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Abstract

With billions of images captured by mobile users everyday, automatically recog-

nizing contents in such images has become a particularly important feature for

various mobile apps, including augmented reality, product search, visual-based au-

thentication etc. Traditionally, a client-server architecture is adopted such that the

mobile client sends captured images/video frames to a cloud server, which runs a

set of task-specific computer vision algorithms and sends back the recognition re-

sults. However, such scheme may cause problems related to user privacy, network

stability/availability and device energy.

In this dissertation, we investigate the problem of building a robust mobile vi-

sual recognition system that achieves high accuracy, low latency, low energy cost

and privacy protection. Generally, we study two broad types of recognition meth-

ods: the bag of visual words (BOVW) based retrieval methods, which search the

nearest neighbor image to a query image, and the state-of-the-art deep learning

based methods, which recognize a given image using a trained deep neural network.

The challenges of deploying BOVW based retrieval methods include: size of in-

dexed image database, query latency, feature extraction efficiency and re-ranking

performance. To address such challenges, we first proposed EMOD which enables

efficient on-device image retrieval on a downloaded context-dependent partial image

database. The efficiency is achieved by analyzing the BOVW processing pipeline

and optimizing each module with algorithmic improvement.

Recent deep learning based recognition approaches have been shown to greatly

exceed the performance of traditional approaches. We identify several challenges

of applying deep learning based recognition methods on mobile scenarios, namely
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energy efficiency and privacy protection for real-time visual processing, and mo-

bile visual domain biases. Thus, we proposed two techniques to address them,

(i) efficiently splitting the workload across heterogeneous computing resources, i.e.,

mobile devices and the cloud using our Moca framework, and (ii) using mobile

visual domain adaptation as proposed in our collaborative edge-mediated platform

DeepCham. Our extensive experiments on large-scale benchmark datasets and off-

the-shelf mobile devices show our solutions provide better results than the state-of-

the-art solutions.
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Chapter 1

Overview

In this chapter, we provide an overview of this dissertation. We start by briefly

reviewing some useful mobile visual recognition applications. Then we investigate

the limitations of traditional mobile-cloud based vision systems. After that, we

study two types of visual recognition methods and discuss the challenges of deploying

them for mobile scenarios. Finally, we summarize our contributions and present the

organization of this dissertation.

1.1 Mobile Visual Recognition

Nowadays, smartphones equipped with capable cameras enable people to generate

new visual content (i.e., images and videos) anytime anywhere. According to a recent

prediction, around 1.2 trillion photos will be be taken by mobile users worldwide

in the year 2017 [1]. In addition, the increasing popularity of mobile social apps

(e.g., Facebook, Instagram, Snapchat, Twitter, WeChat etc.) makes visual content

sharing more convenient. The fact that mobile users are creating and receiving a
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huge number of images/videos from time to time, makes mobile visual recognition

a particularly interesting and important feature.

One very useful application is image based product search. For example, by

recognizing a garment item in an image, an interested user can match it to the same

item in an online shop [2][3]. For such applications, a database of product images

is pre-built and indexed using extracted image features. By searching the database

(e.g., finding k nearest neighbors using Euclidean distance), the system returns a

short list of hyperlinks associated with product images most similar to the query. By

clicking on a returned image, users can be redirected to its online shop. Such image

retrieval based visual recognition technique is also being applied to other interesting

mobile apps such as recognitions of plants in botanical gardens [4], artworks [5],

landmarks [6] etc.

Mobile augmented reality (AR) apps [7] such as Pokmon GO [8] and Field Trip

[9] have recently attracted a lot of attention. Mobile AR apps add overlaid com-

ponents to object recognized in streamed video frames captured by mobile devices’

cameras, and provide much richer and possibly interactive content on the physical

world (e.g., Pokmon GO superimposes a Pocket Monster over a recognized sur-

face). Meanwhile, the emerging smart wearable glasses such as Google Glasses have

brought many more possibilities for future mobile AR apps. Novel AR services

nowadays can provide augmented information on real-world objects including build-

ing landmarks in travel apps [9, 10], human face recognition in a conference meeting

[11], supplement work instructions for maintenance and repair [12], museum exhibits

appreciation instruction [13] etc.

There are many other interesting and useful mobile apps. Scene recognition
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[14] can help mobile cameras to automatically select the best scene mode which

will produce the best results possible. Mobile check deposit allows bank customers

to deposit checks by recognizing information with mobile camera. Printed word

translation [15] can translate a book in an unknown language in real-time. All those

applications rely on certain computer vision algorithms over captures visual contents

by cameras of mobile devices.

1.2 Cloud Computing and Their Limitations

Relatively large-scale mobile visual recognition problem (e.g., retrieval over a 1-

million image database, or classification over 1000 object categories) is currectly

solved using a mobile-cloud system architecture (e.g., Google Goggles [16], CamFind

[17]), considering the complexity of advanced computer vision algorithms as well

as the constraint computing resources on mobile devices. A mobile client sends

captured visual content (i.e., images or video clips) to the cloud which runs the

specified computer vision algorithms on the input and sends back the recognition

result to the mobile client. This system design assumes that cloud servers have

powerful processing units with huge amounts of memory and storage, and thus

can generally run many computer vision algorithms in real-time and scale well with

increasing number of user requests. Meanwhile, it simplifies the mobile client design,

i.e., no matter what kind of mobile devices the user is using (whether Android, iOS,

or Windows), all it needs to do is to send captured visual content over the Internet.

Although the mobile-cloud architecture have some benefits, there are some seri-

ous drawbacks:
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• User Privacy Leakage: Visual content captured by mobile devices may

contain sensitive information such as faces, medicines a user is taking, personal

items. Such private personal information can be captured by the cloud service

and be leaked or sold to many unrelated parties.

• Networking Issues: The Internet connection is not always available for mo-

bile users and may be unstable. The system may cause large recognition

latency and even be completely unusable in such scenarios. Meanwhile, send-

ing large visual contents over the Internet using cellular links is financially

expensive when Wi-Fi is unavailable.

• Device Energy Consumption: Battery energy is still a scarse resource for

mobile device and most mobile phones need to be charged at least once per

day. Though a mobile client doesn’t need to run complex computer vision

algorithms on the device, sending multimedia data over the Internet is energy

inefficient especially when the data is transferred over the cellular network,

e.g. 4G LTE [18].

Though there have been much on-going research on solving those problems indi-

vidually, a complete solution may need breakthroughs in several different research as-

pects including security, networking, GPU hardware design and battery etc. There-

fore, in this dissertation, we aim to design a robust mobile visual recognition system

by considering the overall system design approach and may involve heterogeneous

computing resources, e.g., mobile devices, Edge server as well as the cloud.
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1.3 Detailed Research Challenges

It is not trivial to build robust mobile visual recognition systems especially when

users would like to perform relatively large-scale recognition tasks. Here, we elabo-

rate challenges faced in designing two major categories of visual recognition systems.

1.3.1 Bag of Visual Words Based Retrieval Systems

Image retrieval systems match a query image/video frame to an image database

and returns the visually most similar image(s) and(or) associated information (e.g.,

the history of a landmark). One perfect solution to eliminate all the drawbacks of

cloud-based systems discussed above would be to run the complete retrieval pipeline

efficiently on the mobile devices. However, such a solution faces the challenges due

to the limited computing, storage and energy resources of the off-the-shelf mobile

devices. In this dissertation, our explore typical challenges that one will face when

designing such a system using the popular bag-of-visual-word (BOVW) framework

[19]:

• Searching Space Reduction: The key problem for real-time image retrieval

is in designing an effective searching space reduction method, i.e., a method

which can significantly reduce the number of database images that need to

be compared to a query image. For mobile image retrieval, if the context

of the application scenario (e.g., location) can be inferred, we may reduce

the searching space to only images matching the current context. However,

such a strategy must be applied conservatively so that the target ground truth

image is not excluded. One can further reduce the searching space in a BOVW
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framework by comparing a query image to database images that share common

visual words. However, selecting a good visual vocabulary size is challenging

as using a large vocabulary will consume too much run-time memory, while

using a small vocabulary may not effectively reduce the searching space.

• Indexing Memory Cost: On-device image retrieval assumes an image database

is pre-constructed and already indexed for future searches. The database con-

struction complexity is a one-time cost that can be performed on powerful

cloud servers. However, the size of the database index should be compact

enough to fit within the memory size of mobile devices. Existing work solves

this problem by directly reducing the number of local features (e.g., SIFT

[20] or SURF [21]) extracted from database images [22, 23]. However, such

an approach only works on images without complex background or occlusion

objects, otherwise the recognition accuracy significantly drops. For example,

an image of a landmark may be occluded by trees, vehicles or people. Image

features detected on those objects are actually irrelevant to the landmark it-

self [6]. Thus, it is not easy to select a true representative and compact set of

features for an image.

• Re-ranking Efficiency: Re-ranking algorithms have been proposed to sig-

nificantly improve the final retrieval accuracy. Up to now, many existing work

[6, 22–25] rely on features’ geometric information to exclude outlier features

using a method like RANSAC [26]. However, such schemes require that each

database image maintains the geometric metadata, e.g., the feature coordi-

nates, which significantly increases the memory overhead on a mobile device.
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Recently proposed k-nearest neighbor (KNN) based re-ranking method com-

pares the similarity of the query image’s KNN with the KNNs of top returned

database images, and promotes images whose KNN is more consistent to the

query image [27, 28]. Though this method dose not require additional mem-

ory space, it is computationally expensive since processing each query actually

involves searching multiple images, i.e., both the query image and the top re-

turned images.

1.3.2 Deep Learning Based Systems

Deep learning based visual recognition systems feed an input image or video frames

to a trained deep neural network (normally a convolutional neural network [29])

which achieves high accuracy on many traditionally hard visual recognition tasks

such as large-scale object classification [29–31] and object detection (i.e., simulta-

neously locate the object and recognize what the object is in an image) [31–34].

However, one faces challenges if we want to apply deep learning based approaches

in mobile scenarios:

• Energy/Privacy Tradeoff: State-of-the-art deep neural networks are com-

posed of many neural network layers [31]. With powerful high-end GPUs, deep

learning methods can still be executed in real-time on a cloud server. How-

ever, such design requires mobile users sending raw images over the Internet

which may compromise users’ privacy. Encrypting images can guarantee no

privacy information is leaked during the transmission, but in most scenarios,

encrypted images need to be decrypted before they are being fed into a deep

learning algorithm but often cloud servers are untrusted. On the other hand,
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researchers have recently proposed methods to accelerate the execution of deep

learning algorithms [35–37] so that it can be deployed entirely on a mobile de-

vice. However, the energy cost for processing each image is still considerably

high even with those accelerated deep learning models (up to 50x more than

a cloud-based system).

• Visual Domain Bias: A visual domain is the context or the environment

where the deep learning model is applied to. Each domain (e.g., a library or

a museum) has a subset of objects and has unique attributes such as lighting

condition, background etc. The visual domain bias phenomenon means that

trained deep learning models have bias on different visual domains, and the

actual accuracy obtained can be dramatically different. Thus, visual domain

adaptation is necessary for high-accuracy recognition during deployment[38].

Existing work solves this adaptation issue by fine-tuning a trained deep learn-

ing model [39, 40] on the subset of objects in a target visual domain, but

such fine-tuning requires dedicated GPU servers and well-labeled high-quality

training images. For mobile visual recognition in the wild, the possible number

of different visual domains can be endless, and therefore it is really challenge

to adapt a deep learning model in every visual domain.

1.4 Contributions

In this dissertation, we discuss how to design robust mobile visual recognition sys-

tems and our discussion focuses on two major types of recognition methods, namely
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bag of visual words (BOVW) based image retrieval approaches and deep learn-

ing based visual recognition approaches. We design and implement novel systems

which address most of the challenges discussed above. We also demonstrate that

our proposed systems achieve better performance than the state-of-the-art systems

via extensive system evaluations:

• For the bag of visual words based image retrieval systems, we propose and

implement EMOD, an efficient image retrieval system which performs on-

device image retrieval on context limited image database. EMOD adopts our

new algorithm design and leverages the parallel computing capabilities made

possible by multi-core mobile processors. Our EMOD prototype system on

Android platform achieves real-time high-accuracy retrieval with significantly

reduced memory and energy consumption.

– We address the problem of indexing memory cost by proposing an object

word ranking algorithm to identify the most useful visual words of a

database image, so that each image can be represented using a concise

signature with 85% memory saving.

– We propose a top-inverted-index ranking method that applies to the bag-

of-visual-word framework to reduce 95% of searching space for real-time

on-device image retrieval.

– We propose a novel unsupervised 2-stage k nearest neighbor (KNN)

based re-ranking method. Our algorithm outperforms state-of-the-art re-

ranking algorithms on several benchmark datasets with minimum mem-

ory cost and reduced time latency.
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• For deep learning based systems, we propose Moca an energy-preserving and

privacy-preserving mobile visual recognition system. It decouples the hierar-

chical layers of DNN models and splits them across mobile and cloud. It uses

privacy-preserving feature maps extracted from DNNs on mobile as the input

for further deep processing on cloud to protect personal user data.

– We propose five novel techniques for improving the energy efficiency of the

feature map extraction process on mobiles which include layer decompo-

sition, parameter-free layer merging and branch reduction. Experimental

results with a variety of deep learning based mobile applications demon-

strate that the privacy of these data are well preserved, while the energy

overhead on mobile device is 1.2x - 6.7x (16.67% - 85.07%) 1 lower than

the state-of-the-art approach.

– We propose a deep learning based framework that allows mobile applica-

tion developers to quantify the privacy level for user data based on their

own privacy criteria. We present the differentiated privacy mechanism for

DNN-based mobile applications, and enable adaptive DNN model recon-

struction to utilize mobile resources and achieve better privacy guarantee.

• We propose an edge-mediated framework, DeepCham, to adapt deep learning

models for object recognition under different mobile visual domains. DeepCham

generates high-quality domain-aware adaptation instances from crowd-sourced

1Here is how the values are calculated and converted: suppose that system A has energy cost
ea and system B has energy cost eb, if eb/ea=6.7, we say that system A’s energy overhead is 6.7x
lower than system B and or system A’s energy overhead is 85.07% lower than system B which is
calculated as (eb-ea)/eb.
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in-situ mobile photos, and the adaptation can be agilely executed in real-time

without dedicated GPU server.

– We create a new image dataset, Mobile Context Image Dataset (MCID),

which enables controlled experimental evaluation of deep model adap-

tation of different mobile visual domains. Using MCID, We show that

DeepCham achieves as much as 150% accuracy improvement over the

baseline deep learning model without an adaptation.

We now discuss the contributions in detail:

We first study the image retrieval problem using the popular bag-of-visual-word

framework. Our proposed EMOD system identifies the potential for reducing run-

time memory cost by analyzing the database image indexing pipeline. To construct

a concise representation for a searchable object, it is critical to identify the most

salient features or visual words of such object. We address this problem by proposing

an object work ranking algorithm which ranks the importance of a visual word for a

target object using multiple wild-captured images each from a different point of view.

We show that our method greatly reduces the size of database image signatures,

but also increases the retrieval accuracy due to the filtering of less important or

noisy visual words. Then we analyze the potential for search space reduction by

analyzing the query image searching pipeline, and propose a novel method to ignore

database images with few common visual words to the query. In addition, we

propose an efficient 2-stage KNN based re-ranking algorithm: we locate potential

low-ranked ground-truth images in the first step and compare the KNN similarity in
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step two using a new KNN similarity measure. For computation efficiency, we pre-

calculate the KNN of all database images which are loaded in memory. Compared to

geometric based re-ranking method, we achieve up to 90% memory saving, while we

show that the retrieval accuracy after re-ranking outperforms the state-of-the-art on

several benchmark datasets (including a large 1 million image dataset). Finally, we

analyze the parallelism in the query pipeline by leveraging multiple-core processors

of modern mobile devices for further speed-up. Experimental results show that real-

time and high-accuracy retrieval over a large image database is achieved while the

memory and energy overhead has negligible impact on off-the-shelf mobile devices.

For deep learning based visual recognition, our first contribution is, Moca,

which aims for energy-efficient and privacy-preserving deep processing for mobile

visual recognition. Recently an increasing number of mobile vision applications are

demanding deep learning techniques to empower intelligent services, such as face

recognition and object detection. However, it is still unattractive to run these com-

putationally intensive services on resource-constrained commodity mobile devices.

Offloading these services to cloud reduces the burdens on mobiles, but may expose

users sensitive data to untrusted cloud servers. Moca decouples the hierarchical

neural network layers and splits them across mobile and cloud for energy-efficiency.

Moca leverages the privacy-preserving feature maps extracted from deep models to

protect personal data privacy. Moca also enables differentiated privacy settings via

a DNN-based privacy quantification framework (under the threat model we defined

in chapter 3) to meet the varying privacy requirements of different mobile applica-

tions. Our experiments with various mobile vision applications against thousands

of photos and videos from a variety of validation datasets demonstrate that Moca
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has up to 6.7x (85.07%) lower energy overhead on mobile devices compared to the

state-of-the-art approaches, while providing stronger data privacy with negligible

impact on application accuracy.

Finally, we present DeepCham, a crowd-sourced deep learning model adaptation

framework. DeepCham is the first piece of work that solves the mobile visual domain

bias problem using a trained large-scale deep learning model. The proposed adapta-

tion method does not require high-end GPU servers or expert-created high-quality

training images. Instead, DeepCham leverages abundant metadata-rich (e.g., GPS

location, time) photos that have already been taken by mobile users, and trains a

shallow adaptation model (e.g., SVM) in real-time on a mobile device. To achieve

this, DeepCham includes an attribute-based visual domain specification module that

identify photos matching a target visual domain, an efficient object bounding box

proposal method to locate objects shown in a photo, and an interactive object label-

ing pipeline which suggests labels for an input image using a generic deep learning

model. Our experiment on a new collected Mobile Context Image Dataset (MCID)

obtains as much as 150% accuracy improvement. Our prototype system shows that

all modules can run on a mobile device so that the user privacy is well protected.

In addition, we demonstrate that our system is more energy efficient than cloud

computing solutions.

1.5 Organization

This dissertation is organized as follows.

In Chapter 2, we provide an overview of the bag of visual words (BOVW) image
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retrieval framework, and present our EMOD system [41] for efficient image retrieval.

EMOD includes three novel algorithms: the object word ranking algorithm to re-

duce the indexing memory cost of database images, the top-inverted-index ranking

algorithm to reduce the query searching space, and the light-weight 2-stage KNN re-

ranking method to increase accuracy. We further parallelize the image query pipeline

with multi-threaded processing on multi-core mobile processors and achieve better

efficiency.

In Chapter 3, we study the problem of optimizing the energy cost and the pri-

vacy protection of deep learning based visual recognition, and present our Moca

system. Moca uploads only privacy-preserving visual features extracted from users

data to the cloud, while utilizing the cloud for high-performance deep processing.

To accelerate the feature extraction procedure and reduce the feature size, several

optimizations including layer decomposition and parameter-free layer merging are

proposed and implemented in Moca. It also enables differentiated privacy for dif-

ferent mobile applications.

In Chapter 4, we study the problem of mobile visual domain adaptation in

deep learning based mobile visual recognition system, and present our DeepCham

framework [42], the first adaptive mobile object recognition framework that allows

deep learning model to be used successfully in mobile environments. Specifically,

DeepCham is mediated by an edge master server which coordinates with participat-

ing mobile users to collaboratively train a domain-aware adaptation model which can

yield much better object recognition accuracy when used together with a domain-

constrained deep model.

Chapter 5 concludes the dissertation, summarizes what have been learned, and
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discusses future work directions.
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Chapter 2

EMOD: An Efficient On-device

Mobile Visual Search System

Recently, researchers have proposed solutions to build on-device mobile visual

search (ODMVS) systems. Different from traditional client-server mobile visual

search systems, an ODMVS supports image searching directly within a mobile de-

vice. An ODMVS needs to be designed with constrained hardware in mind e.g.

limited memory, less powerful CPU. In this chapter, we present, EMOD, an efficient

on-device mobile visual search system based on the Bag-of-Visual-Word (BOVW)

framework. Based on users’ mobile context (e.g., location), EMOD downloads an

indexed partial image database to the mobile devices for on-device image retrieval.

An Object Word Ranking (OWR) algorithm is proposed to efficiently identify the

most useful visual words of an image so as to construct a compact image signature

for fast retrieval and greatly improved retrieval performance. Due to having a small
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visual dictionary, we propose the Top Inverted Index Ranking scheme to reduce the

number of candidate images for similarity calculation. In addition, we propose an

efficient 2-stage k-NN based re-ranking method as an essential final step to improve

the retrieval accuracy. Via extensive experimental evaluations, we demonstrate that

our prototype EMOD system yields better retrieval accuracy and query response

time than the state-of-the-art for a database with over 10K images.

2.1 Introduction

Visual search application allows a user to obtain information about objects in his

proximity by taking an image of the object and using this to search a database of

known objects. Such applications have become very popular among mobile users

as mobile devices become more powerful with advancements in processing power,

screen size and availability of higher wide area wireless bandwidth. Today, mobile

visual search is available through services such as Google Goggles [16] or CamFind

[17]. Such mobile visual search systems allow users to recognize visual objects in

their vicinity. Interesting applications include recognitions of CD covers [43] or

products [17] for online shopping, recognitions of plants in botanical gardens [4],

artworks [5], or landmarks [44]. In addition, such image search applications are also

very useful for government organizations e.g. criminal suspect identification [45],

disease detection and diagnosis [46].

Traditionally, the mobile visual search systems [43][44] [47][5] adopt a client-

server (CS) architecture. A user uses his mobile device to send a compressed im-

age or an image signature extracted from the captured image to a remote server
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which performs visual search related operations on an image database. However,

such cloud-based systems typically face performance related issues either due to

insufficient mobile network coverage or the inability of the recognition engine to

process large quantity of simultaneous image matching quickly against a large im-

age database. Such performance issues can potentially hamper the adoption rate

of emerging mobile visual search applications e.g. a scan-and-purchase clothing

application.

With the advances in mobile devices, on-device mobile visual search systems

(ODMVS) have been recently proposed to solve the above problems [48][22][49].

Compared to the client-server architecture, ODMVS has several benefits such as

network independence, better privacy control, and low query latency. Meanwhile,

ODMVS can be integrated to an existing client-server based system. For example,

a landmark recognition application allows a user to download a subset of a large

image database, e.g. based on his location information, in the presence of a good

quality network connection (e.g. WiFi). Then, a user can perform on-device visual

search whenever he wishes without having to contact the remote server.

Due to the hardware limitations of mobile devices, more efficient image process-

ing and matching techniques need to be designed for ODMVS. In this chapter, we

present the design and evaluation of an efficient on-device mobile visual search sys-

tem (EMOD) based on the popular Bag-of-Visual-Word (BOVW) framework [50].

Our EMOD design includes (1) pipelining the image database construction to re-

duce its memory impact, and (2) pipelining the image query process to reduce the

query processing latency. Efficient techniques are proposed to identify (a) compact

image signatures during image database construction, and (b) images which match
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a query image efficiently. Such techniques ensure that EMOD yields satisfactory

retrieval performance with low latency.

In summary, EMOD makes the following contributions:

• designs an efficient ODMVS which uses optimized Bag-of-Visual-Word frame-

work with improved retrieval performance, and lower resource cost.

• uses our proposed Object Word Ranking algorithm to identify the most useful

visual words of a database image so that each image can be represented using

a concise signature with 85% memory storage saving,

• uses a modified inverted index scheme, named Top Inverted Index Ranking,

to reduce the number of candidate images, and hence improves the query

response time,

• uses our proposed efficient 2-stage re-ranking method to re-rank retrieved im-

ages for improved retrieval accuracy,

• achieves low query response time by exploiting the parallel computing capa-

bilities made possible by mobile devices with multi-cores.

The rest of the chapter is organized as follows: we introduce the background

of the Bag-of-visual-word framework in section 2.2 and review the related work;

the system overview and our design principles are presented in section 2.3. This is

followed by a detailed system algorithmic design in section 2.4 and the 2-stage k-NN

re-ranking algorithm in section 2.5. We present the extensive system evaluations in

section 2.6.
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2.2 BOVW Background and Related Work

The Bag-of-visual-word (BOVW) framework was proposed [50] to effectively reduce

the storage and computation overhead of a visual search system. The visual words

are centroids of clusters formed using feature descriptors, e.g. SIFT [20] and SURF

[21] extracted from training images. Typically, a very large visual dictionary, e.g.

1M visual words, is required to achieve the best retrieval performance. Once a

visual dictionary is constructed, the feature descriptors from a single image are then

quantized into a word histogram, i.e. each descriptor is classified to the nearest word

in the dictionary. When a very large dictionary is used, the resulting word histogram

of an image is a very sparse vector, and thus one can construct a compact signature

for each image, i.e. only words with frequency greater than 0, and their index

are kept. With such a representation, the signature of an image with 1000 SURF

descriptors only consumes fewer than 5 KB. Next, a selected weighting scheme,

typically based on the tf-idf of visual words, is applied to an image signature, and

the similarity between two images are then computed as the distance (e.g. Euclidean

or Cosine distance) between the two weighted image signatures. To speed-up the

matching process, an inverted index is built in which a visual word is linked to a

list of images containing this visual word. When a query image is received, the

system identifies database images with common visual word(s) as the query image

as candidate images. With a large visual dictionary, normally only a small number

K of candidate images (i.e. the candidates) need to be compared with the query

image, which significantly reduces the computational overhead. Finally, the top Nr

of the ranked candidates are re-ranked, for example, using the geometric information

associated with the raw image features, and the re-ranked image list is returned.
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Any real-time visual search system built using the BOVW framework needs to

efficiently perform feature quantization, i.e., to classify an extracted feature descrip-

tor to the nearest visual word in the dictionary. For a large visual dictionary with

1 Million visual words, each image feature has to be compared against each visual

word in the dictionary to find a nearest neighbor. Two main approaches are used

to speed up this feature quantization process: the hierarchical k-means (HKM) ap-

proach using a visual vocabulary tree [51] and the approximate nearest neighbor

(ANN) approach using a plain dictionary [52]. We will discuss both schemes in

detail in section 2.4.1.

ODMVS requires compact signatures to represent the data-base images. Thomee

et al. [23] proposed to use only the most frequent or top weighted words, but using a

large dictionary means that the majority of visual words has only a few counts and

the noisy words cannot be detected ahead of time. Turcot et al. [53] and some follow-

up work [54][44] suggest only keeping useful features in a database image. Such

features are determined by matching against other database images containing the

same object. Meanwhile, a word augmentation method is introduced to incorporate

words from other images containing the same object into the signature of an image

considering that each image shows a different view of the object. However, two

factors can affect the performance of this approach under the BOVW framework.

First, as explained in [55][52], matched features can be quantized into different

words and hence such “falsely” matched features cannot be detected. Second, the

number of matched features varies greatly for each database image which results

in varying image signature length. Such variation has a negative impact on the

retrieval performance. In this chapter, we propose the “Object Word Ranking”
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algorithm to solve these two problems (see section 2.4.2).

ODMVS can only afford a relatively small visual dictionary so that the entire

dictionary can be loaded into the system memory. Hartl et al. [22] proposed to

reduce the 64-value SURF descriptor into 32 values so that the visual dictionary can

be reduced by half. However, the retrieval accuracy using this approach significantly

reduced. Chen et al. [49] adopted a variant of the BOVW scheme, which generates

an image signature using a residual visual vector instead of using the raw word

histogram. This scheme performs well using a 128-word visual dictionary, and each

database image can be represented with a signature of 533 bytes. However, with

such a small dictionary, it cannot take advantage of the inverted index to reduce the

number of candidate images for similarity calculation, and thus yields to relatively

large query latency. In contrast, EMOD uses a larger 30K visual dictionary, and

we propose a modified inverted index scheme to speed up the query processing (see

section 2.4.3).

Re-ranking schemes are proposed to improve the final retrieval performance.

Up to now, many existing work [49][22] [44][52][53] uses RANSAC [56] to verify

the matched features geometrically so that images with more inlier matches are

promoted to a higher rank. However, this scheme requires that each database image

maintains the geometric metadata, e.g. the feature coordinates, which significantly

increases the memory overhead. In this chapter, we propose an efficient 2-stage KNN

based re-ranking Ranking Consistency [57] method, which proves to be as powerful

as the geometric verification method but consumes considerably less memory space

(see section 2.4.4).
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Various compression and encoding methods are proposed to the BOVW frame-

work [48][58][59][60] to further reduce the memory impact. Those methods are not

discussed in this chapter, but can be easily integrated into our system.

2.3 System Overview

Figure 2.1: EMOD System Overview

Figure 2.1 illustrates the overview of our EMOD system, which allows users to

operate with (online mode) and without network access (offline mode).

In the online mode, a user sends image queries to a remote server just like those

traditional client-server (CS) mobile visual search systems. The received query

result can be displayed on the screen of that user’s mobile device or augmented

over the query image. Besides the image retrieval function, our system allows users

to download a subset of image database according to the context of the mobile

application (e.g., based on a pre-specified geographical city region), when a suitable

network connection is present (e.g., a good Wi-Fi connection) so that users can

operate in an offline mode.
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The offline mode can be manually activated by a user or automatically activated

when a network connection is slow/lost. In the offline mode, the mobile device first

loads the downloaded image database as well as its associated metadata (e.g. the

visual dictionary, the inverted index etc.) to the memory. When a query image is

captured, it is processed locally on the mobile device, and any query result can then

be displayed directly on that device.

Here, we focus our work on the design of the offline mode feature, and our goal

is to achieve real-time image query using a 10K image dataset on the mobile device

with decent retrieval performance and minimal memory cost.

2.3.1 Design Principle

Figure 2.2 illustrates the our algorithmic optimization of EMOD over the BOVW

framework. The design of EMOD adheres to the following two principles:

(1) As small as possible: given an image dataset, we want the system to consume

as small memory cost as possible. With the BOVW framework, we aim to reduce

the size of the constructed image database(all orange blocks shown in Figure 2.2).

Meanwhile, we must maintain the retrieval performance at a good level.

(2) As fast as possible: given a query image, the system should return the query

result as fast as possible. With the BOVW framework, we aim to reduce the com-

puting latency of each component in the image retrieval pipeline (the yellow blocks

shown in the right in Figure 2.2). We must also ensure that the speed-up does not

significantly degrade the retrieval performance.

26



2.3.2 Database Construction Pipeline

The image database is typically constructed in an offline manner, and it includes

(i) the visual dictionary, (ii) the image signatures,(iii) additional supporting data

structures (e.g. the inverted index, the IDF table), and other useful metadata.

Visual Dictionary : Considering the memory limitation of mobile devices, we

must use a smaller dictionary of size W than those (e.g. 1M) used in the server-side

image search engines. In this chapter, we show that we are able to build an efficient

ODMVS with a W = 30K dictionary. The 30K dictionary consumes only 7.5 MB

memory which is acceptable for most mobile devices.

Image Signature: We proposed an Object Word Ranking (OWR) algorithm to

select the N most useful visual words per image. Thus, each database image signa-

ture can be represented using two vectors of N elements: one for storing the visual

word indices and the other for storing the frequency of such visual words in that

particular image. With N=100, an image signature only consumes 300 bytes. The

evaluation result shows that such compact signature is more representative of the

image than all quantized visual words from the raw signature, and hence improve

the retrieval performance of our EMOD system. (Details in section 2.4.2)

Inverted Index Table: This table is used to generate the Top K candidate image

list during query processing. It contains entries of visual words and their associ-

ated lists of image identifiers which contain that visual word. The table size is a

function of the number of visual words in each image signature N. When N=100,

each database image adds only 200 bytes (assuming each image identifier is a short

integer) to the memory consumed by the inverted index table.
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IDF : The IDF is an array of weighting values for each visual word in the dictio-

nary. For the 30K visual dictionary, this table only consumes 117 KB memory.

Metadata: The metadata of each database image is used to re-rank the returned

image list so that images containing the same object can be promoted to a higher

rank. The traditional geometric verification-based re-ranking approach requires each

image to store the geometric information (e.g. the coordinates) of each detected

feature. However, even with the most advanced compression scheme [61], each

feature still requires 6 bytes additional memory, and an image with 1000 detected

features requires almost 6KB just to store such metadata. For efficient re-ranking,

our system adopts a novel KNN based re-ranking scheme. For a database of V

images, each image only needs to maintain a list of h=0.005*V top ranked image

identifiers by using that database image as a query. (Details provided in section

2.4.4)

2.3.3 Image Query Pipeline

Each image query requires real-time response, and hence we aim to reduce the com-

puting complexity of each processing component in the image query pipeline. In

this work, we do not attempt to modify the feature detection [62] and descrip-

tor calculation step [21][20] but adopts the de facto standard scheme as used in

[44][52][49][57][50][23].

Feature Quantization: To achieve real-time feature quantization, we adopt the

fast approximate nearest neighbor [63][52] approach. The computing complexity

to quantize each feature is reduced from O(W ) (for brute-force nearest neighbor

search) to O(logW ), where W is the size of the visual dictionary. (Details in section
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Figure 2.2: The Efficient On-device Mobile Visual Search System. The unique process-
ing components are highlighted as red italics.

2.4.1)

Candidates Generation: The baseline BOVW system generates candidates im-

ages using the inverted index in a naive way: all database images containing visual
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word(s) common to the query image are treated as Candidates. However, with a

small visual dictionary and thousands of database images, too many Candidates are

generated for image matching. In this work, we use our Top Inverted Index Ranking

method to generate the top K database images with the most common words to

the query image as Candidates, and thus achieve a fast image matching. (Details

provided in section 2.4.3)

Similarity Calculation: The similarity between two images are calculated as the

cosine distance of two normalized tf-idf weighted signatures. Here, there is a tradeoff

between the system memory cost, and the query processing speed as to whether the

normalized tf-idf weighted signature of database images should be pre-computed or

be calculated in real-time. The pre-computed signature would consume 300 more

bytes per image for storing such weights. However, as shown in our performance

evaluation, the extra memory cost only brings a slight decrease in query latency.

Therefore, in this chapter, we compute the weights of the database image signature

in real time for significant memory saving.

Result Re-ranking : In this work, we use the Ranking Consistency scheme for

efficient result re-ranking. Instead of using the iterative re-ranking method proposed

by the authors in [57], we use a simplified re-ranking method that substantially

reduces the re-ranking latency but only has a slight degradation on the re-ranking

performance. (Details in section 2.4.4) Furthermore, we propose an efficient 2-

stage re-ranking scheme for greatly improved re-ranking accuracy. In stage one, we

generate an expanded list of candidate database images to re-rank so that some lower

ranked ground truth images will not be ignored for the next stage. In stage two,

we re-rank the list of candidate images using a confidence score which is calculated
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based on both ranking consistency and reciprocal k-NN property. (Details in section

2.5)

In addition, since modern mobile devices tend to have more CPU cores, the query

processing components such as feature quantization and similarity calculation can

be parallelized to speed up such computation steps. We discuss the performance

improvement of parallelism in the system evaluation section.

2.4 Detailed Algorithmic Design

In this section, we provide more detailed description of our algorithm optimization

that solves the following problems: visual dictionary construction, useful visual word

selection, efficient image matching and re-ranking. With our proposed techniques,

EMOD only consumes 13 MB for a database of 10K images. Real-time image query

response time is also achieved with good retrieval performance.

2.4.1 Visual Dictionary Construction

In the BOVW framework, a visual dictionary is used to quantize image features into

individual visual words which are later used for similarity calculation. When used in

a real-time visual search system, the quantization is desired to be processed as fast

as possible. Up to now, there are two main trends for fast feature quantization: the

visual vocabulary tree (VVT) approach, and the fast approximate nearest neighbor

(ANN) approach using a plain dictionary.

Visual Vocabulary Tree : Nister et al. proposed the popular Visual Vocabu-

lary Tree (VVT) scheme [51], which is a hierarchical data structure constructed by
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clustering the training feature descriptors with hierarchical k-means algorithm. A

VVT can be defined as a B by D tree, where B is the branching factor, and D is

the depth of the tree. The VVT is built iteratively: (1) all training descriptors are

initially clustered into B clusters; (2) descriptors in each cluster are further clus-

tered into B sub-clusters; (3) the process continues until depth D is reached. In [51],

Nister et al. state that both leaf nodes and internal nodes can be regarded as visual

words. However, Philbin et al. [52] show that using only leaf nodes results in better

retrieval performance than including internal nodes as visual words. Therefore a 1M

visual dictionary can be represented using a B10D6 VVT. For feature quantization,

one searches from the root to the leaf node level of the tree to find the best leaf node

as the quantized visual word of every feature. This search process finds a nearest

neighbor at each tree level and searches only the sub-tree of that nearest neighbor.

Therefore, the quantization complexity for a feature is O(B ∗ D) on a single CPU

core, and it requires only 50% additional memory than the plain dictionary contain-

ing the same number of visual words. VVT is adopted or compared in some prior

ODMVS related work [22][49].

Fast Approximate Nearest Neighbor on a Plain Dictionary : A plain

visual dictionary of size W is created by clustering the training descriptors to W

clusters, and each cluster centroid is regarded as a visual word. For feature quan-

tization, each feature descriptor finds its nearest neighbor in the dictionary, which

can be done quickly using fast approximate nearest neighbor methods. The most

commonly used fast ANN method is the randomized kd -trees [64]. In the proposed

scheme, a query data (i.e. the feature descriptor) is searched simultaneously in n

randmoized kd -trees in a Best Bin First [65] manner. The search in each kd -tree
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stops when i leaf nodes are reached, and the best candidate is returned. With

properly selected n and i values, the query performance can be optimized [63], i.e.

achieving a balance between query time and error rate. In a kd -tree, the query

complexity is determined by the number of nodes explored for similarity computa-

tions (typically Euclidean distance calculations), nd. Therefore with n trees, the

quantization complexity for a feature is bounded by O(nd ∗n) on a single CPU core.

However, with the “Early Termination” technique proposed by Keogh [66] 1, the

actual quantization complexity is much smaller. In our experiment, we found that

the quantization complexity of the randomized kd -trees scheme is approximately

bounded by O(i ∗ n), i.e. the number of leaf nodes reached in each tree multiplied

by the number of trees. On the other hand, additional memory is required for each

kd -tree which is constructed using all the words in the visual dictionary.

Scheme Selection Criterion :In [52], Philbin et al. pointed out that VVT

data structure generally produces more quantization errors than the plain dictionary

using the randomized kd -trees scheme. However, they did not compare CPU and

storage cost of these schemes. To determine which scheme we should use, we conduct

an experiment using both schemes where we constrain the amount of memory cost

for storing the visual dictionary, and the amount of CPU cycles for performing

feature quantization. Then, we select the scheme which yields a better retrieval

performance. We present our controlled comparison results in the system evaluation

section.

1The “Early Termination” technique is also applied to the VVT data structure for finding the
nearest neighbor in each level. However, only very limited speed-up is observed when the number
of candidates in each tree level is small.
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(a) All Detected Features (b) Selected Useful Features

Figure 2.3: Features detected on an image of the Memorial Church contains many noises
from trees, cloud etc.

2.4.2 Useful Word Selection

A small vocabulary dictionary may lead to degraded retrieval performance. To com-

pensate for this accuracy loss and to reduce the memory cost of image signatures,

we propose the Object Word Ranking (OWR) method to retain only useful words

of an image. Before describing OWR, we first describe the ”Useful Feature” scheme

proposed in an earlier work and its limitations. We also suggest a simple improve-

ment to this scheme. In this section, we regard images containing the same object

as friend images to ease our explanation.
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“Useful Feature” and The Problems

Photos taken by a mobile device contain many noisy features as shown in Figure

2.3(a). Although it is possible to manually crop an image to keep only the de-

sired object (e.g. the church in Figure 3), it will be tedious to do so for every single

database image. Besides, one may continually add new images to the database. Tur-

cot and Lowe in [53] proposed to find useful features by matching an image against

other database images containing the same object (i.e. the friend images) followed

by geometric verification. Only top Nf features with most matched feature(s) are

reserved for word quantization (as shown in Figure 2.3(b)). A word augmentation

method is introduced so that an image can incorporate visual words from other

images containing the same object, assuming that each image represents a different

view of the same object. The authors also provided solutions to deal with a database

of unlabeled images: each database image is used as a query image to find the top M

matched images which are further verified using the geometric verification method,

and the images with more than k matched features are regarded as friend images.

This solution has two problems:

Quantization Error : Matched features may be quantized into different visual

words due to quantization errors[55]. Such “mismatches” cannot be detected and

would degrade the retrieval performance.

Unbalanced Signature Length : Even though the authors suggested that each

image reserves at most Nf matched features, the number of total matched features

varies greatly2 for each database image. Meanwhile, since multiple features can be

2In our experiment, the number of matched features per image ranges from 21 to 776 with a
standard deviation of 89.
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quantized to the same visual words, two images with the same number of features

can have signatures with different numbers of visual words. This varying signature

length has a negative impact on the retrieval performance which is confirmed by our

experiment.

Simple Method for Balancing the Signature

We propose a simple improvement to the “Useful Feature” method to produce bal-

anced image signatures of length N. It works as follows:

Step 1 Balanced Feature Quantization: Instead of reserving top Nf features,

each image initially reverses all the features which have at least one matched feature

in other friend images, in a ranked list (ranked by the number of matched features).

Iterating though the ranked list, each accessed feature is quantized to a visual word

to form the image signature. The iteration stops when the signature length reaches

N or all the features in the ranked list have been accessed.

Step 2 Balanced Word Augmentation: After step 1, for those images with sig-

nature length smaller than N, we add words from their friend images3 until the

signature length reaches N. The friend images are ranked by the number of matched

features, and we first add words from the higher ranked images.

Step 3 Final Balance: It is quite likely that after the first two steps, there are

still images that have signatures shorter than N. For those images, we quantize the

image features with no matched feature in “friend” images into visual words, and

calculate the weighted value of those additional visual words using the tf-idf scheme.

Those more heavily weighted visual words are incorporated into the image signature

3In our experiment, we also incorporate level-2 friends which are the friend images’ friends as
suggested in [53].
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until the signature length reaches N.

This simple improvement solves that problem of unbalanced image signatures,

but still has feature quantization errors.

Algorithm 1 Object Word Ranking Algorithm (Supervised Version).
Input: A set of raw image signatures Sraw = {Raw1, Raw2, ..., Rawk} for images containing the

same object
Output: A set of compact signature Scpt = {Cpt1, Cpt2, ..., Cptk}

1: Scpt ← null
2: Ranked List← null
3: wordCountMap← null
4: for each raw signature Rawi ∈ Sraw do
5: for each Wordj ∈ Rawi do
6: if Wordj /∈ wordCountMap then
7: wordCountMap[Wordj ]← 1
8: else
9: wordCountMap[Wordj ] + +

10: Sort wordCountMap by count
11: Ranked List← [wordi ∈ wordCountMap]
12: for each raw signature Rawi ∈ Sraw do
13: Cpti ← null
14: for each Wordj ∈ Ranked List do
15: if Wordj ∈ Rawi then
16: Cpti.add(Wordj)
17: if Cpti.length > N then
18: break
19: Scpt.add(Cpti)

return Scpt

Object Word Ranking

In this subsection, we introduce the Object Word Ranking algorithm which solves

both problems of the “Useful Feature” method. Basically, for each object, we gen-

erate a ranked list of each word by its occurrence count in all images containing this

object (i.e. the number of images containing this word). Thus, if a useful feature

is quantized into different words with its matched feature in another image, those

words will get a low rank in the ranking list. After that, each image ranks its own

37



words based on the word ranking list of that object, and the top N ranked words are

reserved as the image signature. For words with equal occurrence frequency, we use

their tf-idf weights to break the tie. For images containing two or more objects, we

generate one signature for each object. The pseudo-code for the supervised scenario

(i.e. all training images are labelled) is presented in Algorithm 1.

Algorithm 2 Object Word Ranking Algorithm (Unsupervised Version).
Input: The raw image signature of an image Raw0 and the set of raw signatures Sraw =
{Raw1, Raw2, ..., Rawk} for its “friend” images

Output: The compact signature Cpt0
1: Wt← 1 . Initial Weighting Factor
2: Cpt0 ← null
3: Ranked List← null
4: wordCountMap← null
5: for each Wordj ∈ Raw0 do
6: wordCountMap[Wordj ]←W0

7: for each raw signature Rawi ∈ Sraw do
8: Wt ←Wt ∗ p
9: for each Wordj ∈ Rawi do

10: if Wordj ∈ Raw0 then
11: if Wordj /∈ wordCountMap then
12: wordCountMap[Wordj ]←Wt

13: else
14: wordCountMap[Wordj ]+ = Wt

15: Sort wordCountMap by count
16: Ranked List← [wordi ∈ wordCountMap]
17: for each Wordj ∈ Ranked List do
18: Cpt0.add(Wordj)
19: if Cpt0.length > N then
20: break

return Cpt0

For the unsupervised scenario where database images are not labeled, we adopt

a similar method to that used in the “Useful feature” method to find “friend”

images. Each “friend” image is ranked by the number of matched features, which

are verified inliers using the RANSAC method. We further augment the “friend”

list by appending each friend image’s friends. Different from the algorithm for the
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supervised scenario where the words existing in all images are treated equally, in

the unsupervised scenario, each word existing in higher ranked “friends” is given a

larger weighted count in the object word ranking, since we have a higher confidence

that the higher ranked “friends” are true positives that do contain the same object.

We use a scaling factor p (0 < p < 1) to reduce the weight at each rank i :

Wi = W0 ∗ pi (2.1)

where W0 is the initial weighting factor. We present the algorithm for the unsu-

pervised scenario in Algorithm 2.

2.4.3 Top Inverted Index Ranking

Since the on-device mobile visual search system uses a relatively small dictionary,

simply including all images sharing common word(s) with the query image as can-

didates will result in a large candidate set. Due to the limited screen size of mobile

devices, we may present users with query results from those most-likely true-positive

candidates, and let them submit additional queries if they desire more. Furthermore,

users are only interested in the 1st ranked image for each query in mobile augmented

reality applications. With the inverted index, we can return the top k images sharing

the most common words as the query image using the Top Inverted Index Ranking

method shown in Algorithm 3. Each query image then only compares against these

top k candidate images, and hence makes real-time query possible on a small visual

dictionary.
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Algorithm 3 Top Inverted Index Ranking

Input: The signature of a query image Sigquery and the inverted index index
Output: A set of k candidate images Simg = {img1, img2, ..., imgk}

1: Simg ← null
2: Ranked List← null
3: imageCountMap← null
4: for each raw word Wordj ∈ Sigquery do
5: img List← index[wordj]
6: for each Imagei ∈ img List do
7: if Imagei /∈ imageCountMap then
8: imageCountMap[Imagei]← 1
9: else

10: imageCountMap[Imagei] + +

11: Sort imageCountMap by count
12: Ranked List← [imagei ∈ imageCountMap]
13: for each Imagei ∈ Ranked List do
14: Simg.add(Imagei)
15: if Simg.length > k then
16: break

return Simg

2.4.4 Re-ranking with Ranking Consistency

We use the ranking consistency method [57] to re-rank the returned list which sig-

nificantly improves the retrieval performance. The ranking consistency scheme is

based on the observation that two query images containing the same object would

yield similar ranked lists. The ranking consistency scheme works as follows:

Initial Query: when querying an image in the database, an initial ranked list

with top K images (selected from the k Candidate images) is returned based on

certain similarity metrics such as the cosine distance;

Query Expansion: the top K images in the initial ranked list are used as query

images to get their own ranked lists; a min-hash scheme is used for fast approximate

retrieval;
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Ranking-Consistency based Re-ranking : the top K images are re-ranked based

on the similarity between each image’s ranked list and the query image’s ranked list.

The re-ranked list Lre is built iteratively: at each iteration only one image is added

to Lre, and each additional image is added based on its similarity to all the images

already in the list. The similarity between two ranked lists li and lj is measured

using the Rank Biased Overlap (RBO) similarity which is calculated using Equation

(2.2):

RBO(li, lj, p, h) = (1− p)
h∑
d=1

pd−1Xd

d
(2.2)

where p is a weighting factor similar to that defined in Equation (2.1) and a

larger p is used for lower ranked results, h is the the number of results to compare,

and Xd is the number of common words in the top d ranked results of both lists as

shown in Equation (2.3):

Xd(li, lj) = |li[1 : d] ∩ lj[1 : d]| (2.3)

We modify the Ranking Consistency scheme using the two design principle dis-

cussed in Section 4.1.

Pre-calculated Ranked List for Database Images : When the image database is

built, we pre-calculate the ranked list of each database image by using it as a query

image. As discussed in the paper [57], for a dataset of V images, a list of top h

(h = [0.005*V ]) results should be reserved for decent re-ranking performance. For

a dataset of 10K images, 50 image IDs (2 bytes each) are stored to represent the

ranking list. However, in our evaluation, we find that reserving just 25 image IDs
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per image can achieve similar performance improvement. Therefore, we only use a

pre-calculatd ranked list of 25 images which incurs an additional 50 bytes per image

for lower query latency, and improved retrieval performance.

Fast Re-ranking with Direct RBO : Instead of calculating the re-ranked list iter-

atively, we simply calculate the RBO between the query image’s ranked list and the

ranked lists of all top K initially ranked images. The images are then re-ranked by

the RBO to generate a new list to be returned to a user. The computing complexity

is reduced from O(K2) to O(K ). As shown in our evaluation section, the iterative

RBO method improves the retrieval performance slightly over this simplified direct

RBO method, however, we can easily get a better retrieval result by re-ranking e.g.

top 2K results instead of K, which improves the retrieval performance significantly

over the iterative method on the top K results, but still incurs a much smaller

latency.

2.5 2-Stage KNN Re-ranking

In section 2.4.4, we use a k -NN based re-ranking method with ranking consistency

measurement. However, there are two problems affecting its re-ranking performance.

First, for efficiency consideration, only a fixed number of top K returned images are

returned. However, if ground-truth images rank lower than K initially, such re-

ranking algorithm cannot improve the ranking of those images. Second, ranking

consistency measurement calculates the similarity of two ranking lists based on

identical items which appeared in each list. However, a more meaningful ranking

consistency measure should also consider the reciprocal k -NN relationship [67][68].
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Two images are reciprocal k -NN if they are K nearest neighbors of each other, which

is a strong indicator that two images are relevant. This means, for two ranked lists,

we should not only consider the exactly matched images (i.e. common elements)

but also images that are reciprocal k -NN. For example as shown in Figure 2.4, to

calculate the k -NN similarity between n1 and n2, though image n1 3 (which is the

same as nt) and image n2 2 (which is the same as nl) are not exactly the same image,

they should still contribute to k -NN similarity since they are reciprocal k -NN.

Figure 2.4: k -NN Re-ranking Example (K = 3). The rank of the 3rd nearest neighbor
n3, which is an irrelevant image (in red dashed box), will be dropped since
the similarity between its k -NN to the query’s k -NN is very low. On the
other hand, the images ranked at positions l (nl) and t (nt) will be promoted
since (1) they are reciprocal k -NN of the queries high-ranked neighbors (nl
is n2’s reciprocal k -NN and nt is n1’s reciprocal k -NN), and (2) their k -NN
lists are similar to the query’s k -NN list (e.g. sharing common elements).
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We propose a new two-stage k -NN re-ranking method. Different from [68][57]

which only re-rank top K neighbors in the ranking list, in the first stage, we expand

this list by exploring reciprocal k -NN relationship to incorporate potential relevant

images (e.g. nl and nt in Figure 2.4). In the second stage, we re-rank this expanded

list by giving each image a confidence score, which is iteratively calculated with a

novel reciprocal k -NN aware ranking consistency measure.

2.5.1 k-NN Expansion

Instead of re-ranking a fixed number K of nearest neighbors, we expand the list

by adding top neighbors’ reciprocal k -NN which are potential relevant images that

are low ranked (i.e. > K) in the preliminary ranked list. Here, we define Top(q, k)

as the set of k nearest neighbors for the image q, and then the set of reciprocal k

nearest neighbors of image q is:

R(q, k) = {p ∈ Top(q, k) ∧ q ∈ Top(p, k)} (2.4)

Specifically, we only add top K∗ = K/s (s > 1 and we use s = 2 for all

experiments) neighbors’ reciprocal neighbors to the expanded list to avoid adding

too many noisy images. Meanwhile, with the help of the scaling factor s, we only

need to maintain a relatively short list K∗ of nearest neighbors for each database

image, so that the memory cost for re-ranking purpose is significantly reduced. The

procedure for k -NN Expansion is described in Algorithm 4.
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Algorithm 4 k -NN Expanding

Input: Top(q,K), the scaling factor s and threshold for reciprocal neighbor k
Output: Expanded nearest neighbor set Sext

1: K∗ = K/s
2: Sext = Top(q,K)
3: for each nbi ∈ Top(q,K∗) do
4: for each nbj ∈ R(nbi, k) do
5: if nbj /∈ Sext then
6: Sext.add(nbj)

return Sext

2.5.2 k-NN Re-ranking

With the expanded k -NN list, we calculate a confidence score for each of the image

iteratively similar to that proposed in [57], and then re-rank the images in descend-

ing order of the confidence scores. To calculate the confidence score, we combine

two similarity metrics to measure the similarity between two lists: the rank biased

overlap (RBO) similarity and the reciprocal similarity.

The rank biased overlap (RBO) between two ranked lists is calculated using

Equation 2.2. The reciprocal similarity between two ranked lists was recently pro-

posed [68] to consider the reciprocal k -NN relationship between each pair of images

from top l nearest neighbors of two query images i and j.

Recip(i, j, l, k) = ∑
x∈Top(i,l)

∑
y∈Top(j,l)

fr(x, y, k) · wr(i, x) · wr(j, y) (2.5)

where fr(x, y, k) is a binary function indicating whether two images x and y

are k reciprocal neighbors; wr is a weighting function that gives higher weight to
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higher ranked neighbors. However, the proposed linear weighting function wr in [68]

only works when each query image has the same number of ground-truth images

(i.e. images representing the same physical objects with the query image). Here, we

propose a new weighting function to remove this limitation:

wr(i, x, r) = rτi(x) (2.6)

where r is a weighting factor in the range (0, 1), and the function τi(x) returns

the rank of x in image i ’s ranked list.

We propose a new reciprocal k -NN aware RBO metric which integrates the

reciprocal k -NN relationship into the ranking consistency measure. Specifically, we

append the reciprocal similarity to the Xd factor in Equation 2.2 as shown in the

following new equation:

rRBO(li, lj, p, h) = (1− p)
h∑
d=1

pd−1Xd +Recip(i, j, d, k)

d
(2.7)

Now, we describe how the re-ranking works. After the expanded ranked list Sext

is generated in stage 1, we iteratively add images from this expanded list Sext to

a new re-ranked list, S, as follows: initially, we put s1, which is the query image

itself, into S. Next, we find s2 which has the maximum similarity of ranked list as

s1 (measured by rRBO), and insert s2 into S. Images that have been inserted into

S will be removed from Sext. Subsequently, for each of the rest ranking position k of

the new list S (k > 2), we choose an image sk from Sext with the largest confidence

score (Equation 2.9) and append this image to the end of S. This confidence score,

cs(x) is a product of the rRBO scores of this selected image with all previously
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selected elements in S, i.e.

sk = arg max
x∈{xi}Ki=1\{sj}

k−1
j=1

cs(x) (2.8)

cs(x) =
k−1∏
j=1

rRBO(x, sj) (2.9)

2.5.3 Re-ranking Speed-up

For fast re-ranking, we maintain a rRBO similarity table which captures the rRBO

similarity score between a database image and its reciprocal nearest neighbors. To

further improve performance, one can also use a fixed-size cache to store rRBO

similarity scores of images from recent or popular queries.

2.6 System Evaluation

2.6.1 Datasets

We form our dataset by combining 12,753 landmark images of 4 datasets. The

combined dataset contains 3658 ground truth images of 148 landmarks, and the

number of groundtruth images per landmark ranges from 5 to 289. The rest of the

9095 images are used as distraction images which contain none of the 148 landmarks.

To verify the performance of our system, a 5-fold cross validation is performed

where each fold uses 1/5 of the 3658 ground truth images as query images (∼ 732

images per fold). We choose to evaluate landmark recognition since the landmark

images generally contain more noisy features which makes the recognition task more
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challenging. Our system should works equally well on other image retrieval tasks.

ZuBud

The ZuBud [69] dataset contains images of 105 buildings in the Zurich city. Each

building has 5 training images that are captured by two types of digital cameras

at random view points. In addition, 115 query images are captured all of which

contain buildings in the dataset.

Oxford and Paris

The Oxford Buildings dataset [70] and the Paris dataset [71] are landmark images

collected from Flickr by searching for particular landmarks. The Oxford dataset

contains 5062 images of 11 different buildings while the Paris dataset contains 6412

images of 12 different buildings. Each image is manually assigned to one of the

following four labels: (1) Good : the building is clearly presented. (2)OK : more

than 25% of the building is visible. (3)Junk : less than 25% of the building is

presented. (4)Absent : the building is not visible. We only keep the Good and OK

images as ground truth images, and hence we have 567 images from the Oxford

dataset and 1790 images from the Paris dataset. The remaining 9095 images from

these two datasets are used as distraction images.

LuBud

We have collected our Lehigh University Building dataset (LuBud) [72] using mobile

devices (HTC Sensation 4G and LG G2). LuBud contains 181 images of 20 Lehigh

University buildings.
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2.6.2 System Performance Metrics

• mAP Mean average precision (mAP) is the average value of the average preci-

sion (AP) computed for each query image. The AP can be efficiently calculated

using Equation 2.10:

AP =

∑n
k=1(P (k) ∗ rel(k))

N
(2.10)

where N is the number of ground truth images, k is the position in the ranked

list, n is the position of the lowest ranked ground truth image, P (k) is the

precision of the top k returned results, and the function rel(k) returns 1 if

the item at rank k is a ground truth image, 0 otherwise [73]. AP is a value

between 0 and 1, and 1 means perfect retrievals for a query image. The mAP

metric is widely used to evaluate the image retrieval systems [49][57][52][53].

To calculate the mAP, the query image is compared against all database images

to obtain a full ranked list.

• ANMRR For a mobile visual search system, users may care more about the

quality of the top-ranked results instead of the complete ranked list. Therefore,

we use the Averaged Normalized Modified Retrieval Rank (ANMRR) metric

[74] designed by the MPEG group to evaluate our system. To calculate the

ANMRR, a few definitions are needed :(a) Rank(k), the position in which

the ground truth image k is retrieved; and (b) K (q), the number of returned

images. In a mobile visual search system, the number of returned images is

generally limited by the screen size of mobile devices. In our experiment, we

set K (q) to 25. Therefore, if a ground truth image is not returned, its rank is
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set to a large value as follows:

Rank(k) =

 Rank(k) : Rank(k) ≤ K(q)

1.25 ∗K(q) : Rank(k) > K(q)

NG(q) denotes the number of ground truth images for a query image q,

NG(q) =

 NG(q) : NG(q) ≤ K(q)

K(q) : NG(q) > K(q)

Then, the average rank (AVR) of a query image can be calculated using Equa-

tion 2.11:

AV R(q) =
1

NG(q)

NG(q)∑
i=1

Rank(k) (2.11)

The Modified Retrieval Rank (MRR) and Normalized Modified Retrieval Rank

(NMRR) are calculated using Equation 2.12 and 2.13:

MRR(q) = AV R(q)− 0.5 ∗ [1 + NG(q)] (2.12)

NMRR(q) =
MRR(q)

1.25 ∗K(q)− 0.5 ∗ [1 + NG(q)]
(2.13)

NMRR is a value between 0 and 1, and 0 means a perfect retrieval for a query

image q. Finally, the ANMRR is simply computed as the average of all NMRR

values from all query images. ANMRR is also a popular metric to evaluate
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Table 2.1: Mobile Devices in Experiment

Device CPU Memory Android Flash Storage Release Date
HTC Sensation 1.2 GHz Dual-core 768 MB 4.0.3 1 GB June 2011

LG G2 2.26 GHz Quad-core 2 GB 4.4.2 32 GB Sep. 2013
Nexus 7 1st Generation 1.2 GHz Quad-core 1 GB 4.4.4 16 GB July 2012
Nexus 7 2nd Generation 1.51 GHz Quad-Core 2 GB 4.4.4 16 GB July 2013

image retrieval systems [75][76][77]. To calculate the ANMRR, a query is

processed using the Top Inverted Index Ranking method to identify a list of

the top K=100 database images with the most common visual words as the

query image, and a ranked list of these top K=100 images are then generated.

• Top1 Typicall, mobile users are only interested in the top ranked result e.g.

the name of a building as in mobile augmented-reality applications. Using the

first image in the ranked list generated from the ANMRR evaluation our Top1

image, we compute the recognition rate.

2.6.3 Experimental Setup

We implemented and evaluated our database construction pipeline on a Linux server

with Intel(R) Xeon(R) CPU E3-1240 v3 @ 3.40GHz and 16 GB ram. For mobile

efficiency, we use a few mobile devices released in the past 3 years including two

smart phones: HTC Sensation and LG G2, and two tablets: Nexus 7 1st Generation

and 2nd Generation. The characteristics of those devices are listed in Table 2.1.

For feature detection and descriptor extraction, we use the SURF64 implemen-

tation from OpenCV 2.4.9.
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Table 2.2: The Performance of Various Dictionary Configurations.

Type Size Trees mAP ANMRR Top1
Plain 5K 6 kd -trees 0.3289 0.7832 49.8%
Plain 10K 3 kd -trees 0.3428 0.6374 58.1%
Plain 15K 2 kd -trees 0.3531 0.5757 64.4%
Plain 30K 1 kd-tree 0.3712 0.4928 69.2%
VVT 20K 1 VVT 0.3424 0.5925 62.7%

2.6.4 Visual Dictionary and The Baseline

We compare the retrieval performance using different visual dictionary construc-

tion and feature quantization methods: the Visual Vocabulary Tree (VVT) and the

Randomized kd -tree(s) on a plain dictionary. For our controlled experiment, we

require that each method consumes about the same amount of memory for storing

the visual dictionary, and about the same amount of CPU cycles on a single core for

feature quantization. In our experiment, we use a B3D9 VVT (19683 visual words)

as the benchmark for memory consumption and feature quantization latency, and

then build different numbers of randomized kd -trees to compare against the bench-

mark. The Oxford 5K dataset [70] is used to train the visual dictionary, and the

total number of extracted features is 4,475,961. For retrieval performance evalua-

tion, all images retain all their visual words to generate the baseline performance

result. Re-ranking is not performed in this experiment.

Our experimental results are presented in Table 2.24. We find that a plain

dictionary built with randomized kd -trees still outperforms VVT even with fewer

visual words (Plain 15K vs. VVT 20K). On the other hand, a larger visual dictionary

with fewer randomized kd -trees produces much better performance than a smaller

4Re-ranking methods such as geometric verification or ranking consistency are not applied.
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visual dictionary with more randomized kd -trees, meaning that reducing the number

of trees only has a small impact on the approximation accuracy for the nearest

neighbor search. Therefore, we conclude that with constrained memory size and

CPU cycles, the plain dictionary with a single kd -tree method should be adopted

for constructing our visual dictionary.

All remaining experiments reported subsequently use a plain 30K dictionary on

a single kd -tree, and the performance result highlighted in Table 2.2 is used as the

baseline performance.

2.6.5 Compact Signature

We compare the following methods for generating compact signatures:

TopSurf : The authors in [23] suggested that only the top N most frequent words

are retained as the image signature. However, since many words may have the same

frequency, we further rank those words using their tf-idf weights.

Useful Feature: This uses the method introduced in [53] which retains at most

N features per image with word augmentation.

Balanced Signature: We apply the simple improvement discussed in section 5.2.2

to the Useful Feature method that each database image retains N visual words.

Word Object Ranking : Each image retains N words using the Word Object Rank-

ing algorithm proposed in section 5.2.3.

For the last 3 methods, we evaluate both the supervised and unsupervised sce-

narios. In the unsupervised scenario, to decide whether two images contain the same

object, the threshold for the minimum number of matched features (with RANSAC

verification) is set to 20. For images with no matched images, we use TopSurf to
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Figure 2.5: mAP. (S) denotes the supervised scenario and (U) denotes the unsupervised
scenario.

generate their image signature.

Retrieval Performance

The retrieval performance results are plotted in Figure 2.5, Figure 2.6 and Figure

2.7. Our proposed Object Word Ranking (OWR) algorithm is the only method with

obvious improvement over the baseline system without compact signature. Further-

more, our OWR method outperforms other methods. The other methods generally

perform worse than the baseline system when a small number of words/features are

used or similar to the baseline system when a large number of words/features are
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Figure 2.6: ANMRR. (S) denotes the supervised scenario and (U) denotes the unsuper-
vised scenario.

used. The native “Useful Feature” method performs even worse than the simple

“TopSurf” method while the balanced signature length method outperforms “Top-

Surf” when their signature length exceeds 150 words.

In the supervised scenario, OWR achieves the best mAP score of 0.4633 for using

the top 150 ranked words as the image signature, but it also has a good score of

0.4623 when using only the top 100 words, which is almost 25% improvement over

the baseline system. OWR achieves the best ANMRR score of 0.3175 when the top

100 words are used, which is over 35% improvement to the baseline system. The

Top1 recognition rate of OWR is above 73.5% when more than 100 visual words are
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Figure 2.7: Top1. (S) denotes the supervised scenario and (U) denotes the unsupervised
scenario.

used, and this introduces a performance improvement of 7%.

In the unsupervised scenario, the performance of OWR increases monotonically

with the number of reserved visual words. However, the performance of using 100

visual words is only slightly worse than that achieved using 200 visual words.

Memory Reduction

Using the 30K visual dictionary, on the average, each image has a raw signature of

651 words. With the compact signature generated using the Object Word Ranking

algorithm (100 words per image), we are able to reduce the memory cost per image
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by 85%.

2.6.6 Ranking Consistency based Re-ranking

We evaluate the retrieval performance using the Ranking Consistency re-ranking

method (section 2.4.4). For this experiment, we represent each image with 100

visual words generated by the Object Word Ranking algorithm in the supervised

scenario. We set the weighting factor p to 0.9 as used in [57].

Iterative RBO vs Direct RBO

Table 2.3 (K denotes the number of images to re-rank) compares the two re-ranking

methods by applying ROB on the top 25 ranked items on each image’s ranked list.

As shown in the table, the iterative scheme achieves slightly better performance over

the direct scheme but introduces significantly more re-ranking latency5. However,

a better performance can be achieved for the direct scheme when more images are

re-ranked (e.g. 50-100), which only increases minimal re-ranking latency (3 ms

for re-ranking 50 more images). On the other hand, the latency for applying the

iterative method increases significantly if more images needs to be re-ranked, i.e.

270 ms for re-ranking 50 more images.

Performance Improvement

We evaluate the performance improvement by applying the Ranking Consistency

re-ranking scheme. As suggested in the paper [57], for a dataset with V images,

5The time here is measured on the server-side, and an even higher latency can be observed on
a mobile device.
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Table 2.3: Iterative RBO vs Direct RBO

Method K mAP ANMRR Top1 Time
Iterative 50 0.4941 0.2770 74.42% 200 ms
Direct 50 0.4907 0.2771 74.42% 2 ms

Iterative 100 0.5059 0.2718 74.42% 470 ms
Direct 100 0.4989 0.2723 74.42% 5 ms

each database image should have a ranked list of top h (h = [0.005*V ]) matching

images. Therefore, for a 10K dataset, each image is supposed to maintain a list

of 50 image IDs (100 bytes). In this experiment, we also evaluate the re-ranking

performance for the scenario where each image only maintains a ranked list with 25

image IDs (50 bytes).

The experiment results are presented in Table 2.4. In the table, K denotes the

number of images to re-rank, and h denotes the number of image IDs in the ranked

list of each image. The mAP and ANMRR scores increase with increasing numbers

of re-ranked images. On the other hand, only slight improvement is observed for

the Top1 retrieval result. Meanwhile, we find that reducing the number of image

IDs by 50% has little impact on the re-ranking performance. We get an even better

Top1 recognition result on a smaller h value.

2.6.7 Total Memory Cost For a 10K Database

Based on our presented experiment results, we can build an efficient on-device mobile

visual search system with a relatively small 30K visual dictionary (∼ 7.5 MB).

For a decent retrieval performance, each image can be represented with a compact

signature (∼ 300 Bytes) consisting of 100 visual words and their associated word
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Table 2.4: Performance Improvement with Ranking Consistency

K h mAP ANMRR Top1
25 25 4.52% 5.32% 0.81%
25 50 4.56% 5.61% 0.56%
50 25 6.14% 12.7% 0.81%
50 50 6.25% 13.57% 0.56%
75 25 7.12% 14.0% 0.81%
75 50 7.33% 14.96% 0.56%
100 25 7.92% 14.2% 0.81%
100 50 8.22% 15.18% 0.56%

frequencies. An additional 50 Bytes per image is used to store a ranked list of 20

image identifiers for our ranking consistency based re-ranking method. Meanwhile,

each database image consumes 200 Bytes in the inverted index table for fast query

purpose. The IDF weighting vector on the 30K visual dictionary consumes about

117 KBytes memory. The total memory cost is less than 13 MB.

2.6.8 Mobile Efficiency

We implemented our prototype system as well as an augmented reality application on

the Android platform. For mobile efficiency test, we randomly select 5 images from

Table 2.5: Query Images

Landmark Feature No. Words No.
Business Center 930 874

Engineering Library 953 906
Linderman Library 417 399

Christmas-Saucon Hall 442 427
Packard Lab 577 543

Average 663.8 629.8
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LuBud as our query images, and build an image database using the remaining 12748

images from the combined dataset. Each database image is represented with the 100

most useful words selected using our supervised Object Word Ranking algorithm.

The number of features and quantized words for each query image are summarized

in Table 2.5.
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Figure 2.8: Image Database Loading Time

Database Loading Time

The start-up time is critical for a mobile visual search system, for a ODMVS needs to

load the image database into system memory during initialization. For fast database

loading, we use the Kryo serialization framework [78] to store the image database

as binary files which can be efficiently loaded into the system memory.

Figure 2.8 plots the loading time for the image database as well as the supporting

data structures on different mobile devices. Generally, all devices have a loading
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time of less than 4.5 seconds making the system immediately available after bootup.

Loading the visual dictionary (i.e. the kd -tree) is the most time consuming part due

to its size, and the loading efficiency depends on the CPU frequency of each device.

The old Sensation device has a small internal flash storage, so we store the binary

files on the external SD card. Therefore, their file loading processes are much slower

than other devices which load the files from the internal storage directly. On the

other hand, the Nexus Tablets are very fast on loading files from the internal flash

storage.
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Figure 2.9: Total Query Latency: (S) denotes result of single threaded computing model;
(M) denotes result of multi-threaded computing model. The latency reduc-
tion is given with percentage in red color.

61



Query Latency

We measured the query latency of five query images using the 4 Android devices

listed in Table 2.1. Both single-threaded and multi-threaded computing models are

used, and our experiment results are shown Figure 2.9.

Single-threaded computing model : For the single-thre-aded computing model,

the query latency is largely determined by the CPU frequency. On the average, query

responses are returned within 1-1.5 seconds for those devices with quad-core CPUs.

For the HTC Sensation with only 2 cores, it takes much longer time (more than

2 seconds) than the device with the same CPU frequency but having more cores

(i.e. the 1st Generation Nexus 7). One possible reason is that many background

processes, such as phone and message service, which normally have higher priorities

than user applications, run on that HTC Sensation phone.

Multi-threaded computing model : The multi-threaded computing model

can be applied to those computing components with repeated computing tasks to

speed up such computations. Thus, we convert several more time-consuming com-

ponents, e.g. feature descriptor extraction, feature quantization, top inverted index

ranking, and similarity calculation, in the query processing pipeline into multi-

threaded computing tasks. As shown in Figure 2.9, a query submitted using newer

quad-core devices can receive a response in about 500 ms (∼ 50% improvement),

and about 1.7 seconds (28% improvement) on the old dual-core device.

Concurrency Analysis: Modern mobile devices are equipped with multi-

core CPUs. To speed up the query process, we make the maximum parallelism

by exploiting the benefit of multi-threaded computing model. The multi-threaded

computing model can be applied to those computing components with repeated

62



computing tasks on a large number of inputs, and thus the following four most

time-consuming components in the query processing pipeline can be converted into

the multi-threaded computing tasks.

(1) Feature detection and description: the image features can be efficiently de-

tected with fast Hessian detector that is introduced in [21], however, the descriptor

calculation on those detected features is a time consuming task. Therefore, we cal-

culate the feature descriptors concurrently on each CPU core after the features are

detected, i.e. each core work on one partition of the image. The multi-threaded

computing model largely reduce the feature description latency for almost 50% on

all devices.

(2) Feature Quantization: we partition the feature descriptor list into several

segments and send each segment to a single thread, so multiple features can be

quantized to visual words concurrently on each CPU core. With 4 CPU cores, upto

75% reduction on the computing time can be achieved.

(3) Top Inverted Index Ranking : for each visual word in the query image, we get

the list of database images containing this word and update their counts in a Hash

Table. However, since the operation of reading the image list is very quick, but the

Hash Table updates must be performed in a synchronized way, the multi-threaded

computing model actually slow down this process. Therefore, we keep using the

single-threaded computing model on this query component.

(4) Similarity Calculation: we partition the candidates image list into several

segments and send each segment to a single thread, so multiple candidates images

can be compared concurrently on each CPU core. There isn’t much improvement

when more CPU cores are involved in the processing, and the devices with higher
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CPU frequency show smaller latency reduction, e.g. on average LG G2 only has

17% reduction, but the 1st generation Nexus7 has 35% reduction. The reason is

that the calculation of cosine distance between two image signatures is relatively

fast, and in total we only have to compare 100 candidates images generated using

the Top Inverted Index Ranking method. Therefore, the benefit of using parallelism

is compromised by the cost of data preparation and thread management.

Discussion

Some query processing components can be further optimized to reduce query la-

tency: (1) restricting the number of features (e.g. 200 features as used in [49])

extracted from a query image would decrease the latency for feature extraction,

feature quantization, and the Top Inverted Index Ranking ; (2) reducing the number

of candidate images (e.g. selecting k=50 candidates instead of 100) would reduce

the similarity calculation and re-ranking latency. However, such approaches may

degrade the retrieval performance for certain application scenarios and we intend to

investigate these issues in our future work.

2.6.9 Evaluation for 2-Stage k-NN Re-Ranking

We first present presents three sample re-ranking results using our proposed method

in Figure 2.10. They show that our method returned more similar images in the

top-ranked list. In the rest of the subsection, we show that large retrieval accuracy

improvement can be achieved without any obvious sensitivity to the settings of

tunable parameters. In addition, we also demonstrate that our proposed method

outperforms other state-of-the-art k -NN based re-ranking approaches.
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Figure 2.10: Three examples of re-ranking from Holidays dataset. For each query (left),
initial ranked list (the first row) and re-ranked list (the second row) are
demonstrated.

Dataset
Initial Result Re-ranked Result

Baseline
BOVW

Advanced
BOVW

Baseline
BOVW

Advanced
BOVW

UKbench 74.58% 85.90% 81.14% 91.86%
Holiday 53.58% 71.88% 57.19% 77.21%

Holiday+1 million N/A 51.79% N/A 57.90%

Table 2.6: mAP for both inital and re-ranked retrieval results

Experimental Setup

Datasets: we use two popular benchmark datasets, namely (i) the UKbench dataset6

and (ii) the Holiday dataset7. We also add one million distraction images 8 to the

6http://www.vis.uky.edu/~stewe/ukbench
7http://lear.inrialpes.fr/~jegou/data.php
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Holiday dataset for large scale evaluation.

Performance Metric: We use the typical mean average precision (mAP) as

our retrieval accuracy metric.

Initial Ranked List: For each benchmark dataset, we generate two initial

ranked lists: one low accuracy list using the baseline bag-of-visual-word (BOVW)

model; and one high accuracy list using the advanced BOVW model with several

recently proposed enhancement schemes such as multiple assignment (MA) [79],

hemming embedding (HE) [80] and burstiness management (BM) [81]. Both models

are constructed using the SIFT local features. For the large scale experiment, we

only generate one initial ranked list with the advanced model. Table 2.6 presents

mAP for both initial ranked list and our re-ranked list.

Effectiveness of Stage 1: The Expanded Candidate Set

We want to evaluate the performance of the expanding strategy in stage 1 of our

algorithm, i.e. whether it can find the initially low ranked ground truth images

without adding too many noisy images to the candidate set that will be re-ranked

in stage 2. We run our experiment on the UKbench dataset that is generated using

the baseline BOVW framework.

First, we show in Figure 2.11 that the total number of missed ground truth

images when different number of top ranked images (K in Algorithm 4) are selected

as candidate images for re-ranking. It is clear that a high threshold will reduce the

number of missed ground truth images. However, the slope rate of this graph is

decreasing rapidly, meaning that it is not a wise idea to simply set a higher threshold

8http://press.liacs.nl/mirflickr/
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Figure 2.11: The total number of ground truth images that are excluded for re-ranking
when different number of top ranked images K are used for UKbench
dataset.

to increase the recall, considering that the larger number of candidate images means

greater re-ranking latency. For example, when a threshold of 200 is used, around

1500 ground truth images are missed for re-ranking; when the threshold is increased

to 400, there are still almost 1200 ground truth images are not included.

Next, we run our candidate expanding experiment by fixing the length of candi-

date images (K in Algorithm 4) before expansion to the top 50 ranked database

images of each query image. We experiment by varying the threshold of reciprocal

neighbor k in Equation 2.5. Figure 2.12 shows the total number of ground-truth

images that are added to the expanded candidate image set for re-ranking, and Fig-

ure 2.13 shows the average number of more candidate images that are added to the
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Figure 2.12: The total number of low-rank ground truth images that are promoted for
re-ranking after expansion under different k for UKbench dataset (K=50).

candidate set after expansion. The result demonstrates that our candidate set ex-

panding method is quite effective that we incorporate a large portion of low-ranked

ground truth images without adding too many noisy images. For example, when k

is set to 10, more than 1300 of the total 2500 missed ground truth images (52%)

are added to the expanded list while on average we only need to re-rank 37 more

images for each query (i.e. 87 in total). To achieve the same amount of recall, the

method using fixed length of candidate image set has to re-rank more than 350 top

ranked candidate images per query which is about 4 times of our strategy (87 per

query).
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Figure 2.13: The average number of promoted low-rank images (both ground truth and
noise) per query under different k for UKbench dataset (K=50).

Parameter Setting

Here we want to demonstrate that our re-ranking method is not quite sensitive for

parameter selections of k (reciprocal neighbor size) and r in Equation 2.5, which

is a severe issue for some previous works [67][68]. We set the length of the initial

ranked list to 50. We also set h to 25 and p to 0.6 in Equation 2.7, as in [57]. Using

the Holiday dataset for our experiment, we try different values of k (reciprocal

neighbor size) and r in Equation 2.5 to find suitable ones for optimal performance

improvement.

First, we fix k as 10 and evaluate the re-ranking result using different scaling

factor r. As shown in Table 2.7, good performance improvement can be achieved

when r is in the range of [0.3, 0.6], and we find that the optimal value of r is around

0.4.
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r
Baseline
BOVW

Advanced
BOVW

0.1 56.81% 76.73%
0.2 56.82% 76.67%
0.3 57.34% 76.94%
0.4 57.65% 77.23%
0.5 57.54% 77.20%
0.6 57.28% 77.26%
0.7 57.11% 76.70%
0.8 56.97% 76.28%
0.9 55.85% 76.12%

Table 2.7: Re-ranking by tuning r (k = 10)

k
Baseline
BOVW

Advanced
BOVW

5 57.11% 76.13%
6 57.01% 76.25%
7 56.90% 76.91%
8 57.19% 77.21%
9 57.23% 77.51%
10 57.65% 77.23%
11 57.32% 77.12%
12 57.70% 77.25%
13 57.30% 77.27%
14 57.56% 77.26%
15 57.59% 77.26%

Table 2.8: Re-ranking by tuning k (r = 0.4)

Next, we fix r as 0.4 and investigate how different values of k affect the re-

ranking performance. The result is shown in Table 2.8. We observe that the largest

performance improvement was achieved when k is in the range of [8, 12].

We evaluate the re-ranking results over the UKbench dataset and the large-scale

dataset with r = 0.4 and k = 8. For the UKbench dataset, the mAP improved from
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Method
Baseline
BOVW

Advanced
BOVW

Reciprocal k -NN (1) [82] 56.81% 75.14%
Reciprocal k -NN (2) [68] 53.34% 72.13%

Hello Neighbor [67] 56.93% 75.01%
Ranking Consistency [57] 56.17% 75.27%

Ours (k = 8, r = 0.4) 57.19% 77.21%

Table 2.9: Re-ranking comparison with other methods (Holiday)

Method
Baseline
BOVW

Advanced
BOVW

Reciprocal k -NN (1) [82] 80.32% 90.02%
Reciprocal k -NN (2) [68] 76.01% 89.62%

Hello Neighbor [67] 78.92% 89.02%
Ranking Consistency [57] 79.35% 90.14%

Ours (k = 8, r = 0.4) 81.14% 91.86%

Table 2.10: Re-ranking comparison with other methods (Ukbench)

74.58% to 81.14% using the baseline BOVW model and from 85.90% to 91.86% us-

ing the advanced BOVW model. For the large-scale experiment, the mAP improved

from 51.79% to 57.90%.

Comparison to other k-NN Re-ranking methods

We compare our method with some of the state-of-the-art k -NN based re-ranking

solutions, and we name those methods as Reciprocal k-NN (1) [82], Reciprocal k-NN

(2) [68], Hello Neighbor [67], and Ranking Consistency [57] respectively. For each

method, we tune the parameters to achieve maximum performance improvement.

For a summary of these methods and their optimal parameter selection, please refer

to our extended report http://www.cse.lehigh.edu/~dal312/knn rerank.pdf. As
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Method
Advanced
BOVW

Reciprocal k -NN (1) [82] 56.85%
Reciprocal k -NN (2) [68] 55.36%

Hello Neighbor [67] 54.17%
Ranking Consistency [57] 55.58%

Ours (k = 8, r = 0.4) 57.90%

Table 2.11: Re-ranking comparison with other methods (1 Million)

shown in Table 2.9 and Table 2.10, our 2-stage k -NN method achieves the best

results under all experimental scenarios.

2.7 Summary

In this chapter, we have presented the design and evaluation of EMOD, an efficient

on-device mobile visual search system. EMOD is based on the Bag-of-visual-words

framework and we propose several optimization techniques to reduce its memory

cost and the query latency. Compared with the baseline system, EMOD achieves up

to 85% memory reduction on image signatures and provides significantly improved

retrieval performance. Real-time image query is guaranteed by optimizing each

component in the query processing pipeline. In addition, we also presented the

proposed 2-stage k -NN re-ranking method and showed that it performs better than

state-of-the-art in terms of efficiency and accuracy. We implemented a prototype

system on Android platform and demonstrated its effectiveness using an augmented

reality application for landmark recognition.
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Chapter 3

Moca: Energy-Efficient and

Privacy-Preserving Deep

Processing for Mobile Vision

Applications

In this chapter, we present Moca, an energy-efficient and privacy-preserving deep

processing system for vision-based applications. The key idea of Moca is to decou-

ple the hierarchical neural network layers and splits them across mobile and cloud for

energy-efficiency, and leverage the privacy-preserving feature maps extracted from

deep models to protect personal data privacy. Moca also enables differentiated pri-

vacy settings via a DNN-based privacy quantification framework to meet the varying

privacy requirements of different mobile applications. Our experiments with various

mobile vision applications against thousands of photos and videos from a variety
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of validation datasets demonstrate that Moca has up to 6.7x lower (85% less) en-

ergy overhead on mobile devices compared to the state-of-the-art approaches, while

providing stronger data privacy with negligible impact on application accuracy.

3.1 Introduction

With the development of more advanced machine learning technologies recently,

researchers have rushed to apply deep neural network (DNN) techniques in mobile

applications [83–88]. Among these applications, an important category that benefits

from DNNs is mobile vision based application. Typical examples include object,

scene, face recognition and detection. For instance, a mobile application could

use DNNs to recognize the objects that appeared in the photos and videos taken

by mobile cameras [89]; a mobile payment application could leverage DNNs for

face recognition to verify the user’s identity [90]; an augmented reality application

running on mobile devices uses DNNs for object and scene detection and recognition

before augmenting interesting information to users [91, 92] and so on.

However, running DNNs on mobile device faces performance and energy chal-

lenges because of its high requirements on memory, computation and battery re-

sources [88, 93], which cannot be satisfied by commodity mobile devices today. For

example, processing a 5 minutes video with a highly accurate object recognition

model on a standard mobile device consumes 53% of its battery capacity (see Fig-

ure 3.1). Leveraging hardware technologies such as GPU and hardware accelerators

could accelerate DNN performance, however, they are often not available on com-

modity mobile devices [93]. Furthermore, mobile devices are still constrained by
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Figure 3.1: Motivation scenarios for Moca: deep processing photos and videos with
object recognition DNNs on mobile device directly vs. offloading data to
cloud via WiFi for further deep processing with highly accurate DNN models.
Compared to highly accurate models, compressed models consume 5–10x
(80%–90%) less energy as shown in (a) and (b) at the cost of dropping DNN
accuracy by 18.3% as shown in (c); the mobile-cloud offloading approaches
consume 155–232x (99.35%–99.57%) less energy but run the risk of leaking
personal data on untrusted cloud. The large highly accurate model fails in
all application cases due to the limited memory capacity on modern mobile
devices.
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their size, weight and battery capacity [94]. Software-based optimizations such as

model compression [88] were proposed recently to reduce the memory footprint and

computation cycles during DNN execution, however they compromise the model

accuracy and still consume significant battery power.

Deploying DNN services on cloud can shift the computational burden from mo-

bile devices to powerful shared servers in the cloud. However, we have to address

the privacy challenge on the untrusted cloud [95, 96]. Encrypting users’ personal

data such as photos and videos on mobile devices not only introduces additional

energy overhead, but also complicates the data management for mobile applica-

tions [97, 98]. To make matters worse, information from such encrypted data could

still be leaked to the untrusted cloud during the deep learning process [99–101].

In this chapter, we present Moca, which uploads only privacy-preserving vi-

sual features extracted from users’ data to the cloud, while utilizing the cloud for

high-performance deep processing to produce very high accuracy models for mobile

vision applications. The key idea of Moca is inspired by the observation that the

extracted features from the layers of a deep neural network have undergone com-

bined linear and non-linear data transformations, and hence such features provide

some form of privacy to the users. Features extracted from deeper layers provide

higher privacy (see Figure 3.3). Without the original DNN model, adversaries can-

not infer additional information regarding the extracted features even if they use

a highly accurate DNN-based object recognition and detection system. Moreover,

compared to the data encryption approach for achieving privacy, Moca achieves

lower performance and energy overheads since it only requires executing feature ex-

traction on mobile devices. To further accelerate the feature extraction procedure
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and reduce the feature size, several optimizations including layer decomposition and

parameter-free layer merging are proposed and implemented in Moca.

Moca enables differentiated privacy for different mobile applications. For in-

stance, a mobile payment application could require higher privacy than a common

mobile object recognition application. To evaluate the privacy level of features

extracted from a deep neural network layer, a DNN-based privacy quantification

framework is proposed to enable application developers to calculate a reference pri-

vacy value based on their own defined criteria. The feedback from these evaluations

will guide the adaptive DNN model reconstruction process to determine the number

of layers executed on the mobile device and optimize those layers.

To summarize, we make the following contributions:

• We present a deep processing system named Moca for mobile vision appli-

cations. It decouples the hierarchical layers of DNN models and splits them

across mobile and cloud. It uses privacy-preserving feature maps extracted

from DNNs on mobile as the input for further deep processing on cloud to

protect personal user data.

• We propose five novel techniques for improving the energy efficiency of the

feature map extraction process on mobiles which include layer decomposition,

parameter-free layer merging and branch reduction .

• We propose a DNN-based framework that allows mobile application developers

to quantify the privacy level for user data based on their own privacy criteria.

• We present the differentiated privacy mechanism for DNN-based mobile appli-

cations, and enable adaptive DNN model reconstruction to efficiently utilize
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mobile resources and achieve better privacy guarantee.

We design and implement Moca based on the open source deep learning frame-

work Caffe. Moca has two major components implemented distributedly across

mobiles (for feature extraction) and cloud (for deep processing and privacy evalu-

ation). Experimental results with a variety of DNN-based mobile applications on

several large-scale datasets demonstrate that the privacy of these data are well pre-

served, while the energy overhead on mobile device is 1.2x - 6.7x (16.7% - 85.1%)

lower than the state-of-the-art approach.

The rest of this chapter is organized as follows: § 3.2 presents the challenges

that we address in this work. Design and implementation of Moca are described

in § 3.4. Evaluation results are shown in § 3.5. § 3.6 presents the related work. We

conclude the chapter in § 3.7.

3.2 DNN Challenges on Mobile

Mobile deep processing presents new challenges for mobile system design. It empow-

ers intelligent services for mobile applications, however, the limited battery, memory

and computation resources on mobiles force system designers to run deep process-

ing on the remote cloud, making the privacy issue a serious concern for such mobile

applications.

DNN tasks are computationally intensive: It is well known that deep

neural network tasks often require much memory and computation resources. For

example, a large and highly accurate DNN model with 152 forward and backward

propagation layers has 230 MB parameters [31]. It requires 1.7 GB memory during
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Figure 3.2: System overview of Moca. It uses the feature maps extracted from the first
few layers in DNN models as the input for further deep processing on cloud.
These extracted feature maps preserve strong privacy for user data and high
accuracy for application services. Moreover, Moca has low energy overhead,
as only a few layers of DNN models are executed on mobiles, and several
optimizations on model reconstruction and feature extraction are proposed
for improving its energy efficiency.

the runtime and cannot be executed on a standard mobile device (see the configu-

ration in Table 3.5) due to the ”out of memory” error. A small version of the highly

accurate model with fewer layers can be executed on mobiles, however, it drains

much battery power. For example, processing a single 224x224 photo will consume

11.3 Joules as shown in Figure 3.1 (a).

Most recent work [88] proposed model optimizations such as model weights com-

pressed to reduce the resource consumption of running mobile DNNs at the cost of

reduced model accuracy. However, the compressed state-of-the-art ResNet DNN

[31] model using their techniques still consumes much battery power (53.3% of the

battery capacity for processing a 5-minutes video as shown in Figure 3.1 (b)) on

modern mobile devices which often have 7-11 Watt-Hours batteries, while its model

accuracy is decreased by 18.3% compared to the highly accurate DNN models (see

Figure 3.1 (c)).

Constrained resources on mobile: Unfortunately, the constraints on size
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and weight of a mobile device limit its battery capacity and hardware adoption. For

lithion battery which is commonly used on mobile devices, it takes more than 10

years to double its energy density (e.g., Watt-Hours/kg) [94, 102]. Therefore, battery

capacity will still be a serious concern for mobiles (and wearables as well), making

it unattractive to host computationally intensive applications in mobile devices.

On the other hand, recent work proposed leveraging mobile GPUs and hardware

accelerators to improve the performance of DNNs running on mobiles [83, 88, 103].

However, these hardware components are still power hungry, and not widely avail-

able on commodity mobile devices [93]. In this chapter, we focus on building mobile

deep processing systems for commodity mobile devices.

Privacy issues on untrusted cloud: To reduce the energy overhead on mo-

bile devices, it is natural to deploy mobile deep processing in a mobile-cloud setting,

as more powerful computation resources such as GPUs are available in the cloud.

However, such an approach requires mobile applications to upload a user’s personal

and sensitive data like photos and videos to a remote untrusted cloud server, which

may expose mobile users’ personal data to unauthorized people. Data encryption

can be used by mobile applications to alleviate the privacy issue, but recent studies

have reported that the user data could still be leaked during the process of data

processing and analytics on untrusted cloud although the data has been encrypted

before it is uploaded to cloud [99, 101, 104, 105]. Therefore, exposing users’ raw

data on untrusted cloud would still give malicious programs chances to steal per-

sonal user data, which is unacceptable for many mobile applications such as mobile

payment. In addition, the techniques used for protecting user data introduces ad-

ditional energy overhead on mobiles, e.g., the mobile-cloud scheme with encryption
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enabled consumes 30.3% more battery power compared to the corresponding scheme

without encryption as shown in Figure 3.1.

Leveraging DNN features for privacy: A deep neural network usually has

multiple layers and each layer will generate a set of features for the next layer.

These output features are transformed from the input features and model-specific.

These features provably hide the information in the original input, which inherently

preserves the privacy of the input data. As deeper layers are performed, stronger

privacy will be achieved in their output features as shown in Figure 3.3. In Moca,

we take the features generated by DNN layers running on mobile devices as the

input for further DNN processing on the cloud, thus avoiding the need of uploading

users’ sensitive and personal data. More details will be discussed in § 3.4.

Layer 1 Layer 2 Layer 3 Layer N

Figure 3.3: Illustration of feature maps extracted in different layers. The visualized
feature maps show that the content details on images decrease along with
the increasing layers. For example, feature maps generated from the first
layer still contain the facial information. However, when the CNN model
moves to deeper layer, these facial details disappear.
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3.3 System Model and Threat Model

3.3.1 System Model

In our design, we consider three major entities: the cloud server, the app developer

and users. The app developer outsources trained deep learning models to the cloud

server. Users have mutual authentication capability with the app developer, and

can submit a data processing request (e.g., images, video frames either raw or in a

transformed/encoded form) to the cloud server. Upon the request, the cloud server

can process the received data with a trained deep learning model. Finally, with

the ciphertexts of processing result (e.g., classification label) returned by the cloud,

users can use their own keys to recover the result.

3.3.2 Threat Model

Figure 3.4: An example: Cloud server may analyze images sent by a user to learn her
private information. Capturing such a raw image may expose the medicine
the user is taking and thus infer the kind of disease she is suffering.
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In our system, we consider the cloud server to be curious-but-honest, that is the

cloud server will follow our protocol to perform the service provider role correctly,

but it may analyze user data to learn their private information (an example in

Figure 3.4). The developers and mobile users are assumed to be honest, and will

not collude with the cloud server. These assumptions are consistent with recent

related works [106–108]. Based on available information to the cloud server, we

consider the following threat model in terms of the privacy protection of data:

The cloud server only has access to the deep learning model (i.e., the portion

deployed on cloud) and the received data for processing. Our system aims at pre-

venting the cloud server from learning sensitive information (face, text, etc.) from

received data.

3.4 Design and Implementation

Moca is a distributed mobile-cloud based framework designed for deep processing

of vision data for mobile applications. In this section, we present our goals in

designing Moca, the key techniques proposed for achieving these goals, and the

system implementation.

3.4.1 Design Goals of Moca

We design Moca with three primary goals:

• Achieving privacy for personal user data: Mobile deep processing facilitates

powerful functionalities for mobile applications. However, users’ personal and

sensitive information should not be exposed or leaked to third parties. Moca
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achieves this goal by leveraging the privacy-preserving feature maps generated

by DNN models (§ 3.4.2)

• Achieving differentiated privacy for different application services: Different

mobile application services may have different requirements on data privacy.

Moca achieves this goal by enabling differentiated privacy and allowing de-

velopers to deploy their own privacy evaluation models to guide the feature

extraction procedure on mobiles. (§ 3.4.3).

• Achieving energy efficiency for mobile deep processing: A lightweight and

energy-efficient deep processing system is always desirable to extend the bat-

tery lifetime for mobiles. Moca achieves this with several novel optimizations

on feature map extraction and DNN model reconstruction to reduce the work-

load overhead on mobiles (§ 3.4.4 and § 3.4.5).

The system architecture for Moca is shown in Figure 3.2. Next, we discuss the

details of each key technique used in Moca as follows.

3.4.2 Preserving Privacy with Feature Map

As one of the most popular deep neural networks, Convolutional Neural Network

(CNN) [109] has demonstrated its excellent ability in characterizing the high-level

abstractions of visual data and outperforms previous approaches by a large margin

in many vision-based tasks, such as object recognition and detection [110–113].

CNN is a feed-forward neural network in which the input data passes through the

network layers one by one, until it arrives at the outputs. This hierarchical structure

was inspired by the biological process to simulate human visual perception which
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uses multi-neuron transformations. The output of each layer in a CNN model is

usually named as the feature map. At each layer, a convolution filter is applied

to the feature maps from the previous layer to generate new feature maps with the

following equation:

ulj = f(
N∑
i=1

ul−1
i ∗ wji + blj), (3.1)

where ulj is the jth feature map extracted from layer l, N is the total number of input

feature maps, blj denotes the bias, f is an activation function. Different number of

feature maps are generated in each layer l.

After applying the convolution filter at each layer, the visual appearance of gen-

erated feature maps becomes more “blurred” than the input image or the feature

maps generated in prior layers as shown in Figure 3.3. Such a property in CNN

provides certain levels of data privacy. As different neural network models have dif-

ferent model architecture (e.g., the number of layers and branches) and parameters,

it is difficult for malicious users to extract meaningful information from the feature

maps generated in a deeper layer (e.g., layer 3 in Figure 3.3) without having any

knowledge of their corresponding models. Even if the models are compromised, the

untrusted cloud cannot regenerate the input data (i.e., user’s raw data) using the

feature maps, as CNN models often use activation functions (i.e., f in (3.1)) which

are nonlinear and hence not easy to be reversed.

Moca leverages the privacy-preserving feature maps generated by CNN models

to protect personal user data for mobile vision applications. Instead of uploading

encrypted vision data to a remote cloud server, Moca transfers only the feature
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maps for further deep processing on cloud. The cloud server then feeds the received

feature maps directly to the remaining layers of the CNN model to generate the

final prediction result (see Figure 4.1).

To further protect any information from being disclosed in the predication re-

sults, Moca encodes any plain text in the prediction results, so that the malicious

users on untrusted cloud cannot retrieve meaningful information from the output

of CNN models. For instance, we can encode the object recognition result of “car”

using a numeric value “23”, and only the mobile client has the decoding book to

recover the plain text from it. We assume there is no collusion between any mobile

user and the cloud.

3.4.3 Differentiated Privacy with Quantification

As illustrated in Figure 3.3, CNN has another property: as the CNN model pro-

gresses to deeper layers, less human-interpretable information will be present on

the generated feature maps. In other words, there is a general trend that stronger

privacy can be obtained with feature maps extracted from deeper CNN layers. How-

ever, extracting feature maps from a DNN layer on mobile devices is not free, as

CNN models are computationally intensive while mobile devices are constrained by

limited computation and battery resources(as discussed in § 3.2). Mobile vision ap-

plication incurs additional performance and energy cost, as more layers are executed

on mobile devices.

On the other hand, different mobile application (e.g., face authentication vs.

photography recognition) may have different privacy requirements on users’ data,

and users’ data from different sources (e.g., photos either from a user’s device or
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downloaded from the Internet) may require different treatment in practice. We de-

fine these different privacy requirement from mobile applications as differentiated

privacy in this chapter.

Moca enables differentiated privacy settings for mobile applications by mapping

their privacy requirements to the varying privacy levels provided in CNN models. To

precisely control the mapping procedure, it is important to quantify the data privacy

of feature maps extracted from different layers. However, this is challenging for two

reasons. First, mobile application developers can set different privacy requirements

for users’ data. Thus, it is impossible to define a unified privacy criterion for all

mobile applications. Second, varying CNN models have different numbers of layers,

and the achievable data privacy levels at different layers are unknown apriori.

To overcome this challenge, Moca provides a privacy quantification framework

running on a cloud server. It allows application developers to customize their own

privacy criteria for quantifying the privacy level (e.g., the possibility that the face

on the feature maps is recognized as shown in Figure 3.3) for feature maps extracted

from a specific CNN layer. The privacy quantification framework works as follows:

First, mobile application developers upload the CNN model used for their appli-

cations (App-CNN) and the CNN model used for evaluating their defined privacy

criteria (Eval-CNN)hosted in the cloud.

Second, the App-CNN model is run with a large validation image dataset on the

cloud server, and the feature maps generated from its each CNN layer are collected.

Third, for each validation image, its extracted feature maps for each App-CNN

layer are taken as an input and processed by the first layer of the Eval-CNN model.

The predication results are then collected.
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Fourth, the privacy quantification framework performs privacy level calculation

based on the privacy criteria defined by application developers. For instance, for an

object recognition task, a developer can define the privacy level as follows: as long

as one of the feature maps extracted from a validation image at a particular layer

can be recognized, it is considered a true positive. The privacy level is then defined

as the ratio between the number of true positive images over the total number of

images in the validation dataset. The calculated privacy level value for each App-

CNN layer is stored in an encrypted file (defined as LayerProfile). The LayerProfile

which contains the quantified privacy level at each App-CNN layer, will be sent

back to application developers and registered in their mobile applications for future

reference (discussed in § 3.4.5). We present how we evaluate the privacy levels for

various vision tasks in § 3.5.

Possible Dynamic Privacy Adjustment

The privacy quantification framework provides a reference privacy level for each

layer of the CNN model. This value is computed as the average of all measured

privacy levels based on an appropriate validation dataset provided by application

developers. However, as new query data is generated or collected from users, the

actual privacy level might be different from the reference privacy level. Therefore,

it would be plausible for some application developers to dynamically adjust the

model deployment (i.e., the number of CNN layers executed on the mobile devices)

to meet the privacy requirement at run-time. Such a dynamic adjustment can be

achieved by measuring the run-time privacy level using users’ recent query data. If

the measured run-time privacy level is worse than the reference level, more CNN

layers should be executed on the mobile devices. We leave the design of the dynamic
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Method Name
Size Re-
duction

Speed-
up

Tucker Decomposition
√ √

Convolution and Decon-
volution

√

Scalar Quantization
and Huffman Coding

√

Parameter Free Layer
Merging

√

Branch Reduction
√

Table 3.1: Optimizations for feature map extraction.

privacy adjustment for our future work.

3.4.4 Feature Map Extraction and Optimization

Moca allows mobile applications to extract feature maps from different layers of

a trained deep learning model for the privacy tradeoff. A naive way of producing

such feature maps is to run a specified number of CNN layers from an unoptimized

CNN model on a mobile device and send the feature maps from the last layer run

on the device to a remote cloud server.

However, such a solution incurs large performance and energy overheads in terms

of computation and networking resource consumption, which is unacceptable on mo-

bile device: (1) executing a few CNN layers could take several hundred milliseconds

on modern mobile phones; (2) the extracted feature maps could be much larger than

the input image. For example, the size of the feature maps extracted from the first

layer of a ResNet based object recognition model is 3 MB, while the size of an input

image is 73.5 KB. To optimize the feature map extraction procedure, we propose

five techniques as shown in Table 3.1. Each technique is discussed as follows.
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Number of Feature Maps Size Reduction Accuracy Loss
4 16x (93.75%) 2.64%
5 12.8x (92.19%) 1.25%
6 10.6x (90.57%) 0.44%
7 9.1x (89.01%) 0.35%
8 8x (87.50%) 0.18%
9 7.1x (85.92%) 0.14%
10 6.4x (84.38%) 0.11%
11 5.8x (82.76%) 0.06%
12 5.3x (81.13%) 0.01%

Table 3.2: Optimized tucker decomposition: it reduces the number of feature maps and
their size dramatically with small accuracy loss, for a layer in ResNet-50
object recognition model. The layer originally generates 64 feature maps.

Tucker Decomposition: Traditionally, tucker decomposition was used to de-

crease the storage size of CNN models by reducing the number of weights in a CNN

layer. We find that such a technique can also be leverage to reduce the number of

extracted feature maps for a convolution layer.

The number of extracted feature maps for a convolution layer is determined by

the shape of the layer’s convolution filter which is a 4-dimensional matrix of size

D×D×S×T , in whichD×D is the size of covered pixels of an input feature map, S is

the number of feature maps generated from the previous layer, and T is the number

of feature maps generated from this layer. We perform a Tucker-1 decomposition to

decompose it into two convolution filters Z (with size 1× 1× S × R) and Y (with

size D×D×R×T ), Since R is much smaller than T , the first convolution filter Z is

designed to dramatically reduce the number of feature maps. We demonstrate the

efficiency of applying the tucker decomposition technique on a layer in ResNet-50

object recognition model in Table 3.2.
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Feature Maps
From Layer N

Feature Maps
From Conv

Feature Maps
From Deconv

(a) (b)

Figure 3.5: A case study of convolution and deconvolution: the convolution encoder
reduces the feature size from 112 x 112 x 3 to 56 x 56 x 5 (2.4x reduction).

Convolution and Deconvolution: For some CNN architectures, the resolu-

tions of the feature maps generated by the first few layers could still be high. Hence,

merely reducing the number of generated feature maps using Tucker Decomposition

does not guarantee small feature map sizes. For example, the resolution of the fea-

ture maps in VGGNet’s first convolution layer could be as large as 600 x 600 for a

detection task, hence, each feature map will be as large as 351 KB. Since multiple

feature maps are generated at each layer, large networking overhead is incurred as

the maps are sent to the remote cloud.

For CNN models which take images of high resolution, we propose to insert a

pair of convolution layer and deconvolution layer in between layers after the 1st

Tucker decomposed convolution layer to reduce the size of feature maps at each

layer. Figure 3.5 demonstrates an example of how one can reduce the resolution of
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Convolution

Normalization

Pooling

Bottom Layers

Top Layers

Convolution

Bottom Layers

Top Layers

MERGE

64.1 ms

68.4 ms

16.3 ms

148.8 ms 16.6 ms

Figure 3.6: Benefits of parameter-free layer merging. The latency is measured using
Caffe on Samsung Galaxy S5.

feature maps using the newly inserted pair of convolution and deconvolution lay-

ers. The convolution layer reduces the feature maps’ resolution (like an encoder)

and it is this compressed information that will be sent to the remote cloud if the

model configuration determines that feature maps of this layer should be sent re-

motely. Then, the deconvolution layer running on the remote cloud only recovers

the resolutions (not visual appearance) of feature maps before these maps are fed to

subsequent layers running on a remote cloud server to complete the deep processing.

By fine-tuning [114] the inserted layers, the accuracy loss can be minimized.

Parameter-Free Layer Merging: The state-of-the-art deep learning models

incorporate parameter-free layers (i.e., do not have any learned parameters) such as

pooling layers or normalization layers. Although they do not have parameters, their

executions still consume a significant portion of the total time of running a model.

Based on our experiments with ResNet, 40% of the execution time is spent on these
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Figure 3.7: Branch Reduction Example on Google’s Inception Network. Two branches
are reduced.

parameter-free layers.

With merging a parameter-free layer to its preceding (bottom) convolution layer

with fine-tuning, a significant speed-up can be obtained with negligible or almost no

accuracy loss. This is because the weights in a convolution filter is sparse [115] (i.e.,

a significant number of zeros), therefore a denser convolution filter can be trained.

The new convolution layer functionally performs as both the convolution and the

parameter-free layers. As shown in Figure 3.6, 9x speed-up with 0.1% accuracy loss

can be achieved by merging a normalization layer and a pooling layer.

Branch Reduction: Modern CNN model may have multiple branches in a

network layer such as ResNet or Google’s Inception Network (see Figure 3.7). To

extract the feature maps from such layers, all the branches should be considered to

avoid the accuracy loss. In this case, the size of the extracted feature maps becomes

much larger (depending on the number of branches). Similar to parameter-free layer

merging, we reduce the number of branches by merging nearby branches based on
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the sparsity of a convolution filter. Based on our experiments with a variety of CNN

models, the model accuracy is reduced by 0.05% after the branch reduction.

564.12 327.83 347.91 578.34

523.22 478.24 521.31 398.42

498.13 383.45 479.23 26.57

477.44 536.5 556.78 46.89

600 350 350 600

550 500 550 400

500 400 500 50

500 550 600 50

Scalar
Quantization

Huffman
Coding

111100 101 101 111100

111101 11111 111101 1000

11111 1000 11111 001

11111 111101 111100 001

Symbol Encoding

300 110

350 101

200 011

…

64 Bytes 32 Bytes 9.5 Bytes

Figure 3.8: An example of Scalar quantization and Huffman coding. 6.7x (85%) feature
size reduction is achieved.

Scalar Quantization and Huffman Coding: To further reduce the feature

map size, we use a combined scalar quantization and Huffman coding [116] technique

to condense the values of the extracted feature maps. As shown in Figure 3.8, the

values of feature maps are in floating-point formats.

The idea of scalar quantization is to enable weight sharing so that the feature map

values can be represented using a finite set of evenly-spaced values in an encoding

book. Since different quantized values in the book have different frequencies, the

values of feature maps can be further compressed using Huffman coding. Table

3.3 demonstrates the efficiency of the proposed approach on one of ResNet-50’s

convolution layer for object recognition tasks. We can achieve 4.87-7.51x (79.47%-

86.68%) size reduction. Moreover, the encoding ensures that the data privacy for

feature maps is preserved during their transmission over the network.
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Book Size Size Reduction Accuracy Loss
100 7.51x 1.74%
200 6.09x 0.32%
300 5.49x 0.16%
400 5.12x 0.10%
500 4.87x 0.06%

Table 3.3: Scalar quantization and Huffman coding for a layer in ResNet-50 model for
object recognition.

Furthermore, to enable fast element-wise quantization, given a book size, we first

rescale the feature map data so that the values in the encoding book are rounded off

to the nearest hundred integer value. Then, we perform an element-wise operation

over the scaled feature map data with floor(data/100)∗100. Different from the four

optimization techniques discussed above, scalar quantization and Huffman coding

do not change the CNN model architecture, they are applied only after the feature

maps have been extracted.

With the techniques discussed in prior sections, we now describe how they work

together to reconstruct a more energy-efficient model given any CNN model for

mobile vision applications.

3.4.5 Adaptive Model Reconstruction

Developers for various mobile vision applications have different privacy needs. Thus,

each developer desires to reconstruct an adaptive model to meet his need. We assume

that such model reconstruction is a one-time offline task performed on a GPU server

which is different from the untrusted cloud that deploys any adapted train model.

Thus, the untrusted cloud cannot access any training data (images, labels, etc).

Given a trained CNN model for mobile vision applications, Moca integrates
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Algorithm 5 Model Reconstruction

Input: D = a pre-trained deep learning model
Output: R = the reconstructed deep learning model

B = the set of encoding books for each processed layer

1: B ← Ø AND R← D
2: pcurr ← 0 . The privacy level is initialized to 0.
3: lproc ← l1fromD . The process starts from the 1st layer.
4: Acomp ← 0.1% . Max accuracy loss per layer for compression
5: Aencode ← 0.1% . Max accuracy loss per layer for encoding
6:

7: while pcurr > 0% do
8: aloss = 0 . The accuracy loss for current layer.
9: for fnum = 12,−1, 6 do . Tucker decomposition.

10: TuckerDecomposition(lproc, fnum)
11: updateLoss(aloss)
12: if aloss > Acomp then
13: break
14: decomposeLayer(lproc)
15: for fnum = 18,−6, 6 do . Convolution-Deconvolution.
16: for Stride = 2, 1, 4 do
17: ConvDeconv(lproc, fnum, Stride)
18: updateLoss(aloss)
19: if aloss > Acomp then
20: break
21: addConvDeconv(lproc)
22: if lproc followed by parameter free layers then
23: parameterFreeLayerMerge(lproc)

24: if lproc has multiple branches then
25: branchReduction(lproc)

26: lproc ← l1.Next()
27: pcurr ← evaluatePrivacy()
28: cacc ← evaluateComputingCycles()

29:

30: for each processed layer lproc do
31: aloss = 0 . The accuracy loss for current layer.
32: for booksize = 500,−100, 100 do
33: HuffmanCoding(lproc, booksize)
34: updateLoss(aloss)
35: if aloss > Aencode then
36: break
37: B.append(getBook(lproc))
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Figure 3.9: Overview of Adaptive Model Reconstruction.

the privacy quantification framework and the feature map extraction techniques

(for mobile application’s performance) into the model by reconstructing it. Unlike

prior model optimization work [88] which requires a fully reconstruction of a trained

CNN model since every layer needs to be optimized, Moca focuses only on the first

few CNN layers that are executed on mobile devices, while the architecture for the

rest of the majority layers (which will be deployed on cloud with GPUs) remain

unchanged.

To achieve more desirable feature size reduction and feature map extraction

speed-up, more accuracy losses will result in the CNN models. We propose an

adaptive reconstruction algorithm (Algorithm 5) to precisely control the model re-

construction procedure to ensure that the best tradeoff is performed on each layer.

Our model reconstruction algorithm processes a given CNN model layer by layer

(Figure 3.9), and for each layer, it tries to minimize the extracted feature size while

ensuring that the accuracy loss is kept within a threshold (0.1% by default in Moca).
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[ReconstructedModel, LayerProfile] ReconstructModel( ModelObj

rawModel, TrainDataSet trainImages)

/*CNN model reconstruction*/
FeatureObj ExtractFeature(Image inputImage, ModelObj cnnModel,

LayerID execLayer )

/*Extract the feature maps from execLayer in cnnModel*/
FeatureID UploadFeature( FeatureObject ftrObj, LayerID execLayer )

/*Upload a feature map to cloud*/
LayerID SetPrivacy( Float privacyLevel)

/*Set the privacy level*/
Result DeepProcessFeature( FeatureID ftrID )

/*Deep process a feature on cloud*/

Table 3.4: Moca API

Once one layer is reconstructed, the privacy quantification framework (see § 3.4.3)

will be used to evaluate its privacy level based on the privacy criteria defined by

mobile application developers. The adaptive reconstruction procedure stops when

a reconstructed layer’s quantified privacy meets the privacy requirement set by ap-

plication developers. Note that some parameters (e.g., line 9 and line 15) in the

Algorithm 5 are defined based on our extensive evaluation on a variety of popular

CNN models.

After model reconstruction, Moca places the metadata for each reconstructed

layer in an encrypted file (LayerProfile in § 3.4.3) which contains: (1) its reference

privacy level; (2) the Huffman encoding book.

3.4.6 Implementation Details

Moca provides two sets of APIs: one for deep learning model reconstruction and

one for mobile application development. These interfaces are compatible with the
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Amazon’s Android SDK for machine learning [117].

For model reconstruction, we provide APIs for mobile application developers to

reconstruct their provided model rawModel into a ReconstructModel. The Mode-

lObj includes both the model architecture definition and the pre-trained parameter

weights. Moca supports deep learning framework Caffe. It allows users to provide

their own training dataset for fine-tuning their models in the reconstruction proce-

dure. Several popular data format types such as LMDB, HDF5 and raw image are

supported in Moca. Through the model reconstruction API, the LayerProfile for

all processed layers are returned along with the reconstructed model to application

developers.

The second set of APIs are defined for mobile application development and de-

ployment. First, the developers use SetPrivacy to specify their privacy requirement

for specific application or data source. A LayerID is returned to indicate which

layer of a CNN model will be executed on the mobile device. The ExtractFeature

function runs on the mobile to extract feature maps from the CNN layer LayerID.

UploadFeature is called to send feature maps to the cloud for further deep processing

from the next layer after LayerID with DeepProcessFeature. The result is returned

to mobile client. It could be an object ID for recognition or the bounding boxes for

detection.

3.5 Evaluation

The goal of our evaluation is to demonstrate that: (1) the performance and energy

efficiency of using Moca in ResNet-50 based CNN model in several CNN-based
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Mobile
Client

Samsung Galaxy S5

Processor 2.5 GHz quad-core
Memory 2 GB RAM
Storage 32 GB eMMC flash
Network WiFi 802.11 a/b/g/n/ac
Battery Li-Ion 2800 mAh
OS Android 4.4
Cloud
Server

Ubuntu 12.04 Server with
NVIDIA GTX TITAN X

GPU
3072 CUDA cores with 12 GB
RAM

CPU Intel Xeon 8 cores
Memory 16 GB RAM

Table 3.5: Mobile device and cloud server used for evaluating Moca in this chapter.

mobile vision applications, including photograph recognition, scene analysis, face

authentication and object detection; (2) Moca has negligible impact on the service

accuracy of different applications and neural network models; (3) Different levels

of data privacy can be achieved by adaptively adjusting the feature extraction pro-

cedure on mobiles, and Moca provides stronger privacy than the state-of-the-art

approach; (4) Moca works efficiently for different deep CNN architectures, e.g.,

VGGNet and GoogleNet.

3.5.1 Experimental Setup

We use Samsung Galaxy S5 as the mobile client to run different mobile vision

applications. A cloud server configured with NVIDIA’s GTX Titan X GPU is used

to host deep processing services for these mobile applications. The configurations

of both the mobile client and cloud server are shown in Table 3.5. WiFi is used for
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(c) Accuracy and Privacy

MobileOnly (Large Model)

MobileOnly (Small Model)
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Figure 3.10: Running CNN-based photography recognition services with Mo-
bileOnly vs. ML-SDK vs. Moca. The figure demonstrates the (a) energy
overhead, (b) latency, (c) accuracy and privacy levels of the photo recog-
nition service. With executing two layers on mobile, Moca reduces the
energy consumption by 17.1-36.7x (94.15%-97.28%) and 1.2-3.4x (16.67%-
70.59%) compared to MobileOnly and ML-SDK respectively, and decreases
the latency by 6.9-11.0x (85.51%-90.91%) and 1.3-1.9x (23.08%-47.37%)
compared to MobileOnly and ML-SDK respectively, while providing much
stronger privacy than ML-SDK with the similar service accuracy.
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the connection between mobile devices and the cloud server.

To measure the energy usage of the mobile devices when running mobile vi-

sion workloads, we instrument the mobile devices’ battery-leads to make them draw

power from the Monsoon power monitor [118] instead of their batteries. The re-

ported absolute power consumption of running a workload includes the basic power

consumption of the mobile device. For the energy usage comparison between dif-

ferent solutions, this base power is subtracted from the power used when running

the workload. We compare Moca with the following state-of-the-art mobile deep

processing solutions:

• MobileOnly: All the deep processing for mobile vision data is executed lo-

cally on mobile devices. As discussed in § 3.2, the deep learning models with

higher accuracy either cannot run on commodity mobile phones or consume

much more power than other solutions. Therefore, two compressed neural

network models that have been optimized specifically for commodity mobile

platforms [119], and often used by the deep learning community are used in our

evaluation, they are referred to as MobileOnly (Large Model) and MobileOnly

(Small Model).

• ML-SDK: The Android SDK for machine learning released by Amazon [117]

is one state-of-the-art approach that allows mobile applications to access ma-

chine learning services hosted on a remote cloud server. It requires mobile

users to upload their personal data to the cloud. However, it does not provide

interfaces for users to protect their data privacy. We extend its interfaces to

support hardware encryption on modern mobile devices.
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Workload Privacy Criteria MOnlyPrivacy SDKPrivacy MocaPrivacy
Photography Recognition The ratio of objects recognized as ground truth. 0.0% 74.0% 11.2%

Scene Analysis The ratio of scenes recognized as ground truth. 0.0% 53.7% 8.1%
Face Authentication The ratio of faces not recognized as “other”. 0.0% 97.8% 0.0%
Object Detection The ratio of detected ground-truth objects. N/A 63.5% 1.2%

Workload MOnlyACC SDKACC MocaACC Energy Saving
Photography Recognition 57.8% 74.0% 73.8% 3.4x (70.59%) & 36.7x (97.28%)

Scene Analysis 45.3% 53.7% 53.6% 1.2x (16.67%) & 27.1x (96.31%)
Face Authentication 86.7% 94.6% 94.3% 2.1x (52.38%) & 24.8x (95.97%)
Object Detection N/A 63.5% 63.1% 6.7x (85.07%) & N/A

Table 3.6: Summarized results. The privacy values, the lower the better. For accuracy
values, the higher the better. The energy efficiency column shows the en-
ergy saving of Moca compared to ML-SDK (left) and MobileOnly (right).
MOnly: MobileOnly; SDK: ML-SDK; ACC: Accuracy.

To evaluate the service accuracy and data privacy provided by different solutions,

a set of common deep learning methods 1 are performed against the uploaded data

from the mobile application to verify whether any information could be leaked or

exposed from these data. As different applications may have different criteria for

data privacy, a variety of neural network models are used to evaluate their privacy

levels. Table 3.6 illustrates the common privacy criteria used in these mobile vision

applications and how Moca achieves privacy protection with significantly reduced

energy cost and minimum accuracy loss.

3.5.2 Photography Recognition

We first evaluate Moca with photography recognition applications on a Samsung

S5 mobile device. The photograph recognition applications leverage CNNs to rec-

ognize objects that appeared on photos. We use ImageNet [120] 1000-class object

recognition dataset for evaluations. This dataset has 1.28M training images and

50K validation images. Each image is preprocessed into an image with a resolution

of 224 x 224 pixels, and each pixel requires 1.5 bytes for YUV representation. The

1Unless otherwise noted, we use the state-of-the-art ResNet [31] (more specifically the most
widely used 50-layer ResNet-50) as our CNN model architecture for evaluation.
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preprocessed photos are used as the input for CNN models. When multiple photos

are issued for deep processing, the transferred data are batched to achieve network

efficiency in ML-SDK and Moca.

For MobileOnly, two compressed object recognition models [119] from ResNet-50

are used. Its corresponding uncompressed model with higher accuracy is deployed

in a cloud server for ML-SDK. Moca reconstructs the corresponding uncompressed

version of the object recognition model and deploys its first five layers on mobile

and the remaining layers on cloud server. Note that the model reconstruction in

Moca is conducted on a cloud server in offline mode, hence, it does not affect

the performance of the application services. More CNN layers can be deployed on

mobiles based on users’ privacy requirements and the battery budgets available in

mobiles.

In terms of energy usage on mobiles, MobileOnly consumes the most battery

power compared to other two solutions as shown in Figure 3.10 (a), although its

models have been optimized for mobile platforms. This is because the neural network

models are computationally intensive, which requires large memory and computa-

tion resources. When Moca executes one or two layers on mobile and transfers the

extracted feature maps to a remote cloud server for further deep processing, it con-

sumes up to 36.7x and 3.4x less power than MobileOnly and ML-SDK respectively,

since its computation workload is light, and the size of the extracted feature maps is

8x smaller than the size of preprocessed photos (which reduces the energy overhead

on networking). As more layers are executed on mobile, the power consumption of

executing CNN layers will offset the reduced energy on networking.

Moca also reduces the latency of the object recognition services by up to 11.0x

104



1 3 5 8 10
Video Length (Minutes)

23
24
25
26
27
28
29

210
211
212
213

E
n
e
rg

y
 (

Jo
u
le

s)

(a) Energy

1 3 5 8 10
Video Length (Minutes)

22
23
24
25
26
27
28
29

210
211

E
x
e
cu

ti
o
n
 T

im
e
 (

S
e
co

n
d
s) (b) Execution Time

Top-1 Accuracy
(Higher is Better)

Privacy Level
(Lower is Better)

0

10

20

30

40

50

60

P
e
rc

e
n
ta

g
e
 (

%
)

(c) Accuracy and Privacy

MobileOnly (Large Model)

MobileOnly (Small Model)

ML-SDK (w/o Encryption)

ML-SDK (w/ Encryption)

MOCA (1 Layer)

MOCA (2 Layers)

MOCA (3 Layers)

MOCA (4 Layers)

MOCA (5 Layers)

Figure 3.11: Running CNN-based scene analysis on videos with MobileOnly vs. ML-
SDK vs. Moca. With executing two layers on mobile, Moca reduces
the energy consumption by 27.1x (96.31%) and 1.2x (16.67%) compared
to MobileOnly and ML-SDK respectively, and decreases the latency by
12.9x (92.25%) and 1.7x (41.17%) compared to MobileOnly and ML-SDK
respectively, while providing much stronger privacy than ML-SDK with the
same service accuracy.
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(90.91%) and 1.9x (47.37%) compared to MobileOnly and ML-SDK respectively

when two layers are executed on mobile as shown in Figure 3.10 (b), since less data

is transferred via the networking. As cloud server has much more powerful resources,

the execution time of deep processing a photo on it takes 16.2 ms on average, which

is a small portion of the service latency. As more layers are executed on mobile for

stronger privacy, their execution times on a mobile client will become a significant

portion of the end-to-end service latency.

To evaluate the privacy levels of the compared solutions, a competitive and highly

accurate CNN model for object recognition is executed using the data uploaded by

ML-SDK and Moca respectively on the cloud server. We quantify the privacy

level by using the recognition ratio reported by the CNN-based object recognition

model. As Moca extracts feature maps from deeper layers, stronger privacy level

will be achieved. For feature maps extracted from the second layer, Moca’s privacy

level is 11.2%, which is much lower than 74.0% (ML-SDK’s privacy level) as shown

in Figure 3.10 (c). When Moca extracts feature maps from the fifth layer, its

privacy level reaches 6.8%, which means that the possibility that the objects on the

preprocessed photos can be identified by highly accurate object recognition models

is small.

With cloud servers, ML-SDK and Moca can use highly accurate neural network

models to provide higher service accuracy than MobileOnly. Most importantly, using

Moca only has negligible impact on the service accuracy.
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3.5.3 Scene Analysis

Intelligent scene analysis enables mobile devices to support new vision-based appli-

cations such as augmented reality and video games. It helps mobile applications

recognize the scene displayed on photos and videos. The scene analysis model is

trained using the 2.5 M Places [121] dataset which includes 205 different scene cat-

egories. For validation, we collect a dataset of 50 video segments that covers 117 of

the 205 recognizable scenes and each video is about 10-minute long. These videos

are recorded with the frame rate of 30 FPS (frames per second), and 5 frames in each

second are preprocessed into images of 224 x 224 dimensions for further deep process-

ing. Two compressed neural network models for scene recognition from ResNet-50

are used for MobileOnly, and its corresponding highly accurate uncompressed model

is used for ML-SDK and Moca.

Similar to the trends on energy usage and service latency discussed in § 3.5.2,

Moca performs 27.1x (96.31%) and 1.2x (16.67%) more energy efficient than Mo-

bileOnly and ML-SDK respectively, when feature maps are extracted from the sec-

ond neural network layer. The results of quantifying the privacy level and service

accuracy with a highly accurate scene recognition model demonstrate that Moca

provides stronger privacy (recognition ratio: 8.1%) than the state-of-the-art solution

ML-SDK (recognition ratio: 53.7%), while guaranteeing the same service accuracy.

3.5.4 Face Authentication

Face authentication is becoming a popular function that allows mobile applications

to verify a user’s identity via facial recognition. In this experiment, we follow the

pipeline of deep face recognition [122] to train our CNN facial recognition model.
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Figure 3.12: The latency and energy usage breakdown of deep processing a photograph
for face authentication.

The dataset we use is the FaceScrub [123] dataset which includes over 100K face

images of 530 People, and a distraction set of 1000 images for “other” people. The

output of this model is either one of the 530 people or “other” if the model does not

recognize the input face.

To understand the energy usage and end-to-end latency for such an application
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service, we break down its procedure into several components as shown in Fig-

ure 3.12: computation on mobile, computation on a cloud server, data encryption

on mobile and networking time for user data transfer. It takes 323.8 ms and 518.2

ms for MobileOnly to perform the face authentication with the large and small

neural network models respectively. For ML-SDK which relies on a cloud server

for deep processing (15.2 ms for processing one facial photo), a large percentage of

the latency is contributed by data transfer over the network. Moca adds overhead

on mobiles due to the feature extraction procedure, however, it reduces the net-

working overhead because its extracted feature map size is much smaller than the

size of input images for CNN models. As shown in Figure 3.12(a), Moca provides

lower latency than ML-SDK (with encryption enabled) when fewer than four neural

network layers are executed on mobiles.

As for energy usage for processing facial authentication of one photo, MobileOnly

consumes 1.1 - 2.4 Joules, while ML-SDK consumes 0.2 Joules in which 82.3% is

caused by networking. For Moca, most of its energy overhead comes from fea-

ture extractions. Extracting the feature maps from the second layer consumes 0.1

Joules. Based on the privacy criteria defined in Table 3.6, Moca will not leak any

meaningful information in the facial photo, even if the untrusted cloud uses a highly

accurate CNN approach to recognize the feature maps in Moca.

3.5.5 Object Detection

Different from object recognition, the object detection is more computationally in-

tensive, as it has to locate an object in an image using a bounding box and also

recognize what the object is. The typical examples include pedestrian detection,
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Figure 3.13: Running CNN-based object detection on video frames with ML-SDK
vs. Moca. Moca reduces the energy usage on mobile by 1.9x - 6.7x
(47.37%-85.07%) compared to ML-SDK.

road sign detection and so on. The accuracy of object detection is measured using

mean average precision (mAP) [124].

The object detection method we use is Faster-RCNN [33] that is built on top

of ResNet-50. We use the ImageNet video object detection dataset for evaluation.

The input image resolution of our model is 600 x 800. The object detection CNN

model takes each frame of the video as its input and detects 30 categories of objects

in the video frames.

As shown in Figure 3.13, Moca is 1.9x - 6.7x (47.37%-85.07%) more energy

efficient than ML-SDK, because Moca reduces the data transfer size dramatically

by 8x (87.5%) compared to ML-SDK, and consumes less energy on networking

operations.
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Figure 3.15: Service accuracy and privacy evaluation of using ML-SDK vs. Moca with
different DNN models.

3.5.6 Applicability in Different CNN Architectures

In this section, we evaluate Moca with different CNN model architectures to demon-

strate its effectiveness. We use two highly accurate object recognition models from

GoogLeNet [125] and VGGNet [126] respectively. The photos in the ImageNet

dataset are used as the input for these models. As we expected, Moca has lower

energy overhead than ML-SDK when a few neural network layers are executed on
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mobiles. As deeper layers are executed, more energy is required. Such trends are

seen in Figure 3.14 as we apply Moca in both GoogLeNet and VGGNet models.

Besides the energy efficiency, Moca has negligible impact on the service accu-

racy for different neural network models, and provides stronger privacy for both

GoogLeNet and VGGNet models, as shown in Figure 3.15. Moreover, our results

from the experiments with different neural network models for a variety of vision ap-

plications discussed in § 3.5 provide strong evidences for the effectiveness of Moca.

3.5.7 Privacy Discussion

The privacy protection discussed in the chapter is a pioneer work toward a fully

secure system. There are possible ways to compromise the privacy claimed under

stronger threat models.

Training Model for Attacks: An active malicious cloud server may train an

attacking model using feature maps instead of raw images. For example in a face

recognition system, though a face recognition CNN model trained using raw images

cannot correctly recognize faces in received feature maps, it can recognize accurately

if the CNN model is trained using labeled feature maps. However, there are some

difficulties for malicious clouds to launch such attack. First, without knowing the

feature map extraction module (i.e., the portion of CNN deployed on mobile), the

attacker cannot generate the required feature maps for training. Second, even if

the cloud colludes with mobile users so that they can generate the required feature

maps, it is still hard to obtain enough training data without having access to the

training datasets.

Deriving Raw Images: It would be more vulnerable if the cloud can derive
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raw images from received feature maps. A possible way to launch such attack is

to deploy the recently emerging generative adversarial nets (GAN) [127]. This also

requires mobile users to collude with the cloud server so that they have the access

to the feature map extraction module. However, the research for GAN is still in

an early stage and the quality of derived raw images may still be questionable. We

would like to investigate such attack in our future work.

3.6 Related Work

Deep processing for mobile vision: Convolutional neural network (CNN/ConvNet)

is a type of feed-forward artificial neural network, which has been widely used for

processing images and videos [91, 125, 126]. Since a CNN model achieves higher

accuracy, it has been ported to run on commodity mobile platforms such as An-

droid [87, 128, 129] and iOS [130]. For example, the recent popular mobile applica-

tions like Pokemon Go and Google’s Tango [131] have already used neural network

technologies for processing mobile vision.

However, processing vision data using any neural network technique on resource-

constrained mobile devices is expensive. Several model optimizations such as model

compression were proposed [88, 132–134] recently to trade off CNN accuracy for

resource usage. Our analysis on those compression methods demonstrate that such

techniques still have large performance and energy overheads on mobiles. Mean-

while, majority of those methods work effectively on classical CNN models which

have major computations on the last few fully connected layers. However, the state-

of-the art CNN models like ResNet [31] and Google’s Inception [135] have removed
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most of such layers, making those compression methods less effective.

Recent work [83, 103, 136, 137] proposed using GPUs and hardware accelerators

like application-specific integrated circuits (ASICs) to accelerate the deep processing

on mobiles. However, these hardware devices are not widely available on commodity

mobile devices [93]. In this chapter, we focus on building energy-efficient deep

processing system for commodity mobile devices.

Mobile Offloading to Cloud: To reduce the burdens on mobile devices, the

concept of computation offloading [138] has been proposed for decades to shift the

computationally intensive workload to remote cloud servers. Prior work [139–141]

mostly focused on offloading for conventional mobile applications. Moca is designed

for new DNN-based mobile applications. It decouples the hierarchical layers of DNN

models and splits them between mobile and cloud platforms. The workload on

mobile could be dynamically adjusted by Moca based on the privacy requirements

of mobile applications.

Preserving privacy for personal user data: Shifting mobile workloads to

remote cloud could empower mobiles’ capabilities, however, this runs the risk of

leaking users’ personal and sensitive data, as cloud servers are shared resources

which are untrusted. Many image protection techniques were proposed to sup-

port data privacy for mobile vision, such as data encryption [142, 143], and huff-

man coding [144]. However, the performance and energy usage of mobile vision

tasks could be significantly hit by these privacy protection mechanisms. Moreover,

the encrypted user data would still be leaked during the data processing on cloud

servers [101, 104, 105]. Moca proposes a novel way to protect data privacy by up-

loading only the privacy-preserving feature maps of user data into untrusted cloud,
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without affecting application services’ performance and accuracy. Unlike differen-

tial privacy [145] that provides both strong integrity and privacy guarantees, Moca

achieves differentiated personalized privacy to meet the requirements of different

applications.

3.7 Summary

We present Moca, an energy-efficient and privacy preserving system for DNN-

based mobile vision applications. It leverages the feature maps extracted at different

layers of hierarchical neural network models to provide highly accurate application

services with low energy overhead for mobile devices, and also enables differentiated

privacy protection for personal user data. We validate these benefits using a variety

of typical mobile vision applications, and demonstrate that Moca is 1.2x - 6.7x

(16.67%-85.07%) more energy efficient while providing stronger privacy compared

to existing solutions.
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Chapter 4

DeepCham: Collaborative

Edge-Mediated Adaptive Deep

Learning for Mobile Object

Recognition

In this chapter, we present DeepCham - the first adaptive mobile object recognition

framework that allows deep learning model to be used successfully in mobile envi-

ronments. Deep learning techniques achieve state-of-the-art performance on many

computer vision related tasks but still face visual domain bias problem. To solve

this problem, DeepCham is mediated by an edge master server which coordinates

with participating mobile users to collaboratively train a domain-aware adaptation

model which can yield much better object recognition accuracy when used together
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with a domain-constrained deep model. Using a newly created image dataset col-

lected using smartphones from different locations, time of a day, and device types,

we show that DeepCham improves the object recognition accuracy by 150% when

compared to that achieved merely using a generic deep model. We also demonstrate

the feasibility of DeepCham using an implemented prototype.

4.1 Introduction

Contemporary mobile devices (e.g., smartphones, mobile robots) equipped with ca-

pable cameras and powerful processors enable many exciting mobile computer vision

applications such as augmented reality [41, 146–148], robotic pets [149] etc. The

core technique underlying majority of these applications is object recognition, i.e.,

running computer programs to identify objects in an image or video sequence. Tra-

ditional object recognition algorithms operate robustly for specific vision tasks in

controlled environments (e.g., wine label reading, OCR-based language translation)

but exhibit high variation in accuracy for more general mobile object recognition

task in unconstrained mobile environments. The key challenges are: (1) model inclu-

siveness: it is hard to know in advance what objects are available in an environment

to pre-train an inclusive recognition model for such an environment, and (2) visual

domain shift: every mobile visual domain is highly variable: changes in image res-

olution, lighting, background, viewpoint, and post-processing (or any combinations

of the above) can adversely impact the accuracy of computer vision algorithms.

Deep learning method, which learns a multiple-level neural network with very
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large datasets, opens a door to solve the challenging mobile object recognition prob-

lem. Specifically, the recently advanced Convolutional Neural Networks (CNNs) [29],

achieves the state-of-the-art performance on large-scale object recognition tasks,

e.g., the 1000-class object classification task in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). Such large-scale recognition model (we name it

the generic deep model) can be trained to recognize most objects in real-life us-

age which seems to solve the inclusiveness issue. However, a deep neural network

trained using such large-scale datasets does not guarantee sufficient recognition rate

in each target visual domain (i.e., the context where the deep model is applied to)

[38, 39, 150], e.g., it may recognize well the animal specimens displayed in a museum

but not those alive in a zoo.

Recently it has been shown that the object recognition accuracy of a generic deep

model in a target visual domain can be significantly boosted using supervised deep

model adaptation methods [38, 39]. An effective adaptation requires high-quality

training instances (good image feature and correct image label) captured from such

target visual domain. However, in mobile object recognition task, obtaining such

high quality training instances is challenging due to the highly variable mobile visual

domains.

In this chapter, we propose an edge-mediated collaborative deep learning adapta-

tion framework, DeepCham, that aims to solve the challenging mobile object recog-

nition problem. DeepCham creates domain-specific adaptation training instances

using in-situ photos from participating mobile devices, and enables deep model

adaptation in both personal spaces (e.g., home) and public spaces (e.g., museums).
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The deep model adaptation in mobile environments should incur minimal hu-

man effort, respect user privacy, be resource efficient, and be done in real-time.

DeepCham achieves these goals via three system components. The first component

is a domain-aware image selection pipeline which is run collaboratively among an

edge server [151–154] and all participating mobile devices. It includes a function

which identifies on-device mobile photos matching the target visual domain specifi-

cation, and a distributed image pruning algorithm that allows participating mobile

devices to collaboratively select a representative subset of images, considering a

per-device constraint on the number of selected images. The second component is a

training instance generation pipeline that runs on each participating mobile device.

It consists of an object proposal algorithm targeted for fast and accurate object ex-

traction from a mobile photo, and a generic deep learning model to facilitate training

instance generation. The deep model takes the proposed objects and automatically

generates labeling recommendations to the user. The image features are simulta-

neously extracted from a hidden layer of the deep model. The third component is

an adaptation training pipeline which trains a shallow model (e.g. SVM) using the

resulting training instances from all collaborative users.

DeepCham performs object recognition on the target visual domain using a late

fusion technique similar to the method used in [38, 155, 156], which combines

the recognition results of both the generic deep learning model and the adapted

domain-specific shallow model. Different from existing works, the late fusion method

used in DeepCham does not require training a separate domain-specific deep model.

Instead, it provides the domain information (i.e., the set of existing classes/labels in

the adaptation model) to the generic deep model so that it ignores domain-unrelated
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classes in its prediction. (More in section 4.4.2)

We evaluate DeepCham using a new collected dataset that enables systematic

evaluation of adaptation performance under different mobile visual environments.

Using this dataset, we first show that the generic deep learning model has poor

performance in unconstrained mobile environments, then we evaluate how envi-

ronmental factors impact the performance of adaptation models. Next, we evalu-

ate the effectiveness of the three components of DeepCham and their contribution

to the end-to-end adaptation accuracy. Finally, we demonstrate the feasibility of

DeepCham framework with a prototype system.

In summary, our contributions are as follows:

• An edge-mediated framework for performing adaptation using deep learning

models for object recognition under different mobile visual domains.

• An attribute-based mobile visual domain specification method for flexible

adaptation task initialization and candidate training image selection.

• Fast, collaborative training instance generation pipeline for adaptation de-

signed to run on mobile devices. Our approach aims at minimizing human

effort, respecting user privacy and being resource efficient.

• Creation of a new image dataset which enables controlled experimental eval-

uation of deep model adaptation of different mobile visual domains.

• A prototype system implementation demonstrating the feasibility of the frame-

work.
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4.2 Motivation, Challenges and Related Work

4.2.1 Motivation

The design of DeepCham is based on the following key observation: In the mo-

bile context, there are an abundance of unlabeled (i.e., no text annotation) high-

resolution domain-aware photos captured by smartphone users. Nowadays, mobile

photos are attached with information-rich metadata, e.g., the EXIF data contains

detailed information about the camera, the settings of the shot, the date/time, lo-

cation etc. Such metadata can be easily extracted using standard libraries from

modern programming languages. In addition, it is also easy to extend the scope

of image metadata using APIs provided by other mobile services, e.g., we can get

the weather data by sending date/time though APIs of the weather service. On the

other hand, the target visual domain for which we want to make adaptation can also

be specified using such metadata attributes. Photos that can be potentially used for

adaptation training are identified by matching the image metadata to pre-defined

target visual domains.

4.2.2 Challenges

Despite the potential of in-situ mobile user photos, using them directly for adap-

tation training purposes entails several challenges: First, mobile user photos are

not labeled and in general contain multiple objects. This requires solving a hard

object detection and recognition problem, i.e., identifying both the location and the

class/label of multiple objects in images taken by mobile phones. Second, multi-

ple users are desirable to cover a more inclusive set of objects in the target visual
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domain. This entails coordination challenges of users using a different label for an

object class and addressing the image redundancy problem of users taking similar

photos of the target domain. Third, typically deep learning adaptation training is

performed in the cloud with high processing power and huge amounts of data. How-

ever, in our case, sending the raw mobile user photos to cloud for processing is not

attractive due to privacy issues and high uplink bandwidth/energy consumption.

Thus an edge-based solution is required which ideally would perform adaptation

training on the mobile phones.

4.2.3 Related Work

Visual domain adaptation. For object recognition task, a visual domain is de-

fined as the context of image/video recognition including a variety of visual cues such

as visual illumination, background etc. To increase the recognition performance in

a particular target visual domain, visual domain adaptation methods have been ex-

tensively studied by the computer vision community [157]. Recent work shows that

even with the state-of-the-art deep learning models, visual domain shift is still a

problem [38, 39, 150], and various server-based approaches have been proposed. In

general, existing adaptation techniques are not specific to mobile visual domains,

and are not concerned with mobile resource limitations. In contrast, we investigate

the case of mobile visual domain adaptation where potentially useful image data ex-

ist in mobile phones but should incur minimal human effort while preserving privacy

and minimizing mobile resource usage.

Deep learning on mobile devices. Deep learning models have been ported

to run on mainstream mobile platforms such as Android [128, 129, 158] and iOS
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Figure 4.1: The Adaptation Training Overview

[129, 130]. In a recent sensor computing paper, Lane and Georghiev [159] build a

system for audio sensing (e.g., speaker identification) using deep learning, showing

efficient operation and good accuracy on mobile devices with offline training. In

contrast to audio, we show that mobile visual domains require online adaptation

training. Furthermore, in our system design, we run the deep learning model on

mobile devices for multiple purposes: it is not only used for object recognition,

but also for producing high-quality training instances, which requires proper object

labels and discriminative image features, in the supervised adaptation training.

Training instance labeling for supervised machine learning. In super-

vised machine training, the quality of labels assigned to training instances is very

important, especially when the number of training instances is very limited. When

multiple users are involved in labeling, there is also a label-consensus problem [160]

for labeling the same object class. To facilitate the labeling process, interactive la-

beling techniques [161–164], which combine the power of automatic image labeling

and human feedback, have been investigated by the machine learning community.
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However, those techniques rely on well-prepared training images instead of raw im-

ages from personal mobile devices.

Object bounding box proposal. To automatically identify and crop objects

from complex multi-object images, DeepCham relies on the recent advancement of

real-time object bounding box proposal algorithms [165, 166] from the computer

vision research community. Traditionally, the bounding box proposal algorithms

are used as an essential step in known object detection task [32, 166, 167] which

requires accurate cropping of target objects (i.e., objects that appear in training im-

ages). This means that the algorithm locates many possible bounding boxes around

potential objects (usually more than 1000 sorted by confidence score) which are pro-

cessed later by a computer program to select the best bounding boxes for the target

objects. DeepCham involves human users for object labeling, so it cannot afford to

use many bounding boxes. In this chapter, we analyze the new requirements and

propose an enhanced bounding boxes strategy (EBBS) to address this new challenge.

Object recognition in mobile systems. Existing mobile augmented reality

(AR) systems [41, 146–148] use sophisticated sensor-based techniques for context

inference combined with traditional computer vision techniques for object recogni-

tion: they send test images to a GPU-equipped server which extracts image features

and matches them to those of annotated object images in a database. These image-

matching based systems require exact query images and manual labeling of initial

population of annotated images in the database. Our system focuses on adaptation

of the state-of-the-art deep learning technique for more generalized object recogni-

tion (i.e., it does not require an image database). Furthermore, we show that it can

be executed on mobile devices as opposed to GPU-enabled servers.
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Edge computing. DeepCham follows the edge computing paradigm [151–

154, 168] by pushing computations to the edge of the Internet. The “one-hop”

edge server enables the coordination among collaborative users with low-latency

communication and sufficient data cache capacity. In addition, it is quite likely that

mobile users connected to the same locally deployed edge server (e.g., at a museum)

have photos that match the same target visual domain. However one main difference

with existing approaches is that DeepCham offloads more privacy-sensitive image

processing operations to mobile devices. This fact posed several unique algorithmic

and system challenges which we had to address in this chapter.

4.3 DeepCham Adaptation Traning

4.3.1 Training System Overview

DeepCham works by issuing adaptation training tasks to participating mobile de-

vices (Figure 4.1). Each adaptation task targets a particular mobile visual domain,

and consists of one initiator, one master and multiple workers. The initiator can

be anyone who initializes an adaptation task by specifying the characteristic of the

target visual domain and sending such specifications to the master. The master is a

software module that executes in a local edge server. Its goal is to accept an adapta-

tion task request and coordinate collaboration among workers for this task. Workers

are software modules that reside on mobile user phones. The workers receive tasks

from the master and execute the adaptation task by generating and sharing training

instances of a target domain based on their captured in-situ images. These instances

can be later used to adapt existing generic deep models to the target mobile visual
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domain. Subsequently, each user can use this adapted model for object recognition

in the target environment.

The Adaptation Training is designed to allow mobile users with common interest

to train a domain-aware adaptation model collaboratively. This training procedure

can be subdivided into four steps, namely (i) task initialization, (ii) domain-aware

image selection, (iii) training instance generation, and (iv) shallow model training.

4.3.2 Task Initialization

Figure 4.2: An Example “On-site” Adaptation Task Specifications.

The adaptation task is initiated by a user, i.e., the initiator, interested in recog-

nizing objects in a particular mobile visual domain (e.g., creating an adapted model

for a personal space with the help of friends) or by a user who wishes to launch a
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training campaign for a public space (e.g., creating an adapted model for a museum

with help of visitors). The initiator first creates a characterization of the adaptation

task and then it sends the specifications to a local edge server.

An adaptation task characterizes the target mobile visual domain by a set of

context attributes such as time, location or weather. These attributes aid work-

ers in selecting matching photos they have in their devices. DeepCham allows

specifying both remote and on-site tasks. Remote tasks can be initiated by any

authorized initiators with no location or time constraint, while on-site tasks are ini-

tialized by an onsite user who would like to train and use an adaptation model for

her current mobile context. In Figure 4.2, we show a screenshot of an on-site adap-

tation task specification on an Android device. In this scenario, the client software

automatically set the visual domain attributes by calling system APIs (e.g., time

and location). It should be noted that the visual domain attributes can be defined

at different levels of granularity. For example, the location can be defined at the

granularity of places [121] (restaurants, classrooms etc.).

On receiving the task specifications, the master first checks if there is an existing

adaptation model matching the specified target visual domain. The model match-

ing criteria can be flexibly determined, e.g., if the model is defined with location

attribute as a region (GPScoord+Radius), the master may calculate and present the

region overlapping ratio with existing adaptation models (if defined with location

regions), and based on this information the task initiator can make a decision on

whether a new model should be trained. If a pre-trained model exists, the initiator

can choose to use it directly or to enhance this model using more training instances.

If this is a new adaptation task or the initiator chooses to enhance an existing model,
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the master broadcasts the adaptation task to participating mobile devices with run-

ning worker software. The adaptation task description contains directions to the

prospective workers. DeepCham supports two scenarios of adaptation tasks. In a

first scenario, a task can ask mobile users to use existing photos in their devices. In

a second scenario, it may ask them to take and label photos of the target domain

within a finite time interval. If a user is willing to participate, it sends an acknowl-

edgement back to the master and this device will be referred to as a worker. Once

the workers have been identified, they start executing the task as a collaborative

group coordinated by the master.

The initiator also specifies an expiration time for the adaptation task, and when

the task expires, the master stops recruiting new workers and will train an adapta-

tion model using training instances created by existing workers.

4.3.3 Domain-Aware Image Selection

The DeepCham worker client software running in each device scans the local storage

to get a list of candidate images matching the task specification. The list of these

candidate images can be very large and each image may contain multiple objects.

Manually labeling a large number of objects is exhaustive and impractical. For

example, if an image contains 3 objects on the average, and a user takes 5 seconds

to label one object (i.e., create one training instance), labeling 100 images will incur

25 minutes! Therefore, DeepCham allows workers to specify a maximum number of

images they intend to label. Given this maximum limit, DeepCham is supposed to

select a subset of images which collectively contain a maximum number of distinct

objects. A challenge that arises is that when multiple users are involved in the
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adaptation training, the selection algorithm should also avoid having users label

many duplicated objects. We solve this problem using a new distributed redundancy

image pruning method.

Distributed Image Pruning

First, we describe a special simplest form of this distributed image pruning problem:

there is only a single worker, ui, who wants to label ni (ni ∈ Z+) images from the set

of mi (assuming mi > ni,mi ∈ Z+) candidate images, and we would like to maximize

the number of distinct objects covered in the selected images. However, we do not

know what objects are included in each image and it is also not possible to identify

them manually. To find a feasible solution, we observe that if the visual appearance

of two images is considerably different, the possibility that the two images contain

the same object is very small. Thus, instead of directly maximizing the number

of distinct objects, we alternatively identify a subset of images with large visual

difference. Our solution to the simplest single-worker scenario is straightforward:

We assume that a global image feature (we use the lightweight and widely accepted

CEDD [169] for evaluation) has been extracted from each candidate image, and we

cluster the mi candidate image features using K-means into ni clusters. Then, for

each cluster, we retain only one image which is the nearest neighbor to the cluster

centroid.

Next, we describe formally a general version of this problem: For an adaptation

task, there are l participating workers {u1,...,ul} (l ∈ Z+). Each worker ui (1 ≤ i ≤

l) wants to label a subset of ni images from mi candidate images in her local device,

and she may join the task at any time point as long as the task has not expired.
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We would like to maximize the number of distinct objects covered in the selected

images of all workers. Again, we do not know what objects are included in each

image. So we alternatively identify a subset of images with large visual difference.

For the general problem, simply running the clustering algorithm over extracted

image features on each individual worker’s device is not the optimal solution. The

reason is that different workers may have taken similar photos, and without knowing

what images are selected by other workers, duplicated objects may be included in

the selected images of collaborating workers. Therefore, any solution must address

this issue. Now, before we describe our algorithm to the general problem, we first

consider two special scenarios:

One-after-another asynchronous scenario: In this scenario, we assume that

a new worker, uj, can only join the adaptation task after another participating

worker, ui, has selected the subset of images to retain. To make the new worker aware

of what images are retained in other workers’ devices, the system requires a worker

to send the image features of the selected images to the master immediately after her

image selection. The worker, u1, who first joined this adaptation task, clusters m1

candidate images to n1 clusters without considering other workers’ selection (as that

in the simplest single-worker form). For each of the n1 clusters, u1 retains only one

image which is the nearest neighbor to the cluster centroid, and then sends the image

features of the retained images (or the cluster centroids for privacy consideration) to

the master. A subsequent new worker ni (1 < i ≤ l) first receives ne image features

of selected images by existing workers from the master. Then a 2-step method is

executed on the new worker’s device. In step 1, it clusters its mi candidate images

to ne + ni clusters, and in each cluster it retains a single image which is the nearest
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neighbor to the cluster centroid. The retained image features form the set Ŝr. In

step 2, we use each of the ne image features received from the master as a query, and

we find its nearest neighbor in Ŝr and remove it from Ŝr. The remaining images in Ŝr

are retained for the worker ni to label, and it sends the image features (or centroids)

to the master. To avoid incurring too much communication and computational cost,

a predefined threshold nt(nt ≤ ne) can be set by each worker so that the master will

send at most nt image features to the new worker. The set of nt image features can

be determined by either random selection or clustering over all ne features.

All-together synchronized scenario: In this scenario, we assume that all

workers join the adaptation task simultaneously, i.e., no single worker has selected

a set of retained images before other workers, and this may happen when multi-

ple workers actively accepting new adaptation tasks. Each worker ui specifies the

number of images she would like to label, ni, and the master notify each worker

that there are other existing workers. We propose a synchronized solution for this

scenario: Each worker clusters her own mi candidate images to ni + t clusters, and

for each cluster, it retains the nearest neighbor to the cluster centroid. Here, we

first select t more images for each worker in the expectation that we can find ni

images from the ni + t retained images that are unique to this worker. We name t

as the synchronization allowance variable and discuss the setting of t in our exper-

imental study. Each worker then sends the retained image features (or centroids)

to the master. On receiving all the features/centroids, a second K-means algorithm

is executed on the master to cluster them to
∑
ni clusters. For each new cluster,

if the cluster members are from two workers, just one of them is retained. The

information (e.g., id) of the retained images is sent back to each worker.
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Algorithm 6 Distributed Image Pruning (Worker Algorithm)
Input: ni = the number of images to retain on the device

Sc = the set number of images features extracted from mi candidate images
Se = the set of ne existing image features received from master
t = synchronization allowance variable

Output: Imgr is the set of retained images

1: function RemoveExisting(Ŝr, Se)
2: for each item in Se do
3: search the nearest neighbor fnn of item in Ŝr

4: remove fnn from Ŝr

5:
6: function Pruning(Sc, Se, ni)
7: if there are synchronized workers then
8: Ŝr = clusterCentroid(Sc, ni + ne + t)
9: else
10: Ŝr = clusterCentroid(Sc, ni + ne)

11: RemoveExisting(Ŝr, Se)

12: send Ŝr to master
13: if there are synchronized workers then
14: updateFromMaster(Ŝr)

15: Imgr = ids of images that are nearest neighbors to centroids in Ŝr

16: return Imgr

Solution to the general problem: The general problem can be solved by

combining the solutions of the above two special scenarios. We present the pseudo-

code in Algorithm 6 which is run on each worker. First, each worker would receive

the set of existing features from the master, and it checks with the master if there

are synchronized co-workers. If no co-worker exists, it falls back to the one-after-

another asynchronous scenario. Otherwise, it first runs the asynchronous method

but to get t more clusters and relies on the master for a second round clustering

as that in the all-together synchronized scenario. The updateFromMaster function

receives a list of identifiers for the retained images from the master.

4.3.4 Training Instance Generation Pipeline

On each participating mobile device, DeepCham worker software passes the selected

images through the training instance generation pipeline. For an image containing
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multiple objects, the pipeline first automatically detects objects within the image,

and crops them out as training object images, i.e., an image contains exactly one

single object to be labeled. This automation is achieved by the new designed en-

hanced bounding boxes strategy (EBBS) algorithm. EBBS operates on the output

of a state-of-the-art bounding box proposal algorithm, Edge Boxes [165], to select a

few object bounding boxes with high recall. (More on Section 4.3.4).

Figure 4.3: Interactive Labeling.

Once the training object images are created, they are input into the pre-installed

generic deep-learning model which produces (1) a list of potential correct labels for

each object image, and (2) the ConvNet features [39] extracted from one of its hidden

layers. A Worker user selects the correct label by tapping on the screen (Figure

4.3). This design is based on our observation that though the recognition accuracy

(Top-1) of a generic deep learning model is not sufficiently good (< 60% for the

ILSVR2014 dataset), it is quite likely that the correct prediction is included in the

Top-K results (around 90% for Top-5) [170]. Furthermore, since each user is asked
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to label objects in his own photos, there is a better chance for him to know what

the objects are in his own photos than labeling any object from others’ photos. The

simultaneously extracted ConvNet feature has been proved to be quite discriminative

and has shown excellent performance in many different types of applications such

as image retrieval [171] and scene recognition [39].

Each user selected label and the ConvNet feature pair forms a new training

instance for the adaptation. For an object image which does not have its correct label

presented in the suggested labels, there are 3 options: First, a user can manually

input the correct label but use Autocomplete Suggestion as in Google Instant [172].

Second, if a user does not recognize the object, he can label it as a special class

”other”. Finally, a user is also given the option to skip labeling of this image.

Enhanced Bounding Boxes Strategy (EBBS)

Bounding box proposal in our training instance generation pipeline has different

challenges and requirements from the traditional bounding box proposal algorithms

used for known object detection tasks [166][165]:

• No prior knowledge: when an adaptation task is initialized, it is hard to know

the set of available objects in that target visual domain.

• Enough margins for cropped objects: good training images for the adaptation

task should have margins around the target objects to capture the target visual

domain information [38].

• Few bounding boxes with high recall: the system requires users to select the

correct label for each object/box and hence should identify fewer bounding

boxes to minimize users’ labeling efforts.
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• Overly small boxes should be ignored: too small boxes are unsuitable for adap-

tation training due to low image quality.

EBBS meets the requirements and address the challenges by operating over the

output of Edge Boxes algorithm [165], which is a list of ranked bounding boxes.

Edge Boxes rank the boxes by calculating an objectiveness score which measures

the number of edges in the box minus those are members of contours that overlap

the boxs boundary. EBBS limits the maximum number of proposed bounding boxes

from one image to a small value j (we set j = 5 in our experiment) and includes the

following operations:

Removal of large and small boxes: Large bounding boxes proposed by EdgeBoxes

will normally cover more than one object in a multi-object image. On the other hand,

if an object covers a large area of the photo, it is typically in a one-object image,

which does not require the bounding box identification process. Small bounding

boxes typical contain unclear images and may not be good training instances. During

our experiments, if the area of a proposed bounding box is larger than 40% of the

image area, then we consider it to be “too large”. If the area is smaller than 1% of

the image area, we consider it to be “too small”. We ignore all “large” and “small”

boxes.

Equal regional distribution: We enforce equal regional distribution of bounding

boxes in a given image as follows: First, we divide a given image into 4 equal regions:

Upper Left, Lower Left, Upper Right, Lower Right. Next, we check if the bounding

box we are considering, bi, can be assigned to one of the 4 regions using the function

Equal Region in Algorithm ??. This function ensures that (i) only a maximum of j

bounding boxes are retained among all regions, (ii) the maximum number of boxes
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assigned to a region is ceil(j/4).

Add margins to bounding boxes: For a bounding box with width w and height h,

we crop a larger box with width 1.5 ∗w and height 1.5 ∗h while keeping the original

box center.

The pseudo-code for EBBS is illustrated in Algorithm 7. In our prototype An-

droid implementation, we run Edge Boxes (and EBBS) on low resolution images (by

resizing original images) for time efficiency. However, the bounding boxes returned

from low-resolution images can be very small and the features extracted from such

small patches are unreliable. Therefore, after we get the coordinates for the bound-

ing boxes, we map them to the original high-resolution image and crop them out

for the next process.

Algorithm 7 Enhanced Bounding Boxes Strategy
Input: L is the list of boxes in descending order of scores
Output: Ltop is the list of the top 5 selected boxes

1: function Select(L)
2: Ltop ← ∅
3: regiondist ← [0, 0, 0, 0] . region distribution of Ltop

4: for each b ∈ L do
5: if Ltop.size ≥ j then
6: break
7: if b is too large || b is too small then
8: continue
9: if ¬ Equal Region(b, regiondist) then
10: continue
11: Update(regiondist)
12: Ltop.add(b)

13: Add Margin(Ltop)
14: return Ltop

Multi-scale Merge: We observe that when images are scaled to different res-

olutions, Edge Boxes will detect objects at different detail levels, and thus will

produce different sets of bounding boxes using Algorithm 7. The union of each set

of proposed bounding boxes produced using different image resolutions covers more

complete objects. Unfortunately simply returning the union of boxes at different
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scale may be an overkill and compromise our design goal of limiting the number

of boxes for a user to label. Therefore, we propose a box merging method which

removes redundant boxes from the union set. The redundant boxes are boxes with

“nearly-the-same” visual content. In our prototype system, we define two boxes as

having “nearly-the-same” visual content if their intersection area exceeds 50% of

the area of each individual box. For such boxes, we merge by generating a union of

these two boxes.

4.3.5 Adaptation pipeline: model construction

When all Participating Workers finish generating training instances, adaptation

can be performed by using the training instances to create a new shallow model

using traditional training methods, e.g., Softmax or SVM. The adaptation training

can be done either at the Master, or collaboratively using a distributed learning

method [173]. The adaptation model will be shared with all participating users.

This adaptation model as well as the training instances are stored in the local

edge server with visual domain attributes and can be shared with other users with

the same adaptation requirement. New users may use the model directly or the

adaptation model can be incrementally trained with new training instances.

4.4 DeepCham Object Recognition

DeepCham uses both the adapted shallow model and a deep model for object recog-

nition (Figure 4.4). Specifically, we use the late-fusion method to generate the final

recognition result by considering the following benefits:
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Figure 4.4: Object Recognition with Late-Fusion.

Good performance with a few training instances: It has been shown that the

late-fusion method [38] achieves similar recognition accuracy improvement to a com-

plicated adaptation method with one-shot adaptation, i.e., using a single training

instance for each object class.

Simple adaptation training: To train a shallow learning model does not require

a powerful GPU-equipped server. It is fast and can be performed even on a single

mobile device.

Sharing adaptation as a plug-in: A shallow model has much smaller size than a

deep model. Once it is trained, it can be easily shared with other mobile users who

are interested in object recognition in such target visual domain.

The issue to apply the late-fusion method directly in mobile visual domain adap-

tation is that: it assumes that both the deep model and the shallow model recognize

the same set of object classes. However, the set of object classes available in each tar-

get visual domain is highly variable and it is impractical to train or fine-tune a deep

model for each domain. We solve this problem by proposing a domain-constrained

deep model.
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4.4.1 Domain-Constrained Deep Model

The domain-constrained deep model, created from the generic deep model, recog-

nizes only the object classes included in a target visual domain. We construct the

domain-constrained deep model as follows: let us assume that there are d object

classes in a particular mobile visual domain (i.e., classes in the adaptation model).

For each image, given the prediction vector obtained using a generic deep model,

which represents the probabilities of that image belonging to different recognizable

classes, we retain only those probabilities for the set of d classes {p1, p2, ..., pd}.

Then we normalize each probability pi = pi/
∑d

n=1 pn as the domain-constrained

prediction result.

4.4.2 Late-fusion based Recognition

To obtain the final recognition result, we apply the late-fusion method [38][155][156]

where a linear interpolation is used to compute a fused probability of a particular

instance: pfusion = αpdeep + (1 − α)padpt. (where pdeep is the probability from the

domain-constrained deep model, and padpt is the probability from the shallow adap-

tation model). One issue here is that it is hard to determine the weighting factor α

for the dual-model recognition. We provide a basic guideline for setting the weight

in our experimental study.

The adaptation model may not include a complete set of object classes in a

target visual domain especially when there is only a single worker involved for the

adaptation training. We solve this problem by including a special “other” class in

the adaptation model which represents unrecognizable during the Training Instance

Creation step. When an object is recognized as “other by the adaptation model,
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the system uses only the generic deep model for object recognition.

4.5 Evaluation

We first describe a popularly used CNN model which is referred to as the generic

deep model (section 2.5.1), and a new image dataset we created capturing different

target visual domains (section 2.5.2). Next, we use this dataset to present a baseline

adaptation performance, i.e., we assume perfect training instances for an inclusive

object set, and compare it with that achieved with the generic deep model (section

2.5.3). Then, we show the impact of our proposed distributed image pruning algo-

rithm (section 2.5.4) and the EBBS algorithm (section 2.5.5), and the adaptation

performance using training instances created by the proposed algorithms (section

2.5.6). Finally, we describe the prototype implementation and measure its system

cost (section 2.5.7).

4.5.1 AlexNet CNN Model

We use the 1000-class AlexNet [29] CNN model, which is trained using the ILSVRC

2012 dataset. This model achieves 57.4% Top-1 accuracy and 80.4% Top-5 accuracy

on the ImageNet 2012 validation dataset. AlexNet consists of 5 convolutional layers

(Conv1-Conv5), some of which are followed by max-pooling layers, 3 fully-connected

layers (FC6, FC7, FC8), and a final 1000-way softmax layer. In the experiment, we

train the adaptation models using the 4096 dimensional ConvNet features extracted

from FC7 [38].
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Attribute Values

Location
Home Apartment (home), Research

Building (lab), Library (lib)
Time of Day Noon (d), Evening (e)

Device/Resolution
iPhone 4s/3264*2448 (ip4),

iPad Mini 2/2592*1944 (ipm),
LG G2/4160*3120 (lg2)

Table 4.1: Meta-Data Attribute Values of MCID

4.5.2 Mobile Context Image Dataset (MCID)

To evaluate the performance of our system, we collected a new Mobile Context Image

Dataset (MCID) which includes photos taken from 3 locations at two different times

(noon/evening) using three different mobile devices. All photos are taken at the

default resolution under the auto-focus and auto-flash (if flash is available) mode.

Table 4.1 summarizes the meta-data image attributes included in our MCID dataset.

We can divide images in MCID into 18 subsets based on different combinations

of device-type, location and the time when an image is captured. We represent each

subset using the following format dev loc time, e.g., ip4 lab d means images taken

using iPhone4s(ip4) at a Research Building (lab) at noon (d). For subsets that are

taken at the same location, their images contain nearly the same visual contents:

each image in one subset must have mirror images in other subsets at that location

(an example in Figure 4.5). This is arranged so that it is easier to determine which

attribute has more impact on the adaptation performance. MCID has 117 images

for each subset associated with the Home Apartment, 204 images at a Research

Building, and 99 images at the library Library. Thus, the total number of images

contained in MCID is (117+204+99)*2 (time)*3 (device)=2520. Each image may

contain one or multiple objects.

To ease the discussion of our evaluation results, we first define three important
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Term Meaning
Class The classification labels, such as Laptop, Cellphone.

Object A particular object, such as my cellphone, Tom’s cellphone.
Instance An image/image patch showing a single object.

Table 4.2: MCID Terminologies

Location Instance Num Object Num Class Num
Home Apartment 192 64 54
Research Building 231 77 39

Library 162 54 34

Table 4.3: MCID Statistics

terminologies shown in Table 4.2. We manually cropped instances from all images

in MCID for our baseline evaluation. For each instance, it is annotated with (1) the

image id from which it is cropped, (2) the coordinates for its bounding box in the

original image, (3) the object label, e.g., Tom’s cellphone, and (4) the class label.

All class labels of the manually cropped instances in MCID are included in the 1000

classes of AlexNet. Each object to be recognized has exactly 3 instances showing

its visual appearances from 3 different angles. Table 4.3 summarizes the number of

instances, objects and classes for subsets at each location.

4.5.3 Baseline Adaptation Performance

In this subsection, we first compare the baseline results obtained using the generic

Alexnet deep model and our proposed adaptation model using our manually cropped

boxes, i.e., assuming bounding boxes containing all objects in the images within

MCID are correctly identified.
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(a) An image in ip4 lib d subset. (b) The “mirror” in ipm lib e subset.

Figure 4.5: Example of mirror images.

Figure 4.6: Generic Deep Model Performance.

Generic Deep Model Only Performance

We run an experiment to show the classification performance using Alexnet deep

model for manually cropped object instances, and our result is shown in Figure

4.6. Each curve in the figure represents the average classification accuracy for a

particular device/time combination at all 3 available locations.
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Figure 4.7: Adaptation Performance.

The purpose of this experiment is two-fold. First, we want to verify that using

a generic deep model does not yield good Top-1 classification result. The result

presented in the figure confirms our hypothesis since the obtained Top-1 accuracy

is always below 40% for all device/time combinations, which means that a generic

deep model is not practically useful in the mobile object recognition task. Second,

we want to verify if the generic deep model achieves higher accuracy when K is

large. For K > 1, we assume that as long as the ground-truth class label is in the

Top-K list, we will consider the returned result to be correct. From Figure 4.6,

we see that the classification accuracy improves to around 60% when K = 5 and

70% when K = 10. This result suggests that we can use this generic deep model

to provide a useful suggested list to a DeepCham user during the training instance

creation pipeline since it means he only has to manually input object labels 30% of

the time if K = 10 is chosen.
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Shallow Adaptation Model Performance

Figure 4.8: Time Variance.

Figure 4.9: Device Variation.

Figure 4.7 shows the classification result using the adaptation model trained only

using object instances within a subset. Each object in a subset, e.g., ip4 home d,
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Figure 4.10: Location Variance.

contains three instances, thus we split each subset into 3 mini-sets where each miniset

contains only one instance of any object. In the experiment, we guarantee that the

adaptation model is trained and tested with different mini-sets. Seven different

experiment settings are presented.

• General and Domain-constrained : Top-1 accuracy using the generic deep

model or the domain-constrained deep model (as described in 4.1). All images

are used as testing images.

• OnePerObj and TwoPerObj : Top-1 accuracy using the adaptation model

trained using one or two instances for each object. One miniset is used for

training while the other two are used for testing.

• OnePerClass : Top-1 accuracy using the adaptation model trained using one

instance for each class. One miniset is used for training while the other two

are used for testing.
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• TwoPerSameObj and TwoPerDiffObj : Top-1 accuracy using the adaptation

model trained using two instances for each class. These two selected instances

are either representing the same object (the former case) or different object

(the latter case). Two minisets are used for training while the 3rd is used for

testing.

Each bar in the figure shows the average accuracy for a single device using 6

subsets (3 locations and 2 different time-of-day). For the presented result, we observe

that: (1) Domain-constrained model yields a significant increase of 20% in the Top-1

accuracy compares to the general model. (2) Classification using the newly trained

adaptation model always has better accuracy than that achieved using either the

generic or domain-constrained models. Adaptation with one training instance per

object (82.4%) improves accuracy by 46.6% (compared to general model), and 27.0%

(compared to domain-constrained model). (3) Training using instances covering

more objects within a class is better than training with more instances representing

the same object.

Impact of varying image attributes

We study the impact of different attributes on the accuracy achieved by the adap-

tation model. We run experiments using different subsets with varying attributes

for training and testing.

We first present the results on the impact of the time attribute in Figure 4.8. For

this experiment, we choose image subsets with same location and device type but

different time attribute for training and testing, e.g., ip4 home d and ip4 home e.

Again, we make sure that the training instances and testing instances are cropped
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images of the same object taken from different angles. Here we use 4 different

experimental settings: Obj self and Class self represent the Top-1 accuracy with

adaptation model that is trained using one instance per object or one instance per

class, while the testing instances are from the same subset as the training instances.

Obj time and Class time represent the Top-1 accuracy with adaptation model that

is trained using one instance per object or one instance per class, while the testing

instances are from a different subset (time attribute).

Similarly, we present results showing the impact of device type in Figure 4.9.

The Obj device and Class device represent the Top-1 accuracy with the adaptation

model trained using one instance per object or one object per class, but the testing

instances are from another subset with different device type but at the same location

and time.

To evaluate the impact of location attribute, we identify 21 common classes

among objects contained in the photos for the 3 locations in MCID. We run mul-

tiple experiments as follows: in each experiment, we train a 21-class adaptation

model using one subset of photos from one location with the same device type and

time attributes and test this classifier using appropriate subsets from the other two

locations. The experiment results are shown in Figure 4.10. The Obj Dloc and

Class Dloc represent the Top-1 accuracy with adaptation model which is trained

using one instance per object or one object per class, but the testing instances are

from another subset with different locations.

Comparing the results presented in Figure 4.8, Figure 4.9 and Figure 4.10, it is

clear that the location attribute has the most significant impact on the adaptation

performance. An adaptation model trained at a different location is only slightly
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better than the generic deep model. On the other hand, the time attribute has

greater impact on the performance than the device type. Training using images un-

der different time attribute makes the accuracy drop more than 10%, while training

with images taken by a different device has negligible impact. This result assures

the potential benefit of collaborative model training involving many different types

of mobile devices.

Late-Fusion Study

We study the power of late fusion and present the results in Figure 4.11 for two

subsets, ip4 home d and ip4 lab d. The subset ip4 home d includes fewer number

of objects for each class (1.19) than the subset ip4 lab d (1.97). We train the shal-

low adaptation model using either one randomly chosen training instance per class

(One Per Class) or two randomly chosen training instances per class (Two Per Class).

We observe from the result that: while the accuracy difference between two mod-

els is small (Figure 4.11(c)), the fusion method always achieves better performance

with up to 10% accuracy improvement. When the accuracy difference between two

models is large (Figure 4.11(a), 4.11(b), and 4.11(d)), the benefit of using late-fusion

is very limited. Furthermore, our results show that when α < 0.4, the late fusion

method will always improve the accuracy of the better model (i.e., the adaption

method).

4.5.4 Impact of Distributed Image Pruning

To evaluate the effectiveness of our proposed distributed image pruning algorithm,

we define the object coverage rate (OCR) for all involved workers as our performance
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(a) One per class (ip4 home d). (b) Two per class (ip4 home d).

(c) One per class (ip4 lab d). (d) Two per class (ip4 lab d).

Figure 4.11: Late-Fusion Performance.

metric. OCR is calculated as follows: assume that the mi candidate images for

worker ui contain a set of Mi objects, then we generate S =
⋃
Mi as a union

set from all workers. Next, assume that the set of identified objects from the ni

retained images is Ri. We also generate R =
⋃
Ri. Next, the object coverage ratio

is computed as |R||S| .

To evaluate the performance of our proposed distributed image pruning algo-

rithm, we assume that there are 3 synchronized workers a, b, and c. For each
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(a) t : The Synchronization Allowance Variable.

(b) Performance Comparison.

Figure 4.12: Distributed Image Pruning Performance.
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worker, we randomly choose 50% of 351 images taken at home day target domain as

the candidate images to evaluate in our experiment. Thus, each worker has roughly

175 images, and the likelihood of each user having images containing the same ob-

ject is relatively high. In our experiment, we assume that each worker will label

the same number of images, i.e., na = nb = nc = n (5 ≤ n ≤ 20). We repeat all

experiments 20 times.

We first study the impact of varying t, the synchronization allowance variable,

on the performance of our proposed algorithm. We run the experiment using a

scenario with 3 workers are all synchronized at the master, i.e., the workers do not

receive existing features from the master and they all cluster their candidate images

to n + t clusters. The result of this experiment is presented in Figure 4.12(a). It

shows that when t ≤ 3, the performance of our algorithm increases as t grows; when

t ≥ 3, the performance is relatively stable and is not sensitive to the setting of t.

Next, we show the performance of the proposed algorithm in 4 different scenarios:

one-after-another simulates the one-after-another asynchronous scenario and a new

worker can only join the adaptation task after an existing worker has finished the

image pruning selection; all-together simulates the all-together synchronized scenario

and all workers are synchronized at the master; one-two simulates the combined

scenario that one worker joined the task first and the remaining two workers joined

the task together after the first worker finished the pruning selection; finally, two-

one simulates the combined scenario where two workers joined the task together

initially, and the third worker joined after these two finished the pruning selection.

In all scenarios involving synchronized workers, we set t = 3. We also compare with

two simple non-distributed methods: random means that each worker randomly
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select a subset of n images; individual means that each worker runs the clustering

locally without cooperating with others. We present the experiment result in Figure

4.12(b).

The performance result shows that compared to the simple non-distributed meth-

ods, our proposed algorithm improves the OCR in all experiment scenarios, espe-

cially when n is small. For example when n = 7, the average OCR of our algorithm

in the four experiment scenarios is 58.3%, while the random method is 41.5% and

the individual method is 46.5%. This result is very promising since asking each user

to label fewer images will increase their incentives to join the task. On the other

hand, when n is very large, e.g., n > 15, the OCR of the individual method is get-

ting close to the proposed algorithm (both are approaching 100% OCR). However,

in practice, a user is not likely to label a large number of images.

4.5.5 EBBS performance

We evaluate our enhanced bounding boxes strategy (EBBS) using 59 multi-object

images in ip4 home d. These images include 118 instances of 47 objects that are

recognizable by the Alexnet model. For each bounding box proposed by EBBS, if

it overlaps 80% of a manually cropped box and its area is less than 1.5 times the

manually cropped box, then we consider this as a correct match. We use the

default parameters of the original EdgeBoxes algorithm.

In this set of experiments, we run EBBS over 3 different image scales (300, 500,

700) 1 and we also evaluate our merge method over the 3 scales. For each single scale,

EBBS returns 5 bounding boxes for a input image. We measure the performance

1Resizing an image to scale s means that we keep the original aspect ratio and rescale the longer
edge to s
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(a) Instance Match Ratio. (b) Object Match Ratio.

Figure 4.13: Bounding Box Selection Performance.

using two metrics. First, the instance match ratio (IMR): let ki be the number

of correct matches within image i, then IMR is computed as
∑
ki/118. the object

match ratio (OMR): we count the total number of ”recognizable” objects contained

in all the correct matches in these 59 images (denoted as w) and compute OMR as

w/47.

In Figure 4.13, we present our results which compare our method with a simple

score-based selection method (top 5 scored boxes). Figure 4.13(a) shows the instance

match ratio (IMR) while Figure 4.13(b) shows the object match ratio (OMR). The

results demonstrate that our strategy is more effective in including more potential

objects than the score-based selection method. Furthermore, our proposed multi-

scale merging method improves both IMR and OMR significantly compared with

the single-scale results. In addition, after merging, on the average, the number of

selected bounding boxes is about 7 which is still acceptable.
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4.5.6 Object Recognition Accuracy using DeepCham Gen-

erated Training Instances

We evaluate the object recognition accuracy in the home d target visual domain us-

ing training instances generated by DeepCham. The training instances is generated

as follows. First, we assume there are 3 synchronized workers, each who wants to

label 10 images, and the candidate images of each worker are the same as that used

in section 4.5.4. Then, we run the distributed image pruning to select the 30 images

for the 3 workers. Among the 30 images, there are 22 multi-object images and 8

single-object images, and we run EBBS with 3-scale merge on the 22 multi-object

images to propose object bounding boxes.

The following images/boxes are used to produce training instances: (1) the 8

single-object images and (2) the proposed bounding boxes each of which is a correct

match and its correct label is in the Top-10 list produced by the AlexNet model.

In total, we have 36 training instances for 27 classes, and we use these instances

to train an adaptation model. The recognition accuracy of the adaptation is tested

on manually cropped bounding boxes containing objects belonging to the same 27

classes from the home d target visual domain. The top-1 accuracy with our late

fusion method (α = 0.3) is 82.7%. On the other hand, the top-1 accuracy using

the generic AlexNet model is only 33.4%. Thus, we achieve around 150% accuracy

improvement.
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4.5.7 Prototype System Evaluation

Prototype Implementation

We implement our preliminary prototype system with a Linux server as the master

edge server and Android mobile devices as workers. The Linux server and a Wi-Fi

router is connected using a 1 Gbps Ethernet switch, and the Android devices com-

municate with the Linux server through the Wi-Fi router. On each Android based

worker, we install the Alexnet CNN module within the Android Caffe [150] frame-

work which contains both the trained CNN model (included in the Caffe Model Zoo

[174]) and libraries that support deep CNN feature extraction. In addition, we re-

implemented the EdgeBoxes algorithm from Matlab [175] to OpenCV environment,

and then ported the re-implemented module using JNI to run on Android devices.

As far as we know, this is the first working implementation of EdgeBoxes algorithm

in OpenCV as well as on Android platform. We also use LibSVM [176] to train

the shallow model. Furthermore, we use the K-means++ [177] algorithm for fast

convergence and set the maximum number of iterations to 100.

Prototype Evaluation

We focus our evaluation of the preliminary prototype system on the Android worker.

Specifically, we use an Android Device LG G2 which has a Snapdragon 800 chip with

Quad-core CPU @ 2.26 GHz and 2 GB RAM. We measure the system component

running time, the memory cost and the energy cost.

System Component Running Time: The running times for each more com-

putationally expensive step during the adapted training (AT) and recognition (R)

process of our initial prototype system are summarized in Table 4.4.
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Stage Component Time (ms)

AT-0 CEDD 214
AT-1 K-Means (40 clusters of 200) 897

AT-2

EBBS-300 357
EBBS-500 792
EBBS-700 1220
EBBS-Merge 1459

R
AlexNet-Classify 697
SVM-Classify 85
Classify-Total (Late-Fusion) 793

Table 4.4: System Running Time

Row 1 shows the cost of CEDD feature extraction which occurs when a photo is

taken. The result shows that this phone can extract CEDD features from 50 images

in just 10 seconds. Row 2 shows the cost of K-means clustering and it takes 897ms

to cluster 200 CEDD features to 40 clusters. Next 4 rows show the running time

of EBBS with images of different scales. The algorithm runs faster on small-scale

images and slower on large-scale images. The “EBBS-Merge” row shows the running

time with a parallel computing scheme (i.e., we run the algorithm for each image

scale using a different thread). With multithreading, it costs less than 1.5 seconds

per image to run our Enhanced EdgeBox selection scheme and hence should not

produce user-observable delay.

During the querying process, both the AlexNet deep model and the SVM-based

adapted model will be used before late-fusion method is applied. Thus, the next

3 rows show the cost of classification using the deep or adapted model, and the

overall classification cost. Our results show that the extra cost incurred using the

shallow adapted model (85ms) is small compared to the cost using just the deep

model (697ms).

System Memory Cost: The memory cost for DeepCham is summarized in

Table 4.5. During the adaptation training phase, the worker loads a trained Edge
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Model within EdgeBoxes, and the deep AlexNet Model for training instance gener-

ation. The total memory cost for training is 238.66 MB. In the object recognition

phase, the system loads the AlexNet Model, and the context-aware adaptation model,

with a total memory cost of 234.95 MB. Considering the large RAM equipped on

modern mobile devices (e.g., 2GB on LG G2), such memory cost is acceptable. Note

that the main memory cost is due to the large deep model, and the remaining parts

of the system has minimum memory impact. On the other hand, there has been

techniques proposed to reduce the memory cost of the deep learning model such as

[178], we will consider such optimization in our future work.

Stage Component Memory (MB)

Training
EdgeModel (EdgeBoxes) 6.09
AlexNet 232.57
Total 238.66

Recognition
AlexNet 232.57
SVM 2.38
Total 234.95

Table 4.5: System Memory Cost

Energy Consumption: Another concern on the adaptation training is the en-

ergy consumption on each participating worker device. DeepCham saves processing

cost in two ways. First, it uses the clustering algorithm to select a representative

subset of images (which is controlled by the participating users) to process. Second,

DeepCham achieves energy saving by processing images locally instead of sending

images from a mobile device to a local Edge Server. In our energy measurement us-

ing PowerTutor [179], we assume that a user has 100 candidate images matching the

target visual domain, 10 out the the 100 images are selected by the image pruning al-

gorithm, and there are 50 objects (used to create training instances) identified from

the 10 images. We measure the energy cost (CPU+WiFi) for each component of our
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system and present the result in Table 4.62. The total energy consumption is only

59.1 joules which is only 0.14% of the LG G2’s battery capacity. Meanwhile, this

energy consumption is only 85.7% for that consumed to read 10 minutes of Facebook

News Feed, and 35.6% for that consumed to watch 10 minutes of YouTube.

Component Energy Cost (J)

DeepCham

CEDD feature (100 images) 23.1
Image pruning (10 of 100) 0.3
Edge Boxes & EBBS (10 images) 9.8
Transfer training instances (50 instances) 5.9
ConvNet feature (50 object images) 20.0
Adaptation Training Total 59.1

Comparison
Facebook News Feed (10 Mins) 68.9
YouTube (10 Mins) 165.8

Table 4.6: Energy Consumption For Adaptation Training (CPU+WiFi)

We compare the energy cost to two other systems:

Purely Server-side Image Processing: All images matching the target visual do-

main are sent to a server for processing. The server sends back the bounding box

coordinates and the suggested labels to the client. Since our system works on high

resolution images, and on average each image is around 2MB, the purely server-side

image processing system cost around 400 joules (6.76 times of DeepCham) battery

energy mainly due to sending 100 images to the server.

Combined Server-Client Image Processing: The mobile client runs the image

pruning algorithm locally and sends the selected images to the server. The server

sends back the bounding box coordinates and the suggested labels to the client. The

energy cost for such system is around 63.3 joules, and DeepCham saves around 9%

energy.

2Note that there is also energy consumption for LCD display in the interactive labeling process
of adaptation training (as well as Facebook and YouTube apps), and this may vary due to different
user settings.
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In addition, DeepCham protects user privacy since no raw images are sent out of

each participating user’s device which is a feature neither of the compared systems

contain.

4.6 Discussion

How to incentivize users for participating in the system?

For adaptation tasks in private or business spaces, the training can be performed by

companies whose employees perform a per-site object training. Examples include

entertainment venues, real estate services, etc. For adaptation tasks in public spaces

(e.g., in a museum), the task initiator (or organizer) may give rewards (either phys-

ical or virtual) to participants. For home environments, other incentives may also

exist, e.g. users of a mobile robot are inherently motivated to collaboratively create

higher accuracy models that the robot can use to increase its intelligence.

How often do we need to retrain the system based on domain specific

changes?

Each adaptation task is specific to a particular target visual domain. A change in

visual domain (e.g., to recognize objects in rainy day instead of sunny day) can

trigger a new adaptation task (not re-training). For target visual domains that have

already been adapted, if there are minor changes (e.g., new objects added), the

system may incrementally train the shallow adaptation model (e.g., SVM) [180] by

adding new instances for those previously uncaptured objects.

What if some users inject false labels into the system?

In real life, some users may be malicious and deliberately label the objects wrongly.
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Existing defense mechanisms [181], e.g. letting more users to label the same object

and use the majority vote wins strategy to select the right label, can be used to

overcome such malicious attacks. We leave such evaluation of the defense mechanism

for future work.

Can we select the later fusion parameter dynamically?

In this chapter, we do not explore the dynamic hyper-parameter tuning problem

for late fusion. The reason is that when the number of labeled training/validation

is small as in our proposed adaptation process, existing hyper-parameter tuning

methods [182, 183] may not be able to be applied directly. However, it may be

feasible to monitor the inference error rate of the generic deep learning model in the

interactive labeling process and set the hyper-parameter accordingly (in equation

of section 4.2), i.e., if the generic model gives bad suggestion for labeling of the

adaptation training images (e.g., correct labels are ranked low), we may set a small

value, and vice versa. We hope to explore this in our future work.

In scenarios of the adaptation training campaign, can we just ask partic-

ipants to take a diverse set of photos instead of running the distributed

image pruning algorithm?

This is a trade-off. To avoid running the distributed image pruning algorithm, re-

cruited participants must be instructed to take different subsets of object related

photos. Such an approach creates more burden to participants as well as task initia-

tors and hence less attractive compared to the distributed image pruning solution.
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4.7 Summary

In this chapter, we have presented DeepCham, an edge-mediated collaborative deep

model adaptation framework for mobile object recognition. DeepCham is the first

work that addresses the challenge one faces in deploying a generic deep learning

model in the highly variable mobile visual domains. DeepCham learns a domain-

specific shallow model with training instances interactively created by collaborative

users using local images in their mobile devices. DeepCham relies on a distributed

redundancy image pruning algorithm, an enhanced bounding box proposal algo-

rithm as well as a generic deep model to facilitate the creation of training instances.

Experimental studies shows that DeepCham enables efficient and effective adap-

tation training, and its object recognition accuracy significantly outperforms that

achieved using a generic deep model.
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Chapter 5

Conclusion

So far we have presented several robust mobile visual recognition systems, i.e.,

EMOD for efficient mobile image retrieval with the bag-of-visual-word framework,

Moca for energy-efficient and privacy-preserving deep processing of mobile vision

apps, and DeepCham for deep learning model adaptation of mobile visual domains,

from Chapter 2 to Chapter 4. In this chapter, we conclude this dissertation. We

first summarize our research findings and contributions, and we also discuss future

research directions.

5.1 Summary

Automatically recognizing and understanding visual content captured by mobile

devices’ cameras has become a particularly important feature for many mobile ap-

plications. However, it is non-trivial to build a robust mobile visual recognition

system due to many challenges we have identified and discussed, e.g., constrained

computing power, storage space and battery capacity on mobile devices, privacy
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concern using a mobile-cloud architecture. We address those challenges with an

overall system design approach which is guided by mobile context understanding,

privacy awareness and algorithmic optimization and involves heterogeneous com-

puting resources, e.g., mobile devices, edge server as well as the cloud.

In Chapter 2, we proposed EMOD that enables efficient on-device image retrieval

on a context-aware partial image database. EMOD optimizes the bag-of-visual-word

(BOVW) image retrieval framework with algorithmic improvement on each compo-

nent of the processing pipeline. In addition, we proposed a two-stage k -NN based

re-ranking method that improves the retrieval accuracy dramatically with minimal

overhead. Further response time reduction is achieved by exploiting the parallel

computing capabilities made possible by multi-core mobile processors. Our EMOD

prototype system on Android platform achieves real-time high-accuracy retrieval

with significantly reduced memory and energy consumption.

Deep learning based techniques have greatly advanced the visual recognition ca-

pability of machines. However, running such computational intensive algorithms on

resource-constrained mobile devices is still daunting. On the other hand, a cloud-

based solution reduces the burdens on mobiles, but at the risk of leaking sensitive

user data to untrusted cloud servers. In Chapter 3, we proposed Moca that de-

couples the hierarchical neural network layers across mobile and cloud for energy-

efficient and privacy-preserving mobile deep visual processing. Moca leverages the

privacy-preserving feature maps extracted from deep models to protect personal

data privacy. Moca also enables differentiated privacy settings via a DNN-based

privacy quantification framework to meet the varying privacy requirements of dif-

ferent mobile applications. To further accelerate the feature extraction procedure

164



and reduce the feature size on mobile devices, several optimizations are proposed

and implemented. Experimental results with a variety of DNN-based mobile appli-

cations on several large-scale datasets demonstrate that the privacy of these data

are well preserved, while the energy overhead on mobile device is up to 6.7x lower

than the state-of-the-art approach.

In Chapter 4, we proposed DeepCham that adapts trained generic deep learn-

ing models to target mobile visual domains to address the domain bias problem.

DeepCham leverages abundant metadata-rich (e.g., GPS location, time) photos that

have already been taken by mobile users, and trains a shallow adaptation model

(e.g., SVM) in real-time on a mobile device. To achieve this, DeepCham includes

an attribute-based visual domain specification module that identify photos match-

ing a target visual domain, an efficient object bounding box proposal method to

locate objects shown in a photo, and an interactive object labeling pipeline which

suggests labels for an input image using a generic deep learning model. Similar to

Moca, user privacy is well preserved since only features extracted from user photos

may leave a mobile device. DeepCham obtains 2x accuracy improvement on a new

collected Mobile Context Image Dataset (MCID) and is demonstrated to be more

energy-efficient than cloud based solutions.

Through this dissertation, readers learned characteristics, properties, challenges

in the design of robust mobile visual recognition systems, especially in bag-of-visual-

word based image retrieval systems and deep learning based systems. We also ex-

pect that readers could acquire knowledge of algorithmic optimization of popular

visual recognition methods. In addition, we hope readers can be inspired by some

methodologies we proposed such as mobile context understanding and employing
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heterogeneous computing resources, and can apply them to other application do-

mains.

5.2 Future Work

Based on this thesis, there are many possible extensions of the current approaches.

In this section, we suggest a few future research directions.

Smart Vision Algorithm Selection. One computer vision task may be ac-

complished by various types of algorithms each has a different accuracy, computing

complexity and energy impact on the mobile devices. For example of object recogni-

tion, some objects may only be correctly recognized by a computing-intensive deep

neural network with more than 100 layers, while some other can be easily recognized

by a much smaller neural network with a few layers that can efficiently run on a

mobile device. Therefore, it would be interesting to explore how a smart algorithm

can be devised to automatically decide which vision algorithm should be used to

guarantee recognition accuracy while minimizing the energy cost.

Personalized Mobile Context Understanding. Understanding the context

of a particular mobile user has many benefits including reduced recognition space

and better recognition result. For example, knowing a user’s favorite brand can

guide a product search app tend to promote rankings of this brand. To infer such

knowledge, multiple sources of mobile data can be easily obtained such as a user’s

search and location history, mobile sensory data such as gyroscope, accelerometer.

An interesting research question is: How should a visual recognition engine/model

built by summarizing various types of data input?
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Heterogeneous mobile processing units. Mobile chip makers are developing

novel mobile processors with heterogeneous processing units other than CPU such

as mobile GPUs, ARM NEON supported mobile co-processors, the Neural Process-

ing Unit (NPU) in Qualcomm’s Zeroth Platform. By exploring the characteristics

of different processing units, further optimization such as better energy efficiency

may be achieved by decoupling the computation and deploy each piece to the most

appropriate unit.

Make the most of the Edge. With the development of internet of things

(IoT), edge computing units (or cloudlets) have been deployed with considerable

computing and storage power. Such edge units may assume part of the function-

ality of the cloud , but have faster response (in terms of round-trip latency) and

better privacy promise. For example, Nvidia’s Jetson TX1 platform is equipped

with powerful CUDA-enabled GPUs which enables fast and parallel matrix multi-

plication. For future research work, mobile visual recognition systems may assume

a 3-tier (mobile-edge-cloud) processing architecture. For example, the mobile device

generates the query image, the edge unit adds privacy protection to the image, and

the server processes the recognition.
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