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ABSTRACT 

CHEMICAL AND ELECTRONIC STRUCTURE OF SURFACE  

AND INTERFACES IN CADMIUM TELLURIDE  

BASED PHOTOVOLTAIC DEVICES 

by 

Douglas Arthur Duncan 

Dr. Clemens Heske, Examination Committee Chair 
Professor of Chemistry 

University of Nevada, Las Vegas 

The surface and interface properties are of the upmost importance in the 

understanding, optimization, and application for photovoltaic devices. Often the 

chemical, electronic, and morphological properties of the films are empirically optimized, 

however when progress slows, a fundamental understanding of these properties can lead 

to breakthroughs. In this work, surfaces and interfaces of solar cell-relevant films are 

probed with a repertoire of X-ray analytical and microanalysis techniques including X-

ray photoelectron (XPS), X-ray excited Auger electron (XAES), X-ray emission (XES) 

spectroscopies, and atomic force (AFM) and scanning electron (SEM) microscopies.  

Silicon-based devices currently dominate the solar market, which is rather 

inflexible in application. Cadmium telluride (CdTe)-based technologies offer a cost-

effective alternative with additional benefits including roll-to-roll production and high 

conversion efficiencies. This, like other next generation thin film solar cells, needs more 

optimization to replace Si. The charge transport across a heterojunction is of great 

importance to drive up the conversion efficiency of the device.  
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The interface of a CdS buffer layer and SnO2:F front contact was investigated as a 

function of CdCl2-treatment. In order to measure the fully formed interface, after 

subsequent layer deposition and heat treatments, mechanical stressing of the layer stack 

resulted in physical separation at the desired interface. By combining multiple 

spectroscopic and morphologic methods a complete picture has evolved. 

CdS is often used as a buffer layer in CdTe based devices. This layer is 

empirically optimized to be very thin (~100 nm) due to the parasitic light absorption in 

and around the 2 eV range. By widening the band gap or replacing it with a more 

transparent material, more photons can be absorbed by the CdTe layer and significantly 

increase the overall conversion efficiency of the device. CdS:O and Zn(1-x)MgxO were 

studied as possible alternatives to CdS. The chemical composition of CdS:O was studied 

at the surface and bulk of the film with respect to oxygen content. The interfacial 

properties of SnO2/Zn(1-x)MgxO and Zn(1-x)MgxO/CdTe were also investigated with 

particular emphasis on energy level alignments at the interfaces. 
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CHAPTER 1  INTRODUCTION 

1.1 Motivation 

CdTe-based solar cells have reached efficiencies of up to 20.4% in the laboratory 

(small area) scale, 17.0% for modules (large area)1. These values have been improving at 

a rapid rate over the past 4 years (Figure 1.1). To further improve CdTe technology a 

fundamental understanding of chemical and electron properties is important. Furthermore 

many studies use academic sample sets, which do not completely describe a real world 

device. In this work we bridge the informational gap between fundamental research and 

real world devices. 

 

Figure 1.1: Record research cell efficiency organized by technology 

1.2 Dissertation Organization 

Surface-sensitive photoelectron spectroscopy is an ideal tool to study the 

electronic and chemical properties of surfaces and interfaces, including interfacial band 
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gaps and band offsets in the valence and conduction band. However, before such surface-

sensitive methods can be employed, surface adsorbates or oxides, which can significantly 

skew the results, need to be removed. Chapter 4 studies the impact of a low-energy ion 

surface treatment on the electronic and chemical surface properties of an air-exposed 

CdTe thin film, monitoring the effectiveness and suitability of such surface cleaning for 

the preparation of relevant CdTe thin-film surfaces and interfaces. 

To further improve performance, a fundamental understanding of the chemical 

and electronic interface structure throughout the CdCl2-treated CdTe/CdS/SnO2:F/glass 

layer stack is necessary. Significant diffusion processes occur during manufacturing, 

particularly these induced by the post-deposition CdCl2 treatment. Thus, most interfaces 

in the device are not fully formed until after these treatments, presenting a challenge to 

standard surface-science characterization approaches of step-wise material deposition. 

In Chapter 5, we probe the buried CdS/SnO2:F interface using a combination of 

surface-sensitive characterization methods and a reproducible cleaving process, which 

was achieved by gluing metal sheets to both sides of the layer stack to allow for a 

mechanical lift-off in an inert environment. To investigate the morphological, chemical, 

and electronic properties of the exposed surfaces after lift-off, atomic force microscopy 

(AFM), X-ray (XPS) and ultra-violet (UPS) photoelectron spectroscopy, as well as 

inverse photoemission spectroscopy (IPES) was used. 

In Chapter 6, efforts focus on the fact that absorption in the CdS buffer layer of 

such cells reduces the flux of high-energy photons to the CdTe absorber. This parasitic 

light absorption can result in more than 10% loss in short-circuit current density.2 One 

way to prevent this loss is to increase the band gap of the buffer material, e.g., by 



 3 

incorporating oxygen during RF sputtering of CdS (such as by introducing O2 into the Ar 

flow).3-7 This process has produced devices with efficiencies above 15%.3, 5, 8 To analyze 

the chemical structure of the S in detail, x-ray photoelectron spectroscopy (XPS) and soft 

x-ray emission spectroscopy (XES) were used to study the species-specific composition 

of the surface and bulk, respectively. Thus the impact of oxygen incorporation into CdS 

thin films is derived, by monitoring the relative intensities of the various sulfur species at 

the surface and bulk as a function of O content. The results allow for deeper insights into, 

and deliberate optimization of, such CdS:O thin films in solar devices. 

In Chapter 7 & 8, efforts continue on reducing parasitic light absorption, but in 

this case together with First Solar Inc. CdS is completely replaced with Zn(1-x)MgxO or 

(Zn,Mg)O. Both interfaces of the (Zn,Mg)O (SnO2/(Zn,Mg)O and (Zn,Mg)O/CdTe) are 

studied to find the chemical composition and the band alignment at the interface.  
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CHAPTER 2  LITERATURE REVIEW 

2.1 Heterojunction Formation in Solar Cells 

A solar cell diode is constructed of a p-n junction. The junction is formed when 

two materials (shown in Figure 2.1a), with the Fermi level (EF) near the valence band of 

one and the conduction band of the other are joined. In order to reach thermal equilibrium 

the EF must be equal energies for both materials (Figure 2.1b). The p-n junction may be 

formed from similar materials (homojunction), as is the case for silicon, or dissimilar 

materials (heterojunction) like CdTe/CdS devices.   

 

Figure 2.1: A p-type and n-type semiconductor (a) independently, and (b) joined and in 
thermal equilibrium with majority carriers shown. (adapted from 9) 

The typical device structure is shown in Figure 2.2. The front contact, normally 

SnO2:F, is between the n-type CdS and the glass substrate. Both the front contact and 

glass substrate should be transparent to photon energies that can contribute to 

photocurrent. When sunlight (hν ≥ Eg) impinges on the device, electrons are excited from 

the valence band to the conduction band and leaves behind ‘holes’. The excited electrons 

move to the front contact, while holes move in the opposite direction and are collected at 

the back contact, which is usually a metal (e.g., Cu, Au, Al, etc.).  

7 
 

 

 

Fig. 2.3: A p-type and n-type semiconductor (a) isolated from each other, and (b) 
adjacent and in thermal equilibrium. In (b), the majority carriers in the p-type material 
(i.e., holes) and n-type material (i.e., electrons) are shown (adapted from [8]).  

the   difference   between   the   metal’s   work   function   and   the   semiconductor’s   electron  

affinity. The above cases are ideal and simplified scenarios, and often times, these 

concepts are not as simple in practice. Hence, there is a drive to optimize contact metals 

and formation such that the final electronic device does not degrade in performance.  

For (Al,Ga)N alloys, there is a desire to find one contact scheme for the entire 

composition of the alloy. V-based contacts to n-type GaN and n-AlGaN alloys have 

shown to have Ohmic properties [9, 10] at lower annealing temperatures [9]. Since 

Galesic and Kolbesen demonstrated  the  “nitridation”  of metallic vanadium films (i.e., the 

formation of VN) by rapid thermal annealing (RTA) in N2 atmosphere [11], it has been 

hypothesized that VN is also formed at the interface between V-based contacts and n-

AlxGa1-xN after RTA treatment [10].   

 

2.2 Heterojunction Formation in Solar Cells 

A solar cell diode is made by forming p-n junction, which is when p- and n-type 

semiconductor materials are joined adjacent to each other. In Fig 2.3a, the energy 

diagram of an isolated n-type and p-type semiconductor is shown. When the two 
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Figure 2.2: Scanning electron micrograph and schematic of the cross-section of a CdTe 
solar cell, the direction of light is shown by a yellow arrow. (adapted from 10) 

One variable that needs to be optimized for a solar cell is the electronic level 

alignment at various interfaces. The interface plays a dominant role in the current output 

(Jsc) and is often a focus of optimization. The conduction band (CB) alignment is 

important for the transport of photogenerated electrons to the front contact. There are 

three configurations for the CB to align in this heterojunction: “spike,” “flat,” or “cliff” 

configurations, which are shown schematically shown in Fig. 2.3.   

 

 

Figure 2.3: The three different possible heterojunction alignments: "spike," "flat," and 
"cliff." 
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Fig. 2.7: A SEM cross-section image of a CdTe/CdS solar cell (from [12]). 

 

Fig.  2.6:  The  three  different  possible  heterojunction  alignments:  “spike,”  “flat,”  and  
“cliff.” 

2.3 Post-absorber Deposition Treatments on CdTe  

Another promising second generation thin-film technology is based on CdTe/CdS solar 

cells. Typically, a CdTe/CdS solar cell is made in superstrate configuration where the 

front contact is adjacent to the glass (as shown in Fig. 2.7, adapted from [12]). The 

CdS/CdTe layers are deposited onto SnO2:F coated soda lime glass. A cadmium chloride 

(CdCl2)  treatment  or  “activation”  is  commonly  performed  at  this  manufacturing  step. The 

CdCl2 activation is performed by exposing the CdTe/CdS stack to CdCl2 dissolved in 
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2.2 Effects of CdCl2-Treatment on CdTe Cells 

It has long been understood that the presence of chlorine in CdTe films is a 

prerequisite for high efficiency solar cells.11 A typical example for a post-deposition 

treatment or “activation” is CdCl2 deposition on as-grown CdTe film, for example, by 

close space sublimation, followed by heating in air or vacuum and finally washing off the 

CdCl2 residuals. Alternatively, CdCl2 can be deposited on the heated CdTe film, therefore 

preventing residual formation. The structural and electronic effects of the chlorine 

treatment are rather similar – regardless of whether it is an in situ or post-deposition step. 

Basically all solar cell parameters (Jsc, Voc, FF) improve with chlorine treatment. 

Of the many effects of CdCl2-treatment, CdTe/CdS interdiffusion is important for 

this work. Sulfur diffusion from the CdS to CdTe layer is enhanced.12-13 Sulfur diffusion 

leads to the formation of CdTe1-xSx by partial consumption of the CdS buffer layer. 

Thereby, the CdS thickness is reduced or, in the extreme case, completely consumed. 

Furthermore, Te is found to diffuse into the CdS layer.14 

Increased conductivity or p-type doping shows up in a decreased series resistance 

of the device. This may be due to modified grain boundary potential as chlorine is mostly 

accommodated at the grain boundies.15 Also, carrier lifetime typically increases from 200 

ps to 2 ns11 upon chlorine treatment. In accordance with such lifetime increase, an 

increase in diffusion length by a factor of 3 has been observed. 

After CdCl2 activation, the electronic levels have likely changed due to the above-

mentioned effects. By mechanically cleaving a fully formed layer stack and by using 

many characterization techniques a complementary picture of the chemical interface 

structure of CdTe-based solar cells as a function of CdCl2 treatment. 
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2.3 CdS and Alternatives 

A major conversion loss in laboratory cells as well as commercial modules is due 

to adsorption of blue light in CdS layers.2 The CdS layer strongly absorbs photons with 

energy greater than its bandgap of 2.4 eV. Electron hole pairs generated in the CdS layer 

do not contribute to the photocurrent, which is seen by a characteristic reduction of 

quantum efficiency for wavelengths ≲ 550 nm (2.25 eV).16 It is therefore desirable to 

reduce the CdS layer thickness or to use other buffer layer materials with a larger band 

gap. When reducing the CdS layer thickness the probability of creating pinholes 

increases, which can lead to direct contact between the front contact (TCO) and the 

absorber layer (CdTe). The creation of these pinholes will create a poor p-n junction as 

seen by a reduced open circuit voltage, fill factor, and thus efficiency.  

Latest record cells reported by General Electric and First solar exhibit 

significantly enhanced photocurrent densities and external quantum efficiencies >90% for 

wavelengths down to ~350 nm (3.54 eV).17 Although the buffer layer composition is not 

reported, such properties are likely obtained using buffer layers with higher energy gaps. 

One way to obtain a similar band gap is alloying CdS with ZnS, which by controlling 

stoichiometry can have a bandgap of 2.42 – 3.66 eV18. Another method to produce a 

similar band gap is by alloying ZnO and MgO. This method has produced band gaps of 

3.2 – 4.2 eV with low Mg content (MgxZn(1-x)O, X ≤ 0.5).19 A careful literature review 

shows this method has not been reported for CdTe-based devices and will be explored 

later in this work with emphasis on chemical and electronic properties at the interfaces.  

Pervious record cells by Wu et al. have also shown high quantum efficiencies at 

low wavelengths (> 80% at ~425 nm or 2.91 eV)8. Similarly, Kephart et al. reported 
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quantum efficiencies > 75% for wavelengths ~400 nm (3.10 eV).20 For both cases a 

sputtered oxygenated CdS layer was used. The chemical composition of such layers will 

be investigated and discussed below. 	
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CHAPTER 3  EXPERIMENTAL METHODS 

This chapter is designed to give a brief overview of the experimental methods 

used in this work and is not a complete explanation of all techniques used. Both lab-based 

and synchrotron-based Spectroscopies will be described as well as implemented 

microscopies. Also lesser-known analysis and sample preparation techniques will be 

explained. 

3.1 Photoemission 

The most common and powerful technique to study the chemical and electronic 

structure of surfaces and interfaces is Photoelectron Spectroscopy (PES). PES is based on 

the photoelectric effect, which was discovered in 1887 by Heinrich Hertz. The effect was 

later explained by Albert Einstein, which led to his Nobel Prize in 1921. In direct 

photoemission X-ray or ultraviolet photons interact with a sample surface. This 

interaction leads to the ejection of photoelectrons and provides information of the 

occupied density of states (DOS). Inverse photoemission spectroscopy (IPES) is, as the 

name implies, the inverse process to PES. In this case, a low energy electron impinges on 

the sample and relaxes to unoccupied states. This relaxation may be radiative, which 

contains information about the unoccupied DOS. By Combing UV PES (UPS) and IPES, 

the band gap at the surface can be directly determined. 

3.1.1 Direct Photoemission 

Photoelectron spectroscopy was the primary technique used to study the chemical 

and electronic structure. With this technique the occupied DOS is investigated by 

measuring the intensity of ejected photoelectrons as a function of the kinetic energy (Ekin) 

with respect to the Fermi energy (EF) of the analyzer. The Ekin is then used to infer the 
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binding energy (Ebin) that the electron originated. The terms photoemission and 

photoelectron spectroscopy will be used interchangeable. 

First the physical processes governing photoelectron spectroscopy will be 

discussed. Photoemission can be described as an electron moving from an initial state 

 to a final state  by photon excitation. Using the dipole approximation the 

probability of this transition  can be described by Fermi’s Golden rule: 

  (1) 

conservation of energy is ensured by use of a delta function. The final state is a 

nonscattered electron with kinetic energy (Ekin). The initial state binding energy (Ebin) can 

then be calculated by the following equation: 

  (2) 

Another important feature of Fermi’s Golden rule is the transition probability that 

depends on both the initial and final state wave function of the electron. In other words, 

final state effect may not be negated. Figure 3.1 shows a schematic of both the X-ray and 

UV photoemission process.  

Ψi Ψ f

wi→ f

wi→ f ∝ Ψ f Ω Ψ i

2
δ Ef − Ei − hν( )

Ebin = hν − Ekin
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Figure 3.1: A Schematic representation of the photoemission process for XPS and UPS. 
The sample is irradiated with X-ray or UV photons that excite a photoelectron. The 
kinetic energy of the electron is measured. 

X-ray Photoelectron Spectroscopy (XPS) is ideally suited to study the core 

electronic levels of a material. To perform XPS in a laboratory setting either a dual anode 

of which either Al Kα1,2 (1486.6 eV; 2p → 1s transition) or Mg Kα1,2 (1253.6 eV; 2p → 

1s transition) radiation is used, or a monochromatic Al X-ray source is utilized. 

Ultraviolet Photoelectron Spectroscopy (UPS) is better suited for the study of shallow 

electronic levels and filled band states or the valence band (VB). Principally, these states 

could be studied with XPS, however the probability of photo-ionizing a valence band 

state is low. In this work either a He discharge lamp or He plasma generated with 

electron cyclotron resonance (monochromatic) is used. The He I (21.22 eV; 1s2p → 1s2 

transition) or He II (40.81 eV; 2p → 1s transition) excitations were utilized. PES is 

ideally suited for the study of surface states due to the energy dependence of the Inelastic 
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Mean Free Path (IMFP). The so-called “universal curve” (Fig. 3.2) shows the 

photoelectron energy dependence on the IMFP. Two lines are drawn to illustrate the 

approximate attenuation length for UPS and XPS.21 

 
Figure 3.2: Inelastic mean free path of electrons as a function of their kinetic energy in 
various solids. Data points indicate measured values (adapted from Ref 21).  

PES experiments performed in the “Andere ESCA” machine utilized a SPECS 

PHOIBOS 150 MCD hemispherical analyzer and a dual anode X-ray source or a helium 

discharge lamp, respectively. Other PES spectra in this work were recorded using Scienta 

R4000 electron spectrometer in the “Scienta” system with a dual anode X-ray source, 

monochromatized Al Kα X-ray source, or Gammadata VUV 5000 microwave-excited 

monochromatized UV source. The energy scale of the electron analyzers for XPS 

measurements were calibrated according to Seah 22 using the photoemission lines of clean 

Au, Ag, and Cu. The energy scale for UPS was calibrated to the Fermi energy of a clean 

Au foil. PES spectra were recorded in fixed analyzer transmission mode where the pass 

energy remains fixed for the collection of a spectrum.  
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Such experiments are performed in vacuum due to three main reasons: (i) the 

surface composition of the sample must not change during the experiment, (ii) the 

photoelectrons ejected from the sample must travel thought the analyzer without colliding 

with other particles, and (iii) some experimental components requires the need for ultra-

high vacuum (UHV; P<10-9 mbar) as opposed to high vacuum (10-4 – 10-9 mbar). In the 

kinetic theory of gases, the ratio of adsorbed particles to the number of free particles at 

various pressures can be determined. At a pressure of 10-6 and 10-11 mbar, the ratio of 

absorbed particles to the number of free particles is 104 and 109, respectively. The mean 

free path λ (i.e., average path each particle travels between collisions) is inversely 

proportional to the number density of molecules present where the latter is directly 

proportional to the gas pressure. 

3.1.2 Inverse Photoemission 

Inverse photoemission spectroscopy (IPES) is the inverse process of PES. Here, 

electrons are impinged onto the surface of a sample and the incident electrons decay into 

unoccupied electronic states and emit photons. This process is shown schematically in 

Fig. 3.3. From this technique, the spectrum of unoccupied DOS is obtained and the 

conduction band minimum (CBM) can be determined. The electron source is a low 

energy electron gun using thermionic emission from a filament (STAIB). The energy of 

the electron gun is varied (Ekin: 6 – 16 eV), and when an electron relaxes into an 

unoccupied state in the conduction band, a photon is emitted. The detector used for the 

IPES experiments is similar to a Geiger-Müller counter. The detector consists of a SrF2 

entrance window to a tube with Ar:I2 filling and high-voltage rod. The window and I2 

filling serves as the high and low energy detection limits, respectively. The SrF2 window 
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does not transmit radiation with energy greater than 9.8 eV.23 While the lower detection 

limit is determined by the threshold for the molecular photoionization of iodine,  

 

at 9.37 eV.24 Thus, the photons are detected in isochromat-mode as a function of electron 

energy. However, the ratio of cross section of IPES to UPS is about 10-5 which makes it a 

more difficult and time consuming experiment.25 Energy calibration was performed by 

measuring the Fermi level of a clean Au foil, and all subsequent spectra are referenced to 

the Fermi level. The IPES experiments were also performed in the analysis chamber of 

the Andere ESCA. The experimental resolution, as determined by the Fermi fit of the 

clean Au foil, for this particular IPES set-up can be as low as 0.3 eV. 

 

Figure 3.3: A schematic energy diagram of the IPES process. An electron source 
impinges electrons (of varying Ekin) to the surface of a sample, where the electron relaxes 
into a lower unoccupied state and emits a photon. 

I2 + hv→ I2
− + e−
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3.1.3 Combining UPS and IPES 

The surface band gap (Eg) of a material is experimentally determined by 

combining information about the VBM (by UPS) and CBM (by IPES). Both of these 

techniques are very surface-sensitive since the information depths are 2 - 4 nm based on 

the approximate IMFP shown in Fig. 3.2.26 The band edges (VBM and CBM) are 

determined by linear extrapolation that intersects the baseline. At this intersection, a state 

may not necessarily exist at that energy level, but this is the best approximation for the 

uppermost state (for the valence band). Other arguments for the linear extrapolation 

method include non-symmetric broadening towards higher EB from: downward 

dispersion of the VBM in all directions in reciprocal space, the inelastic scattering 

process (e.g., photons and electrons), and the possibility of incomplete screening of a 

core hole.27 The linear extrapolation procedures are justified experimentally for 

determining the Eg.28 The electronic surface Eg may be different from bulk Eg 

measurements since the surface composition of a material could differ from the bulk 

phase. However, the surface electronic properties of materials are key pieces of 

information for successfully incorporating other materials into devices (e.g., their 

interfaces). The energies of the VBM and CBM are essential pieces to understand the 

electronic properties of a material, and are required for deeper insight into device physics.  

3.1.4  X-ray Excited Auger Electron Spectroscopy 

While undergoing XPS experiments, X-ray excited Auger electron spectroscopy 

(XAES) is also performed. When a core hole is created by X-ray photons, one 

mechanism for the relaxation of the core hole is the Auger process. In the Auger process, 

an electron from an outer energy level (i.e., of less binding energy) relaxes into the core 
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hole. An energy difference arises due to that transition, and the energy can either be 

absorbed by another electron and as a result be ejected or emitted as a photon. The first 

process is the Auger emission, while the second process is X-ray fluorescence (or 

emission; see 3.2.1) The XAES process is shown schematically in Fig. 3.4 for an oxygen 

atom. The ejected Auger electron is also detected by the electron analyzer. The notation 

for an XAES transition includes information from all three electrons involved, and 

follows traditional X-ray spectroscopic notation. For example, the O KL2,3L2,3 XAES line 

consists of the core hole created in the 1s level (i.e., K), an electron that relaxes to that 

core hole from the 2p level (i.e., L2,3), and the detected electron (also) from the 2p. In 

general, XAES line shapes can be very indicative of the chemical environment since the 

electron emitted (associated with the XAES spectrum) are typically valence electrons.  
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Figure 3.4: A Schematic representation of the photoemission process for XPS and UPS. 
The sample is irradiated with x-ray photons that excite a photoelectron from the L2,3 state. 
An outer shell electron relaxes from the M4,5 state into the core-hole. Energy is 
transferred to a third electron which is emitted from the M4,5 state. This is recognized as a 
L2,3M4,5M4,5 Auger emission. 

 

 

3.1.5 Curve Fitting 

During the course of this work analysis could not effectively be accomplished by 

only qualitative spectral analysis, for these cases curve fitting may be used. A general-

purpose peak fitting program, Fityk, was utilized.29 To describe a photoelectron spectrum 

at least two functions where used.  

First a function, which approximates background, was added. The background of 

an XPS spectrum is dominated by scattered photoelectrons. The scattering of a valence 

electron into the conduction band is of most interest. In general the final energy of a 
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photoelectron can be described as the initial energy (eq. 2) minus some scattering energy. 

For metals the scattering energy can be infinitely small, resulting in a “step” of the 

background. This “step” can be described by a Shirley function.30 In the case of a 

semiconductor, the minimum scattering energy is equal to the band gap; therefore the 

first scattered electrons will be shifted to lower kinetic energies by the band gap. The 

shape of the resulting feature is a small inflection point, because the scattering probability 

is rather low never the band gap due to low density of states at the band edges. For small 

energy windows, the background can be described as linear. 

The remaining functions are used to describe the photoelectron peaks. Again, 

metals and semiconductors cannot be treated the same. For semiconductors, a Voigt 

function is used, which has both Gaussian and Lorentzian character. Lorentzian 

broadening is used to describe lifetime broadening effects of the core-hole, while 

Gaussian broadening nicely describes experimental broadening. Because electrons in a 

metal can have an infinitesimally small energy loss the photoelectric peak is not 

symmetric. There is a tail on the low kinetic energy side of the peak. This shape is best 

described by a Doniach-Sunjic function.31 

3.2 Synchrotron-based X-ray Spectroscopy 

In some cases, the light source needs to be highly brilliant and/or tuneable. For 

these cases experiments were performed at the Advanced Light Source, Lawrence 

Berkeley National Laboratory at Beamline 8.0.1. Synchrotron radiation, for the purposes 

of this work, was produced by passing electrons at near-relativistic speed through an 

undulator. A series of alternating magnets send the electrons in an undulating path, which 

produces near-monochromatic electromagnetic radiation. The distance between magnets 
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is varied to change the photon energy. For an undulator with N periods, the brightness 

(photons/sec/mm2/mrad2/0.1% BW) can be up to N2 more than a single magnet, due to 

constructive interference. The brightness of an undulator is approximately 10 orders of 

magnitude greater than a lab-based X-ray source. 

3.2.1 X-ray Emission Spectroscopy 

As mentioned in the previous sections, photons are used to eject a core electron, 

thus leaving “behind” a cole hole. The core hole can be relaxed by either the non-radiant 

Auger decay (see section 3.1.4) or radiant fluorescence (i.e., X-ray emission) process. As 

seen in Fig. 3.6, the Auger decay process dominates for lighter elements (atomic number 

< 20) for K-shell (i.e., n=1) core holes.32  

 
Figure 3.5: The yields for competing fluorescence and Auger relaxation processes for a 
photoexcited core hole.32 

However, due to the much greater flux of photons at a synchrotron and the design 

of high-efficiency spectrometers, experiments utilizing the fluorescence decay are now 
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on a comparable measurement time-scale to that of laboratory-based spectroscopic 

techniques. In the fluorescence process, the core hole is filled by an electron from a 

higher energy level (i.e., either a valence or core-electron), and the energy difference 

from this transition is emitted as a photon. This process is illustrated in Fig. 3.6.  

 

Figure 3.6: A schematic energy diagram of the X-ray emission process. 

The X-ray emission process obeys the dipole selection rule, Δl = ± 1, where l is the 

azimuthal (or angular momentum) quantum number. The intensity of the emitted photons 

in XES also follows Fermi’s golden rule as,  

. 

In addition, the intensity of the XES signal is also dependent on the exponentially 

attenuated intensity of the incoming photon and outgoing photon. X-ray attenuation 

lengths through many types of materials are tabulated.33 XES experiments can be tuned 

P ψ fψ i( )∝ ψ f Ĥ ψ i

2
δ hv − Ei − Ef( )( )
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(by selecting a suitable photon energy) to a specific “edge” of an element (i.e., energy 

level) such as the K-edge (1s). Like PES, XES probes the occupied density of states of a 

particular element. This technique paints an element-specific partial density of states 

electronic picture, while XPS, UPS, and IPES portrays the total density of states.  

XES experiments were performed on Beamline 8.0.1 at the Advanced Light 

Source (ALS), Lawrence Berkeley National Laboratory. At Beamline 8.0.1, the 

synchrotron radiation exits an undulator, then passes through the barn doors, the first 

vertical focusing mirror, the entrance slit, monochromator spherical grating, the exit slit, 

and finally a re-focusing mirror to direct the beam. The set up (including optical 

elements) used in Beamline 8.0.1 is shown in Fig. 3.7. The experiments were performed 

in either the permanently installed Soft X-ray Fluorescence (“SXF”) endstation34 or the 

Solid and Liquid Spectroscopic Analysis (“SALSA”) endstation.35 The SXF spectrometer 

has a spectral resolution E/ΔE between 400 – 1900. In SALSA, the high-efficiency 

variable line spacing (VLS) spectrometer was used, and has a spectral resolution of E/ΔE 

> 1200 over the whole energy range (80 – 650 eV).35  

 
Figure 3.7: A schematic layout of the synchrotron radiation path in Beamline 8.0.1 at the 
ALS. 
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Fig. 3.7: A schematic layout of the synchrotron radiation path in Beamline 8.0.1 at the 
ALS [35]. 

synchrotron radiation exits an undulator, then passes through the barn doors, the first 

vertical focusing mirror, the entrance slit, monochromator spherical grating, the exit slit, 

and finally a re-focusing mirror to direct the beam. The set up (including optical 

elements) used in Beamline 8.0.1 is shown in Fig. 3.7 [35]. The experiments were 

performed in either the permanently installed Soft X-ray   Fluorescence   (“SXF”)  

endstation [36]   or   the   Solid   and   Liquid   Spectroscopic  Analysis   (“SALSA”)   endstation 

[37]. The SXF spectrometer has a spectral resolution E/ΔE between 400 – 1900. In 

SALSA, the high-efficiency variable line spacing (VLS) spectrometer was used, and has 

a spectral resolution of E/ΔE > 1200 over the whole energy range (120 – 880 eV) [38]. 

3.2.2 Photoemission Electron Microscopy 

Photoemission electron microscopy (PEEM) is a laterally-resolved, elementally- and 

surface-sensitive technique. Using either X-ray or UV photons, PEEM combines 

elements of PES with a high-resolution microscope where it detects electrons emitted 
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3.3 Microscopy 

During the study of surface chemical and electronic properties, an understanding 

the surface morphology may be critical to interpreting data.  

3.3.1 Atomic Force Microscopy 

During the course of this work atomic force microscopy (AFM) was the primary 

morphological tool used. AFM is primarily performed in either contact or non-contact 

modes. In contact AFM (C-AFM) a cantilever with a sharp tip is rastered over surface. 

When the tip is brought close to the surface, forces between the tip and the sample deflect 

the cantilever in accordance with Hooke’s law. During scanning a feedback mechanism is 

employed to adjust the tip-to-sample distance, which maintains constant force 

(deflection) between tip and sample. When non-contact AFM is employed the cantilever 

tip does not contact the surface rather, the cantilever is oscillated at some frequency. The 

van-der-Waals forces, which are strongest from 1 nm to 10 nm above the surface, damp 

the monitored frequency. This dampening in concert with a feedback loop keeps the tip a 

constant distance from the sample. By monitoring the deflection or tip height adjustments 

a three-dimensional surface profile is provided. However, AFM does not provide any 

chemical information.  

3.3.2 Scanning Electron Microscopy / Energy Dispersive X-ray Spectroscopy 

To gain both chemical and morphological information scanning electron 

microscopy was used during this work. Here a focused beam of high-energy electrons (2-
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20 keV) is scanned over a surface. Interacts of the electron beam with the sample is 

typically measured by back-scattered (BSE) or secondary (SE) electrons. The intensity of 

BSE or SE signal as a function of beam position to produce an image. The ratio of 

BSE/SE is a function of atomic number and beam energy. The combination of both 

signals can be used to interpret relative atomic mass for various features/locations.  

 

3.4 Sample Preparation 

3.4.1 Ion Treatment 

Occasionally samples must be produced in or exposed to air. The resulting film 

will have an adsorbate layer, which will make determining the surface band alignment 

difficult, if not impossible. Ion stimulated desorption has be developed to remove surface 

contamination while minimizing damage to the surface. Here, a low energy ion beam, 

normally 50 eV Ar+, is directed towards the surface and transfers enough energy to 

release any adsorbed gases into the vacuum chamber. During this work ions where also 

used to sputter away surface. In this case higher energy ions, 100 - 5000 eV, strike the 

sample surface with enough energy to break most bonds. By removing the uppermost 

layer chemical properties can be investigated of the sub-surface, however some 

information about the electronic properties (e.g., band edges) have been lost.  

3.4.2 Temperature Stressed Cleaving 

Interfacial chemical and electronic properties are needed to effectively optimize 

device performance. Normally these properties are investigated during stepwise growth 

or sputter depth profiling, however these are not very effective for CdS interfaces because 



 24 

of diffusion (see 2.2). A cleaving approach was employed to gather information about a 

buried interface with minimal damage to the electronic properties.  

Metal sheets are attached to both sides of a sample (i.e., glass and absorber) with a 

vacuum safe conductive silver epoxy. The epoxy is cured on a hotplate overnight to 

ensure a strong bond with the metal sheet. Traditionally, force is applied to separate the 

layer stack, however in the case of CSU grown films separate within the adhesive layer 

(i.e. epoxy found on both sides of the cleave). This suggests strong adhesion of the layers 

within the device. For the purposes of this work temperature stressed cleaving was 

conducted. Once the epoxy has cured the sample is submerged in liquid nitrogen. It is 

believed that the interface with the largest mismatch coefficient of thermal expansion can 

be strained to the point of delamination.  
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CHAPTER 4  LOW ENERGY ION TREATMENT OF CdCl2-TREATED CdTe 

SURFACE 

The following chapter is previously published in Photovoltaic Specialists 

Conference Proceedings and reports work performed to study the chemical and electronic 

properties of CdTe surfaces. © 2012 IEEE. Reprinted, with permission, from D. Hanks, 

M. Weir, K. Horsley, T. Hofmann, L. Weinhardt, M. Bär, K. Barricklow, P. Kobyakov, 

W. Sampath, C. Heske, Photoemission study of CdTe surface after low-energy ion 

treatments, Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, June 2012. 

 
4.1 Introduction 

While Si-based devices currently dominate photovoltaic energy production, thin-

film devices based on CdTe offer are possible candidates for cost-efficient alternatives 

with high conversion efficiency1. To further improve CdTe-based devices, a deeper 

understanding of the electronic transport, in particular through the various interfaces of 

the device, is of significant interest. Surface-sensitive photoelectron spectroscopy is an 

ideal tool to study the electronic and chemical properties of surfaces and interfaces, 

including interfacial band gaps and band offsets in the valence and conduction band. 

However, before such surface-sensitive methods can be employed, surface adsorbates or 

oxides, which can significantly impact the results, need to be removed. This contribution 

therefore studies the impact of a low-energy ion surface treatment on the electronic and 

chemical surface properties of an air-exposed CdTe thin film, monitoring the 

effectiveness and suitability of such surface cleaning for the preparation of relevant CdTe 

thin-film surfaces and interfaces. 
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4.2 Experimental Details 

The CdCl2/CdTe/CdS/SnO:F/SiO2 layer stack was grown at CSU using heated 

pocket deposition (HPD), a modified close-spaced-sublimation (CSS) method in an in-

line continuous vacuum system36. The sample was placed in front of a CSS pocket for a 

time commensurate with the desired layer thickness, after which it was moved to the next 

CSS pocket36. CdCl2 treatment was performed by vapor deposition using the CSS 

method, after which samples were rinsed first with deionized water and subsequently 

with isopropyl alcohol and then dried for ~10 s in 100 °C air. After production, samples 

were vacuum-sealed (to avoid further surface contamination) and shipped to UNLV for 

characterization. The samples were unpacked in the inert environment of a dry nitrogen-

filled glovebox and directly introduced into the ultra-high vacuum (UHV) system with a 

base pressure below 5 × 10-10 Torr. 

X-ray photoelectron spectroscopy (XPS) was performed using a 

monochromatized Al Kα x-ray source (VG Scienta MX650) and a VG Scienta R4000 

electron analyzer, calibrating the energy scale according to ISO 1547222. For UV 

photoelectron spectroscopy (UPS), a monochromatized UV source (VG Scienta 

VUV5000 with VG Scienta VUV5040 Monochromator) and He IIα radiation was 

employed. The energy scale of UPS was calibrated to that of the Fermi energy of a clean 

gold foil reference. The ion treatments were performed using a Thermo Scientific EX05F 

ion gun with Ar+ ions at energies of 100 and 200 eV, with a sample current of 0.2 and 0.7 

µA, respectively. 
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4.3 Results and Discussion 

4.3.1 Chemical composition 

Figure 4.1 shows an XPS survey spectrum of the as-received CdTe surface (a), 

after a first ion treatment at 100 eV (b), and after several treatments at 100 and 200 eV 

(c). For the as-received sample, we find the expected photoemission and Auger lines of 

Cd and Te, and in addition C- and O-related signals due to surface adsorbates and surface 

oxidation caused by air exposure. The absence of a Cl 2p peak (at 199 eV) suggests that 

no Cl is present at the surface. However, corresponding X-ray Emission Spectroscopy 

(XES) measurements (not shown), which are more bulk-sensitive compared to the XPS 

data shown here, clearly indicate the presence of Cl in the sample.  

 

Figure 4.1: XPS survey spectrum of the CdCl2-treated CdTe thin-film surface prior to ion 
treatment (a), indicated the presence of Cd and Te (as expected), as well as C and O in 
the surface. The same sample after the first100 eV ion treatment step (b) shows a 
decrease in the O and C signals, along with an increase in Te and Cd intensity. The CdTe 
sample after the last (200 eV) ion treatment step (c) displays no O or C signal and further 
increase Te and Cd signal. 
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In order to measure the electronic surface structure of the CdCl2-treated CdTe 

without influence of surface contaminants, low-energy ion treatment was employed. 

After each Ar+ ion cleaning step (100 or 200 eV for 15 min), the chemical and electronic 

structure of the sample was measured with XPS and UPS.  

The first cleaning step with 100 eV Ar+ ions resulted in a significant decrease of 

the O and C signal and an increase in the Cd and Te signals, as can be seen in Figure 4.1 

(b). Furthermore, Te 3d5/2 detail spectra in Figure 4.2 (left panel), normalized to the 

background at lower binding energy, reveal a strong reduction of the peak indicative for 

Te-O bonds at 576 eV and a 0.2 eV shift of all peaks to lower binding energies. This shift 

is likely due to a change of the band bending towards the surface after removal of the 

uppermost surface adsorbates.37 With further treatment time, only the Te 3d5/2 peak shifts 

slightly further to lower binding energies (by 0.05 eV) and broadens (by 0.7 eV). 
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Figure 4.2: XPS detail spectra of Te 3d5/2 (left), O 1s (center), and C 1s (right) after each 
ion treatment step. 

However, no asymmetry of the peak can be found, which would point towards the 

development of a second, chemically different Te species (e.g., metallic Te) outside the 

range of published binding energies for CdTe21, 38-39. In contrast, we attribute the 

broadening to the surface being roughened by impact with Ar+ ions, leading to a less 

well-defined chemical environment for the Te atoms. A similar behavior can be found for 
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the Cd 3d peak, again giving no indication for the formation of an elemental Cd 

component. 

To characterize the surface stoichiometry, the Te 3d5/2 and Cd 3d5/2 peak areas 

were determined by a fit of the detail spectra. The derived intensities were corrected by 

the respective photoionization cross-sections40, the transmission function of the analyzer, 

and the attenuation length of the emitted electrons41. Figure 4.3 shows the relative 

amounts of Cd, Te, Te-O, and (Te + Te-O) as a function of surface cleaning steps. While 

the absolute error bars of these values are rather high, the relative uncertainty between the 

values at different treatment times is much smaller. As mentioned above, we find a strong 

decrease of Te in a Te-O bonding environment in particular for the first treatment steps. 

Furthermore, the relative amount of Te seems to increase slightly, while that of Cd 

decreases until both reach the expected 1:1 stoichiometry (after a cleaning time of 60 

min). This apparent change in surface stoichiometry can be attributed to differences in the 

inelastic mean free paths associated with the Cd 3d and Te 3d lines, 2.3 nm and 2.6 nm41, 

respectively. For no or short cleaning times, the shorter attenuation length of the Te 3d 

lines leads to stronger attenuation in the adsorbate layer (compared to the Cd 3d lines). In 

contrast, after prolonged ion treatment, adsorbates are removed and hence the 

stoichiometry of the underlying CdTe “surface” can be observed. 
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Figure 4.3: Surface composition as derived from XPS as a function of ion treatment time. 

After 45 min of 100 eV ion treatment, the C signal becomes indistinguishable 

from the noise level, while the Te-O contribution to the Te 3d5/2 and O signals can still be 

clearly identified (see Figure 4.2). This shows that the ion treatment was not completely 

effective in removing all oxidized species from the surface. The sample was then stored 

in UHV for 3 weeks. After this time, a slight decrease of the O 1s and the Te-O signals as 

compared to the last measurement before storage can be observed. This is speculatively 

attributed to a slow desorption of O-containing species (e.g., water molecules). To further 

remove oxides from the surface, ion treatments using ion energies of 200 eV were then 

employed.  

Much like the 100 eV treatment, the first 15 min step at 200 eV resulted in a 

significant decrease of the Te-O and O signal, and thereafter some additional but slower 

decrease of these signals was observed. Again, the Te and Cd peaks broaden slightly with 
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at 60 min the Te-O component of the Te 3d5/2 peak (which has a six times higher cross-

section than O 1s40) nearly vanished as well. At no time during the 200 eV treatments did 

the C 1s signal reappear. This shows that the C and O signals observed prior to cleaning 

were only localized at the surface and not built into the CdTe layer.  

4.3.2 Electronic properties 

During the 200 eV ion treatment series, UPS was utilized to also monitor the 

position of the VBM with respect to the Fermi energy (Figure 4.4). The VBM shifts 

towards the Fermi energy during the first 15 min of cleaning with 200 eV ions, but then 

remains constant within the error of the linear extrapolations used to determine the band 

edge position. After 60 min of 200 eV ion treatment, the VBM is found (0.8 ± 0.1) eV 

below the Fermi level.  

 

Figure 4.4: UPS measurement and linear extrapolation of the valence band maximum as a 
function of 200 eV Ar+ ion treatment time. The binding energy is given with respect of 
the Fermi energy. 
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This value represents the lower “half” of the band gap, which is expected to be 

close to the bulk band gap of 1.5 eV42, and thus suggests an approximately mid-gap 

position of the Fermi energy. However, widening of the band gap towards the surface has 

been shown in other photovoltaic thin film absorbers (Bar, et al. 43 and references therein) 

and cannot be ruled out at this point. In fact, the presence of a “wide-gap” material 

between the CdTe absorber and the back contact, especially when introducing an upward 

shift of the conduction band, could potentially reduce electron-hole recombination at the 

back contact interface. 

 

Figure 4.5: Combined UPS and IPES spectra of the cleaned CdCl2-trated surface after 
low-energy ion cleaning and storage in vacuum for one week. A VBM and CBM of -0.76 
and 0.98 ± 0.10 eV are found.  
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which none could be found. UPS and IPES measurements (Figure 4.5) show a VBM of -

0.76 ± 0.10 eV that is in agreement with measurements prior to UHV storage. The lack of 

a change further suggests the sample is electronically identical to ~ 1 week prior. A 

similar evaluation of the IPES data gives a CBM of 0.98 ± 0.10 eV. By combining the 

information gathered from the valence band and conduction band measurements, a 

surface band gap of 1.74 ± 0.20 eV is seen, which is slightly larger than the 1.5 eV bulk 

band gap42. 

4.4 Summary 

We have investigated the possibility of removing surface oxides and adsorbates 

with low energy Ar+ ion treatment steps. Surface-sensitive XPS data show the removal of 

oxygen and carbon with increased treatment times and energy. Careful monitoring of the 

chemical and electronic surface structure of the treated CdTe surface shows no 

indications for preferential removal of Cd or Te. However, the broadening of core-level 

spectra points to a treatment-induced roughening of the CdTe surface. Measurements of 

the surface band gap show an upward shift of the conduction band and a “wider-gap” 

material between the CdTe absorber and the back contact, which could potentially reduce 

electron-hole recombination at the back contact interface. 
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CHAPTER 5  EFFECTS OF CdCl2 ON THE CdS/SnO2 INTERFACE 

5.1 Introduction 

CdTe/CdS-based thin-film solar cells are established candidates for cost-effective 

devices yielding high efficiencies1. To further improve their performance, a fundamental 

understanding of the chemical and electronic interface structure throughout the CdCl2-

treated CdTe/CdS/SnO2:F/glass layer stack is necessary. Significant diffusion processes 

occur during manufacturing, particularly induced by the post-deposition CdCl2-treatment. 

Thus, most interfaces in the device are not fully formed until after these treatments, 

presenting a challenge to standard surface-science characterization approaches of step-

wise material deposition. Sputter depth-profiling techniques have been used to investigate 

the effects of CdCl2, but these techniques are destructive and suffer from a variety of 

shortcomings, including preferential sputtering, sputter-induced mixing, and matrix 

effects. 

5.2 Experimental Details 

The CdCl2/CdTe/CdS/SnO2:F/SiO2 layer stack was grown at CSU using heated 

pocket deposition (HPD), a modified close-spaced-sublimation (CSS) method in an in-

line continuous vacuum system36. The sample was placed in front of a CSS pocket for a 

time commensurate with the desired layer thickness, after which it was moved to the next 

CSS pocket36. CdCl2 treatment was performed by vapor deposition using the CSS 

method, after which samples were rinsed first with deionized water and subsequently 

with isopropyl alcohol and then dried for ~10 s in 100 °C air. After production, samples 

were vacuum-sealed (to avoid further surface contamination) and shipped to UNLV for 

characterization.  
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The samples were unpacked in the inert environment of a dry nitrogen-filled 

glovebox and prepared for cleaving. A small amount of fast setting conductive silver 

epoxy was applied to the glass and CdTe surface followed by stainless steel sheet. The 

sample was then allowed to cure on a hot plate at 60 °C overnight (~16 hr) while still in 

the glovebox. The sample was then removed from the hot plate and, while warm, 

submerged in LN2. The layer stack cleaved with minimal to no force and directly 

introduced into the ultra-high vacuum (UHV) system with a base pressure below 5 × 10-10 

Torr. 

5.3 Results and Discussion 

5.3.1 Determination of the cleaving location 

XPS survey of the four cleaved surfaces (two interfaces) are shown in figure 5.1. 

Samples from the CdTe side of the interface are notated as “Liftoff side” while the 

opposite is called “Glass side.” Samples that were treated with CdCl2 are denoted as red 

lines and without treatment are black lines. The Liftoff side of both samples peak 

associated to Cd, S, O, C, Sn, and Te are found, however by analyzing peak intensities 

we can say the surface of the liftoff side to predominately be Cd and S. Cl is also found 

on the liftoff side and can be categorized as a predominate peak. Evaluating the glass side 

in a similar fashion, the surface is predominately Sn and O with small contributions of 

Te, Cd, C, S, and Cl. The relative abundances of the various elements suggest the 

cleaving plane to be at/near the CdS/SnO2 interface. 
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Figure 5.1: Mg Kα-excited survey spectra of the Liftoff (upper) and Glass (lower) sides of 
the cleaving interface of a CdCl2-treated (red) and non-treated (black) CdTe layer stack. 

The presence of C is likely due to either residual material left from the glass 

cleaning process or the low vacuum (40 mTorr) environment that the samples were 

produced in. Te is also found of the surface of the liftoff side; again two theories can 

explain the effect. The first begin a tearing of the interface, which results in holes in the 

liftoff side and islands on the glass side that terminate in CdTe. The second theory, the 

CdS/CdTe interface is diffused to such a large degree that Te is found throughout the 

CdS film. This may not be unusual, Dhere, et al. 44 has shown a significant increase in 

interdiffusion due CdCl2-treatment. Furthermore, S is found to diffuse all the way to the 

surface of the CdTe film.45  

5.3.2 Cleaving morphology 

To investigate the cleaving morphology of the interfaces AFM images were 

collected on the two surfaces. By collecting images from multiple regions, there are two 
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distinct morphologies (Figure 5.2). The majority of the surface is flat and smooth. 

Surface measurements in this region would only be probing the CdS or SnO2 layer 

respectively. When measuring closer to the edges of the sample (1-2 mm) a tearing can 

be found. ~100 nm deep holes are seen on the liftoff side of the interface and comparable 

islands on the glass side. Surface measurements in this area would be a sum of 

information from the CdS or SnO2 surface and the holes or islands, respectively. Given 

measurement parameters of the spectrometer the expected measurement spot size is 5 mm 

in diameter.46 Therefore, we can assume the spectroscopic information to be only from 

the smooth flat regions of the sample surface.  

 

Figure 5.2: C-AFM images of the Liftoff (upper) and Glass (lower) sides of the interface. 
Images indicative of the center (left) and near-edge (right) morphologies suggest smooth 
cleaving for the majority of the interface and tearing near the edges. 

5.3.3 Chemical analysis 

To determine the chemical properties of the interface we first investigate the C 1s 

and O 1s detailed regions (figure 5.3). The O 1s intensity is predominately found on the 
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glass side in a SnOx chemical environment, as expected for a SnO2 surface. A small 

amount of O is seen on the liftoff side in the form of C-O and O-H bonds, which may be 

due to residual glass cleaning solvents incorporated into the interface. Likewise, C is 

found mostly as adventitious carbon.  

 

Figure 5.3: XPS detailed regions of the O 1s and C 1s photoemission.  

CdCl2-treatment effect the amount of C and O found at the sides of the interface, 

which can be attributed to the glass-cleaning step. To evaluate if this effect is due to 

changes in sample preparation or random changes a quantitative analysis is needed. For 

this the C 1s peak areas where integrated and compared across the interface and between 

samples. The integrated areas of the treated and non-treated are 3.359 and 3.364 (± 0.005 

a.u.), respectively, which is equal within the error of the integration and measurement. 

Given the samples where produced in one batch and the C 1s intensity is equal, the 

samples have equal amounts of “dirt” at the interface. The data from these two samples 

suggest once the layer stack is treated with CdCl2, the C and O prefer to stick to the glass 

side of the interface, however a larger number of sample would be need to confirm the 

idea. 
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To confirm that the C and O are due to residual cleaning solvents SEM/EDX was 

used. Figure 5.4 shows SEM images excited with 5 keV electrons. Backscattered electron 

(BSE) signal (left), which is highly sensitive to atomic mass, shows features that are not 

present in the secondary electron signal, which is more sensitive to morphology. EDX 

(bottom) was performed on three features: a baseline (red), a surface spot feature (black), 

and an island (blue). The baseline, which comprised the majority of the surface, is largely 

SnOx with some C and N. The surface spot has a significant increase in C signal while 

other emission lines remain constant. This would suggest residual solvents remain on the 

surface of the SnO2 after cleaning, which is in agreement with intensity changes in the 

BSE image. C has a significantly smaller atomic mass than Sn, therefore the likelihood of 

an elastic scattering event (backscattering) is decreased, which results in a lower intensity 

area. Lastly, an island-like feature was measured with EDX and found to be (Mg,Si)Ox. 

This is likely a piece of the glass substrate that found its way to the glass side surface 

during the cleaving process. A Si signal is found with XPS on all surfaces in extremely 

small amounts, which is likely due to these glass fragments. 
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Figure 5.4: SEM/EDX measurements of a freshly cleaved layer stack. Backscattered 
electron signal (upper left) shows spot-like and island-like features, while secondary 
electron signal (upper right) only shows the island-like features, which suggests the spots 
are chemically different than the surface. EDX measurements (bottom) on an island-like 
(blue), spot-like (black), and surface (red) region indicate the island-like region to be 
glass and the spot-like region to have increased C signal. Black ovals on the inset image 
are carbon deposits due to EDX e-beam exposure for extended times.  

Cl has long been known to penetrate along the grain boundaries, which enhances 

interdiffusion at the CdS/CdTe interface.44 Furthermore, catastrophic adhesion failures 

are sometimes encountered at high CdCl2 exposure levels.47 In this study, Cl is found to 

diffuse to the CdS/SnO2 interface.  

To examine the chemical states at the interface, the core level spectra of elements 

associated with the liftoff side of the cleave, Figure 5.5, were investigated. First we study 

the liftoff spectra, and the glass side will be discussed later. By evaluating intensities, it is 
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seen that little Te is found at the CdS/SnO2 interface prior to CdCl2-treatment. The CdS 

film thickness (~100 nm) should be significantly thick to not have any appreciable 

amount of photoelectron signal for the CdTe sublayer. Te found at the interface suggests 

that diffusion caused by deposition at elevated temperature leads to the presence of Te 

throughout the entire CdS layer. After treatment a significant increase in Te signal is 

found, which suggests some Te has diffuses completely through the CdS layer. The Te 

3d3/2 peak position is consistent with bulk-like CdTe38, 41 and it is important to note no 

TeOx is found at the interface. Which indicates adequate measures where used to prevent 

the surface from oxidizing after cleaving and more importantly oxides are likely not 

incorporated into the device.  

A single intense peak is found for the non-treated liftoff side S 2s spectra. The 

binding energy of the S 2s peak corresponds to CdS and supports the assertion the oxides 

were not incorporated into the device. When the device is treated with CdCl2 S 2s in 

found to decrease, which is expected since it is well known the S diffuse into the CdTe 

layer and even makes it to the surface of the CdTe.  

A shift to higher binding energies in the chemical environment of the Cd 3d3/2 

peak is seen when treated with CdCl2. This shift is consistent with Cd moving from a 

CdS or CdTe chemical environment to CdCl2. Furthermore, a small decrease in intensity 

found. This may be due to a change in attenuation length, atomic concentration, and/or 

diffusion into the SnO2:F substrate.   
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Figure 5.5: XPS detailed measurements of the Te 3d3/2 (left), Cd 3d3/2 (center), and S 2s 
(right) regions. Sample treated with CdCl2 are shown in red, and spectra are separated 
into liftoff (top) and glass (bottom) sides. Binding energies of likely chemical states are 
depicted as grey boxes. 

On the glass side of the interface a similar shift (to higher binding energy) is 

found for the Cd 3d3/2 peak due to a change from CdS/CdTe chemical environment to 

CdCl2. The presence of Cd at the surface of the glass side of the interface suggests Cd is 

diffusing into the SnO2:F layer. An increase in Cd signal is seen after treatment with 

CdCl2, which suggest the presence of CdCl2 on the glass side as well for the liftoff side. 

As for S and Te similar intensity changes are found suggesting further diffusion into the 

SnO2:F layer. 

A similar evaluation is performed on the elements associated with glass side 

layers (Figure 5.6). Here we first evaluate the glass side elements. Both O 1s and Sn 3d5/2 

peak locations are consistent with SnOx.26, 38-39 The intensity of the peaks increase with 
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CdCl2-treatment. On the liftoff side of the interface, O 1s is extremely weak and in an 

organic-like chemical environment, which is likely due to residual cleaning agents (see 

above). Sn is found to be in either a SnOx or CdxSnOy chemical environment prior to 

treatment and is not present after treatment. Together with liftoff side elements start to 

paint a picture of elements diffusing at both SnO2:F/CdS and CdS/CdTe interfaces. 

 
Figure 5.6: XPS detailed measurements of the O 1s (left) and Sn 3d5/2 (right) regions. 
Sample treated with CdCl2 are shown in red and spectra separated into liftoff (top) and 
glass (bottom) sides. Binding energies of likely chemical states are depicted as grey 
boxes. 

Finally, we investigate Cl (Figure 5.7), which is associated with both surfaces. Cl 

is strongly found at both surface of the interface after CdCl2-treatment. Previous studies 

have shown a delamination of the device if it is over treated with CdCl2. A layer of CdCl2 

forming at the interface may explain the delamination. It is also interesting to find CdCl2 

at the interface of a non-treated sample. This is likely due to the production method of 
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multiple CSS pockets in one vacuum chamber. It is likely that CdCl2 is found as a gas in 

the chamber and coats the device even if it is not directly above the evaporant. 

 
Figure 5.7: XPS detailed measurements of the Cl 2p region. Sample treated with CdCl2 
are shown in red and spectra separated into liftoff (top) and glass (bottom) sides.  

5.4 Summary 

By separating a layer stack at the SnO2:F/CdS interface, much can be learned 

about the effects of CdCl2-treatment on diffused species. By investigating the 

morphology, it was found that the center of the samples are smooth and an organic layer 

is present at the interface that is likely due to residual organic cleaning solvents prior to 

film deposition. By incorporating a plasma-cleaning step to remove residual organics 

device, our partners were able to improve device performance. 

XPS was used to probe the chemical environment of the interface and significant 

amounts of diffusion is found at both SnO2:F/CdS and CdS/CdTe interfaces before and 
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after CdCl2-treatment. Further work is need to determine the extent of these diffused 

species. However, one can conclude that the simple heterojunction band alignment 

picture is not sufficient to describe the interactions of the TCO/Buffer/Absorber layers in 

a CdTe-based photovoltaic device. 
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CHAPTER 6  CHARACTERIZATION OF THE SULFUR BONDING IN CdS:O 

BUFFER LAYER FOR CdTe-BASED THIN-FILM SOLAR CELLS 

The following chapter is previously published in ACS Applied Materials and 

Interfaces and reports work performed to study the chemical and electronic properties of 

alternative buffer materials. Reprinted with permission from D. A. Duncan, J. M. 

Kephart, K. Horsley, M. Blum, M. Mezher, L. Weinhardt, M. Häming, R. G. Wilks, T. 

Hofmann, W. Yang, M. Bär, W. S. Sampath, and C. Heske, Characterization of Sulfur 

Bonding in CdS:O Buffer Layer for CdTe-Based Thin-Film Solar Cells, ACS Appl. 

Mater. Interfaces 2015,7, 16382-16386. Copyright 2015 American Chemical Society.  

6.1 Introduction 

While Si-based devices currently dominate photovoltaic power production, thin-

film devices based on CdTe have achieved a notable market share as a cost-effective 

alternative (with current world-record cell efficiency of 21.0%)1. For further 

improvement, efforts focus on the fact that absorption in the CdS buffer layer of such 

cells reduces the flux of high-energy photons to the CdTe absorber. This parasitic light 

absorption can result in more than 10% loss in short-circuit current density.2 One way to 

prevent this loss is to increase the band gap of the buffer material, e.g., by incorporating 

oxygen during RF sputtering of CdS (such as by introducing O2 into the Ar flow).3-5 A 

similar method has been successfully used for chalcopyrite thin-film solar cells.48-50 For 

CdTe, this process has produced devices with efficiencies above 15%.3, 5 In order to 

optimize the buffer properties and to further improve device performance, a detailed 

understanding of the electronic and chemical structure is required. Experiments by Soo, 

et al. 51 have shown the bulk of such films to consist of oxygen-free CdS nanocrystals and 
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S-O complexes, which are speculated to be SO3
2- and SO4

2- complexes.51 To analyze the 

chemical structure of the S-O complexes in detail, x-ray photoelectron spectroscopy 

(XPS) and soft x-ray emission spectroscopy (XES) were used to study the species-

specific composition of the surface and bulk, respectively. We thus derive the impact of 

oxygen incorporation into CdS thin films, monitoring the relative intensities of the 

various sulfur species at the surface and bulk as a function of O content. The results allow 

for deeper insights into, and deliberate optimization of, such CdS:O thin films in solar 

devices. 

6.2 Experimental Details 

CdSOx/SnO:F/glass layer stacks were grown at CSU using RF sputtering. O2 gas 

(99.999%) was introduced into the Ar flow of the sputter gas. Based on deposition time, 

the expected thickness of the CdSOx films is 100 nm. The amount of O2 incorporated is 

related to its flow rate relative to Ar. One sample was produced with an O content 

corresponding to best in-lab devices (2.3% O2 flow rate relative to Ar), one below 

(2.0%), and one above (2.5%). Substrates were Tec 10-coated 3.2 mm float glass 

acquired from Pilkington.4-5 After production, the samples were vacuum-sealed under dry 

nitrogen, without exposure to air, and shipped to UNLV for characterization. The 

samples were unpacked in the inert environment of a dry nitrogen-filled glovebox and 

directly introduced into the ultra-high vacuum (UHV) system with a base pressure below 

5 x 10-10 mbar. X-ray photoelectron spectroscopy (XPS) was performed using a twin-

anode Al Kα/Mg Kα x-ray source (Specs XR-50) and a Scienta R4000 electron analyzer; 

the energy scale was calibrated in accordance with ISO 1547222. 
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X-ray emission spectroscopy (XES) of the S L2,3 edge was performed at Beamline 

8.0.1.2 of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, 

employing our SALSA endstation with a custom-designed, high-transmission soft x-ray 

spectrometer35, 52. To transfer the samples to ALS, they were vacuum-sealed without air 

exposure, unpacked in the inert environment of a dry nitrogen-filled glovebag and 

directly introduced into the experimental station (base pressure below 1 x 10-8 mbar). To 

minimize beam damage effects, the sulfite and sulfate reference powders were scanned in 

the beam. 
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6.3 Results and Discussion 

Mg Kα XPS survey spectra of the as-received CdS:O surfaces (Figure 6.1) display 

all expected photoemission and Auger lines (of Cd, S, and O). We also find a small C 1s 

contribution, which is likely due to residual carbon contaminants in the 15 mTorr Ar 

environment of the CdS:O RF sputter deposition chamber. The intensities were magnified 

by a factor of 5 for binding energies below 250 eV to show a splitting of the S 2s and 2p 

lines, which will be discussed in more detail in the following. Furthermore, we find that 

the O 1s signal increases and the Cd signals decrease in intensity with increased oxygen 

flow rate, as expected, and observe the presence of a Cl contamination on the 2.5% 

sample.  

 

Figure 6.1: Mg Kα XPS survey spectra of three CdS:O films with O2/Ar flow rate ratios 
of 2.0, 2.3, and 2.5% (as labeled on the right ordinate). All photoemission and Auger 
electron emission lines are labeled, and the spectra are magnified by a factor 5 for  

A detailed measurement of the S 2p region (Figure 6.2, blue circles) suggests the 

presence of at least three sulfur species. In order to analyze the relative binding energy 

differences between them, the peak center of the lowest-binding energy species 
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(attributed to CdS) was set to zero in all spectra, requiring spectral shifts of 1.5 eV or 

less. This approach also mitigates any impact of surface band bending, doping, and (if 

present) charging effects. At high binding energies, the spectra are comprised of S 2p 

atoms consistent with a CdSO4 environment15 (green), ~7 eV shifted w.r.t. CdS (red), 

and an intermediate oxide shifted by ~6 eV and labeled “CdSOx” (blue). The chemical 

shift of this intermediate oxide is consistent with other sulfite species26, 39, but it requires 

a detailed analysis of the XES spectra (see below) to derive additional evidence to 

suggest that this species is indeed a CdSO3 (note that no XPS reference spectra for 

CdSO3 could be found in an extensive literature search). For the three samples it is seen 

that, roughly, the CdS contribution decreases and the CdSO4 contribution increases with 

increased oxygen flow rate, as expected. The intermediate oxide, CdSOx, remains 

approximately constant despite the increased oxygen incorporation. 
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Figure 6.2: S 2p Mg Kα XPS spectra (blue dots) of three CdS:O films with O2/Ar flow 
rate ratios of 2.0, 2.3, and 2.5%. The spectra are referenced to the binding energy of the S 
2p3/2 line of CdS, and described by spectral components representing CdS (red), CdSOX 
(blue), CdSO4 (green), Cd 3d5/2 (excited by Al Kα, magenta), and the sum of the fit 
functions (overlaid with the blue dots of the data). Each component consists of two Voigt 
functions describing the S 2p spin-orbit doublet and a contribution at lower binding 
energies originating from the Mg Kα3,4 satellites excitations of each line. Below each 
spectrum, the residuum of each fit is shown, magnified by a factor of 4 

In order to derive a detailed quantification, we note that it is not feasible to simply 

integrate the area under the spectra, since the lines of the different sulfur species overlap. 

Instead, a detailed and thorough fit analysis, using a sulfur spin-orbit doublet for each 

species, is required. Furthermore, all three spectra need to be fitted simultaneously, for 

which we used the Fityk fitting software29. Each species in figure 6.2 was described by a 

sum of eight coupled Voigt functions (red, green, and blue lines) to account for the spin-
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orbit splitting (with a ratio of 2:1 for the S 2p3/2 and 2p1/2 line, resp.) and to include the 

Mg Kα1,2 main line as well as the Kα3,4 satellite excitations. The relative areas and 

energies were set according to Moulder, et al. 38, while the Gaussian and Lorentzian 

widths, resp., were identical for all species (and used as two free fit parameters). A linear 

background was simultaneously fitted, and a small Al Kα-excited Cd 3d5/2 photoemission 

peak (magenta) was also included to account for a small x-ray source crosstalk. In total, 

the three spectra were simultaneously fitted with 20 free parameters (out of a total of 480 

variables). The resulting fits give an excellent description of the experiment, as is 

evidenced by the largely statistical nature of the residua shown under each spectrum 

(magnified by a factor of 4) in Figure 6.2.  

The surface composition (Figure 6.3, left ordinate) was calculated using the area 

percentage of the different species in the fit. The CdS and CdSO4 composition at the 

surface both have a linear dependence on O2/Ar flow rate across this range, while the 

intermediate, CdSOx, is constant. In this particular series, films leading to the best solar 

cell performance were made with a 2.3% O2/Ar flow rate, which, according to Fig. 6.3, 

represents a slightly CdSO4-rich surface. A detailed analysis of the impact of various 

preparation parameters on solar cell performance in other sample series is given in 

Kephart, et al. 5 
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Figure 6.3: Left ordinate: relative sulfur composition for the CdS (dotted), CdSO4 (dash-
dotted), and CdSOx (dashed) spectral component as a function of O2/Ar flow rate ratio. 
Error bars (not shown) are ±2 abs% or less. Right ordinate: Relative composition of Cd 
(Cd/(Cd+S), black) and S (S/(Cd+S), red) for all three samples. 

To determine the relative composition of S and Cd, we have analyzed the 

intensity of the Al Kα-excited Cd 3d5/2 line and the total S intensities by using calculated 

cross sections40, taking the relative intensity of the Al Kα-excitation into account (as 

derived from a separate measurement of a gold reference), and by assuming that the 

transmission function and attenuation lengths are constant over this narrow energy 

window. We find that the relative composition of Cd and S (Figure 6.3, right ordinate) is 

varying only slightly for the three samples (and well within the error bars of determining 

the absolute values). This indicates that, at increasing O2 flow rates, no significant 

formation of other oxygen-containing cadmium species (e.g., CdO or Cd(OH)2) is found 

(if present, this would lead to a variation of the Cd/S ratio). Instead, increased O2 flow 
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rates apparently lead to the formation of oxide species that include both sulfur and 

cadmium. 

To gain more detailed insights into the chemical environment of the sulfur atoms, 

in particular regarding the intermediate oxide, we recorded S L2,3 x-ray emission spectra 

using high-brilliance synchrotron radiation. 

For CdS, the 1/e-attenuation length of the exciting (200 eV) and emitted (ca. 150 

eV) photons are approx. 100 and 370 nm, respectively.33 For CdSO4, the corresponding 

values vary according to the degree of hydration (and thus density), but range from 120 to 

192 nm at 200 eV, and from 193 to 247 nm at 160 eV (i.e., the approximate emission 

energy for the sulfate spectrum).33 The investigated films are approx. 100 nm thick; thus, 

the XES spectra contain information from both, the surface and the bulk of the film (with 

an exponential weight distribution).  

Figure 6.4 shows S L2,3 emission spectra of the three films, as well as references 

for a sulfide (CdS), sulfite (Na2SO3) and sulfate (CdSO4) species. S 3s electron decays 

are seen in two energy regimes.53-56 For CdS, the broad feature at 147.5 eV is a 

convolution of the two “S 3s to S 2p1/2 and 2p3/2” decay channels in a CdS-like chemical 

environment. Transitions of S 3s electrons in a CdSO4 chemical environment emit 

photons at 153.9 and 155.1 eV. Cd 4d-derived valence state decays are also present in 

both chemical environments, namely at 150.4 and 151.6 eV for CdS and (much less 

pronounced) at ~156.5 eV for CdSO4. The peak at 161.0 eV, assigned to S 3d states, is 

only present in the CdSO4 chemical environment.  
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Figure 6.4: S L2,3 x-ray emission spectra of the three CdS:O films with O2/Ar flow rate 
ratios of 2.0, 2.3, and 2.5% (top), compared to CdS, CdSO4, and NaSO3 powder 
references. For the latter, two spectra are shown: with minimal (“scanned”) and 
substantial (“irradiated”) beam exposure. Peak labels refer to bands and/or valence 
orbitals with a strong contribution from the given atomic levels. 

To also gain insights into the possible presence of a sulfite species, we note that 

CdSO3 is highly unstable and that we therefore used Na2SO3 as a reference. The sulfur 

atom in Na2SO3 is predominantly bonded in a molecular fashion, suggesting that the S 

L2,3 emission spectrum of Na2SO3 is also a good representative for CdSO3. This 
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assumption is supported by the fact that various different sulfate S L2,3 emission spectra 

look very similar as well (Figure 6.5). The Na2SO3 reference shows a variety of 

additional peaks, in particular a series of peaks between 151 and 155 eV, as well as two 

peaks at 162.5 and 163.7 eV, respectively. In order to identify peaks pertaining to pristine 

Na2SO3, Figure 6.4 shows two spectra, one recorded with minimal beam exposure by 

scanning the sample (“scanned”), and one after substantial beam exposure, indicating 

beam induced changes in the reference sample (“irradiated”).  
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Figure 6.5: S L2,3 emission spectra of HgSO4, CdSO4, and ZnSO4 (top to bottom). S 3s 
and S 3d decays are found to maintain shape and relative locations due to the molecular 
nature of the orbital. Metal 4d decays are found to shift to higher emission energies with 
increased atomic number. 

A closer look at the three S L2,3 spectra of the here-studied films (top three spectra 

in Fig. 6.4) reveals a character that is primarily described as a superposition of a sulfide 
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and a sulfate species. Small deviations are found near 152.1 and 153.3 eV, as well as near 

162.9 and 164.1 eV. These are ascribed to the most prominent (additional) peaks in the 

sulfite spectrum, as indicated by the thin vertical lines. Small differential shifts are 

speculated to be due to a different (molecular) character of the sulfite under study. As 

indicated by the arrows in Fig. 6.4, an increase of the O2 flow rate leads to a reduction of 

the sulfide component and an increase of the sulfate component, while no evidence for a 

significant change in sulfite contribution can be observed. This is in direct agreement 

with the findings based on the XPS data of the thin-film surfaces, which exhibit an even 

larger increase in the sulfate component than the bulk-sensitive XES measurements. This 

could be due to depth-dependent variations in the composition of the film, but an impact 

of the XES excitation (i.e., a “sulfate breeding”57) can also not be ruled out. 

Nevertheless, the existence of three sulfur species (sulfide, sulfate, and 

intermediate) is found in both XES and XPS, and the comparison with the sodium sulfite 

reference suggests that the intermediate species might indeed be described as a sulfite 

(while additional, more complex sulfur compounds could, of course, also be present). By 

having identified the various components and their relative compositions as a function of 

O2 flow rate, it is now possible to optimize performance of novel CdS:O films, as well as 

to complement such activities by suitable structure and electronic models based on the 

species composition of the CdS:O films. 

6.4 Summary 

We have studied the chemical and electronic structure of CdS:O thin films 

produced by incorporating O2 into the Ar gas flow during sputter deposition. The surface 

was investigated by XPS, while the bulk of the films were studied by XES. The films 
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were found to be mainly comprised of CdS and CdSO4, with small additions of an 

intermediate CdSOx (most likely sulfite) species. With increasing oxygen incorporation, 

CdSO4 is the preferred species, at the expense of CdS, while the content of the 

intermediate oxide species remains constant. As the oxygen incorporation into the CdS:O 

films serves several purposes, it is important to understand the composition of such films 

not just on an atomic level (i.e., composition of Cd, S, and O), but also from the view 

point of concentration of particular species (i.e., sulfide, sulfate, and intermediate oxide). 

With such insights, it is now possible to establish suitable models for the CdS:O film 

properties and their impact on the performance of high-efficiency thin film solar cells. 

Furthermore, empirical tailoring towards the optimal balance between the different 

species can now be quantified and solar cell optimization is thus greatly facilitated. 
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CHAPTER 7  THE CHEMICAL AND ELECTRONIC STRUCTURE OF  

Zn(1-x)MgxO/CdTe 

7.1 Introduction & Sample Preparation 

Zn(1-x)MgxO “(Zn,Mg)O” is proposed as an alternative buffer layer to CdS. 

(Zn,Mg)O has a tunable band gap of 3.3 - ~4 eV which makes it a great candidate to 

replace CdS.19 First Solar Inc. has begun studying the effects of implementing ZMO into 

test devices; a fundamental understanding of the chemical and electronic properties may 

aid in optimization. Specifically, a strong understanding of the interface band alignment 

will help optimize the short circuit current of the device.  

To study the interface, 20 nm thick Zn(1-x)MgxO were grown on SnO2-coated glass 

using atomic layer deposition (ALD). The samples were quickly transferred (in air, ~3 

min) to a separate growth chamber where CdTe was deposited by thermal evaporation. 

The growth time was adjusted for the sample in order to grow 2 nm, 5 nm, and 10 nm 

thick CdTe films. After growth all samples were packaged in the inert environment of an 

N2-filled glovebag, which was directly attached to the deposition chamber. A bare 

(Zn,Mg)O film was grown and packaged with the same process during a separate 

experimental run (including short air exposure before packaging). Upon delivery to 

UNLV, the samples were immediately moved to an N2-filled glovebox. 

7.2 Chemical Properties 

The Al Kα XPS survey spectrum of the as-received bare substrate surface (Figure 

7.1) displays all expected photoemission and Auger lines (Zn, Mg, O), which decrease in 

intensity with increasing CdTe overlayer thickness. Cd and Te lines are found on the 2 

nm film and increase in intensity with thicker CdTe layers (also Fig. 7.1). We also find a 
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small amount of C on all samples. The spectra in Fig. 7.1 are magnified by a factor of 3 

for binding energies below 250 eV to show intensity changes of the shallow core levels. 

 

Figure 7.1: Al Kα-excited XPS survey spectra of the bare ZMO film (“0 nm,” black), as 
well as the thin (“2 nm,” red), intermediate (“5 nm,” blue), and thick (“10 nm,” green) 
CdTe film grown on ZMO. The lower binding energy regions are magnified (x3) to better 
see shallow core level peaks. 

To confirm the presence of S on the surface of all samples the S Auger was also 

investigated (Figure 7.2). Auger intensity was found on all samples, which confirms the 

presence of S at/near the surface. It was also seen that the overall intensity decreases with 

thicker CdTe layers. Two peaks are found in the S Auger region. The first peak at 154 eV 

is present on all samples, while the second at 152 eV is most intense for the bare 

(Zn,Mg)O film and decrease with the addition of CdTe film. This second peak is within 

the noise of the 10 nm CdTe. Usually the S KLL Auger is used for chemical analysis so 

little work is published on the S LMM peak positions. Therefore, the S 2p peaks will be 

used to gain insights to the S chemical environments. 
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Figure 7.2: XAES detailed spectra of the S LMM region. 

A detailed measurement of the S 2p / Te 4s region (Figure 7.3, black dots) shows 

at least four photoemission peaks. At 161 eV, a doublet, consistent with a sulfide (likely 

CdS and/or ZnS)21, 38-39 is found on all CdTe containing surfaces. Although two peaks are 

found for the S LMM Auger only a single doublet is needed to adequately describe the S 

2p spectra. The S 2p intensity increases with the initial addition of CdTe and then 

decreases with increasing film thickness. At 169 eV, the Te 4s peak increases in intensity 

with increasing film thickness, as expected, and an Al Kα-excited Cd 3d5/2 peak, at 173 

eV, is found due to a small amount of x-ray source crosstalk. Sulfur can cause diffusion 

and band gap grading in conventional devices58, therefore care must be taken when 

interpreting the derived band gaps and level alignments in later discussions (Chapter 7.4).  
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Figure 7.3: XPS detailed measurement of the S 2p / Te 4s region. Spectral data (black 
dots) where fit using Voigt functions representing S 2p (black), Te 4s (green), and Cd 
3d5/2 (blue). The difference of data and the sum of Voigt functions (Fit, red line) is 
magnified by 2 and plotted below each data set (grey line). 

To further explore the chemical properties at the interface, the Te 3d5/2 region was 

investigated (Figure 7.4). By plotting the spectra over each other and normalizing them to 

the peak maximum small changes in spectral shape are best seen. Two differences 

between the spectra are found. The first difference is a peak found at 586.6 eV on the 5 
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and 10 nm CdTe films that is consistent with Te in a TeOx chemical environment. The 

second difference is a broadening of the 2 nm peak to higher binding energies (indicated 

by an arrow). To examine the energy and intensity differences between various peaks a 

careful fit analysis was performed. 

The first attempt to effectively describe the data used three Voigt functions 

(Figure 7.4, left). All four spectra where fit simultaneously and the peaks shape and 

relative energy differences where set equal for all functions. The resulting functions 

(grey, red, and green regions) cannot adequately describe the data, as seen by an 

oscillating difference between data and fit (grey line). When a fourth Voigt function is 

added (Figure 7.4, right) the difference between data and fit significantly improves. The 

oscillations are no longer present and only random statistical variations are seen, which 

indicate at least four features are present in the spectra.  

The relative contribution of the major component is found to increase with layer 

thickness, and the energy position is consistent with bulk-like CdTe. The smallest 

component is consistent with Te in an oxidized environment. It is unclear whether 

oxidation is a result of exposing the (Zn,Mg)O surface to air prior to CdTe deposition, 

diffusion from the (Zn,Mg)O substrate, or incorporation of O into the CdTe film during 

growth. A third and fourth component (peaks “A” and “B”), which describes the 

broadening seen in the 2 nm spectrum, decrease in intensity but do not completely go 

away with thicker CdTe films. The relative intensities change becoming slightly more 

peak “A” rich with increased CdTe film thickness.  

The two most likely causes of peaks “A” and “B” are scattering and additional 

species. The most common scattering process takes place when an excited photoelectron 
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inelastically scatters a second electron into an unoccupied state. For the case of a 

semiconductor, the smallest transition a scattered electron can make is from the valence 

band maximum to the conduction band minimum (or the band gap, Eg). Therefore the 

energy difference between main peak and scattering feature must be ≥ Eg (1.5 eV for bulk 

CdTe59). Here, it is found the energy difference between the CdTe and “A” (“B”) peaks are 0.57 

(1.4) eV. This energy difference is too small to explain peak “A” as loss features, however peak 

“B” cannot be ruled out. When evaluating the two peaks as additional species “A” is consistent 

with bulk-like ZnTe26, 38-39, and “B” is speculated to be MgTe, although no reference 

binding energies are published. The ratio of the MgTe/ZnTe, for the 2 nm sample, is 

consistent with the bulk stoichiometry of the (Zn,Mg)O substrate, which supports the 

identification of the “B” component and suggests the formation of a (Zn,Mg)Te at the 

interface. No evidence of chemical changes is observed for any other elements. 
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Figure 7.4: XPS Te 3d3/2 detailed region normalized to peak maximum (top) and fit with 
3 peaks (left) and 4 peaks (right). For the two lower graphs spectral data (black dots) 
where fit using Voigt functions representing CdTe (black), ZnTe (red), MgTe (blue), and 
TeOx (green). The difference of data and the sum of Voigt functions (Fit, red line) is 
magnified by 10 and plotted below each data set (grey line). 
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7.3 Band Bending  

With close examination of all photoelectron and Auger peaks, systematic shifts 

are found likely due to interface and overlayer formation. Table 7.1 displays all major 

peaks and the shift relative to the bare (Zn,Mg)O and thick CdTe films for (Zn, Mg, O) 

and (Cd, Te), respectively. Peak positions were determined by fitting the data as 

described in section 3.1.6. Due to the short attenuation length of some high binding 

energy peaks and/or low photoionization cross-section, some intensities are too weak to 

confidently determine position and therefore marked “N/A” in Table 7.1. The final 

column “BB” indicates the average interface-induced band bending for the respective 

sample. Peaks associated with the substrate (Zn, Mg, O) display a 0.31 and 0.37 ± 0.05 

eV upward interface-induced band bending (toward the Fermi energy) for the 2 and 5 nm 

thick CdTe films, respectively. A larger upward band bending is found for the 5 nm thick 

sample, which is likely due to the increased proportion of interface signal relative to the 

near-interface bulk signal of  (Zn,Mg)O. Therefore the calculated band bending may be 

considered a lower bound to the “true” band bending at the interface. A similar upward 

shift of 0.13 and 0.07 ± 0.05 eV (2 nm and 5 nm, respectively) is found for overlayer 

peaks (Cd, Te) due to layer formation. Larger weight is given to the band bending values 

with a higher proportion of interfacial signal. Therefore, the best estimate for interface-

induced band bending in the (Zn,Mg)O layer to be 0.35 ± 0.05 and band bending in the 

CdTe layer to be 0.11 ± 0.05 eV. 
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Table 7.1: All peak shifts associated to band bending. Shift values are relative to the 0 
and 10 nm films for the substrate and CdTe peaks, respectively. Positive values indicate 
an upward band bending. 

 Peak Shift (± 0.05 eV) 
Thickness (nm) Mg 1s Zn 2p O KLL O 1s Zn LMM Mg KLL Zn 3p BB 

2 0.34 0.32 0.24 0.29 0.34 0.35 0.26 0.31 
5 N/A N/A N/A 0.37 0.41 N/A 0.34 0.37 

Thickness (nm) Cd MNN Te MNN Cd 3d Te 3d Te 4d BB 
2 -0.24 -0.21 -0.10 -0.08 -0.10 -0.13 
5 -0.12 -0.08 -0.05 -0.03 -0.05 -0.07 

 
7.4 Electronic Properties 

To determine the band edge offsets at the interface, the band edge energies 

without the influence of the interface are needed. Figure 7.5 displays UPS measurements 

of the occupied states (left) and IPES measurements of the unoccupied states (right) for 

the bare substrate and 10 nm thick CdTe film (bottom and top respectively). To 

determine the band edges a distinction must be drawn between band edge and defect 

states. For both UPS and IPES the spectral onset will be dominated by the band edge, 

however if the concentration of defect states is large enough, a “foot” will be present at 

the spectral onset that cannot be explained by only experimental broadening. The CdTe is 

expected to be predominately defect free; therefore the conventional linear extrapolation 

of the spectral onset was used (lines through data). We find the CdTe valence band 

maximum (VBM) of -0.75 ± 0.15 eV and the conduction band minimum (CBM) of 0.79 

± 0.15 eV, relative to the Fermi level and a band gap of 1.54 ± 0.21 eV. (Zn,Mg)O is 

considered a transparent conducting oxide, thus charge-transporting states must exist at or 

near the Fermi level to maintain conductivity. In order to maintain transparency the 

optically active states must be separated by a large band gap (≳ 2.5 eV). Evaluating the 

(Zn,Mg)O UPS spectrum a major onset is found at -3.17 ± 0.20 eV with a large foot 

extending to -1.63 ± 0.20 eV. The spectrum is very similar to previously published results 
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for ZnO, in which the foot likely contains multiple states and the “true” VBM60. Similar 

spectral features are found in the IPES spectrum. The major onset is determined to be at 

0.85 ± 0.2 eV with a foot extending to 0.33 ± 0.2 eV, w.r.t. the Fermi level. 

 

Figure 7.5: UPS (left) and IPES (right) measurements of the 10 nm CdTe film (top) and 
the bare (Zn,Mg)O substrate (bottom). Linear regions of the leading edges are 
extrapolated to the baseline in order to determine the CBM and VBM. Green lines 
indicate optical edges and the red line indicates defect edges. 

By combining the UPS, IPES, and band bending information a complete picture 

of the electronic level alignment can now be painted, including offsets at the 

CdTe/(Zn,Mg)O interface (Figure 7.6). The left side and right side of the image shows 

the energy position of band edges for the surface of the bare substrate and thick CdTe 

film, respectively.  The best determinations for band edges are depicted, as solid green 

lines while defect states are dashed red lines. A green box denotes a region that 

encompasses the "true" VBM. Diagonal lines depict the band bending determined by 
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core-level peak shifts. The inferred energy positions (shifted due to band bending) are 

found in the center of the schematic. An offset of 0.55 eV between like-minded states in 

the conduction band is found, and flat band conditions are found between the CBM of 

CdTe in the defect state of (Zn,Mg)O. The valence band offset is found between 0.4 - 1.9 

eV. 

 

Figure 7.6: Schematic depiction of the interface induced band bending. The left and right 
side of the depiction represents measured data for the bare substrate and thick CdTe film, 
left and right respectively. Then a diagonal dashed line denotes bending effects. From 
this, the inferred interface band edges are drawn in the center. A 0.55 eV electron spike is 
found at the CBM interface and an energy offset of the VBM is found between 0.4 eV 
and 1.9 eV. A defect state in the (Zn,Mg)O is found to have no energy offset with the 
CBM. 
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7.5 Summary 

The chemical and electronic properties of the (Zn,Mg)O/CdTe interface have 

been studied, with particular emphasis on the electronic level alignment at the interface 

and replacement of CdS. Zn and Mg are found to diffuse into the CdTe film and form a 

(Zn, Mg)Te layer at the interface. By combining core level shifts, UPS, and IPES we can 

infer the electronic level alignment at the interface. By comparing like-minded states in 

the conduction band a 0.55 eV offsets is found, however flat band conditions exist 

between the CBM of CdTe and a defect state and (Zn,Mg)O. If there is large enough 

density of the defect state and sufficient wave function overlap with the CBM of CdTe 

propagated photoelectrons may be transported through the (Zn,Mg)O film without having 

to overcome the 0.55 eV energy barrier. A 0.4 - 1.5 eV energy offset is also found at the 

valence band interface. In conclusion, the electronic level alignment is favorable for 

device performance only if the (Zn,Mg)O defect state can conduct charges across the 

(Zn,Mg)O layer.  
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CHAPTER 8  THE CHEMICAL AND ELECTRONIC STRUCTURE OF  

SnO2/Zn(1-x)MgxO 

8.1 Introduction & Sample Preparation 

To continue investigating the chemical and interfacial properties of (Zn,Mg)O, 

started in Chapter 9, investigation of the window-side interface band alignment was 

performed. For this study SnO2 coated glass substrates were coated with 0, 5, and 10 nm 

of (Zn,Mg)O using ALD. The samples were then removed from the deposition chamber 

in a N2-filled glovebag. The samples were immediately vacuum packaged and shipped to 

UNLV. Upon delivery to UNLV, the samples were immediately moved to an N2-filled 

glovebox. To minimize any time-dependent changes of the films, the measurements 

series was started immediately. 

8.2 Chemical Properties 

XPS survey spectra of the three surfaces (Fig. 8.1) show photoelectron and Auger 

lines for all expected elements (Zn, Mg, Sn, and O) are present at the surface. The 0 nm 

(Zn,Mg)O sample is a bare SnO2 layer. The 10 nm sample is thick enough to attenuate all 

emitted electrons from the SnO2 sublayer and only collect electrons as from the Zn(1-

x)MgxO layer. The think sample (5 nm) is thick enough to attenuate nearly all of the 

photoelectrons from the SnO2 sublayer. In addition we also see small amounts of carbon 

and Fluorine on all surfaces. Fluorine is present but not seen in the Al Kα survey spectra 

due overlaying photoelectric and Auger lines, but is seen with Mg Kα excitation (not 

shown). 
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Figure 8.1: Al Kα XPS survey spectra of 0 nm (black), 5 nm (red), and 10 nm (blue) 
(Zn,Mg)O/SnO2. 

To continue evaluating the chemical properties of the interface a close 

examination of elements expected to be in a metal-oxide chemical environment is 

performed. Figure 8.2 shows detailed measurements of the most intense photoelectric 

(left) and Auger (right) peaks for Mg (top), Zn (middle), and Sn (bottom). The “0 nm” 

sample is expected to be SnO2, and one would not expect Sn or Mg to be present. Both 

Sn 3d3/2 and MNN peaks are strong and consistent with Sn in a SnO2 chemical 

environment. The peak centers are near the edge of energies SnO2 peaks are reported in 

literature, however this may be explained by downward surface band bending. No Zn is 

seen on the surface of the “0 nm” film, however weak Mg 1s and KLL signals are seen. 

Due to the proprietary nature of the sample production the source of the Mg 

contamination cannot be determined, however the vast majority of the surface is 

classified as SnO2. 
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Figure 8.2: Detailed photoelectron and Auger region of expected cation elements, 
respectively labeled (upper right corner). Ranges of binding/kinetic energies for various 
species are denoted as grey boxes. The difference of the two most intense peaks, 
normalized to peak maxima, is plotted below the respective spectra (grey line). 
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Moving to the intermediate film (“5 nm”) one would expect to see SnO2, MgO, 

and ZnO to some degree. In fact strong Zn and Mg signal is detected, however the 

respective peak centers are approx. 1 eV to higher binding energy (low kinetic energy) 

than the range of reported values for MgO and ZnO. This shift, like in the case of Sn, is 

likely due to surface band bending. Sn 3d3/2 intensity is found, but not Sn MNN signal. 

This may be explained by attenuation of the low energy Auger electrons. Weak Sn signal 

indicated 5 nm of (Zn,Mg)O is appropriate to study the band edge alignment at the 

interface. No peak shift is found between “0 nm” and “5 nm,” and is confirmed by the 

difference of the two spectra have no peak-like features, which indicates Sn has not 

changed chemical environments and no interface induced band bending is seen.  

Lastly, the thick sample (“10 nm”) MgO and ZnO should be seen but not SnO2. 

Mg and Zn are again found in metal oxide chemical environments with the same surface 

band bending found on the “5 nm” sample. Zn intensity slightly increases as expected for 

a thicker (Zn,Mg)O film. Mg intensity however, slightly decreases, which indicates a 

slight change in the Zn/Mg ratio, which cannot be explained by surface adsorbates nor 

attenuation differences. 

To investigate the small amount of fluorine present at the surface of the sample a 

detailed inspection of the F 1s photoelectric and F KLL peak was needed. Both F 1s and 

F Auger signals are found to some degree, albeit very weak, on all three samples. The F 

signal is likely from the F dopant added to the SnO2 film. F signal is extremely weak for 

the bare SnO2 film, as expected for a dopant. With addition of a thin film of (Zn,Mg)O 

there is a significant increase in F signal, which is then decreased by a thicker film. These 

intensity variations suggest that F migrates to the SnO2/(Zn,Mg)O interface and slightly 
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diffuses into the (Zn,Mg)O film. Any band bending effects caused by the presence of F 

will be accounted for by analysis of peak shift below. 

 

Figure 8.3: XAES and XPS detailed spectra of F KLL (left) and F 1s (right) emissions. F 
is most prevalent for the 5 nm sample, which suggests (Zn,Mg)O to increase the F 
diffusion to the interface. 

8.3 Electronic properties 

As in the case for the CdTe/(Zn,Mg)O interface, the band edges of the bare 

substrate and thickest overlayer are determined and then adjusted based on band bending 

to determine the interfacial band alignment. Again a distinction is made between 

optically active and defect states. Multiple linear regions are found in both the UPS and 

IPES data (Figure 8.4) that need to be analyzed. The shape of the (Zn,Mg)O data is 

similar to that seen in Chapter 7, therefore linear extrapolations were performed in the 

same spectral locations. Energy locations of the linear extrapolation are slightly shifted, 

which may be due to differences in layer thickness, interfacial (Zn,Mg)Te, 

dopants/contaminants, and/or stoichiometry. A range of possible valence band maxima 
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are found ranging -3.7 – -2.3 eV for (Zn,Mg)O and -4.1 – -2.1 eV for SnO2. Evaluating 

the conduction band of the (Zn,Mg)O, the CBM is determined to be 1.4 eV and a defect 

state is found at 0.8 eV. The SnO2 shows similar results where the first major onset is 

seen at 1.0 eV. A foot is present prior to the onset that cannot be explained by 

experimental broadening, which suggest it is a defect state. Furthermore, two additional 

onsets are found at 1.6 eV and 2.3 eV, which may be optical or defect states.  

 

 

Figure 8.4: UPS (left) and IPES (right) measurements of the 10 nm (Zn,Mg)O film (top) 
and the bare SnO2 substrate (bottom). Linear regions of the leading edges are 
extrapolated to the baseline in order to determine the CBM and VBM. Green lines 
indicate optical edges and red line indicate defect or other states. 

2.
3 

eV

1.
0 

eV

-2
.3

 e
V

1.
6 

eV

0.
6 

eV

-2
.1

 e
V-4

.1
 e

V

0.
8 

eV
ZMO

-3
.7

 e
V

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

UPS
He I

IPES

SnO2

In
te

ns
ity

 (a
.u

.)

Energy rel. to EF (eV)

1.
4 

eV



 79 

Unlike the CdTe/(Zn,Mg)O interface, no interface induced band bending is 

observed, therefore the electronic level alignment can be determined directly from 

surface band edges. Figure 8.5 is a schematic depiction of the electronic level alignment 

at the (Zn,Mg)O/SnO2 interface. A 0.2 eV offset is found at the interface of “like-

minded” states in the valence bands. An electron cliff is seen in the conduction band 

minima of 0.4 eV, which would not likely be detrimental to the overall performance of 

the device. In Chapter 7 it was speculated that the defect state in the (Zn,Mg)O can carry 

charges. Following that hypothesis, an electron spike of 0.2 eV is seen between it and the 

CBM of the SnO2. 
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Figure 8.5: Schematic depiction of the interface induced band bending. The left and right 
side of the depiction represents measured data for the surfaces of the bare SnO2 and thick 
(Zn,Mg)O film, left and right, respectively. From this, the inferred interface band edges 
are drawn in the center. A 0.4 eV electron spike is found at the CBM interface and energy 
offset at the VBM of 0.2 eV between like-minded states.  

8.4 Summary 

The chemical and electronic properties of the SnO2/(Zn,Mg)O interface has been 

studied, with particular emphasis on the electronic level alignment at the interface and 

replacement of CdS. (Zn,Mg)O is found to increase the diffusion of the dopant F from the 

TCO to the surface. By combining core level shifts, UPS, and IPES we can infer the 
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electronic level alignment at the interface. Comparing like-minded states in the 

conduction band a 0.4 eV offset is found. A 0.2 eV energy offset is also found at the 

valence band interface between like-minded states.  
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CHAPTER 9  SUMMARY 

In this dissertation, the investigation of surfaces and interfaces in relevant CdTe-

based photovoltaic devices was presented. Many complementary analytical techniques, 

spectroscopic and microscopic, have demonstrated as being effective and insightful tools 

for device optimizations. The motivation behind this work was to investigate the 

chemical and electronic properties of materials, which have important applications in 

CdTe-based devices. Experiments and samples were carefully designed so that a 

methodical approach to optimize electronic and chemical properties. The goal of this 

dissertation is to provide new insight and physical explanations for these properties which 

will aid in the future optimization. 

In Chapter 4, the possibility of removing surface oxides and adsorbates with low 

energy Ar+ ion treatment steps was investigated. Surface-sensitive XPS data show the 

removal of oxygen and carbon with increased treatment times and energy. Careful 

monitoring of the chemical and electronic surface structure of the treated CdTe surface 

shows no indications for preferential removal of Cd or Te. However, the broadening of 

core-level spectra points to a treatment-induced roughening of the CdTe surface. 

Measurements of the surface band gap show an upward shift of the conduction band and 

a “wider-gap” material between the CdTe absorber and the back contact, which could 

potentially reduce electron-hole recombination at the back contact interface. 

The effects of CdCl2-treatment on diffused species was studied in Chapter 5, by 

separating the a layer stack at the SnO2:F/CdS interface. By investigating the morphology 

it was found that the center of the samples are smooth and an organic layer is present at 

the interface that is likely due to residual organic cleaning solvents prior to film 
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deposition. By incorporating a plasma-cleaning step to remove residual organics device 

fabricators were able to improve device performance. 

XPS was used to probe the chemical environment of the interface and significant 

amounts of diffusion is found at both SnO2:F/CdS and CdS/CdTe interfaces before and 

after CdCl2-treatment. Further work is need to determine the extent of these diffused 

species. However, one can conclude that the simple heterojunction band alignment 

picture is not sufficient to describe the interactions of the TCO/Buffer/Absorber layers in 

a CdTe-based photovoltaic device. 

In Chapters 6-8, potential replacements for CdS were studied in order to increase 

the quantum efficiency for photons between 1.4 and 2.4 eV (band gaps of CdTe and 

CdS). The chemical and electronic structure of CdS:O thin films produced by 

incorporating O2 into the Ar gas flow during sputter deposition surfaces were investigated 

by XPS, while the bulk of the films were studied by XES. The films were found to be 

mainly comprised of CdS and CdSO4, with small additions of an intermediate CdSOx 

(most likely sulfite) species. With increasing oxygen incorporation, CdSO4 is the 

preferred species, at the expense of CdS, while the content of the intermediate oxide 

species remains constant. As the oxygen incorporation into the CdS:O films serves 

several purposes, it is important to understand the composition of such films not just on 

an atomic level (i.e., composition of Cd, S, and O), but also from the view point of 

concentration of particular species (i.e., sulfide, sulfate, and intermediate oxide). With 

such insights, it is now possible to establish suitable models for the CdS:O film properties 

and their impact on the performance of high-efficiency thin film solar cells. Furthermore, 
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empirical tailoring towards the optimal balance between the different species can now be 

quantified and solar cell optimization is thus greatly facilitated. 

The chemical and electronic properties of the (Zn,Mg)O/CdTe interface have 

been studied, with particular emphasis on the electronic level alignment at the interface 

and replacement of CdS. Zn and Mg are found to diffuse into the CdTe film and form a 

(Zn, Mg)Te layer at the interface. By combining core level shifts, UPS, and IPES we can 

infer the electronic level alignment at the interface. By comparing like-minded states in 

the conduction band a 0.55 eV offsets is found, however flat band conditions exist 

between the CBM of CdTe and a defect state and (Zn,Mg)O. If there is large enough 

density of the defect state and sufficient wave function overlap with the CBM of CdTe 

propagated photoelectrons may be transported through the (Zn,Mg)O film without having 

to overcome the 0.55 eV energy barrier. A 0.4 - 1.5 eV energy offset is also found at the 

valence band interface. In conclusion, the electronic level alignment is favorable for 

device performance only if the (Zn,Mg)O defect state can conduct charges across the 

(Zn,Mg)O layer. 

The chemical and electronic properties of the SnO2/(Zn,Mg)O interface has been 

studied, with particular emphasis on the electronic level alignment at the interface and 

replacement of CdS. (Zn,Mg)O is found to increase the diffusion of the dopant F from the 

TCO to the surface. By combining core level shifts, UPS, and IPES we can infer the 

electronic level alignment at the interface. Comparing like-minded states in the 

conduction band a 0.4 eV offset is found. A 0.2 eV energy offset is also found at the 

valence band interface between like-minded states.  
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APPENDIX 

LIST OF SYMBOLS AND ABBRIVATIONS 

AFM Atomic force microscopy 

BSE Backscattered electron 

CBM Conduction band maximum 

CdS Cadmium sulfide 

CdTe Cadmium telluride 

CSS Close space sublimation 

DOS Density of states 

Ebin Binding energy 

EF Fermi energy 

Ekin Kinetic energy 

Evac Vacuum level 

FTO Fluorinated tin oxide, SnO2:F 

HPD 

IIBB 

IMFP 

Heated pocket deposition 

Interface induced band bending 

Inelastic mean free path 

IPES Inverse photoelectron spectroscopy 

PES Photoemission spectroscopy 

PV Photovoltaic 

SE Secondary electron 

SEM Scanning electron microscopy 

TCO Transparent conducting oxide 
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UHV Ultra-high vacuum 

UPS Ultraviolet photoelectron spectroscopy 

VBM 

VL 

Valence band maximum 

Vacuum level 

XAES X-ray excited Auger electron spectroscopy 

XAS X-ray absorption spectroscopy 

XES X-ray emission spectroscopy 

XPS X-ray photoelectron spectroscopy 

(Zn,Mg)O  Zinc magnesium Oxide, Zn(1-x)MgxO 

Φ Work function 
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