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Abstract: 

 

This thesis describes WORD2HTN, which is a novel and semantic approach for 

learning hierarchical task networks (HTN) and semantic division of goals from input plan 

traces. The semantic relationships are learned using machine learning to get the vector 

representations of the components of the plan trace. The semantic relationships are used 

to learn hierarchical landmarks, which in turn are used to make semantically divided 

HTNs. These learned HTNs can then be used for subsequent new problems in the domain 

that have a similar structure with the problems in the input plan traces. This work also 

improves the learning algorithm to include arithmetic conditions and effects. 

WORD2HTN was tested on 3 deterministic domains. These are Logistics or 

Transportation domain, Abstract Graph domain, and the Malmo interface for the 

Minecraft game. We show that WORD2HTN learns semantically divided HTNs. We also 

experimentally demonstrate that HTN planners using this have an exponential speedup in 

information-dense domains over the state of the art classical planner. Finally, we show 

that the HTNs learned in Minecraft can be used to achieve tasks faster with a cooperative 

agent controlled by the HTN planner’s output. 
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Chapter 1: Introduction 

 

Automated Planning is a field of research that involves the solving of problems in a 

domain by generating plans to transform the state of the world to satisfy the goal 

conditions. There are specific terms and concepts common in planning that is described 

in the detail in the next section on the preliminaries. One of the general components is the 

planner. A planner is the program or algorithm that generates the plan (sequence of 

actions) to satisfy the goals. The planner has access to the rules or models of the domain, 

which specific how states can be changed. A planner that has access to only the action 

models, which specify what actions (low-level) can be taken in the domain, would have 

to search across a typically large space of possible states to reach the goal states. This is a 

brute-force approach, and becomes exponentially slower as the size of the domain 

increases. 

Classical planners are those that only use the low-level actions (called operators) of 

the domain, and relationships between objects and states to heuristically search the 

problem space and approach the goal state. In contrast, Hierarchical Task Network 

(HTN) planners use a library of methods to inform its search for plan to reach the goal 

state.   

In many practical planning domains, a planner is typically exposed to many 

potentially feasible planning trajectories it could follow to achieve some desired goals. It 

is reasonable to expect automated planners to have access to previous logs of trajectories 

followed by domain experts when solving problems in that planning space; e.g., logs of a 
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remotely-controlled UAV might repeat a flight corridor used by controllers even though 

there could be multiple other trajectories that could be followed. Yet, even if it is 

available, most state-of-the-art classical planners [Fox and Long, 2003] planners do not 

use this information to guide their search because the planner does not know why and 

how this information is relevant to a planning problem. The traditional approach to help 

automated planners cope with such large amounts of planning spaces is to have human 

domain experts encode the necessary information into the planning problem itself, and 

the domain definitions (i.e. action definitions). This can present a huge knowledge-

engineering burden. It also requires the human experts to be able to know how to encode 

it, and thus some knowledge of the internals of the planner. This approach is not feasible 

as the complexity of problems and planners increase.  

This thesis presents a new HTN (Hierarchical Task Network) learning system that 

addresses this challenge through a new hierarchical landmark learning method. The 

learning algorithm identifies subgoals in the input plan traces using semantic-based 

clustering of the parts of the plan trace. Specifically, WORD2HTN takes or interprets 

plan traces as a sequence of words. Each word can be an action or atom (positive literal). 

The algorithm initially treats these plan traces as a set of sentences and uses semantic text 

analysis to find clusters of words (actions and atoms) based on semantic similarities. The 

output is a hierarchical goal structure. From the output, we construct HTN methods. The 

HTN methods also has the semantics (i.e., preconditions and effects) on tasks and the 

decompositions that accomplish those goals. This thesis details the formalisms used for 

the WORD2HTN approach and the learning algorithm. The formalism section is 

followed by the evaluation of the algorithm. Our experiments demonstrated that 
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WORD2HTN can capture the relevant semantic knowledge for task decomposition, and 

learn semantically informed HTNs. In our first experiment, we observed that 

WORD2HTN tends to learn balanced HTNs. By this we mean, the tree representation 

that captures the task decomposition is balanced as opposed to right-recursive or one-

sided. In our second experiment, we compared planning performance with the learned 

HTNs, with that of the state-of-the-art classical planner Fast-Downward [Helmert, 2006; 

Helmert et al., 2011]. We used J-SHOP, a Java-implementation of the well-known HTN 

planner SHOP [Nau et al., 1999]. To compare appropriately, we used three 

heuristic/search settings in the Fast-Downward planner that used landmark extraction for 

efficient search. Our results demonstrated that WORD2HTN can learn the semantic 

division of tasks using landmarks and generate HTNs with which the average runtime for 

planning in information-dense domains is exponentially reduced as compared to Fast-

Downward. 
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Chapter 2: Preliminaries 

 

We will first introduce the terminology that will be used throughout this thesis, as 

well as the fundamental concepts that this work will build upon.  

2.1 Atom: 

One of the fundamental terms in planning is the concept of an atom. An atom is a 

positive literal (not a negation) in first order logic. A simple example is “The truck is at 

location_1”. In this example “truck” is the object, the property is “at”, and location_1 is 

the value of the property.  An atom can be defined with variables, in which case it is a 

lifted atom as opposed to a grounded atom. For example, if we don’t know which truck, 

or which location, then the values are variable and so is a lifted atom. If we do know the 

specific values, like “The Red Truck”, and “The gas station location”, then it is a 

Grounded Atom. Typically, when we reference an atom, it will not be in plain English, 

but in an abbreviated form of the type “<object> <property> <value>”. The equivalent 

concrete example would be “Truck_1 at location_1”. If the values are variable then it 

would be of the form “?Truck at ?location”. The “?” denotes a variable. 

 

2.2 States, Operators and Actions: 

A State S is a set of grounded atoms. An Action is formalized as the triple (h, p, 

e). h is the header of the action structure, and in turn stores the name of the action and the 

list of objects referred to in the action. p is the set of precondition atoms. These are the 

atoms that must be true in the current state for the action to be applicable, i.e. p ⸦ S. e is 
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the set of effects, which can be added atoms, as well as deleted atoms. The effects are 

represented as lists of add(atom) and delete(atom) statements. The result of applying the 

action a to a state S, is a new State S’ that is: 

S’ = (S-deletedAtoms )  addedAtoms 

2.3 Planning problem: 

A Planning problem P is defined as the triple (A,S0,G) where A is a set of actions, 

S0 is the set of atoms that define the starting state, and G is the set of atoms that need to 

be true in the goal state. 

2.4 Plan (action plan): 

A Plan π consists of a sequence of actions “a1, a2, a3… an”. π solves a problem P if the 

following statements are true.  

(1) The first action a1 can be executed in the initial state S0, i.e. the preconditions are 

satisfied in S0. The subsequent actions “a2, a3… an” are applicable in the states 

produced by the previous actions. So a2 must be applicable in S1, which is the 

state that results from applying action a1 to state S0.  

(2) The state Sn that results after applying the last action an from π, should contain the 

atoms of the Goal set G. So we generate Sn from S0 by applying π 

2.5 Plan Trajectory and Plan Traces: 

We represent the state and actions of a plan π applied to an initial state S0, as a 

plan trajectory. It is a sequence as follows: “S0,a1, S1,a2, S1,a2,… Sn,an”.  
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For this work WORD2HTN, the Plan Traces that are given as input to the 

algorithm, is defined as follows. It is the sequence of action with each action preceded by 

its preconditions, and succeeded by its effects. A plan trace would be of the form 

“p11, p12, a1, e11,e12,  p21, p22, a2, e21,e22,…  pn1, pn2, an, en1,en2,” 

Where pn1 and pn2 would be the first and second preconditions of the nth action. Similarly, 

en1 and en2 would be the first and second effects of the nth action. There can be less or 

more than 2 preconditions or effects, it is not that only 2 are allowed in the plan traces. 

 

2.6 HTN Formalism: 

An HTN planner takes a set of Tasks to achieve. These tasks can be primitive or 

compound. A primitive task is just the headings of the action(s) with the associated list of 

parameters that define the action (grounded). Recall that a specific action is a grounded 

operator.  

A compound task has a name, and a list of parameters (objects, values). These 

define the compound task (as in the English sense of the word), to be performed and 

requires more than one sub task to complete. The subtasks can be compound or primitive 

tasks. 

A method m is defined by a triple (h p T). h is the heading of the method, which is 

a compound task. p is the collection of preconditions that define the starting state of the 

method. Finally, T is the ordered list of sub tasks (primitive or compound) that is required 

to achieve the task in the heading.  
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2.7 HTN planning problem: 

A planning problem with HTNs, is represented as a tuple of 4 elements, H = 

(S0,T,M,A). S0 is the set of atoms defining the starting state. T is the ordered set of Tasks 

to achieve. M is the set of methods that can be used to achieve the tasks in T. Lastly, A is 

the set of actions that can be executed in the domain.  

2.8 Planning and Solving an HTN problem:  

Each of the tasks t in T, is achieved in one of two ways: 

(1) If t is a compound task, then we find a method m whose header matches the task, 

and can be applied in the current state. The task t is replaced by the subtask 

ordered list from m. These represent the sub tasks that need to be accomplished 

for the main task t (that was replaced) to be achieved.  

(2) If t was a primitive task, and there is an action a that is applicable in the current 

state, then t is removed from T, and the action a is added to the solution plan π. 

Note that π starts out empty. 

We always decompose the first task in the list until we reach actions that we can 

execute.  As we reach actions to execute, they are added to the plan π. A solution plan π 

for the planning problem H (as previously defined), is one of the possible plan(s) 

produced using the aforementioned 2-step recursive process. We formally state this as "π  

achieves T from S0”. 
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2.9 Annotated Task: 

An annotated task is defined as a triple t= ( 𝜏,p,g) . 𝜏 is a compound task. p and g 

are the tasks preconditions and goals respectively. For this thesis, we use the notation t.g 

to refer to the task’s goals. t.p refers to the task’s preconditions. The way we define 

annotated tasks, gives the framework for defining compound tasks. To put it together, 

when a plan π achieves task t from a starting state S0 such that t.p ⸦ S0, then any plan π 

produced by the methods in M (learned by WORD2HTN), results in the state Sn such that 

t.g ⸦ Sn. Sn is the state of the world after applying all the actions of π in sequence from 

starting state S0.  

In this thesis, we are actually learning the Tasks and Methods from a set of plan 

traces and action definitions, given as the pair (Π , A). The result of the algorithm 

WORD2HTN is a set of annotated tasks and methods (T,M). The task set will include 

primitive tasks, which are achieved with a single action, as opposed to a compound task. 

The solution or result from WORD2HTN of (T,M) is correct if: given an annotated task 

t=( 𝜏,p,g) , and any starting state S0 such that t.p ⸦ S0 , the result is t.g ⸦ Sn . Sn is the 

state of the world after applying all the actions of the plan generated (π) in sequence from 

starting state S0. 

2.10 Additional Concepts, Standards and Programs: 

In automated planning there are two broad divisions of planners viz., classical 

planners and HTN planners. Classical planners only use operators (lowest level of 

actions), and the domain space to solve or achieve a given set of goals. HTN planners on 

the other hand, use a library of methods which specify task division, to solve the input 

tasks.  
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The current state of the art classical planner is the Fast Downward planner 

[Helmert et al., 2006]. It has different heuristics for exploring the domain space, which 

helps or guides the planning. It is the classical planner that we used for comparisons 

JSHOP is a java implementation of the Simple Hierarchical Ordered Planner 

(SHOP) [Nau et al., 1999] which is an HTN planner. We have used it for the experiments 

run in this thesis.   
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Chapter 3: Word2Vector 

 

A critical step in our WORD2HTN algorithm is learning embedded vector 

representations of the atoms and actions found in the input plan traces. This is needed for 

semantic reasoning about goals and tasks. We used a technique from Natural Language 

Processing (NLP), called Word Embeddings. These are vector representations of a word 

in an N -dimensional space. The words from the input text are learned as distributed 

vectors using word2vector [Mikolov et al., 2013]. They are distributed such that words 

which co-occur or have shared contexts have more similar representations, or are more 

aligned, than those that are unrelated. A simplified partial example is illustrated in Figure 

1. 

 

Figure 1: A good vector representation of 2 atoms and an action that are 

semantically related 
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The size of the dimensional space for which the vectors are learned, is represented as N, 

this is a parameter that can be tuned. It can be chosen using heuristics and/or 

experimentally. We will discuss this later in this section.  

To illustrate how atoms and actions as words embeddings might look, let us 

consider the atom “Box1 in Location1” in a 3-dimensional space. It may be represented 

by [0.5; 0.2; 0.6]. The symbol “Box1 in Location2” might have a representation of [0.4; 

0.25; 0.1]. This is an over-simplified example to illustrate how related symbols could be 

encoded in the vector space model. In this simplified case, all but the last dimension, are 

close in value. This could happen when the two atoms occur frequently in similar 

contexts. The Word2Vector algorithm would slowly adjust their vector representations 

from their initial random values towards each other by moving them towards the words in 

their context.  

The dimensions of the vector representations have no defined meaning, such as 

distance in the x direction. Instead, they are latent semantic dimensions. This means that 

they implicitly encode some relationship or dimension of the domain. However, what 

each dimension eventually represents depends on the initial random positions of the word 

embeddings, and how the plan traces (input data) adjust the representations.  

3.1 Workings of Word2Vector: 

We need to understand how Word2Vector works to understand the type of vector 

representations learned, and why it helps for learning HTNs  
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Figure 2: Comparison of CBOW and SG Neural Network Configurations for 

WORD2VECTOR. Figure from [Rong, 2014]. 

 

The central idea of Word2Vector is that words which occur close to each other, or share 

common words in their contexts, are more similar. More similar words will have more 

similar vector representations (we will define similarity later in this section). The input to 

Word2Vector is a collection of sentences, and each sentence represents a plan trace from 

a starting state of the world, to a state that satisfies a goal condition(s). Each sentence or 

plan trace is independently processed from every other sentence in Word2Vector. A 

sentence could be a complete plan trace from the start state to the goal state (as in our 

experiments), or it could even just be a single action with its precondition and effects. We 

found that the former approach gave better word embeddings, and attribute the 

improvement to the fact that there was more contextual information. We also chose to use 
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full plan traces as sentences since the actions to reach the goal state are often sequentially 

related by their preconditions and effects. If the actions in the traces were ordered with no 

semantic reasoning, then it would be incorrect to assume that actions occurring close to 

one another have some relationship. If that were the case, then it would make sense to 

break the plan trace into sentences of one action per sentence. This would prevent 

inferring any incorrect relationships between words that are only coincidentally in each 

other’s context. 

The core Word2Vector algorithm uses a shallow neural network model (see 

Figure 2) and model parameters that define how Word2Vector learns the representations. 

The most important model parameters are: the number of dimensions N (of the vector 

representations), the context window size C, and the learning rate α. After setting these, 

we pass in the sentences of the data set. Every element or word of the sentence is encoded 

using one-hot encoding. This means every word is converted into a long vector whose 

size V is the total number of unique words in the data set (the vocabulary of the data). 

Only one dimension of the long vector for each word in one-hot encoding is set to “1”. 

The vector entry/position set to 1 is unique and represents that word. This is the input 

form passed into the neural network. The edge weights of the neural network are 

randomly initialized. With every trial or run of the neural network during training, the 

neural net adjusts the edge weights by the specified learning rate α. The updates are done 

such that the target element and those within its context have closer vector 

representations. How this is done and represented in the neural network depends on 

which architecture is used. 
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There are two common neural network structures in Word2Vector. One is 

Continuous-Bag-of-Words (CBOW) and the other is Skip-Gram (SG). These are two 

ways of relating a word to its context, and that determines the network structure (Figure 

2). 

3.2 Continuous Bag of Words (CBOW) and Skip-Gram (SG) network: 

In CBOW, the input consists of all the words within the context window of the 

target word. So if the context window is of size 6, then the input will be the 6 words 

surrounding the target word (and define it’s context). In Figure 2, the left side is the 

CBOW structure. The inputs are the context words for xk, and these are x1k, x2k…xCk, 

where C is the size of the context window. Then the hidden layer’s values are calculated 

from each of the input word’s representation multiplied (matrix multiplication) by the 

edge weights WVN , and then averaged. V is the size of the vocabulary or the total 

number of symbols, and N is the number of dimensions (tunable) for each vector 

representation that is learned. Recall that the input is in one-hot encoding as described in 

the start of this section. The hidden layer consists of nodes h1, h2,…hN for a total of N 

nodes corresponding to the N-dimensions of the vector representation.  

The output value is the hidden layer value multiplied by the output edge weights 

WNV. The output is again a V-dimensional vector like the input. It is expected to match 

the target word’s one-hot encoding. The error or difference in the values is back 

propagated through the network and the edge weights are adjusted by the learning rate. 

In Skip-Gram, the network is inverted (refer to right side of figure 2). The input is 

the single target word xk, and the output is expected to be the words that makes up the 
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context in which the target word was found (y1k, y2k,….,yCk). This network architecture 

tries to bring the single target word’s vector representation closer to the words in its 

context. The difference or error is back propagated to updated the edge weights just as in 

CBOW. 

3.3 Intuitive Understanding of CBOW and SG 

In the neural network, each input element’s one-hot encoding is being converted 

into an N-dimensional representation. To understand how this is happening, let us look at 

a simple and smaller network. Let us say that the hidden layer has N = 3 nodes, and this 

means the model is building vector representations of 3 dimensions. For our example, let 

us set the vocabulary size V as 5. The value of each node in the hidden layer, is one of the 

dimensions in the N-dimensional representation of the input. The input edge weights are 

of dimensions VxN, which is 53 for our example. Think of each column as the 

representation of a hidden layer’s basis vector in the one-hot encoding format of the 

input. For our example, let’s say the first latent dimension’s representation in the input 5-

dimensional vector form would be [0.1 ,0.02 ,0.5, 0.3, 0.7]. Let us say that the input word 

is the atom “Box1 in Location2” and it’s one-hot encoding could be [0,1,0,0,0]. When an 

input word is multiplied with the edge weights, what we are really doing is taking the 

dot-product of the input word, with each of the basis vectors of the N-dimensional word 

embedding space. This is the projection of the input word onto each of the basis vectors. 

Therefore, the values of the hidden nodes h1, h2, h3 in our example would be the 

projection of the input word “Box1 in Location2” in the 3 dimensional representation. 

If the CBOW approach is adopted, then the hidden layer values would be the 

average of the projections of each input words. On the output side, the edge weights are a 
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NxV matrix. Each column represents the N-dimensional representation of each word of 

the vocabulary. So in the current example, the edge weights would be in a 3x5 matrix. 

When the hidden layer’s values are multiplied by the output edge weights, we are taking 

the dot product of a vector in the 3-dimensional model with each of the words in the 

vocabulary. If two vectors are similar (closer together), the dot product will be greater. 

So, in our example, the output could be a 5-dimensional vector like [0.2, 0.7, 0.8, 0.1, 

0.1]. Finally, we run a softmax function on the output to get the probability of each 

output word. The difference (error) with the actual output word(s) is calculated. The error 

is back propagated to update the edge weights. For more details on the math and error 

propagation, please refer to the paper by Rong[Rong, 2014]. 

Once the vector representations are learned, we can analyze them for 

relationships. The similarity between two words is defined by the cosine distance of their 

vector representations. This is the cosine of the angle between the vectors, which is 

calculated by taking the dot-product of their normalized vectors. To get an intuitive idea 

review Figure 1, which shows how similar vectors can be more closely aligned. Cosine 

distance is a standard metric for similarity between word embeddings. We have adopted 

this metric as well, and our experimental results show good results with this metric. 

 

 

 

 



18 

 

Chapter 4: Word2HTN 

 

4.1 Learning HTNs with Landmarks and Word2Vector 

Algorithm 1 in Figure 4.1.1 shows a high-level description of WORD2HTN. For 

this section, we will describe the algorithm by referring to specific line numbers of this 

algorithm. The WORD2HTN algorithm uses two global variables: AllMethods, which 

keeps all the methods learned so far, and processedSubsets which holds the list of plan 

trace segments processed so far. The first step in WORD2HTN is to run word2Vector to 

generate the vector representations for the actions and atoms in all the plan traces (Line 

4). Then we perform a Hierarchical Agglomerative Clustering (HAC) [Ward et al., 1963] 

on the vector representations and extract the landmarks (Line 5). 

For our work, we ran HAC using the shortest cosine distance between the points 

of two groups as the clustering metric. HAC repeats the grouping or clustering of data 

points until we have one large group, and a hierarchy describing how the points were 

grouped. The output of the HAC process is a clustering matrix representing how the 

words were grouped hierarchically. From the HAC matrix, we can determine the 

landmarks for a specified set of words (the vocabulary of the traces). Given two clusters 

of points U and V, the landmark candidate u from U is defined as follows: 

u = arg max
𝑢𝑈

∑ 𝑠𝑖𝑚(𝑢, 𝑣)𝑣𝑉   

Similarly, we find the landmark candidate from V. Then we select from among the two 

candidates, the landmark with the higher score. To put it succinctly, a landmark u is the 

atom in the grouping of (U,V) that has the highest similarity with the atoms of the other 
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set. If there is an atom, that all plan traces go through, then this atom would be detected 

as a landmark.  

 

1: global AllMethods <- Ø 

2: global processedSubsets <- Ø 

3: procedure WORD2HTN(Π): 

4:   Embeddings <- RunWord2Vector(Π) 

5:   L <- GetHACLandmarks(Π,Embeddings) 

6:   for l  L do: 

7:     tracesSubset <- filter(Π,l) 

8:     if tracesSubset  processedSubsets then: 

9:       processedSubsets.add(tracesSubset) 

10:      ConstructMethods(tracesSubset,l) 

11: procedure ConstructMethods(traces,l): 

12:   leftTraces <- PreceedingSubtraces(traces,l) 

13:   rightTraces<- succeedingSubstraces(traces,l) 

14:   A <- GetHACLandmarks(leftTraces,Embeddings) 

15:   B <- GetHACLandmarks(rightTraces,Embeddings) 

16:   for a  A do: 

17:     tracesSubset <- filter(leftTraces,a) 

18:     if tracesSubset  processedSubsets then: 

19:       processedSubsets.Add(tracesSubset) 
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20:       if CountActions(tracesSubset) <=1 then: 

21:         MA <- MakeMethod(tracesSubset) 

22:       else: 

23:         MA <- ConstructMethod(tracesSubset,a) 

24:   for b  B do: 

25:     tracesSubset <- filter(rightTraces,b) 

26:     if tracesSubset  processedSubsets then: 

27:       processedSubsets.Add(tracesSubset) 

28:       if CountActions(tracesSubset) <=1 then: 

29:         MB <- MakeMethod(tracesSubset) 

30:       else: 

31:         MB <- ConstructMethod(tracesSubset,b) 

32:   MT <- MergeMethods(MA,MB) 

33:   AllMethods <- AllMethods U MT 

34:   return MT 

 

Figure 3: Algorithm 1- The Word2HTN procedure that learns HTNs from Plan 

Traces 

 

1: procedure MergeMethods(MA,MB): 

2:   MT <- Ø 

3:   for ma  MA do: 
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4:     for mb  MB do: 

5:       ma’<- ma 

6:       mb’<- mb 

7:       C <- commonObj(ma[Task], mb[Task]) 

8:       ma’[Task.g] <- filter(ma[Task],C) 

9:       mb’[Task.g] <- filter(mb[Task],C) 

10:      mt[Task.g] <- ma’[Task.g] U mb’[Task.g] 

11:      diff <- changes(ma’[Task.g],mb’[Task.g]) 

12:      mt[Task.g] <- mt[Task.g] – diff 

13:      mt[Pre] <- ma[Pre] U mb[Pre]      

14:      mt[Pre] <- mt[Pre] – ma’[Task.g] 

15:      mt[Pre] <- filterAtoms(mt[Pre],C) 

16:      mt[ST] <- { ma’[Task.g], mb’[Task.g]} 

17:      MT <- MT U {mt} 

18:      AllMethods <- AllMethods U {ma’} 

19:      AllMethods <- AllMethods U {mb’} 

20:    if |MA|= 0 then: 

21:      MT <- MB 

22:    else if |MB| = 0 then: 

23:      MT <- MA 

24:    return MT 
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Figure 4: Algorithm 2-:The Word2HTN procedure that learns HTNs from Plan 

Traces 

We select the landmark from the last grouping done by HAC on the vocabulary of all the 

plan traces. Using this landmark, we split the traces that contain the landmark word 

(action or atom) into the before and after traces. Then we repeat the process on each of 

the subset of traces, and proceed recursively until a trace set has one or no actions. This 

base case is discussed in further detail later in this section. Overall, what the algorithm 

does is divide the overall task into two parts by using the landmark. These are the goals 

achieved before the landmark, and the goals achieved after the landmark.  

The first landmark selected from a trace set may not be present in all the traces. 

We track the subset of traces that does contain the landmark and add it to the set of 

processedSubsets (Line 8 and line 9 of Algorithm 1). When we select the next landmark , 

we first check if the subset of traces that contain the landmark has already been 

processed, i.e. is contained in processedSubsets (Line8 of Algorithm1). If so, then we 

ignore the subset. For comparing trace subsets, we use pythons hashing function, which is 

implemented as a low-level C function, and thus optimized for speed. 

Iterating through the landmarks (Line 6) in order, we select a landmark and get 

the subset of traces that contain the landmark (Line 7). For this subset of traces we call 

the procedure ConstructMethods passing traces and the common landmark l (Line 10). It 

is the ConstructMethods function that divides the traces by the landmark, and recursively 

calls itself on progressively smaller trace subsets.  

In the ConstructMethods procedure, we divide the set of traces into those left of 

the landmark l and those right of l (Lines 12 and 13). For each of them, we rerun the 
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HAC on the vector representations of just those words that are in the subset of traces 

(Lines 14 and 15). From the results of the HAC, we obtain an ordered set of landmarks (A 

and B). Then we perform a recursive call on the traces that contain each of the landmarks 

(Lines 23 and 31). The recursive call continues the decomposition until the base case of a 

single or no actions in the plan traces (Line 21 for A and Line 29 for B). If there are no 

actions in the plan traces, then the procedure MakeMethods returns no methods. If there 

is only one action, then MakeMethods will return the method representation of the low-

level action (Line 21). The method made from the action will have the associated task’s 

goals set as all the effects of the action. The method’s preconditions and the task’s 

preconditions are set to the action’s preconditions. Finally, the method’s subtasks would 

be the primitive action itself. So, if a planner executed this low-level method, it would 

result in the action being executed. 

After the base case of the recursion completes, it will return to the parent iteration. 

The parent iteration will then combine the lower level methods as in Line 32 shown in 

Algorithm 1. The MergeMethod function is detailed in Algorithm 2. Each method ma 

from the traces to the left of the landmark is combined with each method mb to the right 

of the landmark (Lines 3 and 4 of Algorithm 2). The way we combine two methods (ma, 

mb) into a higher-level merged method (mt), is by looking at common objects between ma 

and mb. We first determine what objects C are common across the tasks of the two 

methods (Line 7). Then we define the goals for the task of mt as the union of the goals of 

the tasks of ma and mb (Line 10), and are only the goals that have the common objects in 

C (Lines 8 and 9). We also remove from the goals of mt’s task, the atoms that were 

changed or deleted by the subtask mb (Lines 11 and 12). 
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The preconditions of mt are the union of the preconditions of ma and mb (Line 13) 

minus the goals of ma’s task (Line 14). We do this because the goals of task ma may 

satisfy some of the preconditions of mb. Finally, the subtasks of mt are the tasks of ma and 

mb in that order (Line 16). The merged method mt is added to the set MT (Line 17). 

The set of learned methods MT is added to the AllMethods, and returned to the 

calling function in Line 32 of Algorithm 1. We also add into AllMethods, ma and mb 

(Line 18 and 19). This ensures that the higher-level method has lower-level methods that 

achieve its subtasks. 

At the end of the iteration through the landmarks at the top level in Algorithm 1, 

we will have a library of HTN methods with a semantically relevant decomposition of 

tasks. We see this semantic relevance, because the clustering and subsequent division of 

traces was based on semantic vector representations. 

The insight that we used, is that the landmarks can be used to build the skeleton of 

the HTN hierarchy. Once all the methods are learned, we treat the objects as variables. 

Variables that had the same object name become the same variable. 

4.2 Adding Arithmetic Conditions to Preconditions and Effects: 

Thus far, we have dealt with symbolic values in the atoms, such as “Box1 

locatedIn Location2”. We have not used numeric values, or arithmetic operators in 

preconditions or effects. In fact, there has been no literature thus far involving learning 

HTNs with arithmetic operators. 

We decided to incorporate support for numeric values and conditions. The format 

we used to indicate that numeric values or arithmetic operators were in use for a value or 
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condition is of the form “MATH~<expression>~”. The expression can take the form of a 

comparator operation on numeric values such as “>= 4”. These would be the used to 

specify preconditions. It can also be an arithmetic operator that changes the existing value 

such as “+3” or “-2”. Such expressions would be used to specify the effects. Lastly the 

expression could just be a single numeric value. Internally, all numeric values are stored 

as floating point numbers. This was not necessary for the current experiments, but future 

work using WORD2HTN will necessitate it. The arithmetic operations currently 

supported are “ > , < , = , >=, <= , + , -”.  We have not yet added support for 

multiplication or division, due to time constraints. We think the effort will be 

straightforward, but would probably require significant testing for various cases. 

The only change to the learning algorithm with arithmetic operators is how the 

preconditions and effects add up. The preconditions update typically involves changing 

the limits of the inequalities towards constraining them further. For example, adding the 

conditions “ >=2” , “<= 5”, and “>=3” would result in the condition “<=5, >=3”. If 

there are two conditions that conflict or cannot be satisfied, then the algorithm would 

output an error. As for the effects, they are updated by simply combining the operations 

in the order in which they occur. For example “+3” and “-2”, would result in “+1”.  
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Chapter 5: Experimental Evaluation 

 

All experiments were run on a Linux Ubuntu 16.04 on an Intel Core machine with 

i7-4770 CPU running at 3.40GHz with 16 GB of memory. For testing and comparing 

WORD2HTN we used 3 domains. Logistics, Abstract Graph, and the Malmo interface 

for Minecraft domain. All domains were deterministic. 

5.1 Logistics Domain 

We setup a version of the logistics transportation domain [Veloso, 1992]. In our 

logistics domain setup, there are two planets, 4 cities inside planet1 and 1 city in planet2, 

and 3 locations within each city in planet1. There is a box in a starting location in planet 

1, and the goal is to deliver the box to Planet 2’s city1-location1 (P2C1L1). To transport 

the box, the planner can use trucks, airplanes and rockets. Trucks can move to any 

location within a city. Airplanes can only fly to locations that are airports, and to cities 

within a planet. Rockets can move between locations that are spaceports, and can move 

across planets. Each vehicle can perform the actions of move, load and unload. The input 

plan traces were for transporting the box starting in random locations inside planet 1 to 

the destination location in planet 2. These were fed into the WORD2HTN algorithm for 

learning. 

We used the Skip-Gram architecture for the word2vector component of the 

WORD2HTN algorithm. We chose it, as the word embeddings learned were better in 

terms of reflecting the semantic relationships and similarity of the atoms and actions. The 

number of dimensions N parameter in the word2vector component was set to half the 

number of unique atoms and actions in the plan traces. This worked out to be 38 for our 
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experiments. This is quite a generous rule of thumb. Generous in the sense of 

dimensional space in which the vector representations can distribute themselves. 

Increasing the number of dimensions, exponentially increases the time taken to train the 

vector representations. It should be noted that the entire Wikipedia corpus could be 

processed effectively with 400 dimensions. So that is our theoretical upper bound for 

very large domains. We set the window size to 10, so the context of a word would be 5 

words on either side of it. The learning rate was set to 0.001, and so the vector 

representations would only be adjusted by this amount per data point. The previous two 

parameters were determined from experimental analysis of the similarity of word vectors 

and comparing them with our expectations. The same learning rate worked for the other 

two domains with differing number of atoms and actions as well. The last important 

parameter in word2vector is the number of iterations that the input data was repeated to 

allow the vector representations to converge to their final values. We set this to 40. 

Experimentally, we found that around 20 iterations were adequate, and so we set it to 40 

to be safe. 

The training plan traces were generated from hand coded methods on the logistics 

domain. We generated 14 different plan traces for training. All the training traces 

transport the package from a location in one city, to a location in another city. These plan 

traces were optimal plan traces for transporting the package between each starting and 

goal location. With this we generated HTN methods, which the planner then used to solve 

problems in the domain.  

With the logistics domain, we compared the depth of the learned HTNs with that 

of HTN-Maker [Hogg,2008]. HTN-Maker was the previous state-of-the-art HTN learner. 
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It only learned methods using a right-recursive approach to combining actions and 

building methods. This mean that it would combine the last two actions to learn a 

method, and then proceed backwards by combining every action with the previously 

learned method’s task into a new method. This would result in a deep HTN tree structure. 

In contrast, our approach divides traces by landmarks, and learns methods for each 

section of the traces. So, we expected the HTN tree to be smaller when solving problems 

with the learned methods. We compared the HTN tree that resulted from planning for 

different problems, and each problem had a different optimal plan length. The results are 

discussed in chapter 6. 

 

5.2 Abstract Graph Domain  

The next metric we looked at, was the time cost of planning in domains that were 

information-dense. We say information-dense in the sense that there are significantly 

more properties and actions in the domain, than is necessary to achieve the desired goals. 

It can be interpreted as noise, or relevant for different goals.  

The comparison that we did was with Fast Downward, the classical planner that 

uses Planning Domain Description Language (PDDL). It is the current state-of-the-art for 

classical planners, and has different heuristics to optimize the planning process.  

To compare the effects of information density on planning time for WORD2HTN, 

and compare it to Fast Downward, we developed the Abstract Graph domain. This 

domain was developed to be extensible and configurable with a simple set of parameters. 

As the name implies, it is a graph based domain. In it, the goal is for a robot to navigate 
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between nodes. Every node in the graph can have additional properties that may or may 

not be relevant to an action in the domain. For example, figure 5 shows the subgraph for 

nodes that have the properties of x and y co-ordinates. On such nodes, we can perform an 

action such as “move+X+Y+node1+node2”, and the robot will move from node1 to 

node2 and update its X and Y values to that of node2. There could be additional properties 

in the domain, but the example action specifically updates only the X and Y property. 

 

Figure 5: Subgraph with (x,y) coordinates as the only properties 

  

We trained WORD2HTN on plan traces from Figure 5, whose initial location was 

a node from a set of nodes1…12 to a node from the set of nodes13…26. The plan traces 

also included the coordinate properties (X and Y) of the nodes as the robot visits them. 
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The plan traces do not have any additional properties. However, in the problem space 

there are additional properties that the nodes can have. The number of these properties 

was modified by a script. These additional properties affect the state space of the domain 

(i.e., possible actions and atoms). There is an operator in the domain to change every 

combination of properties in the robot as it moves through the nodes. This means that if 

there were only 2 properties, then there would be 4 move operators. With 3 properties, 

there would be 8 operators and so forth. Figure 6 shows the graph that we randomly 

generated for our testing. For the experiments, the graph had 100 random nodes with a 

12.5% chance that any two nodes are connected. We varied the number of properties in 

the nodes to see how the Fast Downward planner with three different heuristics would 

compare with WORD2HTN. Internally, WORD2HTN uses a SHOP planner [Nau et al., 

1999] with the learned methods to solve tasks. Our comparison results are in the 

following chapter on results. 
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Figure 6: Complete Graph for Abstract Domain Experiment with random nodes 

and connections 

 

 

5.3 Minecraft experiments with arithmetic preconditions and effects: 

The final domain that we worked with is the game Minecraft, using the Malmo 

interface for the game [Johnson et al., 2016]. Minecraft is a game where the player can 

control an agent in the game to collect resources, and build objects. For example, the 

player can build a furnace by collecting and combining 8 stone as show in Figure 7. 
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Figure 7: Minecraft crafting example - combining 8 stone into a furnace 

There are many such recipes in the game. Successive recipes or items have dependencies 

to achieve or build the object. For example, to harvest the stone needed to make a 

furnace, the player must first have a wooden pickaxe to harvest the stone. For a list of the 

basic dependencies, see figure 8 
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Figure 8: Minecraft basic recipes and dependencies [Nyugen S., 2017] 

 

Using the Malmo interface, we were able to generate a closed world with 

randomly placed resources. The main objective of this phase of the work was to have an 

automated assistant agent as shown in figure 9 to help the main Minecraft agent complete 

tasks fasters (cooperative play).  
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Figure 9: Minecraft main player and assistant agent 

 

The agent learns by observing the main player complete tasks. The main player’s 

actions are translated into plan traces. Those plan traces are the input into WORD2HTN 

algorithm. An example of an action in the plan trace would be “... , hasStone(8), 

CraftFurnace, hasFurnace(1), …” for the action CraftFurnace. 

 Once WORD2HTN learned the library of methods, it could then be queried for a 

plan to achieve a goal. For example, one could ask the Planner to solve for the goal 

“hasIronPickaxe(1)” and pass in the current state of the agent. WORD2HTN would then 

generate the plan to achieve the goal. For WORD2HTN to work with Minecraft’s 

dependencies and recipes, we needed arithmetic conditions and effects as described in 

section 4.2. 

We tested the time taken for an agent to complete a task on its own, versus two 

agents (cooperative play). The task was to make two iron pickaxes, and the experiment 

was run 10 times. The results are described and discussed in the following section on 

Results.  
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Chapter6: Results  

 

6.1 Logistics Domain Results: 

The data we observed comparing the maximum tree depth of the HTN learned by 

WORD2HTN with that of a right-recursive method learning algorithm like HTN-Maker 

is captured in Figure 10. The optimal tree depth for a plan trace of n actions should be 

log2n-1 for an even binary division of actions at each level. In the graph, there are no plan 

traces shorter than 3 actions, because in the Logistics domain that is the minimum 

number of actions needed to transport a package between one location and the nearest 

adjacent location. For the logistic domain that we used, WORD2HTN was able to learn 

the optimal division of actions, i.e. it selected landmarks that evenly divided the plan 

traces. We don’t always expect the result to be an optimal division, only that it will be 

divided by semantic relevance. This result occurred because the problem was very 

symmetrical and the landmarks could divide the plan traces evenly. The data validates 

our hypothesis that HTNs learned are balanced in comparison to a right-recursive method 

structure such as those learned by HTN-Maker. 
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Figure 10 : Comparison of the Tree Length of HTNs learned by WORD2HTN with 

those of a right-recursive learning algorithm 

 

In addition, the learned methods could solve more problems than those with 

which they were trained. We had trained on 12 problems, and could solve all other 

problems in the domain. This result is only because all other problems in the domain 

involve the same structure, or substructure that the training plan traces encompassed, and 

that the domain had common substructures, or very symmetrical. Here we say 

symmetrical because the problem of transportation involves the same subset of actions 

for transportation within a city, between cities, and across planets. We clarify this to be 

accurate about the limits of WORD2HTN.  
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6.2 Abstract Graph domain Results 

Figure 11 shows the results for our runtime comparisons, as a function of the 

number of properties in the domain. Each data point is the average runtime over 12 runs 

for 4 test planning problems each of which were run 3 times.  

 

Figure 11 : Comparison of the time taken by Fast Downward using 3 different 

heuristics versus the SHOP planner with learned HTN in the Abstract Graph 

Domain 

The SHOP planner using the learned HTNs took the same amount of time regardless of 

the number of additional properties in the domain as the HTN’s learned would only 

consider the X and Y coordinates of the nodes (relevant properties). As for Fast 

Downward, initially it was faster than the SHOP planner, but as the number of properties 

(and thus actions and problem space) increases, the time taken grows exponentially. Fast 

Downward could not solve the test planning problems that had 9 or more domain 

properties; the potential states and action space was so large, that it exhausted the 
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memory of the testing computer during the pre-processing phase of the problem. Thus, 

Figure 4 does not show any data points for those cases. In these experiments, we 

observed that Fast Downward usually generated shorter plans than SHOP. In comparison, 

SHOP did not necessarily generate the shortest plans using the WORD2HTN-learned 

knowledge. Instead, WORD2HTN was able to learn a semantically relevant 

decomposition of the plan traces and convert them into HTNs. With that knowledge, 

SHOP could solve the planning problems with an exponential reduction in run times as 

compared to Fast Downward. 

6.3 Minecraft Results 

We ran the experiment to compare the time taken for single agent to make 2 iron 

pickaxes, and compared it to the time taken for two agents to perform the same task. The 

results are presented in Figure 12 [Nyugen et al. 2017].  On average, the time taken for 

two agents to make the iron pickaxes was 147.4 seconds and the median runtime was 

147.5 seconds [Nyugen et al. 2017]. For a single agent to make both pickaxes, the 

average time taken was 174.2 seconds, and the median time was 174 seconds. Thus, two 

agents completed the task 16% faster on average. This shows the promise and benefit 

(speed improvement) of using the plans generated from the WORD2HTN methods for 

controlling an assistant agent 



39 

 

 

Figure 12: Comparison of time taken to build two pickaxes with and without an 

assistant agent 
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Chapter 7: Related Work 

 

People learn sophisticated skills by building upon basic or simpler actions and 

skills. These are combined in a particular order to achieve higher or more complex tasks 

[Choi and Langley, 2005]. A hierarchical structure lends itself very nicely to represent 

the dependencies and build-up of more complex skills or methods to achieve a task. Such 

hierarchical representations are used in several frameworks for reasoning and planning 

such as frames [Minsky 1986], reasoning by abstraction [Knoblock, 2012], and 

hierarchical task network (HTN) planning [Currie and Tate, 1991]. Most hierarchical 

planning and reasoning formalisms have concepts in common such as objects, goals and 

tasks. These concepts are used to represent the knowledge and the relationships in the 

hierarchical structure.  

 Hierarchical Task Networks is the formalism that we use. Learning HTNs has two 

major components:  

(1)  Learning the hierarchical decompositions that relate the tasks to subtasks 

(2)  Learning the conditions in which, the task can be achieved using a specific 

decomposition. This is a method.  

There is prior work that focuses on learning the applicability conditions 

(preconditions) for the decomposition, but assume that the hierarchical decomposition 

information/structure is part of the input into the algorithm [Ilghami et al., 2005; Hogg et 

al., 2014]. This means that the subtasks of a task are known. Most work on HTN learning 

learn both, the decomposition hierarchy and the conditions for decomposition. These 
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works infer hierarchy from the set of input plans, and from the action model of the 

domain [Zhuo et al., 2014; Hogg et al., 2014; Choi and Langley, 2005; Reddy and 

Tadepalli, 1997; Ruby and Kibler, 1991]. 

However, all the work done on learning task structures assume that some task 

semantic information is given as additional input. Here, we mean task semantics as 

defined for annotated tasks in the preliminaries section. The task semantics are the goals, 

preconditions, and header(name) of the task. The goals and preconditions of such 

annotated tasks are the minimum requirements to satisfy or complete the task. Often 

methods that are learned to satisfy a task, may have more than this minimum set.  

Among the prior work, X-Learn uses inductive generalization to learn task 

decomposition. It relates goals, subgoals, and conditions for applying these 

decomposition rules[Reddy and Tadepalli, 1997]. X-Learn takes task information as part 

of the input along with the plan traces for the learning problem. This task information is 

not needed in WORD2HTN.  

ICARUS is another learning algorithm that receives as input, horn clauses (called 

skills) that define the semantics of the goals (subgoals, and preconditions). These skills 

are used in a teleo-reactive process to learn the hierarchies [Choi and Langley, 2005; 

Nejati et al., 2006].  

HTN-Maker receives as input, tasks whose semantics are also specified. These are 

the previously defined annotated tasks, (𝜏,p,g).[Hogg et al., 2008; 2014]. HTN-Maker 

uses the annotated tasks to detect sub-traces such that the task’s preconditions are 

satisfied when the sub-trace starts and the task’s goals are achieved when the sub-trace 
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ends. Subtask to Task relations for the hierarchy are detected when a sub-trace identified 

for one task is itself part of a larger trace that satisfies another larger task.  

HTN-Learner also uses annotated tasks as input [Zhuo et al., 2014]. It constructs 

constraints such as “task’s precondition is satisfied before action a in trace 25”. These 

constraints are then fed into a MAXSAT solver to generate solutions for the constraints 

which are used to generate the task decompositions and the preconditions. Unlike all 

these works WORD2HTN learns the annotated tasks (semantic/defining information of 

the tasks), in addition to the hierarchical structure, and the applicability conditions. 

 With regards to arithmetic conditions that are learned for HTNs, this is the first 

work to the best of our knowledge to learn such conditions. Classical planners that 

employ PDDL (Problem Domain Description Language) version 2.1 can solve problems 

that have continuous numeric values, and employ arithmetic operators and comparators 

[Coles et al. 2012]. Such work does not learn HTNs for learning task relationships and 

planning. Rather, such classical planners use the action models for heuristically 

expanding the search space to achieve goals. The downside of this approach is that no 

knowledge is saved and reused in similar domains. Rather each new problem space is 

treated anew, and this is typically slower than a HTN planner with a library of HTN 

methods.     
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Chapter 8: Conclusions and Future Work 

 

81. Summary of Results and Conclusions 

WORD2HTN is an HTN learning algorithm that can find landmarks from plan 

traces and use them to divide tasks and make HTNs. Internally, WORD2HTN uses 

Word2Vector to learn semantic vector embeddings. The embeddings are used to infer 

similarities between atoms and actions, and identify landmarks based on the similarities. 

Unlike other HTN learning algorithms, WORD2HTN does not require task semantics as 

part of the input. Only input plan traces, and the domain operators are needed.  

WORD2HTN was tested on the Logistics domain, Abstract Graph domain, and a 

restricted environment of the Minecraft game. We observed that the division of tasks in 

the HTNs learned was semantically driven. The depth of the HTN tree was less than the 

HTN made from a right recursive combination of actions. The latter is what the current 

state of the art HTN learner does. We also observed that the learned HTNs could solve 

more problems than those given in the training data.  

In the Abstract Graph domain, the SHOP planner using our learned HTNs solved 

problems faster than Fast Downward planner in problems that were information dense 

(had extra information and actions).  

Finally, we observed that the HTNs learned could be used to control a cooperative 

agent in Minecraft and reduce the time taken to complete a task.  
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8.2 Future work  

 In this work, all the algorithms and experiments were done in deterministic 

domains. In non-deterministic versions of the experimental domains, each action has a 

probabilistic distribution of outcomes. For example, a loadTruck action may result in the 

package being broken, or not loaded onto the truck. It is necessary to test WORD2HTN 

algorithm in the non-deterministic domain for it to be useful, and so that will be the next 

phase of this work.  

 In non-deterministic domains, we believe that similar atoms and actions will still 

be grouped closer together, and the landmarks will still be found as in deterministic 

domains. The difference is that there are more atoms that will result from actions, and so 

the atoms and action’s vector representations will not be as close together as in the 

deterministic domains. We think that the landmarks will still be discovered, as the 

relative similarity will be preserved.  

We would also like to improve the support of arithmetic conditions and effects in 

WORD2HTN. The next step is to add multiplication and division to describe more 

domains. Adding additional arithmetic support will be an ongoing work, with additional 

support added as needed. 

After adding non-deterministic support, it is important to tag or qualify actions, 

atoms, and methods with metrics. This could be metrics like a reward value or cost. There 

could be more than one metric, such as time, resources used, and other such 

measurements. These metrics would be associated with the methods learned. To learn 

these values for hierarchical methods, we would need to define the functions that 

calculate each of the metrics. We can then use these metrics to define additional 
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requirements or bounds when we specify tasks or goal states. This will help the planning 

by constraining, and directing the planner’s search through the HTN methods. 
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