
Lehigh University
Lehigh Preserve

Theses and Dissertations

2015

Using Planning Landmarks to Control Camera
Movement in DOTA 2 Games
Jundong Yao
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Yao, Jundong, "Using Planning Landmarks to Control Camera Movement in DOTA 2 Games" (2015). Theses and Dissertations. 2895.
http://preserve.lehigh.edu/etd/2895

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2895?utm_source=preserve.lehigh.edu%2Fetd%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Using Planning Landmarks to Control Camera Movement in DOTA 2 Games

By

Jundong Yao

A Thesis

Presented to the Graduate and Research Committee

Of Lehigh University

In Candidacy for the Degree of

Master of Science

In

Computer Science

Lehigh University

May 2015

©2015

Jundong Yao

All Rights Reserved

SIGNATURE SHEET

 The thesis is accepted and approved in partial fulfillment of the requirements for

the Master of Science

Date

Thesis Advisor

Chairperson of Department

1

Table of Contents

Abstract .. 3

1. Introduction ... 4

2: Background ... 10

2.1 Planning ... 10

2.2: Planning Landmarks .. 12

2.3: The Dota 2 Game ... 14

3. Computing Planning Landmarks .. 18

3.1 Algorithm Description .. 18

3.1.1 Weight Calculation Algorithm ... 18

3.1.2 Similarity Algorithm ... 21

3.2 Example in Transportation Domain ... 22

3.2.1 Weight Algorithm in Transportation Domain ... 26

3.2.2 Similarity Algorithm in Transportation Domain ... 28

3.3 Example in Dota 2 .. 29

3.3.1 Weight Algorithm in the Dota 2 Domain .. 30

3.3.2 Similarity Algorithm in the Dota 2 Domain ... 31

4. Implementation ... 33

4.1: New Transportation Implementation .. 33

4.1.1 Parsing Traces ... 35

4.1.2 Similarity Algorithm Implementation... 38

4.1.3 Weight Algorithm Implementation ... 40

4.2: Dota 2 Implementation ... 41

4.2.1 Preparing the Input Traces .. 43

4.2.2 Finding Landmarks Using Weight and Similarity Algorithm 45

4.2.3 Managing the Camera in the Dota 2 Game .. 47

5: Experiment .. 49

5.1: Experimental Setup ... 49

5.1.1 Transportation Domain .. 50

5.1.2 Dota 2 Domain ... 50

5.1.3 Amazon Mechanical Turk .. 52

2

5.2: Experimental Results .. 54

5.2.1 Transportation Domain Results .. 55

5.2.2 Dota 2 Domain Results ... 61

5.2.3 Amazon Turk Results ... 65

5.3: Discussion ... 69

6. Final Remarks ... 72

6.1: Conclusions .. 72

6.2: Future Work .. 74

Bibliography .. 75

Vita ... 76

3

Abstract

This thesis introduces a new method for automatically finding important events

from video game replays. We use these events to control the movement of the camera in

the Dota 2 game. This method is based on the idea of finding landmarks, which are

events that always takes place in a game. Our method automatically highlights important

events in the Dota 2 game. The method combines two algorithms: one assigning weights

to events and another one computing similarities between events. We discuss the

motivation and implementation of these two algorithms and we test them in a

transportation domain and in the Dota 2 game. Several experiments are performed in both

domains and the results show that the method extracts landmarks effectively. Based on

the experiments on Amazon mechanical turk, camera control based on landmarks shows

potential benefits.

4

1. Introduction

In this thesis we investigate the question of automatically discovering important

events from videogames feeds. Learning to find important events in videogames is useful

in understanding the game process and help towards attaining automatic generation of

game narratives. It can also be used in other applications such as video surveillance. We

use the Dota 2 game in our study. Dota 2, which is short for Defense of the Ancients 2, is

a very popular online multiplayer video in which two teams of players are tasked with

protecting their own ancient, a unique building in the game, while attempting to destroy

the opponent’s ancient. Each player controls one character in the game and obtains

experience and gold from the death of characters or non-player controlled units called

creeps in the opponent’s team. The objective of the game is to destroy the opponent’s

ancient.

Important events are difficult to distinguish from non-important ones because

there is no fixed scenario in Dota 2. Important events will show in every replay of the

Dota 2 game but they are not subject to time, location or the strength of each team.

Defining if an event is important or not is also a central concern in the rapidly changing

runtime situation. But it is very hard to identify.

5

Figure 1.1 A Dota 2 screen shot of a team fight happens near one team’s ancients

Figure 1.1 shows an informative to the game because it happens when one team is

attacking their enemies’ base (i.e., where the ancient is located), which is a game-winning

situation. This is an important event in the game and it can be identified as a milestone or

landmark.

Writing a computer program to detect these important events in Dota 2 game is

challenging, but it can be very important because the learning results can help people

understand this game better, or predict the winner in a particular round or contribute

towards ongoing efforts on automated narrative generation of videogame competitions.

Our hypothesis is that important events are events that will happen every time in

the game. No matter when or where this event happens, they are milestones in the game.

The team fight event is an eligible event that will happen in all games. Fights can show

the current situation of both teams and also provide information about the whole game.

The event “the ancient is destroyed” is the most important event in the game every game

6

will go through this event. The four pictures (Figures 1.2-1.5) below show events in Dota

2. Three of them are important events, one of them is not important event.

Figure 1.2: An important event happens near a location called radiant’s height. In

this event, there is a team fight in the area where the game camera is now focusing on.

Figure 1.3: An important event happened near a location called radiant’s middle

lane, close to the base. This event is important because if the attacking team wins during

this team fight, they continue to destroy the inner tower and win the game.

7

Figure 1.4: An important event happened near the end of the game. This event is

important because an important structure the dire’s ancient is being attacked. The radiant

will win the game after this ancient is destroyed.

Figure 1.5: a screenshot of a normal scenario in dota 2. The viewer cannot tell

which team will win or what the trend in this game is. This is an unimportant event

To automatically identify important events in Dota 2, we use the notion of

landmarks to find important events in the game. A landmark is a particular situation or

state that must occur when some final goals are achieved. We make two observations

about landmarks. Firstly, a landmark is a state or a sequence of consecutive states that

8

always occur when achieving the final goals, while starting from a particular state.

Secondly, a landmark is a special situation, which given multiple possible game

trajectories to achieve the final state, it will always appear in each of those trajectories.

No matter how the game trajectories vary, the landmark will always be visited every

time.

We proposed an algorithm that can automatically find the landmarks in the Dota 2

game. We are given multiple game replays, which are recognized as traces of the game.

Each replay consists of a series of consecutive states or trajectories, from the beginning

of the game until one ancient is destroyed. The state is defined as a captured moment, or

a screen shot with all heroes and units’ properties in a particular time. We used similarity

metrics to discover the similarities between two separate traces and then we calculated

the distance start from one state in the first trace to all the other states in other traces.

Distance can be shortened when considering points in different traces that are near to one

another. Then we calculate the weighted value of each states in this trace, the highest

landmark will appear when a particular state has the lowest similarity value. The lower

the similarity value one state has, the higher landmark value it possesses. Also, an

ordinary state has the highest value and lowest landmark.

There is another algorithm proposed by Julie Porteous, Laura Sebastia, and Jorg

Hoffman, 2014, will be able to find landmarks in their domain (e.g. the blocks world

domain). Also Amy Mcgovern and Andrew G. Barto, 2001 they used an algorithm to find

landmarks by calculating the trajectory using reinforcement learning. Neither of these

two algorithms can solve the problem of finding landmarks in the Dota 2 game because

they require an over-simplified way to define the actions in the game (i.e., as

9

preconditions and effects). In a game like Dota 2 player’s actions have a complex

definition and it will be either not possible to use the preconditions and effects to define

the actions or even if it is possible it would be too cumbersome.

The algorithm we propose is a good match to solve the problem we have in the

Dota 2 game. In the Dota 2 game, each state of the game cannot be predictable based on

the previous one (this is called non-determinism; after taking an action in a state, there

are multiple possible states that might occur next). Our algorithm finding the landmarks,

no matter how complex the input trace is, will always generate results.

10

2: Background

2.1 Planning

A plan is a sequence of actions that starting from a particular state, and ends at a

prescribed goal state. The plan may consists of several actions may to realize the setting

goal. Planning is a branch of artificial intelligence that is concerned with how to generate

a plan. Plans are to be generated by automated robots or artificial intelligent agents, rather

than using human’s conventional way to analyze problems and optimize solutions. Given

the planning operators, the planning process starts from the initial state, applying an

action each time that transforms the state until finally reaching the final state. Multiple

sequences of the actions (i.e., plans) may be transform same start state until the end state,

analogous to starting from an initial point, and converge to a same final point by using

multiple trails. Planning can tackle more logical complicated and more time consuming

domains, and give possible solutions by using a variety of planning algorithms. With the

help of computers, planning can be much more efficient and straightforward to generate

solutions than manually generating the plans.

A state is a collection of primitive atoms representing the conditions that are true

in the world. A state can reflect the scenario of a particular situation, like a screenshot in

the game. A state is a description of the objects in the domain. For example, a package is

in location A, a player in the game possesses the experience of 100 at time 12 o’clock. So

the planning trace consists of a sequence of many states. In order to achieve the goal, the

planning must system must search a path between the initial state and the final state. We

denote a state as 𝑆, and the initial state is 𝑠𝑖𝑛𝑖𝑡, final state is 𝑠𝑓𝑖𝑛𝑎𝑙. The planning is using

the actions to realize the ordered set of the states(𝑠𝑖𝑛𝑖𝑡, 𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝑓𝑖𝑛𝑎𝑙).

11

Operator is a state converter that can change one state into another state. The

operator consists of four major elements: operator head, precondition, delete list and add

list. An operator will match with the state that is same with its precondition, delete the

primitive atoms in its precondition, and add new atoms to generate a new state. Based on

this procedure, the newly generated state will be applied into another operator to change

to a third state, so on and so forth. When an operator is applied in an state, it is called an

action. For example, {𝑠𝑖𝑛𝑖𝑡|𝑎1, 𝑎2, 𝑎3} is a state that has 3 primitive atoms. For the

operator 𝑜 = (ℎ, 𝑝𝑟𝑒, 𝑑𝑒𝑙, 𝑎𝑑𝑑), in which 𝑝𝑟𝑒 = 𝑠𝑖𝑛𝑖𝑡, 𝑑𝑒𝑙 = {𝑑1|𝑎3}, 𝑎𝑑𝑑 =

{𝑎𝑑𝑑1|𝑎4, 𝑎5}, the newly created state 𝑠′ = {𝑠1|𝑎1, 𝑎4, 𝑎5}. So in general, when the

operator is modifying one state to another, it can be written as 𝑠′ = 𝑀𝑜𝑑𝑖𝑓𝑦(𝑠, 𝑎) =

(𝑠\𝑑𝑒𝑙) ∪ 𝑎𝑑𝑑. Also, as the goal and the initial state is given, we are able to have the

relation between states and operators, which is 𝑠𝑓𝑖𝑛𝑎𝑙 =

𝑀𝑜𝑑𝑖𝑓𝑦 (𝑀𝑜𝑑𝑖𝑓𝑦(𝑀𝑜𝑑𝑖𝑓𝑦(⋯𝑀𝑜𝑑𝑖𝑓𝑦(𝑠𝑖𝑛𝑖𝑡, 𝑜1)⋯), 𝑜𝑛−1), 𝑜𝑛), where 𝑜𝑛 is the last

operator convert the second last state into the final goal state.

The example of transportation domain is a good way to illustrate the planning

problem we are discussing. In transportation domain, a package is in location A, and it

needs to be delivered to location B in the same city. We have a truck in location A that

can carry the package to travel within this city, so the truck is able to get this package

delivered by the action called drive truck. In order to make the package onto the truck, we

have an action called load, and on the other hand, we also have an action called unload to

release the package from the truck. This is quite a straightforward and easy to understand

domain that can even be figured out by hand. But it includes all the elements we

mentioned above. In this domain, we have all the states listed in Table 2.1:

12

Initial state Interim state 1 Interim state 2 Goal (Final state)

Package in Loc-A Package on Truck Package on Truck Package in Loc-B

Truck in Loc-A Truck in Loc-A Truck in Loc-B Truck in Loc-B

Table 2.1: A trace of states from the initial state to the final state

Also we have a list of operators in this domain: Load package, Unload package,

and Drive truck. For the first operator convert initial state into interim state 1,

𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = {𝑠𝑖𝑛𝑖𝑡|𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑖𝑛 𝑙𝑜𝑐𝐴 ∪ 𝑡𝑟𝑢𝑐𝑘 𝑖𝑛 𝑙𝑜𝑐𝐴}, 𝑑𝑒𝑙 =

{𝑑𝑒𝑙1|𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑖𝑛 𝑙𝑜𝑐𝐴}, 𝑎𝑑𝑑 = {𝑎𝑑𝑑1|𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑜𝑛 𝑡𝑟𝑢𝑐𝑘}. After doing the modifying

job by using this operator (Load package from location 1 to the truck), it satisfy the effect

that is showing in interim state 1.

2.2: Planning Landmarks

There are several methods for finding landmarks in a particular domain. Julie

Porteous, Laura Sebastia, and Jorg Hoffmann, 2014 proposed a way to extract landmarks

in the blocks world domain. The candidate landmarks are extracted by their so called

relaxed planning graph (RPG). In this building process, they ignore all the delete item

lists to relax the planning task. The GRAPHPLAN’s planning graph will then been

constructed and chain forward from the initial state to a graph level where all the goals

are achieved. The GRAPHPLAN-style planner IPP is a kind of planner that they used in

the paper. After the relaxed planning graph is built, they went back through the the RPG

and then extract the landmark-generation tree.

13

A B C

D C

A D

B

Initial State Final State (Goal)

Figure 2.1: An example of a task in blocks world domain. (Julie Porteous, Laura Sebastia,

and Jorg Hoffmann, 2014)

For the process of extracting the potential landmarks, all the top level goals are

added into the landmark generation tree, and then these goals are solved by relaxed

planning graph based on their previous level. For each goal in a level, all the actions to

achieve the goal is grouped, and the intersection of all the pre-conditions are calculated.

Then moving down to a lower level to do the above procedure again. Table 2.2 shows a

relaxed planning graph in blocks world domain, to achieve the goal: C is on A, and B is

on D, from the initial settings: A, B, and C are on table, D is stacking on C.

L0 A1 L1 A2 L2 A3 L3

on-table A

on-table B

on-table C

on D C

clear A

clear B

clear C

arm-empty

pick-up A

pick-up B

unstack D

C

holding A

holding B

holding D

clear C

stack B A

stack B D

stack B C

put-down

B

…

pick-up C

…

on B A

on B D

on B C

…

holding C

…

stack C A

stack C B

stack C D

on C A

on C B

on C D

Table 2.2: A relaxed planning graph for the blocks world domain showing in Figure 2.1.

(Julie Porteous, Laura Sebastia, and Jorg Hoffmann, 2014)

 The goals are on(C A) and on(B D), and the corresponding landmark generation

tree is 𝑁 = {𝑜𝑛(𝐶 𝐴), 𝑜𝑛(𝐵 𝐷)}, the goal on(C A) is in level 3 and goal on(B D) is in

level 2. The goal on(C A) can only be achieved by the operator: stack C on A. So C is

14

holding on hand and A’s surface is clear are its pre-conditions. Then the atom C is

holding will be put down to level 2. Then the procedure proceeds until it reaches to the

level 0. By applying a verifying and ordering procedure, landmarks are extracted. For

example, the state: C’s surface is clear is a landmark that no matter how the procedure

varies, this state must show up.

 For the work from Qiang Yang, Kangheng Wu, and Yunfei Jiang, 2005, they

make assumptions that the states are unknown and their goal is to reconstruct the literals

in transportation domain. Based on their research, the planning structure with minimal

logical action model will be created. Their algorithm can be summarized in three steps:

(1) initialize plans and variables, (2) build action and plan constraints, (3) build a

weighted MAXSAT, which is a fast algorithm for discovering association rules.

2.3: The Dota 2 Game

Dota 2 is an online multiplayer video game whose ideas and setting are mostly

inherited from DotA, a Warcraft III: Frozen Throne based battle arena map. It is

developed by Valve Corporation and its chief game designer and developer is IceFrog,

who once served as a major role in redesigning and upgrading the DotA game. This game

can be ran on Microsoft Windows, OS X and Linux platforms, and STEAM is its game

community which is also developed by Valve Corporation.

The origin of Dota 2 is DotA, which is short for “Defence of the Ancients”. It ran

on the game platform “Warcraft III: Reign of Chaos” and customize some of its specific

configurations. DotA is firstly created by “Eul”. The DotA game comes to be well known

after Blizzard published a subsequent version “The Frozen Throne”. The developer

15

“Guinsoo” developed the “all-star” map, and another developer “IceFrog” started

adjusting and optimizing the DotA after 2005. DotA it is very popular among young

people. It is one of the most famous battle games in the world level electronic video game

competition. As its 3D engine was out of date and lost its customers, its subsequent

follower Dota 2, was developed by Valve Corporation. “IceFrog” is now an employee in

Valve.

The huge square shape map is the unique map used in Dota 2 game. Its terrain

contains slopes, heights, jungles, and also rivers. It is majorly divided by diagonal

northwest to southeast river with two competing teams known as Radiant and Dire team

on each side. The Radiant team is located at the southwest corner of the map, and the

Dire’s team is located on the other side. Each team has their unique ancient as well as

some surrounded buildings and towers, which protect the ancient from attacks by the

other opponent team. The densest building area is located in both the southwest corner

and northeast corner. They are placed on the heights of each side so they are made more

difficult to attack if someone wants to occupy the heights. There are three lanes omitting

from the height, two lanes are placing alongside the map, which are horizontal and

vertical respectively, and also one center lane connecting two bases. Figure 2.1 shows a

screen shot of the Dota 2 game map with three lanes and two bases on each corner of the

map. On each side of each lane, there will have two defensive towers protecting its lane

by attacking the heroes and creeps that do not belong to their team. The inner tower or

ancients are attackable only if the outer tower is destroyed. When the inner tower is

destroyed the game ends.

16

Figure 2.1: The radiant’s base is located at the bottom left corner of the map. The dire’s

base is located at the top right corner of the map. There are three lanes: top, middle and

bottom connecting two bases.

The Dota 2 game allows at most 10 players play in the game. These 10 players are

divided into two teams fit into the Radiant and Dire’s team respectively. Each controls

the same hero in the game until the game ends. Their birth place when the game start is

the same ax their respawn location (when the hero dies it reappears in this location):

behind their ancients and on another heights.

Each hero is born with zero experience and limited gold, they can earn the gold by

killing enemies’ creeps and enemy heroes. Also there are some neutral creeps in the

jungle that can also provide gold and experience when killed. The heroes can also get

extra gold when enemies’ defensive tower is fallen or other buildings are destroyed.

Meanwhile, heroes can use the gold they earned to purchase items in the store, to

improve their damage value or do positive effect to win the game. The better weapon or

17

equipment they have, the more possibility they may have to win the game. Experience

can be used to acquire more powerful skills such as the hero is able to learn new skills

and upgrade their equipped skills when they level up. Heroes can also learn ultimate skill,

which only be available every six levels and will do great damage or assistant comparing

to normal skills.

The game ends when either of the ancients is fallen. One side will try to approach

to the heights that belongs to the enemies, while on the other hand, the enemies will try

their best protecting their ancients. Team fights happen at this time when both teams’

heroes gathered together and use their physical attack or magical ability to put damage on

their enemies. So the team fight will always happen in the game, and many team fights

are the turning points in the game that can greatly affect the result of the game.

18

3. Computing Planning Landmarks

3.1 Algorithm Description

In this thesis, we proposed a new general algorithm to find the landmarks. As we

discussed in chapter 2.2, the other two methods proposed from other papers cannot solve

the problem we have in Dota 2 because either it is too difficult or even not possible to

define operators. In contrast, our algorithm can efficiently find landmarks in Dota 2

without requiring that operators are given.

 Our algorithm requires that the states should all start from a state and end in one

state, which means even though we may have many input traces, they should be starting

from same origin point and same final point. No matter how we take the trace to achieve

the goal, and no matter how the traces are twisted or intersected, there should definitely

have these two landmarks. One is the initial state and the other is the end state.

The algorithm is consist of two parts, calculating the weighted value and

calculating the similarity between two states from two traces.

3.1.1 Weight Calculation Algorithm

We used an algorithm to calculate the weighted value across all the states among

all the traces we are given as input. The main idea in this algorithm is trying to find a

difference in value that reflects the relative importance of particular states. The weighted

value of potential landmarks should be different from the ordinary states in our traces.

This algorithm maintains current state 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑇𝑟𝑎𝑐𝑒1, the runner state 𝑠𝑟𝑢𝑛𝑛𝑒𝑟 ∈

𝑇𝑟𝑎𝑐𝑒1, and the seeker state 𝑠𝑠𝑒𝑒𝑘𝑒𝑟 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖, where 𝑇𝑟𝑎𝑐𝑒1 is the base trace and 𝑇𝑟𝑎𝑐𝑒𝑖

is another trace that we want to visit (i≠1). The intersection point 𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 =

19

{𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒1 ∩ 𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖} are the states that has the same set of primitive atoms

between two traces. And also 𝑠𝑠𝑒𝑒𝑘𝑒𝑟 and 𝑠𝑟𝑢𝑛𝑛𝑒𝑟 are the instance of the intersection

states set. We call the connection between two intersection states the tunnel

𝑇𝑠𝑠𝑒𝑒𝑘𝑒𝑟, 𝑠𝑟𝑢𝑛𝑛𝑒𝑟 . It links the two traces up and the neighboring states must use this tunnel

to visit another trace. The method to choose the runner state, the seeker state, and the

tunnel between these two states will be discussed in Section 3.1.2 (the similarity

algorithm).

The weight of a state will be computed starting from this state, and finding a path

through the other traces by using the tunnels bridging the traces. The distance between

two states 𝑠1𝑖 ∈ 𝑇𝑟𝑎𝑐𝑒1 and 𝑠2𝑗 ∈ 𝑇𝑟𝑎𝑐𝑒2 is high if they are not the states next to the

tunnel. On the other hand, the distance will be small if two states are close to the tunnel.

The algorithm will start from the current state, and move the state runner forward.

Meanwhile, the state runner will find the shortest way to get access to other traces by

trying to match the state seeker in other traces. The state seeker will also run through the

trace where it belongs to, until it reaches the final state in that trace. If the state seeker can

be matched to the state runner, it means the tunnel can be created between these two

traces. The distance between these two states (𝑠𝑠𝑒𝑒𝑘𝑒𝑟 and 𝑠𝑟𝑢𝑛𝑛𝑒𝑟) is set as 1. On the

other hand, if the state seeker reaches the final state of that trace, this means the state

runner cannot find a similar state in the other trace, and the distance between these two

states are set as infinity. The algorithm may not choose this seeker and runner pair as the

tunnel because the cost to visit the other trace is really huge. If the tunnel is found in

which the distance of this tunnel is a small, the algorithm will choose it, and the

neighboring states of the current state will also get access to the other trace by using this

20

tunnel. If the current state is located at the place where tunnels appear on both sides near

it, the algorithm will choose a shortest one that can decrease the distance.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑟𝑢𝑛𝑛𝑒𝑟,𝑠𝑠𝑒𝑒𝑘𝑒𝑟 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑠𝑟𝑢𝑛𝑛𝑒𝑟,𝑠𝑠𝑒𝑒𝑘𝑒𝑟 = {
0 (𝑡𝑢𝑛𝑛𝑒𝑙 𝑒𝑥𝑖𝑠𝑡𝑠)

1 (𝑡𝑢𝑛𝑛𝑒𝑙 𝑒𝑥𝑖𝑠𝑡𝑠)

∞ (𝑡𝑢𝑛𝑛𝑒𝑙 𝑑𝑜𝑒𝑠𝑛′𝑡𝑒𝑥𝑖𝑠𝑡)

For the distance from one state to the other state in another trace in general,

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖𝑝,𝑠𝑗𝑞 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖𝑝,𝑠𝑖𝑟𝑢𝑛𝑛𝑒𝑟 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖𝑟𝑢𝑛𝑛𝑒𝑟,𝑠𝑠𝑒𝑒𝑘𝑒𝑟 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑗𝑠𝑒𝑒𝑘𝑒𝑟,𝑠𝑗𝑞

Where 𝑠𝑖𝑝, 𝑠𝑖𝑟𝑢𝑛𝑛𝑒𝑟 = {𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖, 1 < 𝑝, 𝑟𝑢𝑛𝑛𝑒𝑟 < 𝑛}, n is the number of states in

𝑇𝑟𝑎𝑐𝑒𝑖. 𝑠𝑗𝑞 , 𝑠𝑗𝑠𝑒𝑒𝑘𝑒𝑟 = {𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑗, 1 < 𝑞, 𝑠𝑒𝑒𝑘𝑒𝑟 < 𝑚}, m is the number of states in

𝑇𝑟𝑎𝑐𝑒𝑗.

The distance will be gathered and added every time from the current state to all

the other states on all the other traces. The total weight of the current state is calculated

by dividing the sum of distances between the states it visited.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑠𝑖𝑝 =
∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖𝑝,𝑠𝑗𝑞

𝑚
𝑞=1

𝑘
𝑗=2

𝑚 ∙ (𝑘 − 1)

Where k is the number of traces we have in our input set, m is the number of

states in 𝑇𝑟𝑎𝑐𝑒𝑗.

By using this algorithm, the ordinary states will have larger value on the final

calculated weighted value (and hence, will not be considered landmarks). The reason is

quite straightforward. The ordinary states are more distant to the state runner, which is

added to the distance to other trace. Meanwhile, the special state, which sits exactly on

21

one side of the tunnel, the state runner itself, will have the lowest distance. The difference

of the distance value is a good measurement of the importance of the landmarks we want

to analyze; the lower the distance or weight, the more likely the state is a landmark.

3.1.2 Similarity Algorithm

The similarity algorithm is a method we proposed to determine whether two states

from two different traces are close to one another. This algorithm can solve the problem

in HTN planning that given several input traces, the method that simply counting the

occurrence of states will leads to a failure. Inspired by the work of Amy McGovern and

Andrew G. Barto, the landmark may also exist in a high dense region, that many

trajectories staying really close to each other within an area, but not intersect with anyone

else. In this case, no landmark will be extracted by using counting occurrence of the

states since there is actually no intersections in the domain. The phenomenon that we can

discover in this case is that the dense region will still be recognized as a landmark by the

similarities in this region. If we have such an algorithm that can filter out this similarity,

we are then safe to say some states which are staying close enough but not intersected

will also be considered as a kind of landmark.

The actual similarity algorithm is slightly different between domains (i.e., it is

domain dependent), but the key idea in similarity is comparing the degree of how two

states with their primitive atoms are shared. For example, for 𝑠𝑖 = {𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑝} and

𝑠𝑗 = {𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑞}, each of them has a list of primitive atoms that may have slightly

different with each other.

22

𝑠𝑖 𝑠𝑗

𝐴𝑡𝑜𝑚1 𝐴𝑡𝑜𝑚1

𝐴𝑡𝑜𝑚2 𝐴𝑡𝑜𝑚3

𝐴𝑡𝑜𝑚3 𝐴𝑡𝑜𝑚4

𝐴𝑡𝑜𝑚4 𝐴𝑡𝑜𝑚5

Table 3.1: List of the primitive atoms in two states.

So the similarity may consider two states similar when few atoms are different.

The more differences these two states may have, the higher similarity value we may have.

This is related to the distance calculation in Chapter 3.1.1 in which the similarity value is

used as the distance between the state seeker and state runner. Also the function of

calculating the similarity value is not linear, which means we are using different stages to

determine the similarity. If two states are sharing exactly the same atoms and we cannot

tell any difference besides which trace it belongs to, the distance is 0. And also if there is

only minor difference between two states, we set the similarity to 1 or 2 to differentiate

them from equality case, but still having very close distance with each other. Finally if

the two states have a lot more differences, we similarity is larger. We assign infinity

between two states to if they share no atoms in common.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑠𝑖,𝑠𝑗 =

{

0 (𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑠𝑎𝑚𝑒)

1 (1 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

2 (2 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
⋯
∞ (𝑛𝑜 𝑐𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

3.2 Example in Transportation Domain

The transportation domain is a good example in HTN planning. It is focusing on

transporting a package from one location to another. Major objects concerned is the

23

package, truck, airplane, so on and so forth. The package carrier transports the package

between locations, but are limited to the transport area so another transportation methods

should be continued. It is a classical and typical model in planning. It has the primitive

atoms like “package is in location A”, it has the states that can be converted by operators

or actions, it has a start state and a final goal, and it has multiple choices that can achieve

the goal.

Figure 3.1: A description of new transportation domain.

We now introduce a more complex version of the transportation domain that

introduces more elements than the example we mention in Chapter 2.1. In this new

transportation domain, packages still need to be delivered to another place, but this time

these two locations are not necessarily in the same city, not even not in the same planet.

For example, consider the following scenario: the package is initially locate in location 1,

city 1, planet 1, while the destination location 8 is in city 4, planet 2. In our scenarios, we

have two planets, four cities, eight airports, two launch centers, and eight ordinary

locations. Each city has two airports and two ordinary locations. For city 2 and city 3,

each of them has a launching center that has a rocket waiting on it.

24

 In order to express the initial state formally, we write the primitive atom in the

format like this: 𝐴𝑡𝑜𝑚𝑖 = (𝐴𝑑𝑣𝑒𝑟𝑏𝑖𝑎𝑙𝑖 𝑂𝑏𝑗𝑒𝑐𝑡𝑖 𝑂𝑏𝑗𝑒𝑐𝑡𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟) . The atom format is

used to indicate that the 𝑂𝑏𝑗𝑒𝑐𝑡𝑖 is on 𝑂𝑏𝑗𝑒𝑐𝑡𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 in the name of 𝐴𝑑𝑣𝑒𝑟𝑏𝑖𝑎𝑙𝑖. And

then we can have a detailed description of the initial state we have.

City (ON-PLANET

CITY1

PLANET1)

(ON-PLANET

CITY2

PLANET1)

(ON-PLANET

CITY3

PLANET2)

(ON-PLANET

CITY4

PLANET2)

Airport (IN-CITY AP1

CITY1)

(IN-CITY AP2

CITY1)

(IN-CITY AP3

CITY2)

(IN-CITY AP4

CITY2)

 (IN-CITY AP5

CITY3)

(IN-CITY AP6

CITY3)

(IN-CITY AP7

CITY4)

(IN-CITY AP8

CITY4)

Location (IN-CITY LOC1

CITY1)

(IN-CITY LOC2

CITY1)

(IN-CITY LOC3

CITY2)

(IN-CITY LOC4

CITY2)

 (IN-CITY LOC5

CITY3)

(IN-CITY LOC6

CITY3)

(IN-CITY LOC7

CITY4)

(IN-CITY LOC8

CITY4)

Launch Center (IN-CITY LC1

CITY2)

(IN-CITY LC2

CITY3)

Airplane (AIRPLANE-AT

PLANE1 AP1)

(AIRPLANE-AT

PLANE2 AP5)

Truck (TRUCK-AT T1

LOC1)

(TRUCK-AT T2

AP3)

(TRUCK-AT T3

LC2)

(TRUCK-AT T4

AP7)

Rocket (ROCKET-AT

ROCKET1 LC1)

Package (OBJ-AT PACK1

LOC1)

Table 3.2: A detailed list of atoms in the initial state

Based on the result run by JSHOP, a hierarchical task network (HTN) based

planning software, a way to achieve the goal “send the package to location LOC8” can

have one of the possible solution in the form below:

Plan # 1

 (!load-truck pack1 t1 loc1) 1.0 (!drive-truck t1 loc1 ap1) 1.0 (!unload-truck pack1 t1

 ap1) 1.0 (!load-airplane pack1 plane1 ap1) 1.0 (!fly-airplane plane1 ap1 ap3) 1.0

(!unload-airplane pack1 plane1 ap3) 1.0 (!load-truck pack1 t2 ap3) 1.0 (!drive-truck

t2 ap2 lc1) 1.0 (!unload-truck pack1 t2 lc1) 1.0 (!load-rocket pack1 rocket1 lc1) 1.0

25

(!fly-rocket rocket1 lc1 lc2) 1.0 (!unload-rocket pack1 rocket1 lc2) 1.0 (!load-truck

pack1 t3 lc2) 1.0 (!drive-truck t3 lc2 ap5) 1.0 (!unload-truck pack1 t3 ap5) 1.0

(!load-airplane pack1 plane2 ap5) 1.0 (!fly-airplane plane2 ap5 ap7) 1.0 (!unload-

airplane pack1 plane2 ap7) 1.0 (!load-truck pack1 t4 ap7) 1.0 (!drive-truck t4 ap7

loc8) 1.0 (!unload-truck pack1 t4 loc8) 1.0)

So the hierarchical structure in this transportation domain can be described as:

Figure 3.2: A hierarchical structure in transportation domain.

We may have multiple possible solutions on this domain, if we want to transfer

the package to LOC8. Since the package can be picked up by the truck at LOC1, and go

through LOC2 and then arrive at AP1, or directly arrive at AP1 without any other stops,

there are two possible solutions in the sub goal “transferring the package to the airport

AP1”. In addition, in city CITY2, when the package is picked up at airport AP3 (suppose

the airplane PLANE1 arrive at airport AP3), the truck TRUCK2 can choose to visit

LOC3 or LOC4, or both of the locations in city CITY2, then arrive at the launch center

LC1, or directly arrive at LC1.

Transport
to LOC8

Transport
to LC1

Transport
to AP1

load truck
drive
truck

unload
truck

Fly plane
to AP3

Transport
to LC1

Fly rocket
to LC2

Transport
to LOC8

Transport
to AP5

Fly plane
to AP7

Transport
to LOC8

load truck
drive
truck

unload
truck

26

By observing the transportation domain hierarchical structure, we can discover

that the package should be arrive at the launch center LC1 and LC2 every time, and also

the transportation between two planets cannot be avoided because the original place and

the destination are on different planets. Independent of how we choose the routes within

the city, and how many traces we may have when the package is transporting from LOC1

to AP1, or even to AP2, the launch center is the place that it will visit every time. So this

is a landmark. We claim that our similarity algorithm will discover this landmark even

when the package is arriving at different airports but in the same city.

We are going to discuss about the weight calculation algorithm and similarity

algorithm in the transportation domain.

3.2.1 Weight Algorithm in Transportation Domain

The major steps in using the weight calculation algorithm is based on the pseudo

code 3.1 shown below:

procedure Weight_Algorithm(Set of traces T)

 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒 = T1

 𝑆𝑐𝑢𝑟𝑟 = the first state S11 from 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒

 while (𝑆𝑐𝑢𝑟𝑟 < the last state in 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒)

 Distance = 0

 if (𝑆𝑐𝑢𝑟𝑟 == 𝑆𝑟𝑢𝑛𝑛𝑒𝑟)

 𝑆𝑟𝑢𝑛𝑛𝑒𝑟 = Similarity(𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒, 𝑆𝑐𝑢𝑟𝑟)

 𝑆𝑠𝑒𝑒𝑘𝑒𝑟 = Similarity(𝑇𝑟𝑎𝑐𝑒𝑖, 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒)

end if

while (𝑆𝑗 < the last state in 𝑇𝑟𝑎𝑐𝑒𝑖)

27

Distance = Distance + |𝑆𝑟𝑢𝑛𝑛𝑒𝑟 − 𝑆𝑐𝑢𝑟𝑟| + |𝑆𝑠𝑒𝑒𝑘𝑒𝑟 − 𝑆𝑗|

𝑆𝑗 = 𝑆𝑗+1

 end while

 𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑢𝑟𝑟 = Distance / number of states visited

 𝑆𝑡𝑎𝑡𝑒𝑐𝑢𝑟𝑟 = 𝑆𝑡𝑎𝑡𝑒𝑐𝑢𝑟𝑟+1

end while

end procedure

Pseudo code 3.1: Weight calculation algorithm major procedures

First, we need to choose the first trace as our base trace. There is no preference on

the method of choosing this base trace, because the landmarks are supposed to exist in

every trace, no matter how we generate the trace as our base trace, the end result will not

change. Then we are using this base trace and another companion trace to calculate the

weight value on the base trace. We need to do this procedure for every other traces

because we may have lots of input traces, the accuracy can be improved as more trances

are given. Then we need to use our state runner and state seeker to find the tunnel

between two traces. The runner state is taken from the base trace, and the seeker state is

from the companion trace: 𝑆𝑟𝑢𝑛𝑛𝑒𝑟 ∈ 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒 , 𝑆𝑠𝑒𝑒𝑘𝑒𝑟 ∈ 𝑇𝑟𝑎𝑐𝑒𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛. The distance

will be calculated by summing up the distance from the current state to the state runner,

from state runner to state seeker, and then the distance from state seeker to all the other

states in the companion trace.

After we collect all the distances from a particular state to all the other states in

other traces, we divide the sum value by the number of the states we visited. This

averaged value is a final measurement of the importance of this state whether we can

28

determine it is a landmark in our transportation domain or not. Since we have series of

the states in our base trace, the values will vary a lot because the distance each state to the

tunnel is different. Ideally the states which has the minimum weight value is considered

as the landmark in our domain.

3.2.2 Similarity Algorithm in Transportation Domain

Although we are able to find the states as the landmark by matching states, this is

only working when two states are exactly the same. In our transportation domain, the

airplane PLANE1 can fly to both AP3 and AP4 with the same probabilities. If we have

ten traces but nine of them are going to airport AP3, only one out of ten is going to

airport AP4, then AP4 will not be considered as a valid airport that has the potential to be

considered as the place where landmark exists. This is also the reason why we cannot use

the simple counter to count the occurrence of the places the package has visited.

The similarity algorithm we discussed in Section 3.1.2 can solve this problem and

can also work with weight calculation algorithm to get the landmark we want. When AP1

is being considered, the similarity algorithm will consider AP2, which is also in CITY1

and it is also a place that can transport the package to CITY2. AP3 and AP4 are

considered as a same airport because they are both in CITY2.

Using the similarity algorithm in the transportation domain results in a number of

matched primitive atoms we have in each state. The reason why AP1 and AP3 are not

considered as similar airport is because AP1 is an airport in CITY1, and AP2 is in

CITY2. The algorithm searches for the AP1 and AP3 and finds that AP1 and AP3 are

from different cities based on the atoms: (AIRPORT AP1) (AIRPORT AP3) (IN-CITY

29

AP1 CITY1) (IN-CITY AP3 CITY2) (CITY CITY1) (CITY CITY2). The algorithm will

also search for the item CITY1 and CITY2, and realize it as the same items based on the

atoms: (CITY CITY1) (CITY CITY2) (IN-PLANET CITY1 PLANET1) (IN-PLANET

CITY2 PLANET1). So the similarity between AP1 and AP3 is smaller than the similarity

between AP1 and AP2, because AP1 and AP2 are in the same city, which in the

algorithm are considered to have higher relationship.

3.3 Example in Dota 2

Dota 2 is an online battle video game that allows at most 10 players to play the

game. As we have introduced some basic concepts about Dota 2 in Section 2.3, we

discover that the domain of the Dota 2 game also have the characteristics of planning

domain in our research. Even though the gaming process can be totally different between

each game played by different players, we still can find many features are shared accross

all of the games in Dota 2. For example, the game will start at the scene that all the five

players who are grouped as radiant team will be born in the radiant’s base, and the other

five players are born in the dire’s base. Then the game will end when the ancient of either

team is destroyed. If the ancient building is destroyed by the enemies, all the players and

creeps are frozen and players cannot make any control on their heroes. Also the ancient is

attackable only if the outer defensive towers are collapsed (i.e., destroyed by the

enemies), the team fight are mostly happened near the end of the game. No matter how

many times the games are played, these features are fixed in the game. This feature

applies to the planning model characteristics so we can use the Dota 2 domain in finding

important events in the game, or in other words, finding the landmark in the Dota 2 game.

30

The transportation domain and the Dota 2 domain are different. In our new

transportation domain, each state in an input trace is connected by the operators, which

are given from a set of countable operators. Each next state is predictable in our domain

because there is an add list and delete list in each operator. By applying the adding list

and the deleting list onto the pre-condition state, an effect state can be generated.

Although we can have hundreds of valid input traces in our transportation domain

generated by JSHOP, the number of valid inputs are not as many as the input we can

collect from the Dota 2 game. The transportation domain is a classical model that all of

its possibilities can be created by permutations. Basically, all the possible solutions can

be ideally populated by JSHOP, which means the complexity of the solutions are

dependent on the restrictions we set. We can only have no more than 10 valid input traces

when we downgrade the transportation domain, which means we make the package

delivered to a location in the same city, and there are only 2 locations that the truck can

visit. So the transportation domain is a simple and predictable domain. While in the Dota

2 domain, we are not able to collect all the operators because every next state is non-

predictable. The next state in Dota 2 are majorly depend on the players’ decision, or the

effects given by other players. The location where the heroes choose to stand, the time

when the ability is used on himself or others, and the lane they choose to approach to the

enemies’ ancient, can have countless progress and results just like the real world. So we

cannot use exactly the same algorithm in the Dota 2 domain.

3.3.1 Weight Algorithm in the Dota 2 Domain

We still employ the weight calculation algorithm in the Dota 2 domain but we

make some changes according to the game feature. As we know from the section 2.3 and

31

previous paragraph, Dota 2 does not have operators between states, the next state is non-

predictable from previous state that we may have all the state traces different from each

other, which means the number of traces we can employ is unlimited. Another issue we

need to consider is the length of the trace. A regular Dota 2 game will last for at least 30

minutes, and each tick will capture a state in the game. The tick period is as short as 0.06

second, so we can have at least 30000 states in a single input trace. So the number of

states in a trace in the Dota 2 domain is much more than we have in the new

transportation domain. In our algorithm, we need to import multiple input traces based on

our domain, and this results to the problem of calculating the sum of distance with

hundreds of thousands of states. This is both time and space consuming.

 As we have discussed in section 3.1.1, we pick up one trace as our base trace. The

trace in the Dota 2 domain is the file of one replay file. Then the current state in the base

trace will find a tunnel, which will be calculated by our similarity algorithm, to visit other

states in other traces. Then the value of all the distance from the current state to other

states will be summed up and will be divided by the states it visited. This is the weighted

value of the current state. Then the algorithm will move the current state to next state, do

the previous procedure again and calculate the new weight value for the current state. The

pseudo code is no much difference with the one in section 3.2.1

3.3.2 Similarity Algorithm in the Dota 2 Domain

The similarity algorithm in Dota 2 domain is different from the one in the

transportation domain. First, in transportation domain, we make an exact match between

two states from two different traces, while in the Dota 2 domain, we cannot have

operators which contains add list and delete list, so there is no exact match to be made.

32

Second, even if we only take heros’ health, mana, location x and y, and time as five

variables in our domain, there are no same states with one or two variables differences.

So we use a range similarity here to determine two states whether they are similar or not.

We use heroes’ health, mana, location x and y in map, and time, these 5 variables

in our domain to simplify our landmark searching complexity. These 5 variables are

considered to be the key factors to determine a team fight, which is a very important

event in the game. The team fight is supposed to happen in all the traces and the location,

time when team fights happen can give useful information during the game. If at least

two heroes are gathering together from each team in a very small range of location, and

with very quick health and mana consuming or curing in a short time, we will say this is

the location to have a team fight. If two states from two different traces both of them have

this scenario, we put them as sharing a similarity feature.

The quick health and mana consummation can be defined as, starting from above

80 present of mana and health value, the value drop or resume to below 10 percent during

the range which at least two heroes from each team are standing closely. For the range of

the location we consider as a close state, we set the percentage by experience at first, and

then automatically adjust by the algorithm to increase the percentage in stage until we

find the team fight. If there is no scenario in the trace that meets our algorithm after the

algorithm enlarges five times, we consider the trace an invalid trace and we will delete

this trace from our trace set.

33

4. Implementation

4.1: New Transportation Implementation

We discuss several steps needed before discussing the code (see the figure

below). First, our algorithm needs enough valid input traces. We use the planner JSHOP

to obtain the traces in transportation domain. SHOP, is short for Simple Hierarchical

Ordered Planner, was developed by Dana Nau, Yue Cao, Amnon Lotem, and Hector

Munoz-Avila, 1999. JSHOP is the Java version of SHOP. JSHOP plans the order of the

tasks in hierarchical structure to achieve the final goal. By given the domain description

and problem description which contain operators declaration, axioms, initial state

restrictions and final goals, JSHOP is able to generate all the possible solutions for

achieving problems such as “transporting the package from location 1 to location 8

between different cities, different planet”.

Second, the input traces must be in a particular format as a text output, so we need

to parse these traces and translate them into another format that can be parsed by our

weight and similarity algorithm module.

Figure 4.1: Workflow diagram for finding the landmarks in transportation domain.

By assigning tasks to this procedure, we modularize our code into three parts: the

data generation module, the trace parsing module, and the landmark finder module. The

data generation module is responsible for constructing our new transportation domain and

Obtain input
traces

Parse traces
Make traces into

linked list

Use weight /
similarity
algorithm

Find landmarks
by weighted

values

34

set the initial state and the final goal to our problem. The output of this module is all

solutions in the required format. Here is an example:

Plan # 1

 ((!load-truck pack1 t1 loc1) 1.0 (!drive-truck t1 loc1 ap1) 1.0 (!unload-truck pack1

t1 ap1) 1.0 (!load-airplane pack1 plane1 ap1) 1.0 (!fly-airplane plane1 ap1 ap3) 1.0

(!unload-airplane pack1 plane1 ap3) 1.0 (!load-truck pack1 t2 ap3) 1.0 (!drive-truck t2

ap3 lc1) 1.0 (!unload-truck pack1 t2 lc1) 1.0 (!load-rocket pack1 rocket1 lc1) 1.0

(!fly-rocket rocket1 lc1 lc2) 1.0 (!unload-rocket pack1 rocket1 lc2) 1.0 (!load-truck

pack1 t3 lc2) 1.0 (!drive-truck t3 lc2 ap5) 1.0 (!unload-truck pack1 t3 ap5) 1.0

(!load-airplane pack1 plane3 ap5) 1.0 (!fly-airplane plane3 ap5 ap7) 1.0 (!unload-

airplane pack1 plane3 ap7) 1.0 (!load-truck pack1 t4 ap7) 1.0 (!drive-truck t4 ap7

loc8) 1.0 (!unload-truck pack1 t4 loc8))

All these traces are generated by the output file in JSHOP folder, and then we

need to parse them by using the trace parsing module. The trace contained in the output

file is a sequence of operators that can be applied to achieve the final goal, so we need to

translate them into a sequence of states linked by these operators. In the trace parsing

module, we wrote a C++ program to automatically read strings from the output file

containing all the operator sequences, and extract information to generate the actual

linked states. The states are linked as linked lists and such lists are the actual input traces

that will be analyzed in the next module. In our landmark finder module, which is the

subsequent module of parsing procedure, we use our weight algorithm and similarity

algorithm to calculate the weight value of each state in the base trace. As explained in the

35

previous chapter, the landmarks are those that have the lowest value among all the states

in one trace. The lower the weight value one state has, the higher chances it is a

landmark. The modularization and procedure can be found in figure 4.2. Finally we get

an array of weight values that compute the importance of each landmarks in each trace,

and examine whether they are real landmarks in our transportation domain.

JSHOP

Problem file
(Initial state and
goal description)

Domain file
(operator and

axioms
description) Trace parser

(written in C++)

Traces (solutions)

Linked list
constructor (written

in C++)

Landmark
calculator

Array of weight
values calculated

Weight algorithm
code

Similarity
algorithm code

Figure 4.2: Modularization of finding landmarks in transportation domain

We will discuss the trace parsing module and the landmark finder module in

detail, while for the first module, we can get output from JSHOP directly so we do not

discuss it and refer to (Nau et al., 1999).

4.1.1 Parsing Traces

Given an output file containing a series of solutions, we need to firstly do the

stream input to read characters from this file and then try to translate the sequence of

operators into a sequence of states. The output of this module should be a set of traces,

which contains sorted states in it. We use an array to store all the traces. In each cell of

this array, there is a bi- directional linked list. Each state, except for the initial state and

final state, has pointers referring to its previous state and next state. For each operator

36

instance, it will have pointers pointing to the pre-condition state and effect state

respectively. The data structure is shown in figure 4.3.

State1
(initial state)

State2 State3 State4 State5
State6

(final state)

Operator1 Operator2 Operator3 Operator4 Operator5

next

prev

next

prev

next

prev

next

prev

next

prev

 Atom1-1
 Atom1-2
 Atom1-3
 Atom1-4
 Atom1-5

 Atom3-1
 Atom3-2
 Atom3-3
 Atom3-4
 Atom3-5

 Atom2-1
 Atom2-2
 Atom2-3
 Atom2-4
 Atom2-5

 Atom4-1
 Atom4-2
 Atom4-3
 Atom4-4
 Atom4-5

 Atom5-1
 Atom5-2
 Atom5-3
 Atom5-4
 Atom5-5

 Atom6-1
 Atom6-2
 Atom6-3
 Atom6-4
 Atom6-5

Pre-Con Effect Pre-Con Effect Pre-Con Effect Pre-Con Effect Pre-Con Effect

JSHOP result

Store to array slot

 Figure 4.3: the data structure of the states and operators.

For parsing the output file from JSHOP, we write a program in C++. First, all the

operators are known to us, so we create a list of operator instances that stores all the

possible operators that could be used in the parsing procedure. Second, we load the initial

state by reading its atom list. Third, we load the first operator from the output file in the

first module. Note that each operator in the output file is shown in the format:

(!operator_name object from to), so the code will search for the operator’s name in the

operator list. The matched operator will return a list of add-list and delete-list that will be

implied on the initial state, some atoms will be added, and some atoms from the initial

state atom list will be deleted. This will generate the next state in that trace, equipped

37

with a new atom list that is different from the initial state. Then the procedure goes on,

loading the next operator and getting the add- and delete-list, and creating a third state

based on the second state. Also, the previous state has a next-state pointer, while the next

state will also have a previous-state pointer. For the linked list of operator, they have

additional pointers pointing to the previous state and the next state, which are the pre-

condition and effect respectively.

The constructing procedure can be described in the following pseudo code 4.1.

The SeachOperator function is a matching procedure that will fetch the add- and delete-

list from the matched operator.

procedure Construct_States (𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑆𝑖𝑛𝑖𝑡)

 𝑆𝑐𝑢𝑟𝑟 = 𝑆𝑖𝑛𝑖𝑡

 𝑂𝑐𝑢𝑟𝑟 = 𝑂1

 while (𝑂𝑐𝑢𝑟𝑟 <= 𝑂𝑓𝑖𝑛𝑎𝑙)

 (AddList, DeleteList) = SearchOperator(𝑂𝑐𝑢𝑟𝑟)

 𝑆𝑐𝑢𝑟𝑟+1 = (𝑆𝑐𝑢𝑟𝑟 ∪ 𝐴𝑑𝑑𝐿𝑖𝑠𝑡)\𝐷𝑒𝑙𝑒𝑡𝑒𝐿𝑖𝑠𝑡

 (𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑣 ∈ 𝑆𝑐𝑢𝑟𝑟+1) = 𝑆𝑐𝑢𝑟𝑟

 (𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑥𝑡 ∈ 𝑆𝑐𝑢𝑟𝑟) = 𝑆𝑐𝑢𝑟𝑟+1

 𝑆𝑐𝑢𝑟𝑟 = 𝑆𝑐𝑢𝑟𝑟+1

 𝑂𝑐𝑢𝑟𝑟 = 𝑂𝑐𝑢𝑟𝑟+1

end while

end procedure

Pseudo code 4.1: State constructing procedure in transportation domain

38

4.1.2 Similarity Algorithm Implementation

As we have discussed in Section 3.2.2, even if the package arrives at a different

airport when these two airports are located in the same city, we consider these two

airports as similar airports, but the distance from one trace to the other may be more than

one unit because they are not the same. The method we use here is to look at the

difference between two states from two traces first, then we focus on the different atoms

to examine whether one atom from each trace can be classified as a similar atom. If we

have two traces segments as shown below:

State 2 State 3 State 4 State 5

(on-truck pack1 t1)

(truck-at t1 loc1)

(truck-at t2 ap3)

(truck-at t3 ap4)

(plane-at plane1 ap1)

(plane-at plane2 ap5)

(rocket-at rocket1 lc1)

(in-city ap1 city1)

(in-city ap2 city1)…

(on-truck pack1 t1)

(truck-at t1 loc2)

(truck-at t2 ap3)

(truck-at t3 ap4)

(plane-at plane1 ap1)

(plane-at plane2 ap5)

(rocket-at rocket1 lc1)

(in-city ap1 city1)

(in-city ap2 city1)…

(on-truck pack1 t1)

(truck-at t1 ap1)

(truck-at t2 ap3)

(truck-at t3 ap4)

(plane-at plane1 ap1)

(plane-at plane2 ap5)

(rocket-at rocket1 lc1)

(in-city ap1 city1)

(in-city ap2 city1)…

(obj-at pack1 ap1)

(truck-at t1 ap1)

(truck-at t2 ap3)

(truck-at t3 ap4)

(plane-at plane1 ap1)

(plane-at plane2 ap5)

(rocket-at rocket1 lc1)

(in-city ap1 city1)

(in-city ap2 city1)…

Table 4.4: A segment from an input trace. Truck 1 goes to airport 1.

State 2 State 3 State 4 State 5

(on-truck pack1 t1)

(truck-at t1 loc1)

(truck-at t2 ap3)

(truck-at t3 ap4)

(plane-at plane1 ap1)

(plane-at plane2 ap5)

(rocket-at rocket1 lc1)

(in-city ap1 city1)

(in-city ap2 city1)…

(on-truck pack1 t1)

(truck-at t1 ap2)

(truck-at t2 ap3)

(truck-at t3 ap4)

(plane-at plane1 ap1)

(plane-at plane2 ap5)

(rocket-at rocket1 lc1)

(in-city ap1 city1)

(in-city ap2 city1)…

(obj-at pack1 ap2)

(truck-at t1 ap2)

(truck-at t2 ap3)

(truck-at t3 ap4)

(plane-at plane1 ap1)

(plane-at plane2 ap5)

(rocket-at rocket1 lc1)

(in-city ap1 city1)

(in-city ap2 city1)…

(obj-at pack1 ap2)

(truck-at t1 ap2)

(truck-at t2 ap3)

(truck-at t3 ap4)

(plane-at plane1 ap2)

(plane-at plane2 ap5)

(rocket-at rocket1 lc1)

(in-city ap1 city1)

(in-city ap2 city1)…

Table 4.5: A segment from another input trace. Truck 1 goes to airport 2.

We can observe from two tables that the truck 1 goes to airport 1 while in another

table the truck 1 goes to airport 2. By using our similarity algorithm, when we are looking

for matching state of state 4 in trace 1 (the first table), we cannot find any matching state

39

in trace 2 (the second table). But when we take a deeper look at two traces, we find that

state 4 in trace 1 and state 3 in trace 2 they have one atom sharing the same atom name,

but one of the parameters is different. Those atoms are: (truck-at t1 ap1) from the first

trace and (truck-at t1 ap2) from the second trace. Then the similarity algorithm explores

into these two atoms by looking at the similarity between ap1 and ap2. The algorithm

firstly observes that ap1 and ap2 are both airports by finding the same atom these two

states both have: (AIRPORT AP1), (AIRPORT AP2). Then the algorithm takes checks

the triple (atom_name obj_name obj_container), that is, (in-city ap1 city1), and (in-city

ap2 city1). The similarity algorithm finds that their distance should be 1 because there is

only one difference between state 4 in trace 1 and state 3 in trace 2, and ap1 and ap2 are

of the same type and occur in the same triple.

procedure Similarity (𝑆𝑟𝑢𝑛𝑛𝑒𝑟, 𝑇𝑟𝑎𝑐𝑒𝑖)

 𝑆𝑠𝑒𝑒𝑘𝑒𝑟 = 𝑆2 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖

 while (𝑆𝑠𝑒𝑒𝑘𝑒𝑟 < 𝑆𝑓𝑖𝑛𝑎𝑙 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖)

 distance = MAX_INT

 if (𝐴𝑡𝑜𝑚𝑠𝑒𝑒𝑘𝑒𝑟 = 𝐴𝑡𝑜𝑚𝑟𝑢𝑛𝑛𝑒𝑟) // means exactly match

 distance = 0

 else if (𝐴𝑡𝑜𝑚𝑠𝑒𝑒𝑘𝑒𝑟 ∩ 𝐴𝑡𝑜𝑚𝑟𝑢𝑛𝑛𝑒𝑟 = 𝑛 𝑎𝑡𝑜𝑚𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

 if (all atom names can be matched && n <= threshold)

 if (each matched atom pairs has same 𝑂𝑏𝑗𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟)

 distance = 1 * n

 end if

end if

 end if

 𝑆𝑠𝑒𝑒𝑘𝑒𝑟 = 𝑆𝑠𝑒𝑒𝑘𝑒𝑟+1

40

end while

return distance, 𝑆𝑠𝑒𝑒𝑘𝑒𝑟

end procedure

 If the distance we calculated from the similarity algorithm is larger than our

distance threshold, the returned distance should be put as INT_MAX, because the

distance is larger than our threshold and hence it cannot give us an accurate estimate of

distinguish value that landmarks may have. In our new transportation domain, we set the

threshold to be 2 so that any distance calculated by the similarity algorithm will be

marked as a positive infinite integer sending it back to the weight algorithm.

4.1.3 Weight Algorithm Implementation

The weight algorithm is not much different than the algorithm we proposed in

Section 3.2.1. We first pick a trace as our base trace and set the second state as the

current state. We do not need consider the initial state, because the initial state is always a

landmark, as was explained before. We have the same initial state across all traces, so we

can just start from the second state. The next step is to run the state runner and state

seeker to find the tunnel between two traces. We use our similarity algorithm at this time

to compute the distance between state runner and state seeker. If the distance is the

positive infinite, the state seeker and runner cannot make a tunnel for the two traces.

Then the state seeker keeps running until a similarity is found. If there is no exact

matching or similar matching, the state runner will move to the next state in the base

trace, and then the state seeker will traverse the other trace, searching for a matching

tunnel. For each current state, it needs to compare the distance from the previous tunnel

and next tunnel, and it will pick a tunnel that is shortest to visit other traces.

41

4.2: Dota 2 Implementation

The Dota 2 domain is a very different domain from the transportation domain. It

does not have operators, pre-conditions, and effects. Actions in Dota 2 can be non-

deterministic (more than one event can follow the action). But in Dota 2 replay files, the

whole sequence of the game is recorded. Starting from the beginning of the game, when

heroes are picked, and until the very end of the game, when the ancient of one team is

destroyed, each state is stored in the replay file in every game tick. By using an open

source program called Skadi and Tarrasque, which are written in Python, we are able to

parse the Dota 2 replay files into another readable format that contains series of the states.

We choose to use JSON as our output format because it has an informative and clear to

view structure. We use those JSON files to calculate the weight values by running our

Python code. The landmark timestamp and location are recorded and used in our Dota 2

runtime scripts, to allow the camera moving to a particular place and focus on a hero to

have a continuous view of the whole event.

Parsing JSON file
Generate input

traces
Finding the
landmarks

Show the
landmarks in the

game

Parsing the
replay file

Figure 4.4: A working sequence of finding the landmarks in Dota 2 domain

We divide the whole project into four modules. They are the module of parsing

Dota 2 replay files, the module of translating the JSON files into input traces, the module

of finding the landmarks in each trace, and the module of locating the runtime event

based on the landmarks we found. The place where we download the replay files is called

42

DOTABANK (www.dotabank.com). This website allows the users to upload their game

replays into their database, and let others download and share the replay files with no

copyright issues. The number of replay files in dotabank is huge, which gives us plenty of

resources to analyze.

We use the Tarrasque project, a library developed in Python. Terrasque, which is

based on the Skadi project, is a tool to allow the easy and straightforward analysis of

Dota 2 replay files. The Skadi project is a kernel that parse the Dota 2 replays, but it is

not as convenient as Tarrasque. So the Tarrasque project is an upper level API that can let

users have easier access to the parsed data in the memory. We use Tarrasque to extract

heroes’ health, mana, locations, and time information in each state, and make them into a

structured JSON file as the output.

For the translation module, we translate the data stored in JSON files into the

arrays needed for the input traces. Each input trace contains an array of states. This

enables us to get access to these states and the information included in each state. The

translation module is written in Python. For the landmark searching module, we use our

similarity and weight algorithm to analyze all input traces and calculate the weight values

in each state. We use Python to program in this module. We record the landmarks and get

it prepared for the next module, the game runtime module. A very straightforward way to

check whether the landmarks we find is really a landmark in the Dota 2 game is replaying

the game again and move the camera to the place where the landmarks happen. There is a

built-in command in the Dota 2 game that can allow setting the style and the location of

the camera, focusing on a particular hero, and view the events just as the real scenario.

43

JSON files

Dota 2 replay
files

Tarrasque
Project
(from

Github)

Other parsing
assistance docs Parsed data in

JSON format

Input traces

Load into memory

Weight
algorithm

Similarity
algorithm

A set of
landmarks

Distance values

Game scripts to
control the

camera
location

Game
highlights

based on the
landmarks

Figure 4.5: Procedure and component description classified by modules

4.2.1 Preparing the Input Traces

We download ten replay files from www.dotabank.com, a website that players

can upload their game replays and share with each other. The replay file is encoded into a

format and the information inside is highly compressed. We use Tarrasque project on

Github to parse the replay file and give the output in a form that is easy to use in the next

steps. Restricted by the version update of the Dota 2 game, we cannot use a higher

compressed version replay files that were published after July 2014, so the Tarrasque

project can only parse the replay files prior to this time, which means we have ten replay

files, each of them has a file size larger than 100MB.

We coded in Python our implementation. First, we need to import the Tarrasque

library to get access to all the parsing functions. Then we load the replay file directory to

import the target file we want to parse. We can easily parse the replay files by using the

function: tarrasque.StreamBinding.from_file(target_file_directory), to load all the data

into computer’s memory.

44

The first step in our code is searching for the player names in the game. We need

to know who plays in the replay file and which team (radiant or dire) does he belongs to.

We need to take care of the name tag on each player. Tarrasque will throw an exception

on the characters that are not in UTF-8. It means that some replay files cannot be

correctly parsed because the user ID given by the players can be accepted by the game

platform, but cannot be accepted in the Tarrasque. The replay files should be carefully

picked on dotabank.com. This problem can be solved by viewing the detailed information

on the web page of that replay file, and we can get rid of such character failure

beforehand without downloading and loading them in our code.

The second step is reading hero names and matching them to the players that is

playing in this game. We create a file in JSON format that records all the localized hero

names. These names are official names in the Dota 2 game. These 107 hero names are

easier to use than looking up the players’ ID. After we load this file, we put the localized

hero names onto the player IDs. By using this block of code we are able to view each

player’s hero and we make these heroes into an ordered array, that we know the index of

each hero in our output JSON file.

The last step in parsing replay files is iterating over each tick to extract from the

game trace the health, mana, location x, location y, time information in that tick. The tick

is adjustable, but in our code we just use Dota 2’s default tick, which is approximately

0.06 second in each interval. In each tick, we firstly get the official name of the hero from

the array we created in our previous step, then we use this name and the tick to locate the

detailed memory location, to get the health, mana, location x, and location y in that tick.

We formulate this data into a formatted form in JSON and dumping them into an output

45

JSON file. The actual parsed file is usually more than one hundred MBs, because it is no

longer highly compressed. On the other hand, the data in the parsed file is easier to view.

Here is the format:

{

"max_mana": 299.0364990234375,

"mana": 299.0364990234375,

"player": 1,

"health": 492,

"y": -6784.0,

"x": -6912.0,

"max_health": 492

},

…

The JSON file we parsed needs to be translated into input traces. Based on the

JSON library in Python, we load the JSON file and make all the ticks in the file into an

array. The array we created in the memory is the input trace that is used in the finding

landmarks module. We have several reasons for creating the JSON file as a middle point

between the replay file and input traces. First, it is easier to examine whether we have a

correct parsed output, since we cannot understand the raw data in replay files. Second,

the JSON file we created can be used in both Linux and Windows operating systems,

while we can only use Linux to run the Tarrasque Parsing tool.

4.2.2 Finding Landmarks Using Weight and Similarity Algorithm

For the similarity algorithm, we need to define what a team fight is. The team

fight is an event in which at least two heroes from each side is attaching their enemies in

46

the same region. The region size can vary, but should be a small region compared to the

total size of the game map. So we set up a threshold that can restrict the region where the

team fight happens. This threshold is based on experience, starting from 2% to 5% of the

map size. There is no need to make our threshold larger because the threshold larger than

5% is a large rectangle in the game, which can even cover two defensive towers; this

means some cases that are actually not team fights will be recognized as team fights, so it

would lead to misclassification. We increase the threshold by 1% every step. Also, we

use the health, mana information to determine whether the event is really a team fight

because when the team fight happens, heroes have dramatic health and mana fluctuation

or even died (health equals to zero).

In calculating the similarity values, we generate all possible combinations of

heroes on the map, and search for the maximum location x, location y, and minimum

location x, location y in each state. If the range satisfy the threshold we set, this is a

similar state in that trace.

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘

= {𝑆|
(𝑀𝐴𝑋(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑥𝑖) − 𝑀𝐼𝑁 (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑥𝑗) < 𝑀𝑎𝑝 𝑆𝑖𝑧𝑒𝑥 ∗ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑥) ,

(𝑀𝐴𝑋(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑦𝑖) −𝑀𝐼𝑁 (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑦𝑗) < 𝑀𝑎𝑝 𝑆𝑖𝑧𝑒𝑦 ∗ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑦)
}

The similarity states are marked as tunnels between two traces, and the distance in

this tunnel depends on the state location in that trace. If two states are similar states and

both of them are located at the end of the trace, the difference of the location percentage

is very small, so the tunnel cost (the similarity value) is small. And if one state is at the

beginning of the game in one trace, but the other is at the end, the similarity value of

47

these two traces are very big. Then the weight algorithm’s state runner and state seeker

are less likely to choose this tunnel because it has a higher value of visiting another trace.

We use the general weight calculation algorithm as we have discussed in Section

3.3.1. We choose a base trace at first, and then set up the current state, state runner on

that trace. The state runner will run to the tunnel state and calculate the distance from the

current state to all the other states on the other trace. The tunnel is created by the state

runner and the state seeker; the runner’s and the seeker’s distance is determined by the

returned value from similarity algorithm. In the Dota 2 game, even though a team fight

usually takes only a few seconds, it still occupy many ticks. For example, if the team

fight takes ten seconds, and the tick period is 0.06 second per tick, we will have more

than 150 continuous states in a team fight. So in the Dota 2 domain, a landmark is a

period of states that satisfies our requirement as opposed to a single state.

4.2.3 Managing the Camera in the Dota 2 Game

The best way to examine the correctness of the landmarks is by putting them back

into the replay files and view in Dota 2’s own replay mode. In order to see whether the

landmarks really work, we need to be able to move to a particular time in the replay, and

move the game camera to the location where a team fight is supposed to occur. Also, the

camera’s focus is needs to be put on a particular hero so that we can move the camera

according to the hero’s location change during the team fight. We use Dota 2 console

commands to control the time and location of the camera in replay mode.

In Dota 2 replay mode, we have four camera mode: directed camera, free camera,

player perspective, and hero chase. For the directed camera mode, the camera will

48

automatically focus on the area filtered by Dota 2 itself. This may including team fights,

first blood (i.e., the first time here is combat and one of the heroes loses health points),

the defensive tower destroyed, attacking Roshan (i.e., the most powerful neutral creep in

the game), etc. Some of these events do not happen in all the replays, so we cannot use

this camera mode to check the landmarks. The hero chase mode is a good view point but

it has its flaws. In this mode, people can also view the manipulation by the players,

including the mouse hits, ability used, which can be distracting. But they are not our

major concern.

We use a combination of the console commands to choose the replay file, run the

game, move to a particular time according to landmarks, and move the camera to the

location where the landmarks happen. We notice that not all heroes participate in the

team fight every time, so we look back to the parsed file, and select a hero who

participated in this team fight, and is alive for the duration of the team fight. By making

these restrictions, we wrote several console commands in Dota 2’s configuration file (see

Table 4.6.

dota_spectator_mode 3 Change the camera mode to “hero chage”

dota_camera_lock 1 Lock the camera

demo_gototick 123456 Go to the 123456th tick in this replay

dota_spectator_hero_index 3 Pick hero in index 3 and focus on him

Dota_camera_getpos Get current position(x, y, z) in the game

Table 4.6: A list of Dota 2 console commands that we used in representing the

landmarks.

49

5: Experiment

In this chapter, we report on our experiment for finding the landmarks in the

transportation domain, the Dota 2 domain, and the experiment taken on the Amazon

mechanical turk to collect the feedbacks from Dota 2 expert players.

In the new transportation domain and the Dota 2 domain, we implement the code

and report on results from our programs. We provide figures and tables to show the result

calculated by our weight and similarity algorithms as we discussed in Chapter 3 and

Chapter 4.

For the Amazon mechanical turk section, we by using a series of videos. They

show when and where the landmarks occur. We upload ten pairs of the videos onto the

Amazon mechanical turk, and receive feedbacks from turkers (i.e., online mechanical

turk workers) who are experts in the Dota 2 game. Then we analyze the data given by

these users and draw our conclusions. Our hypothesis is that the weight and similarity

algorithm is a good implementation in finding the landmarks in the transportation

domain, and it is also very useful in finding the important event in the Dota 2 game.

5.1: Experimental Setup

 In this section we introduce our experimental setup for the transportation domain

experiment, the Dota 2 domain experiment, and the Amazon mechanical turk setup. In

order to discover the landmarks in these domains, we wrote different code to import the

input traces from their data sources, and we realize our weight and similarity algorithm in

two different ways.

50

The software, program and code mentioned in this section is compiled and run on

the computer which is equipped with Intel Core i7-4770 CPU, 3.40GHz processor, 16.0

Gigabytes installed memory(RAM), and the operating system is a 64-bit Windows 7

professional.

5.1.1 Transportation Domain

The data sources in our new transportation domain are from the JSHOP program,

which is developed by Dana Nau, Yue Cao, Amonon Lotem, and Hector Munoz-Avila,

1999. The input files are called “domain.shp” and “problem.shp”. In the domain file we

wrote a complete list of operators with their own adding list and deleting list. We also

add some other rules and axioms in this file. In the problem file we wrote the initial state

and we described our final goal.

We use C++ to code the parsing and finding landmarks modules. The integrated

development environment is Microsoft Visual Studio 2012. The input files are from the

results given by JSHOP, and the output forms are list of float values that can show the

landmarks which have lower values. These final output data is stored in a text file.

5.1.2 Dota 2 Domain

In order to generate the replay files that are played by other players, we use

www.dotabank.com to download 10 Dota 2 replay files. The suffix of these replay files

are “*.dem” and all these files are parsed by the tool called Tarrasque. Tarrasque is

downloaded from Github.

The Tarrasque project requires to be running on a Linux operating system, so we

set up the environment by using the virtual box version 4.3.2. We installed the Linux

51

operating system: a 64-bit Ubuntu 12.04 LTS version, and we set up a virtual Python

compiling and running environment on Ubuntu. After the Tarrasque project is

successfully installed, we import 10 replay files and run our Python code. The Tarrasque

project is actually a library so we do not need to worry about the code inside this project.

After we have all the parsed 10 JSON files, we run our Python code, which

contains the similarity and weight algorithms, to explore landmarks. The results are also

stored in a text file that contains a list of landmarks in that replay. In order to run the

python code on the Windows 7 operating system, we use the Python 2.7.9 for Windows

and we make some modifications on our code to satisfy the input/output requirement on

Windows operating system.

The Dota 2 game is already installed in our computer, and we write a Dota 2

console command list in an automatic execute file. We save this file under

“Dota2\Steam\SteamApps\common\dota 2 beta\dota\cfg”, and we rename this file to

“exec.cfg”. Before Dota 2 is opened, we need to add “-console” in the launch options of

Dota 2 properties in STEAM platform. When the Dota 2 game is opened, we need to

firstly open the command line window and use the command: playdemo *.dem to play

the replay file and “exec exec.cfg” to apply the camera settings and load the time and

locations where our landmarks are.

We use a video recording software “Lukool Recorder” to make videos that is

around ten to twenty seconds. The videos we take are corresponding to the landmarks we

discovered in previous steps.

52

5.1.3 Amazon Mechanical Turk

In order to ask people in Amazon mechanical turk to answer the questions in our

experiment, we passed the web-training certification from The National Institute of

Health (NIH) Office of Extramural Research and obtain approval from IRB.

We prepare 10 pairs of videos corresponding to 10 input traces we choose in our

experiment. For each pair, one shows the landmark that has lower calculated weight

value based on the weight and similarity algorithm, and the other shows a higher weight

value calculated in the same circumstance. The landmark which has lower value should

be more informative than the other one. Subjects will have no control over the game

replay itself, and each video will be unlabeled so as to reduce bias. Subjects will not

know how the play scenes were selected nor will they know that the selection was based

on what we consider strong/weak versions of our algorithm.

The person who take this experiment will be asked for several questions to be

examined whether s/he has a prior experience in playing the Dota 2 game, and whether

s/he is an expert player. We will divide participants in 3 groups: (1) the expert in playing

Dota 2, (2) those who have played Dota 2 before but do not have much experience in this

game, and (3) not played any Dota 2 before. The participants will not know which group

they have been classified to. Each participant will be shown a 5-minute video showing

the fundamental concepts of Dota 2. Then each participant will be shown between 10

pairs of videos as described before. Each video lasts around 10 to 20 seconds.

After each pair of videos are shown, each participant will be asked two questions

that evaluate both objective and subjective criteria in relation to the videos. The

53

participants will be asked which of the two videos the participants find (1) more

informative about the events occurring in the game and (2) more entertaining to watch.

Participants (called turkers) will be compensated monetarily via the Amazon

Mechanical Turk platform. We will collect all results and run a student t-test to determine

if there is any significance in difference between preference on the pairs of videos (for

both, the "informative" and the "entertaining" categories).

Figure 5.1: Segment of the consent form of our experiment on Amazon mechanical turk.

54

Figure 5.2: The pre-test questionnaire that is used to classify people whether he is an

expert in play the Dota 2 game.

Figure 5.3: Two questions are asked after the participants finished watching a pair of

videos.

5.2: Experimental Results

In this section, we discuss the experimental results on the new transportation

domain, the Dota 2 domain, and our Amazon mechanical turk survey results. We analyze

these results and assess our implementations in both transportation and Dota 2 domain.

Based on the results we analyzed, we found that our method, which is using the similarity

and weight algorithms to find landmarks, or important states in both domains, can

effectively identify important events for the most part. We also discuss some difficulties

in our experiments. We examine these difficulties and suggest how to solve them in

future works.

55

5.2.1 Transportation Domain Results

 The final output format in transportation domain is a list of weight values in each

trace. These values can reflect the importance of a state whether one state is important

enough to be considered as a landmark. Based on our algorithms, the lower (smaller)

value in the final output list, the more important event; this state is a landmark in our

domain. In our transportation domain experiment, we imported 40 traces and in the end

we have a list of 40 weighted values. The landmarks, as we have discussed in Section 2.2,

are a kind of states that every trace will visit, independent of how the traces differ from

one another. When the code outputs all the lists of weighted values, we can look into the

weight data and expect a distinguished value difference of these landmarks from the other

normal states.

 The resulting weight values are shown in Table 5.1. We show four digits after the

decimal. We show them into two columns to have a better appearance. We also show the

actual input trace in Table 5.2 (the operator trace, not the state trace), which is generated

by the JSHOP program.

State 1 (Initial state) 12.2270 State 12 12.2270

State 2 12.2270 State 13 12.2270

State 3 12.6381 State 14 12.2770

State 4 12.6381 State 15 12.6396

State 5 12.6381 State 16 12.6396

State 6 12.6381 State 17 12.6396

State 7 13.0035 State 18 13.0042

State 8 13.0035 State 19 13.0042

State 9 12.2270 State 20 12.6396

State 10 12.2270 State 21 12.2270

State 11 12.2270 State22(final state) 12.2270

Table 5.1: The final output weight value list of the 1st trace calculated by our algorithms

56

State 1 load-truck pack1 t1 loc1 State 12 unload-rocket pack1 rocket1 lc2

State 2 drive-truck t1 loc1 ap1 State 13 load-truck pack1 t3 lc2

State 3 unload-truck pack1 t1 ap1 State 14 drive-truck t3 lc2 ap5

State 4 load-airplane pack1 plane1 ap1 State 15 unload-truck pack1 t3 ap5

State 5 fly-airplane plane1 ap1 ap3 State 16 load-airplane pack1 plane3 ap5

State 6 unload-airplane pack1 plane1 ap3 State 17 fly-airplane plane3 ap5 ap7

State 7 load-truck pack1 t2 ap3 State 18 unload-airplane pack1 plane3 ap7

State 8 drive-truck t2 ap3 lc1 State 19 load-truck pack1 t4 ap7

State 9 unload-truck pack1 t2 lc1 State 20 drive-truck t4 ap7 loc8

State 10 load-rocket pack1 rocket1 lc1 State 21 unload-truck pack1 t4 loc8

State 11 fly-rocket rocket1 lc1 lc2 State 22

Table 5.2: The states associated with their operators in the 1st trace

From the result in Table 5.2, we find that the weight value 12.2270 is the

minimum value in the first state trace. We use the first state in Table 5.2 as an example to

analyze the weight value. In the first state of the 1st trace, we can say this state is a

landmark because all traces will start from this state. This satisfy the definition of

landmark, which is a state that is visited in every trace. The minimum value is expected

because of the following two reasons: (1) in the similarity algorithm, we need to find a

tunnel between the state runner and state seeker, which is the shortest distance from the

current state to the other trace. As the similarity algorithm is calculating the distance

between the first state in the first trace and other states from other traces, both the first

states from two traces can be perfectly matched as they are the same. As a result, the

similarity algorithm will consider the distance between every first state is 0. (2) in the

weight algorithm, starting from the current state (the first state from the first trace), the

tunnel found by the similarity algorithm is applying a distance of 0 to visit other states in

other traces. So the sum value is 10542, and the number of visited states in this case is

862. The result is 12.2770 and this value is a landmark.

57

For the values 12.6381, 13.0035, 12.6396, and 13.0042, they can still be

considered as landmarks for the following two reasons. We use state 3 in Table 5.1 as an

example. (1) state 3 is generated by applying the adding list and deleting list of the

operator: drive-truck t1 loc1 ap1. In this state, the truck 1 goes to airport 1, while it has

another option, which is driving the truck to airport 2. So in the similarity algorithm,

when we are using the first trace, in which the truck 1 goes to airport 1, and we are trying

to find a similar state in other traces, we have two situations: (i) the truck 1 still choose

airport 1 in the other trace, and (ii) the truck 1 chooses airport 2 to deliver the package.

For the first situation, the two states from two traces can be perfectly matched, but for the

second situation, two states are recognized as similar states, and the distance should be

added by 1 because airport 1 and airport 2 are different airports but they are in the same

city. (2) in the weight algorithm, the shortest distance from state 3 to other states is the

tunnel between state 3 and similar states from other traces, so the sum of the distance will

be greater than 10542. Even though the final value is greater than 12.2770, we still

consider these states are important state because they are only having the similarity

difference from 0 to 1, which means the state runner is actually the current state itself.

They are still landmarks, but not as important as the ones which has the minimum value.

The first trace is a special trace because it includes all the important states in our

domain. Tables 5.3 and 5.4 show another final result from the 8th trace in our input trace

set.

State 1 (Initial stete) 12.2810 State 16 12.2810

State 2 12.2810 State 17 12.2810

State 3 13.0281 State 18 12.2810

State 4 12.6885 State 19 13.0298

State 5 12.6885 State 20 13.4693

58

State 6 12.8946 State 21 12.7131

State 7 12.8946 State 22 12.7131

State 8 12.8946 State 23 12.7131

State 9 13.6979 State 24 12.9215

State 10 12.8932 State 25 12.9215

State 11 13.7004 State 26 13.6892

State 12 13.7286 State 27 12.5741

State 13 12.2810 State 28 13.4603

State 14 12.2810 State 29 12.2810

State 15 12.2810 State30(final state) 12.2810

Table 5.3: The final output weight value list of the 8th trace calculated by our algorithms

State 1 load-truck pack1 t1 loc1 State 16 unload-rocket pack1 rocket1 lc2

State 2 drive-truck t1 loc1 loc2 State 17 load-truck pack1 t3 lc2

State 3 drive-truck t1 loc2 ap1 State 18 drive-truck t3 lc2 loc5

State 4 unload-truck pack1 t1 ap1 State 19 drive-truck t3 loc5 loc6

State 5 load-airplane pack1 plane1 ap1 State 20 drive-truck t3 loc6 ap5

State 6 fly-airplane plane1 ap1 ap4 State 21 unload-truck pack1 t3 ap5

State 7 unload-airplane pack1 plane1 ap4 State 22 load-airplane pack1 plane3 ap5

State 8 drive-truck t1 ap3 ap4 State 23 fly-airplane plane3 ap5 ap8

State 9 load-truck pack1 t2 ap4 State 24 unload-airplane pack1 plane3 ap8

State 10 drive-truck t2 ap4 loc3 State 25 drive-truck t4 ap7 ap8

State 11 drive-truck t2 loc3 loc4 State 26 load-truck pack1 t4 ap8

State 12 drive-truck t2 loc4 lc1 State 27 drive-truck t4 ap8 loc7

State 13 unload-truck pack1 t2 lc1 State 28 drive-truck t4 loc7 loc8

State 14 load-rocket pack1 rocket1 lc1 State 29 unload-truck pack1 t4 loc8

State 15 fly-rocket rocket1 lc1 lc2 State 30

Table 5.4: The states associated with their operators in the 8th trace

From the Table 5.3, the minimum value is 12.2810. This matches our domain

definition, which the package is only allowed to use rockets to be transported to another

planet. The difference between the first trace and this eighth trace is that, in the 8th trace,

additional states are added. The additional states mean several states occur in the 8th

trace, but not in the other traces. For example, for the state: truck 1 is in location 2, truck

2 is in location 3 and location 4, etc. only occurs in the 8th trace. For these states that only

occur in one trace, they are definitely not landmarks because they are single occurrence

events. In the similarity algorithm, the additional state cannot find its matching or similar

59

states in other traces, so it has to visit the nearest tunnel to visit other traces. This adds up

to the total distance from these additional states, and the averaged values must be higher

than those states which are standing on the state runner. We can get a better

understanding of the landmarks and those ordinary states by analyzing Figure 5.4 and

Figure 5.5.

Figure 5.4: The weight value distribution in the 1st trace.

Figure 5.5: The weight value distribution in the 8th trace.

11.5

12

12.5

13

13.5

14

state
1

state
3

state
5

state
7

state
9

state
11

state
13

state
15

state
17

state
19

state
21

11.5

12

12.5

13

13.5

14

st
at

e
1

st
at

e
3

st
at

e
5

st
at

e
7

st
at

e
9

st
at

e
1

1

st
at

e
1

3

st
at

e
1

5

st
at

e
1

7

st
at

e
1

9

st
at

e
2

1

st
at

e
2

3

st
at

e
2

5

st
at

e
2

7

st
at

e
2

9

60

Figure 5.4 and Figure 5.5 show that the landmark has a low value. Independent of

the final weight value we choose from the input trace set, the first few states and last few

states always have the lowest weight values (and hence are considered landmarks because

every trace starts from the same state and ends in the same state. Also, we noticed that in

the middle part of each trace, there exists a series of landmarks: when (1) the package

arrives at the launch center, (2) the package is loaded into the rocket, (3) the rocket is

arrived at the planet 2, and (4) the package is located in launch center 2. So our

algorithms can accurately find the highest landmarks (the ones that has the minimum

values) by overlapping all the results together. The highest landmarks also match our

previous expectations, which is that taking the rocket is the only way to deliver the

package to the destination, if the destination is on another planet.

From Figure 5.5, we are also able to observe a distinguishing difference between

ordinary states (the points which has highest values) and the points whose values are in

the middle level in the figure. Compared to Figure 5.4, we see that the middle level points

are having the same height with the higher value set of points in Figure 5.4. Knowing that

the 1st trace has included all the important states and no other additional states, we can

conclude that in the 8th trace (shown in Figure 5.4), all the states having a middle level

values are also landmarks. These landmarks are not as important as the ones that are

having the minimum value because the similarity distance is applied, the distance is

more than 0.

61

5.2.2 Dota 2 Domain Results

 In the Dota 2 domain, we use our weight and similarity algorithms to find

important events in the Dota 2 game. The output format for each input trace is a list of

time and location when the team fight happens. We use these lists of time and location

information to trace back the events in the Dota 2 game replay mode. So the real replay

mode can check if the landmarks the system finds correspond to important events in the

game.

 We have ten lists of locations and the time information. We organized them in

Table 5.5. The lower row shows a lower landmark period, and the higher row shows a

higher landmark period. The hero index is the index we will use in controlling the Dota 2

camera in the game. The “from” tick and “to” tick is the start and end time when team

fights take place.

Trace #1

 Hero Index From (tick) To (tick)

Lower 3 1184.33239746 1185.39880371

Higher 3 2560.29980469 2563.31005859

Trace #2

 Hero Index From (tick) To (tick)

Lower 5 2034.3248291 2277.50317383

Higher 0 3469.5637207 3473.64428711

Trace #3

 Hero Index From (tick) To (tick)

Lower 1 3289.58398438 3292.59423828

Higher 1 3948.49511719 3949.36474609

Trace #4

 Hero Index From (tick) To (tick)

Lower 2 1576.96984863 1589.56677246

Higher 7 2231.47973633 2233.15209961

Trace #5

 Hero Index From (tick) To (tick)

Lower 0 3254.49780273 3257.44116211

Higher 6 3272.02416992 3277.77709961

Trace #6

62

 Hero Index From (tick) To (tick)

Lower 4 3065.72143555 3067.1262207

Higher 4 3404.64257812 3406.04736328

Trace #7

 Hero Index From (tick) To (tick)

Lower 2 911.399047852 912.26550293

Higher 1 2377.61083984 2390.58837891

Trace #8

 Hero Index From (tick) To (tick)

Lower 0 2152.51074219 2165.02001953

Higher 0 2475.81201172 2501.70019531

Trace #9

 Hero Index From (tick) To (tick)

Lower 2 938.759033203 939.825439453

Higher 2 1134.17797852 1135.57763672

Trace #10

 Hero Index From (tick) To (tick)

Lower 4 2223.95410156 2225.92749023

Higher 4 2668.1003418 2706.49780273

Table 5.5: The output result from Dota 2 domain

We then use the start time and end time from Table 5.5, put them into the script

for controlling the camera in Dota 2 replay mode. We took 10 pairs of videos. Each pair

of video records two periods in the game, including the lower landmark and the higher

landmark respectively. In Dota 2 replay mode, the time in selecting heroes and pre-

preparation is not counted into the time we have in Table 5.5. So we make some

modifications on the replay mode. We skip to the beginning of the battle starts rather than

beginning from the file is read. We compare the videos we record with the landmarks we

found by checking whether the event happened at our setting time and location can show

the importance in the whole game.

63

Figure 5.6: A team fight extracted by our algorithm. This team fight has a lower

landmark.

Figure 5.6 and Figure 5.7 show team fights that were found by our similarity and

weight algorithm, and also control the camera in a good view point. The time where the

team fight happens may have some bias so we picked a proper time in the game to start

recording the videos. The start time calculated by our algorithms can still help us find

when and where this team fight happens while a 5% bias is occurring in real-time.

64

Figure 5.7: A team fight extracted by our algorithm. This team fight has a higher

landmark.

The mini map is a useful tool in Dota 2 which can help players and reviewers

have a straightforward view on the whole game at that time. The mini map is located in

the left-bottom side of the game screen. We can obtain heroes’ locations from the mini

map, and we can predict the trends of a game by checking how many defensive towers

are destroyed by the enemies. When we look at Figure 5.6 and Figure 5.7, from their mini

maps, we know that for Figure 5.6, the team fight is happening in the upper lane of the

middle map and many heroes are participating in this team fight. For Figure 5.7, we see

that the team fight is in dire’s base, very close to dire’s ancients. After viewing both

videos, we can predict that on Figure 5.7, the team fight which has a higher landmark and

the radiant’s team will win this game. In Figure 5.6, we cannot tell which team will win

because this video does not provide enough information. This means the pairs of videos

65

we take can match the importance of the landmarks we extracted from our weight and

similarity algorithms. For the other 9 pairs of videos, no matter which team (radiant or

dire) wins the game, the team fight will be more informative when it happens near, or

inside, their opponents’ base (ancients). We are more likely to predict who will win from

those team fights which have higher level landmarks (i.e., lower weighted values in our

algorithm).

5.2.3 Amazon Turk Results

We posted our experiment on Amazon mechanical turk website. The experiment

name was “Dota 2 MOBA Camera View Experiment”. The experiment we completed in

a very short time; it was completed within 8 hours. We have 90 valid records submitted

from turkers. A turker took, on average, 12 minutes 59 seconds to finish our experiment,

which falls within our allocated time of 30 minutes.

We divide 90 participants into 3 groups: the expert group, the intermediate group,

and the novice group. For the expert group, a turker must answer at most one

qualification questions incorrectly. For the intermediate group, a turker must answer

exactly 2 questions correctly. And for the novice group, there are two cases, one is a

turker answers at most one question correctly, the other is his or her answers is not

making any sense. Figure 5.8 shows the resulting grouping.

66

 Figure 5.8: The composition of participants in each group

We will focus on the expert group and the intermediate group because only these

two groups of participants have the needed qualifications for our analysis. Only the

person who answers at least two questions correctly can be recognized as an experienced

player in the Dota 2 game. Their test answers are analyzed in Table 5.6.

Pair 1 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 7 6 5 3 5 10

Expert+Interm 9 9 7 3 8 14

Pair 2 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 8 6 4 3 7 8

Expert+Interm 12 8 5 5 10 10

Pair 3 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 11 2 5 5 4 9

Expert+Interm 15 3 7 6 8 11

Pair 4 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 14 4 0 5 3 10

Expert+Interm 17 6 2 7 6 12

Pair 5 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 15 0 3 9 4 5

Expert+Interm 19 2 4 12 5 8

Expert, 18,
20%

Intermediate,
8, 9%

Novice, 64,
71%

Turker Composition by Group

67

Pair 6 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 13 2 3 3 4 11

Expert+Interm 17 4 4 6 4 15

Pair 7 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 7 8 3 5 4 9

Expert+Interm 10 11 4 5 8 12

Pair 8 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 4 12 2 1 9 8

Expert+Interm 7 14 4 4 9 12

Pair 9 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 8 7 3 3 4 11

Expert+Interm 10 9 6 3 5 17

Pair 10 Question 1 (more informative) Question 2 (more entertaining)

Video 1 Video 2 Same Video 1 Video 2 Same

Expert 7 6 5 2 4 12

Expert+Interm 7 8 10 2 5 18

Table 5.6: Amazon mechanical turk experiment result. (Expert and expert+ intermediate)

Pair 3, Pair 5, Pair 6, Pair 7, and Pair 9 are classified as the ‘matching’ results

among the 10 pairs. In these pairs, the videos which are having higher landmarks (this

means it is more likely to happen in the games and more important than the other one) are

having in common that one team is going to win the game. Compared to the other video

in the pair, the other one cannot provide enough information that make it a meaningful

team fight because it is not clear who will win.

It is more common that the participants will choose higher landmark video when

the situation is very clear. For example, participants will more likely choose the correct

video (the one with the higher landmark) when one lane’s towers and barriers are all

cleared off, which means this team will be able to attack enemies’ base which has a high

winning possibility. Commonly, people are more willing to decide that one side will win

68

by comparing the situations of both team. If the attacking team wins the team fight when

they are attacking their enemies’ base, a majority of the participants will choose the

correct answer. In Pair 3, Pair 5, Pair 6, the percentage of choosing the desired video is

higher than the other two (the other video, or about the same). In Pair 7, even though the

dire’s team will win, video 2’s people is only a little more than video 1, but it can still

indicate that the dire’s team will win in the game.

Participants will not choose a higher landmark video when the situation is not

clear enough. In Pair 9, even though the radiant’s team is trying to attack dire’s base, the

result does not tell much difference between two videos; video 1’s percentage is

marginally higher than video 2. This is because dire’s tower and barriers are not

destroyed totally in one lane, which means which team will win is still unknown in the

higher landmark video.

Pair 2, Pair 4, Pair 8 are classified as the ‘not matching’ results among 10 pairs.

All these videos have distinguished difference between video 1 and video 2. This means

that the results are conclusive. The quality of the game, which might be the key point in

this ‘not match’ class, is the reason for this result. The quality of the game consists of

many elements. For example, in Pair 4, one hero is not killed in the team fight when

facing with four enemies, although the HP of that hero is really low but nevertheless

survived. Then with the assistance with his/her teammates, they won the team fight in the

end. This team fight is a good one to say it is very informative, and entertaining, but it it

is not a landmark. Also in Pair 8, the team fight efficiency is very high, which means the

radiant’s team ended up the team fight by killing all the enemies very quickly without

much difficulty. But it is not the video that has higher landmark. Participants’ decisions

69

are made by the ‘more informative’ and ‘more entertaining’ elements, so whether a team

fight is considered exiting made a difference here.

Also, all these three videos pairs are not indicative of which team will win in the

end. The participants cannot observe any lane’s towers or barriers been destroyed.

Pair 1, Pair 10 are classified as the ‘no much difference’ among the 10 pairs. For

Pair 1, ignoring the mini map in the left bottom corner of the screen, the participants may

have difficulty in assessing the importance of the game situation by only looking at the

team fight. The mini map is a very useful tool to have a view of the buildings and

location of each heroes in the game. We did not notify the participants to consider the

mini map and this may have led to it not been considered in the first video pairs.

For Pair 10, there is no much difference in the selection of the two videos. Even

though it is very clear that video 2, which has higher landmark may be the one that is

mostly chosen, the result shows the answer is mostly selected as ‘about the same’. Some

participants did not finish the experiment because they left the question of last pair videos

blank. The data collected then is not as accurate as expected.

5.3: Discussion

Based on the analysis of the result we get in our new transportation domain, we

found that the true landmarks can be identified by our similarity and weight algorithm

designed for the transportation domain. The result shows that the most important

landmarks have the minimum value among all the states in one trace as we had predicted.

These minimum values vary in different traces, but the region where the minimum values

show up overlaps in all the traces. The highest, or the most important landmarks are

70

highlighted as the ones that have the minimum values. We also found that the lower-

score landmarks (i.e., not true landmarks) can be found by the values with greater

weights and they tend to be uniformity in a small range of values. These lower-score

landmarks have smaller values than the states that are not considered as landmarks. From

the experimental results in Section 5.2.1, we noticed that the difference between normal

states and lower level landmarks is not large. In our similarity and weight algorithms, the

difference should be more obvious because the normal states need to add additional

distance to visit the tunnel bridged between two traces. We may have a more

distinguished difference between normal states and the lower landmark states, if we add

more locations to visit. Because in our scenarios, we only have two locations in each city,

which means the truck will have only 2 choices to go from one location to one airport: (1)

to directly go to the airport, and (2) to visit another location and then going to the airport.

If we have 3 locations in each city, for a single activity: drive the truck, we can have 5

possibilities. One is directly going to the airport, two are visiting only one location, and

two are visiting two other locations. So if the number of locations increases, for those

normal states, they will require more distance to visit the nearest tunnel to reach to the

other trace, and this will increase the final weighted values of normal states which we can

have a more distinguished comparison between normal states and lower landmarks states.

 For the experiment on Amazon mechanical turk, we discovered that the

participants made decisions very clearly based on the situations that the videos show in

that pair. For the “matching” class, the choices of “which video is more informative”

question is quite clear. Participants are able to tell which team will win the game if the

higher landmark video happens in one of the team’s ancients. This means the attacking

71

team has destroyed all the defensive towers in at least one lane and will try to attack their

enemies’ ancients. Also, for the “not matching” class, the participants cannot tell which

team will win the game when both videos in one pair do not show a clear situation in the

game. From the experimental results, we noticed that participants will mostly vote to the

video which has more exiting events in the team fight itself, rather than considering the

importance of the team fight to the whole game.

 We found that the mini map provides a good view on the whole situation of the

game during the time the video is taken. Participants can have a very straightforward

view of which lane of defense is cleared, which team is approaching their enemies’

ancients, and where is the team fight happening. We also noticed that among the pairs

after pair 2, the participants are making very clear choices among the videos. In contrast

for the first two videos, the choice distribution is quite even, which means people are not

making a very clear decision on which video to choose. We believe that the reason for

this is because we did not mention the participants to consider the mini map, and

suggested that viewing the mini map as an important element to decide which video is

more informative and which video is more entertaining to watch.

 For the pairs that their results are not matching our expectations, we speculate that

participants may be more likely to choose the higher landmark video if they are given a

little longer video. For example, if we extend the video for pair 2, 4, and 8 from three to

five minutes, participants might be more likely to choose the ones that match our

expectations. Also the results accuracy will be enhanced if we can have more valid Dota

2 experts in our experiment.

72

6. Final Remarks

6.1: Conclusions

In this thesis we designed a method to find important events, which is also called

landmarks in a new transportation domain and the Dota 2 game domain. This method is

realized by our similarity algorithm and our weight algorithm. We present the general

calculating procedure of these two algorithms and implement them into both domains we

have in our thesis. For the similarity algorithm, it is capable of searching for matching or

similar states from two different input traces. The similarity extent is returned as a

distance value based on how similar these two states are. Tunnels are bridged between

two traces if the similarity value satisfies our requirements. For the weight algorithm, a

value of an averaged distance from one state to all the other states on other traces is

calculated, and become a measurement of how important this state is in the whole trace of

states. The method we use in this thesis can present an automatic and straightforward

implementation in helping people to find important events in a particular domain. And no

matter how the domain changes, the similarity and weight algorithms are the general idea

in realizing searching for important events, also called landmarks, in different domains.

The experiments are taken to test the realization of the weight and the similarity

algorithms in both new transportation domain and the Dota 2 domain. For the new

transportation domain, these two algorithms work well and the landmarks are correctly

found. The highest landmarks, which are remarked as the states that have minimum

weighted values, and the landmarks that every trace will visit. The lower landmark states

are also found based on the greater values compared to the highest landmarks. The

ordinary states have highest calculated values and it shows the difference with the higher

73

or lower landmarks clearly. We also find some flaws in our transportation domain

because we discover the difference between ordinary states and landmarks is not so

distinguished as we expect, and we propose to increase the number of locations to give

more trace vary possibilities in our domain.

Our algorithms can successfully find important events, also called landmarks in

the Dota 2 domain. The algorithms can also locate the time and the locations where team

fights happen. We put the landmarks back into the Dota 2 replay mode, direct the camera

to the time and place based on the results calculated by our algorithms. Although the

camera has some bias in the start time and end time of the team fight which the landmark

data refers to, it still can match the team fight correctly.

The results from Amazon mechanical turk show that most turkers can correctly

choose a video which has a higher landmark (more important) when the situation of the

game is quite clear. Turkers have no difficulty to choose a video in which one team is

attacking their enemy team’s ancients, which means the attacking team will win the

game. They cannot make uniformed answer when both videos in a pair do not have a

clear view of the team fight that happens near the ancients. The mini map at the corner of

the screen is also a very good tool to view the situations during the video period. So the

participants may forgot to view the mini map and cannot make correct decisions. The

problems in this experiment can be concluded in the following aspects: (1) the duration of

the video which has higher landmarks but does not show the situation as one team is

having the team fight near the ancients will be extended to have a longer length, so the

experiment participants can have a better understanding of the game situation and make

correct decisions. (2) the mini map should be mentioned before the experiment

74

participants begin to take the experiment. This can let them have a better view point on

the game process. (3) the number of valid Dota 2 game expert player should be enlarged.

Based on the qualified participants we have in our Amazon mechanical turk experiment,

the lack of valid feedbacks give us a fluctuation on the analysis of our conclusion.

6.2: Future Work

The Amazon turk experiment should be improved. This is a good implementation

in checking the landmarks we find by our algorithms can be accepted and understood by

most of the Dota 2 game expert players. First, we need to prepare a more simplified but

efficient pre-test questionnaire, to check whether the experiment participant can be

qualified into our expert or intermediate group. We can also enlarge the number of people

which can participant in our experiment. Secondly, we are going to have a new

combination of the pairs of videos in our experiment. One is the video in pair 1 has a

lower landmark, and the other has higher landmarks. The video which has higher

landmarks is taken place in one team’s base, very close to the ancients. Another pair of

the videos is the video in pair 2 has a lower landmark, and the other has higher

landmarks. But both of these videos are not taken place near the ancients, which is used

to compare to pair 1. In pair 3, we still use the pairs of video in pair 2, but the duration of

the video which has higher landmarks may be extended to be more than 1 minute. This

can allow us make a comparison to pair 2. Our expectation of participants’ choices is in

pair 1, most people choose the video which has higher landmarks. For pair 2, the

percentage of choosing video 1, video 2, and same option may be equal. And for pair 3,

most of people will choose the video which has higher landmarks again.

75

Bibliography

McGovern, Amy, and Andrew G. Barto. "Automatic discovery of subgoals in

reinforcement learning using diverse density." Computer Science Department Faculty Publication

Series (2001): 8.

Yang, Qiang, Kangheng Wu, and Yunfei Jiang. "Learning Actions Models from Plan

Examples with Incomplete Knowledge." ICAPS. 2005.

Elkawkagy, Mohamed, Bernd Schattenberg, and Susanne Biundo. "Landmarks in

Hierarchical Planning." ECAI. 2010.

Porteous, Julie, Laura Sebastia, and Jörg Hoffmann. "On the extraction, ordering, and

usage of landmarks in planning." Sixth European Conference on Planning. 2014.

Nau, Dana, et al. "SHOP: Simple hierarchical ordered planner." Proceedings of the 16th

international joint conference on Artificial intelligence-Volume 2. Morgan Kaufmann Publishers

Inc., 1999.

Hogg, Chad, Héctor Munoz-Avila, and Ugur Kuter. "HTN-MAKER: Learning HTNs with

Minimal Additional Knowledge Engineering Required." AAAI. 2008.

Hogg, Chad, Ugur Kuter, and Héctor Muñoz-Avila. "Learning Hierarchical Task Networks

for Nondeterministic Planning Domains." IJCAI. 2009.

76

Vita

Jundong Yao was born in Hangzhou, Zhejiang Province, China. After completing

his schoolwork at Hangzhou Xuejun High School in Hangzhou in 2009, Jundong entered

Huazhong University of Science and Technology in Wuhan, China. He received a

Bachelor of Engineering degree with a major in Automation from Huazhong University

of Science and Technology in June 2013. During the following two years, he entered the

Graduate School of Lehigh University in Bethlehem, PA.

	Lehigh University
	Lehigh Preserve
	2015

	Using Planning Landmarks to Control Camera Movement in DOTA 2 Games
	Jundong Yao
	Recommended Citation

	tmp.1498661647.pdf.fnW9F

