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ABSTRACT 

CLOSED LOOP CONTROL OF A CYLINDRICAL TUBE TYPE IONIC POLYMER 

METAL COMPOSITE (IPMC) 

By 

Ben Mead 

Dr. Woosoon Yim, Examination Committee Chair 

Professor of Mechanical Engineering  

University of Nevada, Las Vegas 

 

The goal of this research is to provide a framework for the integration of tube 

type, cylindrical Ionic Polymer Metal-Composite (IPMC) into conventional devices. 

IPMCs are one of the most widely used types of electro-active polymer actuator, due to 

their low electric driving potential and large deformation range. For this research a tube 

type IPMC was investigated. This IPMC has a circular cross section with four separate 

electrodes on its surface and a hole through the middle. The four electrodes allow for 

biaxial bending and accurate control of the tip location. One of the main advantages of 

using this type of IPMC is the ability to embed a specific tool and accurately control the 

tool tip location using the large deflection range of the IPMC. This ability has widespread 

applications including in the biomedical field for use in active catheter procedures. 

First, this relatively new type of IPMC is investigated and characterized. The 

processes and materials used are described and the functional design is explored. Before 
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the modeling process beings the basic functions of the IPMC are investigated. To this end 

force and displacement experiments are performed to describe the activation of the tube 

type IPMC. This data will be used later to verify and calibrate the mathematical 

simulations.  

Second, a three dimensional multi-physics finite element model is developed 

using COMSOL 4.3a. This model will automatically couple three physics packages and 

provide a description of the fluid interactions within the tube type IPMC. This model is 

then compared against the experimental displacement results to calibrate the simulation. 

Using this simulation design parameters are declared including, overall diameter, and tool 

hole size. The performance of the IPMC is then simulated while varying these 

parameters. 

Third, an electro-mechanical model of the IPMC is developed. This macroscopic 

model is used to relate the input voltage to an associated tip deflection. Several model 

types used for this purpose are tested and discussed. After determining a suitable type a 

mathematical electro-mechanical model is developed. Using this model several closed 

loop control systems are proposed. Once a final decision is reached the closed loop 

control system is implemented in the experimental setup. Several tests are designed to 

test the effectiveness of the closed loop system and mathematical models.   

Finally several improvements are made to enhance the users experience using 

IPMCs as well as incorporating them into conventional devices. To provide a better user 

interface the experimental control system is extended to allow the user to input controls 

via a standard computer mouse. This will allow a shorter operator training time and 
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hopefully a wider array of real world uses for IPMCs. Attempts are also made to establish 

permanent connections to the IPMC. A tube type IPMC is meant to be used as part of a 

total system. To this end soldered connections to the IPMC are made. One of the main 

expected applications of tube type IPMCs are as active catheters. In this application the 

IPMC would be placed in-line with the plastic catheter line. As a proof of concept the 

IPMC is installed onto the tip of a conventional catheter line.   
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CHAPTER 1                                                                                                 

INTRODUCTION 

Ionic Polymer Metal Composites (IPMC) are a type of smart material known as 

an electro active polymer. These devices are made from an ionic polymer, typically 

Nafion or Flemion, coated with a highly conductive metal such as gold or platinum. 

IPMCs are a popular choice for many applications due to their large deflections under 

relatively small input voltages. This actuation is caused by the motion of charged 

particles within the IPMC. The ionic polymer contains anions that are fixed to the 

polymer backbone and mobile cations such as Na
+
, K

+
, Li

+
 or Cs

+
. When an external 

electrical field is applied to the electrodes hydrated cations within the polymer are drawn 

across the IPMC. This cation motion carries along with it water molecules and other 

solvents. This influx of fluid to a single side of the IPMC induces a bending towards the 

anode. The degree of bending is proportional to the voltage applied.  
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Figure 1 - Basic IPMC Actuation 

 

This process can also be reversed causing the IPMC to be used as a sensor [1]. 

When an IPMC deforms the cations within the IPMC are displaced. This cation motion 

produces a small amount of current. This signal can then be used to measure the degree 

of deflection. In order to maintain the cation mobility conventional IPMCs must be kept 

wet. As a result most applications for IPMCs focus on aqueous environments such as 

robotic fish or active catheters [2, 3]. With the ability to operate both as an actuator, a 

sensor, and in aqueous environments IPMCs have become one of the most popular 

electro-active polymers.  

The goal of this research is to further the potential uses of IPMCs by providing 

the tools to design, control, and implement a new type tube type IPMC. With additional 

flexibility and reliability it is hoped that tube type IPMCs can make a large contribution 

to society.  
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LITERATURE REVIEW 

Most early work in IPMCs centered on the flat type IPMC. This IPMC type 

consists of an ionic polymer block, typically Nafion or Flemion, plated with a highly 

conductive metal such as platinum or gold [4, 5]. This creates a sandwich with the 

polymer in the middle and electrodes on the top and bottom. Several attempts have been 

made to increase the bending motion of the flat type IPMC. One method is to vary the 

plating type and the number of platings of the IPMC electrode layers [6]. Another 

approach is to sandwich multiple Nafion actuators together and operate them as a single 

actuator [7]. It has also been shown that surface treatments prior to the plating of the 

electrode can be effective in extending the life of the IPMC and the actuation 

characteristics [7]. 

Attempts at creating complex motion out of a flat type IPMC have also been 

made. The most popular method for doing so is by patterning the electrode shape. The 

electrode can be patterned in many ways. It can be selectively grown during the plating 

process [8]. Using this method the researchers were able to vary the natural frequency of 

the IPMC and add additional degrees of freedom to the actuator. Electrode patterns can 

also be developed by carefully machining the electrode surface [9]. Using this technique 

a twisting motion can be generated using a flat type IPMC. Electrode patterning can also 

be used to create a wave type motion which can oscillate and undulate [10].  

The basic physics behind the deflection properties of IPMCs have been widely 

studied [11, 12, 13]. When modeling these properties two main approaches are 

developed. The first approach is to use the finite element model to describe the physics 
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occurring within the IPMC. Some of these models use a multi-physics approach where 

the fluid interactions within the IPMC are taken into account. These models take into 

account the actual concentration changes within the IPMC and relate the motion of these 

charged ions back to the overall electrical model. In this article a method for relating the 

local charge of the IPMC to the overall bending is established [14]. Finite element 

models have also used beam theory to model the bending phenomenon [15]. The model is 

based upon an estimation of the physical properties of the IPMC. This model establishes 

a force displacement relationship for the cantilevered flat type IPMC. Quite an 

accomplishment since few of the IPMC finite element models are able to accurately 

calculate the force output.  

Efforts to capture the back relaxation as part of the finite element models have 

had some success [16]. These models are based upon the physical material properties of 

the IPMC however, to accurately model the forward motion and back relaxation time 

constants must be added to the model. These time constants require some knowledge of 

how the IPMC performs. The motivation behind these basic physics models is to be able 

to design and customized the IPMC motion and electrical characteristics. With an 

accurate physics model the fabrication process can be streamlined and optimized. 

The second type of models being developed are the electro-mechanical models. 

These models use the macroscopic motion of the IPMC and the electrical inputs to 

correlate the voltage to an associated mechanical bending and tip deflection. The basic 

electrical inputs are built upon an RC circuit. The IPMC is described as a double-layer 

capacitor created in the boundary between the metal electrodes and the ionic polymer 
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[17]. This model captures the electrical input across the polymer domain however it relies 

upon experimental data for the model constants. The electrical response model has been 

improved by including a distributed RC model instead of a lumped RC model [18, 19]. 

This allows the capacitance and resistance to be varied along the length of the IPMC and 

can be modeled to more accurately reflect the electrical properties of the IPMC. This 

change in capacitance and resistance is due to the erratic growth of the electrodes into the 

polymer domain. The irregularity of this growth causes the perceived change in 

capacitance [18]. Several studies have been performed attempting to model this 

irregularity as a fractal growth of the electrode [18, 20, 21]. It is found that fractal 

geometry can greatly increase the accuracy of the voltage data along the length of the 

electrode.  

The charge within the IPMC is then related to a mechanical bending force. In 

some cases the bending stress is correlated directly with the space charge density within 

the IPMC [22]. This model can accurately describe the forward motion but requires an 

additional stress term to account for the back relaxation. One advantage of this method is 

that estimates of the coefficients used can be derived from the physical properties of the 

IPMC. In some studies the IPMC is broken into finite element sections and the shape 

functions are used to relate the charge to the kinetic and potential energies [23]. This 

model matches the experimental data well but requires large matrix operations and 

tracking locations at multiple points on the IPMC. Some models have also related the 

electric field to an induced curvature in the IPMC [18]. The curvature is modeled with a 

first order ordinary differential equation. This model depends on several material 
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constants as well as experimentally determined time constants. It can easily be extended 

to include back relaxation with the addition of another set of material properties and time 

constants. This model tracks the experimental tip data well but has the simplification that 

the IPMC shape is always a perfect arc.  

Most of the previous models have focused on the flat type IPMC and its specific 

modeling characteristics. In addition to these flat models there have been several attempts 

to use bi-axial bending IPMCs. Cylindrical IPMCs have been investigated and found that 

the tip location can be accurately controlled in two directions [24]. A three dimensional 

finite element deflection model for this type of IPMC is generated and tested. Other 

research has focused on a box type IPMC. This shape has the advantages of easily 

attached electrical connections and the simple separation of the electrodes [25]. In this 

study a manufacturing and control process for the box type IPMC is discussed.  

IPMCs have a found a wide range of applications. The most common application 

is for the propulsion of a robotic fish [26, 27, 28]. In these applications the IPMC takes 

the place of a conventional motor to power the robotic fish. Guiding algorithms as well as 

wireless communications and environmental sensing have been developed. This area is 

seen as a straight forward application of the IPMC. IPMCs have also been investigated as 

a potential actuator in micro-pumps [29]. A proof of concept has been developed with the 

IPMC capable of pumping very small volumes of fluid. One of the most exciting 

applications of IPMCs is as an artificial muscle [30, 31, 32]. So much research has been 

done on this subject that there is even a book about it [33]. It is hoped that IPMCs will be 

instrumental in the development of soft humanoid robots.  
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Many of these applications have been using flat type IPMCs although biaxial 

bending applications have also been investigated. Circular rod type IPMCs have been 

used as biomimic robotic bugs [34]. Six of the rod type IPMCs are used and actuated 

using a stepping algorithm. This allows the bug robot to move in two directions without 

having to reconfigure any equipment. In this experiment specific IPMC location was not 

needed just the overall bending motion.  

Funding for this research project was provided by the National Science 

Foundation in pursuit of a new smart material based active catheter. As a result the 

current active catheter market was investigated. Active catheters are designed to solve 

two major problems. The first is to be able to accurate position the catheter line inside of 

the human body. The second is to shield the operators from harmful radiation by 

operating the catheter from a distance. There are a couple of conventional materials based 

active catheters already available on the market. The Niobe uses embedded magnets 

within the catheter line and two large electro magnets to control the tip location within 

the patient’s body [35]. There are several robotic arms that mimic the doctors motion but 

still use conventional catheter equipment [36] [37]. Both systems allow the doctor to 

operate remotely and are low cost options to the hospital. A catheter has been developed 

that uses telescoping concentric tubes that allows the doctor to steer each individually to 

maintain the necessary positions [38].   

All of these systems use conventional technologies to create solutions however 

there are a few smart material solutions available. John D. Madden has done some work 

using a single degree of freedom conducting polymer to act as an active catheter [39]. 
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Shape memory alloys have also been used to create active catheters [40]. This system 

uses a flexible central beam with four SMA actuators surrounding it. These actuators act 

as tendons capable of deflecting the tip and controlling its location. With the development 

of a design and control method for tube type IPMCs it is hoped that they will soon be 

competing in the world of smart catheterization.   
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CHAPTER 2                                                                                                                         

TUBE TYPE IPMC CHARACTERIZATION 

PHYSICAL DESCRIPTION 

The tube type IPMC was developed by Dr. K. J. Kim and his coworkers at the 

University of Nevada, Reno using a proprietary method [41]. The IPMC is made up of a 

cylindrical Nafion core with a circular hole through the middle. This hole allows the 

IPMC to be used for the insertion of specialized tools, utilities, and/or the administration 

of fluids to very specific locations. The cylindrical shape allows the IPMC to be used in 

areas such as active catheters where the conventional tip would be replaced by an electro-

active polymer.  

The Nafion core is surrounded by four sectioned, chemically plated platinum 

electrodes. The separation of the electrodes allows for complex electrical activations 

causing biaxial bending. This bending allows the tip of the tube type IPMC to be 

controlled in two directions.  
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Figure 2 - Cylindrical Tube Type IPMC Description 

 

In this research several different samples were used each with slightly different 

dimensions. These inconsistencies cause the samples to behave in slightly different ways.  

This can also be seen in flat type IPMCs where varying deflection results can be found 

between IPMCs with nearly identical dimensions [25]. This is the result of the complex 

manufacturing process and possible imperfections found in the starting materials. The 

deflection characteristics of IPMCs have also been found to change over time. With time 

smaller and smaller deflections are seen and higher voltages are needed to maintain the 
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same IPMC performance. With tube type IPMCs these potential problems are 

compounded. The isolation gaps between electrodes are difficult to produce and are often 

done by hand. This can produce an irregular electrode shape which will also influence 

how an individual IPMC performs. As a result of the variance in manufacturing and 

sample dimensions, each sample has a unique deflection curve and must therefore be 

studied individually. 

 

Table 1 - IPMC Sample Sizes 

Sample Length (mm) Outer Diameter (mm) Inner Diameter (mm) 

1 20.70 1.94 .94 

2 23.48 1.52 .83 

3 23.23 1.84 .93 

 

FIXTURES 

In order to begin modeling the motion of the tube type IPMC the bending 

characteristics are explored. For the experiments a specialized fixture was needed to 

secure the IPMC and allow for the individual activation of the four electrodes. 

Throughout the experiments several fixture designs were tested. The first design was a 

3D printed plastic box with four compartments. These compartments were filled with a 

conductive silver epoxy and allowed to cure. The center of the box was drilled out with a 

1 mm drill exposing four electrodes. Each electrode was machined into an arc of 

approximately .85 mm in length. This design although functional did not allow for 

variations in the IPMC diameter or inconsistencies in the electrode shape.   
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Figure 3 - First Experimental Fixture IPMC 

 

The second design improved upon the previous concepts by splitting the single 

fixture in half forming two, three centimeter long rods. These rods each have a half circle 

in the middle sized to be slightly smaller in diameter then the tube type IPMC. With the 

difficulty of establishing consistent electrodes using silver epoxy small solid core wires 

were used instead. The wire chosen was a #24 solid core copper wire with a diameter of 

.40 mm. This size wire allowed for sufficient contact area with the IPMC and the 

flexibility to overcome inconsistencies in the IPMC electrode pattern. These wires were 

installed inside of the half circle clamp area in small channels that hold the wire in place. 

Using this design the IPMC is held securely and the separation between the four 

electrodes is maintained.  
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Figure 4 - Newest IPMC Experimental Fixture SolidWorks Model 

 

This design was later improved by the addition of a channel through the base of the 

plastic fixture. This allowed experiments to be run with several materials placed in the 

middle of the IPMC. With the channel through the bottom of the fixture the IPMC did not 

have to be removed in-between experiments. This channel was also used for the 

installation of a central ground.   
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Figure 5 - Electrode Contacts in Final Fixture Design 

 

As seen above the IPMC is placed between the two plastic fixture pieces. A 

compressive force is applied with a rubber band holding the IPMC in place and ensuring 

a good electrical connection. The spacing of the four solid core wires allows the IPMC 

electrodes to be activated individually while compensating for small changes in the 

electrode shapes.   

FORCE AND DISPLACEMENT EXPERIMENTS  

Using the new fixtures force and displacement experiments were performed to 

characterize the IPMC. This data will be used in the development of a finite element 

model as well as the closed loop control system. For the displacement experiments the 

IPMC was placed in its fixture below a CCD camera. The tip location was then identified 

using an edge tracking algorithm. The IPMC was given a step voltage ranging from .5 to 
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1.5 volts. This voltage was held constant throughout the bending process. Between each 

experiment the IPMC was placed back into deionized water for not less than five 

minutes.  

 
Figure 6 - Deflection Characterization of the Tube Type IPMC 

 

As is common with most IPMCs, the tube type exhibits a quick initial bending 

towards the Anode [12]. After the initial bending the IPMC begins to slide backwards 

towards its initial starting position. This phenomenon is called relaxation and has been 

explained many ways [42]. The most widely accept hypothesis is that when activated the 

cations carry additional solvents and water towards the anode. After the initial motion 

these additional molecules begin to leak back out of this section causing the IPMC to 

relax its shape. Compared with flat type IPMCs of comparable length the tube type 

exhibits a much slower response and a much smaller maximum deflection [12]. This is 
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believed to be because of the added stiffness in the tube type IPMC shape, the smaller 

electrode surface area, and the overall size of the IPMC.  

For the force experiments the IPMC tip location is not actively tracked. Instead 

force values are taken using a model 400a Force Transducer Senor produced by Aurora 

Scientific Inc. This sensor has a full scale measurement range of +/- 50mN with a 

resolution of 1 µN. This sensor utilizes a 1 mm in diameter boro-silicate glass tube as the 

force input device. The sensor is built to be actuated in the axial direction of the tube 

towards the sensor base. The sensor will still give a reading when actuated transversely 

however the accuracy of these values is much lower. As a result this glass tube was 

placed at the tip of the IPMC in the direction of bending. The tube was positioned to 

barely make contact with the IPMC. After the initial contact is made the sensor is 

adjusted to a new zero value. The IPMC is then actuated towards the sensor with voltage 

inputs ranging from .5 to 1.5 volts.  

 



 

 
17 

  
 

 

 
Figure 7 - Force Characterization of the Tube Type IPMC 

 

 As seen above the force and displacement results have very similar shapes. The 

maximum force produced by this tube type IPMC is 6.3 mN at 1.5 volts. This force value 

is much greater than the conventional flat type IPMCs when actuated at 1.5 volts [43]. 

This supports the belief that there is a tradeoff in IPMCs between the potential tip 

displacement and the force output. After the initial force peak the values continue to drop 

away. This is expected and is believed to be for the same reason that the IPMC position 

relaxes away. To further investigate the physical phenomenon seen within the tube type 

IPMC a multi-physics finite element model will be developed.  
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CHAPTER 3                                                                                            

FINITE ELEMENT METHOD 

MATERIAL PROPERTIES, GEOMETRY, AND MESH 

The multi-physics finite element model was developed using Comsol 4.3a. This 

tool is used to model the basic physics occurring within the IPMC. The models are 

developed to track the fluid interactions within the IPMC in the presence of an electrical 

field. These fluid interactions are then correlated to a mechanical bending force.  

To produce this model the geometry of the IPMC will be idealized as a perfect 

circle with constant electrode shapes. These geometries were creating using the built in 

Comsol tools. Using the built in geometry tools allows the dimensions to be input as 

Comsol parameters and easily adjusted throughout the modeling process. To create the 

three dimensional a two dimensional IPMC cross section was drawn and then extruded to 

create the IPMC length.  
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Figure 8 - IPMC Finite Element Model Geometry 

 

In the center of the cross section is the tube shaped Nafion domain with the radii 

set to match the actual tube type IPMC samples. Surrounding the Nafion core are four 

platinum domains each separated by an isolation gap. Producing these isolated electrodes 

is quite difficult and the method for doing so has been discussed [44]. To produce these 

electrodes the platinum is not mechanically placed. It is instead chemically plated to the 

Nafion core and as a result the electrodes do not grow uniformly [19]. Improvements in 

the models accuracy can be achieved by modeling these growth patterns using fractals 

[18]. This increased accuracy comes at a cost of a much more computationally intensive 

model.  In the Comsol model used these electrodes are presented as perfect geometries 

with a uniform contact surface between the Nafion and the platinum. As a result the 

electrical conductivity is greatly reduced in the multi-physics model to compensate for 

this simplification in geometry [45].  
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In the model the hole in the center of the IPMC is modeled as completely empty 

space. Although most IPMCs must be kept wet in order to function the movement of 

water molecules and the interaction with water molecules outside of the IPMC are not 

taken into account in this simulation. The simulation parameters can be seen in the table 

below.  

 

Table 2 - Comsol Parameters and Variables  

Parameters 

Name Expression Description 

R 1.[mm] Outer Radius 

r .95[mm] Inner Radius 

L 1[inch] Extrusion Length 

V1 1[V] Voltage source 

V2 1[V] Voltage source 

V3 0[V] Ground 

V4 0[V] Ground 

ro .5[mm] hole in the middle 

Variables 

F 96458[C/mol] Faraday Constant 

eps .2e-1[F/m] 
dielectric 

permittivity 

c_0 1200[mol/(m^3)] 
Initial 

Concentration 

D .7e-11[m^2/s] Diffusion Constant 

eps_0 8.85e-12[F/m] 
dielectric constant 

in vacuum 

alpha .001[N*m/mol] 
Linear Force 

Coupling 

beta .0055[N*m^4/(mol^2)] 
Quadratic Force 

Coupling 

mu 2.9e-15[mol*s/kg] mobility 
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Table 3 - Comsol Material Properties 

Platinum 

Name Value Unit 

Density 21450 kg/m^3 

Poisson's ratio 0.38   

Electrical 

conductivity 
1.50E+04 

S⋅m−1
 

Coefficient of 

thermal expansion 
8.80E-06 

1/K 

Heat capacity at 

constant pressure 
133 

J/(kg*K) 

Thermal conductivity 71.6 W/m*K 

Relative permittivity eps/eps_0   

Young's modulus 1.68E+11 Pa 

Nafion 

Young's modulus 4.10E+07 Pa 

Poisson's ratio 0.49   

Density 3105.5 kg/m^3 

Electrical 

conductivity 
5.00E+03 

S⋅m−1
 

Relative permittivity eps/eps_0   

 

MESH 

The mesh was defined on the face of the IPMC and then extended along the 

length of the IPMC. This mesh has several features. It was designed to be fine near the 

Nafion platinum interface. This was accomplished using a distribution boundary 

condition. This condition guarantees that the number of elements in this critical region 

remains constant even when the hole size in the middle is varied. This region is 

considered critical because it is where the largest concentration changes are seen. 

Changing the mesh in these areas can lead to dramatic changes in the overall 



 

 
22 

  
 

 

concentration values. In contrast concentration changes in the longitudinal direction are 

quite small. The concentration changes in this direction and do not contribute to the 

overall deformation changes. As a result the mesh in this direction was designed to be 

coarse. This mesh is seen as an acceptable compromise between accuracy and 

computational time.  

 

 

Figure 9 - Tube Type IPMC Finite Element Mesh 

 

A more refined mesh could be used to more accurately model the concentration 

data near the electrodes. The model however breaks down when coupled with the 

deflection model when extremely fine meshes are used. These models could be 

decoupled and run independently however there would be an associated loss of accuracy. 



 

 
23 

  
 

 

MULTI-PHYSICS 

To perform this simulation three physics packages were simultaneously used: 

electro-statics, transport of diluted species, and solid mechanics [45]. The electro statics 

analysis focuses on the input of the electrical field to the IPMC. This physics package is 

governed by the Poisson’s equation: 

      
  
 

 
1 

 

where V is the voltage,    is the space charge density, and   is the dielectric permittivity. 

During the experiments only the section of the IPMC inside of the fixture is subjected to 

an outside voltage. To replicate this boundary condition in the simulation the tip of the 

IPMC is sectioned off. This smaller section is used to simulate the clamp boundary 

condition and as a result the electric potential is highest at the base of the IPMC.   

With four electrodes there are many possible electrical inputs. The effects of 

different electrical inputs have been investigated in rod type IPMCs [24]. It has been 

found that the maximum displacement is achieved when 3 electrodes are activated with 

the remaining electrode acting as a ground. This configuration is easy to simulate but 

relatively difficult to achieve in an experimental setup. So instead for the initial 

simulations voltage will be applied to just one electrode and the electrode across the 

IPMC will be used as the ground. This replicates the most basic of deflection 

experimental setups.  
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Figure 10 - Finite Element Electro-Statics Boundary Conditions 

 

Initially the entire domain is set to a zero charge value. The one volt electric potential is 

applied as a step input at the beginning of the simulation. Using the electro statics model 

an electric field within the IPMC is calculated and sent on to the second physics package.  

The second physics package used is the transport of diluted species. This package 

is used to describe the motion of charge particles due to the electric field and the fluid 

diffusion forces. The governing equation for this physics model is the Nernst-Planck 

plank equation:  

 
  

  
   (            )    2 

where C is the cation concentration, D the diffusion constant, Z the particle charge 

number,   the mobility, and F the Faraday constant.  
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Using this equation the induced cation concentration changes can be tracked 

within the polymer domain. With the anions rigidly attached to the polymer backbone 

this change in cation concentration causes a counter current to flow in the Nafion domain. 

It is this phenomenon that allows the IPMC to be used as both a sensor and an actuator.  

The transport of diluted species accepts the electric field as an input from the 

electrostatics model and sends back the counter current information. It is in this way that 

Comsol couples the multiple physics packages together.  

 

 

Figure 11 - Transport of Diluted Species Boundary Conditions 

 

The transport of diluted species model is only used within the Nafion domain where the 

hydrated cations are allowed to flow freely [45]. As a result there are no flux boundary 

conditions between the Nafion and platinum domains. Electric current is still allowed to 

flow between the domains but no fluid particles.  
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The last physics packaged used in the simulation is the structural mechanics 

model. The bending in the tube type IPMC is being modeled using a linear elastic model: 

  
   

   
        3 

where ρ is the density, u the deflection, σ the stress, and Fv is the volumetric body force. 

To use this linear elastic model the cation concentration change must be associated to a 

mechanical bending force. This relation has been modeled in several different ways. In 

this simulation the body force will be modeled as a polynomial fit of the space charge 

density [45].  

           
  

4 

Where   and    are experimentally determined constants and    is the charge density. 

The charge density in the IPMC is found using: 

     (    ) 5 

where F is Faradays constant, C the concentration, and    the initial concentration [45]. 

The direction of bending is calculated automatically by examining the concentration 

gradients. In the bending model body force is only generated where there is a 

concentration gradient found. Since there is no fluid motion in the platinum these 

domains provide added rigidity to the simulation. As a result there is a tradeoff between 

adding additional platinum layers to improve the conductivity with the additional 

stiffness these extra layers will create [10].   
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Figure 12 - Solid Mechanics Boundary Conditions 

 

In the linear elastic model the base of the tube type IPMC is considered fixed in 

the X, Y, and Z directions. This represents the compressive effect of the clamp in the 

experimental setup. The rest of the IPMC is allowed to deform freely.   

FINITE ELEMENT RESULTS 

 For the first simulation a 1 volt electric potential will be placed on a single 

electrode and a single ground will be used.  
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Figure 13 - Electro-Statics Results 

 

The electric potential in the cross section of the IPMC can be seen in the figure 

above. Initially the entire domain was set to a zero charge. The electric field is seen 

spreading across the IPMC in a symmetric manner. Due to geometric inconsistencies in 

real samples this will not always be the case. As the simulation progresses the shape of 

the electric field changes and the potential drops near the electrodes become much more 

pronounced. This is believed to be a result of the counter current of the charged ions 

travelling across the IPMC. During the simulation these physics packages are coupled 

and the electric potential information is sent to the transport of diluted species model.  
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Figure 14 - Cation Concentration Levels 

 

Initially there is a consistent 1200 mol/m
3
 concentration value placed across the 

entire Nafion domain. With the addition of the electric field the particles begin to move 

and form a layer of charged cations near the cathode electrode leaving a void of cations 

near the anode. The width of this layer and the maximum concentration value can vary 

greatly depending upon the mesh used in the simulation. It is important during these 

simulations to check the mesh frequently and refine it when necessary. It is this change in 

concentration that causes the bending phenomenon seen in IPMCs. Water and other 

solvents within the IPMC would also be dragged across the Nafion domain however 

these particles are not considered in this analysis. The actual size of the charged particles 

is also not taken into account. There is a point where concentration values would be 
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unobtainable because of the relatively large size of the charge particles. In addition the 

growth of the platinum into the Nafion would impact the overall concentration levels. 

These potential issues will be discussed further in the future work section.   

 

 

Figure 15 - Deformation of the Tube Type IPMC 

 

For the first simulation the bending coefficients alpha and beta will be set to .1 

and .0055 [45]. The figure above shows the total tip displacement with a one volt input. 

The deformation occurs mainly in the section near the base where the change in electric 

potential is highest and therefore the change in concentration is highest. This is also seen 

in experimental setups where the majority of the bending happens at the base.  



 

 
31 

  
 

 

For the simulation a probe was placed at the tip of the IPMC to gather the total tip 

displacement during the simulation. This probe replicates the experimental practice of 

tracking the IPMC tip location and correlating this to the overall deflection. Using this 

displacement information the simulations can be compared against the experimental data.  

 

 

Figure 16 - Simulation versus Experimental Displacement 

 

 As seen in the figure above the Comsol simulation underestimates the 

initially bending seen in the IPMC, but the simulation eventually catches up to the 

experimental data and tracks pretty well. Some suggestions for model improvements have 

been to adjust the liner elastic model to achieve a faster initial bending force at the 

beginning.  
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With the calibrated model IPMCs can now be designed to meet specific size and 

displacement requirements.  With previous flat type IPMCs the design options included, 

ionic polymer type, electrode material, electrode patterning, polymer thickness, electrode 

thickness, and overall width. All of these potential changes impact the IPMC form and 

function. With the tube type IPMC there are now two more design options, the hole size 

and ionic polymer thickness. The choice of these two parameters will also impact the 

overall IPMC function.  

 For the next simulation the effect of the hole size on the overall IPMC 

deformation will be investigated. With this simulation the IPMC diameter will be held 

constant and the size of the hole through the middle is varied. The outer diameter is set to 

1 mm to match a rod type IPMC sample available at UNLV. The hole size will then be 

varied from 0 to .6 mm in diameter.  
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Figure 17 - Constant Diameter Varied Hole Diameter Simulation 

 

For this simulation a 1 volt potential will be placed on a single electrode. The opposite 

electrode will be acting as ground. The simulation will be run for fifty seconds and the tip 

location for each sample will be tracked. The mesh around the hole will be refined for 

each new geometry, but the mesh near the electrode polymer interface will remain the 

same.  
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Figure 18 - Constant Radius Varied Hole Size Deflection Results 

 

With the additional of a very small hole the bending characteristics of the IPMC 

are almost unchanged. The small hole does not significantly change the travel path of the 

cations and also does not have a large impact on the overall stiffness of the IPMC. As the 

hole grows in size and takes up proportionately more of the IPMC the deflection becomes 

significantly delayed. With the large tool holes the concentration gradients take longer to 

become established. By the end of the simulation the IPMCs with larger holes have 

deflected farther than the rod type IPMC. With a large hole through the middle the 

overall stiffness of the IPMC has been decreased.  

In the previous simulation it has been shown that the hole size in the tube type 

IPMC can have a large influence in the overall bending performance. The bending 

performance is not the only design feature that needs to be taken into consideration. The 
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tool size desired also needs to be taken into account. For instance if the desired tool size 

is .6 mm in diameter at its largest point then the hole in the tube type IPMC would be 

sized accordingly. The bending motion of the IPMC can then be altered by changing the 

thickness of the nafion. To simulate this the hole radius will remain fixed while the 

Nafion radius is varied from .4 mm to .6 mm. 

 

   

Figure 19 - Various IPMC Geometries 

 

In this simulation the IPMCs are given a new electrical input with 1 volt placed along two 

electrodes with the other two electrodes operating as grounds.   
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Figure 20 - Tube Type IPMC Deflection with Constant Hole Diameter 

 

As the thickness of the Nafion layer gets smaller the total defection found 

increases. This size IPMC would perform well in situations requiring a large deformation 

with low force applications. The finite element simulation allows the end user to 

determine the tube inner diameter to meet the desired tool size and then adjust the outer 

diameter to obtain the desired displacements. In both of these simulations the models 

were not able to be verified with experimental data. Further study with a wider variety of 

tube type IPMCs will have to be conducted to verify the simulated results.  
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CHAPTER 4                                                                                       

CLOSED LOOP CONTROL 

ELECTRO-MECHANICAL MODELING 

In the previous section a finite element model for designing and customizing tube 

type cylindrical IPMCs was presented. With this model in hand IPMCs can be made to fit 

specific tasks in specialized industries. To utilize these new IPMCs a method for 

controlling the tip location is developed. This is accomplished using an electro-

mechanical model of the tube type IPMC. As seen in previous research the electrical 

properties of an IPMC can be modeled with a lumped RC model [17]. The IPMC is 

described as having a double-layer capacitor created in the boundary between the metal 

electrodes and the ionic polymer. 

 

 

Figure 21 - RC Circuit Model 
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The RC model is verified by performing several electrical tests on the tube type IPMC. 

For the first test a step voltage was applied across the tube type IPMC and the voltage 

and current responses were measured.  

 

 

Figure 22 - Electrical Step Response of IPMC 

 

As seen above the current does not return to zero after the step voltage input. If the circuit 

was purely capacitive then the current should have eventually returned to zero. Since it 

instead has a steady state value there must be a resistor in the electrical model. The 

resistance value can be calculated using the steady state current and voltage values.  
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 For the second electrical test a sinusoidal signal was applied to the IPMC with a 

peak voltage of 2.5 volts. As seen the voltage and current are out of phase with one 

another. In this test the current is leading the voltage which denotes a capacitive circuit. If 

this were a purely capacitive circuit the phase difference would be 90 degrees however 

this is not the case. To model this effect a resistor is placed in series with the capacitor 

leading to the clumped RC circuit model.  

 

 

Figure 23 - Sinusoidal Voltage Input IPMC 
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Using this data the capacitance of the IPMC can be calculated. The complex 

impedance was calculated using a curve fit of the sinusoidal data. Using this curve fit the 

complex voltage and complex current was calculated. The curve fit was accomplished 

using a Matlab curve fitting algorithm at varies input frequencies.   

   | |  (     ) 
6 

   | |  (     ) 
7 

   | |     ( ) 
8 

The complex impedance can be further split into a real and imaginary part. The 

imaginary part called the reactance is only influenced by an inductance or a capacitance 

in the circuit.  In the RC model there is no inductance so the capacitance can be 

calculated from the reactance data.  The capacitance of the tube type IPMC was found to 

be .15 mF which is within the range of expected values for an IPMC [6] .With these 

experimental values the electrical effects of our IPMC circuit can be simulated.  

 Using this circuit model the charge within the IPMC is studied. The movement of 

charge within the IPMC can be modeled using the standard ODE for an RC circuit.  

 
 
  

  
   

 

 
 

 

9 

where R is the resistance, q the charge, V the voltage, and C the capacitance. This 

equation can be solved under a step voltage input which yields: 
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To complete the electromechanical model the electrical model is correlated to the 

macroscopic bending motion. Several methods for modeling the IPMC have been 

discussed [22]. Many of these methods rely upon splitting the IPMC along the length into 

several finite element lengths [1]. This method gets more accurate by increasing the 

number of finite elements used. To effectively use this method multiple points along the 

IPMC length are tracked. Most experiments accomplish this by positioning a camera out 

of the plane of motion and tracking several markers. As a result this method is mostly 

commonly used for a single bending motion [1]. With a biaxial bending IPMC tracking 

multiple points in both bending directions along the side of the IPMC is impractical. As a 

result the curvature of the IPMC will be related to the moving charges instead of the 

overall deformation [18]. The curvature model was first used without a time constant to 

describe the back relaxation and although the IPMC does not deform into a perfect arc 

this is believed to be a reasonable approximation to the deformed state.   

 
  

  
 
 

 
(    ) 11 

Where k is the curvature, V is the voltage, c the saturation curvature at a unit applied 

voltage, and τ the time constant [18]. This equation matches the initial bending well is 

unable to compensate for the relaxation seen in several different types of IPMCs. To 

describe this phenomenon a more general equation is used.    
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Where q is the electric charge,     the coefficient of bending during the initial bending 

phase,    the coefficient of bending during the equilibrium state, and    is the relaxation 

time constant [18].  This model is capable of following the IPMC tip through the initial 

deflection and slow back relaxation. This ability was not replicated in the previous multi-

physics finite element model which did not include the motion of water or other solvent 

particles.  

 Combining this equation with the previous RC circuit model yields an equation 

that relates the curvature of IPMC k to the input voltage V over time t.  

    (
           
     

     ⁄  
  (       )

     
     ⁄     ) 

13 

 

where         and         [18]. Although this equation specifies the curvature of 

the IPMC this is a difficult value to determine experimentally. Instead this curvature 

value will be related to the tip displacement δ.  
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Figure 24 - Curvature to Displacement Conversion [25] 

 

Using some basic geometry the tip displacement can be found [25].  
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  Taking the Taylor series expansion of cosine and approximating to the second order 

terms leads to: 
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Taking this result and relating it to the previous bending equation yields: 
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This equation relates the simple tip deflection to the input voltage to the IPMC base. This 

bending equation is now applied to two bending directions and two input voltages. The 

coefficients for these equations are also lumped together for simplicity [25].  
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To calibrate these equations the coefficients must first be calculated. This is 

accomplished by curve fitting these equations to the basic IPMC displacement 

experiments performed earlier.     
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Figure 25 - Deflection Curve Fit at 1.5 Volts 

 

As a result of the different sizes between the IPMC samples and the uncertainties in the 

IPMC manufacturing process the calibration process must be repeated for each individual 

sample and bending direction. It is also a good practice to re-calibrate the models as time 

progresses to compensate for the changes in the IPMC bending characteristics. 
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Table 4 - Curve Fit Coefficients 

Name Value 

L 23.18 

Ax 0.018333 

ax 0.000925 

Bx -0.00214 

bx 0.157272 

Cx -0.0162 

 

CONTROLLER DESIGN 

Now that a full electromechanical model has been developed the transfer function of this 

model is derived. The outputs of the model are the X and Y deflections. The input of the 

model will be set as a step voltage input for the first simulations. First the Laplace 

transform of the displacement equations is taken [25]. 
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 Secondly the Laplace transform of the step input voltages are taken. 
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Combining these equations yields the open-loop transfer functions for the IPMC 

deflection under a step input [25].  
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The first test performed was to simulate the open loop response of a 1 volt step 

input along the x axis. This simulation is preformed to validate the transfer function’s 

accuracy and ensure that no modeling errors have occurred.  

 

 

Figure 26 - Open Loop Simulation Schematic in Matlab Simulink 

 

For the simulation two control systems are proposed and advantages of each are 

discussed. The first control system is a standard PI controller. The experimental setup 

uses an edge detection algorithm to locate the IPMC tip. This method produces a jumpy 
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signal that causes quickly changing position data. With the inaccuracy in the 

experimental location of the IPMC tip it was decided to not implement a derivative 

controller.  The controller was implemented in the Simulink environment and tested with 

several transfer function coefficients representing the various tube type IPMC samples. 

 

 

Figure 27 - Closed Loop PI Controller 

 

The proportional and integrative gains were tuned to provide a fast response and 

limit the long term errors in the models. The proportional gain Kp was set to 34 and the 

Ki gain was set to 93 for this simulation the position and error are reported in mm. For 

this initial simulation the IPMC will be asked to hold a X position of .3 mm.  
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Figure 28 - Deflection and Voltage Simulation Data 

 

The error tracking performance of the system is quite good. There is a small 

overshoot of the desired trajectory but the time response acquires the desired value within 

a few seconds. In order to provide this fast response the voltages seen are initially quite 

high. The high voltage levels could be potentially dangerous to the IPMC so saturation 

levels will have to be implemented during the experimental trials. After the initial peak 

the voltage stabilizes and begins to rise again to counteract the relaxation of the tube type 

IPMC.  

The second control law can be expressed by the following equation: 

               
25 

Where     is the steady state voltage, e the error,    the proportional gain, and    the 

integral gain. This control law relates the maximum tip displacement to a steady state 

voltage needed to achieve this deflection. The displacement results for voltages ranging 
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from .5 to 2.5 volts were plotted and a curve fit relating the input voltage to the maximum 

displacement was calculated.  

 

 
Figure 29 - Maximum Displacement Correlated to Voltage 

 

The desired location is taken and translated into a steady state voltage signal 

needed to obtain that distance. This new control law is then simulated using the same 

tests in Matlab Simulink 

y = 6.2156x3 + 0.5066x2 + 1.5725x 
R² = 0.9638 

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

V
o

lt
ag

e 
(v

) 

Distance (mm) 



 

 
51 

  
 

 

 

Figure 30 - Control Law Simulation for Steady State Voltage 

 

As shown in the figure above the performance of the two control laws is nearly 

identical. The plotted steady state voltage makes very little difference in the actual 

performance of the system. The given steady state value gets easily overrun by the PI 

controller values.  There is also a computational cost for implementing this more complex 

system. The curve for calculating the needed voltage values would also have to be 

extended to negative desired deflection values. This would further expand the 

computational resources needed to implement this control law. As a result the more 

simplistic first control law will be used. 

The control law chosen is extended to two desired trajectories X and Y position. 

This simulation will be used to track a circular trajectory with IPMC tip. This trajectory 

will then be experimentally studied and the results will be compared. While running these 

simulations the voltages used will be carefully studied. With the actual IPMC large 

voltages can cause electrolysis within the sample and potentially damage the polymer 
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itself. As a result the voltage has been limited in the experimental setups to 1.5 volts. This 

restriction will be replicated in the simulations by saturating the voltage output of the PI 

control law at 1.5 volts.  

 

 

Figure 31 - Circular Simulation with 1.5 Volt Saturation 

 

Above is the Matlab Simulink used to simulate the circular trajectory and IPMC 

tip following. The time constant for the circle trajectory is varied to match the 

experimental setup as best as possible. The direction of rotation has also been adjusted to 

match the experimental data. The radius of the circle has been set at .2 mm. With this 

radius the only point at which the voltage saturation should occur will be on the initial 
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push to move the IPMC from the origin to the circular trajectory. With the 

inconsistencies in the actual IPMC samples it will be a better test if the radius is kept 

within easy reach of the IPMC at the given voltage saturation levels.  

 

 

Figure 32 - Simulation of circular trajectory following 

 

As seen above the IPMC simulation follows the circular trajectory quite well. 

There is a slight overshoot as expected from the previous simulations. The maximum 

displacement of the IPMC at 1.5 volts is actually greater than .2 mm so the overshoot is 

still occurring. The voltage saturation also allows a greater level of error to build up in 

the simulation then when no saturation is used. This error causes the sharp corner seen in 
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the above simulation. This simulation result will be compared against real world data in a 

later section.  

EXPERIMENTAL SETUP 

  With the simulation results in hand the proposed control laws were implemented 

in an experimental closed loop setup.   The experimental setup includes a Labview PXI 

1042Q box where an edge tracing algorithm is used to locate the IPMC tip location. This 

data is then fed into the PI controller which produces two sets of control voltages. The 

voltages are sent through a pin box to two HA-151 Potentiostat/Galvanostats connected 

to the IPMC. An image of the IPCM is then captured by an STC-630 CCD camera and 

fed back into the Labview VI.   

 

 

Figure 33 - Closed Loop Control Experimental Setup 
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The Labview PXI bus has several interchangeable slots allowing this device to be 

customized to many applications. The bus has an on-board NI PXI-8196 embedded 

computer running Windows 7. For these experiments the NI PXI-1411 Image acquisition 

and NI PXI-7833R Reconfigurable I/O modules are used. The PXI-1411 module has a 

BNC connector for the video source capable of 30 frames/s of video in NTSC format. 

The PXI-7833R module has 8 configurable analog output channels with a voltage range 

of +/- 10 volts. The module also has 8 configurable analog input channels with an input 

range of +/- 10 volts. This module is also a field programmable gate array (FPGA) 

allowing for basic calculations to be performed on the module itself. Once the desired 

output voltages are calculated the PXI box sends two control voltages through the pin box 

to the two potentiostats.  
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Figure 34 - Labview PXI-7833R FPGA Assignment 

 

 The Potentiostats are each attached to the IPMC. There is one Potentiostat 

controlling the X voltage and the other controlling the Y voltage. Both boxes are operated 

in Potentionsatat mode with the external control on. These boxes receive the control 

voltage signal before amplifying it and sending the voltage to IPMC. The boxes then 

record the voltage and current found across the IPMC and send these signals back to the 

Labview PXI box.  

 The IPMC is secured in a clamped fixture which is placed on a micromanipulator 

table. The micromanipulator has a built in microscope and the ability to control the 

motion of the table and the microscope. This allows for easy focusing and centering of 

the IPMC tip in the image field. The microscope provides a ten times image 

magnification and is equipped with a CCD camera sending a live feed back to the 

Labview PXI box. To calibrate this camera a grid with known spacing was placed 
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beneath the microscope. The spacing was tested to find the conversion factor between 

pixels and mm. It was found that there are 108 pixels per mm with very little image 

distortion along the edges.  

In order to accurately locate the IPMC tip an edge detection algorithm is 

programmed into the Labview PXI box. To get a more stable signal a white marker is 

placed on the tip of the IPMC and the background is blacked out to provide the greatest 

contrast possible. The camera then captures this image and sends the file back to the 

Labview PXI box.  The signal comes in as a 644X482 32 bit RGB image file at 30 frames 

per second. Color images are much more difficult to detect contours  in so a single color 

pane is extracted. This color pane is a selectable parameter and is chosen to provide the 

greatest imagine clarity. By extracting a single pane the signal is reduced to an 8 bit 

image file. 

 This file is then sent to a contour extraction algorithm. The algorithm looks for a 

change in pixel values over a user defined threshold. This value is set as high as possible 

without causing the algorithm to lose the contour. The higher the threshold value is the 

less noise is seen on the signal. The search is conducted through the region of interest 

(ROI) searching for the longest continuous contour. When found the algorithm sends the 

x and y coordinates of every point in the contour on to the next step. The next block takes 

the contour points and creates a best fit circle to match the data. The center point of this 

circle is then taken to be the tip location of the IPMC.   
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Figure 35 - Labview Contour Extraction VI 

 

In order to minimize the computer resources used the contour tracking algorithm 

does not search the entire screen every time. For the first iteration the entire screen is 

used to locate the largest possible contour. The center point of the best fit circle is then 

calculated. Using this position a new ROI is calculated centering on the previous center 

point. With the relatively slow bending speed of the IPMC compared to the image 

acquisition rate this ROI can be made quite small. By cutting down on the search area the 

overall computational resources used to perform this image tracking are  greatly reduced. 
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Figure 36 - Labview Image Acquisition Region of Interest 

 

CLOSED LOOP EXPERIMENTS 

Building from the previous Matlab Simulink simulations the experimental control 

laws are built in Labview. As a result of the simulations a PI control law will be used 

without separately calculating a steady state voltage value based upon the desired 

location. The control law takes in the current IPMC tip center which has been smoothed 

out by averaging the previous three values. This should take some of the noise out of the 

vision acquisition process. 

The desired location is then input either by the user or a computer generated 

trajectory. The position errors are independently calculated and displayed to the users. 

The PI controller gains are programmable and are input by the user on the front panel. 

The derivative control was tested however with the noise of the vision acquisition 

software the system became unstable with large voltage swings caused solely by errors in 
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the circular curve fit calculation. The Labview simulation uses pixel locations instead of 

millimeters. The simulations used the displacement and therefore the error in millimeters. 

As a result the gains from the simulations were converted into the equivalent gains in 

Labview. These gains were then experimentally varied and validated in the following 

simulations.   

 

 

Figure 37 - Labview PI Block Diagram 

 

For the initial tests the IPMC tip is asked to follow a computer generated circular 

trajectory. This should test the mobility range of the IPMC as well as the ability to 

maintain a desired location. The tests are conducted in open air with the IPMC placed 

back in deionized water in-between each test.  Each test lasts no more than two minutes 

to avoid drying out the tube type IPMC. The radius of the circle trajectory is varied while 

the voltage is limited to 1.5 volts. 
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For the test the IPMC is placed in the fixture with a white marker at the tip. The 

background is then blacked out using paper. The Potentiostats are turned on and put into 

external control mode. The IPMC is centered in the camera field of view and the current 

center point is input into Labview to zero out the control law. The trajectory generator is 

activated and the IPMC is asked to immediately track to the circle. This combines a step 

position input to test the time response and the circle following to test the error values in 

the control law. 
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CLOSED LOOP RESULTS 

 

 

Figure 38 - Experimental Circle with Radii .1 mm and .15 mm 
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Figure 39 - Experimental Circle Following Data Various Circle Sizes 

 

The IPMC was run through several tests with the tip position following a 

computer drawn circular algorithm. The diameter of the circle was varied from .2 mm to 

.4 mm. When the IPMC tip first tracks to the circle a small overshoot is seen. This 

replicates the results seen in the Matlab simulation. This overshoot is not excessive and is 

a tradeoff for the speed at which the IPMC tracks the desired trajectory. In these tests the 

voltage limit was only reached during the initial bending motion and the voltages stayed 

below 1.5 volts for the remainder of the test.  

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Data



 

 
64 

  
 

 

 

Figure 40 - Simulation Versus Experimental Electrical Data 

 

The figure above is a comparison between the .2 radius circle experimental 

electrical data and the simulation data presented earlier in the chapter. Both the 

simulation and the experimental voltages are limited at 1.5 volts. This voltage limit is 

reached in both cases with the initial motion of the IPMC. The IPMC then follows around 

the circle where the voltage data remains relatively smooth. Overall the previous 

simulation has done a very good job at predicting the voltage needed to create this 

motion.  A small deviation in the experimental data is seen around the twenty-five second 

mark where the IPMC has made a small course correction. It is these unexpected 

anomalies that the IPMC simulations are not able to anticipate.  

For the next test the circular trajectory diameter will be extended to .6 mm. This is 

near the bending limit of the IPMC sample at 1.5 volts. As a result the voltage limit is 
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anticipated to have a greater impact. An overshoot of the trajectory in this case is unlikely 

because the bending rate of the IPMC at this distance will have slowed.   

 
 

 

Figure 41 - Figure 8 Closed loop control verification (top) circular path follow (bottom 

left) x position (bottom right) y position 
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As seen above the controller is performing well, however the IPMC has some 

trouble following the circle when the voltage levels are close to their limits.  This 

demonstrates that the IPMC is close to its bending limit at this voltage level. To further 

investigate this phenomenon the electrical data will be studied.   
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Figure 42 - Electrical Data from .3 mm Radius Circle Following 
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As seen in the above figure the control law reaches the maximum voltage input on 

several occasions. The first is when the IPMC is initially bending towards the desired 

trajectory. This is to be expected because the errors are large and the control law is trying 

to compensate as quickly as possible. The other occasions are when the IPMC is 

approaching its maximum X or Y value. This is when the IPMC is asked to bend the 

farthest and thus requires the most input voltage. As the chart demonstrates this 

phenomenon is not seen in all occasions but is biased towards one bending direction.  

When asked to reach the opposite maximum the voltages seen are quite low. This 

difference has many explanations. One explanation is that the IPMC is not perfectly 

symmetric. As a result of the manufacturing process the IPMC diameter varies along its 

length as well as the electrodes themselves being uneven. These manufacturing artifacts 

would give the IPMC a preferential bending direction from the beginning.  

The second explanation is that the IPMC was not perfectly centered or relaxed 

when the experiment was initiated. This inaccuracy would give the IPMC an artificial 

zero point that it would actually have to actuate in order to achieve. This slight initial 

bending would then bias the desired locations for the remainder of the experiment. The 

reality is that both explanations probably played a part. This experiment was designed to 

be at the edge of the IPMC’s operating ability at 1.5 volts. As a result these limits were 

reached and the IPMC still performed well.  

The IPMC could be operated at a higher voltage level however bubbles were seen 

when activating the IPMC at a max voltage of 2 volts while in water. When additional 

samples are available a fatigue and damage study should be conducted. The control law 
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seems to be able to follow the IPMC tip through a computer input circle quite well. 

Although this control system is accurate the method for control input is extremely 

restrictive.  
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CHAPTER 5                                                                          

IMPLEMENTATION  

The incorporation of functional IPMCs into practical applications is the overall 

goal of this research. So far a method for designing IPMCs has been explored using the 

finite element method. The ability to accurately control the tip location has also been 

demonstrated using the designed control law. With these tools IPMCs can be adapted to 

an array of real world devices and applications. In order to effectively implement this 

new technology into conventional devices a few additional attributes have been discussed 

and examined.   

MOUSE CONTROL 

As with any new technology there is a desire to decrease the learning time 

associated with the introduction of a new product in addition to lowering the overall cost. 

As a result a system was implemented to allow the user to control the IPMC tip location 

via a standard computer mouse. This allows for a flexibility of motion as well as an input 

device that the majority of people are already familiar with. This same input can be 

extended to laptop touchpads and tablet touchscreens. The idea is that the IPMC solution 

could be plugged in through a standard USB connection and operated on a conventional 

laptop with no expensive new equipment necessary or lengthy training sessions.  

This system is also implemented using a Labview VI. The first problem is getting 

Labview to accept the mouse motion as an input. To do this the device drivers are 

installed into the Labview directory and imported into the project folder. Through a 

specialized VI the location of the mouse pointer and the button status can then be found. 
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An intuitive control system is then set up. A graphic circle is drawn on the Front Panel of 

the Labview program and the pixel location of this circle is calculated. When the mouse 

is within the circle an indicator light is switched on and a flag is set to true. When the left 

mouse button is depressed a second indicator is switched to true. Only when both the 

mouse is within this circle and the left button is depressed is this location sent to the 

control law. When one or both of these indicators are off the IPMC tip location is set to 

the origin.  

 

 
Figure 43 - Block Diagram Mouse Motion Control VI 

 

The mouse pointer location can now be tracked within a circular radius on the 

screen. This mouse motion must be translated into control voltages. The conversion 

factor depends upon the maximum voltage set within the VI. The outer radius of the 

circle is correlated to the maximum tip displacement at the maximum allowed voltage. 

This distance is varied linearly as the mouse is moved to the center of the circle. The 

Labview VI “FrontPage” can be seen below. 
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Figure 44 - Labview User Interface 

 

Table 5 - Labview Control Elements 

1 Vision Acquisition and Region of Interest 

2 Current Monitor 

3 Voltage Monitor 

4 Center Point Input 

5 Controller Gains 

6 Mouse input 
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In addition to providing a familiar interface the mouse interaction provides a vast 

flexibility of motion for the user. There is no need to translate the desired motions into a 

complex code; the user need only move the mouse and the IPMC tip will respond. With 

this flexibility any shape is now possible. For the next test the IPMC is moved through 

arbitrary trajectories.  

 

 
 

 
Figure 45 - Closed loop mouse control (top) figure 8 path follow (bottom left) x position 

(bottom right) y position  
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As seen the control system still follows the trajectory quite well however, there 

are a few potential issues. The first is that it is very possible to outrun the IPMC response 

time. The gains have been set up to provide the fastest response possible without just 

reaching the voltage limit constantly. As a result it is necessary to move slowly to allow 

the IPMC time to adjust. This will become a frustrating issue that can be resolved in 

several ways. The first is to use a smaller sized IPMC that will respond faster. The second 

is to allow a higher voltage to ramp the IPMC to the desired location. The next potential 

problem is the variance in location when loading the IPMC into the fixture. The control 

law still needs to be zeroed out at the IPMC tip starting location. When the IPMC is 

actuated and then released the IPMC does not necessarily return to the initial starting 

position. Since all of the motion is generated by a fluid motion there is not a rush of ions 

to bend the IPMC back to the initial position. Instead the IPMC will relax back to near 

center. If the IPMC is not in its relaxed state when the tip location is zeroed out it will 

have a tendency to deform better in a single direction. This can influence the overall error 

in the system. The next problem addressed is the ability to connect IPMCs to 

conventional devices.  

PERMANENT CONNECTIONS  

In order to be effectively utilized in conventional devices the IPMC must be able 

to be permanently installed into a complex device. In practice the IPMC would not be 

placed and then removed from its fixture repeatedly. The chance for damage and cross 

connection would become too high, and quality position control could not be guaranteed. 
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Instead the IPMC would be permanently mounted and the electrodes would be connected 

to the device control system. To make these connections techniques for soldering to an 

IPMC were investigated [46]. As a starting point a handmade wire soldering was 

performed on the IPMC. First a small bead of solder was placed on the base of each 

platinum electrode. Then the connection wire was tinned and placed up against the solder 

bead. Heat was then applied to the outside of the connection wire and a solid connection 

was established. Using this method a minimal amount of heat was applied to the IPMC. 

One of the most important requirements while making permanent electrical connections 

is to maintain the separation between the electrodes. If these electrodes are cross 

connected the IPMC could no longer be effectively actuated.  

 

 

Figure 46 - Tube Type IPMC Soldering 

 

The process of soldering the IPMC by hand is quite arduous and is not meant to 

be a permanent solution. To manufacture these devices at a large scale a new method 
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must be developed. Towards this end attempts were made to solder these connections 

using a micro soldering station. UNLV has two K&S 4500 Series manual bonding 

stations in the clean room in the SEB building. Although these stations have been kept 

clean they haven’t been used in five years. These stations use 50 micron diameter gold 

solder and soldering is performed underneath a microscope to accurately place the solder. 

The two stations operate in slightly different ways. The 4526 station uses a metal wedge 

to place the soldering line. The solder connection is made through three elements; the 

heat provided by the workholder station, the pressure through the wedge, and an 

ultrasonic vibration. The 4522 wire station uses an electric spark to form a small ball of 

solder at the end of the soldering line. This ball is then used as a base to create the 

pressure needed to perform the connection. 

 

 

Figure 47 - Manual Wire Bonding Station 
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Both soldering stations were brought up to a point where they were able to 

perform bonds onto the test pieces provided by the manual bonder company. These test 

pieces are ceramics plated with gold in various places. Before attempting to solder to the 

IPMC using these stations the IPMC must first be dried out. The IPMC is then loaded 

into the station using a plastic fixture designed for this purpose. Many attempts to 

perform a soldering connection were made. The full range of pressures and contact times 

were used as well as raising the workholder temperature. The IPMC seems to flex out of 

the way of the soldering wedge and no permanent connection could be established. 

Several tests have been suggested. The first is to chemically plate a layer of gold on the 

outside of the platinum during the manufacturing process. The second is to use an epoxy 

to create the initial bonding layer. 

The second implementation needed is a connection line that feeds into the hole in 

the tube type IPMC. One of the main applications for this type of actuator is as an active 

catheter. For this application the IPMC would replace the conventional plastic tip of the 

catheter line. This line is used to guide tools such as stents to specific locations or used to 

administer fluids directly to the needed area. To function in this arena the IPMC needs to 

be able to be permanently attached to a plastic line. To perform this connection the tube 

type IPMC was aligned to a plastic tube using a centering pin. This pin was placed 

through the tube and the hole in the IPMC to ensure that the two were aligned. An epoxy 

was then applied to both sides of the connection joint and the centering pin was removed.   
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Figure 48 - IPMC Connected to a Plastic Catheter Line 

 

 Although this connection was successfully established with limited tube type 

IPMCs available no tests were performed to characterize the bond. After the connection 

was made the IPMC and the connection wires were encased in a heat shrink plastic lining 

to bond the entire system together. Electric connection tests were performed to test the 

bonds and ensure that no cross connections had been established. Although the electrical 

connections continued to be isolated limited IPMC bending was seen. 
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CHAPTER 6                                                                             

CONCLUSION 

The objective of this work was to provide a framework for the integration of tube 

type IPMCs into conventional devices. To this end two approaches were taken; the first 

being a finite element model and the second an electro-mechanical based control law. 

The finite element model coupled three physics packages to model the flow of cations in 

the presence of an electric field within the IPMC and transform this data into an 

associated mechanical bending force. Several mesh and bending coefficients were used 

until the simulation data matched the experimental deflection data. Using this model 

several simulations were performed to test the effects of tool hole size and Nafion 

thickness on the overall performance of the IPMC. With these results tube type IPMCs 

can be tailored to fit real world tasks.   

The electro-mechanical model was based on an RC circuit and a set of differential 

equations linking the motion of charges in the IPMC to the change in curvature. It was 

found that this model accurately reflects the open loop response of the IPMC to a step 

voltage input. Using this model a PI controller was designed and implemented in the 

Labview environment. After several experiments it was found that the control can be 

used to accurately follow a circular trajectory with the IPMC tip. The control law was 

then extended to accept the users mouse inputs as the desired trajectory. A mouse was 

chosen to provide a familiar input device to potential users and to hopefully cut down on 

training and equipment costs. Several attempts to make permanent connections to the 

IPMC were made. A successful by hand soldering was accomplished with the isolation of 
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the electrodes maintained.  Attempts to use the K&S manual wire bonding stations were 

made however no permanent bonds could be achieved. The IPMC was able to be placed 

in-line with a conventional catheter tube. Control lines were wrapped around the outside 

and the entire system was encased in a plastic heat shrink line. 

FUTURE WORK 

There are several areas of the models that could be improved. The first is the 

overall concentration values found in the Comsol simulations. In the simulation the 

cations are allowed to be as closely packed as possible without regard to ion size or 

possible interference from the platinum growth.  Some research has explored the 

possibility of a boundary layer formation defining where the area where there is still 

some platinum growth and a large cation concentration [47]. This model also includes a 

packing variable that is related to the size of the actual cations used. The initial deflection 

in the simulation also needs to be improved. The simulation shows an initial slow 

bending response where the actual IPMC bends quite rapidly at the beginning. 

Several improvements in the electro-mechanical model can also be made. 

Although the system performs very well as a closed loop system when the system is 

operated in an open loop configuration the performance is very poor. This highlights a 

problem or at least an oversimplification in the electro-mechanical model. In many 

applications it will be difficult to obtain live tracking information of the IPMC tip 

location. In these applications the IPMC needs to be able to reliably hold its position 

without a constant feedback. The overall bending magnitude of the IPMC also needs to 

be addressed. Most of the samples used were nearly two millimeters in diameter. This is a 
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large diameter for an IPMC. Tests will need to be conducted with actual samples of 

varying diameter to see if the bending characteristics can be significantly improved.  

Work on soldering to a tube type IPMC also needs to continue. Several ideas to 

improve upon the methods used have been suggested including adding a layer of gold 

during the IPMC manufacturing and the potential uses of epoxy in establishing 

permanent connections. With additional flexibility and reliability IPMCs can make a 

large contribution to society. 
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