
Lehigh University
Lehigh Preserve

Theses and Dissertations

2012

Applications of Ontology in Heterogeneous Multi-
tier Networks for Network Management
Lisa M. Frye
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Frye, Lisa M., "Applications of Ontology in Heterogeneous Multi-tier Networks for Network Management" (2012). Theses and
Dissertations. Paper 1118.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1118?utm_source=preserve.lehigh.edu%2Fetd%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

APPLICATIONS OF ONTOLOGY IN HETEROGENEOUS MULTI-

TIER NETWORKS FOR NETWORK MANAGEMENT

by

Lisa M. Frye

A Dissertation

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Science

Lehigh University

January 2012

ii

© 2012 Copyright
Lisa M. Frye

iii

 Approved and recommended for acceptance as a dissertation in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Lisa M. Frye
Applications of Ontology in Heterogeneous Multi-tier Networks for Network
Management

Defense Date

Accepted Date

 Dissertation Director
 Liang Cheng
 Associate Professor
 Lehigh University

 Committee Members:

 Jeff Heflin
 Associate Professor
 Lehigh University

 Roger Nagel
 H. Wagner Professor
 Lehigh University

 Kent Wires
 Principal Software Architect
 LSI Corporation

iv

Acknowledgements

I would like to thank my advisor, Dr. Liang Cheng, for his support and guidance

throughout my dissertation work. He provided essential input and awareness that

facilitated higher quality research and publications.

I am appreciative of the constructive feedback and valuable insights provided by the

other committee members: Dr. Jeff Heflin, Dr. Roger Nagel, and Dr. Kent Wires. I am

thankful to them for their time, contributions and encouragement during my dissertation

process.

The input of my fellow members of the Laboratory Of Networking Group

(LONGLAB) at Lehigh University throughout this process was beneficial and I am

appreciative of their contributions. Specifically, I would like to thank Zhongliang Liang

for his collaboration on the development of the Analytical Model.

I am grateful to my colleagues at Kutztown University that sacrificed their time to

provide assistance. I would especially like to thank Dr. Randy Kaplan for his guidance

and motivation. I would also like to thank Dr. Dale Parson and Dr. Daniel Spiegel for

being readers.

Last, but certainly not least, I would like to thank all my family and friends that

provided support and love through this arduous process. I would especially like to thank

my mother and grandmother for their love and support and for teaching me when I was

young that I could achieve great things. I would also like to thank HL for the love and

understanding provided during this evolution and for reminding me that I am strong.

v

Table of Contents

Acknowledgements .. iv

List of Tables .. x

List of Figures .. xi

Abstract ... 1

 Introduction .. 4 Chapter 1

1.1 Contributions .. 11

1.2 Dissertation Roadmap .. 14

 Background Information .. 15 Chapter 2

2.1 Network Management .. 15

2.1.1 SNMP ... 18

2.2 Ontology ... 21

2.2.1 Knowledge Representation Languages .. 23

2.2.2 OWL ... 25

2.2.3 SPARQL .. 28

2.3 Queuing Theory .. 29

2.4 Intrusion Detection Systems ... 31

 Related Work ... 34 Chapter 3

3.1 Network Management .. 34

vi

3.1.1 Network Management Systems with Ontology ... 36

3.2 Analytical Models for Network Performance Analysis 41

3.3 Intrusion Detection Systems ... 45

3.3.1 Basic Intrusion Detection Systems ... 45

3.3.2 Reasoning-based Intrusion Detection Systems .. 50

3.3.3 Reasoning-based Intrusion Detection Systems with Ontology 53

 Network Management of a Heterogeneous, Multi-tier Network 67 Chapter 4

4.1 Challenges of Heterogeneous Multi-tier Network Management 67

4.2 An Overview of an Ontology-based Network Management System 68

4.3 The Ontology-based Approach ... 72

4.4 Implementation of the Ontology-based Network Management System 77

4.4.1 An Experimental Heterogeneous Multi-tier Network 78

4.4.2 A Test Heterogeneous Two-tier Network .. 80

4.4.3 Deployments in Live Networks ... 83

4.5 Chapter Summary ... 86

 An Analytical Model for Performance Analysis of a Heterogeneous Multi-Chapter 5

tier Network .. 88

5.1 Theoretical Analysis Based on Queuing Theory .. 88

5.2 Performance Analysis of a Heterogeneous Multi-tier Network 99

vii

5.2.1 Implementation of the Model ... 101

5.3 Chapter Summary ... 106

 A Formal Representation for Complex Attacks using Ontology 108 Chapter 6

6.1 Generalized Attack Trees ... 112

6.1.1 Plan Recognition and Attack Trees .. 117

6.2 Design of the Formal Representation ... 119

6.3 Development of the Formal Representation Using Ontology 121

6.3.1 Traffic Representation .. 121

6.3.2 Attack Representation .. 125

6.3.3 Complex Attack Representation .. 129

6.4 Chapter Summary ... 135

 Complex Attack Reasoning and Recognition .. 137 Chapter 7

7.1 A Set of Heuristics for Complex Attack Identification 137

7.2 Development of a Prototype System .. 144

7.2.1 Implementation Decisions .. 148

7.3 Evaluation Methods of the Prototype System .. 152

7.4 Evaluation Results of the Prototype System .. 155

7.4.1 Use Case Scenarios .. 155

7.4.2 Response Time ... 159

viii

7.4.3 Scalability ... 162

7.5 Chapter Summary ... 167

 Conclusions and Future Work ... 169 Chapter 8

8.1 Conclusions and Contributions ... 170

8.2 Future Work .. 173

8.2.1 A Heterogeneous Multi-tier Network Management System 173

8.2.2 Representation of Complex Attacks ... 177

Bibliography ... 189

Appendix A A Heterogeneous Multi-tier Network Management System - Ontology

Definition Files .. 205

A.1 Node Ontology Definition File .. 205

A.2 Wired Node Ontology Definition File ... 206

A.3 Wireless Node Ontology Definition File ... 207

A.4 Nortel Device Ontology Definition File .. 208

A.5 Cisco Device Ontology Definition File ... 210

A.6 Ad hoc Device Ontology Definition File .. 212

A.7 Wireless Sensor Network Device Ontology Definition File 214

A.8 Mapping Ontology Definition File .. 217

Appendix B Complex Attack Detection - Ontology Definition Files 221

ix

B.1 Traffic Ontology Definition File .. 221

B.1 Attack Ontology Definition File .. 240

B.3 Complex Attack Ontology Definition File .. 262

Appendix C SPARQL Rules in TRIDSO ... 268

C.1 Java File to Create Packet Collection Instances .. 268

C.2 Java File to Create Traffic Stream Instances ... 292

C.3 Java File to Create Attack Instances from Alerts .. 300

C.4 Java File to Create Some Simple Attack Instances .. 305

Vita ... 312

x

List of Tables

Table 3.1: Comparison of NMS. .. 37

Table 3.2: Comparison of Analytical Models. ... 42

Table 3.3: Comparison of RIDS. .. 50

Table 4.1: Common Terms in the Ontology. .. 76

Table 5.1: End-to-End Performance Components [74]. ... 89

Table 5.2: Analytical Model Parameters. ... 94

Table 6.1: Main Classes of the Attack ontology. ... 126

Table 6.2: Attack Tree Nodes Link to Complex Attack Ontology Classes. 129

Table 7.1: Network Address Compilation. ... 139

Table 7.2: Relationship Between Packet Data and Ontology Property. 145

Table 7.3: Alert Information’s Relationship with Ontology Property. 146

Table 7.4: Results of Trial Runs for Address Property. ... 150

Table 7.5: Results of Trial Runs for PacketCollection Instances. 152

Table 7.6: Load Time Performance for Trial Data Sets. .. 160

Table 7.7: Alert Query Response Time Performance for Trial Data Sets. 161

Table 7.8: Query Response Time Performance for Trial Data Sets. 161

Table 8.1: The Coloring Scheme’s Rate Category Values. .. 179

Table 8.2: Attack Element Priority [91]. .. 181

Table 8.3: Probabilities for Rate Category Values. .. 185

xi

List of Figures

Figure 1.1: An example of a Heterogeneous Multi-tier Network. 5

Figure 1.2: The information security life cycle [3]. ... 11

Figure 2.1: The Internet management subtree of the Object Identifier Namespace

(OID). ... 20

Figure 2.2: An example of an object definition in the MIB for SNMP. 21

Figure 2.3: Knowledge representation languages [10]. .. 23

Figure 3.1: Hierarchical architecture of ANMP [27]. .. 35

Figure 3.2: MANNA management functionality abstractions [28]. 36

Figure 3.3: Merge and map process for network management information [33]. 39

Figure 3.4: Ontology centric architecture [35]. .. 40

Figure 3.5: General FSM in PQSNet [48]. ... 47

Figure 3.6: Snort architecture [50]. .. 48

Figure 3.7: The growth trend of the number of rules in Snort [51]. 49

Figure 3.8: MulVAL framework [52]. ... 51

Figure 3.9: Proposed architecture for context-aware alert analysis [53]. 54

Figure 3.10: Main concepts and relations in ONTOSEC [54]. 56

Figure 3.11: ReD architecture [57]. .. 58

Figure 3.12: Policy instantiation with ontologies. [57]. ... 60

Figure 3.13: Prototype implementation [60]. ... 62

Figure 3.14: High level overview of ontology [62]. ... 63

Figure 4.1: Component diagram of the Network Management System (NMS) [74]. .. 70

xii

Figure 4.2: Class hierarchy for the HMNMS ontology. ... 74

Figure 4.3: Characteristics of several wired devices in the HMN [74]. 79

Figure 4.4: Characteristics of several WSN devices in the HMN [74]. 79

Figure 4.5: Results for the HMNMS for a simulated network. 80

Figure 4.6: Sample query results from the HMNMS for a test network. 83

Figure 4.7: Results from the HMNMS for a live university network. 85

Figure 4.8: A scalability perspective of the sample query results from the HMNMS for

a live university network. ... 86

Figure 5.1: Component diagram of the Network Management System (NMS) [74]. .. 89

Figure 5.2: End-to-end performance times of experimental tests [74]. 90

Figure 5.3: Ontology sub-system and instance interface times [74]. 92

Figure 5.4: A general Heterogeneous Multi-tier Network. .. 96

Figure 5.5: A generalized network topology. ... 97

Figure 5.6: Delays caused by the ad hoc gateway and nodes 102

Figure 5.7: Query delays at the ad hoc gateway [85]. .. 103

Figure 5.8: Query delays at the ad hoc node 1 [85]. ... 104

Figure 5.9: Query delays at the ad hoc node 2 [85]. ... 105

Figure 6.1: An attack tree branch example. .. 115

Figure 6.2: An attack tree example. .. 117

Figure 6.3: The traffic ontology [97]. ... 122

Figure 6.4: OWL code for TCPPacket in the traffic ontology. 123

Figure 6.5: OWL code for an ICMP netmask packet type. .. 124

Figure 6.6: The alert part of the traffic ontology. ... 126

xiii

Figure 6.7: Main classes of the attack ontology. .. 127

Figure 6.8: The availability branch of the attack ontology [97]. 128

Figure 6.9: OWL code for the SimpleAttack class. .. 129

Figure 6.10: Complex attack portion of the attack ontology. 130

Figure 6.11: An attack tree example. .. 131

Figure 6.12: OWL code for the Hijacking class. .. 132

Figure 7.1: A SPARQL rule to describe a class B network ping scan. 140

Figure 7.2: A SPARQL rule to describe a node port scan. ... 141

Figure 7.3: A SPARQL rule to describe a TCPStream. ... 142

Figure 7.4: A SPARQL rule to describe a simple attack for gaining root access. 143

Figure 7.5: TRIDSO architecture [97]. ... 144

Figure 7.6: The data flow of the traffic subsystem. .. 147

Figure 7.7: OWL code for the DoSComplex class. .. 150

Figure 7.8: A SPARQL query to describe a PingFlood. .. 151

Figure 7.9: The steps in the test Mitnick attack. ... 158

Figure 7.10: The time performance of complex attack detection by TRIDSO. 162

Figure 7.11: The run time performance of TRIDSO. ... 163

Figure 7.12: The growth trend of the number of rules in Snort [51]. 164

Figure 8.1: The coloring scheme algorithm [91]. ... 183

Figure 8.2: An example of a colored attack tree. ... 185

Figure 8.3: The current coloring scheme algorithm. .. 186

1

Abstract

Networks are used by millions of people and have become an integral part of daily

life. Network managers strive to achieve 99.9% uptime for their networks. A suite of

monitoring and maintenance tools that are used by network managers make up the

primary method for managing the network. Networks have been constantly evolving over

the past decades. Recent trends demand heterogeneous networks consisting of a variety

of devices from various manufacturers. The devices in these heterogeneous networks may

consist of traditional wired devices, ad hoc devices or Wireless Sensor Network (WSN)

devices. Combined into a single network infrastructure, each of these device types forms

a tier within the network resulting in a multi-tier network. If all device types are present,

the network will consist of three-tiers, one each for wired devices, ad hoc devices, and

WSN devices. Network management of Heterogeneous Multi-tier Networks (HMNs) is

both a necessary and complex task for the seamless interoperability of managing the

diversities of device types.

One aspect of network management that is of particular interest in today’s climate of

increasing attacks and security threats is security management. There are many

components to security management, including virus protection, firewalls, and intrusion

detection. Attacks are constantly evolving as they adapt to existing security measures

making intrusion detection more difficult. Adding to this complexity is the volume of

data on networks making any non-automated data analysis task to identify intrusions

nearly impossible.

2

The primary goal of this research is two-fold. The first goal is to provide a Network

Management System (NMS) for HMNs. One contribution toward this goal is to address

this arduous task by providing descriptions of the devices in the form of a knowledge-

based ontology. This integrated Heterogeneous Multi-tier Network Management System

(HMNMS) allows a network manager to manage devices of all tiers in a HMN

seamlessly and enables automating the data analysis process. A framework was designed

and developed for managing HMNs based on ontological descriptions and related

algorithms and a prototype HMNMS was built to prove the feasibility of this goal.

Another contribution of this goal is the development and verification of an analytical

model based on queuing theory that is used to conduct a performance analysis of a HMN.

The performance analysis using the analytical model showed the bottleneck to be a

gateway node and not the HMNMS in a representative HMN.

The second goal is to develop a formal representation of complex attacks using

ontology. This will automate some of the data analysis allowing for the detection of more

complex attacks as well as attack attempts. The development of a formal representation

using ontology based on generalized attack trees for complex attacks, which provided

flexibility and extendibility, is one contribution toward this goal. Furthermore, utilizing

network traffic data in the formal representation and detection process provided a way to

analyze all traffic data and not just data exploiting existing vulnerabilities. A result of this

process led to the detection of additional complex attacks and attack attempts. A set of

heuristics was designed and developed based on the formal ontological representation as

a second contribution of this goal. A prototype system was constructed to validate the

feasibility of using the formal representation and heuristics to detect complex attacks and

3

attack attempts. The new system detected more complex attacks as well as attack

attempts than a current state-of-the-art system.

In summary, as networks evolve in complexity and sophistication, a greater need

emerges to develop new protocols and mechanisms to manage and protect them.

Ontology is utilized in a NMS to manage HMNs, particularly in configuration and

security management. Through the use of ontology, interoperability and inference can be

leveraged to provide a common management system for a network consisting of

heterogeneous nodes and multiple node types, such as wired networks, ad hoc networks,

and Wireless Sensor Networks. The main contribution of this work is taking advantage of

ontology in the network management domain to add reasoning to management tasks,

specifically configuration and security management, consequently reducing the amount

of manual analysis required to complete these tasks. The use of this technology will

provide additional data analysis to network managers in simplifying management tasks in

order to achieve the goal of 99.9% uptime.

4

 Introduction Chapter 1

There are many types of networks, from wired to wireless, wide-area to local,

unsecured to strictly secured, static to dynamic, and others. The most common network

type is the wired network, consisting mostly of static nodes, such as desktops, servers and

printers. These static nodes are interconnected using network devices, such as switches

and routers. There are many manufacturers of network devices, including Cisco and

Nortel. The different types and manufacturers of nodes in a wired network, together,

create a heterogeneous network.

The wired network and the Internet have evolved with the advancement of

technology, such as laptops, PDAs, smart phones, e.g. the iPhone, Android and

Blackberry and computer surfaces, e.g. the iPad and tablet. These devices have increased

the popularity of mobility with the ability to connect to the Internet. In order for these

devices to communicate, they must be connected to a network. Often the devices will

connect to each other forming their own network. This type of a network is an ad hoc

network (AHN). In order for devices on an AHN to access the vast amounts of

information available on the Internet, the AHN must be able to connect to the Internet.

When this type of connection occurs, a heterogeneous two-tier network is created, with

one tier being a wired network, possibly the Internet, and the other tier being an AHN.

The network will often be heterogeneous, which, by definition, consists of many different

types of devices.

Wireless sensor networks (WSNs) are a type of AHN but require different protocols

5

and applications than traditional AHNs due to the disparate characteristics and constraints

of WSNs. The main characteristics of WSNs that make them unique and require the use

of new protocols and applications are that they consist of many small sensors that are

densely deployed, have limited resources and often have little human interaction post-

deployment. There are innovative uses of WSNs, including environment sensing, military

scenarios, habitat monitoring, structure monitoring, and first responder situations.

Likewise, there are also challenges associated with WSNs. The primary challenge is

energy consumption. Connecting a WSN to an AHN and/or a wired network creates an

additional tier within the network, resulting in a contemporary type of two-tier network,

or possibly a three-tier network. Multi-tier networks, with heterogeneous devices, are

known as Heterogeneous Multi-tier Networks (HMNs). An example of a HMN is

depicted in Fig. 1.1. In this figure, a Nortel and Cisco device is either a switch or a router.

An ad hoc device is any device that is part of an AHN, typically a laptop, tablet device,

smart phone, or any other ad hoc device.

Figure 1.1: An example of a Heterogeneous Multi-tier Network.

6

Network management is required for all types of networks, including wired, AHN and

WSN. Network management is an essential aspect of all networks that includes a suite of

tools, protocols, and frameworks used to assist a network manager with monitoring and

maintaining networks and all network components. One of the most vital aspects of

network management is availability; users expect the network to be available seven days

a week, twenty-four hours a day. This demand by users makes network management

imperative.

HMNs, with different management systems, make network management a difficult

task. Each type of network will typically require its own network management system.

Even networks of the same type may require multiple network management systems due

to the heterogeneous devices deployed and their proprietary nature. A network

management system that can manage devices from various manufacturers and different

network types would simplify this task.

To develop one network management system, the existing systems, or models, must

be merged or mapped into a single model. A single model will ensure only one language

interpreter with an integrated definition of all network elements and their associated

behavior. In order to develop one network management system, with one language

interpreter, it is necessary to understand the syntax and the semantics within each

management system.

Ontology [1, 2] is an area of research that can assist in the mapping of all network

management systems into a single system for easier management of a HMN. This is

accomplished by using ontology constructs to indicate which elements in one

management system are equivalent to elements in another management system. Providing

7

descriptions of the subcomponents in the form of a knowledge-based ontology is one way

to address the arduous task of managing these networks. Our primary goal is to create a

framework for managing these networks based on ontological descriptions and related

algorithms.

To map multiple ontologies into a single domain, mapping rules are developed that

will translate data from each management system. To develop the mapping rules, it is

necessary to understand the semantics of data within each domain or model. The

ontology based management system developed in this research can be used to manage a

one-tier network, which can be a wired network, AHN, or WSN, or a multi-tier network

consisting of a combination of these.

A secondary goal in the management of heterogeneous networks is to recognize and

act on complex attacks as they may occur. Attacks can take the form of sequences of

events that result in a complex attack. To date, this problem has only been addressed on a

limited basis due to the heterogeneous nature of networks and the infinite possibilities of

sequences that may result in a complex attack. Our ontological representation will use

collected knowledge about attacks so that a management system can proactively detect

and act upon complex attacks. We will demonstrate this enhanced complex capability in

our management system on our data to detect a greater volume of complex attacks as well

as attempted attacks. Attack detection in this research is based on all network traffic

rather than just on vulnerability data allowing for the detection of a wider variety of

complex attacks and attack attempts.

A security attack against a network device may cause it to work incorrectly or not at

all. Depending on which device in the network failed, the attack would cause at least a

8

portion of the network to fail. If a network device fails and that device is connected a

subnet to the network, then the entire subnet would become disconnected from the

network. If the device attacked was a core network device, it may affect the entire

network, making the network unusable.

It is imperative to prevent such failures from occurring so that 100% uptime of all

network nodes may be maintained. To prevent device failure due to a security attack, a

system must be deployed that will detect network attacks or intrusions. Such a system is

an Intrusion Detection System (IDS), which will create an alarm when an intrusion is

detected. This is known as a true positive in an IDS, meaning that an alarm is generated

when an attack is detected, and there is indeed an attack. Many IDSs will detect an

intrusion in the network by analyzing existing vulnerabilities of the deployed devices,

primarily deployed hosts (not network devices). Others will scan network traffic and

identify possible attacks to the network. The attacks identified by these IDSs are simple

attacks; the IDS will raise an alarm when a single attack type is identified in the network

traffic. A single attack may in itself be meaningful but this does not necessarily preclude

the possibility of a larger context for the single attack.

To be able to provide the best IDS solution, existing vulnerabilities in all deployed

devices are analyzed, including network devices, and network traffic is scanned to

identify all types of attacks, including multi-phase attacks. This process is accomplished

by including all deployed nodes, hosts and network devices, in the vulnerability analysis

phase, and analyzing simple attack alarms to identify those that are a step in a multi-

phase or complex attack.

9

Another step in the IDS is to identify potential attacks. The network manager should

not only be concerned with attacks against nodes that are vulnerable, but should also

monitor for any attack attempt by an intruder. This is vital because a network manager

cannot predict precisely which applications users on the network may install or deploy.

For example, if an intruder is attempting to circumvent a web services vulnerability but

there are no vulnerable systems on the network, then the attack attempt is unsuccessful.

The same attack may be successful in the future due to a user installing a new web server

that is vulnerable to that particular attack. To make the network more resistant to

successful attacks, the network manager should analyze all attack attempts against it.

The final phase of the IDS is to identify a remedy for the attack. If there was an

unsuccessful attack, the remedy would simply be the identification of the reason it was

not successful so this attack type will continue to be unsuccessful, even with the

deployment of new devices or additional services on the network. For a successful attack,

the remedy will ensure failure in the future. This may require a patch to a host or a

reconfiguration of a service or node. The reconfiguration may be dynamic, performed by

the IDS, or it may require manual intervention based on remedy information included in

the alarm to the network manager. In both cases, the application of the remedy will make

the network less susceptible to future attacks. Along with the remedy, it may be desirable

to place the source of the attack on a blacklist, which is a list containing addresses that

are forbidden from sending data to the network.

By ensuring that network devices are secure and resilient, the network will remain

operational for a longer period of time, helping to meet the goal of maximizing network

availability. This requires the ability to detect when a network node fails and possibly

10

perform a reconfiguration to minimize the failure. This may be a reconfiguration of the

failed node to correct the problem and restore its functionality in the network, or the

reconfiguration of the network or subnet to bypass the failed node. The ability to identify

a possible failure or a cause of a failure, and then a possible remedy, will ensure

continued operation of the network, regardless of the network type.

In the event that the attack cannot be detected in real time, an IDS can still provide

valuable information. As demonstrated by the information security life cycle illustrated in

Fig. 1.2, security is an on-going process. The steps in the information security life cycle

are risk analysis, risk assessment, cost/benefit analysis, implementation, and vulnerability

assessment. The cycle begins with risk analysis, which involves identification of the

organization’s assets and the vulnerabilities present in each asset. The next step, risk

assessment, determines the threats against the identified assets, the probability that those

threats will occur, and the consequences of each threat occurring. Cost/benefit analysis is

the third step. It is used to determine the best controls to implement based on the ones

that address the identified threats at an appropriate cost. The appropriate cost depends on

the organization and its goals. The implementation step, which is the fourth step, is the

deployment of the identified controls during the cost/benefit analysis. The vulnerability

assessment is the final step. It is used to determine if the implemented controls are

working appropriately. At this point, the risk assessment is completed again and the cycle

begins once again. Due to the fact that the assets, threats and controls are constantly

being evaluated, even if an attack is detected post-success, the information about the

attack can still be very useful in future security detection and intervention.

11

Figure 1.2: The information security life cycle [3].

1.1 Contributions

The goal of this research is to provide a method to manage Heterogeneous Multi-tier

Networks, which currently does not exist, by designing and developing a framework

based on ontological representations. The contributions are:

1. The design and development of an ontology based Network Management

System (NMS) consisting of an adaptable knowledge base structure that

significantly enhances the ability to manage HMNs as they evolve in number

and complexity.

2. The development and verification of the first analytical model for conducting

performance analysis of a HMN.

3. The design and development of an ontological representation for simple and

complex attack types based on generalized attack trees facilitating

12

improvements in attack detection and allowing for augmentation of basic

attack knowledge.

4. Improve on the expressivity of complex attack reasoning and recognition by

augmenting the ontological representation with a set of extensible heuristics

designed for this purpose.

The first contribution of this research is the design and development of an ontology

based Network Management System (NMS) consisting of an adaptable knowledge

base structure that significantly enhances the ability to manage HMNs as they evolve in

number and complexity. This NMS addresses the challenges new technologies and

dynamic components present to heterogeneous network managers. It provides seamless

integration of support to manage Heterogeneous Multi-tier Networks, even as they

evolve. An ontology based approach to network management is designed and developed

so it can be implemented by others and demonstrated in our prototype system. The

rational and advantages of the ontology based approach are outlined. A prototype

ontology based NMS is built and an existence proof is provided that shows the feasibility

and performance goals are achievable. An example is provided that shows this approach

to network management is an n:1 improvement in the toolset required for management of

a HMN, where n is the number of different device types in the network.

The second contribution is the development and verification of the first analytical

model for conducting performance analysis of a HMN. The analytical model for a

HMN is developed based on queuing theory. A performance analysis of a HMN is

conducted to verify the model and identify bottlenecks. The analytical model is then

13

utilized to prove that the bottleneck in a Heterogeneous Two-tier Network is the ad hoc

gateway and not the Heterogeneous Multi-tier Network Management System (HMNMS).

The third contribution is the design and development of an ontological

representation for simple and complex attack types based on generalized attack trees

facilitating improvements in attack detection and allowing for augmentation of basic

attack knowledge. The ontological representation provides more flexibility because its

declarative representation allows for augmentation without impacting other aspects of the

system. This allows it to be extended by others doing related research therefore extending

the knowledge and enabling the detection of evolving attack strategies. Generalized

attack trees are defined for complex attacks based on the analysis of attack patterns. The

utilization of traffic data in developing the formal representation and its advantages are

described. The formal representation of the complex attacks based on traffic data is

developed using ontology, which provides flexibility over a programmatic approach. This

representation enables the knowledge to be extended by others doing related research

therefore extending the knowledge and surviving the evolution of complex attacks.

The fourth and final contribution of this research is to improve on the expressivity

of complex attack reasoning and recognition by augmenting the ontological

representation with a set of extensible heuristics designed for this purpose. There is a

trade-off between the expressivity in knowledge representation languages and the

computational complexity. A highly expressive language is used for the ontological

representation but some expressive limitations exist that prevent the representation of all

complex attacks. The heuristics are developed to add the necessary expressivity using the

ontological representation. These heuristics are expressed as queries in SPARQL, a

14

standard query language, enabling easy modification and addition of rules to detect

additional complex attacks. The ontology based set of heuristics is developed to allow for

implementation. A flexible prototype system is developed to show the viability of using

the heuristics to detect complex attacks and attack attempts. In the analysis of data,

results showed the prototype system detected more complex attacks and attack attempts

than a current state-of-the-art system used for comparison.

1.2 Dissertation Roadmap

The dissertation is written to provide the reader with a progressive flow of this

research. Chapter 2 provides background information on the technology used in the

research. Related works for the various aspects of the research is provided in Chapter 3.

The next four chapters provide details for each of the four contributions. Chapter 4

describes the developed HMNMS, including the theoretical basis and ontology based

approach. This chapter includes preliminary results for the prototype HMNMS deployed

in experimental and live networks. The analytical model for performance analysis of a

HMN and results of an analysis of an experimental network are explained in Chapter 5.

Chapter 6 explains the design and development of a formal representation for complex

attacks and attack attempts. The approach and development of the formal representation

are also described in this chapter. Chapter 7 describes the design and development of a

set of heuristics based on the formal ontological representation. As such, the definition of

a set of heuristics and the development of a prototype system using the set of heuristics

are explained. Chapter 8 includes conclusions and future work for this research.

15

 Background Information Chapter 2

2.1 Network Management

The key elements of network management are a management station, management

agent, an information base, and a protocol. The management station is typically a desktop

or laptop that collects the data from the managed devices. In order for devices to be

managed, there must be software installed on each device to communicate with the

management station. This software is the management agent. The information base is the

data that is to be collected by the various types of managed devices. The communication

between the management station and the management agents is through a management

protocol. The management protocol will ensure that the management station and agents

are using the same syntax and semantics for exchanging messages.

The International Organization for Standardization (ISO) created a network

management model to aid in understanding the functionality of network management.

This network management model consists of five functional areas: 1) fault management,

2) configuration management, 3) performance management, 4) security management and

5) accounting management.

The ability to identify problems in the network is the primary goal of fault

management. The steps in fault management include: a) determining a problem exists, 2)

isolating the problem, and 3) fixing the problem, if possible. When a fault occurs, the

network manager receives an alarm, which may be in the form of a log file entry, an E-

mail message, an SMS message, a page, or an entry in the network management system.

16

The number of faults occurring in a network are usually too numerous for the network

manager to address individually. In order for the network manager to successfully address

the faults in a systematic manner, a prioritization of the faults is crucial.

Configuration management includes setting up, monitoring and controlling network

devices. To assist with many of the other network management tasks, an inventory of all

network devices must be maintained. This inventory should include the devices deployed

and their characteristics, such as the name, network address, location, both physical and

logical, and the current configuration. The inventory and collection tasks are often

referred to as topology management. It may also include a physical or logical map of the

network. The information for the inventory should be collected on a periodic basis, either

manually or automatically. A common collection method is called autodiscovery.

Autodiscovery is a process that runs on a network management system and periodically

detects all installed network devices. It reports back to the management station each

device found and some of the device’s characteristics. While this process is an effective

automated tool for collecting network inventory information, it is bandwidth-intensive

and is not recommended for bandwidth-constrained networks, such as WSNs.

A critical aspect of network management is procuring the utilization of the network

devices and links. This is the job of performance management. Having this information

about the network components will assist the network manager in troubleshooting,

identifying bottlenecks and capacity planning. The type of the component will indicate

the utilization information that is important and may include utilization of the CPU or

network card. Some of the specific items of interest in performance management are

packet forwarding rate, error rate, and packets queued.

17

Security management is often a challenging task to complete and is distinct from

operating system, physical, and application security. Security management requires

restricting access to information on the network and the network components to those

entitled to it. The primary function of security management is controlling access points to

data that is stored on devices attached to the network.

While performance management tracks the utilization of network components,

accounting management tracks the utilization for each user. This includes the utilization

by each user for the various network resources, including network devices, links, servers

and storage devices. The original reason for the inclusion of this functional area by ISO

was to allow organizations to bill users for their usage of the network and its resources.

While this is no longer a common practice within organizations, the information gathered

about users is still useful to a network manager, particularly to aid in establishing metrics

and quotas. It is also helpful to allow proper allocation of network resources. User

utilization may also overlap with security management. This process allows the network

manager to understand typical user behavior; if atypical behavior is detected, then it may

indicate a security breach or intrusion.

Network management of AHNs and WSNs is more difficult in general due to their

dynamic nature and the limited resources of the devices. The five functional areas

identified by ISO are a part of the network management of AHNs and WSNs. These areas

may be modified or augmented for proper management of these network types. For

instance, network coverage and connectivity are a part of performance management. The

nature of ad hoc networks makes security management in AHNs and WSNs more

difficult. This is a result of the use of wireless communication, which is more difficult to

18

secure, and the resource limitations of the devices.

An important aspect of AHNs and WSNs, which is not part of wired network

management, is energy management. Energy management may be regarded as a separate

functional area or encompassed in several of the functional areas. Including energy

management as a part of some of the other functional areas is often done because of the

overlap with the different areas and energy management. Energy management is often

included within the areas of configuration management, fault management and

performance management. It is considered part of these areas, instead of its own area,

because of its close connection to these tasks. When nodes run low on or out of energy, it

impacts these other areas. For example, in topology management, which is a part of

configuration management, if a node runs out of energy, it is no longer a part of the

network. If this node was a part of the routing protocol or a gateway node, then the

network topology will change. This may also generate a fault or impact the performance

of the network, thus demonstrating the reason to include energy management with fault

and performance management.

2.1.1 SNMP

The standard network management protocol for wired networks is Simple Network

Management Protocol (SNMP) [4]. SNMP is considered simple because it is based on

two commands, fetch and store. All operations are implemented using these two

commands. The basic operation of SNMP is the management station requesting data from

managed devices via the fetch command. The devices will return stored data to the

management station in response to these requests. The store command is used by the

19

management station to set values by saving a specified value to an attribute in the device.

The device attributes are called objects.

All the objects SNMP can access require a definition, including a unique name. The

management station and management agent must agree on the object names so there is a

common vocabulary for communication. The set of all objects that SNMP can access is

defined by the Management Information Base (MIB). By separating the object definitions

from the management software, new items can be added to the MIB while maintaining

the same software.

Along with the object specification, the MIB also defines any object groupings and

relationships between managed objects. The object definitions are specified using the

Structure of Management Information (SMI). SMI is a subset of the Abstract Syntax

Notation One (ASN.1), which is a standard for describing data structures.

The names specified for all managed objects are taken from the Object Identifier

Namespace [5], which is administered by ISO (International Organization of Standards)

and ITU. The Object Identifier Namespace describes a namespace for arbitrary objects

and is not dedicated to network management. Examples of objects that can be referenced

using the Object Identifier Namespace are a company, a project, an encryption algorithm,

a file format, and a SNMP MIB.

The Object Identifier Namespace is a hierarchical structure with each node specified

with a unique name and number. The Object Identifier (OID) is the sequence of the

numeric labels of the nodes in the path from the root to the object. A part of the

namespace is provided in Fig. 2.1, which is the subtree for internet management.

Following the nodes from the root to the internet management node produces an OID of

20

1.3.6.1.2. As illustrated in Fig. 2.1, mib is the node below the internet management node.

Below the mib node is a node for each MIB category. These categories are system,

interfaces, at (this one is deprecated and only remains for compatibility), ip, icmp, tcp,

udp, egp, transmission, and snmp.

Figure 2.1: The Internet management subtree of the Object Identifier Namespace (OID).

21

The MIB specifies the data each network device type, such as switches and routers,

must maintain. The unique names for each object are defined in the MIB, as well as the

meanings of each and the operations allowed on each. An example of an object definition

is provided in Fig. 2.2. This example defines an object called sysName, which stores a

name assigned by the network manager for the managed device. The notation defines the

syntax, access permissions, status and a brief description of the object. The {system 5}

notation indicates that it is a child node of the system node and the node has a numeric

value of 5. This value is used to specify the object’s OID. Since it is a child of the system

node, which has an OID of 1.3.6.1.2.1.1, the OID for sysName is 1.3.6.1.2.1.1.5.

Figure 2.2: An example of an object definition in the MIB for SNMP.

2.2 Ontology

Originating in the field of philosophy, ontology is now being used and researched in

many other fields, including computer science. In computer science, ontology is a data

model representing the knowledge in the specified domain, as well as the relationships

between this knowledge. Ontologies define “a set of concepts, its taxonomy, interrelation,

and the rules that govern these concepts” [6]. Two fields in computer science that benefit

from ontology are Artificial Intelligence and the Semantic Web. There has also been

sysName OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "An administratively-assigned name for this managed
 node. By convention, this is the node's

fully-qualified domain name. If the name is unknown,
the value is the zero-length string."

 ::= { system 5 }

22

research in using ontology in the network field.

The primary benefits of ontology are interoperability and inference. Interoperability

provides a way to share knowledge in a domain, which overcomes differences in

terminology for the same concept and meaning for the same term. Interoperability of

multiple domains is accomplished with ontology mapping. This will map an item in one

domain with an item in another domain. Inference allows new knowledge to be learned

from existing knowledge. For instance, if it is known that Jordan is Jack’s parent and that

Jordan is female, then it can be inferred that Jordan is Jack’s mother.

Ontology is a declarative approach, which is typically more flexible than a procedural

approach. This makes the system more adaptable. Other benefits from ontology are

reusability, reliability, shareability, portability, and interoperability [1]. There are also a

large set of tools available for ontology, making it easy to define and use.

Ontology can be classified according to various characteristics. One of the possible

classifications of ontology is lightweight or heavyweight. This classification depends on

the expressiveness of the language used to describe the ontology. A lightweight ontology

is represented with a simple taxonomy or hierarchy of the domain concepts. A lightweight

ontology can describe concepts, concept relationships, concept properties, and concept

taxonomies. A heavyweight ontology attempts to fully describe the domain concepts by

including rules, axioms and constraints.

Another classification of ontology is the generalization of the domain concepts. The

different types of ontology in this classification are upper, middle, and lower. An upper or

foundational ontology [7] defines general concepts for a domain. It would be used to

provide a common foundation to be leveraged by other, more specific domain ontologies.

23

A middle ontology extends an upper ontology and is more specialized in the domain. An

ontology for concepts that are very specific in the domain, often for a specific application

in the domain, is a lower or application-specific ontology.

2.2.1 Knowledge Representation Languages

To formally represent domain knowledge, a knowledge representation language may

be used. There are various knowledge representation languages, including XML, RDF,

RDF Schema and the Web Ontology Language (OWL). The languages differ in syntax

and expressiveness. Fig. 2.3 illustrates the knowledge representation languages and how

they relate to each other. This image is known as the Semantic Web Stack and was created

by Tim Berners-Lee. Tim Berners-Lee is the inventor of the World Wide Web, the

Director of the World Wide Web Consortium (W3C) [8], and the Director of the World

Wide Web Foundation [9].

Figure 2.3: Knowledge representation languages [10].

The eXtensible Markup Language (XML) [11] is a language developed to provide a

24

structure of information. This allows information to be represented that is accessible by

humans and machines. Relationships among the information can be defined by nesting

XML tags. XML provides a structure or syntax to the information but provides no

semantics to the information.

A universal language that uses XML-based syntax is the Resource Description

Language (RDF) [12]. It allows users to describe resources using their own vocabulary.

Resources are described by a set of triples called statements. Each statement consists of a

subject, a predicate or property, and an object. The object is the subject’s value for the

specified property. RDF allows the specification of resources but implies no meaning

about them.

One method to make semantic information accessible by a machine is to use RDF

Schema (RDFS) [13] by defining the structure of the data. This is also a knowledge

representation language that organizes objects into hierarchies. It defines the vocabulary

used in RDF data models, specifies the properties that apply to each kind of object,

specifies the values for each property, and defines the relationships between objects. The

benefit of RDFS is the ability to provide semantic information to machines, but it is

limited to the subclass and property hierarchies.

There are several specific limitations of RDFS [14]. First, properties only have local

scope so there is no way to specify restrictions that apply to some classes only. Second, it

does not provide a way to specify that classes are disjoint. If there are instances that can

belong to one class but not another, this is done by saying that classes are disjoint. For

instance, mother and father would be disjoint classes because an individual could not be a

member of both. Third, new classes cannot be created using Boolean combinations of

25

classes, such as union and intersection. For example, if a class exists for mother and

father, then parents would be the intersection of these two classes. Fourth, RDFS does not

allow cardinality restrictions. It may be necessary to state that a person can have exactly

two parents, which is not possible in RDFS. The last limitation of RDFS is the inability to

define special characteristics of properties, such as transitive and inverse. For example, it

would not be possible to specify that the “is child of” property is the inverse of the “is

parent of” property (if Jack is the child of Jordan, then Jordan is the parent of Jack).

2.2.2 OWL

The most popular ontology language is OWL [15, 16]. OWL is a general purpose

ontology language that represents knowledge using RDF triples. It provides a way to

express semantic information about resources. OWL allows the user to provide the

definition of important domain concepts and the relationships between the concepts

through a class hierarchy.

There are three different variants of OWL, OWL Lite, OWL DL, and OWL Full [16].

The differences in these variants are in their expressiveness. OWL Lite is a subset of

OWL constructs and also includes restrictions on the use of some of the allowed OWL

constructs. For instance, cardinality values can only be 0 or 1 and there is support for

intersection only in class definitions. OWL DL is based on description logics and

provides computational completeness and decidability. OWL DL supports all OWL

constructs but places restrictions on the use of some of the constructs. For example, if a

property is declared to be transitive, then it cannot have numeric restrictions placed on it.

As another example, classes cannot be individuals of other classes. OWL Full provides

the maximum expressiveness and is a superset of RDF. It is the complete OWL language

26

including all OWL constructs with no restrictions on their use. For example, cardinality

values can be any value greater than or equal to 0, there is support for intersection, union,

complement, and enumeration, and classes can be instances and properties at the same

time.

OWL uses a class hierarchy similar to object-oriented programming languages.

Members of the class are known as individuals. Individuals may also be referred to as

instances. Classes define a way to categorize similar individuals. A subclassOf property is

used to create the hierarchy. A class that is a sub class of another class will inherit the

parent class’s properties and will also infer that an individual that is a member of the

subclass will also be a member of the parent class. Individuals of a class can be defined

using enumeration with all the individuals of that class being defined using oneOf. If an

individual cannot be a member of two specified classes, these classes are said to be

disjoint. Class can be defined to be disjoint using the property disjointWith.

Classes can be defined using set operators, including intersectionOf and unionOf. A

class can be the union of two other classes, which results in a class containing individuals

that are members of one of the classes. If a class is the intersection of two classes, then it

contains all the individuals that are individuals in both classes, but not individuals that are

in only one of the two classes or not in any of the two classes. Often unionOf and

intersectionOf are used with property restrictions. For instance, it might be necessary to

say that the class daughter is the individuals in the class child that have a value of

“female” for the property named gender (indicating male or female).

There are two different types of properties in OWL. A datatype property is an

attribute of the individual that will have a value. The value will be a literal of some

27

datatype, such as a string or integer. An object property will have a value that is an

individual of another class indicating a relationship between the two individuals. Two

property restrictions are domain and range. Both of these restrictions are specified on

object properties and restrict the values of an object property if it relates two individuals.

If a class is specified as the domain of a property, then the value of individual for the

subject of the property must be an individual of the specific class. The same is true for

range except the range is applied to the value of the property, or the object.

A restriction can be placed on the number of values that can be assigned to a property.

This restriction is cardinality and it can be a specific cardinality. MaxCardinality and

minCardinality can be used to specify a maximum or minimum cardinality for a property.

A few other property restrictions were used in the research in this dissertation. Several

of these restrictions relate one property value to another one. If one property is a

subPropertyOf another property, then if a subject is related to an object by the specified

property, it is also related to the object by the parent property. A property can also be the

inverse of another property, using inverseOf. For example, hasChild could be the

inverseOf hasParent, since the child is the inverse of parent. Two properties can also be

equivalent, using equivalentProperty, which creates a synonym property for another

property.

Two restrictions were used to specify limitations on the possible value of specified

properties. If a property is restricted with allValuesFrom, then the value for that property

must be an individual from the specified class. This also allows the user to infer

information; the object of this property would automatically be an individual of the class

specified in the allValuesFrom restriction. The someValuesFrom simply states that at least

28

one value of that property must be an individual from the specified class.

2.2.3 SPARQL

SPARQL [17] is a query language for RDF and is similar to SQL for databases. It is

used to query the knowledge base at the triple level. A SPARQL query can consist of

triple patterns, conjunctions, disjunctions, and patterns. There are four forms of a

SPARQL query (SELECT, CONSTRUCT, DESCRIBE, ASK). The SELECT,

CONSTRUCT and DESCRIBE queries are all used to extract information from the

knowledge base with the difference being in how the information is returned. The

SELECT query returns the information in table form; CONSTRUCT returns RDF triples

and DESCRIBE returns an RDF graph. The ASK query is used to determine if a solution

exists and will simply return true or false.

The two primary SPARQL statements are SELECT and INSERT. A SELECT

statement will retrieve all information from the knowledge base matching the specific

criteria. An INSERT statement will add new statements to the knowledge base. A

WHERE clause can be specified in the query to provide criteria to match with the data in

the knowledge base. Only data in the knowledge base matching the specified pattern in

the WHERE clause will be returned.

To further restrict the solutions returned, the FILTER keyword can be used. This

keyword will specify additional criteria to be used to eliminate statements from the

solution returned. The filter pattern can be specified using relational and logical

operators. Regular expressions can also be specified in the filter pattern using the

REGEX keyword.

There are other keywords that can be used to either limit the results returned or

29

specify how the results should be returned. For the purposes of this research, three of

these other keywords were employed. The DISTINCT keyword will eliminate any

duplicate statements from the solution. If part of the matching pattern is optional, that

part of the pattern is restricted with the OPTIONAL keyword. The statements in the

solution can be ordered according to specified criteria using ORDER BY.

Aggregates can be used in the solution. Before applying an aggregate the solution set

must be grouped. This is accomplished using GROUP BY. If the groups in the solution

should be restricted to specific criteria, such as having more than a specified number of

statements in each group, the HAVING keyword is used. Some of the aggregates that can

be used are count, to return the number of statements in each group, and MIN and MAX,

which will return the minimum or maximum value of a specified property in the solution.

ARQ is a SPARQL processor for Jena [18]. ARQ includes a function library

consisting of various functions that can be used in SPARQL queries in Jena. A subset of

these functions was used in the research in this dissertation. For example, the concat

function is used to concatenate several property values that were returned together to

form one value.

2.3 Queuing Theory

Queuing theory [19] is used to study the behavior of queues in a system or network

[20]. A common queue model used for analysis is the M/M/1 model. The first M

represents the type of arrival process to the queue. In the M/M/1 model, the arrival

process is a Poisson distribution [21] of arrival requests with a mean rate of λ. A Poisson

distribution indicates that the arrival times follow an exponential distribution and the

30

probability that n events occur during time t is the Poisson distribution. The second M is

the service duration of a request, which is exponentially distributed in this model with a

mean rate of μ. The 1 indicates there is a single server. The last two values in queuing

systems notation are not specified in the M/M/1 model indicating there are an infinite

queue length and an infinite number of sources that can produce requests.

Queuing systems can be characterized by several variables, including the mean

number of requests, N and the mean wait time or delay, T. The N, T and λ are related by

a basic formula known as Little’s Theorem [21]. Little’s Theorem uses the equation

 (2.1)

Little’s Theorem demonstrates the obvious conclusion that systems with more requests

(large N) will have larger wait times (large T).

There are several equations that can be used to describe a M/M/1 queuing system

[22]. The first equation is the traffic intensity, ρ

 (2.2)

To maintain a stable system and prevent the queues from going to infinity, ρ should be

less than one. The mean number of requests in the system, N, can be calculated using the

equation

 (2.3)

Substituting the Eq. 2.2 gives the equation

 (2.4)

31

The total time spent in the system, T, including the wait and service times, uses the

equation

 (2.5)

This equation is obtained by applying Little’s Theorem to Eq. 2.4.

For a network analysis, there is a need to obtain the expected waiting time in the

network. This time excludes the transmission time. Little’s Theorem provides the

equation

 (2.6)

The expected waiting time, W, minus the transmission time, results in the equation

 (2.7)

where is the average transmission time. If NQ is the average number of packets waiting

in the queue, then applying Little’s Theorem results in

 (2.8)

These equations are all used in queuing theory analysis and were used in the analytical

model developed for the network performance analysis conducted in this research.

2.4 Intrusion Detection Systems

One method used to identify attacks is by using an Intrusion Detection System (IDS)

[23]. IDSs can be classified using multiple methods. One classification method is based

on what the IDS monitors, a host or a network. A host IDS (HIDS) is deployed on a host,

or adjacent to a host, to monitor that host for attacks. A Network IDS (NIDS) is deployed

32

on a network and monitors for an attack on the network. It will scan the traffic on the

network looking for possible intrusions.

Another classification method for IDSs is how the IDS operates to detect an attack.

An IDS can be either signature-based or anomaly-based. In a Signature-based Intrusion

Detection System, the system works much like antivirus software and identifies an attack

based on whether there is a match against an entry in a signature database. If Signature-

based Intrusion Detection System is deployed, it is necessary to maintain a current

signature database.

An Anomaly-based Intrusion Detection System is an IDS that looks for behavior that

is not considered normal. A baseline must be established and then any behavior that is not

within the established parameters may be considered abnormal and a possible attack. An

Anomaly-based Intrusion Detection System has the potential to detect a new attack

because the longer it runs the more it learns about normal behaviors. However, an

Anomaly-based Intrusion Detection System is susceptible to false positives as it is

possible to have something look abnormal when it is in fact a normal behavior.

There are advantages and disadvantages to all different types of IDSs. The best

solution may be a combination of these different types. This can be done by placing

several IDSs throughout the network. These different IDSs may be a combination of

HIDS and NIDS, as well as signature- and anomaly-based. This will allow for the best

chance of detecting all types of attacks.

Another way to combine the different types of IDSs is to use a new type of IDS,

Reasoning-based IDS (RIDS). RIDS utilizes both signatures and anomalies to detect

33

possible intrusions. It integrates both types into one IDS, without the need to manually

combine, and then possibly conduct manual analysis on the output of multiple IDSs.

Another advantage of an RIDS is that it may employ advanced reasoning in attack

identification. This allows for an efficient and reliable analysis of the data collected from

the network to aid in the detection of all types of attacks, including zero-day attacks. A

zero-day attack is an attack against vulnerabilities that are unknown. A properly designed

RIDS has the ability to detect a multi-phase complex attack such as the one mentioned-

above using a combination of port scan or telnet probe and vulnerability exploit.

One way to incorporate advanced reasoning into an RIDS is by using ontology.

Ontology allows for the semantics, along with the syntax, of the domain knowledge to be

integrated into the system. In the domain of network security, the syntax refers to the

signature of an attack, which is the basis of a signature-based IDS. Incorporating

semantics allows the RIDS to also make decisions based on the meaning of the data, such

as the importance of a ping scan followed by a port scan, within a specified time frame.

This may indicate a possible attack, as opposed to seeing a ping scan followed by a

network management task. Knowledge of the semantics of the domain, and the domain

data, allows the use of inference, which can be used to learn more about the network

traffic and possible attacks, both simple and complex.

34

 Related Work Chapter 3

3.1 Network Management

Several management protocols or systems, based on the ISO network management

model, have emerged in wired networks, including Internet Engineering Task Force’s

(IETF) SNMP (Simple Network Management Protocol), ISO’s Common Management

Information Protocol (CMIP) [24], Distributed Management Task Force’s (DMTF)

Desktop Management Interface (DMI) [25] and DMTF’s Web Based Enterprise

Management (WBEM) [26]. Each of these systems is in use today, with SNMP being the

most common system used in wired networks. SNMP is a basic request-reply protocol

with a smart management station sending requests to a dumb agent on each device to be

managed. The agent simply replies to the request with data stored in the device. The only

time an agent initiates data transmission is when there is an event that occurs that requires

notification to the management station, such as a link down or a power supply failure.

The primary network management protocol in Ad hoc Networks (AHNs) is Ad hoc

Network Management Protocol (ANMP) [27]. ANMP is compatible with SNMPv3 and

many of its features are based on SNMP. ANMP includes more data items to monitor that

are critical in ad hoc networks, such as remaining battery power, location, and speed. One

critical feature of ANMP and any AHN network management protocol is its ability to

handle the dynamic nature of the nodes in the network as normal events and not

exceptions. This includes nodes dying, moving, joining the network, and belonging to

multiple networks.

35

ANMP utilizes a three-level hierarchical architecture, depicted in Fig. 3.1. The top

level is the network manager and the bottom level consists of the nodes in the network,

called agents. Several agents close to each other are grouped together to form clusters and

each cluster has a cluster head. These cluster heads, which are managed by the network

manager, manage the agents and form the middle level of the hierarchy. ANMP also

includes a user interface, making management more user-friendly and effective.

Figure 3.1: Hierarchical architecture of ANMP [27].

Despite research performed in the area of network management of wireless sensor

networks, a standard has not emerged. One system that has been developed is MANNA

[28]. It is different from most network management systems in that it “considers three

management dimensions: functional areas, management levels, and WSN

functionalities”, instead of the two (functional areas and management levels) defined in

traditional network management. Fig 3.2 illustrates the relationship among these three

dimensions, which are all considered when defining a management function. MANNA

also comprises three sub-architectures: functional, information and physical. The

36

functional architecture defines how management functionalities are distributed among

manager, agents and management information base. This distribution can be centralized,

distributed or hierarchical. How this functional architecture is implemented is the

physical architecture of MANNA. The information architecture is object-oriented and

consists of classes representing the resources under the three management dimensions.

Figure 3.2: MANNA management functionality abstractions [28].

Another WSN management system is the Sensor Network Management System

(SNMS) [29]. SNMS provides two management functions. One function is event logging

which is event-driven. This feature allows nodes to report their data if they meet

conditions specified by the user. The other management function collects data from the

nodes, both physical characteristics, such as remaining battery power, and sensed data,

such as temperature. Besides only having limited functionality, SNMS also monitors in

the passive mode only, in response to a user query. This monitoring imposes little

network bandwidth or processing overhead.

3.1.1 Network Management Systems with Ontology

The utilization of ontology in network domains has seen extensive research in recent

37

years. There has not been a NMS developed for a HMN; however, some related work has

contributed to the network management domain. Table 3.1 identifies the related works in

this section and provides an overview of their primary features.

Table 3.1: Comparison of NMS.

Work Wired
Tier

AHN
Tier

WSN
Tier

Goal

Wong [30] Automatically map management
concepts

López de Vergara [31, 32,
33, 34]

 Common management model

Cleary [35] √ Configuration management
Moraes [36] √ Performance management
Orwat [37] √ Security management
OntoSensor [38, 39] √ Trend discovery in sensor

measurements
New HMNMS √ √ √ Network management (topology

discovery tested)

One area of research related to the work here is the interoperability support provided

by ontology and the mapping of various network management concepts. As the mapping

techniques advance and become stable, they may be incorporated into the development

of the mapping ontology used in the HMNMS, which was manually created.

According to Wong, et al [30], interoperable systems must share in data or knowledge

exchange, exhibit coordinated behavior, and cooperate in problem solving. They

proposed a “method of automatic ontology mapping based on a semantic similarity

function” [30]. This was accomplished by developing a concept similarity estimation and

an ontology mapping. The network management concepts researched were represented in

First Order Predicate Calculus (FOPC). The degree of similarity between the FOPC

statements was measured and then an ontology mapping procedure was developed. The

38

first step in the ontology mapping procedure was a scheme that classifies matching

results according to their FOPC similarity values. The classification scheme is then used

to guide the search process through a target ontology, which is the ontology traversal

algorithm.

López de Vergara, et al [31, 32, 33, 34] present how an ontology can assist in the

comparison of different management information languages, including the semantic

expressiveness of these languages. Their research has concentrated on semantically

integrating management information from different network management models, such as

SNMP and CMIP. This was done by obtaining behavior characteristics through the use of

rules, axioms and constraints, which are all parts of an ontology. Fig 3.3 illustrates the

mapping process. Management specifications from different management models are

merged into one ontology using semantic mapping rules. This mapping will lead to the

different management models being able to understand the semantics of the other models.

There has been research in the use of ontology for various aspects of network

management. The majority of this work is for one-tier networks, not HMNs, in a

specific area of management. The following works highlight some of the applications

of using ontology in specific areas of network management.

Configuration management is one area of network management that may take

advantage of ontologies. This is because of the large amount of human interaction

necessary for configuration tasks and the similarities between configuration management

and other problems related to knowledge sharing, reuse and reasoning. In [35], Cleary,

39

Figure 3.3: Merge and map process for network management information [33].

Danev and O’Donoghue developed a new network modeling approach that is based on

ontology. They applied this approach to wireless networks. The new application interacts

with a traditional network management system via an XML representation of the

configuration data. The overall architecture for this approach is shown in Fig 3.4.

WCDMA-RAN is the Radio Access Network (RAN) used, which uses the WCDMA

(Wideband Code Division Multiple Access) communication protocol [40]. The

application reads the XML data and uses it to create ontology instances.

These instances are supplied to the inference engine. The engine suggests possible

configurations and also validates the consistency and integrity of user configurations

against the knowledge base. The new configuration is converted to XML and fed back to

the NMS for deployment to the network. The engine uses three different types of expert

rules to validate existing configurations and suggest possible configurations for use. The

new approach reduces the amount of human interaction needed for configuration tasks.

40

Figure 3.4: Ontology centric architecture [35].

Moraes, Sampaio, Monteiro, and Portnoi [36] developed an ontology, MonONTO,

that can be used primarily in performance management, including quality of

service and monitoring. MonONTO was used with an expert system that could

determine application performance based on previous performance. The previous

performance is learned from the network and fed to the knowledge base. The knowledge

base contained ontology instances about advanced network applications, application

users, and network monitoring. These instances were used to determine the most likely

network performance in a given situation. This work was for wired networks in

determining application performance in a specific network environment.

Ontologies have also been researched to assist in providing a secure management

environment for Mobile Ad hoc Networks (MANETs) [37]. Orwat et al. created MANET

Distributed Functions Ontology (MDFO), which was “used to structure MANET

performance and security information” [37]. This new approach provides a mechanism to

assist in making decisions for dynamic configuration changes in MANETs. It will also

provide a foundation to incorporate security factors to enhance the decision processes in

41

MANETs. One part of MDFO is the translator, which will convert information collected

from the network into ontology semantics. The output of the translator will populate a

database with static and dynamic information about MANET devices. The database is

queried when a MANET function is necessary and will then create instances in the

ontology and send relevant attribute values to the decision making process. MDFO can

“serve as the basis for MANET decision making and optimization and correspondingly

both control and facilitate the conduct of MANET operations” [37]. This research is the

first step to providing optimized management of MANET functions and services.

OntoSensor [38, 39] is a domain ontology designed for a heterogeneous sensor

network prototype environment. OntoSensor extends the upper-level IEEE Suggested

Upper Merged Ontology (SUMO) [41], which defines general concepts and associations.

It is also built on SensorML [42], which is a generic data model that defines associations

and properties common to sensors. The base station includes an OntoSensor ontology.

Information about the sensors, including the data acquisition boards, sensing elements,

and processors, is included in the repository. The repository responds to ad hoc queries to

assist in trend discovery in the measurements. The prototype environment only covers

devices in the 2006 Crossbow [43] catalog and requires a priori knowledge of the

platform class of each sensor.

3.2 Analytical Models for Network Performance Analysis

There has been some research on the development of an analytical model for

performance analysis of heterogeneous networks. A comparison of these models is

summarized in Table 3.2. The primary difference of the new analytical model developed

42

in this research is that it is for conducting a performance analysis on a multi-tier network.

Prior work was done on models for single-tier networks.

Table 3.2: Comparison of Analytical Models.

Work Homogenous or
Heterogeneous
Network

Number of Tiers in
Network

Queuing Model Used

Ismail and Zin [44] Heterogeneous Single-tier M/M/1
Hedayati, Kamali, and
Izadi [45]

Heterogeneous Single-tier M/M/1

New Analytical Model Heterogeneous Multi-tier M/M/1

Ismail and Zin [44] developed a simulation model based on queuing theory. The

model was developed to be used to measure the performance behaviors of a live network.

The model was developed to analyze the performance of a heterogeneous environment

over a Wide Area Network (WAN), specifically in an institution of Higher Education.

The model developed was based on the M/M/1 queuing theory model. It was

developed by studying a heterogeneous environment in a live network. The information

learned from the heterogeneous environment was converted into a logical model.

The live heterogeneous environment was at a Higher Educational Institution. It

consisted of a Local Area Network (LAN) at a main campus and a WAN connecting a

branch campus. The goal was to develop a model to study the performance of services

over the WAN connection.

The model was used to find the total size of various packet services of all the clients

in the heterogeneous environment, Trafik_Heter. The model was:

43

 (3.1)

where μJumlah is the total size of packet services requests by clients, JLAN is the LAN

distance, JWAN is the WAN distance, v is the speed of light, CLAN is the LAN bandwidth,

CWAN is the WAN bandwidth, and n is the total nodes in the two networks (LAN and

WAN).

Services were run in a live network environment. Remote data transfers were

simulated in the live environment and the propagation and transmission delays were

measured. Results from the simulation model were less than one second, typically within

tens of milliseconds, to the actual values. This confirmed that the simulation model can

be used to estimate data transfer times in a heterogeneous environment over a LAN and

WAN.

There were several assumptions made in the simulation model. These assumptions

were that there was no packet loss, no jitter in delays and sufficient network bandwidth.

Jitter refers to the difference in the end-to-end delay (arrival times) among packets. While

the model was used in a heterogeneous network environment, it was for a single-tier

network.

A similar approach to network traffic monitoring was proposed by Hedayati, Kamali,

and Izadi [45]. Similar to the previous approach, Hedayati, et al proposed a model based

on M/M/1 queuing theory. The model was developed to simulate and monitor the

network traffic of a heterogeneous LAN environment.

44

The live network used to verify the model was a university LAN. The results of the

live network tests were similar to the simulation model. This confirmed that the

simulation model can be used to calculate network throughput (the rate for successful

delivery of messages on the network, often in some form of bits per second) and

congestion rates (the amount of data on a network that causes delays in packet delivery)

for a live heterogeneous network.

The model developed was for calculating the instantaneous congestion rate, A0(t), and

the stable congestion rate, AC. The equation developed for the instantaneous congestion

rate was

 (3.2)

where is the arrival probability of the queue length for the router’s group at time t

and m is the service rate. The following equation was developed to calculate the stable

congestion rate

 (3.3)

where C is the routers’ buffers.

As with the previous work, this analytical model was developed as a simulation

model for a heterogeneous network. It is for a single-tier network, not for multi-tier

networks.

45

3.3 Intrusion Detection Systems

3.3.1 Basic Intrusion Detection Systems

Huang and Wicks [46] use the analogy of an intrusion to that of a battlefield. In

intrusion detection as well as in the battlefield they cite a number of shared characteristics

including an environment that is heterogeneous and widely distributed, a significant

amount of data that is constantly changing and which can be extremely noisy, incomplete

and inconclusive information that makes decision making difficult, and attack patterns

which are constantly changing. One must take these characteristics into account when

devising mechanisms for intrusion detection.

Huang and Wicks point out that if a file-access-violation is detected, the true purpose

of this event cannot be determined without additional information referred to as context.

Such contextual information would include such information as the present machine

configuration, the location of the files, permissions, and account configuration. The

important point that Huang and Wick make is that by the time sufficient information

arrives at a central analysis point, the situation (context) may have changed drastically.

Huang and Wicks’ approach to analyzing what may be happening is to consider the

strategy the attacker may be using. This in turn calls for a description of the attacks that

are more abstract in nature. This is consistent with the approach described in this

research, namely to represent descriptions of attacks in the form of a conceptual

ontology.

In Camtepe and Yener [47] an approach to detecting complex attacks is presented that

is based on the construction of finite automatons that represent the “patterns” of complex

attacks. They define a non-deterministic enhanced finite automata to be a tuple consisting

46

of Q, a set of states, QPA, a set of partial attack states, QA, a set of attack states, F, the

input alphabet, D, a set of derivation rules for goals and subgoals, and DELTAF and

DELTAB, sets of forward and backward transition rules. The finite automata can

recognize complex attack patterns. The automata implicitly specifies the relationships

between the attack elements and therefore, unlike a conceptual representation, possesses

no ability to generalize or specialize exists without the specification of another

automaton.

A Process Queuing System (PQS) was the method used in [48] to detect complex

attacks. The complex attacks were represented as finite state machines (FSM) with the

attack elements represented as states and the transitions were triggered by observations

about the occurrence of an attack element or a response to an attack element. The FSM

were represented as models, which could be incorporated into a hierarchy of models,

allowing for high-level models to be developed to detect complex attacks based on results

of lower-level models.

A system was developed, PQSNet, to demonstrate the application of PQS to network

security. PQSNet utilized existing sensors, such as Snort [49], firewalls, system log files,

etc. to obtain security information. Information from the sensors were fed into a PQS

model. FSMs were used in PQSNet to represent complex attacks with each step in a

complex attack represented as a finite state. When an alert is received from a sensor

indicating an event occurred, a transition will occur. A general sample of a FSM in

PQSNet is depicted in Fig. 3.5. The Start state indicates that there has been no malicious

activity, the Recon state indicates that some reconnaissance activity was detected, and the

Attacked state indicates that the host was attacked. PQS supports model tiering, which

47

allows the output of one model to become input to a higher-level model. This

characteristic allows PQSNet to abstract basic attacks, which permits complex attacks to

be written in an easier manner in higher-level models.

Figure 3.5: General FSM in PQSNet [48].

Snort [49, 50] is a common, open-source, network-based IDS. Snort is primarily a

signature-based IDS, with its signatures called rules. The rules in Snort contain sufficient

expressive power to detect simple attacks. Detecting complex attacks, which consist of

multiple packets, is more complicated and requires cross-event analysis in Snort. This

task requires preprocessors, which are more resource intensive than rules. Anomaly-

based detection is also possible with some of Snort’s preprocessors.

The Snort architecture, shown in Fig. 3.6, consists of several components. The traffic

on the network is captured using a packet sniffer. The packets captured are then sent to

any configured preprocessors. The detection engine is responsible for applying the rules

to the captured packets looking for matches, which results in alerts. The alerts are written

to files or a database for viewing by the network manager.

One feature of Snort is its configurability. This adds some complexity but also much

flexibility, as it allows each administrator to configure Snort for their network

deployment and use, as well as their IDS needs. There are many configuration options

48

Figure 3.6: Snort architecture [50].

available in Snort, including the choice of which rules to incorporate. Another option is

the addition of selected preprocessors, which will do some processing prior to rule

processing on the data. Some of the possible preprocessors are protocol checks for

common protocols, packet re-assembly for fragmented datagrams and port scanning. The

preprocessors allow for more complex intrusion detection.

Snort is a real-time IDS, meaning it will run the preprocessors and rules against

network packets as the packets pass through the Snort engine. For this reason, Snort may

not process all packets because of the speed of the network and the amount of data

passing through its engine. In order to behave in real-time, Snort will skip some packets

and not process them. This will allow some network attacks to get through the Snort

implementation and into the network.

The rules provide the ability to configure Snort to meet a network’s needs and quickly

adapt to new attacks. The rules also lead to a disadvantage in Snort. The addition of new

rules to handle new attacks has led to a rapid growth of the rule set in Snort (see Fig. 3.7).

This requires more time to process packets and perform the pattern matching against the

rules. This will lead to performance degradation and fewer packets processed by Snort,

which will result in more false negatives.

49

Figure 3.7: The growth trend of the number of rules in Snort [51].

Although Snort is an IDS and will generate alerts for attacks detected, there is still

considerable manual analysis required. The recommended manual analysis when using

Snort [50] is to first check the priority of the alert generated. Any low priority alerts,

which indicated an important alert in Snort, are further analyzed. All alerts involving any

critical device on the network, which must be identified by the organization, are

identified and investigated. Any source address appearing in multiple alerts is further

investigated. Well-known attack methods, such as using static source ports and IP

fragments, are identified. If these attack methods target a weakness in the network, this

should be addressed by incorporating a security measure to strengthen the weakness. As

time permits, which it often does not, the network manager prioritizes the remaining

alerts and further examine the one prioritized high.

50

3.3.2 Reasoning-based Intrusion Detection Systems

Various RIDS research is presented here. Each uses some type of logical reasoning in

the IDS. Table 3.3 presents a high-level comparison of the research presented. The table

indicates if the IDS detected attacks against hosts or the network, if the IDS detected

complex attacks, and how ontology was utilized in the IDS. The IDS research presented in

this dissertation is denoted as “new IDS”.

Table 3.3: Comparison of RIDS.

Work Host or
Network

Detects
Complex
Attacks

Ontology Use Goal

MulVAL [52] Host √ No ontology, used Datalog Vulnerability analysis
Xu, et. al. [53] Both Common vocabulary for

security information
Formal representation of
alert analysis

Martimiano, et. al.
[54, 55]

 Common vocabulary for
security tools

Model concepts for security
incidents

Tsoumas, et. al.
[56]

 Common vocabulary for
security requirements

Security management system
based on interoperability,
aggregation and reasoning

ReD [57] Both Instantiate new security
policies after attack
detection

Detect and react to attacks

Vorobievf, et. al.
[58, 59, 60]

Both √ Common vocabulary for
IDS components

Detect attacks using common
vocabulary among
distributed components

Undercoffer, et. al.
[61, 62]

Host √ Model computer attacks Detect attacks

Mandujano, et. al.
[63, 64]

Network √ Represent attack signatures
and environment
characteristics

Detect outgoing intrusions

New IDS Both √ Represent and detect
attacks

Detect complex attacks based
on traffic data

The MulVAL [52] system uses a logical deduction process to determine the existence

of a multistage attack on a network. It is a framework to model the interaction between

software bugs and the configurations of nodes on the network (systems and network

51

devices). This framework, illustrated in Fig 3.8, consists of generic rules, including rules

to determine if a vulnerability exists and the consequence of an exploit against the

vulnerability. MulVAL is used to filter attack information and only output essential data

for the system administrator to analyze.

Figure 3.8: MulVAL framework [52].

There are six different inputs to MulVAL’s analysis. The first input is the advisories.

These consist of the vulnerabilities, which are then checked for existence on each

machine. This is done by using an OVAL (Open Vulnerability Assessment Language)

[65] scanner. The results of this scanning process are converted to Datalog clauses.

Datalog [66] is a query and rule language that is a subset of Prolog. To understand the

effect of each vulnerability NIST’s National Vulnerability Database (NVD, formally

ICAT) is used, with the relevant information also converted to Datalog clauses.

The configurations for each host and network device to be scanned are two more

inputs to MulVAL. Host configuration information includes the software and services

52

running on the host as well as their configurations. The OVAL scanner is also used to

gather host configuration information, with the output once again converted to Datalog

clauses. The network devices that are a part of MulVAL’s analysis are limited to routers

and firewalls. These configurations are manually created using Datalog clauses.

Information about the principals, or users of the network, is another input to

MulVAL. These Datalog clauses map a principal to its accounts on the various network

hosts. Additional Datalog clauses describe the policies of the network, which indicate the

data access for each principal.

The last input is a model of how all the components interact. These interactions,

represented as Horn clauses, include a pattern that can be matched to identify a

multistage attack. Instead of coding specific vulnerabilities for the interactions, the

vulnerabilities were generalized, preventing frequent rule changes.

The OVAL scanner is run on each host with the output reported to the host running

MulVAL. The scanner must be run on each host and identifies vulnerabilities specific to

each host. MulVAL will then run an analyzer on the properties received from all the

scans. This analysis is done in two phases, an attack simulation phase and a policy

checking phase. The attack simulation phase identifies all possible data accesses of an

attacker, which are then sent to the policy checking phase. This phase will compare the

output of the attack simulation phase with the specified security policy and identify

violations. Both of these phases utilize a Datalog program, but the separation of the

phases provides for the possibility of using a richer policy language for the policy

checking phase without affecting the complexity of the attack simulation phase.

53

An important feature of MulVAL is the ability to reason about multistage attacks.

This is done through the use of Horn clauses that are created for the semantics of the

vulnerability and the operating system allowing the determination of an adversary’s

options in each stage of a multistage attack. The use of generalizations of attack

methodologies in the interaction rules allows the rules to be more static; however, since

MulVAL uses vulnerability recognition in its scanning process, a scanner must be run on

each host to be monitored. Also, when a new vulnerability report is utilized, each host

must be re-scanned. The authors of MulVAL concentrated their efforts on denial of

service and privilege escalation attacks only.

3.3.3 Reasoning-based Intrusion Detection Systems with Ontology

Context-aware alert analysis was researched by Xu, Xiao, and Wu [53]. They argue

that alert analysis for unified security management can be divided into three stages: alert

collection, alert evaluation, and alert correlation. An ontology was developed following a

four-step process: 1) model the conceptual level, 2) define the model in OWL [15], 3)

define correlation rules using SWRL [67], and 4) define security management services

using OWL-S. OWL-S can be used to provide a semantic description to Web services.

The overall architecture is shown in Fig 3.9.

The ontology developed was based on the CIM (Common Information Model)

Schema [68]. The key concepts include context, asset owner, vulnerability, threat and

countermeasure. The context was used for alert evaluation. Alert correlation was

achieved by extending the ontology with SWRL, which adds behavior information

through the use of rules. As an example, if a host is running an FTP service and a specific

operating system, then the attacker may be able to learn operating system information

54

about that host. Attack scenarios were built from the defined SWRL rules. OWL-S was

used to define security management policies for automatic response.

Figure 3.9: Proposed architecture for context-aware alert analysis [53].

The system proposed takes input from multiple IDSs, both HIDS and NIDS, and

integrates it into the knowledge base. Reasoning rules are used to perform alert

correlation and build attack scenarios.

The work of Xu, et. al. is similar to the work described in this research as they both

examine attack scenarios, but focused on attacks against Web Services, while the system

to be described in this research focuses on all types of attacks on any node on the

network. The context-aware alert analysis was the foundation of an ontology to provide

security knowledge in a uniform manner, available to multiple security tools or systems,

although it is not used for the identification of multi-phased, complex attacks.

Martimiano and Moreira [54, 55] focused their research on what they identified to be

the difficult problem in security management: “efficiently generate knowledge about

55

security to make decisions and solve security incidents”. One of the problems with

solving security incidents is that the various security tools often used by system and

network administrators generate data in different formats. The authors developed an

ontology called ONTOSEC to assist with solving security incidents. The main concept

was the Security Incident class and all other classes related to this class. The other

primary classes included access, agent, asset, attack, consequence, time, tool, and

vulnerability. The main concepts and relations for ONTOSEC are shown in Fig. 3.10.

Attacks identified by this system assume that all security incidents exploit a

vulnerability. The information in the vulnerability ontology was based on the CVE

(Common Vulnerabilities and Exposures) project [69] and NIST’s NVD. Attack

information was obtained from Snort [49] rules. The primary attributes used to identify a

security incident were the source IP address, destination IP address, security incident

type, date, time, weekday, description, reference, and severity.

ONTOSEC was validated using a data driven approach by comparing it with the

source data about the domain. The source data used for comparison was Snort alerts. The

ontology developed was used to provide a common format to be shared by various

security tools. It will store security incident data but not identify security attacks. A

security incident can precede and/or succeed another incident but there is no mention of

identifying multi-phased, complex attacks.

56

Figure 3.10: Main concepts and relations in ONTOSEC [54].

Tsoumas and Gritzalis [56] developed a “knowledge-based, ontology-centric security

management system” used to “bridge information system (IS) risk assessment and

organizational security policies with security management”. They extended the CIM

(Common Information Model) standard to create a generic Security Ontology (SO). The

development consisted of a model of the conceptual level, which was an extension of

CIM and then implemented in OWL. Their work consisted of four phases, building an

ontology, collection of security requirements, definition of security actions, and

deployment and monitoring of the system security.

57

The first phase was to build the Security Ontology. This included the use of scanning

tools to get data from the assets in the infrastructure being monitored. The organization’s

mangers were consulted to discuss business decisions made about the security

environment. From the infrastructure data retrieved from the assets, instances were

created in the ontology.

Security requirements were collected in phase two; security knowledge was extracted

from the IS policy document and used to create ontology instances. The security

requirements were evaluated by management and security experts for correctness.

Phase three consisted of defining security actions. The security requirements were

associated with specific security controls. These controls were then transformed into a

form that could be used for Ponder rules. Ponder is a language used to specify security

policies in a common way.

The fourth and final phase is the deployment and monitoring of security actions. The

Ponder rules that were created in phase three were deployed in the IS infrastructure. The

last important step in the process was to iterate from step one again, in a timely manner.

This was necessary to continually iterate over the steps to keep current with the changes

in the IS environment and policies.

Their work focused on security requirements in a centrally managed location. It

abstracted security requirements by extending the CIM Schema into OWL ontologies.

The ontology developed was focused on risk assessment and demonstrated that security

information can be extracted from risk assessment countermeasures.

Various tools were used to get infrastructure data, such as the network topology,

servers, active ports, etc. The security management requirements, including information

58

from security policies, were entered into the knowledge base manually and were then

linked to security controls for countermeasure identification.

These ontologies were used for knowledge sharing and to provide risk assessment

support. The system they developed did not utilize an IDS or identify security attacks.

The primary goal was to combine risk assessment and an organization’s security policies

to assist with security management.

The ReD (Reaction after Detection) project [57] defined and designed solutions to

enhance the detection and reaction process of network attacks. A framework was

developed to find the best way to react to a network attack, both for the short- and long-

term. The architecture, shown in Fig. 3.11, consisted of five components: 1) the Policy

Instantiation Engine (PIE), 2) the Alert Correlation Engine (ACE), 3) the Policy Decision

Point (PDP), 4) the Reaction Decision Point (RDP), and 5) the Policy/Reaction

Enforcement Point (PEP/REP).

Figure 3.11: ReD architecture [57].

59

The proposed ontology was used to instantiate new security policies in reaction to

identified attacks. The alerts and policies were defined in the ontologies and inference

rules were used to map the alerts into attack contexts. The architecture also utilized the

Detection Message Exchange Format (IDMEF) [70] for exchanging alerts among

elements and OrBAC (Organization Based Access Control) [71] as the policy language.

Alerts were sent from the network nodes to the ACE, which performed some analysis

to detect an attack. The ACE sent the attack information to the PIE, which instantiated

new security policies to react to the attack. The new policies were sent to the PDP, which

deployed the policies to the PEP/REP for enforcement. The RDP also received

information about the attacks from the ACE and determined mid-level reactions to the

attack.

Three types of reactions were defined, low-, mid-, and high-level. These

classifications were based on the level of diagnosis that was required to apply the

reactions. Low-level reactions were decided by the PEP/REP and immediately enforced.

The RDP decided on mid-level reactions based on attack information it received from the

ACE. These reactions did not include new security policies. The PIE determined the

high-level reactions, which resulted in the generation of new security policies that were

eventually deployed.

The PIE was the center of the architecture. It mapped the IDMEF alert information in

the Alert Ontology and the OrBAC reaction policy in the OrBAC Ontology. The PIE

used these ontologies, along with the alert information received from the ACE to

determine which components required a reaction and what that reaction should be.

60

SWRL rules were used to infer the hierarchy information in the OrBAC model, map

IDMEF alerts to OrBAC holds, and obtain the necessary security policy.

The mapping of the attack alerts information to security policies was their focus. The

policy instantiation process is shown in Fig. 3.12. The ontologies developed were used to

identify and instantiate the security policies necessary to react to an attack; they were not

used to detect an attack. The attacks were detected by using modified Snort IPSs, syslog

daemons, and host-based IDSs.

Figure 3.12: Policy instantiation with ontologies. [57].

Reasoning was a part of its architecture. It was used to infer the mapping from

IDMEF alerts to OrBAC policies. The ontologies received alerts from the IDSs (NIDS

and HIDS) and syslogs. From these alerts, analysis could be performed about attacks,

including multi-phases, complex attacks. The focus was on the mapping from security

attacks to security policies.

Vorobiev, Han, and Bekmamedova [58, 59, 60] discussed how distributed firewalls

and IDSs (F/IDSs), monitoring different hosts, must work together in a distributed

61

manner. They evaluated five different types of attacks: attacks against Web Services, P2P

attacks, Denial of Service attacks, sniffing attacks, and multi-phased, distributed attacks.

Their research paid particular attention to the gaming industry and the implementation of

gaming systems using the component-based software system (CBSS) and peer-to-peer

(P2P) approaches.

A framework was developed that used a variety of components from different

vendors that acted as a coalition. The primary component was called a defensive

component (DC).

The research also resulted in the development of several ontologies. The Security

Asset-Vulnerability Ontology (SAVO) was the main ontology in the system and gave a

simplified view of information security. It was the high-level ontology and included

classes to describe the various aspects of the system, including attack, vulnerability,

defense, risk, and threat agent. The ontologies were developed to assist in simplifying

security information. The Security Attack Ontology (SAO) and the Security Function

Ontology (SFO) were both used by the system to provide a common vocabulary to the

other ontologies. The SAO defines the classes for specific types of attacks, such as a Web

Services attack or a Peer-2-Peer attack. The defenses against each of these attacks are

defined in the Security Defence Ontology (SDO). The SFO was used by developers to

define protections against security attacks and failures. The Security Algorithm-Standard

Ontology (SASO) was used to define security algorithms and standards used in the

system.

As part of the framework, shown in Fig 3.13, Snort instances were deployed

throughout the network. These Snort instances sent information about attacks to the DCs.

62

When a DC detected a new attack, it added the attack to the SAO, which was then shared

with the other members of the coalition. If a coalition member developed a defense

against a new attack, a countermeasure was added to the SDO, which was distributed to

all coalition members. The manager, which was running the framework engine, decided

how to react to the attack and sent orders to the DCs for action.

Figure 3.13: Prototype implementation [60].

The ontologies in this framework provided a common vocabulary for the distributed

F/IDSs. These worked collaboratively to detect multi-phased, complex attacks. When a

host identifies an attack, it shares this information with the other hosts in the framework,

which then use the shared information to detect a multi-phased, complex attack. Each

host is required to implement a F/IDS, where the IDS portion is an HIDS. The framework

also includes countermeasures against identified attacks.

Undercoffer, Joshi and Pinkston [61, 62] produced work that performed analysis to

identify various elements of an attack, including the means or method, consequence,

target, and most common origin location. “An intrusion is comprised of some input

resulting in some consequence, while the impact is directed towards a system component,

63

received from some location and causes some means of by inducing some system

behavior” [62]. The target of the attack refers to the specific component of the target and

could be classified as the network layers, kernel-space, application, or other. The method

used by the attacker, the means, was categorized as an input validation vulnerability, a

general exploit, or a mis-configuration of the target or one of its components. The

consequence refers to the end result of the attack and may be one or more of denial of

service, the attacker achieves user access to the target system, the attacker achieves root

access to the target system, there is a loss of confidentiality, or some other undesired

result. The location refers to the origin of the attack in relation to the target of the attack.

Possible values for location are remote (another network), local (same network), or either

local or remote (may be either on another network or the same network). The high-level

overview of these concepts in the ontology can be seen in Fig. 3.14.

Figure 3.14: High level overview of ontology [62].

64

Vulnerability information was taken from CERT/CC advisories and the National

Vulnerability Database (NVD) [72], formally the Internet Catalog of Assailable

Technologies (ICAT), maintained by NIST (National Institute of Standards and

Technology). The host attributes, such as network connections, memory usage, open

connections, etc. were monitored and the state of the host was determined. This was done

by an IDS monitoring the host, requiring an IDS to be installed on or adjacent to all hosts

that are a security concern.

The authors developed a taxonomy based on these attack elements. The taxonomy

was defined in terms of observable relationships and measurable characteristics of the

target, such as the total memory, average CPU load, instruction pointer value, and

number of child processes running. The ontology was developed from the taxonomy and

centered on the target of the attack. The system learned normal behavior and then used

the ontology to detect anomalies in the behavior.

This research utilizes IDSs that send security alerts to the ontology, which will then

infer information about attacks. The system performs reasoning to detect multi-phased,

complex attacks. One host detects a simple attack that is one step in the multi-phased,

complex attack, while another host may detect another step of the multi-phased, complex

attack. This information is combined so the multi-phased, complex attack occurrence can

be inferred. It focused on hosts as the targets of all attacks, which is not always the case

when dealing with network security. To do damage to more aspects of the network, an

attacker may target a network device, thus attempting to take down an entire subnet or

network. The research described in this work focuses on any node as the target of an

attack, including hosts and network devices, such as switches, routers, and firewalls.

65

An ontology-based intrusion detection system was described by Mandujano [63] and

Mandujano, Galvin, and Nolazco [64]. In this approach, the authors are looking to detect

outgoing intrusions using a multiagent system. A multiagent system utilizes multiple

software agents to gather data for input into the system. The goal of an OID is to help

protect remote systems. This work accomplished OID by taking advantage of the fact that

many complex attacks are automated using scripts or executable programs. The system

developed analyzed changes in the network traffic and the resources used by an

automated attack tool. The resources were identified by evaluating the program profile

during execution. The agents were used to collect data, detect possible incidents, and

implement reactions to the incidents identified.

The ontology developed for the system was an attacker-based ontology, focusing on

the originating user or system. The ontology identified all elements about the system,

including automated attack tools, network traffic, signatures, sensors, and reactions, as

well as their relationships. The ontology they propose enables the detection of code and

network activity that identifies a possible intruder. The ontology specifies concepts like

hostile and safe processes as subclasses of a process, for example. Their ontology, unlike

the ontology proposed in this research, does not distinguish between traffic and attack. It

is our contention that such a distinction is necessary to successfully identify sequences of

incoming attacks and also to be able to recognize the type and kind of attack that is

transpiring.

Much of the research has concentrated on attacks against hosts. Only the ReD Project

utilized NIDSs for alert information, the other research used HIDS or no IDS. This

research will detect attacks against any node on the network, including network devices

66

such as switches, routers and firewalls. Network devices can provide attackers with very

valuable information about the network and hosts. For instance, if an attacker identifies a

password for a network device, it may also be a password used on other network devices

or perhaps even servers on the network. A significant consideration is that a

compromised network device is much less likely to be detected.

Much of the previous work is focused on identifying vulnerabilities of systems and

evaluating the threats against these targets. This work will focus on the network traffic

and not the vulnerabilities or targets. By doing this, it is possible to identify attacks and

also attack attempts, even if the vulnerability doesn’t exist in the target node or network.

This may be the result of the target of the vulnerability not being deployed in the

network, or the target may have been patched to resist the vulnerability, etc. It is

important to note that attack attempts are just as important or meaningful as an actual

attack. The attempts can alert the administrator to an attacker existing that is trying to

penetrate their network or a node on their network. It also allows the administrator to

prepare the future deployments such as a user adding a web server to the network that

may contain vulnerabilities.

This work will begin with specific attack examples but will evolve into more general

cases. The rules developed for identifying complex, multi-phase attacks will be generic,

and will lead to the identification of any type of attack, including zero-day attacks. These

rules will allow a family of complex, multi-phased attacks to be defined and detected. By

representing these attacks ontologically, a more advanced and reusable representation of

network attacks will be created.

67

 Network Management of a Heterogeneous, Multi-tier Chapter 4

Network

4.1 Challenges of Heterogeneous Multi-tier Network Management

When considering a HMN, each tier in the network may have its own network

management system or protocol; there may even be varying management systems or

protocols within one tier. This presents a considerable problem for proper network

management; it is difficult to exchange information between disparate systems. This

requires the network manager to gather information from several management stations.

Network management software exists that can help manage a heterogeneous network.

An example is ProIT [73] by PerformanceIT, Inc. This software utilizes SNMP to retrieve

data from devices from a variety of manufacturers. The software is primarily used for

performance and fault management. Configuration management, a common network

management function, is often too manufacturer-dependent for third-party software.

Another disadvantage of third-party management software solutions is the need to

install add-ons or agent software for the management station to retrieve the data from the

devices. Typically software must be installed for each different manufacturer. As new

devices are added to the network, often an upgrade must be done for that manufacturer’s

add-on to allow proper communication with the new devices.

Each new manufacturer and device must be configured in the management software.

This is often a device-by-device task, but some software does allow some group

configurations for similar devices. This configuration is a time-consuming process.

68

Another issue is that the majority of network management systems gather raw

measurement data only. There is no semantic information gathered. For example, the

NMS may state that there were 567 dropped packets on interface 23, but that data alone is

meaningless. The semantic information for this might specify that 567 dropped packets

may be a critical concern since it is over a specified threshold; however, semantic

information about that particular interface indicates it is a printer that may have a higher

threshold for dropped packets so there is no alert generated. In existing NMSs, the

analysis to create the semantic information must be carried out by the user – in this case

the network manager. Even if one system was able to gather semantics about the network,

there is no way for the various systems to exchange semantic information because there is

no standard way to represent this semantic information.

Four domains of a network system have been identified, all requiring management.

The four domains are Nortel wired, Cisco wired, ad hoc, and wireless sensors. The

challenge is to bring coherence to a network system that consists of different types of

equipment, described in different ways, to provide a unified view to a NMS. An

investigation transpired to see if it would be possible to create a unified NMS that would

be usable for each of the identified types of networks while at the same time providing a

common view of these networks. In addition to these requirements for the solution, it

must also be scalable and adaptable.

4.2 An Overview of an Ontology-based Network Management System

We investigate a potential solution that meets these requirements, specifically a

unified approach to network management. This approach uses an ontological

69

representation of the various networks rich enough to express raw and semantic

information and at the same time able to be processed by appropriate algorithms.

The ontological representation provides the backbone of the integration of disparate

systems. From a computational approach, an ontological representation can be

algorithmically acted upon thus allowing us to apply processing power to determine what

is going on in any of the network types. Most deployed systems are able to provide a

network manager with information of the state of the network passively. The correct

knowledge represented ontologically can be acted upon using expert knowledge to

provide a richer description of the state of the network. We hope to create an NMS that

operates at a level significantly exceeding those that exist today by employing this

knowledge.

The new design for an NMS using these ideas [74] is shown in Figure 4.1. The

system contains a Graphical User Interface (GUI), an Ontology Subsystem, an Ontology

Instances Interface, and descriptions of the network management protocols for each

network type (wired, AHN, and WSN). Each component will be explained.

The Ontology Subsystem consists of three components: the ontology, the knowledge

base, and the reasoner. The ontology is explained in the next section. The knowledge

base contains the ontology definition files and raw instances of all devices deployed in

the HMN. When the NMS is launched, the ontology definition files are loaded into the

knowledge base. Also during the NMS launch, instances are added to the knowledge base

for all active deployed devices. The instances are added by the Ontology Instances

Interface, which is explained soon.

70

Figure 4.1: Component diagram of the Network Management System (NMS) [74].

The reasoner is the part of the NMS that allows a network manager to interact with

the knowledge base. The FaCT++ [75] reasoner is used in this research. FaCT++ is a

description logic (DL) reasoner, which provides logical reasoning for ontologies. The

GUI obtains queries from the network manager and then interfaces with the reasoner to

obtain the query answer from the knowledge base, which returns the results to the GUI.

The GUI then displays the results to the network manager.

The Ontology Instances Interface (OII) is a program that interfaces between the nodes

in the HMN and the knowledge base, which contains the ontology definition files and

data instances for deployed devices. The OII periodically sends a management query to

each node in the network. The query depends on the network type and the management

protocol used for that network type.

For instance, for wired devices the query is an SNMP query. When the node receives

71

the query, it will extract the raw data that it has been maintaining that answers the query

and create a response. Upon receiving a response to the query, the OII will extract the

raw data from the response packet and create an instance in the knowledge base for that

node. For example, if the query asks node Node1 for its name, location and description,

then Node1 retrieves that information from its memory, creates a response packet

containing this information, and sends the response back to the OII. The OII will then

extract this information (the name, location and description for Node1) from the response

packet and create an instance in the knowledge base for node1. This instance will contain

the information returned by the node (its name, location and description).

The management query is sent to the deployed devices by utilizing existing network

management protocols, when possible. The wired devices are queried using SNMP.

When the wired node receives an SNMP query, it will retrieve the MIB values and return

them to the OII. The OII will create an instance from the MIB values returned and add

the instance to the knowledge base. A separate query is sent for each wired node

deployed in the network.

SNMP is also used for ad hoc devices. For this to happen, a new MIB and ad hoc

agent were created for ad hoc networks [76]. The new MIB contains properties for

retrieving battery information, such as the battery life remaining, both in percent and

seconds, and if the battery life is low. The basic properties for ad hoc nodes, such as

name, location, serial number, IP address, etc. are retrieved using the new ad hoc agent

but using existing SNMP MIBs.

WSN sensors are statically defined. In the future, management protocols or systems

will be utilized to obtain the device information for this network type as well. There are

72

no current standards for network management protocols for WSNs, so the protocol or

system used to obtain the data for this network type will be determined based on its

maturity and effectiveness within the newly developed NMS. For the sensors in the

WSN, the sensor Network Management Protocol (sNMP) [77, 78] and the Sensor

Network Management System (SNMS) [26] are two options for use to send the

management query. When incorporated into the NMS, the data will be obtained from

sNMP or SNMS, just as it was done with SNMP, and the device instances will be added

to the knowledge base.

4.3 The Ontology-based Approach

The domain of the ontology developed is HMNs. The ontology forms the basis for

our approach to managing such networks. The ontology will answer questions about all

tiers and devices of the network. Examples of questions that can be answered by the

ontology are:

• Where is each device located?

• What is the address of all devices?

• What is the energy level of the device?

These questions were used as a starting point for the definition of the ontology domain.

The first step in ontology development [79, 80] is to define the terms for the domain.

Terms are the vocabulary of the domain or the things that need defined or explained to

the user. Some of the terms for the ontology in the network management domain are:

name, location, address, energy level or residual energy, node role (cluster head or

73

member node) and status. After all the terms are defined, the following steps are followed

to construct the ontology [81]:

1. The classes and class hierarchy are defined

2. The class properties or slots are defined

3. The facets of the slots are defined

4. Instances of the classes are created

The ontologies are written using OWL as the knowledge representation language.

OWL was chosen because of the expressiveness required for the HMNMS. The primary

expressiveness necessary in the ontology that is provided by OWL and not provided by

other knowledge representation languages are the specification of disjoint classes and the

mapping of common terms. It is necessary to specify that some classes are disjoint to

gather more semantic information about the deployed devices. For instance, if a device is

characterized as a Nortel device by being a member of the Nortel class, then the device

cannot be a Cisco device since the Nortel and Cisco classes are specified as disjoint. The

mapping of common terms means that terms in multiple domains with the same meaning

can be mapped to one common term in a mapping ontology file. For example, the serial

number for a device is maintained in both the Nortel and Cisco devices. In the Nortel

domain, the term used for the serial number is rcChasSerialNumber and in the Cisco

domain the term is chassisSerialNumber. In order to have the required interoperability for

one NMS, these two terms must be represented by one common term in the ontology.

The classes representing the various device types, class hierarchy, class properties and

facets are defined in the ontology. The class hierarchy consists of the various types of

74

devices that may be deployed in a HMN (see Fig. 4.2). The main class is the Node class,

which contains properties that exist in any network node, such as name, description, and

serial number. The wired and wireless nodes are subclasses of the Node class and contain

properties that exist in each of these network domains. Currently the Wired class has no

additional properties; the Wireless class has a role (cluster head vs. non-cluster head

node), a status, and the remaining energy. The subclasses of each of these two classes

will be the various types of wired and wireless nodes. Currently, wired nodes consist of

Nortel devices and Cisco devices and the wireless nodes are either ad hoc nodes or

sensors. Seven ontology definition files were developed, for simplicity, corresponding to

the nodes in the class hierarchy. The complete OWL code for the Network Management

System is provided in Appendix A.

Figure 4.2: Class hierarchy for the HMNMS ontology.

75

The Nortel and Cisco classes are quite similar. Each one contains the same fields,

such as the IP address, subnet mask, system description, system name, and chassis serial

number. The reason for two different classes is because of the proprietary nature of the

manufacturer’s MIBs. For instance, Nortel and Cisco use different terms for the chassis

serial number, as previously discussed.

The fields in the AHN and WSN classes are similar and represent items such as the

node address, location, serial number, remaining energy, role, cluster head, and status.

The role and cluster head fields are used in clustering to identify if the node is a cluster

head or an agent/member node and to identify an agent/member node’s cluster head. Two

different terms are used to correspond to common technology in each network type

(agent for AHN and member node for WSN). The status field indicates if the node is

active or inactive (also alive or dead in the case of a WSN node).

In order to deploy an ontology application for network management, the data must be

mapped to one domain, using a mapping ontology. This ontology definition maps data

from the four main classes (Nortel, Cisco, Ad hoc, and Wireless Sensor) into one class by

taking similar data from each network type and mapping it into a common term (see

Table 4.1). The development of the mapping ontology definition requires domain

knowledge and interpretation of this knowledge. Comprehensive ontologies, developed

by domain experts, reduce the burden on network managers. For example, as discussed in

the previous section, Nortel and Cisco each use a different MIB identifier for the

chassis’s serial number. This requires these two fields to be mapped to a common term,

serialNumber.

76

As another example, consider the network device’s address. Wired and AHN devices

may use an IP address but a WSN node may use an IP address or simply a node ID (1, 2,

3, etc.). This research used a node ID for the address of WSN nodes. In order to list all

network device address’s in a HMN, the IP address in the Nortel, Cisco and Ad hoc

ontologies are mapped to an address field and the node ID in the WSN ontology is

mapped to the same address field. This allows a network manager to ask once for a list of

all devices and their addresses (IP or node ID). Without the mapping ontology, the

network manager would have to query four different NMSs separately to get all deployed

devices with their corresponding addresses.

Table 4.1: Common Terms in the Ontology.

 Cisco
Domain

Nortel
Domain

Ad hoc
Domain

WSN
Domain

Common
Term

System Name sysName sysName name name name
System Location sysLocation sysLocation location (xcoord,

ycoord)
location

System
Description

sysDesc sysDesc description description description

Serial Number chassisSerial
Number

rcChasSerial
Number

serialNumber serialNumber serialNumber

Address sysIPAddr rcSysIPAddr ipAddress nodeID address
Subnet Mask sysNetMask sysNetMask subnetMask N/A subnetMask
Role (cluster
head or member
node)

N/A N/A role role role

Status
(alive/active or
dead/inactive)

N/A N/A status status status

Remaining
Energy

N/A N/A remainingBat
teryLife

residualEner
gy

energyLeft

The energy left in AHN and WSN nodes, which is a primary concern because of the

limited energy resources, is another use of the mapping ontology to assist the network

manager. If the network manager wants to know how much remaining energy is in each

77

AHN and WSN node, the manager would have to query multiple sources, possibly even

each individual node if no NMS was implemented for these two network types, which is

often the case. By utilizing the ontologies developed in this research, the manager could

ask one query, which consults the mapping ontology and return the remaining energy of

all AHN and WSN nodes. This allows the network manager to easily find all nodes that

have energy levels of concern for further evaluation.

4.4 Implementation of the Ontology-based Network Management

System

One facet of configuration management is topology discovery. Topology discovery

for a HMN is, at best, a difficult task. Other aspects of configuration management that

may benefit from a new NMS are determining the current status of deployed devices,

knowing when a configuration needs to be updated, and determining the future

deployment status of devices. In particular, topology management can answer questions

posed by the network manager regarding the current, and potentially the future, status of

deployed devices.

Network topology is one network management task that is important to all network

managers. It is important for a network manager to know the devices that are deployed

and some properties for each. Also, many configuration management tasks rely on the

network topology. For these reasons, obtaining the network topology was the task that

was the focus of the prototype system for this research and performed on each test

network implementation.

78

4.4.1 An Experimental Heterogeneous Multi-tier Network

An ontologically-based NMS was deployed on a Windows machine for testing

purposes. The tests were run with a heterogeneous three-tiered network that was created

for evaluation of the new NMS. The HMN network consisted of various numbers of

wired (Cisco and Nortel), ad hoc, and sensor nodes. The wired portion of the network

was simulated using a node emulator. The emulator was an implementation of the SNMP

agent that would exist in deployed wired devices. The emulator responded to the SNMP

requests with SNMP responses corresponding to unique wired nodes. The responses from

the nodes were captured by the Ontology Instances Interface component of the NMS,

which created instances in the knowledge base for each node. This portion of the network

behaved in the same fashion as a live wired network and allowed testing of all aspects of

the NMS. To study the performance and correctness of the developed ontology the

network also contained AHN and WSN nodes. The AHN and WSN nodes were statically

defined in the ontology and directly loaded into the knowledge base when the NMS was

initiated.

Each test network was deployed, with a different number of nodes, in a simulation

environment, instances were created for each device deployed, and the network topology

was obtained and displayed. Ten trials of this experiment were run for each network

implementation with the arithmetic mean used for comparison purposes. The percentage

of wired nodes (70%), AHN nodes (10%), and WSN nodes (20%) was the same for each

experiment.

A topology discovery was performed on the test HMN using the new NMS. The

NMS correctly retrieved basic properties from each deployed device in the HMN using

79

the data stored in the knowledge base. Fig. 4.3 and Fig. 4.4 show the GUI snapshots for

some of the wired devices and WSN devices respectively. These snapshots show an

example of the results returned when the network manager asks to see all properties for

all deployed devices in the network. As demonstrated by the figures, the properties

returned vary for device type, specifically between wired and wireless nodes, since the

properties are different for the different device types.

Figure 4.3: Characteristics of several wired devices in the HMN [74].

Figure 4.4: Characteristics of several WSN devices in the HMN [74].

The results of the query for all properties of all deployed devices in the simulated

network are shown in Fig. 4.5 (KB – knowledge base). When the number of devices is

relatively small (less than 100), the overhead of the HMNMS (time to add instances to

and retrieve query results from the knowledge base) is less than half of the total time. The

total time is the time to initialize the HMNMS (add all deployed devices to the

knowledge base) and retrieve the network topology.

As the number of deployed devices grows over 100 devices, the query time increases

80

to more than half of the total time. This is due to the scalability of the knowledge base.

As the network grows, the scalability is an issue. For most network managers, the

scalability issue will be an acceptable trade-off as the total time is still less than the time

that is required when a manual collection of data is necessary for HMNs. The scalability

of ontology is addressed as future work and is discussed in chapter 8.

Figure 4.5: Results for the HMNMS for a simulated network.

4.4.2 A Test Heterogeneous Two-tier Network

The test network for this deployment of the HMNMS consisted of two of the three

possible tiers, wired and ad hoc. Sensor nodes were not part of this test network because

of the lack of a standard management protocol. The wired tier consisted of both Cisco

and Nortel nodes.

The wired nodes were previously configured with SNMP data, which was part of the

standard installation of the network devices. This included information such as the IP

0

500

1000

1500

2000

2500

3000

10 20 50 80 130 180 250 350 500

M
ill

is
ec

on
ds

Number of Deployed Nodes

Avg Time - query KB for
NW topology

Avg Time - add instances
to KB

Avg Time - retrieve
management data

81

address, network mask, name, location, etc. There was no additional configuration

required for their deployment to the test network.

The ad hoc nodes were laptops running Linux with an ad hoc routing protocol

installed, which is necessary for a multi-hop ad hoc network (an AHN with multiple

connections between a node and the gateway). The newly-developed SNMP ad hoc agent

and MIB were installed, which required some additional installation and set-up.

The IETF developed the Agent Extensibility (AgentX) Protocol [82] to dynamically

extend SNMP agents. The AgentX protocol splits the agent into two separate parts, a

master agent and subagents. The master agent is a traditional SNMP agent but has no

access to management information on the nodes. The subagents have no SNMP

knowledge but have access to the management information on the nodes. The subagents

communicate to the management station via the master agent. The management station

sends the SNMP queries to the master agent, which then communicates the required

information to the subagents by using the AgentX protocol. The subagents retrieve the

requested information from the node’s memory and return it to the master agent, which

then sends it to the management station.

The newly-developed ad hoc agent was created as an AgentX subagent, so an AgentX

master agent is also required. The AgentX master agent used in this research is the Net-

SNMP distribution [83]. When the laptops are booted, the AgentX master agent and new

ad hoc AgentX subagent are started and ready to answer SNMP requests.

The HMNMS is run on a management station that is part of the test network. The

management station is able to access the wired network, the ad hoc network, and the

developed ontology definition files. The ontology definition files are stored on a web

82

server so the management station can read these files via the Internet. The management

station is used to query the ontological knowledge base, and the results of the NMS

analysis of the data being collected.

A simple query is sent from the network manager, via the GUI, to the knowledge base

requesting the address and description of all deployed nodes in the test HMN. When the

HMNMS is initiated, all deployed devices are queried and the responses are added to the

knowledge base via the OII. At that point, the knowledge base contains the ontology

definition files and instances for all deployed devices. So, when the GUI sends a query to

the knowledge base, it is sent via the reasoner. The reasoner will send the query to the

knowledge base and retrieve the answer for the query. The query answer is then returned

to the GUI where the network manager views it. The address and description of all active

deployed devices is returned to the network manager in response to the query because of

the interoperability provided by the incorporation of ontology in the HMNMS.

A portion of the query results is shown in Fig. 4.6. These results show the information

requested (address and description) for four of the nodes in the network. The first two

nodes are wired nodes (the first one is a Cisco node and the second one is a Nortel node.

The last two nodes are ad hoc nodes deployed in the network. As seen in the results, both

ad hoc nodes are hosts running Ubuntu versions of Linux.

83

Figure 4.6: Sample query results from the HMNMS for a test network.

4.4.3 Deployments in Live Networks

In consideration of the contributions of this work, the system was deployed in live

environments to obtain a quantitative measurement of the performance and deployment

of this solution. The HMNMS uses existing management protocols to obtain node

information. This contributes to the ease of deployment for the HMNMS. Deployed

network nodes will most likely already support the standard management protocol by

default. If a node does not support the standard management protocol, it is easily enabled

by changing a configuration setting in the device. Deployed nodes require no additional

software to be installed to work with the HMNMS.

The HMNMS system is installed on a single management station. This requires the

installation of the FaCT++ reasoner and the Ontology Instances Interface. The reasoner

requires access to the ontology definition files; they can be copied onto the management

station or onto a web server that is accessible to the management station.

The HMNMS was deployed and tested in two live network environments. The first

was a corporate network consisting of Cisco devices and the second was a university

--> address: 192.168.2.210
--> sysDesc: Cisco Systems Catalyst 1900,V9.00.06

--> address: 192.168.2.150
--> sysDesc: BayStack 450-24T HW:RevL FW:V1.36 SW:v1.3.1.2

--> address: 10.0.0.1
--> description: Linux misty 2.6.28-11-generic #42-Ubuntu SMP Fri Apr 17 01:57:59 UTC 2009 i686

--> address: 10.0.0.2
--> description: Linux lucky 2.6.28-11-generic #42-Ubuntu SMP Fri Apr 17 01:57:59 UTC 2009 i686

84

network with Nortel devices. While the two live networks were homogeneous

deployments, these deployments provided an opportunity to test the ease of wide-scale

deployment of the HMNMS.

As with the test network, the HMNMS deployment was a minor issue and required no

configuration changes to the network devices. The deployed devices were all configured

for SNMP and required no additional software or firmware installation.

The network management station was a laptop that was connected via Ethernet to the

network. The laptop was running the FaCT++ reasoner to handle the ontology knowledge

base. The HMNMS was already compiled on the laptop so the only requirement was to

run the HMNMS utilizing the specified ontology files. In the current deployment, the

devices must be manually characterized as Cisco or Nortel. After the completion of that

manual step, the HMNMS properly gathered the necessary information from the

deployed devices.

Results of these live deployments demonstrated that the ontology sub-system

overhead was minimal. A comparison of the performance results for the university

network is illustrated in Fig. 4.7 (KB – knowledge base; props - properties). These results

illustrate that the majority of the response time is the query for the SNMP data, which

exists in all NMSs utilizing SNMP and it not unique to the HMNMS. As noted in the

figure, instances are added to the knowledge base swiftly. In this live network, which is a

realistic view of the actual utilization of the HMNMS, the query response time for the

network topology is minimal. This response time grows as the number of devices grows,

but it is acceptable provided the benefits provided.

85

The time to add instances to the knowledge base for all deployed devices in the

network is relatively constant, even as the number of deployed devices increases, as

shown in Fig. 4.8. The figure also shows that the time to retrieve the network topology

for all deployed devices in the network grows quickly as the number of devices grows.

This increase in query time does not increase as quickly as the time to retrieve the

management data from the deployed devices. The time to retrieve management data is

present in any NMS and the query time is still less than the time to conduct manual

analysis for a HMN, so the growth is acceptable provided the benefits of the HMNMS.

Figure 4.7: Results from the HMNMS for a live university network.

0

100

200

300

400

500

600

700

800

4 10 62
Number of Network Devices

Avg Time - query
KB for NW
topology

Avg Time - add
instances to KB

Avg Time -
retreive SNMP
data

m
ill

is
ec

on
ds

86

Figure 4.8: A scalability perspective of the sample query results from the HMNMS for a
live university network.

4.5 Chapter Summary

Improved techniques represent a critical aspect of managing networks as they grow

larger and more complex. As the network management task becomes more and more

complex it becomes more difficult for humans to carry out this task. We already have

networks of sufficient complexity that are subject to attack and cannot be properly

managed in their entirety. As we have described by incorporating sufficient knowledge

into an NMS and by unifying disparate networks through ontological representation we

can begin to use computational power to address the network management problem.

In comparison to the alternative of manual processing of data, the overhead of

obtaining the topology of a network with the new NMS is acceptable. The results of tests

run to retrieve the network topology for a simulated network, a test network, and two live

networks demonstrate that the overhead of the ontology (adding instances and retrieving

0
50

100
150
200
250
300
350
400
450

0 10 20 30 40 50 60 70
Number of Network Devices

Avg Time -
retreive
SNMP data
Avg Time -
add instances
to KB
Avg Time -
query KB for
NW topology

m
ill

is
ec

on
ds

87

query results) is minimal, particularly as the number of nodes is less than two hundred. If

the network manager was responsible for an HMN and was not using this NMS, the

manager would have to consult four different NMSs, one for each device type deployed.

The manager would then have to manually combine all four network topologies returned

in order to have one integrated network topology of the HMN. An obvious benefit of the

NMS that uses ontology is the integration of diverse data.

Results of a network in a simulation environment and two live deployments show the

HMNMS incurs negligible, acceptable overhead. The deployments in the live networks

demonstrate the minimal set-up required to utilize the HMNMS. Thse two observations,

adjoined with the benefits of the HMNMS, make it an obvious addition to the tool set of a

manager of a HMN.

88

 An Analytical Model for Performance Analysis of a Chapter 5

Heterogeneous Multi-tier Network

Network applications as a class of applications face many issues. These issues include

response time, bandwidth capability, and connectivity. As a member of this class of

applications an NMS has these same issues. The network manager must monitor and

maintain the network but not impact the users’ experience. To achieve this goal, it is vital

to optimize the bandwidth, by minimizing the traffic overhead introduced by an NMS. In

this chapter the performance of an HMN is analyzed while running an HMNMS.

The performance analysis provides a view of the impact of system design on network

capacity. A key element of this analysis is determining if there are any bottlenecks in the

HMN caused by the HMNMS. The analytical analysis was conducted for a

heterogeneous, two-tier network, consisting of wired and ad hoc nodes.

5.1 Theoretical Analysis Based on Queuing Theory

The performance of the HMNMS was evaluated using the model proposed by Nishida

[84]. Nishida developed an end-to-end performance model to conduct a bottleneck

analysis. The end-to-end performance was defined as the accumulation of the processing

time of all the components of the system. For this research, the end-to-end performance is

defined as

 TNMS = Tnd + Tui + Tont + Tint + t (5.1)

The components of the end-to-end performance are shown in Table 5.1 and correspond to

the system components in the HMNMS, Fig. 5.1.

89

Table 5.1: End-to-End Performance Components [74].

Notation Description Corresponding System
Component

Tont Processing time on the
Ontology Sub-system

Ontology Sub-system

Tint Processing time to add the
ontology instances,
representing the devices, to the
knowledge base

Ontology Instances
Interface

Tui Processing and Input/Output
time of the UI

UI

Tnd Processing time in the devices
in the HMN

HMN devices

T Transmission time to obtain the
management data from the
devices in the HMN

Links between Ontology
Instances Interface and the
HMN

Figure 5.1: Component diagram of the Network Management System (NMS) [74].

The majority of the run time in the HMNMS is obtaining the data from the deployed

devices and displaying it to the User Interface (UI). This is illustrated in Fig. 5.2. This

90

portion of the run time consists of the node processing time, Tnd, the transmission time, t,

and the UI processing time, Tui. The wired and AHN portions of the network include

sending an SNMP request to each node and receiving an a SNMP response. The round-

trip time for the SNP request and response is the same for any NMS, including the

HMNMS. The HMNMS uses existing protocols, such as SNMP, to retrieve the

management data. Since the node processing time, Tnd, and the transmission time, t, are

the same for any deployed NMS in a network, these two times are combined for the

performance evaluation, Td. The new formula is

 TNMS = Td + Tui + Tont + Tint (5.2)

Figure 5.2: End-to-end performance times of experimental tests [74].

The other parts of this run time are the node processing time and the UI processing

time. The UI processing time is required to display a graphical view of the network and

0

1000

2000

3000

4000

5000

6000

10 20 50 80 130 180 250 350 500

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of Nodes

Tont

Tint

Tgui

Td (Tnd + t)

91

the deployed devices to the network manager. The UI processing time is not unique to the

HMNMS since any deployed NMS incurs the same overhead.

The overhead in the HMNMS that is new to this design is the Ontology Sub-system

and the Ontology Instance Interface. For this reason, these two components, Tont and Tint,

are the key points for analysis. The goal is to minimize the processing overhead for these

two components while maximizing the benefit of incorporating ontology into the NMS.

As observed in Fig. 5.3, the time to add instances of deployed nodes to the knowledge

base, Tint, is reasonably small and almost constant. In the overall running time of the

NMS, this time is negligible for two reasons. First, the time required to add the instances

to the knowledge base for nodes in the network is insignificant. The second reason is due

to the way the instances are added to the knowledge base. Instances are added to the

knowledge base when deployed devices are identified in the network, which is a one-time

occurrence during the running of the HMNMS. Currently, deployed devices are found by

hard-coded addresses in the HMNMS. Future work will utilize some type of auto

discovery of the devices. After the initial loading of devices to the knowledge base, all

deployed devices exist in the knowledge base. After this initial loading, new instances are

only added as new devices are deployed to the network. Since devices are added

randomly, there typically is not a time when there is substantial overhead in the HMNMS

due to new instances being added to the knowledge base.

The time to retrieve the network topology, Tont, is exponential to the number of nodes,

as shown in Fig. 5.3. As the number of nodes increases, the size of the knowledge base

increases, so additional time is required to process and retrieve the instances. This

property impacts the HMNMS one time, when the initial network topology is discovered.

92

Figure 5.3: Ontology sub-system and instance interface times [74].

An analytical model was developed for the performance analysis of the HMNMS

[85]. The HMNMS has two main systems: the User-Ontology System and the

Management-Query System. The User-Ontology System is invoked when the network

manager asks a query and has no impact on the Management-Query System. For

instance, if the network manager wants to know the address of all deployed devices, the

query is sent to the knowledge base and the response is returned to the network manager

via a UI. The knowledge base query and response (Tont) and the UI display (Tui) are both

components of the User-Ontology System. The User-Ontology System is separate from

the Management-Query System and does not impact the end-to-end performance of the

Management-Query System.

The Management-Query System queries the deployed devices and receives responses

containing management information. The Management-Query System is the interaction

0

200

400

600

800

1000

1200

1400

1600

10 20 50 80 130 180 250 350 500

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of Nodes

Tint

Tont

93

between the knowledge base and the HMN. This interaction is the task of the Ontology

Instances Interface.

The Management-Query System is evaluated using a queuing model for the end-to-

end performance. The end-to-end performance for the Management-Query System is

𝑇𝑁𝑀𝑆 = 𝑇𝑑 + 𝑇𝑖𝑛𝑡 (5.3)

The Ontology Instances Interface sends a query to all the nodes, which send

responses back. The Ontology Instances Interface then adds a new instance or updates an

existing instance in the knowledge base. Various implementation tests, which are

discussed in the next section of this work, reveal that the overhead of the Ontology

Instances Interface is negligible.

The HMN is modeled as a packet network. For the analysis, it is assumed that there is

no network congestion. The queue at each device in the network is assumed to be an

independent queue. It is assumed that all packets, both queries and responses, have the

same size and priority when processed at each device. The Poisson distribution

(explained briefly in section 2.3) is assumed for packet arrivals. The HMNMS is a

request/response application with each device being managed generating one request and

one response packet. This request/response query to each managed device is viewed as an

independent packet flow. Each independent packet flow traverses a node twice, once for

the request and once for the response. The average end-to-end delay for each packet flow

(also referred to as flow here) is the sum of all delays of queues the flow traverses. Table

5.2 briefly explains many of the parameters used in the development of the analytical

model.

94

Table 5.2: Analytical Model Parameters.

Notation Description
P Set of all flows in the network
p An individual flow, 𝑝 𝜖 𝑃
xp Arrival rate of each flow
i An individual node
cp,i Times a flow may traverse a node i
λ Packet arrival rate
μ Packet processing rate
N Average number of packets in a queue
T Delay
L Packet size
W(λ) Average packet delay caused by multi-access communication
Ip Set of all nodes traversed by flow p
Jp Set of all gateways traversed by flow p

Each flow may traverse a node i cp,i times, where cp,i ϵ {0, 1, 2}. The value of cp,i is:

• 0 if a flow never traverses node i

• 1 if the flow p traverses an end device i and returns

• 2 if the flow traverses a node both on its enquiring and responding paths

The set of all flows that traverse any given node i in the network is denoted as 𝑃𝑖, where

𝑃𝑖 ⊆ 𝑃. The total packet arrival rate λi for a node i is written as:

𝜆𝑖 = ∑ 𝑐𝑝,𝑖 𝑥𝑝𝑝 ∈𝑃𝑖 (5.4)

The Kleinrock Independence Approximation [86] is an approximate analysis of networks

of M/M/1 queues (M/M/1 queues are explained in section 2.3). The Kleinrock

Independence Approximation asserts that all queues in the network can be modeled as a

M/M/1 queue. The average delays in a network can be approximately calculated by

95

assuming the delays in the queues are independent. The average number of packets in

queue i can be expressed as:

𝑁𝑖 = 𝜆𝑖
𝜇𝑖− 𝜆𝑖

 (5.5)

Here μi is the packet processing rate of node i. If the propagation delay is ignored, then

Little’s Theorem is applied and the average packet delay is written as:

𝑇𝑖 = 𝑁𝑖
𝜆𝑖

=
𝜆𝑖

𝜇𝑖 − 𝜆𝑖
𝜆𝑖

= 1
𝜇𝑖 − 𝜆𝑖

 (5.6)

A multi-access network is a network where multiple nodes access the same channel,

such as an Ethernet or wireless channel. In such a network contention among nodes

competing for the same channel will cause a delay. From the conclusion in [86], for a

slotted CSMA/CD network, the approximated average packet delay caused by multi-

access is expressed as:

 𝑊(𝜆) = 𝜆 𝑋2����+ 𝛽(𝐴+2𝜆)
2[1− 𝜆(1+𝐵𝛽)] (5.7)

Here λ is the total arrival rate to the bus from the nodes. The propagation and detection

delay required for all sources to detect an idle channel after a transmission ends is

 β = τ C / L (5.8)

Here β is expressed in terms of packet transmission units. τ is this time in seconds, C is

the raw channel bit rate, and L is the expected number of bits in a data packet. 𝑋2 ����is the

mean-square of the packet duration and is expressed as

 𝑋2���� = ∑𝑥2 𝑃𝑟. (𝑋 = 𝑥) (5.9)

96

Recalling the assumption that all management request and response packets have

identical lengths, X2��� is simply 𝑋2. The values of A and B, two constants, depend on the

detailed assumptions of the network (see [87]). This delay W(λ) can be added to the delay

of any flow going through a multi-access gateway.

The total delay of flow p can be expressed as:

𝑇𝑝,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑇𝑖 + ∑ 𝑊𝑗(𝜆)𝑗 ∈ 𝐽𝑝𝑖 ∈𝐼𝑝 (5.10)

The actual average end-to-end delay depends on the topology of the network. The

topology of a general HMN (Fig. 5.4) can be generalized as in Fig. 5.5.

Figure 5.4: A general Heterogeneous Multi-tier Network.

The queuing delay caused by the switch in Fig. 5.5, which is part of the wired tier, is:

𝑇𝑤𝑖𝑟𝑒𝑑 = 1
𝜇𝑤𝑖𝑟𝑒𝑑− 𝜆𝑤𝑖𝑟𝑒𝑑

= 1
𝜇𝑤𝑖𝑟𝑒𝑑− 𝑥𝑤𝑖𝑟𝑒𝑑

 (5.11)

where xwired is the data rate of the switch query flow. The queuing delay caused by the

97

Ethernet gateway is:

𝑇𝑒𝑡ℎ−𝑔𝑤 = 1
𝜇𝑒𝑡ℎ−𝑔𝑤− ∑ 2𝑥𝑝𝑝

 (5.12)

Figure 5.5: A generalized network topology.

98

Since the system is a request/response system, all flows traverse the Ethernet

gateway, the Ontology Instances Interface, the Ontology Subsystem and the User

Interface twice. The equations for the delays calculate delays in the ideal case, which

assumes the management packets are always given top priority by the operating system.

The actual delay will vary slightly depending on how the operating system schedules

packets to be forwarded.

The total average end-to-end delay for inquiring a wired node is:

𝑇𝑤𝑖𝑟𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑤𝑖𝑟𝑒𝑑 + 𝑇′𝑒𝑡ℎ−𝑔𝑤 + 𝑇𝑖𝑛𝑡 + 𝑊𝑒𝑡ℎ−𝑔𝑤�𝜆𝑒𝑡ℎ−𝑔𝑤�

 =
1

𝜇𝑤𝑖𝑟𝑒𝑑 − 𝑥𝑤𝑖𝑟𝑒𝑑
+

1
𝜇′𝑒𝑡ℎ−𝑔𝑤 − ∑ 2𝑥𝑝𝑝

 + 1
𝜇𝑖𝑛𝑡− ∑ 2𝑥𝑝𝑝

+ 𝑊𝑒𝑡ℎ−𝑔𝑤(∑ 𝑥𝑝)𝑃 (5.13)

Twired, T'eth-gw, Tint are delays caused by wired devices, the Ethernet gateway, and the

Ontology Interface, respectively. T'eth-gw is the delay caused by the Ethernet gateway to

forward packets. This delay is different from Teth-gw because forwarded packets will send

interrupts to the processor, causing additional overhead to these packets. This is due to

the fact that the operating system will interrupt their processing, causing them to be in

placed in the processor queue, incurring some queuing delay. An ad hoc gateway behaves

in the same manner.

99

Assume there are mwired wired devices and madhoc ad hoc nodes in the network. The

total average end-to-end delay for sending and receiving management packets to an ad

hoc node is:

𝑇𝑎𝑑ℎ𝑜𝑐 𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑎𝑑ℎ𝑜𝑐 + 𝑇′𝑎𝑑ℎ𝑜𝑐−𝑔𝑤 + 𝑇′𝑒𝑡ℎ−𝑔𝑤 + 𝑇𝑖𝑛𝑡

+ 𝑊𝑎𝑑ℎ𝑜𝑐−𝑔𝑤�𝜆𝑎𝑑ℎ𝑜𝑐−𝑔𝑤� + 𝑊𝑒𝑡ℎ−𝑔𝑤�𝜆𝑒𝑡ℎ−𝑔𝑤�

 =
1

𝜇𝑎𝑑ℎ𝑜𝑐 − 𝑥𝑎𝑑ℎ𝑜𝑐
+

1
𝜇′𝑎𝑑ℎ𝑜𝑐−𝑔𝑤 − 2𝑚𝑎𝑑ℎ𝑜𝑐𝑥𝑎𝑑ℎ𝑜𝑐

+
1

𝜇′𝑒𝑡ℎ−𝑔𝑤 − ∑ 2𝑥𝑝𝑝
+

1
𝜇𝑖𝑛𝑡 − ∑ 2𝑥𝑝𝑝

+𝑊𝑎𝑑ℎ𝑜𝑐−𝑔𝑤(�𝑚𝑎𝑑ℎ𝑜𝑐𝑥𝑎𝑑ℎ𝑜𝑐)
𝑃

+𝑊𝑒𝑡ℎ−𝑔𝑤(∑ 𝑥𝑝)𝑃 (5.14)

For the example network topology illustrated in Fig. 5.5, ∑ 2𝑥𝑝 = 2𝑚𝑎𝑑ℎ𝑜𝑐𝑥𝑎𝑑ℎ𝑜𝑐 +𝑃

2𝑚𝑤𝑖𝑟𝑒𝑑𝑥𝑤𝑖𝑟𝑒𝑑. The summation is over 2xp because all flows traverse the Ethernet

gateway, Ontology Inferences Interface, Ontology Subsystem, and User Interface twice.

5.2 Performance Analysis of a Heterogeneous Multi-tier Network

A performance analysis of the capacity of the Management-Query System was

performed. The number of wired or ad hoc nodes that can be supported while providing a

reasonable query response time was determined.

100

From the end-to-end delay expressions for wired devices (Eq. 5.13) and ad hoc nodes

(Eq. 5.14), the total delay for a query flow can be calculated. The total delay is the sum of

the delays of each device along the path. As a result, the system capacity is reached when

any device in the path reaches its capacity. These devices are the two gateways in Fig.

5.5. In this case, any query flow traversing one of these devices can have infinite delay,

possibly causing packet loss.

To maintain a stable system, each term on the right hand side of Eq. 5.14 cannot go to

infinity. To prevent this, the denominator of each term cannot be greater than 0. Because

the Ethernet gateway is traversed by all traffic in the network, it is most likely to be the

bottleneck. To keep Teth-gw finite, the number of wired and ad hoc nodes that can be

supported must satisfy:

𝜇𝑒𝑡ℎ−𝑔𝑤 − (𝑚𝑎𝑑ℎ𝑜𝑐 + 𝑚𝑤𝑖𝑟𝑒𝑑)2𝑥𝑝 > 0 (5.15)

This can be written as:

 𝑚𝑎𝑑ℎ𝑜𝑐 + 𝑚𝑤𝑖𝑟𝑒𝑑 < 𝜇𝑒𝑡ℎ−𝑔𝑤
2𝑥𝑝

 (5.16)

Similarly, to keep the ad hoc gateway delay bounded, the number of ad hoc nodes

should satisfy:

 𝜇𝑎𝑑ℎ𝑜𝑐−𝑔𝑤 −𝑚𝑎𝑑ℎ𝑜𝑐2𝑥𝑝 > 0 (5.17)

This can be transformed into

 𝑚𝑎𝑑ℎ𝑜𝑐 < 𝜇𝑎𝑑ℎ𝑜𝑐−𝑔𝑤
2𝑥𝑝

 (5.18)

101

The maximum number of ad hoc and wired nodes that can be supported by the

Ethernet gateway is expressed by Eq. 5.16. The maximum number of ad hoc nodes that

can be supported by the ad hoc gateway is expressed by Eq. 5.18. The capacity of the

network is determined by both equations, requiring both equations to be satisfied at the

same time. This is a theoretical prediction of the capacity. In a practical situation, the

constraint may vary due to the dynamic nature of the hosts and network, such as the

operating system scheduling policy and traffic patterns.

5.2.1 Implementation of the Model

A test network was deployed to verify the theoretical analysis with empirical results.

The focus of this analysis was the ad hoc tier of the network since the ad hoc gateway

was determined to be a critical node.

The test ad hoc network consisted of three Linux laptops with 802.11g wireless

network cards. One of the laptops was the ad hoc gateway and the other two were ad hoc

nodes connected to the ad hoc gateway wirelessly. A desktop was the management

station. The management station was connected directly to the ad hoc gateway with a

network cable to eliminate the Ethernet gateway performance fluctuations. The

management station periodically sent SNMP query packets to the three ad hoc nodes,

including the ad hoc gateway. This simulated the operation of a management station in a

live network.

To simplify the analysis, the processing rate for all the deployed devices is assumed

to be identical and the delays caused by multi-access communication are ignored. The

value used for the processing rate was determined from experimentation and was 1/20

102

packet per millisecond. The query rate in the test network is constant. This differs from

the theoretical analysis, which follows a Poisson distribution.

The delay caused by the ad hoc gateway and one of the ad hoc nodes is shown in Fig.

5.6. The delay caused by the ad hoc gateway increases faster than the delay caused by the

ad hoc node. The primary reason for this is because all packets to the ad hoc tier flow

through the ad hoc gateway. Also, as the gateway is processing packets, the operating

system assigns different priorities to the packets destined for the gateway and packets to

be forwarded by the gateway. This is explained later in this section.

Figure 5.6: Delays caused by the ad hoc gateway and nodes
from the theoretical analysis [85].

103

Additional test results for the ad hoc network are shown in Fig. 5.7 to 5.9. The x-axis

in these figures is the indices of the query packet for each device in the network. The

indices are ordered in time sequence. The y-axis is the delay for the management query

and response. The figures show the query delay for each of the ad hoc nodes for varying

inter-arrival times of the query packet. Fig. 5.7 to 5.9 show the queuing delay for the ad

hoc gateway, one ad hoc node, and the second ad hoc node, respectively.

Figure 5.7: Query delays at the ad hoc gateway [85].

Several observations can be made from the experimental results. The first observation

is the buffering effect. When the tests began there were fewer packets in the network so

the delay was smaller. As more packets are injected into the network, packets are

buffered and the queuing delay increases.

104

The second observation is that the queries for the ad hoc gateway have a higher average

delay than the packets for the ad hoc nodes. This is because of how the node handles

incoming packets. When the node’s network card receives an Ethernet frame, an interrupt

is sent to the operating system. The operating system stops the current process on the

processor to handle the interrupt. If the packet is to be forwarded, then the operating

system will immediately forward the packet. This causes any packet destined for the ad

hoc gateway and currently being processed to be preempted and placed in a processor

queue causing the packet being processed to incur some additional processor queuing

delay. Utilizing an ad hoc gateway that has multiple processors may decrease or eliminate

this additional processor queuing delay. If one processor is currently processing a

management packet, another processor may be able to handle the interrupt and process

the packet to be forwarded.

Figure 5.8: Query delays at the ad hoc node 1 [85].

105

Figure 5.9: Query delays at the ad hoc node 2 [85].

In a traditional UNIX operating system, the scheduler categorizes tasks into five

different categories. Each category has a different priority. These five categories, in

decreasing priority order, are [88]:

• Swapper

• Block I/O device control

• File manipulation

• Character I/O device control

• User processes

This scheduling scheme is intended to provide the highest priority for I/O operations.

Forwarding packets is an I/O task with higher priority over local MIB checking tasks,

which are categorized as user processes. When the operating system receives an interrupt,

106

it will stop the processor and suspend the process currently using the processor. This

behavior adds to the larger average round trip delays for the SNMP packets destined for

the ad hoc gateway.

The conclusion from the experimental results is that the ad hoc gateway is the

bottleneck of the ad hoc tier. This is supported by the figures, which show the higher

growth rate of the delay for the ad hoc gateway compared to the ad hoc nodes. As the

amount of network traffic increases, the delay for the ad hoc gateway is significantly

higher than the ad hoc nodes. The delay for packets querying the ad hoc gateway

increases faster than other packets and eventually packet loss will occur. This

experimental result confirms the conclusion from the theoretical analysis.

5.3 Chapter Summary

In comparison to the alternative of manual processing of data, the overhead of

obtaining the network topology is acceptable under conventional use. If the network

manager is responsible for an HMN and is not using the HMNMS, the manager must

consult four different NMSs, one for each device type deployed. To obtain one integrated

network topology of the HMN, the manager must manually combine all four network

topologies returned by the various NMSs. An obvious benefit of the HMNMS that uses

ontology is the integration of diverse data. The benefits would be evident to any network

manager that must manage a HMN. The results of the experiments conducted show that

the overhead of incorporating ontology into the NMS are acceptable given the benefits

provided for the topology discovery of a HMN, provided no path devices reach their

capacity.

107

A theoretical analysis was performed to provide an analytical view of the network

performance. The theoretical analysis provides insight to deployment considerations for

the HMNMS. Specifically, two deployment parameters are considered in the analysis, the

inter-query time and the number of nodes that can be supported by one ad hoc gateway.

The inter-query time is the amount of time between the management station sending

queries to a deployed node. The inter-query time must be small enough to obtain accurate

information from the nodes for proper management but not too small that the queries

inject too much traffic into the network. The analysis concludes that the gateways in the

network are the bottlenecks of the query flow. A test AHN was deployed to conduct

experiments for query delays. The experimental results support the theoretical conclusion

showing that the ad hoc gateway is the bottleneck.

108

 A Formal Representation for Complex Attacks using Chapter 6

Ontology

A characteristic of Intrusion Detection Systems (IDSs) is that they are optimized to

identify simple attacks. A simple attack is an attack against a host or networking

consisting of a single step. Examples of a simple attack are a ping scan, where an attacker

scans IP addresses in a network to find active hosts, or a denial of service attack, where

an attacker takes a host or network offline by making it unavailable to users.

Often an attack against a network consists of several stages, with each stage being a

simple attack. An attack consisting of multiple stages of simple attacks is a complex

attack. A complex attack can be defined as a combination of two or more simple attacks

or two or more complex attacks in a spatial or temporal domain.

Complex attacks often require the examination of both their temporal and spatial

domains for identification. The temporal domain for an attack requires the examination of

the time period when the attack occurs. During this time period, there may be multiple

events that indicate a complex attack has occurred.

The spatial domain is the location, either physical or logical, in the network where the

attack occurred. Multiple events in the same network or subnet may indicate a complex

attack, while the same events in different networks or subnets may indicate normal

traffic. For example, consider a user performing troubleshooting on their host because

they are experiencing connectivity issues. The user may try to ping several different hosts

throughout their network and the Internet to determine the source of the connectivity

109

problems. This is legitimate network traffic; however, if the user pings many hosts on the

same network, this may indicate the user is attempting to find active hosts, the first step

in many complex attacks. For an IDS to properly identify a complex attack, it is

necessary for the system to identify an attack based on multiple events that occurred in

multiple locations on the network over a period of time.

Another aspect of the spatial domain is from the source address. The simple attacks

comprising one complex attack may originate from different hosts, thus different source

addresses. An attacker may simply be using various hosts to initiate each simple attack,

or it may be several attackers collaborating on the complex attack.

Many times, an attacker conducts some preliminary actions before initiating a

complex attack. Consider the following example. An attacker uses a port scanner tool,

like nmap [89], to find open telnet or ssh ports on hosts. The attacker will then telnet/ssh

to these hosts and view the banner or motd. If the banner/motd contains the string “User

Access Verification”, this indicates a Cisco router. The attacker then uses a tool like

SING [90] to create a custom ICMP (Internet Control Message Protocol) packet for a

netmask request (ICMP type 17). Typically only routers respond to an ICMP type 17

request. The attacker will then attempt to connect to SNMP on the router by using

common SNMP community strings. The attacker may then take advantage of known

vulnerabilities for the device, download the entire configuration for the device, and

possibly even modify the device configuration. When the router is attacked, it may lead

to valuable information to allow the attacker to attack more critical information/servers,

or allow the attacker to disable the entire network.

110

As another example, illustrating the need to consider all traffic and attack attempts

and not just attacks aimed at vulnerabilities of specified nodes, consider a vulnerability

on port 80 of a webserver. If the server is not a web server or if the firewall has port 80

blocked to that server, then it may not be a critical vulnerability to the network manager.

But what if the firewall was previously compromised and the firewall rules were changed

or removed by the attacker? What if a user installs a new web server on a host that is

available through the firewall? Now there will be traffic on the network to port 80 of that

server, with an external source IP address, which may indicate to the network manager

that the firewall is compromised. The network manager must examine data on the

network for all types of attacks, including successful attacks and attack attempts.

Consider an example of the need to examine the temporal domain of attacks. One of

the early steps of many complex attacks is for the attack to identify ports that are open on

devices. If the network manager observes traffic to determine if one port is open on a

server, this indicates very little about the possible occurrence of a complex attack;

however, observing a check for multiple ports in sequence, may indicate a complex

attack is occurring or has occurred.

A Reasoning Intrusion Detection System (RIDS) utilizes reasoning (primarily

inference) in attack identification. The reasoning mechanisms and associated knowledge

base are used to provide efficient and reliable analysis of collected network data to aid in

attack identification. The reasoning capability of a RIDS also provides the ability to

identify a family of generic attacks. The approach we are taking to augment the typical

IDS is to add an ontological representation of the network space along with a reasoning

111

engine to operate on the ontology [91]. The result is a Reasoning Intrusion Detection

System using Ontology.

All ontologically-based systems have the ability to make inferences using the

knowledge contained in the ontology. In fact this is where their tremendous power lies.

Through the use of ontological knowledge we are able to carry out complex analysis on

data collected from the network. In addition the ontology can grow and change as time

progresses because of the rapid change in networking and networks. For example if we

understand network traffic from a certain deployed virus than we can use that information

to augment the ontology in such a way as to recognize that and similar viruses.

Therefore one tremendous advantage gained by the ontology is the inference

capability provided allowing additional knowledge to be learned. This will allow the

incorporation of new rules into the identification process, allowing the IDS to use the

meaning of the network data to help identify attacks. For example, if a port scan follows a

ping scan, within a specified amount of time, it may indicate the occurrence of a complex

attack. As another example, consider what happens when an attacker conducts a denial of

service attack on a host using the ping utility. This attack results in the creation of a

PingFlood instance in the knowledge base. In the ontology (see section 6.3), the

PingFlood class is a subclass of Flood, which is a subclass of Resources, which is a

subclass of DoS (so indirectly, PingFlood is a subclass of DoS). By using ontology, a

query for all DoS attacks returns the newly created instance for the ping flood attack.

Without the inference provided by ontology this query would only return direct instances

of the DoS class, which would not include the ping flood instance.

112

The inference provided by ontology allows more advanced information to be learned

from the network data. For example, if there are multiple port scans found in the data

collected, and they occur within a specified time frame, then the ontology can infer that a

port scan occurred. The reasoning will then identify the various complex attacks that have

a port scan as one of its attack elements. Without the use of reasoning, this would require

a sophisticated, difficult-to-maintain program or manual analysis.

Another important advantage is the semantic expressiveness provided by ontology.

XML and XML Schema provide structure to information but no semantic information.

RDF Schema provides limited semantics, but not sufficient semantics for a RIDS. For

example, RDF Schema does not provide for disjoint classes, i.e., a packet cannot be both

TCP and UDP. RDF Schema also does not provide the ability to specify cardinality

restrictions. For example, an instance can have only one source address; this limitation

can be specified in ontology using cardinality statements. A powerful semantic

expressiveness exploited by this research and not supported by RDF Schema is the

Boolean combinations of classes. The formal representation developed in this research

creates new classes by combining other classes using Boolean operators, such as union

and intersection. It is important to note that there is a trade-off between high expressivity

and computation costs. This will be discussed in more detail in chapter 7.

6.1 Generalized Attack Trees

A complex attack consists of multiple events or attack elements. Decomposing a

complex attack into its individual attack elements provides a better understanding of how

attackers launch complex attacks. This analysis provides the ability to consider other

113

related complex attacks that may consist of similar elements and produce similar results.

Knowledge of specific attacks can lead to the discovery of a more comprehensive set of

generic attack descriptions.

Individual attacks were examined to determine if aggregate sequences are represented

in the wild. For example, a Man-In-The-Middle (MITM) attack is a group of unrelated,

individual attacks that act together. To develop a generic attack tree, a specific MITM

attack was launched and the data studied. The specific MITM attack consisted of the

following individual attacks:

1. A ping scan against the network

2. A SYN scan to find open TCP connections on an active host on the network

3. A series of TCP connections against an active host on the network to predict

the TCP sequence number

4. A Denial of Service (DoS) attack against the second host in an established

TCP connection by sending many pings to the host

5. Spoof the IP address of the second host in the TCP connection

By examining these individual attacks, and looking at other MITM attack data, it was

determined that each step can be generalized. For example, the second step, a node scan

to find active TCP connections, can be done in a number of ways. This example used an

SYN scan, but another MITM attack may use an FIN scan. Also, for the fourth step, there

are many different ways to launch a DoS attack against a host, including the ping packets

used in this example, SYN packet flood, application floods, etc. The generalized steps

114

were aggregated into a generic attack tree for the MITM attack, which can be used to

identify many different types of a MITM attack, even as new ones develop.

Attack trees are used to aid in complex attack identification. An attack tree is a tree

diagram representing the steps in a complex attack. A single path in the attack tree

illustrates the steps for a particular complex attack. With multiple paths in each attack

tree, multiple specific complex attacks are represented. The root node of the tree

represents the goal of the attack. The other nodes represent the steps necessary to reach

the goal. The nodes are joined by the “AND” keyword to indicate that each node is

required to reach the goal. Same-level nodes not linked by the “AND” keyword represent

options for that particular step. Most attack trees, such as the ones used in this work, have

“AND” conditions for all the root’s children, indicating that each of root’s children must

be satisfied for the goal to be achieved. Each branch from each child node from root then

indicates a method to satisfy that child node.

For example, to take a host in a TCP connection offline for the duration of the

connection, an attacker may execute a denial of service attack against the host or spoof

the host’s MAC (ARP) address. This branch of an attack tree is illustrated in Fig. 6.1,

showing two different methods to spoof a host’s MAC address. Each of these options

would be represented in the attack tree as child nodes of the same parent (the parent node

would be “take host offline for a TCP connection”) with no “AND” connection,

indicating success of one of the child nodes would satisfy the parent node.

115

Figure 6.1: An attack tree branch example.

The attack trees used in this research began as attack trees for specific attacks.

Common complex attacks were identified as a sequence of simpler attacks and the attack

trees were constructed from these simpler attacks. The specific attack trees were studied;

similarities were identified, which lead to the development of generalized attack trees. A

generalized attack tree is a representation of a class of complex attacks. These

generalized attack trees were used to develop the formal representation and were based

on the Department of Defense’s (DoD’s) five pillars of Information Assurance [92]. The

five pillars are confidentiality, integrity, authentication, non-repudiation, and availability.

As the generalized attack trees were developed, it was discovered that each root node

116

matched one of the five pillars. The result was four generalized attack trees, each

corresponding to one of the five pillars. The methods used by attacks to breach

confidentiality and non-repudiation are similar resulting in one generic attack tree for

these two pillars.

An example specific attack tree is depicted in Fig. 6.2. Each node was manually

assigned a unique identification number, which is used by the RIDS. Many of the attack

elements in a variety of attack trees are similar. Many attacks include an attacker first

finding all available hosts on a network (a ping scan) and then finding all the open ports

(a port scan) on each available host. Similar attack elements were identified as generic

simple attacks. If a node in an attack tree is one of the generic simple attacks, then the

node is mapped to that attack.

A mapping was manually developed for the generic attack trees. For example, the

first step in Fig. 6.2 is the “find active hosts on network”. This is a very common step in

complex attacks and is found in all attack trees used in this research. This step is

identified as generic attack #1. The corresponding node in Fig. 6.2, Node 8.1, is mapped

to generic attack #1. Any time generic attack #1 is identified, it will color all

corresponding nodes in attack trees, such as Node 8.1 in Fig. 6.2.

When identifying attacks, the IDS identifies all the generic attacks and then identifies

each node in the attack trees that correspond to these generic attacks, based on mappings

developed. These nodes are marked in the attack tree based on the coloring scheme

described in the next section. The IDS then identifies any specific attacks, which do not

map to a generic attack, and annotates those nodes in the attack trees. The annotated

attack trees are then used by the RIDS to assist with complex attack identification.

117

Figure 6.2: An attack tree example.

6.1.1 Plan Recognition and Attack Trees

Plan recognition, an Artificial Intelligence research area, is “the process of deducing

an agent’s goals from observed actions” [93]. A hierarchical task network (HTN) is very

similar to an attack tree. The use of attack trees for the ontology development is similar to

118

a plan recognition problem. Future work may entail the development of HTNs in place of

the attack trees and the evaluation of utilizing the HTNs to develop the ontology.

Geib [94] describes the complexity when a plan recognition system must consider

multiple instances of the same goal. This is the case when describing complex attacks as

there are many different methods an attack may utilize to launch a complex attack. Geib

used the cyber security domain in his discussion of the complexity of a plan library

consisting of multiple observations for the goal where the goal is a complex attack.

According to Kichkaylo, et.al. [95], the assumptions of traditional plan recognition to

the intrusion detection domain are not valid. Geib [94, 96] believes that it is valid but

more complex. Beyond the complexity reason described above, another reason for this

complexity is the fact that attackers attempt to hide their actions. Many attackers will

attempt to remove all evidence of their attack by removing entries in log files pertaining

to their attack steps. Kichkaylo, et.al. and Geib both developed approaches based on plan

recognition to help in detecting intrusions.

Detecting attacks after they occur is an important step in the security cycle; however,

it would be optimal to predict an attack before it occurs. This is a very difficult endeavor

as one cannot easily predict what an attacker may do in the future. Plan recognition may

help with determining the path an attacker may take based on the current knowledge.

Geib [96] outlines two problems that add to the complexity of using plan recognition in

the intrusion detection domain. The first one is because attacks typically have multiple

goals. The second problem is that many of the steps in a complex attack may also be a

legitimate use of the network. For instance, many pings to nodes on one network is used

by many attackers to find hosts that are active and open to an attack, but this may also be

119

used by a network manager to help in diagnosing a network problem. Using probabilities

can help alleviate these two problems.

Geib introduced a plan recognition algorithm to help predict an attack by using

probability. This algorithm assigns probabilities for each goal to determine the top-level

goals of the attacker. The algorithm is based on Combinatory Categorial Grammars

(CGGs), a grammar formalism used in Natural Language Parsing (NLP). It may be

appropriate to consider applying these techniques to TRIDSO but first their applicability

must be explored. We defer this to future research.

6.2 Design of the Formal Representation

Many of the RIDSs detect attacks against hosts. Many attackers will target network

devices, such as routers. If an attacker can breach a router, they can often gain valuable

information about other nodes on the network or impact the entire network (cause the

entire network to not function properly). The developed RIDS detects attacks against any

node on the network.

Another characteristic of many of the RIDSs is that they detect attacks based on

vulnerabilities. The RIDS will identify vulnerabilities against systems and evaluate the

threats against these systems, based on the vulnerabilities and the current state of the

system. For example, Undercoffer, et al [61, 62] developed a target-centric approach

using ontology. In their work, the focus was on the target nodes and the state of the target

nodes. This included the components of the nodes, such as the operating system, network

layers, and processes running on the node. This requires monitoring of the nodes and

their components. Mandujano, et al [63, 64] also monitored resources using agents

120

installed on the nodes. These agents collected data on the nodes, such as program

profiles. The work by Martimiano and Moreira [54, 55] assumed that all security

incidents exploit a vulnerability. Their work assumed that an attacker used a tool that

manipulated a known vulnerability.

The RIDS developed in this research does not focus on target nodes or vulnerabilities

but will identify attacks based on network events. By examining network traffic, the

RIDS can detect attacks regardless of existing vulnerabilities; it examines the traffic on

the network and identifies events that may indicate attacks. It does not matter if there is a

known vulnerability; if the traffic looks like a possible attack, it will be detected.

Another advantage of using traffic to identify attacks is the ability to also identify

attack attempts. An attempted attack may be just as important to a network manager as a

successful attack. Consider the scenario where an IDS simply watches for attacks against

the web port of web servers. If a user installs a new web server on the network, this

server would be vulnerable to an attack since the IDS is not aware of this web server. It

may also be the case that this new web server is susceptible to vulnerabilities because it is

not patched correctly. By analyzing network traffic, the RIDS in this research detects an

attack attempt against the web port on any device on the network, and can alert the

network manager. This also allows the network manager to see what types of attacks are

being attempted against their network so they can properly secure the network and its

resources.

Attacks and attack attempts are detected regardless of the state of the nodes on the

network. Detections are performed based on observed traffic conditions and not the state

of the nodes. Consequently, this RIDS does not require additional software to obtain

121

information about the nodes. There is no extra installation or overhead on the nodes to

utilize this RIDS.

Another advantage of using traffic to identify attacks is the ability to identify attacks

against multiple hosts on the same network. Consider an attack attempting to find active

hosts to attack. The first step for the attacker is to ping all hosts on the network by

incrementally going through all IP addresses on the network. By examining all network

traffic and not just traffic at specific hosts, all of the ping packets are observed. This

results in an ping scan attack being detected.

6.3 Development of the Formal Representation Using Ontology

6.3.1 Traffic Representation

The traffic ontology, see Fig. 6.3, represents the raw network traffic data in a variety

of forms. All network traffic is first added to the knowledge base by creating instances

for all packets captured. The instances are created based on the data found in the packet.

For instance, if the packet represents a TCP packet, then a TCPPacket instance is created.

The OWL code for the TCPPacket class is provided in Fig. 6.4. This only contains

the properties specific to the TCPPacket; it will also inherit the properties from the

L4Packet, IPPacket, L2Packet and Packet classes (the OWL code1 for all the classes is

provided in Appendix B).

1 Available for download at http://faculty.kutztown.edu/frye/res/index.html

http://faculty.kutztown.edu/frye/res/index.html

122

Figure 6.3: The traffic ontology [97].

123

Figure 6.4: OWL code for TCPPacket in the traffic ontology.

From these basic packet instances, other instances are created in the knowledge base

through the use of inference, which is performed by a reasoner. Again, consider the

TCPPacket example. As seen in Fig. 6.3, the TCPPacket class is a subclass of the

L4Packet class. When a TCPPacket instances is created, the reasoner will use inference

to create an instance in the L4Packet class because of the subclass relation. The reasoner

will continue to traverse up the class tree, creating instances in the parent classes. In this

example, for every instance created in the TCPPacket class, instances are also created in

the following classes: L4Packet, IPPacket, L2Packet, and Packet.

<owl:Class rdf:ID="TCPPacket">
<rdfs:subClassOf rdf:resource="#L4Packet"/>

 <owl:disjointWith rdf:resource="#UDPPacket"/>
</owl:Class>

<owl:DatatypeProperty rdf:ID="tcpSeqNum">
 <rdfs:domain rdf:resource="#TCPPacket"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="tcpAckNum">
 <rdfs:domain rdf:resource="#TCPPacket"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="tcpFlags">
 <rdfs:domain rdf:resource="#TCPPacket"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="tcpAckFlag">
 <rdfs:domain rdf:resource="#TCPPacket"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="tcpRstFlag">
 <rdfs:domain rdf:resource="#TCPPacket"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="tcpSynFlag">
 <rdfs:domain rdf:resource="#TCPPacket"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="tcpFinFlag">
 <rdfs:domain rdf:resource="#TCPPacket"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="tcpWinSize">
 <rdfs:domain rdf:resource="#TCPPacket"/>
</owl:DatatypeProperty>

124

Based on instance properties, ontology constructs, and inference rules, packet

collection instances are created. These instances represent groups of similar packets. For

example, a Mask packet is an ICMP packet requesting the netmask value of the queried

node. This type of ICMP packet is identified by a type value of 17. It is used as an

information-gathering step in some complex attacks. The specification of this packet type

in OWL is accomplished by obtaining all ICMPPacket instances with a restriction on the

value of the icmpType property. This is done by using the intersetionOf construct and a

property restriction. The OWL code for a Mask packet is provided in Fig 6.5.

Figure 6.5: OWL code for an ICMP netmask packet type.

As another example of the packet collection, consider the Ping of Death attack. This

attack sends a large-sized ping packet to a host causing a buffer overflow at that host (the

target machine). This attack uses a ping packet, which is an ICMP packet with a type of

8, with a packet length of 65535. OWL uses the intersectionOf construct with two

property restrictions, one for the icmpType property and one for the packetLen property.

The Stream hierarchy in the traffic ontology is used to maintain information about

past and present streams in the network. Instances are created for connection-oriented

 <owl:Class rdf:ID="MaskPacket">
<rdfs:comment>

 MaskPacket are ICMPPackets with ICMPtype of 17 (netmask request)
 </rdfs:comment>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#ICMPPacket"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#icmpType"/>
 <owl:hasValue rdf:datatype="&xsd;integer">17</owl:hasValue>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

125

protocol streams, such as TCP, and non-connection-oriented protocol streams, such as

UDP and ARP. This information is important to maintain to assist with the detection of

attacks that modify address information, such as spoofing attacks.

When a host sends an ARP request and another host sends a response, considerable

useful information is obtained. The source and destination MAC and IP addresses are

learned. An instance in the IPStream class is created for this ARP communication

containing the learned address information. If an attacker conducts an IP spoof against

one of these hosts, the corresponding MAC address will differ from the one in the

knowledge base. This leads to the detection of a possible IP spoof attack.

The other part of the traffic ontology is the alerts generated by Snort. The raw

network traffic is run through Snort and an alert output file is created consisting of the

alerts generated by Snort. This leverages an existing IDS to identify some of the simple

attacks. For each alert generated by Snort, an instance is added to the knowledge base.

Fig. 6.6 illustrates the part of the traffic ontology used for alerts. These instances are used

by the attack ontology to identify the occurrence of specific attack elements.

6.3.2 Attack Representation

The attack ontology is used to maintain information about simple attacks. The attack

data is obtained by using inference through ontology constructs and rules. Based on

traffic instances created by the traffic subsystem, instances are added to the knowledge

base using the attack ontology.

126

Figure 6.6: The alert part of the traffic ontology.

The primary class is the Attack class, which maintains much of the information about

all types of attacks, such as the description of the attack, begin and end date and time,

source IP address, and target IP address. There are four main classes of the Attack class.

These classes are described in Table 6.1 and illustrated in Fig. 6.7.

Table 6.1: Main Classes of the Attack ontology.

Class Description

Availabiltiy An attack that makes a node or network unavailable to
 Recon At attack that gathers information

GainAccess An attack that allows the attacker to gain access to a
d ViewChangeData An attack that allows the attacker to view or modify

data on a node or in a packet

127

Figure 6.7: Main classes of the attack ontology.

To illustrate how the attack ontology follows from these main classes, one branch of

the ontology hierarchy is shown in Fig. 6.8. This figure shows the various classes in the

Availability branch of the ontology. There are two primary techniques an attacker will use

to make a node or network unavailable. These two ways are a denial of service or

spoofing attack. Each of these corresponds to a subclass of the Availability class and has

several subclasses of their own.

One leaf node of the denial of service (DoS) hierarchy is PingFlood. This DoS attack

uses many ping packets to flood a node or network consuming the resources and leaving

no resources for other users. An instance of the PingFlood class, as well as the other

flood nodes, is created from the PacketCollection instances in the traffic ontology. For

each unique target IP address in the PacketCollection class, an instance is created in the

PingFlood class, including the number of occurrences in the PacketCollection class for

that target IP address. This frequency of occurrences is used when determining if an

attack occurred. An attack occurs if the frequency is above a threshold value. For the

purposes of this research, these values have been selected, rather than computed.

Determination of the optimal threshold value will be addressed in future work.

128

Figure 6.8: The availability branch of the attack ontology [97].

The SimpleAttack class is used to identify all occurrences of simple attacks. It is used

to easily relay this attack information to the network manager. The instances in this class

are the union of all instances in the four main attack classes (Availability, Recon,

129

GainAccess, and ViewChangeData). The OWL code for collecting all SimpleAttack

instances uses the unionOf construct and is shown in Fig. 6.9.

Figure 6.9: OWL code for the SimpleAttack class.

6.3.3 Complex Attack Representation

From the attack instances, complex attacks are identified. This is done by inferring

the existence of attack elements for specific occurrences of complex attacks. The

complex attack ontology, see Fig. 6.10, has instances created when the simple attack

instances are created, and the ontology infers the parent instances in the complex attacks.

When an instance is created in the root class of the complex attack ontology, it indicates

that a complex attack occurred and the network manager is alerted.

The complex attack ontology was designed from the generic attack trees. Consider

the generic attack tree in Fig. 6.11 illustrating a hijacking attack. There are five child

nodes of the root node in the attack tree. Each of these nodes corresponds to a child node

of the Hijacking class in the complex attack ontology (see Table 6.2).

Table 6.2: Attack Tree Nodes Link to Complex Attack Ontology Classes.

<owl:Class rdf:ID="SimpleAttack">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Availability"/>
 <owl:Class rdf:about="#Recon"/>
 <owl:Class rdf:about="#GainAccess"/>
 <owl:Class rdf:about="#ViewChangeData"/>
 </owl:unionOf>
</owl:Class>

Attack tree node Corresponding ontology class
8.1 Find the active hosts on the network PingScan
8.2 Find open ports on a host NodeScan
8.3 Find active TCP sessions TCPConnect
8.4 Take one host of TCP session offline Availability
8.5 Spoof a host in a TCP session Spoofing

130

Figure 6.10: Complex attack portion of the attack ontology.

131

Figure 6.11: An attack tree example.

These children nodes are not part of the complex attack ontology; they represent

simple attacks and are part of the simple attack ontology. It is important to note that a

hijacking attack is actually conducted against two target hosts, the two hosts in an

established TCP connection. First, the attack will identify an active host (ping scan), an

active TCP connection on that host (node scan), and then predict the TCP sequence

number for that TCP connection (TCP connect attack). The attacker then targets the other

host in the TCP connection to make it unavailable to respond to requests from the first

132

host (DoS attack) and spoof it’s IP address (spoofing attack). The complex intersection of

these five classes indicates the occurrence of a complex hijacking attack. The OWL code

for the Hijacking class is shown in Fig. 6.12.

Figure 6.12: OWL code for the Hijacking class.

<owl:Class rdf:ID="Hijacking">
 <rdfs:comment>
 A complex Hijacking attack is a Ping scan, Node
 scan, TCP Scan, Availability and Spoofing attack
 </rdfs:comment>

 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&traffic;NWaddressScanned"/>
 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;NodeScan"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;TCPConnect"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&traffic;hasTCPStreamWith"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom
 rdf:resource="&attack;Availability"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;Spoofing"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>

133

The code for the Hijacking class returns the instances for hosts with all of the

following events:

• Host A’ network was scanned

• A node scan attack was performed against host A

• A TCP connect attack was performed against host A

• An availability attack was performed against the other host in the TCP

connection, host B

• A spoofing attack was performed against host B

The OWL code will identify all instances that meet these criteria. This is done by using

the intersectionOf all IPaddress instances that have their network scanned

(NWaddressScanned), had a NodeScan against them, had a TCPConnect scan against

them, and had a TCP connection with (hasTCPStreamWith) another host. This second

host had two attacks against it, an Availability attack and a Spoofing attack. All IP

addresses that meet these criteria are identified as a target of a hijacking attack in

TRIDSO.

This example will follow a complex attack through the entire ontology as an

illustration of how all instances are created. The example is for a complex denial of

service attack. The following are an example of the steps an attacker may take when

conducting a complex denial of service attack:

1. Scan all nodes on a network to see which nodes respond indicating they are

active.

134

2. Scan all ports on an active node on the network to see which ports are active

and listening for requests.

3. Take a node off-line by sending many ping packets to it making it unavailable

to users.

The first step includes the attacker sending a ping packet to every IP address on a

network. A response indicates the node is active. These packets are added to the traffic

ontology as ICMPPacket instances since ping uses ICMP. From these instances, it is

determined through a rule (rules are explained in chapter 7) that a PingScan occurred and

an instance is added to the PingScan class in the attack ontology. A similar sequence

happens for the NodeScan class for the second step. The third step results in the creation

of a PingFlood instance.

Inference, through taxonomic relationships, specifically subclass, causes an instance

to occur in the following classes: Flood, Resources, DoS, and Availability. Now, there

exist instances in the PingScan, NodeScan, and Availability classes in the attack

ontology. Because of the definition of the DoSComplex class, shown in Fig. 6.13, an

instance is created in that class, indicating that a complex denial of service attack

occurred.

A denial of service complex attack may only consist of the first and third steps above;

it is possible to launch the availability attack against a node or the network without

knowing all open ports on a node(s). In this case, the DoSComplex class only consists of

the intersection of the PingScan and Availability instances. This OWL code is the same

as in Fig. 6.13 except the restriction for the NodeScan is removed. The full DoSComplex

class definition is then the union of these two class definitions.

135

Figure 6.13: OWL code for the DoSComplex class.

6.4 Chapter Summary

The formal representation presented in this chapter provides a high-level abstraction

of the network activity. It bridges the gap between the raw data and how humans view

sophisticated attacks. It eliminates the need to have specific patterns to match against to

detect the occurrence of an attack.

A RIDS can be used to identify complex attacks and attack attempts. The RIDS

developed in this research (Traffic-based Reasoning Intrusion Detection System using

Ontology, TRIDSO) bases the attack detection on all network traffic, not just certain

<owl:Class rdf:ID="DoSComplex">

 <rdfs:comment>
 A complex DoS attack is a Ping scan, Node scan, and

Availability attack
 </rdfs:comment>
 <rdfs:subClassOf rdf:resource="#ComplexAttack"/>

 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&traffic;NWaddressScanned"/>
 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;PingScan"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;NodeScan"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;Availability"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

</owl:Class>

136

systems or known vulnerabilities. It will detect generic attacks and attack attempts,

possibly even zero-day attacks, by analyzing specific attack elements and incorporating

these elements into attack trees.

This IDS, unlike its predecessors, uses ontological technology to reason about traffic

and what specific packets may represent in the context of undesirable traffic. Some

advanced ontology constructs, such as subclasses, unions, and intersections, allow

inference within the ontology. The use of reasoning will allow TRIDSO to detect more

attacks and attack attempts than traditional IDSs, as evidence by the evaluation of

TRIDSO explained in the next chapter.

Another advantage of TRIDSO is that the initial versions of the ontologies can be

augmented over time due to the flexibility and portability of ontology. This may include

the addition of new attack representations, allowing the detection of all attacks and attack

attempts. Ultimately the TRIDSO ontology may be extended by many different network

managers.

137

 Complex Attack Reasoning and Recognition Chapter 7

Intrusion Detection Systems (IDSs) are utilized to detect attacks against host and

networks. IDSs are one type of application that may benefit from the many advantages

provided by ontology. Some of the advantages provided by ontology include inference,

advanced semantic expressiveness, flexibility, and portability. While these advantages are

beneficial to RIDSs, there exist some shortcomings of ontology. Some of the

requirements of the RIDS developed in this research not supported by ontology are the

ability to select instances based on ranges of values for a specified field, selecting

instances that have a field that is optional, performing aggregate operations on values to

obtain results, and selecting instances based on regular expression matching. Some of the

useful aggregate operations are finding the minimum value from a set of instances, the

maximum value from a set of instances, or counting the number of matching instances.

To satisfy these requirements in the RIDS, SPARQL [17], a query language for use with

ontology applications, is used.

7.1 A Set of Heuristics for Complex Attack Identification

A set of high-level conceptual heuristics is developed, using SPARQL, to process the

declarative representation of captured network data to aid in detecting complex attacks

and attack attempts. The set of heuristics is used to perform some advanced processing of

the instances in the knowledge base to create additional instances. Specifically, SPARQL

is used to create instances for packet collections, packet streams, and simple attacks.

Instances are created in the knowledge base.

138

One advantage of SPARQL is its flexibility. The rules developed are generic,

allowing for the identification of instances for general types of attacks and not

occurrences of specific attacks.

The set of rules developed are also extensible. The ontology definition contains much

of the necessary information for the attacks. For this reason, it is not difficult to create a

new rule for a newly identified type of attack. This allows other researchers to add to the

set of rules allowing for the detection of additional attacks.

SPARQL rules are used to create instances in the PacketCollection class. These

instances are created for groups of instances in the traffic ontology. PacketCollection

instances exist for various types of floods and scans. A flood is a group of packets that

are generated in quantity to utilize a lot of resources. The most common type of flood is a

ping flood, which is a large amount of ping packets sent to consume bandwidth. The ping

packets may be sent to one specific host or multiple hosts in a network. Other types of

floods are ICMP, TCP and application. These floods are similar to ping floods but use

other packet types. The SPARQL rules for the prototype system are in Appendix C.

Finding ping scans to multiple nodes on a network is fairly complex in SPARQL

because it requires finding the network address corresponding to the IP address of each

node. An IP address is split into two main parts, the network part and the host part. The

parts vary in size (the number of bytes) depending on the class of the IP address. Table

7.1 shows the number of bytes corresponding to the network and host part of the IP

address for the three classes of IP addresses used for hosts in a network. The network

address consists of the network number part of the IP address and zero for each host part

of the IP address.

139

Table 7.1: Network Address Compilation.

The rule to find ping scans to a class B network, shown in Fig. 7.1, must look for

packets sent to the multiple IP addresses on the same network. This requires finding the

network address for each IP address for all ping packets in the traffic ontology and then

determining the number of pings sent to nodes on the same network. This requires more

complex matching in the rule because it involves instances from multiple classes; the

PingPacket class to find all ping packets and the IPaddress class to find the network

address for each target IP address in Ping packets. The rule also requires the

concatenation of fields to obtain the network IP address for the Ping packet.

Scans gather information about the network or nodes on the network. The two

common scans are ping scan and port scan. A ping scan is conducted to find nodes on the

network that are active. It consists of sending a ping packet to each possible IP address to

see which nodes respond, indicating an active node. After finding active nodes, it is

common to run a port scan on each active node. A port scan is performed to find which

services are active on a specific node. Now the attacker knows possible points of attack

(open ports on active nodes are possible points of attack). Finding port scans to one node

is fairly simple using SPARQL. The rule, shown in Fig. 7.2, looks for packets sent to

multiple ports on the same IP address.

Address Class Network Part Host Part
A 1 byte 3 bytes
B 2 bytes 2 bytes
C 3 bytes 1 byte

140

Figure 7.1: A SPARQL rule to describe a class B network ping scan.

PREFIX traffic: <traffic.owl#>
PREFIX attack: <attack.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
INSERT {
 _:a rdf:type attack:PacketCollection;
 attack:beginDate ?beginDateTime;
 attack:endDate ?endDateTime;
 attack:pcType traffic:PingScanType;

attack:hasTargetIP ?nwadd;
 attack:pcFrequency ?cnt .
 } WHERE { {
 SELECT ?nwadd ?IPoctet1 ?IPoctet2
 (MIN(?dateTime) as ?beginDateTime)
 (MAX (?dateTime) as ?endDateTime)
 (count(?nwadd) as ?cnt)
 {
 SELECT DISTINCT ?packet1 ?ipadd1 ?IPoctet1 ?IPoctet2
 ?IPoctet3a ?IPoctet4a ?nwadd ?dateTime
 {
 ?packet1 rdf:type traffic:PingPacket;
 traffic:hasDestIP ?ipadd1;
 traffic:dateTime ?dateTime .
 ?ipadd1 rdf:type traffic:IPaddress;
 traffic:IPoctet1 ?IPoctet1;
 traffic:IPoctet2 ?IPoctet2;
 traffic:IPoctet3 ?IPoctet3a;
 traffic:IPoctet4 ?IPoctet4a .
 ?nwadd apf:concat (?IPoctet1 "." ?IPoctet2 ".0.0")
 {
 SELECT DISTINCT ?packet2 ?ipadd2 ?IPoctet1 ?IPoctet2
 ?IPoctet3b ?IPoctet4b ?nwadd2
 {
 ?packet2 rdf:type traffic:PingPacket;
 traffic:hasDestIP ?ipadd2;
 traffic:dateTime ?dateTime2 .
 ?ipadd2 rdf:type traffic:IPaddress;
 traffic:IPoctet1 ?IPoctet1;
 traffic:IPoctet2 ?IPoctet2;
 traffic:IPoctet3 ?IPoctet3b;
 traffic:IPoctet4 ?IPoctet4b .
 ?nwadd2 apf:concat (?IPoctet1 "." ?IPoctet2 ".0.0")
 } }
 FILTER ((?packet1 != ?packet2) &&
 (?IPoctet1 >= 128) &&
 (?IPoctet1 <= 191)) .
 } }
 GROUP BY ?nwadd ?IPoctet1 ?IPoctet2
} }

141

Figure 7.2: A SPARQL rule to describe a node port scan.

TrafficStream instances are also created by using SPARQL rules. These instances are

created containing information for source and destination nodes for all TCP, UDP, ICMP,

layer 3, and ARP packets sent. This information is used to identify possible spoof attacks;

attacks where a third node pretends to be one of the original nodes in the communication.

PREFIX traffic: <traffic.owl#>
PREFIX attack: <attack.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
INSERT
{
 _:a rdf:type attack:PacketCollection;
 attack:beginDate ?beginDateTime;
 attack:endDate ?endDateTime;
 attack:pcType traffic:PortScanType;
 attack:hasTargetIP ?destIP;
 attack:pcFrequency ?cnt .
} WHERE { {
 SELECT DISTINCT ?packet1 ?destIP
 (MIN(?dateTime) as ?beginDateTime)
 (MAX (?dateTime) as ?endDateTime)
 (count(?destIP) as ?cnt)
 {
 ?packet1 rdf:type traffic:L4Packet;
 traffic:dateTime ?dateTime;
 traffic:hasDestIP ?destIP;
 traffic:l4DestPort ?l4DestPort1 .
 {
 SELECT ?packet2 ?destIP ?l4DestPort2 ?dateTime2
 {
 ?packet2 rdf:type traffic:L4Packet;
 traffic:dateTime ?dateTime2;
 traffic:hasDestIP ?destIP;
 traffic:l4DestPort ?l4DestPort2 .
 }
 GROUP BY ?destIP
 }
 FILTER ((?packet1 != ?packet2) &&
 (?l4DestPort1 != ?l4DestPort2)) .
 }
 GROUP BY ?destIP
 HAVING (count(?destIP) > 0)
} }

142

The SPARQL rule for creating a TrafficStream instance for a TCP connection is shown in

Fig. 7.3.

Figure 7.3: A SPARQL rule to describe a TCPStream.

SPARQL rules are also used to create instances for simple attacks. Snort identifies

some simple attacks. The information about these attacks is useful and is utilized by this

research. Recall that instances exist in the traffic ontology for all Snort alerts generated.

These instances are matched against regular expressions using SPARQL rules to find

occurrences of specific simple attacks. For example, a SPARQL rule is used to find all

PREFIX traffic: <traffic.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
INSERT
 {
 ?stream rdf:type traffic:TCPStream;
 traffic:protocol \"TCP\";
 traffic:startTime ?dateTime;
 traffic:endTime ?dateTime;
 traffic:hasNode1MAC ?srcMAC;
 traffic:hasNode2MAC ?destMAC;
 traffic:hasNode1IP ?srcIP;
 traffic:hasNode2IP ?destIP;
 traffic:node1Port ?l4SrcPort;
 traffic:node2Port ?l4DestPort .
}
WHERE { {
 SELECT DISTINCT ?packet ?dateTime ?srcMAC ?destMAC
 ?srcIP ?destIP ?l4SrcPort ?l4DestPort
 {
 ?packet rdf:type traffic:TCPPacket;
 traffic:dateTime ?dateTime;
 traffic:hasSrcMAC ?srcMAC;
 traffic:hasDestMAC ?destMAC;
 traffic:hasSrcIP ?srcIP;
 traffic:hasDestIP ?destIP;
 traffic:l4SrcPort ?l4SrcPort;
 traffic:l4DestPort ?l4DestPort .
 } }
 LET (?stream := ?packet) .
}

143

attacks where an attacker gained root access on a node. The code for this SPARQL rule is

shown in Fig. 7.4.

Figure 7.4: A SPARQL rule to describe a simple attack for gaining root access.

Instances for other simple attacks are also created using SPARQL rules. These

instances include Land attacks, which are identified by the source IP address and port

number being the same as the destination IP address and port number in a packet.

Another rule exists to find possible ARP spoofs. This spoof occurs when an attacker

modifies the MAC address of their host to match the MAC address of a target host. This

type of attack is identified by a packet with an IP address associated with a different

MAC address than previously observed.

PREFIX traffic: <traffic.owl#>
PREFIX attack: <attack.owl#>
INSERT
{
 ?attack rdf:type attack: “AdminPG ";
 attack:attBeginDate ?aDateTime;
 attack:attEndDate ?aDateTime;
 attack:description ?aDesc;
 attack:targetAddress ?aDestIP .
}
WHERE { {
 SELECT ?alert ?aDateTime ?aDesc ?aDestIP
 {
 ?alert rdf:type traffic:Alert;
 traffic:aDateTime ?aDateTime;
 traffic:aDescription ?aDesc;
 traffic:aClassification ?aClassification .
 OPTIONAL { ?alert traffic:aDestIP ?aDestIP . } .
 FILTER REGEX(?aClassification, "Administrator Privilege Gain", "i") .
 } }
 LET (?attack := ?alert) .
}

144

7.2 Development of a Prototype System

A prototype system was developed [97] to show the feasibility of using the ontology

and set of heuristics for detecting attacks. The prototype system developed is the Traffic-

based Reasoning Intrusion Detection System with Ontology (TRIDSO). TRIDSO (see

Fig. 7.5) consists of a variety of subsystems: traffic, attack, vulnerability, and device.

Each subsystem consists of a variety of components, including an ontology definition

file. TRIDSO provides data-driven reasoning; the reasoning and decisions are based on

traffic data.

Figure 7.5: TRIDSO architecture [97].

145

TRIDSO was developed using Java and Jena [18], a framework for ontology

applications. Jena was chosen primarily because it provides a leading implementation of

SPARQL. This implementation includes support for SPARQL extensions, such as

INSERT and count, which are necessary in the set of heuristics developed.

The traffic subsystem deals with raw network traffic data. Wireshark [98, 99] is used

to capture all network traffic. A program converts this data to ontology instances in the

traffic ontology. This conversion program reads through a tcpdump-formatted capture

file. For each packet found, the type of packet is determined, such as TCP, UDP, IP or

ARP, and the required data for that packet type is extracted. An instance is then created

for each packet in the appropriate class. A sampling of the relationships between packet

data and ontology properties is provided in Table 7.2.

Table 7.2: Relationship Between Packet Data and Ontology Property.

Instances are added to the knowledge base using the createIndividual function in the

Jena library. The function used to add the properties for each instance depends on the

property type. For datatype properties, two functions are used. To create an OWL literal

Packet Type Packet Data Ontology Class Ontology Property
Any Date and time Packet dateTime
ARP Source MAC address L2Packet hasSrcMAC
ARP Destination MAC address L2Packet hasDestMAC
IP Source IP address IPPacket hasSrcIP
IP Destination IP address IPPacket hasDestIP
IP IP version IPPacket ver
IP Packet length IPPacket packetLen
IP Time to Live (TTL) IPPacket ttl
IP Checksum IPPacket ipChecksum
TCP / UDP Source port number L4Packet l4SrcPort
TCP / UDP Destination port number L4Packet l4DestPort
TCP Sequence number TCPPacket tcpSeqNum
TCP Acknowledgement number TCPPacket tcpAckNum
TCP Flags TCPPacket tcpFlags
ICMP ICMP type ICMPPacket icmpType
ICMP ICMP code ICMPPacket icmpCode

146

value, createTypedLiteral is used and then the literal is added as the property value using

createLiteralStatement. If the property is an object property, the object that is the value of

the property must already exist in the knowledge base. If it does not, it is added as an

instance. To create the actual statement relating the subject to the object for the object

property, the function createStatement is used.

Data is also added to the knowledge base for alerts identified by Snort. Prior to

running the RIDS, the tcpdump-formatted capture file is run through Snort, which

generates an alert file. The alerts in the alert file are read by the RIDS, which creates

appropriate instances in the alert classes. Table 7.3 lists some of the alert information

from the alert file and their relationships with the ontology properties.

Table 7.3: Alert Information’s Relationship with Ontology Property.

Raw network data is captured using Wireshark. Snort is run on the raw data to

produce an alert file. The Wireshark capture file and alert file are processed by

conversion programs and instances are added to the knowledge base. This flow of data

for the traffic subsystem is illustrated in Fig. 7.6.

Alert Type Alert Information Ontology Class Ontology Property
Any Date and time Alert aDateTime
Any Identification Alert aID
Any Description Alert aDescription
IP Source IP address IPAlert hasAlertSrcIP

 IP Destination IP address IPAlert hasAlertDestIP
 IP Header length IPAlert aIPHdrLen

IP Packet length IPAlert aIPDgramLen
TCP / UDP Source port number L4Alert aL4SrcPort
TCP / UDP Destination port number L4Alert aL4DestPort
TCP Sequence number TCPPacket aTCPSeqNum
TCP Acknowledgement number TCPPacket aTCPAckNum
TCP Flags TCPPacket aTCPFlags
ICMP ICMP type ICMPAlert aICMPType
ICMP ICMP code ICMPAlert aICMPCode

147

Figure 7.6: The data flow of the traffic subsystem.

The attack subsystem consists of an ontology that will hold attack data. There are

actually two ontology definition files in the attack subsystem, the attack ontology and the

complex attack ontology. Two files are used to simplify the maintenance of the ontology

files. The attack ontology contains class definitions for all simple attacks. Complex attack

classes are defined in the complex attack ontology.

The attack instances are created in a variety of methods. Some are added using

SPARQL from traffic ontology instances. For example, scan and flood attack instances

are created using SPARQL queries based on PacketCollection instances.

Some simple attacks are detected by Snort. Some of these are added as simple attacks

in the knowledge base. Attacks detected by Snort that are to be added to the knowledge

base are identified using regular expression matches in various alert instance properties.

For instance, some Snort alerts indicate a malicious code type of attack. These are

identified by finding alert instances with the following strings in the classification

property (these are just some examples, there are more strings identifying a malicious

code attack): Decode of an RPC Query, Executable Code was Detected, A Suspicious

148

String was Detected, Access to a Potentially Vulnerable Web Application, and A System

Call was Detected.

The vulnerability subsystem manages the existing vulnerabilities. The ontology in

this subsystem contains data about vulnerabilities. The development of this subsystem

has not been completed and is left as future work. The data will be loaded into the

ontology from existing sources, such as NIST’s NVD, OVAL [65], or Snort rules. There

is reason to believe that the NVD data can be obtained from OVM (Ontology for

Vulnerability Management) [100], which is existing research that loads NVD data to an

ontology. To determine vulnerabilities of hosts, a vulnerability scanner, such as nessus

[101] or SSA Security System Analyzer [102], may be used.

The device subsystem consists of the device ontology and a program to convert

device data to ontology instances. The ontology contains classes representing the devices

in the network and their characteristics. This data is retrieved from the devices using a

standard management protocol, such as SNMP. After the device information is retrieved,

instances are added to the knowledge base using the devices ontology. Initially, the

devices are routers and switches. The device ontology has been developed for the

HMNMS discussed in chapter 4. Future work will include incorporating this ontology

into the device subsystem of TRIDSO.

7.2.1 Implementation Decisions

The design and development of TRIDSO included some implementation decisions.

Decisions had to be made between datatype vs. object properties in OWL, using OWL vs.

SPARQL, and using various SPARQL statements. For two of the implementation

149

decisions, two different implementations were completed in the existing version of

TRIDSO and trials were conducted against a test data file.

The first implementation decision was how to represent the nodes’ addresses, both

MAC and IP, in the ontology. Two options were considered, using a datatype property or

an object property for the addresses. As seen from the results in Table 7.4, the

implementation using the datatype property runs faster than the implementation using the

object property; however, there are other advantages to using the object property. The

primary advantage is the inference available when using the object property. Object

properties can have inverse properties defined. This switches the subject and object in the

triples. For example, if an attack is executed against a specified IP address, then that

address is the object for the hasTargetIP property. The wasAttacked property is declared

to be the inverseOf the hasTargetIP property. The IP address is now the subject and the

attack element is the object of that property. This allows the ontology reason to

automatically add instances to the knowledge base. This is beneficial when identifying

complex attacks. For example, a DoSComplex attack can be identified by finding each IP

address that was attacked using a PingScan, a NodeScan, and an Availability attack using

OWL constructs as shown in Fig. 7.7. When specifying the addresses as a datatype

property, these inference capabilities could not be leveraged making complex attack

detection much more difficult. Both implementations identified the same complex attacks

in the example data file used in the trial runs; however, the use of object properties

required no additional queries or programming as the complex attacks were all identified

using OWL constructs.

150

Table 7.4: Results of Trial Runs for Address Property.

Figure 7.7: OWL code for the DoSComplex class.

Task Time (ms) for Addresses as
Datatype Property

Time (ms) for Addresses as
Object Property

Create ontology model 1,387.9995 1,507.6309

Read ontology definition
files into knowledge base 1,398.9981 1,496.5411

Add address instances to
knowledge base N/A 33.0590

Add packet instances to
knowledge base 12,130.2060 6,869.0530

Add alert instances to
knowledge base 1,644.6810 1,239.9490

Add stream instances to
knowledge base 58,570.1117 68,098.7770

Add PacketCollection
instances to knowledge

33,367.9724 38,456.5279

<owl:Class rdf:ID="DoSComplex">
<rdfs:comment>
 A complex DoS attack is a Ping scan, Node scan, and

Availability attack
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ComplexAttack"/>

<owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&traffic;NWaddressScanned"/>
 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;PingScan"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;NodeScan"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;Availability"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
</owl:equivalentClass>

</owl:Class>

151

The second implementation decision was compared when inserting instances in the

knowledge base for the PacketCollections class. These instances represented groupings

of similar packets for the detection of simple attack elements, such as flood and scan

attacks. The two options implemented and tested were to use multiple SPARQL queries

or one SPARQL query. The multiple SPARQL queries option used one SPARQL query

to select all the matching instances. The results of this query were then processed

programmatically and a SPARQL INSERT statement was constructed and executed. The

one SPARQL query option used a single SPARQL query consisting of a combination of

the SELECT and INSERT statements. An example of this query is shown in Fig. 7.8.

Figure 7.8: A SPARQL query to describe a PingFlood.

PREFIX traffic: <traffic.owl#>
PREFIX attack: <attack.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
INSERT
{
 _:a rdf:type attack:PacketCollection;
 attack:beginDate ?beginDateTime;
 attack:endDate ?endDateTime;
 attack:pcType traffic:PingFloodType;
 attack:hasTargetIP ?destIP;
 attack:pcFrequency ?cnt .
}
WHERE { {
 SELECT ?destIP (MIN(?dateTime) as ?beginDateTime)
 (MAX (?dateTime) as ?endDateTime)
 (count(?destIP) as ?cnt)
 WHERE {?pack rdf:type traffic:PingPacket;
 traffic:dateTime ?dateTime;
 traffic:hasDestIP ?destIP .
 }
 GROUP BY ?destIP
 HAVING (count(?destIP) > 0)
 }
}

152

Both implementations were run using a sample data file. Each run resulted in the

same instances created in the knowledge base. The results of the trial runs are shown in

Table 7.5. For the majority of the types of PacketCollection instances added to the

knowledge base, the time to execute the single SPARQL query was less than the time to

execute two SPARQL queries. The other advantage of the single SPARQL query is the

simplicy of the program. The single SPARQL query is a more complex query to write,

but it does not require any programming to process the results from the first query and

create the INSERT query based on these results, eliminating 115 lines of source code.

Table 7.5: Results of Trial Runs for PacketCollection Instances.

7.3 Evaluation Methods of the Prototype System

According to Obrst, et al [103], there are many different criteria that can be used to

evaluate an ontology. These criteria consist of:

• The ontology’s coverage of a particular domain

 Time (ms) for two SPARQL queries

PacketCollection
instances added to
knowledge base

Time (ms) for
one SPARQL
query

Execute
SELECT query

Process
results from
SELECT
query

Execute
INSERT
query

Total

Ping floods using
Ping packets 47.5119 50.0340 2.1898 8.9969 61.2207

Application floods 2,258.1398 1,419.3626 0.0661 6.0932 1,425.5219

Port scan using
SYN packets 37,327.6293 39,689.5169 0.1443 11.7530 39,701.4142

Port scan using
FIN packets 49,279.4709 64,990.9385 0.0330 5.7664 64,996.7379

Port scans using
Null packets 2.8246 2.4052 0.0321 5.7543 8.1916

153

• The ontology’s ability to address specific use cases, scenarios, requirements,

applications and data sources

• The ontology’s formal properties, such as consistency and completeness

• The ontology’s ability to answer questions, such as “What kinds of reasoning

methods can be invoked in the ontology?”

The ontology in the security aspect of this research uses the second criterion:

evaluating how well the ontology represents the domain knowledge in specific use cases.

This task-based approach is used because it verifies that the ontology represents the

domain knowledge concepts and is able to accurately answer queries posed by a domain

expert in an application.

The main goal of the validation process is to show that the formal representation can

be used to detect complex attacks. The primary method for the evaluation of this criterion

is to compare the results of TRIDSO with a current state-of-the-art IDS. Snort was

chosen as the system to use for comparison purposes because it is a current state-of-the-

art IDS used by many network managers in today’s networks. Another reason that Snort

was chosen is because it is the system used by many researchers either as components in

their IDS or as a comparative system. The evaluation process used is to run Snort and

TRIDSO using the same set of capture files. The attacks detected by each IDS are

compared and differences noted.

The Snort configuration used for comparison with TRIDSO is the basic Snort

configuration. No special rules were written or installed. Snort generates alerts for many

common simple attacks, such as pings and backdoor attempts. The additional

configurations added to the Snort installation are the enabling of the TCP/IP checksum

154

mode and the portscan preprocessor. Enabling the TCP /IP checksum mode tells Snort to

perform checksum verification for TCP and IP. The portscan preprocessor will generate

an alert if a host not in the “home network” (this is a variable that must be configured)

initiates more than four port connections within three seconds. This may indicate a

possible port scan attack.

Another important criterion in an IDS is its response time. For this reason, the

response times, both load and query, for TRIDSO are evaluated. The response times used

in the evaluation of TRIDSO are:

1. The time to load the ontology definition files

2. The time to load the raw data instances from the capture file

3. The time to execute a rule

4. The time from the start of TRIDSO until complex attack detection

The last criterion used for evaluating response times is essentially the run-time of

TRIDSO against a specific data set (capture file). This is because TRIDSO will load all

raw data from the capture file, load other instance via inference and queries, and then

identify all complex attacks found in the knowledge base for this data set.

The last evaluation conducted for TRIDSO is its scalability. The amount of network

traffic is continually growing. It is important for TRIDSO to run effectively for any size

data set. The time to process files of varying size is evaluated.

155

7.4 Evaluation Results of the Prototype System

7.4.1 Use Case Scenarios

Many different types of attacks were analyzed and tested with Snort and TRIDSO.

Snort will identify many of the same simple attacks as TRIDSO, but Snort did not detect

any of the complex attacks. Simple attacks make up the steps in a complex attack, so

Snort identified some of the steps of the complex attacks, but was never able to generate

an alert for a complex attack. TRIDSO was able to detect all of the complex attacks

launched in the trial runs.

7.4.1.1 Complex Denial of Service Attack

A Denial of Service (DoS) attack involves an attacker consuming resources on a host

or network, thus denying legitimate users access to necessary services. Typically the

attacker will identify specific hosts or networks to use as a target of the DoS attack by

conducting a ping scan. This combination of a ping scan and DoS attack is categorized as

a complex DoS attack. Some complex DoS attacks will also include a step where the

attacker will identify a specific port to use in the DoS attack by searching all ports on a

found host (a node scan).

The complex DoS attack was simulated with two steps, a ping scan and a simple DoS

attack. The ping was performed using nmap [89], a security tool often used to launch

attacks. The simple DoS attack was accomplished by sending thirty ping packets to a

specific host that was found in the ping scan. The packets for this attack were captured

using tcpdump [104].

156

The capture file is processed by Snort. This produces an alert file containing alerts for

all packets that matched Snort rules. For the complex DoS attack, Snort generated eight

alerts, two each of the following:

• ICMP PING to the target machine

• ICMP PING NMAP to the target machine

• ICMP Timestamp Requst to the target machine

• ICMP Echo Reply from the target machine

Two ping alerts would not be enough to trigger an alarm to the network manager

indicating further analysis is necessary.

TRIDSO has a rule defined in OWL to detect a complex DoS attack. The rule finds

all instances of IP addresses that had a ping scan performed against its network and was

attacked with an Availability attack (a simple DoS attack). When run with the data from

the complex DoS attack conducted, a complex DoS attack against the target host was

identified by TRIDSO.

7.4.1.2 The Mitnick Type Attack

A classic complex attack, used by many computer security researchers, is the Mitnick

attack. This is a Man-In-The-Middle (MITM) or hijacking attack first performed by

Kevin Mitnick. The steps in the Mitnick attack are:

1. Find active hosts to idenfity a target machine (ping scan)

2. Find active ports on the active hosts to identify TCP connections (node scan)

3. Predict the TCP sequence number for the identified TCP connection (TCP

connect)

157

4. Take one host in the TCP connection offline using a DoS attack, typically a

Flood attack (DoS)

5. Insert the source machine into the TCP connection by spoofing the host that

was taken offline in step 4 (Spoof)

To test a Mitnick attack, an attacker machine, host C, was used to hijack a TCP

connection between two other hosts, host A and host B. The specific steps used in this

test Mitnick attack are (shown in Fig. 7.9):

1. Ping scan: scan the target network using nmap to identify an active host (host

A)

2. Node scan: perform a SYN node scan against an active host (host A), using

nmap

3. TCP connect: perform a TCP connect scan against the target host (host A)

using nmap

4. Availability: perform a DoS attack against the other host in the TCP

connection (host B) to prevent it from responding to host A

5. MITM: perform a MITM attack using ettercap [105] to become the new

trusted host to host A in place of host B

158

Figure 7.9: The steps in the test Mitnick attack.

When Snort processed that data capture file for the Mitnick attack, five alerts were

generated. The alerts included three unique alerts with two of the alerts repeated for two

different hosts, the two hosts in the TCP connection. The alerts generated are:

• TCP Portscan against host A

• ICMP PING against host A and host B

• ICMP PING NMAP against host A and host B

159

The data was also run through TRIDSO. The OWL rule used to detect a MITM or

hijacking attack in TRIDSO finds instances for hosts with all of the following events:

• Host A’s network was scanned

• A node scan attack was performed against host A

• A TCP connect attack was performed against host A

• An availability attack was performed against the other host in the TCP

connection, host B

• A spoofing attack was performed against host B

Using this rule, TRIDSO detected the target host of the MITM attack.

In the trial hijacking attack, which was a Mitnick type attack, Snort detected several

simple attacks but did not detect any complex attacks. TRIDSO was able to detect a

hijacking attack against the target host used in the test Mitnick attack. A query response

was generated telling the network manager the IP address of the target host.

7.4.2 Response Time

TRIDSO was run with for many different capture files, simulating a variety of

attacks, both simple and complex. The response times for these capture files was

analyzed. The response times analyzed are:

• Time to load the ontology definition files into the knowledge base

• Time to load the raw data instances into the knowledge base

• Time to execute a SPARQL query to insert additional instances into the

knowledge base from existing instances

• Time to execute a query against the knowledge base to retrieve instances

160

• Time from the start of TRIDSO until complex attacks are detected (run time)

For the query times, sample queries were used for analysis.

Several of the capture files were selected for evaluation purposes. These include a

sampling of both simple and complex attacks. The capture files selected included the

following types of attacks:

• A ping scan

• A port scan

• A complex Denial of Service (DoS) attack

• A complex hijacking attack

The load times for these data sets are shown in Table 7.6. The durations to load the

ontology definition files are reasonably constant. This is to be expected since the

ontology definition files are static for all runs of the system.

The time performance to load the raw data instances into the knowledge base varied

for each data set. Typically, as the number of raw instances (packets and alerts) increases,

the time to load the raw instances also increases. There will be some fluctuation in this

load time due to the variation in packet types in the raw data and the association class

definitions.

Table 7.6: Load Time Performance for Trial Data Sets.

 Input (numbers) Load Time (ms)

Data Set Packets Alerts Ontology Definition Files Raw Data Instances

Ping scan 12 4 503.907 27.652

Port scan 100 0 429.295 3151.427

Complex DoS 314 8 417.031 674.658

Hijacking 550 164 438.941 18,696.442

161

Table 7.7 shows the response time performance for alert instances for the sample data

files. These results clearly show that the time to add instances to the knowledge base is

directly related to the number of alerts in the raw data set. As the number of alerts

increases, the time to add the alert instances to the database increases.

Table 7.7: Alert Query Response Time Performance for Trial Data Sets.

The response time data for the query to add PacketCollection instances to the

knowledge base for the sample data files are shown in Table 7.8. Adding these instances

involves selecting instances from a variety of classes based on the instances matching

specified criteria and then inserting the appropriate instance to the PacketCollection class.

The time to add the PacketCollection instances increases as the number of instances

involved in the query increases.

Table 7.8: Query Response Time Performance for Trial Data Sets.

 Response Time (ms)

Data Set Number of instances in
SELECT clause

Number of instances
inserted

Query Time to Add
Instances

Ping scan 35 6 2,542,030.124

Port scan 344 5 3,230,520.202

Complex DoS 1124 13 10,815,152.304

Hijacking 1902 51 8,771,351.157

 Response Time (ms)

Data Set Number of Alerts Query Time to Add Alert
Instances

Query Time to Add Alert-
related Attack Instances

Port scan 0 0 66.91

Ping scan 4 27.652 103.74

Complex DoS 8 674.658 1,687.90

Hijacking 164 18,696.440 63,450.320

162

The total detection time, which is the time from the start of TRIDSO to the time it

takes to detect all complex attacks in the data set, is shown in Fig. 7.10. As the size of

knowledge base, which is the number of raw and total instances, increases, the time it

takes to detect complex attacks also increases. The response time data indicates that

TRIDSO is not able to detect complex attacks in real-time, which is discussed in the next

section and future work.

Figure 7.10: The time performance of complex attack detection by TRIDSO.

7.4.3 Scalability

The total run time data of TRIDSO against a variety of data file inputs are shown in

Fig. 7.11. This evaluation highlights one limitation with TRIDSO; the scalability of the

system. TRIDSO utilizes Jena, which is not a scalable environment; it is acceptable for

use in the proof-of-concept system but a full implementation of TRIDSO would require a

different environment.

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00

16 raw,
455 total,

3275 triples

100 raw,
1448 total,
6587 triples

322 raw,
3999 total,

13894 triples

714 raw,
7322 total,

25291 triples

M
in

ut
es

Number of Knowledge Base Instances

163

Figure 7.11: The run time performance of TRIDSO.

The scalability issue in TRIDSO prevents it from detecting attacks in real-time;

however, it can still be beneficial. Detecting attacks, even if it is post-occurrence, is

beneficial to the security of a network because there can be many lessons learned post-

attack. The most beneficial lesson learned is the current vulnerabilities of the network and

its nodes. When TRIDSO detects an attack, it informs the network manager how

attackers are attempting to attack the network. Even if an attack is successful and

undetected in real-time, the network manager will now know how the attack occurred so

future occurrences can be prevented.

Snort also experiences scalability issues. The number of rules in Snort has been

growing exponentially in the last few years, according to statistics gathered (see Fig.

7.12). This leads to more complexity in the management of Snort. The large rule set also

leads to a larger run time. The way Snort continues to detect in real-time with the large

rule set is to skip packets when the Snort processor cannot keep pace with the incoming

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00

16 raw,
455 total,

3275 triples

100 raw,
1448 total,
6587 triples

322 raw,
3999 total,

13894 triples

714 raw,
7322 total,

25291 triples

M
in

ut
es

Number of Knowledge Base Instances

164

packets. This will lead to a higher rate of false negatives, which means that attacks may

go undetected by Snort.

Figure 7.12: The growth trend of the number of rules in Snort [51].

It is important to analyze the time performance for each aspect of the prototype

system to determine what aspect of the system is contributing most to the large response

delays. The tasks in TRIDSO contributing the most time toward the overall run time are

adding the instances for traffic streams and packet collections. Table 7.9 shows the

individual response delays for the primary aspects of the system, including all the aspects

contributing the most to the total run time. The initialization of the knowledge base

includes the loading of the ontology definition files and the raw data instances. These

aspects of the system are processed programmatically using the Jena API. The remaining

response delays, which contribute the most time to the overall run time, are for the

aspects of the system that include the SPARQL queries. These delays represent the

165

addition of many of the simple attack instances to the database, including the packet

streams, packet collections, and miscellaneous simple attacks.

Table 7.9: Time Performance for Trial Data Sets.

As seen from Table 7.9, the majority of the overall run time is contributed to the

execution of the SPARQL queries, specifically the queries to add the packet streams and

packet collections. For each of these tasks, there are multiple complex queries with each

query often involving multiple select statements nested within an insert statement. For

instance, there are five SPARQL queries to add the packet streams, sixteen to add the

packet collections, and four to add the miscellaneous simple attacks. The time to create

the instances for complex attacks is not shown in the table because these instances are

created using OWL code and incur very minimal overhead.

The system developed, TRIDSO, is a prototype system to test the feasibility of

utilizing the developed formal representation in detecting complex attacks. TRIDSO was

developed as a quick-and-dirty prototype system; no optimization techniques were

included in the system. Optimizing aspects of the system will decrease the run-time and

help with the scalability problem. For instance, one major contributor to the run-time is

the addition of the instances to the Streams classes. This is done using numerous

 Response Time (minutes)

Data Set

Load
ontology
definition
files

Load raw
data
instances

Add the
packet
streams

Add packet
collections

Add simple
attacks

Ping scan 0.464 0.0005 21.105 8.770 4.055
Port scan 0.479 0.0572 82.676 167.513 3.308
Complex DoS 0.456 0.0100 120.444 68.877 7.242
Hijacking 0.468 0.3161 374.650 224.325 23.201

166

SPARQL queries. Many of these queries can be run in parallel on multiple processors.

Adding multi-processing functionality, specifically to the execution of the SPARQL

queries, will decrease the overall run-time and alleviate some of the scalability problem.

Another optimization that can be added to TRIDSO is the rule engine used for the

model. The ontology API in Jena is used, which uses an ontology model. The specific

ontology model used by TRIDSO is the OWL_MEM_RULE_INF model. This specific

ontology model supports the OWL Full language and stores the model in memory. The

reasoner used by this model is a rule-based reasoner with OWL rules. By using a reasoner

in Jena, the triples that are asserted by the inference algorithm are added to the model,

thus becoming part of the knowledge base. This will increase the overall run-time of

TRIDSO because there will be more triples in the knowledge base, requiring additional

processing by any query.

The reasoner used by the model in TRIDSO is an OWL rule reasoner. This reasoner

is not well suited for large ontologies, but it supports the contructs available in OWL

Full, such as the Boolean constructions (unionOf, intersectionOf), someValuesFrom and

the cardinality restrictions. It was selected for use in the prototype system to allow

experimentation with various OWL Full constructs during the development of the formal

representation. The use of this reasone leads to poor performance: “the rules

implementing the OWL constructs can interact in complex ways leading to serious

performance overheads for complex ontologies” [106]. To utilize TRIDSO in a

production environment a different reasoner needs to be selected and implemented in

TRIDSO, which would lead to an improvement in the performance.

167

The OWL rule reasoner used in TRIDSO supports a hybrid approach, using both

forward and backward chaining, to support inference. Forward chaining is used on the

raw instances in the knowledge base to infer additional triples. Backward chaining is

invoked to answer queries, which may be invoked by backward rules or when the

forward chaining engine asserts new backward rules. Utilization of a different reasoner

may lead to performance improvements. Analysis must be completed to determine the

appropriate reasoner for an implementation of the formal representation in a production

system. Additional options for addressing the scalability problem are discussed in the

section 8.2.2 (Future Works for Representation of Complex Attacks).

7.5 Chapter Summary

A prototype system, TRIDSO, was developed to test the formal representation

designed for detecting complex attacks. TRIDSO used a set of SPARQL rules to

incorporate additional functionality not achievable with OWL. These rules were used to

add instances to the knowledge base based on existing instances, such as packet

collections (scans, floods, etc.) and attacks based on the Snort-generated alerts.

TRIDSO was run with a variety of sample attacks, both simple and complex. The

output was compared with Snort, a state-of-the-art IDS used by many security

administrators and researchers. While Snort was able to detect some of the simple

attacks, TRIDSO was able to detect more simple attacks. TRIDSO was also able to detect

all the complex attacks in the data sets, while Snort was not able to detect any of the

complex attacks.

168

Response delays of the sample runs in TRIDSO were analyzed. As the number of

knowledge base instances and the data set size increases, the response delays increase.

These delays underline the fact that the current implementation of TRIDSO is not

scalable to a real-time detection environment. Additional research and further

development of TRIDSO is required to determine if TRIDSO could be adapted for real-

time intrusion detections. Even if that is not possible, the use of TRIDSO is a valuable

asset to a network manager. It allows the network manager to understand weaknesses in

the network and take corrective action to prevent future attacks.

169

 Conclusions and Future Work Chapter 8

Networks and the services they provide have become a ubiquitous part of computing

for virtually any computer users. Users have the expectation that the network will be

available around the clock. As shown in previous discussions, network management

today is a significant challenge. This challenge includes availability, network

management, and security.

One challenge facing network management is the large variety of components on

networks. These components may be on different tiers of the network (wired, ad hoc,

WSN) and from different manufacturers (Cisco, Nortel, etc.). This characteristic of

Heterogeneous Multi-tier Networks makes network management an arduous task.

Any network threat represents the possibility that network availability becomes

compromised. Identifying attacks against the network is a challenge facing network

managers. The users’ expectations of the always-available network and the organization’s

expectation of securing its data make security a high-priority task. If a device is attacked,

it may become unavailable to the users or have data compromised. When the victim

device is a network device, the consequences are compounded as this affects many

devices on the network and possibly the entire network.

As attacks become more common and complex, detecting attacks becomes more

difficult. A complex attack consists of a sequence of simple attacks. Current Intrusion

Detection Systems (IDSs) often detect simple attacks, comprising some of the steps in a

complex attack, but do not detect complete complex attacks. The development of an IDS

170

capable of detecting complex attacks can improve the network manager’s ability to

ensure an available, secure network.

We have explored the question of whether an ontological approach to network

management is effective. Using an ontological approach enables us to create a single

NMS for all deployed devices. We have shown both the appropriateness and feasibility of

using ontology as the basis for a NMS.

Another important aspect of network management is the management of security.

Using the ontological representation, it is possible to detect more simple and complex

attacks. Detecting more attacks will ensure better availability and security of the

organization’s network and data. Even though the developed IDS detects attacks after

they occur, it is still an important tool in network security. The information learned from

a detected attack, even post-occurrence, will help with future iterations of network

security.

8.1 Conclusions and Contributions

A framework based on ontological representations was designed to manage and

provide interoperability among components of Heterogeneous Multi-tier Networks. Four

contributions are linked to the network configuration and security management: (1)

adaptable knowledge base, (2) analysis of performance, (3) ontological representation for

complex attacks, and (4) evolution of ontological representation with extensible

heuristics.

The adaptable knowledge base of the first contribution significantly enhanced the

ability to manage Heterogeneous Multi-tier Networks as they evolved in number and

171

complexity. An ontology based Network Management System (NMS) addressed potential

challenges as new technologies and dynamic components were introduced to

heterogeneous network managers. The reporting process provided seamless integration of

support to manage Heterogeneous Multi-tier Networks from the daily management

perspective as additional data was collected. We created a prototype of the ontology-

based NMS to prove its viability in forms of effectiveness and performance. The

prototype demonstrated the network management as an n:1 improvement in the toolset

required for management of a HMN, where n is the number of different device types, or

tiers, within the network. By current industry standards, NMSs provide management

capability at the device-type level whereas the new HMNMS in this research provided

systemic management of the entire HMN. This new HMNMS will allow a network

manager to obtain a systematic view of the HMN instead of having to manage the

individual component networks.

Our second line of investigation asks the question of whether a HMNMS would

degrade network performance. We developed a model to evaluate performance based on

a theoretical queuing framework. This analysis of a HMN was conducted to verify the

model type and identify bottlenecks. The analytical model in this scenario was then

utilized to prove that the bottleneck in a Heterogeneous Two-tier Network (wired and ad

hoc tiers) was the ad hoc gateway and not the Heterogeneous Multi-tier Network

Management System (HMNMS). The model also demonstrated that the HMNMS did not

have an adverse effect on the HMN. Network designers may utilize this analytical model

to determine the bottleneck in a HMN as well as the number of gateway devices required

172

while maintaining optimal performance. Thus our second contribution is based on the

discovery that a HMNMS will not degrade performance of a HMN.

The basis for the ontological representation of attacks was based on generalized

attack trees developed by this researcher. The generalized attack trees for complex

attacks were defined based on researching specific attacks and recognizing attack

patterns. The ontological representation provided more flexibility because its declarative

representation allowed for augmentation without impacting other aspects of the system.

This in turn allows the ontology to be extended by others doing related research therefore

extending the knowledge and enabling the detection of evolving attack strategies. Traffic

data was used to develop and utilize the formal representation allowing for complex

attacks and attack attempts to be detected, which provided flexibility over a

programmatic approach.

As attack trees were developed, heuristics were established that effectively implement

the attack recognition process. These heuristics represent a fourth contribution as an

attempt to codify meta-characteristics of attacks. By using ontology constructs available

in OWL (the formal representation) and a query language (SPARQL), manipulation of

the ontology became easily modifiable and extendable with the addition of rules to detect

additional complex attacks. A prototype system (TRIDSO: Traffic-based Reasoning

Intrusion Detection System using Ontology) was developed to show the feasibility of

using the developed formal representation with a set of heuristics to detect complex

attacks and attack attempts. In the analysis of data, results showed the prototype system

detected more simple and complex attacks and attack attempts than a current state-of-the-

art system that was used for comparison.

173

The combination of the formal representation and corresponding set of heuristics

developed identify more simple and complex attacks than a current state-of-the-art IDS.

This allows a network manager to respond to the simple and complex attacks detected.

The manager can add additional security measures in a future iteration of security

measures for the network allowing for the prevention of more simple and complex

attacks.

8.2 Future Work

This research has led to several significant contributions in network management and

like most research has also led to several open questions. There are many different areas

for future work in both areas of research, management of HMNs and IDSs. An integral

part of the future work is to merge the HMNMS and TRIDSO into one NMS for HMN.

This NMS will begin to provide configuration and security management for HMNs. It

can eventually provide all management areas by adding performance, fault, and

accounting management.

8.2.1 A Heterogeneous Multi-tier Network Management System

The developed HMNMS is a basic conceptual prototype to show the feasibility of

using ontology in a NMS for HMNs. The defined ontologies will continue to be refined,

maintained and extended. Additional properties can be included for the four device types

included in the initial ontologies. Some of the expanded properties will be the interfaces

and connections in the network so that a logical network map can be drawn from the

discovered topology.

174

8.2.1.1 Add Additional Tiers

Additional device types can also be added to the NMS, such as additional wired

manufacturers or sensors for WSNs. The WSN device type is included in the developed

ontology; however, it was never implemented in the prototype system or tested. In the

simulation tests, WSN device type instances were added to the knowledge base statically

using OWL code. Future work will be to test the WSN portion of the ontology with a live

WSN. This portion of the network will then be added to the analytical model so a

performance analysis can be conducted for a three-tier HMN.

8.2.1.2 Extend the System to Other Network Management Areas

The prototype NMS focused on topology management but the HMNMS can be

extended to include additional management tasks, such as more configuration

management tasks or performance management. Areas that would be most beneficial to

network managers are fault and security management. Extending the NMS to security

management has been tested in the other part of this research by developing a formal

representation for complex attacks and implementing the representation using ontology.

There is some discussion about merging the two ontology systems (the HMNMS and

TRIDSO) later in this chapter.

8.2.1.3 Automatically Convert MIBs to OWL

One way to enhance the HMNMS is to automate some aspects of the system

development, particularly some of the ontology definitions. Future work will include

incorporating the creation of the OWL files for the device types into the HMNMS. The

SNMP MIBs can be converted to OWL and used in the HMNMS.

175

It is possible to automatically create OWL ontology files from XML data. Bohring

and Aver [107] proposed a framework to translate XML data to OWL. Their work

converts the tree structure in XML to the corresponding class hierarchy in OWL. The

difficulty is the fact that OWL is more expressive than XML, making some of the

mapping difficult. It is necessary to determine the appropriate representation in OWL for

a less-expressive representation in XML. There is a desire to leverage the expressive

nature of OWL and convert some structures in XML that do not have a direct mapping to

OWL. For example, Bohring and Aver assume that there are some relational structures in

XML, such as nested tags. These mappings are not as straight-forward and require some

assumptions and/or experimentations. In this instance, Bohring and Aver mapped a

nested tag in XML to an ObjectProperty in OWL.

Another project that has developed an automatic conversion process, which may be

used in the HMNMS, is the AstroGrid-D project from the German Astronomy

Community Grid (GACG) [108]. The AstroGrid-D project required the data to be

converted to RDF prior to being uploaded to the astronomy application. Two different

options were defined to do this transformation and both will be evaluated for use in

converting data for use in the HMNMS. The first one is an XSL stylesheet (xml2rdf.xsl)

that will convert XML files to RDF files. XSL (Extensible Stylesheet Language) [109] is

a series of recommendations for transforming XML. The second option uses a Java

package OwlMap. This package consists of two programs. One program, XS2DAMLOIL

converts XML to OWL format and the other one, XML2RDF, converts XML to RDF.

Preliminary investigation was conducted on this research but additional work is

required. Some of the MIBs are currently available in the XML format. For MIBs not

176

available in XML format, they can be converted to XML or XML Schema (XSD) using

smidump, which is a program available as part of the libsmi library. The libsmi library is

a library that provides access to SMI MIB information through various functions. After

obtaining an XML version of the MIB, it can be converted to RDF, which can be used as

the OWL definition files in the HMNMS. This was tested with a few MIBs using the

XS2DAMLOIL program. Preliminary results proved that this was possible but more

research is required to see if the results are practical for use in the HMNMS.

8.2.1.4 Utilization of the Analytical Model

Another area of future work is the utilization of the developed analytical model. The

analytical model is used to find the network capacity. In this research it was used to

evaluate the performance of a heterogeneous two-tier network. Specifically, the analytical

model was used to identify the bottleneck in a heterogeneous two-tier network.

Future work will employ the analytical model for other performance evaluations. One

possible use that may be developed is to evaluate the performance and identify

bottlenecks when additional tiers are added to the network. For instance, a Wireless

Sensor Network (WSN) may be added as an additional tier. This will require a WSN

gateway, which may introduce a potential bottleneck. Another performance metric that

may be evaluated using the analytical model is the determination of the number of nodes

each gateway, ad hoc or WSN, can efficiently support. This evaluation may be used by

the network manager in determining when another gateway must be added for continual,

efficient performance of the gateway node(s).

The analysis performed used constant parameters, such as the packet size and the

number of response packets generated. It was also assumed that there was no packet loss.

177

Future work will include conducting dynamic end-to-end network performance by

varying parameter values. Some of the parameters that may vary in future evaluations are

the number of management packets sent to different nodes or node types, packet size, and

the number of response packets generated for each management request. Future work will

also introduce some probability of packet delays and packet loss.

The analytical model can also be used for traffic modeling. This requires using a large

amount of complex traffic in the model. The performance evaluations conducted in this

research used a constant traffic rate. For traffic modeling, the traffic should be varied in

type, packet size and rate. Traffic modeling can use the model to determine buffer

occupancy statistics, queue wait times, and blocking probabilities.

8.2.2 Representation of Complex Attacks

This research designed and developed a formal representation for complex attacks,

which can easily be extended due to the use of ontology. A prototype system was

developed to demonstrate the viability of using the formal representation in an IDS. This

prototype system is in its infancy and may continue to be developed.

8.2.2.1 Incorporation of Additional Subsystems

One clear extension for TRIDSO is to incorporate the remaining subsystems, the

device subsystem and the vulnerability subsystem. An initial version of the device

subsystem was developed as part of this research and utilized in the HMNMS discussed

in chapter 3. The ontology utilized in the HMNMS forms the foundation for the device

subsystem in TRIDSO. This ontology will be extended and incorporated into TRIDSO.

178

The vulnerability subsystem requires development. It will utilize existing repositories

of known vulnerabilities, such as NIST’s NVD (National Vulnerability Database). An

optimal solution is to utilize existing research that creates ontology instances from these

repositories. One such work is OVM (Ontology for Vulnerability Management) [100].

8.2.2.2 Determining Threshold Values

There are several threshold values utilized in TRIDSO and the determination of the

optimal value to use for each is left for future investigation. Specifically, there are four

threshold values used in TRIDSO:

1. Rate category – determining the appropriate value for the rate category in the

coloring scheme [91]

2. Flood attack occurrences – the number of occurrences of a specific packet

type before it is identified as a flood attack

3. Scan attack occurrences – the number of occurrences of a specific packet type

before it is identified as a scan attack

4. Timeframe – the length of time to use for including packets when identifying

attacks

Initially, optimal values will be determined for each of these threshold values and remain

static.

The next step will be to incorporate a training phase into TRIDSO making it self-

learning. The system starts using the identified threshold values. As the system runs, the

threshold values are adjusted based on observed traffic conditions. For example, consider

a ping flood attack. Let’s assume the threshold value identified for a flood attack is

twenty-five occurrences in the specified timeframe. For a corporate network, where ping

179

is only used by network and system administrators, this value may be too high. For a

university network, where computer science courses may use ping as a teaching tool, this

value may be too low. As the system runs, an algorithm would be utilized that looks at

historical traffic data and adjusts the threshold values accordingly.

A coloring scheme [91] was developed that will be incorporated into TRIDSO. The

first threshold value is used in the coloring scheme to determine the value assigned to the

rate category. The threshold is used to determine the number of occurrences of a specific

packet type, as shown in Table 8.1. The appropriate threshold should be determined prior

to incorporating the coloring scheme into TRIDSO.

Table 8.1: The Coloring Scheme’s Rate Category Values.

The second and third threshold values are similar. They both deal with the number of

occurrences of a specific packet type to identify flood and scan attacks. A few ping

packets are often not an issue as ping is a common troubleshooting tool; however, ping is

also a common tool for attackers. It is important to determine the best value for this

threshold. A threshold that is too high may lead to false negatives, indicating an attack

occurred but was not identified. A threshold that is too low leads to true positives,

indicating an attack was identified but it was not an attack. These situations can lead to

additional analysis time by the network manager and possibly unnecessary network down

time.

Number of occurrences in time period Value
 Occurs once 1
 1 < occurrence < threshold 2
 Threshold < occurrence < 2 * threshold 3
 Occurs > 2 * threshold 4

180

The fourth threshold value to be determined is the length of time to use when

identifying attacks. For example, when looking for a ping flood attack, if the flood

threshold is twenty-five, the system looks for the occurrence of twenty-five ping packets

to the same host or network. The timeframe determines when these packets occur. Do

they occur within five milliseconds of each other? Five minutes? Five hours? This is a

critical question because twenty-five ping packets to the same host over five hours is

usually not a problem; however, twenty-five in five milliseconds may indicate a possible

denial of service attack against the host.

When the optimal value for this timeframe threshold is determined, it will be used in

detecting possible attacks. As the research is conducted in identifying this optimal value,

it may be determined that several timeframe thresholds are necessary. A threshold value

of ping packets to the same host or network in five minutes is probably not enough to

indicate a possible ping flood attack; however, a threshold value of ping packets to

different hosts on the same network in five minutes may indicate a possible ping scan

attack. It may be necessary to use different timeframe thresholds for different types of

attacks.

Another use of the timeframe threshold in TRIDSO is determining the occurrence of

a complex attack. In this case, the time from the first node being in an attack tree to the

time the root node is colored will be measured. Finding the most effective timeframe is a

critical step in complex attack identification.

8.2.2.3 Probabilistic Complex Attack Detection

A coloring scheme [91] will be incorporated into TRIDSO. This coloring scheme will

allow for the incorporation of probability in the detection process.

181

When a node in an attack tree is identified as having occurred, the node is colored. A

three-color scheme is used: 1) green indicates no attack occurred, 2) yellow indicates an

attack may have occurred, and 3) red indicates that an attack most likely occurred.

All nodes are assigned a color based on a priority assigned to the attack element for

that node. The priority is determined based on three categories of analysis. These

categories are shown in Table 8.2, with their corresponding values, and are explained

below.

The first category is the rate, which indicates how often the element occurred in a

time period. The rate is assigned a value of one through four based on a threshold value.

A value of one is assigned if the attack element occurred once in the time frame, two if it

occurred more than once but less than the threshold, three if it occurred more than the

threshold but less than twice the threshold, and four if it occurred more than twice the

threshold. The most effective threshold value has not yet been determined.

Table 8.2: Attack Element Priority [91].

Category or item Value
Rate
Occurs once 1
1 < occurrence < threshold 2
Threshold < occurrence < 2 * threshold 3
Occurs > 2 * threshold 4

Access level
Access (anonymous) 0
User and SNMP read-only 1
Admin 2
Root and SNMP read-write 3

Alert priority 3 – Snort priority + 1

182

The access level category is the user (for a host) or privilege (for a network device)

level gained, or possibly gained, by the attack. Four different access levels are utilized.

The first level is similar to anonymous and gives a remote user access to the device or

resource, such as a web user on a web server. This first level is assigned a value of zero.

Next is the user level, with a value of one, which is a typical user on a system. The admin

level has a value of two and the root level has a value of three. These two levels have

been separated; even though they are synonymous on many systems, some systems

separate the two. For example, the Windows operating system admin user, while often

considered the same as root on the UNIX operating system, is different because some

operations on Windows require local administrator access. The other type of access is

that provided by SNMP. Read-only access provided by SNMP is equivalent to the user

level and read-write access is equivalent to the admin level.

The last category considered in the coloring scheme is the alert priority. This is based

on the priority assigned to the alert produced by Snort, if one is assigned. The priority for

an alert in Snort can have a value of zero through three, with zero being the highest

priority. The coloring scheme assigns zero the lowest priority, so the following equation

is used to convert the alert priority to the appropriate value in the coloring scheme:

 value = 3 – Snort_priority + 1 (8.1)

The reason to add one is because there is a need to not have a value of zero assigned

to the alert category since Snort assigned it a priority value, thus considering it of some

importance.

The priority of the attack element is calculated by adding the values of the three

categories. The node in the attack tree(s) corresponding to the attack element is colored

183

appropriately. To determine the appropriate color, the possible values, zero through

eleven, which is the total possible value for the attack element priority, are divided

evenly. A priority less than or equal to three causes the node to be colored green, a value

from three to eight colors the node yellow, and a value of eight or more colors the node

red.

After all the affected nodes are appropriately colored, the coloring propagates up the

attack tree. The parent nodes are colored based on the colors of the children nodes. The

coloring algorithm (shown in Fig. 8.1) is based on empirical observations of results from

test iterations of a simulation program developed to design the proposed coloring scheme.

If the children nodes have an OR condition in the attack tree, then the parent node is

colored with the “largest” color, with a descending order of red, yellow, green. If the

children nodes have an AND condition in the attack tree, propagating the color to the

parent becomes more complex. If all the children are green, then the parent is colored

green; otherwise, the green nodes are excluded in the determination of the parent color.

Figure 8.1: The coloring scheme algorithm [91].

OR conditions between children
• Color parent the color of the child with the “largest” color

AND conditions between children
• If all children are green color parent green
• Else (skip all green children)

o Find the color of the majority of the children (if the same
number of yellow and red, then use color of latest child
colored) currColor

o If parent color <= currColor
color parent currColor

Else if parent colored more than “time ago”
color parent currColor

Else leave parent as-is

184

To begin color analysis for the parent node, the majority color of the children nodes is

determined. If there are an equal number of yellow and red children, then the color of the

node that was just colored is used as the majority. If the parent node is the same color as

the majority color or it was colored less than a time threshold ago, then the parent node

remains the same color. If the parent color is less than the majority color, then the parent

is colored that color. The most effective value of the time threshold used has not yet been

determined.

As an example (see Fig. 8.2), consider a situation where an attack occurs that scans

all hosts on the network. There is also a telnet to the SNMP port of a SNMP-managed

node. The algorithm determined these nodes should be colored yellow. There was also a

port scan that occurred with high occurrence in a time period, so that node was colored

red. The colors were then propagated to the parent nodes, resulting in the colored attack

tree. Uncolored nodes in the attack tree indicate the attack was not detected.

Probability will be incorporated into the rate category. This category is assigned a

value (1-4) based on how often the element occurs in a time period in relation to a

threshold value. The assignments are shown in Table 8.2.

Based on the rate value, a probability will be assigned to the occurrence of the simple

attack. The color assigned will be associated with a probability. The most appropriate

probability to assign each value and color is also part of future work, but a baseline is

used for discussion. This baseline associates a probability to the various values of the rate

category according to Table 8.3. These probabilities then correspond to the appropriate

color.

185

Table 8.3: Probabilities for Rate Category Values.

Figure 8.2: An example of a colored attack tree.

Number of occurrences in time period Value Probability Color
 Occurs once 1 0 – 24 Green
 1 < occurrence < threshold 2 25 – 49 Yellow
 Threshold < occurrence < 2 * threshold 3 50 – 74 Yellow
 Occurs > 2 * threshold 4 75 - 100 Red

186

Within each value for the rate, probability is used because the number of occurrences

is still important. For instance, assume the threshold for the rate category is determined to

be twenty-five. If there are fifty-one occurrences of a specific packet type, a value of 4 is

assigned. If there are five hundred occurrences, a value of 4 is also assigned, but there is

much more likelihood that there was a ping flood attack. The probability for the five

hundred occurrences should be higher than for the fifty-one occurrences.

Probabilities will also be utilized as the colors are propagated up the tree. Instead of

just using colors of the children nodes to color the parent node, the probabilities will be

utilized. For instance, if a parent has two children nodes and they are both yellow, the

current algorithm, shown in Fig. 8.3, colors the parent yellow. Using an algorithm that

incorporates the probabilities in the children nodes may color the parent node red if the

probabilities are high in both of the yellow children nodes.

Figure 8.3: The current coloring scheme algorithm.

Probability will also be utilized in looking at the time frame for the attack. A lower

probability will be assigned to the possibility of the attack occurring if the attack spans a

OR conditions between children
• Color parent the color of the child with the “largest” color

AND conditions between children
• If all children are green color parent green
• Else (skip all green children)

o Find the color of the majority of the children (if the same
number of yellow and red, then use color of latest child
colored) currColor

o If parent color <= currColor
color parent currColor

Else if parent colored more than “time ago”
color parent currColor

Else leave parent as-is

187

longer time frame. If the attack spans a shorter time frame, there is more likelihood the

attack actually occurred so a higher probability is assigned. This will be used in

identifying simple and complex attacks.

For example, fifty ping packets to the same host in an hour may indicate a ping flood

attack. Fifty ping packets to the same host in five seconds indicate that a ping flood attack

most likely occurred, so the probability will be higher than the fifty in an hour attack. For

complex attacks, the probability is higher if all the simple attacks comprising that

complex attack occur in one hour compared to one day or one week, so again the shorter

time frame indicates a higher probability.

8.2.2.4 Anomaly Detection

Anomaly detection is used in IDSs to detect the occurrence of an attack by observing

behavior in the network that is unusual for that particular network and its users. For this

to work effectively, normal behavior must be observed and documented. Future work will

consist of incorporating anomaly detection into the formal representation of complex

attacks.

The formal representation must be extended to maintain information about normal

network traffic. The formal representation is then defined in OWL and incorporated into

the set of heuristics developed for attack detection. This information (normal behavior)

may also be useful in the training phase for determining threshold values based on

network behavior.

188

8.2.2.5 Scalability Improvements

One drawback of the prototype system developed, TRIDSO, is its scalability. There

has been research in the area of ontology scalability with several options for

improvement. One method to improve on the scalability of TRIDSO is to distribute some

of the processing. Concurrent execution of many of the SPARQL queries is one area of

processing that may benefit from distribution. Goodman and Mizell [110] demonstrated

the use of work-load distributions by developing an algorithm that utilized threads. The

threads were used with replicated ontology data and a shared hash table. The second

method that may benefit TRIDSO by providing more scalability is the use of a data

management system. A data management system was developed specifically for OWL,

by Park, et. al. [111], to “efficiently manage large sized OWL data” [111]. Park, et. al.

increased the performance of queries by improving the management of large sized data

sets. The performance improvement was achieved by storing the OWL data in a relational

database designed to optimize query response. A third method to improve the scalability

is to use a system that combines Datalog programs with a relational database. Pan, Li,

and Heflin [112] developed such a system (DLDB3). DLDB3 is a new knowledge base

system that showed an improvement of the system performance in load and query times.

189

Bibliography

[1] P. Spyns, R. Meersman, and M. Jarrar. Data modeling versus ontology engineering.

ACM SIGMOD Record, 31(4): 12-17, 2002.

[2] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications.

Knowledge Engineering Review, 11(2): 93-136, 1996.

[3] T. R. Peltier. Information security risk analysis. Auerbach Publication, 2005.

[4] J. Case, M. Fedor, M. Schoffstall, and J. Davin. RFC1157: A simple network

management protocol (SNMP). 1990.

[5] M. Mealling. RFC3061: A URN namespace of object identifiers. 2001.

[6] J. E. López de Vergara, V. A. Villagrá, and J. Berrocal. Applying the web ontology

language to management information definitions. IEEE Communications Magazine,

special issue on XML Management, 42(7): 68-74, 2004.

[7] J. Hebeler, M. Fisher, R. Blace, and A. Perez-Lopez. Semantic Web Programming.

Wiley, 2009.

[8] World Wide Web Consortium (W3C). W3C, 2011. Retrieved from

http://www.w3.org/.

[9] World Wide Web Foundation. 2011. Retrieved from

http://www.webfoundation.org/.

http://www.w3.org/
http://www.webfoundation.org/

190

[10] T. Berners-Lee. Semantic Web - XML2000. XML 2000 Proceedings. Graphic

Communications Association, December, 2000. Retrieved from

http://www.w3.org/2000/Talks/1206-xml2k-tbl/.

[11] Extensible Markup Language (XML). World Wide Web Consortium (W3C), 2011.

Retrieved from http://www.w3.org/XML/.

[12] Resource Description Framework (RDF). World Wide Web Consortium (W3C),

2010. Retrieved from http://www.w3.org/RDF/.

[13] RDF Vocabulary Description Language 1.0: RDF Schema. World Wide Web

Consortium (W3C), 2004. Retrieved from http://www.w3.org/TR/rdf-schema/.

[14] G. Antoniou and F. van Harmelen. A Semantic Web Primer (Cooperative

Information Systems). The MIT Press, 2004.

[15] Web Ontology Language (OWL). World Wide Web Consortium (W3C), 2004.

Retrieved from http://www.w3.org/2004/OWL/.

[16] L. W. Lacy. Owl: Representing Information Using the Web Ontology Language.

Trafford Publishing, 2005.

[17] SPARQL Query Language for RDF. World Wide Web Consortium (W3C), 2008.

Retrieved from http://www.w3.org/TR/rdf-sparql-query/.

http://www.w3.org/2000/Talks/1206-xml2k-tbl/
http://www.w3.org/XML/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/rdf-sparql-query/

191

[18] Jena - A Semantic Web Framework for Java. Retrieved from

http://jena.sourceforge.net/index.html.

[19] G. Giambene. Queuing Theory and Telecommunications: Networks and

Applications. Springer, 2010.

[20] D. Bertsekas and R. Gallager. Data Networks. Upper Saddle River, NJ, Prentice-

Hall, Inc, 1992.

[21] D. Gross. Fundamentals of Queueing Theory. Wiley, 2009.

[22] L. Kleinrock. Queueing Systems. Volume 1: Theory. John Wiley & Sons, Inc., 1975.

[23] A. Fuchsberger. Intrusion detection systems and intrusion prevention systems.

Information Security Technical Report. 10(3): 134-139, Jan. 2005.

[24] U. Warrier, L. Besaw, L. LaBarre, and B. Handspicker. RFC1189: The common

management information services and protocols for the Internet (CMOT and

CMIP). 1990.

[25] Desktop Management Interface (DMI). Distributed Management Task Force, Inc.,

2010. Retrieved from http://dmtf.org/standards/dmi.

[26] Web-Based Enterprise Management (WBEM). Distributed Management Task

Force, Inc., 2009. Retrieved from http://www.dmtf.org/standards/wbem/.

http://jena.sourceforge.net/index.html
http://dmtf.org/standards/dmi
http://www.dmtf.org/standards/wbem/

192

[27] W. Chen, N. Jain, and S. Singh. ANMP: Ad hoc network network management

protocol. IEEE Journal on Selected Areas in Communications. 17: 1506-1531,

1999.

[28] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro. MANNA: A management

architecture for wireless sensor networks. IEEE Communications magazine. 41(2):

116-125, 2003.

[29] G. Tolle, and D. Culler. Design of an application-cooperative management system

for wireless sensor networks. Proceedings of the Second European Workshop on

Wireless Sensor Networks 2005, 121-132, Istanbul, Turkey, 2005.

[30] A. K. Y. Wong, P. Ray, N. Parameswaran and J. Strassner. Ontology mapping for

the interoperability problem in network management. IEEE Journal on Selected

Areas in Communications, 23(10): 2058-2068, October 2005.

[31] J. E. López de Vergara, V. A. Villagrá, J. Berrocal, J. I. Asensio, and R. Pignaton.

Semantic management: application of ontologies for the integration of management

information models. Proceedings of the Eighth IFIP/IEEE International Symposium

on Integrated Network Management, Colorado Springs, CO, March 2003.

[32] J. E. López de Vergara, V. A. Villagrá, J. I. Asensio, and J. Berrocal. Ontologies:

Giving semantics to network management models. IEEE Network, 17(3): 15-21,

May-June 2003.

193

[33] J. E. López de Vergara, V. A. Villagrá, and J. Berrocal. An ontology-based method

to merge and map management information models. Proceedings of the HP

Openview University Association Tenth Plenary Workshop, Geneva, Switzerland.

2003.

[34] J. E. López de Vergara, V. A. Villagrá, and J. Berrocal. Applying the web ontology

language to management information definitions. IEEE Communications Magazine,

special issue on XML Management, 42(7): 68-74, July 2004.

[35] D. Cleary, B. Danev, and D. O’Donoghue. Using ontologies to simplify wireless

network configuration. Formal Ontologies Meet Industry, Verona, Italy, June 2005.

[36] B. Deb, S. Bhatnagar and B. Nath. A topology discovery algorithm for sensor

networks with applications to network management. Technical Report dcs-tr-441,

Rutgers University, May 2001.

[37] M. E. Orwat, T. E. Levin, and C. E. Irvine. An ontological approach to secure

MANET management. Proceeedings of the Third International Conference on

Availability, Reliability and Security, pp. 787-794. 2008.

[38] C. Goodwin and D. J. Russomanno. An ontology-based sensor network prototype

environment. IEEE Fifth International Conference on Information Processing in

Sensor Networks, Nashville, TN, 2006.

194

[39] D. J. Russomanno, C. R. Kothari and O. A. Thomas. Building a sensor ontology: A

practical approach leveraging ISO and OGC models. The 2005 International

Conference on Artificial Intelligence, Las Vegas, NV, 2005.

[40] H. Honkasalo, K. Pehkonen, M. T. Niemi, and A. T. Leino. WCDMA and WLAN

for 3G and beyond. IEEE Wireless Communications, 9(2), 2002.

[41] I. Niles and A. Pease, Origins of the standard upper merged ontology: A proposal

for the IEEE standard upper ontology. Working Notes of the IJCAI-2001 Workshop

on the IEEE Standard Upper Ontology, Seattle, WA, 2001.

[42] SensorML. Open Geospatial Consortium, 2011. Retrieved from

http://www.opengeospatial.org/standards/sensorml.

[43] Crossbow Technology. Retrieved from http://www.xbow.com/.

[44] M N. Ismail and A. M. Zin. Development of simulation model in heterogeneous

network environment: Comparing the accuracy of simulation model for data

transfers measurement over wide area network. International Journal of Multimedia

and Ubiquitous Engineering, 5(4): 43-58, 2010.

[45] M. Hedayati, S. H. Kamali, and A. S. Izadi. The monitoring of the network traffic

based on queuing theory and simulation in heterogeneous network environment.

Proceedings of the 2009 International Conference on Information and Multimedia

Technology (ICIMT '09), pp. 396-402, Jeju Island, South Korea, 2009.

http://www.opengeospatial.org/standards/sensorml
http://www.xbow.com/

195

[46] M.-Y. Huang and T. M. Wicks, A large-scale distributed intrusion detection

framework based on attack strategy analysis. Second International Workshop on

Recent Advances in Intrusion Detection, RAID’98, Louvain-la-Neuve, Belgium,

September 1998.

[47] S. A. Camtepe and B. Yener, Modeling and detection of complex attacks. Third

International Conference on Security and Privacy in Communications Networks

and the Workshops (SecureComm 2007), pp. 234-243, Nice, France, September

2007.

[48] I. Gregorio-deSouza, V. H. Berk, A. Giani, G. Bakos, M. Bates, G. Cybenko, and

D. Madory. Detection of complex cyber attacks. Sensors, and Command, Control,

Communications, and Intelligence (C3I) Technologies for Homeland Security and

Homeland Defense V, May 2006.

[49] Snort. 2010. Retrieved from http://www.snort.org/.

[50] B. Caswell, J. Beale, and A. Baker. Snort IDS and IPS Toolkit. Burlington, MA,

Syngress Publishing, Inc., 2007.

[51] S. Sen. Performance characterization and improvement of intrusion detection

systems. Bell Labs, Alcatel-Lucent, 2006.

[52] X. Ou, S. Govindavajhala, A. Appel. MulVAL: A logic-based network security

analyzer. 14th USENIX Security Symposium, Baltimore, MD, August 2005.

http://www.snort.org/

196

[53] H. Xu, D. Xiao, and Z. Wu. Application of security ontology to context-aware alert

analysis. Eighth IEEE/ACIS International Conference on Computer and

Information Science (ICIS 2009), pp. 171-176, Shanghai, 2009.

[54] L. A. F. Martimiano and E. Moreira. The evaluation process of a computer security

incident ontology. The 2nd Workshop on Ontologies and their Applications

(WONTO'06), Ribeirão Preto, SP, Brazil, 2006.

[55] L. A. F. Martimiano and E. d. S. Moreira. An OWL-based security incident

ontology (a poster session). Eighth International Protégé Conference, Madrid,

Spain, 2005.

[56] B. Tsoumas and D. Gritzalis. Towards an ontology-based security management.

20th International Conference on Advanced Information Networking and

Applications (AINA'06), 1: 985-992, Vienna, Austria.2006.

[57] N. Cuppens-Boulahia, F. Cuppens, J. E. López de Vergara, E. Vazquez, J. Guerra,

and H. Debar. An ontology-based approach to react to network attacks.

International Journal of Information and Computer Security, 3(3/4): 280-305,

2009.

[58] A. Vorobiev and N. Bekmamedova. An ontological approach applied to information

security and trust. 18th Australasian Conference on Information Systems (ACIS

2007), Toowoomba, Queensland, Australia, 2007.

197

[59] A. Vorobiev and J. Han. Security attack ontology for web services. Second

International Conference on Semantics, Knowledge and Grid (SKG '06), Guilin,

China, 2006.

[60] A. Vorobiev, J. Han, and N. Bekmamedova. An ontology framework for managing

security attacks and defences in component based software systems. 19th Australian

Conference on Software Engineering (ASWEC 2008), pp. 552-561, Perth, WA,

2008.

[61] J. Undercoffer, A. Joshi, and J. Pinkston. Modeling computer attacks: An ontology

for intrusion detection. The Sixth International Symposium on Recent Advances in

Intrusion Detection, G. Vigna, E. Jonsson and C. Kruegel, editors, Springer, LNCS

2820: 113-135, 2003.

[62] J. Undercoffer and J. Pinkston. Modeling computer attacks: A target-centric

ontology for intrusion detection. 2002 CADIP Research Symposium University of

Maryland Baltimore County (UMBC), Baltimore, MD, 2002.

[63] S. Mandujano. An ontology-supported outbound intrusion detection system.

Proceedings of the 10th Conference on Artificial Intelligence and Applications,

Taiwanese Association for Artificial Intelligence (TAAI 2005), Kaohsiung, Taiwan,

December 2005.

198

[64] S. Mandujano, A. Galvan, and J. A. Nolazco. An ontology-based multiagent

approach to outbound intrusion detection. ACS/IEEE 2005 International

Conference on Computer Systems and Applications (AICCSA'05), Cairo, Egypt,

January 2005.

[65] OVAL (Open Vulnerability and Assessment Language). The MITRE Corporation,

2011. Retrieved from http://oval.mitre.org/.

[66] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog

(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering,

1: 146–166, March 1989.

[67] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

SWRL: A Semantic Web Rule Language combining OWL and RuleML. National

Research Council of Canada, Network Inference, and Stanford University, 2004.

Retrieved from http://www.w3.org/Submission/SWRL/.

[68] CIM Schema: Version 2.8.2 (Final). Distributed Management Task Force, Inc.,

2010. Retrieved from http://dmtf.org/standards/cim/cim_schema_v282.

[69] CVE: Common Vulnerabilities and Exposures. The MITRE Corporation, 2011.

Retrieved from http://cve.mitre.org/.

[70] H. Debar, D. Curry, and B. Feinstein. RFC4765: The Intrusion Detection Message

Exchange Format (IDMEF). 2007.

http://oval.mitre.org/
http://www.w3.org/Submission/SWRL/
http://dmtf.org/standards/cim/cim_schema_v282
http://cve.mitre.org/

199

[71] OrBAC. 2008. Retrieved from http://orbac.org/index.php?page=orbac&lang=en.

[72] National Vulnerability Database. National Institute of Standards and Technology

(NIST), 2011. Retrieved from http://nvd.nist.gov/.

[73] ProIT - overview. PerformanceIT, Inc., 2011. Retrieved from

http://www.performanceit.com/proit_overview.html.

[74] L. Frye and L. Cheng. A network management system for a heterogeneous multi-

tier network. IEEE Global Communications Conference, Exhibition and Industry

Forum (GLOBECOM), Miami, FL. December, 2010.

[75] FaCT++. Google, 2011. Retrieved from http://code.google.com/p/factplusplus/.

[76] K. Fox. Ad-hoc network management: Using the Simple Network Management

Protocol in an ad-hoc environment. Master thesis, Kutztown University, Kutztown,

PA. 2010.

[77] B. Deb and B. Nath. Wireless sensor networks management. 2005. Retrieved from

http://www.research.rutgers.edu/_bdeb/sensornetworks.html.

[78] W. L. Lee, A. Datta, and R. Cardell-Oliver. Network management in wireless

sensor networks. In L. T. Yang and M. K. Denko, editors, Handbook on Mobile Ad

Hoc and Pervasive Communications, American Scientific Publishers, 2006.

http://orbac.org/index.php?page=orbac&lang=en
http://nvd.nist.gov/
http://www.performanceit.com/proit_overview.html
http://code.google.com/p/factplusplus/
http://www.research.rutgers.edu/_bdeb/sensornetworks.html

200

[79] M. Fernández, M., A. Gómez-Pérez, and N. Juristo. Methontology: From

ontological art towards ontological engineering. AAAI Technical Report, pp. 33-40,

1997.

[80] T. R. Gruber. Toward principles for the design of ontologies used for knowledge

sharing. In Formal Ontology in Conceptual Analysis and Knowledge

Representation, Kluwer Academic Publishers, 1993.

[81] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating

your first ontology. Technical Report. Stanford University, Stanford, CA, 2001.

[82] M. Daniele, B. Wijnen, M. Ellison, and D. Francisco. RFC2741: Agent

Extensibility (AgentX) Protocol. 2001.

[83] Net-SNMP. 2011. Retrieved from http://www.net-snmp.org/.

[84] Nishida, T. End-to-End performance modeling for distributed network management

systems. Proceedings of the Tenth Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM) 1991, pp. 121-129, Bal Harbour, FL,

1991.

[85] L. Frye, Z. Liang, K. Fox, and L. Cheng. An automated network management

system for heterogeneous multi-tier networks. Journal of Network and System

Management. Springer. Unpublished Work.

http://www.net-snmp.org/

201

[86] D. Bertsekas and R. Gallager. Data Networks, chapter 4, pp.318. Prentice Hall,

1987.

[87] S. S. Lam. A carrier sense multiple access protocol for local networks. Computer

Networks, 4(1): 21-32, February 1980.

[88] W. Stallings. Operating Systems: Internals and Design Principles, 3rd Edition.

Prentice Hall Engineering/Science/Mathematics, December 1997.

[89] Nmap Security Scanner. Retrieved from http://nmap.org/.

[90] SING. Geeknet, Inc., 2011. Retrieved from http://sourceforge.net/projects/sing/.

[91] L. Frye, L. Cheng, and R. Kaplan. A methodology to identify complex network

attacks. The 2011 International Conference on Security and Management (SAM’11)

at the 2011 World Congress in Computer Science, Computer Engineering, and

Applied Computing (WORLDCOMP’11), Las Vegas, NV, July 2011.

[92] Information Assurance (IA). Directive 8500.01E. Department of Defense, 2002.

[93] C.W. Geib and R. Goldman. Plan Recognition in Intrusion Detection Systems.

Proceedings of the Second DARPA Information Survivability Conference and

Exposition (DISCEX II), pp. 329-342, 2001.

[94] C. W. Geib. Assessing the complexity of plan recognition. 9th national conference

on Artifical intelligence (AAAI'04), pp. 507-512, San Jose, CA, July 2004.

http://nmap.org/
http://sourceforge.net/projects/sing/

202

[95] T. Kichkaylo, T. Ryutov, M. D. Orosz, and R. Neches. Planning to Discover and

Counteract Attacks. Informatica, 34: 159-168. 2010.

[96] C. W. Geib. Toward Using Plan Recognition for Intrusion Detection. Proceedings

of the ICAPS Workshop on Intelligent Security, pp. 46-55, 2009.

[97] L. Frye, L. Cheng, and J. Heflin. An ontology-based system to identify complex

network attacks. IEEE/IFIP Network Operations and Management Symposium

(NOMS 2012), Maui, HI, April 2012. Unpublished Work

[98] Wireshark. Retrieved from http://www.wireshark.org/.

[99] L. Chappell and G. Combs. Wireshark Network Analysis: The Official Wireshark

Certified Network Analyst Study Guide. Laura Chappell University, 2010.

[100] J. A. Wang and M. Guo. OVM: An Ontology for Vulnerability Management.

Proceedings of the 5th Annual Workshop on Cyber Security and Information

Intelligence Research (CSIIRW): Cyber Security and Information Intelligence

Challenges and Strategies, Oak Ridge, TN, ACM, 2009.

[101] The Network Vulnerability Scanner. Tenable Network Security, 2011. Retrieved

from http://www.nessus.org/nessus/intro.php.

[102] SSA - Security System Analyzer. Security Database. Retrieved from

http://www.security-database.com/ssa.php.

http://www.nessus.org/nessus/intro.php
http://www.security-database.com/ssa.php

203

[103] L. Obrst, B. Ashpole, W. Ceusters, I. Mani, S. Ray and B. Smith. The evaluation of

ontologies: Toward improved semantic interoperability. In C. J. O. Baker and K.-H.

Cheung, editors, Semantic Web: Revolutionizing Knowledge Discovery in the Life

Sciences, pp. 139-158, Springer, 2007.

[104] tcpdump. 2010. Retrieved from http://www.tcpdump.org/.

[105] Ettercap. Retrieved from http://ettercap.sourceforge.net/.

[106] Jena 2 Inference Support - A Semantic Web Framework for Java. 2010. Retrieved

from http://jena.sourceforge.net/inference/index.html.

[107] H. Bohring and S. Auer. Mapping XML to OWL ontologies. In Leipziger

Informatik-Tage, volume 72 of Lecture Notes in Informatics (LNI), 72: 147-156,

2005.

[108] Metadata Management: Providing Static Metadata of Robotic Telescopes to

Stellaris (an AstroGrid-D Deliverable). Part of the AstroGrid-D German Astronomy

Community Grid (GACG) project funded by the German Federal Ministry of

Education and Research (BMBF), 2007. Retrieved from http://www.gac-

grid.org/project-documents/deliverables/wp2/D2_4.pdf.

[109] The Extensible Stylesheet Language Family (XSL). World Wide Web Consortium

(W3C), 2011. Retrieved from http://www.w3.org/Style/XSL/.

http://www.tcpdump.org/
http://ettercap.sourceforge.net/
http://jena.sourceforge.net/inference/index.html
http://www.gac-grid.org/project-documents/deliverables/wp2/D2_4.pdf
http://www.gac-grid.org/project-documents/deliverables/wp2/D2_4.pdf
http://www.w3.org/Style/XSL/

204

[110] E. L. Goodman and D. Mizell. Scalable in-memory RDFS closure on billions of

triples. The 6th International Workshop on Scalable Semantic Web Knowledge Base

Systems (SSWS2010), pp. 17-31, Shanghai, China, November 2010.

[111] M.-J. Park, J. Lee, C.-H. Lee, J. Lin, O. Serres, and C.-W. Chung. An efficient and

scalable management of ontology. International Conference of Database Systems

for Advanced Applications, pp. 975-98, Bangkok, Thailand, April 2007.

[112] Z. Pan, Y. Li, and J. Heflin. A semantic web knowledge base system that supports

large scale data integration. 8th International Semantic Web Conference

(ISWC2009), pp. 125-140, Washington DC, October 2009.

205

Appendix A A Heterogeneous Multi-tier Network Management

System - Ontology Definition Files

A.1 Node Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns="http://faculty.kutztown.edu/frye/res/onto/node.owl#"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/node.owl">

 <owl:Ontology rdf:about=""/>

 <!-- Create a class for a network node -->
 <owl:Class rdf:ID="node"/>

 <owl:DatatypeProperty rdf:ID="serialNumber">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="name">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="location">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="address">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="description">
 </owl:DatatypeProperty>

</rdf:RDF>

206

A.2 Wired Node Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY e 'http://faculty.kutztown.edu/frye/res/onto/node.owl#'>
 <!ENTITY g 'http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl#'>
 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>
]>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns="http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl#"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl">

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/node.owl"/>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl"/>
 </owl:Ontology>

 <!-- Create a class for a network wired node -->
 <owl:Class rdf:ID="wiredNode">
 <rdfs:subClassOf rdf:resource="&e;node"/>
 <owl:disjointWith rdf:resource="&g;wirelessNode"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="subnetMask">
 </owl:DatatypeProperty>

</rdf:RDF>

207

A.3 Wireless Node Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY e 'http://faculty.kutztown.edu/frye/res/onto/node.owl#'>
 <!ENTITY f 'http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl#'>
 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>
]>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns="http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl#"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl">

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/node.owl"/>
 <owl:imports

rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl"/>
 </owl:Ontology>

 <!-- Class for node's role -->
 <owl:Class rdf:ID="roleType"/>
 <roleType rdf:ID="ch"/>

 <!-- Class for node's status -->
 <owl:Class rdf:ID="statusType"/>

 <!-- Create a class for a network wireless node -->
 <owl:Class rdf:ID="wirelessNode">
 <rdfs:subClassOf rdf:resource="&e;node"/>
 <owl:disjointWith rdf:resource="&f;wiredNode"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="energyLeft">
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="role">
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="status">
 </owl:ObjectProperty>
</rdf:RDF>

208

A.4 Nortel Device Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY c 'http://faculty.kutztown.edu/frye/res/onto/cisco.owl#'>
 <!ENTITY e 'http://faculty.kutztown.edu/frye/res/onto/node.owl#'>
 <!ENTITY f 'http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl#'>
 <!ENTITY g 'http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl#'>
 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>
]>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns="http://faculty.kutztown.edu/frye/res/onto/nortel.owl#"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/nortel.owl">

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/node.owl"/>
 <owl:imports

rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl"/>
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/cisco.owl"/>
</owl:Ontology>

 <owl:Class rdf:ID="nortelNode">
 <rdfs:subClassOf rdf:resource="&f;wiredNode"/>
 <owl:disjointWith rdf:resource="&c;ciscoNode"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="rcSysIPAddr">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sysDesc">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sysName">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sysLocation">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="rcChasSerialNumber">

209

 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sysNetMask">
 </owl:DatatypeProperty>

</rdf:RDF>

210

A.5 Cisco Device Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY d 'http://faculty.kutztown.edu/frye/res/onto/nortel.owl#'>
 <!ENTITY e 'http://faculty.kutztown.edu/frye/res/onto/node.owl#'>
 <!ENTITY f 'http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl#'>
 <!ENTITY g 'http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl#'>
 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>
]>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns="http://faculty.kutztown.edu/frye/res/onto/cisco.owl#"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/cisco.owl">

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/node.owl"/>
 <owl:imports

rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl"/>
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/nortel.owl"/>
</owl:Ontology>

 <owl:Class rdf:ID="ciscoNode">
 <rdfs:subClassOf rdf:resource="&f;wiredNode"/>
 <owl:disjointWith rdf:resource="&d;nortelNode"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="chassisSerialNumber">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sysName">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sysLocation">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="sysNetMask">
 </owl:DatatypeProperty>

211

 <owl:DatatypeProperty rdf:ID="sysIPAddr">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="sysDesc">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>

</rdf:RDF>

212

A.6 Ad hoc Device Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY b 'http://faculty.kutztown.edu/frye/res/onto/wsn.owl#'>
 <!ENTITY e 'http://faculty.kutztown.edu/frye/res/onto/node.owl#'>
 <!ENTITY f 'http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl#'>
 <!ENTITY g 'http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl#'>
 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>
]>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns="http://faculty.kutztown.edu/frye/res/onto/adhoc.owl#"
 xmlns:wireless="&g;"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/adhoc.owl">

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/node.owl"/>
 <owl:imports

rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl"/>
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wsn.owl"/>
 </owl:Ontology>

 <!-- object instances for status and role -->
 <wireless:statusType rdf:ID="active"/>
 <wireless:statusType rdf:ID="not_active"/>
 <wireless:roleType rdf:ID="agent"/>

 <owl:Class rdf:ID="adHocNode">
 <rdfs:subClassOf rdf:resource="&g;wirelessNode"/>
 <owl:disjointWith rdf:resource="&b;sensor"/>
 </owl:Class>

 <owl:ObjectProperty rdf:ID="clusterHead">
 <rdfs:domain rdf:resource="&g;wirelessNode"/>
 <rdfs:range rdf:resource="#adHocNode"/>
 </owl:ObjectProperty>

213

 <owl:DatatypeProperty rdf:ID="description">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="location">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="name">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ipAddress">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="subnetMask">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="serialNumber">
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="remainingBatteryLife">
 <rdfs:domain rdf:resource="&g;wirelessNode"/>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="role">
 <rdfs:domain rdf:resource="&g;wirelessNode"/>
 <rdfs:range rdf:resource="&g;roleType"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Role of ad hoc node, is it a CH or agent (plain) node</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="status">
 <rdfs:domain rdf:resource="&g;wirelessNode"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Status of the ad hoc node, is it active or inactive</rdfs:comment>
 <rdfs:range rdf:resource="&g;statusType"/>
 </owl:ObjectProperty>

</rdf:RDF>

214

A.7 Wireless Sensor Network Device Ontology Definition File

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY a 'http://faculty.kutztown.edu/frye/res/onto/adhoc.owl#'>
 <!ENTITY e 'http://faculty.kutztown.edu/frye/res/onto/node.owl#'>
 <!ENTITY f 'http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl#'>
 <!ENTITY g 'http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl#'>
 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>
]>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns="http://faculty.kutztown.edu/frye/res/onto/wsn.owl#"
 xmlns:wireless="&g;"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/wsn.owl">

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/node.owl"/>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl"/>
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/adhoc.owl"/>
 </owl:Ontology>

 <!-- object instances for status and role -->
 <wireless:statusType rdf:ID="alive"/>
 <wireless:statusType rdf:ID="dead"/>
 <wireless:roleType rdf:ID="member"/>

 <owl:Class rdf:ID="sensor">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" >
 a node in a wireless sensor network</rdfs:comment>
 <rdfs:subClassOf rdf:resource="&g;wirelessNode"/>
 <owl:disjointWith rdf:resource="&a;adHocNode"/>
 </owl:Class>

 <owl:ObjectProperty rdf:ID="clusterHead">
 <rdfs:domain rdf:resource="&g;wirelessNode"/>
 <rdfs:range rdf:resource="#sensor"/>
 </owl:ObjectProperty>

215

 <owl:DatatypeProperty rdf:ID="description">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Description for sensor</rdfs:comment>
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="ycoord">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 y-coordinate for sensor</rdfs:comment>
 <rdfs:domain rdf:resource="#sensor"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="residualEnergy">
 <rdfs:domain rdf:resource="&g;wirelessNode"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Residual energy of sensor</rdfs:comment>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="role">
 <rdfs:domain rdf:resource="&g;wirelessNode"/>
 <rdfs:range rdf:resource="&g;roleType"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Role of sensor, is it a CH, member or plain node</rdfs:comment>
 </owl:ObjectProperty >
 <owl:DatatypeProperty rdf:ID="name">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Name for the sensor</rdfs:comment>
 <rdfs:domain rdf:resource="&e;node"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="serialNumber">
 <rdfs:domain rdf:resource="&e;node"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 serial number of sensor</rdfs:comment>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="nodeID">
 <rdfs:domain rdf:resource="#sensor"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 node ID for sensor</rdfs:comment>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="status">
 <rdfs:domain rdf:resource="&g;wirelessNode"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Status of the sensor, is it alive or dead</rdfs:comment>
 <rdfs:range rdf:resource="&g;statusType"/>
 </owl:ObjectProperty >

216

 <owl:DatatypeProperty rdf:ID="xcoord">
 <rdfs:domain rdf:resource="#sensor"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 x-coordinate for sensor</rdfs:comment>
 </owl:DatatypeProperty>

</rdf:RDF>

217

A.8 Mapping Ontology Definition File

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY a 'http://faculty.kutztown.edu/frye/res/onto/adhoc.owl#'>
 <!ENTITY b 'http://faculty.kutztown.edu/frye/res/onto/wsn.owl#'>
 <!ENTITY c 'http://faculty.kutztown.edu/frye/res/onto/cisco.owl#'>
 <!ENTITY d 'http://faculty.kutztown.edu/frye/res/onto/nortel.owl#'>
 <!ENTITY e 'http://faculty.kutztown.edu/frye/res/onto/node.owl#'>
 <!ENTITY f 'http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl#'>
 <!ENTITY g 'http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl#'>
 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>
]>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:adhoc="&a;"
 xmlns:wsn="&b;"
 xmlns:cisco="&c;"
 xmlns:nortel="&d;"
 xmlns:node="&e;"
 xmlns:wired="&f;"
 xmlns:wireless="&g;"
 xmlns="http://faculty.kutztown.edu/frye/res/onto/map_all.owl#"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/map_all.owl">

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/node.owl"/>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wiredNode.owl"/>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wirelessNode.owl"/>
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/adhoc.owl"/>
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wsn.owl"/>
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/cisco.owl"/>
 <owl:imports rdf:resource="http://faculty.kutztown.edu/frye/res/onto/nortel.owl"/>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/adhoc_instances.owl"/>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/wsn_instances.owl"/>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/cisco_instances.owl"/>

218

 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/nortel_instances.owl"/>
 </owl:Ontology>

 <owl:DatatypeProperty rdf:about="&e;name">
 <owl:equivalentProperty rdf:resource="&a;name"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;name">
 <owl:equivalentProperty rdf:resource="&b;name"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;name">
 <owl:equivalentProperty rdf:resource="&c;sysName"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;name">
 <owl:equivalentProperty rdf:resource="&d;sysName"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="&e;description">
 <owl:equivalentProperty rdf:resource="&a;description"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;description">
 <owl:equivalentProperty rdf:resource="&b;description"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;description">
 <owl:equivalentProperty rdf:resource="&c;sysDesc"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;description">
 <owl:equivalentProperty rdf:resource="&d;sysDesc"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="&e;serialNumber">
 <owl:equivalentProperty rdf:resource="&a;serialNumber"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;serialNumber">
 <owl:equivalentProperty rdf:resource="&b;serialNumber"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;serialNumber">
 <owl:equivalentProperty rdf:resource="&c;chassisSerialNumber"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&e;serialNumber">
 <owl:equivalentProperty rdf:resource="&d;rcChasSerialNumber"/>
 </owl:DatatypeProperty>

219

 <owl:DatatypeProperty rdf:about="&a;ipAddress">
 <rdfs:subPropertyOf rdf:resource="&e;address"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&b;nodeID">
 <rdfs:subPropertyOf rdf:resource="&e;address"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&c;sysIPAddr">
 <rdfs:subPropertyOf rdf:resource="&e;address"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&d;rcSysIPAddr">
 <rdfs:subPropertyOf rdf:resource="&e;address"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="&f;subnetMask">
 <owl:equivalentProperty rdf:resource="&a;subnetMask"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&f;subnetMask">
 <owl:equivalentProperty rdf:resource="&c;sysNetMask"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&f;subnetMask">
 <owl:equivalentProperty rdf:resource="&d;sysNetMask"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="&a;location">
 <rdfs:subPropertyOf rdf:resource="&e;location"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="&b;xcoord">
 <rdfs:subPropertyOf rdf:resource="&e;location"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&b;ycoord">
 <rdfs:subPropertyOf rdf:resource="&e;location"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&c;sysLocation">
 <rdfs:subPropertyOf rdf:resource="&e;location"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&d;sysLocation">
 <rdfs:subPropertyOf rdf:resource="&e;location"/>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:about="&g;role">
 <owl:equivalentProperty rdf:resource="&a;role"/>
 </owl:ObjectProperty >

220

 <owl:ObjectProperty rdf:about="&g;role">
 <owl:equivalentProperty rdf:resource="&b;role"/>
 </owl:ObjectProperty >

 <owl:ObjectProperty rdf:about="&g;status">
 <owl:equivalentProperty rdf:resource="&a;status"/>
 </owl:ObjectProperty >
 <owl:ObjectProperty rdf:about="&g;status">
 <owl:equivalentProperty rdf:resource="&b;status"/>
 </owl:ObjectProperty >

 <owl:DatatypeProperty rdf:about="&g;energyLeft">
 <owl:equivalentProperty rdf:resource="&a;remainingBatteryLife"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="&g;energyLeft">
 <owl:equivalentProperty rdf:resource="&b;residualEnergy"/>
 </owl:DatatypeProperty>

 <!-- Create a class for all cluster heads -->
 <owl:Class rdf:ID="clusterHeadNode">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="&a;role"/>
 <owl:hasValue rdf:resource="&g;ch"/>
 </owl:Restriction>
 <owl:Class rdf:about="&g;wirelessNode"/>
 </owl:intersectionOf>
 </owl:Class>

</rdf:RDF>

221

Appendix B Complex Attack Detection - Ontology Definition

Files

B.1 Traffic Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY traffic

'http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/traffic.owl#'>
 <!ENTITY attack

'http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/attack.owl#'>
 <!ENTITY xsd 'http://www.w3.org/2001/XMLSchema#'>
 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>
 <!ENTITY owl11 "http://www.w3.org/2006/12/owl11#">
]>

<!--

 ***** Traffic Ontology *****

-->

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:owl11="http://www.w3.org/2006/12/owl11#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:traffic="http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/traffic.owl#"
 xmlns:attack="http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/attack.owl#"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/traffic.owl">

 <owl:Ontology rdf:about="">
 <rdfs:comment>An ontology for network traffic</rdfs:comment>
 </owl:Ontology>

222

 <!--

 ***** Object Property Definitions *****

 -->

 <!--
 ***** Object Properties: MAC addresses *****
 -->
 <owl:ObjectProperty rdf:ID="hasSrcMAC">
 <rdfs:range rdf:resource="#MACaddress"/>
 <rdfs:domain rdf:resource="#L2Packet"/>
 <owl:inverseOf rdf:resource="#isSrcMACOf"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasSrcMac"/>

 <owl:ObjectProperty rdf:ID="hasDestMAC">
 <rdfs:range rdf:resource="#MACaddress"/>
 <rdfs:domain rdf:resource="#L2Packet"/>
 <owl:inverseOf rdf:resource="#isDestMACOf"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasDestMAC"/>

 <owl:ObjectProperty rdf:ID="isSrcMACOf">
 <rdfs:range rdf:resource="#L2Packet"/>
 <rdfs:domain rdf:resource="#MACaddress"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="isDestMACOf">
 <rdfs:range rdf:resource="#L2Packet"/>
 <rdfs:domain rdf:resource="#MACaddress"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasNode1MAC">
 <rdfs:range rdf:resource="#MACaddress"/>

<rdfs:domain rdf:resource="#L2Stream"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasNode1MAC"/>

 <owl:ObjectProperty rdf:ID="hasNode2MAC">
 <rdfs:range rdf:resource="#MACaddress"/>
 <rdfs:domain rdf:resource="#L2Stream"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasNode2MAC"/>

223

 <!-- ***** Object Properties: IP addresses ***** -->
 <owl:ObjectProperty rdf:ID="hasNWIPaddress">
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#IPaddress"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasSrcIP">
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#IPPacket"/>
 <owl:inverseOf rdf:resource="#isSrcIPOf"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasSrcIP"/>

 <owl:ObjectProperty rdf:ID="hasDestIP">
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#IPPacket"/>
 <owl:inverseOf rdf:resource="#isDestIPOf"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasDestIP"/>

 <owl:ObjectProperty rdf:ID="isSrcIPOf">
 <rdfs:range rdf:resource="#IPPacket"/>
 <rdfs:domain rdf:resource="#IPaddress"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="isDestIPOf">
 <rdfs:range rdf:resource="#IPPacket"/>
 <rdfs:domain rdf:resource="#IPaddress"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasPCDestIP">
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#PacketCollection"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasPCDestIP"/>

 <owl:ObjectProperty rdf:ID="hasAlertSrcIP">
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#IPAlert"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasAlertSrcIP"/>

224

 <owl:ObjectProperty rdf:ID="hasAlertDestIP">
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#IPAlert"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasAlertDestIP"/>

 <owl:ObjectProperty rdf:ID="hasNode1IP">
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#L3Stream"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasNode1IP"/>

 <owl:ObjectProperty rdf:ID="hasNode2IP">
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#L3Stream"/>
 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:about="#hasNode2IP"/>

 <!-- Make 'hasTCPStreamWith' a Symmetric property, meaning it will hold in both

directions. If, host A has a TCP stream with host B, then host B has a
TCP stream with host A -->

 <owl:SymmetricProperty rdf:ID="hasTCPStreamWith">
 <rdfs:domain rdf:resource="#IPaddress"/>
 <rdfs:range rdf:resource="#IPaddress"/>
 </owl:SymmetricProperty>

 <!--

 ***** Address Class Definitions *****

 -->

 <!-- ***** Class: MACaddres ***** -->
 <owl:Class rdf:ID="MACaddress">
 </owl:Class>

 <!-- ***** Class: IPaddress ***** -->
 <owl:Class rdf:ID="IPaddress">
 </owl:Class>

225

 <owl:DatatypeProperty rdf:ID="IPoctet1">
 <rdfs:domain rdf:resource="#IPaddress"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="IPoctet2">
 <rdfs:domain rdf:resource="#IPaddress"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="IPoctet3">
 <rdfs:domain rdf:resource="#IPaddress"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="IPoctet4">
 <rdfs:domain rdf:resource="#IPaddress"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: NWaddressScanned *****

 -->
 <owl:Class rdf:ID="NWaddressScanned">
 <rdfs:comment>
 A list of Network IP addresses that were scanned with a PingScan
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#IPaddress"/>
 </owl:Class>

 <!--

 ***** Packet and related classes *****

 -->

 <!--

 ***** Class: Packet *****

 -->
 <owl:Class rdf:ID="Packet">
 </owl:Class>

226

 <owl:DatatypeProperty rdf:ID="packetID">
 <rdfs:domain rdf:resource="#Packet"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="dateTime">
 <rdfs:domain rdf:resource="#Packet"/>
 </owl:DatatypeProperty>

 <owl:Restriction>
 <owl:onProperty rdf:resource="#packetID" />
 <owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
 </owl:Restriction>

 <!--

 ***** Class: L2Packet *****

 -->
 <owl:Class rdf:ID="L2Packet">
 <rdfs:subClassOf rdf:resource="#Packet"/>
 </owl:Class>

 <!--

 ***** Class: IPPacket *****

 -->
 <owl:Class rdf:ID="IPPacket">
 <rdfs:subClassOf rdf:resource="#L2Packet"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="ver">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="hdrLen">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="packetLen">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>

227

 <owl:DatatypeProperty rdf:ID="transProto">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="flags">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="fragment">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="fragOffset">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="ttl">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="ipChecksum">
 <rdfs:domain rdf:resource="#IPPacket"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: L4Packet *****

 -->
 <owl:Class rdf:ID="L4Packet">
 <rdfs:subClassOf rdf:resource="#IPPacket"/>
 <owl:disjointWith rdf:resource="#ICMPPacket"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="l4SrcPort">
 <rdfs:domain rdf:resource="#L4Packet"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="l4DestPort">
 <rdfs:domain rdf:resource="#L4Packet"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="l4Checksum">
 <rdfs:domain rdf:resource="#L4Packet"/>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="l4Payload">
 <rdfs:domain rdf:resource="#L4Packet"/>
 <rdfs:range rdf:resource="#Application"/>
 </owl:ObjectProperty>

228

 <!--

 ***** Class: TCPPacket *****

 -->
 <owl:Class rdf:ID="TCPPacket">
 <rdfs:subClassOf rdf:resource="#L4Packet"/>
 <owl:disjointWith rdf:resource="#UDPPacket"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="tcpSeqNum">
 <rdfs:domain rdf:resource="#TCPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="tcpAckNum">
 <rdfs:domain rdf:resource="#TCPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="tcpFlags">
 <rdfs:domain rdf:resource="#TCPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="tcpAckFlag">
 <rdfs:domain rdf:resource="#TCPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="tcpRstFlag">
 <rdfs:domain rdf:resource="#TCPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="tcpSynFlag">
 <rdfs:domain rdf:resource="#TCPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="tcpFinFlag">
 <rdfs:domain rdf:resource="#TCPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="tcpWinSize">
 <rdfs:domain rdf:resource="#TCPPacket"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: UDPPacket *****

 -->
 <owl:Class rdf:ID="UDPPacket">
 <rdfs:subClassOf rdf:resource="#L4Packet"/>
 <owl:disjointWith rdf:resource="#TCPPacket"/>
 </owl:Class>

229

 <!--

 ***** Class: AppPacket *****
 ***** This class is the union of the TCPPacket class *****
 ***** and the UDPPacket class. *****

 -->
 <owl:Class rdf:ID="AppPacket">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#TCPPacket"/>
 <owl:Class rdf:about="#UDPPacket"/>
 </owl:unionOf>
 </owl:Class>

 <!--

 ***** Class: ICMPPacket *****

 -->
 <owl:Class rdf:ID="ICMPPacket">
 <rdfs:subClassOf rdf:resource="#IPPacket"/>
 <owl:disjointWith rdf:resource="#L4Packet"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="icmpType">
 <rdfs:domain rdf:resource="#ICMPPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="icmpCode">
 <rdfs:domain rdf:resource="#ICMPPacket"/>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="icmpPayload">
 <rdfs:domain rdf:resource="#UDPPacket"/>
 <rdfs:range rdf:resource="#Application"/>
 </owl:ObjectProperty>

 <!--

 ***** Class: Application *****

 -->
 <owl:Class rdf:ID="Application">
 </owl:Class>

230

 <owl:DatatypeProperty rdf:ID="appProtocol">
 <rdfs:domain rdf:resource="#Application"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="appData">
 <rdfs:domain rdf:resource="#Application"/>
 </owl:DatatypeProperty>

 <!--

 ***** Stream and related classes *****

 -->

 <!--

 ***** Class: Stream *****

 -->
 <owl:Class rdf:ID="Stream">
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="protocol">
 <rdfs:domain rdf:resource="#Stream"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="active">
 <rdfs:domain rdf:resource="#Stream"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="node1">
 <rdfs:domain rdf:resource="#Stream"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="node2">
 <rdfs:domain rdf:resource="#Stream"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="startTime">
 <rdfs:domain rdf:resource="#Stream"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="endTime">
 <rdfs:domain rdf:resource="#Stream"/>
 </owl:DatatypeProperty>

231

 <owl:DatatypeProperty rdf:ID="duration">
 <rdfs:domain rdf:resource="#Stream"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: L2Stream *****

 -->
 <owl:Class rdf:ID="L2Stream">
 <rdfs:subClassOf rdf:resource="#Stream"/>
 </owl:Class>

 <!--

 ***** Class: L3Stream *****

 -->
 <owl:Class rdf:ID="L3Stream">
 <rdfs:subClassOf rdf:resource="#L2Stream"/>
 </owl:Class>

 <!--

 ***** Class: L4Stream *****

 -->
 <owl:Class rdf:ID="L4Stream">
 <rdfs:subClassOf rdf:resource="#L3Stream"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="node1Port">
 <rdfs:domain rdf:resource="#L4Stream"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="node2Port">
 <rdfs:domain rdf:resource="#L4Stream"/>
 </owl:DatatypeProperty>

232

 <!--

 ***** Class: TCPStream *****

 -->
 <owl:Class rdf:ID="TCPStream">
 <rdfs:comment xml:lang="en">
 A Stream that consists of two nodes sending TCP packets
 </rdfs:comment>
 <rdfs:subClassOf rdf:resource="#L4Stream"/>
 <owl:disjointWith rdf:resource="#UDPStream"/>
 <owl:disjointWith rdf:resource="#ICMPStream"/>
 </owl:Class>

 <!--

 ***** Class: UDPStream *****

 -->
 <owl:Class rdf:ID="UDPStream">
 <rdfs:comment xml:lang="en">
 A Stream that consists of two nodes sending UDP packets
 </rdfs:comment>
 <rdfs:subClassOf rdf:resource="#L4Stream"/>
 <owl:disjointWith rdf:resource="#TCPStream"/>
 <owl:disjointWith rdf:resource="#ICMPStream"/>
 </owl:Class>

 <!--

 ***** Class: ICMPStream *****

 -->
 <owl:Class rdf:ID="ICMPStream">
 <rdfs:comment xml:lang="en">
 A Stream that consists of two nodes sending ICMP packets
 </rdfs:comment>
 <rdfs:subClassOf rdf:resource="#L4Stream"/>
 <owl:disjointWith rdf:resource="#TCPStream"/>
 <owl:disjointWith rdf:resource="#UDPStream"/>
 </owl:Class>

233

 <!--

 ***** PacketSequence and related classes *****

 -->

 <!--

 ***** Class: PacketSequence *****

 -->
 <owl:Class rdf:ID="PacketSequence">
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="seqID">
 <rdfs:domain rdf:resource="#PacketSequence"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: SeqItem *****

 -->
 <owl:Class rdf:ID="SeqItem">
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="seqParentID">
 <rdfs:domain rdf:resource="#SeqItem"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="orderNum">
 <rdfs:domain rdf:resource="#SeqItem"/>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="packet">
 <rdfs:domain rdf:resource="#SeqItem"/>
 <rdfs:range rdf:resource="#Packet"/>
 </owl:ObjectProperty >

234

 <!--

 ***** Different Packet Types classes *****

 -->

 <!--

 ***** Class: PingPacket *****

 -->
 <owl:Class rdf:ID="PingPacket">
 <rdfs:comment>
 PingPacket are ICMPPackets with ICMPtype of 8 (echo request)
 One packet type for a possible Ping Flood attack
 </rdfs:comment>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#ICMPPacket"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#icmpType"/>
 <owl:hasValue rdf:datatype="&xsd;integer">8</owl:hasValue>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

 <!--

 ***** Class: SmurfPacket *****

 -->
 <owl:Class rdf:ID="SmurfPacket">
 <rdfs:comment>
 SmurfPacket are ICMPPackets with the last octet of destIP of 255
 One packet type for a possible Ping Flood attack
 </rdfs:comment>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#ICMPPacket"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#IPoctet4"/>
 <owl:hasValue rdf:datatype="&xsd;integer">255</owl:hasValue>
 </owl:Restriction>

235

 </owl:intersectionOf>
 </owl:Class>

 <!--

 ***** Class: SynPacket *****

 -->
 <owl:Class rdf:ID="SynPacket">
 <rdfs:comment>
 SynPacket are TCPPackets with the SYN flag set
 One packet type for a possible Port Scan attack
 </rdfs:comment>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#TCPPacket"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#tcpSynFlag"/>
 <owl:hasValue rdf:datatype="&xsd;boolean">1</owl:hasValue>
 </owl:Restriction>
 </owl:intersectionOf>

 </owl:Class>

 <!--

 ***** Class: FinPacket *****

 -->
 <owl:Class rdf:ID="FinPacket">
 <rdfs:comment>
 FinPacket are TCPPackets with FIN flag only set
 One packet type for a possible Port Scan attack
 Typically, TCP packets with FIN flag will also have ACK flag set
 TCP response to FIN flag only set will tell attacker if port is open
 </rdfs:comment>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#TCPPacket"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#tcpFinFlag"/>
 <owl:hasValue rdf:datatype="&xsd;integer">1</owl:hasValue>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#tcpAckFlag"/>

236

 <owl:hasValue rdf:datatype="&xsd;integer">0</owl:hasValue>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#tcpRstFlag"/>
 <owl:hasValue rdf:datatype="&xsd;integer">0</owl:hasValue>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#tcpSynFlag"/>
 <owl:hasValue rdf:datatype="&xsd;integer">0</owl:hasValue>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

 <!--

 ***** Class: MaskPacket *****

 -->
 <owl:Class rdf:ID="MaskPacket">
 <rdfs:comment>
 MaskPacket are ICMPPackets with ICMPtype of 17 (netmask request)
 One packet type for a possible ICMP Flood attack
 </rdfs:comment>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#ICMPPacket"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#icmpType"/>
 <owl:hasValue rdf:datatype="&xsd;integer">17</owl:hasValue>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

 <!--

 ***** Alert and related classes *****

 -->

237

 <!--

 ***** Class: Alert *****

 -->
 <owl:Class rdf:ID="Alert">
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="aDateTime">
 <rdfs:domain rdf:resource="#Alert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aID">
 <rdfs:domain rdf:resource="#Alert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aDescription">
 <rdfs:domain rdf:resource="#Alert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aPriority">
 <rdfs:domain rdf:resource="#Alert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aClassification">
 <rdfs:domain rdf:resource="#Alert"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: IPAlert *****

 -->
 <owl:Class rdf:ID="IPAlert">
 <rdfs:subClassOf rdf:resource="#Alert"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="aIPHdrLen">
 <rdfs:domain rdf:resource="#IPAlert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aIPDgramLen">
 <rdfs:domain rdf:resource="#IPAlert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aIPID">
 <rdfs:domain rdf:resource="#IPAlert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aIPProtocol">
 <rdfs:domain rdf:resource="#IPAlert"/>
 </owl:DatatypeProperty>

238

 <!--

 ***** Class: ICMPAlert *****

 -->
 <owl:Class rdf:ID="ICMPAlert">
 <rdfs:subClassOf rdf:resource="#IPAlert"/>
 <owl:disjointWith rdf:resource="#L4Alert"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="aICMPType">
 <rdfs:domain rdf:resource="#ICMPAlert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aICMPCode">
 <rdfs:domain rdf:resource="#ICMPAlert"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: L4Alert *****

 -->
 <owl:Class rdf:ID="L4Alert">
 <rdfs:subClassOf rdf:resource="#IPAlert"/>
 <owl:disjointWith rdf:resource="#ICMPAlert"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:about="#aL4SrcPort">
 <rdfs:domain rdf:resource="#L4Alert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="#aL4DestPort">
 <rdfs:domain rdf:resource="#L4Alert"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: TCPAlert *****

 -->
 <owl:Class rdf:ID="TCPAlert">
 <rdfs:subClassOf rdf:resource="#L4Alert"/>

239

 <owl:disjointWith rdf:resource="#UDPAlert"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="aTCPFlags">
 <rdfs:domain rdf:resource="#TCPAlert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aTCPSeqNum">
 <rdfs:domain rdf:resource="#TCPAlert"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="aTCPAckNum">
 <rdfs:domain rdf:resource="#TCPAlert"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: UDPAlert *****

 -->
 <owl:Class rdf:ID="UDPAlert">
 <rdfs:subClassOf rdf:resource="#L4Alert"/>
 <owl:disjointWith rdf:resource="#TCPAlert"/>
 </owl:Class>

</rdf:RDF>

240

B.1 Attack Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY attack
'http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/attack.owl#'>
 <!ENTITY traffic
'http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/traffic.owl#'>
 <!ENTITY complex
'http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/complexAttack.owl#'>
 <!ENTITY xsd 'http://www.w3.org/2001/XMLSchema#'>
]>

<!--

 ***** Attack Ontology *****

-->

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:attack="http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/attack.owl#"
 xmlns:traffic="http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/traffic.owl#"
 xmlns:complex=
 "http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/complexAttack.owl#"
 xml:base="http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/attack.owl">

 <owl:Ontology rdf:about="">
 <rdfs:comment>An ontology for network attacks</rdfs:comment>
 </owl:Ontology>

 <!--

 ***** Object Property Definitions *****

 -->

241

 <!--
 ***** Object Properties: Attacks for IP address *****
 -->
 <owl:ObjectProperty rdf:ID="wasAttacked">
 <rdfs:range rdf:resource="#Attack"/>
 <owl:inverseOf rdf:resource="#hasTargetIP"/>
 </owl:ObjectProperty>

 <!--

 ***** AttackPacket Class *****

 -->
 <owl:Class rdf:ID="AttackPacket">
 </owl:Class>
 <owl:ObjectProperty rdf:ID="hasOrigMAC">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:range rdf:resource="#MACaddress"/>
 <rdfs:domain rdf:resource="#AttackPacket"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasTargetMAC">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:range rdf:resource="#MACaddress"/>
 <rdfs:domain rdf:resource="#AttackPacket"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasOrigIP">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#AttackPacket"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasTargetIP">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:range rdf:resource="#IPaddress"/>
 <rdfs:domain rdf:resource="#AttackPacket"/>
 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="beginDate">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

242

 <rdfs:domain rdf:resource="#AttackPacket"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="endDate">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:domain rdf:resource="#AttackPacket"/>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="pcType">
 <rdfs:domain rdf:resource="#PacketCollection"/>
 <rdfs:range rdf:resource="&traffic;PacketType"/>
 </owl:ObjectProperty>

 <!-- Restriction on type property -->
 <owl:Class rdf:about="#PacketCollection">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pcType"/>
 <owl:allValuesFrom rdf:resource="&traffic;PacketType"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <!--

 ***** PacketCollection Class *****

 -->

 <owl:Class rdf:ID="PacketCollection">
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="pcFrequency">
 </owl:DatatypeProperty>

243

<!--

 ***** SimpleAttack Class *****

 -->

 <owl:Class rdf:ID="SimpleAttack">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Availability"/>
 <owl:Class rdf:about="#Recon"/>
 <owl:Class rdf:about="#GainAccess"/>
 <owl:Class rdf:about="#ViewChangeData"/>
 </owl:unionOf>
 </owl:Class>

 <!--

 ***** Attack Class *****

 -->
 <owl:Class rdf:ID="Attack">
 <rdfs:subClassOf rdf:resource="#AttackPacket"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="name">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="description">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="preconds">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="postconds">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="priority">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="consequence">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="motivation">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="attTimeInt">
 </owl:DatatypeProperty>

244

 <owl:DatatypeProperty rdf:ID="remedy">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="snortPriority">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="attPacketSeq">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="attStream">
 </owl:DatatypeProperty>

 <!--

 ***** Availability and Related Classes *****

 -->

 <!--

 ***** Class: Availability *****

 -->
 <owl:Class rdf:ID="Availability">
 <rdfs:subClassOf rdf:resource="#Attack"/>
 <owl:disjointWith rdf:resource="#Recon"/>
 <owl:disjointWith rdf:resource="#GainAccess"/>
 <owl:disjointWith rdf:resource="#ViewChangeData"/>
 </owl:Class>

 <!--

 ***** Class: DoS *****

 -->
 <owl:Class rdf:ID="DoS">
 <rdfs:subClassOf rdf:resource="#Availability"/>
 <owl:disjointWith rdf:resource="#Spoofing"/>
 </owl:Class>

245

 <!--

 ***** Class: Resources *****

 -->
 <owl:Class rdf:ID="Resources">
 <rdfs:subClassOf rdf:resource="#DoS"/>
 <owl:disjointWith rdf:resource="#CrashNode"/>
 </owl:Class>

 <!--

 ***** Class: Flood *****

 -->
 <owl:Class rdf:ID="Flood">
 <rdfs:subClassOf rdf:resource="#Resources"/>
 <owl:disjointWith rdf:resource="#Memory"/>
 <owl:disjointWith rdf:resource="#CPU"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="floodFrequency">
 <rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>
 <owl:equivalentProperty rdf:resource="#pcFrequency"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: PingFlood *****

 -->
 <owl:Class rdf:ID="PingFlood">
 <rdfs:comment>
 A PingFlood packet is an instance of the PacketCollection
 of type PingFloodType with greater than "threshold" frequency.
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#Flood"/>
 <owl:disjointWith rdf:resource="#ICMPFlood"/>
 <owl:disjointWith rdf:resource="#TCPFlood"/>
 <owl:disjointWith rdf:resource="#AppFlood"/>

246

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PacketCollection"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pcType"/>
 <owl:hasValue rdf:resource="&traffic;PingFloodType"/>
 </owl:Restriction>
 </owl:intersectionOf>

 </owl:Class>

 <!--

 ***** Class: ICMPFlood *****

 -->
 <owl:Class rdf:ID="ICMPFlood">
 <rdfs:comment>
 A ICMPFlood packet is an instance of the PacketCollection
 of type ICMPFloodType with greater than "threshold" frequency.
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#Flood"/>
 <owl:disjointWith rdf:resource="#PingFlood"/>
 <owl:disjointWith rdf:resource="#TCPFlood"/>
 <owl:disjointWith rdf:resource="#AppFlood"/>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PacketCollection"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pcType"/>
 <owl:hasValue rdf:resource="&traffic;ICMPFloodType"/>
 </owl:Restriction>
 </owl:intersectionOf>

 </owl:Class>

 <!--

 ***** Class: TCPFlood *****

 -->

247

 <owl:Class rdf:ID="TCPFlood">
 <rdfs:comment>
 A TCPFlood packet is an instance of the PacketCollection
 of type TCPType with greater than "threshold" frequency.
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#Flood"/>
 <owl:disjointWith rdf:resource="#PingFlood"/>
 <owl:disjointWith rdf:resource="#ICMPFlood"/>
 <owl:disjointWith rdf:resource="#AppFlood"/>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PacketCollection"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pcType"/>
 <owl:hasValue rdf:resource="&traffic;TCPFloodType"/>
 </owl:Restriction>
 </owl:intersectionOf>

 </owl:Class>

 <!--

 ***** Class: AppFlood *****

 -->
 <owl:Class rdf:ID="AppFlood">
 <rdfs:comment>
 A AppFlood packet is an instance of the PacketCollection
 of type AppFloodType with greater than "threshold" frequency.
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#Flood"/>
 <owl:disjointWith rdf:resource="#PingFlood"/>
 <owl:disjointWith rdf:resource="#ICMPFlood"/>
 <owl:disjointWith rdf:resource="#TCPFlood"/>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PacketCollection"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pcType"/>
 <owl:hasValue rdf:resource="&traffic;AppFloodType"/>
 </owl:Restriction>
 </owl:intersectionOf>

248

 </owl:Class>

 <!--

 ***** Class: Memory *****

 -->
 <owl:Class rdf:ID="Memory">
 <rdfs:subClassOf rdf:resource="#Resources"/>
 <owl:disjointWith rdf:resource="#Flood"/>
 <owl:disjointWith rdf:resource="#CPU"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="memAvail">
 <rdfs:domain rdf:resource="#Memory"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="memUsed">
 <rdfs:domain rdf:resource="#Memory"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: CPU *****

 -->
 <owl:Class rdf:ID="CPU">
 <rdfs:subClassOf rdf:resource="#Resources"/>
 <owl:disjointWith rdf:resource="#Flood"/>
 <owl:disjointWith rdf:resource="#Memory"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="cpuAmount">
 <rdfs:domain rdf:resource="#CPU"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="cpuPercUsed">
 <rdfs:domain rdf:resource="#CPU"/>
 </owl:DatatypeProperty>

249

 <!--

 ***** Class: CrashNode *****

 -->
 <owl:Class rdf:ID="CrashNode">
 <rdfs:subClassOf rdf:resource="#DoS"/>
 <owl:disjointWith rdf:resource="#Resources"/>
 </owl:Class>

 <!--

 ***** Class: Land *****

 -->
 <owl:Class rdf:ID="Land">
 <rdfs:comment>
 A Land packet is a TCPPacket with DIP = SIP and DPort = Sport
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#CrashNode"/>
 <owl:disjointWith rdf:resource="#Teardrop"/>
 <owl:disjointWith rdf:resource="#PingOfDeath"/>
 </owl:Class>

 <!--

 ***** Class: Teardrop *****

 -->
 <owl:Class rdf:ID="Teardrop">
 <rdfs:comment>
 A Teardrop packet is a PacketSequence with multiple packets
 with same SIP and overlapping, oversized payloads
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#CrashNode"/>
 <owl:disjointWith rdf:resource="#Land"/>
 <owl:disjointWith rdf:resource="#PingOfDeath"/>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PacketCollection"/>
 <owl:Restriction>

250

 <owl:onProperty rdf:resource="#pcType"/>
 <owl:hasValue rdf:resource="&traffic;TeardropType"/>
 </owl:Restriction>
 </owl:intersectionOf>

 </owl:Class>

 <!--

 ***** Class: PingOfDeath *****

 -->
 <owl:Class rdf:ID="PingOfDeath">
 <rdfs:comment>
 PoDPacket (Ping of Death) are ICMPPackets with ICMPtype of 8
 (echo request) and packetLen of 65535 (should really be -ge 65535)
 One packet type for a possible Ping Flood attack causing buffer overflow
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#CrashNode"/>
 <owl:disjointWith rdf:resource="#Land"/>
 <owl:disjointWith rdf:resource="#Teardrop"/>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&traffic;ICMPPacket"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&traffic;icmpType"/>
 <owl:hasValue rdf:datatype="&xsd;integer">8</owl:hasValue>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&traffic;packetLen"/>
 <owl:hasValue rdf:datatype="&xsd;integer">65535</owl:hasValue>
 </owl:Restriction>
 </owl:intersectionOf>

 </owl:Class>

 <!--

 ***** Class: Spoofing *****

 -->
 <owl:Class rdf:ID="Spoofing">

251

 <rdfs:subClassOf rdf:resource="#Availability"/>
 <owl:disjointWith rdf:resource="#DoS"/>
 </owl:Class>

 <!--

 ***** Class: ARPSpoof *****

 -->
 <owl:Class rdf:ID="ARPSpoof">
 <rdfs:subClassOf rdf:resource="#Spoofing"/>
 <owl:disjointWith rdf:resource="#IPSpoof"/>
 </owl:Class>

 <!--

 ***** Class: IPSpoof *****

 -->
 <owl:Class rdf:ID="IPSpoof">
 <rdfs:subClassOf rdf:resource="#Spoofing"/>
 <owl:disjointWith rdf:resource="#ARPSpoof"/>
 </owl:Class>

 <!--

 ***** Recon and Related Classes *****

 -->

 <!--

 ***** Class: Recon *****

 -->
 <owl:Class rdf:ID="Recon">
 <rdfs:subClassOf rdf:resource="#Attack"/>
 <owl:disjointWith rdf:resource="#Availability"/>
 <owl:disjointWith rdf:resource="#GainAccess"/>
 <owl:disjointWith rdf:resource="#ViewChangeData"/>

252

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="reconPortNum">
 </owl:DatatypeProperty>

 <!--

 ***** Class: Scan *****

 -->
 <owl:Class rdf:ID="Scan">
 <rdfs:subClassOf rdf:resource="#Recon"/>
 <owl:disjointWith rdf:resource="#GatherInfo"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="scanFrequency">
 <rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>
 <owl:equivalentProperty rdf:resource="#pcFrequency"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: PingScan *****

 -->
 <owl:Class rdf:ID="PingScan">
 <rdfs:comment>
 A PingScan packet is an instance of the PacketCollection
 of type PingScanType.
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#Scan"/>
 <owl:disjointWith rdf:resource="#NodeScan"/>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PacketCollection"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pcType"/>
 <owl:hasValue rdf:resource="&traffic;PingScanType"/>
 </owl:Restriction>
 </owl:intersectionOf>

253

 </owl:Class>

 <!--

 ***** Class: NodeScan *****

 -->
 <owl:Class rdf:ID="NodeScan">
 <rdfs:subClassOf rdf:resource="#Scan"/>
 <owl:disjointWith rdf:resource="#PingScan"/>
 </owl:Class>

 <!--

 ***** Class: PortScan *****

 -->
 <owl:Class rdf:ID="PortScan">
 <rdfs:subClassOf rdf:resource="#NodeScan"/>
 <owl:disjointWith rdf:resource="#SYNScan"/>
 <owl:disjointWith rdf:resource="#FINScan"/>
 <owl:disjointWith rdf:resource="#NULLScan"/>
 <owl:disjointWith rdf:resource="#TCPConnect"/>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PacketCollection"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pcType"/>
 <owl:hasValue rdf:resource="&traffic;PortScanType"/>
 </owl:Restriction>
 </owl:intersectionOf>

 </owl:Class>

 <!--

 ***** Class: SYNScan *****

 -->
 <owl:Class rdf:ID="SYNScan">
 <rdfs:subClassOf rdf:resource="#NodeScan"/>
 <owl:disjointWith rdf:resource="#PortScan"/>

254

 <owl:disjointWith rdf:resource="#FINScan"/>
 <owl:disjointWith rdf:resource="#NULLScan"/>
 <owl:disjointWith rdf:resource="#TCPConnect"/>
 </owl:Class>

 <!--

 ***** Class: FINScan *****

 -->
 <owl:Class rdf:ID="FINScan">
 <rdfs:subClassOf rdf:resource="#NodeScan"/>
 <owl:disjointWith rdf:resource="#PortScan"/>
 <owl:disjointWith rdf:resource="#SYNScan"/>
 <owl:disjointWith rdf:resource="#NULLScan"/>
 <owl:disjointWith rdf:resource="#TCPConnect"/>
 </owl:Class>

 <!--

 ***** Class: NULLScan *****

 -->
 <owl:Class rdf:ID="NULLScan">
 <rdfs:comment>
 NullPacket are TCPPackets with no flags set
 One packet type for a possible Port Scan attack
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#NodeScan"/>
 <owl:disjointWith rdf:resource="#PortScan"/>
 <owl:disjointWith rdf:resource="#SYNScan"/>
 <owl:disjointWith rdf:resource="#FINScan"/>
 <owl:disjointWith rdf:resource="#TCPConnect"/>

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&traffic;TCPPacket"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&traffic;tcpFlags"/>
 <owl:hasValue rdf:datatype="&xsd;integer">0</owl:hasValue>
 </owl:Restriction>
 </owl:intersectionOf>

255

 </owl:Class>

 <!--

 ***** Class: TCPConnect *****

 -->
 <owl:Class rdf:ID="TCPConnect">
 <rdfs:comment>
 Mitnick sent SYN request to X-Terminal and received SYN/ACK response.
 Then he sent RESET response to keep the X-Terminal from being filled up.
 For our purposes, we will look for multiple TCPPackets to the same
 destination IP address with the RST flag set.
 </rdfs:comment>

 <rdfs:subClassOf rdf:resource="#NodeScan"/>
 <owl:disjointWith rdf:resource="#PortScan"/>
 <owl:disjointWith rdf:resource="#SYNScan"/>
 <owl:disjointWith rdf:resource="#FINScan"/>
 <owl:disjointWith rdf:resource="#NULLScan"/>
 </owl:Class>

 <!--

 ***** Class: GatherInfo *****

 -->
 <owl:Class rdf:ID="GatherInfo">
 <rdfs:subClassOf rdf:resource="#Recon"/>
 <owl:disjointWith rdf:resource="#Scan"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="infoLearned">
 </owl:DatatypeProperty>

 <!--

 ***** Class: Sniffing *****

 -->

256

 <owl:Class rdf:ID="Sniffing">
 <rdfs:subClassOf rdf:resource="#GatherInfo"/>
 <owl:disjointWith rdf:resource="#InfoLeak"/>
 </owl:Class>

 <!--

 ***** Class: NodeInfo *****

 -->
 <owl:Class rdf:ID="NodeInfo">
 <rdfs:subClassOf rdf:resource="#Sniffing"/>
 <owl:disjointWith rdf:resource="#UserInfo"/>
 <owl:disjointWith rdf:resource="#TCPInfo"/>
 </owl:Class>

 <!--

 ***** Class: UserInfo *****

 -->
 <owl:Class rdf:ID="UserInfo">
 <rdfs:subClassOf rdf:resource="#Sniffing"/>
 <owl:disjointWith rdf:resource="#NodeInfo"/>
 <owl:disjointWith rdf:resource="#TCPInfo"/>
 </owl:Class>

 <!--

 ***** Class: TCPInfo *****

 -->
 <owl:Class rdf:ID="TCPInfo">
 <rdfs:subClassOf rdf:resource="#Sniffing"/>
 <owl:disjointWith rdf:resource="#NodeInfo"/>
 <owl:disjointWith rdf:resource="#UserInfo"/>
 </owl:Class>

257

 <!--

 ***** Class: InfoLeak *****

 -->
 <owl:Class rdf:ID="InfoLeak">
 <rdfs:subClassOf rdf:resource="#GatherInfo"/>
 <owl:disjointWith rdf:resource="#Sniffing"/>
 </owl:Class>

 <!--

 ***** GainAccess and Related Classes *****

 -->

 <!--

 ***** Class: GainAccess *****

 -->
 <owl:Class rdf:ID="GainAccess">
 <rdfs:subClassOf rdf:resource="#Attack"/>
 <owl:disjointWith rdf:resource="#Availability"/>
 <owl:disjointWith rdf:resource="#Recon"/>
 <owl:disjointWith rdf:resource="#ViewChangeData"/>
 </owl:Class>

 <!--

 ***** Class: UnauthAccess *****

 -->
 <owl:Class rdf:ID="UnauthAccess">
 <rdfs:subClassOf rdf:resource="#GainAccess"/>
 <owl:disjointWith rdf:resource="#PrivilegeGain"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="uaPortNum">
 </owl:DatatypeProperty>

258

 <!--

 ***** Class: PrivilegeGain *****

 -->
 <owl:Class rdf:ID="PrivilegeGain">
 <rdfs:subClassOf rdf:resource="#GainAccess"/>
 <owl:disjointWith rdf:resource="#UnauthAccess"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="pgValue">
 </owl:DatatypeProperty>

 <!--

 ***** Class: User *****

 -->
 <owl:Class rdf:ID="UserPG">
 <rdfs:subClassOf rdf:resource="#PrivilegeGain"/>
 <owl:disjointWith rdf:resource="#AdminPG"/>
 <owl:disjointWith rdf:resource="#RootPG"/>
 </owl:Class>

 <!--

 ***** Class: Admin *****

 -->
 <owl:Class rdf:ID="AdminPG">
 <rdfs:subClassOf rdf:resource="#PrivilegeGain"/>
 <owl:disjointWith rdf:resource="#UserPG"/>
 <owl:disjointWith rdf:resource="#RootPG"/>
 </owl:Class>

 <!--

 ***** Class: Root *****

 -->

259

 <owl:Class rdf:ID="RootPG">
 <rdfs:subClassOf rdf:resource="#PrivilegeGain"/>
 <owl:disjointWith rdf:resource="#UserPG"/>
 <owl:disjointWith rdf:resource="#AdminPG"/>
 </owl:Class>

 <!--

 ***** ViewChangeData and Related Classes *****

 -->

 <!--

 ***** Class: ViewChangeData *****

 -->
 <owl:Class rdf:ID="ViewChangeData">
 <rdfs:subClassOf rdf:resource="#Attack"/>
 <owl:disjointWith rdf:resource="#Availability"/>
 <owl:disjointWith rdf:resource="#Recon"/>
 <owl:disjointWith rdf:resource="#GainAccess"/>
 </owl:Class>

 <!--

 ***** Class: MaliciousCode *****

 -->
 <owl:Class rdf:ID="MaliciousCode">
 <rdfs:subClassOf rdf:resource="#ViewChangeData"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="mcService">
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="mcPortNum">
 </owl:DatatypeProperty>

260

 <!--

 ***** Class: RPC *****

 -->
 <owl:Class rdf:ID="RPC">
 <rdfs:subClassOf rdf:resource="#MaliciousCode"/>
 <owl:disjointWith rdf:resource="#ExecCode"/>
 <owl:disjointWith rdf:resource="#WebServer"/>
 <owl:disjointWith rdf:resource="#SendFile"/>
 <owl:disjointWith rdf:resource="#SystemCall"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="rpcCode">
 </owl:DatatypeProperty>

 <!--

 ***** Class: ExecCode *****

 -->
 <owl:Class rdf:ID="ExecCode">
 <rdfs:subClassOf rdf:resource="#MaliciousCode"/>
 <owl:disjointWith rdf:resource="#RPC"/>
 <owl:disjointWith rdf:resource="#WebServer"/>
 <owl:disjointWith rdf:resource="#SendFile"/>
 <owl:disjointWith rdf:resource="#SystemCall"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="ecCode">
 </owl:DatatypeProperty>

 <!--

 ***** Class: WebServer *****

 -->
 <owl:Class rdf:ID="WebServer">
 <rdfs:subClassOf rdf:resource="#MaliciousCode"/>
 <owl:disjointWith rdf:resource="#RPC"/>
 <owl:disjointWith rdf:resource="#ExecCode"/>
 <owl:disjointWith rdf:resource="#SendFile"/>
 <owl:disjointWith rdf:resource="#SystemCall"/>

261

 </owl:Class>

 <!--

 ***** Class: SendFile *****

 -->
 <owl:Class rdf:ID="SendFile">
 <rdfs:subClassOf rdf:resource="#MaliciousCode"/>
 <owl:disjointWith rdf:resource="#RPC"/>
 <owl:disjointWith rdf:resource="#ExecCode"/>
 <owl:disjointWith rdf:resource="#WebServer"/>
 <owl:disjointWith rdf:resource="#SystemCall"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="filename">
 </owl:DatatypeProperty>

 <!--

 ***** Class: SystemCall *****

 -->
 <owl:Class rdf:ID="SystemCall">
 <rdfs:subClassOf rdf:resource="#MaliciousCode"/>
 <owl:disjointWith rdf:resource="#RPC"/>
 <owl:disjointWith rdf:resource="#ExecCode"/>
 <owl:disjointWith rdf:resource="#WebServer"/>
 <owl:disjointWith rdf:resource="#SendFile"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="sysCall">
 </owl:DatatypeProperty>

</rdf:RDF>

262

B.3 Complex Attack Ontology Definition File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY complex

'http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/complexAttack.owl#'>
 <!ENTITY attack

'http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/attack.owl#'>
 <!ENTITY traffic

'http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/traffic.owl#'>
 <!ENTITY xsd 'http://www.w3.org/2001/XMLSchema#'>
 <!ENTITY time 'http://www.w3.org/TR/owl-time#'>
]>

<!--

 ***** Complex Attack Ontology *****

-->

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:time="http://www.w3.org/TR/owl-time#"
 xmlns:complex=

"http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/complexAttack.owl#"
 xml:base=

"http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/complexAttack.owl">

 <owl:Ontology rdf:about="">
 <rdfs:comment>An ontology for complex attacks</rdfs:comment>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/attack.owl"/>
 <owl:imports
 rdf:resource="http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/traffic.owl"/>
 </owl:Ontology>

263

 <!--

 ***** Complex Attack Classes *****

 -->

 <owl:Class rdf:ID="ComplexAttack">
 <rdfs:comment>
 A complex attack
 </rdfs:comment>
 </owl:Class>

 <owl:ObjectProperty rdf:ID="caHasTargetIP">
 <rdfs:domain rdf:resource="#ComplexAttack"/>
 <owl:equivalentProperty rdf:resource="&attack;hasTargetIP"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="caBeginDate">
 <rdfs:domain rdf:resource="#ComplexAttack"/>
 <owl:equivalentProperty rdf:resource="&attack;beginDate"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="caEndDate">
 <rdfs:domain rdf:resource="#ComplexAttack"/>
 <owl:equivalentProperty rdf:resource="&attack;endDate"/>
 </owl:DatatypeProperty>

 <!--

 ***** Class: DoSComplex *****

 -->
 <owl:Class rdf:ID="DoSComplex">
 <rdfs:comment>
 A complex DoS attack is a Ping scan, Node scan, and Availability attack
 </rdfs:comment>
 <rdfs:subClassOf rdf:resource="#ComplexAttack"/>

 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&traffic;NWaddressScanned"/>

264

 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom

rdf:resource="&attack;Availability"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 </owl:Class>

 <!--

 ***** Class: PrivilegeEscalation *****

 -->
 <owl:Class rdf:ID="PrivilegeEscalation">
 <rdfs:comment>
 A complex Privilege Escalation attack is a GainAccess instance OR the

 combination of a Ping scan, Node scan, and Gather Information attack.
 </rdfs:comment>

 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&attack;GainAccess"/>
 <owl:Class>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class

rdf:about="&traffic;NWaddressScanned"/>
 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom

rdf:resource="&attack;NodeScan"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty

 rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom

rdf:resource="&attack;GatherInfo"/>

265

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 </owl:unionOf>

 </owl:Class>

 <!--

 ***** Class: ConfIntLoss *****

 -->
 <owl:Class rdf:ID="ConfIntLoss">
 <rdfs:comment>
 A complex Confidentiality or Integrity Loss attack is a Ping scan,
 Node scan, and Malicious Code attack
 </rdfs:comment>

 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&traffic;NWaddressScanned"/>
 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom

rdf:resource="&attack;NodeScan"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom

rdf:resource="&attack;MaliciousCode"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 </owl:Class>

266

 <!--

 ***** Class: Hijacking *****

 -->
 <owl:Class rdf:ID="Hijacking">
 <rdfs:comment>
 A complex Hijacking attack is a Ping scan, Node scan, TCP Scan against
 one host (host A) and an Availability and Spoofing attack against another
 host (host B) that has a current TCP connection with the first host (host A)
 </rdfs:comment>

 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&traffic;NWaddressScanned"/>
 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;NodeScan"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom rdf:resource="&attack;TCPConnect"/>
 </owl:Restriction>
 <owl:Restriction>
 <!-- host A has a TCP connection (stream) with a host B that has

 had an availability and spoof attack against it -->
 <owl:onProperty rdf:resource="&traffic;hasTCPStreamWith"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <rdf:Description rdf:about="&traffic;IPaddress"/>
 <owl:Restriction>
 <owl:onProperty

 rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom

 rdf:resource="&attack;Availability"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty

 rdf:resource="&attack;wasAttacked"/>
 <owl:someValuesFrom

 rdf:resource="&attack;Spoofing"/>
 </owl:Restriction>

267

 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 </owl:Class>

</rdf:RDF>

268

Appendix C SPARQL Rules in TRIDSO

This appendix contains the Java files for the prototype system (TRIDSO) that contain

SPARQL rules. These rules are used to add instances to the knowledge base for attack

detection. Only the Java files containing SPARQL rules are included in the appendix;

files not containing SPARQL rules are not included. All of the source code for TRIDSO

can be downloaded at http://faculty.kutztown.edu/frye/res/index.html.

C.1 Java File to Create Packet Collection Instances

/***/
/* */
/* Author: Lisa Frye */
/* Date: February 2011 */
/* Filename: PacketCollections.java */
/* */
/* Description: This file contains functions to execute SPARQL */
/* queries against the KB and add instances for */
/* packet collections. */
/* API: this program uses the Jena ontology API. */
/* */
/***/

// imports for Jena API
import com.hp.hpl.jena.update.GraphStore;
import com.hp.hpl.jena.update.GraphStoreFactory;
import com.hp.hpl.jena.update.UpdateAction;
import com.hp.hpl.jena.update.UpdateFactory;
import com.hp.hpl.jena.update.UpdateProcessor;
import com.hp.hpl.jena.update.UpdateRequest;
import com.hp.hpl.jena.update.UpdateExecutionFactory;
import com.hp.hpl.jena.util.iterator.ExtendedIterator;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.Syntax;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QueryFactory;
import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.query.QuerySolution;

http://faculty.kutztown.edu/frye/res/index.html

269

import com.hp.hpl.jena.datatypes.xsd.XSDDatatype;
import com.hp.hpl.jena.datatypes.xsd.XSDDateTime;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.query.ResultSetFormatter;
import com.hp.hpl.jena.ontology.OntClass;
import com.hp.hpl.jena.ontology.Individual;
import com.hp.hpl.jena.ontology.DatatypeProperty;
import com.hp.hpl.jena.ontology.ObjectProperty;
import com.hp.hpl.jena.datatypes.xsd.XSDDatatype;
import com.hp.hpl.jena.rdf.model.Statement;
import com.hp.hpl.jena.rdf.model.StmtIterator;
import com.hp.hpl.jena.rdf.model.Literal;
import com.hp.hpl.jena.rdf.model.RDFNode;
import com.hp.hpl.jena.rdf.model.Resource;

// general imports
import java.lang.*;
import java.io.*;
import java.util.*;
import java.util.Iterator;
import java.util.Collection;
import java.util.ArrayList;
import java.text.DecimalFormat;

public class PacketCollections {

 // variables to time adding instances via SPARQL
 private static double sparqlTime = 0;
 private static String sparqlTimeSt;

 private static DecimalFormat decVal = new DecimalFormat ("#0.0000000");

 public static final String URL_PREFIX =
 "http://faculty.kutztown.edu/frye/res/onto/reason/tridso_v1/";

 private static final String TRAFFICONT = KButility.URL_PREFIX + "traffic";
 private static final String TRAFFICONT_URL = TRAFFICONT + ".owl";
 private static final String TRAFFICONT_PREFIX = TRAFFICONT_URL + "#";
 private static final String ATTACKONT = KButility.URL_PREFIX + "attack";
 private static final String ATTACKONT_URL = ATTACKONT + ".owl";
 private static final String ATTACKONT_PREFIX = ATTACKONT_URL + "#";

270

 /***/
 /***** *****/
 /***** Add PingFlood PacketColletion Instances *****/
 /***** *****/
 /***/
 public static double addPingFloods(PrintStream outputFile,
 double addCollectionsTime) {

 try {

 System.out.println("\tAdding Ping Flood instances...");
 outputFile.println("Adding PingFloodType instances from PingPacket...");

 // Retrieve all PingPacket instances to same destIPs
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:PingFloodType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?destIP (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " WHERE {?pack rdf:type traffic:PingPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP . " +
 " } " +
 " GROUP BY ?destIP " +
 " HAVING (count(?destIP) > 0) " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +

271

 KButility.execUpdQuery(queryStr, outputFile, false);

 outputFile.println("Adding PingFloodType instances from SmurfPacket...");

 // Retrieve all SmurfPacket instances to same destIPs
 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:PingFloodType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?destIP (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " WHERE {?pack rdf:type traffic:SmurfPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP . " +
 " } " +
 " GROUP BY ?destIP " +
 " HAVING (count(?destIP) > 0) " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addCollectionsTime;

272

 } // end function addPingFloods

 /**/
 /***** *****/
 /***** Add ICMPFlood PacketColletion Instances *****/
 /***** *****/
 /**/
 public static double addICMPFloods(PrintStream outputFile,
 double addCollectionsTime) {

 try {

 sparqlTime = 0;

 System.out.println("\tAdding ICMP Flood instances...");
 outputFile.println("Adding ICMPFlood instances from MaskPacket...");

 // Retrieve all MaskPacket instances to same destIPs
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:ICMPFloodType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?destIP (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " WHERE {?pack rdf:type traffic:MaskPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP . " +
 " } " +
 " GROUP BY ?destIP " +

273

 " HAVING (count(?destIP) > 0) " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addCollectionsTime;
 } // end function addICMPFloods

 /**/
 /***** *****/
 /***** Add TCPFlood PacketColletion Instances *****/
 /***** *****/
 /**/
 public static double addTCPFloods(PrintStream outputFile,
 double addCollectionsTime) {

 try {

 sparqlTime = 0;

 System.out.println("\tAdding TCP Flood instances...");
 outputFile.println("Adding TCPFlood instances from TCPPacket...");

 // Retrieve all TCP Packet instances to same destIP and tcpSynFlag = true
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +

274

 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:TCPFloodType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?destIP " +
 " (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " { " +
 " SELECT DISTINCT ?packet1 ?destIP ?dateTime " +
 " { " +
 " ?packet1 rdf:type traffic:TCPPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:tcpSynFlag true . " +
 " { " +
 " SELECT DISTINCT ?packet2 ?destIP ?dateTime2 " +
 " { " +
 " ?packet2 rdf:type traffic:TCPPacket; " +
 " traffic:dateTime ?dateTime2; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:tcpSynFlag true . " +
 " } " +
 " } " +
 " FILTER (?packet1 != ?packet2) . " +
 " } " +
 " } " +
 " GROUP BY ?destIP " +
 " HAVING (count(?destIP) > 0) " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addCollectionsTime;
 } // end function addTCPFloods

275

 /**/
 /***** *****/
 /***** Add AppFlood PacketColletion Instances *****/
 /***** *****/
 /**/
 public static double addAppFloods(PrintStream outputFile,
 double addCollectionsTime) {

 try {

 sparqlTime = 0;

 System.out.println("\tAdding App Flood instances...");
 outputFile.println("Adding AppFlood instances from AppPacket...");

 // Retrieve all AppPacket instances to same destIP and destPort
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:AppFloodType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?destIP " +
 " (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " { " +
 " ?packet1 rdf:type traffic:AppPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:l4DestPort ?l4DestPort . " +

276

 " { " +
 " SELECT ?packet2 ?destIP ?l4DestPort ?dateTime2 " +
 " { " +
 " ?packet2 rdf:type traffic:AppPacket; " +
 " traffic:dateTime ?dateTime2; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:l4DestPort ?l4DestPort . " +
 " } " +
 " GROUP BY ?destIP ?l4DestPort " +
 " } " +
 " FILTER (?packet1 != ?packet2) . " +
 " } " +
 " GROUP BY ?destIP ?l4DestPort " +
 " HAVING (count(?destIP) > 0) " +
 " ORDER BY ?destIP " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addCollectionsTime;
 } // end function addAppFloods

 /**/
 /***** *****/
 /***** ADD PingScan PacketColletions Instances *****/
 /***** *****/
 /**/
 public static double addPingScans(PrintStream outputFile,
 double addCollectionsTime) {

 try {

 sparqlTime = 0;
 String queryStr;

277

 System.out.println("\tAdding Ping Scan instances...");

 // Find all ping scans by comparing appropriate octets for equality
 // Class A - first octet 0 - 127
 // Class B - first octet 128 - 191
 // Class C - first octet 192 - 223

 // Class A networks
 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX apf: <http://jena.hpl.hp.com/ARQ/property#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:PingScanType; " +
 " attack:hasTargetIP ?nwadd; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?nwadd ?IPoctet1 " +
 " (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?nwadd) as ?cnt) " +
 " { " +
 " SELECT DISTINCT ?packet1 ?ipadd1 ?IPoctet1 ?IPoctet2a " +
 " ?IPoctet3a ?IPoctet4a ?nwadd ?dateTime" +
 " { " +
 " ?packet1 rdf:type traffic:PingPacket; " +
 " traffic:hasDestIP ?ipadd1; " +
 " traffic:dateTime ?dateTime . " +
 " ?ipadd1 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2a; " +
 " traffic:IPoctet3 ?IPoctet3a; " +
 " traffic:IPoctet4 ?IPoctet4a; " +
 " traffic:hasNWIPaddress ?nwadd . " +
 " { " +
 " SELECT DISTINCT ?packet2 ?ipadd2 ?IPoctet1 ?IPoctet2b " +

278

 " ?IPoctet3b ?IPoctet4b ?nwadd2 " +
 " { " +
 " ?packet2 rdf:type traffic:PingPacket; " +
 " traffic:hasDestIP ?ipadd2; " +
 " traffic:dateTime ?dateTime2 . " +
 " ?ipadd2 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2b; " +
 " traffic:IPoctet3 ?IPoctet3b; " +
 " traffic:IPoctet4 ?IPoctet4b; " +
 " traffic:hasNWIPaddress ?nwadd2 . " +
 " } " +
 " } " +
 " FILTER ((?packet1 != ?packet2) && " +
 " (?IPoctet1 >= 0) && " +
 " (?IPoctet1 <= 127)) . " +
 " } " +
 " } " +
 " GROUP BY ?nwadd ?IPoctet1 " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 // Class B networks
 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX apf: <http://jena.hpl.hp.com/ARQ/property#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:PingScanType; " +
 " attack:hasTargetIP ?nwadd; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +

279

 " SELECT ?nwadd ?IPoctet1 ?IPoctet2 " +
 " (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?nwadd) as ?cnt) " +
 " { " +
 " SELECT DISTINCT ?packet1 ?ipadd1 ?IPoctet1 ?IPoctet2 " +
 " ?IPoctet3a ?IPoctet4a ?nwadd ?dateTime" +
 " { " +
 " ?packet1 rdf:type traffic:PingPacket; " +
 " traffic:hasDestIP ?ipadd1; " +
 " traffic:dateTime ?dateTime . " +
 " ?ipadd1 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3a; " +
 " traffic:IPoctet4 ?IPoctet4a; " +
 " traffic:hasNWIPaddress ?nwadd . " +
 " { " +
 " SELECT DISTINCT ?packet2 ?ipadd2 ?IPoctet1 ?IPoctet2 " +
 " ?IPoctet3b ?IPoctet4b ?nwadd2 " +
 " { " +
 " ?packet2 rdf:type traffic:PingPacket; " +
 " traffic:hasDestIP ?ipadd2; " +
 " traffic:dateTime ?dateTime2 . " +
 " ?ipadd2 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3b; " +
 " traffic:IPoctet4 ?IPoctet4b; " +
 " traffic:hasNWIPaddress ?nwadd2 . " +
 " } " +
 " } " +
 " FILTER ((?packet1 != ?packet2) && " +
 " (?IPoctet1 >= 128) && " +
 " (?IPoctet1 <= 191)) . " +
 " } " +
 " } " +
 " GROUP BY ?nwadd ?IPoctet1 ?IPoctet2 " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

280

 // Class C networks
 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX apf: <http://jena.hpl.hp.com/ARQ/property#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:PingScanType; " +
 " attack:hasTargetIP ?nwadd; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?nwadd ?IPoctet1 ?IPoctet2 ?IPoctet3 " +
 " (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?nwadd) as ?cnt) " +
 " { " +
 " SELECT DISTINCT ?packet1 ?ipadd1 ?IPoctet1 ?IPoctet2 " +
 " ?IPoctet3 ?IPoctet4a ?nwadd ?dateTime" +
 " { " +
 " ?packet1 rdf:type traffic:PingPacket; " +
 " traffic:hasDestIP ?ipadd1; " +
 " traffic:dateTime ?dateTime . " +
 " ?ipadd1 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3; " +
 " traffic:IPoctet4 ?IPoctet4a; " +
 " traffic:hasNWIPaddress ?nwadd . " +
 " { " +
 " SELECT DISTINCT ?packet2 ?ipadd2 ?IPoctet1 ?IPoctet2 " +
 " ?IPoctet3 ?IPoctet4b ?nwadd2 " +
 " { " +
 " ?packet2 rdf:type traffic:PingPacket; " +
 " traffic:hasDestIP ?ipadd2; " +
 " traffic:dateTime ?dateTime2 . " +
 " ?ipadd2 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +

281

 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3; " +
 " traffic:IPoctet4 ?IPoctet4b; " +
 " traffic:hasNWIPaddress ?nwadd2 . " +
 " } " +
 " } " +
 " FILTER ((?packet1 != ?packet2) && " +
 " (?IPoctet1 >= 192) && " +
 " (?IPoctet1 <= 223)) . " +
 " } " +
 " } " +
 " GROUP BY ?nwadd ?IPoctet1 ?IPoctet2 ?IPoctet3 " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 // Add Host IP addresses into NWaddressScanned class for each
 // host whose network was scanned with a PingScan attack.
 System.out.println("\tAdding Host IP address into NWaddressScanned class...");
 outputFile.println("Adding Host IP address into NWaddressScanned class...");

 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " ?hostadd rdf:type traffic:NWaddressScanned; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3; " +
 " traffic:IPoctet4 ?IPoctet4 . " +
 "} " +
 "WHERE { { " +
 " SELECT ?ipadd ?IPoctet1 ?IPoctet2 " +
 " ?IPoctet3 ?IPoctet4 " +
 " { " +
 " ?ipadd rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +

282

 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3; " +
 " traffic:IPoctet4 ?IPoctet4; " +
 " traffic:hasNWIPaddress ?ipadd1 . " +
 " { " +
 " SELECT ?packet1 ?ipadd1 " +
 " { " +
 " ?packet1 rdf:type attack:PingScan; " +
 " attack:hasTargetIP ?ipadd1 . " +
 " } " +
 " } " +
 " FILTER ((?IPoctet4 != 0)) " +
 " } " +
 " } " +
 "LET (?hostadd := ?ipadd) . " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addCollectionsTime;
 } // end function addPingScans

 /**/
 /***** *****/
 /***** ADD PortScan PacketColletions Instances *****/
 /***** *****/
 /**/
 public static double addPortScans(PrintStream outputFile,
 double addCollectionsTime) {

 try {

 sparqlTime = 0;

 System.out.println("\tAdding Port Scan instances...");
 outputFile.println("Adding PortScan instances of multiple ports to same node...");

283

 // Retrieve all L4Packet instances to same destIPs with different Ports
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:PortScanType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT DISTINCT ?packet1 ?destIP " +
 " (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " { " +
 " ?packet1 rdf:type traffic:L4Packet; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:l4DestPort ?l4DestPort1 . " +
 " { " +
 " SELECT ?packet2 ?destIP ?l4DestPort2 ?dateTime2 " +
 " { " +
 " ?packet2 rdf:type traffic:L4Packet; " +
 " traffic:dateTime ?dateTime2; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:l4DestPort ?l4DestPort2 . " +
 " } " +
 " GROUP BY ?destIP " +
 " } " +
 " FILTER ((?packet1 != ?packet2) && " +
 " (?l4DestPort1 != ?l4DestPort2)) . " +
 " } " +
 " GROUP BY ?destIP " +
 " HAVING (count(?destIP) > 0) " +
 " } " +
 "}";

284

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 outputFile.println("Adding PortScan instances from SynPacket...");

// Retrieve all SynPacket instances to same destIPs
 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:PortScanType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?destIP (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " WHERE {?pack rdf:type traffic:SynPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP . " +
 " } " +
 " GROUP BY ?destIP " +
 " HAVING (count(?destIP) > 0) " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 outputFile.println("Adding PortScan instances from FinPacket...");
 // Retrieve all FinPacket instances to same destIPs
 // FinPacket instances are TCP packets that only have FIN flag set
 queryStr =
 "PREFIX traffic: " +

285

 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType traffic:PortScanType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?destIP (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " WHERE {?pack rdf:type traffic:FinPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP . " +
 " } " +
 " GROUP BY ?destIP " +
 " HAVING (count(?destIP) > 0) " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 outputFile.println("Adding PortScan instances from NullPacket...");
 // Retrieve all NullPacket instances to same destIPs
 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +

286

 " attack:pcType traffic:PortScanType; " +
 " attack:hasTargetIP ?destIP; " +
 " attack:pcFrequency ?cnt . " +
 "} " +
 "WHERE { { " +
 " SELECT ?destIP (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX (?dateTime) as ?endDateTime) " +
 " (count(?destIP) as ?cnt) " +
 " WHERE {?pack rdf:type traffic:NullPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP . " +
 " } " +
 " GROUP BY ?destIP " +
 " HAVING (count(?destIP) > 0) " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addCollectionsTime;
 } // end function addPortScans

 /**/
 /***** *****/
 /***** Add PingScan PacketColletion Instances *****/
 /***** Add for nodes where network instance exists *****/
 /***** *****/
 /**/
 public static double addNodePingScans(PrintStream outputFile,
 double addCollectionsTime) {

 try {

 sparqlTime = 0;

 // Class A networks

287

 System.out.println("\tAdding Ping Scans for nodes from network class A scan
instances...");

 outputFile.println("Adding PingScan instances for nodes from network class A
scans...");

 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX apf: <http://jena.hpl.hp.com/ARQ/property#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType attack:PingScanType; " +
 " attack:hasTargetIP ?nodeadd; " +
 " attack:pcFrequency ?pcFreq . " +
 "} " +
 "WHERE { { " +
 " SELECT ?beginDateTime ?endDateTime ?pcFreq " +
 " ?nodeadd " +
 " { " +
 " SELECT DISTINCT ?packet1 ?ipadd1 ?beginDateTime ?endDateTime " +
 " ?pcFreq ?IPoctet1 " +
 " { " +
 " ?packet1 rdf:type attack:PingScan; " +
 " attack:hasTargetIP ?ipadd1; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcFrequency ?pcFreq . " +
 " ?ipadd1 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 0; " +
 " traffic:IPoctet3 0; " +
 " traffic:IPoctet4 0 . " +
 " { " +
 " SELECT DISTINCT ?nodeadd ?IPoctet1 " +
 " { " +
 " ?nodeadd rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2b; " +

288

 " traffic:IPoctet3 ?IPoctet3b; " +
 " traffic:IPoctet4 ?IPoctet4b . " +
 " } " +
 " } " +
 " FILTER ((?ipadd1 != ?nodeadd)) . " +
 " } " +
 " } " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 // Class B networks
 System.out.println("\tAdding Ping Scans for nodes from network class B scan

instances...");
 outputFile.println("Adding PingScan instances for nodes from network class B

scans...");

 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX apf: <http://jena.hpl.hp.com/ARQ/property#> " +
 "INSERT " +
 "{" +
 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType attack:PingScanType; " +
 " attack:hasTargetIP ?nodeadd; " +
 " attack:pcFrequency ?pcFreq . " +
 "} " +
 "WHERE { { " +
 " SELECT DISTINCT ?packet1 ?ipadd1 ?beginDateTime ?endDateTime " +
 " ?pcFreq ?IPoctet1 ?IPoctet2 " +
 " { " +
 " SELECT DISTINCT ?packet1 ?ipadd1 ?IPoctet1 ?IPoctet2 " +
 " ?IPoctet3 ?IPoctet4a ?nwadd ?dateTime" +
 " { " +
 " ?packet1 rdf:type attack:PingScan; " +

289

 " attack:hasTargetIP ?ipadd1; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcFrequency ?pcFreq . " +
 " ?ipadd1 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 0; " +
 " traffic:IPoctet4 0 . " +
 " { " +
 " SELECT DISTINCT ?nodeadd ?IPoctet1 ?IPoctet2 " +
 " { " +
 " ?nodeadd rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3b; " +
 " traffic:IPoctet4 ?IPoctet4b . " +
 " } " +
 " } " +
 " FILTER ((?ipadd1 != ?nodeadd)) . " +
 " } " +
 " } " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 // Class C networks
 System.out.println("\tAdding Ping Scans for nodes from network class C scan

instances...");
 outputFile.println("Adding PingScan instances for nodes from network class C

scans...");

 queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX apf: <http://jena.hpl.hp.com/ARQ/property#> " +
 "INSERT " +
 "{" +

290

 " _:a rdf:type attack:PacketCollection; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcType attack:PingScanType; " +
 " attack:hasTargetIP ?nodeadd; " +
 " attack:pcFrequency ?pcFreq . " +
 "} " +
 "WHERE { { " +
 " SELECT DISTINCT ?packet1 ?ipadd1 ?beginDateTime ?endDateTime " +
 " ?pcFreq ?IPoctet1 ?IPoctet2 ?IPoctet3 " +
 " { " +
 " SELECT DISTINCT ?packet1 ?ipadd1 ?IPoctet1 ?IPoctet2 " +
 " ?IPoctet3 ?IPoctet4a ?nwadd ?dateTime" +
 " { " +
 " ?packet1 rdf:type attack:PingScan; " +
 " attack:hasTargetIP ?ipadd1; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:pcFrequency ?pcFreq . " +
 " ?ipadd1 rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3; " +
 " traffic:IPoctet4 0 . " +
 " { " +
 " SELECT DISTINCT ?nodeadd ?IPoctet1 ?IPoctet2 ?IPoctet3 " +
 " { " +
 " ?nodeadd rdf:type traffic:IPaddress; " +
 " traffic:IPoctet1 ?IPoctet1; " +
 " traffic:IPoctet2 ?IPoctet2; " +
 " traffic:IPoctet3 ?IPoctet3; " +
 " traffic:IPoctet4 ?IPoctet4b . " +
 " } " +
 " } " +
 " FILTER ((?ipadd1 != ?nodeadd)) . " +
 " } " +
 " } " +
 " } " +
 "}";

 addCollectionsTime = addCollectionsTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 } // end initial try

291

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addCollectionsTime;
 } // end function addNodePingScans

} // end class PacketCollections

292

C.2 Java File to Create Traffic Stream Instances

/**/
/* */
/* Author: Lisa Frye */
/* Date: January 2011 */
/* Filename: TrafficStreams.java */
/* */
/* Description: This file contains functions to execute SPARQL */
/* queries against the KB and add instances for */
/* traffic streams based on results from the queries */
/* to the KB. */
/* API: this program uses the Jena ontology API. */
/* */
/**/

// imports for Jena API
import com.hp.hpl.jena.update.GraphStore;
import com.hp.hpl.jena.update.GraphStoreFactory;
import com.hp.hpl.jena.update.UpdateAction;
import com.hp.hpl.jena.update.UpdateFactory;
import com.hp.hpl.jena.update.UpdateProcessor;
import com.hp.hpl.jena.update.UpdateRequest;
import com.hp.hpl.jena.update.UpdateExecutionFactory;
import com.hp.hpl.jena.util.iterator.ExtendedIterator;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.Syntax;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QueryFactory;
import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.query.QuerySolution;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.query.ResultSetFormatter;

// general imports
import java.lang.*;
import java.io.*;
import java.util.*;
import java.text.DecimalFormat;

293

public class TrafficStreams {

 /**/
 /***** *****/
 /***** ADD TCP Stream Instances *****/
 /***** *****/
 /**/
 public static double addTCPStreams(PrintStream outputFile, double addStreamsTime) {

try {

 // build a query string to insert all triples selected that are
 // TCP packets with unique src and dest IP and src and dest port numbers.
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#> " +
 "INSERT " +
 "{ " +
 " ?stream rdf:type traffic:TCPStream; " +
 " traffic:protocol \"TCP\"; " +
 " traffic:startTime ?dateTime; " +
 " traffic:endTime ?dateTime; " +
 " traffic:hasNode1MAC ?srcMAC; " +
 " traffic:hasNode2MAC ?destMAC; " +
 " traffic:hasNode1IP ?srcIP; " +
 " traffic:hasNode2IP ?destIP; " +
 " traffic:node1Port ?l4SrcPort; " +
 " traffic:node2Port ?l4DestPort . " +
 " ?srcIP traffic:hasTCPStreamWith ?destIP; " +
 "} " +
 "WHERE { { " +
 " SELECT DISTINCT ?packet ?dateTime ?srcMAC ?destMAC " +
 " ?srcIP ?destIP ?l4SrcPort ?l4DestPort { " +
 " ?packet rdf:type traffic:TCPPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasSrcMAC ?srcMAC; " +
 " traffic:hasDestMAC ?destMAC; " +
 " traffic:hasSrcIP ?srcIP; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:l4SrcPort ?l4SrcPort; " +
 " traffic:l4DestPort ?l4DestPort . " +

294

 " } " +
 " } " +
 "LET (?stream := ?packet) . " +
 "}";

 outputFile.println("Adding TCP Streams...");
 addStreamsTime = addStreamsTime + KButility.execUpdQuery(queryStr, outputFile,
false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addStreamsTime;
 } // end function addTCPStreams

 /**/
 /***** *****/
 /***** ADD UDP Stream Instances *****/
 /***** *****/
 /**/
 public static double addUDPStreams(PrintStream outputFile, double addStreamsTime)
{

 try {

 // build a query string to insert all triples selected that are
 // UDP packets with unique src and dest IP and src and dest port numbers.
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#> " +
 "INSERT " +
 "{ " +
 " ?stream rdf:type traffic:UDPStream; " +
 " traffic:protocol \"UDP\"; " +
 " traffic:startTime ?dateTime; " +
 " traffic:endTime ?dateTime; " +
 " traffic:hasNode1MAC ?srcMAC; " +
 " traffic:hasNode2MAC ?destMAC; " +

295

 " traffic:hasNode1IP ?srcIP; " +
 " traffic:hasNode2IP ?destIP; " +
 " traffic:node1Port ?l4SrcPort; " +
 " traffic:node2Port ?l4DestPort . " +
 "} " +
 "WHERE { { " +
 " SELECT DISTINCT ?packet ?dateTime ?srcMAC ?destMAC " +
 " ?srcIP ?destIP ?l4SrcPort ?l4DestPort { " +
 " ?packet rdf:type traffic:UDPPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasSrcMAC ?srcMAC; " +
 " traffic:hasDestMAC ?destMAC; " +
 " traffic:hasSrcIP ?srcIP; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:l4SrcPort ?l4SrcPort; " +
 " traffic:l4DestPort ?l4DestPort . " +
 " } " +
 " } " +
 "LET (?stream := ?packet) . " +
 "}";

 outputFile.println("Adding UDP Streams...");
 addStreamsTime = addStreamsTime + KButility.execUpdQuery(queryStr, outputFile,
false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addStreamsTime;
 } // end function addUDPStreams

 /**/
 /***** *****/
 /***** ADD ICMP Stream Instances *****/
 /***** *****/
 /**/
 public static double addICMPStreams(PrintStream outputFile, double addStreamsTime)
{

 try {

296

 // build a query string to insert all triples selected that are
 // ICMP packets with unique src and dest IP and src and dest port numbers.
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#> " +
 "INSERT " +
 "{ " +
 " ?stream rdf:type traffic:ICMPStream; " +
 " traffic:protocol \"ICMP\"; " +
 " traffic:startTime ?dateTime; " +
 " traffic:endTime ?dateTime; " +
 " traffic:hasNode1MAC ?srcMAC; " +
 " traffic:hasNode2MAC ?destMAC; " +
 " traffic:hasNode1IP ?srcIP; " +
 " traffic:hasNode2IP ?destIP . " +
 "} " +
 "WHERE { { " +
 " SELECT DISTINCT ?packet ?dateTime ?srcMAC ?destMAC ?srcIP ?destIP { "+
 " ?packet rdf:type traffic:ICMPPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasSrcMAC ?srcMAC; " +
 " traffic:hasDestMAC ?destMAC; " +
 " traffic:hasSrcIP ?srcIP; " +
 " traffic:hasDestIP ?destIP . " +
 " } " +
 " } " +
 "LET (?stream := ?packet) . " +
 "}";

 outputFile.println("Adding ICMP Streams...");
 addStreamsTime = addStreamsTime + KButility.execUpdQuery(queryStr, outputFile,
false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addStreamsTime;

297

 } // end function addICMPStreams

 /**/
 /***** *****/
 /***** ADD L3 Stream Instances *****/
 /***** *****/
 /**/
 public static double addL3Streams(PrintStream outputFile, double addStreamsTime) {

 try {

 // build a query string to insert all triples selected that are
 // L3 packets with unique src and dest IP.
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#> " +
 "INSERT " +
 "{ " +
 " ?stream rdf:type traffic:L3Stream; " +
 " traffic:protocol \"IP\"; " +
 " traffic:startTime ?dateTime; " +
 " traffic:endTime ?dateTime; " +
 " traffic:hasNode1MAC ?srcMAC; " +
 " traffic:hasNode2MAC ?destMAC; " +
 " traffic:hasNode1IP ?srcIP; " +
 " traffic:hasNode2IP ?destIP . " +
 "} " +
 "WHERE { { " +
 " SELECT DISTINCT ?packet ?dateTime ?srcMAC ?destMAC ?srcIP ?destIP { "+
 " ?packet rdf:type traffic:IPPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasSrcMAC ?srcMAC; " +
 " traffic:hasDestMAC ?destMAC; " +
 " traffic:hasSrcIP ?srcIP; " +
 " traffic:hasDestIP ?destIP . " +
 " } " +
 " } " +
 "LET (?stream := ?packet) . " +
 "}";

298

 outputFile.println("Adding L3 Streams...");
 addStreamsTime = addStreamsTime + KButility.execUpdQuery(queryStr, outputFile,
false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addStreamsTime;
 } // end function addL3Streams

 /**/
 /***** *****/
 /***** ADD ARP Stream Instances *****/
 /***** *****/
 /**/
 public static double addARPStreams(PrintStream outputFile, double addStreamsTime) {

 try {

 // build a query string to insert all triples selected that are
 // ICMP packets with unique src and dest IP and src and dest port
 // numbers.
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#> " +
 "INSERT " +
 "{ " +
 " ?stream rdf:type traffic:L2Stream; " +
 " traffic:protocol \"ARP\"; " +
 " traffic:startTime ?dateTime; " +
 " traffic:endTime ?dateTime; " +
 " traffic:hasNode1MAC ?srcMAC; " +
 " traffic:hasNode2MAC ?destMAC . " +
 "} " +
 "WHERE { { " +
 " SELECT DISTINCT ?packet ?dateTime ?srcMAC ?destMAC { " +
 " ?packet rdf:type traffic:L2Packet; " +

299

 " traffic:dateTime ?dateTime; " +
 " traffic:srcMAC ?srcMAC; " +
 " traffic:destMAC ?destMAC . " +
 " FILTER NOT EXISTS { ?packet rdf:type traffic:TCPPacket . } " +
 " FILTER NOT EXISTS { ?packet rdf:type traffic:UDPPacket . } " +
 " FILTER NOT EXISTS { ?packet rdf:type traffic:ICMPPacket . } " +
 " FILTER NOT EXISTS { ?packet rdf:type traffic:IPPacket . } " +
 " } " +
 " } " +
 "LET (?stream := ?packet) . " +
 "}";

 outputFile.println("Adding ICMP Streams...");
 addStreamsTime = addStreamsTime + KButility.execUpdQuery(queryStr, outputFile,
false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addStreamsTime;
 } // end function addARPStreams

} // end class TrafficStreams

300

C.3 Java File to Create Attack Instances from Alerts

/***/
/* */
/* Author: Lisa Frye */
/* Date: March 2011 */
/* Filename: AlertAttacks.java */
/* */
/* Description: This file contains functions to execute SPARQL */
/* queries against the KB and add instances for */
/* simple attacks based on results from the queries */
/* to the alert classes of the traffic ontology in */
/* in the KB. */
/* API: this program uses the Jena ontology API. */
/* */
/***/

// imports for Jena API
import com.hp.hpl.jena.update.GraphStore;
import com.hp.hpl.jena.update.GraphStoreFactory;
import com.hp.hpl.jena.update.UpdateAction;
import com.hp.hpl.jena.update.UpdateFactory;
import com.hp.hpl.jena.update.UpdateProcessor;
import com.hp.hpl.jena.update.UpdateRequest;
import com.hp.hpl.jena.update.UpdateExecutionFactory;
import com.hp.hpl.jena.util.iterator.ExtendedIterator;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.Syntax;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QueryFactory;
import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.query.QuerySolution;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.query.ResultSetFormatter;

// general imports
import java.lang.*;
import java.io.*;
import java.util.*;

301

public class AlertAttacks {

 /**/
 /***** *****/
 /***** Add All Alert Attack Instances *****/
 /***** *****/
 /**/
 public static double addAllAlertAttacks(PrintStream outputFile,
 double addAlertAttsTime) {

 try {

 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "DoS",
 "aClassification", "Denial of Service",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "UnauthAccess",
 "aClassification",
 "Attempt to Login By a Default Username and Password",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "UnauthAccess",
 "aClassification", "root login attempt",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "UnauthAccess",
 "aClassification",
 "Attempted Login Using a Suspicious Username was Detected",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "UserPG",
 "aClassification", "User Privilege Gain",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "AdminPG",
 "aClassification", "Administrator Privilege Gain",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "InfoLeak",
 "Information Leak", "aClassification",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "InfoLeak",
 "aClassification",
 "Sensitive Data was Transmitted Across the Network",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "InfoLeak",
 "aClassification",
 "Inappropriate Content was Detected",
 addAlertAttsTime);

302

 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "NodeInfo",
 "aDescription", "ICMP Address Mask Request",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "NodeInfo",
 "aClassification",
 "A Client was Using an Unusual Port",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "NodeInfo",
 "aClassification",
 "Detection of a Non-Standard Porotcol or Event",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "TCPInfo",
 "aClassification",
 "TCP Connection was Detected",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "RPC",
 "aClassification", "Decode of an RPC Query",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "ExecCode",
 "aClassification",
 "Executable Code was Detected",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "ExecCode",
 "aClassification",
 "A Suspicious String was Detected",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "WebServer",
 "aClassification",
 "Access to a Potentially Vulnerable Web Application",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "WebServer",
 "aClassification", "Web Application Attack",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "SystemCall",
 "aClassification", "A System Call was Detected",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "SendFile",
 "aClassification",
 "A Suspicious Filename was Detected",
 addAlertAttsTime);
 addAlertAttsTime = AlertAttacks.addAlertAttacks(outputFile, "SendFile",
 "aClassification",
 "A Network Trojan was Detected",
 addAlertAttsTime);

303

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addAlertAttsTime;
 } // end function addAllAlertAttacks

 /**/
 /***** *****/
 /***** Add Alert Attack Instances *****/
 /***** *****/
 /**/
 /* className - the name of the class in the ontology to add the instances */
 /* field - the name of the field in the class to perform the regExp match */
 /* regExp - the string to search for in the regular expression in query */
 /**/
 public static double addAlertAttacks(PrintStream outputFile, String className,
 String field, String regExp,
 double addAlertAttsTime) {

 try {

 outputFile.println("Adding Attacks from Alerts to " + className +
 " for regexp - " + regExp + "!");

 // Build the query string
 String queryStr =
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{ " +
 " ?attack rdf:type attack:" + className + "; " +
 " attack:attBeginDate ?aDateTime; " +
 " attack:attEndDate ?aDateTime; " +
 " attack:description ?aDesc; " +
 " attack:targetAddress ?aDestIP . " +
 "} " +
 "WHERE { { " +

304

 " SELECT ?alert ?aDateTime ?aDesc ?aDestIP " +
 " { " +
 " ?alert rdf:type traffic:Alert; " +
 " traffic:aDateTime ?aDateTime; " +
 " traffic:aDescription ?aDesc; " +
 " traffic:aClassification ?aClassification . " +
 " OPTIONAL { ?alert traffic:aDestIP ?aDestIP . } . " +
 " FILTER REGEX(\"" + field + "\"," +" \"" + regExp + "\", \"i\") . " +
 " } " +
 " } " +
 "LET (?attack := ?alert) . " +
 "}";

 addAlertAttsTime = addAlertAttsTime + KButility.execUpdQuery(queryStr,
outputFile, false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addAlertAttsTime;
 } // end function addAlertAttacks

} // end class AlertAttacks

305

C.4 Java File to Create Some Simple Attack Instances

/***/
/* */
/* Author: Lisa Frye */
/* Date: March 2011 */
/* Filename: SimpleAttacks.java */
/* */
/* Description: This file contains functions to execute SPARQL */
/* queries against the KB and add instances for */
/* simple attacks based on results from the queries */
/* to the attacks ontology in the KB. */
/* API: this program uses the Jena ontology API. */
/* */
/***/

// imports for Jena API
import com.hp.hpl.jena.update.GraphStore;
import com.hp.hpl.jena.update.GraphStoreFactory;
import com.hp.hpl.jena.update.UpdateAction;
import com.hp.hpl.jena.update.UpdateFactory;
import com.hp.hpl.jena.update.UpdateProcessor;
import com.hp.hpl.jena.update.UpdateRequest;
import com.hp.hpl.jena.update.UpdateExecutionFactory;
import com.hp.hpl.jena.util.iterator.ExtendedIterator;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.Syntax;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QueryFactory;
import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.query.QuerySolution;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.query.ResultSetFormatter;

// general imports
import java.lang.*;
import java.io.*;
import java.util.*;

306

public class SimpleAttacks {
 /**/
 /***** *****/
 /***** Add Land Instances *****/
 /***** *****/
 /**/
 public static double addLandAttacks(PrintStream outputFile,
 double addAttacksTime) {

 try {

 System.out.println("\tAdding Land instances...");

 // insert triples for Land attacks (TCPPacket with DIP=SIP and
 // Dest port = Src port).
 String queryStr =
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{ " +
 " ?attack rdf:type attack:Land; " +
 " attack:beginDate ?dateTime; " +
 " attack:endDate ?dateTime; " +
 " attack:description \"Land attack\"; " +
 " attack:hasTargetIP ?destIP . " +
 "} " +
 "WHERE { { " +
 " SELECT ?packet ?dateTime ?destIP " +
 " { " +
 " ?packet rdf:type traffic:TCPPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:hasSrcIP ?srcIP; " +
 " traffic:l4DestPort ?l4DestPort; " +
 " traffic:l4SrcPort ?l4SrcPort . " +
 " FILTER ((?destIP = ?srcIP) && " +
 " (?l4DestPort = ?l4SrcPort)) . " +
 " } " +
 " } " +
 "LET (?attack := ?packet) . " +
 "}";

307

 addAttacksTime = addAttacksTime + KButility.execUpdQuery(queryStr, outputFile,
false);

 outputFile.println("Added Land Attacks!");
 outputFile.println();

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addAttacksTime;
 } // end function addLandAttacks

 /**/
 /***** *****/
 /***** Add ARP Spoof Instances *****/
 /***** *****/
 /**/

 public static double addARPSpoofAttacks(PrintStream outputFile,
 double addAttacksTime) {

 try {

 System.out.println("\tAdding ARP Spoof instances...");

 // same MAC, two different IP addresses
 String queryStr =
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{ " +
 " _:a rdf:type attack:ARPSpoof; " +
 " attack:beginDate ?startDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:description \"ARP Spoof attack\"; " +
 " attack:hasTargetMAC ?targetMAC . " +
 "} " +
 "WHERE { { " +

308

 " SELECT ?targetMAC " +
 " (MIN(?startTime) as ?startDateTime) " +
 " (MAX (?endTime) as ?endDateTime) " +
 " (count(?targetMAC) as ?cnt) " +
 " { " +
 " SELECT DISTINCT ?packet1 ?startTime ?endTime ?targetIP ?targetMAC " +
 " { " +
 " ?packet1 rdf:type traffic:L3Stream; " +
 " traffic:startTime ?startTime; " +
 " traffic:endTime ?endTime; " +
 " traffic:hasNode1MAC ?targetMAC; " +
 " traffic:hasNode1IP ?targetIP . " +
 " { " +
 " SELECT DISTINCT ?packet2 ?startTime2 ?endTime2 ?targetIP2 ?targetMAC "+
 " { " +
 " ?packet2 rdf:type traffic:L3Stream; " +
 " traffic:startTime ?startTime2; " +
 " traffic:endTime ?endTime2; " +
 " traffic:hasNode1MAC ?targetMAC; " +
 " traffic:hasNode1IP ?targetIP2 . " +
 " } " +
 " } " +
 " FILTER ((?packet1 != ?packet2) && " +
 " (?targetIP != ?targetIP2)) . " +
 " } " +
 " } " +
 " GROUP BY ?targetMAC " +
 " } " +
 "}";

 addAttacksTime = addAttacksTime + KButility.execUpdQuery(queryStr, outputFile,
false);

 // same IP, two different MAC addresses
 queryStr =
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT " +
 "{ " +
 " _:a rdf:type attack:ARPSpoof; " +
 " attack:beginDate ?startDateTime; " +
 " attack:endDate ?endDateTime; " +

309

 " attack:description \"ARP Spoof attack\"; " +
 " attack:hasTargetIP ?targetIP . " +
 "} " +
 "WHERE { { " +
 " SELECT ?targetIP " +
 " (MIN(?startTime) as ?startDateTime) " +
 " (MAX (?endTime) as ?endDateTime) " +
 " (count(?targetIP) as ?cnt) " +
 " { " +
 " SELECT DISTINCT ?packet1 ?startTime ?endTime ?targetIP ?targetMAC " +
 " { " +
 " ?packet1 rdf:type traffic:L3Stream; " +
 " traffic:startTime ?startTime; " +
 " traffic:endTime ?endTime; " +
 " traffic:hasNode1MAC ?targetMAC; " +
 " traffic:hasNode1IP ?targetIP . " +
 " { " +
 " SELECT DISTINCT ?packet2 ?startTime2 ?endTime2 ?targetIP ?targetMAC2 "+
 " { " +
 " ?packet2 rdf:type traffic:L3Stream; " +
 " traffic:startTime ?startTime2; " +
 " traffic:endTime ?endTime2; " +
 " traffic:hasNode1MAC ?targetMAC2; " +
 " traffic:hasNode1IP ?targetIP . " +
 " } " +
 " } " +
 " FILTER ((?packet1 != ?packet2) && " +
 " (?targetMAC != ?targetMAC2)) . " +
 " } " +
 " } " +
 " GROUP BY ?targetIP " +
 " } " +
 "}";

 addAttacksTime = addAttacksTime + KButility.execUpdQuery(queryStr, outputFile,
false);

 outputFile.println("Added ARP Spoof Attacks!");
 outputFile.println();

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();

310

 } // end catch

 return addAttacksTime;
 } // end function addARPSpoofAttacks

 /**/
 /***** *****/
 /***** Add addTCPConnect PacketColletion Instances *****/
 /***** *****/
 /**/
 public static double addTCPConnect(PrintStream outputFile,
 double addAttacksTime) {

 try {

 System.out.println("\tAdding TCP Connect instances...");
 outputFile.println("Adding TCPConnect instances from TCPPacket...");

 // Retrieve all TCP Packet instances to same destIP and tcpRstFlag is true
 // It is important to note that the TCP connect attack source and
 // destination addresses are reversed from the TCPPacket instance
 // to the TCPConnect attack instance. This is due to the fact that
 // the TCP connect attack is identified with the RST flag set in
 // the TCP packet, which is actually done in the response to the
 // SYN packet, which is sent from the attacker. So, the destination
 // address in the RST packet is actually the attacker (source of
 // the attack).
 String queryStr =
 "PREFIX traffic: " +
 "<" + KButility.URL_PREFIX + "traffic.owl#> " +
 "PREFIX attack: " +
 "<" + KButility.URL_PREFIX + "attack.owl#> " +
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 "INSERT { " +
 " _:a rdf:type attack:TCPConnect; " +
 " attack:beginDate ?beginDateTime; " +
 " attack:endDate ?endDateTime; " +
 " attack:description \"TCP Connect attack, predict TCP Sequence Number\"; " +
 " attack:hasTargetIP ?srcIP; " +
 " attack:scanFrequency ?cnt . " +
 "} " +
 "WHERE { { " +

311

 " SELECT ?srcIP " +
 " (MIN(?dateTime) as ?beginDateTime) " +
 " (MAX(?dateTime) as ?endDateTime) " +
 " (count(?srcIP) as ?cnt) " +
 " { " +
 " SELECT DISTINCT ?packet1 ?destIP ?srcIP ?dateTime " +
 " { " +
 " ?packet1 rdf:type traffic:TCPPacket; " +
 " traffic:dateTime ?dateTime; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:hasSrcIP ?srcIP; " +
 " traffic:tcpRstFlag true . " +
 " { " +
 " SELECT DISTINCT ?packet2 ?destIP ?srcIP ?dateTime2 " +
 " { " +
 " ?packet2 rdf:type traffic:TCPPacket; " +
 " traffic:dateTime ?dateTime2; " +
 " traffic:hasDestIP ?destIP; " +
 " traffic:hasSrcIP ?srcIP; " +
 " traffic:tcpRstFlag true . " +
 " } " +
 " } " +
 " FILTER (?packet1 != ?packet2) . " +
 " } } " +
 " GROUP BY ?srcIP " +
 " HAVING (count(?srcIP) > 0) " +
 " } " +
 "}";

 addAttacksTime = addAttacksTime +
 KButility.execUpdQuery(queryStr, outputFile, false);

 } // end initial try

 catch(Exception e) {
 e.printStackTrace();
 } // end catch

 return addAttacksTime;
 } // end function addTCPConnect

} // end class SimpleAttacks

312

Vita

Lisa Frye received two undergraduate degrees in 1990 (Bachelor of Science,

Computer Information Science and Bachelor of Science in Education, Mathematics) and

a Master of Science degree in 1993 (Computer Information Science) from Kutztown

University, Kutztown, PA. For four years she worked as a Support Specialist at Unisys

Corporation and an Application Developer at EDS. She returned to her Alma Mater as a

professional employee in several positions within the Information Technology

department of the university, including System Administrator and Server Manager. With

a background in Education and a Master’s degree in Computer Science, Ms. Frye was

recruited in 1997 as an adjunct professor for Reading Community College, Harrisburg

Area Community College and Muhlenberg College to teach computer science and

programming; she taught in this capacity for four years while maintaining fulltime

employment with the Information Technology Department at Kutztown. In 2001, Ms.

Frye made a full time shift from industry to the classroom when she accepted a full time

position as a computer science faculty member. For the last ten years, she has been a

faculty member in the Computer Science Department at Kutztown University; where she

currently is an Associate Professor. Ms. Frye has been pursuing her Ph.D. at Lehigh

University, Bethlehem, PA under the guidance of Professor Liang Cheng in the

Laboratory Of Networking Group (LONGLAB). Her research focuses on using ontology

to aid in the network management of heterogeneous multi-tier networks.

