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Abstract 

This thesis introduces a new method for automatically finding important events 

from video game replays. We use these events to control the movement of the camera in 

the Dota 2 game. This method is based on the idea of finding landmarks, which are 

events that always takes place in a game. Our method automatically highlights important 

events in the Dota 2 game. The method combines two algorithms: one assigning weights 

to events and another one computing similarities between events. We discuss the 

motivation and implementation of these two algorithms and we test them in a 

transportation domain and in the Dota 2 game. Several experiments are performed in both 

domains and the results show that the method extracts landmarks effectively. Based on 

the experiments on Amazon mechanical turk, camera control based on landmarks shows 

potential benefits.  
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1. Introduction 

In this thesis we investigate the question of automatically discovering important 

events from videogames feeds. Learning to find important events in videogames is useful 

in understanding the game process and help towards attaining automatic generation of 

game narratives. It can also be used in other applications such as video surveillance. We 

use the Dota 2 game in our study. Dota 2, which is short for Defense of the Ancients 2, is 

a very popular online multiplayer video in which two teams of players are tasked with 

protecting their own ancient, a unique building in the game, while attempting to destroy 

the opponent’s ancient. Each player controls one character in the game and obtains 

experience and gold from the death of characters or non-player controlled units called 

creeps in the opponent’s team. The objective of the game is to destroy the opponent’s 

ancient. 

Important events are difficult to distinguish from non-important ones because 

there is no fixed scenario in Dota 2. Important events will show in every replay of the 

Dota 2 game but they are not subject to time, location or the strength of each team. 

Defining if an event is important or not is also a central concern in the rapidly changing 

runtime situation. But it is very hard to identify. 
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Figure 1.1 A Dota 2 screen shot of a team fight happens near one team’s ancients 

Figure 1.1 shows an informative to the game because it happens when one team is 

attacking their enemies’ base (i.e., where the ancient is located), which is a game-winning 

situation. This is an important event in the game and it can be identified as a milestone or 

landmark. 

Writing a computer program to detect these important events in Dota 2 game is 

challenging, but it can be very important because the learning results can help people 

understand this game better, or predict the winner in a particular round or contribute 

towards ongoing efforts on automated narrative generation of videogame competitions. 

Our hypothesis is that important events are events that will happen every time in 

the game. No matter when or where this event happens, they are milestones in the game. 

The team fight event is an eligible event that will happen in all games. Fights can show 

the current situation of both teams and also provide information about the whole game. 

The event “the ancient is destroyed” is the most important event in the game every game 
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will go through this event. The four pictures (Figures 1.2-1.5) below show events in Dota 

2. Three of them are important events, one of them is not important event. 

 

Figure 1.2: An important event happens near a location called radiant’s height. In 

this event, there is a team fight in the area where the game camera is now focusing on. 

 

Figure 1.3: An important event happened near a location called radiant’s middle 

lane, close to the base. This event is important because if the attacking team wins during 

this team fight, they continue to destroy the inner tower and win the game. 
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Figure 1.4: An important event happened near the end of the game. This event is 

important because an important structure the dire’s ancient is being attacked. The radiant 

will win the game after this ancient is destroyed. 

 

Figure 1.5: a screenshot of a normal scenario in dota 2. The viewer cannot tell 

which team will win or what the trend in this game is. This is an unimportant event 

To automatically identify important events in Dota 2, we use the notion of 

landmarks to find important events in the game. A landmark is a particular situation or 

state that must occur when some final goals are achieved. We make two observations 

about landmarks. Firstly, a landmark is a state or a sequence of consecutive states that 
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always occur when achieving the final goals, while starting from a particular state. 

Secondly, a landmark is a special situation, which given multiple possible game 

trajectories to achieve the final state, it will always appear in each of those trajectories. 

No matter how the game trajectories vary, the landmark will always be visited every 

time. 

We proposed an algorithm that can automatically find the landmarks in the Dota 2 

game. We are given multiple game replays, which are recognized as traces of the game. 

Each replay consists of a series of consecutive states or trajectories, from the beginning 

of the game until one ancient is destroyed. The state is defined as a captured moment, or 

a screen shot with all heroes and units’ properties in a particular time. We used similarity 

metrics to discover the similarities between two separate traces and then we calculated 

the distance start from one state in the first trace to all the other states in other traces. 

Distance can be shortened when considering points in different traces that are near to one 

another. Then we calculate the weighted value of each states in this trace, the highest 

landmark will appear when a particular state has the lowest similarity value. The lower 

the similarity value one state has, the higher landmark value it possesses. Also, an 

ordinary state has the highest value and lowest landmark. 

There is another algorithm proposed by Julie Porteous, Laura Sebastia, and Jorg 

Hoffman, 2014, will be able to find landmarks in their domain (e.g. the blocks world 

domain). Also Amy Mcgovern and Andrew G. Barto, 2001 they used an algorithm to find 

landmarks by calculating the trajectory using reinforcement learning. Neither of these 

two algorithms can solve the problem of finding landmarks in the Dota 2 game because 

they require an over-simplified way to define the actions in the game (i.e., as 



9 
 

preconditions and effects). In a game like Dota 2 player’s actions have a complex 

definition and it will be either not possible to use the preconditions and effects to define 

the actions or even if it is possible it would be too cumbersome. 

The algorithm we propose is a good match to solve the problem we have in the 

Dota 2 game. In the Dota 2 game, each state of the game cannot be predictable based on 

the previous one (this is called non-determinism; after taking an action in a state, there 

are multiple possible states that might occur next). Our algorithm finding the landmarks, 

no matter how complex the input trace is, will always generate results. 
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2: Background 

2.1 Planning 

A plan is a sequence of actions that starting from a particular state, and ends at a 

prescribed goal state. The plan may consists of several actions may to realize the setting 

goal. Planning is a branch of artificial intelligence that is concerned with how to generate 

a plan. Plans are to be generated by automated robots or artificial intelligent agents, rather 

than using human’s conventional way to analyze problems and optimize solutions. Given 

the planning operators, the planning process starts from the initial state, applying an 

action each time that transforms the state until finally reaching the final state. Multiple 

sequences of the actions (i.e., plans) may be transform same start state until the end state, 

analogous to starting from an initial point, and converge to a same final point by using 

multiple trails. Planning can tackle more logical complicated and more time consuming 

domains, and give possible solutions by using a variety of planning algorithms. With the 

help of computers, planning can be much more efficient and straightforward to generate 

solutions than manually generating the plans. 

A state is a collection of primitive atoms representing the conditions that are true 

in the world. A state can reflect the scenario of a particular situation, like a screenshot in 

the game. A state is a description of the objects in the domain. For example, a package is 

in location A, a player in the game possesses the experience of 100 at time 12 o’clock. So 

the planning trace consists of a sequence of many states. In order to achieve the goal, the 

planning must system must search a path between the initial state and the final state. We 

denote a state as 𝑆, and the initial state is 𝑠𝑖𝑛𝑖𝑡, final state is 𝑠𝑓𝑖𝑛𝑎𝑙. The planning is using 

the actions to realize the ordered set of the states(𝑠𝑖𝑛𝑖𝑡, 𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝑓𝑖𝑛𝑎𝑙). 
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Operator is a state converter that can change one state into another state. The 

operator consists of four major elements: operator head, precondition, delete list and add 

list. An operator will match with the state that is same with its precondition, delete the 

primitive atoms in its precondition, and add new atoms to generate a new state. Based on 

this procedure, the newly generated state will be applied into another operator to change 

to a third state, so on and so forth. When an operator is applied in an state, it is called an 

action. For example, {𝑠𝑖𝑛𝑖𝑡|𝑎1, 𝑎2, 𝑎3} is a state that has 3 primitive atoms. For the 

operator 𝑜 = (ℎ, 𝑝𝑟𝑒, 𝑑𝑒𝑙, 𝑎𝑑𝑑), in which 𝑝𝑟𝑒 = 𝑠𝑖𝑛𝑖𝑡, 𝑑𝑒𝑙 = {𝑑1|𝑎3}, 𝑎𝑑𝑑 =

{𝑎𝑑𝑑1|𝑎4, 𝑎5}, the newly created state 𝑠′ = {𝑠1|𝑎1, 𝑎4, 𝑎5}. So in general, when the 

operator is modifying one state to another, it can be written as  𝑠′ = 𝑀𝑜𝑑𝑖𝑓𝑦(𝑠, 𝑎) =

(𝑠\𝑑𝑒𝑙) ∪ 𝑎𝑑𝑑. Also, as the goal and the initial state is given, we are able to have the 

relation between states and operators, which is 𝑠𝑓𝑖𝑛𝑎𝑙 =

𝑀𝑜𝑑𝑖𝑓𝑦 (𝑀𝑜𝑑𝑖𝑓𝑦(𝑀𝑜𝑑𝑖𝑓𝑦(⋯𝑀𝑜𝑑𝑖𝑓𝑦(𝑠𝑖𝑛𝑖𝑡, 𝑜1)⋯ ), 𝑜𝑛−1), 𝑜𝑛), where 𝑜𝑛 is the last 

operator convert the second last state into the final goal state. 

The example of transportation domain is a good way to illustrate the planning 

problem we are discussing. In transportation domain, a package is in location A, and it 

needs to be delivered to location B in the same city. We have a truck in location A that 

can carry the package to travel within this city, so the truck is able to get this package 

delivered by the action called drive truck. In order to make the package onto the truck, we 

have an action called load, and on the other hand, we also have an action called unload to 

release the package from the truck. This is quite a straightforward and easy to understand 

domain that can even be figured out by hand. But it includes all the elements we 

mentioned above. In this domain, we have all the states listed in Table 2.1: 
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Initial state Interim state 1 Interim state 2 Goal (Final state) 

Package in Loc-A Package on Truck Package on Truck Package in Loc-B 

Truck in Loc-A Truck in Loc-A Truck in Loc-B Truck in Loc-B 

Table 2.1: A trace of states from the initial state to the final state 

Also we have a list of operators in this domain: Load package, Unload package, 

and Drive truck. For the first operator convert initial state into interim state 1, 

𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = {𝑠𝑖𝑛𝑖𝑡|𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑖𝑛 𝑙𝑜𝑐𝐴 ∪ 𝑡𝑟𝑢𝑐𝑘 𝑖𝑛 𝑙𝑜𝑐𝐴}, 𝑑𝑒𝑙 =

{𝑑𝑒𝑙1|𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑖𝑛 𝑙𝑜𝑐𝐴}, 𝑎𝑑𝑑 = {𝑎𝑑𝑑1|𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑜𝑛 𝑡𝑟𝑢𝑐𝑘}. After doing the modifying 

job by using this operator (Load package from location 1 to the truck), it satisfy the effect 

that is showing in interim state 1. 

2.2: Planning Landmarks 

There are several methods for finding landmarks in a particular domain. Julie 

Porteous, Laura Sebastia, and Jorg Hoffmann, 2014 proposed a way to extract landmarks 

in the blocks world domain. The candidate landmarks are extracted by their so called 

relaxed planning graph (RPG). In this building process, they ignore all the delete item 

lists to relax the planning task. The GRAPHPLAN’s planning graph will then been 

constructed and chain forward from the initial state to a graph level where all the goals 

are achieved. The GRAPHPLAN-style planner IPP is a kind of planner that they used in 

the paper. After the relaxed planning graph is built, they went back through the the RPG 

and then extract the landmark-generation tree.  
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A B C

D C

A D

B

Initial State Final State (Goal)
 

Figure 2.1: An example of a task in blocks world domain. (Julie Porteous, Laura Sebastia, 

and Jorg Hoffmann, 2014) 

For the process of extracting the potential landmarks, all the top level goals are 

added into the landmark generation tree, and then these goals are solved by relaxed 

planning graph based on their previous level. For each goal in a level, all the actions to 

achieve the goal is grouped, and the intersection of all the pre-conditions are calculated. 

Then moving down to a lower level to do the above procedure again. Table 2.2 shows a 

relaxed planning graph in blocks world domain, to achieve the goal: C is on A, and B is 

on D, from the initial settings: A, B, and C are on table, D is stacking on C. 

L0 A1 L1 A2 L2 A3 L3 

on-table A 

on-table B 

on-table C 

on D C 

clear A 

clear B 

clear C 

arm-empty 

pick-up A 

pick-up B 

unstack D 

C 

holding A 

holding B 

holding D 

clear C 

stack B A 

stack B D 

stack B C 

put-down 

B 

… 

pick-up C 

… 

on B A 

on B D 

on B C 

… 

holding C 

… 

stack C A 

stack C B 

stack C D 

on C A 

on C B 

on C D 

Table 2.2: A relaxed planning graph for the blocks world domain showing in Figure 2.1. 

(Julie Porteous, Laura Sebastia, and Jorg Hoffmann, 2014) 

 The goals are on(C A) and on(B D), and the corresponding landmark generation 

tree is 𝑁 = {𝑜𝑛(𝐶 𝐴), 𝑜𝑛(𝐵 𝐷)}, the goal on(C A) is in level 3 and goal on(B D) is in 

level 2. The goal on(C A) can only be achieved by the operator: stack C on A. So C is 
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holding on hand and A’s surface is clear are its pre-conditions. Then the atom C is 

holding will be put down to level 2. Then the procedure proceeds until it reaches to the 

level 0. By applying a verifying and ordering procedure, landmarks are extracted. For 

example, the state: C’s surface is clear is a landmark that no matter how the procedure 

varies, this state must show up. 

 For the work from Qiang Yang, Kangheng Wu, and Yunfei Jiang, 2005, they 

make assumptions that the states are unknown and their goal is to reconstruct the literals 

in transportation domain. Based on their research, the planning structure with minimal 

logical action model will be created. Their algorithm can be summarized in three steps: 

(1) initialize plans and variables, (2) build action and plan constraints, (3) build a 

weighted MAXSAT, which is a fast algorithm for discovering association rules. 

2.3: The Dota 2 Game 

Dota 2 is an online multiplayer video game whose ideas and setting are mostly 

inherited from DotA, a Warcraft III: Frozen Throne based battle arena map. It is 

developed by Valve Corporation and its chief game designer and developer is IceFrog, 

who once served as a major role in redesigning and upgrading the DotA game. This game 

can be ran on Microsoft Windows, OS X and Linux platforms, and STEAM is its game 

community which is also developed by Valve Corporation. 

The origin of Dota 2 is DotA, which is short for “Defence of the Ancients”. It ran 

on the game platform “Warcraft III: Reign of Chaos” and customize some of its specific 

configurations. DotA is firstly created by “Eul”. The DotA game comes to be well known 

after Blizzard published a subsequent version “The Frozen Throne”. The developer 
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“Guinsoo” developed the “all-star” map, and another developer “IceFrog” started 

adjusting and optimizing the DotA after 2005. DotA it is very popular among young 

people. It is one of the most famous battle games in the world level electronic video game 

competition. As its 3D engine was out of date and lost its customers, its subsequent 

follower Dota 2, was developed by Valve Corporation. “IceFrog” is now an employee in 

Valve. 

The huge square shape map is the unique map used in Dota 2 game. Its terrain 

contains slopes, heights, jungles, and also rivers. It is majorly divided by diagonal 

northwest to southeast river with two competing teams known as Radiant and Dire team 

on each side. The Radiant team is located at the southwest corner of the map, and the 

Dire’s team is located on the other side. Each team has their unique ancient as well as 

some surrounded buildings and towers, which protect the ancient from attacks by the 

other opponent team. The densest building area is located in both the southwest corner 

and northeast corner. They are placed on the heights of each side so they are made more 

difficult to attack if someone wants to occupy the heights. There are three lanes omitting 

from the height, two lanes are placing alongside the map, which are horizontal and 

vertical respectively, and also one center lane connecting two bases. Figure 2.1 shows a 

screen shot of the Dota 2 game map with three lanes and two bases on each corner of the 

map. On each side of each lane, there will have two defensive towers protecting its lane 

by attacking the heroes and creeps that do not belong to their team. The inner tower or 

ancients are attackable only if the outer tower is destroyed. When the inner tower is 

destroyed the game ends. 
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Figure 2.1: The radiant’s base is located at the bottom left corner of the map. The dire’s 

base is located at the top right corner of the map. There are three lanes: top, middle and 

bottom connecting two bases. 

The Dota 2 game allows at most 10 players play in the game. These 10 players are 

divided into two teams fit into the Radiant and Dire’s team respectively. Each controls 

the same hero in the game until the game ends. Their birth place when the game start is 

the same ax their respawn location (when the hero dies it reappears in this location):  

behind their ancients and on another heights. 

Each hero is born with zero experience and limited gold, they can earn the gold by 

killing enemies’ creeps and enemy heroes. Also there are some neutral creeps in the 

jungle that can also provide gold and experience when killed. The heroes can also get 

extra gold when enemies’ defensive tower is fallen or other buildings are destroyed. 

Meanwhile, heroes can use the gold they earned to purchase items in the store, to 

improve their damage value or do positive effect to win the game. The better weapon or 
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equipment they have, the more possibility they may have to win the game. Experience 

can be used to acquire more powerful skills such as the hero is able to learn new skills 

and upgrade their equipped skills when they level up. Heroes can also learn ultimate skill, 

which only be available every six levels and will do great damage or assistant comparing 

to normal skills. 

The game ends when either of the ancients is fallen. One side will try to approach 

to the heights that belongs to the enemies, while on the other hand, the enemies will try 

their best protecting their ancients. Team fights happen at this time when both teams’ 

heroes gathered together and use their physical attack or magical ability to put damage on 

their enemies. So the team fight will always happen in the game, and many team fights 

are the turning points in the game that can greatly affect the result of the game. 
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3. Computing Planning Landmarks 

3.1 Algorithm Description 

In this thesis, we proposed a new general algorithm to find the landmarks. As we 

discussed in chapter 2.2, the other two methods proposed from other papers cannot solve 

the problem we have in Dota 2 because either it is too difficult or even not possible to 

define operators. In contrast, our algorithm can efficiently find landmarks in Dota 2 

without requiring that operators are given. 

 Our algorithm requires that the states should all start from a state and end in one 

state, which means even though we may have many input traces, they should be starting 

from same origin point and same final point. No matter how we take the trace to achieve 

the goal, and no matter how the traces are twisted or intersected, there should definitely 

have these two landmarks. One is the initial state and the other is the end state. 

The algorithm is consist of two parts, calculating the weighted value and 

calculating the similarity between two states from two traces.  

3.1.1 Weight Calculation Algorithm 

We used an algorithm to calculate the weighted value across all the states among 

all the traces we are given as input. The main idea in this algorithm is trying to find a 

difference in value that reflects the relative importance of particular states. The weighted 

value of potential landmarks should be different from the ordinary states in our traces. 

This algorithm maintains current state 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑇𝑟𝑎𝑐𝑒1, the runner state 𝑠𝑟𝑢𝑛𝑛𝑒𝑟 ∈

𝑇𝑟𝑎𝑐𝑒1, and the seeker state 𝑠𝑠𝑒𝑒𝑘𝑒𝑟 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖, where 𝑇𝑟𝑎𝑐𝑒1 is the base trace and 𝑇𝑟𝑎𝑐𝑒𝑖 

is another trace that we want to visit (i≠1). The intersection point 𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 =
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{𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒1 ∩ 𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖} are the states that has the same set of primitive atoms 

between two traces. And also 𝑠𝑠𝑒𝑒𝑘𝑒𝑟 and 𝑠𝑟𝑢𝑛𝑛𝑒𝑟 are the instance of the intersection 

states set. We call the connection between two intersection states the tunnel 

𝑇𝑠𝑠𝑒𝑒𝑘𝑒𝑟,   𝑠𝑟𝑢𝑛𝑛𝑒𝑟 . It links the two traces up and the neighboring states must use this tunnel 

to visit another trace. The method to choose the runner state, the seeker state, and the 

tunnel between these two states will be discussed in Section 3.1.2 (the similarity 

algorithm). 

The weight of a state will be computed starting from this state, and finding a path 

through the other traces by using the tunnels bridging the traces. The distance between 

two states 𝑠1𝑖 ∈ 𝑇𝑟𝑎𝑐𝑒1 and 𝑠2𝑗 ∈ 𝑇𝑟𝑎𝑐𝑒2 is high if they are not the states next to the 

tunnel. On the other hand, the distance will be small if two states are close to the tunnel. 

The algorithm will start from the current state, and move the state runner forward. 

Meanwhile, the state runner will find the shortest way to get access to other traces by 

trying to match the state seeker in other traces. The state seeker will also run through the 

trace where it belongs to, until it reaches the final state in that trace. If the state seeker can 

be matched to the state runner, it means the tunnel can be created between these two 

traces. The distance between these two states (𝑠𝑠𝑒𝑒𝑘𝑒𝑟 and 𝑠𝑟𝑢𝑛𝑛𝑒𝑟) is set as 1. On the 

other hand, if the state seeker reaches the final state of that trace, this means the state 

runner cannot find a similar state in the other trace, and the distance between these two 

states are set as infinity. The algorithm may not choose this seeker and runner pair as the 

tunnel because the cost to visit the other trace is really huge. If the tunnel is found in 

which the distance of this tunnel is a small, the algorithm will choose it, and the 

neighboring states of the current state will also get access to the other trace by using this 
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tunnel. If the current state is located at the place where tunnels appear on both sides near 

it, the algorithm will choose a shortest one that can decrease the distance. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑟𝑢𝑛𝑛𝑒𝑟,𝑠𝑠𝑒𝑒𝑘𝑒𝑟 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑠𝑟𝑢𝑛𝑛𝑒𝑟,𝑠𝑠𝑒𝑒𝑘𝑒𝑟 = {
0                 (𝑡𝑢𝑛𝑛𝑒𝑙 𝑒𝑥𝑖𝑠𝑡𝑠)

1                 (𝑡𝑢𝑛𝑛𝑒𝑙 𝑒𝑥𝑖𝑠𝑡𝑠)

∞   (𝑡𝑢𝑛𝑛𝑒𝑙 𝑑𝑜𝑒𝑠𝑛′𝑡𝑒𝑥𝑖𝑠𝑡)
 

For the distance from one state to the other state in another trace in general, 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖𝑝,𝑠𝑗𝑞 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖𝑝,𝑠𝑖𝑟𝑢𝑛𝑛𝑒𝑟 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖𝑟𝑢𝑛𝑛𝑒𝑟,𝑠𝑠𝑒𝑒𝑘𝑒𝑟 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑗𝑠𝑒𝑒𝑘𝑒𝑟,𝑠𝑗𝑞  

Where 𝑠𝑖𝑝, 𝑠𝑖𝑟𝑢𝑛𝑛𝑒𝑟 = {𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖, 1 < 𝑝, 𝑟𝑢𝑛𝑛𝑒𝑟 < 𝑛}, n is the number of states in 

𝑇𝑟𝑎𝑐𝑒𝑖. 𝑠𝑗𝑞 , 𝑠𝑗𝑠𝑒𝑒𝑘𝑒𝑟 = {𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑗, 1 < 𝑞, 𝑠𝑒𝑒𝑘𝑒𝑟 < 𝑚}, m is the number of states in 

𝑇𝑟𝑎𝑐𝑒𝑗. 

The distance will be gathered and added every time from the current state to all 

the other states on all the other traces. The total weight of the current state is calculated 

by dividing the sum of distances between the states it visited. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑠𝑖𝑝 =
∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖𝑝,𝑠𝑗𝑞

𝑚
𝑞=1

𝑘
𝑗=2

𝑚 ∙ (𝑘 − 1)
 

Where k is the number of traces we have in our input set, m is the number of 

states in 𝑇𝑟𝑎𝑐𝑒𝑗. 

By using this algorithm, the ordinary states will have larger value on the final 

calculated weighted value (and hence, will not be considered landmarks). The reason is 

quite straightforward. The ordinary states are more distant to the state runner, which is 

added to the distance to other trace. Meanwhile, the special state, which sits exactly on 
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one side of the tunnel, the state runner itself, will have the lowest distance. The difference 

of the distance value is a good measurement of the importance of the landmarks we want 

to analyze; the lower the distance or weight, the more likely the state is a landmark. 

3.1.2 Similarity Algorithm 

The similarity algorithm is a method we proposed to determine whether two states 

from two different traces are close to one another. This algorithm can solve the problem 

in HTN planning that given several input traces, the method that simply counting the 

occurrence of states will leads to a failure. Inspired by the work of Amy McGovern and 

Andrew G. Barto, the landmark may also exist in a high dense region, that many 

trajectories staying really close to each other within an area, but not intersect with anyone 

else. In this case, no landmark will be extracted by using counting occurrence of the 

states since there is actually no intersections in the domain. The phenomenon that we can 

discover in this case is that the dense region will still be recognized as a landmark by the 

similarities in this region. If we have such an algorithm that can filter out this similarity, 

we are then safe to say some states which are staying close enough but not intersected 

will also be considered as a kind of landmark. 

The actual similarity algorithm is slightly different between domains (i.e., it is 

domain dependent), but the key idea in similarity is comparing the degree of how two 

states with their primitive atoms are shared. For example, for 𝑠𝑖 = {𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑝} and  

𝑠𝑗 = {𝑠|𝑠 ∈ 𝑇𝑟𝑎𝑐𝑒𝑞}, each of them has a list of primitive atoms that may have slightly 

different with each other. 
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𝑠𝑖 𝑠𝑗 

𝐴𝑡𝑜𝑚1 𝐴𝑡𝑜𝑚1 

𝐴𝑡𝑜𝑚2 𝐴𝑡𝑜𝑚3 

𝐴𝑡𝑜𝑚3 𝐴𝑡𝑜𝑚4 

𝐴𝑡𝑜𝑚4 𝐴𝑡𝑜𝑚5 

Table 3.1: List of the primitive atoms in two states. 

So the similarity may consider two states similar when few atoms are different. 

The more differences these two states may have, the higher similarity value we may have. 

This is related to the distance calculation in Chapter 3.1.1 in which the similarity value is 

used as the distance between the state seeker and state runner. Also the function of 

calculating the similarity value is not linear, which means we are using different stages to 

determine the similarity. If two states are sharing exactly the same atoms and we cannot 

tell any difference besides which trace it belongs to, the distance is 0. And also if there is 

only minor difference between two states, we set the similarity to 1 or 2 to differentiate 

them from equality case, but still having very close distance with each other. Finally if 

the two states have a lot more differences, we similarity is larger. We assign infinity 

between two states to if they share no atoms in common. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑠𝑖,𝑠𝑗 =

{
 
 

 
 
0                 (𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑠𝑎𝑚𝑒)

1                  (1 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

2                  (2 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
⋯                                               
∞        (𝑛𝑜 𝑐𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

 

3.2 Example in Transportation Domain 

The transportation domain is a good example in HTN planning. It is focusing on 

transporting a package from one location to another. Major objects concerned is the 
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package, truck, airplane, so on and so forth. The package carrier transports the package 

between locations, but are limited to the transport area so another transportation methods 

should be continued. It is a classical and typical model in planning. It has the primitive 

atoms like “package is in location A”, it has the states that can be converted by operators 

or actions, it has a start state and a final goal, and it has multiple choices that can achieve 

the goal. 

 

Figure 3.1: A description of new transportation domain. 

We now introduce a more complex version of the transportation domain that 

introduces more elements than the example we mention in Chapter 2.1. In this new 

transportation domain, packages still need to be delivered to another place, but this time 

these two locations are not necessarily in the same city, not even not in the same planet. 

For example, consider the following scenario: the package is initially locate in location 1, 

city 1, planet 1, while the destination location 8 is in city 4, planet 2. In our scenarios, we 

have two planets, four cities, eight airports, two launch centers, and eight ordinary 

locations. Each city has two airports and two ordinary locations. For city 2 and city 3, 

each of them has a launching center that has a rocket waiting on it.   
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 In order to express the initial state formally, we write the primitive atom in the 

format like this: 𝐴𝑡𝑜𝑚𝑖 = (𝐴𝑑𝑣𝑒𝑟𝑏𝑖𝑎𝑙𝑖   𝑂𝑏𝑗𝑒𝑐𝑡𝑖   𝑂𝑏𝑗𝑒𝑐𝑡𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟) . The atom format is 

used to indicate that the 𝑂𝑏𝑗𝑒𝑐𝑡𝑖 is on 𝑂𝑏𝑗𝑒𝑐𝑡𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 in the name of 𝐴𝑑𝑣𝑒𝑟𝑏𝑖𝑎𝑙𝑖. And 

then we can have a detailed description of the initial state we have.  

City (ON-PLANET 

CITY1 

PLANET1) 

(ON-PLANET 

CITY2 

PLANET1) 

(ON-PLANET 

CITY3 

PLANET2) 

(ON-PLANET 

CITY4 

PLANET2) 

Airport (IN-CITY AP1 

CITY1) 

(IN-CITY AP2 

CITY1) 

(IN-CITY AP3 

CITY2) 

(IN-CITY AP4 

CITY2) 

 (IN-CITY AP5 

CITY3) 

(IN-CITY AP6 

CITY3) 

(IN-CITY AP7 

CITY4) 

(IN-CITY AP8 

CITY4) 

Location (IN-CITY LOC1 

CITY1) 

(IN-CITY LOC2 

CITY1) 

(IN-CITY LOC3 

CITY2) 

(IN-CITY LOC4 

CITY2) 

 (IN-CITY LOC5 

CITY3) 

(IN-CITY LOC6 

CITY3) 

(IN-CITY LOC7 

CITY4) 

(IN-CITY LOC8 

CITY4) 

Launch Center (IN-CITY LC1 

CITY2) 

(IN-CITY LC2 

CITY3) 

  

Airplane (AIRPLANE-AT 

PLANE1 AP1) 

(AIRPLANE-AT 

PLANE2 AP5) 

  

Truck (TRUCK-AT T1 

LOC1) 

(TRUCK-AT T2 

AP3) 

(TRUCK-AT T3 

LC2) 

(TRUCK-AT T4 

AP7) 

Rocket (ROCKET-AT 

ROCKET1 LC1) 

   

Package (OBJ-AT PACK1 

LOC1) 

   

Table 3.2: A detailed list of atoms in the initial state 

Based on the result run by JSHOP, a hierarchical task network (HTN) based 

planning software, a way to achieve the goal “send the package to location LOC8” can 

have one of the possible solution in the form below: 

Plan # 1 

 (!load-truck pack1 t1 loc1  )  1.0 (!drive-truck t1 loc1 ap1  )  1.0 (!unload-truck pack1 t1 

 ap1  )  1.0 (!load-airplane pack1 plane1 ap1  )  1.0 (!fly-airplane plane1 ap1 ap3  )  1.0 

(!unload-airplane pack1 plane1 ap3  )  1.0 (!load-truck pack1 t2 ap3  )  1.0 (!drive-truck 

t2 ap2 lc1  )  1.0 (!unload-truck pack1 t2 lc1  )  1.0 (!load-rocket pack1 rocket1 lc1  )  1.0 
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(!fly-rocket rocket1 lc1 lc2  )  1.0 (!unload-rocket pack1 rocket1 lc2  )  1.0 (!load-truck 

pack1 t3 lc2  )  1.0 (!drive-truck t3 lc2 ap5  )  1.0 (!unload-truck pack1 t3 ap5  )  1.0 

(!load-airplane pack1 plane2 ap5  )  1.0 (!fly-airplane plane2 ap5 ap7  )  1.0 (!unload-

airplane pack1 plane2 ap7  )  1.0 (!load-truck pack1 t4 ap7  )  1.0 (!drive-truck t4 ap7 

loc8  )  1.0 (!unload-truck pack1 t4 loc8  )  1.0  ) 

So the hierarchical structure in this transportation domain can be described as: 

 

Figure 3.2: A hierarchical structure in transportation domain. 

We may have multiple possible solutions on this domain, if we want to transfer 

the package to LOC8. Since the package can be picked up by the truck at LOC1, and go 

through LOC2 and then arrive at AP1, or directly arrive at AP1 without any other stops, 

there are two possible solutions in the sub goal “transferring the package to the airport 

AP1”. In addition, in city CITY2, when the package is picked up at airport AP3 (suppose 

the airplane PLANE1 arrive at airport AP3), the truck TRUCK2 can choose to visit 

LOC3 or LOC4, or both of the locations in city CITY2, then arrive at the launch center 

LC1, or directly arrive at LC1.  

Transport 
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load truck
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unload 
truck
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Transport 
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Fly rocket 
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Fly plane 
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Transport 
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load truck
drive 
truck

unload 
truck
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By observing the transportation domain hierarchical structure, we can discover 

that the package should be arrive at the launch center LC1 and LC2 every time, and also 

the transportation between two planets cannot be avoided because the original place and 

the destination are on different planets. Independent of  how we choose the routes within 

the city, and how many traces we may have when the package is transporting from LOC1 

to AP1, or even to AP2, the launch center is the place that it will visit every time. So this 

is a landmark. We claim that our similarity algorithm will discover this landmark even 

when the package is arriving at different airports but in the same city. 

We are going to discuss about the weight calculation algorithm and similarity 

algorithm in the transportation domain. 

3.2.1 Weight Algorithm in Transportation Domain 

The major steps in using the weight calculation algorithm is based on the pseudo 

code 3.1 shown below: 

procedure Weight_Algorithm(Set of traces T) 

 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒 = T1 

 𝑆𝑐𝑢𝑟𝑟 = the first state S11 from 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒 

 while (𝑆𝑐𝑢𝑟𝑟 < the last state in 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒) 

  Distance = 0 

  if (𝑆𝑐𝑢𝑟𝑟 == 𝑆𝑟𝑢𝑛𝑛𝑒𝑟) 

   𝑆𝑟𝑢𝑛𝑛𝑒𝑟 = Similarity(𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒, 𝑆𝑐𝑢𝑟𝑟) 

   𝑆𝑠𝑒𝑒𝑘𝑒𝑟 = Similarity(𝑇𝑟𝑎𝑐𝑒𝑖, 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒) 

end if 

while (𝑆𝑗 < the last state in 𝑇𝑟𝑎𝑐𝑒𝑖) 
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Distance = Distance + |𝑆𝑟𝑢𝑛𝑛𝑒𝑟 − 𝑆𝑐𝑢𝑟𝑟| + |𝑆𝑠𝑒𝑒𝑘𝑒𝑟 − 𝑆𝑗| 

𝑆𝑗 = 𝑆𝑗+1 

  end while 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑢𝑟𝑟 = Distance / number of states visited 

 𝑆𝑡𝑎𝑡𝑒𝑐𝑢𝑟𝑟 = 𝑆𝑡𝑎𝑡𝑒𝑐𝑢𝑟𝑟+1 

end while 

end procedure 

Pseudo code 3.1: Weight calculation algorithm major procedures 

First, we need to choose the first trace as our base trace. There is no preference on 

the method of choosing this base trace, because the landmarks are supposed to exist in 

every trace, no matter how we generate the trace as our base trace, the end result will not 

change. Then we are using this base trace and another companion trace to calculate the 

weight value on the base trace. We need to do this procedure for every other traces 

because we may have lots of input traces, the accuracy can be improved as more trances 

are given. Then we need to use our state runner and state seeker to find the tunnel 

between two traces. The runner state is taken from the base trace, and the seeker state is 

from the companion trace: 𝑆𝑟𝑢𝑛𝑛𝑒𝑟 ∈ 𝑇𝑟𝑎𝑐𝑒𝑏𝑎𝑠𝑒 , 𝑆𝑠𝑒𝑒𝑘𝑒𝑟 ∈ 𝑇𝑟𝑎𝑐𝑒𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛. The distance 

will be calculated by summing up the distance from the current state to the state runner, 

from state runner to state seeker, and then the distance from state seeker to all the other 

states in the companion trace. 

After we collect all the distances from a particular state to all the other states in 

other traces, we divide the sum value by the number of the states we visited. This 

averaged value is a final measurement of the importance of this state whether we can 
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determine it is a landmark in our transportation domain or not. Since we have series of 

the states in our base trace, the values will vary a lot because the distance each state to the 

tunnel is different. Ideally the states which has the minimum weight value is considered 

as the landmark in our domain. 

3.2.2 Similarity Algorithm in Transportation Domain 

Although we are able to find the states as the landmark by matching states, this is 

only working when two states are exactly the same. In our transportation domain, the 

airplane PLANE1 can fly to both AP3 and AP4 with the same probabilities. If we have 

ten traces but nine of them are going to airport AP3, only one out of ten is going to 

airport AP4, then AP4 will not be considered as a valid airport that has the potential to be 

considered as the place where landmark exists. This is also the reason why we cannot use 

the simple counter to count the occurrence of the places the package has visited. 

The similarity algorithm we discussed in Section 3.1.2 can solve this problem and 

can also work with weight calculation algorithm to get the landmark we want. When AP1 

is being considered, the similarity algorithm will consider AP2, which is also in CITY1 

and it is also a place that can transport the package to CITY2. AP3 and AP4 are 

considered as a same airport because they are both in CITY2. 

Using the similarity algorithm in the transportation domain results in a number of 

matched primitive atoms we have in each state. The reason why AP1 and AP3 are not 

considered as similar airport is because AP1 is an airport in CITY1, and AP2 is in 

CITY2. The algorithm searches for the AP1 and AP3 and finds that AP1 and AP3 are 

from different cities based on the atoms: (AIRPORT AP1) (AIRPORT AP3) (IN-CITY 
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AP1 CITY1) (IN-CITY AP3 CITY2) (CITY CITY1) (CITY CITY2). The algorithm will 

also search for the item CITY1 and CITY2, and realize it as the same items based on the 

atoms: (CITY CITY1) (CITY CITY2) (IN-PLANET CITY1 PLANET1) (IN-PLANET 

CITY2 PLANET1). So the similarity between AP1 and AP3 is smaller than the similarity 

between AP1 and AP2, because AP1 and AP2 are in the same city, which in the 

algorithm are considered to have higher relationship. 

3.3 Example in Dota 2 

Dota 2 is an online battle video game that allows at most 10 players to play the 

game. As we have introduced some basic concepts about Dota 2 in Section 2.3, we 

discover that the domain of the Dota 2 game also have the characteristics of planning 

domain in our research. Even though the gaming process can be totally different between 

each game played by different players, we still can find many features are shared accross 

all of the games in Dota 2. For example, the game will start at the scene that all the five 

players who are grouped as radiant team will be born in the radiant’s base, and the other 

five players are born in the dire’s base. Then the game will end when the ancient of either 

team is destroyed. If the ancient building is destroyed by the enemies, all the players and 

creeps are frozen and players cannot make any control on their heroes. Also the ancient is 

attackable only if the outer defensive towers are collapsed (i.e., destroyed by the 

enemies), the team fight are mostly happened near the end of the game. No matter how 

many times the games are played, these features are fixed in the game. This feature 

applies to the planning model characteristics so we can use the Dota 2 domain in finding 

important events in the game, or in other words, finding the landmark in the Dota 2 game. 



30 
 

The transportation domain and the Dota 2 domain are different. In our new 

transportation domain, each state in an input trace is connected by the operators, which 

are given from a set of countable operators. Each next state is predictable in our domain 

because there is an add list and delete list in each operator. By applying the adding list 

and the deleting list onto the pre-condition state, an effect state can be generated. 

Although we can have hundreds of valid input traces in our transportation domain 

generated by JSHOP, the number of valid inputs are not as many as the input we can 

collect from the Dota 2 game. The transportation domain is a classical model that all of 

its possibilities can be created by permutations. Basically, all the possible solutions can 

be ideally populated by JSHOP, which means the complexity of the solutions are 

dependent on the restrictions we set. We can only have no more than 10 valid input traces 

when we downgrade the transportation domain, which means we make the package 

delivered to a location in the same city, and there are only 2 locations that the truck can 

visit. So the transportation domain is a simple and predictable domain. While in the Dota 

2 domain, we are not able to collect all the operators because every next state is non-

predictable. The next state in Dota 2 are majorly depend on the players’ decision, or the 

effects given by other players.  The location where the heroes choose to stand, the time 

when the ability is used on himself or others, and the lane they choose to approach to the 

enemies’ ancient, can have countless progress and results just like the real world. So we 

cannot use exactly the same algorithm in the Dota 2 domain. 

3.3.1 Weight Algorithm in the Dota 2 Domain 

We still employ the weight calculation algorithm in the Dota 2 domain but we 

make some changes according to the game feature. As we know from the section 2.3 and 
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previous paragraph, Dota 2 does not have operators between states, the next state is non-

predictable from previous state that we may have all the state traces different from each 

other, which means the number of traces we can employ is unlimited. Another issue we 

need to consider is the length of the trace. A regular Dota 2 game will last for at least 30 

minutes, and each tick will capture a state in the game. The tick period is as short as 0.06 

second, so we can have at least 30000 states in a single input trace. So the number of 

states in a trace in the Dota 2 domain is much more than we have in the new 

transportation domain. In our algorithm, we need to import multiple input traces based on 

our domain, and this results to the problem of calculating the sum of distance with 

hundreds of thousands of states. This is both time and space consuming. 

 As we have discussed in section 3.1.1, we pick up one trace as our base trace. The 

trace in the Dota 2 domain is the file of one replay file. Then the current state in the base 

trace will find a tunnel, which will be calculated by our similarity algorithm, to visit other 

states in other traces. Then the value of all the distance from the current state to other 

states will be summed up and will be divided by the states it visited. This is the weighted 

value of the current state. Then the algorithm will move the current state to next state, do 

the previous procedure again and calculate the new weight value for the current state. The 

pseudo code is no much difference with the one in section 3.2.1 

3.3.2 Similarity Algorithm in the Dota 2 Domain 

The similarity algorithm in Dota 2 domain is different from the one in the 

transportation domain. First, in transportation domain, we make an exact match between 

two states from two different traces, while in the Dota 2 domain, we cannot have 

operators which contains add list and delete list, so there is no exact match to be made. 
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Second, even if we only take heros’ health, mana, location x and y, and time as five 

variables in our domain, there are no same states with one or two variables differences. 

So we use a range similarity here to determine two states whether they are similar or not. 

We use heroes’ health, mana, location x and y in map, and time, these 5 variables 

in our domain to simplify our landmark searching complexity. These 5 variables are 

considered to be the key factors to determine a team fight, which is a very important 

event in the game. The team fight is supposed to happen in all the traces and the location, 

time when team fights happen can give useful information during the game. If at least 

two heroes are gathering together from each team in a very small range of location, and 

with very quick health and mana consuming or curing in a short time, we will say this is 

the location to have a team fight. If two states from two different traces both of them have 

this scenario, we put them as sharing a similarity feature. 

The quick health and mana consummation can be defined as, starting from above 

80 present of mana and health value, the value drop or resume to below 10 percent during 

the range which at least two heroes from each team are standing closely. For the range of 

the location we consider as a close state, we set the percentage by experience at first, and 

then automatically adjust by the algorithm to increase the percentage in stage until we 

find the team fight. If there is no scenario in the trace that meets our algorithm after the 

algorithm enlarges five times, we consider the trace an invalid trace and we will delete 

this trace from our trace set.  
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4. Implementation 

4.1: New Transportation Implementation 

We discuss several steps needed before discussing the code (see the figure 

below). First, our algorithm needs enough valid input traces. We use the planner JSHOP 

to obtain the traces in transportation domain. SHOP, is short for Simple Hierarchical 

Ordered Planner, was developed by Dana Nau, Yue Cao, Amnon Lotem, and Hector 

Munoz-Avila, 1999. JSHOP is the Java version of SHOP. JSHOP plans the order of the 

tasks in hierarchical structure to achieve the final goal. By given the domain description 

and problem description which contain operators declaration, axioms, initial state 

restrictions and final goals, JSHOP is able to generate all the possible solutions for 

achieving problems such as “transporting the package from location 1 to location 8 

between different cities, different planet”.  

Second, the input traces must be in a particular format as a text output, so we need 

to parse these traces and translate them into another format that can be parsed by our 

weight and similarity algorithm module. 

 

Figure 4.1: Workflow diagram for finding the landmarks in transportation domain. 

By assigning tasks to this procedure, we modularize our code into three parts: the 

data generation module, the trace parsing module, and the landmark finder module. The 

data generation module is responsible for constructing our new transportation domain and 

Obtain input 
traces

Parse traces
Make traces into 

linked list

Use weight / 
similarity 
algorithm

Find landmarks 
by weighted 

values 
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set the initial state and the final goal to our problem. The output of this module is all 

solutions in the required format. Here is an example: 

Plan # 1  

 (  (!load-truck pack1 t1 loc1  )  1.0 (!drive-truck t1 loc1 ap1  )  1.0 (!unload-truck pack1 

t1 ap1  )  1.0 (!load-airplane pack1 plane1 ap1  )  1.0 (!fly-airplane plane1 ap1 ap3  )  1.0 

(!unload-airplane pack1 plane1 ap3  ) 1.0 (!load-truck pack1 t2 ap3  )  1.0 (!drive-truck t2 

ap3 lc1  )  1.0 (!unload-truck pack1 t2 lc1  )  1.0 (!load-rocket pack1 rocket1 lc1  )  1.0 

(!fly-rocket rocket1 lc1 lc2  )  1.0 (!unload-rocket pack1 rocket1 lc2  )  1.0 (!load-truck 

pack1 t3 lc2  )  1.0 (!drive-truck t3 lc2 ap5  )  1.0 (!unload-truck pack1 t3 ap5  )  1.0 

(!load-airplane pack1 plane3 ap5  )  1.0 (!fly-airplane plane3 ap5 ap7  )  1.0 (!unload-

airplane pack1 plane3 ap7  )  1.0 (!load-truck pack1 t4 ap7  )  1.0 (!drive-truck t4 ap7 

loc8  )  1.0 (!unload-truck pack1 t4 loc8  ) ) 

All these traces are generated by the output file in JSHOP folder, and then we 

need to parse them by using the trace parsing module. The trace contained in the output 

file is a sequence of operators that can be applied to achieve the final goal, so we need to 

translate them into a sequence of states linked by these operators. In the trace parsing 

module, we wrote a C++ program to automatically read strings from the output file 

containing all the operator sequences, and extract information to generate the actual 

linked states. The states are linked as linked lists and such lists are the actual input traces 

that will be analyzed in the next module. In our landmark finder module, which is the 

subsequent module of parsing procedure, we use our weight algorithm and similarity 

algorithm to calculate the weight value of each state in the base trace. As explained in the 
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previous chapter, the landmarks are those that have the lowest value among all the states 

in one trace. The lower the weight value one state has, the higher chances it is a 

landmark. The modularization and procedure can be found in figure 4.2. Finally we get 

an array of weight values that compute the importance of each landmarks in each trace, 

and examine whether they are real landmarks in our transportation domain. 

JSHOP

Problem file 
(Initial state and 
goal description)

Domain file 
(operator and 

axioms 
description) Trace parser 

(written in C++)

Traces (solutions)

Linked list 
constructor (written 

in C++)

Landmark 
calculator

Array of weight 
values calculated

Weight algorithm 
code

Similarity 
algorithm code

 

Figure 4.2: Modularization of finding landmarks in transportation domain 

We will discuss the trace parsing module and the landmark finder module in 

detail, while for the first module, we can get output from JSHOP directly so we do not 

discuss it and refer to (Nau et al., 1999). 

4.1.1 Parsing Traces 

Given an output file containing a series of solutions, we need to firstly do the 

stream input to read characters from this file and then try to translate the sequence of 

operators into a sequence of states. The output of this module should be a set of traces, 

which contains sorted states in it. We use an array to store all the traces. In each cell of 

this array, there is a bi- directional linked list. Each state, except for the initial state and 

final state, has pointers referring to its previous state and next state. For each operator 
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instance, it will have pointers pointing to the pre-condition state and effect state 

respectively. The data structure is shown in figure 4.3.  

State1 
(initial state)

State2 State3 State4 State5
State6 

(final state)

Operator1 Operator2 Operator3 Operator4 Operator5

next

prev

next

prev

next

prev

next

prev

next

prev

 Atom1-1
 Atom1-2
 Atom1-3
 Atom1-4
 Atom1-5

 Atom3-1
 Atom3-2
 Atom3-3
 Atom3-4
 Atom3-5

 Atom2-1
 Atom2-2
 Atom2-3
 Atom2-4
 Atom2-5

 Atom4-1
 Atom4-2
 Atom4-3
 Atom4-4
 Atom4-5

 Atom5-1
 Atom5-2
 Atom5-3
 Atom5-4
 Atom5-5

 Atom6-1
 Atom6-2
 Atom6-3
 Atom6-4
 Atom6-5

Pre-Con Effect Pre-Con Effect Pre-Con Effect Pre-Con Effect Pre-Con Effect

JSHOP result

Store to array slot

 Figure 4.3: the data structure of the states and operators. 

For parsing the output file from JSHOP, we write a program in C++. First, all the 

operators are known to us, so we create a list of operator instances that stores all the 

possible operators that could be used in the parsing procedure. Second, we load the initial 

state by reading its atom list. Third, we load the first operator from the output file in the 

first module. Note that each operator in the output file is shown in the format: 

(!operator_name object from to), so the code will search for the operator’s name in the 

operator list. The matched operator will return a list of add-list and delete-list that will be 

implied on the initial state, some atoms will be added, and some atoms from the initial 

state atom list will be deleted. This will generate the next state in that trace, equipped 
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with a new atom list that is different from the initial state. Then the procedure goes on, 

loading the next operator and getting the add- and delete-list, and creating a third state 

based on the second state. Also, the previous state has a next-state pointer, while the next 

state will also have a previous-state pointer. For the linked list of operator, they have 

additional pointers pointing to the previous state and the next state, which are the pre-

condition and effect respectively. 

The constructing procedure can be described in the following pseudo code 4.1. 

The SeachOperator function is a matching procedure that will fetch the add- and delete- 

list from the matched operator. 

procedure Construct_States (𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑆𝑖𝑛𝑖𝑡) 

 𝑆𝑐𝑢𝑟𝑟 = 𝑆𝑖𝑛𝑖𝑡 

 𝑂𝑐𝑢𝑟𝑟 = 𝑂1 

 while (𝑂𝑐𝑢𝑟𝑟 <= 𝑂𝑓𝑖𝑛𝑎𝑙) 

  (AddList, DeleteList) = SearchOperator(𝑂𝑐𝑢𝑟𝑟) 

  𝑆𝑐𝑢𝑟𝑟+1 = (𝑆𝑐𝑢𝑟𝑟 ∪ 𝐴𝑑𝑑𝐿𝑖𝑠𝑡)\𝐷𝑒𝑙𝑒𝑡𝑒𝐿𝑖𝑠𝑡 

  (𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑣 ∈ 𝑆𝑐𝑢𝑟𝑟+1) = 𝑆𝑐𝑢𝑟𝑟 

  (𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑥𝑡 ∈ 𝑆𝑐𝑢𝑟𝑟) = 𝑆𝑐𝑢𝑟𝑟+1 

  𝑆𝑐𝑢𝑟𝑟 = 𝑆𝑐𝑢𝑟𝑟+1 

  𝑂𝑐𝑢𝑟𝑟 = 𝑂𝑐𝑢𝑟𝑟+1 

end while 

end procedure 

Pseudo code 4.1: State constructing procedure in transportation domain 
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4.1.2 Similarity Algorithm Implementation 

As we have discussed in Section 3.2.2, even if the package arrives at a different 

airport when these two airports are located in the same city, we consider these two 

airports as similar airports, but the distance from one trace to the other may be more than 

one unit because they are not the same. The method we use here is to look at the 

difference between two states from two traces first, then we focus on the different atoms 

to examine whether one atom from each trace can be classified as a similar atom. If we 

have two traces segments as shown below: 

State 2 State 3 State 4 State 5 

(on-truck pack1 t1) 

(truck-at t1 loc1) 

(truck-at t2 ap3) 

(truck-at t3 ap4) 

(plane-at plane1 ap1) 

(plane-at plane2 ap5) 

(rocket-at rocket1 lc1) 

(in-city ap1 city1) 

(in-city ap2 city1)… 

(on-truck pack1 t1) 

(truck-at t1 loc2) 

(truck-at t2 ap3) 

(truck-at t3 ap4) 

(plane-at plane1 ap1) 

(plane-at plane2 ap5) 

(rocket-at rocket1 lc1) 

(in-city ap1 city1) 

(in-city ap2 city1)… 

(on-truck pack1 t1) 

(truck-at t1 ap1) 

(truck-at t2 ap3) 

(truck-at t3 ap4) 

(plane-at plane1 ap1) 

(plane-at plane2 ap5) 

(rocket-at rocket1 lc1) 

(in-city ap1 city1) 

(in-city ap2 city1)… 

(obj-at pack1 ap1) 

(truck-at t1 ap1) 

(truck-at t2 ap3) 

(truck-at t3 ap4) 

(plane-at plane1 ap1) 

(plane-at plane2 ap5) 

(rocket-at rocket1 lc1) 

(in-city ap1 city1) 

(in-city ap2 city1)… 

Table 4.4: A segment from an input trace. Truck 1 goes to airport 1. 

State 2 State 3 State 4 State 5 

(on-truck pack1 t1) 

(truck-at t1 loc1) 

(truck-at t2 ap3) 

(truck-at t3 ap4) 

(plane-at plane1 ap1) 

(plane-at plane2 ap5) 

(rocket-at rocket1 lc1) 

(in-city ap1 city1) 

(in-city ap2 city1)… 

(on-truck pack1 t1) 

(truck-at t1 ap2) 

(truck-at t2 ap3) 

(truck-at t3 ap4) 

(plane-at plane1 ap1) 

(plane-at plane2 ap5) 

(rocket-at rocket1 lc1) 

(in-city ap1 city1) 

(in-city ap2 city1)… 

(obj-at pack1 ap2) 

(truck-at t1 ap2) 

(truck-at t2 ap3) 

(truck-at t3 ap4) 

(plane-at plane1 ap1) 

(plane-at plane2 ap5) 

(rocket-at rocket1 lc1) 

(in-city ap1 city1) 

(in-city ap2 city1)… 

(obj-at pack1 ap2) 

(truck-at t1 ap2) 

(truck-at t2 ap3) 

(truck-at t3 ap4) 

(plane-at plane1 ap2) 

(plane-at plane2 ap5) 

(rocket-at rocket1 lc1) 

(in-city ap1 city1) 

(in-city ap2 city1)… 

Table 4.5: A segment from another input trace. Truck 1 goes to airport 2. 

We can observe from two tables that the truck 1 goes to airport 1 while in another 

table the truck 1 goes to airport 2. By using our similarity algorithm, when we are looking 

for matching state of state 4 in trace 1 (the first table), we cannot find any matching state 
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in trace 2 (the second table). But when we take a deeper look at two traces, we find that 

state 4 in trace 1 and state 3 in trace 2 they have one atom sharing the same atom name, 

but one of the parameters is different. Those atoms are: (truck-at t1 ap1) from the first 

trace and (truck-at t1 ap2) from the second trace. Then the similarity algorithm explores 

into these two atoms by looking at the similarity between ap1 and ap2. The algorithm 

firstly observes that ap1 and ap2 are both airports by finding the same atom these two 

states both have: (AIRPORT AP1), (AIRPORT AP2). Then the algorithm takes checks 

the triple (atom_name obj_name obj_container), that is, (in-city ap1 city1), and (in-city 

ap2 city1). The similarity algorithm finds that their distance should be 1 because there is 

only one difference between state 4 in trace 1 and state 3 in trace 2, and ap1 and ap2 are 

of the same type and occur in the same triple. 

procedure Similarity (𝑆𝑟𝑢𝑛𝑛𝑒𝑟, 𝑇𝑟𝑎𝑐𝑒𝑖) 

 𝑆𝑠𝑒𝑒𝑘𝑒𝑟 = 𝑆2 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖 

 while (𝑆𝑠𝑒𝑒𝑘𝑒𝑟 < 𝑆𝑓𝑖𝑛𝑎𝑙 ∈ 𝑇𝑟𝑎𝑐𝑒𝑖) 

  distance = MAX_INT 

  if (𝐴𝑡𝑜𝑚𝑠𝑒𝑒𝑘𝑒𝑟 = 𝐴𝑡𝑜𝑚𝑟𝑢𝑛𝑛𝑒𝑟) // means exactly match 

   distance = 0 

  else if (𝐴𝑡𝑜𝑚𝑠𝑒𝑒𝑘𝑒𝑟 ∩ 𝐴𝑡𝑜𝑚𝑟𝑢𝑛𝑛𝑒𝑟 =  𝑛 𝑎𝑡𝑜𝑚𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

   if (all atom names can be matched && n <= threshold) 

    if (each matched atom pairs has same 𝑂𝑏𝑗𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟) 

     distance = 1 * n 

    end if 

end if 

  end if 

  𝑆𝑠𝑒𝑒𝑘𝑒𝑟 = 𝑆𝑠𝑒𝑒𝑘𝑒𝑟+1 
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end while 

return distance, 𝑆𝑠𝑒𝑒𝑘𝑒𝑟 

end procedure 

 

 If the distance we calculated from the similarity algorithm is larger than our 

distance threshold, the returned distance should be put as INT_MAX, because the 

distance is larger than our threshold and hence it cannot give us an accurate estimate of 

distinguish value that landmarks may have. In our new transportation domain, we set the 

threshold to be 2 so that any distance calculated by the similarity algorithm will be 

marked as a positive infinite integer sending it back to the weight algorithm. 

4.1.3 Weight Algorithm Implementation 

The weight algorithm is not much different than the algorithm we proposed in 

Section 3.2.1. We first pick a trace as our base trace and set the second state as the 

current state. We do not need consider the initial state, because the initial state is always a 

landmark, as was explained before. We have the same initial state across all traces, so we 

can just start from the second state. The next step is to run the state runner and state 

seeker to find the tunnel between two traces. We use our similarity algorithm at this time 

to compute the distance between state runner and state seeker. If the distance is the 

positive infinite, the state seeker and runner cannot make a tunnel for the two traces. 

Then the state seeker keeps running until a similarity is found. If there is no exact 

matching or similar matching, the state runner will move to the next state in the base 

trace, and then the state seeker will traverse the other trace, searching for a matching 

tunnel. For each current state, it needs to compare the distance from the previous tunnel 

and next tunnel, and it will pick a tunnel that is shortest to visit other traces. 
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4.2: Dota 2 Implementation 

The Dota 2 domain is a very different domain from the transportation domain. It 

does not have operators, pre-conditions, and effects. Actions in Dota 2 can be non-

deterministic (more than one event can follow the action). But in Dota 2 replay files, the 

whole sequence of the game is recorded. Starting from the beginning of the game, when 

heroes are picked, and until the very end of the game, when the ancient of one team is 

destroyed, each state is stored in the replay file in every game tick. By using an open 

source program called Skadi and Tarrasque, which are written in Python, we are able to 

parse the Dota 2 replay files into another readable format that contains series of the states. 

We choose to use JSON as our output format because it has an informative and clear to 

view structure. We use those JSON files to calculate the weight values by running our 

Python code. The landmark timestamp and location are recorded and used in our Dota 2 

runtime scripts, to allow the camera moving to a particular place and focus on a hero to 

have a continuous view of the whole event. 

Parsing JSON file
Generate input 

traces
Finding the 
landmarks

Show the 
landmarks in the 

game

Parsing the 
replay file

 

Figure 4.4: A working sequence of finding the landmarks in Dota 2 domain 

We divide the whole project into four modules. They are the module of parsing 

Dota 2 replay files, the module of translating the JSON files into input traces, the module 

of finding the landmarks in each trace, and the module of locating the runtime event 

based on the landmarks we found. The place where we download the replay files is called 
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DOTABANK (www.dotabank.com). This website allows the users to upload their game 

replays into their database, and let others download and share the replay files with no 

copyright issues. The number of replay files in dotabank is huge, which gives us plenty of 

resources to analyze. 

We use the Tarrasque project, a library developed in Python. Terrasque, which is 

based on the Skadi project, is a tool to allow the easy and straightforward analysis of 

Dota 2 replay files. The Skadi project is a kernel that parse the Dota 2 replays, but it is 

not as convenient as Tarrasque. So the Tarrasque project is an upper level API that can let 

users have easier access to the parsed data in the memory. We use Tarrasque to extract 

heroes’ health, mana, locations, and time information in each state, and make them into a 

structured JSON file as the output. 

For the translation module, we translate the data stored in JSON files into the 

arrays needed for the input traces. Each input trace contains an array of states. This 

enables us to get access to these states and the information included in each state. The 

translation module is written in Python. For the landmark searching module, we use our 

similarity and weight algorithm to analyze all input traces and calculate the weight values 

in each state. We use Python to program in this module. We record the landmarks and get 

it prepared for the next module, the game runtime module. A very straightforward way to 

check whether the landmarks we find is really a landmark in the Dota 2 game is replaying 

the game again and move the camera to the place where the landmarks happen. There is a 

built-in command in the Dota 2 game that can allow setting the style and the location of 

the camera, focusing on a particular hero, and view the events just as the real scenario. 
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Figure 4.5: Procedure and component description classified by modules 

4.2.1 Preparing the Input Traces 

We download ten replay files from www.dotabank.com, a website that players 

can upload their game replays and share with each other. The replay file is encoded into a 

format and the information inside is highly compressed. We use Tarrasque project on 

Github to parse the replay file and give the output in a form that is easy to use in the next 

steps. Restricted by the version update of the Dota 2 game, we cannot use a higher 

compressed version replay files that were published after July 2014, so the Tarrasque 

project can only parse the replay files prior to this time, which means we have ten replay 

files, each of them has a file size larger than 100MB. 

We coded in Python our implementation. First, we need to import the Tarrasque 

library to get access to all the parsing functions. Then we load the replay file directory to 

import the target file we want to parse. We can easily parse the replay files by using the 

function: tarrasque.StreamBinding.from_file(target_file_directory), to load all the data 

into computer’s memory.  
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The first step in our code is searching for the player names in the game. We need 

to know who plays in the replay file and which team (radiant or dire) does he belongs to. 

We need to take care of the name tag on each player. Tarrasque will throw an exception 

on the characters that are not in UTF-8. It means that some replay files cannot be 

correctly parsed because the user ID given by the players can be accepted by the game 

platform, but cannot be accepted in the Tarrasque. The replay files should be carefully 

picked on dotabank.com. This problem can be solved by viewing the detailed information 

on the web page of that replay file, and we can get rid of such character failure 

beforehand without downloading and loading them in our code.  

The second step is reading hero names and matching them to the players that is 

playing in this game. We create a file in JSON format that records all the localized hero 

names. These names are official names in the Dota 2 game. These 107 hero names are 

easier to use than looking up the players’ ID. After we load this file, we put the localized 

hero names onto the player IDs. By using this block of code we are able to view each 

player’s hero and we make these heroes into an ordered array, that we know the index of 

each hero in our output JSON file.  

The last step in parsing replay files is iterating over each tick to extract from the 

game trace  the health, mana, location x, location y, time information in that tick. The tick 

is adjustable, but in our code we just use Dota 2’s default tick, which is approximately 

0.06 second in each interval. In each tick, we firstly get the official name of the hero from 

the array we created in our previous step, then we use this name and the tick to locate the 

detailed memory location, to get the health, mana, location x, and location y in that tick. 

We formulate this data into a formatted form in JSON and dumping them into an output 
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JSON file. The actual parsed file is usually more than one hundred MBs, because it is no 

longer highly compressed. On the other hand, the data in the parsed file is easier to view. 

Here is the format: 

{ 

"max_mana": 299.0364990234375,  

"mana": 299.0364990234375,  

"player": 1,  

"health": 492,  

"y": -6784.0,  

"x": -6912.0,  

"max_health": 492 

}, 

… 

The JSON file we parsed needs to be translated into input traces. Based on the 

JSON library in Python, we load the JSON file and make all the ticks in the file into an 

array. The array we created in the memory is the input trace that is used in the finding 

landmarks module. We have several reasons for creating the JSON file as a middle point 

between the replay file and input traces. First, it is easier to examine whether we have a 

correct parsed output, since we cannot understand the raw data in replay files. Second, 

the JSON file we created can be used in both Linux and Windows operating systems, 

while we can only use Linux to run the Tarrasque Parsing tool.    

4.2.2 Finding Landmarks Using Weight and Similarity Algorithm 

For the similarity algorithm, we need to define what a team fight is. The team 

fight is an event in which at least two heroes from each side is attaching their enemies in 
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the same region. The region size can vary, but should be a small region compared to the 

total size of the game map. So we set up a threshold that can restrict the region where the 

team fight happens. This threshold is based on experience, starting from 2% to 5% of the 

map size. There is no need to make our threshold larger because the threshold larger than 

5% is a large rectangle in the game, which can even cover two defensive towers; this 

means some cases that are actually not team fights will be recognized as team fights, so it 

would lead to misclassification. We increase the threshold by 1% every step. Also, we 

use the health, mana information to determine whether the event is really a team fight 

because when the team fight happens, heroes have dramatic health and mana fluctuation 

or even died (health equals to zero).  

In calculating the similarity values, we generate all possible combinations of 

heroes on the map, and search for the maximum location x, location y, and minimum 

location x, location y in each state. If the range satisfy the threshold we set, this is a 

similar state in that trace. 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘

= {𝑆|
(𝑀𝐴𝑋(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑥𝑖) − 𝑀𝐼𝑁 (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑥𝑗) < 𝑀𝑎𝑝 𝑆𝑖𝑧𝑒𝑥 ∗ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑥) ,

(𝑀𝐴𝑋(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑦𝑖) −𝑀𝐼𝑁 (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑦𝑗) < 𝑀𝑎𝑝 𝑆𝑖𝑧𝑒𝑦 ∗ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑦)
} 

The similarity states are marked as tunnels between two traces, and the distance in 

this tunnel depends on the state location in that trace. If two states are similar states and 

both of them are located at the end of the trace, the difference of the location percentage 

is very small, so the tunnel cost (the similarity value) is small. And if one state is at the 

beginning of the game in one trace, but the other is at the end, the similarity value of 
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these two traces are very big. Then the weight algorithm’s state runner and state seeker 

are less likely to choose this tunnel because it has a higher value of visiting another trace. 

We use the general weight calculation algorithm as we have discussed in Section 

3.3.1. We choose a base trace at first, and then set up the current state, state runner on 

that trace. The state runner will run to the tunnel state and calculate the distance from the 

current state to all the other states on the other trace. The tunnel is created by the state 

runner and the state seeker; the runner’s and the seeker’s distance is determined by the 

returned value from similarity algorithm. In the Dota 2 game, even though a team fight 

usually takes only a few seconds, it still occupy many ticks. For example, if the team 

fight takes ten seconds, and the tick period is 0.06 second per tick, we will have more 

than 150 continuous states in a team fight. So in the Dota 2 domain, a landmark is a 

period of states that satisfies our requirement as opposed to a single state.  

4.2.3 Managing the Camera in the Dota 2 Game 

The best way to examine the correctness of the landmarks is by putting them back 

into the replay files and view in Dota 2’s own replay mode. In order to see whether the 

landmarks really work, we need to be able to move to a particular time in the replay, and 

move the game camera to the location where a team fight is supposed to occur. Also, the 

camera’s focus is needs to be put on a particular hero so that we can move the camera 

according to the hero’s location change during the team fight. We use Dota 2 console 

commands to control the time and location of the camera in replay mode. 

In Dota 2 replay mode, we have four camera mode: directed camera, free camera, 

player perspective, and hero chase. For the directed camera mode, the camera will 
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automatically focus on the area filtered by Dota 2 itself. This may including team fights, 

first blood (i.e., the first time here is combat and one of the heroes loses health points), 

the defensive tower destroyed, attacking Roshan (i.e., the most powerful neutral creep in 

the game), etc. Some of these events do not happen in all the replays, so we cannot use 

this camera mode to check the landmarks. The hero chase mode is a good view point but 

it has its flaws. In this mode, people can also view the manipulation by the players, 

including the mouse hits, ability used, which can be distracting. But they are not our 

major concern. 

We use a combination of the console commands to choose the replay file, run the 

game, move to a particular time according to landmarks, and move the camera to the 

location where the landmarks happen. We notice that not all heroes participate in the 

team fight every time, so we look back to the parsed file, and select a hero who 

participated in this team fight, and is alive for the duration of the team fight. By making 

these restrictions, we wrote several console commands in Dota 2’s configuration file (see 

Table 4.6. 

dota_spectator_mode 3 Change the camera mode to “hero chage” 

dota_camera_lock 1 Lock the camera 

demo_gototick 123456 Go to the 123456th tick in this replay 

dota_spectator_hero_index 3 Pick hero in index 3 and focus on him 

Dota_camera_getpos Get current position(x, y, z) in the game 

Table 4.6: A list of Dota 2 console commands that we used in representing the 

landmarks. 

  



49 
 

5: Experiment 

In this chapter, we report on our experiment for finding the landmarks in the 

transportation domain, the Dota 2 domain, and the experiment taken on the Amazon 

mechanical turk to collect the feedbacks from Dota 2 expert players.  

In the new transportation domain and the Dota 2 domain, we implement the code 

and report on results from our programs. We provide figures and tables to show the result 

calculated by our weight and similarity algorithms as we discussed in Chapter 3 and 

Chapter 4.  

For the Amazon mechanical turk section, we by using a series of videos. They 

show when and where the landmarks occur. We upload ten pairs of the videos onto the 

Amazon mechanical turk, and receive feedbacks from turkers (i.e., online mechanical 

turk workers) who are experts in the Dota 2 game.  Then we analyze the data given by 

these users and draw our conclusions. Our hypothesis is that the weight and similarity 

algorithm is a good implementation in finding the landmarks in the transportation 

domain, and it is also very useful in finding the important event in the Dota 2 game. 

5.1: Experimental Setup 

 In this section we introduce our experimental setup for the transportation domain 

experiment, the Dota 2 domain experiment, and the Amazon mechanical turk setup. In 

order to discover the landmarks in these domains, we wrote different code to import the 

input traces from their data sources, and we realize our weight and similarity algorithm in 

two different ways. 
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The software, program and code mentioned in this section is compiled and run on 

the computer which is equipped with Intel Core i7-4770 CPU, 3.40GHz processor, 16.0 

Gigabytes installed memory(RAM), and the operating system is a 64-bit Windows 7 

professional. 

5.1.1 Transportation Domain 

The data sources in our new transportation domain are from the JSHOP program, 

which is developed by Dana Nau, Yue Cao, Amonon Lotem, and Hector Munoz-Avila, 

1999. The input files are called “domain.shp” and “problem.shp”. In the domain file we 

wrote a complete list of operators with their own adding list and deleting list. We also 

add some other rules and axioms in this file. In the problem file we wrote the initial state 

and we described our final goal. 

We use C++ to code the parsing and finding landmarks modules. The integrated 

development environment is Microsoft Visual Studio 2012. The input files are from the 

results given by JSHOP, and the output forms are list of float values that can show the 

landmarks which have lower values. These final output data is stored in a text file. 

5.1.2 Dota 2 Domain 

In order to generate the replay files that are played by other players, we use 

www.dotabank.com to download 10 Dota 2 replay files. The suffix of these replay files 

are “*.dem” and all these files are parsed by the tool called Tarrasque. Tarrasque is 

downloaded from Github. 

The Tarrasque project requires to be running on a Linux operating system, so we 

set up the environment by using the virtual box version 4.3.2. We installed the Linux 
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operating system: a 64-bit Ubuntu 12.04 LTS version, and we set up a virtual Python 

compiling and running environment on Ubuntu. After the Tarrasque project is 

successfully installed, we import 10 replay files and run our Python code. The Tarrasque 

project is actually a library so we do not need to worry about the code inside this project. 

After we have all the parsed 10 JSON files, we run our Python code, which 

contains the similarity and weight algorithms, to explore landmarks. The results are also 

stored in a text file that contains a list of landmarks in that replay. In order to run the 

python code on the Windows 7 operating system, we use the Python 2.7.9 for Windows 

and we make some modifications on our code to satisfy the input/output requirement on 

Windows operating system. 

The Dota 2 game is already installed in our computer, and we write a Dota 2 

console command list in an automatic execute file. We save this file under 

“Dota2\Steam\SteamApps\common\dota 2 beta\dota\cfg”, and we rename this file to 

“exec.cfg”. Before Dota 2 is opened, we need to add “-console” in the launch options of 

Dota 2 properties in STEAM platform. When the Dota 2 game is opened, we need to 

firstly open the command line window and use the command: playdemo *.dem to play 

the replay file and “exec exec.cfg” to apply the camera settings and load the time and 

locations where our landmarks are. 

We use a video recording software “Lukool Recorder” to make videos that is 

around ten to twenty seconds. The videos we take are corresponding to the landmarks we 

discovered in previous steps. 
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5.1.3 Amazon Mechanical Turk 

In order to ask people in Amazon mechanical turk to answer the questions in our 

experiment, we passed the web-training certification from The National Institute of 

Health (NIH) Office of Extramural Research and obtain approval from IRB. 

We prepare 10 pairs of videos corresponding to 10 input traces we choose in our 

experiment. For each pair, one shows the landmark that has lower calculated weight 

value based on the weight and similarity algorithm, and the other shows a higher weight 

value calculated in the same circumstance. The landmark which has lower value should 

be more informative than the other one. Subjects will have no control over the game 

replay itself, and each video will be unlabeled so as to reduce bias. Subjects will not 

know how the play scenes were selected nor will they know that the selection was based 

on what we consider strong/weak versions of our algorithm. 

The person who take this experiment will be asked for several questions to be 

examined whether s/he has a prior experience in playing the Dota 2 game, and whether 

s/he is an expert player. We will divide participants in 3 groups: (1) the expert in playing 

Dota 2, (2) those who have played Dota 2 before but do not have much experience in this 

game, and (3) not played any Dota 2 before. The participants will not know which group 

they have been classified to. Each participant will be shown a 5-minute video showing 

the fundamental concepts of Dota 2. Then each participant will be shown between 10 

pairs of videos as described before. Each video lasts around 10 to 20 seconds.  

After each pair of videos are shown, each participant will be asked two questions 

that evaluate both objective and subjective criteria in relation to the videos. The 
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participants will be asked which of the two videos the participants find (1) more 

informative about the events occurring in the game and (2) more entertaining to watch. 

Participants (called turkers) will be compensated monetarily via the Amazon 

Mechanical Turk platform. We will collect all results and run a student t-test to determine 

if there is any significance in difference between preference on the pairs of videos (for 

both, the "informative" and the "entertaining" categories). 

Figure 5.1: Segment of the consent form of our experiment on Amazon mechanical turk. 
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Figure 5.2: The pre-test questionnaire that is used to classify people whether he is an 

expert in play the Dota 2 game. 

Figure 5.3: Two questions are asked after the participants finished watching a pair of 

videos. 

5.2: Experimental Results 

In this section, we discuss the experimental results on the new transportation 

domain, the Dota 2 domain, and our Amazon mechanical turk survey results. We analyze 

these results and assess our implementations in both transportation and Dota 2 domain. 

Based on the results we analyzed, we found that our method, which is using the similarity 

and weight algorithms to find landmarks, or important states in both domains, can 

effectively identify important events for the most part. We also discuss some difficulties 

in our experiments. We examine these difficulties and suggest how to solve them in 

future works. 
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5.2.1 Transportation Domain Results 

 The final output format in transportation domain is a list of weight values in each 

trace. These values can reflect the importance of a state whether one state is important 

enough to be considered as a landmark. Based on our algorithms, the lower (smaller) 

value in the final output list, the more important event; this state is a landmark in our 

domain. In our transportation domain experiment, we imported 40 traces and in the end 

we have a list of 40 weighted values. The landmarks, as we have discussed in Section 2.2, 

are a kind of states that every trace will visit, independent of how the traces differ from 

one another. When the code outputs all the lists of weighted values, we can look into the 

weight data and expect a distinguished value difference of these landmarks from the other 

normal states. 

 The resulting weight values are shown in Table 5.1. We show four digits after the 

decimal. We show them into two columns to have a better appearance. We also show the 

actual input trace in Table 5.2 (the operator trace, not the state trace), which is generated 

by the JSHOP program. 

State 1 (Initial state) 12.2270 State 12 12.2270 

State 2 12.2270 State 13 12.2270 

State 3 12.6381 State 14 12.2770 

State 4 12.6381 State 15 12.6396 

State 5 12.6381 State 16 12.6396 

State 6 12.6381 State 17 12.6396 

State 7 13.0035 State 18 13.0042 

State 8 13.0035 State 19 13.0042 

State 9 12.2270 State 20 12.6396 

State 10 12.2270 State 21 12.2270 

State 11 12.2270 State22(final state) 12.2270 

Table 5.1: The final output weight value list of the 1st trace calculated by our algorithms 
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State 1 load-truck pack1 t1 loc1 State 12 unload-rocket pack1 rocket1 lc2 

State 2 drive-truck t1 loc1 ap1 State 13 load-truck pack1 t3 lc2 

State 3 unload-truck pack1 t1 ap1 State 14 drive-truck t3 lc2 ap5 

State 4 load-airplane pack1 plane1 ap1 State 15 unload-truck pack1 t3 ap5 

State 5 fly-airplane plane1 ap1 ap3 State 16 load-airplane pack1 plane3 ap5 

State 6 unload-airplane pack1 plane1 ap3 State 17 fly-airplane plane3 ap5 ap7 

State 7 load-truck pack1 t2 ap3 State 18 unload-airplane pack1 plane3 ap7 

State 8 drive-truck t2 ap3 lc1 State 19 load-truck pack1 t4 ap7 

State 9 unload-truck pack1 t2 lc1 State 20 drive-truck t4 ap7 loc8 

State 10 load-rocket pack1 rocket1 lc1 State 21 unload-truck pack1 t4 loc8 

State 11 fly-rocket rocket1 lc1 lc2 State 22  

Table 5.2: The states associated with their operators in the 1st trace 

From the result in Table 5.2, we find that the weight value 12.2270 is the 

minimum value in the first state trace. We use the first state in Table 5.2 as an example to 

analyze the weight value. In the first state of the 1st trace, we can say this state is a 

landmark because all traces will start from this state. This satisfy the definition of 

landmark, which is a state that is visited in every trace. The minimum value is expected 

because of the following two reasons: (1) in the similarity algorithm, we need to find a 

tunnel between the state runner and state seeker, which is the shortest distance from the 

current state to the other trace. As the similarity algorithm is calculating the distance 

between the first state in the first trace and other states from other traces, both the first 

states from two traces can be perfectly matched as they are the same. As a result, the 

similarity algorithm will consider the distance between every first state is 0. (2) in the 

weight algorithm, starting from the current state (the first state from the first trace), the 

tunnel found by the similarity algorithm is applying a distance of 0 to visit other states in 

other traces. So the sum value is 10542, and the number of visited states in this case is 

862. The result is 12.2770 and this value is a landmark. 
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For the values 12.6381, 13.0035, 12.6396, and 13.0042, they can still be 

considered as landmarks for the following two reasons. We use state 3 in Table 5.1 as an 

example. (1) state 3 is generated by applying the adding list and deleting list of the 

operator: drive-truck t1 loc1 ap1. In this state, the truck 1 goes to airport 1, while it has 

another option, which is driving the truck to airport 2. So in the similarity algorithm, 

when we are using the first trace, in which the truck 1 goes to airport 1, and we are trying 

to find a similar state in other traces, we have two situations: (i) the truck 1 still choose 

airport 1 in the other trace, and (ii) the truck 1 chooses airport 2 to deliver the package. 

For the first situation, the two states from two traces can be perfectly matched, but for the 

second situation, two states are recognized as similar states, and the distance should be 

added by 1 because airport 1 and airport 2 are different airports but they are in the same 

city. (2) in the weight algorithm, the shortest distance from state 3 to other states is the 

tunnel between state 3 and similar states from other traces, so the sum of the distance will 

be greater than 10542. Even though the final value is greater than 12.2770, we still 

consider these states are important state because they are only having the similarity 

difference from 0 to 1, which means the state runner is actually the current state itself. 

They are still landmarks, but not as important as the ones which has the minimum value. 

The first trace is a special trace because it includes all the important states in our 

domain. Tables 5.3 and 5.4 show another final result from the 8th trace in our input trace 

set. 

State 1 (Initial stete) 12.2810 State 16 12.2810 

State 2 12.2810 State 17 12.2810 

State 3 13.0281 State 18 12.2810 

State 4 12.6885 State 19 13.0298 

State 5 12.6885 State 20 13.4693 
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State 6 12.8946 State 21 12.7131 

State 7 12.8946 State 22 12.7131 

State 8 12.8946 State 23 12.7131 

State 9 13.6979 State 24 12.9215 

State 10 12.8932 State 25 12.9215 

State 11 13.7004 State 26 13.6892 

State 12 13.7286 State 27 12.5741 

State 13 12.2810 State 28 13.4603 

State 14 12.2810 State 29 12.2810 

State 15 12.2810 State30(final state) 12.2810 

Table 5.3: The final output weight value list of the 8th trace calculated by our algorithms 

State 1 load-truck pack1 t1 loc1 State 16 unload-rocket pack1 rocket1 lc2 

State 2 drive-truck t1 loc1 loc2 State 17 load-truck pack1 t3 lc2 

State 3 drive-truck t1 loc2 ap1 State 18 drive-truck t3 lc2 loc5 

State 4 unload-truck pack1 t1 ap1 State 19 drive-truck t3 loc5 loc6 

State 5 load-airplane pack1 plane1 ap1 State 20 drive-truck t3 loc6 ap5 

State 6 fly-airplane plane1 ap1 ap4 State 21 unload-truck pack1 t3 ap5 

State 7 unload-airplane pack1 plane1 ap4 State 22 load-airplane pack1 plane3 ap5 

State 8 drive-truck t1 ap3 ap4 State 23 fly-airplane plane3 ap5 ap8 

State 9 load-truck pack1 t2 ap4 State 24 unload-airplane pack1 plane3 ap8 

State 10 drive-truck t2 ap4 loc3 State 25 drive-truck t4 ap7 ap8 

State 11 drive-truck t2 loc3 loc4 State 26 load-truck pack1 t4 ap8 

State 12 drive-truck t2 loc4 lc1 State 27 drive-truck t4 ap8 loc7 

State 13 unload-truck pack1 t2 lc1 State 28 drive-truck t4 loc7 loc8 

State 14 load-rocket pack1 rocket1 lc1 State 29 unload-truck pack1 t4 loc8 

State 15 fly-rocket rocket1 lc1 lc2 State 30  

Table 5.4: The states associated with their operators in the 8th trace 

From the Table 5.3, the minimum value is 12.2810. This matches our domain 

definition, which the package is only allowed to use rockets to be transported to another 

planet. The difference between the first trace and this eighth trace is that, in the 8th trace, 

additional states are added. The additional states mean several states occur in the 8th 

trace, but not in the other traces. For example, for the state: truck 1 is in location 2, truck 

2 is in location 3 and location 4, etc. only occurs in the 8th trace. For these states that only 

occur in one trace, they are definitely not landmarks because they are single occurrence 

events. In the similarity algorithm, the additional state cannot find its matching or similar 
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states in other traces, so it has to visit the nearest tunnel to visit other traces. This adds up 

to the total distance from these additional states, and the averaged values must be higher 

than those states which are standing on the state runner. We can get a better 

understanding of the landmarks and those ordinary states by analyzing Figure 5.4 and 

Figure 5.5. 

 

Figure 5.4: The weight value distribution in the 1st trace. 

 

Figure 5.5: The weight value distribution in the 8th trace. 
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Figure 5.4 and Figure 5.5 show that the landmark has a low value. Independent of 

the final weight value we choose from the input trace set, the first few states and last few 

states always have the lowest weight values (and hence are considered landmarks because 

every trace starts from the same state and ends in the same state. Also, we noticed that in 

the middle part of each trace, there exists a series of landmarks: when (1) the package 

arrives at the launch center, (2) the package is loaded into the rocket, (3) the rocket is 

arrived at the planet 2, and (4) the package is located in launch center 2. So our 

algorithms can accurately find the highest landmarks (the ones that has the minimum 

values) by overlapping all the results together. The highest landmarks also match our 

previous expectations, which is that taking the rocket is the only way to deliver the 

package to the destination, if the destination is on another planet. 

From Figure 5.5, we are also able to observe a distinguishing difference between 

ordinary states (the points which has highest values) and the points whose values are in 

the middle level in the figure. Compared to Figure 5.4, we see that the middle level points 

are having the same height with the higher value set of points in Figure 5.4. Knowing that 

the 1st trace has included all the important states and no other additional states, we can 

conclude that in the 8th trace (shown in Figure 5.4), all the states having a middle level 

values are also landmarks. These landmarks are not as important as the ones that are 

having the minimum value  because the similarity distance is applied, the distance is 

more than 0. 
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5.2.2 Dota 2 Domain Results 

 In the Dota 2 domain, we use our weight and similarity algorithms to find 

important events in the Dota 2 game. The output format for each input trace is a list of 

time and location when  the team fight happens. We use these lists of time and location 

information to trace back the events in the Dota 2 game replay mode. So the real replay 

mode can check if the landmarks the system finds correspond to important events in the 

game. 

 We have ten lists of locations and the time information. We organized them in 

Table 5.5. The lower row shows a lower landmark period, and the higher row shows a 

higher landmark period. The hero index is the index we will use in controlling the Dota 2 

camera in the game. The “from” tick and “to” tick is the start and end time when team 

fights take place. 

Trace #1 

 Hero Index From (tick) To (tick) 

Lower 3 1184.33239746 1185.39880371 

Higher 3 2560.29980469 2563.31005859 

Trace #2 

 Hero Index From (tick) To (tick) 

Lower 5 2034.3248291 2277.50317383 

Higher 0 3469.5637207 3473.64428711 

Trace #3 

 Hero Index From (tick) To (tick) 

Lower 1 3289.58398438 3292.59423828 

Higher 1 3948.49511719 3949.36474609 

Trace #4 

 Hero Index From (tick) To (tick) 

Lower 2 1576.96984863 1589.56677246 

Higher 7 2231.47973633 2233.15209961 

Trace #5 

 Hero Index From (tick) To (tick) 

Lower 0 3254.49780273 3257.44116211 

Higher 6 3272.02416992 3277.77709961 

Trace #6 
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 Hero Index From (tick) To (tick) 

Lower 4 3065.72143555 3067.1262207 

Higher 4 3404.64257812 3406.04736328 

Trace #7 

 Hero Index From (tick) To (tick) 

Lower 2 911.399047852 912.26550293 

Higher 1 2377.61083984 2390.58837891 

Trace #8 

 Hero Index From (tick) To (tick) 

Lower 0 2152.51074219 2165.02001953 

Higher 0 2475.81201172 2501.70019531 

Trace #9 

 Hero Index From (tick) To (tick) 

Lower 2 938.759033203 939.825439453 

Higher 2 1134.17797852 1135.57763672 

Trace #10 

 Hero Index From (tick) To (tick) 

Lower 4 2223.95410156 2225.92749023 

Higher 4 2668.1003418 2706.49780273 

Table 5.5: The output result from Dota 2 domain 

We then use the start time and end time from Table 5.5, put them into the script 

for controlling the camera in Dota 2 replay mode. We took 10 pairs of videos. Each pair 

of video records two periods in the game, including the lower landmark and the higher 

landmark respectively. In Dota 2 replay mode, the time in selecting heroes and pre-

preparation is not counted into the time we have in Table 5.5. So we make some 

modifications on the replay mode. We skip to the beginning of the battle starts rather than 

beginning from the file is read. We compare the videos we record with the landmarks we 

found by checking whether the event happened at our setting time and location can show 

the importance in the whole game. 
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Figure 5.6: A team fight extracted by our algorithm. This team fight has a lower 

landmark. 

Figure 5.6 and Figure 5.7 show team fights that were found by our similarity and 

weight algorithm, and also control the camera in a good view point. The time where the 

team fight happens may have some bias so we picked a proper time in the game to start 

recording the videos. The start time calculated by our algorithms can still help us find 

when and where this team fight happens while a 5% bias is occurring in real-time.  
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Figure 5.7: A team fight extracted by our algorithm. This team fight has a higher 

landmark. 

The mini map is a useful tool in Dota 2 which can help players and reviewers 

have a straightforward view on the whole game at that time. The mini map is located in 

the left-bottom side of the game screen. We can obtain heroes’ locations from the mini 

map, and we can predict the trends of a game by checking how many defensive towers 

are destroyed by the enemies. When we look at Figure 5.6 and Figure 5.7, from their mini 

maps, we know that for Figure 5.6, the team fight is happening in the upper lane of the 

middle map and many heroes are participating in this team fight. For Figure 5.7, we see 

that the team fight is in dire’s base, very close to dire’s ancients. After viewing both 

videos, we can predict that on Figure 5.7, the team fight which has a higher landmark and 

the radiant’s team will win this game. In Figure 5.6, we cannot tell which team will win 

because this video does not provide enough information. This means the pairs of videos 



65 
 

we take can match the importance of the landmarks we extracted from our weight and 

similarity algorithms. For the other 9 pairs of videos, no matter which team (radiant or 

dire) wins the game, the team fight will be more informative when it happens near, or 

inside, their opponents’ base (ancients). We are more likely to predict who will win from 

those team fights which have higher level landmarks (i.e., lower weighted values in our 

algorithm). 

5.2.3 Amazon Turk Results 

We posted our experiment on Amazon mechanical turk website. The experiment 

name was “Dota 2 MOBA Camera View Experiment”. The experiment we completed in 

a very short time; it was completed within 8 hours. We have 90 valid records submitted 

from turkers. A turker took, on average, 12 minutes 59 seconds to finish our experiment, 

which falls within our allocated time of 30 minutes. 

We divide 90 participants into 3 groups: the expert group, the intermediate group, 

and the novice group. For the expert group, a turker must answer at most one 

qualification questions incorrectly. For the intermediate group, a turker must answer 

exactly 2 questions correctly. And for the novice group, there are two cases, one is a 

turker answers at most one question correctly, the other is his or her answers is not 

making any sense. Figure 5.8 shows the resulting grouping. 
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 Figure 5.8: The composition of participants in each group 

We will focus on the expert group and the intermediate group because only these 

two groups of participants have the needed qualifications for our analysis. Only the 

person who answers at least two questions correctly can be recognized as an experienced 

player in the Dota 2 game. Their test answers are analyzed in Table 5.6. 

Pair 1 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 7 6 5 3 5 10 

Expert+Interm 9 9 7 3 8 14 

Pair 2 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 8 6 4 3 7 8 

Expert+Interm 12 8 5 5 10 10 

Pair 3 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 11 2 5 5 4 9 

Expert+Interm 15 3 7 6 8 11 

Pair 4 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 14 4 0 5 3 10 

Expert+Interm 17 6 2 7 6 12 

Pair 5 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 15 0 3 9 4 5 

Expert+Interm 19 2 4 12 5 8 

Expert, 18, 
20%

Intermediate, 
8, 9%

Novice, 64, 
71%

Turker Composition by Group
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Pair 6 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 13 2 3 3 4 11 

Expert+Interm 17 4 4 6 4 15 

Pair 7 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 7 8 3 5 4 9 

Expert+Interm 10 11 4 5 8 12 

Pair 8 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 4 12 2 1 9 8 

Expert+Interm 7 14 4 4 9 12 

Pair 9 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 8 7 3 3 4 11 

Expert+Interm 10 9 6 3 5 17 

Pair 10 Question 1 (more informative) Question 2 (more entertaining) 

Video 1 Video 2 Same Video 1 Video 2 Same 

Expert 7 6 5 2 4 12 

Expert+Interm 7 8 10 2 5 18 

Table 5.6: Amazon mechanical turk experiment result. (Expert and expert+ intermediate) 

Pair 3, Pair 5, Pair 6, Pair 7, and Pair 9 are classified as the ‘matching’ results 

among the 10 pairs. In these pairs, the videos which are having higher landmarks (this 

means it is more likely to happen in the games and more important than the other one) are 

having in common that one team is going to win the game. Compared to the other video 

in the pair, the other one cannot provide enough information that make it a meaningful 

team fight because it is not clear who will win. 

It is more common that the participants will choose higher landmark video when 

the situation is very clear. For example, participants will more likely choose the correct 

video (the one with  the higher landmark) when one lane’s towers and barriers are all 

cleared off, which means this team will be able to attack enemies’ base which has a high 

winning possibility. Commonly, people are more willing to decide that one side will win 
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by comparing the situations of both team. If the attacking team wins the team fight when 

they are attacking their enemies’ base, a majority of the participants will choose the 

correct answer. In Pair 3, Pair 5, Pair 6, the percentage of choosing the desired video is 

higher than the other two (the other video, or about the same). In Pair 7, even though the 

dire’s team will win, video 2’s people is only a little more than video 1, but it can still 

indicate that the dire’s team will win in the game. 

Participants will not choose a higher landmark video when the situation is not 

clear enough. In Pair 9, even though the radiant’s team is trying to attack dire’s base, the 

result does not tell much difference between two videos; video 1’s percentage is 

marginally higher than video 2. This is because dire’s tower and barriers are not 

destroyed totally in one lane, which means which team will win is still unknown in the 

higher landmark video. 

Pair 2, Pair 4, Pair 8 are classified as the ‘not matching’ results among 10 pairs. 

All these videos have distinguished difference between video 1 and video 2. This means 

that the results are conclusive. The quality of the game, which might be the key point in 

this ‘not match’ class, is the reason for this result. The quality of the game consists of 

many elements. For example, in Pair 4, one hero is not killed in the team fight when 

facing with four enemies, although the HP of that hero is really low but nevertheless 

survived. Then with the assistance with his/her teammates, they won the team fight in the 

end. This team fight is a good one to say it is very informative, and entertaining, but it it 

is not a landmark. Also in Pair 8, the team fight efficiency is very high, which means the 

radiant’s team ended up the team fight by killing all the enemies very quickly without 

much difficulty. But it is not the video that has higher landmark. Participants’ decisions 
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are made by the ‘more informative’ and ‘more entertaining’ elements, so whether a team 

fight is considered exiting made a difference here. 

Also, all these three videos pairs are not indicative of which team will win in the 

end. The participants cannot observe any lane’s towers or barriers been destroyed. 

Pair 1, Pair 10 are classified as the ‘no much difference’ among the 10 pairs. For 

Pair 1, ignoring the mini map in the left bottom corner of the screen, the participants may 

have difficulty in assessing the importance of the game situation by only looking at the 

team fight. The mini map is a very useful tool to have a view of the buildings and 

location of each heroes in the game. We did not notify the participants to consider the 

mini map and this may have led to it not been considered in the first video pairs. 

For Pair 10, there is no much difference in the selection of the two videos. Even 

though it is very clear that video 2, which has higher landmark may be the one that is 

mostly chosen, the result shows the answer is mostly selected as ‘about the same’. Some 

participants did not finish the experiment because they left the question of last pair videos 

blank. The data collected then is not as accurate as expected. 

5.3: Discussion 

Based on the analysis of the result we get in our new transportation domain, we 

found that the true landmarks can be identified by our similarity and weight algorithm 

designed for the transportation domain. The result shows that the most important 

landmarks have the minimum value among all the states in one trace as we had predicted. 

These minimum values vary in different traces, but the region where the minimum values 

show up overlaps in all the traces. The highest, or the most important landmarks are 
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highlighted as the ones that have the minimum values. We also found that the lower-

score landmarks (i.e., not true landmarks) can be found by the values with greater 

weights and they tend to be uniformity in a small range of values. These lower-score 

landmarks have smaller values than the states that are not considered as landmarks. From 

the experimental results in Section 5.2.1, we noticed that the difference between normal 

states and lower level landmarks is not large. In our similarity and weight algorithms, the 

difference should be more obvious because the normal states need to add additional 

distance to visit the tunnel bridged between two traces. We may have a more 

distinguished difference between normal states and the lower landmark states, if we add 

more locations to visit. Because in our scenarios, we only have two locations in each city, 

which means the truck will have only 2 choices to go from one location to one airport: (1) 

to directly go to the airport, and (2) to visit another location and then going to the airport. 

If we have 3 locations in each city, for a single activity: drive the truck, we can have 5 

possibilities. One is directly going to the airport, two are visiting only one location, and 

two are visiting two other locations. So if the number of locations increases, for those 

normal states, they will require more distance to visit the nearest tunnel to reach to the 

other trace, and this will increase the final weighted values of normal states which we can 

have a more distinguished comparison between normal states and lower landmarks states. 

 For the experiment on Amazon mechanical turk, we discovered that the 

participants made decisions very clearly based on the situations that the videos show in 

that pair. For the “matching” class, the choices of “which video is more informative” 

question is quite clear. Participants are able to tell which team will win the game if the 

higher landmark video happens in one of the team’s ancients. This means the attacking 
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team has destroyed all the defensive towers in at least one lane and will try to attack their 

enemies’ ancients. Also, for the “not matching” class, the participants cannot tell which 

team will win the game when both videos in one pair do not show a clear situation in the 

game. From the experimental results, we noticed that participants will mostly vote to the 

video which has more exiting events in the team fight itself, rather than considering the 

importance of the team fight to the whole game. 

 We found that the mini map provides a good view on the whole situation of the 

game during the time the video is taken. Participants can have a very straightforward 

view of which lane of defense is cleared, which team is approaching their enemies’ 

ancients, and where is the team fight happening. We also noticed that among the pairs 

after pair 2, the participants are making very clear choices among the videos. In contrast 

for the first two videos, the choice distribution is quite even, which means people are not 

making a very clear decision on which video to choose. We believe that the reason for 

this is because we did not mention the participants to consider the mini map, and 

suggested that viewing the mini map as an important element to decide which video is 

more informative and which video is more entertaining to watch. 

 For the pairs that their results are not matching our expectations, we speculate that 

participants may be more likely to choose the higher landmark video if they are given a 

little longer video. For example, if we extend the video for pair 2, 4, and 8 from three to 

five minutes, participants might be more likely to choose the ones that match our 

expectations. Also the results accuracy will be enhanced if we can have more valid Dota 

2 experts in our experiment. 
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6. Final Remarks 

6.1: Conclusions 

In this thesis we designed a method to find important events, which is also called 

landmarks in a new transportation domain and the Dota 2 game domain. This method is 

realized by our similarity algorithm and our weight algorithm. We present the general 

calculating procedure of these two algorithms and implement them into both domains we 

have in our thesis. For the similarity algorithm, it is capable of searching for matching or 

similar states from two different input traces. The similarity extent is returned as a 

distance value based on how similar these two states are. Tunnels are bridged between 

two traces if the similarity value satisfies our requirements. For the weight algorithm, a 

value of an averaged distance from one state to all the other states on other traces is 

calculated, and become a measurement of how important this state is in the whole trace of 

states. The method we use in this thesis can present an automatic and straightforward 

implementation in helping people to find important events in a particular domain. And no 

matter how the domain changes, the similarity and weight algorithms are the general idea 

in realizing searching for important events, also called landmarks, in different domains. 

The experiments are taken to test the realization of the weight and the similarity 

algorithms in both new transportation domain and the Dota 2 domain. For the new 

transportation domain, these two algorithms work well and the landmarks are correctly 

found. The highest landmarks, which are remarked as the states that have minimum 

weighted values, and the landmarks that every trace will visit. The lower landmark states 

are also found based on the greater values compared to the highest landmarks. The 

ordinary states have highest calculated values and it shows the difference with the higher 
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or lower landmarks clearly. We also find some flaws in our transportation domain 

because we discover the difference between ordinary states and landmarks is not so 

distinguished as we expect, and we propose to increase the number of locations to give 

more trace vary possibilities in our domain. 

Our algorithms can successfully find important events, also called landmarks in 

the Dota 2 domain. The algorithms can also locate the time and the locations where team 

fights happen. We put the landmarks back into the Dota 2 replay mode, direct the camera 

to the time and place based on the results calculated by our algorithms. Although the 

camera has some bias in the start time and end time of the team fight which the landmark 

data refers to, it still can match the team fight correctly. 

The results from Amazon mechanical turk show that most turkers can correctly 

choose a video which has a higher landmark (more important) when the situation of the 

game is quite clear. Turkers have no difficulty to choose a video in which one team is 

attacking their enemy team’s ancients, which means the attacking team will win the 

game. They cannot make uniformed answer when both videos in a pair do not have a 

clear view of the team fight that happens near the ancients. The mini map at the corner of 

the screen is also a very good tool to view the situations during the video period. So the 

participants may forgot to view the mini map and cannot make correct decisions. The 

problems in this experiment can be concluded in the following aspects: (1) the duration of 

the video which has higher landmarks but does not show the situation as one team is 

having the team fight near the ancients will be extended to have a longer length, so the 

experiment participants can have a better understanding of the game situation and make 

correct decisions. (2) the mini map should be mentioned before the experiment 
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participants begin to take the experiment. This can let them have a better view point on 

the game process. (3) the number of valid Dota 2 game expert player should be enlarged. 

Based on the qualified participants we have in our Amazon mechanical turk experiment, 

the lack of valid feedbacks give us a fluctuation on the analysis of our conclusion. 

6.2: Future Work 

The Amazon turk experiment should be improved. This is a good implementation 

in checking the landmarks we find by our algorithms can be accepted and understood by 

most of the Dota 2 game expert players. First, we need to prepare a more simplified but 

efficient pre-test questionnaire, to check whether the experiment participant can be 

qualified into our expert or intermediate group. We can also enlarge the number of people 

which can participant in our experiment. Secondly, we are going to have a new 

combination of the pairs of videos in our experiment. One is the video in pair 1 has a 

lower landmark, and the other has higher landmarks. The video which has higher 

landmarks is taken place in one team’s base, very close to the ancients. Another pair of 

the videos is the video in pair 2 has a lower landmark, and the other has higher 

landmarks. But both of these videos are not taken place near the ancients, which is used 

to compare to pair 1. In pair 3, we still use the pairs of video in pair 2, but the duration of 

the video which has higher landmarks may be extended to be more than 1 minute. This 

can allow us make a comparison to pair 2. Our expectation of participants’ choices is in 

pair 1, most people choose the video which has higher landmarks. For pair 2, the 

percentage of choosing video 1, video 2, and same option may be equal. And for pair 3, 

most of people will choose the video which has higher landmarks again. 
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