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Chemical Mechanical Planarization: Study of Conditioner Abrasives and Synthesis of 

Nano-Zirconia for Potential Slurry Applications 

Chhavi Manocha 

ABSTRACT 

Chemical Mechanical Planarization (CMP) has emerged as the central technology 

for polishing wafers in the semiconductor manufacturing industry to make integrated 

multi-level devices. As the name suggests, both chemical and mechanical processes work 

simultaneously to achieve local and global planarization. In spite of extensive work done 

to understand the various components and parameters affecting the performance of this 

process, many aspects of CMP remain poorly understood. Among these aspects of CMP 

is the role of abrasives in the processes of conditioning and polishing.  These abrasives 

are present in the chemical slurry between the wafer and the pad for polishing and play an 

important role during the conditioning to regenerate the clogged polishing pads. 

This thesis has focused on the study of abrasives, both in conditioning and 

polishing. The first part of the thesis concentrates on the effect of abrasive size for 

conditioning purposes. Diamond is being widely used as an abrasive for conditioning the 

polishing pad. Five different sizes of diamonds ranging from 0.25μm to 100μm were 

selected to condition the commercially available IC 1000 polishing pad. Scanning 

Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) analysis were carried 
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out on the pad to study the effect of the abrasive size on the pad morphology. In-situ 

‘coefficient of friction’ was also monitored on the CETR bench top Tester. The final 

impact was seen in the form of surface defects on the polished copper wafers. As pad 

morphologies resulting from different conditioning affect contact areas, the second part 

of the thesis focuses on developing a simple method to quantify the area of contact 

between the wafer and pad using optical microscopy. Optical images that were obtained 

were analyzed for the change in contact area with the change in operating conditions. 

Finally, the third part of the thesis details the synthesis and characterization of nano-

zirconia for potential slurry applications. Nano-zirconia was synthesized using the plasma 

route and then characterized using different analytical techniques like TEM and XRD. 

These nanoparticles were then used to make abrasive slurry for oxide CMP and the 

polished wafers were analyzed for surface defects. 
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Chapter 1  

Introduction and Background 

To enable superior IC performance, it is critical to reduce device dimensions. As 

the devices become smaller several challenges arise in their design and fabrication. After 

fabrication of the devices on the silicon substrate, metallic interconnects are used to 

interface these devices with each other and to the outside world. At the silicon level, the 

devices are interconnected using metallization, which is referred to as the first level of 

metallization. The connections between the device network and the outside world are 

referred to as the second level of metallization. In order to successfully build a multilevel 

metallization structure, the surfaces of each previous metal layer has to be perfectly flat. 

In the absence of planarity, the irregular surfaces and uneven thicknesses lead to an 

inefficient pattern transfer (Figure 1.1). A planarized surface promotes homogeneous 

thickness of metal layers and results in lowering the level defects and the electro 

migration effects. Thus, planarization plays an important role in the semiconductor 

industry.  

1.1. Planarization techniques 

Wafer planarization may be classified into three categories of planarity. These are 

summarized below (1, 2): 
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Surface Smoothing: Feature corners are smoothed and high aspect ratio holes are filled as 

in Figure 1.2.  

1. Local planarity: Surfaces are flat locally, but the surface height may vary across 

the die as in Figure 1.3.  

2. Global planarity: The surface is flat across the entire stepper field as in Figure 1.4.  

The requirement for surface smoothing and local planarity comes from metal step 

coverage, which is defined by the ratio of thinnest point in metal film to the thickest point 

in metal film (3). The requirement for global planarity increases when the circuit 

dimensions reach sub-0.5µ. Several techniques exist to achieve local and global 

planarization. Different   planarization processes are seen to achieve different degrees of 

planarity. Some of these techniques are discussed below.  

 Doped Gas Reflow: One of the first planarization techniques used in the IC 

industry involved the synthesis of low pressure chemical vapor deposited (LPCVD) 

boron and phosphorous doped silicon oxide (4, 5). This was used for the planarization of 

the first layer of dielectric. Better smoothing of step corners could be achieved by doping 

SiO2 with boron and phosphorous.  

  Spin Etch Planarization: Spin Etch Planarization is based on the principles of 

controlled chemical etching of metals (6). In this process, the wafer is suspended 

horizontally on a nitrogen cushion above a rotating chuck. Locking pins are used on the 

edge of the wafer to locate the substrate laterally. Wet etch chemistries are dispensed into 

the wafer, as it is being rotated by the chuck. Using an appropriate etching solution, the 

planar surface is achieved while the wafer is being rotated and excess Cu is removed.  
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Spin on Deposition: In this process, the base catalyst and necessary organic 

additives are mixed at room temperature to prepare the precursor solution for the material 

to be deposited. Pretreating of the wafer surface is conducted in order to promote sol 

spreading. The sol is dripped on the wafer while it is spinning. The wafer is then rinsed, 

spun dried, baked, and then cured. It results in local planarization (7). 

1.2. Chemical Mechanical Planarization 

As discussed earlier, the process of smoothening and planing a surface is referred 

to as planarization. When the smoothening and planning of surfaces is aided by chemical 

and mechanical forces, it is referred to as Chemical Mechanical Planarization (CMP).  

Chemical Mechanical Planarization was introduced by IBM  to facilitate planarization of 

inter-level dielectrics (8). In addition, CMP is also used to polish multiple materials in a 

Damascene process. Chemical Mechanical Planarization or CMP is the method of choice 

for achieving local and global planarity in the wafers. As the name suggests, CMP is a 

combination of chemical and mechanical processes working at the same time to achieve 

planarization. Further, the ongoing chemical reaction is seen to enhance the mechanical 

removal rate. The key to achieving planarity is maintaining high removal rate at high 

surface features and low removal rates at low surface features (9).  

1.2.1. Working of the CMP process 

Figure 1.5 shows the schematic of the CMP process. The CMP polisher consists 

of a bottom rotating platen on which a polishing pad is fixed. The top platen holds the 

wafer to be polished, face down on the pad. During the polishing run, the wafer comes in 

contact with the pad surface with a set downforce. Both the platens rotate during the run. 
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Polishing slurry consisting of abrasive particles and other necessary chemical constituents 

are fed to the pad surface to carry out the polishing where the pad comes in contact with 

the wafer being polished. The abrasive slurry has several functions. It provides the 

necessary chemical input for the planarization process, acts as a lubricant to maintain the 

temperature caused due to the friction and also transports the particles across the 

polishing surface. The pad used for polishing is seen to glaze under the effect of 

polishing. To get higher removal rates, the pad needs to be regenerated. This is done by 

conditioning, which is the second stage of the CMP process. The rotating polishing pad is 

abraded using a conditioner which is an abrasive disk that opens up the clogged pores of 

the pad.  

The polishing mechanism can be explained on the basis of the contacts occurring 

in the system. The chemicals in the slurry, on contact with the wafer, soften the wafer 

surface, while the abrasives in the slurry remove this layer. In the absence of the 

mechanical fraction, the chemical effect is limited.   

1.2.2. CMP mechanism 

The polishing takes place at points where the wafer surface comes in contact with 

the surface of the pad, which in turn holds the slurry particles. This mechanism is best 

described by the Preston’s law, which states that the material removal rate is directly 

proportional to the applied pressure and relative velocity of the particles(10).   

The mathematical expression for the law is given by the equation shown below. 

                                           RR = KP.P.V    

RR = Removal rate;                                             P = Applied pressure;                                  

   V = Velocity;                                                    KP = Preston’s constant; 
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Preston’s equation is an empirical law. It shows a linear dependence of removal 

rate on pressure and relative velocity. Preston’s constant accounts for the other chemical 

and physical parameters involved in polishing. The Polishing pad surface gets more 

compressed by the raised wafer surfaces, which results in higher pressure giving higher 

removal rates.  

1.2.3. Input and output variables in CMP 

The CMP process is quite complicated and involves a large number of input and 

output variables. The different output variables include polish rate, planarization rate, 

surface quality, surface damage, and feature size dependence.  

1. Polish Rate: The polish rate is defined as the ratio of the thickness of the film 

removed to the polish time. Its units are either mm/min or µm/min. Higher polish 

rates imply shorter polish times and are hence, desirable. However, controlling the 

process is difficult when the polish rates go higher.  

2. Planarization Rate: Planarization rate is defined in terms of the time taken to 

reduce the topography of a surface to the desired level.  

3. Surface Quality: The expected yield and reliability of the interconnections are 

dependent on the surface quality. The surface quality can be improved and 

roughness minimized by properly balancing the chemical and mechanical 

components of the CMP process.  

4. Surface Damage: Damage may occur to metal films, which directly affects the 

yield and reliability of the interconnections. Structural damage may include 

scratches, delamination of the film interfaces, introduction of impurities in the 

film, etc. 
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In case of input variables, four broad categories can be used: Wafer, slurry, polishing 

pad and operating conditions. 

1. Wafer: The wafer to be polished determines the other associated input variables 

for polishing. The wafer surface can be made up of one material or can be a 

combination of more than one material. Polishing of the top film is affected by the 

mechanical properties of the films below it. Other factors such as film stress, 

microstructure and hardness also play an important role in achieving planarization 

(11). Physical parameters such as wafer curvature or size and mounting 

techniques also affect the wafer polishing. These factors work by the way of 

influencing the slurry transport and the distribution of the applied load.  

2. Slurry: The slurry is a combination of a chemicals and abrasives. These 

components are selected on the basis of the material being polished as different 

materials show different chemical interactions. The chemical part of the slurry 

consists of buffering agents to maintain the pH, oxidizers to increase the oxidation 

rate, and complexing agents to increase the solubility of the film being polished. 

The nature and concentration of these chemicals contributes to the etch rate 

during polishing. The slurry abrasives constitute the mechanical aspect of the 

slurry by causing abrasion. Chemical and physical properties of these abrasive 

particles such as nature, size, hardness, and concentration affect the removal rate 

and the surface damage during polishing. 

3. Polishing Pad: The polishing pad supports the wafer being polished while 

transporting the slurry across its surface. Some of the important pad properties 

such as fiber structure, compressibility, hardness, modulus, thickness, pore size 
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and distribution, and chemical durability determine the polishing efficiency as the 

pad is constantly influenced by the other input parameters. 

4. Operating Conditions: These refer to the experimental conditions such as 

temperature, pressure, platen velocity for the pad and wafer, and slurry flow rate. 

These parameters again, are controlled in coordination with the other input 

parameters, mainly for optimizing the process. 

1.2.4. Relation between the input and the output variables 

As stated earlier, the output variables are the end-representation of the chosen 

input variables. Extensive research has been done to better understand the relationship 

between these two sets of variables. To give an example, some of the interaction results 

are discussed here keeping removal rate as the output parameter of interest. 

1. Removal rate, surface defects and abrasive size (12): At low pressures and 

velocities, the removal rate is seen to be independent of abrasive size while at 

higher values of pressure and velocity, larger abrasive size shows higher removal 

rates as illustrated in Figure 1.6. Surface defects increase with an increase in the 

abrasive size. These surface defects are seen in terms of micro-scratches on the 

wafer surface. 

2. Removal rate and slurry flow rate (13): At constant values of P x V, with an 

increase in the slurry flow rate, the removal rate is seen to decrease as shown in 

Figure 1.7. This has been explained on the basis of a higher flow rate producing 

more cooling. 

3. Removal rate and pad roughness (14): Conditioning is an important regeneration 

process in CMP. In the absence of conditioning, the roughness of the pad is seen 
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to decrease. As a consequence, the removal rate, which is related to the pad 

roughness, is also seen to decrease.  The results can be seen in Figure 1.8.   

1.2.5. Advantages and disadvantages of CMP 

CMP is a suitable process to achieve global planarization. Different materials can 

be planarized using CMP. This implies that a wide range of wafer surfaces may be 

planarized using CMP. A major advantage of using CMP is that multiple materials can be 

polished in the same cycle. Use of CMP helps in reducing severe topography, which 

facilitates the fabrication of IC components with tighter tolerances and design rules. CMP 

also provides an alternate method to etch metals. This helps in overcoming difficulties 

associated with etching some metals and alloys and also eliminates the need to plasma 

etch. More importantly, CMP is a subtractive process and helps in removing surface 

defects. No hazardous gases are used in CMP process unlike dry etching.  

One of the major limitations of the CMP process is that it is a relatively new 

technology for wafer planarization. Hence, there is not much control over the process 

variables. The introduction of a new technology implies introduction of new defects, 

which can affect the die yield. These defects may prove critical for features that are 

smaller than 0.25µm in size. Since CMP is a relatively new technology, additional 

development is required to control the process and metrology. For example, at this point 

it is difficult to control the end point of the CMP process in order to achieve the desired 

thickness. The CMP process is also expensive due to high cost of equipment and the high 

maintenance cost from frequent replacement of parts.   
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Figure 1.1: Multilevel metallization structure a) Non-planarized; b) Planarized 

 
 

 

 

 
 

Figure 1.2: Surface smoothing 
 
 

 
 

Figure 1.3: Local planarization 

 
 

Figure 1.4: Global planarization 
 
 



10 10

 

 

 

 

 

 

 
 

Figure 1.5: Schematic of CMP process 
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Figure 1.6:  Removal rate as a function of abrasive diameter at (a) low and (b) high values of PxV.   
The data in these figures is from literature (12). 
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Figure 1.7: Removal rate as a function of PxV showing the effect of slurry flow.  
The data in the figure is from literature (13). 
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Figure 1.8: Correlation between removal rate and pad roughness. The data in the figure is from 

literature (14). 
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Chapter 2  

Effect of Diamond Size on Conditioning and Polishing in CMP 

As discussed in chapter 1, polishing pad is one of the consumables of the CMP 

process with a direct effect on the output. It acts as the platform on which the polishing is 

carried out. The pad is made up of a matrix of polyurethane foam with a filler material 

such as polymer felt (15). Mechanical reliability and chemical resistance are essential for 

the pad to extend the thoroughness of polishing.   

2.1.  Polishing pad 

2.1.1. Pad surface and structure  

Polishing pads are generally made up of polyurethane as the chemical properties 

of this polymer allow modifications to the pad in order to comply with the mechanical 

needs for the process.  Polyurethanes have interesting morphologies. They show 

contrasting molecular structure of linear elastomers as well as of rigid cross linked 

polymers.  

Based on the microstructure, pads can be divided into four categories (16). Type 1 

pads typically are polymer impregnated felts. The microstructure of a pad of Type 1 is 

characterized by non-woven polyester fibers infused with polyurethane. Poromerics form 

the Type 2 pads and pads of this type display a porous layer on a substrate. Type 3 pads 

are filled polymer sheet and it is observed that a closed foam structure with macro pores 
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from mechanical machining occur in these pads. The microstructure of pad of Type 4, 

which is an unfilled textured polymer sheet, has a non-porous structure. All four types of 

pads are polyurethane based but are manufactured differently and hence exhibit varied 

properties. SEM images of these various pads are available in literature (16) and clearly 

show the different microstructure characteristics described above. 

2.1.2. Pad properties and polishing performance  

The pad properties influence the polishing of the wafer during the CMP process. 

The material of the pad should be chemically stable and not react with the slurry 

chemicals. The pad material should be such that it does not get affected by the slurry pH, 

which may be acidic or alkaline based on the process. The pad should also possess high 

surface tension in order to promote hydrophilicity for wetting purposes. The hydrophilic 

nature of the pads aids in the formation of thin film of slurry between the wafer and the 

pad surface enabling the entire surface of the wafer to be equally subjected to the slurry 

chemistry. Mechanically, the pad is required to have high strength, acceptable levels of 

hardness, and good abrasion resistance. These properties can be related to the structure of 

the pad at the macro and micro levels. At a macro-level, the grooves on the pad surface 

assist the slurry flow across the surface of the pad and also reduce the potential of 

hydroplaning. At the micro-scale, the pad roughness and porosity are also seen to 

influence the removal rate. With water acting as a plasticizer, pad modulus and hardness 

decrease in wet pads, while there is an increase in the flexibility and ductility (16).  

The removal rate depends on the pad macro- and micro-structures. The macro-

structures refer to the grooves in the pad to prevent hydroplaning. In the absence of the 

macro-structure, type 4 pads show no removal rates (17) while type 3 perforated pads 
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have shown higher and stable removal rates. Removal rate is also seen to depend on the 

pad microstructure, which relates to the pad porosity. Type 4 pads, without any porosity 

show no removal(18). Along with the removal rate, the wafer planarity is also affected by 

the pad properties such as hardness and stiffness (16, 19-22). While the stiffness of the 

pad promotes planarity, the pad hardness is more related to defects in the wafers in the 

form of scratches. The planarity of the wafer is also seen to increase with the decrease in 

pad roughness (23).  Though the pad properties affect the polishing, it is difficult to 

completely understand the relationships as there are many variables involved in the 

process. 

In order to maintain the pad structure to sustain removal rates, pad conditioning is 

a basic requirement. Studies have shown that in the absence of conditioning, the removal 

rates go down. In the absence of a regeneration process, the properties of the polishing 

pad decline with a marked influence on the material removal rate and polishing 

uniformities. During polishing, the pad surfaces get glazed. This glazing reduces the pad 

porosity and roughness, which affects the slurry transport and the contact area between 

the pad and the wafer. All these factors result in reducing the efficiency of the CMP 

process. In order to achieve higher removal rates and planarity, regeneration of the pad is 

a necessity. This is done by a process known as conditioning where the pad surface is 

abraded to open up the clogged pores and break the glazed areas.  

2.2.  Pad conditioning  

As discussed earlier, pad conditioning is an important process to restore the pad 

properties that deteriorate over time during polishing. The surface interactions involved 
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in the process of polishing are influenced by the pad texture resulting from conditioning.  

The process of conditioning is used to:   

1. maintain the roughness of the pad and promote effective slurry distribution 

2. remove unwanted products after polishing. 

Various pad conditioning methods have been used to improve the pad properties 

and stabilize the removal rates. The most effective method found was using diamond as 

the abrasive material.  The properties of the conditioner such as diamond density and 

diamond mounting play a major role. The other input variables for the conditioning 

process include parameters such as conditioning downforce and relative speed of rotation 

(rpm) of the pad platen and the conditioner.  

The process of conditioning can be quantified in terms of material removal rate 

(MRR), pad roughness, and wear of pad. It has been found that a pad conditioned before 

the first polished wafer doubled the removal rate compared to the unconditioned pads. A 

repeated conditioning also showed a stable removal rate (16). The conditioning maintains 

the removal rate by maintaining the asperity height and density on the pad surface (24).  

Though the properties of the glazed pad improve with conditioning, there exists a side 

effect of pad wear. An uneven pad wear results in uneven distribution of the pressure 

affecting the planarization uniformity and removal rate. 

During the process of conditioning, the conditioner disk rotates about its axis and 

simultaneously moves linearly towards and away from the center of the pad for a uniform 

conditioning of the pad surface. The conditioning time has to be adjusted so as to 

maintain the pad thickness. Kinematic equations have been used to model the 

conditioning processes (25).  
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2.2.1. Conditioners  

Conditioners or conditioning disks are used as a medium to present the 

conditioning abrasive to the pad surface in a way that the desired conditioning effects are 

achieved. The abrasives present in the slurry are extremely hard. In order to prevent wear 

of the conditioners due to the presence of such abrasives on the pad, it is necessary to use 

diamonds as abrasives on the conditioner. The conditioning disks are available in a 

variety of configurations ranging from solid disks to open patterns. A variety of ways 

exist to bind diamonds to the surface of conditioning disks. The manner in which 

diamonds are bound to the surface of the conditioning disks has a bearing on the disk 

lifetime and the extent of damage caused to wafers due to scratches. The shape of the 

abrasive as it protrudes from the surface may be controlled by the choice of the diamond. 

All these factors affect either the conditioning process or the life of the conditioning disk. 

The conditioning effect is influenced by the profile of the diamond, density of the 

diamond, the downforce, and the shear velocity. The diamond may either be placed in an 

orderly fashion across the conditioner disk or they may be randomly placed on the 

surface of the conditioning disk. Besides the abrasive shape, the effect of the conditioning 

profile is dependent on the degree of protrusion of the diamond from the conditioning 

disk. If the degree of protrusion is high, a large torque is experienced by the adhesive 

mounting surface bond which may lead to higher instability.  
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2.3. Research focus 

Extensive work (26-29) has been done in order to understand the effect of 

conditioning on the polishing pad and polishing rates. As discussed in the previous 

section, the diamond abrasives present on the conditioning disks play a major role.  

Therefore, effect of diamond grit size and conditioning force on the polishing pads has 

been investigated in literature. For example, interferometry analysis was conducted on IC 

1000 pads that were conditioned by 100-grit and 325-grit diamond conditioners under 

varying force and incremental loading. Larger diamonds were seen to create a rougher 

pad surface under greater force. The other important observation that was made was with 

regards to the decay lengths. It was concluded that wet pads showed higher decay lengths 

than the dry pads (30).  

In contrast to the literature studies, the objective of this research is to investigate 

the effect of diamond abrasive size under the same loading conditions. The goal is to 

understand the impact on the pad morphology and subsequently the effect of conditioning 

on the polished wafer. In addition, in this thesis the effect of duration of conditioning is 

explored in a systematic manner. 

2.4. Experimental setup 

The results presented in this chapter focus on the effect of different abrasive sizes 

on the pad morphology. The experiments were conducted on a bench top CMP tester 

manufactured by CETR, Inc. (Figure 2.1). The CMP process on this bench top polisher 

closely imitates the large wafer fabrication production processes in industries. As can be 

seen from Figure 2.1, the bench top CMP tester consists of an upper platen, which can 
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hold a two inch wafer. The upper platen itself is held in place by a carriage. The carriage 

rotates about its own axis at a set rpm (typically 100-150) during polishing. A strain 

gauge force sensor (0-200 N) is present in the carriage that records both vertical and 

friction forces. This helps in monitoring the coefficient of friction during the process. An 

acoustic emission (AE) sensor is also present in the carriage that has a frequency range of 

0.5 to 5 KHz. An AE event occurs whenever there is a rapid release of elastic energy 

within any material. This rapid release of energy propagates an elastic wave that can be 

detected and analyzed using appropriate sensors. In the case of the bench top CMP 

process, the AE sensor helps in capturing the acoustic emission from the contact of 

rubbing surfaces which is an important parameter of friction and wear.  

The CMP tester also consists of a lower platen on which a six inch polishing pad 

is mounted. The lower platen rotates at a set rpm during the process and the set rpm 

ranges from 100 to 200. The slurry flows over the pad during the polishing process. Pipes 

are provided for the inflow and outflow of the slurry. The bench-top tester is controlled 

through a computer.  

2.5. Conditioning experiments 

Towards the objective of evaluating the effect of abrasive size on the pad 

morphology, three parameters were varied. These parameters include abrasive size, time 

of conditioning, and rotational speed of the polishing pad. The polishing pad used was IC 

1000 and sub-pad used was SUBA IV. Deionized (DI) water was used as fluid in these 

experiments. 
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Five different sizes of diamond abrasives ranging from 0.25μm to 100μm were 

chosen to carry out the conditioning on the commercially available polishing pad. The 

different sizes of diamond abrasives used were 0.25μm, 2μm, 8μm, 68μm, and 100μm. 

Though all these conditioners appear alike to the naked eye, the different diamond sizes 

can be clearly distinguished in corresponding SEM images as seen in Figure 2.2 through 

Figure 2.11. In order to evaluate the influence of abrasive size on pad morphology, 

conditioning was carried out for four different times: five, ten, fifteen, and twenty 

minutes.  Thus, for each size of abrasive, four different experiments were conducted. In 

addition, each experiment was conducted at two rotation speeds (150 rpm and 200 rpm) 

of the pad. The results of these experiments are discussed in the next section.  

2.6. Results of conditioning experiments 

In these experiments, in-situ coefficient of friction was monitored. The pad 

surfaces after conditioning were characterized using SEM, AFM, Dynamic Mechanical 

Analysis (DMA) and profilometry. The pads were evaluated with respect to their 

morphology, roughness, and storage modulus. The hypothesis in these experiments is that 

the size of the diamond abrasives affects the degree of abrading as long as the 

conditioning time remains the same.  

2.6.1. Pad morphology 

Figure 2.13 shows the morphology of the pad conditioned with an abrasive size of 

0.25µm.  In this case the pad has been conditioned for five minutes at 150 rpm. From this 

image, it can be observed that the pad morphology remains relatively the same as 

compared to the pad morphology prior to conditioning as in Figure 2.12. Similarly, 
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Figure 2.14 shows the morphology of the pad having been conditioned with an abrasive 

size of 100µm.  In this case, the pad has been conditioned for five minutes at 150 rpm. 

On comparing the morphology of the conditioned pad to the morphology of the pad prior 

to conditioning, it can be seen that significant abrasion has occurred. On comparing 

Figure 2.13 and Figure 2.14, it can be inferred that for the same conditioning time and the 

same rotation speed, the degree of abrasion is significantly more for a higher abrasive 

size.  

Figure 2.15 to Figure 2.19 show the morphology of the pads that have been 

conditioned for five minutes using abrasives with sizes of 0.25µm, 2µm, 8µm, 68µm, and 

100µm at 150 rpm. These images are an indication that as the abrasive size increases, the 

degree of abrading increases. Figure 2.20 to Figure 2.24 show the pads conditioned for 

five minutes at 200 rpm. These results show the same trend as shown by pad 

morphologies conditioned at a lower rpm. On comparing the two sets of conditioning 

results, it can be concluded that for same conditioning time, the rpm does make a 

significant difference on the pad morphologies. However, since five minutes may not be 

enough to draw conclusions, the conditioning process was carried out for the same 

abrasive sizes mentioned above but for different times. 

Having conducted the conditioning experiment for five minutes, the second step is 

to conduct the conditioning experiment for times of 10, 15, and 20 minutes at 150 and 

200 rpm. Figure 2.25 to Figure 2.29 show the morphology of the pad that has been 

conditioned for twenty minutes for abrasive sizes of 0.25µm, 2µm, 8µ, 68µm, and 100µm 

at 150 rpm. On comparing Figure 2.15 and Figure 2.25, it can be seen that as the time of 

conditioning increases from five to twenty minutes, the degree of abrading is 
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significantly more. The same is the case with the 100µ abrasive size. This result can be 

inferred by comparing Figure 2.19 and Figure 2.29. 

Figure 2.30 through Figure 2.34 show the pad conditioned for twenty minutes at 

200 rpm. On comparing these results to the previous conditioning results, the maximum 

pad abrasion is seen in this set of results because of the combination of higher platen 

speed and longer abrasion time. The pad surfaces conditioned for twenty minutes at 200 

rpm show a more uniform abrasion.  

The smaller abrasive do not show much change in the pad morphology for a short 

duration but with longer conditioning time, pad abrasion is seen clearly whereas the 

effect of bigger abrasives becomes clear even with a short conditioning time. Again, a 

higher rpm shows more pad abrasion than a lower rpm. Though, there does not exist a 

wide gap in the rpm values chosen here, the difference becomes prominent for longer 

conditioning duration. 

2.6.2. Pad wear 

The reduction in thickness of the pad as the conditioning proceeds is defined as 

pad wear. The conditioner has to maintain constant contact with the pad throughout the 

conditioning process. In order to maintain constant contact, the carriage automatically 

comes down by the same amount by which the thickness of the pad decreases. The 

distance by which the carriage travels downward is a measure of the amount of wear in 

the pad.  

Figure 2.35 and Figure 2.36 show plots of the amount of pad wear against time 

for different abrasive sizes at a pad rotation speed of 150 and 200 rpm. From Figure 2.35 

at 150 rpm, it is observed that for larger abrasive, the amount of wear in the pad is higher 
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than at smaller abrasive. For example, for an abrasive size of 100µm the amount of wear 

at five minutes is 0.018µm whereas for an abrasive size of 0.25µm, the amount of wear is 

0.006µm.  As the time for conditioning increases, the amount of wear also increases. For 

example, when the abrasive size is 100µm, the amount of wear is 0.026µm for a 

conditioning time of 10 minutes, and 0.03µm for a conditioning time of 20 minutes.  

Similarly, when the abrasive size is 0.25µm, the amount of wear is 0.008µm for a 

conditioning time of 10 minutes, and 0.01µm for a conditioning time of 20 minutes. The 

same trend is observed in Figure 2.36, when the pad rotation speed is set at 200 rpm. 

However, the amount of wear is more at 200 rpm as compared to the amount of wear at a 

rotation speed of 150 rpm. For example, at 150 rpm, the amount of wear when using 8µm 

abrasive size for a conditioning time of 20 minutes is 0.015µm, whereas at 200 rpm it is 

0.016µm. As bigger abrasives abrade the pad to a higher degree than the smaller 

abrasives, the pad wear caused due to this abrasion is also more in the case of bigger 

abrasives. Higher the pad wear, shorter is the pad life. An uneven pad wear also results in 

uneven slurry transport and non-uniform polishing.  

2.6.3. Coefficient of friction 

Having looked at the pad morphology and pad wear, the next step is to evaluate 

the coefficient of friction resulting from the different abrasive sizes. During the 

conditioning process, the lower platen exerts a normal force equivalent to the downward 

force experienced by the pad. There is a shear force also present between the pad and 

conditioner. The coefficient of friction between the pad and the conditioner is computed 

as a ratio of the shear force to the normal force. 
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Figure 2.37 and Figure 2.38 show the plots of coefficient of friction against time 

for the conditioning runs at 150 and 200 rpm respectively. From the plots it is observed 

that as the abrasive size increases, the coefficient of friction increases. For example, in  

Figure 2.37, for an abrasive size of 100µm, the COF is 0.633 at 150 rpm when the 

time for conditioning is five minutes, whereas, the COF is 0.32 for an abrasive size of 

0.25μm. Similarly, for 100 µm abrasive size, when the time for conditioning is 20 

minutes, the COF is 0.645, whereas for a conditioning size of 0.25µm the COF is 0.47.                             

 Figure 2.38 shows a plot of coefficient of friction against time for the 

conditioning run at a pad rotation speed of 200 rpm. In this case as well, the coefficient of 

friction for larger abrasive size is generally higher than the coefficient of friction for a 

smaller abrasive size.  

          As discussed above, pad wear is more at higher pad rotation speeds than at lower 

pad rotation speeds and so there is a decrease of shear force between the pad and the 

conditioner. This further implies that the coefficient of friction should decrease as the pad 

rotation speed increases as seen in the plots. For an abrasive size of 100µm, the average 

coefficient of friction at 150 rpm is 0.624 whereas at 200 rpm the average coefficient of 

friction is 0.589. Similarly, when the abrasive size is 2µm, the average COF at 150 rpm is 

0.44 whereas at 200 rpm, the COF is 0.40.   

2.6.4. Pad roughness 

The roughness of the pad affects the removal rate as the wafer being polished 

comes in direct contact with the rough surface of the pad (31). Having evaluated the 

coefficient of friction, the next step is to evaluate the roughness of the pad. This was done 

using a contact mode profilometer with a stylus of radius 12μm. A standard scan was 
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conducted over a 50μm scan length. There were five measurements for each pad. The 

average roughness measurements of each pad are plotted against the abrasive size of the 

conditioner used for that pad.  

Figure 2.39 shows the plot of pad roughness with respect to time for different 

abrasive sizes at 150 rpm. It can be seen from the plot that the roughness increases with 

time. For the smaller abrasive sizes of 0.25µm, 2µm and 8µm the increase in pad 

roughness with time is not much. For a conditioning time of 5 minutes, the pad roughness 

values were 0.775, 1.03 and 1.26 µm for abrasive sizes of 0.25µm, 2µm and 8µm, 

respectively. For a conditioning time of 20 minutes, the roughness values for 0.25µm, 

2µm and 8µm abrasives are 1.23, 1.28 and 2.05µm, respectively. The conditioning with 

bigger abrasives results in higher roughness compared to the smaller abrasives. For 15 

minute conditioning, the pad roughness value for 68µm and 100µm are 2.26 and 2.38µm, 

respectively. As can be seen from the plot, for a conditioning run of 20 minutes, the pad 

roughness for 68µm is still increasing while for 100µm the pad roughness value seems to 

decrease. For 100µm abrasive for 20 minutes, as the pad abrasion is relatively high, this 

could result in rupturing of the pad surface rather than just restoring the roughness. 

Figure 2.40 shows the plot of pad roughness with respect to time for different 

sizes at 200 rpm. On comparing the roughness values obtained at 200 rpm with those at 

150 rpm, it is observed that the pad roughness values at 150 rpm are higher than those at 

200 rpm. This can be because that at a higher rotational speed of 200 rpm, the pad does 

not get abraded uniformly.  
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2.6.5. Dynamic Mechanical Analysis 

Having investigated the roughness of the pads, dynamic mechanical analysis was 

conducted to evaluate the relation between structure and properties of the pad. DMA is 

used to study the mechanical properties of polymers and analysis is based on the principle 

that viscoelastic materials dissipate stored mechanical energy when deformed (32). 

DMA studies on CMP pads have been performed to understand the structure property 

relations. The storage and loss modulus give an insight into the elastic and viscous nature 

respectively of the viscoelastic materials. The ratio of these two moduli is given by tan δ. 

This ratio is useful during the characterization of polymers since it is related to the 

material’s ability to dissipate energy in the form of heat (33). 

For this experiment, the pad that was conditioned with 100µm abrasive size 

conditioner for 20 minutes at a pad rotation speed at 200 rpm was used. Samples 

(35 mm X 15 mm) were cut from each pad. In order to facilitate efficient clamping of the 

pad coupon to the holder, the bottom glue layer was scrubbed off of the coupon. The data 

was obtained on a TA Instruments DMA 2980 (New Castle, DE) at 4oC with an 

isothermal time of one minute per increment starting from room temperature (30oC) and 

going up to 80oC. A single cantilever clamp was used in the flexural mode with 

amplitude of 3µm. The data was collected at six different frequencies; 0.6, 6, 12, 30, 60, 

and 100 Hz. As the pads conditioned for twenty minutes at 200 rpm showed the 

maximum change in terms of pad morphology, pad wear and pad roughness, DMA was 

carried out for this set of conditioned pads. 

Figure 2.41 and Figure 2.42 show the plots of storage modulus of the pad against 

temperature at 30Hz and 100Hz respectively. The plot shows the storage modulus of pads 
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conditioned with conditioners of abrasive sizes 0.25µm, 2µm, 68µm, and 100µm. As can 

be seen from the plot, the storage modulus does not vary much for the different pads. For 

example, the storage modulus of the pad conditioned with 2µm abrasive size conditioner 

is higher than that of the pad conditioned using a 0.25µm conditioner. However, for the 

pad conditioned using conditioner of 68µm abrasive size, the storage modulus was higher 

compared to all other pads. Excessive wear of the pad conditioned using 100µm abrasive 

conditioner may have resulted in a lower storage modulus.  

The pad conditioned with 8µm seems to show abnormally lower storage modulus 

compared to the other conditioned pads. The number of punched holes in this sample 

were about 18 while in the other samples, the number of holes were about 12-14. So, the 

sample used for testing was less stiff compared to the others. 

2.7. Polishing experiments 

In this experiment, the same CETR bench-top tester was used as in the 

conditioning experiments. Polishing differs from conditioning in that the upper platen 

holds a wafer instead of a conditioner. The object of interest is the wafer being polished 

rather than the pad as in conditioning. The conditioned pad acts as a polisher in the 

presence of slurry and smoothens the wafer. Hence, the pad plays an important role in the 

outcome of the polishing process. Since the pad morphology is affected by the abrasive 

size, the abrasive size indirectly affects the surface of the wafer. Hence, the set of 

experiments described here investigate the affect of using pads of different morphologies 

that resulted from different abrasive size conditioners on the surface of the wafer.  

As mentioned earlier, the objective of these experiments is to evaluate the effect of 

abrasive size on the surface of the polished wafer. In order to do so, three different 
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abrasive sizes were used; 8µm, 68µm, and 100µm. The polishing pad used was IC 1000 

and sub-pad used was SUBA IV. The slurry used during polishing was Cabot 5001, 

which is commercially available. The results obtained for these experiments are discussed 

in the next section.  

2.8. Results of the polishing experiments 

After conducting the experiments, an optical microscope was used in order to 

obtain optical images of the polished wafers to evaluate surface defects such as micro-

scratches. The topography of the wafer was evaluated using an AFM. In a manner similar 

to the conditioning experiments, the in-situ coefficient of friction was monitored. SEM 

images of the pad were taken after polishing in order to evaluate the pad morphology.  

2.8.1. Optical images of the polished wafer 

 For the polishing experiment, having polished a wafer using a pad, the pad was 

conditioned again before reusing it for the next wafer. This process was repeated for three 

wafers. Figure 2.43 and Figure 2.44 show the optical images of the first and third wafers 

that were polished using pads conditioned by an 8µm abrasive size conditioner. 

Similarly, Figure 2.45 and Figure 2.46 show the optical images of the first and third 

wafers that were polished using pads conditioned by a 68µm abrasive size conditioner. 

Optical images of the first and third wafers polished using a pad conditioned by 100µm 

abrasive size conditioner are shown in Figure 2.47 and Figure 2.48.  

On comparing images of the first wafer polished by the pads conditioned using 

the three different abrasive size conditioners, it is observed that the pad conditioned using 

the 100µm abrasive size conditioner produces a large number of scratches on the wafer. 
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A lot of scratches developed are in clusters and the scratches are small in size. Similarly, 

when the pad conditioned using a 68µm conditioner is used, scratches are produced in 

clusters. However, the number of scratches in each cluster is relatively less than that 

when using the 100µm conditioner. The scratches themselves are relatively longer when 

compared to those produced by the 100µm conditioner.  The pad conditioned using the 

8µm conditioner produces relatively longer scratches when compared to the scratches 

produced by the pads conditioned using the 68µm and 100µm conditioners and unlike the 

other wafers, the scratches are isolated.  

From the optical images obtained for the third wafer polished by the pad 

conditioned using the 100µm abrasive size conditioner, it is observed that the pad 

produces less number of scratches on the third wafer as compared to the first wafer. 

Similarly, the pad conditioned using the 68µm abrasive size conditioner produces less 

number of scratches on the third wafer as compared to the first wafer. However, the pad 

conditioned using the 8µm abrasive size conditioner produces relatively the same number 

of scratches on the first and third wafers.  

2.8.2.  Evaluation of topography 

Atomic Force Microscope was used to evaluate the wafer and pad topography. 

For this purpose, a Digital Instruments DimensionTM 3100 AFM was used and operated at 

256 Hz frequency of the cantilever.  

Wafer Topography: For this experiment, the roughness measurements were taken 

at different points across the surface of the wafer from the center of the wafer to its edge. 

Figure 2.49 and Figure 2.50 show the AFM images of the first and third wafers that were 

polished using pads conditioned by an 8µm abrasive size conditioner.  Similarly, Figure 
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2.51 and Figure 2.52 show the AFM images of the first and third wafers that were 

polished using pads conditioned by a 68µm abrasive size conditioner. AFM images of the 

first and third wafers polished using a pad conditioned by 100µm abrasive size 

conditioner is shown in Figure 2.53 and Figure 2.54. 

On comparing the AFM images of the first and third wafer polished using a pad 

conditioned with a 100µm abrasive size conditioner, it can be observed that the first 

wafer is rougher. The roughness value of the third wafer is 34 nm whereas the roughness 

of the first wafer is 38 nm. Similarly, when using a pad conditioned with an 8µm abrasive 

size conditioner, the first wafer has a roughness of 83 nm while the third wafer has a 

roughness of 70 nm.  

On comparing the roughness values of the wafers polished using each of the  three 

pads, it is observed that the roughness value of the wafer polished by the pad conditioned 

using the 100µm conditioner is significantly less compared to the wafers polished using 

the other two pads. This implies that it is possible to achieve more planarization using the 

pad conditioned with the 100µm abrasive size conditioner.   

Pad Topography: The AFM images of the pads used in polishing the wafers are 

shown in Figure 2.55 to Figure 2.57 for the abrasive size of 8µm, 68µm and 100µm 

respectively. On comparing the images of the different pads used in the polishing 

process, it is observed that the pad conditioned using the 100µm abrasive size conditioner 

has higher roughness values as compared to the other two pads.  

2.8.3. Pad morphology 

Figure 2.58 shows the morphology of the pad conditioned with an abrasive size of 

8µm.  As can be seen, this pad does not exhibit uniform conditioning.  Figure 2.59 shows 
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the morphology of the pad conditioned with an abrasive size of 68µm and Figure 2.60 

show the pad conditioned with a 100µm conditioner. From these images, it can be 

observed that the higher abrasive size conditions the pad more uniformly.  

2.8.4. Coefficient of friction 

Having looked at the pad morphology, the next step was to evaluate the COF 

resulting from using different abrasive sizes. Figure 2.61 to Figure 2.63 show plot of 

coefficient of friction against time for the polished wafer conditioned on pad with 

abrasive size of 8µm, 68µm and 100µm. For an abrasive size of 8µm, the COF is 0.6045. 

COF for an abrasive size of 68µm is 0.2690 as seen in Figure 2.62. For an abrasive size 

of 100µm, Figure 2.63  shows that the COF is 0.407. As can be seen, the COF plots for 

68µm and 100µm seem to follow the same pattern with high variation in the beginning 

and then the variations are reduced with time. For 8µm abrasive, COF plot shows 

increasing variations with time. This implies that a polishing run of three minutes may 

not be sufficient for this abrasive size. If the process were allowed to run longer, the COF 

value may decrease. 
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Figure 2.1: CETR bench top tester 
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Figure 2.2: Photograph of a 0.25µm abrasive 
conditioner 

 
 

Figure 2.3: SEM image of a 0.25µm abrasive 
conditioner 

 

 
 

 Figure 2.4: Photograph of a 2µm abrasive 
conditioner 

 

 
 

Figure 2.5: SEM image of a 2µm abrasive 
conditioner 

 

 
 

 Figure 2.6: Photograph of a 8µm abrasive 
conditioner 

 

 
 

Figure 2.7: SEM image of a 8µm abrasive 
conditioner 
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Figure 2.8: Photograph of a 68µm abrasive 
conditioner 

 
 

Figure 2.9: SEM image of a 68µm abrasive 
conditioner 

 

 
 

Figure 2.10: Photograph of a 100µm abrasive 
conditioner 

 
 

Figure 2.11: SEM image of a 100µm abrasive 
conditioner 
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Figure 2.12: SEM image of a fresh pad 
 

 

 

 
 

Figure 2.13:  SEM image of pad conditioned using 
0.25µm abrasive  

 

 
 

Figure 2.14: SEM image of pad conditioned using 
100µm abrasive  
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(a)                                                                                 (b) 

Figure 2.15: SEM images of pad conditioned with 0.25µm abrasive for 5 min at 150 rpm at two 
different magnifications (a)150X (b)300X 

 

                
(a)                                                                                 (b)                         

 Figure 2.16: SEM image of pad conditioned with 2µm abrasive for 5 min at 150 rpm at two 
different magnifications (a)150X (b)300X 

           

                
(a)                                                                                  (b) 

Figure 2.17: SEM image of pad conditioned with 8µm abrasive for 5 min at 150 rpm at two 
different magnifications (a)150X (b)300X 
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(a)                                                                                 (b) 

Figure 2.18: SEM image of pad conditioned with 68µm abrasive for 5 min at 150 rpm at two 
different magnifications (a)150X (b)300X 

 

                
(a)                                                                                 (b) 

Figure 2.19: SEM image of pad conditioned with 100µm abrasive for 5 min at 150 rpm at two 
different magnifications (a)150X (b)300X 
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(a)                                                                                  (b) 

Figure 2.20: SEM image of pad conditioned with 0.25µm abrasive for 20 min at 150 rpm at two 
different magnifications(a)150X (b)300X 

 

                
(a)                                                                                 (b) 

Figure 2.21: SEM image of pad conditioned with 2µm abrasive for 20min at 150 rpm at two 
different magnifications (a)150X (b)300X 

 

                
(a)                                                                                 (b) 

Figure 2.22: SEM image of pad conditioned with 8µm abrasive for 20min at 150 rpm at two 
different magnifications (a)150X (b)300X 
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(a)                                                                                 (b) 

Figure 2.23: SEM image of pad conditioned with 68µm abrasive for 20 min at 150 rpm at two 
different magnifications (a)150X (b)300X 

  

                
(a)                                                                                (b) 

Figure 2.24: SEM image of pad conditioned with 100µm abrasive for 20 min at 150 rpm at two 
different magnifications (a)150X (b)300X 
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(a)                                                                                (b) 

Figure 2.25: SEM image of pad conditioned with 0.25µm abrasive for 5 min at 200 rpm at two 
different magnifications (a)150X (b)300X 

 

                
(a)                                                                                (b) 

 Figure 2.26: SEM image of pad conditioned with 2µm abrasive for 5 min at 200 rpm at two 
different magnifications (a)150X (b)300X 

 

                
(a)                                                                                (b) 

Figure 2.27: SEM image of pad conditioned with 8µm abrasive for 5 min at 200 rpm at two 
different magnifications (a)150X (b)300X 
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(a)                                                                                (b) 

Figure 2.28: SEM image of pad conditioned with 68µm abrasive for 5 min at 200 rpm at two 
different magnifications (a)150X (b)300X 

 

                
(a)                                                                                (b) 

Figure 2.29: SEM image of pad conditioned with 100µm abrasive for 5 min at 200 rpm at two 
different magnifications (a)150X  (b)300X 
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(a)                                                                                 (b) 

Figure 2.30: SEM image of pad conditioned with 0.25µm abrasive for 20 min at 200 rpm at two 
different magnifications (a)150X (b)300X 

 

                
(a)                                                                                (b) 

Figure 2.31: SEM image of pad conditioned with 2µm abrasive for 20 min at 200 rpm at two 
different magnifications (a)150X (b)300X 

 

                     
(a)                                                                                 (b) 

Figure 2.32: SEM image of pad conditioned with 8µm abrasive for 20 min at 200 rpm at two 
different magnifications (a)150X (b)300X 

  
 

 



43 43

 

                
(a)                                                                                (b) 

Figure 2.33: SEM image of pad conditioned with 68µm abrasive for 20 min at 200 rpm at two 
different magnifications (a)150X (b)300X 

 

                
(a)                                                                                 (b) 

Figure 2.34: SEM image of pad conditioned with 100µm abrasive for 20 min at 200 rpm at two 
different magnifications (a)150X (b)300X 
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Figure 2.35: Plot of pad wear at different conditioning times for different abrasive sizes (μm) at 150 rpm 
 
 

 
 

Figure 2.36: Plot of pad wear at different conditioning times for different abrasive sizes (μm) at 200 rpm 
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Figure 2.37: Plot of COF at different conditioning times for different abrasive sizes (µm) at 150 rpm 
 
 

 
    

 Figure 2.38: Plot of COF at different conditioning times for different abrasive sizes (µm) at 200 rpm 
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Figure 2.39: Plot of roughness at different conditioning times for different abrasive sizes (μm) at 150 rpm. 
 
 

 
 

Figure 2.40: Plot of roughness at different conditioning times for different abrasive sizes (μm) at 200 rpm 
 



47 47

 
  

 
 

Figure 2.41: Plot of storage modulus at a frequency of 30 Hz for pads conditioned for 20 min with 
different abrasives 

 
 

 
 

Figure 2.42: Plot of storage modulus at a frequency of 100Hz for pads conditioned for 20 min with 
different abrasives 

 
 

 



48 48

Table 2.1: Experimental conditions for wafer polishing 
 

Parameter Value 

Slurry flow rate 75 ml/min 

Polishing Pad Rodel IC 1000 SUBA IV 

Wafer polished 2 inch blank copper wafers 

Polishing time 3min 

Platen speed 200 rpm 
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Figure 2.43: Optical image of first wafer polished 
on the pad conditioned with 8µm abrasive at 20X 

 

 
 

Figure 2.44: Optical image of third wafer polished 
on the pad conditioned with 8µm abrasive at 20X 

 
 

Figure 2.45: Optical image of  first wafer polished 
on the pad conditioned with 68µm abrasive at 20X 

 

 
 

Figure 2.46: Optical image of third wafer polished 
on the pad conditioned with 68µm abrasive at 20X 

 
 

Figure 2.47: Optical image of first wafer polished 
on the pad conditioned with 100µm abrasive at 20X 

 

 
 

Figure 2.48: Optical image of third wafer polished 
on the pad conditioned with 100µm abrasive at 20X 
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Figure 2.49: AFM image of the first wafer polished 

on a pad conditioned with 8µm abrasive 
 

 
Figure 2.50: AFM image of the third wafer polished 

on a pad conditioned with 8µmabrasive 

 
Figure 2.51: AFM image of the first wafer polished 

on a pad conditioned with 68µm abrasive 
 

 
Figure 2.52: AFM image of the third wafer polished 

on a pad conditioned with 68µm abrasive 

 
Figure 2.53: AFM image of the first wafer polished 

on a pad conditioned with 100µm abrasive 
 

 
Figure 2.54: AFM image of the third wafer polished 

on a pad conditioned with 100µm abrasive 
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Figure 2.55: AFM image of pad conditioned with 8µm abrasive 
 

 
 

Figure 2.56: AFM image of pad conditioned with 68µm abrasive 
 

 
 

Figure 2.57: AFM image of pad conditioned with 100µm abrasive 
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Figure 2.58: SEM image of pad conditioned with 8µm abrasive 
 

 
 

Figure 2.59: SEM image of pad conditioned with 68µm abrasive 
 

 
 

Figure 2.60: SEM image of pad conditioned with 100µm abrasive 
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Figure 2.61: Plot of COF for abrasive size of 8μm 
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Figure 2.62: Plot of COF for abrasive size of 68μm 
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Figure 2.63: Plot of COF for abrasive size of 100μm 
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Chapter 3  

Optical Measurement of the Contact Area between the Pad and Wafer 

3.1. Concept of contact area and its importance 

As described in chapter 2, the polishing pad is the platform on which the process 

of polishing is carried out.  The wafer to be polished is held face down on the pad while 

the abrasive slurry flows between these 2 surfaces. As can be seen from Figure 3.1, the 

pad and the wafer come in contact at few points. The total area under these points of 

contact is known as the contact area.  Since the pad is a polymer material, it does not 

have a very smooth or planar structure (Figure 3.1). The micro-hills and valleys on the 

pad material determine the contact area between the pad and the wafer. Some of the other 

factors affecting the contact area include down pressure, slurry-particle size, and wafer-

pad rotating speed (34). The wafer-pad-slurry interactions can be understood better on the 

basis of micro- and nano-scale effects. At the micro-scale, particle based slurries interact 

with the pad and the wafer. The active particles in the slurry, trapped between the wafer 

surface and the pad cause the removal of material. At the nano-scale, the formation of a 

surface layer by the slurry chemicals and its removal as a result of abrasion, leads to the 

polishing effect(35)
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Various techniques have been developed literature for measuring the roughness of 

the pad. For example, the Greenwood-Williamson elastic model (36) has been used to 

measure the roughness of the pad. This model is based on two assumptions. First, it is 

assumed that asperities have spherical shape. Second, it is assumed that the height and 

radius of asperities follow a Gaussian distribution.   

It was found that the total area can be computed using the equation shown below.  

z
d 0

A a d dz
∞ ∞

β= η Φ Φ β∫ ∫  

where, η is the density of the asperities; z is the height of the asperities; β is the 

radius of the asperities; Φβ and Φz are Gaussian distribution functions. 

The use of Fourier Transform Infrared Spectroscopy / Attenuated Total internal 

Reflection spectroscopy (FTIR/ATR) for the measurement of contact area has been 

explored in literature (37). In this technique, the area under the peaks of the spectra is 

measured to evaluate the intensities of the peaks. The intensity values were then 

compared with the intensities resulting from a 100% pad contact. A 100% pad contact 

implies that the pad used is non-porous, defect free and has a flat surface. This helps in 

determining the percentage of area contact. The results obtained using this technique 

were found to be similar to the results calculated by using the Greenwood-Elastic Model.  

Figure 3.2 shows a plot of %contact area of the pad against applied load. The 

down pressure on the pad is evaluated by dividing the load applied to the wafer by the 

area of the wafer. The results obtained were found to be in agreement with the results 

obtained from the calculated results of Yu et al. From the graph it can be inferred that the 

contact area of the pad increases as the down pressure experienced by the wafer 
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increases.  It may be inferred that as the down pressure increases, the area of contact 

increases which results in a higher degree of polishing of the wafer.    

Evaluating the total area of contact between the pad and the wafer can give 

valuable information about the polishing run. The contact area information can be used to 

draw inferences about the effectiveness of the conditioning process. Amongst other 

factors, contact area depends upon the pad morphology or structure resulting from the 

process of conditioning. As was seen in Chapter 2, diamond abrasive size affects the pad 

morphology. Hence it can be inferred that, the diamond size on the conditioner affects the 

contact area between the pad and the wafer during polishing.  

In order to evaluate the contact area, it is necessary to evaluate the 3D topography 

of the pad. Profilometry and laser interferometry are two techniques that can be used for 

evaluating the 3D topography of the pad. Though profilometry gives great images, it is 

limited by the fact that is a contact type method. On the other hand, interferometry, an 

optical technique requires the pad to be reflective in nature for measurement of  the 

contact area, which again limits the use of this technique for the measurement purpose.  

Different factors affecting the contact area between the pad and the wafer have been 

investigated in literature. For example, confocal reflectance interference contrast 

microscopy (C-RICM) was used to evaluate the contact area (38). This technique uses 

light interference to recognize and measure the contact areas. A sapphire cover slip was 

used on a hard pad and then a soft pad made of porous polyurethane pad material. It was 

concluded that the contact area increases with the increase in the applied load. It was 

further observed that the conditioner type also affected the contact area and that different 

pads respond differently to conditioning. This is an ex-situ measurement.  
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Dual Emission Laser Induced Fluorescence (DELIF) has been used to study the 

interactions between the pad and the wafer (39). It can also be used to measure the in-situ 

thickness of the slurry.  DELIF has been used in the past to study the pad wafer 

interaction in terms of average fluid layer thickness, compressibility of the asperity layer 

on the pad and measurement of surface roughness (40). This technique is based on the 

fluid layer profile formed at the interface of the pad and the wafer. At the contact points 

of the pad and wafer, the slurry thickness is zero. DELIF uses this principle to determine 

the area of contact. The percentage of contact area found using the DELIF method has 

been found to be in agreement with that found using the C-RICM method discussed 

above. 

3.2. Measurement of contact area 

This part of the thesis focuses on developing a simple method of measuring the 

contact area in contrast to the various techniques discussed above. The advantage of 

developing such a technique is that the process can be understood better and faster in 

order to observe the changes in the contact area as the polishing process progresses. The 

information that is obtained as a result of evaluating the contact area between the pad and 

the wafer provides a motivation for the research here. As part of this research the contact 

area is measured at different pressures while comparing the change in contact area due to 

changes in the applied pressures.  
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3.3. Experimental details 

The preliminary research involved looking at the pad morphology under the 

optical microscope. The pad used for this experiment was IC 1000 which was 

conditioned earlier using a diamond conditioner.  

The experimental setup, as shown in Figure 3.3, consisted of a pressure cell. The 

cell consisted of a circular disc with a cylindrical blind hole at the center. A cylindrical 

spacer was placed in the hole such that the top face of the spacer was flush with the top 

surface of the cylindrical disc. A small rectangular piece of the IC 1000 pad was cut and 

placed on top of the spacer. The size of the pad was such that it was smaller than the top 

surface of the cylinder. The pad was then covered by a cover slide. The cover slide acts 

as the wafer being polished.  

The idea behind building this apparatus was to simulate the down pressure 

experienced by the wafer in a CMP process and observing the changes in the contact area 

of the pad. The operating principle of the apparatus is that as the vacuum between the 

cover slide and the spacer increases, the down pressure experienced by the cover slide 

increases. As the vacuum present in the space between the cover slide and the spacer was 

varied using a vacuum gauge, changes were observed in the contact area of the pad.  

To begin with, a dry pad was placed on top of the spacer and was covered with 

the cover slide. The dry pad was observed under the optical microscope to evaluate its 

morphology. However, the pad morphology was not visible under dry conditions. Since 

real-time measurements involve the use of a wet pad, the dry pad was made wet using 

water and examined under the optical microscope. In order to clearly see the pad 

structure, a drop of pigmentation was added on the pad surface. This was done using a 
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commercially available blue ink. Once the wet pad surface was clearly seen, a laser was 

used to view the contact points. Laser sources of different power were used to get the best 

results. The laser was focused on the cover slide at an angle such that on hitting the cover 

slide over the pad, the laser beam undergoes total internal reflection. Due to internal 

reflection, several bright laser points were seen on the pad when it was observed under 

the optical microscope. Optical images were taken for dry and wet pads at different 

pressures and analyzed using software called ImagePro developed by MediaCybernetics.   

3.4. Results and discussion 

The optical microscope used for the study was a Nikon Measurescope UM-2 

Tester. This microscope, shown in Figure 3.4, operates in reflected as well as transmitted 

light. It also operates in both, dark and bright field imaging modes. The contact area 

research was carried out in dark field in order to obtain clear images.  

Figure 3.5 shows the optical images of the dry pad whereas Figure 3.6 shows the 

optical images of the wet pad. The images are captured at a magnification of 50X. As can 

be seen from Figure 3.5, it was difficult to observe the pad morphology when the dry pad 

was observed under the optical microscope. Before introducing the blue ink on the pad, 

the morphology could not be clearly observed for even for the wet pad as in Figure 3.6. It 

is not possible to evaluate the configuration of the pad surface though the pad surface can 

be seen in both the images. From these images, it is not possible to derive concrete 

inferences about the pad micro-structure, which is an important factor in determining the 

contact area. With the introduction of pigmentation (blue ink), the pad surface became 

much clearer as seen in Figure 3.7. Various hills and depressions can be observed from 

Figure 3.7 which is not clearly seen in Figure 3.5 and Figure 3.6. The conditioning trail 
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marks can be distinctly observed in Figure 3.7. Though an optical image does not deliver 

as much information as a SEM image (Figure 3.8), the optical method is a simpler 

technique to understand the pad microstructure. 

Having observed the pad structure under the optical microscope, determining the 

contact area was the next step. When the laser beam was focused on the cover slide, 

certain bright spots could be seen under the microscope as seen in Figure 3.9. On 

observing closely, some of the bright spots showed debris deposited on the pad surface. 

This is evident from Figure 3.10. Figure 3.11 shows the surface of the pad while Figure 

3.12 shows the optical image of the same spot on the pad as in Figure 3.11 but in 

presence of the laser beam. The laser was most effective in absence of the reflected light 

as it minimized the interference. Hence, all measurements were taken in the absence of 

reflected light. As discussed above, the pad-wafer contact area increases with an increase 

in down pressure. The same trend was followed by the observed laser points. On varying 

the vacuum and thereby varying the down pressure, the number of bright points also 

varied. With an increase in the down pressure, the number of bright points increased and 

with a decrease in the down pressure, the number of bright points decreased. This may be 

observed from Figure 3.13, Figure 3.14 and Figure 3.15. Apart from an increase in the 

number of points, the intensity of the points also increased. The change in the number 

and intensity of the laser points was used for the image analysis.  

 The software used for purposes of analysis was ImagePro. Analysis was first 

carried out on a dry pad and later on a wet pad using the laser and in absence of reflected 

light. For the analysis, the first optical image was taken at a magnification of 20X on a 

dry pad at a low pressure (Figure 3.16). The second image was taken at a higher pressure 
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(Figure 3.17) and at the same magnification. The number of points in Figure 3.16 is less 

than the number of points in Figure 3.17.  Also, on comparison of the two images, the 

variation in intensity of the bright spots can be observed. Further, these optical images 

were analyzed using ImagePro to infer the change in the contact area resulting due to a 

change in down pressure. The analyzed image is shown in Figure 3.18. The change in 

intensity of a bright spot due to change in pressure can be observed in the analyzed 

image. For example, Figure 3.16 shows a point X. Figure 3.17 which is taken at a higher 

pressure contains the same point X but has a higher intensity. Figure 3.18 shows the 

image obtained by analyzing Figure 3.16 and Figure 3.17 using ImagePro. The point X 

can be observed in Figure 3.18 but the intensity of the point represents the difference in 

intensity as a result of the change in pressure. On an average, based on the analysis done 

at different points on the same pad surface and for three different pad samples, the 

resultant bright spots covered about 0.67% of the entire area, which represents the change 

in contact area with the change in pressure. For the dry pad, the average number of points 

seen on the surface was twenty five. Average statistics for the change in contact area are 

shown in Table 3.1. 

Similar analysis was conducted for a wet pad. Figure 3.19 shows the image taken 

at lower pressure and Figure 3.20 shows the image taken at a higher pressure. The 

resulting difference due to change in pressure may be observed in Figure 3.21. In case of 

the wet pad, the bright spots cover about 0.85% of the entire area, which represents the 

change in contact area with the change in pressure on changing the pressure. Average 

statistics for the change in contact area are shown in Table 3.2.  
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Certain assumptions have been made during this analysis. The flaws in the cover 

slide have not been taken into consideration. The defects in the cover slide may reflect 

some light and cause some bright spots in the image. But, it was assumed that when the 

images are being subtracted, these bright spots tend to nullify. The other factor that has 

not been accounted for is the presence of debris which showed up as bright spots. Since 

the position of the debris does not change on changing the pressure, it may be assumed 

that it cancels on analyzing the images. However, the intensity of the bright spots 

representing the debris may change due to change in the down pressure. Therefore, on 

analyzing the images using ImagePro, the debris may show up as a bright spot in the 

analyzed image with a different intensity. Hence the debris may contribute towards the 

change in contact area. In other words, if debris is present, the actual change in contact 

area may be lesser than the calculated change.  
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Figure 3.1: A schematic diagram depicting contact points between pad and wafer during polishing 
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Figure 3.2: Plot of % pad contact vs. head pressure. The data in the figure is from the literature 
(37) 
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Figure 3.3: A schematic diagram of the experimental setup for measuring contact area 

 

 
 

 
 

Figure 3.4: Nikon measurescope UM-2 tester 
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Figure 3.5: Optical image of dry pad at 20X 
 

 
 

Figure 3.6: Optical image of wet pad at 20X 

 
 

Figure 3.7: Optical image of wet pad after 
introduction of blue ink at 20X 

 

 
 

Figure 3.8: SEM image of a pad 
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Figure 3.9: Optical image of wet pad with a focused laser at 20X 
 

 
 

Figure 3.10: Optical image of a pad at 20X showing laser points 
that represent the debris on the pad 
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Figure 3.11: Optical image of wet pad at 20X 
 

 
 

Figure 3.12: Optical image of wet pad with laser points at 20X 
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Figure 3.13: Optical image of pad at 30 torr 

 

 
 

Figure 3.14: Optical image of pad at 50 torr 

 

 
 

Figure 3.15: Optical image of pad at 70 torr 
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Figure 3.16: Optical image of pad showing contact 
points at 30 torr 

 

 
 

Figure 3.17: Optical image of pad showing contact 
points at 50 torr 

 

 
 

Figure 3.18: Image showing analysis performed by ImagePro 
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Figure 3.21: Image showing analysis performed by ImagePro 
 

 

 
 

Figure 3.19: Optical image of wet pad at 30 torr 
 

 
 

Figure 3.20: Optical image of wet pad at 50 torr 
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Table 3.1: Statistics showing the change in contact area for a dry pad 
 

   Stats          Area Diameter (mean) 

     Min 3.77 2.23 

 Object Number 14 14 

     Max 408.74 22.07 

 Object Number 17 6 

   Range 404.97 19.84 

    Mean 121.02 10.05 

 Std.Dev 140.39 6.88 

     Sum 2420.53 201.04 

   Samples 20 20 
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Table 3.2: Statistics showing the change in contact area for a wet pad 
 

   Stats          Area Diameter (mean) 

     Min 2.438 1.767 

 Object Number 25 25 

     Max 648.80 28.23 

 Object Number 35 35 

   Range 646.36 26.46 

    Mean 106.73 9.62 

 Std.Dev 139.67 6.31 

     Sum 3057.94 423.27 

  Samples 44 44 
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Chapter 4  

Synthesis of Zirconia Nanoparticles through Plasma Route for CMP Slurry 

Applications 

4.1. Synthesis of zirconia through various methods 

Aerosol technology has been considered advantageous over the other methods for 

using small liquid volumes and for being less expensive for the nanoparticle synthesis 

(41). Hartmann et al.(42) used zirconium tetrachloride in oxygen flame to get fluffy 

tetragonal zirconia particles with diameters ranging from 10nm to 50nm. The properties 

of these particles were controlled by the flame temperature. Another technique known as 

flame spray pyrolysis, (FSP) which is a single step method and a low cost process, was 

used by Nielson et al. (43) to make 5μm zirconia particles. They used zirconium sulfate 

as the precursor. Karthikeyan et al. (44), following the FSP approach, used zirconium n-

butoxide in butanol as a precursor, and synthesized tetragonal zirconia nanoparticles with 

diameters ranging from 12nm to 21nm. The same precursor, zirconium n-butoxide, was 

later used by Yuan et al.(45) to make micrometer and smaller sized powders. These 

methods and results were later verified by many groups that followed. It was seen that all 

the results obtained so far using FSP showed a dominant tetragonal phase and a minor 
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monoclinic phase. Further investigation showed that these studies did not emphasize on 

the various factors affecting the particle size. 

Work carried out by Mueller et al (41) showed the importance of precursor 

concentration, flow rate of dispersant gas on the morphology, size distribution and 

crystallinity of the zirconia nanoparticles following the FSP method. They concluded that 

higher gas flow rate resulted in smaller flame heights, therefore, giving smaller particle 

size. Large aggregated particles were seen with high precursor concentrations which is in 

disagreement with the findings of Killian et al.(46). To explain the co-existence of the 

two phases, it was shown the fast quenching resulted in the tetragonal phase which 

decreased with the longer residence time and appearance of monoclinic structures. The 

earlier work, using reverse emulsion technique carried out by Kanai et al., and 

Ramamurthi et al.(47) was done by bubbling ammonia gas through zirconium (IV) ion 

giving a non-uniform particle size distribution of zirconia. This gave way to the two-

emulsion technique. The technique involves the use of two reverse emulsions with metal 

containing aqueous solutions or aqueous ammonia that are suspended in oil. The size and 

shape of particles so produced is controlled by the size of the droplets, which can in turn 

be controlled using a surfactant. The two-emulsion precipitation technique was used by 

Tai et al.(48) for controlling the particle size of zirconia. They showed that the 

morphology and size distribution of particles was affected by the stability of the 

emulsion. The macro-emulsion, prepared using heptane for the oil phase, showed larger 

particle size, wider particle size distribution, and less agglomeration with a high solute 

concentration. For the micro-emulsion system that was prepared using cyclohexane, the 

size was seen to increase with an increase in the zirconia (IV) ion. Hu et al. (49) worked 
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on the synthesis of hydrous zirconia nanoparticles by forced hydrolysis. This method 

comprises of homogeneous hydrolysis and controlled polymerization of tetramers of 

zirconium and is performed in the aqueous solution of inorganic salts. The resulting 

powder was found to be porous monoclinic nanocrystalline zirconia with an average size 

of 5nm. Another paper by Srdic et al.(50) talks about chemical vapor synthesis of 

alumina doped nano zirconia. The average particle size was about 5 nm with 3 and 30% 

of surface alumina. They further concluded that the presence of alumina, even at very low 

concentrations, changed the properties of the zirconia. Zirconia powders have also been 

synthesized using the sol-gel process, i.e. by hydrolysis and condensation of alkoxides of 

zirconium. The powders formed at room temperature, by this process are amorphous in 

nature (51). Another technique used for synthesis is the low temperature combustion. The 

product is voluminous in nature. On characterization, nano-zirconia showed a compact 

distribution of particles with the size ≤ 20 nm (52). The inert gas condensation (IGC) 

technique employs pure metal or monoxide evaporation in presence of helium at low 

atmospheric conditions followed by post-deposition (53-56) oxidation. This process 

resulted in non-agglomerating zirconia nanopowders with a size distribution of 4-14 nm 

(57). 

Though there are various methods for the production of nanopowders as described 

above, these have some limitations. Some of them display a wide particle size 

distribution while others show agglomeration problems. Post-treatment needed in some 

cases for the end product results in sintering problems. Cost and mass production is the 

limiting factor for many methods. To overcome these issues, the plasma route for the 

synthesis of nanoparticles has been of great interest (58).  
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4.2. Plasma synthesis of nanopowders 

Nanopowders are now being synthesized using the plasma route because of 

advantages such as providing high temperatures zones, energy concentration, rapid 

quenching and above all, a clean environment. 

 In the plasma processing of nano-powders, thermal plasma with high energy is 

used to generate precursors in the vapor phase to synthesize nano-powders, when 

quenched. Synthesis of metals, ceramics, or composites has shown that thermal plasma 

route is one of the most promising methods for producing nano-powders. There are 

several stages in the plasma synthesis. These include, injection of the reactant in the 

plasma, reaction to form the product, quenching leading to the nucleation and growth of 

the particles (59). Parameters such as temperature, pressure, flow rate and power control 

the particle properties. The end powder can be characterized by small particle size, high 

purity and high activity (60). Some of the nanopowders synthesized via the plasma 

synthesis are discussed below: 

1. Oxides: Alumina nanopowder is synthesized in a DC arc plasma under 

atmospheric conditions using Al electrodes (61, 62). These particles show a 

spherical shape. Titania nanopowder (62) which is again spherical in shape is 

made from the reaction between TiCl4 and O2 . It is also prepared from TiC in the 

Ar-O2  plasma (63). Other oxides prepared include CeO2, Y2O3, ZrO2 and Cr2O3.  

2. Nitrides: Aluminium Nitride (AlN), is synthesized using an aluminium anode 

with an interaction between Al and N2/NH3(64). Silicon nitride (Si3N4) is 

prepared from the reaction between silicon powder and ammonia in an arc plasma 
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(64). The other nitrides that are prepared by the plasma route include TiN and 

Mg3N2 (65-69). 

3. Carbides: Silicon Carbide is synthesized using Si and CH4 in an induction plasma 

(70, 71).Tungsten Carbide is generally prepared using a dual RF plasma. The 

other carbides that are being successfully prepared include those of titanium and 

boron. 

When carrying out the synthesis in gas phase, a balance has to be achieved in 

obtaining high production and faster rates and formation of agglomerates. The plasma 

route for synthesis helps in overcoming the issues of low temperatures and low reaction 

rates that are responsible for formation of chunks of nanoparticles. This is done by 

electrically charging the particles. One of the major limitation of the plasma route is 

collection of the end product is generally a very small amount (72). 

4.3. Zirconia nanoparticles through the plasma route 

Zirconia, crystalline oxide of the zirconium is categorized as the most promising 

ceramic materials of today. With a molar mass of 123.22g/mol and a density of  5.89 

g/cm3, this white crystalline solid finds use in many engineering applications. 

 Zirconia is in monoclinic phase at room temperature and is seen to change its 

phase to tetragonal at relatively higher temperatures. But small particles are seen to 

exhibit the tetragonal phase at room temperature as this is energetically favored while in 

the larger particles monoclinic phase is favored. The stresses caused due to the change in 

phase result in cracking of the ceramic on cooling. This calls for stabilization using 

different oxides. Some of the common oxides used for this purpose are magnesium oxide, 

calcium oxide, cerium oxide and yttrium oxide (41). Studies have shown that yttria 
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stabilized zirconia (YSZ) has a higher resistance to the low temperature effects compared 

to the YSZ prepared by conventional methods(60). 

Vollath and Szabo described the synthesis of zirconia nanopowders by microwave 

plasma(72). Here, the operating temperature of the gas is lower than DC or RF plasma.  

The zirconia nanoparticles obtained by this route are about 5nm in size and are in the 

form of single crystals. Alumina coated zirconia nanoparticles synthesized using 

microwave plasma are crystalline in nature with a glassy coating. The size of zirconia can 

be controlled by varying the production rates, concentration of precursor, and flow rate of 

gas dispersion(41).  

Ultra-fine powders of yttria stabilized zirconia (YSZ) have been synthesized using 

the plasma spray process for solid oxide fuel cell (SOFC) applications. These particles 

were prepared from zirconium oxynitrate hydrate and yttrium nitrate hexahydrate as 

precursors. The zirconia particles were spherical and about 100-200 nm in size(58). 

4.4.  Role of slurry in Chemical Mechanical Polishing 

As discussed in previous sections, the slurry is one of the important process 

variables in the process of chemical mechanical planarization (CMP). Slurry parameters 

such as solution chemistry, abrasive size and concentration, pH, temperature, flow rate, 

presence of oxidizers, surfactants and corrosion inhibitors etc., influence the planarization 

process to a great extent. The slurry formulation is done in order to achieve  high removal 

rates, low coefficient of friction, and low defectivity, among other targets(12). Though 

the slurry is responsible in bringing about the chemical aspects of polishing, the 

interaction of the slurry with the wafer is a very complex mechanism. During polishing, 

frictional forces come into play when the slurry flows between the polishing pad and the 
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wafer. These result in mechanical removal of material producing defects. If the frictional 

forces are lowered, the removal rate also decreases. So, the process has to be optimized to 

achieve high planarity with minimum defects. Slurry choice has a great effect on the 

manufacturing, yield and reliability of the process.. Commercial CMP slurries are now 

being customized for specific process applications.  

4.4.1. Slurry composition 

Slurries consist of dispersed abrasive particles along with certain chemical 

reagents to bring about the selectivity for metal CMP. The solution acts as a lubricant, 

controlling the temperature and transports chemical reagent for the abrasives and the 

chemical reagents to the polishing site. These chemical reagents include oxidizers, 

surfactants, chelating agents, complexing agents, buffer solutions etc. Slurries for metal 

CMP contain more additives than oxide CMP. The solution also provides electrostatic 

and steric balance for suspending the abrasives. For electrostatic stabilization, zeta 

potential is important for determining the stability of the slurry while for steric 

stabilization, the choice of the molecule is more important. This is because, electrostatic 

stabilization results from the repulsion between the like charges while steric stabilization 

is a result of physical interaction of high-molecular weight species. 

4.4.2. Abrasives in slurry 

The role of the abrasive is to provide the mechanical aspect of CMP (73). These 

particles act by abrading the dull and uneven surface. The first generation metal CMP 

used alumina abrasives and the first generation oxide CMP consisted of fumed silica 
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particles. The abrasives are required to meet certain criteria of correct chemical 

properties, hardness and surface charge.  

1. Alumina as a slurry abrasive: Alumina has been used in metal CMP for producing 

higher removal rates. Studies have shown that both, phase and hardness of the 

alumina particles affects the polishing. Due to the high hardness of the alumina 

particles, additional measures need to be taken to reduce the surface defects on 

wafers. 

2. Silica as a slurry abrasive: Since, alumina particles showed high defectivity, silica 

abrasives have been the next method of choice. The silica abrasives used for the 

CMP process are fumed and colloidal particles. Both forms are amorphous in 

nature. Polishing with colloidal silica has shown lower defectivity while slurries 

containing fumed silica have shown higher removal rates. 

3. Ceria as a slurry abrasive: Ceria slurries are gaining importance in the field of 

oxide CMP. Owing to high removal rates, ceria slurries are extensively being used 

for shallow trench isolation (STI) (73). 

Apart from the type of abrasive being used in the slurry, the particle properties 

such as size and hardness also play an important role. As the particle size and hardness of 

the abrasive particles in the slurry increases, the removal rate increases. The same effect 

is seen with the increase in the number of abrasive particles in the slurry. Bigger abrasive 

particles produce deeper surface defects such as micro-scratches. Research has shown 

that removal rates tend to decrease after a particular size threshold of the abrasive 

particles (35) . 
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4.5. Research focus: synthesis, characterization and applications 

As already discussed in the previous sections, abrasives play an important role in 

the CMP slurry. The objective of this research is to investigate the effect of zirconia 

nanoparticles as abrasives in the CMP slurry. Zirconia nanoparticles used in the slurry 

preparation were successfully synthesized through the Plasma route. 

Zirconia nanoparticles were synthesized using the plasma route. The set up can be 

divided in to three segments. The first segment is the precursor delivery. Zirconium 

butoxide was used as the precursor and was fed to the plasma torch in the vapor form. 

The second segment is the plasma chamber where the precursor gets decomposed. The 

third segment is the powder collection chamber. The plasma torch is characterized by 

plasma tube surrounded by high velocity cooling-water, to protect against the heat. The 

induction coil in the torch is connected to the RF power supply which generates the 

discharge.  

Different sets of gases are introduced in the chamber. The sheath gas reduces the 

heat flux and is directed near the ceramic tube. The central gas accounts for plasma 

stability and is introduced tangentially in the chamber. The precursor, in the vapor form, 

is introduced in the chamber axially by means of stainless steel tubing. The powder 

evaporated in the induction plasma torch at high temperatures rapidly solidifies on 

quenching. The powder is then collected from the collection chamber. The properties of 

the nanopowders depend on the various parameters such as concentration of the solution 

and feed rate, plasma properties like composition and power, gas compositions and 

quenching rates (58) 
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The synthesized nanoparticles were used to make the abrasive slurry.  The slurry 

was made by dispersing the zirconia abrasive particles 3% by weight in de-ionized water. 

0.2 mmol of tetramethyl ammonium hydroxide (TMAH) was added. The slurry was then 

used to polish 2 inch oxide wafers against the 6 inch polishing pad on the CETR bench 

top tester. The in-situ coefficient of friction was monitored during the process. 

Zirconia nanoparticles synthesized by the plasma route were characterized using 

various analytical techniques. XRD was done to analyze the crystallographic structure 

and chemical composition. TEM was done to understand the shape, structure and size of 

these nanoparticles. After the polishing experiments, optical microscopy and AFM was 

used to analyze the polished oxide wafers for defects.  

4.6. Results and discussion 

Characterization of zirconia nanoparticles was done to understand the particle 

structure. Figure 4.1 shows the TEM images of the synthesized nanoparticles at various 

magnifications. The zirconia nanoparticles were seen to occur in clusters. These particles 

show a near spherical shape with the particle size ranging from 20 nm to 70 nm.  

Figure 4.2 shows X-ray diffraction analysis of the zirconia particles. A major peak is seen 

at 2θ = 30ο which is a characteristic of the tetragonal zirconia. Tetragonal phase         

(101 orientation) was seen to be primarily present followed by traces of the monoclinic 

phase (-111 and 111 orientation). The widened peaks suggest a crystalline structure. 

The synthesized zirconia nanoparticles were used to make the abrasive slurry to 

polish the oxide wafers. The slurry was made by dispersing the zirconia nanoparticles in 

DI water. TMAH was added as a surfactant to the slurry. Surfactants are organic 
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compounds that are added to improve the stability of the slurry (74). The experiments 

were carried out on the CETR bench top tester. The working details of the tester are 

described in the earlier section. The experimental details of the polishing experiments are 

listed in Table 4.1. The zirconia particles showed a high settling rate and were seen to 

deposit in the pipe and so the slurry flow rate was kept high. The in-situ coefficient of 

friction was monitored and was found to be 0.6 which is unexpectedly high.  

Optical microscopy was used to analyze the polished wafer for surface defects 

that are caused primarily because of the continuous contact of the abrasives with the 

wafer. The optical images (Figure 4.3) show many scratches and pits on the wafer. The 

scratches were of varied sizes and were isolated as well as in clusters. The wafer surface 

appeared rough instead of smooth and planarized. This could be due to the high slurry 

flow rate that was maintained in order to prevent the particles from settling even before 

reaching the wafer surface. 

 

 

 

 

 

 

 

 

 

 



85 85

                   

(a) (b) 
 

Figure 4.1: TEM images of zirconia nanoparticles at different magnifications 
 

 

 

Figure 4.2: XRD analysis of zirconia nanoparticles 
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(a)                                                                                     (b) 

               

(c)                                                                                      (d) 

Figure 4.3: Optical images showing different regions of the wafer polished with zirconia slurry 
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Table 4.1: Experimental details 
 

Parameter Value 

Slurry 3 wt% zirconia dispersed in DI water 

Slurry flow rate 150 ml/min 

Pad Rodel IC 1000, SUBA IV 

Down Pressure 3 PSI 

Platen speed 150 rpm 
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Chapter 5                                                                                       

Conclusion 

Chemical Mechanical Polishing is a process for achieving local and global 

planarization. The consumables involved in the process are a subject of extensive studies 

to understand their effect on the output parameters such as material removal rate, 

polishing uniformities and surface defects. 

The polishing pad made of polyurethane material is one of the major consumable. 

The pad surface degrades over time with polishing and needs to be regenerated to restore 

its properties in order to sustain good removal rates and polishing uniformity. This 

regeneration is done by using abrasive disks, to carry out a process known as 

conditioning. The abrasives abrade the pad surface to unclog the pores. The size of the 

abrasives on these conditioning disks plays a major role in determining the conditioning 

efficiency. In order to understand the impact of these abrasives on the pad, abrasives of 

different sizes were used in this thesis to carry out the conditioning and the results were 

quantified in terms of pad roughness, coefficient of friction, and pad wear.   

A systematic study of conditioner abrasives ranging in size from 0.25 μm to 100 

μm was performed.  The results showed that the conditioning with bigger abrasives gave 

higher pad roughness.  For example, the pad roughness upon conditioning with abrasives 

of size 100 μm was nearly twice that obtained using 0.25 μm abrasives. The roughness 
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value was also found to increase with increase in conditioning time from 5 minutes to 20 

minutes. However, the bigger 100 μm abrasives, when used for a longer conditioning 

time, start to rupture the pad. Also, for these bigger abrasives, the longer conditioning 

times led to higher pad wear, which has important consequences such as reduced pad life. 

The 68 μm  and 100 μm conditioner abrasives also showed a high value of COF (0.5-0.7) 

during conditioning, which was nearly twice the value found for the smaller abrasives. 

Though the smaller abrasives showed a steady increase in the COF values with an 

increase in conditioning time, the change in COF value for bigger abrasive was nearly 

negligible. These results of the systematic study in this thesis indicate that smaller 

abrasives need longer conditioning times to achieve same degree of pad abrasion as the 

bigger conditioning abrasives.  

The bigger abrasives (8 μm, 68 μm, 100 μm) were used to carry out the ex-situ 

conditioning for polishing the copper wafers and the effect of pad conditioning was 

observed on the polished wafers.  More surface defects were found on the wafers that 

were polished using the pads conditioned with the 100 μm abrasive while the pad 

conditioned with the smaller 8 μm abrasive gave comparatively less scratches. It was also 

noted that for the same polishing time, the end-point for polishing was achieved when 

using the pad conditioned with the 100 μm conditioning abrasive and not for the pad 

conditioned with the 8 μm conditioning abrasive.  This result indicates that differences in 

conditioning can lead to steady state at different times during polishing. Thus, 

optimization has to be achieved between conditioning times and size of the conditioning 

abrasive as it impacts the pad life, the pad properties and finally the surface defects 

during polishing.  
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For future work, it will be interesting to look at the time needed for the smaller 

abrasives (0.25 μm and 2 μm) to show the same COF and pad roughness as shown by the 

bigger abrasives. Since smaller abrasives can reach the pores of the polishing pad and can 

prove more effective in unclogging them, it will be interesting to see if an increase in the 

density for the smaller abrasives gives better polishing results. Higher pad roughness has 

been reported to give high removal rates. So, another focus for future evaluation of 

abrasive conditioning would be to look at the material removal rate, which is an 

important CMP output parameter. High removal rates indicate good pad properties and a 

better CMP performance.  

Another major contribution of this thesis has been in the development of a simple 

method to measure pad-wafer contact area. Since pad morphology was found to be 

affected by conditioning and the degree of change in the pad morphology depended on 

the conditioner abrasive size, the effect of pad morphology on contact area was 

investigated using a simple optical method. Optical microscopy was used to analyze the 

pad-wafer contact area. The contact area was seen to increase with an increase in 

pressure. The preliminary work presented here has demonstrated that optical microscopy 

can be a simple yet effective technique to measure the contact area and allow future work 

on measurement of contact area as a function of the pad conditioning process.  

Finally, to understand the effect of abrasives in the slurries for CMP, zirconia 

nanoparticles (as abrasives) were synthesized through the plasma route. The wafer 

polished with these nanoparticle slurries exhibited many surface defects such as pits and 

scratches. As many input variables work simultaneously in producing these results, these 

surface defects could be a result of high slurry flow rate, the relative platen speed, or the 
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set down pressure. Further experiments need to be done to understand the effect of the 

zirconia based slurry and the interplay with the other input variables. Here, the first step 

would be to focus on the slurry chemistry as it plays a very important role in polishing 

the wafer. With a high settling rate of zirconia particles in the slurry, appropriate 

chemical additives need to be added to prevent the agglomeration and settling of the 

particles. Optimization of the input variables such as platen speeds and slurry flow rate 

will also improve the wafer polishing.  An evaluation of the effectiveness of the zirconia 

slurry can then be performed by measuring the material removal rate after polishing. 
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