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ABSTRACT  

3D Modeling And Design Optimization Of Rod Shaped Ionic Polymer-Metal 

Composite Actuator 

by 

Siul Ruiz 

Dr. Woosoon Yim, Examination Committee Chair 

Professor of Teaching and Learning 

University of Nevada, Las Vegas 

 

Ionic polymer-metal composites (IPMCs) are some of the most well-known 

electro-active polymers. This is due to their large deformation provided a relatively low 

voltage source. IPMCs have been acknowledged as a potential candidate for biomedical 

applications such as cardiac catheters and surgical probes; however, there is still no 

existing mass manufacturing of IPMCs. This study intends to provide a theoretical 

framework which could be used to design practical purpose IPMCs depending on the end 

users interest.  
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This study begins by investigating methodologies used to develop quantify the 

physical actuation of an IPMC in 3-dimensional space. This approach is taken in two 

separate means; however, both approaches utilize the finite element method. The first 

approach utilizes the finite element method in order to describe the dynamic response of a 

segmented IPMC actuator. The first approach manually constructs each element with a 

local coordinate system. Each system undergoes a rigid body motion along the element 

and deformation of the element is expressed in the local coordinate frame. The physical 

phenomenon in this system is simplified by utilizing a lumped RC model in order to 

simplify the electro-mechanical phenomena in the IPMC dynamics.  

The second study investigates 3D modeling of a rod shaped IPMC actuator by 

explicitly coupling electrostatics, transport phenomenon, and solid mechanics. This 

portion of the research will briefly discuss the mathematical background that more 

accurately quantifies the physical phenomena. Solving for the 3-dimensional actuation is 

explicitly carried out again by utilizing the finite element method. The numerical result is 

conducted in a software package known as COMSOL MULTIPHYSICS. This simulation 

allows for explicit geometric rendering as well as more explicit quantification of the 

physical quantities such as concentration, electric field, and deflection 

The final study will conduct design optimization on the COMSOL simulation in 

order to provide conceptual motivation for future designs. Utilizing a multi-physics 

analysis approach on a three dimensional cylinder and tube type IPMC provides 

physically accurate results for time dependent end effector displacement given a voltage 

source. Simulations are conducted with the finite element method and are also validated 

with empirical evidences. Having an in-depth understanding of the physical coupling 
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provides optimal design parameters that cannot be altered from a standard electro-

mechanical coupling. These parameters are altered in order to determine optimal designs 

for end-effector displacement, maximum force, and improved mobility with limited 

voltage magnitude. Design alterations are conducted on the electrode patterns in order to 

provide greater mobility, electrode size for efficient bending, and Nafion diameter for 

improved force. The results of this study will provide optimal design parameters of the 

IPMC for different applications.  
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CHAPTER 1: INTRODUCTION  

 

Ionic Polymer-metal composites (IPMCs) have been comprehensively analyzed in the 

recent decades due to their flexible characteristics as well as being light weight[2]. 

IPMCs are of special interest due to their low electric driving voltage, large deflection, 

and biocompatibility[2]. Due to these qualities, the materials have gained a significant 

amount of attention in the medical field, biomimetic, and micromechanic[1].  IPMC’s are 

unique in that they operate in wet conditions making them ideal for underwater 

propulsion[1]. 

IPMCs generally consist of an ionic polymer material as an ion exchange membrane. 

These membranes are typically Nafion and Flemion[1]. The membrane is coated by a 

layer of a highly electrically conductive noble metal such as platinum or gold to make up 

the electrode domain. Within the ion exchange membrane, the anions are fixed to the 

polymer. When hydrated, cations become mobile in order to balance the overall charge of 

the material. When a potential difference is applied to the electrode coating, hydrated 

cations migrate due to the imposed electric field. The migration of cations drags the water 

along with them[1]. This causes pressure changes that result in swelling local to the 

cathode and contraction near the anode. This results in mechanical deflection.  
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Though IPMCs have become of interest to a variety of disciplines, there still exists a 

definitive gap between the theoretical modeling and practical purpose for IPMCs. This is 

in part due to simulation efforts being placed into modeling IPMCs as a finite 

dimensional state space dynamical system. This is accomplished through a direct 

coupling of a lumped RC-circuit with a state space dynamical model. Although this 

methodology suffices in designing closed loop controllers, it gives no further insight as to 

the possible implementations or improvements of IPMCs. Though there have been 

studies on manufacturing IPMCs in order to improve performance, there have been very 

few breakthroughs within the past decades in IPMC technology.  

Recent studies show that it is possible to model the physics in depth through directly 

modeling each physical phenomenon coupled together. By coupling the electric field to 

the cation transport, the space charge density can be used to simulate the body force that 

bends the IPMC. This multi-physics approach also explicitly utilizes the full geometry of 

the IPMC within the simulation, thus providing in great detail the spatial effects and 

geometric parameters. This becomes of particular interest when studying a rod type 

IPMC in 3-dimensional space. Rod IPMCs have the ability to rotate about two axes when 

given four electrodes; however, due to their thickness, their bending magnitude is not as 

pronounced. 
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Figure 1.1 Actuation of a rod type IPMC[3]
 

 

 

 

Literature Review 

The conventional IPMC is a flat and very thin composite comprised of a thin ion-

conductive polymer membrane with a thickness of up to 100  [7]. These membranes 

are typically constructed with a Nafion[1]. Membranes have been constructed with other 

polymers such as Flemion and Teflon[11]. Membranes are thinly coated with an 

electrode. These electrode coatings are typically noble metals with high electrical 

conductivity properties and low stiffness. Polymer membrane contains a fixed anion back 

bone as well as a solvent with mobile cations that balance the material charge. Usual 

cations used in an IPMC are    ,    ,   , and     in a water solution. 

The design for an IPMC was first discovered by Shahinpoor et al in 1992[20,21]. This 

description lead to the design of swimming robotic structure based on IPMC actuation. 

One of the earliest works described the bending response of IPMCs saturated in water 

and bending in air. This study became more suitable for small deformations. This became 

a baseline for developing models amongst numerous researchers. The model used in [22] 

is based on a linear electromechanical coupling. This methodology utilized the similar 
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circuit models as that of piezoelectric elements. It was later proposed that the Young’s 

modulus of an IPMC was transient, and thus, experiments were conducted to test this 

theory[23]. These procedures went in conjunction to viscoelastic models. Later modeling 

schemes made headway in quantifying non-uniform large deformations of IPMCs; 

however, these simulations failed to capture the transient behavior that truly describes the 

actuation[24]. Proposed distributed models describe the nonuniform bending of IPMCs 

by finding the curvature of any point along the IPMCs length [25]; however, these 

models fail to encompass the physical mechanical properties of the IPMC. A majority of 

the dynamic models above are limited to the bending of a single segment uniform IPMC. 

The finite element models have become of particular interest in the fact that they are 

capable of dealing with non-linearity as well as discontinuities. Lee et al utilized 

commercial software to model an IPMC in a cantilever manner. The software was not 

capable of modeling the electromechanical coupling, thus a thermal analog was used to 

simulate the electromechanical coupling effects in the finite element model.  A 2-

dimensional finite element model was formulated based on the Galerkin method. Thus 

utilized the basic field equations governing the IPMC response by treating IPMCs as 

beams with two pairs of electrodes[25]. A 3-dimensional  finite element model studied 

the deformation of IPMC beams based on the hydraulic distribution associated with the 

electrochemical response. Yim et al[4] made a first attempt to deal with this problem by 

utilizing a finite element modeling method to describe a segmented IPMC based on the 

large deflection beam theory. This work made use of a model that takes into account 

large deformations of the IPMC and uses this to describe the actuation. This model was 

limited in the fact that it could not accurately capture rigid body rotations of the elements. 
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Pugal  et al [12, 17] used continuum mechanics equations in order to describe bending of 

the IPMC actuators. These models included mass transfer and electrostatic effects in the 

Nafion polymer; however, these models were restricted to small deformations in the case 

of IPMCs. 

Many studies of IPMCs are primarily concerned with the electromechanical transduction 

phenomenon. The main distinguishing feature amongst many existing models is in the 

methodology of utilizing the necessary physics in order to describe this phenomenon. On 

one hand, studies are conducted utilizing empirical current-deflection relationship 

models. These models are frequently based on an electric circuit equivalent description 

used to quantify the effective effects of an electric field. On the other hand, other studies 

make attempts to explicitly model the ionic flux inside the polymer [1]. Both methods 

base the deflection on the electric currents; however, the explicit models calculates the 

charge directly in order to relate it to the body force or deflection while the circuit 

equivalent models make use of only the overall voltage or current to  describe end-

effector displacement or couple the current to the mechanical torque used to actuate a 

beam.  

One effective circuit equivalent model was developed by Leo and Newbury. It was 

constructed in a manner such that all of the terms are frequency dependent and a 

viscoelastic model is explicitly utilized within the equations. The model allows for 

analysis of both actuation as well as sensing [27]. The grey box equivalent circuit model 

was introduced by Bonomo et al., which were made up of two phases [28]. The first 

phase calculated the absorbed current provided an input voltage. The second phase 

estimated the blocking force or the tip displacement. Fractional order models were 
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developed by Cabonetto et al. by using Marquardt method for the least squares 

estimation[29]. Models were also developed in order to couple the applied voltage to the 

stress in the IPMC. These models also considered the effects of viscous fluids on the 

actuation performance of the material [30]. A three-stage model was developed by 

McDaid et al.. This consists of an equivalent circuit, electromechanical coupling term, 

and mechanical actuation stage [31]. This model was capable of describing an IPMCs 

actuation response given variable voltages up to 3V. This model also took into 

consideration the clamped section of the IPMC, thus making the simulation of the electric 

current precise. An open-end transmission line representation was proposed by Kruusmaa 

et al. in order to kinematically model an IPMC as a joint for a manipulator [32]. This 

work lead to the IPMCs being modeled as rigid elongation elements which can elongate 

rather than a long IPMC strip increases the controllability as well as the efficiency. A 

mathematically intensive derivation of a lossy circuit RC distributed line model was 

created to simulate an IPMC [25]. There do exist some models that use both electric 

circuits as well as physics based models. Branco and Dente use a continuum model of 

IPMC where a lumped-parametric circuit is derived to predict the relationship between 

applied voltage and current. 

Purely physics based models explicitly consider the ionic current in the polymer and 

couple the computations directly to the solid mechanics of an IPMC. De Gennes first 

utilized a transport model for the ion and water molecules based on the systems entropy 

[33]. Nemat-Nasser proposed a broad theory of IPMC actuation [8], which he later 

proved two years later [34]. He utilized fundamental equations in order to describe the 

ionic flux, induced forces in Nafion, and the resulting IPMC deflection. Actuation models 
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based on electro-osmotic flow and pressure driven water flux were also developed at 

around this time by Asaka and Oguro[35].  

Recent studies by Porfiri analyzed the charge dynamics and IPMC capacitance [36]. He 

proposed an analytic solution for the initial value problem based on mached asymptotic 

expansions. This analytic solution could then derive a circuit model for an IPMC. He also 

discussed how capacitance is a function of applied voltage. A similar approach was taken 

by Chen and Tan in order to develop a control design for IPMC. They solved the physics 

governed PDE based models in the Laplace domain and incorporated it in a control 

design by using model reduction [37].  Wallmersperger et al. demonstrated a large 

surface area effect on the electrode can be integrated into the ion transport model by 

augmenting the dielectric permittivity value and diffusion constant in respective 

equations [10]. This helps in that it avoids calculating highly nonlinear and very large 

cation concentrations in the electric potential gradients near the polymer boundaries. Akle 

et al. studied both computationally and empirically high surface area effects on induced 

current [38]. This study showed that higher electrode surface areas results in more stored 

charge and also different charge dynamics. Pugal conducted studies that utilized a multi-

physics approach. This model used the boundary voltage conditions of the electrodes to 

drive the cation concentration. The space charge density driving the electric field in the 

polymer was a direct function of the cation concentration, thus the electric potential in the 

polymer changed with the cation concentration. He used these results to conduct a force 

coupling that drove the solid mechanical deflection.   
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Research Objectives 

This study takes advantage of the multi-physics simulation approach in order to conduct 

design optimizations that can be used to determine ideal rod type IPMC designs for 

different end users. There are four primary goals of this analysis. The first goal is to 

develop a mathematical description sufficient to effectively describe the physical 

phenomenon of a rod type IPMC in three dimensions. This will be implemented by 

coupling the physics describing the electric field, transport phenomenon, and the solid 

mechanics simultaneously.  These equations will be solved for with the finite element 

method. The second goal is to produce a design that can maximize the end-effector 

displacement. By treating the rod diameter as a design parameter, optimization can be 

conducted in order to produce designs that maximize the end-effecter displacement. The 

third goal is to provide a design that can be used to maximize the output force of an 

IPMC. This is done similarly by treating the rod diameter as a design parameter in order 

to maximize the volumetric body force output. The final goal of this study is to study 

small augmentations in the electrode pattern in order to determine a means to design an 

IPMC with the ability to twist. This final study conducts a basic parameterization on the 

electric potential boundary conditions in order to enable the rod type IPMC with the 

ability to rotate about its length. 

Thesis Overview 

This thesis is organized as in a manner that details the IPMCs dynamic large deformation 

modeling, explicit multi-physical modeling with empirical evidence supporting the 

model, and design optimization in order to produce theoretical designs for a variety of 

end users. 
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Chapter 2 will provide a brief introduction to the underlying methods for IPMC actuation. 

This will touch on the two different types of electromechanical coupling methods 

typically used which include the circuit equivalent model and the explicit physical model.  

Chapter 3 will provide a first approach at finite element modeling of an IPMC actuator. 

This model will describe the electromechanical actuation by utilizing a lumped RC 

model. This initial model allows for the simulation of large deformation. This 

methodology has an advantage when it comes to the implementation of a closed loop 

controller; however, this modeling method is not easily augmented for design 

optimization. 

Chapter 4 will provide a second a second approach at finite element modeling of an 

IMPC actuator. This approach will utilize the multi-phyiscal modeling approach used to 

explicitly quantify the ionic transport, the electric field, and the mechanical deflection. 

The finite element computations are conducted using software known as COMSOL 

MULTIPHYSICS. These simulations will be validated with empirical evidence. 

Chapter 5 will investigate the methodology and results of the design optimization study. 

This will demonstrate designs that could increase the effective deflection, transmitted 

force, and propose designs that could potentially produce enhanced mobility.  
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CHAPTER 2: ELECTROMECHANICAL METHODS 

This chapter will first introduce the basic characteristics of IPMCs. The chapter will then 

present the two leading schools of thought in regards electromechanical coupling. The 

first that will be described is the explicit physics based methodology which utilizes 

fundamental first principles to describe the cation transport through the polymer domain. 

Based on the fundamental equations, the cation transport will drive the electric field 

within the polymer as well. The second will define an RC representation of the IPMC that 

is used to effectively define the electric field that drives the mechanical deflection.  

Ionic Polymer Metal Composite (IPMC) Actuators  

The ionic polymer metal composite (IPMC) is a classification of electro active polymer 

(EAP). IPMCs are constructed from a base ionic polymer with an electrode coating. The 

material bends when subjected to a voltage across the thickness. IPMC have many 

desirable EAP characteristics. First of which is its driving voltage. With relatively low 

voltages of 1.0-5.0V, IPMCs exhibit large deflections. Second, IPMCs are relatively soft 

materials with a typical Young’s modulus of            . In principle, IPMCs can 

be miniaturized to sizes under a millimeter. Lastly, IPMCs can be activated in water or in 

wet conditions. In fact, due to their need to be saturated, they work best in wet conditions. 
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IPMCs are also constructed from biocompatible materials. This combination of attributes 

makes IPMCs very attractive as an artificial muscle for biomimetics, biomechanics, or 

even biomedical applications. The IPMC used in this study is composed of a fluorinated 

ion exchange membrane (IEM) known as Nafion. This material is coated with a noble 

metal such as gold or platinum. These are used for their high conductivity and low 

stiffness. 

When the polymer is hydrated, the cations become mobile. This allows the polymer to 

conduct cations. This ion mobility is proposed to be directly responsible for the 

electromechanical transduction in the ionic polymer transducer. 

Ionic Current Physics Based Model 

The IPMC material consists of a polymer backbone with attached anion groups. The 

polymer is also saturated with a solvent that has mobile cations. When a voltage is 

applied to the electrodes of the IPMC, cation flux/ionic current is induced by the imposed 

electric field. In the case for water based IPMCs, cations drag the water molecules. This 

cases osmotic pressure changes. This induces swelling near the cathode and contraction 

near the anode. This can be explicitly seen as the deflection.  
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Figure 2.1: electro-mechanical model 

 

 

 

This phenomenon is caused by an induced ionic current. This results in a non-zero space 

charge local to the electrode. The ionic current in the polymer is quantified by the Nernst-

Plank Equation. 

                                           
   

  
   (                      )                    (2.1) 

Where    is the cation concentration,   is the mobility of cations,   is the diffusivity 

constant,   is the Faraday constant,   is the charge number,    is the molar volume that 

quantifies the cation hydrophilicity,   is the solvent pressure, and    is the potential in the 

polymer. The mobility can be explicitly represented as 

                                                                     
 

  
                                                           (2.2) 

where R is the gas constant and T is the absolute temperature. The Nernst-Plank equation 

is the primary governing equation that describes the ionic current through the polymer in 
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the IPMC. Aside from the transient term, the equation is composed of three different flux 

terms that are governed by different gradients:  

 The electric potential gradient     

 The concentration gradient     

 The solvent pressure gradient    

These field gradients are what drive the electromechanical model as well as the self-

sensing mechanoelectrical model. For the interest of this study, this methodology will be 

used in order to properly evaluate the electromechanical model in chapter four.  

This cation transport then becomes the driving term for the electric field in the polymer. 

The potential     in the polymer domain is described by Poisson’s equation: 

                                                                      
  

 
                                                      (2.3) 

where the     is the space charge and   is the dielectric permittivity. The space charge  

density is definied as  

                                                                                                                        (2.4) 

where    is the anion concentration fixed to the backbone.  The cation concentration is 

governed by the transport phenomena described by Nernst-Plank Equation; however, the 

anion concentration is related to local volumetric strain 

                                                                                                                   (2.5) 



 

 

 

 
 

 

14 

 

where   is the local displacement. This will be further elaborated in later chapters. The 

volume differences affect the anion concentration because the anions are what construct 

the polymer backbone. The anion concentration can be defined as 

                                                                                                                  (2.6) 

where    is the initial anion/cation concentration. 

The electric effects on the electrode domain are only briefly considered in this study. This 

is conducted with Ohms law 

                                                              (2.7) 

where   is the current density in the electrodes,   is the electric conductivity in the 

electrode, and     is the electric potential in the electrode. This potential interacts with the 

polymer potential; however, it is not the same variable as the polymer potential,   . This 

current conservation is briefly considered in the model; however, when considering 

mechanical design optimization, including this in the simulations became vastly too time 

consuming. An approximate method was considered and will later be explained in 

chapter 4.  

Clumped RC Model 

The Clumped RC model relates the input voltage to the effective charge during actuation. 

For the cylindrical IPMCs, relaxation is not an issue, thus this will not be considered for 

this study. The design of an IPMC consists of parallel electrodes about a ionic conductor. 

These parallel electrodes act as a capacitor at the polymer-electrode interface. The 

polymer between electrodes are not as electrically conductive, thus the polymer is treated 
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as inducing a resistance. This C-R-C circuit can be simplified to an R-C circuit as shown 

in Figure 2.2 [4] 

 

Figure 2.2: Clumped R-C Model of an arbitrary element 

                            

The relationship between voltage and charge can be expressed by the following equation 

 
 

 
 

 

       
                                                      (2.8) 

where   is the voltage,   is the electric charge,   is the capacitance. The direct 

relationship to electric current is represented as  

 
 

 
 

           

         
                                                    (2.9) 

 It should be noted that the equations are represented in the Laplace domain.  

Under the influence of a voltage step input, the IPMC shows a deflection in the direction 

of the anode. This is due to the migration of cations directed towards the cathode within 
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the polymer matrix. The effective bending moment generated by the RC circuit is 

modeled by the following first order model 

 
 

 
 

  

     
                                                       (2.10) 

where   is the bending moment induced by the cation migration,    is the gain,    is the 

time constant.    and    characterize the speed and magnitude of the generated bending 

moment resulting from idealized charge moving across the thickness of the IPMC. By 

coupling these equations in the Laplace domain, the dynamic output can relate the input 

voltage   to the bending moment  . This coupling can be seen as 

 
 

 
 

   

       (     )   
                                              (2.11) 

where       .  

Based on [2], bi-axial bending could be produced by assuming two separate RC circuit 

models working in each direction. Though this is not completely accurate, this 

simplification suffices for most practical applications [39] 

Summary 

This chapter investigated the two types of electromechanical coupling methodologies 

commonly used when studying IPMCs. The first method explicitly modeled the cation 

migration within the polymer domain through utilization of the Nernst-Plank partial 

differential equation to simulate the transport phenomena under the influence of an 

electric field. The electric field is produced as a combination of the boundary voltage 

condition as well as the change in the space charge density as the mobile cations migrate. 

The space charge density is the source term for the poisons equation that characterizes the 
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electric field within the polymer. This explicit method provides greater insight as to the 

underlying physics in play during the actuation of an IPMC; however, this methodology 

is more mathematically intensive.  

The second methodology investigated is the clumped RC circuit methodology. This 

method utilizes a simplified characterization of the electric field by treating the IPMC as 

an RC circuit. This reduces the IPMC physical model down to a system of ordinary 

differential equations. The cation migration is implicitly quantified as the change in 

charge through the circuit. In the Laplace domain, this system can directly link the input 

voltage to the applied mechanical bending moment. Using two RC circuits, it is possible 

to approximate the dynamics of a biaxial IPMC actuator.  
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CHAPTER 3: LARGE DEFLECTION DYNAMIC MODEL 

This chapter will utilize a variation of large deflection beam bending theory in 

conjunction with the previously introduced lumped RC model in order to develop a 

dynamic model for IPMC actuation. First, the equations for large deflection for a beam 

will be introduced for a two dimensional model. These concepts will be used to produce a 

three dimensional large deflection beam model. This will lead to some theoretical results 

from the large beam deflection simulation. Finally, this chapter will discuss the 

advantages and disadvantages of this methodology of modeling.  

 

Large Beam Deformation 

From the results of Gutta and Yim[41], a dynamic model was developed for a flat IPMC 

undergoing large deformation. This model was implemented utilizing the finite element 

method. With this method, the 2D IPMC is segmented into individual beam elements 

which satisfy the Euler-Bernoulli theorem. An energy method was then used to construct 

the dynamic equations of motion.  The applied bending moment is a result of the RC 

electrical model previously discussed in chapter 2.  
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Figure 3.1: Coordinate discretization for the finite element implementation 

 

The figure above illustrates a beam demonstrating the large deflection in a uniaxial 

bending IPMC. The beam is discretized into n segments.  The inner white portion of the 

beam is constructed with the Ionomeric polymer Nafion. The thick black outer 

boundaries on the top and the bottom are constructed with a metallic electrode made of 

platinum. Ideally, the electrode could be selectively activated at each segment. Varying 

curvature along the length is obtained based on this assumption. By controlling the 

segmented IPMC, it gives the potential to use the actuator as a miniature robotic 

manipulator. In the following selection, explicit modeling methodology will be discussed 

in order construct the final model.  

 

Kinematic and Dynamic Analog from 2D to 3D Construction 

This section conducts a study on the dynamics of the IPMC under the basis that it is 

comprised of     elements. An arbitrary element     lies between nodes     and  . 

This element is defined by the local coordinate frame in, where node      is locally 
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fixed. The orientation of the given ith frame has the same orientation of the slope at the 

stationary node    . The displacement at an arbitrary point along the neutral axis of 

element   can be defined based on the local nodal displacements and the slopes of the 

nodes     and    To simplify the equations, the nodes     and   will be labeled 1 and 

2.  

 

 

Figure 3.2: 1D Beam elements used to simulate IPMC deflection 

 

For an element  , the displacement in the local    and the    directions can be described 

by the following equations: 

                                                                   (3.1) 
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                                                                    (3.2) 

Where  

                                                                (3.3) 

Is a row vector and 

                               
                                  (3.4) 

                                
                                 (3.5) 

Are the column vectors such that              and      . These all denote the nodal 

displacements and the slopes in the first node of an arbitrary ith element. Likewise, that 

             and    denote the displacement of the second node of an arbitrary ith 

element.The row vector       is composed of shape functions defined as follows[40]: 

     
            

 

  
   

   
          

     
 

  
  

      
          

  
                                                  (3.6) 
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These vectors can be augmented in order to implement the equations in 3D space. This is 

done as follows: 

                                      
  

                           (3.7) 

And the shape function vector becomes as follows: 

        [            ]  

        [            ]                         (3.8) 

 

The axial deformation is based on the lateral deformation of both directions. The 

differential form of the axial deformation can be expressed as follows: 

                                                             (3. 9) 

where     is the infinitesimal axial deformation and    is the length of a differential 

element which can be represented as follows: 

     √                                                   (3.10) 

By substituting (3.9) into (3.8) and utilizing separation of variables, the following 

equation can be obtained:  

 
  

  
    √(

  

  
)
 

 (
  

  
)
 

                                       (3.11) 

For a small enough magnitude,            , thus (3.10) becomes 
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                                           (3.12) 
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And by integrating with respect to  , the following equation for axial deformation is 

produced: 

                                                               
 

 
∫  (
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∫    

       
       

       
           

 
  

 

 

                               
 (      )                                          (3.13) 

where   
     

      

  
 ,   

     
      

  
, and             is defined as 

                            
 

 
∫   

       
       

       
        

  

 
         (3.14) 

And so, the axial displacement of second node of a given element is given as 

                                      
 (      )                                           (3.13) 

With this, the global displacement vector can be defined by the following equation 

    
  ∑
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   (  )  

  (  )  

  (  )  
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      (

     
         

        

        

)                     (3.14) 

where         is the transformation matrix defined by the individual coordinate 

transformation matricies 

                          
   

                                                     (3.15) 

Where the    
 and    

      are defined as 
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   (

                  

                 

   

)                              (3.16) 

and 

                      
   (

                  

   
                 

)                              (3.17) 

where    and      are defined as  

                      ∑    
   
                                                 (3.18) 

and 

                      ∑    
   
                                                (3.19) 

where     and     represent the relative orientation of a given element  . It should also 

be noted that        . With this formulation, the global velocity can be derived based 

on product rule as the following equation  

  ̇  
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            (3.20) 

where ,by product rule, the derivative of the transform can explicitly be expressed as 
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Where, by chain rule 

                     ̇  
 ∑  

    

    
 ̇   

    
                                 (3.21) 

and 

                     ̇  
 ∑  

    

    
 ̇   

    
                                 (3.22) 

Constructing the Dynamic Equations of Motion from the Energy Method 

It is possible to represent equation (3.20) as the following 

  ̇  
     ̇                                               (3.23) 

where 

                                                                       

    [  
    

        
    

 ]                                    (3.24) 

represents the global coordinates in its entirety, and  

    
  ̇  

 

  ̇ 
                                                  (3.25) 

represents the Jacobian that is to be multiplied  by the global coordinates. With this 

representation, the equation for kinetic energy of a deformable body can be derived as 
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 ̇                                                           (3.26) 



 

 

 

 
 

 

26 

 

 

where    is the elements density, and     is the mass matrix and can be described 

explictly as 

      ∫   
     

  

 
                                          (3.27) 

Similarly, the stiffness matrix can be derived in a similar manner. By analyzing the 

potential energy described by:  

    
 

 
∫
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            (3.28) 

where         and         are the deflections at a given point on the     element in the 

local frame,    is the rotational rigidity based on the Young’s elastic modulus and the 

area moment of inertia about the cross section of the IPMC. The stiffness matrix relies on 

the following  

      ∫ (
        

   
 )
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 )  
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 )  

  

 
         (3.29) 

where the stiffness is a function of the shape functions. In contrast to the mass matrix, the 

stiffness matrix only requires data from its local frame. Both need to be expanded to their 

entire length. These are represented by the following 

     (
                                    

                        
)                       (3.30) 

and  

     (

                                         

                                                    

                                        

)             (3.31) 
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where      is a     matrix of zeros. Based on the Lagrangian dynamic method, the 

equations of motion can be determined as follows   

      ̈                                                   (3.32) 

where  

      

(

 
 
 
 
 
 
 
 

              

  
  
  
  
  
  
  
  

              )

 
 
 
 
 
 
 
 

                                     (3.33) 

is the control input used to apply the bending moment properly at the end of each 

element, and  

    (
   

   

)                                                    (3.34) 

defines the bending moment input that causes the deflection. This is directly related to the 

current as discussed in the chapter 2. Due to the initial node of a given element remains 

stationary within its relative inertial frame, it suffices to reduce the coordinates. This 

reduction is done by considering only the end-effector of a given element. This 

coordinate reduction explicitly becomes 

                                                        (3.35) 

This then results in the reduction of the mass matrix,               
        , 

stiffness matrix,               
         and control input matrix,           
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Constant values 

Name Expression[Unit] Description  

𝜌𝑒   93   [
𝑘𝑔

𝑚 ] Electrode density [41] 

𝜌𝑝  6  [
𝑘𝑔

𝑚 
] Polymer density[41] 

𝐿    54[𝑚] IPMC Length 

𝐷      [𝑚] IPMC outer diameter 

𝐸𝑒 7    9[𝑃𝑎] Electrode Elastic Modulus[41] 

𝐸𝑃 4    7[𝑃𝑎] Polymer Elastic Modulus[1] 

𝜈  49 Polymer Poisson’s ratio [1] 

 

   
       . Finally, the matrices are assembled producing a globally assembled mass 

matrix,    ∑    
         

   , stiffness matrix,    ∑    
         

   , the control 

input matrix,        
     

         , and the input moment, 

             . This produces the final global dynamic equation of motion. 

     ̈                                                       (3.36) 

 

Simulation Results 

Establishing the physical parameters for the IPMC was the first step in order to run the 

simulation. The physical parameters are tabulated on table 3.1. 

Table 3.1. Values of constant expressions. 

 

 

 

 

 

 

 

 

 

Utilizing these values, a simulation for 3D deflection was constructed based on the large 

deflection theory provided in this chapter. The simulation was constructed in MATLAB 



 

 

 

 
 

 

29 

 

and SIMULINK. This model used a partitioned IPMC based on four elements. This 

model ran through a numerical solver which utilized two primary RC circuits at the base. 

Based on potential profile illustrated in an IPMC in [1], the applied voltage was manually 

reduced at the end of each element in order to approximate the effects of resistivity along 

the electrode length. 

 

Figure 3.3. Resistivity approximation 

 

The simulation end time was set for 5 seconds. The 3D simulation took over 36 hours to 

run. The end effector deflection was calculated based on the reduction in in length by the 

deflection in the y and z axis. The following plot was the result of the end effector 
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displacement of the simulation in comparison with the end effector displacement of the 

experiments.  

 

Figure 3.4. Deflection comparison 

 

Based on the total end-effector deflection, it was possible to see a fairly close overall 

deflection between the two results. There appears to be a lag in the first second, but the 

result steps up pretty quickly thereafter. Some inaccuracies may be due to the time 

partitioning frequency. This could potentially be avoided by using a fixed step method for 

solving the system of ordinary differential equations. This simulation method provides 

some fairly accurate deflection results. This also seems to capture the dynamics of the 

system with a great deal of accuracy. The trend of both curves appears to converge at 

nearly the same rate as one another.  
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Discussion 

This methodology manages to capture many key features of IMPC actuation. With the 

ability to obtain the dynamics of the system in a frequency domain, it makes this model 

very attractive when applying feedback control laws to it. This methodology was much 

more computationally intensive than originally anticipated. It uses a tremendous amount 

of computational power. Simplification as well as optimization of this model could 

potentially be implemented in future work. As far as designing a feedback controller for 

the dynamic system, a model of this complexity is not entirely necessary. Based on the 

controller, the end effector will follow a fairly sophisticated response [39] with far less 

theoretical rigor.  

This model fails to lend itself to design optimization. Because the simulation was 

conducted with rod type finite elements, the model does not hold geometric robustness. 

There is no novel way to predict optimal designs without manually reconstructing the 

model. Also, the RC circuit implementation also limits the ability to properly evaluate the 

geometric effects on the charge dynamics. The space-charge density from the explicit 

physics model relies heavily on the models explicit geometry, and the space charge 

density governs the actuation process [1]. With this in mind, this model is not entirely 

ideal for conducting design optimization. 

Lastly, due to the reduced magnitudes of deflection that come about from the rod type 

IPMC,  a large deflection model is not necessarily needed in order to properly capture the 

actuation of the IPMC. This model does an excellent job when dealing with the flat type 

IPMC; however, the deflection magnitudes within a rod type IPMC can still be estimated 

with a great deal of accuracy with basic elastic isotropic mechanical principles.  
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Though this theory is a novel concept and could provide great insight on modeling 

methodologies in the future of feedback controllers, this method of study is far from 

ideal. In most every aspect of this study, it lacks the details necessary to properly be 

implemented. In contrast, this method becomes excessive in many areas which it could be 

more readily utilized. Though this methodology still holds a great deal of promise, it was 

not a proper fit for this study.   
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CHAPTER 4: 3D MULTI-PHYSICS ACTUATION MODEL 

This chapter will utilize a multi-physics approach to develop a 3D actuation model for the 

IPMC. The model will be developed in a software package known as COMSOL 

MULTIPHYSICS. This model will be designed with the explicit physics method 

previously tabulated. The implementation of the cation transport under the influence of 

an electric field in COMSOL will be demonstrated. This will be directly coupled with a 

standard linear elastic isotropic model in 3D space. In this mechanical section, a 

discussion will be made in regards to the force coupling methodology necessary for the 

future steps of the study. Furthermore, a brief discussion will be made in regards to mesh 

optimization necessary for physically accurate as well as timely results. Lastly, the 

actuation results from this model will be compared to the empirical actuation results. A 

brief discussion will be made in regards to potential inconsistencies as well as potential 

methods to make the model more accurate.  

 

Ionic Model 

The following section defines the equations explicitly used in order to numerically solve 

the physical phenomenon  
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Cation transport within the polymer is calculated with the Nernst-Plank equation  

 
  

  
   (            )                                     (4.1) 

where     is the cation concentration,   is the diffusion coefficient,   is the Faraday 

constant,   is the charge number,   is the cation mobility, and     is the electric 

potential in the polymer. It should be noted that in this model, cation migration is strictly 

driven by the presence of a potential gradient and the concentration gradient. This 

simplification can be made by comparing the pressure gradient        with the electric 

potential gradient      . The both share   , so these terms can be neglected; however, 

looking at the other coefficient, it can be observed that   96 4 5
 

   
 and    6  

    , and so we can see that |   |  |    |, thus the contribution from the pressure 

gradient is negligible for the actuation model.  

 Applied voltage causes all free cations to migrate towards the cathode. Since the anions 

are fixed to the polymer backbone, the equation solves for strictly cation concentration. 
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Constant values 

Name Expression[Unit] Description  

𝐹 96 45 [
𝐶

𝑚𝑜𝑙
] Faraday Constant 

𝜖        
𝐹

𝑚
  Dielectric permittivity 

𝑐      [
𝑚𝑜𝑙

𝑚 ] Anion concentration 

𝐷  7       [
𝑚 

𝑠
] Diffusion constant 

𝜖     5        
𝐹

𝑚
  Dielectric constant in a vacuum 

𝛼     [
𝑁 𝑚

𝑚𝑜𝑙
] Linear force coupling (Ref. 1) 

𝛽    55[𝑁  
𝑚4

𝑚𝑜𝑙 
] quadratic force coupling (Ref. 1) 

𝜇   9      5[
𝑚𝑜𝑙 𝑠

𝑘𝑔
] mobility at STP 

𝐸 4 [𝑀𝑃𝑎] Polymer Young’s modulus (Ref. 1) 

𝜈  49 Polymer Poisson’s ratio (Ref 1) 

Table 4.1. Values of constant expressions. 

 

 

 

 

 

 

 

 

 

 

Because cations cannot leave the polymer domain, concentration begins to converge near 

the electrode polymer interface. This in turn increases the electric field.  

      
  

    
                                                        (4.2) 

where   is considered to be the potential in the polymer, and      is the dielectric 

permittivity. The dielectric permittivity is explicitly expressed in the simulations as -

       where    is the dielectric constant in a vacuum and    is the relative 

permittivity. The space charge density is defined in order to affect the electric field as 

follows 

                                                                (4.3) 
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where    is assumed the constant anion concentration. The value for anion concentration 

and dielectric permittivity are given in table 1. In this study, the electric field propagation 

down the electrode length is simplified. Rather than using Ohm’s law to determine the 

electric current propagation, the electrode domain was partitioned near the location of the 

voltage source. This implementation was used in order to simplify the electrodynamics in 

order to investigate the solid mechanics more effectively. The electrode surface is still 

taken into consideration because the platinum domain stiffness cannot be neglected when 

analyzing the solid mechanics. It should be noted that, typically, the diffusion equation 

and the Poisson’s equation could be solved for analytically by deriving a Green’s 

function; however, this novel method of physical modeling causes this method to 

ineffective. The source terms driving both equations are continuously dependent on the 

solution of one another. This, in turn causes nonlinearities in the equations, which in turn 

necessitates the implementation of the finite element method. This will be further 

elaborated in Appendix A.  

Mechanics Model  

In order to link the deflection with the cation transport, force coupling similar to that 

shown in Ref. 1 is used. A basic linear elastic model was used in order to quantify the 

mechanical behavior of the IPMC. The following equation describes the strain 

relationship with respect to the deformation 

  
 

 
                                                             (4.4) 
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where        is the strain tensor, and        is the displacement vector. It can be 

seen that this generalization of strains implies that strain components are of the form 

    
 

 
 
   

   
 

   

   
  , thus strains in the normal direction are of the form     

   

   
.  

If the differential operator is expressed in matrix   form rather than a gradient operator 

 , the Cauchy strain tensor can be expressed in matrix form as follows 
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 ]                                           (4.5) 

which can then be expressed as  

                                                                (4.6) 

 

The stress strain relationship is noted by the following equation 

                                                                (4.7) 

where        represents the general stress tensor for three dimensional space, 

       is the elastic stiffness matrix. This simulation implements a standard linear 

elastic model for the solid mechanics, thus the stiffness matrix is explicitly of the 

following form 
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       (4.8) 

where   is the elastic Young’s modulus, and   is the Poisson’s Ratio. Thus equation (4.7) 

explicitly becomes 
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 (4.9) 

By this formulation, the volumetric force equation can be described at equilibrium as 

follows  

                                                            (4.10) 

Where       represents the body force per unit volume. Since the divergence of a 

second order tensor field produces a first order tensor, the following equation becomes 

equivalent.   

                                                            (4.11)  

Where the divergence is defined for the second order tensor as 
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                                      (4.13)  

For the transient case, the equation becomes of the form  
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                                                  (4.15) 

where   is the mechanical density, which is being multiplied by the transient term in the 

mechanical equation. By getting the stress in terms of deformation, the explicit equation 

for displacement then becomes  

  
    

                                                     (4.16) 

 Ref. 1 defines the body force in one direction as  

            
   ̂                                           (4.17) 

Where   and   are empirically found constants [1]. It was proposed by Pugal that the 

calculation of the body force should be implemented more precisely in 3D by the 

following equations 

               
                                             (4.18a) 

             
                                            (4.18b) 

where the quadratic term applies only to the neighborhood about the cathode and the 

linear term applies to the neighborhood about the anode. The issue with the 

implementation of this force coupling model is that it requires previous knowledge about 

where the potential is being applied. This is not necessarily the case for the design 

optimization. In some cases, the applied voltage location is used as a variable in order to 

produce an optimal design output.  In order to correct the direction for three-dimensional 

implementation as well as maintain robust consistency when running design 

optimization, the original equation was augmented as follows 
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where       is the concentration gradient. In vector form, this becomes the following 
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 This method was used to direct the body force appropriately. This is done by 

normalizing the magnitude of the concentration gradient while maintaining the direction.  

Finite Element Implementation  

The mathematical equations tabulated were solved for using the Finite Element Method. 

These calculations were carried out in a finite element software package known as 

COMSOL MULTIPHYISCS. The IPMC modeled in this study is a Nafion based 

membrane that is coated with a layer of platinum. The IPMC was modeled as concentric 

cylinders. The polymer domain was constructed with an outer diameter  [  ] and the 

platinum layer was   [  ] thick. The IPMC was constructed to be  5 4[  ] long.   
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a) b) 

Figure 4.1. Initial IPMC Geometry a) isometric view b) cross-section view 

 

It can also be noticed in that there is a small partition along the platinum domains near 

the base of the IPMC. These are the boundaries that the source potentials will be applied 

to. They are used to simulate the clamps that hold the IPMC.  
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  a)  b) 

Figure 4.2. Clamp boundaries a) Experimental b) Simulated 

 

These clamps are used to simulate the location where the voltage is being applied as well 

as the effective distance that the voltage propagates [1]. The boundaries to the left are the 

locations of the applied voltages, and the boundaries to the right are the locations of the 

grounded voltages. This is easier to see with a cross sectional view. 
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Figure 4.3. Cross sectional description of the boundaries 

 

The simulation would simultaneously solve Eqs. (4.1), (4.2), and (4.15). The following is 

a list of boundary conditions used to run simulations. It is to be assumed that with the 

exception of the potential boundaries that are applied up to the clamp extension, all other 

boundary conditions extrude throughout the length of the IPMC. 
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 For Eq (1) in the polymer domain: 

  (            )                                               (4.21) 

This insures that cations cannot leave the polymer domain. 

 For Eq (2), In the polymer domain 

- Anode boundary 

         
                                                  (4.22) 

- Cathode boundary 

        4
                                                    (4.23) 

 

- Other boundaries 

                                                         (4.24) 

 For Eq (3), In both domains 

- Entire face boundary  

                                                          (4.25) 

 

Mesh-Optimization 

The mesh resolution plays a significant role in both the computational time as well as the 

model accuracy. COMSOLs default mesh builder is a physics based mesh builder which 

constructs a mesh based on triad elements. This can be seen explicitly in the Figure 4.4. 
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Figure 4.4. Finite element Normal Physics based mesh  

 

There are many undesirable results from the default mesh. The first issue that could be 

noticed is along the length. The mesh resolution here is pretty high, and the solid 

mechanics do not necessitate this degree of resolution for the bending. This adds to the 

computational complexity. The face is also very course near the electrode-polymer 

interface. This becomes an issue when measuring the cation concentration. Near this 

interface, a boundary layer begins to form based on the concentration. If the mesh on the 

face is too course, the concentration will be measured as values lower than they should 

be. Lastly, the physics driven mesh has issues constructing a continuous mesh near the 

clamp boundaries.  
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Figure 4.5. Normal Physics based mesh near the clamp domain  

 

This strange construction becomes an issue for the solid mechanical studies. The 

deflection near this location becomes unstable due to the large aspect ratios that become 

local to the clamp boundaries.  

The first method used to address these issues required manually constructing a user 

defined mesh. This mesh was constructed by first creating a free triangular mesh on the 

circular face of the IPMC geometry.  
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Figure 4.6. User Defined Mesh with edge distribution  

 

The free triangular mesh on the face was refined by constructing a distribution along the 

polymer-electrode interface. This distribution segmented the arc edges into twenty 

straight edges. This was the only governing guideline for meshing the face. This allowed 

the mesh resolution to be high near the interface and course far away from the mesh. This 

can be seen in figure 4.6 

The triangular mesh was then extruded down the length to construct a mesh based on 

triangular prisms. This extrusion was course down the length because the mesh resolution 

required for the solid mechanics at this length is not incredibly fine. By minimizing the 

number of elements allows for quick computations.  This mesh can be seen in Figure 4.7. 



 

 

 

 
 

 

48 

 

 

Figure 4.7. User Defined Mesh Extrusion 

 

This manual construction of the mesh was also helpful in maintaining mesh continuity 

along the length. The aspect ratio at the clamp boundary is now fixed. This can be seen in 

figure 4.8. 
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a) b) 

Figure 4.8. Clamp boundary comparison a) Default mesh, b) Manual mesh 

 

When we compare the results from the two meshes, we can see that the variance is 

significant. The magnitudes of the maximum concentration between the two simulations 

are fairly different by about 3  
   

  . The concentration distribution seems significantly 

different as well. This is because of the boundary layer that is developed by the 

concentration. These comparison results can be seen in figure 4.9. 
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a)

b) 

Figure 4.9. Concentration comparison a) Default mesh, b) Manual mesh 

 

Though this mesh refinement provides more physically accurate results, the time 

necessary for each simulation result is 2 hours. When considering the design 

optimization, it will be necessary to simplify the model in order to produce some timely 

results. By manually constructing the mesh in a similar manner and augmenting the force 
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coupling coefficients, it is viable to construct a more course mesh and still produce 

desirable results. Figure 4.10 is demonstrates the mesh used for the design optimization.   

 

a) b) 

Figure 4.10. Finite element mesh a) Triangular mesh b) Swept mesh 

 

With this manual mesh still produces better results than the default mesh; however, the 

concentration is still not as accurate as the previously tabulated mesh. The concentration 

results of this mesh can be seen in figure 4.11 
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Figure 4.11. Concentration results for the design optimization mesh 

 

End-Effector Displacement 

An empirical study had to be conducted in order to confirm the validity of the 

computational model. During this study, a physical rod type IPMC was actuated with a 

voltage source of 1V. The end-effector displacement was measured using a microscope 

camera tracking the tip displacement. A white marker is used on the tip in order to allow 

the computer to distinguish the tip from the rest of the IPMC and the back drop. A small 

black piece of construction paper was placed around the IPMC in order to have a 

consistent color throughout the background. The displacement was tracked for a constant 

voltage for 30 seconds. Using the same boundary conditions, a constant voltage of 1V 

was applied to the clamp domain of the IPMC for thirty seconds. 
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Figure 4.12. Image of the end-effector displacement for the IPMC 

 

The results for the motion tracking were noisy, so a logarithmic curve was used to fit the 

data and compare to the finite element results.  A direct comparison can be seen in Fig 9. 

The dynamic response of the end-effector displacement initially starts lagged in 

comparison to the experimental data; however the two act characteristically similar after 

around 5 seconds.  This could be due to exaggerated noise producing artifacts in the data 

that make the simulation seem lagged. 
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Figure 4.12. Tip displacement vs time comparison  

 

After 5 seconds, the empirical findings match characteristically with the finite element 

results. The overall magnitudes of the displacements are within the tolerance of micron 

displacements, therefore the finite element simulations are accurate at determining the 

mechanical displacements of the end effector. This time delay might also be an issue of 

the boundary layer where a bulk of the concentration converges. This might occur at a 

much faster rate provided a finer mesh; however, this would drastically increase the 

computational time required to run the simulation. 
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Discussion 

The explicit method of modeling the IPMC actuation yields some promise for the rod 

type. This is due to a number of factors. For one, the rod type is so thick that the 

deformation could still be accurately captured without having to resort to a large 

deformation model. The explicit model also captures many parameters that could not be 

altered given the RC model, such as the explicit cation transport, the electric field, and 

the explicit geometric representation of the IPMC. This is even more attractive when 

conducting design optimization in the sense that all of the physical parameters can be 

analyzed thoroughly in order to determine which design parameters are more sensitive 

than others in order to determine ideal designs. This model is fairly intuitive to construct, 

and utilizing COMSOL MULTIPHYSICS provides some clear explicit results. Lastly, 

because this model is entirely physics based, the explicit results are more reliable than the 

results from the lumped RC simulations. Cation transport is no longer bounded by the 

discrete partitions of the IPMC, thus some of the previous notions of IPMC actuation can 

be disproven with this model. 

One downside with the explicit physics model is that it requires a tremendous amount of 

computational power. Assumptions had to be made about the electrical field conducting 

down the length in order to produce some timely results. This computational issue could 

potentially be resolved by sending jobs to a supercomputer or a cluster; however, this 

would also require another license file as well as a specific compiler. Another potential 

obstacle as far as the explicit model is concerned is implementing a feedback controller 

that accurately models the system for practical use. Analytic controllers will not work on 

a multiphysics system like this one. Fortunately, this simulation could be coupled with 
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software packages such as MATLAB. In principle, by linking COMSOL 

MULTIPHYSICS to SimuLink through Live Link with MATLAB, a numerical feedback 

controller could be implemented with more accurate results as well as methods as how to 

design a controller for an IPMC for practical purposes. 
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CHAPTER 5: DESIGN OPTIMIZATION 

This chapter will utilize a multi-physics approach to develop optimized designs for a 3D 

actuation model for the IPMC. The optimization will be conducted through a software 

package known as COMSOL MULTIPHYSICS. By using the explicit physics method 

previously tabulated, this study will provide three designs that could be used for three 

optimal outputs. The first study will be conducted to find an optimal diameter in order to 

maximize the end-effector bending for the IPMC actuator. The second study will be 

conducted by optimizing the diameter in order to maximize the force transmission from 

an IPMC actuation device. Lastly, the electrical potential of an eight electrode rod type 

IPMC will be optimized in order to induce twisting about the axis of its extrusion. A brief 

discussion will be made in regards to potential inconsistencies as well as potential 

methods to make the model more accurate.  

 

Optimization Implementation  

Conceptual designs can be constructed through optimization of the finite element model. 

The main objective of the design optimization is to run three separate optimization 

studies. The first study is conducted in order to maximize the top displacement with 

respect to changes in the rod thickness. The second study is performed in order to 
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Parametric expression initial values 

Name Expression[Unit] Description  

𝑅  55[𝑚𝑚] Outer Radius 

𝑟 .5[𝑚𝑚] Inner radius 

𝑉_𝑎𝑝𝑝𝑙𝑖𝑒𝑑  [𝑉] Applied Voltage 

𝑖 4 Electrode index 

optimize the volumetric body that drives the deflection with respect to the rod thickness. 

The final study determines the optimal voltage configuration for an alternative electrode 

pattern necessary to maximize rotation about the axis of cross sectional extrusion, or the 

length.  In order to create augmented designs, design parameters must first be established. 

Initial design parameters are tabulated in Table 2. 

Table 5.1 Initial values of parameter expressions. 

 

 

 

 

  

 

The entire geometry was constructed with the tabulated parameters. By parameterizing 

the geometry, it is possible to treat the geometry as a dependent variable for the physical 

model.  
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Figure 5.1. Parametrized construction of the electrode domains 

 

For the three different optimization studies, three different probes were used as feedback 

values to be used. For the first study, a boundary probe was used at the polymer face of 

the end-effector. The boundary probe read the maximum displacement at the end-effector 

tip, || ||
 

. For the second study, a domain probe was used in the polymer domain. This 

probe was used to measure the maximum space charge density, ||  || . This is used in 

order to maximize the force production of an IPMC actuator. Since the volumetric body 

force of an IPMC is defined by Eq. 10, it is can be seen that maximizing the space charge 
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density would produce an optimal force value. For the final study, a domain probe was 

used in the polymer domain near the clamps. This probe retrieves the maximum value of 

the curl displacement about the z-axis, ||   ||
 

. This is used to maximize the twisting 

motion about the axis of extrusion.  By defining these parameters, the design 

optimization problem becomes more apparent as can be seen in Fig. 7. 

 

 

Figure 5.2. Block diagram detailing dependent multi-physics phenomenon 

 

Optimization was also conducted in COMSOL MULTIPHYSICS. The Nelder-Mead 

method of least squares was used to find maximum values for the objective expressions. 

The probes were used as the objective expressions for each of the studies. The studies are 

conducted in order to maximize the objective expressions.  

 



 

 

 

 
 

 

61 

 

Optimal Radius for End-Effector Displacement 

For the maximization of end-effector displacement, the initial values of the parametric 

expressions are as tabulated in Table 2. The voltages were fixed and applied on the top 

two electrodes at the clamp boundaries. The bottom two electrode clamps were treated as 

grounds. The variable parameter used in this study was the IPMCs radial thickness. The 

outer radius was allowed to vary from a range of .11[mm] to 1.1[mm]. This range was 

decided to be the extreme limits that an IPMC thickness can be seeing as how flat IPMCs 

have a thickness 180 microns
1
. Transient studies were conducted for 1second intervals 

and displacements were measured from this. The results of the end-effector optimization 

can be seen in Fig. 10.  The optimization solver reduced the radius of the IPMC down to 

.11[mm], which is the minimum allowed IPMC radius for the study. This would 

inherently reduce the stiffness based on the spatial dimension, and allow the IPMC to 

bend more effectively. 
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Figure 5.3. Optimal radius for maximum tip displacement 

 

For end-effector deflection, it appears that the IPMC thickness can be arbitrarily small in 

order to design an actuator with more effective bending properties. The magnitude of the 

near instantaneous deflection increased more than ten times by reducing the thickness to 

a fifth of its original size. 

 

Optimal Radius for Force Output 

In order to maximize the force output, it is necessary to maximize the volumetric body 

force that drives the IPMC. Since the volumetric body force is defined by Eq.10, it 

suffices to optimize the space charge density in order to maximize the body force, thus 

maximizing the output force. For the maximization of output force, the initial values of 
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the parametric expressions are as tabulated in Table 2. The voltages were fixed and 

applied on the top two electrodes. The bottom two electrodes were treated as grounds. 

The variable parameter used in this study was the IPMCs radial thickness. The outer 

radius was allowed to vary from a range of .11[mm] to 1.1[mm]. The results of the space 

charge density optimization can be seen in Fig 11. 

 

 

Figure 5.4. Optimal radius for maximum Space Charge Density 

 

The maximum space charge density is achieved with an outer radius of .624[mm]. The 

significance of this result is that IPMCs cannot be made arbitrarily large in order to 
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produce an optimal force transmitter. There exist optimal values that maximize the space 

charge density, and since the force is a function of the space charge density, this means 

that there is an optimal force value. This also means that small changes in the thickness 

can produce large improvements in the force transmission. A radial increase of .07[mm] 

could potentially quadruple the force output.  

Optimal Voltage Configuration for Twisting 

Given the four electrode configuration of the rod type IPMC, it is difficult to control the 

rotation about the z-axis. Electric potential sources result in fairly limited configurations 

as seen in Fig.1. Based on the results of Pugal and Kim, flat type IPMCs have the 

potential to rotate about their longitudinal axis by splitting the electrode on top and 

bottom
1
. This concept was applied to the rod type IPMC in order to conduct studies to 

determine optimal twisting about the longitudinal axis. By setting the    , the geometry 

is then altered in order to split the electrodes. This produces a rod type IPMC with 8 

electrode domains as seen in Fig 12. 
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Figure 5.5. IPMC with 8 electrode domains 

 

In principle, it should be conceivable for this design to produce twisting about its 

longitudinal axis. Each electrode clamp boundary was initiated at a source potential of 

.5V. They were allowed to vary from 0-1V. The radius was fixed for this study. The 

objective function that was chosen for analysis was the curl displacement about the Z-

axis. This probe was located at the base near the clamp boundaries. The results of this can 

be seen in Table 5.2.  
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Table 5.2. Final Voltage Expressions in counter clockwork order. 

 

V1 V2 V3 V4 V5 V6 V7 V8 

.871[V] .731[V] .639[V] .495[V] .251[V] .269[V] 1[V] 0[V] 

 

 

This voltage configuration maximized the curl displacement for the system. The 

optimization results can be seen in Fig 13. 

 

 

Figure 5.6. Curl Displacement Optimization 

 

The twisting occurs through the deflection in the base of the IPMC. The overall 

magnitude of the deflection of the IPMC does not exceed 0.1043[mm]. This is localized 
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deformation near the base of the IPMC. This apparent expansion and compression in the 

base of the IPMC is the cause of the very small scale torsion that occurs within the IPMC. 

This can be seen in Fig 5.7 

.  

 

Figure 5.7.Compression and expansion 

 

Although the twisting produced by the IPMC is not very pronounced, increasing the 

voltage magnitude could potentially allow the IPMC to get larger twisting magnitudes. 

This study still provides insight as to the normalized configuration that voltages should 

be applied in order to produce a valued output. The end-effector of the IPMC still moves, 

making the twisting seem even less significant; however, this is potentially beneficial. 

This ability to twist and bend allows IPMC to maneuver through obstacles; however, this 

result is still very circumstantial seeing as how the magnitude of the deflection is so 

slight.  
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Discussion 

The results from the optimization studies provide insight into steps that can be taken in 

the future development of rod type IPMC actuation devices. One of the main geometric 

considerations in this study was the rod thickness. In principle, it is possible to construct 

a rod type IPMC that can deflect at a desired magnitude by reducing its thickness. In 

theory, this physical representation should yield more accurate results due to the potential 

gradient becoming significantly larger than the induced pressure gradient created by the 

deflection 
1
; however, due to the changing geometry, the mesh can become unstable. It is 

necessary to have active mesh refinement while running optimization. Large deflection 

could be a desirable attribute, but the manufacturing of IPMCs on the micron scale would 

be very difficult.  

On the other end, the force optimization requires a slightly larger thickness than the 

typical IPMC. This result could become increasingly beneficial when attempting to 

construct machinery on a small scale. It should be kept in mind that the force coupling 

terms are determined empirically. Manufacturing of IPMCs with optimized force 

transmission would be inconsequential in comparison to the current IPMC dimensions. 

Increased IPMC mobility is still within its adolescence; however, the potential for 

twisting IPMCs could become more valuable in the field of micro-machinery and 

invasive surgery. There are still computational considerations that will have to be taken 

into account. There is currently no means of validating these results. Empirical evidence 

can only be produced with a manufactured rod type IPMC with eight independent 

electrode surfaces. The fabrication of a cylindrical IPMC with eight electrodes would be 

a task within itself. 
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Future work could be put forth to seamlessly change in the electrode pattern for design 

optimization. Current issues reside in the boundary conditions becoming overlapped. This 

causes the simulations to produce faulty results that could become misleading to the 

optimization module. Simulations become increasingly time intensive when running 

mechanical simulations that augment the geometry. This could be solved for by running 

simulations on a supercomputer or a cluster. The proposed optimized designs still need 

empirical validation, and so fabrication of these designs will need to be technically 

addressed.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

 

70 

 

 

 

 

 

CHAPTER 6: CONCLUSION 

This thesis investigated many of the methodologies generally utilized in order to quantify 

the actuation of an IPMC. These actuation methods where implemented in order to 

quantify 3-dimensional actuation. With these actuation models, design optimization was 

implemented in order to more produce theoretical designs that could more properly 

perform tasks for a variety of end users. 

The first model that was investigated was the lumped RC model. This method modeled 

the cation transport through the current flow in an RC circuit. The current was linked 

with the bending moment used in the model simulation. In the frequency domain, the 

input voltage could be directly linked to the input bending moment. The bending moment 

would then be applied to the large deformation model. The large deformation model was 

a dynamic model which does not assume rigid bodies. Utilizing beam elements to 

represents sectioned IPMCs and two lumped RC circuits in order to induce two bending 

moments, this model could represent bi-axial actuation. Even more so, this model could 

readily capture large deformation. 

The second model that was investigated was the explicit physics model. This method 

explicitly models the cation transport under the influence of an electric field. This also 

effects the electric field simultaneously. The transport of cations drives the body load in 

the IPMC. This coupling causes the actuation within the IPMC. This explicit physics was 
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applied to a rod type IPMC in order to provide an actuation model. This model utilized a 

isotropic linear elastic model in order to model the solid mechanics. This limits the 

magnitude of deformation that the model can accurately capture; however, due to the 

thickness of the rod type IPMCs, the deflection is typically not large, thus the standard 

linear elastic model suffices to capture the actuation. This model also more accurately 

captures the physics within the system. This cation transport is allowed to propagate 

throughout the entire polymer domain, thus more providing more accurate insight to the 

actuation.  

Lastly, design optimization was conducted using the Nedler-Mead least squares method. 

These studies were conducted on the explicit physics model in order to provide explicit 

designs. Three studies were conducted. The first study augmented the IPMC thickness in 

order to maximize the end-effector deflection. The second study augmented the IPMC 

thickness in order to maximize the transmitted force from an IPMC. The final study 

utilized an eight electrode IPMC. By augmenting the potential source, minor twisting was 

induced in the IMPC simulation.  

Future work can build from this thesis could be to conduct studies on multiphysical 

models explicitly sectioned in a similar manner that the RC model is. Studies could also 

be conducted in methods to construct a theoretical feedback controller based on the 

explicit physics model. More hands on studies could be conducted in actually 

constructing IPMCs based on some of the designs provided from the optimization 

models.  

There are still many factors regarding IPMCs that remain uncertain. These factors still 

limit the real-world applications of IPMCs. This study produced a simulation and design 
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optimization of a rod type IPMC utilizing first principles. A three dimensional finite 

element model was constructed that coupled transport phenomena, electrostatics, and 

solid mechanics. By doing so, it was possible to conduct optimization studies that could 

provide conceptual IPMC designs that would maximize deflection, force output, and 

twisting. These designs could become productive towards making devices which utilize 

IPMC actuation in a practical real world setting.  
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APPENDIX A: GREENS FUNCTION SOLUTION FOR LINEAR PARTIAL 

DIFFERENTIAL EQUATIONS  

Given            where   is an arbitrary field, a linear differential operator   , a 

function              where         is a Sobolev space sufficiently defined for the 

operator  , and such that the source terms of the function     , such that the following 

equation is satisfied.  

                                                            (A.1) 

It is possible to derive a Green’s function with the following formulation 

                                                            (A.2) 

where        is the Green’s function, and      is the Dirac delta distribution. It should 

be noted that      ∏      
 
   . By applying multiplying both sides of (A.2) by      

and integrating both sides, the following equation can be produced 

∫            
 

     ∫           
 

                               (A.3) 

since integration and differentiation are linear operators, (A.3) can be re-written as 
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  ∫           
 

     ∫           
 

                             (A.4) 

and since the  Dirac delta distribution has the following properties 

 ∫           
 

                                               (A.5) 

(A.1) could be expressed as  

  ∫           
 

                                            (A.6) 

therefore, the fundamental solution is given as 

      ∫           
 

                                         (A.7) 

Though the principle is straight forward, the application becomes cumbersome. Deriving 

the greens function        requires fairly difficult integral transformations; however, this 

method provides the fundamental solution to linear non-homogenous partial differential 

equations.  

Taking the operator       ,              , and      
         

 
, equation (A.1) 

becomes the equation that describes the electric field in the nafion domain.  

      
  

 
                                                     (A.8) 

 By applying the fundamental solution equation, the following becomes the results 

          
 

 
∫            

 

                                  (A.9) 

The real struggle is determining the Green’s function. By applying this methodology, the 

Green’s function can be determined by solving the following differential equation 

                                                      (A.10) 

By applying a 3D Fourier transform with respect to      and   
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  ̃      
 

       ∫                
                                 (A.11) 

where          , thus equation (A.9) in the Fourier domain becomes 

    ̃      
 

                                                     (A.12) 

now apply the inverse Fourier transform  

        
 

     
∫

           

    
                                   (A.13) 

it should be noted that                  

With a change of variables of   |   |, the previous equation becomes 

        
 

     
∫

       

    
                                     (A.14) 

Where this integral can be evaluated in the spherical coordinates, thus with the 

relationship that              in the spherical coordinates         and   | |, the 

previous equation follows as  

        
 

     
∫

       

    
   

   
 

     
∫     ∫         

 

 
∫

           

  

  

 

 

 
   

  
 

     
∫  

       

  

 

  
 

 
 

  
 

   
 

 

  |   |
                                              (A.15) 

therefore, the fundamental is explicitly  

          
 

   
∫

         

|   |
  

 

                                       (A.16) 
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Another example could be applying this method to the diffusion equation. An augmented 

form of the diffusion equation is what governs the cation migration. In order to 

analytically solve this equation, analysis will be conducted on a simplified version of the 

diffusion equation. Given that the operator   
 

  
    ,                , and 

             , equation (A.1) becomes the equation that describes the diffusion in 

the nafion domain.  

 
  

  
                                                       (A.17) 

with boundary conditions that         and              as | |        

Because we have time in the equation, this has to be taken into account, thus 

implementation of a joint Laplace and Fourier transform will be used to define the 

finalized solution. Thus the fundamental solution will be of the form 
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                            (A.18) 

By a similar methodology, the equation for the greens function becomes the following 

 
  

  
                                                      (A.19) 

Here, the joint Laplace and Fourier transform is defined by the following equation  

  ̅̃      
 

       ∫          
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                       (A.20) 

Applying this transform to (A.19) produces the following equation  

  ̅̃      
 

    
 
 

 
 

                                                (A.20) 

Where the joint inverse would produce the solution  
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4                                           (A.20) 

and if the source was at           rather than          , then the Green’s function would 

become 
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4                                        (A.21) 

And the final solution would become  
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