as well as human browsing. These approaches can either

enhance automatic classification accuracy or improve user experience when browsing for

information through large hierarchies.

7



1.2. CONTRIBUTIONS

1.2 Contributions

The principal contributions of this dissertation include:

• A new approach to classify web pages using information from neighboring pages,

and an examination of the relative contribution from different neighbor types.

• Demonstrated usefulness of field information in HTML document classification, and

a finding that emphasizing page titles, especially parent titles, over other text can

bring improvement.

• A new approach to improved classification by hierarchy adaptation using genetic

operators customized for hierarchies.

• An analysis of the problems of existing hypernym/hyponym taxonomies, and a new

approach to generate flexible taxonomies that is able to alleviate the found problems.

I am the lead author of six peer-reviewed papers on the topic of web classification

and hierarchy adaptation. Two of these papers [151, 152] are published as full papers

in CIKM’06 and SIGIR’08, which are among the top prestigious conferences on research

in web search, information retrieval, and knowledge management. A survey on web page

classification [153] is published in ACM Computing Surveys. A hierarchy adaptation paper

[156] is published as a short paper in CIKM’10. A paper on web link classification [155]

was published in the Proceedings of The Third International Workshop On Adversarial

Information Retrieval on the Web (AIRWeb). A paper on adaptation of hierarchies for

8
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improved classification [154] is accepted by CIKM’11 as a poster paper.

I also worked as a co-author of a SIGIR’06 paper [136], an AIRWeb’09 paper [48],

a Hypertext’11 paper [49], a WWW’11 poster [50], and a non-peer-reviewed paper in

TREC’09 [216].

1.3 Dissertation Outline

The dissertation is organized as follows. In Chapter 2, we review the background and

related work on web classification and hierarchy adaptation. In Chapter 3, we propose

the Neighboring Algorithm to use information of neighboring pages to help classification of

web pages. The F-Neighbor Algorithm is proposed in Chapter 4, utilizing field information

in web classification. In Chapter 5, we introduce a hierarchy evolution algorithm to

improve hierarchies for more accurate hierarchical classification. An algorithm to improve

hierarchies for better human browsing experiences is proposed in Chapter 6. We end this

dissertation by a discussion and conclusion in Chapter 7.

Part of the work presented in this dissertation is in collaboration with Dr. Brian D.

Davison, Dawei Yin, and Zhenzhen Xue.
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Chapter 2

Background

2.1 Web Page Classification

Classification plays a vital role in many information management and retrieval tasks. On

the Web, classification of page content is essential to focused crawling, to the assisted de-

velopment of web directories, to topic-specific web link analysis, to contextual advertising,

and to analysis of the topical structure of the Web. Web page classification can also help

improve the quality of web search. In this section, we will review existing approaches to

web classification.

2.1.1 Problem definition

Web page classification, also known as web page categorization, is the process of assigning

a web page to one or more predefined category labels. Classification is traditionally posed
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as a supervised learning problem [131] in which a set of labeled data is used to train a

classifier which can be applied to label future examples.

The general problem of web page classification can be divided into more specific prob-

lems: subject classification, functional classification, sentiment classification, and other

types of classification. Subject classification is concerned about the subject or topic of a

web page. For example, judging whether a page is about “arts”, “business” or “sports” is

an instance of subject classification. Functional classification cares about the role that the

web page plays. For example, determining a page to be a “personal homepage”, “course

page” or “admission page” is an instance of functional classification. Sentiment classifica-

tion focuses on the opinion that is presented in a web page, i.e., the author’s attitude about

some particular topic. Other types of classification include genre classification (e.g., [225]),

search engine spam classification (e.g., [81, 27]) and so on. Here, we focus on subject and

functional classification.

Based on the number of classes in the problem, classification can be divided into

binary classification and multi-class classification, where binary classification categorizes

instances into exactly one of two classes (as in Figure 2.1(a)); multi-class classification

deals with more than two classes. Based on the number of classes that can be assigned

to an instance, classification can be divided into single-label classification and multi-label

classification. In single-label classification, one and only one class label is to be assigned

to each instance, while in multi-label classification, more than one class can be assigned to

an instance [193]. If a problem is multi-class, e.g., four-class classification, it means four
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classes are involved, e.g., Arts, Business, Computers, and Sports. It can be either single-

label, where exactly one class label can be assigned to an instance (as in Figure 2.1(b)),

or multi-label, where an instance can belong to any one, two, or all of the classes (as in

Figure 2.1(c)). Based on the type of class assignment, classification can be divided into

hard classification and soft classification. In hard classification, an instance can either be

or not be in a particular class, without an intermediate state; while in soft classification,

an instance can be predicted to be in some class with some likelihood (often a probability

distribution across all classes, as in Figure 2.1(d)).

Based on the organization of categories, web page classification can also be divided

into flat classification and hierarchical classification. In flat classification, categories are

considered parallel, i.e., one category does not supersede another. While in hierarchical

classification, the categories are organized in a hierarchical tree-like structure, in which

each category may have a number of subcategories. An illustration is shown in Figure 2.2.

Section 2.2 will address the issue of hierarchical classification further.

2.1.2 Applications of web classification

Classification of web content is essential to many information retrieval tasks. Here, we

present a number of such tasks.
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Figure 2.1: Types of classification
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Figure 2.2: Flat classification and hierarchical classification.

Constructing, maintaining or expanding web directories (web hierarchies)

Web directories, such as those provided by Yahoo!1 and the dmoz Open Directory Project

(ODP)2, provide an efficient way to browse for information within a predefined set of

categories. Currently, these directories are mainly constructed and maintained by editors,

requiring extensive human effort. As of April 2011, it was reported [140] that there are

90,561 editors involved in the dmoz ODP. As the Web changes and continues to grow, this

manual approach will become less effective. One could easily imagine building classifiers

to help update and expand such directories. For example, Huang et al. [93, 94] proposed

an approach to automatic creation of classifiers from web corpora based on user-defined

hierarchies. Furthermore, with advanced classification techniques, customized (or even

1Yahoo!: http://www.yahoo.com/

2The dmoz Open Directory Project (ODP): http://www.dmoz.org/
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dynamic) views of web directories can be generated automatically.

Improving quality of search results

Query ambiguity is among the problems that undermine the quality of search results. For

example, the query term “bank” could mean the border of a body of water or a financial

establishment. Various approaches have been proposed to improve retrieval quality by

disambiguating query terms. Chekuri et al. [33] proposed to use automatic web page

classification to increase the precision of web search. A statistical classifier, trained on

existing web directories, is applied to new web pages and produces an ordered list of

categories in which the web page could be placed. At query time the user is asked to

specify one or more desired categories so that only the results in those categories are

returned, or the search engine returns a list of categories under which the result pages

would fall. This approach works when the user is looking for a known item. In such a

case, it is not difficult to specify the preferred categories. However, there are situations

in which the user is less certain about what documents will match, for which the above

approach does not help much.

Search results are usually presented in a ranked list. However, presenting categorized,

or clustered, results can be more useful to users. An approach proposed by Chen and

Dumais [35] classifies search results into a predefined hierarchical structure and presents

the categorized view of the results to the user. Their user study demonstrated that the

category interface is liked by users better than the result list interface, and is more efficient

15



2.1. WEB PAGE CLASSIFICATION

for users to find the desired information. Compared to the approach suggested by Chekuri

et al., this approach is less efficient at query time because it categorizes web pages on-

the-fly. However, it does not require the user to specify desired categories; therefore, it is

more helpful when the user does not know the query terms well. Similarly, Käki [100] also

proposed to present a categorized view of search results to users. Experiments showed that

the categorized view is beneficial for the users, especially when the traditional ranking of

results is not satisfying.

In 1998, Page et al. developed the link-based ranking algorithm called PageRank [142].

PageRank calculates the authoritativeness of web pages based on a graph constructed by

web pages and their hyperlinks, without considering the topic of each page. Since then,

research has been conducted to differentiate authorities of different topics. Haveliwala [85]

proposed Topic-sensitive PageRank, which performs multiple PageRank calculations, one

for each topic. When computing the PageRank score for each category, the random surfer

jumps to a page in that category at random rather than just any web page. This has

the effect of biasing the PageRank to that topic. This approach needs a set of pages that

are accurately classified. Nie et al. [136] proposed another web ranking algorithm that

considers the topics of web pages. In that work, the contribution that each category has

to the authority of a web page is distinguished by means of soft classification, in which a

probability distribution is given for a web page being in each category. In order to answer

the question “to what granularity of topic the computation of biased page ranks make

sense,” Kohlschutter et al. [104] conducted analysis on ODP categories, and showed that
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ranking performance increases with the ODP level up to a certain point.

Helping question answering systems

A question answering system may use classification techniques to improve its quality of

answers. Yang and Chua [211, 212] suggested finding answers to list questions (where a

set of distinct entities are expected, e.g., “name all the countries in Europe”) through web

page functional classification. Given a list question, a number of queries are formulated

and sent to search engines. The web pages in the results are retrieved and then classified

by decision tree classifiers into one of the four categories: collection pages (containing a

list of items), topic pages (representing an answer instance), relevant pages (supporting an

answer instance), and irrelevant pages. In order to increase coverage, more topic pages are

included by following the outgoing links of the collection pages. After that, topic pages

are clustered, from which answers are extracted.

Additionally, there have been a number of approaches to improving quality of answers

by means of question classification [83, 87, 111, 220] which are beyond the scope of this

dissertation.

Building efficient focused crawlers or vertical (domain-specific) search engines

When only domain-specific queries are expected, performing a full crawl is likely ineffi-

cient. Chakrabarti et al. [31] proposed an approach called focused crawling, in which only

documents relevant to a predefined set of topics are of interest. In this approach, a clas-

sifier is used to evaluate the relevance of a web page to the given topics so as to provide
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evidence for the crawl boundary.

Other applications

Besides the applications discussed above, web page classification is also useful in web

content filtering [82, 36], assisted web browsing [6, 144, 99], contextual advertising [20, 22],

ontology annotation [172], and in knowledge base construction [46].

2.1.3 The difference between web classification and text classification

The more general problem of text classification [170, 1, 185, 191, 171, 25, 15] is beyond the

scope of this dissertation. Compared with standard text classification, classification of web

content is different in the following aspects. First, traditional text classification is typically

performed on “structured corpora with well-controlled authoring styles” [33], while web

collections do not have such a property. Second, web pages are semi-structured documents

in HTML, so that they may be rendered visually for users. Although other document

collections may have embedded information for rendering and/or a semi-structured format,

such markup is typically stripped for classification purposes. Finally, web documents exist

within a hypertext, with connections to and from other documents. While not unique to

the Web (consider for example the network of scholarly citations), this feature is central

to the definition of the Web, and is not present in typical text classification problems.

Therefore, web classification is not only important, but distinguished from traditional text

classification, and thus deserving of the focused review and study found in this dissertation.
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2.1.4 Features

In this subsection, we review the types of features found to be useful in web page classifi-

cation research.

Written in HTML, web pages contain additional information, such as HTML tags,

hyperlinks and anchor text (the text to be clicked on to activate and follow a hyperlink to

another web page, placed between HTML <A> and </A> tags), other than the textual

content visible in a web browser. These features can be divided into two broad classes:

on-page features, which are directly located on the page to be classified, and features of

neighbors, which are found on the pages related in some way with the page to be classified.

Using on-page features

Textual content and tags. Directly located on the page, the textual content is the

most straightforward feature that one may consider to use. However, due to the variety

of uncontrolled noise in web pages, directly using a bag-of-words representation for all

terms may not achieve top performance. Researchers have tried various methods to make

better use of the textual features. One popular method is feature selection, which we

cover in Section 2.1.5. Term n-gram representation is another method that is found to be

useful. Mladenic [132] suggested an approach to automatic web page classification based

on the Yahoo! hierarchy. In this approach, each document is represented by a vector

of features, which includes not only single terms, but also up to 5 consecutive words.

The advantage of using n-gram representation is that it is able to capture the concepts
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expressed by a sequence of terms (phrases), which are unlikely to be characterized using

single terms. Imagine a scenario of two different documents. One document contains the

phrase “New York”. The other contains the terms “new” and “york”, but the two terms

appear far apart. A standard bag-of-words representation cannot distinguish them, while

a 2-gram representation can. However, an n-gram approach has a significant drawback; it

generates a space with much higher dimensionality than the bag-of-words representation

does. Therefore, it is usually performed in combination with feature selection.

One obvious feature that appears in HTML documents but not in plain text documents

is HTML tags. It has been demonstrated that using information derived from tags can

boost the classifier’s performance. Golub and Ardo [78] derived significance indicators

for textual content in different tags. In their work, four elements from the web page

are used: title, headings, metadata, and main text. They showed that the best result is

achieved from a well-tuned linear combination of the four elements. This approach only

distinguished the four types of elements while mixing the significance of other tags. Kwon

and Lee [112, 113] proposed classifying web pages using a modified k-Nearest Neighbor

algorithm, in which terms within different tags are given different weights. They divided

all the HTML tags into three groups and assigned each group an arbitrary weight.

Thus, utilizing tags can take advantage of the structural information embedded in

the HTML files, which is usually ignored by plain text approaches. However, since most

HTML tags are oriented toward representation rather than semantics, web page authors

may generate different but conceptually equivalent tag structures. Therefore, using HTML
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tagging information in web classification may suffer from the inconsistent formation of

HTML documents.

Good quality document summarization can accurately represent the major topic of

a web page. Shen et al. [175] proposed an approach to classifying web pages through

summarization. They showed that classifying web pages based on their summaries can

improve accuracy by around 10% as compared with content based classifiers.

Rather than deriving information from the page content, Kan and Thi [101, 102]

demonstrated that a web page can be classified based on its URL. Baykan et al. [10, 11]

further improved the quality of purely-URL based classification by using all letter n-

gram combinations as features. While not providing ideal accuracy, this type of approach

eliminates the necessity of downloading the page. Therefore, it is especially useful when

the page content is not available or time/space efficiency is strictly emphasized.

Visual analysis. Each web page has two representations, if not more. One is the

text representation written in HTML. The other one is the visual representation rendered

by a web browser. They provide different views of a page. Most approaches focus on the

text representation while ignoring the visual information. Yet the visual representation is

useful as well.

A web page classification approach based on visual analysis was proposed by Kovacevic

et al. [105], in which each web page is represented as a hierarchical “visual adjacency

multigraph.” In the graph, each node represents an HTML object and each edge represents

the spatial relation in the visual representation. Based on the result of visual analysis,
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heuristic rules are applied to recognize multiple logical areas, which correspond to different

meaningful parts of the page. They compared the approach to a standard bag-of-words

approach and demonstrated great improvement. In a complementary fashion, a number

of visual features, as well as textual features, were used in the web page classification work

by Asirvatham and Ravi [7]. Based on their observation that research pages contain more

synthetic images, the histogram of the images on the page is used to differentiate between

natural images and synthetic images to help classification of research pages.

Although the visual layout of a page relies on the tags, using visual information of

the rendered page is arguably more generic than analyzing document structure focusing

on HTML tags [105]. The reason is that different tagging may have the same rendering

effect. In other words, sometimes one can change the tags without affecting the visual

representation. Based on the assumption that most web pages are built for human eyes,

it makes more sense to use visual information rather than intrinsic tags.

On-page features are useful but they provide information only from the viewpoint of

the page creator. Sometimes it is necessary to use features that do not reside on the page.

We will discuss this issue next. Besides the features discussed above, self-tagging systems

like that used by Technorati3 allow authors to associate their blogs with arbitrary category

names. This feature, as will be discussed in Section 2.1.7, is also useful in classification.

3Technorati: http://www.technorati.com/

22



2.1. WEB PAGE CLASSIFICATION

Figure 2.3: An example web page which has few useful on-page features.

Using features of neighbors

Motivation. Although web pages contain useful features as discussed above, in a par-

ticular web page these features are sometimes missing, misleading, or unrecognizable for

various reasons. For example, some web pages contain large images or flash objects but

little textual content, such as in the example shown in Figure 2.3. In such cases, it is

difficult for classifiers to make reasonable judgments based on features on the page.

In order to address this problem, features can be extracted from neighboring pages that

are related in some way to the page to be classified to supply supplementary information

for categorization. There are a variety of ways to derive such connections among pages.

One obvious connection is the hyperlink. Since most existing work that utilizes features

of neighbors is based on hyperlink connections, in the following, we focus on hyperlink
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connections. However, other types of connections can also be derived; and some of them

have been shown to be useful for web page classification. These types of connections are

discussed later.

Underlying assumptions. When exploring the features of neighbors, some assump-

tions are implicitly made in existing work. Usually, it is assumed that if pages pa and

pb belong to the same category, pages neighboring them in the web graph share some

common characteristics. This assumption does not require that the neighboring pages

belong to the same category as pa and pb do. In the following, we refer to this thesis

as the weak assumption. The weak assumption works in both subject classification and

functional classification. Under the weak assumption, a classifier can be derived from the

features of the neighboring pages of training examples, and used to predict the categories

of testing examples based on the features of their neighbors.

In subject classification, a stronger assumption is often made—that a page is much

more likely to be surrounded by pages of the same category. In other words, the presence

of many “sports” pages in the neighborhood of pa increases the probability of pa being in

“sports”. We term this the strong assumption. The strong assumption requires a strong

correlation between links and topics of web pages. Davison [52] showed that linked pages

were more likely to have terms in common. Chakrabarti et al. [30] studied the topical

structure of the Web and showed that pages tend to link to pages on the same topic.

Similarly, Menczer [126] also showed a strong correlation between links and content of

web pages. The strong assumption has been shown to work well in subject classification
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on broad (i.e., high-level) categories. However, evidence for its validity on fine-grained

categories is lacking. Furthermore, it seems unlikely that the strong assumption works

in functional classification. Under the strong assumption, one might build statistical

classifiers to predict the category of the page in question simply by taking the majority

class of its neighboring pages.

Neighbor selection. Another question when using features from neighbors is that

of which neighbors to examine. Existing research mainly focuses on pages within two

steps of the page to be classified. At a distance no greater than two, there are six types

of neighboring pages according to their hyperlink relationship with the page in question:

parent, child, sibling, spouse, grandparent and grandchild, as illustrated in Figure 2.4. The

effect and contribution of the first four types of neighbors have been studied in existing

research. Although grandparent pages and grandchild pages have also been used, their

individual contributions have not yet been specifically studied. In the following, we group

the research in this direction according to the neighbors that are used.

In general, directly incorporating text from parent and child pages into the target page

does more harm than good because parent and child pages are likely to have different topics

than the target page [29, 73, 214]. This, however, does not mean that parent and child

pages are useless. The noise from neighbors can be greatly reduced by at least two means:

using an appropriate subset of neighbors, and using an appropriate portion of the content

on neighboring pages. Both methods have been shown to be helpful.

Using a subset of parent and child pages can reduce the influence from pages on
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Figure 2.4: Neighbors within radius of two.

different topics than the target page. For example, while utilizing parent and child pages,

Oh et al. [141] require the content of neighbors to be sufficiently similar to the target

page. Using a portion of content on parent and child pages, especially the content near

enough to the hyperlink that points to the target page, can reduce the influence from the

irrelevant part of neighboring pages. Usually, title, anchor text, and the surrounding text

of anchor text on the parent pages are found to be useful. This family of approaches takes

advantage of both hyperlinks and HTML structure information. Below, we review some

existing approaches of this type.

Attardi et al. [8] proposed to use the title, anchor text, and a portion of text surround-

ing the anchor text on parent pages to help determine the target page’s topic, and showed
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promising results. Fürnkranz [64] used features on parent pages like anchor text, the neigh-

borhood of anchor text, and the headings that precede the link, and showed improvement

over the classifier that uses text on the target page alone. In later work [65], an interesting

approach was proposed by Fürnkranz in which text on the parent pages surrounding the

link is used to train a classifier instead of text on the target page. As a result, a target

page will be assigned multiple labels by such a classifier, one for each incoming link. These

labels are then combined by some voting scheme to form the final prediction of the target

page’s class. Yang et al. [214] reviewed various approaches to hypertext classification.

Their results are mixed, finding that identification of hypertext regularities and appro-

priate representations are crucial to categorization performance. They note, however,

that “algorithms focusing on automated discovery of the relevant parts of the hypertext

neighborhood should have an edge over more naive approaches.” Sun et al. [183] showed

that SVM classifiers using the text on the target page, page title (as separate features),

and anchor text from parent pages can improve classification compared with a pure text

classifier. Similarly, Glover et al. [76] demonstrated that utilizing extended anchortext

(the surrounding text of anchortext, including the anchor text itself) from parent pages

can improve the accuracy compared with the classifier which uses on-page content only.

Utard and Fürnkranz [194] also proposed to use a portion of text as opposed to full text on

parent pages. They studied individual features from parent pages such as anchor text, the

neighborhood of anchor text, the paragraph containing the link, the headings before the

anchor text, as well as the text on the target page, and showed significant improvement of
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pair-wise combination of such features over the individual features. Besides directly using

a portion of the text on parent pages, implicitly utilizing information from parent pages

could also be successful, such as applying wrapper learners to anchor text on parent pages

proposed by Cohen [44].

Sibling pages are even more useful than parents and children. This was empirically

demonstrated by Chakrabarti et al. [29] and again by Qi and Davison [151]. Such sibling

relationships can also help in relational learning of functional categories [177].

Using multiple types of neighbors could provide additional benefit. Calado et al. [24]

studied the use of several link similarity measures in web page topical classification, in

which the link similarities are derived from hyperlinked neighbors within two steps. Ap-

propriate combinations of such link similarities and textual classifiers can make great

improvement over textual classifiers. Qi and Davison [151] proposed a method to enhance

web page classification by utilizing the class and content information from neighboring

pages in the link graph. The categories represented by four kinds of neighbors (parents,

children, siblings and spouses) are combined to help with the page in question. That study

of the contribution of the four types of neighbors revealed that while sibling pages are the

most important type of neighbor to use, the other types are also of value.

Instead of individually considering each target page together with its neighbors, some

algorithms may collectively consider the class labels of all the nodes within a graph. This

type of approach is discussed in Section 2.1.5.

28



2.1. WEB PAGE CLASSIFICATION

Proper use of information from neighbors can generate a more accurate, more compre-

hensive representation of the web page. Therefore, it does not only benefit classification as

discussed above, but also improves quality of retrieval and unsupervised learning. Incor-

porating information from hyperlinked neighboring pages, Sugiyama et al. [181] proposed

a method to refine the TFIDF representation of a web page to improve retrieval quality.

By applying graph partitioning methods on a crafted graph combining direct hyperlinks,

co-citation relationships, and textual similarities, He et al. [86] was able to generate better

clusters. Drost et al. [56] proposed to find communities in linked data by using similarity

metrics based on co-citation and bibliographic coupling relationships, as well as content

similarity. Angelova and Siersdorfer [4] proposed an approach to linked document cluster-

ing by means of iterative relaxation of cluster assignments on a linked graph.

In summary, on one hand, although parent, child, sibling, and spouse pages are all

useful in classification, siblings are found to be the best source; on the other hand, since

using information from neighboring pages may introduce extra noise, they should be used

carefully. The effect of grandparent and grandchild pages has not been well studied.

As mentioned earlier, little work has examined the effect of pages beyond two steps

away. There are at least two reasons for this: first, due to the explosive number of

neighbors, utilizing features of neighbors at a long distance is expensive; second, the

farther away the neighbors are, the less likely they have topics in common with the page

being classified [30], and thus they are less useful in classification.

Features of neighbors. The features that have been used from neighbors include

29



2.1. WEB PAGE CLASSIFICATION

labels, partial content (anchor text, the surrounding text of anchor text, titles, headers),

and full content.

Some researchers take advantage of neighboring pages which have already been labeled

by humans. For example, Chakrabarti et al. [29], Slattery and Mitchell [177], and Calado

et al. [24] used the labels of neighbors in their work. The advantage of directly using labels

is that human labeling is more accurate than classifiers. The disadvantage is that these

labels are not always available. (Human-labeled pages, of course, are available on only a

very small portion of the Web.) When the labels are not available, these approaches would

either suffer significantly in terms of coverage (leaving a number of pages undecidable) or

reduce to the result of traditional content-based classifiers.

As discussed earlier, using partial content of neighbors can reduce the effect of irrele-

vant topics on neighboring pages. As one kind of partial content of parents, anchor text

is usually considered a tag or a concise description of the target page [2, 52]. It is useful

in web classification as well as in web search. However, given that anchor text is usu-

ally short, it may not contain enough information for classification. As shown by Glover

et al. [76], “anchortext alone is not significantly better (arguably worse) than using the

full-text alone.” Using surrounding text of anchor text (including the anchor text itself),

as in [76], or using anchor text indirectly, as in [44], can address this problem. For care-

fully created pages, information in titles and headers is generally more important than

the generic text. Therefore, it is reasonable to use titles and anchors instead of the full

content of neighboring pages, or to emphasize them when using full content. Compared
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with using labels of neighbors, using partial content of neighboring pages does not rely

on the presence of human labeled pages in the neighborhood. The benefit of using such

partial content, however, partially relies on the quality of the linked pages.

Among the three types of features, using the full content of neighboring pages is the

most expensive; however it may generate better accuracy. Oh et al. [141] showed that

using the class of neighbors provides a 12% gain in F-measure over the approach which

only considers on-page content. They also showed that including content of neighbors can

increase F-measure by another 1.5%. Qi and Davison [151] demonstrated that additionally

using the topical labeling of neighboring page content outperforms two other approaches

which only use the human-generated class labels of neighbors (see Chapter 3 for details).

In addition, utilizing field information in web pages can bring further improvement [152]

(see Chapter 4 for details).

The approaches that utilize features of neighbors are compared in Table 2.1. From the

table, we can see that class label is a frequently-used feature. Interestingly, anchortext is

less frequently used than one would expect given its apparent descriptive power.

Utilizing artificial links. Although hyperlinks are the most straightforward type

of connection between web pages, it is not the only choice. One might also ask which

pages should be connected/linked (even if not linked presently). While simple textual

similarity might be a reasonable start, a stronger measure is to consider pages that co-

occur in top query results [63, 12, 74, 197, 218, 53]. In this model, two pages are judged

to be similar by a search engine in a particular context, and would generally include
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Assump- Types of On-page Types of Combin-
Approach tion based neighbors features features ation

upon used utilized? used method

Chakrabarti weak sibling no label N/A
et al. [29]
Attardi et al. weak parent no text N/A
[8]
Fürnkranz weak parent no anchor text, multiple
[64] extended voting

anchor text, schemes
& headings

Slattery & weak sibling no label N/A
Mitchell [177]
Fürnkranz weak parent no anchor text, multiple
[65] extended voting

anchor text, schemes
& headings

Glover et al. weak parent yes extended N/A
[76] anchor text
Sun et al. weak parent yes anchor text, using
[183] plus text & them as

title of separate
target page features

Cohen [44] weak parent no text & N/A
anchor

Calado et al. strong all six types yes label Bayesian
[24] types within Network

two steps
Angelova weak “reliable” yes text & N/A
& Weikum neighbors in label
[5] a local graph
Qi & Davison strong parent, child, yes text & weighted
[151] sibling, spouse label average

Table 2.1: Comparison of approaches using features of neighbors.
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pages that contain similar text and similar importance (so that they both rank high in a

query). Based on the idea of utilizing information in queries and results, Shen et al. [176]

suggested an approach to creating connections between pages that appear in the results of

the same query and are both clicked by users, which they term “implicit links”. Thus, they

utilize similarity as formed by the ranking algorithm, but also by human insight. Their

comparison between implicit links and explicit links (hyperlinks) showed that implicit

links can help web page classification. A similar approach which classifies web pages by

utilizing the interrelationships between web pages and queries was proposed by Xue et

al. [206]. The main idea is to iteratively propagate the category information of one type

of object (pages or queries) to related objects. This approach showed an improvement

of 26% in F-measure over content-based web page classification. In addition to web page

classification, artificial connections built upon query results and query logs can be used

for query classification.

Links derived from textual similarities can also be useful. Based on a set of feature

vectors generated from web directories, Gabrilovich and Markovitch [67] proposed to use

feature vectors that are similar enough to the content of the target document to help

classification, although such links are not explicitly generated. Given a web directory

such as dmoz or Yahoo!, a feature vector is generated for each node (category) by selecting

highly representative terms in the category description, URL, and the web sites within that

category. After that, the feature generator compares the input text with the feature vectors

of all the directory nodes, and vectors that are similar enough are chosen to enrich the
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bag-of-words representation of the input page’s text. Their other approaches that utilize

external knowledge (such as Wikipedia4 and ODP) for automatic feature generation are

described in [68, 69].

There are other methods to generate such artificial links but have not been tested

with respect to web classification, such as the “generation links” proposed by Kurland

and Lee [109, 110], in which links are created between documents if the language model

induced from one document assigns high probability to another. Another example is the

links proposed by Luxenburger and Weikum [120], which are generated through high order

links within query logs and content similarity.

Discussion: features

On-page features directly reside on the page to be classified. Methods to extract on-page

features are fairly well-developed and relatively inexpensive to extract. While obtain-

ing features of neighbors is computationally more expensive (particularly for researchers

not within search engine companies), these features provide additional information that

cannot be obtained otherwise. When designing a classifier, a decision needs to be made

regarding the the trade-off between accuracy and efficiency. Yang et al. [215] compared

the computational complexity of several popular text categorization algorithms by means

of formal mathematical analysis and experiments. However, most work on web specific

classification lacks an analysis of computational complexity, which makes an implementer’s

4Wikipedia: http://wikipedia.org/
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decision more difficult.

A comparison of many of the approaches reviewed in this section across several char-

acteristics is shown in Table 2.2. In order to provide a rough idea of performance for

each approach, the baseline classifier with which the approach is compared and its re-

ported improvement over the baseline is listed in the table. However, since the results

of different approaches are based on different implementations and different datasets, the

performance comparison provided here should only serve as a start of a comprehensive

evaluation. From Table 2.2, we can see that

• web classification techniques achieve promising performance, although there appears

to be room for improvement;

• bag-of-words and set-of-words are popular document representations; and

• existing approaches are evaluated on a wide variety of metrics and datasets, making

it difficult to compare their performance.

Although the benefit of utilizing features of neighbors has been shown in many papers,

little work has been performed to analyze the underlying reason why such features are

useful. In general, features of neighbors provide an alternative view of a web page, which

supplements the view from on-page features. Therefore, collectively considering both can

help reduce classification error. Jensen et al. [96] investigated the underlying mechanism of

collective inference, and argued that the benefit does not only come from a larger feature

space, but from modeling dependencies among neighbors and utilizing known class labels.
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Feature

Baseline Reported Document selection Evaluation

Approach Task classifier improv. represent. criteria dataset

Chakrabarti Topical A term- From 32% Bag-of-words A score-based Yahoo
et al. based to 75% function directory
[29] classifier (accuracy) derived from

built on Duda &
TAPER Hart [57]

Mladenic Topical N/A N/A N-gram Gram Yahoo
[133] frequency directory

Fürnkranz Functional A text From 70.7% Set-of-words Entropy WebKB
[64] classifier to 86.6% (for baseline

(accuracy) classifier)

Slattery Functional N/A N/A Relations No feature WebKB
& Mitchell selection
[177]

Kwon & Topical A kNN From 18.2% Bag-of-words Expected Hanmir
Lee [112] classifier to 19.2% mutual

with (micro- information
traditional averaging and
cosine breakeven mutual
similarity point) information
measure

Fürnkranz Functional A text From 70.7% Set-of-words Entropy WebKB
[65] classifier to 86.9% (for baseline

(accuracy) classifier)

Sun et al. Functional A text From 0.488 Set-of-words No feature WebKB
[183] classifier to 0.757 selection

(F-measure)

Cohen Topical A simple From 91.6% Bag-of-words No feature A custom
[44] bag-of- to 96.4% selection crawl on

words (accuracy) nine
classifier company

web sites

Calado Topical A kNN From 39.5% Bag-of-words Information Cade
et al. textual to 81.6% gain directory
[24] classifier (accuracy)

Golub & Topical N/A N/A Word/phrase No feature Engineering
Ardi [78] selection Electric

Library

Qi & Topical An SVM From 73.1% Bag-of-words No feature ODP
Davison textual to 91.4% selection directory
[151] classifier (accuracy)

Table 2.2: Comparison of web page classification approaches.
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Such explanations may also apply to why web page classification benefits from utilizing

features of neighbors.

Sibling pages are even more useful than parents and children. We speculate that the

reason may lie in the process of hyperlink creation. When linking to other pages, authors

of web pages often tend to link to pages with related (but not the same) topics of the

current page. As a result, this page, as a whole, may not be an accurate description of

its outgoing links. The outgoing links, however, are usually on the same topic, especially

those links adjacent to each other. In other words, a page often acts as a bridge to connect

its outgoing links, which are likely to have common topics. Therefore, sibling pages are

more useful in classification than parent and child pages.

2.1.5 Algorithms

The types of features used in web page classification have been reviewed in the previous

section. Here, we focus on the algorithmic approaches.

Dimension reduction

Besides deciding which types of features to use, the weighting of features also plays an

important role in classification. Emphasizing features that have better discriminative

power will usually boost classification. Feature selection can be seen as a special case of

feature weighting, in which features that are eliminated are assigned zero weight. Feature

selection reduces the dimensionality of the feature space, which leads to a reduction in
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computational complexity. Furthermore, in some cases, classification can be more accurate

in the reduced space. A review of traditional feature selection techniques used in text

classification can be found in [213].

There are a variety of measures to select features. Some simple approaches have been

proven effective. For example, Shanks and Williams [174] showed that only using the first

fragment of each document offers fast and accurate classification of news articles. This

approach is based on an assumption that a summary is present at the beginning of each

document, which is usually true for news articles, but does not always hold for other kinds

of documents. However, this approach was later applied to hierarchical classification of

web pages by Wibowo and Williams [198], and was shown to be useful for web documents.

Besides these simple measures, there have been a number of feature selection ap-

proaches developed in text categorization, such as information gain, mutual information,

document frequency and the χ2-test. These approaches can also be useful for web classi-

fication. Kwon and Lee [112] proposed an approach based on a variation of the k-Nearest

Neighbor algorithm, in which features are selected using two well-known metrics: expected

mutual information and mutual information. They also weighted terms according to the

HTML tags in which the term appears, i.e., terms within different tags bear different

importance. Calado et al. [24] used information gain, another well-known metric, to se-

lect the features to be used. However, based on existing research, it is not clear to what

extent feature selection and feature weighting contributed to the improvement. Yan et

al. [209] proposed a novel feature selection approach which is more efficient and effective
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than information gain and χ2-test on large-scale datasets.

In text categorization, there is a class of problems in which categories can be distin-

guished by a small number of features while a large number of other features only add

little additional differentiation power. Gabrilovich and Markovitch [66] studied such types

of classification problems and showed that the performance of SVM classifiers can be im-

proved in such problems by aggressive feature selection. They also developed a measure

that is able to predict the effectiveness of feature selection without training and testing

classifiers.

Unlike the above approaches which explicitly select a subset of features, another type

of approach decomposes the original document-feature matrix into smaller matrices, which

effectively transforms the original feature space into a smaller but less intuitive space. La-

tent Semantic Indexing (LSI) [54] is a popular approach in this category. However, its high

computational complexity makes it inefficient to scale. Therefore, research experiments

utilizing LSI in web classification (e.g., [219, 161]) are based on small datasets. Some

work has improved upon LSI (e.g., probabilistic [92, 91]) and made it more applicable to

large datasets. Research has demonstrated the effectiveness of such improvements [45, 61].

Their efficiency on large datasets, however, needs further study. A matrix factorization

approach similar to LSI was proposed by Zhu et al. [223], which jointly factorizes link

matrix and content matrix to compute a transformed document representation. Their

experiments showed improvement over traditional classification algorithms.
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Relational learning

Since web pages can be considered as instances which are connected by hyperlink relations,

web page classification can be solved as a relational learning problem, which is a popular

research topic in machine learning. Therefore, it makes sense to apply relational learning

algorithms to web page classification. Relaxation labeling is one of the algorithms that

works well in web classification.

Relaxation labeling was originally proposed as a procedure in image analysis [165].

Later, it became widely used in image and vision analysis, artificial intelligence, pattern

recognition, and web mining. “In the context of hypertext classification, the relaxation

labeling algorithm first uses a text classifier to assign class probabilities to each node

(page). Then it considers each page in turn and reevaluates its class probabilities in light

of the latest estimates of the class probabilities of its neighbors” [28].

Relaxation labeling is effective in web page classification [29, 119, 5]. Based on a

new framework for modeling link distribution through link statistics, Lu and Getoor [119]

proposed a variation of relaxation labeling, in which a combined logistic classifier is used

based on content and link information. This approach not only showed improvement over

a textual classifier, but also outperformed a single flat classifier based on both content

and link features. In another variation proposed by Angelova and Weikum [5], not all

neighbors are considered. Instead, only neighbors that are similar enough in content are

used.

Besides relaxation labeling, other relational learning algorithms can also be applied
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to web classification. Sen and Getoor [173] compared and analyzed relaxation labeling

along with two other popular link-based classification algorithms: loopy belief propagation

and iterative classification. Their performance on a web collection is better than textual

classifiers. Macskassy and Provost [121] implemented a toolkit for classifying networked

data, which utilized a collective inference procedure [96], and demonstrated its powerful

performance on several datasets including web collections. Unlike others, Zhang et al. [221]

proposed a novel approach to relational learning based on both local text and link graph,

and showed improved accuracy.

2.1.6 Modifications to traditional algorithms

Besides feature selection and feature weighting, efforts have also been made to tweak

traditional algorithms, such as k-Nearest Neighbor and Support Vector Machine (SVM),

in the context of web classification.

K-Nearest Neighbor classifiers require a document dissimilarity measure to quantify

the distance between a test document and each training document. Most existing kNN

classifiers use cosine similarity or inner product. Based on the observation that such

measures cannot take advantage of the association between terms, Kwon and Lee [112, 113]

developed an improved similarity measure that takes into account the term co-occurrence

in documents. The intuition is that frequently co-occurring terms constrain the semantic

concept of each other. The more co-occurred terms two documents have in common,

the stronger the relationship between the two documents. Their experiments showed
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performance improvements of the new similarity measure over cosine similarity and inner

product measures. Gövert et al. [79] reinterpreted the k-Nearest Neighbor algorithm with

probability computation. In this probabilistic kNN, the probability of a document d being

in class c is determined by its distance between its neighbors and itself and its neighbors’

probability of being in class c.

Centroid-based classifiers are widely used in web applications because of their high

efficiency. The class centroids can be easily computed and incrementally updated. How-

ever, they are usually inferior in terms of quality performance measures. Guan et al. [80]

proposed a new centroid representation called “Class Feature Centroid”, using a combina-

tion of inter-class term distribution and inner-class term distribution. Their experiments

showed that the proposed method can outperform traditional centroid-based classifiers

and even SVM classifiers.

Most supervised learning approaches only learn from training examples. Co-training,

introduced by Blum and Mitchell [18], is an approach that makes use of both labeled and

unlabeled data to achieve better accuracy. In a binary classification scenario, two classifiers

that are trained on different sets of features are used to classify the unlabeled instances.

The prediction of each classifier is used to train the other. Compared with the approach

which only uses the labeled data, this co-training approach is able to cut the error rate by

half. Ghani [71, 72] generalized this approach to multi-class problems. The results showed

that co-training does not improve accuracy when there are a large number of categories.

On the other hand, their proposed method which combines error-correcting output coding
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(a technique to improve multi-class classification performance by using more than enough

classifiers, see [55] for details) with co-training is able to boost performance. (See [186]

for another example of using error-correcting output coding in text classification.) Park

and Zhang [143] also applied co-training in web page classification which considers both

content and syntactic information.

Classification usually requires manually labeled positive and negative examples. Yu

et al. [217] devised an SVM-based approach to eliminate the need for manual collection

of negative examples while still retaining similar classification accuracy. Given positive

data and unlabeled data, their algorithm is able to identify the most important positive

features. Using these positive features, it filters out possible positive examples from the

unlabeled data, which leaves only negative examples. An SVM classifier could then be

trained on the labeled positive examples and the filtered negative examples.

Cost-sensitive learning is not a new topic; however, there are interesting facets when

performing cost-sensitive learning on the Web. Liu et al. [118] argued that when training

models on web pages, popular or important web pages should be given more weight. They

modified the SVM algorithm to assign higher weight to relatively high PageRank pages,

and showed improvement over the default SVM.

Combining information from multiple sources

Methods utilizing different sources of information can be combined to achieve further im-

provement, especially when the information considered is orthogonal. In web classification,
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combining link and content information is quite popular [24, 151].

A common way to combine multiple sources of information is to treat information from

different sources as different (usually disjoint) feature sets, on which multiple classifiers

are trained. After that, these classifiers are combined together to generate the final deci-

sion. There are various methods to combine such classifiers [108], including well-developed

methods in machine learning such as voting and stacking [200]. Combining SVM kernels

derived from different sources is another viable method. Joachims et al. [98] showed that

the combined kernels of text and co-citation among web pages could perform better than

each kernel individually. A similar combining approach is used in [203]. Besides these com-

bining methods, co-training, as discussed previously in Section 2.1.6, is also effective in

combining multiple sources since different classifiers are usually trained on disjoint feature

sets.

Based on the assumption that each source of information provides a different view-

point, a combination has the potential to have better knowledge than any single method.

However, it often has the disadvantage of additional resource requirements. Moreover, the

combination of two does not always perform better than each separately. For example,

Calado et al. [24] show that the combination of a bibliographic coupling similarity measure

with a kNN content-based classifier is worse than kNN alone.
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2.1.7 Other issues

Previously we discussed the two important factors in classification: features and algo-

rithms. Other related issues, such as web page preprocessing and dataset selection, also

have an effect on classification. We cover such issues here.

Web page content preprocessing

In most experimental work reviewed in this section, preprocessing is performed before

the content of web pages is fed into a classifier. HTML tags are usually eliminated.

However, the content of meta keyword, meta description and “ALT” fields of image tags

is usually preserved. Although stemming may be used in web search, it is rarely utilized

in classification. The intuition is that stemming is used in indexing mainly in order to

improve recall, while in the scenario of web classification, given enough training instances,

different forms of a particular term will appear if the term is important.

Dataset selection and generation

Since web page classification is usually posed as a supervised learning problem, it requires

the presence of labeled training instances. In addition, test instances also need to be

labeled for the purpose of evaluation.

Since manual labeling can require an excessive amount of human effort, many re-

searchers use subsets of the existing web directories that are publicly available. The two

most frequently used web directories are the Yahoo! directory and the dmoz ODP. Others
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include Cade directory5 (a Brazilian web directory, now merged with Yahoo!), HanMir6

(a Korean web directory), and Engineering Electric Library7 (EEL, a directory providing

engineering information).

The use of different datasets makes it difficult to compare performance across multiple

algorithms. Therefore, the web classification research community would benefit from a

standard dataset for web page classification, such as the TREC datasets [137] for infor-

mation retrieval. Although the “WebKB” dataset [46] is one such dataset, it is small and

provides only limited functional classes.

In addition to using web directories as evaluation dataset, one might consider artifi-

cially generated datasets. Davidov et al. [51] proposed a method that can automatically

generate labeled datasets for text categorization with desired properties, e.g., classifica-

tion difficulty. Based on existing hierarchical web directories such as ODP, this algorithm

first finds categories with appropriate degree of classification difficulties based on certain

distance measures (e.g., tree distance, textual feature dissimilarity), then crawls web sites

under those categories and filters out noise. Although the generated dataset may poten-

tially inherit the bias coming from the web directory on which it is based (such as toward

older or high-quality pages), this approach practically eliminates the need for human effort

in the generation of some kinds of datasets, while providing flexibility for users to control

the characteristics of the generated dataset. Unfortunately, this approach does not provide

5Cade: http://br.cade.yahoo.com/

6HanMir: http://hanmir.com/

7EEL: http://eels.lub.lu.se/
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datasets containing an appropriate web structure that more recent neighborhood-based

classification approaches would require.

Web site classification

Web sites (rather than pages) can also be classified. One branch of research only uses a

web site’s content. Pierre [147] proposed an approach to the classification of web sites into

industry categories utilizing HTML tags.

Another branch focuses on utilizing the structural properties of web sites. It has

been shown that there is close correlation between a web site’s link structure and its

functionality. Amitay et al. [3] used structural information of a web site to determine its

functionality (such as search engines, web directories, corporate sites). Motivated by the

same intuition, Lindemann and Littig [116] further analyzed the relation between structure

and functionality of web sites.

There is also research that utilizes both structural and content information. Ester et

al. [60] investigated three different approaches to determining the topical category of a

web site based on different web site representations. In their algorithms, a web site can

be represented by a single virtual page consisting of all pages in the site, by a vector

of topic frequencies, or by a tree of its pages with topics. Experiments showed that

the tree classification approach offers the best accuracy. Tian et al. [190] proposed to

represent a web site by a two-layer tree model in which each page is modeled by a DOM

(Document Object Model) tree and a site is represented by a hierarchical tree constructed
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according to the links among pages. Then a Hidden-Markov-Tree-based classifier is used

for classification.

Classification of web pages is helpful for classifying a web site. For example, in [60],

knowing the topic of the pages in a site can help determine the web site’s topic. Presum-

ably, site categorization could also benefit web page classification but the results of such

an approach have not been reported.

Blog classification

The word “blog” was originally a short form of “web log”, which, as defined by the

Merriam-Webster Dictionary8, is a web site that contains an online personal journal with

reflections, comments, and often hyperlinks provided by the writer. As blogging has

gained in popularity in recent years, an increasing amount of research about blogs has

also been conducted. Research in blog classification can be broken into three types: blog

identification (to determine whether a web document is a blog), mood classification, and

genre classification.

Research in the first category aims at identifying blog pages from a collection of web

pages, which is essentially a binary classification of blog and non-blog. Nanno et al. [135]

presented a system that automatically collects and monitors blog collections, identifying

blog pages based on a number of simple heuristics. Elgersma and Rijke [59] examined

8Merriam-Webster Dictionary: http://mw1.merriam-webster.com/dictionary/blog

48



2.1. WEB PAGE CLASSIFICATION

the effectiveness of common classification algorithms on blog identification tasks. Us-

ing a number of human-selected features (some of which are blog specific, e.g., whether

characteristic terms are present, such as “Comments” and “Archives”), they found that

many off-the-shelf machine learning algorithms can yield satisfactory classification accu-

racy (around 90%).

The second category of research includes identification of the topic, mood or sentiment

of blogs. Most existing approaches in this category recognize mood at the level of indi-

vidual post; some target recognition of mood reflected by a collection of posts. Mihalcea

and Liu [127] showed that blog entries expressing the two polarities of moods, happiness

and sadness, are separable by their linguistic content. A naive Bayes classifier trained on

uni-gram features achieved 79% accuracy over 10,000 mood-annotated blogposts. Simi-

larly, Chesley et al. [38] demonstrated encouraging performance in categorizing blog posts

into three sentiment classes (Objective, Positive, and Negative). However, real-world

blog posts indicate moods much more complicated than merely happiness and sadness

(or positive and negative). Mishne [129] showed that classifying blog posts into a more

comprehensive set of moods is a challenging task (for both machine and human). When

doing binary classification of blog posts on more than a hundred predefined moods, SVM

classifiers trained on a variety of features (content and non-content) made small (while

consistent) improvement (8%) over random guess. Using a similar approach, Leshed and

Kaye [114] achieved 76% overall accuracy when classifying into 50 most frequent moods.

While recognizing mood for individual blog posts can be difficult, later work done by
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Mishne and Rijke [130] showed that determining aggregate mood across a large collection

of blog posts can achieve a high accuracy. Many blog systems allow authors and users of

blogs to assign arbitrary tags to blog posts. These tags can be considered as additional

information for classification. Based on empirical study, Berendt and Hanser [17] drew the

conclusion that “tags are not meta data, but just more content - to some people.” Tags

are shown to be more effective features in classification than blog titles and descriptions

[184]. Besides being used as features for classification, tags can also be seen as the task for

classification. Research has shown that tags can be predicted with reasonable accuracies

[95, 196].

The third category focuses on the genre of blogs. Research in this category is usually

done at blog level. Nowson [139] discussed the distinction of three types of blogs: news,

commentary, and journal. Qu et al. [157] proposed an approach to automatic classification

of blogs into four genres: personal diary, news, political, and sports. Using unigram tfidf

[167] document representation and naive Bayes classification, Qu et al.’s approach can

achieve an accuracy of 84%.

2.1.8 Summary

Web page classification is a type of supervised learning problem that aims to categorize web

pages into a set of predefined categories based on labeled training data. Classification tasks

include assigning documents to categories on the basis of subject, function, sentiment,

genre, and more. Unlike more general text classification, web page classification methods
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can take advantage of the semi-structured content and connections to other pages within

the Web.

We have surveyed the space of published approaches to web page classification from

various viewpoints, and summarized their findings and contributions, with a special em-

phasis on the utilization and benefits of web-specific features and methods.

We found that while the appropriate use of textual and visual features that reside

directly on the page can improve classification performance, features from neighboring

pages provide significant supplementary information to the page being classified. Feature

selection and the combination of multiple techniques can bring further improvement.

We expect that future web classification efforts will certainly combine content and link

information in some form. In the context of the research surveyed here, future work would

be well-advised to:

• Emphasize text and labels from siblings (co-cited pages) over other types of neigh-

bors;

• Incorporate anchortext from parents; and,

• Utilize other sources of (implicit or explicit) human knowledge, such as query logs

and click-through behavior, in addition to existing labels to guide classifier creation.
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2.2 Taxonomies and Hierarchical Classification

We first review existing approaches related to the general problem of assisting data brows-

ing, then discuss approaches for taxonomy generation and hierarchical classification.

2.2.1 Approaches to assist data browsing

How to organize data and present it to users in a meaningful way has been a difficult prob-

lem. We briefly review three mainstream methods for dealing with the issue: taxonomies,

faceted search/browsing, and tagging systems.

Taxonomies have been shown to be useful in organizing information across various

domains, such as organism classification, library classification, disease classification, and

web hierarchies. The traditional taxonomies require concepts to be organized in a strict

tree structure. Krishnapuram and Kummamuru [106] reviewed existing approaches to

automatic taxonomy generation, analyzed the issues with traditional taxonomies, and

pointed out their major problem: “most real-world concepts (and subconcepts) are not

crisp” in that they usually belong to more than one category. Therefore, it is unnatural

to constrain each concept to have exactly one parent. Based on such an analysis, they

proposed a new notion – “fuzzy hierarchies”, in which “each concept at level k of the

hierarchy is a child of all the concepts at level k−1, albeit to different degrees”. Compared

with traditional taxonomies, fuzzy hierarchies may better match the fuzzy representation

in the human mind. However, they still have strict levels; i.e., users still need to make

a fixed sequence of choices to reach a particular leaf. Furthermore, no method has been
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proposed to generate such a hierarchy.

Ranganathan developed a faceted library classification system called Colon Classifi-

cation [158, 159], which uses colons to separate identifiers of facets. In this classification

scheme, an object is described using a pre-defined set of facets. The introduction of facets

into classification systems eliminated the intrinsic restrictions of taxonomies. The same

idea powers the modern faceted search/browsing systems, which allows users to filter infor-

mation from a number of facets in any arbitrary order, as opposed to following pre-defined

paths in taxonomies.

Tagging systems became popular along with the rise of social media/social networks.

Typical examples of such systems include delicious9, flickr10, and bibsonomy11. They allow

users to assign arbitrary tags to the objects (web pages, photos, scientific publications,

etc.), and retrieve objects that are associated with any particular tag. Some also allow

sharing of such tags among users. Among the above three methods, the tagging system

is the least organized in that it doesn’t impose any structural relationship among tags.

Such a property makes it easier to assign tags. However, better organized tags (e.g., a tag

hierarchy) may enable more effective exploration of information.

9http://delicious.com/
10http://www.flickr.com/
11http://www.bibsonomy.org/
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2.2.2 Taxonomy generation

We have briefly reviewed the strength and weakness of taxonomies, faceted

search/browsing and tagging systems. Now, we focus on the automatic generation of

taxonomies.

A taxonomy is an efficient way to assist users browsing through data collections. It can

also be used in classifier training and testing [29, 64, 177, 152], in automatic generation

of evaluation datasets for classification approaches [51], in automatic evaluation of search

results [13, 14], and in word sense disambiguation [160]. Here, we review existing automatic

taxonomy generation approaches in three categories: approaches based on hierarchical

clustering using textual content, on associated objects, and on term relationships.

Among the three types of approaches, hierarchical clustering is the most studied. The

objects to be clustered range from short queries to whole documents, or sometimes even

a collection of documents.

Hierarchical clustering is an effective approach used in systems that assist users to in-

teractively browse through collections of documents. As a well-known example of such sys-

tems, Scatter/Gather [47] clusters the documents into a number of clusters, and presents

the clusters with short summaries to the user. The user selects a subset of clusters of his

interest. The system then re-clusters the selected subset of documents, and presents to

the user the refined clusters. This iterative process can be repeated until the user finds

what he needs.

The above interactive browsing-and-recluster approach is effective on small and
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medium datasets. On large datasets, however, the high online cost makes it less effective.

Therefore, many other taxonomy generation approaches are designed mainly as offline

systems. The TaxGen System developed at IBM Germany [134] utilizes bottom-up hier-

archical clustering methods to build taxonomies out of text collections. The system is able

to expand the generated hierarchies by including new documents using automatic catego-

rization approaches. Based on probabilistic document clustering, the “Cluster-Abstraction

Model” proposed by Hofmann [90] is able to generate document hierarchies and abstract

representation at the same time. The abstractions at each node of the hierarchy are

represented by a set of representative terms.

Clustering query results can help users find information faster. In a query result clus-

tering approach based on page titles and snippets proposed by Kummamuru et al. [107],

taxonomies are generated by considering document coverage, compactness of the gener-

ated hierarchy, and distinctiveness among sibling nodes. Their experiments showed that

the proposed algorithm can effectively facilitate search for information.

Generation of query taxonomies is essentially similar to generation of document tax-

onomies. Most existing approaches are also based on hierarchical clustering techniques.

However, since queries are usually short, the query terms themselves are usually not in-

formative enough for automatic clustering. Therefore, many used query result snippets as

additional features for query clustering, and achieved good performance [39, 40, 41, 37].

The second category focuses on generating taxonomies from tagging systems, taking

advantage of human assigned tags for objects. As a typical approach in this category,
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Heymann and Garcia-Molina [88] proposed to generate taxonomies out of flat tagging

systems like delicious.com. First, cosine similarities between tags are computed based

on the objects they are used to annotate. Then, a graph of tags is generated based on

such similarities. After that, starting from the center of the similarity graph, a greedy

algorithm selects new edges (and the connected nodes) one by one to add to the taxonomy.

Term co-occurrence is a straight-forward measure for term relatedness, which assumes

the asymmetric occurrence relationship between terms indicates their semantic subsump-

tions. Sanderson and Croft [168] proposed to generate taxonomies from text collections

using simple statistics of term co-occurrence. Given a query, a set of keywords are ex-

tracted from each result. Then keyword x subsumes y if

p(x|y) ≥ 0.8 and p(y|x) < 1. (2.1)

This approach was adopted by Clough et al. [43] in their work on automatic image taxon-

omy generation. A similar approach is also used to extract subsumption term pairs from

Flickr tags [169].

An advanced method proposed by Glover et al. [75] identifies hypernym, synonym, and

hyponym relationships using the relative distribution of the term frequencies within a class

of documents and their frequencies in the whole collection. A term hierarchy can then

be built based on the identified relationships. “Formal Concept Analysis” [70] is a data

analysis method that can automatically generate an ontology based on the given objects

and their properties. It can be adapted to effectively build concept hierarchies based on

document collections [42], and are shown to achieve better performance than hierarchical
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agglomerative clustering and Bi-Section-KMeans [179] (an iterative clustering algorithm

based on KMeans).

Usually, the key to taxonomy generation is how to identify term/concept relationships.

WordNet [128] has been shown to be a reliable resource from which such relationships can

be mined. Ponzetto and Strube [149] applied filters derived from WordNet to network

of Wikipedia categories for extracting a large scale taxonomy containing a large amount

of subsumption. Suchanek et al. [180] generated hybrid resource by mapping Wikipedia

categories to WordNet. Ponzetto and Navigli [148], presented a method using WordNet

subsumption hierarchy to perform category disambiguation, which leads to the integration

of Wikipedia and WordNet, in that Wikipedia categories are enriched with accurate sense

information from WordNet. Kozareva et al. [224] proposed a weakly supervised algorithm

for reading web texts, learning taxonomy terms, and identifying hypernym/hyponym re-

lations, which offers the possibility of automatically generating term taxonomies.

Hyperlink structure within a website was shown to be useful in ranking [205]; it is

also useful in taxonomy generation. Yang and Liu [210] proposed a unique approach to

construct a topic hierarchy for a web site based on its hyperlink structure. Starting from

the hyperlink graph within a website, edge weightings produced by classification methods

are combined with graph algorithms to generate the topic hierarchy.
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2.2.3 Hierarchical classification

In this subsection, we focus on work on hierarchical classification without changing the

hierarchical structure. Kiritchenko [103] provided a detailed review of hierarchical text

categorization.

Using classification tasks on web pages, Dumais and Chen [58] demonstrated that

hierarchical classification is more efficient and accurate than flat classification. One major

challenge in general for classification tasks is data sparsity, in which a category has too few

labeled instances for a classifier to learn a reasonable model. This problem is prominent in

hierarchical classification at lower levels. For such nodes, McCallum et al. [125] proposed

to use information from parent nodes to smooth the estimated parameters. A similar

idea is used in “Hierarchical Mixture Model” [192] proposed by Toutanova et al., where

a generative model incorporates the term probabilities from all parent classes into the

current class. Wibowo and Williams [199] suggested that an instance should be assigned

to a higher level category when a lower level classifier is uncertain.

The hierarchical classification approaches mentioned above share a common character-

istic: they were posed as meta-classifiers built on top of base classifiers. Since information

about the hierarchy is handled by the meta-classifier, the base classifier is not aware of the

hierarchical structure. Cai and Hofmann [23] proposed a new approach called hierarchical

support vector machines in which the hierarchical structure information is incorporated

into the loss function of base classifier (in this case, SVM). This approach can also be

applied to a general, multi-label classification.
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Scalability and effectiveness of hierarchical classifiers on large-scale hierarchies is always

a critical issue on real-world applications. Liu et al. [117] studied this problem both

analytically and empirically. They found that although hierarchical classification is better

for SVM classifiers compared with flat classification, it decreases classification performance

when using k-Nearest Neighbor and naive Bayes classifiers.

Utilizing additional features that are specific to a particular domain can potentially

improve classification performance. We’ve shown many such examples on web classification

in Section 2.1 where web-specific features are shown to be useful. Complementary features

that are only available in hierarchical classification scenarios are also useful as shown by

Bennett and Nguyen [16] using two methods called “refinement” and “refined experts”,

respectively. “Refinement” enhances the training process by performing cross-validation

on the training set and using the predicted labels to filter training data so that it better

matches the distribution of test data. In “refined experts”, an augmented document

representation is generated by including the predicted labels from lower level categories. In

their experiments, both methods outperform the typical hierarchical SVM, while “refined

experts” yields a better performance.

With regard to the evaluation of hierarchical classification, Sun and Lim [182] pro-

posed measuring the performance of hierarchical classification by the degree of misclassi-

fication, as opposed to measuring the correctness, considering distance measures between

the classifier-assigned class and the true class.
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2.2.4 Hierarchy adaptation

A variety of approaches have been proposed for hierarchy generation or adaptation. Some

of them aim to better assist human browsing (e.g., [134, 107, 156]). Some are proposed

and evaluated for general purposes, rather than accurate classification (e.g., [168, 75,

149]). Here, we only focus on the methods that are solely or partially designed for a

better automatic classification. These methods can be categorized into two subcategories:

generative approaches and adaptation approaches.

Based on a set of predefined leaf categories and associated documents, a generative

approach generates a hierarchy using clustering algorithms according to certain similarity

measures. A method using linear discriminant projection to generate hierarchies was

proposed by Li et al [115]. In this approach, all documents within the hierarchy are first

projected onto a lower dimensional space. Then, the leaf categories are clustered using

hierarchical agglomerative clustering to generate the hierarchy. Instead of building the

hierarchy bottom-up, Punera et al. [150] proposed a hierarchy generation method using

top-down clustering.

Unlike generative approaches, adaptation approaches need an existing hierarchy to

start. Such initial hierarchies are usually built by humans, but could also be those built

by automated methods. The high level idea shared among this category is to make changes

to the existing hierarchy such that classification performed on the adapted hierarchy is

more accurate than the original. Peng and Choi [145] proposed an efficient method to clas-

sify a web page into a topical hierarchy and automatically expand the hierarchy as new
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documents are added. In order to classify search results into a large hierarchy accurately

and efficiently, a “deep classification” approach is proposed by pruning the hierarchy into

a smaller one before classification is performed [202, 204]. Another adaptation approach

called “hierarchy adaptation algorithm” [188] is proposed by Tang et al., in which each

node in the hierarchy is checked iteratively, and slight modifications are then made locally

to particular nodes. This approach can also be used to model dynamic change of tax-

onomies [187]. Nitta [138] extended this approach to make it more efficient on large-scale

hierarchies. Based on an observation that unnecessarily deep hierarchies usually do not

perform well, Malik [124] proposed a method to “flatten” a hierarchy by promoting low

level categories up to the k-th level and removing the internal nodes.

In summary, approaches in both categories aim to produce hierarchies that are better

for classification. The adaptation approaches usually require a reasonable initial hierarchy.

In Chapter 5 of this dissertation, we will propose a hierarchy adaptation method that does

not rely on a human built hierarchy, and performs better than existing approaches.
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Chapter 3

Web Page Classification Using

Neighbor Information

3.1 Introduction

The general problem of text classification is well-studied; a number of classifiers have

shown good performance in traditional text classification tasks. However, directly apply-

ing textual classifiers to web documents often produces unsatisfying results. Compared

to standard text classification, classification of web content is different. First, experi-

ments of traditional text classification are usually performed on “structured corpora with

well-controlled authoring styles” [34], while web collections do not have such a property.

Second, unlike plain text corpora, web pages no longer rely solely on text to express their

meanings. With the popularity of non-textual media such as flash and images, web pages
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sometimes do not contain enough textual information for text-based classifiers.

Fortunately, hyperlinks on web pages provide useful clues to classification. As we

reviewed in Chapter 2, previous research demonstrated that incorporating link information

along with the content of web pages can enhance classification [29, 28, 77]. In Chapters 3

and 4, we propose two methods to enhance topical classification of web pages by utilizing

the information from neighboring pages in the hyperlink graph.

The first approach, the Neighboring Algorithm, uses class or topic vector of four types

of neighboring pages (parents, children, siblings and spouses) to help the categorization of

a web page. Unlike existing work, our method does not rely on the appearance of labeled

pages in the neighborhood of the page under scrutiny, and thus has wider applicability. In

addition, not only sibling pages but also three other kinds of neighboring pages are taken

into consideration.

The second approach, the F-Neighbor Algorithm, is proposed as a fielded extension to

the Neighboring Algorithm by borrowing the idea from hypertext retrieval where fielded

information is shown to be useful. By utilizing important text fields from text on web

pages, F-Neighbor can balance the contribution of different fields, and thus more accurately

capture topics of web pages. In this chapter, we focus on the Neighboring Algorithm,

leaving F-Neighbor to the following chapter.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the

Neighboring Algorithm. In Section 3.3, we show the experimental setup and results. And

finally, we summarize the Neighboring Algorithm work in Section 3.4.
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3.2 The Neighboring Algorithm

Previous research has shown that utilizing information about neighboring web pages can

enhance web page classification. However, it is unlikely that all neighbors provide similar

value; a more selective approach may improve performance further. In addition, we would

like to know the significance of human-labeled pages in the neighborhood since machine-

generated classifications are also possible. We hope that a better understanding of these

factors can lead to additional improvements in web content classification.

In the following, the page to be classified is called the “target page”, and nearby pages

in the link graph are called the “neighboring pages”. We will focus on classifying web

pages into ODP categories. However, the approach is generic enough to be applied to

other taxonomies.

3.2.1 Analyzing the neighborhood

In order to help classify a target page, we use nearby pages with four kinds of relationships

to the target: parent pages, child pages, sibling pages and spouse pages (shown in Figure

3.1). These four sets of pages may overlap. In other words, a page may have multiple

roles. For example, a page can be both the sibling and spouse of the target page at the

same time. In that case, both roles may be of value.

Each of the four sets can be further divided into two subsets: labeled pages and

unlabeled pages. Labeled pages are those pages whose categories are already known, such

as the pages in the ODP. Unlabeled pages are those whose labels are not known.
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Parent pages { q | q → p and q 6= p }
Child pages { q | p→ q and q 6= p }
Sibling pages { q | ∃ r s.t. r→ p, r → q and q 6= p }
Spouse pages { q | ∃ r s.t. p→ r, q → r and q 6= p }

Figure 3.1: Four kinds of neighboring pages of p

Since any classifier produces only an approximation to the desired human labeling,

we will generally use the human judgment whenever it is available. Otherwise, a stan-

dard text classifier will be used to generate a soft classification. That is, the probabil-

ities of the page being in each category are given as the classification result. There-

fore, after classification, each page p is represented by a probability distribution vector

−→vp = (vp,1, vp,2, ..., vp,i, ..., vp,n), in which each component vp,i is the normalized probability

of the page being in the corresponding category ci. This vector is referred to as “topic

vector”. For unlabeled pages, this vector is generated by the classifier. For labeled pages,

this vector is set according to Equation 3.1:

vp,k =



















1 if C[k] = L[p]

0 if C[k] 6= L[p]

(3.1)

where C is a sorted list of the names of each category, and L[p] is the human labeling

of page p. Equation 3.1 assumes every labeled page only belongs to one category. For
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pages that are labeled with multiple categories, either an arbitrary decision needs to be

made to choose one out of the multiple labels, or the probability is evenly distributed

across all the labels. In our experiments, we use the first label in alphabetical order. The

soft classification is mainly used for internal representation. Although the output of our

algorithm is also in the form of probability distribution, it is converted into hard labeling

for the purpose of evaluation, i.e., labeling the page by the class to which it most likely

belongs.

The reason why we use soft classification rather than hard labeling is based on ob-

servations of real-world pages. First, web pages have complex structures and each part

of the page may talk about related but different topics. Second, even for the pages that

concentrate on one topic, it is natural that the topic may belong to multiple categories.

For example, the homepage of a health insurance company may belong to both “Business”

and “Health”. Part of the reason for this lies in the ambiguously-defined taxonomy. Some

pages in the ODP directory are placed into multiple categories by human editors, which

fortifies our confidence in using soft classification.

So far, we have introduced four types of neighboring pages according to their link

relationships to the target. They can be further categorized into two subtypes according

to the availability of its pre-determined label. Each page of these types can be represented

by a topic vector. Next, we discuss how to utilize this information to help classify the

target page.
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3.2.2 An overview of neighboring algorithm

The neighboring algorithm, as shown in Figure 3.2, consists of four major steps: page level

weighting, grouping, group level weighting, and the weighting between the target page and

neighbors. First, each neighboring page, represented by its topic vector, is weighted ac-

cording to its individual properties. Such properties include whether its human-generated

label is available, whether it is from the same host as the target page, etc. Then, these

pages are grouped into four groups according to their link relationship with the target

page, that is, parent, child, sibling, or spouse. At this step, the topic vectors of the pages

within the same group are aggregated; and the topic vector of a group is computed as the

centroid of the topic vectors of all its members. After grouping, there are four topic vec-

tors, each representing one group. Then, group level weighting combines the four vectors

and generates the topic vector for all the neighbors. Finally, the topic vector of neighbors

and the topic vector of the target page is combined to generate the final topic vector,

based on which a decision of the page’s topic is made.

The intuition of the Neighboring Algorithm is to utilize the information from neighbors

to adjust the classifier’s view of the target page. For example, consider the scenario

illustrated in Figure 3.2. The target page was originally classified as “yellow” by a classifier

that only considers the page itself. However, the neighbors strongly suggest otherwise.

Therefore, by considering the information of neighbors, the algorithm is able to adjust the

decision and classify the target page as “red”.
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Figure 3.2: Neighboring algorithm overview

3.2.3 Utilizing neighboring information

After analyzing the neighborhood structure, the neighboring pages are placed into one or

more of the four sets based on their relationship in the web graph. Each page is represented

by a topic vector −→vp . In the next step, these topic vectors combined with the topic vector

of the target page will be used to improve classification performance.

In general, the topic vectors of all neighboring pages may help determine the target

page’s category. For example, one simple approach would be to set the target page’s class
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to the majority class of all neighbors. However, in this work we find that different types of

pages are of different importance to classification (see Section 3.3.4 for details). Therefore,

we introduce weighting factors to bias the influence from different types of neighboring

pages.

Page level weighting

Bias on labeled pages. As described in Section 3.2.1, the pages in the neighborhood

of the target page may or may not be labeled. The topic vectors of labeled pages are

determined by the human labeling, while the topic vectors of unlabeled pages are produced

by a classifier. In order to control the noise introduced by the classifier, we use a factor

η (where 0 ≤ η ≤ 1) to down-weight the vectors of unlabeled pages. That is, we modify

the topic vector vp by multiplying it by its weight w(p). The modified topic vector v′p is

computed by Equation 3.2.

v′p,k = vp,k × w(p) (3.2)

where w(p) =



















1 if p is labeled

η if p is unlabeled

When η=0, the influence coming from those unlabeled pages will be totally ignored,

which implies that we don’t trust the classifier at all. When η=1, the unlabeled pages are

treated equally to the labeled ones, which means we assume the classifier performs as well

as human labeling. The value of η will be tuned through experiments.

Intra-host link bias. Hyperlinks connecting pages within the same web site often
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serve the purpose of navigation and do not confer authority. Therefore, they are often

ignored or considered less useful in the scenario of link-based ranking. However, the

situation can be different in web page classification tasks. For example, on a shopping

web site, a product list of digital cameras may contain links to all the digital cameras,

which are also on the same topic. As a result, we wish to explicitly determine the utility

of internal links for web page classification.

In order to find out the answer, we introduce the parameter θ to weight the influence

of the neighboring pages that are within the same web host of the target page. We modify

the topic vector again to include this parameter.

v′′p,k =



















θ · v′p,k host(p) == host(s)

(1− θ) · v′p,k host(p) 6= host(s)

(3.3)

where s is the target page and host() is a function that returns a page’s host name. When

θ=0, intra-host links are ignored. When θ=1, inter-host links are ignored.

Counting the multiple paths. Now that we generated and modified the topic

vector for each page in the neighborhood, it is time to consider the relationship between

the target page and the neighboring pages. Here, an interesting issue may arise: if a

sibling page has more than one parent in common with the target page, that is, from a

link graph view, there are multiple paths between the target page and its sibling page,

should the weight be counted as one or as the number of parents in common? The same

question applies to the spouse pages, too. We leave this question to be answered by the

experiments.
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In the weighted path variation, the influence of a sibling page (or a spouse page) to

the target page’s topic is weighted by the number of common parents (or children). In

the unweighted version, such weighting scheme is ignored. That is, no matter how many

parents (or children) they have in common, it is counted only once.

Grouping and group level weighting

In Section 3.2.1, we introduced four types of neighboring pages: parent pages (A), child

pages (B), sibling pages (C) and spouse pages (D). We expect that the pages in these

four sets may have different influence on the target page’s topic. Therefore, a weighting

vector β = (β1, β2, β3, β4) is used to allow for bias among them, where β1, β2, β3, β4 ≥ 0

and β1 + β2 + β3 + β4 = 1.

The combined neighboring pages’ topic vector vn can be computed by Equation 3.4.

vn,k = β1 ×

∑

p∈A v′′p,k
∑

p∈A w(p)
+ β2 ×

∑

p∈B v′′p,k
∑

p∈B w(p)

+β3 ×

∑

p∈C v′′p,k
∑

p∈C w(p)
+ β4 ×

∑

p∈D v′′p,k
∑

p∈D w(p)
(3.4)

The weighted combination formula allows straight-forward tuning of the parameters, and

easy identification of relative contribution from different components.

Combining neighboring pages with target page

Like neighboring pages, the target page s will also get its topic vector vs through a textual

classifier. Then the final topic vector v for the target page s will be a weighted combination
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of vs and vn.

vk = α× vs,k + (1− α)vn,k (3.5)

or in vector representation:

~v = α× ~vs + (1− α)~vn (3.6)

where 0 ≤ α ≤ 1.

When α=0, the labeling of the target page is solely decided by its neighbors without

considering its own content at all. When α=1, the labeling is based solely on the pure

textual classifier while the information from the neighboring pages is ignored.

Now that the combined topic vector v is obtained by taking into consideration all the

neighboring pages’ information as well as the target page, a conversion from probabilistic

distribution to hard labeling is needed before evaluation. The conversion simply picks the

category corresponding to the largest component in v as the label of the target page.

3.3 Testing the Neighboring Algorithm

So far, we have described a highly parameterized model for generating a topic distribution

(and thus implicitly, a hard classification) for a target page, given the labels and textual

contents of neighboring pages and their relationships to the target page. In this section, we

describe experiments using that model on real-world data to evaluate the impact of various

parameters and to assess the potential of a web-page classifier using an appropriately tuned

version of the model.
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3.3.1 Experimental setup

Taxonomy

We choose to use the classification taxonomy from the Open Directory Project [140].

Constructed and maintained by a large community of volunteer editors, the ODP, also

known as the dmoz Directory, is claimed to be the largest human-edited directory of the

Web.

The metadata being used in our work was downloaded from dmoz.org in September

2004, and contains 0.6 million categories and 4.4 million web pages. A crawler was used to

fetch the web pages pointed to by the ODP, out of which 95% were successfully retrieved.

HTML file preprocessing

All of the web pages we use have gone through a text preprocessor. This includes the

pages to train the classifier, as well as the target pages and their neighboring pages which

we will use for evaluation.

The functionality of the preprocessor is as follows:

• eliminate HTML tags except the content from the “keywords” and “description”

metatags (because they may be of help in deciding a page’s topic);

• unescape escaped characters;

• eliminate characters other than alphanumeric characters;

• eliminate terms whose length exceeds a certain limit (4096 characters in this case).
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Arts Business Computers Games

Health Home Recreation Reference

Science Shopping Society Sports

Table 3.1: Twelve top-level categories used in the dmoz Directory.

Therefore, after preprocessing, each HTML file is transformed into a stream of terms.

The preprocessing is essential for at least two reasons. First, it filters out noisy terms

such as “html”, “body”, which may compromise the classification accuracy. In our ex-

perience, this preprocessing can increase the classification accuracy by 3% (in absolute

value). Second, preprocessing eliminates some unnecessary features and thus makes web

pages shorter, reducing time and space required by the classifier.

Text-based classifier training

We trained a textual classifier using linear kernel support vector machines with default

settings based on SVMlight [97]. Since SVM is a binary classifier, we generalize it using

one-against-others approach, i.e., to train twelve classifiers each using one class as positive

class and the rest as negative classes.

First, as in the work by Chakrabarti et al. [29], we selected 12 out of the 17 top-level

categories from the dmoz Directory (listed in Table 3.1). A random selection of 19,000

pages from each of the 12 categories (i.e., 228,000 in total) are used to train the textual

classifier. No feature selection was employed (i.e., all features were used). The trained

textual classifier is used as a baseline and the base classifier to generate the initial topic

vector for the Neighboring Algorithm.
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Figure 3.3: Distribution of the number of neighbors per target page.

Tuning set and test set

Two datasets are used in our experiments to measure performance: a sample of 12,000 web

pages from ODP and a sample of 2000 web pages from Stanford’s WebBase collection [89].

The ODP dataset consists of 1000 pages per category from the 12 top level categories

listed in Table 3.1. We randomly split them into five folds and performed cross validation.

Each run uses data in four folds to tune the parameters and the remaining fold to evaluate

the classification performance. In the following, the reported classification accuracy is

averaged over the five folds unless specified otherwise. We obtained the URLs of the

neighboring pages and then crawled the union of those pages from the Web. The outgoing

links are directly extracted from the web pages, while the incoming links are obtained by

querying Yahoo search with “inlink:” queries through the Yahoo API [207]. Due to API

usage limits, we obtained at most the first 50 incoming links for each page.
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On average, 778 neighbors are retrieved for each target page. The number of neighbors

of a target page falls into a wide range from zero to more than 10,000. The distribution

is shown in Figure 3.3. The numbers of each individual type of neighbors used in our

test are listed in Table 3.2. Although we distinguish the four kinds of neighbors literally,

they actually overlap with one another. Therefore, the actual total number of neighboring

pages is less than the sum.

For the WebBase dataset, 2000 target pages are selected from a 2005 crawl. The link

graph provided with the data collection is used to find the neighboring pages. The use of

WebBase dataset has two purposes. First, the ODP pages are mostly high quality pages,

while WebBase is a generic crawl from the Web. Therefore, experiments on the WebBase

dataset are potentially able to demonstrate performance on more typical web pages rather

than just high-quality pages. Second, in the ODP dataset, the number of neighboring

pages is limited by the method used to collect incoming links. By using WebBase data,

we hope to determine the importance of the role played by the number of incoming links

in our algorithm.

Parent pages 518,309
Child pages 260,154
Sibling pages 4,917,296
Spouse pages 3,642,242

Unique neighbors 6,483,871

Table 3.2: Numbers of the four types of neighbors
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Removing “dmoz copies”

It is noteworthy to point out that when going through our data set manually, we found

that there are plenty of “dmoz copies”. A “dmoz copy” is a mirror of a portion of the

dmoz ODP. Given that dmoz metadata is publicly available, setting up such a mirror site

is straightforward, and not necessarily bad. However, our algorithm may unduly benefit

from those copies.

Imagine a page pointed to by dmoz Directory is under scrutiny. By querying for the

parents of this page, we may get several or even tens of dmoz copies which link to other

pages with the same topic. Since the labels of those sibling pages are known (because they

are in dmoz Directory), they are utilized by our algorithm in determining the target page’s

topic. Furthermore, the existence of “dmoz copies” provides multiple paths between the

target page and the sibling pages. Therefore, in the weighted path version, the labels of

those labeled sibling pages will probably dominate the contribution from the neighbors

and thus boost the accuracy.

In order to minimize the benefit from “dmoz copies”, we used a simple pruning method

to remove the copies from our data set. The method is based on the observation that

most URLs and titles of “dmoz copies” contain the names of directories in dmoz, such

as “Computer/Hardware” and “Business/Employment”. This program checks the URLs

and titles of every neighboring page and removes those whose URL or title contains such

directory names. In the ODP dataset, 160,868 pages were found by this pruning step. They

are removed for all the experiments. This removal is necessary; a preliminary experiment
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shows a 3% drop in accuracy after removal.

The limitation of this approach is obvious. This pruning method may unnecessarily

remove pages that are not “dmoz copies”. It may also pass by some real “dmoz copies” if

they do not use those directory names in their URLs or titles. However, a manual check

on a random sample of more than 100 parent pages did not discover any additional “dmoz

copies”.

3.3.2 Parameter tuning

The parameters introduced in Section 3.2 need to be tuned. We used the standard hill

climbing method to find the optimal parameter setting. Starting from a random point in

the parameter space, the method searches the surrounding points, finds the best solution

within the neighborhood, and makes that point as the starting point of the next iteration.

This process iterates until no further improvement can be made. To reduce the chance

of being stuck at a local optimum, we let the search processes start from three different

points and run independently. Table 3.3 shows the average number of iterations and the

best accuracy on the tuning set for each fold. For fold 1, 2, 3, and 4, all hill climbing

processes converged at the same setting where α=0.1, β=(0.1, 0.1, 0.7, 0.1), η=0, θ=0.7,

using weighted path. For fold 5, two out of the three processes converged at the above

setting, the other one converged at a local optimum where α=0.1, β=(0, 0, 0.8, 0.2), η=0,

θ=0.7, but the difference in accuracy is merely marginal.

The impact of the individual parameters will be studied in Section 3.3.4. We summarize
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some highlights here:

• We should trust the human labeling while ignoring the result of text classifiers;

• The algorithm performs better when using weighted paths than unweighted;

• Intra-host neighbors should not be ignored; emphasizing intra-host neighbors can

introduce a slight improvement over the default setting (treating intra-host and

inter-host neighbors indifferently);

• Siblings are the most useful among the four neighbor types, while other neighbor

types also contribute.

3.3.3 Experimental results

Experiments on the labeled ODP dataset

After tuning the parameter settings, we ran our algorithm on the test set with the setting

α=0.1, β=(0.1, 0.1, 0.7, 0.1), η=0, θ=0.7, and using the weighted path version.

For the purpose of comparison, we also implemented one of the algorithms (IO-bridge)

suggested by Chakrabarti et al. [29] and another algorithm (K+C) proposed by Calado et

Fold Avg. Num. Iter. Best Accuracy
1 15 0.8899
2 22.67 0.8886
3 16.33 0.8857
4 16.33 0.8872
5 15.67 0.8878
Avg 17.2 0.8878

Table 3.3: Average Number of Iterations
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al [24].

The main idea of IO-bridge is to build an engineered document corresponding to each

document in the dataset, in which the constructed document consists only of prefixes of

the category names of the sibling pages of the target page. In IO-bridge, only the sibling

pages within a human labeled dataset are considered. After that, the training and testing

is performed on the engineered dataset rather than the original one.

The best performance reported by Calado et al. was achieved when combining the

result of the kNN text classifier with co-citation similarity derived from link graph (K+C).

In the following, we compare our algorithm with both IO-bridge and K+C.

The comparison of the algorithms is shown in Figure 3.4. The baseline, textual SV M ,

has an accuracy of 72.9% averaged across the 5 folds. IO-bridge increases the accuracy

to 80.2%. (IO-bridge is reported [29] to have increased the accuracy from 32% to 75%

on a 800-document dataset extracted from Yahoo Directory.) K+C has an accuracy of

76.3%. However, if only the link-based measure (co-citation) is considered, its accuracy

(86%) is much higher than the combination of link-based and content-based measures.

Our algorithm (referred to as “Neighboring” in Figure 3.4), can achieve 88.8% accuracy.

T-test shows the Neighboring Algorithm performs statistically significantly better than all

other compared algorithms (p < 10−4).
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Figure 3.4: Comparison of accuracy of different algorithms

Experiments on the WebBase dataset

To eliminate the potential bias of highly-regarded web pages from the ODP, we tested

our approach on randomly selected pages from the WebBase dataset. We continued to

use the parameter settings of α=0.1, β=(0.1, 0.1, 0.7, 0.1), η=1, θ=0.7 and the weighted

path version. We manually labeled more than 100 randomly selected pages for evaluation

purposes. The accuracy of the Neighboring Algorithm is 36.8%, an improvement of more

than 20% over the accuracy of the SVM textual classifier (30.4%).

3.3.4 Parameter study

In this subsection, we show how the performance of the algorithm over the tuning set is

affected by the value of the parameters. The parameter study in the following is performed
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on the first fold of the ODP dataset. On a Xeon 3.0 GHz CPU, the parameter tuning

process for one fold takes approximately 27 CPU hours to converge.

η: bias on labeled pages

In order to determine the effect of η (the weight of unlabeled pages), we performed a test by

changing the value of η while fixing the values of other parameters. The other parameters

are set as follows: θ=0.7, β={0.1, 0.1, 0.7, 0.1}, and α=0.1. As shown in Figure 3.5, the

best performance in these tests is achieved when η=0. As we increase the value of η, the

accuracy shows a steadily decreasing trend, highlighting the importance of human-labeled

neighbors. The result suggests that we should trust the human labeling whenever it is

available while ignoring the result of textual classifier. This is understandable given the

poor performance of textual classifiers on web data. However, as shown by experiments on

WebBase dataset in Section 3.3.3, when human labels are not available, textual classifier

is still useful.

Weighted paths vs. unweighted paths

The comparison of the weighted and unweighted version is also shown in Figure 3.5, from

which we can see that the weighted version outperforms the unweighted. The explanation

of this result is quite straightforward: having more parents (or children) in common implies

a stronger connection between the two pages. Therefore, it is natural for the influence

between them to be weighted.

We also tested a variation of weighted path in which a neighbor is weighted by a
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Figure 3.5: Accuracy vs. weight of unlabeled pages (η)

logarithm of the number of paths. The results are worse than when using weighted path.

θ: are internal links useful?

Earlier in this paper we raised the question: are intra-host links useful in web page clas-

sification tasks? According to our findings, the answer is a qualified “yes”.

We performed additional experiments to see how the accuracy changes when θ varies

from 0 to 1. Figure 3.6 shows the test result. Although not remarkably, the weight of intra-

host links does influence the accuracy observably. When increasing θ starting from 0, the

accuracy climbs up slightly until getting to its peak when θ=0.7. After that, the accuracy

decreases. The result suggests that the neighbors within the same host typically have

some connection in topic with the target, improving performance slightly when combined

with inter-host links. In addition, rather than being weighted less as in link-based ranking

algorithms, the results suggest that intra-host links should be given more weight than
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Figure 3.6: Accuracy vs. weight of intra-host links (θ)

inter-host links.

β: weights among neighbors

We expect that different types of neighboring pages have different contributions in predict-

ing the target page’s topic. First, we study the individual impact of each type of neighbor.

Figure 3.7 shows the individual contribution of each of them, among which sibling pages

contribute the most. Spouse pages are the least reliable source of information.

Next, in Figure 3.8, the influence of each kind of neighboring pages is augmented in

contrast to the others. For example, in Group A, four tests are performed, each picking

one kind of neighbors and setting the corresponding component in β to 0.4 while setting

the other three to 0.2. In particular, the “parent” column in Group A shows the accuracy

under the setting β= (0.4, 0.2, 0.2, 0.2). Similarly, in Group B, the major component is
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Figure 3.7: Individual contribution of four types of neighbors

0.7 and the rest are set to 0.1.

Figure 3.8 shows that having the sibling pages to make the major contribution is clearly

better than any of the other three. However, does that mean we should give full weight

to sibling pages?

In order to answer that question, we gradually change the weight of sibling pages from

0 to 1 and let the other three evenly share the remaining weight. The result is plotted in

Figure 3.9. As we can see, although siblings are the best source of information, putting

excessive weight on siblings will decrease the accuracy.

α: combining the neighbors with the target page

We start by applying a textual classifier to the target page and try to correct the clas-

sifier’s decision when the neighboring pages strongly indicate otherwise. As is shown in

Figure 3.10, the accuracy peaks at α=0.1 which means it is important to emphasize the

information from neighboring pages.
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Figure 3.8: Accuracy as principal neighbor type is changed

Figure 3.9: Accuracy vs. weight of siblings

86



3.4. CONCLUSION

Figure 3.10: Accuracy vs. weight of target page content (α)

Although the result seems to strongly suggest neighboring pages are a better source

of information for the target page’s topic than the target page itself, we argue that there

are at least two more possible reasons which may lead to such a result. First, neighboring

pages, greatly outnumbering the target page, provide more features, based on which the

classifier is able to collectively make a better decision. Second, some target pages do not

have enough textual content for the classifier to use. A definitive explanation will require

further study.

3.4 Conclusion

This chapter has explored a method to utilize class information from neighboring pages

to help judge the topic of a target web page. The experimental results show that, under

appropriate parameter settings, our algorithm statistically significantly outperforms the
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SV M textual classifier as well as existing algorithms.

Our contributions in this chapter include the following:

• We tested multiple algorithms on a large, real-world data set.

• We showed greatly improved accuracy on web page classification, reducing error

rates by almost two thirds over common text classification approaches.

• We explored the effects that a number of factors have on the classification, and

proposed explanations of our findings. We found that sibling pages give a good

indication of a page’s topic and that intra-host links provide some benefit.

• We are the first to point out the “dmoz copy effect” in web page classification and

proposed a way to address it (although this has been raised as a general issue in web

link analysis).

The Neighboring Algorithm takes the advantage of labeled web pages and the hyper-

linked neighborhood information. On a web page, contents are marked up by different

HTML tags. Most web classification approaches, including the Neighboring Algorithm,

treat the content indifferently. In the following chapter, we will argue that text from dif-

ferent fields should bear different importance in classification, and then demonstrate that

utilizing such field information can further improve the classification performance.
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Chapter 4

Web Page Classification Using

Fielded Neighbor Information

4.1 Introduction

In 1994, Robertson and Walker [164] proposed a function to rank documents based on

the appearance of query terms in those documents, which was later referred to as Okapi

BM25. In time, BM25 became a common component of information retrieval systems.

A decade later, Robertson et al. [163] extended this model to combine multiple text

fields including anchor text, and showed improvement over original BM25. Since then,

the fielded BM25 model (BM25F) has become more popular, taking the place of its non-

fielded predecessor. Besides retrieval, the fielded model has also shown to be useful in

expert finding from email corpora [9, 146]. In this chapter, we borrow the idea that
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extended BM25 to BM25F, hoping it can boost classification performance as it did for

retrieval.

In the previous chapter, we proposed the Neighboring Algorithm which uses class or

topic vectors of four types of neighboring pages (parents, children, siblings and spouses)

to help in the categorization of a web page. However, when using these pages, all text on

a page are considered equally important. Inspired by the success of utilizing field infor-

mation in previous examples, we propose the F-Neighbor Algorithm, a fielded extension

to Neighboring. By extracting important text fields from generic text on the web pages,

F-Neighbor can balance the contribution of different text, and thus more accurately cap-

tures topics of web pages. In our experiments on two datasets, F-Neighbor is shown to

further improve classification accuracy over the Neighboring Algorithm.

4.2 Approach

The default Neighboring algorithm considers text on each neighboring page as a whole,

disregarding where the text appears. Here, we argue that text appearing in different fields

may carry different values. For example, anchor text (the text to be clicked on to activate

and follow a hyperlink to another web page, placed between HTML <A> and </A> tags)

is usually considered a good description of the page to which it points; therefore, anchor

text could be more useful in classification than other text on the parent page. As an

extension to the Neighboring algorithm, we examine the importance of text in different

fields on neighboring pages.
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4.2.1 Utilizing text fields

The idea of differentiating text in different fields of hypertext is not new. It has been

successfully applied to web information retrieval [163], to web classification [78], as well

as other research. However, little research [64, 65, 77] has examined the importance of

text fields on neighboring pages in classification problems. Here, we propose to utilize the

textual information appearing in the following fields to help classify a web page:

• title of the target page;

• full text of the target page;

• titles of parent, child, sibling, and spouse pages;

• full text of parent, child, sibling, and spouse pages;

• label of parent, child, sibling, and spouse pages;

• anchor text (referring to target) on parent pages;

• surrounding text of anchor text (including anchor text itself) on parent pages (re-

ferred to as “extended anchor text”, which in our experiments consists of the 50

characters before and after the anchor text).

For each page that needs be classified, these fields are extracted and used for classifica-

tion. The fields on the pages themselves are extracted directly by parsing the web pages.

The labels of neighboring pages can be acquired from human maintained hierarchies such
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Figure 4.1: The process of two layer optimization.

as dmoz ODP or Yahoo Directory. The label field can be empty if no labels of a partic-

ular neighbor type is available. In the experiments, the labels are collected from dmoz.

Unlike fields residing on the target page, each type of the text fields from neighboring

pages usually has multiple instances. For example, a target page with ten sibling pages

has ten instances of “sibling:title” field. These instances are aggregated by computing the

centroid of each type of field, as described below.

4.2.2 Text representation

We formalize the computations described above using the following equations. For the

fields on the target page, a tfidf representation is computed for each virtual document

using the equations used by the Cornell SMART system [166]. The term frequency and

inverse document frequency are defined by Equation 4.1 and 4.2, where n(d, t) is the
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number of times term t appears in document d, |D| is the the total number of documents

in the collection D, and |Dt| is the number of documents that contain term t.

TF (d, t) =



















0 if n(d, t) = 0

1 + log(1 + log(n(d, t))) otherwise

(4.1)

IDF (t) = log
1 + |D|

|Dt|
(4.2)

Each document d is represented by a vector ~d in which each component dt is its projection

on axis t, given by

dt = TF (d, t)× IDF (t) (4.3)

Finally, vector ~d is normalized using Equation 4.4 so that the length of the vector is 1.

d′t =
dt

√

∑

s∈T d2
s

(4.4)

The vector ~d′ computed by Equation 4.4 is used to represent a field from the target page.

Equations 4.1 through 4.4 are also applied to fields of neighboring pages. However, in

contrast to the fields on the target page, each type of neighboring field usually has multiple

instances coming from different neighbors (as in the previous example, a target page with

ten siblings has ten instances of sibling title and ten instances of sibling text). In order

to generate a single representation for each type of neighboring field, an additional step is

needed. This is performed by simply computing the centroid of the instances of the type.

Empty fields (such as an empty title) are not considered in this computation. Note that

the tfidf vectors are normalized before combination to prevent a long textual field of one

page from dominating the fields from other pages.
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~dfi
=



















~d′ if fi is a field on target

1
Nfi

∑Nfi

j=1
~d′j if fi is a field of neighbors

(4.5)

Now for each target document we have computed twelve vectors ( ~df1
through ~df12

) rep-

resenting the various text fields. We will combine them by weighted sum as in Equation

4.6 to form a single vector on which the classifier is performed.

~dcomb =
12
∑

i=1

wfi
∗ ~dfi

where 1 =
12
∑

i=1

wfi
(4.6)

The vector ~dcomb is used as the document representation in the F-Neighbor algorithm.

The weights wfi
in Equation 4.6 will be determined experimentally.

4.2.3 Parameter tuning

The determination of the weights wfi
in Equation 4.6 can be seen as an optimization

problem in which the classification accuracy based on the aggregated representation is the

target to be optimized. Therefore, any generic optimization technique can be applied. In

this work, we used a two-layer optimization approach, in which the lower layer optimization

optimizes the combination among fields of the same neighbor type (e.g., child title and

child text), while the upper layer optimizes among all the neighbors based on the result

of the lower layer optimization. Figure 4.1 illustrates this optimization process.
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4.3 Experiments

4.3.1 Dataset and classifier

The experiment is performed on same the 12,000 page ODP dataset as introduced in

Chapter 3. The partitions in the five folds remain the same as before. Still, linear kernel

SVM classifiers with default parameter setting based on SVMlight [97] is used in our

experiment, using one-against-others generalization. The reported classification accuracy

is the average across the five folds unless stated otherwise.

4.3.2 Lower layer optimization

At lower layer optimization, fields of each neighbor type are combined independently to

achieve the best accuracy within that neighbor type. The questions are: what is the best

combination that can be gained within each neighbor type; and, how much is the benefit

of emphasizing titles/anchor text over other text.

We start by showing the benefit of emphasizing titles by investigating the combinations

of title and text within each neighbor type (and target page itself), where the weight of

title and the weight of text add up to one. Figure 4.2 shows the tuning result on the first

fold of data. X-axis is the weight of title. A weight of 0 means classifying on the whole

content, without emphasizing the title. A weight of 1 means classifying only using the title.

The results shows that although there is marginal benefit emphasizing titles of the target

(2%) and siblings (7%), other neighbor types benefit a lot (18% relative improvement for

parent pages, 10% for child, and 20% for spouse).
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Figure 4.2: The tuning of title and text.

Anchor Extended anchor Title Text Accuracy
0.0 0.1 0.4 0.5 0.7589
0.0 0.0 0.4 0.6 0.7582
0.1 0.0 0.4 0.5 0.7580
0.0 0.0 0.5 0.5 0.7579
0.0 0.1 0.5 0.4 0.7575

Table 4.1: Combinations of parent fields with highest accuracy.

We continue to examine the usefulness of anchor text and extended anchor text. Unlike

previous work [77], the result is not encouraging. Although there is some benefit by

individually emphasizing anchor text (an increase from 64% to 69% in accuracy) and

extended anchor text (also 69%), neither of them is as powerful as emphasizing title

(76%). We also combined four fields on parent page together, i.e., parent title, parent

text, anchor text, extended anchor text, with their weight sum to one. As shown in Table

4.1, the top combinations with highest accuracy on Fold 1 assigned little value to anchor

text and extended anchor text.
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In addition, we combined the four fields on parent and the text on the target page

(without emphasizing title of target). The result is similar: anchor text and extended

anchor text is somewhat useful when combined with target text, but not as useful as the

others.

In 2002, Glover et al. [77] showed significant improvement using off-page anchor text

compared with classifiers only using local text. Although we also find anchor text useful,

it is not as significant. The reasons could be:

• different datasets: although pages in Yahoo directory used by Glover et al. are

similar in many ways to those in ODP, Glover et al. used finer categories (second-

level or deeper) while we only consider top-level categories;

• different number of incoming links: Glover et al. used at most 20 incoming links

for each target page, while we used at most 50, which may consequently affect the

describing power of the collected anchor text;

• different ways of using anchor text: Glover et al. directly pulled all anchor text into

a virtual document without normalization, and only consulted a local text classifier

when the classifier based on anchor text was uncertain, while we normalize each

anchor text before combining, and combine it with local text without considering

uncertainty.

Through our experiment, we found that parent title is more important than anchor

text. Possible reasons are as following.
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• We focused on broad categories. Anchor text are usually specific (e.g., “Nokia”),

therefore do not help much in classifying broad categories. On the other hand, titles

are usually more generic than any anchor text on the same page (e.g., “cell phones”),

which makes them more useful.

• The pages that we used in our experiment are considered to be good quality pages.

The content of these pages tend to be well-written, self-describing. Therefore, resort-

ing supplemental information (such as anchor text) is not easy to achieve significant

improvement.

Next, we examine the usefulness of labels. For each type of neighbor, we tuned weights

of fields for best classification accuracy for two separate situations. First, we tune on

fields without considering any labels. Then, we include labels as a field and tune again.

Figure 4.3 shows the comparison between the two situations on Fold 1. We can see that

considering labels can bring significant improvement for child, sibling, and spouse pages.

In summary, the best combination achieved for each fold in lower layer optimization

is listed in Table 4.2. For each type of pages (target, parent, etc.), the first row shows the

best accuracy in each fold, the second row shows the best combination parameter setting.

For example, the parameter setting of “3:7” for target page means 0.3 weight for target

title and 0.7 for normal text. For parent, the five fields are anchor text, extended anchor

text, title, text, and label, respectively. For child, sibling, and spouse, the three fields are

title, text, and label.
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Figure 4.3: Comparison of best performance with labels and without labels.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg StDev
Target Accu. 0.715 0.711 0.715 0.711 0.719 0.715 0.003

Param. 3:7 3:7 2:8 3:7 3:7
Parent Accu. 0.766 0.767 0.767 0.768 0.762 0.766 0.002

Param. 0:1:3:4:2 3:4:0:2:1 0:0:4:4:2 0:1:3:4:2 0:0:4:4:2
Child Accu. 0.515 0.523 0.516 0.521 0.524 0.520 0.004

Param. 3:5:2 2:5:3 2:4:4 2:5:3 3:5:2
Sibling Accu. 0.700 0.706 0.694 0.705 0.704 0.702 0.005

Param. 3:5:2 4:4:2 4:4:2 4:4:2 4:4:2
Spouse Accu. 0.609 0.605 0.607 0.605 0.614 0.608 0.004

Param. 3:4:3 3:3:4 4:4:2 3:4:3 4:3:3

Table 4.2: Summary of lower layer optimization result.

4.3.3 Upper layer optimization

Based on the optimal combination achieved in lower layer optimization of each neigh-

bor type, upper layer optimization tunes the weighting between neighbor types with the

weighting within each neighbor type fixed. For example, if the best weight of sibling ti-

tle and sibling text found in lower layer optimization are wlsibling,title, and wlsibling,text(as

listed in Table 4.2, 0.1 and 0.9), respectively, then their final weight in the full combination
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Target Parent Child Sibling Spouse Accuracy
0.2 0.4 0.0 0.2 0.2 0.8838
0.3 0.4 0.0 0.2 0.1 0.8826
0.3 0.3 0.0 0.2 0.2 0.8817
0.2 0.5 0.0 0.2 0.1 0.8815
0.2 0.3 0.0 0.3 0.2 0.8814

Table 4.3: Combinations of upper layer optimization with highest accuracy in Fold 1.

Fold Target Parent Child Sibling Spouse Accuracy

1 0.2 0.4 0.0 0.2 0.2 0.8838

2 0.3 0.4 0.0 0.2 0.1 0.8915

3 0.2 0.4 0.0 0.2 0.2 0.8897

4 0.2 0.4 0.1 0.2 0.1 0.8861

5 0.3 0.4 0.0 0.2 0.1 0.8902

Table 4.4: The best combination of parameters at upper level for each fold.

is whsibling ∗wlsibling,title, and whsibling ∗wlsibling,text, respectively, where whsibling (as well

as weighting of other neighbor types) is to be determined experimentally.

The top five combinations with highest accuracy in Fold 1 are listed in Table 4.3.

The best combination for each fold is listed in Table 4.4. The parameters in these tables

show little value of child pages, low but consistent value of sibling and spouse pages,

and high value of parent pages. Compared with the usefulness showed by the default

Neighboring Algorithm in Chapter 3, the usefulness of child and spouse is similar. Parent

pages gain more importance because of emphasizing title; while siblings become less useful.

Assuming the feature values for every field are pre-calculated, the whole tuning process

(on both upper and lower layers) for one fold on ODP data takes approximately 183 CPU

hours on a Xeon 3.0 GHz CPU.
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Figure 4.4: Comparison of error rate of different algorithms.

4.3.4 Experimental result on ODP dataset

After tuning the weighting of each field, we apply the best parameter setting to the set-

aside test documents. We compare F-Neighbor with the Neighboring Algorithm from

Chapter 3, as well as other algorithms being compared previously. The result is shown

in Figure 4.4. Previously, the Neighboring Algorithm has an accuracy of 88.8%. The

F-Neighbor algorithm further raised the accuracy to 90.2%, reducing the error rate by

one eighth. T-tests show that the F-Neighbor Algorithm outperforms other algorithms

statistically significantly (p ≤ 5× 10−3).

In order to show the advantage of F-neighbor over the Neighboring Algorithm, we

selected a subset consisting of all target pages that have less than 200 sibling pages. The

subset contains 1,333 pages, approximately 11.1% of all target pages in the ODP dataset.

Figure 4.5 shows the error rates of the SVM textual classifier, the Neighboring Algorithm,

and the F-Neighbor Algorithm, respectively (averaged across 5 folds). On this subset,

101



4.3. EXPERIMENTS

Figure 4.5: Comparison of error rate of on a select subset.

the Neighboring Algorithm reduces the error rate by almost one third compared with

the baseline, SVM classifiers based on the target page itself. The F-Neighbor Algorithm

further cuts the error rate of Neighboring by a half. The error bar on each column rep-

resents the standard deviation. T-tests show that the F-Neighbor Algorithm outperforms

Neighboring and the textual classifier statistically significantly (p ≤ 2× 10−3).

4.3.5 Experimental result on WebBase dataset

In order to show our algorithm’s performance on generic web pages, we also apply the

learned classifier to the WebBase dataset as mentioned in Chapter 3. In the previous

experiment, the default Neighboring Algorithm increased the accuracy from 30.4% to

36.8%. The F-Neighbor Algorithm further improves performance by more than 10% (to

40.8%).
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4.4 Discussion and Conclusion

In Chapters 3 and 4, we have shown the improvements that our proposed algorithms can

provide for web page classification. However, they also have some limitations, which we

discuss here.

• While performance is a function of a number of tunable parameters, we have not

fully explored the parameter space. In the tuning process, we assumed that the

weighting of the fields of a neighbor type is independent of other neighbor types.

Such a untested assumption may lead to sub-optimal solutions.

• The ODP dataset used for most of our experiments generally consists of highly-

regarded pages. Our experiment with WebBase data suggests that raw performance

on the ODP dataset may be higher than generic web pages. This effect might be

mitigated by using training data that better matches the test data (e.g., training on

random web pages).

• We only utilized neighbor information to help determine the target page’s topic. The

classification of the target page itself, however, may similarly affect the neighboring

pages’ topic. A relaxation technique (e.g., as used in another algorithm from [29])

might be a useful addition to our approach.

• For simplicity, classification is only performed on the first-level categories of dmoz

Directory. Conducting similar classification at a deeper level, or on more fine-grained

topics, may expose more interesting facts.
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• In the F-Neighbor Algorithm, while we break up a web page into several fields

according to its HTML markup, other fields may also be worth consideration, e.g.,

headers or text in large fonts. To be more general, one may break up pages based on

metrics other than HTML tags, such as spatial information or even complex models

as the one proposed by Xiao et al. [201].

• The results of our tuning process in both Neighboring and F-Neighbor algorithms

indicate that neighboring pages are a better source to tell a page’s topic than the

page itself. We provided a preliminary explanation in Section 3. A deeper study is

needed to verify the actual reason.

• In our algorithms, when a neighboring page has multiple roles (e.g., being a parent

and a sibling at the same time), it is accounted for all roles it plays. A further

exploration may reveal better solutions. For example, instead of duplicating a page

according to its multiple roles, we can treat it as a single page while splitting its

influence to the target page according to its roles. We may also choose one role in

which the page has the highest potential to contribute.

Our contributions in this chapter include the following:

• We demonstrated that it is very useful to incorporate field information of neighboring

pages into web page classification.

• We are the first to find out the unexpectedly high utility of parent page titles in web

classification on broad topics.
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In summary, this chapter has demonstrated the usefulness of information from neigh-

boring pages, especially the fielded information, in judging the topic of a target web page.

The experimental results show that, under appropriate parameter settings, our algorithm

statistically significantly outperforms textual classifiers as well as existing algorithms, in-

cluding the Neighboring Algorithm in the previous chapter.
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Chapter 5

Hierarchy Evolution for Improved

Classification

5.1 Introduction

In general, classifiers categorize web pages into a predefined set of categories. In Chapters 3

and 4, we proposed methods to directly enhance web classification by utilizing neighboring

pages on the Web, in which classification is performed on a flat set of categories. Such

categories can also be organized into a hierarchy. As we discussed in Chapter 2, based on

how the categories are organized, classification can be divided into flat classification and

hierarchical classification. In flat classification, a single classifier learns to classify instances

into one of the target categories. In hierarchical classification, a separate classifier is

trained for each non-leaf node in the hierarchy. During training, each classifier is trained
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to categorize the instances that belong to any of the descendants of the current node

into its direct subcategories. When deployed, an instance is first classified by the root

classifier, and then passed to one of the first level categories with the highest probability.

This process is repeated iteratively from top to bottom, invoking only one classifier at

each level, until reaching a leaf node.

Previous work has shown that hierarchical classification is more accurate than flat

classification (e.g., [58, 117, 16]). By organizing categories into a hierarchical structure

and training a classifier for each non-leaf node, each classifier can focus on a smaller set

of subcategories, and thus reduce the confusion from sibling branches. It is also reported

that hierarchical classification can significantly reduce training and testing time compared

with flat classification [117, 124].

Hierarchical classification is typically performed utilizing human-defined hierarchies.

Since such hierarchies reflect a human view of the domain, they are easy for people to

understand and utilize. However, these hierarchies are usually created without consider-

ation for automated classification. As a result, hierarchical classification based on such

hierarchies is unlikely to yield optimal performance.

In this chapter, we propose a new classification method based on genetic algorithms

to create hierarchies better suited for automatic classification. In our approach, each

hierarchy is considered to be an individual. Starting from a group of randomly generated

seed hierarchies, genetic operators are randomly applied to each hierarchy to slightly

reorganize the categories. The newly generated hierarchies are evaluated and a subset that
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are better fitted for classification are kept, eliminating hierarchies with poor classification

performance from the population. This process is repeated until no significant progress can

be made. In our experiments on several text classification tasks, our algorithm significantly

improved classification accuracy compared to the original hierarchy and also outperformed

state-of-the-art adaptation approaches. Compared with previous work, our approach is

different in at least two aspects:

• After each iteration, we keep a comparatively large number of best performing hier-

archies rather than only keep the best one and discard the rest; we will show later

that the best hierarchy does not always come from an adaptation of the previous

best hierarchy.

• Unlike previous approaches that gradually adapt a hierarchy by making a slight

change at each step, the crossover operators we customize for hierarchy evolution

allow a new hierarchy to inherit characteristics from both parents, so that it is

significantly different from either parent. This will take previous approaches many

more iterations to achieve, or perhaps unachievable at all because of the use of a

greedy search strategy.

Our contributions include:

• a new, better-performing approach to improved classification by hierarchy adaption;

and,

• adaptation of genetic operators on hierarchies and an analysis of their utility.
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Figure 5.1: An imaginary five-class classification problem.

The rest of this chapter is organized as follows. We motivate and introduce our ap-

proach in Section 2, report the experimental setup and results in Section 3, and conclude

this chapter in Section 4.

5.2 Approach

5.2.1 Motivation

As we introduced previously, hierarchical classification can often perform better than flat

classification. The main reason is that, by classifying objects first into high level categories,

and then iteratively into finer-grained subcategories, the classifier at each branching point

should have an easier task than classifying into all categories at once. However, this is not

always true. Consider the example in Figure 5.1, where class A ∪ B, class C, and class

D ∪ E can be easily separated, while separating class A from class B, class D from class
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E is comparatively difficult. If a classifier first separates A∪B, C, D∪E from each other,

then separates A from B, D from E, it should be easier than classifying all the five classes

at once. However, if based on a suboptimal hierarchy, it first tries to separate A∪D from

B ∪ C ∪ E, the increased difficulty may significantly reduce the quality of classification.

From this example, we can see that although hierarchical classification often performs

better than flat classification, it depends on the choice of hierarchy.

In order to further motivate this work using real-world data, we randomly selected 7

leaf categories containing 227 documents from the LSHTC dataset (see Section 5.3.1 for

details about LSHTC dataset), exhaustively generated all the possible hierarchies based

on the selected categories, and tested the classification performance for every hierarchy.

In total, 39,208 hierarchies were generated, out of which 48.2% perform worse than flat

classification in terms of accuracy. The distribution of accuracy is shown in Figure 5.2.

The top 0.03% of all the hierarchies can achieve 100% accuracy, with the next 0.03% at

31.6% accuracy. Around 51.7% of the hierarchies perform as well as flat classification with

an accuracy of 27.1%. The rest perform worse than flat classification. Some even classify

all instances incorrectly. This further verifies our intuition that improving hierarchical

classification needs a well-chosen hierarchy. In the following, we will describe how to

adapt genetic algorithms to search for a better hierarchy.
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Figure 5.2: Distribution of accuracies of all possible hierarchies based on the seven ran-
domly selected leaf categories.

5.2.2 Overview

A genetic algorithm (GA) is a search/optimization method that resembles the evolution

process of organisms in nature. Like any other search method, it searches through the

solution space of a problem, looking for an optimal solution. In our problem, we consider

each possible hierarchy to be a solution (or an individual in the GA, specifically). As

illustrated previously, our solution space is often too large to perform an exhaustive search

except for very small datasets.

A typical GA usually starts with an initial population of individuals, then iteratively

repeats the following search procedure until the stopping criterion is satisfied. In each

iteration, a subset of individuals is selected for reproduction by applying mutation and
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crossover operations on them. Then the fitness of each new individual is evaluated, and

low-fitness individuals are dropped, leaving a better fitted population at the start of next

iteration. In our approach, we will leave the high level procedure of GAs as described above

unchanged, while adapting representation method and reproduction operators to make

them fit the hierarchical classification problem. We chose a GA instead of other generic

search methods for at least two reasons. First, it intrinsically supports large populations

rather than greedy, single path optimization. Second, we can adapt its reproduction

operators to allow significant changes to the solutions without changing the high level

search procedure. In an analysis of experimental results in Section 5.3, we will show that

the above properties are essential to the performance improvement.

5.2.3 Hierarchy representation

We start by describing how to represent a hierarchy using a string. In a GA, reproduc-

tion among the population of a given generation produces the next generation. For easier

reproduction operations and duplicate detection, we need to design a serialized represen-

tation for hierarchies. In our work, each hierarchy is represented as a sequence of numeric

IDs and parentheses, in which each ID corresponds to a leaf category, and each pair of

parentheses represents a more generic category consisting of the categories in between

them. Multiple levels in the hierarchy are reflected using nested parentheses.

More formally, we represent a hierarchy using the following rules:

1. Each leaf node is represented by its numeric id;
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Figure 5.3: A small hierarchy example.

2. Each non-leaf node is represented by a list of all its children nodes enclosed in a pair

of parentheses;

3. The hierarchy is represented recursively using Rule 1 and 2.

4. The outermost pair of parentheses is omitted.

Figure 5.3 illustrates a small example, which will be represented as ( 1 2 5 ) ( ( 3 6 ) 4 ).

5.2.4 Representation string canonicalization

The hierarchy representation method above serializes a hierarchical tree into a sequence of

tokens. However, different representations may correspond to the same hierarchy. Using

the example in Figure 5.3, ( 1 2 5 ) ( ( 3 6 ) 4 ) and ( 2 1 5 ) ( ( 6 3 ) 4 ) define the

same hierarchy. Since we limit the size of the population, detecting duplicate hierarchies

not only saves fitness evaluations for already evaluated hierarchies, but also encourages

variety in the population, which is an important factor for performance improvement as
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we will show later. Therefore, we need a mechanism to normalize the representations so

that duplicates are easily detected. We call this process canonicalization. Two steps of

canonicalization are used in our work: trimming and sibling order canonicalization.

Trimming. We define a trivial node as a node with only one child. Trivial nodes are

not useful in hierarchical classification. We use the following rule to trim the hierarchy

and eliminate trivial nodes: ((St)) =⇒ (St), where St is the representation of a subtree t.

Sibling order canonicalization. As described earlier, each non-leaf node is repre-

sented by a list of all its children nodes enclosed in a pair of parentheses. In this list,

the order of the nodes is not important, i.e., if the only difference of two representation

strings is the ordering of sibling nodes, they should be considered the same. For any node

ni in the hierarchy and the subtree ti rooted at ni, we define the function smId(ni) as the

smallest ID in ti. More formally, for any node ni, smId(ni) is recursively defined as:

smId(ni) =



















ni if ni is a leaf

mink:nk⊂ni
smId(nk) otherwise

(5.1)

where nk is a child of ni. In the representation, ni and its siblings are sorted according to

their smId(·) value. For example, ( 2 1 5 ) ( ( 3 6 ) 4 ) and ( 2 1 5 ) ( 4 ( 3 6 ) ) will both

be canonicalized into ( 1 2 5 ) ( ( 3 6 ) 4 ).

5.2.5 Seed generation

In GA, an initial population needs to be generated before the iterative evolution process

is simulated. In our approach, we use a random algorithm to generate each hierarchy in
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Figure 5.4: An example of promotion mutation: promoting Node 5 in Fig. 5.3.

the initial population. The pseudocode is shown in Algorithm 5.1. The algorithm first

sequentially initializes a sequence using integers from 0 to n − 1, where n is the number

of leaf categories in the hierarchy. Then, using the Fisher Yates shuffling algorithm [62],

the integers representing each leaf category are randomly shuffled such that each integer

has an equal probability (i.e., 1/n in this case) appearing at any position in the sequence.

After that, k pairs of parentheses are inserted into the sequence at random positions,

where k is a random number between 0 and n− 1.

5.2.6 Reproduction

Mutation

Mutation is the genetic operator in which an individual is slightly changed to maintain

the diversity of the population. In a typical GA, this is performed by switching a random

bit in the chromosome string. However, this operation is not as straightforward in the

hierarchical setting. We design three mutation methods that are suitable for hierarchy
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Algorithm 5.1 Algorithm to generate a random hierarchy with n leaf nodes.

1: for i := 0 to n− 1 do
2: sequence[i]← i
3: end for
4:

5: {randomly shuffle the sequence using Fisher Yates shuffling process}
6: for i := n− 1 downto 0 do
7: randomly choose an integer r from the range [0..i], inclusive
8: swap (sequence[i], sequence[r])
9: end for

10:

11: randomly choose an integer k from the range [0..n − 1], inclusive
12: {k will be the number of pairs of parentheses to be inserted}
13:

14: {insert parentheses}
15: for i := 0 to k − 1 do
16: randomly choose two unequal integers pos1 and pos2 from the range

[0..sequence.length], inclusive
17: if pos1 > pos2 then
18: swap (pos1, pos2)
19: end if
20: insert a left parenthesis at pos1 in sequence
21: insert a right parenthesis at pos2 in sequence
22: end for
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Figure 5.5: An example of grouping mutation: grouping Node 2 and 5 in Fig. 5.3.

evolution: promotion, grouping, and switching.

The promotion operator randomly selects a node n (which can be either a leaf node

or a non-leaf node), and promote n as a child of its grandparent, i.e., n becomes a sibling

of its parent node. For example, promoting Node 5 in Figure 5.3 generates the hierarchy

in Figure 5.4. As a special case, promoting the root node results in no change in the

hierarchy. If node n has only one sibling m, then promoting n is equivalent to promoting

m, and also equivalent to promoting both m and n while removing their parent.

The grouping operator randomly selects two sibling nodes and groups them together.

If a non-leaf node n has k children, C = {ci|i = 1..k}, where k ≥ 2. We randomly select

two nodes cx and cy from c1 through ck, and remove them from C. Then we add a new

node cz into C so that cz becomes a child node of n. Finally, we make cx and cy children

of cz. For example, grouping Node 3 and Node 5 in Figure 5.3 generates the hierarchy in

Figure 5.5.

The switching operator randomly selects two nodes m and n (and the subtrees rooted
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Figure 5.6: An example of switching mutation: switching Node 5 and 6 in Fig. 5.3.

at those locations) in the whole hierarchy, and switches their positions. For example,

switching Node 5 and Node 6 in Figure 5.3 generates the hierarchy in Figure 5.6. In the

above examples, all mutation operations happened at leaf nodes. This is only for the

purpose of easy illustration. The three mutation operators introduced here can promote,

group, or switch non-leaf nodes.

Crossover

Crossover is the genetic operator in which two individuals (parents) are combined to gen-

erate new individuals (children) so that each child will inherit some characteristics from

each parent. In a typical GA, crossover is performed by swapping segments of the chro-

mosome string between the parents (illustrated in Figure 5.7). In the hierarchical setting,

however, directly swapping parts of the hierarchy representation will generate invalid hi-

erarchies. As shown in the example in Figure 5.8, the resulting hierarchy representations

have missing/duplicate leaf nodes and unmatched pairs of parentheses. Therefore, we need
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Figure 5.7: An example of crossover in a generic GA setting.

Figure 5.8: Applying the generic crossover operator on hierarchies may generate invalid
offsprings.

crossover methods customized for hierarchy evolution.

We used two types of methods: swap crossover and structural crossover. The two

parents are noted as hp1 and hp2, the children hc1 and hc2. In swap crossover, a child hc1

is generated using the following steps. First a split point p is randomly chosen in hp1. We

note the part starting from the beginning of the representation string to the split point

p as h′
p1. We remove the segment after p from hp1 and only consider h′

p1. Then right

parentheses are added at the end to balance with the existing left parentheses. Suppose S

is the set of leaf nodes that appear in h′
p1; we go through hp2 and remove all the nodes n
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Figure 5.9: An example of swap crossover.

if n ∈ S. This removal transforms hp2 into h′
p2. Finally, h′

p1 and h′
p2 are concatenated to

form hc1. The other child hc2 is generated by switching hp1 and hp2 before applying the

above procedure. The above operation guarantees that the generated children hc1 and hc2

are valid hierarchies while each inherits certain characteristics from their parents hp1 and

hp2. Figure 5.9 illustrates the process of swap crossover.

A hierarchy can be seen as an integration of two independent characteristics: the tree

structure and the placement of leaf nodes. At a high level, structural crossover aims to

“mix and match” these two factors. A child hierarchy inherits the structural information

from one parent, and placement of leaf nodes from the other. In our implementation, hc1

is generated using the following method. First, every leaf node in hp1’s representation is

replaced with a blank space. Then these blank spaces are filled with the leaf nodes in

hp2 using the order that they appear in hp2. hc2 is generated by switching hp1 and hp2.

Figure 5.10 illustrates the process of structural crossover. Although the above reproduction
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Figure 5.10: An example of structural crossover.

operators guarantee the validity of the generated child hierarchies, they may generate non-

canonical representations. Therefore, canonicalization is needed after reproduction.

5.2.7 Fitness function

In each iteration of the GA, the individuals (i.e., hierarchies) in the new generation need

to be evaluated. We define the fitness function fit(h) of a hierarchy h simply as the

classification accuracy on h. Given a set of training data Dtrain, validation data Dvalidation,

and the base hierarchical classifier CL,

fit(h) = accuracy(CL(Dtrain),Dvalidation) (5.2)

where accuracy is defined as the ratio of the correctly classified documents out of all the

documents being classified.

5.2.8 Stopping criterion

A GA needs a stopping criterion to terminate the iterative evolution process. In our

algorithm, we keep a watch list of top Nwatch best hierarchies. If the performance of the

121



5.3. EXPERIMENTS

Category Num. of Documents

course 930

department 182

faculty 1,124

other 3,764

project 504

staff 137

student 1,641

Table 5.1: Categories and class distribution in WebKB dataset.

top hierarchies do not change between two consecutive iterations, the algorithm stops and

outputs the top hierarchies. In the following experiments, we set Nwatch to 5.

5.3 Experiments

In this section, we test our hierarchy evolution algorithm using real-world data, and com-

pare its performance with previous methods.

5.3.1 Experimental setup

In order to test our algorithm, we used three public datasets. The first two datasets are

from the first Large Scale Hierarchical Text Classification (LSHTC) challenge1 held in

2009. We selected a toy dataset from Task 1 with 36 leaf categories and 333 documents,

which will be referred to as LSHTC-a. We also used the dry-run dataset from Task

1, which has 1,139 leaf categories and 8,181 documents. We will refer to this dataset

as LSHTC-b. Both datasets are partitioned into three subsets: a training set used to

train classifiers during the training process, a validation set used to estimate the fitness

1http://lshtc.iit.demokritos.gr/node/1

122



5.3. EXPERIMENTS

score of each generated hierarchy, and a test set to evaluate the final output hierarchy.

The third dataset is WebKB2, containing 7 leaf categories and 8,282 documents. The

documents in WebKB dataset are web pages crawled from the following four universities:

Cornell (867 web pages), Texas (827 web pages), Washington (1,205 web pages), and

Wisconsin (1,263 web pages), plus 4,120 web pages from other universities. These web

pages are manually categorized into one of the categories listed in Table 5.1. On the

split of training and test data, the provider of the dataset suggests “training on three of

the universities plus the misc collection, and testing on the pages from a fourth, held-

out university”. According to this, we performed four-fold cross-validation on WebKB

with a minor adaptation of the split method. Each fold trains on data from two of the

universities plus the “misc” collection (web pages from other universities), validates on

a third university, and tests on a fourth university. LibSVM [32] is used as the base

classifier to implement the standard hierarchical SVM. We used all the default settings in

LibSVM, including the radial basis kernel function as it yields better performance than

linear kernel according to our experiments. In our algorithm, we set the population size

to 100 on LSHTC-a and WebKB, 500 on LSHTC-b.

We compared our approach (Evolution) with two existing state-of-the-art approaches:

a hierarchy adaptation approach called Hierarchy Adjusting Algorithm (HAA) [188], and

a hierarchy generation approach called Linear Projection (LP) [115]. We implemented

HAA according to the algorithm outlined in Figures 12 and 13 of [188]. All three search

2http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
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Figure 5.11: The hierarchy automatically generated by Linear Projection (redrawn based
on the experimental result in the LP paper [115]).

methods were implemented. In our implementation of HAA, we set the stopping criterion

to 0.001. That is, when the improvement between two consecutive iterations is less than

0.001, the algorithm terminates. We also compared our algorithm with Linear Projection

on the WebKB dataset. Instead of re-implementing the LP algorithm, we directly used the

automatically generated hierarchy on WebKB reported in the Linear Projection paper, and

performed the four-fold cross-validation based on that hierarchy (shown in Figure 5.11).

5.3.2 Experimental results

On the small LSHTC-a dataset, a flat classification has an accuracy of 68.6%. The hier-

archical classification using the original, human-built hierarchy performs slightly better at

70% accuracy. HAA converged after two iterations with the accuracy improved to 71.9%.

Since the initial population in our Hierarchy Evolution algorithm is generated randomly,

we ran our algorithm three times using different random seeds. The averaged accuracy

is 79.5%. On the LSHTC-b dataset, it took 50.3 iterations for our algorithm to converge
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Figure 5.12: Accuracy on LSHTC datasets compared across different methods.

(averaged across 6 runs), and 18 iterations for HAA. HAA improved upon the baseline’s

accuracy of 49.6% to 54.0% (an improvement of 8.9%), while our algorithm’s final output

hierarchy has a 56.5% accuracy averaged across 6 runs (an improvement over the baseline

of 13.9%). The results are shown in Figure 5.12. To be certain of a fair comparison, we let

HAA continue running for three more iterations after convergence, but did not observe any

additional improvement. Two-tailed t-tests show that our algorithm outperforms other

approaches statistically significant on both LSHTC datasets (p value ≤ 0.02).

When running our algorithm on LSHTC-b, at each iteration, we extracted the best

hierarchy in terms of its classification accuracy on the validation set. For comparison,

we plotted the per-iteration best hierarchy’s accuracy on the validation and test set for

one of the six trials in Figure 5.13. The validation accuracy increases monotonically until
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Figure 5.13: Best accuracy at each iteration.

Figure 5.14: Average depth and degree of the best-performing hierarchy at each iteration.

convergence. Although the test accuracy fluctuates a little, it maintains an increasing

trend in general. Figure 5.14 shows the average depth and degree of the best-performing

hierarchy at each iteration.

On the WebKB dataset, we compared our algorithm with flat classification, HAA,

and Linear Projection. Based on the seven leaf categories, a flat classification has an

accuracy of 70.3% averaged across the four folds. Linear Projection and HAA improve the

accuracy to 74.6% and 75.4%, respectively. Our algorithm further improves to 76.4%, a
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Figure 5.15: Accuracy on WebKB dataset compared across different methods.

Methods Flat LP HAA Evolution

Fold 1 0.687 0.734 0.742 0.749

Fold 2 0.694 0.721 0.721 0.738

Fold 3 0.691 0.774 0.780 0.788

Fold 4 0.739 0.753 0.774 0.781

Average 0.703 0.746 0.754 0.764

STDEV 0.024 0.023 0.028 0.024

Table 5.2: Accuracy of each fold on WebKB compared across different methods.

21% reduction in error rate compared with flat classification. Figure 5.15 shows the average

performance and standard deviation for each method. The variance is mainly caused by the

difference of data across folds. From Table 5.2, we can see that our approach consistently

performs better than other methods on all folds. Two-tailed t-tests showed that our

algorithm statistically significantly outperforms all other algorithms being compared, with

p-values under 0.03 for all tests. Figure 5.16 shows the best hierarchy generated by our

algorithm on the first fold of WebKB cross-validation.
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Figure 5.16: The hierarchy automatically generated by our Hierarchy Evolution Algorithm.

5.3.3 Experiment analysis

As we pointed out previously, our approach differs from existing hierarchy adaptation

approaches from at least two aspects:

1. genetic operators that allow more significant changes in a hierarchy; and,

2. a larger population size to maintain population variety.

Now we analyze quantitatively whether these differences make our approach outperform

existing methods. The following analysis is performed on the LSHTC-b dataset.

In order to evaluate the effectiveness of the genetic operators, we calculate the im-

provement that each type of operator brings to a hierarchy. Figure 5.17 shows the average

improvement in terms of accuracy. On average, all the five operators have a negative

impact on the accuracy. For example, the “swap crossover” even decreases accuracy by

0.018 when averaged across all evolution operations. That is, on average, every time a

“swap crossover” is applied on a hierarchy, the newly generated hierarchy has an accuracy

lowered by 0.018. Fortunately, the genetic algorithm only keeps the best hierarchies in the
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Figure 5.17: Improvement compared across different genetic operators.

population, and discards the rest. Therefore, the degradation is counter-balanced by such

a selection process, making an overall increasing trend (as we showed previously in exper-

imental results). We also calculated the standard deviation of the improvement, as well

as minimal and maximal improvement. The error bars in Figure 5.17 show the minimal

and maximal improvement. The standard deviation of the operators are 0.0004, 0.0005,

0.0009, 0.0100, 0.0028, respectively. This indicates that the mutation operators only have

slight impact on the accuracy while changes made by crossover are more significant. In the

best case, “swap crossover” improved accuracy by 0.026, “structural crossover” improved

0.029, while all the mutation operators can only improve no more than 0.002 at their best.

These statistics match our intuition that more significant changes can potentially bring

better improvements than local modifications.

Another method to examine the utility of different genetic operators is to use only

a subset of the operators in our algorithm and check the accuracy of the final output
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Figure 5.18: Accuracy comparison using different subsets of genetic operators.

hierarchy. The result of this analysis on LSHTC-a is shown in Figure 5.18. Using all

operators yields a 80% accuracy as the algorithm converges after 7 iterations. Using both

crossover operators without any mutation yields the same accuracy with a slightly slower

convergence speed (8 iterations). Using structural crossover only, we can still discover a

hierarchy with the same accuracy at 80%, but at a cost of two more additional iterations

(10 iterations until convergence). Using swap crossover only, the algorithm converges

after 9 iterations with an accuracy of 77%. If we take out both crossover operators and

only use mutation operators, the performance of the final output hierarchy is significantly

decreased down to 73%.

Unlike previous approaches that only carry the best hierarchy into the next itera-

tion, we keep hundreds of hierarchies in the population. This raises a reasonable concern

about our approach: is the large population necessary? To answer this question, we first

identified the top 5 hierarchies at each iteration, then back-traced their parents from the
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previous iteration, and finally found out the ranks for their parents. The results are shown

in Figure 5.19. A point (x,y) means that if we were to keep only top x hierarchies in the

previous generation, then only a percentage of y hierarchies that were in the top 5 of the

next generation still exist. In other words, the rest of top hierarchies (i.e., 1-y) will no

longer exist because their parents were removed from the previous generation. We can see

that we can still generate a significant portion of top hierarchies by keeping 300 hierarchies

in each iteration. From another point of view, if we were to keep only 50 hierarchies, we

would have lost approximately 81% of the top 5 hierarchies at each iteration. Although

we could probably shrink the population size by 20% without significant degradation in

accuracy, this supports the idea that the comparatively large population is necessary. In

order to further verify this conjecture, we performed the experiments again based on var-

ious population sizes from 100 to 500, and compared the test accuracy across the final

output hierarchies. Figure 5.20 shows that increasing the population size from 100 to 400

gives a significant improvement in terms of accuracy on the final output hierarchy, while

no additional benefit is perceived beyond the size of 400.

An additional experiment with respect to the usefulness of a large population size

is performed on LSHTC-a dataset. In this experiment, instead of running HAA from

a single initial hierarchy (i.e., the original, human created hierarchy), we ran HAA 100

times, with each trial starting from a randomly generated hierarchy. We controlled the

random hierarchy generation process so that the 100 initial hierarchies are exactly the

same as the initial population previously generated in the first trial of our Hierarchy
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Figure 5.19: Top hierarchies that can be generated when a smaller population size is used.

Figure 5.20: Classification accuracy on the output best hierarchy when varying population
size.
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Evolution algorithm. The purpose of this experiment is twofold: to test how much a

large population contributes to finding a better solution, and to provide a fair comparison

between HAA and our approach. Among the 100 trials, the best hierarchy found by

HAA has a 74.3% accuracy on the test set (with an average accuracy of 69% across all

trials). In comparison, the first trial of our algorithm found a best hierarchy with 80%

accuracy. The result indicates that, although the contribution from the large population

is clearly visible, it is the combination of the two factors that make our algorithm better

than previous methods: a large population and the new genetic operators.

5.4 Discussion and Conclusion

Compared with previous approaches, our method explores a much larger space searching

for better hierarchies. Although this enables us to find better solutions, it also brings

significant cost. At each iteration, our approach evaluates thousands of hierarchies. For-

tunately, the evaluation can be easily parallelized. Using a Condor [189] distributed com-

puting platform running on around 100 nodes shared with multiple users, each iteration

on the LSHTC-b dataset can be finished within approximately 2.5 hours in real elapsed

time. For the additional improvement in classification performance, we consider this ex-

tra one-time cost worthwhile. The evaluation cost can be reduced using less expensive,

approximate fitness evaluations. For example, smaller training and validation sets, and

fast classifiers can be used in the evaluation process. Furthermore, since some generated

hierarchies share common subtrees, trained models on such subtrees can be reused.
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In this chapter, we proposed a hierarchy adaptation approach by using the standard

mechanisms of a genetic algorithm along with special genetic operators customized for

hierarchies. Unlike previous approaches which only keep the best hierarchy in the search

process and modify the hierarchy locally at each step, our approach maintains population

variety by allowing simultaneous evolution of a much larger population, and enables signif-

icant changes during evolution. Experiments on multiple classification tasks showed that

the proposed algorithm can significantly improve automatic classification, outperforming

existing state-of-the-art approaches. Our analysis showed that the variety in population

and customized reproduction operators are important to improvement in classification

performance.

One drawback of our approach is that the genetic operators select mutation points

and split points purely at random. Smarter operators may select such points based on

heuristic rules so that they are more likely to generate better hierarchies.

The choice of genetic operators is quite arbitrary and primitive. Although those op-

erators are shown to be effective through our experiments, they are probably not the

best or the only effective operators for the problem. Are there other operators that can

work effectively on the problem? Are there better operators? Besides those discussed in

this chapter, what other properties are shared among good operators? A comprehensive

operator study is needed to answer these questions.

In our experiments, the parameters of the GA were arbitrarily assigned, and remained

constant over the search process. Genetic algorithms with adaptive parameters (adaptive
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GA) [178] may bring further improvement. In addition, if the solutions are confined to

binary trees, it may change the speed of fitness evaluation and the rate of convergence.

Therefore, additional modifications to our algorithm might be necessary.
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Chapter 6

Enhancing Taxonomies by

Providing Many Paths

6.1 Introduction

A taxonomy organizes concepts or topics in a hierarchical structure. The dmoz Open

Directory Project1 and the Yahoo! Directory2 are two well known examples which, with

the help of many human editors, organize what are considered to be good quality web

pages into topical taxonomies. Figure 6.1 illustrates what dmoz ODP looks like. Besides

being created and maintained manually, taxonomies can also be created by automated

systems. Such systems often group objects together based on their syntactic similarities

or distance in the feature space. Automatic taxonomy generation can reduce the enormous

1http://www.dmoz.org/
2http://dir.yahoo.com/
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amount of human effort and thus speed up the process. However, automatically generated

taxonomies do not always match a human’s preexisting mental image about the “world”;

and therefore are sometimes difficult for a human to understand.

A taxonomy (or hierarchy) is usually constructed based on supertopic-subtopic, or

parent-child relationships. At any topic in the hierarchy, following a branch to get to a

topic at a lower level means adding another constraint to its parent topic. When a user

seeks information in a taxonomy, she usually starts from the root (“everything”), and

narrows down the topic by choosing one child under the current topic until she finds what

she needs. Unlike keyword search, seeking information in a taxonomy does not require the

user to formulate her information need into search keywords. The names of topics (and

sometimes descriptions, too) serve as guidance for the user.

One major drawback of taxonomies is that they require users to have the same view of

the topics as the taxonomy creator. That is, when a user follows a top-down path to find

the specific topic of her interest, she has to make choices along the constrained sequence

that is present in the hierarchy. As a result, users who do not share that mental taxonomy

Figure 6.1: An illustration of ODP structure
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are likely to have additional difficulties in finding the desired topic. For example, in one

taxonomy, information about Emacs, an open source text editor, can be organized under

/Software/OpenSource/Editors/Emacs. Such a taxonomy will not be helpful for a user

who looks for information about Emacs but does not know that Emacs is an open source

package. This problem can be somewhat reduced by remedies like cross-topic links (as used

in ODP). However, after adding such links, the target nodes of the links will have more

than one parent, making the taxonomy no longer a tree. Under this approach, nodes are

not replicated—links are just added to the graph. Logically, such links are only appropriate

when the alternative path also applies to all descendants of the topic. Furthermore, such

links bring dependencies among topics and increase editing cost: editing one topic may

result in changes in its linked topics and then the linked topics of those topics.

In this chapter, we propose a new approach to taxonomy expansion which is able to

provide more flexible views. Based on an existing taxonomy, our algorithm finds possible

alternative paths and generates a new, expanded taxonomy with flexibility in user browsing

choices. In our experiments on the dmoz Open Directory Project and a social bookmarking

dataset, the rebuilt taxonomies show favorable characteristics (more alternative paths and

shorter paths to information). We define a flexible taxonomy as any reasonable taxonomy

that can provide flexibility in user browsing choices. Our algorithm can be used to expand

current web hierarchies such like those provided by ODP and Yahoo!.

Our main contributions include:

• an analysis and formulation of existing problems of hypernym/hyponym taxonomies;
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and

• a new approach to generate flexible taxonomies that is able to work on existing

taxonomies.

The rest of this chapter is organized as follows. We motivate our work and define the

problem we aim to tackle in Section 2. In Section 3, we describe our approach in detail.

Experimental results are shown in Section 4. We conclude with a discussion in Section 5.

6.2 Motivation and Problem Definition

6.2.1 Motivation

Browsing through a large data collection that is organized in a taxonomy is an interesting

while different problem from keyword search. Search is effective when the user knows the

name of the target information. When the desired information is a large set of instances

(e.g., American sci-fi movies from the 1960s), or something that the user do not recall its

name (e.g., the 1980 Steven Spielberg film about a space alien), a generic search often

gives poor results. Browsing (or navigating) in taxonomies is usually more effective in

such cases.

Typically it is supertopic-subtopic relationships that connect a topic with its child

topics in a taxonomy. As natural it may seem, this methodology often poses extra difficulty

for both the creator and the user. One reason is that there are often many ways to split

a topic. For example, movies can be classified by their genre, country of origin, director,
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etc. When creating a taxonomy of movies, one may choose to first split by genre then

by country of origin, or first by director then by genre. However, no property of any of

the above aspects (or facets) by itself is intrinsically a subtopic of another. In fact, they

are orthogonal characteristics to some degree. A user may wish to narrow his selection

by choosing one property of any reasonably arbitrary facet. Therefore, although there are

many reasonable ways to split the movie category, none of them is able to satisfy all users’

needs. We will refer to this problem as the multiple facets problem.

There are at least two ways to address the multiple facets problem. One is to split the

topic in question in multiple ways. However, this method, without any fix, will inevitably

result in duplicate objects under different subtopics. A simple fix is to treat one group

of subtopics as real topics, and others as symbolic links. Figure 6.2 illustrates a taxon-

omy generated using this method, which is an actual subgraph of ODP. This method is

widely used in ODP to address the multiple facets problem. However, to the best of our

knowledge, this method is only used by human editors. No automated system is able to

generate taxonomies in similar ways.

Another method to address the multiple facets problem is faceted browsing. Unlike

browsing through a tree structure, choosing one option at a time, users are presented

with multiple orthogonal facets and offered a chance to narrow the selection by choosing

property constraints from multiple facets simultaneously. This method, when implemented

properly, is able to address the multiple facets problem well. However, identifying the

facets, especially from large datasets, is often a challenge for both human and automated
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Figure 6.2: A taxonomy with symbolic links.

systems and still may have too many facets (or even classes of facets) to present at one

time. While in this chapter we will focus on automating the multiple split method, the

results of our approach may be of help to human and automated systems to identify facets

and enhance faceted search/browsing.

Another problem of existing taxonomies also originates from the strict supertopic-

subtopic relationships. When users need to find a particular object, they have to go

all the way along the path from the root to their topic of interest. We will refer to

this problem as exhaustive path problem. For example, even if the Emacs topic can be

reached by two alternative paths (i.e., presumably with the multiple facets problem fixed),

Software/Editors/OpenSource/Emacs and Software/OpenSource/Editors/Emacs, what if

a user who does not know whether the package is open source just wants to find a list of

representative text editors? In this case, a link like Software/Editors/Popular/Emacs will

come in handy. By presenting popular descendant topics closer to the root, we may reduce

the choices a user need to make and thus reduce the time to find desired information. We
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are interested in back-end algorithms that can facilitate a better presentation.

If the user knows exactly what she is looking for, she can start from a keyword search

in the taxonomy, in which case the above problems can be easily solved. However, most

users who intend to find answers in a taxonomy usually do not know an appropriate

keyword with which to start. The above problems could also be alleviated by building

customized taxonomies on a user basis. However, the user profile that is required in a

personalized approach is difficult to acquire. Furthermore, a user’s interest and browsing

preference may change frequently. Given the size of taxonomies we target, how to update

the taxonomy to match the user’s change in interests is another challenging problem in

both efficiency and effectiveness. Therefore, instead of building personalized taxonomies

for each user, we propose a method to build an expanded taxonomy with more branches

to help users find information easier and faster in the given dataset.

6.2.2 Problem definition

As mentioned in previous sections, we aim to build a flexible hierarchy which can expose

different interpretations of the data. A user traversing the hierarchy to find a target item

can be viewed as a series of restrictions which narrow the search scope step by step. At

each step, the user is provided a set of candidate topics to further narrow the scope. If

we call the internal nodes in a taxonomy the topics (e.g., the topics in ODP), and call

what is to be classified the objects (e.g., the outgoing links of ODP), we can formalize the

problem as follows.
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Figure 6.3: A simple predefined taxonomy

Given a graph G = (V,E,O,R),

where V = {v— v is a topic in the taxonomy},

E = {(v1, v2)|v1, v2 ∈ V },

O = {o— o is an object in the taxonomy},

R = {(v, o)|v ∈ V , and o ∈ O};

Output a graph G′ = (V,E′, O,R),

where E′ = {(v1, v2)|v1, v2 ∈ V }.

Note that we do not require the input graph to be a tree in order to allow for more

relaxed relationships, such as reference links across different branches.

6.3 Approach

So far, we have formulated the taxonomy generation problem as a graph transformation

problem. We will solve this graph transformation problem in two steps: break down the

taxonomy hierarchy into a set of tag-object tuples and then rebuild a flexible taxonomy

from these tuples.

First, we break down the input taxonomy into a set of tag-object tuples. We consider

the original tree structure and treat each internal node (topic) as a tag. We assume the
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same topic name always has the same meaning. That is, the same topic name appearing

in different locations in the original taxonomy is considered to be the same tag. Then

each object in the taxonomy (i.e., URLs in the ODP case) is associated with all the tags

from its ancestors in the tree. For example, in the original hierarchy in Figure 6.3, there

are three objects c, e and f , and three topics, a, b, and d. After we tag each object with

its ancestors, we get tag(e) = {a}, tag(c) = {a, b}, tag(f) = {a, d}. We also overload

this function to define the tag set of multiple objects as the union of their tag sets, i.e.,

tag({e, c}) = tag(e) ∪ tag(c) = {a, b}. We define obj(x) as the set of objects that are

associated with tag x. In this example, obj(a) = {c, f, e} , obj(b) = {c}, obj(d) = {f}.

Similar to the tag set of multiple objects, we define the object set of multiple tags as

the union of their object sets. In this case, obj({b, d}) = obj(b) ∪ obj(d) = {c, f}. After

this, we discard the original taxonomy structure, with only the tags, objects, and their

relationships left. Since there are no relationships between two tags or two objects, the

problem left for consideration now is a bipartite graph, with tags and objects being two

sets of nodes, and each edge connecting exactly one tag and one object. Therefore, we

now have

G = (T,O,E)

T = {t|t is a tag}

O = {o|o is an object}

E = {(t, o)|t ∈ T ,o ∈ O, object o has tag t}

We now transform the taxonomy rebuilding problem into a problem to generate a
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taxonomy based on a bipartite graph of tags and objects.

Hierarchy problem

Given a bipartite graph G = (T,O,E),

Output a graph G′′ = (V ′′, E′′, O,R′′)

where V ′′ is a set of topics, E′′ is a set of edges connecting topics in V ′′ to objects in O,

and R′′ is a set of edges connecting topics to their subtopics.

Although such a problem transformation process seems tedious and arguably unnec-

essary, we will show in the following that the transformation allows us to adapt solutions

to a well-studied problem for our purpose of taxonomy generation.

6.3.1 Set covering

A straightforward approach to taxonomy generation is a top-down method, in which the

topic at each leaf node is split into a number of subtopics until no further split is necessary.

Every time a topic needs to be split, if we consider the topics (tags) as the sets, and

the associated objects as the objects to be covered, the split problem can be seen as a

generalized set covering problem.

In a set covering problem, given a universe O consisting of n objects, and T a set of

subsets of O, we say a subset C ⊆ T covers O iff O =
⋃

t∈C t. The set covering problem

is known to be NP-complete. However, there are greedy approximation algorithms with

polynomial time complexity (e.g., Algorithm 1 in [195]). Let Hk denote
∑k

i=1 1/i ≈ ln k,

where k is the largest set size. This algorithm is guaranteed to return a set cover of weight
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at most Hk times the minimum weight of any cover.

Algorithm 6.1 Greedy Algorithm for Set Cover (Vazirani, 2001)

1: // Input T is a set of tags, and O is a set of objects.
2: Initialize C ← ∅.
3: // Loop while C does not cover all objects
4: while Obj(C) 6= O do
5: Choose t ∈ T to maximize f(t)
6: Let C ← C ∪ {t}
7: end while
8: Return C

f(t) is the objective function which the algorithm aims to maximize. In the original

version of the set covering algorithm [195], it is defined as |Obj(C ∪ {t}) − Obj(C)|.

We choose to base our approach on this algorithm for two main reasons. First, it is a

natural requirement for the generated hierarchy to cover all the objects. Second, in order

to generate our desired hierarchy, it is convenient just to extend its objective function

to match our purpose, leaving the rest of the algorithm unchanged. In the rest of this

section, we will show how we change this function to meet our needs in flexible taxonomy

generation.

In our approach, every time a topic is split, we generate three types of subtopics.

A group of basic subtopics to cover all the associated objects (in some sense, the most

obvious split), one or more groups of orthogonal subtopics to provide alternative paths,

and a group of popular subtopics to allow fast access to the most popular descendant

topics. We will discuss them in the following subsections.
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6.3.2 The basic group

The original bipartite graph consists of the tags and objects as the two groups of vertices,

and the relationships among them as the edges. Starting from a tree with a single node

root, we iteratively split its leaf nodes to generate the taxonomy.

Suppose we are at the point to split a node (tag) tcur, let Ta be the set of tags that has

been used in tcur’s ancestor nodes. The tag set T ′ = T − Ta, the corresponding object set

O′, and the relationship E′ between T ′ and O′ make up a bipartite graph G′(T ′, O′, E′),

a subgraph of the original bipartite graph G(T,O,E). Let Tc be the subtopics that

have already been chosen, Oc the set of objects that have been covered. The method

of generating the basic group of subtopics is as follows.

Cover Score. For each t ∈ T ′ − Tc, the cover score is defined as follows.

CoverScore(t) =

∑

o∈O′−Oc,and(t,o)∈E′ w(o)
∑

o∈O′ w(o)
(6.1)

The score is normalized so that for any t, CoverScore(t) ∈ [0, 1]. w(o) is a weight of the

object o. In this work, it is simply set as 1. In the future, it can be generalized to any

importance measure of the object (e.g., the PageRank of the web page).

Tag Similarity Score. Define function Fv that maps a tag to an |O| dimensional vector,

in which the ith element of Fv(t)
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Fv(t)i =



















1 if(t, oi) ∈ E

0 otherwise

(6.2)

Then the similarity between two tags t1 and t2 is defined as

TagSim(t1, t2) =
Fv(t1) · Fv(t2)

|O|
(6.3)

At any time during the process of choosing subtopics, let Tc be the set of subtopics

that have been chosen, then the similarity score of any tag t for consideration is

TagSimScore(t) =



















|Tc|
∑

t′∈Tc
TagSim(t,t′)

if |Tc| > 0

0 otherwise

(6.4)

The cover score focuses on how many new objects are covered by adding the tag in

question; it does not care about the overlap between the newly added tag and the existing

tags. The tag similarity score compensates for that by favoring the tags with less overlap.

Based on the cover score and the tag similarity score, we define the objective function

fb(t) as follows and plug it into Algorithm 1 to calculate the basic group of subtopics.

fb(t) = α · CoverScore(t) + β ·
µ

TagSimScore(t)
(6.5)

µ is a normalization factor, which is set to mint[1/TagSimScore(t)] in our work. The

parameters α and β are used to adjust the impact of different scores. We will tune them

in the experiments.
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6.3.3 The extension group

In the previous subsection, we discussed how to generate the first group of subtopics. In

the extension group, we aim to discover orthogonal dimensions for alternative views. We

exploit two types of information to compute this group.

Impurity Score. We employ the entropy impurity to measure this property of tags.

Entropy impurity has been used in decision trees [19]. The impurity of tags in our system

is defined as follows. Let O′
t be the set of objects which are covered by t, O′

t = {o|(t, o) ∈ E′

and o ∈ O′}. Given the basic tag set Tb generated by the method in Section 6.3.2, and a

tag t, we define Pt(ti) as the fraction of objects for ti ∈ Tb which is

Pt(ti) =

∑

(ti,o)∈E′,o∈O′

t
w(o)

∑

o∈O′

t
w(o)

(6.6)

Then, the impurity of a candidate subtopic t given Tb is defined as

I(t) = −
∑

ti∈Tb

Pt(ti) log2 Pt(ti) (6.7)

By definition, if all the objects covered by t are uniformly covered by the topics in Tb, it

will get the maximum value.

Sibling Score. After a set of subtopics are chosen, the sibling score of a candidate topic t

measures how likely t is a sibling topic with the chosen tags. The sibling likelihood can be

obtained from various sources, such as Wikipedia, WordNet, or the generic web. In this

work, we obtain this information from the original taxonomy. For each pair of tags, we
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examine the positions of the two tags within the original hierarchy and count the number

of times that these two tags share the same parent. We define the function parent(t) as

the the set of parent topics of t. The sibling function between any two tags is defined as

follows.

Sibling(t1, t2) = log2 (1 + |parent(t1) ∩ parent(t2)|) (6.8)

Then, Sibling(t1, t2) is normalized over all tag pairs so that they sum to 1. We note the

normalized results as Siblingnorm(t1, t2).

Based on the pairwise sibling likelihood, the sibling score of a candidate subtopic t given

a set of already chosen subtopics Tc is computed as follows. For any t, SiblingScore(t) ∈

[0, 1].

SiblingScore(t) =



















∑

t′∈Tc
Siblingnorm(t,t′)

|Tc|
if |Tc| > 0

0 otherwise

(6.9)

Similar to the generation of the basic group, when generating the extension groups, we

still use the greedy approximation algorithm of set covering problem, only with a different

objective function.

fe(t) = γ · CoverScore(t) + δ · SiblingScore(t) + η · I(t) (6.10)

The weights γ, δ, η are used to adjust the impact of different scores. We will tune them in

the experiments.

Depending on the particular situation, the extension set may need many topics to cover

all objects. In order not to overwhelm users with too many choices, we slightly change the
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stopping criterion to let it be satisfied when the number of subtopics exceeds k, where k

is set to be 1.5 × |Tb|.

Above we presented how to generate one group of extension topics. After this, a

new group of extension topics can be generated by removing the selected topics from the

candidate, and running the above process again.

6.3.4 The shortcut group

We discussed the generation of the extension groups in the previous subsection. The

extension groups aim to address the multiple facets problem. In this subsection, we

discuss how to address the exhaustive path problem using a group of shortcut topics.

Popularity Score. The idea of the shortcut group is to increase the visibility of pop-

ular/important topics by putting them closer to the root, and thus reduce the time for

users to find them. There are a variety of metrics to assess whether a descendant topic

should be promoted. Here, we use the number of times the topic name is used as a tag

for bookmarks in delicious. The popularity score is defined as follows:

popularity(t) =
|bookmark(t)|

maxt∈T |bookmark(t)|
(6.11)

where |bookmark(t)| is the number of distinct bookmarks which are associated with tag t

in Delicious. The value of popularity also is normalized to fit in the range [0,1].

We again use Algorithm 1 but with a different objective function to generate the
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shortcut group:

fs(t) = popularity(t) (6.12)

Although the data in Delicious changes continuously, it is safe to assume that the

relative frequencies of tags are somewhat stable over time. Given that the Delicious data

is only used as a rough estimate of tag popularity/importance, it is not necessary to always

keep it up-to-date. In addition, such a measure can also be estimated from other sources

like Wikipedia, query log, and click log of a web hierarchy. Once there is a significant

change in tag popularity, the hierarchy can be regenerated by running the algorithm on

the updated data. Although directly linking a topic to its indirect descendants may break

the logical consistency, we expect this method can help a user to find popular topics faster.

Furthermore, putting such shortcuts in a separate group can reduce any user-perceived

confusion.

6.4 Experiments

6.4.1 Datasets and experimental setup

We used an ODP dump from April 2009 to test our algorithm. It contained 4,225,962

external links and 763,377 categories. We consider categories with the same name to be

the same tag, which gives us 292,550 tags. In the original ODP hierarchy, the average

depth is 7.25 and maximum depth is 14.

We used two subsets of ODP to experiment with our approach. One is

152



6.4. EXPERIMENTS

Figure 6.4: User evaluation result when tuning parameter to generate the basic set.

“Top/Computers/Computer Science/” and all its subcategories and objects, which con-

tains 184 unique tags and 2061 URLs. The other contains “Top/Science/” and all its

subcategories and objects, with 9415 tags and 100,109 URLs. We also collected populari-

ties for 31,342 tags from Delicious.

6.4.2 Parameter tuning

So far, we have introduced a taxonomy generation method with parameters. α and β are

used to combine the cover score and tag similarity score when generating the basic set.

We also used γ, δ, and η to balance the weight of cover score, sibling score, and impurity

score. Here we tune the parameters in our method before generating the final taxonomy.

We changed the value of α and β by 0.1 in each step while maintaining their sum to be

one. Thus we generated 11 taxonomies. We asked users to conduct pairwise comparison of

the subtopics under one particular category at a time, and record their rating. Users can
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choose to rate quality of subtopics in one taxonomy better than, worse than, or almost the

same as another. They can also choose not to make a judgment when uncertain. When

a user considers the subtopics in one taxonomy better than another, we add one point to

the former taxonomy’s score, and subtract one from the latter. Nine users participated in

the evaluation. The average scores across users are plotted in Figure 6.4, showing a clear

trend that the more weight we put on covering score, the better result we get. The best

result is achieved when only using covering score.

We continue using this approach to tune the parameters to generate the extension set.

We fixed α = 1 and β = 0, then changed each of the other parameters by 0.1 at each

step, while maintaining the sum to be one. Although there are significant difference in

user ratings from different parameter settings, the result did not show any clear pattern.

The best score is achieved when γ = 0.8, δ = 0.1, and η = 0.1.

6.4.3 Taxonomy comparison and analysis

After the parameters are tuned, we applied our algorithm on the two subsets of ODP us-

ing the best parameter setting. Figures 6.5 and 6.6 illustrate the hierarchies generated by

our algorithm for “Top/Computers/Computer Science” and “Top/Science”, respectively.

From the results, we can see our automatically generated hierarchies are reasonable. For

comparison, we implemented the approach proposed by Heymann and Garcia-Molina [88],

which will be referred to as “Communal Taxonomies”. The generated hierarchy is illus-

trated in Figure 6.7. The algorithm output depends on a tag similarity threshold. We
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Figure 6.5: Automatically generated subtree under Top/Computers/Computer Science

tried our best to tune it in order to get the best result. However, the generated hierarchy

does not seem to be reasonable. It has 183 categories and 3 levels, with 25.9 subcategories

per category on average. We think the following can provide one possible explanation.

The “Communal Taxonomies” approach is designed for generating taxonomies out of flat

tagging systems, as opposed to a tag-object dataset extracted from an existing hierarchy.

It starts building the hierarchy from the center of the tag similarity graph. If the original

hierarchy is dramatically unbalanced, the center may shift from the original root to its

most developed subtree, resulting in a more balanced yet less reasonable taxonomy.

We expect that the subtree consisting of only the basic sets generated by our algo-

rithm (“basic subtree”) should be similar to the original ODP hierarchy. Our observation

of the resulting hierarchies matches this hypothesis. In order to test it analytically, we

implemented the taxonomy comparison metric called “taxonomy overlap” proposed by
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Figure 6.6: Automatically generated subtree under Top/Science

Maedche et al. [122]. The context of a concept in a taxonomy is defined by all its su-

perconcepts and subconcepts. Then for each common concept across two taxonomies, its

overlap is computed by the Jaccard similarity of its context in each taxonomy. The overall

taxonomy overlap of two taxonomies is the average of individual overlap over all concepts.

The value of taxonomy overlap ranges between 0 and 1, where a higher score means more

similar. We computed the overlap between ODP and our basic subtree, as well as the
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Figure 6.7: A subtree under Top/Computers/Computer Science generated by “Communal
Taxonomies”

overlap between ODP and the one generated by “Communal Taxonomies”. The overlap

between ODP and our basic subtree is 0.98, meaning they are extremely similar. The

overlap is 0.77 for ODP and “Communal Taxonomies”. One may question the necessity

of the method generating the basic tag group. Given that the generated basic subtree

highly resembles the original hierarchy, a simple alternative is to directly operate on the

original hierarchy instead of regenerating it. However, the method proposed in Section

6.3.2 is useful for at least two reasons. First, we need to generate basic groups of subtopics

under the extension group of topics, which are not present in the original tree. Second,

such a method makes it possible to extend our approach to work on not only corpora with

existing tree structures, but flat tagging systems like Delicious.
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6.4.4 User studies

We conducted two types of user studies to evaluate user satisfaction of our hierarchy.

Algorithm 6.2 Reservoir Sampling with a Bias Towards High Level Topics

1: {INPUT: an array candidate[n] consists of n candidate topics;}
2: { an integer k, the number of topics to be selected; and,}
3: { a function getLevel, given a topic, returns its level.}
4: {OUTPUT: an array selected[k] consists of the k selected topics.}
5: for i = 1 to k do
6: selected[i] = candidate[i]
7: end for
8: for i = k + 1 to n do
9: r = random (i) {Generate a random integer between 1 and i, inclusively.}

10: if r ≤ k and getLevel(candidate[i]) ≤ getLevel(candidate[r]) then
11: selected[r] = candidate[i]
12: end if
13: end for

In the first user study, we compare three hierarchies: our hierarchy, the ODP hi-

erarchy and the ODP hierarchy with random extensions. The random extensions are

generated by randomly selecting descendant categories and promote them as the direct

children of the current category. This random selection algorithm is a variation based

on reservoir sampling. While a generic random sampling method gives each candidate

equal probability to be selected, our method favors descendant categories that are closer

to the current category (i.e., more generic topics have higher chances to be selected). The

algorithm is shown in Algorithm 6.2. This random extension is used as an alternative

baseline than the original hierarchy to eliminate the possible effect that users may simply

choose the hierarchy with more branches. In total, we randomly selected 27 categories

from “Top/Computers/Computer Science” and 50 categories from “Top/Science” to be
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Figure 6.8: Results of user study on quality of hierarchies.

evaluated by users. For each category, we randomly reordered the sequence of these three

hierarchies before presenting them to the users. For each of the selected categories, we only

show a local view of each hierarchy, i.e., the current category and its children. Evaluators

are asked if the quality of the child concepts are good(3), fair(2), or bad(1).

Figure 6.8 shows the average score for each of the hierarchies. Our hierarchy is con-

sidered to be much better than the random extension hierarchy, and is even better than

the manually created hierarchy from ODP. In the “Top/Science” dataset, our extension

branches give users positive impressions and the satisfaction score judged by users is im-

proved by 23% when compared with the original ODP. Similar results can be found on

the “Top/Computers/Computer Science” dataset.

We also designed specific tasks, asking users to find particular topics in the generated

taxonomies. There are two main types of tasks. The first is to find the subtopics under

some given topics. The second is to find a specific topic. Three users participated in this
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Figure 6.9: Average number of click counts and time for users to find designed items

experiment.

For the first kind of task, under a given level, if there is the target topic presented as

a choice, the user can just click it and enter into the subtopic list. However, if there is

no such alternative choice, the only way to find the subtopics of this topic is to try every

possible branch, and find whether these branches contain this topic. In this case, our

algorithm will be very helpful. This is because our algorithms can mine this kind of topic,

which is contained by several other topics (these can be treated as potential subtopics of

the current topic).

In the second kind of task, the user should find the exact topics. Our algorithms can

provide extra paths to give the user more options. So, intuitively, the user should find

the topic faster on average. when a user tries to find a certain topic, he must formulate a

model of how to find it. For example, the user is trying to find C, and A− > B− > C is

his original idea. However, the system only provides B− > A− > C, forcing the user to

discover this structure and change his mental model of the topic structure. Our algorithms

can additionally provide A− > B− > C to help fit this kind of user. Thus, on this task,
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our algorithms can also help users find what they want faster.

In our experiment, we design five tasks, which are

1. Find software related links.

2. Find fields which contain research groups in this web site.

3. Find journal related links.

4. Find theoretical publications.

5. Find conferences in 2008.

Task 1, task 2, and task 3 belong to the first type of task (subtopic task); task 4

and task 5 belong to the second type of task (specific topic task). Figure 6.9(a) shows the

number of clicks of users for each task and Figure 6.9(b) shows the elapsed time of users for

each task. We can see that the two figures are very similar; that is, if the number of clicks

is higher, the elapsed time is also higher. For the subtopic task (task 1, task 2 and task

3), our hierarchy can outperform the original ODP hierarchy consistently. These results

verify our hypothesis. The comparison of click counts for task 4 and 5 are extremely

consistent. In task 4, in ODP hierarchy, the “Publication” is under some subtopics of

“Theoretical”, such as “Complexity Theory”. So if users want to find the “Publication”

of “Theoretical”, they have to try subtopics to find “Publication”. In our hierarchy, we

have promoted “Publication” to the same level of “Theoretical”. In task 5, our algorithm

provides one extra path to the target, but the original hierarchy already provides a path
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which can be easily found by users. So the used time and the number of clicks for two

hierarchies are similar. Note that these tasks are designed to demonstrate the advantages

of our generated taxonomy. We expect the difference to be less dramatic on more generic

tasks.

6.5 Discussion and Conclusion

In conclusion, we proposed a new model to automatically expand an existing taxonomy

by providing more paths. Our experiments show that our approach is able to generate a

more flexible and comprehensive hierarchy from an existing hierarchy, leading to significant

reductions in user effort and time for hierarchy-centric task completion.

In this work, we assumed that category names are unique. However, this is not always

the case; a word may have different meanings in different contexts. Polysemy detection

and disambiguation may be of help in this situation. Another issue is that people may

use different terms (synonyms) to express the same meaning; our current approach does

not take such situations into account.

In the future, we plan to adjust our method so that it can generate flexible taxonomies

out of a collections of arbitrarily tagged documents like Delicious and BibSonomy. In

addition, with the help of appropriate tag suggestion methods, we plan to apply this idea

to any generic collections where tags may not be already available.
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Chapter 7

Conclusion and Future Work

In this dissertation, we studied two important topics related to classification: web page

classification and hierarchy adaptation. In this final chapter, we will first summarize the

most important points of the dissertation, then point out important problems left to be

solved by future research.

7.1 Summary

Web page classification, also known as web page categorization, is the process of assigning

a web page to one or more predefined category labels. Many information management

and retrieval tasks are dependent on classification, which makes web classification an

important topic to study. On-page features like textual content, tags, and visual features

can be used for web page classification. However, many pages do not contain enough

information for a classifier to make a reasonable decision. Information from neighboring
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pages makes a valuable supplement. When using information from neighbors, a generic

assumption is made that the neighborhood of same-category pages share certain common

characteristics. This assumption is made in almost all web classification work which

uses neighbor information. Another assumption assumes stronger correlations between

links and page categories: a page is more likely to be surrounded by pages with the same

category. This assumption works well in practice for subject classification on broad topics.

After reviewing existing work in Chapter 2, we proposed two methods to enhance web

page classification using neighbor information in Chapters 3 and 4. In Chapter 3, we

proposed the Neighboring Algorithm, which uses the class or topic vector from four types

of neighboring pages to help classification. The algorithm combines topic vectors or class

assignments from neighbors and the target pages itself using a weighted combination. The

weights are determined by tuning on real-world data with consideration of a variety of page

properties including human label availability, host, number of paths to the target, and,

the most important, neighbor type. As a result, the algorithm can significantly improve

classification accuracy. We also found that sibling pages give a good indication of a page’s

topic and that intra-host links provide some benefit.

One drawback of the Neighboring Algorithm is that it considers all information on

a page as a whole, without recognizing different values from different parts of a page.

In Chapter 4, we proposed an enhanced algorithm called F-Neighbor which breaks a

web page into several fields, recognizes the important fields and emphasizes them in the

combination of the neighborhood. Experiments showed that F-Neighbor further improved
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performance over the Neighboring Algorithm. We also found that although sibling pages

are still valuable, titles of parent pages become a very useful signal.

In Chapter 5, we continue investigating methods to improve classification, with the

subject focused on hierarchical classification. Most hierarchies used in hierarchical classi-

fication are created by and for humans, instead of being optimized for automatic classi-

fication. We proposed the Hierarchy Evolution Algorithm to adapt hierarchies for better

classification accuracy using evolutionary computation methods. By keeping a large num-

ber of hierarchies under scrutiny, and encouraging variety by making significant changes

to hierarchies, our method is able to find far better hierarchies for classification.

Besides constructing hierarchical classifiers, hierarchies are usually used to provide a

well-structured organization of information for users to explore and navigate. In Chapter

6, we continue to focus on hierarchy adaptation, but with the aim changed from automatic

classification to better facilitating user navigation. We analyzed a problem encountered

by most existing hierarchies: incompatible mental models between users and creators.

We extended a basic solution of the set covering algorithm by enriching its optimization

function to include a variety of hierarchy-oriented properties. The proposed method is able

to provide multiple, flexible paths, and thus generate expanded hierarchies for improved

user experience.

After recapitulating the dissertation work, we briefly summarize the lessons we learned

from the dissertation work.

• Web pages often contain inadequate information for classification. Information from
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neighboring pages, when used appropriately, can improve classification significantly.

• In topical classification on broad topics, an assumption is often made that a page

is likely to be surrounded by pages of the same topic. Many existing approaches,

including the approaches proposed in this dissertation, are based on this assumption.

• In general, text and human-generated labels from sibling pages are very useful in

classification, as well as titles of parent pages.

• Hierarchical classification can be more accurate than flat classification if appropriate

hierarchies are used. Using poor quality hierarchies can yield classification accuracy

even worse than flat classification.

• The huge number of possible hierarchies makes it prohibitively expensive for an

exhaustive search. A good search strategy should keep a significant number of

hierarchies under scrutiny (as opposed to only a few), and encourage variety by

making significant changes to hierarchies (as opposed to small modifications).

• Existing human-generated hierarchies, when used as an exploration mechanism for

users, often suffer from the problem of incompatible mental models of the domain

between users and creators. Expanding such hierarchies with selected additional

paths can alleviate the problem, and better facilitate user navigation.
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7.2 Future Work

Although a variety of research has been performed in the area of web classification and

hierarchy adaptation, some important problems still remain unsolved.

• How much do text and link similarity measures reflect the semantic similarity be-

tween documents? Although the work by Davison [52] and by Menczer and col-

leagues [126, 123] cast some light on this question, a more definitive answer requires

further study.

• Information from neighboring nodes is valuable. But such information is also noisy,

and so all neighbors (even of the same type) are unlikely to be equally valuable. How

might neighbors (or portions of neighbors) be weighted or selected to best match

the likely value of the evidence provided?

• Hyperlink information often encodes semantic relationships along with voting for

representative or important pages. Would the complete integration of content infor-

mation into link form be beneficial? This could be performed with various types of

artificial links as we have surveyed, or in a combined model of underlying factors, as

in the combination of PHITS and PLSA [45] for web information retrieval.

• The lack of a standardized dataset, especially one with the spatial locality represen-

tative of the Web, is a significant disadvantage in web classification research. How

can a truly representative dataset with these properties that is multiple orders of

magnitudes smaller than the actual Web be selected?
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• In Chapter 2, we made a distinction between single-label and multi-label classifica-

tion. Most existing work focused on single-label classification. However, multi-label

classification should not be considered a simple extension. For example, the cor-

relation among categories can be exploited to improve performance [222]. Other

questions remain. How does the degree of such correlations affect the classifica-

tion? Are the metrics used to evaluate single-labeled classification also reasonable

for multi-label?

• Search engine spam [26] is a significant concern in web information retrieval. What

effect does web spam have on topical or functional classification?

• A fast, accurate estimate of a classifier’s performance will greatly benefit hierarchy

adaptation processes, as well as many other tasks. Is there a light-weight method

to effectively estimate a classifier’s performance without training and testing the

classifier?

• Faceted search/browsing is an efficient method to organize and explore information

in certain domains where facets are well-recognized by human. Is faceted browsing

viable in any arbitrary domain, or on the generic web where well-defined facets are

not available? An automated approach to facet identification and extraction will be

valuable in such scenarios.

It is expected that solutions or even a better understanding of these problems may lead

to the emergence of more effective web classification systems, as well as improvements in
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other areas of information retrieval and web mining.
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