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ABSTRACT 
 

Spectroscopic Investigation of the Chemical and Electronic Properties of 
Chalcogenide Materials for Thin-Film Optoelectronic Devices 

 
by 

 
Kimberly Anne Horsley 

 
Dr. Clemens Heske, Examination Committee Chair 

Professor of Chemistry 
University of Nevada, Las Vegas 

 
Chalcogen-based materials are at the forefront of technologies for sustainable energy 

production. This progress has come only from decades of research, and further 

investigation is needed to continue improvement of these materials. 

For this dissertation, a number of chalcogenide systems were studied, which have 

applications in optoelectronic devices such as LEDs and Photovoltaics. The systems 

studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe2 (CISe) thin-film absorbers, CdTe-

based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, 

a sample set was prepared through collaboration with outside institutions, and a suite of 

spectroscopy techniques was employed to answer specific questions about the system. 

These techniques enabled the investigation of the chemical and electronic structure of the 

materials, both at the surface and towards the bulk. 

CdS/Cu(In,Ga)Se2 thin-films produced from the roll-to-roll, ambient pressure, 

Nanosolar industrial line were studied. While record-breaking efficiency cells are usually 

prepared in high-vacuum (HV) or ultra-high vacuum (UHV) environments, these samples 

demonstrate competitive mass-production efficiency without the high-cost deposition 

environment. We found relatively low levels of C contaminants, limited Na and Se 
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oxidation, and a S-Se intermixing at the CdS/CIGSe interface. The surface band gap 

compared closely to previously investigated CIGSe thin-films deposited under vacuum, 

illustrating that roll-to-roll processing is a promising and less-expensive alternative for 

solar cell production. 

An alternative deposition process for CuInSe2 was also studied, in collaboration 

with the University of Luxembourg. CuInSe2 absorbers were prepared with varying Cu 

content and surface treatments to investigate the potential to produce an absorber with a 

Cu-rich bulk and Cu-poor surface. This is desired to combine the bulk characteristics of 

reduced defects and larger grains in Cu-rich films, while maintaining a wide surface band 

gap, as seen in Cu-poor films. A novel absorber was prepared Cu-rich with a final In-Se 

treatment to produce a Cu-poor surface, and compared directly to Cu-poor and Cu-rich 

produced samples. Despite reduced Cu at the surface, the novel absorber was found to 

have a surface band gap similar to that of traditional, Cu-poor grown absorbers. 

Furthermore, estimation of the near-surface bulk band gap suggests a narrowing of the 

band gap away from the surface, similar to highly efficient, Cu-poor grown absorbers.  

Long-term degradation is another concern facing solar cells, as heat and moistures 

stress can result in reduced efficiencies over time. The interface of the back contact 

material and absorber layer in (Au/Cu)/CdTe/CdS thin-film structures from the 

University of Toledo were investigated after a variety of accelerated stress treatments 

with the aim of further understanding the chemical and/or electronic degradation of this 

interface. Sulfur migration to the back contact was observed, along with the formation of 

Au-S and Cu-S bonds. A correlation between heat stress under illumination and the 

formation of Cu-Cl bonds was also found.  



v 

Nanocomposite materials hold promise as a next-generation photovoltaic material 

and for use in LED devices, due in part to the unique ability to tune the absorption edge 

of the film by adjusting the semiconductor particle size, and the prospective for long-

range charge-carrier (exciton) transport through the wide band gap matrix material. Thin 

films of CdTe were sputter deposited onto ZnO substrates at the University of Arizona 

and studied before and after a short, high temperature annealing to further understand the 

effects of annealing on the CdTe/ZnO interface. A clumping of the CdTe layer and the 

formation of Cd- and Te-oxides was observed using surface microscopy and 

photoelectron spectroscopy techniques. These findings help to evaluate post-deposition 

annealing as a treatment to adjust the final crystallinity and optoelectronic properties of 

these films.  

Through publication and/or discussion with collaborators, each project presented 

in this dissertation contributed to the understanding of the chemical and electronic 

properties of the material surface, near-surface bulk, and/or interfaces formed. The 

information gained on these unique chalcogenide materials will assist in designing more 

efficient and successful optoelectronic devices for the next generation of solar cells and 

LEDs. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The discovery of the photoelectric effect in 1839 was the first step towards the production 

of photovoltaic (PV) devices.1 The first PV devices to demonstrate significant efficiency 

were produced in the 1950s using a silicon-based p-n junction as the photon-absorbing 

material.2 These first generation solar cells quickly reached efficiencies of over 10%, and 

were followed shortly by reports of chalcogenide-based devices, which used sulfur-, 

selenium-, or tellurium-containing compounds for the absorber material. Cadmium 

telluride (CdTe) solar cells were first demonstrated in the late 1950s,3 and chalcopyrite-

based solar cells derived from CuInSe2 (CISe) compounds followed in the mid-1970s.4 

Chalcogenide-based PV devices, however, lagged behind Si in production for many 

years, in part due to their lower efficiencies and the less abundant materials used (thus 

higher costs). Continued research over the last decade has seen thin-film chalcogenide 

efficiencies greatly improved, and in the last year, match that of multi-crystalline and 

thin-film silicon. Current laboratory-cell record efficiencies are 21.7 % for thin-film 

Cu(In,Ga)Se2,
5 and 21.0 % for thin-film CdTe.6 

While efficiencies have been steadily increasing, thin-film devices are yet to reach 

the theoretical efficiency limit. The Shockley-Queisser model devised in 1961 predicts 

the efficiency limit for a single p-n junction solar cell to be ~ 30%.7 This limit is in part 

due to the fact that only photons of energy equal to or greater than the band gap are 

absorbed. Lower energy photons do not produce electron-hole pairs, and higher energy 

photons are excited beyond the conduction band minimum (CBM), so that only a portion 
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of their energy is converted to electricity. With laboratory-based cells around 20% 

efficient, and full solar cell modules reliably reaching efficiencies of ~ 13-17%,8 there is 

still much space for continued improvement of single-junction devices. Further, there are 

a number of ways to achieve efficiencies beyond the theoretical limit described by 

Shockley-Queisser through non-conventional junctions. These include tandem solar cells, 

which employ multiple p-n junctions with varying band gaps to absorb a wider range of 

energies from the solar spectrum, and intermediate-band solar cells, which have 

delocalized radiative recombination centers located within the band gap that allows for 

absorption of photon energies less than the band gap. Nanostructures have also been 

studied for their potential incorporation into PV devices; they have been placed at 

interfaces to increase surface area, or within films to scatter light.9 Varying the size of the 

nanostructures also allows for tuning of the band gap due to quantum effects, and a 

variety of particle sizes embedded in the material would theoretically allow for a wider 

range of photon energies to be absorbed. These “third generation” solar cells may be able 

to reach efficiencies well above that of single junction devices – for example, a 

theoretical efficiency as high as 68.5% for a multi-junction cell has been calculated.9,10 

Efficiency is also not the only route for improvement of photovoltaic devices. 

Improvements are also desired that reduce the initial costs involved in device production, 

and that maintain the device efficiencies over a longer lifetime. Many factors play into 

the production costs of solar cells, such as raw materials, equipment, energy input, and 

time. Production methods that require less expensive environments (e.g., ambient 

pressure or low temperature treatments), or use reduced amounts of raw materials or 

cheaper materials (e.g., thinner films, nanoparticles, more abundant elements), are 
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attractive due to their potential to reduce the final solar cell cost. Long-term device 

degradation is also a concern which plays into the full system cost, and further 

understanding of the degradation processes currently effecting solar cells will help to 

develop methods to combat them, such as adjusting the materials used, or new 

encapsulation techniques. Understanding and reducing solar cell degradation over time 

would extend the lifetime of devices, and result in higher conversion efficiencies years 

after installation.  

 

1.2 Dissertation Structure 

Each project encompassed in this dissertation investigates one of these potential areas for 

improvement in thin-film, chalcogenide-based optoelectronic devices. To lead into the 

material, Chapter 1 gives an introduction into the motivations for the research and 

organization of the dissertation. Chapter 2 provides relevant background information on 

the materials studied, and Chapter 3 provides a description of the measurement 

techniques used. Note that a separate reference list is give at the end of each chapter. 

In Chapter 4, investigation of a Cu(In,Ga)Se2 absorber and a CdS/Cu(In,Ga)Se2 

material stack taken from the Nanosolar, ambient-pressure, roll-to-roll industrial 

manufacturing process is presented. The samples are compared to high-efficiency CIGSe 

absorbers produced in-vacuum, to investigate the effects of the unique production 

method. This chapter also gives some overview of common characteristics of 

Cu(In,Ga)Se2 absorber materials. 

Chapter 5 continues the discussion of Cu(In,Ga)Se2-based absorbers, by 

investigating an alternative deposition method currently being developed. The novel 

absorbers are grown with first a Cu-rich layer, followed by a separately deposited Cu-
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poor surface layer. Here, it is hoped to combine the beneficial bulk characteristics of Cu-

rich CuInSe2 with the beneficial surface characteristics of Cu-poor CuInSe2. The surface 

and near-surface bulk chemical and electronic properties are studied, and compared to 

two Cu-poor and Cu-rich absorbers, deposited by standard methods.  

In Chapter 6 we transition to CdTe-based absorbers, to study the degradation 

mechanisms at play at the back contact/CdTe interface. A series of (Au/Cu)/CdTe/CdS 

stack samples were prepared, and underwent rapid thermal degradation treatment in a 

variety of ambient environments. Special attention is given to the chemical environment 

at the (Au/Cu)/CdTe back contact interface to investigate the chemical processes at play. 

Increased understanding of this interface and the degradation processes involved may 

help to direct adjustments in deposition parameters and/or materials used, in order to 

improve solar cell lifetimes. 

Chapter 7 is associated with a next-generation optoelectronic device design, 

which utilizes CdTe/ZnO nanocomposite materials. Here, thin CdTe layers deposited on 

ZnO were investigated before and after an annealing treatment. The surface morphology 

and chemical composition are presented in detail, showing the effects of the annealing 

process on the CdTe/ZnO interface.   
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CHAPTER 2 

LITERATURE OVERVIEW AND CURRENT STATUS 

 

Chapter 2 discusses the basic structure of a thin-film solar cell, focusing on the p-n 

junction and the semiconductor-to-metal interface. This is followed by more detailed 

discussion of Cu(In,Ga)Se2-based (hereafter referred to as CIGSe) and CdTe-based solar 

cells. The absorber deposition of CIGSe solar cells is discussed, followed by the role of 

Na, and S/Se intermixing at the CdS/CIGSe interface. For CdTe-based solar cells, the 

CdCl2 treatment, S diffusion, and the role of Cu in the back contact formation is 

discussed, along with the methods for, and utility of, stress treatments. The chapter ends 

with a brief discussion of nanocomposite materials, starting with the quantum 

confinement effect, nanocomposite material structure, and the metal oxide/semiconductor 

interface. 

 

2.1 Chalcogenide Solar Cell Structure  

The materials structure for a CIGSe and CdTe thin-film solar cell (top) and energy band 

alignment of the p-n junction and semiconductor-to-metal interface (bottom) is shown in 

Fig. 2.1. CIGSe thin-film solar cells are grown in a substrate configuration (from right to 

left in Fig. 2.1) on a soda-lime glass substrate, while CdTe cells achieve their highest 

efficiencies when grown in the superstrate configuration (left to right).1 

Both cell structures consist of a metal back contact, such as Cu and Au in CdTe-

based solar cells or Mo in CIGSe-based solar cells. A p-type semiconductor layer 

follows, called the “absorber” layer (CdTe or CIGSe), where the majority of the photons 
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are absorbed to create electron-hole pairs. This is followed by the n-type “buffer” layer 

(generally CdS, also Zn(OH,S) or In(OH,S)2), forming the other half of the p-n junction. 

The “front contact” follows, which generally consists of a transparent conductive oxide 

(TCO) such as ZnO, or SnO:F. The buffer layer, front contact, and superstrate (if present, 

usually glass) are wide band gap materials, designed to absorb a minimal amount of the 

solar spectrum.  

Solar cells are diodes, built from the interface of a p-type and n-type material. An 

n-type material has electrons as the majority carrier, meaning a large number of electrons 

will be in the CB at room temperature due to the prevalence of donor dopant sites. 

Because of this, in an n-type material the Fermi Energy (EF; at temperatures approaching 

  

Fig. 2.1: General material structure (top) and band alignment of the p-n junction and 
semiconductor to metal interface (bottom) of a thin-film chalcogenide-based solar 
cell. Band diagram modeled after Ref. 3. 
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zero, EF is the energy below which all states are filled, and above which all states are 

empty
3
) will be located closer to the conduction band minimum (CBM) than the valence 

band maximum (VBM), as shown on the left of the band diagram in Fig. 2.1. The inverse 

is correct for a p-type material shown in the center of the Fig. 2.1, in which holes (the 

absence of an electron) in the VB are the majority carriers due to a predominance of 

acceptor dopant sites. The p-n junction is shown here at equilibrium, as seen from the flat 

EF across both materials. To reach equilibrium conditions, a diffusion of charge carriers 

occurs during interface formation. Recombination of the charge carriers creates a 

depletion region or space-charge region at the interface, which produces the band 

bending and built-in voltage at the p-n junction.
3
 

 

2.2 The Semiconductor-to-Metal Interface 

The semiconductor-to-metal interface on the right of the band diagram in Fig. 2.1 depicts 

an ohmic contact at equilibrium. The interface is ohmic if there is no barrier to majority 

charge carrier transport between the semiconductor and metal. Alternatively, a Schottky 

barrier, i.e., a barrier to charge transport, may form at the metal-semiconductor contact. 

The ideal metal-to-semiconductor interface is often modeled by the Schottky-Mott 

method, in which the work function of the metal (ΦM) and the semiconductor (ΦSC) 

determine the potential energy barrier, Vbi, (and by relation the presence or absence of a 

Schottky barrier) through equation 2.1: 

 !"# = %& − ()*  (2.1)  

where Vbi, ΦM and ΦSC are shown in Fig.2.2.  
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Based on this model, an ohmic contact is formed with a p-type semiconductor 

when ΦM > ΦSC, and a Schottky barrier will form if ΦM < ΦSC. Therefore, metals with 

high ΦM values would be expected to form ohmic contacts to the p-type absorber layers, 

CdTe and CIGSe. While this model is a useful starting point to predict the characteristics 

of a metal-semiconductor contact, interface formation is a complex process, and this rule 

does not hold true for many materials and situations. This is, in part, because the model is 

based on work function values of the material, which 1) are surface properties, 2) will 

vary between samples of the same material based on the crystal surface orientation and 

impurities, and 3) do not exist at the interface, or in the bulk of the material. The work 

function is dependent on the surface dipole, which on interface formation is replaced by 

an (unknown) interface dipole. Further still, Fermi level pinning, in which a high dopant 

density saturates the effects of the metal at the very interface and prevents the expected 

band bending, may also produce “real-world” results different from those expected from 

the model. Thus, measurements of the true interface are needed to understand the metal-

to-semiconductor interface, as well as other interfaces.  

 

Fig. 2.2: Metal-semiconductor contact. An ohmic contact is depicted between a p-type 

semiconductor and a metal. Adapted from images in Ref. 3. 
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2.3 Charge Carrier Concentration and Recombination 

Charge carrier concentration is the number of carrier atoms per unit volume, and 

describes the density of charges within the material. Carrier concentration plays an 

important role in interface formation. The width of the depletion region created at the p-n 

junction is directly affected by the density of charge carriers in each material.3 This 

translates to the sloping of the bands at the interface, such that a shorter depletion width 

and thus steeper band bending occurs with a higher doping density.  

The more abrupt band bending at the junction causes the CB of the n-type 

material to come into close proximity of the VB in the p-type material. This makes 

recombination, the relaxation of an excited electron in the CB into a hole in the VB, 

statistically more probable due to the close proximity of the charges. Fig. 2.3 depicts the 

band alignment for two highly doped p- and n-type materials, and recombination at the 

interface.  

 

2.4 Cu(In,Ga)Se2  

The CIGSe section begins with a broad discussion of absorber deposition techniques, 

since Chapters 4 and 5 investigate two uniquely deposited absorbers. Some of the main 

 

Fig. 2.3: A conceptual depiction of a p-
n junction formed between two highly 
doped p- and n-type materials. The 
solid vertical line denotes the junction 
location, while the dashed vertical lines 
denote the depletion region to either 
side of the junction. 
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details of CIGSe-based absorbers follow, such as the role of Na and the presence of S/Se 

intermixing at the CdS/CIGSe interface. 

2.4.1 CIGSe Absorber Deposition Methods 

A number of techniques for deposition of the CIGSe absorber have been 

developed. In recent years, the most progress has been achieved with co-evaporation, 

sputtering, and non-vacuum “printing” with ink-based precursors.4  

The most successful and thus most common method of CIGSe absorber 

deposition is co-evaporation, by which efficiencies of at least 20.5% have been 

achieved.5 The NREL 3-stage co-evaporation process is most prevalent, the first variation 

of which was originally patented in 1995.6,7 This absorber deposition consists of three 

stages, all of which are performed in a Se vapor environment. After the deposition 

chamber is pumped down (for example, to less than 3 × 10-6 torr6), In and/or Ga are 

evaporated along with Se onto the substrate, which is held around 400 °C. The Se 

evaporation is then continued as the substrate temperature is ramped up to near 600 °C 

for the second stage, when only Cu and Se are evaporated. In the third and final stage, the 

sample is kept near 600 °C while In and/or Ga are again deposited, in the absence of 

further Cu deposition.8 By this method, a Cu-rich bulk stoichiometry (Cu > 25 at.%) is 

achieved after the Cu deposition, followed by a conversion to Cu-poor stoichiometry (Cu 

< 25 at.%) when the final In and/or Ga layer is deposited, providing that less than a 

stoichiometric amount of Cu was deposited in the second stage.6 Cu-poor absorbers have 

previously yielded higher efficiencies compared to Cu-rich absorbers, with the record 

efficiencies all stemming from Cu-poor devices. This is predominantly due to the 
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beneficial electronic properties of the Cu-poor surface, which are not seen in Cu-rich 

films. A detailed discussion of these effects is presented in Chapter 5.  

Non-vacuum, ink-based printing is an attractive deposition technique for solar cell 

production, due to the lower equipment costs and the ability to deposit rapidly on a 

moving substrate. The highest efficiency achieved with these deposition parameters is 

17.1 %, as reported by Nanosolar in 2012.9 Their manufacturing process included a 

number of novel techniques, such as a rapid, nanoparticle-ink printing of the absorber 

layer, depositing this absorber layer at ambient pressure, and depositing on a flexible foil 

substrate. This allowed for a roll-to-roll type production line for efficient and inexpensive 

manufacturing, the practicality of which was supported by the record efficiencies they 

achieved. Further discussion of their production method, and a detailed study of the 

CdS/CIGSe interface is presented in Chapter 4. 

2.4.2 Sodium in CIGSe  

CIGSe thin-film solar cells typically achieve their highest efficiency when grown 

in a substrate configuration (i.e., from right to left in Fig. 2.1).1 When a soda-lime glass 

substrate is used, this growth configuration allows for Na migration from the glass, 

through the metal back contact, and into the CIGSe absorber layer during processing.1 

Sodium was realized to be beneficial in CIGSe thin-films as early as 1993, when the use 

of soda-lime glass was shown to improve cell efficiencies, possibly by increasing the 

grain sizes in the absorber layer, and resulted in a Na signal at the film surface.10 Na has 

since been shown to reside predominantly at the surface and grain boundaries of the 

absorber layer.11 A reduced but significant (and self-limiting12) portion of this Na can 

also remain at the CdS/CIGSe interface after CdS deposition.13 Na has a large effect on 
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the electronic properties of the CIGSe grain surfaces, and thus the CdS/CIGSe interface, 

contributing to the valence band DOS, and reducing the surface dipole.14,15 Na is also 

known to increase the overall doping density of the absorber layer,16 and thus Na would 

be expected to play a large role in the p-n junction formation in CIGSe. In more recent 

years, the role of K in CIGSe has also been investigated.17 

Alternative methods of Na incorporation have been developed, which often 

include the addition of a Na barrier at the surface of the glass, followed by an intentional 

Na precursor layer, such as NaF, Na2Se, or Na2S, deposited either below the absorber 

layer, during absorber deposition, or on the surface.1 Alternative methods are more often 

used in industrial manufacturing, because they allow increased control over Na 

distribution.1  

2.4.3 S/Se Intermixing at the Buffer/Absorber Interface 

 Along with the presence of Na at the CdS/CIGSe interface, intermixing of 

elements from the two layers can also occur. At the CdS/CIGSe interface, intermixing of 

In and Se from the CIGSe into the CdS layer, and S from the CdS into the CIGSe layer, 

has been observed,18 with the potential formation of (In1-xGax)ySz species at the 

interface.19 An intermixing of Se from the absorber into the CdS layer has also been 

observed at the CdS/Cu(In,Ga)(S,Se)2 interface, and shown to vary depending on the S 

concentration in the absorber.20 These intermixing effects were demonstrated in high 

efficiency cells, and might be expected to produce a more beneficial band alignment at 

this interface. 
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2.5 CdTe 

A brief discussion of the materials and processes used in CdTe production is given here, 

with a focus on the back contact / CdTe interface and lifetime testing of CdTe-based solar  

cells, which is relevant for Chapter 6. 

2.5.1 Deposition Characteristics of CdTe  

CdTe is an ideal material for solar cell applications. The optical direct band gap of 

1.44 eV
21

 puts it close to the theoretically ideal band gap for the absorption of sunlight,
22

 

and CdTe is easily converted between p-type and n-type based on the prevalence of Cd 

vacancies (VCd) and/or the presence of dopants.
23

 CdTe-based solar cells achieve their 

highest efficiencies when grown polycrystalline (which generally makes deposition both 

quicker and less expensive) and in a superstrate configuration (i.e., depositing onto the 

glass and TCO).
1
 After deposition of the TCO, CdS, and CdTe layers, CdCl2 “activation” 

is performed on the CdTe surface, which produces a dramatic increase in the cell 

conversion efficiency. Cl from the CdCl2 treatment diffuses through the CdTe layer, 

predominantly at the CdTe grain boundaries,
24

 and to the CdS layer. The CdCl2 treatment 

has been shown to cause an n- to p-type conversion in the CdTe layer,
23

 an enlargement 

and/or recrystallization of the grains in the CdTe layer,
25

 and to cause the diffusion of S 

from the CdS buffer into the CdTe layer, which has also been shown to accumulate at the 

CdTe/metal interface after back contact deposition and final annealing treatment.
24,26

  

The final interface formed in CdTe-based solar cell is between the semiconductor 

and the metal back contact, where, as discussed in Section 2.2, an Ohmic contact is 

desired. This is difficult to achieve for the CdTe/metal interface, in part due to the large 

band gap (1.44 eV) and commonly high electron affinity (~ 4.5 eV) at the surface of 
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CdTe.27  Treatment of the CdTe surface prior to back contact deposition (e.g., chemical 

etching) and the inclusion of Cu in the back contact are commonly employed, both of 

which help to produce a lower energy barrier at the metal-to-semiconductor interface.28 

Cu also readily diffuses into the CdTe, beneficially altering the doping levels in the 

absorber. In the bulk, Cu predominantly forms Cu antisites at Cd locations (CuCd), often 

by filling Cd vacancies (VCd).28–30 These defects act as shallow acceptors (making the 

material more p-type).31 Directly at the CdTe/back contact interface, Cu can also form 

Cu2-xTe compounds, which would form a more n-type region at this boundary of the 

CdTe layer.28,31 This would be expected to reduce and narrow the barrier often present at 

the back contact,28 which would allow tunneling through the Schottky barrier and 

produce an improved cell efficiency. 

2.5.2 Accelerated Lifetime Testing  

While Cu provides an initial increase in cell efficiency, Cu from the back contact 

is also known to play a major role in CdTe solar cell degradation over time. Accelerated 

lifetime treatments, also known as stress treatments, have been developed to speed up the 

chemical and physical mechanisms at play as the solar cell ages with time. These 

treatments are performed on non-encapsulated solar cells, meaning the material layers are 

not physically isolated from the ambient environment by a final sealing layer. Common 

stress treatment parameters include elevated temperatures (50-200 °C), illumination or 

dark conditions, in air, N2, or vacuum, and the electrical connection of the cell, such as 

open- or short-circuit, or under bias.32 These stress treatments are performed for a variety 

of durations (e.g., 1,000 hours, 1 week, etc.), with 1000 hours of stress under certain 

conditions corresponding to an estimated 100 years in the field.32 
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2.5.3 Degradation Mechanisms in CdTe 

Heat stress treatments have shown a reversal of the positive benefits realized from 

Cu inclusion. An increased diffusion of Cu to the CdS layer, and accumulation at the 

CdTe/CdS and CdS/ITO interfaces, has been observed after heat stress treatment.30,33,34 

Cu is therefore thought to be responsible for the degradation of the p-n junction, which 

manifests as a decrease in the open circuit voltage,32 or VOC (the built-in voltage, or 

voltage drop over the solar cell junction when measured in an open circuit). The 

formation of a Cu oxide layer at the CdTe/metal interface has also been suggested, which 

would form a barrier to charge transport at the metal-semiconductor interface. This 

manifests as a “rollover,” or limited current at higher forward bias values, in the I-V 

curve of the solar cell.34 Evidence for S oxidation under the back contact after stress 

treatment has also been found.26   

 

2.6 Photosensitized Nanocomposite Materials 

The optoelectronic properties of nanocomposite materials have been discussed and 

studied as a concept for many years,35,36 and have been successfully demonstrated in 

light-emitting diodes (LEDs)37 and solar cell materials.38,39 A brief discussion of the 

nanoparticle band gap, and the nanocomposite structure and interfaces is given here, as 

relevant to the CdTe/ZnO nanocomposites investigated in Chapter 7. 

2.6.1 Quantum Band Structure  

In quantum mechanics, the allowed energy states for a particle confined in a 

system are given by:40,41 

 !" = $%"%
&'(% (2.2) 
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where h is Planck’s constant, n is an integer number, m is the mass of the particle, and L 

is the distance (or area) in which the particle is confined. From this simple equation, it 

can be seen that as L becomes smaller (more specifically, in the range of the particle 

wave function), the energy of the particle, En, and the separation of the energy states 

become larger. In large-scale solids, L is sufficiently large such that the change in energy 

between adjacent states is small, and the allowed energy levels become essentially 

continuous. However, in the quantum regime, the change in energy between consecutive 

states is greater, and the quantization of the energy states becomes apparent.40 This, in 

turn, affects the Eg of the nanoparticle such that as the particle decreases in size, the 

energy between the VBM and CBM increases. This is particularly interesting for 

semiconductor materials, for which the exciton energy can be tuned based on the 

nanoparticle dimensions, and in fact, the exciton energy can be modeled to again show an 

increasing exciton energy with decreasing particle size.40 In recent years, models 

  

Fig. 2.4: Experimental data (black dots) and calculated values (solid line) of 
the band gap energy vs. particle radius for CdTe quantum dots. Figure adapted 
from Ref. 42. 
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predicting the Eg of semiconductor quantum dots have shown good agreement with 

experimental data, as seen in Fig. 2.4, which shows calculated and experimental data by 

Baskoutas et al.42 As expected from Eq. 2.2 and the squared length term in the 

denominator, the Eg follows a reciprocal curve as the particle radius increases.  

2.6.2 Nanocomposite Structure 

Nanocomposite materials are a unique material class which aims to monopolize 

on the unique properties of nanoparticles for photosensitization and photoabsorption. 

Here, a wide band gap material is used as a matrix in which semiconductor nanoparticles 

are embedded. The wide band gap material serves two purposes: while this matrix 

material can absorb higher energy photons (potentially creating electron-hole pairs), it 

allows lower energy photons to pass through. These lower energy photons are then 

available to be absorbed by the semiconductor nanoparticles, which can efficiently absorb 

a wide range of energies depending on the nanoparticle size. Second, the matrix material 

offers a long diffusion length for exciton transport, due to the wide band gap, which 

reduces the probability of electron-hole recombination.  

As might be expected, one of the main hurdles to the use of nanocomposites as a 

photovoltaic material is the efficient transport of photoexcited carriers over the 

semiconductor-to-matrix interface. A continuous CBM and the absence of an energy 

barrier at this interface would be desired to facilitate electron transport between the 

nanoparticle and matrix material. As described for Cu(In,Ga)Se2 and CdTe-based thin-

film solar cells, interfaces are most often not abrupt and not simple. This is exemplified 

for nanocomposites in the work by Shih et al., in which Ge:ITO and Ge:ZnO 

nanocomposites were investigated.43 Here, Raman spectroscopy revealed the presence of 
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a GeOx interfacial species in the Ge-ITO nanocomposite materials after annealing, and 

the presence of an energy barrier at the Ge-ZnO interface was predicted based on the shift 

to higher energy of the absorption onset. The ultimate utility of this material class may 

depend on a deeper understanding of the electronic properties of the matrix/nanoparticle 

interface. 
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CHAPTER 3 

MEASUREMENT TECHNIQUES 

 

This chapter presents the equipment and measurement techniques utilized in this 

dissertation, especially the nuances of these techniques that must be understood to 

accurately interpret the data. The chapter begins with discussions relevant to 

Photoelectron Spectroscopy (PES), which includes the more specific techniques of X-ray 

Photoelectron Spectroscopy (XPS), Ultraviolet Photoelectron Spectroscopy (UPS), and 

Hard X-ray Photoelectron Spectroscopy (HAXPES). Included in this section is an 

overview of sample handling, ion stimulated desorption as a surface cleaning technique, 

and sample grounding and the surface photovoltage effect, all of which pertain strongly 

to PES and related surface-sensitive techniques. This discussion is followed by an 

overview of Inverse Photoemission Spectroscopy (IPES), which is a unique, electron-in, 

photon-out process. The synchrotron-based techniques of X-ray Emission Spectroscopy 

(XES) and X-ray Absorption Spectroscopy (XAS) are then covered, both of which are 

photon-in, photon-out processes.  

 

3.1 Introduction 

The photoelectron spectroscopy techniques included in this dissertation involve single-

excitation perturbations of atoms from initial to final state. These processes follow 

Fermi’s golden rule for a time-dependent perturbation. Fermi’s golden rule states:1,2 

 !"→$ ∝ &'
ℏ |〈+|,|-〉|

&/(1$ − 1" − ℎ4), (3.1) 
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which describes the probability (ω) of a transition to occur from the initial state, i, to the 

final state,  f. The transition is governed by a matrix element including the perturbation, r 

(e.g., the incoming photon, hν, or electron). The delta function originates from the density 

of energy states around the final state, which becomes more narrow (approaching a δ-

function), as t → ∞ (derived elsewhere2,3). The delta term ensures that the conservation of 

energy is maintained. 

 

3.2 Photoelectron Spectroscopy (PES) 

PES is based on the photoionization of atomic core levels, and the measurement of the 

energy of the emitted photoelectrons. The energy of the incoming photon, and the energy 

of the outgoing electron are related by the equation:4 

  ℎ" = $% + |$(|   (3.2) 

This states that the Kinetic Energy (EK, or KE) of the emitted electron is equal to the 

energy of the photon (hν) minus the absolute value of the Binding Energy (EB, or BE) of 

the electron to the atom. The energy scale is referenced to EF for this equation, such that 

the work function of the sample is included in the EK term. The XPS process and these 

two energies are depicted on the left of Fig. 3.1 (a). Reference to EF is achieved by 

putting the sample in electrical contact with the detector (i.e., grounded). The energy axis 

is regularly calibrated by following an ISO standard5 in which the KE of photoelectron 

peaks from pure Cu, Ag, and Au foils are compared to the accepted literature values.   

Along with XPS, a second process also occurs which gives rise to X-ray-excited 

Auger Emission Spectroscopy (XAES). Here, an electron in an outer (lower BE) state 

relaxes into the hole created by the photoemission process. The involved change in 
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energy can be transferred to a second electron (the Auger electron) which, if sufficient, 

can be excited out of the sample. This is depicted on the right of Fig. 3.1. (a). The KE of 

the Auger electron is dependent on the energy difference between the state of the relaxing 

electron and the hole (designated in Fig. 3.1 (a) as EA). Auger spectra are therefore 

independent of the photon energy used, and are plotted as intensity vs. KE. Auger 

emission is also independent of charging effects, if adequate grounding of the sample is 

not achieved, since both states involved are equally affected. Conversely, the KE of 

photoelectrons is directly related to the photon energy through Eq. 3.2, while the BE of a 

particular state will be the same regardless of the photon energy. As such, photoelectron 

peaks are plotted as intensity vs BE. 

 

   
Fig 3.1: a) Schematic of X-ray Photoelectron (XPS) and Auger Emission (XAES) 
spectroscopy transitions. KE* includes the KE of the emitted electron with respect 
to Evac, as well as the work function of the surface. b) 2-D α' plot of Zn, adapted 
from Ref. 7. 
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This also makes it more straightforward to determine the Modified Auger 

Parameter, α', which is calculated by adding the BE of the most prominent photoelectron 

peak and the KE of the most defined Auger emission line: 

 !" = $%&'()* + ,%-./0/)1)20*/3  . (3.3) 

This yields a positive energy value, independent of the photon energy used, that is easily 

calculated and compared to reference values.
6
 The α' is a powerful tool for determining 

the chemical environment of a given element. While the energy position of just the 

photoelectron peak can often distinguish between different chemical bonding and local 

environments, additional and more dramatic variation in the Auger emission energy is 

often seen, in part because the Auger transition involves: 1) lower BE core-levels closer 

to the VB, which are more strongly affected by bonding environment, 2) the energetic 

spacing between two electron orbitals, each of which may respond differently to changes 

in the electron potential surrounding the element, and 3) final state effects, such as hole-

hole interactions, extra-atomic screening, or hole lifetimes. In some situations, a shift of 

the photoelectron peak may be small or absent, while the Auger peak shows a strong 

shift. This can be seen in the 2-D α' plot for Zn, shown as an example in Fig. 3.1 (b),
7
 

where the Zn 2p3/2 peak energies are plotted along the x-axis, the Zn LMM peak energies 

along the left y-axis, and the calculated α' is listed on the right y-axis. Here, only a small 

shift (< 0.5 eV) in the Zn 2p3/2 binding energy is seen between metallic Zn and ZnO, 

while a more dramatic shift of almost 3 eV is seen for the Zn LMM peak. This also 

results in a change in the α' value by a full 2.5 eV. This easily illustrates the utility of 

plotting α' in some situations, to help identify the chemical environment of an element.  
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3.2.1 Line Width and Peak Fitting 

The peak width, or full width at half maximum (FWHM), of the peaks in an XPS 

spectrum are affected by a number of factors. The minimum peak width is the natural line 

width of the transition, which is governed by the lifetime of the created core hole (the 

time between excitation of the electron out of the atom and relaxation of the atom to fill 

the electron vacancy). This is based on the uncertainty principle for energy and time,

 ∆"∆# ≥ ℏ
&  . (3.4) 

The uncertainty principle shows that as the lifetime, ∆t, decreases (approaches zero), the 

change in energy, ∆E (peak width), increases and approaches ∞, demonstrating complete 

uncertainty in the energy as certainty in the time is established.8 Typical lifetimes in XPS 

are between 10-13 and 10-15 seconds,9 corresponding to a minimum theoretical line width 

of 0.003 to 0.3 eV.  

The line width of the photon source also adds to the width of the XPS peaks. The 

most commonly used x-ray lines, Mg and Al Kα, are used due to both their sufficiently 

high photon energy, which allows excitation of a large number of core levels, and their 

sufficiently small emission line width, which is the limiting factor for peak width. The 

line width of Mg and Al Kα emission are approximately 0.7 and 0.85 eV, respectively.9  

Lastly, the analyzer and its settings also affect resolution. XPS measurements are 

usually performed in Fixed Analyzer Transmission (FAT) mode, which retards the 

emitted electrons to a constant energy (the pass energy, PE), prior to entering the 

hemisphere. The electrons are retarded so that a smaller hemisphere radius is needed to 

achieve a higher resolution, and the electrons are measured at a constant energy so that a 

constant absolute resolution is achieved over the full energy range.9,10  
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These three factors combined give the full resolution for an XPS measurement as: 

 ∆" = $∆"%& + ∆"(& + ∆")&*
+
, (3.6)  

where ∆En is the natural line width, ∆Ep is the photon source line width, and ∆Ea is the 

analyzer resolution.9 These factors are “built-in” to the experiment and the equipment 

being used. 

Another aspect of resolution, which the user has control over, is the positioning of 

the sample relative to the analyzer entrance cone. The analyzer is designed to “focus” at 

an exact working distance (40 mm for the SPECS PHOIBOS 150 used here11). To ensure 

the proper working distance is used, consecutive measurements are taken of a given peak 

while varying the sample height relative to the analyzer. The FWHM of the peak will 

reach a minimum at the proper working distance. Alignment of the sample with respect to 

the axis of the analyzer must also be ensured, and is especially important when measuring 

with a small-spot excitation sources (e.g., at the synchrotron).  

Aside from the experimental broadening discussed so far, the peak FWHM may 

also vary due to the presence of multiple chemical species or a less defined chemical 

environment, such as multiple closely spaced peaks overlapping within a single peak. For 

these situations, fitting of the peak in question may be useful to distinguish chemical 

species and/or to determine the intensity of an individual species. The fits presented in 

this dissertation were performed with the program Fityk,12 and primarily involve a 

description of the background and a description of the peak.  

Proper choice and positioning of the background is important, since it will 

strongly affect the peak shape and area. A Shirley background is often used in XPS to 

describe the background signal.13 It is well-suited for materials with a small or absent Eg, 
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such as metals, due to the tail of inelastic scattered electrons that extends from the 

photoelectron peak to higher BE, contributing to the background. An example of metal 

peaks (Ag 3d) and the calculated Shirley background is shown in Fig.3.2 (a). A linear 

background is more suited for the fits present in this dissertation, however, since the 

materials being investigated are semiconductors with band gap values of 1 eV or greater. 

The relatively wide band gap of these material results in a tail of scattered electrons that 

is offset from the main peak by the energy of the band gap, such that a step function 

under the peak is not justified to describe the spectrum. The positioning of the linear 

background relative to the data points is also significant, such that if the background is set 

too high it may artificially reduce the Lorentzian portion of the peak broadening 

(described below). Thus the background should still be slightly below the data at the 

edges of the fit region.  

 For the peak fits performed here, a Voigt profile was chosen to describe the peak 
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Fig. 3.2 a) An example of a Shirley background, calculated for the Ag 3d metal 
peaks. b) A fit of a semiconductor material using a linear background and Voigt 
profiles. 
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shape. The Voigt profile is a convolution of Lorentzian (from the lifetime broadening) 

and Gaussian (from the instrumental broadening) functions. The “VoigtA” profile option 

in fityk was used, which also allows the peak area variable to be specified by the user 

(e.g., as a fraction of another peak area). An example of a two-peak fit using a linear 

background and two Voigt profiles, taken from Chapter 7, is shown in Fig. 3.2 (b). 

When fitting a spectrum or a set of spectra, as many parameters as possible should 

be fixed or constricted in order to reduce the number of variables. For example, the 

Gaussian broadening can be set equal for all peaks, since the instrumental broadening 

would be expected to be constant, while the Lorentzian broadening can be set equal for 

peaks of the same transition (e.g. all Cu 2p3/2 peaks), since the transition lifetime should 

be approximately the same. The peak area ratios for doublet peaks (from the spin-orbit 

splitting of orbitals with a quantum number, ℓ > 0) and the spacing between these peaks 

are also known, and can be fixed in the fit.   

3.2.2 Factors Affecting Line Intensity 

PES is often used to gain information not only of the elements present in the 

sample, but also the amount of each element. A large number of factors contribute to the 

intensity of a peak, and in complex ways. Taking from the discussions by M. P. Seah,14 

and Moulder and Stickle,4 a simplified relationship between these factors is given below: 

 !" = $"	&'()*"+" (3.7) 

where σA is the cross section of the electron orbital of element A being measured, y is the 

detection efficiency for the transmitted electrons, ϕ is the angle between the photon 

source and detected electron (usually the “Magic Angle”, discussed below), f is the 

photon flux (photons/cm2-sec), T is the transmission function of the hemisphere, nA is the 
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number of atoms of element A per unit volume, and λA is the Inelastic Mean Free Path 

(IMFP) of the produced photoelectrons.  

The emitted electrons in PES have an angular distribution that must be accounted 

for to determine the expected intensity for a given orbital. For laboratory-based XPS with 

a non-polarized photon source, the angle (Φ in Fig. 3.3) between the source (hν) and the 

vector of the detected electrons (p) projected onto the x-y plane is 54.7°. This is the 

“Magic Angle”, at which the maximum photoelectron intensity is emitted, and the 

asymmetry parameters (from the dipole approximation), which alter the transition cross 

section, cancel. The cross sections for all elements with this set-up and either a Mg and 

Al Kα photon source have been calculated and are available in the literature.15,16 It must 

be noted that these calculations require simplified approaches, which necessitate 

substantial error bars. The asymmetry parameters for measurements performed in 

different geometries and with different photon energies are also available.16–18 

The IMFP describes the distance electrons of a certain KE can travel through a 

material before 1/e of the original signal intensity is lost due to inelastic scattering.9 The 

IMFP is affected by the material properties and, more predictably, the KE of the electron, 

approximately following the “universal curve” shown in Fig. 3.4.19 This model gives a 

 

Fig. 3.3: Photoemission angle geometry, 
adapted from Ref. 17. Here, Φ is the angle 
between the vector of the photon source, 
shown along the y-axis, and the vector p, of 
the emitted photoelectron reflected onto the x-
y plane.  
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good approximation of the IMFP over a wide energy range, including the electron energy 

range for laboratory XPS, UPS, and IPES. From this curve, a minimum in the IMFP is 

seen for electrons around 20-50 eV, with higher KE electrons following a linear, 

increasing trend, roughly equal to √"#. From the universal curve it can be seen that, 

while the IMFP does change with the KE of the emitted electron, above ~ 50 eV the 

changes are minor over small variations in the KE, and thus two peaks 100 eV or so 

separated can be expected to originate from electrons with comparable IMFP values. 

Further experiment and calculation has more recently lead to the TPP-2M model, by 

which the IMFP of an electron is calculated for a given KE based on the material density, 

band gap, atomic mass, and number of valence electrons.20 This model has been shown to 

match well to experimental data,21,22 and multiple software applications are available for 

users to calculate more precise IMFP values.23,24  

 
Fig 3.4 Experimental data (dots) and the resulting universal curve (solid line) 
showing the relationship between the Inelastic Mean Free Path, λ, and the KE of 
the electron. The KE of electrons in IPES, UPS, and XPS are indicated. The 
universal curve plot was taken from Ref. 19. 
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The full intensity relationship can be simplified by deriving ratios of two 

elements, or of the same element for two samples. For a given measurement, it can be 

reasonably assumed that the photon flux (f) and the measurement geometry, and thus ϕ, 

will not change. While the detection efficiency (y), IMFP (λA), and the transmission 

function (T) will vary with the electron KE, these changes are relatively small over small 

variations in energy. Thus, when comparing photoelectron peaks close to one another in 

KE and measured in the same measurement set-up (especially in the same spectrum), 

equation 3.7 simplifies and the ratio of the elemental composition can be estimated from: 

 
!"
!#
= %"

%#
∙ '#'"  (3.8) 

where I is the intensity of the peak, σ the cross section, and n the number of atoms. A 

sufficient error bar is required with this calculation, to account for the small changes to 

the y, λA, and T values, which were not accounted for, and the uncertainty in the cross 

sections.   

3.2.3 XPS and UPS Set-up 

X-ray photoelectron spectroscopy (XPS) was performed at UNLV on the “Andere 

ESCA” chamber, equipped with a dual-anode Mg (1253.6 eV) and Al Kα (1486.6 eV) 

SPECS XR50 x-ray source, and a SPECS PHOIBOS 150 multi-channel detector (MCD) 

hemispherical analyzer. The spectra presented in this dissertation were measured in FAT 

mode at a typical PE of 50 eV for large-energy-range surveys, and 20 eV for detailed 

spectra. The ultra-high vacuum (UHV) chamber was consistently at a pressure < 5×10-10
 

Torr. A similar XPS set-up was also used at the Helmholtz-Zentrum Berlin für 

Materialien und Energie GmbH, which also consisted of a SPECS dual-anode x-ray 
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source and a SPECS PHOIBOS hemispherical analyzer, with pressures consistently in the 

10-9
 Torr range. 

Ultraviolet Photoelectron Spectroscopy (UPS) was also measured in the “Andere 

ESCA” chamber, with the analyzer described above. A UV gas discharge lamp was used, 

capable of emitting both He I (21.2 eV) and He II (40.8 eV) radiation, depending on the 

He pressure administered. A much lower PE (1-4 eV) and a smaller entrance slit relative 

to XPS were used for the analyzer due to the high intensity of the photon source, 

resulting in a higher overall resolution for these measurements. To measure the work 

function, a constant bias voltage was applied to the sample, which ensures a sufficient KE 

for the low-energy cut-off electrons to escape from the sample surface (i.e., vacuum 

level) and be detected. The voltage bias was subtracted from the final energy scale by 

calibrating relative to the EF measured from a clean Au foil.  

While both UPS and XPS can probe the valence band states, UPS is generally 

better suited for this task. The lower photon energy used in UPS has a significantly higher 

cross section for valence orbitals (e.g., He I σ is 7.5 for the Cu 3d valence level, 

compared to 0.021 for Mg Kα
16). UPS also yields a higher resolution than XPS, due to the 

narrower line width (in the range of a few meV)9 and the higher intensity of the photon 

source, which allows for a lower PE and slit setting on the analyzer. Finally, for non-

monochromatic photon sources, Mg and Al Kα both have satellites that are ~ 10 % of the 

relative intensity and at ~ 10 eV higher KE from the main emission line.4 This can be 

problematic if the satellites occur in the region of the VB and VBM, especially, for 

example, in samples containing elements with strong electron levels at ~10 eV BE (e.g., 

Cd 4d at 11 eV, and Zn 3d at 10 eV4). The satellites associated with He I are lower in 



34 
 

relative intensity and closer to the main emission line (~2 % and 2-3 eV higher KE), and 

energetically variant from the satellites of He II (~ 8-13 eV higher KE).25 The ability to 

excite with either He I or II allows the experimenter to shift the satellite contributions as 

needed, and more accurately determine the VBM.  

3.2.4 HAXPES 

Hard X-ray Photoelectron Spectroscopy (HAXPES) was performed at the high brilliance, 

high resolution KMC-1 beamline at the BESSY II synchrotron. This linearly polarized 

bending magnet beamline is equipped with a double crystal monochromator including 

three sets of crystals, which enable the production of photon energies through the most of 

the soft and hard x-ray range, from 1.7 to 12 keV.26 

The high kinetic energy electron (HIKE) endstation located on this beamline is 

equipped with a SCIENTA R4000 hemispherical electron analyzer with a 2-D digital 

CCD-micro channel plate.27 The analyzer is oriented with the entrance slit positioned 90° 

from the photon source and the sample at grazing incidence to the beam. This geometry 

sets the vector of the detected electrons normal to the sample surface for maximum 

information depth, and minimizes the inelastic photoemission background.27 Because ϕ ≠ 

54.7°, additional correction factors are needed when determining the cross sections of 

measured electron levels. Overall, smaller cross sections are realized for these higher 

photon energy measurements, but this effect is offset by the high brightness of the 

synchrotron source. The electrons emitted in HAXPES have a longer IMFP than 

laboratory-based PES due to their higher KE, resulting in an overall enhanced bulk 

sensitivity. The tunable nature of the photon source also allows for a broad choice of 



35 
 

excitation energies, and the ability to perform a series of measurements with varying 

depth sensitivity.  

 

3.3 Inverse Photoemission Spectroscopy (IPES)  

IPES is an electron-in, photon-out process which probes the unoccupied electronic states 

at the surface of a material. It can be modeled similar to PES by Fermi’s golden rule and 

the energy and momentum conservation laws. As shown in Fig. 3.5,28 low-energy 

electrons (Ei) are inserted above the vacuum level, Evac, and relax, radiatively or non-

radiatively, to an unoccupied state in the material (Ef) above the Fermi energy (EF). The 

radiatively emitted photons are of the energy	ℎ# = %& − %(.  

 The IPES system at UNLV uses a STAIB low-energy electron gun, which 

produces electrons by thermionic emission from a BaO-coated emitter (ϕ ~ 2.75 eV). The 

 
Fig 3.5. The transition in Inverse Photoemission Spectroscopy, in which a low-
energy electron relaxes from an energy above the vacuum level (Evac) to an unfilled 
state above EF, emitting a photon, hν. The image was modeled after images in Ref. 
28. 



36 
 

energy of the electrons is scanned over an energy range (~ 5-20 eV), and the intensity of 

the photon response from the sample is detected by a band pass Geiger Müller-type 

detector. The intensity of the response (number of counts) is affected by the density of 

states (DOS) available for the electron to relax into. The detector combines a SrF2 

window and Ar:I2 gas mixture to create a band pass with an energy of ~ 9.5 eV, as shown 

in Fig. 3.6 from the overlap of the photon transmission through the SrF2 window29 and the 

photon energy required to complete the ionization reaction, 	"# + ℎ& → "#( + )*. 30,31 

The IPES set-up therefore detects a constant photon energy as the electron energy is 

scanned. The photon intensity is plotted vs. the electron gun energy, and the onset of the 

spectrum at low energy corresponds to the minimum energy level in the CB of the 

material (i.e., the CBM). Similar to UPS, the energy axis is calibrated relative to EF of a 

clean Au foil. 

 
Fig 3.6. Transmission through a SrF2 window (long dash line) and the 
photoionization of I2 (short dash line). The overlapping region shows the bandpass 
of the Geiger Müller-type detector (solid line). The image was adapted from Ref. 
31, and the SrF2 transmission was determined from Ref. 29. 
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3.4 Surface Electronic Band Gap from UPS and IPES 

Because the energy axis of UPS and IPES measurements are both calibrated to EF of a  

clean, polycrystalline gold foil, they can be plotted on a common energy axis to show the 

surface electronic band gap. This is especially useful in the analysis of photovoltaic 

materials, since the chemistry and thus electronic characteristics of the (interface 

forming) surface often deviates from that of the bulk.  

 To assign a value to the surface band gap, the energy of the VBM and CBM are 

determined from linear extrapolation of the leading edge in each spectrum.  The linear 

extrapolation method is used for a number of reasons. First, for both UPS and IPES, some 

experimental broadening is expected, which makes the low-energy onset less defined. 

Second, in UPS, which is a k-resolved measurement, the VBM is located at the Γ-point in 

k-space. Thus, measurement of the “true” VBM requires that a suitable final state is 

available at the Γ-point at an energy above the VBM equal to the energy of the photon.32–

34 For a polycrystalline sample, similar to those measured in this dissertation, the 

probability that such a final state is present at the Γ- point is high, but it may or may not 

be a significant portion of the spectrum, and thus may be obscured in the intensity onset. 

Finally, additional effects such as inelastic scattering of the escaping electrons, or final-

state screening effects in which the screening of the hole is not complete and the escaping 

electron loses some KE through attraction, will add spectral intensity to lower KE. All of 

these effects can cause the onset of the VBM to appear farther from EF, and are 

accommodated for by linear extrapolation of the leading edge.  
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3.5 Sample Cleaning 

As discussed earlier in relation to the IMFP (see Fig. 3.3), electron-based spectroscopy 

techniques are extremely surface sensitive. This is especially true for lab-based 

techniques such as XPS and UPS, which exhibit IMFP values of around 20 monolayers 

or less. While this may be falsely conceptualized as a well-defined or finite “information 

depth”, the surface sensitivity can be more accurately modeled as an attenuation, 

described by:9 

 ! = !#$%
&'

()*+,- (3.11) 

where I is the signal intensity measured, I0 is the full, non-attenuated signal intensity 

produced at a depth, d, from the sample surface, λ is the IMFP of the electron, and θ is 

the angle of emission relative to the surface normal. The plot of Eq. 3.11 for two different 

IMFP values is shown in Fig. 3.7. The area under each curve can be thought of as 

representing the total signal measured, assuming a homogeneous distribution of the 

element away from the sample surface.  
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Fig 3.7. The attenuation of electrons traveling through a medium, plotted for two 

IMFP values as percent intensity of the full value vs. distance through the sample. 
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From this illustration of XPS signal attenuation, it can be seen how a layer of 

adsorbates (e.g., water, carbon-containing compounds) on the sample surface can 

strongly reduce the signal measured from the underlying sample. The effect of adsorbates 

is also more pronounced for lower KE electrons due to their shorter IMFP (e.g. the black 

and red line in Fig. 3.7), and can distort the apparent composition of the sample. 

Adsorbates also inelastically scatter electrons from deeper in the sample, resulting in an 

increased background, and may alter the chemical environment at the surface of the 

sample, for example, by oxidizing the top layer of atoms of the sample. Due to these 

effects, great care was taken in handling the samples measured in this dissertation to 

avoid air exposure. Samples were predominantly removed from the deposition or 

treatment chambers with the use of a N2-filled glove bag, and vacuum sealed in an inert 

atmosphere for transport. At UNLV, they were unpacked in a N2-filled glovebox for 

mounting, and directly moved into the UHV chamber for measurement (pressure < 1 × 

10-9 Torr). The measurements were performed in UHV to avoid adsorbate deposition, to 

facilitate the transfer of electrons from the sample surface into the hemispherical analyzer 

without scattering losses, and due to the requirement for some components to be operated 

at high vacuum (HV) or better.  

Despite these precautions, an accumulation of surface adsorbates is generally 

experienced, from the residual gases in UHV and possibly also small impurities in the N2 

environment or impurities in the deposition environment. It is therefore desirable to 

gently clean the surface and remove these adsorbates, and better measure the “true” 

surface characteristics. Sputter cleaning, a technique in which ions of a noble gas are used 

to physically remove atoms from the surface, is a common technique used for producing 
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very clean surfaces in UHV.9 While high-energy ions are useful for some applications 

(e.g., Ar+ ions in the keV range were used here to clean metal foils for determination of 

EF), cleaning of the semiconductor sample surfaces was performed successfully with a 

low-energy 50 eV Ar+ “ion-stimulated desorption” treatment. The low energy of this 

treatment is near the sputter threshold, reducing the possibility of altering the surface 

through the removal of atoms. A Nonsequitur Technologies Model 1402 ion gun was 

used to produce the 50 eV Ar+ ions, and the ion gun beam was rastered to clean a large 

area of the sample surface. With this ion energy, the sample current during cleaning is 

generally below 0.4 µA. Multiple, short, 50 eV Ar+ ion treatments have been shown to be 

very successful in gently removing non-bonded or weakly bonded adsorbates from 

CIGSe surfaces, without damaging the underlying film.35 

An example of a cleaning series performed on the “Cu Poor” CuInSe2 absorber 

studied in Chapter 5 is shown in Fig. 3.8. Fig. 3.8 a) shows the XPS survey spectra taken 
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Fig 3.8: a) Mg Kα XPS survey spectra of the “Cu Poor” sample initially (bottom) 
and after multiple 50 eV Ar+ ion treatments totaling 90 minutes (top). b) UPS (He 

II) and IPES spectra taken after each ion treatment and XPS measurement. 
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from the initial sample (bottom) and after three 10 minute steps and a final 60 minute step 

of 50 eV Ar+
 ion treatment. The O and C signals (most prominent peaks indicated by 

dashed boxes) are strongly reduced after the first 10 minute ion treatment, and continue 

to decrease slightly thereafter. In parallel to the removal of surface adsorbates, all peaks 

associated with Cu, In, and Se increase.  

Detrimental effects (such as metallic states31,36 and changes in surface 

stoichiometry37) have been observed previously when high energy (500 - 2000 eV) Ar+ 

ions are used. Despite using a much lower Ar+ ion energy, detailed XPS spectra were still 

taken for all samples after each step of the ion treatment, to monitor these changes. From 

the detail spectra for the sample in Fig. 3.8, a decrease in Cu-oxide and In-oxide 

contributions in the Auger spectra was seen after the first 10 minute treatment, and no 

features indicative of metallic states were observed as the ion treatment progressed.  

Evidence of metallic states would also be apparent from the UPS and IPES 

spectra. This is well illustrated in Fig. 3.9, adapted from Ref. 36, which shows the UPS  

     

Fig. 3.9: UPS (left) and IPES (right) 
taken on a CIGSe thin-film sample 
initially (bottom) and after multiple 
500 eV Ar+ ion sputter cleaning steps. 
The image was adapted from Ref. 36. 
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 (left) and IPES spectra (right), taken from a CIGSe sample initially (bottom) and after 

multiple 500 eV Ar+ sputter treatment steps (total sputter time shown on the right).36 The 

linear extrapolation of the VBM and CBM is shown by solid gray lines, and the 

determined band gap value for each treatment time is stated in the figure. With 

subsequent cleaning, and thus removal of surface adsorbates, the surface band gap is 

reduced. Using this high of an Ar+ ion energy proves to be detrimental to the sample after 

a significant treatment time, however, as seen from the evolution of a Fermi edge in the 

56 and (arguably) 31 minute spectra. Fig. 3.8 b) shows the UPS and IPES spectra taken 

congruently with the XPS data from the “Cu Poor” CISe sample. The linear 

extrapolations are indicated by solid red lines, and the VBM, CBM, and band gap values 

are shown in the figure. As expected, an overall decrease in the surface band gap is seen 

with increasing ion treatment as the surface adsorbates are removed.36,38 A band gap of 

1.60 ± 0.15 eV is found for both the 20 and 30 minute spectra, with no indication of 

metallic states forming near EF. 

 

3.6 Sample Grounding  

Due to the removal or addition of charge carriers involved in both PES and IPES, 

appropriate sample grounding is important. This is especially important when working 

with semiconducting, photosensitive materials such as photovoltaic absorbers. 

Measurements were performed with the sample in electrical connection to the sample 

plate and ground (i.e., the chamber) through a Tantalum or stainless steel grounding clip 

pressed on the sample surface. For Cu(In,Ga)Se2 absorbers, it was beneficial to ensure 

that the Mo back contact was also well grounded through the clip.  
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3.7 Synchrotron-Based X-ray Emission (XES) and Absorption (XAS) 

3.7.1 Technique Descriptions 

XES measures the relaxation of valence (or core) electrons into a core hole produced by 

photoionization, as depicted on the right of Fig. 3.10. This is similar to XAES, except that 

instead of measuring the Auger electron, the competitive process of fluorescence is 

measured. Auger emission is often favored for low Z atoms (e.g., relaxations into the K 

and L shells), in which cases fluorescence decay is less probable.
39

 For XES 

measurements, the often low fluorescence yield is overcome by using a high flux photon 

source, which increases signal and reduces measurement time. XES measures the local 

partial DOS; “local” because only transitions between states which overlap with the 

localized core state are possible,
40

 and “partial” due to the selection rules for the allowed 

transitions (e.g., angular momentum quantum number, ∆ℓ = ± 1
41

). Because XES 

measures transitions between two states, most often between valence band levels and 

core levels, it is especially sensitive for studying the valence band states, and thus the

  

 

Fig. 3.10: Schematic of x-ray absorption spectroscopy (XAS, left) and x-ray 

emission spectroscopy (XES, right). 
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bonding environment of the target element, in an element-specific way.  

XAS, shown on the left of Fig. 3.10, probes the unoccupied partial DOS. The 

photon energy is scanned, starting below the BE of the core level to be studied, and the 

fluorescence and electron yield from the sample is measured. When the photon energy is 

sufficient to excite an electron into an unoccupied state, a core-hole is created, which can 

then be filled radiatively or non-radiatively by electrons from more loosely bound 

orbitals. The onset of the fluorescence emission (and electron signal) occurs at the energy 

at which unoccupied states are accessible, and as such XAS probes the CB and CBM, in 

the presence of a core hole. 

3.7.2 Surface Sensitivity 

XES and XAS (when measuring the fluorescence yield) are both photon-in, 

photon-out processes. As such, the surface sensitivity of these measurements is governed 

by the attenuation length of the photons in the material. Similar to the IMFP, the 

attenuation length is the distance in the sample after which 1/e of the initial intensity
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Fig. 3.11: Attenuation of photons from 100 to 2000 eV in CdTe (black) and Au 
(red). The data values are from Ref. 43. 
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remains (i.e., has not been absorbed).42 Depending on the material (the density as well as 

absorption edges) and the photon energy, the attenuation length of the signal varies from 

tens to hundreds of nm. This is easily seen from Fig. 3.11, where the photon attenuation 

in CdTe (black line) and Au (red line) is shown from attenuation data supplied through 

the CXRO website.43 An increased attenuation for Au, the more dense of the two 

materials, is noted, as well as decreases in the attenuation length for CdTe at energies 

corresponding to Cd and Te absorption edges. Dashed lines are included in Fig. 3.11 as 

examples, indicating the photon excitation energy (200 eV) and emission energy (~148 

eV) for S L2,3 XES spectra. Attenuation of the 200 eV photon beam to 36 % of its 

original intensity occurs after traveling through ~ 50 nm of Au, or ~ 300 nm of CdTe. 

This information is useful in estimating the degree of surface sensitivity for a 

measurement, as seen in Chapter 6, where the S L2,3 spectra were determined to include 

information from the CdTe layer beneath 20 nm and 3 nm of Au and Cu, respectively. 

3.7.3 Excitons and Determining the Band Gap with XES and XAS 

Because XES probes relaxations from the VB and XAS measures excitation into 

the CB, combining XES and XAS allows for an estimate of the electronic near-surface 

bulk band gap. Determination of the band gap is not straight forward, however, due to the 

possible presence of core- and valence-exciton states in the XAS and XES spectra.44 

Excitons occur from electron-hole pair interactions when the probed state includes a core-

hole or valence-hole along with an electron in the CB. Excitons can be up to 1 eV,45 

appearing as additional states above the VBM or below the CBM. In some cases excitons 

can be rather pronounced and distinguishable from the spectrum, especially with the help 

of theoretical calculations (see, e.g., Ref. 44, 45, and references therein). This is not 
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always the case, especially for less defined polycrystalline systems, and as such, excitons 

may obscure the true VBM and CBM. The band gap determined from XES and XAS is 

therefore best taken as a minimum value.46  

 

3.8 Beamline Description 

XES and XAS measurements were performed at the Advanced Light Source (ALS) 

Beamline (BL) 8.0.1, at Lawrence Berkeley National Laboratory. BL 8.0.1 is equipped 

with a 5-cm periodic undulator, which, through the first, third, and fifth harmonics, is 

capable of producing x-rays from 65 – 1400 eV.47,48 Even harmonics are excluded from 

the beam due to a horizontal beam defining aperture located at the top (upstream) of the 

beamline. The beam achieves a resolving power (E/∆E) of 7000 with a high photon flux 

of 1011 to 6 × 1015 photons per second.48,49  

Higher diffraction orders are also seen in the energy spectrum of the beamline, 

produced from constructive interference at the monochromator gratings. These higher 

diffraction orders result in higher energy photons in the beam. Higher order emissions 

add complexity to the spectra, but can be useful in some situations. An example is found 

in Chapter 5, when the Cu L2,3 emission (BE ≈ 930 eV) is excited at a beamline setting of 

480 eV, and appears in third-order at ~ 310 eV on the spectrometer. 

3.8.1 Soft X-ray Fluorescence Endstation  

Measurements in this dissertation were taken on the permanently installed Soft X-

ray Fluorescence (SXF) endstation, which is equipped with a grating emission 

spectrometer with four interchangeable gratings and a 2D photon-counting detector, 

which moves relative to the exit slit along a Rowland circle, based on the photon energy 
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to be detected. The sample sits in the attached UHV chamber, generally at < 3 x 10-9 

mbar.47 The samples were often briefly exposed to air during mounting and insertion into 

the end station, which is acceptable for XES and XAS because of the near-surface bulk 

nature of the measurement.  

 

3.9 Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray 

Spectroscopy (EDX)  

In Chapter 5 and 7, SEM and EDX are used to determine the elemental composition of 

the bulk and to produce images of the sample surface, respectively. The EDX 

measurements in Chapter 5 were performed at the University of Luxembourg, with an 

Oxford Instruments INCA X-MAX EDX system using a 20 kV accelerating voltage. The 

SEM images and EDX analysis in Chapter 7 was performed at the Helmholtz-Zentrum 

Berlin (HZB) on an SEM LEO Gemini 1530 system equipped with a Thermo Fischer 

Scientific EDX system, employing a much lower (and thus somewhat more surface 

sensitive) acceleration voltage of 5 kV, and a Si-drift detector. 

For SEM, the image contrast is produced by the secondary electrons, which are a 

byproduct of the primary electron beam interacting with the sample. While the primary 

electron beam can penetrate hundreds of nm into the sample, the secondary electrons are 

of a lower KE, and thus have an escape depth, on average, below 10 nm. EDX is possible 

due to a secondary effect of SEM. The secondary electrons are produced when the 

primary electron beam removes core-level electrons from the atoms of the sample. These 

core-holes can then be filled radiatively in core-core transitions. The x-rays produced are 

energetically in the keV range, giving them a long attenuation length that enables them to 
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escape from their origin in the bulk for detection. Monte Carlo simulations can estimate 

interaction depths based on the electron beam energy and the sample properties. From 

this, a 5 kV electron beam has an IMFP of up to 100 nm, while a 20 kV electron beam 

applied to the same material will have a longer IMFP, in the range of 600 nm.50 
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CHAPTER 4 

ELECTRONIC AND CHEMICAL PROPERTIES OF INDUSTRIAL, NON-VACUUM  

DEPOSITED CHALCOPYRITE SOLAR CELLS 

 

4.1 Introduction 

The cost of solar cell module production, which includes the raw materials, energy, and 

time input, is an intimate part of the full cost-per-watt equation (with module efficiency 

being another fundamental component). It is therefore attractive to the solar cell industry 

to develop inexpensive, high-output deposition methods, which decrease the 

manufacturing costs without compromising the final module efficiency.  

This chapter details the results of collaboration with Nanosolar, which were 

presented by the author at a poster session at the 37th IEEE PVSC conference, June 2011 

in Seattle, WA. The text, coauthored with Nanosolar, was published in full through 

IEEE.1 Nanosolar used a unique PV manufacturing method, in that their absorber was 

deposited through a patented “ink” based printing step using multiple alternating 

materials arrayed on a nanometer scale.2 With this method, the chalcopyrite absorber 

could be rapidly printed in a non-vacuum chamber and onto a flexible substrate, which 

also allowed the deposition to be roll-to-roll.  Due in part to the low production costs, in 

2007 Nanosolar was slated to sell PV modules for around $1/Watt, well below the market 

at that time.3 Here we investigate samples from the Nanosolar production line to learn 

more about the effects of ink-based deposition in a non-vacuum ambient on the chemical 

and electronic structure of the Cu(In,Ga)Se2 absorber surface and CdS/Cu(In,Ga)Se2 

surface/interface.  
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4.2 Experimental Description 

For this study, a Cu(In1-xGax)Se2 (CIGSe) absorber and a CdS/CIGSe interface sample 

were taken from the Nanosolar manufacturing line. The Nanosolar process consists of an 

entirely non-vacuum deposition of the CIGSe layer by nanoparticle printing followed by 

atmospheric pressure rapid thermal processing. The process is roll-to-roll on aluminum 

foil substrates, and the CdS film is deposited by chemical bath deposition. After 

production, the samples were sealed under dry nitrogen (to avoid external surface 

contamination) and shipped to UNLV. The samples were unpacked in a dry-nitrogen-

filled glovebox and moved directly into the UHV chamber at UNLV. For experiments at 

the ALS, the samples were resealed under dry nitrogen, shipped to Berkeley, and briefly 

exposed to air while mounting and loading them into the UHV system. 

XPS, UPS and IPES were performed at UNLV employing the equipment 

discussed in Sections 3.2 and 3.3. To remove surface contaminants without structural 

damage to the surface,4 an ion-stimulated desorption treatment5 was employed using 50 

eV Ar+ ions, as described in Section 3.5. The ion treatments resulted in sample currents 

of 0.3 µA on the CIGSe absorber and 0.2 µA on the CdS/CIGSe sample. Each ion-

stimulated desorption treatment was performed for up to 15 minutes, followed by detailed 

XPS, UPS, and IPES investigations. For the CIGSe absorber, a total of 160 minutes of 

ion-stimulated desorption treatments was performed.  

XES was performed at the ALS, using the permanently installed SXF endstation 

at Beamline 8.0.1, as described in Section 3.8.   
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4.3 Results and Discussion 

4.3.1 XPS Results 

Fig. 4.1 shows XPS survey spectra for the as-received CIGSe absorber (a), the 

CIGSe absorber after several cycles of ion treatment (total treatment time of 160 minutes) 

and characterization (b), the as-received CdS/CIGSe interface sample (c), and the 

CdS/CIGSe structure after 15 minutes of ion treatment (d). In addition to the expected 

photoemission and Auger lines of Cu, In, Ga, and Se, we find Na, O, and C signals for 

the as-received absorber surface. The carbon signal is very low, indicating a low degree 

of carbon contamination (if any) during the production process and a successful transfer 

of the sample from Nanosolar to UNLV without significant additional contamination. In 
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Fig. 4.1: XPS survey spectra of the CIGSe absorber before (a, black) and after (b, 
red) a total of 160 minutes of ion treatment. XPS survey spectra of the CdS/CIGSe 
sample before (c, green) and after (d, blue) 15 minutes of ion treatment. 
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contrast, the oxygen and sodium signals are quite large, but comparable to the surfaces of 

differently prepared CIGSe absorbers (for example the absorber prepared with the NREL 

three-stage process,6 as shown in Ref. 7). Both signals are strongly reduced after ion 

treatment, indicating that they are primarily due to surface species. The initial surface of 

the CdS/CIGSe interface sample exhibits the expected lines of Cd and S, and, in addition, 

small O, Na, C, and Se signals. Only the oxygen and carbon signals are noticeably 

reduced after 15 minutes of ion treatment.  

The presence of a Se signal at the surface of the CdS film (and the absence of all 

Cu, In, and Ga signals) suggests a significant degree of S/Se intermixing at the interface, 

which is a typical characteristic of high-efficiency CdS/CIG(S)Se systems.8,9 A closer 

look at the Se 3d detail spectra in Fig. 4.2 reveals not only the presence of Se at the CdS 

surface, but also indicates the formation of an oxidized Se species, which is also at the 
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Fig. 4.2: Detailed XPS Mg Kα spectra of the Se 3d peak of the initial CdS/CIGSe 
sample and after 15 minutes of ion treatment. 
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initial surface of the CIGSe absorber before ion treatment (not shown). Earlier findings 

on different CIGSe absorbers also showed evidence for Se oxidation.10 After ion 

treatment, the oxidized Se (Se-Ox) contribution at 59 eV is noticeably reduced for both 

samples.  

In addition to a Se-Ox formation at the surface, we find evidence for the 

formation of oxidized S as well, as shown in the S 2p/Se 3p detail spectra in Fig. 4.3. 

Small contributions from oxidized S (S-Ox) species are present at 169 and 172 eV11 (and 

not reduced after ion treatment). Weak Se 3p3/2 and 3p1/2 signals can be seen as a shoulder 

at 159 eV and a small peak at 166 eV, respectively,9 while contributions from the 

oxidized Se species are also observed at 164 and 171 eV, 5 eV above the selenide peaks. 

These two peaks correspond to the oxidized Se 3p3/2 and 3p1/2 peaks, respectively, and are 

noticeably reduced after 15 minutes of ion treatment.  
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Fig. 4.3: Detailed S 2p and Se 3p XPS spectra of the initial CIGSe absorber 
surface and the CdS/CIGSe interface sample. In addition to the main S 2p peaks of 
CdS, small contributions from se 3p and Se-Ox species and contributions from S-
Ox species can be seen.  
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4.3.2 XES Results 

In addition to the surface-sensitive XPS data, XES spectra reveal quantitative 

information about the Cu, Na, Ga, Se, and S signals in the near-surface bulk region of 

both the CIGSe absorber and the CdS/CIGSe sample. Fig. 4.4 (a) presents XES data of 

the Cu L2,3, Na K, Ga L2,3, and Se L2,3 emission using 1500 eV photon excitation, with a 

950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

a)

 

In
te

ns
ity

 (a
.u

.)

Emission Energy (eV)

Cu reference - normalized intensity

XES
hν = 1500 eV

Se L2,3

Cu L 2,3 Na K
Ga L2,3 Se L2,3*

CdS/
CIGSe

CIGSe

Difference: CdS/CIGSe - CIGSe

 

142 144 146 148 150 152 154 156 158 160 162 164

b)

N
or

m
al

iz
ed

 In
te

ns
ity

Emission Energy (eV)

XES S L2,3 and Se M2,3

hν = 200 eV
S-OX

ZnSO4 reference

CdS reference

CdS/CIGSe

CIGSe

Cd 4d

Se M
2,3

S L
2,3

 
Fig. 4.4: a) Cu L2,3, Na K, Ga L2,3, and Se L XES spectra (1500 eV excitation 
energy) of the CIGSe and the CdS/CIGSe sample, together with a Cu reference; b) 
S L2,3 and Se M2,3 XES spectra (200 eV excitation energy) of CIGSe, CdS/CIGSe, 
and CdS and ZnSO4 references. 
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Cu reference shown in blue at top.  Subtraction of the CdS/CIGSe spectrum (green) from 

the CIGSe spectrum (black) yields the difference spectrum shown in red at bottom. The 

difference spectrum shows that the near-surface bulk region of the CdS/CIGSe interface 

sample gives significantly reduced Cu and Se signals as compared to the CIGSe absorber, 

as expected, but comparable Na and Ga signal intensities. The shape of the Ga difference 

spectrum (a characteristic “zig-zag” shape) suggests a small shift. The comparable Ga 

intensity of the two spectra very speculatively might suggest that Ga atoms migrate 

towards the CdS/CIGSe interface during CdS deposition. Also, the potential presence of a 

CuxSe layer at the CIGSe surface and its subsequent removal in the CdS deposition 

process might explain this finding, but appears even less likely. 

 The comparable Na signals indicate an interesting find. As discussed above, a 

large Na 1s XPS signal is observed for the as-received CIGSe surface, while the Na 1s 

signal from the CdS/CIGSe sample is significantly reduced. This surface-Na on the CdS 

film is thus not sufficient to explain the (more bulk-sensitive) XES finding of comparable 

intensities for the two samples. Thus, we conclude that a significant amount of the 

original CIGSe surface-Na must remain at the CdS/CIGSe interface, as found in earlier 

studies.12,13 

 As expected, the Cu and Se signals in Fig 4.4 (a) are noticeably weaker in the 

CdS/CIGSe sample compared to the CIGSe absorber due to signal attenuation in the CdS 

overlayer. This suggests that the XES signal contribution from Se atoms seen on the 

CdS/CIGSe sample surface with XPS is small compared to that of Se atoms at the CIGSe 

absorber surface. 

Fig. 4.4 (b) shows XES spectra of the S L2,3 and Se M2,3 emission. Two references 
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were used, ZnSO4 (to represent oxidized S species) and CdS. From these references, it is 

clear that the S in the CdS/CIGSe sample is indeed in a CdS environment. No direct 

evidence for a Se-contribution (from the CIGSe absorber) is found for the CdS/CIGSe 

spectrum, since the photoionization cross section for Se M2,3 is substantially lower than 

that for S L2,3 (note that the spectra in Fig. 4.4 (b) were scaled to maximum peak height). 

The lower cross section of the Se M2,3 photoionization is evident in the lower signal-to-

noise ratio of the CIGSe spectrum. 

In addition to the analysis of the chemical surface and interface properties, we 

have used UPS and IPES to derive the electronic surface structure of the two samples, 

before and after ion treatment. Surface contaminants can artificially widen the observed 

surface band gap (Eg),14 and thus a cleaning process is needed to measure the true Eg. 

 However, standard cleaning treatments based on (high-energy) ion sputtering 

produce changes in the stoichiometry of the surface and create metallic features at the 

surface (e.g., a Fermi edge15). Thus, we employed ion stimulated desorption (“ion 

treatment”), as described in the experimental section, to clean the sample surfaces in 

short 5 to 15 minute steps using 50 eV Ar+ ions. Detailed XPS, UPS, and IPES data were 

taken after each step to monitor for metallic features. 

 Fig. 4.5 shows UPS and IPES data of the CIGSe absorber (a) and the CdS/CIGSe 

interface sample (b) before and after different ion treatment steps. The UPS spectra, 

indicative of the VB density-of-states and, in particular, the VBM, are shown on the left. 

The IPES spectra on the right reflect the density-of-states of the unoccupied (conduction) 

states and, in particular, the position of the CBM. Both spectra are shown on a common 

energy scale relative to EF, which was determined using a clean Au foil reference. 
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Combining the UPS and IPES spectra on a common energy scale allows us to determine 

the electronic surface Eg of the samples using linear extrapolation of the leading edges,16 

as well as the position of EF within the Eg at the surface. 

 The Eg of the as-received CIGSe absorber (bottom) shown in Fig. 4.5 (a) is (2.95 

± 0.15) eV. The removal of surface contaminants using successive ion treatments leads to 

an increase in the spectral weight around -3 eV below EF (i.e., the spectral region of the 

Cu 3d bands). Also, the leading edge becomes more pronounced, making a determination 

of the VBM more reliable. Similarly, the CB onset also shifts with successive ion 

treatments, leading to a lower CBM position for the cleaned surface. After 160 minutes of 
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Fig. 4.5: UPS and IPES data of (a) the as-received CIGSe and after 25, 55, and 160 
minutes of ion treatment and (b) the as-received CdS/CIGSe interface sample and 
after 15 minutes of ion treatment. The energy scale is given relative to EF, and 
band edges are determined by a linear extrapolation. The energy separation 
between VBM and EF (e.g., -0.84 eV for the clean CIGSe) and between CBM and 
EF (e.g., 0.60 eV for the clean CIGSe) are listed. The electronic surface Eg for the 
clean CIGSe absorber is determined to (1.45 ± 0.15) eV (all gap values are 
rounded to the nearest 0.05 eV and the VBM and CBM positions have an error bar 
of 0.10 eV). 
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cleaning (leading to a significant reduction of O and C surface contaminants, as seen in 

Fig. 4.1), a surface Eg of (1.45 ± 0.15) eV is found, which is similar to that of high-

efficiency CIGSe  absorber solar cells.15,17 The EF is found to be slightly above mid-gap 

(i.e., closer to the CBM). 

Fig. 4.5 (b) shows the electronic surface band gap of the CdS/CIGSe interface 

sample before (black) and after (red) 15 minutes of ion treatment. Again, a reduction in 

the electronic Eg is observed after surface cleaning (i.e., with reduced O and C surface 

content, as seen in Fig. 4.1). The surface Eg after ion treatment is found to be (2.65 ± 

0.15) eV. This is slightly larger than the bulk and surface Eg of CdS frequently observed 

(2.4 – 2.5 eV5), but might easily depend on the concentration of hydroxide contributions 

to the CdS matrix.  As with the CIGSe absorber, the EF of the CdS/CIGSe sample is 

closer to the CBM than the VBM. 

As has been repeatedly observed for high-efficiency CIGSe-based thin film solar 

cells,14,15,17 the electronic Eg at the absorber surface is larger than the corresponding 

optical bulk Eg. As discussed in various publications of the CIGSe community (initiated 

with Refs. 18 and 19), this is presumably due to the fact that the CIGSe surface is Cu-poor 

and In-rich, leading to a different stoichiometry and electronic structure in the near-

surface region. We also note that the position of the EF within the Eg indicates a slightly 

n-type character at the absorber surface. 

 

4.4 Conclusion 

We have investigated the chemical and electronic surface properties of a bare CIGSe 

absorber and a CdS/CIGSe interface sample taken directly from the Nanosolar 
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manufacturing line. XPS and XES were used to determine surface and near-surface bulk 

chemical composition, while UPS and IPES were used to determine the surface electronic 

Eg and other properties such as the location of the EF within the Eg. Although the samples 

were produced using a low-cost industrial process, they show a remarkably low degree of 

C and O surface contamination. Our data shows evidence for S/Se intermixing at the 

CdS/CIGSe interface, as observed earlier for other high-efficiency CIGSe systems. Also, 

it indicates that Na atoms, localized at the CIGSe surface, are retained at the interface 

upon formation of the CdS/CIGSe junction. The electronic surface Eg of both samples 

were determined before and after sample cleaning - the Eg of the CIGSe absorber surface 

was determined to (1.45 ± 0.15) eV, and the surface Eg of the CdS/CIGSe interface 

sample was derived to be (2.65 ± 0.15) eV. From the location of the EF, both samples 

show a slightly n-type character at the sample surface.  
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CHAPTER 5 

Cu-RICH CuInSe2 ABSORBERS WITH A Cu-POOR SURFACE 

 

5.1 Introduction 

As discussed in Chapter 2, CIGSe absorbers are typically grown with a Cu-poor 

stoichiometry, which has repeatedly produced solar cells with efficiencies of over 20 %. 

1–3 Cu-poor growth of the absorber has been shown to produce a surface with a Cu 

content much lower than the bulk. This Cu-deficient surface has been described as an 

ordered defect compound (ODC), with a wider band gap (~1.3 eV) than the bulk 

stoichiometric CuInSe2 (~1.0 eV)4–6 up to 200 nm in from the surface7. This widened 

surface band gap is credited for the reduced recombination seen at the buffer/CuInSe2 

interface of Cu-poor CISe absorbers, relative to their Cu-rich counterparts.8,9 Cu-poor 

absorbers, however, also exhibit smaller grain formation10 and large defect concentrations 

in the bulk, which lead to the domination of bulk recombination in these materials.11 

Growing CISe absorbers in Cu-excess, on the other hand, produces a stoichiometric 

CuInSe2 with reduced defects in the bulk, leading to a higher crystallinity compound and 

thus larger grain formation.10,12 The reduced defects work to lower the bulk 

recombination, and improve charge-carrier transport properties of the absorber. With Cu-

rich grown CISe absorbers, however, it is difficult to reach device efficiencies even over 

10%. This is attributed, in part, to increased recombination at the buffer/absorber 

interface due to the absence of the beneficial ODC seen in Cu-poor absorbers.13 A 

metallic Cu2-xSe phase is also observed at the surface and grain boundaries,10 which may 

further be detrimental to charge transport. More recently, the elevated doping level found 

for Cu-rich chalcopyrite relative to Cu-poor has also been discussed as a possible cause 
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for poor efficiencies. A sufficiently high doping level would lead to steep band bending 

at the space charge region in the absorber, and cause tunneling-induced 

recombination.13,14 

It is therefore the aim of this study to investigate the possibility of growing a 

CIGSe absorber in Cu-excess (i.e., with a Cu-rich bulk), but with a surface similar to that 

seen for Cu-poor absorbers. In this way, the large grains and reduced defects 

characteristic of the Cu-rich bulk can be combined with the widened band gap and lower 

doping level characteristic of the Cu-poor surface, and increased efficiencies for 

Cu(In,Ga)Se2 absorber materials may be achieved.  

To this end, a sample set was prepared at the University of Luxembourg of 

CuInSe2 absorbers (omitting Ga to simplify the system), which included two co-

evaporated absorbers grown Cu-poor and Cu-rich, and a Cu-rich absorber which had 

undergone a KCN etch and final In/Se surface deposition at elevated temperature to 

produce a Cu-poor surface. Positive results have already been produced from these Cu-

rich / Cu-poor absorbers, and efficiencies just shy of traditionally-grown Cu-poor sibling 

absorbers have been achieved.14,15 This design of absorber deposition has not been 

previously investigated. 

This study was developed and conducted in close collaboration with the group of 

Prof. Susanne Siebentritt at the University of Luxembourg and Prof. Marcus Bär at the 

HZB. The research performed at the HZB was supported by a DAAD RISE internship 

through which the author was hosted by Prof. Bär and his research group. A portion of 

the data shown here was presented in a talk at the Spring MRS in San Francisco, CA, 

April 2, 2013. 
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5.2 Sample Description and Experimental Set-up 

The CuInSe2 absorbers were grown by Physical Vapor Deposition (PVD) by 

Valerie Depredurand at the University of Luxembourg. All of the samples were deposited 

on Mo-coated 3 mm soda-lime glass substrates manufactured by Saint Gobain. The as-

received Mo surface was cleaned in an ionic bath with Decon 5% followed by a rinse 

with ethanol, prior to absorber deposition. One absorber was deposited similar to the 

NREL 3-step process,16 in which the first step co-evaporation of In and Se was performed 

at 350-400 °C, and the second and third step evaporations of Cu and Se, and then In and 

Se were both performed at an increased substrate temperature of 500-550 °C. This 

produced an absorber with a Cu/In ratio of 0.91 ± 0.03, as determined by EDX using a 20 

kV accelerating voltage. This absorber is here-on designated “Cu Poor”. A second 

absorber design was followed, in which Cu, In, and Se were deposited together in a 1 step 

co-evaporation at 540 °C. This produced an absorber with a Cu/In ratio of 1.07 ± 0.03, 

which is labeled “Cu Rich”. A second “Cu Rich” absorber was further treated by a 5 

minute etch with a 10 wt% KCN solution followed by a de-ionized (DI) water rinse, and 

then reintroduced into the PVD chamber for a final 1 minute In and Se deposition at 275 

°C. This produced an absorber with an overall Cu/In ratio of 0.99 ± 0.03, which is 

designated as “In-Se Treated”. See Table 5.1 for concise summary of all samples.  

The prepared absorbers were removed from the PVD chamber without air 

exposure, sealed under an inert environment, and shipped to the HZB, where they were 

unpacked in a N2 filled glovebox for subsequent introduction into UHV for analysis. The 

“Cu Rich” sample was broken in half and one portion was removed to air to perform the 

5 minute 10 wt% KCN etch at the HZB, similar to the etch performed at the University of 
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Luxembourg. The sample was rinsed and submersed in DI water, then reintroduced into 

the N2-filled glovebox without air exposure. This sample is designated “Cu Rich Etched”.  

A similarly etched “Cu Rich” sample from the same batch at the University of 

Luxembourg had a Cu/In ratio of 1.06 ± 0.03. Table 5.1 lists the four absorber samples, 

the treatment steps, and the Cu/In ratios of sibling samples determined by EDX, along 

with the conversion efficiency of the resulting solar cells and the maximum efficiency 

achieved to date for each absorber design. 

Initial XPS measurements were performed on all samples at the HZB, after which 

a small piece of each sample was broken off, and both sets were sealed in separate 

packages under a N2 environment. The smaller portions were taken to the BESSY II 

synchrotron for HAXPES, while the remainder of each sample was shipped to UNLV. At 

BESSY II, the samples were mounted with clean Au foil references and introduced into 

the UHV analysis system without air exposure.  

Table 5.1: CuInSe2 absorber sample descriptions 

Sample 
Designation 

Absorber 
Deposition 

KCN 
etch 

Final 
In/Se dep. 

Cu/In ratio 
(EDX ± 0.03) 

Final 
Efficiency 

Record 
Efficiency15 

Cu Poor NREL 3-
step -- -- 0.91 10.2 13.5 

Cu Rich 1 step at 
540 °C -- -- 1.07 -- -- 

Cu Rich 
Etched 

1 step at 
540 °C Yes -- 1.06 7.1 9.5* 

In-Se 
Treated 

1 step at 
540 °C Yes Yes 0.99 8.8 13.1* 

 15V. Depredurand, Y. Aida, J. Larsen, T. Eisenbarth, A. Majerus, and S. Siebentritt, in 2011 
37th IEEE Photovolt. Spec. Conf. PVSC (2011), pp. 000337–000342. 

* Cu Rich Etched and In Se Treated record efficiencies achieved with a bulk Cu/In ratio of 1.56 
and 1.41, respectively, compared to 1.07 for this sample. 
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After baseline measurements at UNLV of XPS, UPS, and IPES, a series of low-

energy 50 eV Ar+ ion treatments were performed, as described in Section 3.5 and Ref. 17, 

to remove adventitious surface adsorbates and more accurately determine the element 

ratios and surface Eg for the pristine sample surface. XPS, UPS and IPES were performed 

after each step of the cleaning treatment to monitor the removal of adsorbates and check 

for any other changes to the sample surface (e.g., metallic states18). At UNLV, additional 

small pieces were broken off of each sample and taken to the ALS for XES and XAS 

measurements. The samples were briefly exposed to air while mounting and introducing 

them into the UHV analysis system. Description of the measurement techniques and 

equipment used can be found in Chapter 3, Sections 3.2, 3.3, and 3.8.  

 

5.3 Results and Discussion 

5.3.1 Surface Stoichiometry and Band Gap 

The XPS Mg Kα surveys of all four samples are shown in Fig. 5.1. The expected 

peaks of Cu, In and Se are present on all sample surfaces, along with small C and O 

signals, expected to be from adventitious adsorbates. A Na signal is also seen on the “Cu  

Poor”, “Cu Rich” and “In-Se Treated” samples, which is known to diffuse from the soda-

lime glass substrate and reside at the surface and grain boundaries of the film.19,20  

The “Cu Rich” sample shows increased Cu and C signals, decreased In and Na 

signals, and no discernable change in Se intensity relative to the “Cu Poor”. The changes 

are most easily seen from the Cu 2p (~950 eV), Na 1s (~1070 eV), In 3d (~450 eV), and  

C 1s (~285 eV) peaks. Comparisons of high BE (low KE) peaks (i.e. Cu 2p and Na 1s) 

must be done with care since the lower energy of the electrons results in a shallower 
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escape depth and thus a higher sensitivity to surface adsorbates (i.e., the increased C 1s 

signal). However, the Cu 3p (~76 eV) and Na KLL (~300 eV) peaks at a significantly 

lower BE show intensity changes relative to the “Cu Poor” sample which support the 

previously stated decrease in Na and increase in Cu.  

A Na signal is not distinguishable from the survey of the “Cu Rich Etched” 

sample, showing the KCN etch to remove most if not all of the Na from the surface.  The 

O 1s (~530 eV) is strongly reduced, and some reduction in the C 1s peak is also seen, 

indicating a removal of surface adsorbates. The Cu 2p, In MNN, and In 3d signals are 

much stronger for the “Etched” sample. However, the strong reduction in O 1s intensity 

means that these changes to high BE peaks could be attributable to a removal of surface 

adsorbates. Only a small increase in the In 4d is seen when the lower BE peaks are 
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Fig 5.1: Initial XPS Mg Kα survey spectra of the four CuInSe2 absorbers. 
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compared, and thus no firm statement can be made about a change in surface Cu, In or Se 

after the KCN etch based on the survey spectra. 

The “In-Se Treated” surface shows a greatly reduced Cu signal and increased In 

signal compared to both the “Cu Rich” and “Cu Poor” samples, while there is no 

significant change in the Se 3p (~165 eV) or 3d (~55 eV) intensity. Some Na signal is 

also seen to have returned to the surface after the final In-Se deposition at 275 °C, though 

the signal is much lower than that from the “Cu Poor” and “Cu Rich” samples. After 

removal from the surface, Na has been shown to return to the CIGSe surface both with 

time in vacuum and after annealing.
20

 

The XPS survey spectra and UPS and IPES measurements taken at UNLV on all 

samples after 30 minutes of ion treatment (35 minutes for the “Cu Rich Etched” sample) 

are shown in Fig. 5.2 (band gap data is not available for the “Cu Rich Etched” sample). 

While subsequent ion treatments were performed, the data after ~ 30 minutes of ion 

treatment gave the most efficient cleaning of the samples with the least potential 

disturbance to the surface and no subsequent changes to the band gap values were seen.   

 From the XPS survey spectra of the four cleaned samples, shown in Fig. 5.2 (a), 

we see that the ion treatment was successful in removing the majority of the surface O 

signal from all samples. The C signal is reduced but still present for the “Cu Poor”, “Cu 

Rich”, and “Cu Rich Etched” sample surfaces, as seen from the C 1s peak at ~285 eV and 

the C KVV at ~1000 eV. A stronger C signal is present on the “In-Se Treated” sample 

relative to the other samples, which was not reduced with ion treatment. The absorber 

peaks of Cu, In, and Se all increased with ion treatment time. A small Cl peak is found on 

the “Cu Rich” sample, most likely from external contamination during packing. The Na 
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signals on all samples were reduced after each ion treatment, but the relative intensities 

between samples is maintained. The variation in the surface Cu intensity between 

samples is also maintained.  

A significant variation in the surface Eg is seen for all three samples, as shown in 

Fig. 5.2 (b).  The “Cu Poor” sample (bottom) has a surface Eg of 1.54 ± 0.15 eV, with the 

EF slightly right of center between the VBM (-0.90 eV) and the CBM (0.64 eV). The “Cu 

Rich” sample shows a much smaller surface Eg of 1.05 ± 0.15 eV, with both the VBM  (-

0.75) and CBM (0.30) shifted in towards the EF significantly compared to the “Cu Poor” 

sample. The “In-Se Treated” sample has a surface Eg of 1.48 ± 0.15 eV and VBM (-0.88 

eV) and CBM (0.60 eV) positions comparable to that of the “Cu Poor” sample, despite 

the strong reduction in Cu content seen at the surface. We note an added intensity above 
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Fig.5.2: a) Mg Kα XPS survey spectra normalized to the In 4d peak intensity of all 
four samples after 30 minutes of 50 eV Ar+ ion treatment (35 for the “Cu Rich 
Etched” sample). b) The corresponding UPS and IPES spectra showing the surface 
Eg of the “Cu Poor, “In-Se Treated”, and “Cu Rich” samples after 30 minutes of 
ion treatment. 
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the VBM in the UPS spectrum for this sample. If this shoulder is taken to be the “true” 

VBM of the surface, an extrapolated VBM value of -0.40 eV is measured, leading to a 

much smaller Eg of 1.00 ± 0.15 eV. This low-intensity shoulder could be indicative of 

Cu-vacancies, which, in the bulk, create shallow acceptor states,12 or the presence of a 

second phase at the surface, such as an indium selenide, with a higher VBM. Further 

evaluation of these Eg values is continued after determination of the surface 

stoichiometry.  

The surface Cu:In:Se ratios were determined for all four samples from the Cu 3p, 

Se 3d, and In 4d peaks, which were measured together and are shown in Fig. 5.3 a). All 

spectra were taken after 30 minutes of ion treatment cleaning (35 minutes for the “Cu 

Rich Etched” sample), and are normalized to the In 4d peak intensity. These peaks were 

chosen due to their proximity to one another, which minimizes any auxiliary changes in 

peak intensity due to variation in the transmission function of the analyzer, changes in the 

electron escape depth (for electrons of 1150-1250 eV KE, the IMFP through CuInSe2 is ~ 

5 nm), and variations in attenuation from any remaining surface adsorbates.  

The fits of the Cu 3p, Se 3d, and In 4d regions are shown in Fig. 5.3 b) along with 

the residual below each fit, which was multiplied by the factor given in the figure. The 

fits of each region are shown with the same relative scaling of the y-axis for each 

respective box, such that variations in peak intensity can be seen. A linear background 

and Voigt peak shape was used for all peaks. Additional broadening is present for the 

measurements taken on the “Cu Poor” and “In-Se Treated” samples, due to the use of a 

higher Pass Energy for the electron analyzer (see, for example, the shape of the Se 3d 

peak on the “Cu Rich Etched” sample compared to the “In-Se Treated” sample). Usually 
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the same Gaussian and Lorentzian broadening would be used for all peaks of a given 

subshell, since they would be expect to share the same core hole lifetime and electron 

analyzer settings. With the analyzer settings changed between measurements, a good fit 

of the data could not be achieved by setting the Gaussian and Lorentzian broadening of 

the peaks from all samples equal to one another. Thus, for each set of similarly measured 

samples (“Cu Poor” / “In-Se Treated” and “Cu Rich” / “Cu Rich Etched”), the Gaussian 
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broadening was held constant for all peaks of a given element and the Lorentzian 

broadening was held constant for each split-peak component (e.g., all In 4d3/2 and 4d5/2 

peaks used to fit the “Cu Poor” and “In-Se Treated” spectra share the same Gaussian 

broadening, but only the In 4d3/2 peaks share the same  Lorentzian broadening). This gave 

a robust description of the data for all peaks except for the case of the Se 3d, for which 

the broadening and shape was not consistent between the “Cu Poor” and “In-Se Treated” 

samples. The same peak shape was only sufficient to describe both spectra if two sets of 

Se 3d peaks were used to fit the “In-Se Treated” sample data. However, no variation in 

peak shape or location is seen for the Se LMM between samples (not shown), and thus 

the validity of a two-component fit is not well founded. For the fits as shown, the 

Lorentzian broadening of the Se 3d was not paired for the “Cu Poor” and “In-Se Treated” 

spectra, to allow the best description of the data with only one Se-species, and thus the 

most accurate determination of peak area. 

The Cu 3p/In 4p region (Fig. 5.3 (b), left) was fit with three peaks – the In 4p, as 

measured from a clean In foil and scaled to the intensity of the In 4d peak, and the Cu 

3p1/2 and 3p3/2 peaks. The area ratio of the Cu 3p peaks was set to 1:2 and the spin-orbit 

splitting of the Cu 3p peaks was set to 2.4 eV21 as a starting point. The peaks were then 

allowed to vary slightly to best fit the data, which was achieved at 2.46 eV. The area of 

the In 4p peak was also allowed to vary by up to 7%, which was based on the variation in 

In 4d peak area after normalizing all spectra to the In 4d peak height. The Se 3d and In 

4d doublets (Fig. 5.3 (b), center and right) were given a fixed separation following a 

procedure similar to that for the Cu 3p (0.87 and 0.89 eV, respectively, compared to 0.9 

and 0.8 eV as listed in Ref. 22), and a fixed area ratio of 2:3. The area of each peak, as 
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determined from the fit of the data, was then divided by the cross section of the 

respective subshell
23

 to correct for the excitation probability. The resulting surface Cu/In 

and Se/In ratios are shown in Table 5.2, along with the bulk Cu/In ratios determined from 

EDX.  

From an overview of the Cu/In and Se/(Cu+In) ratios, we find all sample surfaces 

to be In-rich (note that the sample names focus on Cu and the Cu content of each sample 

relative to the others, and not necessarily the overall stoichiometry). The “Cu Rich” and 

“Cu Rich Etched” samples have the highest surface Cu/In ratios of 0.48 ± 0.05, followed 

by the “Cu Poor” sample at 0.34 ± 0.05. In comparison, the “In-Se Treated” sample 

surface is extremely Cu-depleted, with a Cu/In ratio of 0.11 ± 0.05.  

The extremely low Cu/In ratio at the “In-Se Treated” sample surface compared to 

the almost stoichiometric bulk Cu/In ratio of 0.99 (which includes the Cu-poor surface) 

suggests that the bulk is maintained as Cu-rich in the final absorber. The surface Cu/In 

ratio of the “In-Se Treated” sample is only 
1
/3 that of the “Cu Poor” sample. Even with 

this strong variation, however, the surface VBM spectra and extrapolated Eg values for 

these two samples match each other very well (Fig. 5.2). This may be related to the 

Table 5.2: Surface Cu/In and Se/(Cu+In) ratios for all four CuInSe2 samples, as 

determined from the fits of the Cu 3p, In 4d and Se 3d XPS peaks. 

Sample 

XPS EDX 

Cu/In (±0.05) Se/(Cu+In) (±0.05) Cu/In (±0.03) 
Cu Poor 0.34  0.93 0.91 

Cu Rich 0.48  0.87 1.07 

Cu Rich Etched 0.48  0.91 1.06 

In-Se Treated 0.11 1.06 0.99 
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stability of CuInSe2 compounds through such a high range of stoichiometries, and the 

ability for multiple defects working in combination to become electrically inactive.12 This 

would suggest that a comparable band gap can be achieved for surface Cu/In ratios 

varying between ~ 0.1 and 0.3, while a sudden change in the surface Eg is seen for a 

Cu/In ratio above 0.4. The Cu-deficiency at the “In-Se Treated” sample surface and the 

comparable Eg value to the “Cu Poor” sample shows a success in the growth of the “In-Se 

Treated” absorber, and could explain the comparable efficiencies achieved between these 

two absorber designs. 

The surface Cu/In and Se/(Cu+In) ratios for the “Cu Poor” sample match well to 

literature values. CuInSe2 absorbers with a bulk Cu/In ratio of ~ 0.9 have been 

investigated previously by Niemi,24 Schulmeyer,6 and Schmid,4 and found to have surface 

Cu/In ratios from 0.38 to 0.40. The surface VBM values reported by Schulmeyer (0.8 eV) 

and Schmid (slightly larger than 1 eV) for these samples also match well to the VBM of 

the “Cu Poor” sample of 0.90 eV.  We note that the surface Cu/In ratios determined by 

XPS are surprisingly consistent for all of these samples, despite variations in sample 

preparation (single-crystal CuInSe2 with In-Se deposition,6 and co-evaporated 

polycrystalline CuInSe2
4,24). This suggests a general stability in the surface Cu/In ratio of 

Cu-poor samples, as seen by Schmid et al.4 

While the “Cu Rich” sample has the highest surface Cu/In ratio of all the samples, 

it is unexpectedly low for a sample with a bulk Cu/In ratio over 1. For Cu-rich grown 

absorbers, a Cu2-xSe phase is expected at the surface and grain boundaries,10 which 

results in a surface Cu/In ratio above 1 for absorbers with a bulk Cu/In ratio above 1 or 

even slightly below.4 One example from literature which does not follow this trend (and 
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thus matches more closely with our results) is present in the study by Niemi et al., where 

a stoichiometric bulk deposition (Cu/In = 0.99) resulted in a slightly Cu-poor surface 

(Cu/In = 0.68) as determined by XPS.24 Only the samples with a bulk Cu/In ratio 

significantly over 1 in this study (e.g., 1.23 and 1.57) exhibited a surface Cu/In ratio also 

over 1. However, the surface Cu/In ratio of 0.48 for the “Cu Rich” sample is still 

significantly lower. This surface Cu depletion similar to Cu-poor samples is in contrast to 

both the poor solar cell efficiency (7.7 %, Table 5.1) and the significantly narrowed 

surface Eg (Fig. 5.2 (b)), both of which match the expectations for a typical, Cu-rich 

grown absorber. The low surface Cu/In ratio may be an indication that this sample was 

not sufficiently Cu-rich to produce a significant Cu2-xSe phase at the surface. It is 

interesting to note that the difference in the surface Cu content for the “Cu Poor” and “Cu 

Rich” samples (0.14 ± 0.10) is close to the difference in bulk Cu content (0.16 ± 0.16). 

The “Cu Rich Etched” sample shows a comparable Cu content at the surface after 

the KCN etch, but an increase in the Se/(Cu+In) ratio. An increase in Se intensity would 

be expected, since the KCN etch preferentially removes the Cu2-xSe phases, making the 

stoichiometric CuInSe2 more dominant at the surface. However, a parallel decrease in Cu 

would also be expected, and is not seen. This is further evidence for a limited Cu2-xSe 

phase presence at the “Cu Rich” sample surface. 

The “Cu Poor”, “Cu Rich”, and “Cu Rich Etched” samples all have Se-poor 

surfaces, as shown from the Se/(Cu+In) ratios in Table 5.2. The surface Se concentration 

has been shown to increase opposite of Cu depletion due to either an increase in Se-rich 

phases such as In2Se3, or an absence of Se vacancy sites, which, in the bulk, form easily 

in the presence of CuIn antisites in Cu-rich materials. 24,25 Thus the slight Se-poor nature 
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of the “Cu Poor” surface and the more exaggerated Se-poor nature of the “Cu Rich” 

surface are expected, based on the Cu/In ratios. The Se-rich nature of the “In-Se Treated” 

sample surface is also expected due to both the extremely low surface Cu/In ratio and the 

final In and Se deposition step. Despite the strong variation in surface Cu:In:Se ratios in 

the “In-Se Treated” sample relative to the other samples, no evidence of InxSey 

compounds was found from the XPS and X-ray Auger Electron Spectroscopy detailed 

spectra of In and Se (not shown).  

To further investigate the stoichiometry at the surface, HAXPES measurements 

were performed with a photon energy of 6030 eV. These measurements have a deeper 

IMFP (1/e attenuation of ~10.9 nm) than that achieved with Mg Kα XPS (~ 2.6 nm).26 

This means, for example, that for the lower BE region of XPS, 85 % of the signal comes 

from the first 5 nm of the sample surface, while for the lower BE region of the HAXPES 

data, 37 % of the total signal comes from the first 5 nm of the sample surface (the 

remainder of the signal originating from deeper). The different photon energy used also 

results in different cross sections for the various photoelectric excitations, which makes 

some subshells more intense than as seen in XPS. The survey spectra and detailed VBM 

region taken from the “Cu Poor”, “Cu Rich Etched”, and “In-Se Treated” samples are 

shown in Fig. 5.4.  

The HAXPES survey spectra in Fig. 5.4 (a) are normalized to the In 3d peak 

height at ~ 445 eV to allow direct comparison of changes in peak intensities between 

samples. The expected elements of Cu, In, and Se are present on all samples, along with 

Na, C, and O. With the longer IMFP (and thus a larger contribution to the spectrum from 

electrons originating from deeper in the sample), the “In-Se Treated” sample is still 
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extremely Cu-, Na-, and Se-poor (i.e., In-rich) relative to the “Cu Poor” sample. This can 

be seen from the Na 1s, Cu 2p, and Se 3s peaks located at ~ 1000 eV and ~ 250 eV. The 

“In-Se Treated” sample also has weaker C and O signals relative to the “Cu Poor” 

sample. This could be explained by the removal of O and C during the KCN etch, as seen 

from the “Cu Rich Etched” sample, which also has reduced C and O peaks. This verifies
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Fig. 5.4. a) HAXPES survey spectra of the 
“Cu Poor”, “Cu Rich Etched”, and “In-Se 
Treated” samples, taken with hν = 6030 eV.  
b) detailed spectra of the VBM region for each 
sample, along with the lines (in red) used to 
extrapolate the VBM values. 
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 that the final KCN etch and In-Se deposition was performed without significant 

introduction of contaminants to the “In-Se Treated” sample.  

Estimates of the Cu/In ratios were determined from the HAXPES survey spectra 

by integrating the Cu 2p3/2 and In 3d5/2 peak areas after subtracting a linear background, 

and then dividing the areas by the cross section of each subshell. Calculated cross section 

values from 1,000 – 5,000 eV and for 10,000 eV are available, published by 

Trzhaskovskaya et al.27,28 The cross sections were adjusted by the angular distribution 

parameters as described in the aforementioned publications, based on the measurement 

geometry at the KMC-1 beamline and HIKE end station (with the angle between the 

polarization of the photons and the vector of the outgoing electron, θ = 0°, and the angle 

between the incoming photon and y-axis component of the emitted electron, φ = 90° 

29,30). Only the parameters for select photon energies are provided by Trzhaskovskaya et 

al., and thus an equation was fit to the available cross section values in order to find the 

value at exactly 6030 eV. A substantial error bar was given to the final ratios determined, 

based on 1) the use of an equation to extrapolate the cross section at the desired photon 

energy, 2) the uncertainty in the peak areas (a relatively large step size of 1 eV, and 

Table 5.3: Estimated Cu/In ratios from the HAXPES survey spectra taken with a 
photon energy of 6030 eV of the “Cu Poor”, “Cu Rich Etched”, and “In-Se 
Treated” samples, along with Cu/In ratios determined from XPS and EDX. 

Sample 
XPS HAXPES EDX 

Cu/In (±0.05) Cu/In (±0.10) Cu/In (±0.03) 
Cu Poor 0.34  0.54 0.91 
Cu Rich Etched 0.48  0.70 1.06 
In-Se Treated 0.11 0.13 0.99 
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estimation of peak tails), and 3) any changes in the analyzer transmission function and 

the IMFP of the photoelectrons measured (ranging from 5100 to 5800 eV KE for the Cu 

2p and In 3d, corresponding to an IMFP of 9.3 to 10.2 nm). The results are shown in 

Table 5.3, along with the XPS and EDX results, shown in order of decreasing surface 

sensitivity. 

 Relative to the Cu/In ratios determined from XPS, all three Cu/In ratios 

determined from the HAXPES data are increased, suggesting an increase in the Cu 

content farther from the sample surface for all three samples. While the Cu/In ratios for 

the “Cu Poor” and “Cu Rich Etched” samples are both strongly approaching that of their 

bulk ratios, the “In-Se Treated” sample is still extremely Cu-poor relative to the bulk 

Cu/In ratio of 0.99. Further, the change in Cu/In ratios between HAXPES and XPS for 

the “In-Se Treated” sample is within the error bar for the two measurements, such that the 

apparent increase in the Cu/In ratio for this sample may not be significant. This suggests 

a rather thick Cu-depletion layer at the surface of the “In-Se Treated” sample, such that a 

significant portion of the Cu-rich bulk is not included in the still surface-sensitive 

HAXPES measurement.  

Fig. 5.4 (b) shows detailed spectra of the VBM taken with a photon energy of 

6030 eV. The resulting photoelectrons have a much longer IMFP than those in the UPS 

spectra in Fig. 5.2, and thus a larger portion of the measured electrons here are expected 

to originate from deeper in the sample. It is noted that when comparing this HAXPES 

data to the UPS data, a larger step size (0.1 vs. 0.02 eV) was used, and a lower resolution 

(0.30 vs. 0.13 eV) was achieved. 
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Relative to the UPS measurement, the VBM here for the “Cu Poor” sample is 

shifted upward by 0.15 eV. Cu-poor CuInSe2 has been shown to have a broadened 

surface Eg, which narrows towards the bulk.7 Since the shallowest bands probed will 

define the VBM, a higher VBM might be expected here for the “Cu Poor” sample, due to 

the narrowing energy gap between the VB and EF expected farther in from the surface 

contributing more greatly to the final spectrum. Some of this narrowing may also be due 

to the lower resolution of the HAXPES measurements relative to the UPS measurements, 

and the associated broadening of the spectral features.  

The “Cu Rich Etched” sample has a VBM 0.55 eV below EF and 0.2 eV higher 

than the “Cu Poor” sample. This is similar to the UPS measurements, in which the “Cu 

Rich” sample VBM was 0.15 eV higher than the “Cu Poor” sample. This suggests a more 

narrow band gap for the “Cu Rich Etched” sample, as expected from the higher Cu/In 

ratio.   

For the “In-Se Treated” sample the VBM position is similar to that measured with 

the much more surface-sensitive UPS, showing a consistent VBM position with a longer 

IMFP measurement. This matches with the strong Cu-depletion still seen for this sample 

from the HAXPES data, suggesting also a more homogeneous Cu/In ratio farther in from 

the surface. Due to the high overall Cu/In ratio of 0.99, an increased Cu-content in the 

bulk is expected. Thus, while no change in the VBM is seen between UPS and HAXPES, 

a change in the VBM could be present further in from the surface.   

5.3.2 Near-Surface Bulk Stoichiometry and Band Gap 

 The XES spectra taken for all samples are shown in Fig. 5.5, and further support 

the findings thus far. Fig. 5.5 (a) shows the 300 to 400 eV emission window, which 
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contains the Cu L2,3 emission in 3rd
 order (shown on the 1st order energy axis) and the In 

M4,5 emission, with an estimated attenuation length (1/e of the original intensity) of 150 

nm for the photons being detected.  The spectra are normalized to the intensity of the In 

M4,5 emission to directly visualize the variations in the Cu/In ratio.  

Care must be taken in analyzing the variations in peak intensity, since the Cu L2,3 

x-ray emission is of a sufficient energy (~ 930 and 950 eV) to be re-absorbed by the In 

M4,5 edge (~ 375 eV). This is a significant effect, and is well illustrated by a comparison 

of the photoabsorption cross sections for a 931 eV photon, which is approximately 3 ½ 

times greater for In than for Se.31 Thus an increase in In content in the sample would 

result in a greater reabsorption effect, and an artificially reduced Cu intensity. For 
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Fig 5.5: a) XES at hν = 500 eV of the Cu L2,3 emission in 3rd order and In M4,5 in 
1st order, normalized to the In M4,5 intensity. b) XES at hν = 1500 eV of the Cu 
L2,3, Na K, and Se L3 emissions, normalized to the Cu L3 emission. 
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CuInSe2, an increase in In is expected to be concurrent with a decrease in Cu, and 

therefore this photoabsorption effect would be expected to accentuate any true variations 

in the Cu/In ratio.  

From the variations of the Cu L3 intensity, the “In-Se Treated” sample is shown to 

still be Cu-poor (In-rich) relative to all other samples, with a Cu L3peak approximately 

half that of the “Cu Rich”. From the surface Cu/In ratios, a much more reduced Cu signal 

relative to the “Cu Rich” sample would be expected. Further, the increased In content 

would be expected to result in a stronger reabsorption effect, and a further reduced Cu 

signal. That the Cu L3 is a full half the intensity of the “Cu Rich” might therefore be 

taken as an indication of a strong increase in the Cu content of the “In-Se Treated” 

sample with the deeper attenuation length of this measurement. A variation in the Cu/In 

ratio is also seen between the “Cu Poor” and “Cu Rich” samples, which is expected from 

the differences in both the surface (XPS) and bulk (EDX) Cu/In ratios of these two 

samples.  

  Fig. 5.5 (b) shows the window from 915 to 1250 eV, which contains the Cu L2,3, 

Na K, and Se Ll emissions. The spectra are normalized to the Cu L3 area to determine 

variations in the Cu/Se ratio. We see the highest Se/Cu ratio for the “In-Se Treated” 

which may be a result of both the high Se/(Cu+In) ratio and low Cu/In ratio seen at the 

surface of this sample. For the other three samples, the Se/Cu ratio does not vary 

significantly.  

 The “Cu Poor”, “Cu Rich”, and “In-Se Treated” samples show a small Na K 

emission at ~ 1040 eV, which is notably weaker than is usually seen for chalcopyrite 

absorbers (see, e.g., Fig 4.4). The “In-Se Treated” sample shows a comparable Na K 
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intensity to both the “Cu Poor” and “Cu Rich” samples, which is in contrast to the 

variation seen between samples in the XPS survey spectra. This could be due to the 

normalization to Cu, which for the “In-Se Treated” sample increased the intensity of 

other emission peaks as well, or due to the behavior of Na, which is known to sit 

predominantly at the absorber surface.32 The variation in Na content at the very surface 

could be within the noise for these measurements with a longer attenuation length. A 

complete absence of any Na K intensity is seen for the “Cu Rich Etched” sample, 

showing the Na to have been removed from both the surface and the grain boundaries of 

this sample at least 200 nm in from the surface. 

XES and XAS of the Cu L3 edge for the “Cu Poor”, “Cu Rich”, and “In-Se 

Treated” samples is shown in Fig. 5.6, along with a Cu foil reference. XES probes 
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Fig 5.6: Cu L3 XES and XAS taken from the “Cu Poor”, “Cu Rich”, and “In-Se 
Treated” samples, and a Cu foil reference. 
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radiative relaxation events between occupied states, while XAS probes excitations into 

unoccupied states. Together they provide an estimate of the band gap up to ~200 nm in 

from the surface. An error bar of ± 0.20 eV is given for these measurements to account 

for both the determination of the onsets, and because of the nature of these 

measurements. XAS is the excitation of a core electron into an unoccupied state, and thus 

measures the energy of this transition in the presence of a core-hole. The minimum 

absorption energy is therefore less than the energy of the un-perturbed state by an amount 

equal to the core exciton binding energy, which may vary from negligible values up to 

0.4 eV.33 This method of determining the band gap must therefore be taken as a lower 

limit for the “true” band gap.7 While the absolute value is prone to error, the relative 

values, and variations between samples are more reliable (since all XAS measurements 

are performed in the presence of a core-hole).  

A band gap value between 1.0 and 1.1 eV is found for all three samples. While 

small variations are present between the samples which trend with the Cu/In ratios seen 

in Fig. 5.5, all variations are well within the error of this measurement (the difference 

between the “Cu Poor” and “Cu Rich” samples is certainly within the error of the data 

analysis, i.e., linear extrapolations). While these values should be taken as “minimum” 

values (the true band gap in the absence of a core-hole may be larger), we note that the 

band gap measured is similar to the bulk band gap of stoichiometric CuInSe2, which is 

expected for all samples. The similar band gap values also suggest that some level of 

homogeneity in the Cu/In ratio is found between samples, possibly indicating the 

achievement of stoichiometry for all three samples within ~ 200 nm of the surface. While 

this may at first seem to disagree with the Cu/In variations seen by XES in Fig. 5.5, the 
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following hypothesis shows this to be a possibility. If, for example, the “In-Se Treated” 

absorber reached a stoichiometric Cu/In ratio 100 nm in from the surface, a Cu-depletion 

relative to the “Cu Poor” and “Cu Rich” sample would still be seen in the XES data due 

to the extreme Cu-poor nature of the very surface. However, the smallest band gap within 

~ 200 nm of the surface (i.e., the band gap towards the bulk and close to 1.0 eV) would be 

measured by the XES and XAS data in Fig. 5.6. The bulk band gap for the “Cu Poor” 

sample is also expected to be near 1.0 eV, with the Cu-depletion only at the surface. 

 

5.4 Conclusion 

We have investigated the chemical and electronic properties from the surface to the near-

surface bulk of a new CuInSe2 absorber design in which a Cu-rich bulk deposition is 

paired with a final In-Se treatment to produce a Cu-poor surface. The novel absorber was 

investigated along-side a Cu-poor absorber and a Cu-rich absorber before and after KCN-

etch, for direct comparison. From XPS we find a surface Cu/In ratio of 0.11 ± 0.05 and a 

Se/(Cu+In) ratio of 1.06 ± 0.05, showing the surface of this novel absorber to be very Cu-

poor and slightly Se-rich. Despite the variation in Cu/In ratio, a surface Eg similar to that 

of the traditional Cu-poor grown absorber is measured for the novel absorber. A reduced 

Na content at the surface of the novel absorber is also found, most likely due to the KCN-

etch of the Cu-rich deposited absorber layer prior to the final In-Se deposition. An 

increase in the Cu/In ratio is present for all samples measured with HAXPES, with the 

novel absorber still very Cu-poor. The VBM as measured with 6030 eV photons (with a 

longer IMFP) is closer to the Fermi energy for the Cu-poor sample, but equivalent to the 

UPS-determined VBM for the novel absorber. Near-surface bulk XES measurements 
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with an attenuation length of ~ 200 nm show a continued Cu depletion for the novel 

absorber compared to both the Cu-rich and traditional-grown, Cu-poor absorbers. Using 

XAS in conjunction with XES, however, we find no variation in the near-surface bulk Eg 

of the novel absorber and the Cu-poor and Cu-rich grown absorbers.  

From the success thus far of these novel-grown absorbers (reaching a conversion 

efficiency of 13.1 %, compared to 13.5 % for Cu-poor grown absorbers), we expect the 

Na depletion and Cu depletion at the surface to not be detrimental. The similar surface Eg 

found for both the novel absorber and Cu-poor grown absorber shows that the novel 

absorber design successfully mimicks the electronic structure of the Cu-poor surface.  

The equivalent near-surface bulk Eg found for all absorbers suggests that within 200 nm 

from the surface, all samples achieve a comparable, most likely stoichiometric, Cu/In 

ratio. This also indicates a narrowing of the Eg away from the surface for the novel 

absorber, which is a characteristic of successful chalcopyrite absorbers.  
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CHAPTER 6 

CHEMICAL SURFACE AND INTERFACE PROPERTIES OF DIFFERENTLY 

STRESSED (Au/Cu/)CdTe/CdS THIN-FILM SOLAR CELL STRUCTURES 

 

This project and a portion of the data and conclusions shown here were presented by the 

author at a poster session at the 38th IEEE PVSC conference, June 2012 in Austin, TX. A 

majority of the text and figures were previously published through IEEE in a co-authored 

work.1 

 

6.1 Introduction  

CdTe-based solar cells, presently the most commercially successful thin-film 

photovoltaic technology, have reached efficiencies of up to 21.0 % in lab.2 To ensure that 

such high efficiencies are preserved over the lifetime of the device, it is important to both 

identify and prevent possible causes of degradation. As discussed in Chapter 2, one 

known cause of cell degradation is Cu, which is commonly used in the back contact as a 

“buffer layer” to produce an ohmic contact with the CdTe absorber.3 Cu readily diffuses 

into CdTe, and initially causes beneficial changes to the band edges and electronic 

properties of this layer, especially at the metal/CdTe interface.4 

After heat stress treatments, cells with Cu back contacts show a decreased 

efficiency. Rollover in the I-V curves is often present, indicating the degradation of the 

metal/semiconductor interface due to the formation of a barrier to charge transport.5 

However, rollover was not seen by Visoly-Fischer et al. in the absence of both humidity 

and Cl.5 This suggests Cu, along with Cl and O, has a detrimental effect on the back 
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contact/semiconductor junction, and that oxygen plays a role in the back contact 

degradation. Direct evidence for the oxidation of sulfur in the presence of Cu has been 

previously shown,6 which is further evidence for the formation of an oxide layer at the 

back contact / CdTe interface after stress. 

To further study the degradation-related chemical changes in CdTe solar cells, we 

have studied the chemical surface and interface properties of differently stressed 

(Au/Cu/)CdTe/CdS thin-film solar cell structures using x-ray photoelectron (XPS), Hard 

x-ray photoelectron (HAXPES), and soft x-ray emission (XES) spectroscopy. Masks 

were used for the Au/Cu back contact deposition, creating samples in which both the 

Au/Cu back contact and the surface of the CdTe absorber were accessible for 

characterization. Four samples were prepared and each subjected to a different heat stress 

treatment, varying the ambient environment and light exposure. The chemical 

composition of the surface and near-surface bulk of both types of surfaces was 

investigated by XPS, HAXPES, and XES.  

 

6.2 Sample Description and Experimental Details 

The samples were produced at the University of Toledo, Ohio (UT) by Dr. Naba Paudel 

and the group of Prof. Alvin Compaan. This project was part of an extended collaboration 

between UNLV and UT, and funded through the DOE Solar America Initiative. Previous 

sample sets under this project were studied by Sujitra Pookpanratana, and she also headed 

the design of this sample set prior to graduation. The CdTe/CdS stacks were prepared on 

SnO2:F (FTO)-covered 3 mm-thick TEC15 soda lime glass superstrates, using magnetron 

sputtering for both the CdS and CdTe layers. The thickness of the CdS (CdTe) layer was 
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approximately 0.12 (2.0) µm. The CdTe surfaces underwent a wet treatment of drops of 

methanol saturated with CdCl2, followed by a 30 minute activation step at 387 °C. This 

was followed by the back contact, consisting of 3 nm of Cu followed by 20 nm of Au, 

evaporated onto the CdTe surface in approximate areas of 4 mm2 and 10 mm2 with the 

use of a mask. This resulted in large areas of the CdTe which were bare and large areas 

covered by the back contact materials. The finished cells underwent a final thermal 

treatment step at 150 °C for 45 minutes in ambient air. After processing, three sibling 

samples each underwent different heat and environment stress treatments at 85 °C (in 

ambient air or N2, while exposed to air mass (AM) 1.5 illumination or kept in the dark) for 

two weeks. A fourth sample (D, control), acting as an internal reference, was stored in a 

desiccator at room temperature (in the dark) for the duration of the two-week stress 

treatments. Table 6.1 summarizes the conditions for each sample. 

 After stress treatment, all four samples were vacuum-sealed under dry N2 and 

shipped to UNLV. The samples were unpacked in a N2-purged glove box, mounted, and 

moved into a directly attached ultra-high vacuum (UHV, base pressure < 3 × 10-10 mbar) 

XPS analysis system for characterization. For experiments performed at the ALS, the 

samples were resealed in the N2 glove box for shipment and briefly exposed to air while

Table 6.1: CdTe sample stress treatments  

Sample Treatment 
Atmosphere Illumination Temp (°C) Duration 

A Air AM 1.5 85 2 weeks 
B N2 AM 1.5 85 2 weeks 
C Air Dark 85 2 weeks 
D Desiccator Dark 22 (room) 2 weeks 
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 mounting and introducing the samples into the UHV XES analysis system. The surface-

sensitive XPS measurements were performed at UNLV using the equipment described in 

Section 3.2.3, the HAXPES measurements were performed at the BESSY synchrotron 

described in Section 3.2.4, and the near-surface bulk sensitive XES measurements were 

performed at the ALS, as described in Section 3.8.1.  

 

6.3 Results and Discussion 

6.3.1 XPS 

Fig. 6.1 shows XPS survey spectra taken from (a) the Au/Cu back contact and (b) 

an exposed CdTe area from the four investigated samples. All XPS spectra taken on the 

back contacts show the expected Au-related photoemission lines. In addition, C-, O-, and 

Cl-related XPS and Auger lines (due to surface contaminants and the applied CdCl2 

treatment) are observed. The photoemission lines of copper (Cu 2p and Cu LMM) are 

also identified on all samples, which is interesting in regards to the surface-sensitive 

nature of XPS, which is governed by the IMFP of the emitted photoelectrons (typically in 

the 1-3 nm range7). Because of this fact, one could expect that XPS of the Au (20 nm)/Cu 

(3 nm) contact regions would only probe the Au and not the underlying Cu and CdTe 

film. The significant intensities of the Cu-related photoemission lines might therefore be 

interpreted as an indication for a significant morphological change of the Au layer and/or 

an intermixing/alloying of the Au contact with the underlying Cu and CdTe layers. The 

presence of Cd- and Te-related emission in all but the B sample also supports a 

morphological change in the back contact layer, such as the presence of voids, which 

have been observed before in similarly prepared samples.8 However, despite using the 
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small area lens mode of the electron analyzer – which should, in principal, allow the 

study of exclusively the Au/Cu contact area – it cannot be ignored that a sample 

misalignment could lead to the inclusion of the CdTe regions outside of the metal contact 

area in these measurements. This could explain the Cd and Te signals present, as well as 

the variations between samples, such as the absence of a significant Cd signal on the B 

sample, and strong Cd and Te signals observed on the C sample.  
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Fig. 6.1: XPS survey spectra taken on (a) the Au/Cu back contact area and (b) the 
bare CdTe area of samples A-D, using Mg Kα excitation. 
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 The survey spectra taken on the regions of exposed CdTe for all samples are 

shown in Fig. 6.1 (b). The expected photoemission lines from Cd and Te are present for 

all samples, along with C, O, and Cl from surface contaminants and the CdCl2 treatment. 

No Au- or Cu-related photoemission lines are present for these spectra, showing a 

successful exclusion of the Au/Cu back contacts from the measurement areas.  

The survey spectra of sample C vary significantly from those of the other samples 

in a number of ways. For the back contact survey in Fig. 6.1 (a), the intensities of the C 

1s and O 1s peaks are significantly increased, while the intensity of the Au 4f and the Cu 

2p peaks are strongly reduced. These findings indicate a significant C- and O-containing 

surface contamination layer on the Au/Cu contact, which attenuates the signals from the 

Cu and Au atoms underneath. Due to the significant difference in kinetic energies of the 

Cu 2p and Au 4f peaks (and hence of the associated information depths), a quantification 

of the Au/Cu ratio is very unreliable. The Cd and Te peaks in this spectrum are also much 

more intense than for the other samples, such that the presence of two sets of peaks for 

the Te 3d signal can be distinguished from the survey. The two Te 3d5/2 peaks at ~ 573 

and ~ 576 eV indicate that the Te at the surface is in two chemical environments: most 

likely a CdTe-like bonding environment (expected at an energy of 572.7 to 573 eV), and 

either an oxidized environment (expected from 576.1 to 577.7 eV) or a chlorinated Te 

environment (e.g., TeCl4 would be expected at ~576.9 eV).
9
 Furthermore, the higher BE 

peak is more intense than the CdTe-like peak, showing the majority of the Te in the 

information depth to be in a non-CdTe like environment. A second peak is also seen for 

all samples in the survey spectra of the exposed CdTe regions, as indicated by the arrow 

in Fig. 6.1 (b) on the higher BE side of the Te 3d peaks. The peak intensity is limited and 
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comparable for all samples, despite the varying heat treatments and the fact that some 

samples were air exposed. Thus, while Te oxidation may be expected, increased 

oxidation is seen for sample C, in the presence of the Au/Cu back contact. A strong 

increase in Te-O after heat-stressing in air has been reported previously for CdTe covered 

by a Cu back contact.5 This suggests that the Te signal seen on the C sample is from Te 

atoms affected by the Au/Cu back contact, either at the edges of the metallic contact 

areas, or possibly seen through the voids.  

A small sulfur signal (S 2p at 162 eV) is also observed at the surface of all four 

samples on both the bare CdTe and the Au/Cu back contact regions. This suggests sulfur 

migration from the CdS layer through the CdTe absorber and into the back contact, or to 

the (Au/Cu)/CdTe interface. Previous experiments have shown S to accumulate at the 

back contact/CdTe interface after CdCl2 treatment.6 The presence of S in all survey 

spectra shows S to have migrated to the surface of the exposed CdTe and at least to the 

(Au/Cu)/CdTe interface for all samples, regardless of the heat stress treatment. 

6.3.2 HAXPES 

To further investigate the (Au/Cu)/CdTe interface, HAXPES survey spectra using 

a 6030 eV photon energy were taken from the back contact regions of samples A, B, and 

D. The higher photon energy used for these measurements results in a higher KE for the 

photoelectrons, and thus a longer IMFP (approximately 5.5 nm through Au, 6.9 nm 

through Cu, and 10.8 nm through CdTe10) relative to the XPS spectra. Despite the 

reduced signal attenuation, nearly 97 % of the signal would still be expected to originate 

from the 20 nm thick surface Au layer if it were uniform and closed. The lower BE 

region of the spectra up to 600 eV are shown in Fig. 6.2, normalized to the Au 4f7/2 peak
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intensity. While the most prominent peaks in all surveys are from Au, peaks of significant 

intensity are also seen from Cu, C, O, Cl, and S. A small Cd 3d signal is distinguishable 

in all spectra at ~ 400 eV, and confirmed in a detailed spectrum from sample D (not 

shown). A definite Te signal is seen at ~ 570 eV for sample A only.  

 The spectra from samples A and D are most comparable, with all peaks of 

approximate equal intensity, except for a slightly higher Cl signal and absent Te signal 

for sample D. Sample B varies significantly from the other two samples, with a 

noticeably lower Cu, Cl, C, and O signal. This may be also be due to a stronger Au signal 

on the B sample, which with normalization, would reduce the apparent intensity of all 

other peaks.  

 The photon energy used here results in different cross section values for the 

various electron shells, compared to those seen in XPS using Mg or Al Kα. At a photon 
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Fig. 6.2: HAXPES survey spectra (hν = 6030 eV) taken from the back contact 
regions on samples A, B, and D. Spectra are normalized to the intensity of the Au 
4f7/2 peak.  
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energy of 6030 eV, a higher cross section is realized for the Cu 3s subshell, which allows 

for an easier comparison of the Cu/Au ratio from the Cu 3s and Au 4f peaks at ~ 120 and 

85 eV, respectively. Unlike the Cu 2p and Au 4f comparison that was possible from the 

XPS survey spectra, this comparison is not strongly affected by variations in surface 

contamination, due to the proximity of the two peaks. Here we see a strong change in the 

Cu/Au ratio between samples, with a much lower ratio for sample B relative to both 

samples A and D. This suggests the formation of pinholes and/or intermixing of the Au 

and Cu layers which is more pronounced for samples A and D than for sample B. A 

correlation between increased Cu signal and increased C, O, and Cl signals is also noted. 

These could be correlated (e.g., Cu, being more reactive than Au, is more likely to bond 

C- and O- containing adsorbates, or the presence of C and O in the environment could 

encourage Cu migration to the surface) or could be due to a variation in sample 

preparation (e.g., if a thicker Au layer were unintentionally deposited on sample B).  

 It is noted here that the higher Au signal seen for sample B agrees well with the 

XPS spectra in Fig. 6.1. This is in spite of using different pieces of each sample for the 

two measurements, and the smaller measurement spot size at the beamline.  

6.3.3 S L2,3 XES 

To study the local chemical environment of sulfur atoms at or near the surface, 

XES was performed on all four samples at the S L2,3 edge. Fig. 6.3 shows XES spectra 

taken on the Au/Cu back contact areas, along with the spectra of several sulfur reference 

compounds. For these measurements, a photon energy of 200 eV was used to create S 2p 

core holes, giving rise to the fluorescing decay of valence electrons into these holes. XES 

is a photon-in-photon-out process, and thus the information depth, determined by the 
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attenuation length of the photons in the probed material, is much larger than that of XPS  

(the 1/e-attenuation length of soft x-rays is approximately 80 nm in Au, 20 nm in Cu, and 

210 nm in CdTe for 160 eV photons
11

). XES on the back contact areas thus allows the 

study of both the Au/Cu back contact layers and the material buried below, reaching into 

the very topmost portion of the CdTe layer (but not through the CdTe layer), and 

including the Au/Cu/CdTe interfaces.  
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Fig. 6.3: S L2,3 XES spectra taken on the back contact areas (Au/Cu/CdTe/CdS) of 

samples A-D, along with reference spectra of CdS, Au2S, Cu2S, CuS, and CdSO4. 
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All four samples show a significant S L2,3 emission intensity, indicating 

pronounced sulfur migration from the CdS into the CdTe layer and back contact, as 

previously shown, most likely during CdCl2 activation.6,12 Based on the reduced intensity 

of the Cd 4d-related emission, which appears between 150 and 152 eV (feature (2)), and 

which is direct evidence of the presence of S-Cd bonds, a large portion of the migrated 

sulfur under the back contacts is not in a CdS-like environment. The overall shape of the 

dominant S 3s-derived emission peak at 148 eV (feature (1)), as well as the added 

spectral weight around 155 eV (feature (3)) and 158 eV (feature (4)), which can be 

ascribed to emission involving Au 5d-derived states and Cu 3d-derived states, 

respectively, is in reasonable agreement with a large portion of the sulfur being in a 

Au2S- and/or Cu2S-like environment.13 This correlates with the previous findings that 

sulfur accumulates at the back contact/CdTe interface,6 and thus would be in the same 

physical location as the back contact metals, and able to form these bonds.  

The magnification of the S L2,3 upper valence band is given in Fig. 6.4, left. In the 

spectrum of sample D, we find spectral weight at 155 eV and 158 eV. The comparison 

with the reference spectra of Au2S and the Cu sulfides suggests the presence of Au-S and 

Cu-S bonds. Some evidence for such bonds is also found for sample B, while the spectra 

of sample A and C do not show significant intensity in these regions. Further comparison 

with the sulfate reference spectrum suggests the presence of some S-O bonds in all 

samples, particularly sample C. 

A spectral analysis of the D spectrum is shown in Fig. 6.4, right, in which 

spectrum D is fitted by a superposition of the spectra of Au2S, Cu2S, and CdS. This 

subtraction attributes 46% of the sulfur signal to sulfur in a Au2S-like environment, 19% 
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in a Cu2S-like environment, and 35% in a CdS-like environment. Surprisingly, inclusion 

of CdSO4 in the fit resulted in less than 1% of the spectrum being attributed to oxides. 

This may be due to the spectral weight in the Au2S reference spectrum around 154 and 

161 eV, which overlaps with the sulfate features and complicates the identification of 

sulfate bonds. Some differences remain between the fit and the D spectrum, and a more 

detailed analysis would be required to determine if an additional sulfur species needs to 

be taken into account. Nevertheless, this analysis shows that, in the unstressed D sample, 

the majority of the migrated sulfur is most likely in a Au2S-like environment, with 

minimal oxidation.  
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Fig. 6.4: Left: S L2,3 XES spectra of the upper valence band of the 
Au/Cu/CdTe/CdS sample regions and selected references. Right: Fit analysis of the 
D sample spectrum. 
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Of the four samples, the A and C samples show the lowest spectral intensity 

between 157 and 159 eV, resulting in more distinct sulfate-like peaks at 154, 155, and 

161 eV. This is most apparent for the sample C spectrum, which can be confidently said 

to contain a sulfide component. From these observations, we see some correlation 

between the sulfur bonding near the (Au/Cu)/CdTe interface and the environment (N2 or 

air) that the samples were held in. Specifically, the presence of Au-S and Cu-S bonds is 

most pronounced for samples B and D, which were not held in air, and a decrease in Au- 

and Cu-S bonds is seen for the two air-stressed samples.   

S L2,3 emission spectra were also measured on the exposed CdTe regions, i.e., in-

between the Au/Cu contacts of each sample, and are shown in Fig. 6.5. Due to the 

absence of the metal back contact layers, the S L2,3
 information depth for these 

measurements is expected to reach almost completely thorough the 2 µm CdTe layer. All 

sample spectra show more pronounced Cd 4d-derived transitions (feature (2) in Fig. 6.5) 

indicative of sulfur in a S-Cd bond environment. This signifies that the sulfur atoms in 

the probing volume, i.e., in the CdTe film, form S-Cd bonds similar to those in CdS. It is 

interesting that this species is only predominant in the regions that are not covered by a 

Au/Cu back contact.  

Small peaks are also present for all sample spectra which align well with the 

features of the CdSO4 reference (features (3) and (4)), and are indicative of S-O bonds. 

Again, the magnitude of the sulfate contributions is comparable for all samples, which is 

surprising when the variation in ambient environment during stress treatment is 
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considered. This suggests that heat and/or air exposure does not oxidize the sulfur 

diffused within the CdTe layers.  

6.3.4 Cl L2,3 XES 

XES measurements of the Cl L2,3 emission were taken of the Au/Cu back contact 

and the exposed CdTe area of each sample. A photon energy of 220 eV was used to 

excite Cl 2p core-electrons from the sample, and a photon fluorescence energy range 

from 170 to 200 eV was detected, resulting in an information depth comparable to that of 
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Fig. 6.5: S L2,3 XES spectra of the CdTe samples surfaces, along with reference 

spectra. 
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the S L2,3 XES spectra. A significant chlorine intensity is found in the near-surface bulk 

of both the back contact and the exposed CdTe absorber. A close-up of the upper valence 

band region from both measurement locations, together with the respective spectra of a 

few chlorine reference compounds, is shown in Fig. 6.6. Comparing the Au/Cu back 

contact region spectra (middle), with the three reference spectra (top), we note that the 

broad features between 189 and 191 eV present for all samples (with maxima marked by 

vertical dotted lines) could best be described by a superposition of these three references. 

The CdCl2 and Cd(ClO4)2 reference spectra, however, both show features from 184 to 

188 eV that are not found in the CuCl2 spectrum. An increased intensity in this area is 
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Fig. 6.6: Close-up of the Cl L2,3 XES valence band region on the exposed CdTe 
area (bottom), and Au/Cu back contact (middle), along with Cl compound 
reference spectra (top). 
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seen in the spectra of sample C and D relative to samples A and B. Conversely, the CuCl2 

spectrum exhibits unique features from 193 to 196 eV. Similar features are present for all 

samples, but are dramatically increased for the spectra of the sun-exposed samples, A and 

B. We therefore find evidence for Cu-Cl bonds in the near-surface bulk of the 

(Au/Cu)/CdTe interface, predominantly in the samples that were heat-stressed under 1.5 

AM illumination. Degradation studies by Visoly-Fisher et al. found a correlation between 

the presence of Cl and the degradation of the back contact, as manifested by rollover in 

the I-V curve.5 Thus the in-diffusion of Cu with heat stress could cause the filling of VCd 

and thus the replacement of Cd-Cl or V-Cl complexes with Cu-Cl bonds. While some Cl-

O bonding may be present for all samples, an increase in Cl-O or Cl-Cd bonding is seen 

for the non-illuminated samples, C and D. 

The Cl L2,3 emission spectra taken on the exposed CdTe areas are shown at the 

bottom of Fig. 6.6. The broad spectral features in the 184-188 eV region and also 

between 189 and 191 eV point to the presence of Cl in an oxidized state. No strong 

variation in the spectra is observed between the differently stressed samples, suggesting 

that there is little change in the chemical environment of Cl (located within the CdTe 

layer) with stress treatment. 

 

6.4 Conclusion 

We have investigated (Au/Cu/)CdTe/CdS solar cell thin-film stacks after subjection to 

heat stress treatment in different environments. With surface-sensitive XPS, we find 

evidence to suggest Au/Cu metal alloying of the back contact materials, and evidence for 

sulfur migration through the 2 µm thick CdTe layer and to the Au/Cu back contact for all 



106 
 

samples. Evidence for increased metal alloying or the presence of pinholes in the back 

contact with air exposure is suggested from the HAXPES data. A significant sulfur signal 

is seen under the back contacts using near-surface bulk XES, and both Au2S- and Cu2-xS-

like features are observed. A correlation between air exposure and a reduction in Au- and 

Cu-S bond features is seen. Small sulfate signals are present in all samples, both at the 

Au/Cu back contact and at the exposed CdTe area. We find no evidence for variations in 

the sulfur environment at the exposed CdTe areas, despite the different stress treatments, 

and the sulfur is found to be predominantly in a CdS environment, suggesting that it does 

not diffuse to the CdTe surface. Chlorine is also found in the near-surface bulk of both 

areas, and is found to preferentially form Cu-Cl bonds under the back contact with 

exposure to sunlight during heating. In the exposed CdTe areas, chlorine is found to 

reside predominantly in an oxidized state, independent of heat stress treatment. 
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CHAPTER 7 

THE IMPACT OF ANNEALING ON THE CHEMICAL STRUCTURE AND 

MORPHOLOGY OF THE THIN-FILM CdTe/ZnO INTERFACE 

 

The sample set and subsequent data shown in Chapter 7 were a result of combined 

collaboration with Dr. Russel Beal and the group of Prof. B. G. Potter at the University of 

Arizona, and Dr. Regan Wilks and the group of Prof. Marcus Bӓr at the HZB. The data 

and text presented here have been published in a co-authored work in the Journal of 

Applied Physics.1 

 

7.1 Introduction 

Nanocomposites are of interest due to their optical and electronic properties, which can 

be tailored on the nanoscale by adjustments to the deposition parameters, or post-

deposition treatments. A discussion of the band gap of nanoparticles and the 

nanoparticle-to-wide band gap material interface was presented in Chapter 2. While 

Ge:ITO and Ge:ZnO interfaces were specifically mentioned,2 many other semiconductor 

nanomaterials have also been previously combined with wide band gap oxides to produce 

nanocomposite material systems, e.g., Ge and TiO2,
3 CdSe and ZnO,4 and Ge and SiO2

5. 

Recently, the combination of CdTe and ZnO has also been investigated.6–9  

CdTe- and ZnO-based nanocomposite materials (and many other material 

systems) have been produced using RF sputter deposition of alternating layers of the 

semiconductor and the wide-gap material.5,8–12,2 This allows the nanocomposite thin-films 

to be produced at high speed using established technologies, while offering control of the 
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nanoparticle size and spatial distribution within the matrix of the wide-gap material. Such 

control is important for the potential of CdTe-ZnO nanocomposites to enhance the 

performance of photovoltaic devices by allowing for a variation of the absorption onset8,9 

and an increased photoresponse from the nanocomposite films.9 Further tuning of the 

material properties can be realized by annealing the sputter-deposited nanocomposite 

stacks, which has been shown to increase crystallinity without affecting the absorption 

onset.8 

The material interfaces in these nanocomposite systems are of great importance 

for the final efficiency of a potential device, especially due to the high semiconductor-to-

matrix interface area. Evidence of an oxide potential barrier at the semiconductor-ITO 

interface has been reported previously for Ge-based composites.2 The presence of an 

oxide layer at the nanoparticle-matrix interface could result in an energy barrier with 

significant impact on the charge transport through this interface.  

To further investigate the chemical environment at the CdTe/ZnO interface, as 

well as the morphology of CdTe thin films on a ZnO substrate, a sample series was 

studied of CdTe thin films with varying thickness deposited on 100 nm ZnO on Si(100) 

substrates, following the deposition parameters for CdTe-ZnO nanocomposite thin films 

reported earlier,8,9 including an annealing treatment. The chemical environment and 

morphology at the surface of the samples before and after annealing was investigated 

using XPS, XAES, EDX, SEM, and AFM. Particular emphasis in the data and discussion 

is placed on an analysis of Cd and Te surface composition, surface topography, and oxide 

formation after annealing. 
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7.2 Experimental Description 

All samples were prepared at the University of Arizona by Dr. Russel Beal using a multi-

source sequential RF sputtering deposition apparatus described previously.13 Planar 

sputtering sources (diameter = 2 in.) were used with polycrystalline target materials (AJA 

International, 99.99 % purity). An RF (13.56 MHz) power of 42 W and 15 W were 

applied to the ZnO and CdTe sources, respectively. The chamber was pumped down to a 

base pressure of 10-6 mbar before backfilling with ultra-high purity argon (99.999 %) to a 

process pressure of 5 × 10-3 mbar. These conditions produced a deposition rate of 0.1 

nm/s for each source under the target-substrate geometries used, as determined by a 

quartz crystal thickness monitor. All samples produced in the present study were 

deposited on surface-oxidized single-crystal Si(100) without substrate heating. 

CdTe films of 4, 8, 12, and 24 nm thickness were deposited on top of 100 nm 

ZnO.  Exposure times were controlled by a stepper motor that positioned the substrate 

holder sequentially over the two sources. Total film thicknesses were verified after 

deposition with a stylus profilometer (Dektak). A total of 10 samples were produced, in 

addition to two “bare” ZnO references (one before and one after annealing at 525 °C). 

The first sample set consisted of two samples made with an 8 nm thick CdTe film, while 

the second sample set consisted of eight samples total, two of each CdTe film thickness. 

One of these samples was kept in the as-deposited state, while the duplicate of each 

thickness was annealed for 20 minutes at a nominal temperature of 525 °C in a muffle 

tube (fused silica process tube) furnace under a flowing Ar (99.9% purity) atmosphere. 

The annealing time was established as the time between introduction and removal of the 

boat from the hot zone of the furnace using a sliding rod. Note that, based on a detailed 
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analysis of the XPS intensities found for the annealed sample of the first sample set, it is 

likely that the annealing temperature in this set was somewhat lower than for the second 

sample set. 

An Ar-filled glovebag was used to prevent air exposure while transporting the 

samples between the deposition chamber and the annealing furnace, and during removal 

from the furnace. A portion of each of the final samples was sealed in an Ar environment 

without air exposure and shipped to UNLV for XPS and XAES analysis with the 

equipment described in Section 3.2, and to HZB for SEM and EDX analysis (after air 

exposure) with the equipment described in Section 3.10, and with the help of Dr. Regan 

Wilks. All measurements were performed with a ground connection at the front surface 

of each sample. Non-contact mode AFM (Bruker Innova) analysis of the remaining 

portion of each of the second-set samples was performed at the University of Arizona. 

Various scan ranges (from 1 to 50 µm in each direction), a scan rate of 0.4 Hz, and 256 

lines per image were used.  

 

7.3 Results and Discussion 

Fig. 7.1 shows the XPS Mg Kα survey spectra of all CdTe/ZnO samples from the second 

sample set before and after annealing. The spectra are labeled according to the nominal 

CdTe layer thickness before annealing, and organized in order of ascending thickness 

from bottom to top. For each thickness, the lower spectrum represents the non-air 

exposed sputter-deposited surface (denoted “As-deposited”), while the upper spectrum 

was taken from the sample annealed at 525 °C for 20 minutes (denoted “Annealed”). The 

spectra were normalized to give approximately equal peak height for the Cd 3d5/2 peak in 
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the “As-deposited” spectra and for the most prominent Zn LMM peak in the “Annealed” 

spectra, respectively.  

The expected peaks of Cd and Te dominate the “As-deposited” spectra. Peaks 

associated with ZnO are very weak and only seen for the samples with thinner CdTe 

films. In detail spectra taken with Mg Kα excitation (shown in Figure 7.10), we find 

evidence for weak Zn LMM Auger peaks (around 265 eV binding energy) for the 4, 8, 
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Fig. 7.1: Mg Kα XPS survey spectra of the 4, 8, 12, and 24 nm thick CdTe films 
on ZnO deposited on surface-oxidized Si(100) substrates, “As-deposited” and 
“Annealed” (at 525°C). The spectra were normalized to give approximately equal 
peak height for the Cd 3d5/2 peaks in the “As-deposited” spectra and for the most 
prominent Zn LMM peak in the “Annealed” spectra. 
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and 12 nm, but not for the 24 nm sample, while the more surface-sensitive Zn 2p3/2 peak 

at 1022 eV binding energy can only be seen on the 4 nm sample. All “As-deposited” 

spectra exhibit small C and O peaks. In the case of carbon, we ascribe the peaks to 

adventitious surface adsorbates, and the low peak intensity indicates that the packing 

procedure was successful in transferring samples with minimal ambient exposure. The 

oxygen peaks are also mostly due to adventitious adsorbates, but for the thinner CdTe-

film samples, some contribution from the underlying ZnO is also expected (scaling with 

the observed Zn peak intensities). The inelastic mean free path of a 780 eV kinetic energy 

(KE) O 1s electron in CdTe is ~2 nm.14 Therefore, 1/e (i.e., ~36%) of the original O 

intensity from the underlying ZnO would be expected after attenuation in a 2 nm thick 

CdTe layer (in normal emission geometry). Similary, ~14% and ~2% of the initial signal 

are expected after attenuation in a 4 and 8 nm thick CdTe layer, respectively. 

In all “Annealed” spectra, the previously dominant Te 3d peaks [~580 eV binding 

energy, (BE)] are greatly reduced in intensity and, as will be discussed below, shifted to 

higher BE. The Cd 3d peaks (∼410 eV BE) show an even stronger reduction in intensity, 

in particular for the samples with thinner CdTe. Only the 24 nm sample shows a Cd 

signal after annealing that is significant enough to be distinguished in the survey spectra. 

In parallel with the Cd- and Te-signal reduction, all Zn-related signals are 

increased substantially on the annealed samples, most clearly seen by the Zn 2p doublet 

(∼1022 and ∼1045 eV BE) and the Zn LMM Auger region (most prominent peak at ∼265 

eV BE). In parallel, all oxygen-related peaks (e.g., the O 1s peak at 530 eV BE) are 

increased. We note that there is no evidence for a significant increase of the C 1s signal, 

indicating that the additional oxygen content at the surface is most likely not due to 
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further adventitious surface adsorbates, but rather to the underlying (possibly chemically 

modified) ZnO. As will be discussed below, the annealing step changes the morphology 

of the CdTe layer, and hence the underlying ZnO may contribute more strongly to the 

peak intensity. Also, an oxidation of Cd and/or Te by oxygen from the ZnO film and/or 

the annealing environment is possible, as will be discussed below. Note that a small Cl 2p 

signal is seen on all samples after annealing, most likely from the polyethylene glove-bag 

that was used to transfer the samples into and out of the tube furnace, as this showed 

signs of heat damage after use (and possibly contains residues of polymerization catalysts 

such as titanium (III) chloride). 

The strong reduction in the Cd and Te signal intensities and increase in the Zn and 

O signal intensities after annealing suggest significant changes to the CdTe layer 

topography. First, this effect might be seen with a loss of Cd and Te from the surface of 

the samples, either by sublimation and/or diffusion into the ZnO bottom layer. Second, a 

morphology change of the CdTe layer appears possible, e.g., the creation of Cd- and Te-

containing islands and the exposure of intermittent regions of ZnO (or ZnO covered with 

a thinner CdTe layer). Finally, the increased oxygen signals might indicate oxidation-

related modifications at the surface. 

To understand the changes observed in the XPS survey spectra, we will in the 

following focus on the surface morphology and lateral element distribution before and 

after annealing. Afterwards, we will discuss the chemical and electronic modifications 

visible in the XPS and Auger detail spectra. 

Figure 7.2 shows AFM images (5 × 5 µm2) of all samples, before (left) and after 

(right) the annealing step. The images of the 8 nm CdTe film are divided into two 
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portions to show the 8 nm sample from the first (left) and second (right) sample set. 

While the as-deposited surfaces are characterized by small, uniform grains of 

approximately 100 nm diameter and 10 nm height (and 80 nm diameter and 3 nm height 
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Fig. 7.2: AFM images (5 × 5 µm2) of the CdTe/ZnO film surfaces with different 
CdTe thickness (4, 8, 12, and 24 nm), “As-deposited” (left) and “Annealed” 
(right). The images of the 8 nm CdTe film are divided into two portions to show 
the 8 nm sample from the first (left) and second (right) sample set. A line scan 
from each image (indicated by the white line) is shown on the right.  
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for the 8 nm film from the first sample set, with a few larger grains of approximately 110 

nm diameter and 15 nm height), significant enlargement and separation of the grains is 

observed after annealing of the 4, 8, and 12 nm CdTe film samples (see Table 7.1 for a 

complete overview of all grain sizes). 

On the “As-deposited 4 nm” sample surface, we note areas in which a smoother 

morphology is found, compared to both the regions surrounding these areas on the film 

and the surfaces of all thicker CdTe films in this sample set. These regions may represent 

exposed areas of the underlying ZnO layer or areas with a thin (wetting) layer of CdTe 

that did not develop a larger grain structure. The 24 nm sample shows a similar “darker” 

region, but close inspection indicates that grains similar to the rest of the surface are 

present in this region, too, and thus it is more likely due to an overall depression in the 

substrate. 

The approximate grain sizes of annealed samples are also listed in Table 7.1. 

After annealing, the smallest grain diameters are found for the 8 nm samples (∼230 nm in 

diameter and 35 nm in height for the sample from the first set, and ∼260 nm diameter and 

7 nm in height for the sample from the second set), while the 4 and 12 nm samples

Table 7.1: Most often found approximate grain sizes in the AFM images in Fig. 
7.2 for the “As-deposited” and “Annealed” 4, 8, 12, and 24 nm CdTe samples. 

Sample Approximate grain width ×××× height (nm)  
As-deposited Annealed 

4 nm CdTe 100 ×××× 10 1000 ×××× 100 and 270 ×××× 15 

8 nm CdTe, set 1 80 ×××× 3 and 110 ×××× 15 230 ×××× 35 and 75 ×××× 3 

8 nm CdTe, set 2 100 ×××× 10 260 ×××× 7 

12 nm CdTe 100 ×××× 10 1000 ×××× 380 and 150 ×××× 15 

24 nm CdTe 100 ×××× 10 100 ×××× 10 and 300 ×××× 30 
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 exhibit distinct islands up to 1 µm wide and 100 nm (4 nm sample) or 380 nm (12 nm 

sample) high. In between these features on the 4 and 12 nm samples, smaller grains are 

visible that are approximately 270 nm (4 nm sample) or 150 nm (12 nm sample) in 

diameter and 15 nm high. Smaller grains are also visible between the enlarged grains on 

the 8 nm sample from the first sample set, which are approximately 75 nm in diameter 

and 3 nm high.  

The morphology of the 24 nm CdTe film sample after annealing deviates from the 

other samples in that, aside from a small number of very large features of approximately 

300 nm width and 30 nm height, the grains at the surface maintain their initial size after 

annealing. This sample also varied from the other samples in the XPS survey spectra in 

Fig. 7.1, in that a significant amount of Cd was still present at the surface after annealing. 

This suggests that a larger portion of the Cd and Te atoms remain at the surface after 

annealing, likely forming CdTe grains of similar magnitude as before annealing, while all 

other annealed samples (i.e., without an appreciable amount of Cd remaining at the 

surface) exhibit a very different chemical structure and surface (island) morphology. 

To identify the chemical nature of the islands after annealing, we have followed 

two approaches. First, using the “Annealed 8 nm” sample from the first sample set, we 

conducted a combined SEM/EDX investigation, in which a small region of the sample 

surface was imaged for morphology (SEM) and element distribution of Zn, O, Cd, and Te 

(EDX maps). The results are shown in Fig. 7.3 and will be discussed in the following. 

Second, we used the “Annealed 12 nm” sample from the second sample set to record 

EDX spectra at two different sample locations, namely on a post-anneal island and next 
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to it (as indicated by the corresponding SEM image). This will be shown and discussed 

later (Fig. 7.4). 

Figure 7.3 shows an SEM image (top left) of a region on the 8 nm sample (first 

sample set) after annealing, within which several island features are observed. The 

elemental EDX maps depict the Zn L, O K, Cd L, and Te L emission intensities. In all 

maps, we find evidence for elemental distribution inhomogeneities on the sample surface, 

which, for Zn, Cd, and Te correspond to the features seen in the SEM image. For 

example, the largest island at the top left of the region of study is also the most prominent 

in the respective elemental maps. For the Zn L emission, and possibly O K emission, this 

island is seen as an area of reduced intensity, while increased intensity is observed at this 

location in the Cd and Te element maps. The Cd and Zn elemental maps show the most 

pronounced intensity variations, and the smaller islands can also easily be seen. Based on

Intensity (a.u.)       

                 

       
   

Fig. 7.3: SEM (top left) and EDX images for Zn, O, Cd, and Te, taken on the 
“Annealed 8 nm” sample from the first sample set. 
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 the EDX maps, we find the islands to be rich in Cd and Te. The Zn content is 

substantially lower in the regions of the islands than in the surrounding environment, 

suggesting that the Zn emission from the underlying ZnO film is strongly attenuated by 

the islands.  

Figure 7.4 shows the SEM image of the “Annealed 12 nm” CdTe sample surface 

and EDX spectra, taken on (labeled “Feature” and shown in black) and next to (labeled 

“Background” and shown in red) an island. Below 1.9 keV, the EDX spectra show the C 

K, O K, Zn L, and Si K emission peaks. Above 2.4 keV, the intensity has been magnified 

to allow viewing of the weaker Cd L and Te L transitions.15  

The “Feature” spectrum shows a reduction in Zn and Si intensity compared to the 

“Background” spectrum, and an increase in O. The reduced intensities suggest an 

attenuation of the underlying ZnO layer and Si substrate, while the increased O signal 

suggests the presence of oxides on (or in) the “Feature” island. The C signal is 

comparable in both spectra.  
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While the region from 2.5 to 4.5 keV shows no peaks for the “Background” 

spectrum, the “Feature” spectrum displays a number of emission lines, most notably the  

Cd Lα (~3.1 keV) and Te Lα (~3.8 keV) transitions.
15

 The peak at ~3.3 keV is attributed 

to a combination of Cd Lβ and Te Ll. The peak at ~2.6 keV is ascribed to Cl Kα emission, 

in agreement with the XPS survey spectra in Fig. 7.1, which show a small Cl peak at the 

surface of all annealed samples. The presence of Cd and Te signals on the “Feature” 

island and the absence of these peaks on the “Background” further supports the above-

described island formation of the CdTe layer after annealing.  

Thus, so far, we have determined that annealing leads to the formation of islands 

and the reduction (or removal) of Cd and Te signals from the surface. The islands are Zn 

poor, Cd and Te rich, oxidized, and contain some Cl contaminants. To further investigate 

the chemical environment of the Cd and Te atoms remaining at the surface, detailed XPS 

and XAES spectra were taken and are discussed in the following.  

Fig. 7.5 shows the detailed Mg Kα-excited Te 3d3/2 XPS (left) and Te M4,5N4,5N4,5 

XAES (center) spectra, measured on the “As-deposited” (bottom) and “Annealed” (top) 

samples. A two-component fit of each “Annealed” Te MNN spectrum, after subtraction 

of the overlapping O KLL contribution, is also shown (right). All spectra are normalized 

to the most intense transition in each region, except for the O KL1L1 and KL1L2,3 

contributions shown in the center panel, which scale with the intensity of the O KL2,3L2,3 

emission at 509.5 eV kinetic energy (KE). All fits and additional spectra shown are 

described in detail below.  

For the as-deposited samples, the Te 3d3/2 XPS peaks are found at a BE of 583.0 

eV. A shift in the peak location of the “As-deposited 12 nm” samples was observed for 
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all peaks (+0.4 eV relative to the 4, 8, and 24 nm samples). All spectra shown for this 

sample have thus been shifted by -0.4 eV BE to correct for this. A second, small peak at a 

BE of 586.6 eV is also present in the Te 3d3/2 region for this sample. For the “Annealed”  

sample spectra, we observe two peaks, the first at ~583.7 eV and the second, more 

intense, at ~587.2 eV. Small variations in peak position between samples are present, 

with the “Annealed 8 nm” sample shifted by +0.2 eV and the “24 nm” sample shifted by -

0.4 eV relative to the 4 and 12 nm samples. Contrary to the shifts in the “As-deposited” 
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Fig. 7.5: Mg Kα-excited spectra of the Te 3d3/2 XPS (left) and Te M4,5N4,5N4,5 

XAES (center and right) regions of the “As-deposited” (bottom) and “Annealed” 

(top) CdTe/ZnO/Si sample surfaces. For the Te 3d3/2 region, the fit (including 

residuum) of the “Annealed 4 nm” sample is shown as an example. The Te MNN 

raw spectra of the “Annealed” samples (grey), their O KL1L2,3 contributions (pink, 

lineshape taken from a ZnO reference), and their difference (bold) are shown in the 

center panel. On the right, each difference is fit with two Te MNN spectra 

(lineshape taken from the “As-deposited 24 nm” sample). The grey bars (top) 

indicate literature values for CdTe and compounds containing Te-O bonds, from 

Refs. 18, 21, 22, and 26. 
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spectra discussed above, these shifts are not uniform for the various XPS and XAES 

lines. We speculate that they could be due to size-dependent effects of small particles 

distributed on an oxide layer16 since the grain sizes observed after annealing (see Fig. 7.2) 

correlate with the magnitude of the peak shifts (the “Annealed 8 nm” sample shows the 

smallest particles and the strongest shift to higher BE). The Te 3d3/2 peak position in the 

“As-deposited” spectra matches earlier reports for CdTe,17,18 while the prominent peaks 

in the “Annealed” spectra are indicative of an increase in the oxidation state of Te similar 

to that of TeO2
17,18 or CdTeOx species (such as CdTeO3 or CdTe2O5

19,20). The 

“Annealed” spectra also show that some Te remains in a CdTe-like environment, 

indicated by the peak at lower BE. Both peaks in the “Annealed” spectra are broadened 

compared to their “As-deposited” counterparts, suggesting a less defined chemical 

environment after annealing.  

The Te MNN regions of all samples are shown in the center panel of Fig. 7.5. 

While the overall shape and position of the “As-deposited” spectra matches to chemically 

well-defined CdTe reference spectra,17,21 the analysis of the Te MNN region for the 

“Annealed” spectra is more complicated. These spectra represent a superposition of the 

Te M4,5N4,5N4,5 emission of (at least) two Te species, as indicated in the XPS spectra in 

the left panel. Furthermore, the O KL1L2,3 and KL1L1 signals in this region are more 

intense (in agreement with the annealing-induced overall increase of all oxygen-related 

signals, see, e.g., the O 1s in the XPS survey spectra in Fig. 7.1). To isolate the Te MNN 

signal, the O KL1L2,3 and KL1L1 signals of a ZnO reference were scaled with the O 

KL2,3L2,3 intensity at 509.5 eV KE (not shown) and subtracted, as mentioned above. The 
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“Annealed” spectra (grey), the O KLL spectrum that was subtracted (pink), and the 

remaining, now-isolated Te MNN signals (bold) are shown in the center panel of Fig. 7.5. 

To evaluate the Te environment of the annealed samples, fits were performed of 

the Te 3d3/2 and Te MNN regions. The Te 3d3/2 peaks of all “Annealed” spectra were fit 

simultaneously using a pair of Voigt profiles to describe each spectrum. The positions 

and intensities of the peaks were allowed to vary freely, while the Gaussian broadening 

was coupled for all peaks and the Lorentzian broadening was coupled for each chemical 

environment. In Fig. 7.5, the fit of the “Annealed 4 nm” Te 3d3/2 spectrum together with 

the respective residuum (difference between data and fit) is shown as an example. In the 

right panel of Fig. 7.5, two “As-deposited 24 nm” Te MNN spectra were used as 

reference spectra to describe each “Annealed” Te MNN spectrum. For a first estimate, 

the two reference spectra were separated by the BE difference derived from the fit of the 

two Te 3d3/2 XPS peaks. Then, in a second step, their separation was used as a free fit 

parameter (leading to shifts between -0.2 and +0.3 eV). The two weighted Te MNN 

contributions (as determined by the fit), the resulting sum of these spectra, and the 

measured “Annealed” Te MNN spectra are shown in the right panel of Fig. 7.5. The 

residual is shown below each set of spectra. Grey bars indicating the range of literature 

values for CdTe and compounds containing Te-O bonds (e.g., TeO2, Te(OH)6, CdTeO3, 

etc., denoted “Te-O”) are included at the top of the graph.  

The fits of the “Annealed” Te MNN spectra show the intensity of the two 

components to be almost equal to one another, suggesting that nearly 50% of the Te in 

the probed volume is oxidized. In contrast, the “Te-O” peak in the Te 3d3/2 XPS spectra is 

clearly dominant for all annealed samples. To quantify this observation, the fraction of 
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Te-O was determined from the area of the “Te-O” peak in the Te 3d3/2 and MNN regions 

relative to the total Te signal (i.e., combined area of the “CdTe” peak and the “Te-O” 

peak). The results, plotted in Fig. 7.6 (a), show a trend of reduced oxidation for the Te 

MNN region, with a difference of 18-23% for all samples. We speculatively assign this 

difference to three effects. First, we note that the subtraction method employed to derive 

the “isolated” Te MNN spectra is simple and inherently connected to a significant degree 

of uncertainty. Second, we compare two spectral regions with two different kinetic 

energies and hence different degrees of surface sensitivity. We would roughly expect the 

inelastic mean free path of the XPS signal to be larger than that associated with the Auger 

signal by a factor of  √"#$√%&$ = 1.18 (using the approximate KE for the Te 3d and Te MNN, 

respectively, and a square root dependence for the “universal” inelastic mean free path22). 

Third, and possibly most prominently, we observe a reduction of the “Te-O”/“CdTe” 

ratio as a function of x-ray exposure. This is exemplarily shown for the “Annealed 8 nm” 

sample in Fig. 7.6 (b). The black spectrum was taken after 2 hours of x-ray exposure, 
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while the grey spectrum was taken 2.5 hours after the black spectrum (i.e., after 4.5 hours 

of x-ray exposure). After subtraction of the O KLL contribution, a fit of the grey 

spectrum shows an 11 % (absolute) reduction in the Te-O species relative to the black 

spectrum (which is also easily seen in the raw spectra, as indicated by the arrows), and an 

even larger relative reduction would be expected when comparing with the pristine 

surface (data not available. Our measurement cycle included the XPS and XAES 

measurements with a time separation of ca. 2-3 hours, and all XAES data was therefore 

taken at a later stage of the x-ray-induced Te-O reduction. Nevertheless, the here-

presented analysis of the different Te species, the presence of a dominant tellurium oxide 

species, and the finding of island formation upon annealing is independent of this effect 

and hence remains fully valid.  

The Te MNN reference spectra (i.e., the “As-deposited 24 nm” spectra) had to be 

shifted by an additional amount towards lower KE relative to the position of the “As-

deposited” Te MNN spectra to achieve the fits shown. This amount varied for each 

sample, from 0.66 eV for the “Annealed 24 nm” spectrum to 1.13 eV for the “Annealed 8 

nm” spectrum. This additional shift is speculatively attributed to the increased Coulomb 

interaction of the double vacancy final state of the M4,5N4,5N4,5 transition due to the nano-

size dimensions of the CdTe grains,
16

 similar to the earlier discussion of the XPS core 

levels. Again, a larger shift would be expected for smaller grain sizes, and the magnitude 

of the required additional shift agrees with the grain sizes in the AFM images in Fig. 7.2. 

This interpretation also sheds light on the peak broadening observed for all “Annealed” 

Te 3d XPS peaks compared to the “As-deposited” spectra, in that a distribution in grain 

size at the surface would lead to a less-defined chemical state for each sample. 
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 Detailed Al Kα-excited XPS and XAES spectra of the Cd 3d3/2 (left) and Cd 

M4,5N4,5N4,5 (right) regions, respectively, are shown in Fig. 7.7 (a). All spectra are 

normalized to the intensity of the strongest transition in each region (except for the 

annealed 4, 8, and 12 nm CdTe samples, which exhibit extremely low intensity).  

The Cd 3d3/2 peak is found at 412.0 eV BE for all “As-deposited” spectra, while 

all “Annealed” spectral peaks exhibit broadening and a small shift to higher BE relative 

to the “As-deposited” spectra. The largest shift is seen for the “Annealed 8 nm” spectrum, 
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Fig. 7.7: (a) Al Kα-excited XPS and XAES spectra of the Cd 3d3/2 (left) and Cd 

M4,5N4,5N4,5 (right) regions taken from the “As-deposited” (bottom) and 

“Annealed” (top) CdTe/ZnO/Si sample surfaces. The grey bars (top) indicate 

literature values for CdTe and compounds containing Cd-O bonds, from Refs. 18, 

21, 22, and 26. (b) The “As-deposited 12 nm” spectrum is shown as-measured (i), 

along with the “Annealed 24 nm” spectrum (ii). After subtraction of 60% of 

spectrum (ii), the remainder of the “As-deposited 12 nm” spectrum most closely 

resembles the other as-deposited samples. The “As-deposited 24 nm” is shown for 

reference.  
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with the Cd 3d3/2 peak appearing at 412.5 eV. The broadening of the peak shape is most 

apparent when comparing the “Annealed 24 nm” spectrum to the “As-deposited 24 nm” 

spectrum, but can also be seen for the “Annealed” 4, 8, and 12 nm spectra, despite their 

low Cd signal.  

The energy shifts and peak broadening correlate with the Te 3d3/2 data in Fig. 7.5, 

showing that the Cd remaining at the surface is also in a less-defined chemical state after 

annealing. In comparison to the chemical shifts of Te core levels, the shifts for Cd core 

levels upon oxide formation are often much smaller (BEs for CdTe, CdO, and Cd(OH)2 

overlap within their reported ranges, while only CdO2 shows an appreciable chemical 

shift of ~1.0 eV21). Grey bars at the top of Fig. 7.7 demonstrate the range of literature 

values for CdTe and compounds containing Cd-O bonds (designated “Cd-O”). The 

observed peak shifts and broadenings could therefore be due to the presence of multiple 

chemical species, such as CdTe and Cd-O compounds, or the nano-scale quantum-effects 

previously mentioned. 

A strong Cd MNN signal is present for all as-deposited CdTe film thicknesses, 

with the M4N4,5N4,5 transition found at 382.0 eV KE. Close inspection finds that the shape 

of the “As-deposited 12 nm” Cd MNN spectrum varies from the other three “As-

deposited” spectra, exhibiting smeared-out features and a shallower dip between the M4- 

and M5-related transitions. No Auger signal is seen for the “Annealed” 4 and 8 nm 

spectra, while a small signal is observed for the 12 nm spectrum (a linear background is 

drawn as a guide to the eye). A strong Cd MNN signal is seen for the “Annealed 24 nm” 

spectrum, shifted by 1.5 eV to lower KE relative to the “As-deposited” spectra. 
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A similar shape variation as found for the “As-deposited 12 nm” Cd MNN 

spectrum was previously shown to be due to the presence of multiple Cd species, 

especially when an oxidized Cd species is present; an example of CdS and Cd(OH)2 is 

shown in Ref. 23. Since a Te-O species was also seen on this sample in the Te 3d3/2 region 

(Fig. 7.5), an oxidized Cd species is likely to be present here as well. The large shift of 

the “Annealed 24 nm” Cd MNN spectrum relative to the “As-deposited” spectra also 

suggests a change in the chemical environment of Cd, and the energy value of the 

M4N4,5N4,5 transition (380.5 eV) is close to literature values for Cd(OH)2 (380.0 eV17) and 

CdTeO3 (380.8 eV20). 

To further investigate the spectral changes seen in the “As-deposited 12 nm” Cd 

MNN spectrum, we note that the “Annealed 24 nm” spectrum is satisfactorily described 

by a single Cd-O species. By subtracting sixty percent of the “Annealed 24 nm” spectrum 

from the “As-deposited 12 nm” spectrum, as shown in Fig. 7.7 (b), the remainder most 

closely resembles a Cd MNN spectrum from a single Cd component. Furthermore, it 

compares well with the three other “As-deposited” spectra, as shown for the “As-

deposited 24 nm” spectrum at the bottom of Fig. 7.7 (b). 

To better visualize the observed peak shifts, chemical state plots were made for 

Te and Cd from the XPS and XAES peak locations of both elements. For the “Annealed” 

Te spectra, the energy of each M4N4,5N4,5 contribution and 3d5/2 peak was determined 

from the previously described fits of the Te 3d3/2 and Te MNN regions (see Fig. 7.5). For 

the “As-deposited” Te 3d3/2 and all Cd 3d3/2 spectra, one Voigt peak and a linear 

background was used to describe each spectrum. The Gaussian broadening was held 

constant for all peaks of a particular element, while the Lorentzian broadening was 
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allowed to vary in order to describe the peak broadening observed for the annealed 

samples. Due to the overlap of the 3d3/2 contribution – excited with the Kα3,4 x-ray source 

satellites – with the 3d5/2 component, the 3d5/2 BE for each sample was determined from 

the fitted 3d3/2 BE position and the spin-orbit splitting documented in literature (10.4 eV 
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for Te and 6.7 eV for Cd)
24

. The KE of the M4N4,5N4,5 peak of the “As-deposited” Te 

MNN samples and all Cd MNN spectra were taken as the energy at maximum intensity. 

The magnitude of the error associated with each value is based on the energy step size of 

the measurement, the intensity of the signal, the method used for finding the peak 

location, and the data analysis necessary to isolate the individual components (e.g., a 

larger error bar is derived for the “Annealed” Te MNN). The resulting data points and 

their error bars are plotted in Fig. 7.8, along with relevant references. All reference values 

were taken from 
17

, 
21

, and 
25

, except for the CdTeO3 and CdTe2O5 data, which were taken 

from reference 
20

. A ZnTe reference for the Te Auger parameter is not included because, 

to our knowledge, this data is not available from the literature. However, no evidence for 

the formation of ZnTe is seen from the Zn LMM region, which would show a 2.7-3.8 eV 

shift relative to ZnO
25

 (see Fig. 7.10 below for more details). 

The chemical state plot of Te is shown in Fig. 7.8 (a). The modified Auger 

Parameter (α′, right ordinate) for all “As-deposited” samples is 1063.3 ± 0.1 eV, in very 

good agreement with the CdTe references. Both chemical contributions from the 

“Annealed” spectra are plotted, designated “Annealed CdTe” and “Annealed Te-O”. All 

“Annealed Te-O” data points appear in the lower left corner of the plot (described by the 

solid ellipse), near the TeO3 and Te(OH)6 reference points, while the “Annealed CdTe” 

data points are located to the right, significantly closer to the “As-deposited” data points.  

All “Annealed CdTe” data points (i.e., for the Te atoms in a CdTe environment 

after annealing) are shifted to a lower α′ value relative to the “As-deposited” and the 

CdTe literature values. This could be due to two effects. First, the underlying assumption 

that a simple two-component analysis is a sufficient description of the various local 
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chemical environments of the Te atoms might be incorrect – if further species are 

required for a correct description, one or more of them could exhibit the modified Auger 

parameter value of CdTe. More likely, however, we believe the shifts to be due to 

additional final-state effects. Most prominently, changes in extra-atomic screening and/or 

the lifetime of the core- and valence-holes could be involved.26 For example, a structural 

change producing small grains similar to those observed in the AFM images, and/or a 

loss or reduction of electrical connectivity (reduced charge transfer) between the small 

grains as well as between the grains and the substrate could lead to such final-state 

variations (note that the final state of the XPS process is a core-hole, while the final state 

of the Auger process involves two valence holes with an additional interaction of the two 

charged particles). As an indication that the island size might play a role in the observed 

shifts, we note that the “Annealed 24 nm” data points for both, Te-O and CdTe, are at a 

higher α′ value than those of the other annealed samples (top right data point in each 

ellipse); this sample showed the smallest impact of annealing on grain size, and hence the 

impact of morphology-related final-state effects would be reduced. 

The chemical state plot for Cd is shown in Fig. 7.8 (b). The “Annealed” 4 and 8 

nm samples could not be plotted due to the absence of the Cd Auger peaks. All “As-

deposited” data points are located at the α′ value of 787.3 ± 0.2 eV, in the vicinity of both 

CdTe and CdO reference values. While all CdTe reference values (and one of the CdO 

references) agree well with the “As-deposited” data points, the full set of CdO reference 

values shows a strong variation, in particular in the 3d5/2 binding energy. A large shift in 

α′ is present between the “As-deposited” and “Annealed” data points, the latter of which 

are located towards the bottom of the plot, sharing the same α′ value as CdTeO3 and 



132 

 

CdTe2O5 (Ref. 
20

), and in line with the CdTeO3 Cd 3d5/2 reference value given in Ref. 
17

. 

The formation of CdTeO3 and (to a lesser extent) CdTe2O5 has been observed in 

intentionally oxidized CdTe samples after annealing treatments between 300 and 550 

°C,
27

 i.e., comparable to the annealing temperature used here (525 °C).  

The literature value for Cd(OH)2 is also found in this region, making it a viable 

candidate as well. An exact identification of the Cd chemical environment on the  

“Annealed” samples is difficult, since final state effects are expected to also lead to 

energy shifts, as described above for the case of Te. Nevertheless, that fact that the 

“Annealed’ data points are nearest to CdTeO3, CdTe2O5, and Cd(OH)2 references 

suggests that the remaining Cd atoms on the “Annealed” samples are in an oxidized 

environment with a bonding structure different from CdTe.  

The percentage of Cd and Te “remaining” after annealing was calculated for all 

CdTe thicknesses and is shown in Fig. 7.9. To derive this percentage, the “Annealed” 

peak area from the previously described Cd and Te 3d3/2 fits (including all chemical 
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Fig. 7.9: Percent of the “remaining” Cd and Te 3d3/2 signal intensity for each 

thickness, given as the intensity ratio between the “Annealed” and “As-deposited” 

samples. 
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species) was divided by the “As-deposited” peak area. The error bars were estimated by 

considering effects such as possible variations in sample and x-ray source positioning, 

attenuation from surface adsorbates (i.e., C 1s intensity variation between “As-deposited” 

and “Annealed” samples), and variability in the fitting procedure.  

A significantly greater amount of Te than Cd is retained at the surface of all 

annealed samples. Close to 15% of the original Te signal remains for the 4 and 8 nm 

CdTe thickness samples, while for Cd only ~1 % of the original signal remains. A small 

increase in the post-annealing Cd and Te intensity is seen for the 12 nm CdTe film, but 

the Cd:Te “retention” ratio is also near 1:15. As was already seen in the survey spectra of 

Fig. 7.1, the 24 nm CdTe “Annealed” sample shows a high Cd intensity – 25 % of the 

original Cd intensity is retained, while the Te intensity relative to the as-deposited sample 

is 44 %; the Cd:Te “retention” ratio is thus closer to ~1:2.  

The comparatively high Te signal on the annealed 4, 8, and 12 nm CdTe samples 

suggests that their surfaces must be Te-rich (and Cd-poor). This agrees well with the 

combined evidence from the Te 3d detailed spectra, the Cd:Te ratios, and the AFM 

images, which suggest the presence of a Te-O layer at the “Annealed” sample surfaces. 

The increased surface Cd signal after annealing for the 24 nm thick CdTe film is 

evidence that this sample varies from the structure of the thinner CdTe film samples, 

which correlates with the different surface morphology seen from the AFM images 

shown in Fig. 7.2.  

To further study the annealing process from the viewpoint of the chemical 

environment of Zn, Fig. 7.10 (a) shows the Zn 2p3/2 and Zn L3M4,5M4,5 spectra of the two 

sputter-deposited ZnO references (before and after 20 minute annealing at 525 °C), and 
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all “As-deposited” and “Annealed” CdTe/ZnO samples. All spectra are normalized to 

peak maximum, except for the Zn LMM “As-deposited” 24 nm spectrum and the Zn 2p3/2 

“As-deposited” 8, 12, and 24 nm spectra, all of which do not show a prominent peak.  

 The Zn 2p3/2 and Zn L3M4,5M4,5 peak energies for the two ZnO samples (~1022 

and 988 eV, respectively) are in good agreement with literature values for ZnO.17,21,25,28 
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Fig. 7.10:  
(a) Mg Kα-excited XPS and 
XAES spectra of the Zn 2p3/2 
(left) and Zn L3M4,5M4,5 
(right) regions, taken on two 
bare ZnO references (bottom, 
before and after a 20 minute 
525 °C annealing step), and 
the “As-deposited” and 
“Annealed” CdTe/ZnO 
samples (top). The range of 
energy positions reported for 
related references in literature 
[17, 21, 25, and 28] are 
indicated as grey boxes.  
 
 
(b) Zn chemical state plot 
using the Zn 2p3/2 and Zn 
L3M4,5M4,5 peak energies. 
Relevant references are also 
plotted (and labeled in italics), 
taken from Refs. 18, 22, 26, 
and 29. 
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The “Annealed Bare ZnO” sample peaks are shifted relative to the (non-annealed) “Bare 

ZnO”; 0.26 eV to higher BE (lower KE) for the 2p peak and 0.18 eV for the Auger peak. 

That the energy shift is not identical for both peaks suggests that this is not solely a 

charging or surface band-bending effect, but may also be attributable to a change in the 

ZnO structure, such as an annealing-induced enhanced crystallinity,8 or a change in the 

chemical environment (e.g., the co-formation of Zn(OH)2, see Fig. 7.11 for a detailed 

discussion).  

The Zn 2p3/2 peak energy for the four “Annealed” CdTe/ZnO samples is in good 

agreement with most of the ZnO references. Similar to the Cd and Te 3d detailed spectra, 

the “Annealed 8 nm” sample shows a small shift towards higher BE (0.17 eV) relative to 

the other annealed spectra. The “As-deposited 4 nm” Zn 2p3/2 peak is at a lower BE 

relative to the ZnO reference peaks and closer to the literature values for ZnTe.17,25 

However, a much more dramatic shift of the L3M4,5M4,5 spectra to a higher KE would be 

expected if ZnTe were present, as is displayed in the chemical state plot in Fig. 7.10 (b) 

(note that the shoulder at 992 eV is part of the ZnO LMM spectrum, as seen from the 

“Bare ZnO” spectra). The “As-deposited 4 nm” sample, the two bare ZnO samples, and 

all “Annealed” samples are plotted in close proximity to the ZnO literature values, 

showing the dominant Zn species present for all samples to be ZnO (as opposed to ZnTe 

or Zn(OH)2).   

To investigate the local chemical environment of oxygen on all sample surfaces, 

the normalized XPS O 1s spectra from all CdTe/ZnO layered samples are shown in Fig. 

7.11, along with the “Annealed Bare ZnO” sample.  
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The “As-deposited” spectra show a low O 1s intensity from all samples prior to 

normalization (as shown in Fig. 7.1). The O 1s peak is at a higher BE for the thicker “As-

deposited” samples relative to the “Annealed” samples due to a reduction in the signal 

coming from the ZnO substrate (at ~530 to 531 eV21,28,29) and a resulting spectral 

dominance of the surface-adsorbed oxides and hydroxides (at ~532 eV30). The O 1s peak 

for all “Annealed” samples is at a BE of ~530.8 eV, in good agreement with both the 

ZnO reference values and the O 1s of the “Annealed Bare ZnO” sample. Small shifts in 

the overall peak position are present in the “Annealed” spectra, comparable to those seen 

for the Zn 2p and LMM peaks (most prominent for the “Annealed 8 nm” sample).  
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Fig. 7.11: XPS Mg Kα O 1s spectra from all “As-Deposited” and “Annealed” 

samples, as well as the “Annealed Bare ZnO” sample. Literature values of 

selected oxygen-containing compounds are represented by grey boxes and were 

taken from Refs. 22, 29, 30, and 31. 
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The O 1s spectrum of the “Annealed Bare ZnO" sample shows an overall peak 

broadening relative to the annealed CdTe/ZnO samples, and added weight to higher BE 

(indicated by the arrow in Fig. 7.11). This shoulder to higher BE is also present in the 

“Annealed” CdTe/ZnO samples, but is less prominent and decreases with increasing 

original CdTe layer thickness. This shoulder is tentatively attributed to the presence of 

Zn(OH)
2
 bonds, which has been shown previously to occur at ZnO surfaces and to 

degrade readily into ZnO and H
2
O with heat and/or photon irradiation.

29,31,32

  

 

7.4 Conclusion 

We have used a combination of photoelectron spectroscopy, energy-dispersive x-ray 

analysis, and atomic force microscopy to investigate sputter-deposited CdTe/ZnO thin-

films of varying CdTe thickness (4 to 24 nm) before and after annealing at 525 °C. We 

find a strong reduction in Cd and Te signal after annealing and an increase in Zn and O 

signals. These changes are correlated with a modification of the surface morphology, 

namely the formation of Cd- and Te-rich islands on the surface and an exposure of the 

underlying ZnO after annealing. Detailed investigation of the 3d photoemission peaks 

and the MNN Auger transitions of Te and Cd show these elements to be in a mixed CdTe 

and oxidized chemical environment, with the majority species being that of an oxide. 

Other changes present are attributed to photoemission final state effects due to the nano-

scale grain sizes. Investigation of the Zn 2p and Zn LMM transitions indicates the 

absence of Zn-Te bonds, while the presence of Zn(OH)
2
 at the surface of the bare ZnO 

reference samples and a similar, but reduced, hydroxide signal on the annealed 

CdTe/ZnO samples is seen from investigation of the oxygen photoemission spectra.  
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Control of the interface between an active semiconductor and a transparent 

conductive oxide contact is of significant importance for nanocomposite systems, since 

charge transfer through this interface is a vital parameter. The formation of a barrier, such 

as the here-found Te-O-rich surface layer, can have a profound impact on the charge 

carrier dynamics and energies in the semiconductor nanoparticles. While the samples 

prepared and studied here are not identical to the nanocomposite system in that the CdTe 

is not embedded within the wide band gap matrix, we show the potential for oxide 

formation at the CdTe/ZnO interface after annealing, and hence such intermediate layers 

need to be taken into account for future optimization approaches of nanocomposite 

devices.  
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CHAPTER 8 

SUMMARY AND FUTURE WORK 

 

The chalcogenides Cu(In,Ga)Se2 and CdTe are of interest for use in optoelectronic 

devices such as LEDs and solar cells. In these applications, the chemical structure and 

electronic properties of the interfaces these materials form, and as such the surfaces of 

these materials, are of great import to the success of the final device. A variety of 

spectroscopic (laboratory- and synchrotron-based) and microscopic techniques were 

utilized in this dissertation to learn about these chalcogenide-based materials, with the 

goal of improving the understanding of the chemical and electronic properties of the 

surfaces and interfaces formed by these compounds, and ultimately improving device 

properties such as power conversion efficiency. 

 Chapters 4 and 5 investigated Cu(In,Ga)Se2-based absorbers used for application 

in photovoltaics. In Chapter 4, a CIGSe absorber and CdS/CIGSe stack, taken from the 

Nanosolar roll-to-roll, ambient-pressure production line, were studied. X-ray 

Photoelectron Spectroscopy (XPS) showed a low level of Cu and In oxidation, and a 

strong Na signal at the bare absorber surface. From the CdS/CIGSe stack, evidence for 

possible S/Se intermixing at the CdS/CIGSe interface was seen. Ultra-violet 

Photoelectron Spectroscopy (UPS) and Inverse Photoemission Spectroscopy (IPES) were 

taken from both samples as well, and showed surface band gaps similar to other high-

efficiency absorber and buffer layers deposited by more conventional methods (i.e., in 

vacuum, and on non-flexible substrates). Overall, a surprising low level of contamination 
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and strong comparisons with traditionally deposited, high efficiency CIGSe absorbers 

and CdS buffer layers was demonstrated. 

 Chapter 5 presented an in-depth study of a novel CuInSe2 absorber grown at the 

University of Luxembourg. Here, the CISe sample was grown with a Cu-rich bulk 

stoichiometry, followed by a KCN etch to remove metallic Cu2-xSe phase at the surface, 

and a final, short deposition of In and Se to produce a Cu-poor surface. Comparison to a 

Cu-rich sample and a standard Cu-poor sample (grown similar to the NREL 3-stage 

process) showed the novel sample surface to be the most Cu-deficient. Despite having a 

significantly lower surface Cu/In ratio of 0.11 ± 0.05, as determined from XPS, the 

surface band gap of the novel absorber (1.48 ± 0.15 eV) was similar to that of the 

standard Cu-poor sample (1.54 ± 0.15 eV), and matched well to previously studied, high-

efficiency CISe absorbers. Further investigation of the novel sample using Hard X-ray 

Photoelectron Spectroscopy (HAXPES) and X-ray Emission Spectroscopy (XES) found 

that the sample continued to be Cu-deficient relative to both the Cu-poor and Cu-rich 

reference samples, even as the surface sensitivity of the measurement technique 

decreased. The near-surface bulk band gap determined from XES and X-ray Absorption 

Spectroscopy (XAS) gave comparable values, near 1.05 ± 0.20 eV, for all three samples. 

The lack of variation between the samples suggests that all samples achieve equivalent 

near-surface bulk band gaps. Thus, while the chemical composition of the novel absorber 

varied from both reference samples, the electronic structure at the surface and near-

surface bulk closely mimics that of traditional-grown Cu-poor absorbers, by which the 

highest efficiencies are achieved. Due especially to the success thus far with this novel 

absorber, further investigation is warranted. For example, optical band gap information 
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and a study of the band alignment at the CISe/Mo interface would complete the band 

alignment picture of the full novel CISe absorber, similar to what has been done for 

CIGSe and CIGSSe.1,2 

 Chapter 6 and 7 detailed studies involving CdTe-based materials. Chapter 6 

looked at the metal/CdTe back contact in (Au/Cu)/CdTe/CdS solar cell stacks after rapid 

thermal degradation, with the goal of better understanding the decreased efficiencies seen 

over time in CdTe-based solar cells, and the role of elements such as Cu and O at this 

interface. XPS showed a strong Cu signal at the surface of all samples, regardless of the 

sample treatment, which suggests an alloying of Cu with Au in the back contact, or the 

presence of pin-holes in the final Au layer. A small S signal was also present in the XPS 

spectra, suggesting the migration of S from the CdS layer into the CdTe layer and to the 

Au/Cu back contact, with and without stress treatment. XES of the S L2,3 and Cl L2,3 

emission edges showed a correlation between the presence of Au- and Cu-S bonds and a 

lack of air exposure, and evidence for Cu-Cl bonds for samples stressed under 

illumination. This showed that S and Cl are present at the back contact/CdTe interface 

and active in forming bonds with the back contact metals used, somewhat dependently of 

the stress treatment and environment. While Cu, O, and Cl have been suggested to play a 

role in the degradation of this interface previously,3 it is feasible from the results shown 

here that Cl and also S may be involved in the degradation process. Further study, 

perhaps involving the direct investigation with XES of the Cu and Au bonding 

environment at the back contact/CdTe interface, could further clarify the bonds they are 

participating in. Comparing the bonding environments seen and the solar cell efficiencies 
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achieved after various stress treatments would also help to identify their role in 

degradation. 

 The CdTe/ZnO interface, as seen in nanocomposite materials, was studied in 

detail using a combination of spectroscopic and microscopic techniques, and was 

presented in Chapter 7. In previous work on layered CdTe/ZnO nanocomposite films, 

annealing produced an increase in crystallinity with no change to the absorption edge. It 

was the goal of this study to focus on the effects of annealing on the chemistry and 

structure of the CdTe/ZnO interface more specifically. Thin films of CdTe (4 to 24 nm) 

were sputter deposited onto 100 nm ZnO/Si substrates, and sibling samples of each 

thickness were annealed at 525 °C for 20 minutes. Comparison of the “As-deposited” and 

“Annealed” samples with XPS showed a strong reduction in Cd and Te signal intensity, 

and increase in Zn and O signal intensity after the annealing treatment. Investigation with 

AFM, SEM, and EDX revealed the presence of Cd- and Te-rich islands on the sample 

surface, and an exposure of the underlying ZnO.  The chemical environment of Cd and 

Te remaining on the “Annealed” sample was analyzed through the XPS detailed spectra 

of the 3d photoemission peaks and MNN Auger transitions. Fitting the spectra and 

plotting the energies on a modified Auger parameter plot showed the majority of the Cd 

and Te to be in an oxidized environment after annealing, with some CdTe-like bonding 

remaining. A shift of the data points in the modified auger parameter plot was also seen, 

suggesting final-state effects due to the nano-scale grain sizes. The results overall showed 

a breaking up of the CdTe layer with annealing, and the possibility of an oxide barrier 

forming between the wide band gap ZnO matrix and the CdTe nanoparticles, which 
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would have a large impact on the charge carrier dynamics and final properties for this 

nanocomposite material.  
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APPENDIX 

LIST OF ABBREVIATIONS AND SYMBOLS 

α' Modified Auger Parameter 

AFM Atomic Force Microscopy 

ALS Advanced Light Source 

AM 1.5 Air-mass 1.5 

BE binding energy 

CB conduction band 

CBM conduction band maximum 

CdS Cadmium Sulfide 

CdTe Cadmium Telluride 

CIGSe Cu(In1-xGax)Se2 

CISe CuInSe2 

DAAD RISE Deutscher Akademischer Austausch Dienst (German Academic 

Exchange Service) Research Internships in Science and Engineering 

DI de-ionized 

EDX Energy Dispersive X-ray Spectroscopy 

EF Fermi level 

Eg band gap 

Evac vacuum level 

FAT Fixed Analyzer Transmission 

FTO Fluorine-doped Tin Oxide 

FWHM full width at half maximum 
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HAXPES Hard X-ray Photoelectron Spectroscopy 

hν photon energy 

HV high vacuum 

HZB Helmholtz-Zentrum Berlin für Materialien und Energie, GmbH 

IMFP Inelastic Mean Free Path 

IPES Inverse Photoemission Spectroscopy 

KE kinetic energy 

LED light-emitting diode 

NREL National Renewable Energy Laboratory 

ODC ordered defect chalcopyrite 

PE Pass Energy 

PV photovoltaic 

PVD Physical Vapor Deposition 

SEM Scanning Electron Microscopy 

UHV Ultra-high Vacuum 

UPS Ultra-violet Photoelectron Spectroscopy 

UT University of Toledo 

VB valence band 

VBM valence band maximum 

XAS X-ray Absorption Spectroscopy 

XES X-ray Emission Spectroscopy  

XPS X-ray Photoelectron Spectroscopy 

ZnO Zinc Oxide 
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