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ABSTRACT 

Beryllium is a potent and unique GSK-3β inhibitor with potential to differentially regulate 

glycogen synthase and β-catenin 

By 

Ata Ur Rahman Mohammed Abdul 

 

 

Dr. Ronald K Gary 

Examination Committee Chair 

Associate Professor 

Department of Chemistry and Biochemistry 

University of Nevada, Las Vegas 

 

 Glycogen Synthase Kinase-3β (GSK-3β) is an important serine/threonine kinase that 

phosphorylates/regulates diverse and metabolically important proteins. Some of the important 

substrates of GSK-3β are glycogen synthase, tau, β-catenin, cyclin D1, axin, c-jun, c-myc, Heat 

Shock Factor–1, BCL-3, CREB, Histone H1.5, mdm2, p21 (CIP1), pyruvate dehydrogenase and 

many more. De-regulation of GSK-3β has been implicated in diseases like cancer, Alzheimer’s 

disease, bipolar disorder and type 2 diabetes mellitus. Currently, GSK-3β is one of the most 

widely studied proteins and there is a great interest in developing potent and efficient GSK-3β-

inhibitors for research as well as therapeutic purposes. We demonstrate that beryllium in the form 

of BeSO4 salt is a much more potent GSK-3β-inhibitor compared to LiCl.  

 We observed that one of the unique properties of beryllium is its modus operandi to regulate 

the inhibitory Ser-9 phosphorylation of GSK-3β in a cell type specific manner. Our study for the 

first time validates the potential of beryllium to function as a biologically relevant GSK-3β-



iv 
 

inhibitor. Beryllium induces a decrease in the phosphorylation of glycogen synthase in cultured 

NIH/3T3 cells. This decrease in phosphorylated form of glycogen synthase demonstrates the 

ability of beryllium to inhibit GSK-3β’s kinase activity in treated cells. One of the most important 

substrates in relation to GSK-3β’s inhibition is β-catenin – one of the downstream effector 

molecules of the Wnt signaling pathway. Our results in NIH/3T3 and A172 cells indicate that 

beryllium has minimal effect on Wnt signaling/ β-catenin pathway compared to other established 

GSK-3β-inhibitors. The minimal effect of beryllium at physiologically effective concentrations 

on Wnt signaling/β-catenin pathway indicates that it could be a more pathway specific inhibitor. 

One of the most intriguing discoveries of our study has been the lithium induced increase in the 

phosphorylated form of β-catenin, which is against the “accepted dogma”. Here we propose an 

alternative model explaining the regulation of the Wnt/β-catenin signaling pathway by lithium. 

 Use of GSK-3β-inhibitors for therapeutic purposes presents the risk of inducing cancer in 

patients due to accumulation of β-catenin, an oncogene activator. The unique ability of beryllium 

to repress the kinase activity of GSK-3β without inducing a heavy nuclear localization of β-

catenin might provide an opportunity to develop a potentially potent, efficient, pathway-specific 

and biologically active GSK-3β inhibitor with minimal adverse effects. 
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CHAPTER 1 

 

OVERVIEW 

Research purpose 

 GSK-3β is an important Ser/Thr kinase, which is involved in various physiologically 

important cellular pathways (Frame and Cohen, 2001; Doble and Woodgett, 2003; Grimes and 

Jope, 2001). De-regulation of GSK-3β is directly linked to the development of different diseases 

such as type 2 diabetes milletus, Alzhemier’s disease and cancer (Grimes and Jope, 2001; 

Henriksen and Dokken, 2006; Smalley and Dale, 1999; Peifer and Polakis, 2000). There is great 

deal of interest in understanding the precise role of GSK-3β in the signaling pathways. Inhibitors 

act as an irreplacable tool to examine the role of an enzyme/protein in different signaling 

networks. Different categories of GSK-3β inhibitors are available and the most important among 

them is the small metal cations group. Lithium is a monovalent cation and is the most well 

characterized metal cation inhibitor of GSK-3β with an IC50 value of 12 mM (Ryves et al., 2002; 

Mudireddy et al., 2014). Li
+ 

is a fairly specific GSK-3β inhibitor but is physiologically effective 

only at millimolar concentrations. Be
2+ 

is a divalent cation capable of inhibiting GSK-3β (Ryves 

et al., 2002). We have used beryllium in the form of BeSO4.4H2O and documented some of the 

different outcomes it induces in mammalian cell cultures in its role as a GSK-3β inhibitor. 

Emphasis was laid to understand and validate the effect of beryllium on GSK-3β-substrates or 

target proteins.  

The present study can be summarized as follows: 

 Chapter 1 – Overview and research questions. 

 Chapter 2 - A brief introduction and information available about GSK-3β. 
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 Chapter 3 - We have analyzed the effect of beryllium salt on the different mammalian cell lines. 

This information was used in selecting cell lines that are most suitable for studies involving 

beryllium. Cell lines that are resistant or too sensitive to beryllium salt were not used for further 

studies. 

 Chapter 4 - The effect of BeSO4 on the kinase activity of GSK-3β was analyzed and Be
2+ 

was 

found to be a more effective GSK-3β inhibitor compared to Li
+
. Emphasis was laid on 

understanding the effect of beryllium on the Ser-9 phosphorylation status of GSK-3β. It is also 

observed that unlike lithium, beryllium cannot induce a clear increase in the Ser-9 

phosphorylation of GSK-3β in certain cell lines. 

 Chapter 5 - In this study we demonstrate the intra cellular effects of beryllium on GSK-3β 

substrates like glycogen synthase and β-catenin for the first time ever in cell culture. This study 

will be helpful in validating the ability of Be
2+ 

to function as a biologically active GSK-3β 

inhibitor. 

 Chapter 6 - We have used RT-PCR to analyze the effect of Be
2+ 

treatment on the expression of 

certain genes. Genes which seems to be responding to beryllium were selected for this study 

depending on the microarray data available in our lab. 

 Chapter 7 – Research summary and future directions. 

 

Research questions 

Beryllium is a known GSK-3β inhibitor, which competes for the Mg
2+ 

and ATP binding sites 

of GSK-3β (Ryves et al., 2002). There is a great dearth of information regarding the role of 

beryllium as a GSK-3β inhibitor. This study is an attempt to establish whether Be
2+ 

is an efficient 

GSK-3β inhibitor. Following are few important research questions we tried to address through 

this study. 
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1. Is Be
2+

 a potent GSK-3β inhibitor and how well is it tolerated by mammalian cell lines? 

Test: Inhibitory effect of Be
2+ 

on the in vitro kinase activity of pure recombinant GSK-3β will be 

analyzed using a FRET based kinase assay. The cyto toxicity of Be
2+ 

can be examined using a 

live/dead cell protease assay. 

2. Is Be
2+ 

a specific GSK-3β inhibitor? 

• Test: The effect of Be
2+ 

on pure recombinant protein kinase A (PKA - a kinase involved 

in insulin signaling pathway) can be analyzed using a FRET based kinase assay. PKA 

phosphorylates GSK-3β (Fang et al., 2000; Li et al., 2000; Tanji et al., 2002) suggesting 

that PKA and GSK-3β work closely to one another. Hence PKA is a suitable candidate to 

analyze the specificity of beryllium towards other related kinases. 

3. What is the effect of Be
2+ 

on the Ser-9 phosphorylation of GSK-3β?  

Test: Increase in the phosphorylation of Ser-9 residue on GSK-3β is closely associated with its 

regulation. The impact of Be
2+ 

on the Ser-9 phosphorylation of GSK-3β will be investigated using 

western blotting. The effect of Be
2+ 

on the Ser-9 phosphorylation of GSK-3β can be quantified by 

using flow cytometry and TR-FRET based methods. 

4. What is the effect of Be
2+ 

treatment on the proteins downstream of GSK-3β (if Be
2+ 

is a 

potent GSK-3β inhibitor)?  

Test: GSK-3β is an important Ser/Thr kinase, which phosphorylates its substrates and plays an 

important role in their regulation. If Be
2+ 

is a potent GSK-3β inhibitor in treated cells – then its 

inhibitory effects can be validated by analyzing the phosphorylation status of the GSK-3β–

substrates. The phosphorylation status of important GSK-3β-substrates like glycogen synthase, β-

catenin or tau will be investigated via western blotting. 
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5. Can Be
2+ 

regulate the Wnt signaling pathway like Li
+
? 

Test: GSK-3β is an important constituent of the Wnt signaling pathway. Inhibition of GSK-3β 

can cause nuclear localization of β-catenin, which in turn leads to activation of some oncogenes. 

It is necessary to investigate the effect of a GSK-3β inhibitor on Wnt signaling pathway. The role 

of Be
2+ 

in regulating the Wnt signaling pathway will be investigated by studying the nuclear 

localization pattern of β-catenin via immunofluorescence, flow analysis and western blotting. 
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CHAPTER 2 

 

GSK-3β: An important Ser/Thr kinase  

Glycogen synthase kinase 3 (GSK-3) is an important serine/threonine kinase found in all 

eukaryotes. GSK-3 was first isolated in its homogenous form from rabbit skeletal muscle cells 

(Embi et al., 1980). The name glycogen synthase kinase refers to its ability to phosphorylate 

glycogen synthase, a key regulatory element of glycogen synthesis and insulin signaling pathway.    

 

GSK-3 family 

 There are two isoforms of mammalian GSK-3: GSK-3α and GSK-3β encoded by distinct 

genes (Woodgett, 1990). GSK-3α is 51 kDa and GSK-3β is 47 kDa, the difference in the size of 

the isoforms is due to the presence of a glycine rich extension on the N-terminus of GSK-3α. The 

two isoforms of GSK-3 share only 36% identity in their last 76 residues on the C-terminal but 

their kinase domains are highly identical (98%) (Woodgett, 1990). The GSK-3 homologues are 

found in almost all eukaryotes and shares highly similar kinase domains (Ali et al., 2001). In spite 

of their identical kinase domains GSK-3α and GSK-3β are not functionally identical. The deletion 

of exon 2 of GSK-3β causes the death of mouse embryos at day 16 due to the extreme hepatocyte 

apoptosis induced liver degeneration. Functional GSK-3α cannot alleviate the lethality induced in 

mouse embryos due to homozygous deletions of exon 2 of GSK-3β (Hoeflich et al., 2000). The 

lethality observed in GSK-3β null mouse embryos cannot be alleviated by a functional GSK-3α 

indicating the importance of the protein/enzyme GSK-3β. However animal models representing 

GSK-3α knock out are viable but display enhanced insulin sensitivity (MacAulay et al., 2007). 
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Table 1a Important events in the field of GSK-3 research from 1963 to 1993  

(Adapted from Cohen and Frame, 2001) – Reprinted by permission from Macmillan Publishers 

Ltd: [nature reviews molecular cell biology] (Cohen P, Frame S. 2001). The renaissance of 

GSK3. Nature reviews Molecular cell biology 2: 769-776), copyright (2001)) 

 

Year Research related GSK-3 Refrences 

1963 Glycogen synthase was found to exist in active 

and inactive forms 

Friedman and Larner, 

1963. 

1964 Insulin promotes the conversion of glycogen 

synthase to its active form 

Craig and Larner, 

1964. 

1978 Insulin could inhibit the activity of GSK-3 Cohen, 1979. 

1980 GSK-3 purified Embi et al., 1980. 

1983  Insulin induced dephosphorylation of 

glycogen synthase occurs at serine residues, 

which are targets of GSK-3 

Parker et al., 1983. 

1986 Li
+ 

treatment caused duplication of dorsal 

axis in Xenopus oocytes  

Kao et al., 1986. 

1987 A “priming phosphate” is required for GSK-3 

to recognize its substrates 

Fiol et al., 1987. 

1990 Two isoforms of GSK-3: GSK-3 α and β 

idetified 

Woodgett, 1990. 

1991 GSK-3 phosphorylates Jun family proteins in 

vitro and negatively regulates them 

Boyle et al., 1991. 

1992  Insulin inactivates GSK-3 

 GSK-3 phosphorylates Tau 

 Wingless (WNT homologue) found to 

inactivate GSK-3 

 

Hughes et al., 1992. 

Hanger et al., 1992. 

Siegfried at al., 1992. 

1993 eIF2B identified as a GSK-3 substrate Welsh et al., 1993 
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Table 1b: Important events in the field of GSK-3 research from 1994 t0 2014 

1994  Protein kinases activated by mitogen 

leads to inactivation of GSK-3α 

 PI3K inhibition found to hamper 

GSK-3 inhibition 

Sutherland and Cohen, 

1994. 

Cross et al., 1994. 

1995  Insulin induced inactivation of GSK-

3β through the Ser-9 phosphorylation 

 PKB/AKT phosphorylates GSK-3 in 

vitro at appropriate sites 

Cross et al., 1995. 

1996  Li
+ 

ions inhibit GSK-3 

 GSK-3 regulates sub cellular 

distribution of β-catenin 

Klein and Melton, 

1996. 

Stambolic et al., 1996. 

Rubinfeld et al., 1996. 

1998 Axin shown to exist in a complex with GSK-

3β and β-catenin and promotes GSK-3β 

dependent phosphorylation of β-catenin 

Ikeda et al., 1998. 

1999 FRATtide inhibits GSK-3 mediated 

phosphorylation of axin and β-catenin, but 

not glycogen synthase. 

Thomas et al., 1999. 

2000  Disruption of GSK-3β is lethal to 

mouse embryos 

 Specific small molecule inhibitors of 

GSK-3β developed 

 Insulin and Wnt regulates GSK-3β 

differentially 

Hoeflich et al., 2000. 

Coghlan et al., 2000. 

Ding et al., 2000. 

2001  GSK-3 inhibitors shown to hamper 

neuronal apoptosis 

 Crystal structure of GSK-3 solved 

 Li
+ 

competes for the Mg
2+ 

binding sites 

of GSK-3β 

Cross et al., 2001. 

Dajani et al., 2001. 

Ryves and Harwood, 

2001. 

2002 Be
2+ 

is a GSK-3β inhibitor and could be 

competing for Mg
2+ 

and ATP binding sites of 

GSK-3β 

Ryves et al., 2002. 

2003  GSK-3β interacts and positively 

regulates p53 activity 

 GSK-3β-TIMAP-PP1 feedback loop 

plays a critical role in the regulation 

of GSK-3β  

Watcharasit et al., 

2003. 

Zhang et al., 2003. 

2007 Phosphorylation of TIMAP by GSK-3β 

activates PP1 

Li et al., 2007 

2014 Be
2+ 

is a 1000 times more potent GSK-3β 

inhibitor compared to Li
+ 

Mudireddy et al., 2014. 
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GSK-3β – A brief introduction 

 GSK-3β is a fascinating enzyme playing a central role in extremely diverse intra cellular 

signaling pathways like Wnt signaling and hedgehog pathway. GSK-3β regulates glycogen 

synthesis, gene transcription, apoptosis, protein synthesis and cellular differentiation in various 

cell types (Frame and Cohen, 2001; Doble and Woodgett, 2003; Grimes and Jope, 2001). The 

moniker glycogen synthase kinase doesn’t justify the ability/range of GSK-3β to phosphorylate 

various metabolically and structurally important proteins.  There is overwhelming evidence which 

establishes a plethora of different proteins as validated substrates of GSK-3β and they are tau, β-

catenin, Cyclin D1, Axin, c-jun, c-myc, Heat Shock Factor–1, BCL-3, CREB, Histone H1.5, 

mdm2, p21(CIP1), pyruvate dehydrogenase and many more (reviewed in Sutherland, 2011).  

Phylogenetically GSK-3β is closely related to the cyclin dependent protein kinases, however a 

major difference is the preference of GSK-3β for primed substrates. The GSK-3β substrates have 

to be primed at n + 4 position with a phosphate moiety in order to be recognized by the enzyme 

(n is the site of phosphorylation by GSK-3β) (Fiol et al., 1987). The common consensus sequence 

that serves as the phosphorylation site of GSK-3β is Ser/Thr-Xaa-Xaa-Xaa-pSer/pThr (where 

pSer/pThr are the primed residues, Xaa – any amino acid and Ser/Thr is the target site of GSK-

3β) (Fiol et al., 1987). 
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Table 2a. Proposed GSK-3β substrates  

(Adapted from - What are the bonafide GSK-3 substrates, Sutherland, 2011 ; open access journal, 

International journal of Alzheimer’s disease, 2011, 505607)  

Proposed 

substrate 

Target 

residue(s) 

Priming 

residue(s) 

and kinase 

Effect of GSK-3β 

induced 

phosphorylation 

Refrences 

Adenomatous 

Polyposis 

Coli (APC) 

1501 

1503 

1505 (CK1) 

1507 (CK1) 

Regulates degradation Ferrarese et al, 

2007. 

Ikeda et al,  2000. 

Axin Ser-322 

Ser-326 

(putative) 

Ser-330 Regulates stability Ikeda et al, 1998. 

Yamamoto et al, 

1999. 

BCL-3 Ser-394 Ser-398 

(ERK 

putative) 

Regulates degradation Viatour et al, 

2004. 

β-catenin Ser-33 

Ser-37 

Thr-41 

Ser-45 

(CK1) 

Regulates degradation Ikeda et al, 1998. 

Cyclin D1 Thr-286 NONE Nuclear transport and 

degradation 

Diehl et al, 1998. 

Glycogen 

Synthase 

Ser-640 

Ser-644 

Ser-652 

Ser-658 

(CKII) 

Reduces activity Rylatt et al, 1980. 

Parker et al, 1983. 

Heat shock 

factor 1 

Ser-303 Ser-307 

(MAPK) 

Reduces DNA binding Chu et al, 1996. 

Histone HI.5 Thr-10 NONE Coincides with 

chromosome 

condensation 

Happel et al, 2009. 

c-jun, Jun B, 

Jun D 

The-239 Thr-243 Reduces DNA binding Boyle et al, 1991. 

Nikolakaki et al, 

1993. 
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Table 2b. Proposed GSK-3β substrates  

Proposed 

substrate 

Target 

residue(s) 

Priming 

residue(s) 

and kinase 

Effect of GSK-3β 

induced 

phosphorylation 

Refrences 

 

mdm2 

Ser-240 

Ser-254 

Ser-244 

Ser-258 

(CKI) 

Promotes activity 

towards p53, reduces 

activity p53 levels. 

Kulikov et al, 

2005 

c-myc, L-

myc 

Thr-58 

Thr-62 (c-

myc) 

Ser-62 

(ERK1/2) 

Promotes 

degradation 

Sears et al, 2000. 

Henriksson et al, 

1993. 

Saksela et al, 

1992. 

p53 Ser-

33(GSK-3β 

only) 

Ser-37 

(DNA-PK) 

Increases 

transcriptional 

activity 

Turenne and 

Price, 2001. 

p21 CIP1 Thr-57 ND Induces degradation Rossig et al, 

2002. 

Protein 

phosphatase 

1 G-submit 

Ser-38 

Ser-42 

(human) 

Ser-46 

(PKA or 

p90RSK) 

Not clear Dent et al, 1989. 

Protein 

phosphatase 

inhibitor 2 

Thr-72 Ser-86 

(CKII) 

Inhibits inhibitor 

thereby activating 

PP1 

Soutar et al, 

2010. 

Aitken et al, 

1984 

 DePaoli-Roach, 

1984. 

Tau Ser-208 

Thr-231 

Thr-235 

Ser-396 

Thr-212 

(DYRK) 

Some 

phosphorylation sites 

regulate microtubule 

binding 

Woods et al, 

2001. 

Hanger et al, 

1992. 

Yang et al, 1993. 
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Schematic diagram 1: De-regulation of GSK-3β activity towards its substartes has serious 

consequences 
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GSK-3β and the Wnt signaling 

 Wnts are a family of cysteine-rich, glycosylated, secreted protein ligands found in a wide 

variety of organisms ranging from hydra to humans (Miller, 2002). One of the pathways regulated 

by Wnt ligands is known as the canonical Wnt pathway or the Wnt/β-catenin pathway (Polakis, 

2000; Seidensticker and Behrens, 2000; Sharpe et al., 2001). The Wnt signaling pathway is 

important for embryonic development, homeostatis, and development of central nervous system. 

(McMohan and Bradley, 1990; Patapoutian and Reichardt, 2000; Woodarz and Nusse, 1998; 

Moon et al., 1997; Polakis, 2000). GSK-3β is an important constituent of the Wnt signaling 

pathway and also the highly homologous wingless signaling pathway of drosophila. GSK-3β 

forms the β-catenin destruction complex along with APC (Adenomatous Polyposis Coli), axin, 

casein kinase 1 (CK1), protein phosphatase 2A (PP2A) and E3-ubiquitin ligase β-TrCP (Zeng et 

al., 1997; Behrens et al., 1998; Hart et al., 1998, Ikeda et al., 1998;Itoh et al., 1998; Salic et al., 

2000; Kikuchi, 1999). β-catenin is an important substrate of GSK-3β and the GSK-3β mediated 

phosphorylation on the N-terminal region of β-catenin (Pefifer et al., 1994; Yost et al., 1996) 

marks it for ubiquitin-mediated proteosomal degradation (Hart et al., 1998, 1999; Behrens et al., 

1998; Oxford et al., 1997; Winston et al., 1999; Kitagawa et al., 1999; Latres et al., 1999; Liu et 

al., 1999). β-catenin is one of the most important downstream effectors’ of the Wnt signaling 

pathway. 

 In the absence of Wnt ligands, the active GSK-3β in concert with axin and adenomatous 

polyposis coli (APC) phosphorylates β-catenin targeting it for ubiquitinylation and proteasomal 

degradation (Hart et al., 1998; Peifer and Polakis, 2000; Oxford et al., 1997; Aberle et al., 1997)  

 Wnt ligands bind to the extracellular domain of their receptor called frizzled protein thereby 

activating the Wnt signaling pathway. The activation of Wnt signaling cascade destabilizes axin 

which has a detrimental effect on the β-catenin destruction complex (Willert et al., 1999; 
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reviewed in Kikuchi, 1999). Wnt activation also blocks the phosphorylation of β-catenin by GSK-

3β (Bilic et al., 2007; MacDonald et al., 2009; Metcalfe and Bienz, 2011) Thus Wnt activation 

inhibits GSK-3β phosphorylation of β-catenin and causes accumulation of β-catenin. These 

events ultimately lead to stabilization of β-catenin (Cook et al., 1996; Willert et al., 1999) and the 

accumulated β-catenin is translocated into the nucleus where it interactes with the TCF/LEF (T-

cell factor/lymphocyte enhancer factor) proteins to form a protein complex (Huber et al., 1996; 

Molenar et al., 1996; Behrens et al., 1996). The β-catenin-Tcf/Lef protein complex binds to DNA 

and regulates the transcription of TCF/LEF target genes (Behrens et al., 1996; Dale, 1998; 

Brantjes et al., 2002). It is important to note that some of the target genes of β-catenin are proto 

oncogenes (Dale, 1998; Brantjes et al., 2002). 

 The relationship between GSK-3β and Wnt signaling pathway can be summarized as follows 

- a stable β-catenin destruction complex is required for the GSK-3β enzyme to phosphorylate β-

catenin and it happens in the absence of Wnt signaling/ligands. Inhibition of GSK-3β by Wnt 

ligands prevents the phosphorylation and proteasomal degradation of β-catenin. 
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Schematic diagram explaining the role of GSK-3β in insulin pathway and Wnt/β-catenin 

pathway 

 

Schematic diagram 2: Dissecting the role of GSK-3β in insulin and Wnt pathway. Lithium 

induced destability of the β-catenin destruction comeplex could be the possible reason for the 

nuclear localization of β-catenin in Li
+ 
treated cells. Whether beryllium can destabilize the β-

catenin destruction comeplex or not is worth investigating further. It can be summarized that 

probably GSK-3β occurs in two cellular forms “free GSK-3β” and “bound GSK-3β” and 

beryllium seems to be mostly targeting the “free GSK-3β” for inhibition 
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GSK-3β and its role in insulin signaling 

 One of the primary functions of GSK-3β is to phosphorylate and inactivate the enzyme 

glycogen synthase (GS) (Parker et al., 1983; Roach, 1990, Zhang et al., 1993). GSK-3β is 

constitutively active in cells and insulin mediated regulation/inhibiton of GSK-3β leads to the 

activation of glycogen synthase. In the presence of insulin, sequential activation of Insulin 

Receptor Substrate (IRS-1), PI3-kinase and Akt/PKB takes place, which eventually causes 

inactivation of GSK-3β (Sutherland et al., 1993; Cross et al., 1994, 1995; Stambolic and 

Woodgett, 1994). Akt/PKB mediates the GSK-3β inactivation by phosphorylating the N-terminal 

Ser-9 residue (Sutherland et al., 1993; Cross et al., 1994, 1995; Stambolic and Woodgett, 1994). 

Glycogen synthase and IRS-1 are important constituents of the insulin signaling pathway and 

both are putative substrates of GSK-3β enzyme (Rylatt et al., 1980; Parker et al., 1983; Liberman 

and Eldar-Finkelman, 2005). Like glycogen synthase; IRS-1 is phosphorylated and inactivated by 

GSK-3β thus imparing the insulin signaling pathway (Eldar-Finkelman and Krebs, 1997; 

Liberman and Eldar-Finkelman, 2005). GSK-3β plays a critical role at multiple steps in the 

insulin signaling pathway. Various studies indicate that GSK-3β acts as a negative modulator of 

insulin signaling and plays an important role in maintaining glycogen synthase in a repressed 

state. Hence deregulation or hyper activation of GSK-3β has been implicated in the development 

of diabetes mellitus type 2 (formerly known as non insulin dependent diabetes mellitus – 

NIDDM) (Henriksen and Dokken, 2006).  

GSK-3β and regulation of Hedgehog pathway 

 Hedgehog (Hh) signaling is involved in important cellular functions like cell division and cell 

survival and its deregulation is linked to the development of different disorders (reviewed in 

Murone et al., 1999; Briscoe and Pascal, 2013). Hedgehog signaling is a complex pathway and 

GSK-3β plays an important role in it along with other kinases (Jia et al., 2002; Jiang et al., 1995; 
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Price and Kalderon, 2002, Lum et al., 2003). The downstream effector of the Hh signaling 

pathway in drosophila is called as Cubitus interruptus (Ci) and it is responsible for the regulation 

of target genes in response to Hh stimulation. (Alexandre et al., 1996; Von Ohlen et al., 1997; 

Methot and Basler, 2001). Ci appears in two forms called as Ci155 and Ci75 (a truncated form of 

Ci155) and in relation to the regulation of Hh target genes - Ci155 is the active form and Ci75 is the 

repressor form (Aza-Blanc et al., 1997). GSK-3β is involved in the conversion (truncation) of 

Ci155 into its repressor form along with other kinases. In the absence of Hh stimulation or Hh 

ligands, Protein Kinase A (PKA) phosphorylates Ci thus priming it for further phosphorylation by 

GSK-3β and caesin Kinase 1δ (CK1δ) followed by the partial proteasomal degradation to yield 

Ci75 (Jia et al., 2002; Jiang et al., 1995; Price and Kalderon, 2002). In vertebrates the final 

downstream effector of the Hh pathway is called as Gli and recently it was shown that PKA is 

involved in the multi site phosphorylation of Gli (Niewiadomski et al., 2014).  In the presence of 

Hh ligands the conversion of Ci into its repressor form i.e. Ci75 is inhibited (Methot and Basler, 

1999). It can be summarized that Hh stimulation down regulates the activity of GSK-3β.  

 

GSK-3β and diseases 

Alzheimer’s disease 

 Since GSK-3β plays a critical role in the regulation and stability of various important 

proteins, deregulation of GSK-3β has been associated with many diseases. There is enough 

evidence to directly link GSK-3β with the neuropathological mechanisms associated with 

Alzheimer’s disease (AD). GSK-3β induces phosphorylation of microtubule associated tau 

protein, which resembles the Alzhemer’s disease-like induced tau-phosphorylation. (Hanger et 

al., 1992; Yang et al., 1993; Woods et al., 2001). Increased levels of GSK-3β have been found in 

AD compared to normal human brains and immunohistochemical studies have detected GSK-3β 
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in the neurofibrillar tangles of the AD brain tissue (Yamaguchi et al., 1996; Imahori and Uchida, 

1997; Pei et al., 1997, 1999). These studies indicate that GSK-3β has a role to play in the etiology 

of Alzheimer’s disease. 

Insulin resistance and diabetes mellitus type 2 

 Role of GSK-3β in the development of insulin resistance and diabetes mellitus type 2 has 

been established in various studies (Henriksen and Dokken, 2006). Elevated GSK-3β has been 

implicated in the development of insulin resistance in skeletal muscle cells. Increased levels of 

GSK-3β is found in the tissues of insulin resistant obese rodent models like high fat fed mice 

(Eldar-Finkelman et al., 1999), obese zucker rats (Dokken et al., 2005). Enhanced GSK-3β is also 

found in type 2 diabetic humans (Nikoulina et al., 2000). At the molecular level it has been 

observed that GSK-3β can hamper insulin signaling by interfering with the important components 

of the insulin signaling pathway. GSK-3β can phosphorylate Ser-332 of IRS-1in vitro which 

could hinder its interaction or communication with insulin receptor (Liberman and Eldar-

Finkelman, 2005; Aguirre et al., 2002). The disruption of interactions between insulin receptor 

and IRS-1 could have a detrimental effect on insulin signaling pathway and protect GSK-3β from 

the inhibitory action of insulin. GSK-3β phosphorylates glycogen synthase enzyme (GS) on 

multiple serine residues and leads to its inactivation (Parker et al., 1983; Roach, 1990, Zhang et 

al., 1993). Inactive glycogen synthase leads to decrease in glycogenesis (glycogen synthesis), 

which in turn would lead to an increase in the blood glucose levels (Cross et al., 1997; Summers 

et al., 1999). These observations demonstrate that deregulation of GSK-3β could play an 

important role in development of type 2 diabetes mellitus. 

Cancer 

 GSK-3β is an important constituent of the β-catenin destruction complex along with APC 

(Adenomatous Polyposis Coli), axin, casein kinase 1 (CK1), protein phosphatase 2A (PP2A) and 
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E3-ubiquitin ligase β-TrCP (Zeng et al., 1997; Behrens et al., 1998; Hart et al., 1998, Ikeda et al., 

1998;Itoh et al., 1998; Salic et al., 2000; Kikuchi, 1999). The GSK-3β mediated phosphorylation 

of β-catenin marks it for ubiquitin-mediated proteosomal degradation (Pefifer et al., 1994; Yost et 

al., 1996; Rubinfeld et al., 1996; Hart et al., 1996; Behrens et al., 1998; Oxford et al., 1997; Farr 

et al., 2000). GSK-3β and β-catenin are important members of the Wnt signaling pathway. Wnt 

activation results in the inhibition of GSK-3β (Bilic et al., 2007; MacDonald et al., 2009; 

Metcalfe and Bienz, 2011) leading to stabilization of β-catenin (Cook et al., 1996; Huber et al., 

1996; Willert et al., 1999). The β-catenin translocates into the nucleus where it interacts with 

TCF/LEF proteins to form a complex; this complex binds to DNA and regulates the transcription 

of TCF/LEF target genes (Huber et al., 1996). Abnormal or constitutive repression of GSK-3β 

activity could lead to accumulation of β-catenin in the nucleus. Several studies have directly 

linked the de-regulation of β-catenin with development of various cancers (Smalley and Dale, 

1999; Peifer and Polakis, 2000; Thakur and Mishra, 2013).  

 

Regulation of GSK-3β 

 GSK-3β controls diverse cellular processes like gene expression, apoptosis, cell viability and 

development. Hence GSK-3β is regulated by complex regulatory mechanisms in order to avoid 

any unwanted consequences on the normal cellular functions. It has been observed that GSK-3β 

is regulated by multiple regulatory mechanisms. 

Inhibitory Ser-9 phosphorylation of GSK-3β 

 The activity of GSK-3β is down regulated by an increase in the phosphorylation of its Ser-9 

residue on the N-terminal region (reviewed in Plyte et al., 1992). Some GSK-3β inhibitors induce 

an increase in the Ser-9 phosphorylation of GSK-3β thereby inhibiting it (Frame and Cohen, 

2001; Grimes and Jope, 2001; Doble and Woodgett, 2003).  Phosphorylated Ser-9 residue on the 
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N-terminal tail of GSK-3β acts as a pseudo substrate thus blocking the access of the substrates to 

GSK-3β’s catalytic site (Frame et al., 2001; Dajani et al., 2001). There are many different kinases 

that can phosphorylate GSK-3β at Ser-9 position depending on specific stimuli. Some of the 

kinases known to induce an increase in Ser-9 phosphorylation of GSK-3β are p70 S6 kinase 

(Armstrong et al.,2001; Krause et al., 2002; Terruzzi et al., 2002), p90Rsk (also called as 

MAPKAP kinase-1) (Brady et al., 1998; Saito et al., 1994), Akt (also called protein kinase B) 

(Sutherland et al., 1993; Shaw, et al., 1997; Cross et al., 1994, 1995; Stambolic and Woodgett, 

1994), certain isoforms of protein kinase C (Ballou et al., 2001; Fang et al., 2002), and cyclic 

AMP-dependent protein kinase (protein kinase A) (Fang et al., 2000; Li et al., 2000; Tanji et al., 

2002).   

 Insulin is a well characterized GSK-3β’s indirect inhibitor and in response to insulin an 

increase in the inhibitory phosphorylation of the Ser-9 residue on the N-terminal region of GSK-

3β is induced (Sutherland et al., 1993; Cross et al., 1995). The upstream kinases of the insulin 

signaling pathway play an important role in the insulin induced Ser-9 phosphorylation of GSK-3β 

(Sutherland et al., 1993; Welsh and Proud, 1993; Cross et al. 1995). Akt or protein kinase B is an 

important component of the insulin signaling pathway and it has been observed that in response 

to insulin, activation of Akt/PKB takes place. Activated Akt modulates an increase in the Ser-9 

phosphorylation of GSK-3β (Sutherland et al., 1993; Shaw, et al., 1997; Cross et al., 1994, 1995; 

Stambolic and Woodgett, 1994). The negative regulation of GSK-3β activity via the Ser-9 

phosphorylation is a crucial step in the receptor-coupled signaling processes. Much effort has 

been directed to identify the specific kinases used by different receptor coupled signaling 

systems. Different kinases activated in response to different stimuli leads to the inhibitory Ser-9 

phosphorylation of GSK-3β. However the Ser-9 phosphorylation of GSK-3β is reversible and its 

dephosphorylation is mediated by protein phosphatase 1 (PP1) (Zhang et al., 2003). 
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Regulation of GSK-3β activity by protein complex formation  

 Apart from the inhibitory Ser-9 phosphorylation, GSK-3β is regulated by the formation of a 

protein complex mediated by GSK-3β binding proteins. Regulation of GSK-3β by protein 

complex formation is a complicated mechanism which involves proteins like GSK-3β binding 

protein (GBP) (Yost et al., 1998; Farr et al., 200), Axin (Ikeda et al., 1998; Yamamoto et al., 

1999) and the axin related protein named as Axil (Yamamoto et al., 1998) or Conductin (Behrens 

et al., 1998). Presently FRAT1 and FRAT2 are included in the GBP family and regulate GSK-3β 

by forming a protein complex with it (Jonkers et al., 1997; Li et al., 1999; Thomas et al., 1999; 

Yost et al., 1998). An interesting fact about binding of GBP to GSK-3β is that it doesn’t inhibit 

the catalytic activity of GSK-3β towards all its substrates (Thomas et al., 1999). According to 

Thomas et al binding of FRAT1 to GSK-3β inhibits its activity towards β-catenin but not 

glycogen synthase. The binding of GBP family proteins to GSK-3β produces a probable localized 

inhibition of GSK-3β enzyme, partially limiting its phosphorylating activity towards certain 

substrates.  

 As explained GSK-3β forms the β-catenin destruction complex along with axin, APC 

(Adenomatous Polyposis Coli), casein kinase 1 (CK1), protein phosphatase 2A (PP2A) and E3-

ubiquitin ligase β-TrCP (Hart et al., 1996; Behrens et al., 1998; Oxford et al., 1997). β-catenin is 

an important substrate of GSK-3β and the GSK-3β mediated phosphorylation of β-catenin marks 

it for ubiquitin-mediated proteosomal degradation (Behrens et al. 1998; Oxford et al. 1997). Axin 

and APC both are substrates of GSK-3β and phosphorylation of axin and play an important role 

in the assembly of the β-catenin destruction complex (Rubenfeld et al., 1996; Ikeda et al., 1998). 

The GSK-3β of the β-catenin destruction complex induces an increase in the rate of β-catenin 

phosphorylation thus marking it for proteasomal degradation (Rubinfeld et al., 1996; Hedgepeth 

et al., 1999; Farr et al., 2000). The relationship between GSK-3β and axin is mutualistic. Binding 

of axin enhances the activity of GSK-3β similarly the GSK-3β induced phosphorylation of axin 
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stabilizes it from degradation (Yamamoto et al., 1999). There is evidence to support that GBP and 

axin may not bind to GSK-3β simultaneously but compete with one another for protein complex 

formation (Farr et al., 2000). One such regulatory mechanism is elicited by Disheveled (Dsh) 

proteins. Dsh is a negative regulator of GSK-3β, which can bind both to FRAT1 and axin. Dsh 

facilitates the binding of FRAT1 to GSK-3β and simultaneously enhances the disassociation of 

axin from GSK-3β (Li et al., 1999; Krylova et al., 2000). 

 The differential regulation of GSK-3β by protein complex formation indicates that there are 

two populations of cellular GSK-3β, the “free GSK-3β” and the axin “bound GSK-3β”, which is 

part of the β-catenin destruction complex (refer schematic diagram 2 on page 14). There is 

evidence to suggest that the free and bound GSK-3β could be participating in independent and 

different signaling pathways (Ding et al., 2000) (discussed in more detail in chapter 5). 

Competitive inhibition  

GSK-3β is a Mg
2+ 

and ATP dependent enzyme. Any interference with the binding of Mg
2+ 

ions and ATP to the GSK-3β enzyme will restrict its kinase activity. Some of the GSK-3β 

inhibitors act either by competing with Mg
2+ 

or ATP or both thus inhibiting the enzyme. 

(explained in Table 3) 

 

GSK-3β inhibitors 

 The most desired characteristics in an inhibitor are its specificity and potency towards the 

target proteins. There are various classes of GSK-3β inhibitors and Table 3 provides a 

comprehensive list of different GSK-3β inhibitors and their specificity towards other kinases. The 

simplest among the various classes of GSK-3β inhibitors are the metal cation group.   
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Lithium – an efficient GSK-3β inhibitor 

Lithium (Li
+)

 is a monovalent metal cation that acts as an efficient inhibitor of GSK-3β. Li
+ 

is 

the most well characterized metal cation inhibitor of GSK-3β and is commonly used in the form 

of LiCl salt (Klein and Melton, 1996, Stambolic et al., 1996). Li
+
 inhibits the activity of GSK-3β 

both directly and indirectly (Jope, 2003). GSK-3β is a Mg
2+ 

dependent enzyme and Li
+ 

inhibits 

GSK-3β by directly competing with Mg
2+ 

ions
 
for the magnesium binding sites (Ryves and 

Harwood, 2001; Ryves et al., 2002). Like insulin, Li
+ 

too leads to an increase in the inhibitory 

Ser-9 phosphorylation in a wide variety of cells thereby inhibiting GSK-3β enzyme indirectly 

(Zhang et al., 2003). According to Zhang et al Li
+ 

induces an increase in the Ser-9 

phosphorylation of GSK-3β by perturbing the GSK-3β-TIMAP-PP1 feed back loop. The Li
+ 

induced inhibition of protein phosphatase 1 (PP1) leads to a build up of pSer-9-GSK-3β thus 

accounting partly for the regulation of GSK-3β.  

  From the inhibitory Ser-9 phosphorylation perspective, Li
+
 mimics insulin and has a positive 

effect on glycogen metabolism (Cheng et al., 1983; Bosch et al., 1986; Woo et al., 2000). In 

addition Li
+
 also mimics Wnt ligands and activates the Wnt signaling pathway, which in turn 

leads to nuclear localization of β-catenin (Stambolic et al., 1996; Hedgepeth et al., 1997). Li
+ 

is a 

reasonably selective GSK-3β inhibitor but its inhibitory concentration range is in millimolar (Ki = 

2 mM) (Klein and Melton, 1996). Beryllium (Be
2+

) another metal cation inhibitor of GSK-3β is 

1000 times more potent compared to lithium (Mudireddy et al., 2014). But not much is known 

about the role of Be
2+ 

as a GSK-3β inhibitor. 
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Table 3a. List of GSK-3β inhibitors  

(Adapted from - Cell and Molecular Life Sciences, volume - 64, 2007, 1930-1944, Glycogen 

synthase kinase 3: a key regulator of cellular fate, Forde J.A, Dale T,Table.1 GSK-3 inhibitors; 

with kind permission from Springer Science and Business Media") 

(Adapted with permission from Journal of Cell Science, Doble BW, Woodgett JR. 2003. GSK-3: 

tricks of the trade for a multi-tasking kinase. J Cell Sci 116: 1175-1186.) 

Inhibitor Specific 

example 

Inhibition 

potency 

Mode of action Specificity Reference 

Lithium N/A Ki = 2 

mM 

Competes with 

Mg
2+

, Mimics 

Wnt signaling 

Also inhibits 

IMPase, Fructose 1,6 

biphosphate, IPPase, 

BPNT, 

Phosphoglucomutase 

(PGM) 

Ryves and 

Harwood, 

2001; 

Klien and 

Melton, 

1996; 

York et 

al., 2001; 

Gurvich 

and Klein, 

2002; Ray 

et al., 

1978 

      

Bivalent 

Zinc 

N/A IC50 = 15 

µM 

Undetermined; 

doesn’t compete 

for substrate 

N/A Ilouz et 

al., 2002 

Beryllium  N/A IC50 = 6 

µM 

Competes with 

Mg
2+

 and ATP 

Also inhibits cdc 2 Ryves et 

al., 2002 

Anilino 

maleimides 

SB216763 

and 

SB415286  

IC50 = 10 

– 30 nM 

ATP competitor Doesn’t inhibit a 

range of other 

kinases 

Couglan et 

al., 2000; 

Smith et 

al., 2001 

Bisindole 

malemides 

Ro 31-8220, 

GF 109203x 

IC50 = 5 – 

170 nM 

ATP competitor Also inhibits PKC Hers et al., 

1999 
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Table 3b. List of GSK-3β inhibitors  

  

Inhibitor Specific 

example 

Inhibition 

potency 

Mode of 

action 

Specificity References 

Bisindole 

malemides 

Ro 31-8220, 

GF 109203x 

IC50 = 5 – 

170 nM 

ATP 

competitor 

Also inhibits PKC Hers et al., 

1999 

Aldisine 

alkaloids 

hymenialdisi

ne 

IC50 = 5 – 

10 nM 

ATP 

competitor 

Also inhibits MEKs, 

CK1 and CDKs 

Meijer et 

al., 2000; 

Tasdemir et 

al., 2002 

Aloisines aloisine A IC50 = 0.4 

– 85 µM 

ATP 

competitive 

Also inhibits 

CDK1/cyclin B and 

CDK5 

Mettey et 

al., 2003 

Indirubins 6-

bromoindiru

bin-3’-oxime 

aka BIO 

IC50 = 5 – 

50 nM 

ATP 

competitor 

Also inhibits CDKs Meijer et 

al., 2003; 

Leclerc et 

al., 2001 

Paullones Alsterpaullo

ne 

IC50 = 4 – 

80 nM 

ATP 

competitor 

Also inhibits CDKs 

and mMDH 

Knockaert 

et al., 2002; 

Leost et al., 

2002 

Pseudo 

substrate 

peptide 

N/A Ki = 0.7 

mM 

Substrate 

competitor 

Specific Dajani et 

al., 2001 
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GSK-3β: A therapeutic target 

 In recent times GSK-3β has emerged as an important therapeutic target because of its role in 

the etiological development of different abnormalities and diseases. It is important to identify 

potent inhibitors of GSK-3β so as to characterize and understand the impact of GSK-3β 

deregulation. GSK-3β inhibitors could have therapeutic potential in the pathophysiological 

process involving hyper active GSK-3β. For example in patients suffering from diabetes milletus 

type 2 and neurological disorders; inhibitors of GSK-3β could serve the purpose of a potential 

therapeutic agent. It has also been observed that inhibition of GSK-3β leads to an increase in 

cellular senescence, apoptosis and sensitization of tumor cells to ionizing radiation (Thotala et al., 

2008) and chemotherapeutic agents (Miyashita et al., 2009). 

 It has been reported that the levels and activity of GSK-3β are elevated in diabetic and obese 

mice (Elder-Finkelman et al., 1999). There is a great pharmaceutical interest in identifying 

compounds which can mimic insulin and repress GSK-3β activity especially in patients suffering 

from type 2 diabetes. GlaxoSmith Kline developed GSK-3β inhibitors belonging to the malemide 

group and these compounds facilitated the activation of glycogen synthase in liver cells (Coghlan 

et al., 2000).  

 Li
+
,
 
another GSK-3β inhibitor, is already in use as a mood stabilizer. Li

+ 
treatment leads to 

slight stimulation of the glucose uptake as well as an increase in the translocation of glucose 

transporter GLUT4 to the plasma membrane in 3T3-L1 and rat adipocytes (Chen et al., 1998; 

Orena et al., 2000; Summers et al., 1999), indicating the potential therapeutic role the GSK-3β 

inhibitors could play. 

 The use of GSK-3β inhibitor for therapeutic applications sounds exciting and promising but it 

also raises serious concerns about the unwanted outcomes, which could result from the inhibition 

of GSK-3β. One of the primary concerns is the specificity of GSK-3β inhibitors, majority of the 
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GSK-3β inhibitors seems to be regulating other related kinases as well (explained in Table 3). A 

more serious problem that could arise due to inhibition of GSK-3β is the stabilization and nuclear 

localization of β-catenin. The abnormal accumulation of β-catenin due to different reasons is 

associated with the development of various cancers especially colorectal cancers (Thakur and 

Mishra, 2013). It has been reported that GSK-3β inhibitors developed by GlaxoSmith Kline leads 

to activation of glycogen synthase but also causes dramatic increase in the levels of β-catenin 

(Cross et al., 2001). Use of the GlaxoSmith Kline GSK-3β inhibitors also stimulates transcription 

of genes regulated by β-catenin (Coghlan et al., 2000). However whether prolonged use of GSK-

3β inhibitors stimulates the formation of tumor or enhances tumorigenesis in animal models is 

still under investigation. There is always a possibility that prolonged use of GSK-3β inhibitors 

could be potentially oncogenic.  

 Taking into consideration the adverse effects elicited due to GSK-3β-inhibiton induced 

nuclear localization of β-catenin, a pathway specific GSK-3β inhibitor is desired. A good GSK-3β 

inhibitor, which can be used for therapeutic purpose would be the one that can inhibit the non-

axin or free GSK-3β. The selective inhibition of non-axin GSK-3β should not have any effect on 

the canonical Wnt/ β-catenin pathway since it is the axin-bound GSK-3β, which is involved in the 

regulation of β-catenin. 

 

Beryllium: An unsung anti-hero 

 Beryllium in the form of BeSO4 salt acts as a potent GSK-3β inhibitor and is less toxic to 

some cells at physiologically effective concentrations, compared to LiCl (Mudireddy et al., 2014). 

Apart from the fact that Be
2+ 

could be competing for both Mg
2+

 and ATP binding sites on GSK-

3β, not much is known about the mechanism by which Be
2+ 

inhibits the activity of GSK-3β 

(Ryves et al., 2002). 
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 Beryllium (Be) is an alkaline earth metal belonging to the group IIA elements. The atomic 

number of beryllium is 4 and it occurs in two oxidation states, Be
0 
and Be

2+
. Beryllium has many 

industrial applications, since it is lighter than aluminium yet stronger than steel. Beryllium was 

discovered by Nicholas-Louis Vauquelin in the year 1797. The French chemist 

AntoineAlexandre-Brutus Bussy and German chemist Friedrich Wohler isolated beryllium 

independently in the year 1828 (de Laeter et al., 2003). Out of the nine known radioisotopes of 

beryllium, beryllium-7 (Be-7) and beryllium-10 (Be-10) are stable with half lives of 53.29 days 

and 1.51x10
6 
years respectively (Hammond, 2000).  

 The cytostatic effects of beryllium were first documented in 1949, using an animal limb 

regeneration model (Thornton, 1949; Chevremont and Firket, 1951). Apart from the study 

published by Ryves et al, no work has been published to examine beryllium’s role as GSK-3β 

inhibitor until it was demonstrated by our lab that beryllium is a 1000 times more potent GSK-3β 

inhibitor (Mudireddy et al., 2014). Traditionally the aim of the research work related to beryllium 

has been to analyze/establish its cytotoxic effects. Beryllium has been classified as a potent 

carcinogen in humans and in rats. Various studies in rats have shown that beryllium when inhaled 

caused a high incidence of lung tumors (Haley et al., 1990; Nikula et al., 1997; Finch et al., 

1998).  

 

The route of beryllium administration plays a crucial role in inducing its toxic effects.  

Acute oral toxicity 

 Oral toxicity of beryllium was tested in rats, where in the LD50 was found to be >2000 mg kg
1 

body weight (Strupp, 2011). The very high dosage of beryllium to induce its lethal effects when 

administered orally suggests that ingestion of soluble form of beryllium is not very harmful. 
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Inhalation toxicity 

 The available literature suggests that delayed toxic effects after acute inhalation of beryllium 

metal has been reported in rats (Haley et al., 1990; Nikula et al., 1997; Finch et al., 1998). It has 

been observed that inhalation of high doses of soluble form of beryllium is known to cause an 

acute beryllium disease, which is an obstructive inflammatory lung disease (Eisenbud, 1955; 

Cummings et al., 2009). 

Dermal sensitization 

 Studies have shown that beryllium did not lead to any dermal sensitization reaction in 

patients who had a history of beryllium sensitization in beryllium plants (Curtis, 1951). 

Cytotoxicity and carcinogenicity 

 In our lab it was observed that beryllium induces cytotoxicity only when used at high 

concentrations (high micromolar range). Different cell lines are fairly resistant to the low 

beryllium dosage (10 – 100 µM). Majority of the research work to establish the role of beryllium 

as a carcinogen has been carried out in rats. A robust carcinogenic response is observed in rats 

after inhalation of beryllium metal at high concentrations. Experimental attempts to reproduce the 

same results in mice and guinea pigs showed no carcinogenic response (Schepers, 1961). It has 

been reported that the potential of beryllium induced lung cancer increases only when the patients 

are exposed to high concentrations (Hollins et al., 2009). In an independent study it was observed 

that exposure of BALB/c-3T3 cells to high concentrations of BeSO4 (100 – 200 µg/ml or 0.5 – 1 

mM) caused an increase in the transformation efficiency (Keshava et al., 2001). From the 

epidemiological studies it can be speculated that beryllium is hazardous when inhaled at high 

dosage. The studies indicating the carcinogenic role of beryllium has been mostly centered on the 

use of beryllium metal. It was observed that beryllium when inhaled in the form of beryllium 

metal or beryllium oxide caused lung cancer in rodents (Gordon and Bowser, 2003). However 
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there is no evidence to suggest that beryllium in form of salt could be a potentially strong 

carcinogen. 

 The probable carcinogenic role of particulate beryllium cannot undermine the potential of 

beryllium salt as a potent GSK-3β inhibitor. In our study we have used beryllium in the form of 

BeSO4.4H2O and investigated the intracellular effects of beryllium treatment at molecular level in 

different cell lines. The focus of this study was to investigate  beryllium as a biologically relevant 

GSK-3β inhibitor. We also tried to understand the inhibitory mechanisms that play an important 

role in the beryllium induced inhibition of GSK-3β. 
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CHAPTER 3 

 

Dose Response Curve – survey of different cell lines to analyze their sensitivity towards 

BeSO4 

Introduction 

 The aim of this study is to analyze and document the cytostatic/cytotoxic effects of Be
2+ 

on 

different mammalian cell lines. Cell lines selected for this study were cultured in media 

supplemented with Be
2+ 

in the form of BeSO4.4H2O. It is imperative to have prior knowledge 

about the behavior of different cell lines when cultured in the presence of beryllium because cell 

signaling studies could be highly cell type specific. Having a good idea about the sensitivity of 

different cell line towards BeSO4 will help us in selecting the correct cell line. Some cell lines 

could be highly sensitive or highly resistant to BeSO4 making them unsuitable for the present 

study. It was observed that beryllium caused an increase in the cell division time or doubling time 

of HFL-1 cells (human lung fibroblasts) (Absher et al., 1983). Treatment with beryllium
 
seems to 

be inducing diametrically opposite effects on cells. Beryllium is known to promote 

carcinogenesis (Wagoner at al., 1980) implying that it is capable of inducing unregulated cell 

proliferation. It has also been demonstrated that beryllium induces cytostatic effects in the form 

of cellular senescence indicating that beryllium can effectively regulate cellular growth (Coates et 

al., 2007; Gorjala and Gary, 2010).  

 In order to analyze the sensitivity of different cell lines towards BeSO4 a “dose response 

curve” was obtained. Different mammalian cell lines are cultured in the presence of beryllium salt 

over a period of nine days. The cell numbers are monitored on day3, 6 or 9. The effect of 

beryllium on the survival of mammalian cells can be quantified form the cell counting experiment 
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(DRC curves). This survey includes the dose response curve data of 8 different mammalian cell 

lines. This survey will provide an insight into the senstivity of mammalian cells towards BeSO4. 

 

Materials and methods 

Cell lines 

 Cell lines B35, C6, Caki-1, IMR 32, NIH/3T3, MCF-7, T47D were purchased from ATCC 

(Manassas, VA). The SF539 cell line was purchased from National Cancer Institute.  

Cell culture media 

 RPMI 1640 HEPES (cat#23400-021, Gibco) supplemented with 10% fetal bovine serum 

(FBS) and 1x antibiotic-mycotic was used for culturing B 35, C6, Caki-1, IMR 32 and SF539 cell 

lines. Only for NIH/3T3 cells, RPMI 1640 was supplemented with 10% bovine growth serum 

(BGS) instead of FBS. For MCF-7 and T47D cell line the RPMI 1640 was supplemeted with 

growth factors – 344.3 pM insulin and 1 nM β-estradiol. 

Dose response curve - cell counting 

 Cells were cultured in 60 mm CELLSTAR cell culture dishes (cat 664 160) at 37   C using a 

5% CO2 incubator. Cells were dosed with culture media supplemented with appropriate 

concentrations of BeSO4 and the dosing day was counted as Day 0. On Day 3 the cells were 

collected by trypsinization using 0.5 ml trypsin (0.05% Trypsin-EDTA). The cells were collected 

by adding 2.5 ml of RPMI (3.5 ml RPMI + 0.5 ml trypsin = total 3 ml cell suspension). Cells 

were counted using a cell counter .0.5 ml of the total cell suspension from day 3 was added to a 

new 60 mm culture dish. The cells were allowed to grow till day 6 and were trypsinized again, 

counted in a manner similar to day 3. 0.5 ml of cells from the total 3 ml cell suspension from day 
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6 was added to a new 60 mm dish. The process was repeated again on Day 9 with the exception 

that the cells were discarded instead of re seeding.  

Note: Cells have to be seeded in the range of 1.5–2.0 x 10
6 

cells/100 mm dish to obtain sub 

confluency (50-60%) after approximately 12 hr incubation  

Data analysis 

 The day 3, day 6 and day 9 cell counts were fitted onto a plot using non-linear regression. 

The effect of BeSO4 on the different cell lines was represented as % of control (untreated cells) on 

the y-axis and the log values of BeSO4 concentration on the x-axis. GraphPad Prism v6.0c (Mac 

OS) was used for curve fitting and calculating IC50 values. 

 

Results 

 Beryllium in the form of BeSO4.4H2O was used at concentrations ranging from 0, 0.3, 1, 3, 5, 

10, 30, 100, 300, 500, 1000 or 3000 µM. The IC50 values were calculated using the day 6 data. 

The day 3 and day 9 DRC data was not used for calculating the IC50 values because the beryllium 

resistant cell lines may not show optimum response by day 3. The 9 day BeSO4 treatment could 

be extremely stringent on the BeSO4 sensitive cell lines hence the day 6 data was used to calculate 

the IC50 values.The results in Fig. 1a, Fig. 1b and Fig. 1c demonstrates that all cell lines do not 

respond uniformly to BeSO4. Some of the cell lines are sensitive to beryllium while others are 

resistant. The results have been summarized in table 4.  
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Fig. 1a Day 3 dose response curve. Each curve represents the response of individual cell lines to 

concentrations of BeSO4 ranging from 0 – 3000 µM on day 3.  The day 3 data was not used for 

calculating the IC50 values because the cyto toxic effect of  BeSO4 may not manifest correctly at a 

short exposure time i.e. day 3, especially for BeSO4 resistant cells lines. 
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Fig. 1b Day 6 dose response curve. Each curve represents the response of individual cell lines to 

concentrations of BeSO4 ranging from 0 – 3000 µM on day 6. The day 6 data was used to 

calculate the IC50 values. Day 6 data was selected because by day 6 the cells are not under 

exposed nor over exposed to the inhibitory cytotoxic/cytostatic effects of BeSO4. 
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Fig. 1c Day 9 dose response curve. Each curve represents the response individual cell lines to 

concentrations of BeSO4 ranging from 0 – 3000 µM on day 9. The possibility of cells being over 

exposed to BeSO4 might interfere with the correct IC50 calculation. The day 9 data was not used to 

calculate the IC50 values.  
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Table 4. IC50 values of BeSO4 for different cell lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell Line  IC50 value 

(µM BeSO4) 

 

1 B 35 34.50 

2 C6 5.27 

3 Caki-1 4.93 

4 IMR 32 37.94 

5 MCF-7 136.1 

6 NIH/3T3 7.59 

7 T47D 190.9 

8 SF 539 2.9 
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Discussion 

 The DRC analysis clearly shows that not all cell lines respond uniformly to BeSO4.  In this 

study the T47D cell line was found to be the most resistant to BeSO4 followed by MCF-7, IMR 

32 and B35. SF539 was found to be the most sensitive towards BeSO4 followed by C6, Caki-1 

and NIH/3T3. In order to investigate the intra cellular effects of beryllium on mammalian cells it 

is essential to choose a cell line that is not too resistant to the beryllium salt. If a cell line is too 

resistant to beryllium treatment then it could be possible that the particular cell type may not be a 

good system to study the beryllium induced intra cellular effects. If a cell line is too sensitive to 

beryllium salt treatment then it would be difficult to recover sufficient number of viable cells 

after Be
2+ 

treatment for further processing (for example – generating western samples). Hence cell 

lines that can fairly tolerate beryllium treatment are usually selected for further studies. 

 We have included cell lines of different lineages in our survey Table 4 & 5. It is observed that 

cell lines of mammary lineage (MCF-7&T47D) seems to be resistant to higher concentration of 

beryllium salt with an IC50 value range of approximately 150 µM (Table 4). In an independent 

study it was observed that RKO cells (human colon carcinoma) were found to be resistant to 

higher concentrations of beryllium with an IC50 value of 440 µM (Gorjala, 2012).  

 GSK-3β plays an important role in the regulation of microtubule associated neuronal protein 

tau. Tau protein is involved in several functions associated with neurons (Liu et al., 1999; Avila 

et al., 2004; Fuster-Matanzo et al., 2009) GSK-3β induces phosphorylation of tau protein that 

resembles the Alzhemer’s disease-like induced tau-phosphorylation (Hanger et al., 1992; Yang et 

al., 1993; Woods et al., 2001). Tau protein seems to be playing an important role in cell lines that 

are of neuronal lineage. Hence we included neuronal cell lines like B35, C6, IMR-32 and SF-539 

in our study for potential use in future work related to GSK-3β-tau protein. It was observed that 

the neuronal cell lines can tolerate optimum concentration of BeSO4 (IC50 values 3 – 30 µM). 
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Independently it was also observed that additional neuronal cell lines A172 and U87MG (Gorjala, 

2012) also showed a similar trend in their response to beryllium treatment as observed in our 

study.  

 It can be summarized that cell lines of mammary and colorectal lineage included in our study 

seems to be resistant to concentrations higher than 100 µM of BeSO4. The lone cell line 

representing the human kidney cells were found to be sensitive to BeSO4 (IC50 = 4.93 µM). 

However cell lines representing neuronal lineage seem to be respond to a range of different 

concentrations of BeSO4 For example SF-539 was found to be very sensitive to Be
2+ 

treatment 

(IC50 = 2.9 µM). However, most of the other neuronal cell lines like C6, A172 and U87MG were 

found to be responsive to optimum concentrations of BeSO4 (approx 10 µM).  

 The rate of BeSO4 uptake by these cell lines could be one of the possible reasons for their 

differential sensitivity towards BeSO4. ICP MS analysis could provide an idea as to which cell 

lines fail to uptake BeSO4 from the surrounding media. 
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Table 5 General information about cell lines used in this study (www.atcc.org) 

 

 

 

 

S. 

No 

Cell 

Line 

ATCC info Species Origin, Type TP53 status Refrences 

1 

 

 

B35 CRL-2754 Rattus 

norvegicus 

Neuronal, 

neuroblast 

NA NA 

2 

 

 

Caki-1 HTB-46 Homo 

sapiens 

Kidney, clear 

cell carcinoma 

Wild type Jia et al., 

1997. 

3 

 

 

C6 CCL-107 

 

Rattus 

norvegicus 

Neuronal, 

glioma 

Wild type Asai et al., 

1994. 

4 

 

 

IMR-32 CCL-127 Homo 

sapiens 

Neuronal, 

neuroblast 

Wild type NA 

5 

 

 

MCF-7 HTB-22 Homo 

sapiens 

Breast, 

adenocarcinoma 

Wild type Wasielewski 

et al., 2006. 

6 

 

 

T-47D HTB-133 Homo 

sapiens 

Breast, 

Ductal 

carcinoma 

Mutated Nigro et al., 

1989. 

7 

 

 

NIH/3T3 CRL-1658 Mus 

musculus 

Embryo, 

fibroblast 

NA  

8 

 

 

SF539 NCI-60 cell 

line* 

Homo 

sapiens 

Neuronal, 

Glioma 

Mutated Forbes et 

al., 2010. 

9 

 

 

A172 CRL-1620 Homo 

sapiens 

Neuronal, 

Glioma 

Wild type Mirzayans et 

al., 2005 

10 

 

 

U87MG HTB-14 Homo 

sapiens 

Neuronal, 

Glioma 

Wild type Van Meir et 

al., 1994. 

11 

 

 

HFL-1 CCL-153 Homo 

sapiens 

Fetus lung, 

fibroblast 

NA NA 
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CHAPTER 4 

 

Beryllium a potent GSK-3β inhibitor 

Introduction 

 Beryllium (Be
2+

) is a metal cation inhibitor of GSK-3β. The other metal ions which are 

included under this group are lithium (Li
+
) and zinc (Zn

2+
). Lithium is the most well characterized 

metal cation inhibitor of GSK-3β, which mimics both insulin (Cheng et al., 1983; Bosch et al., 

1986; Woo et al., 2000) and Wnt ligands (Stambolic et al., 1996; Klein and Melton, 1996; 

Hedgepeth et al., 1997). The effects of lithium treatment on GSK-3β at molecular level and the 

underlying inhibitory mechanisms have been studied by different research groups. Some of the 

important points related to lithium’s role as GSK-3β inhibitor can be summarized as follows: 

 Li
+ 

treatment leads to an increase in the inhibitory Ser-9 phosphorylation of GSK-3β (Zhang et 

al., 2003). 
 

 Li
+
 mimics Wnt ligands and activates the Wnt signaling pathway (Stambolic et al., 1996; 

Hedgepeth et al., 1997).
 

 Ryves and Hartwood reported that Li
+ 

competes with Mg
2+ 

ions for the Mg
2+

- binding sites of 

GSK-3β enzyme. 
 

 Li
+ 

mimics the GSK-3β-inhibitory action of both insulin and Wnt ligands (Cheng et al. 1983; 

Bosch et al. 1986; Woo et al. 2000; Stambolic et al., 1996)
 

 Li
+
 is a well characterized GSK-3β inhibitor with a Ki value of 2 mM (Klein and Melton, 

1996). Li
+ 

is a fairly specific inhibitor of GSK-3β but it also inhibits other kinases (explained in 

Table. 3). Be
2+ 

is a GSK-3β inhibitor eliciting its GSK-3β - inhibitory action at a much lower 

concentration compared to the Ki value of Li
+ 

(Mudireddy et al., 2014). The IC50 value of Be
2+ 

is 6 
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µM, which is much lower than the IC50 value of Li
+ 

required for GSK-3β inhibition (Ryves et al., 

2002). This preliminary study is to investigate whether Be
2+ 

is a better and potent GSK-3β 

inhibitor compared to the other metal ion Li
+
. 

 There is a great deal of information explaining the role/mechanism of Li
+ 

as a GSK-3β 

inhibitor but not much is known about Be
2+

. Except for the information that Be
2+ 

competes for 

both Mg
2+ 

and ATP binding sites on GSK-3β nothing much is known about its inhibitory effects 

on GSK-3β. There are many unanswered questions about beryllium’s role as a potent GSK-3β 

inhibitor. 

 Can beryllium inhibit the activity of GSK-3β?  

 How potent/efficient is beryllium compared to lithium in terms of GSK-3β inhibition? 

 Is beryllium a specific GSK-3β inhibitor? 

 What could be the underlying inhibitory mechanism behind beryllium induced inhibition 

of GSK-3β? 

 In this study we investigated the effect of Be
2+

 on the kinase activity of pure recombinant 

GSK-3β enzyme in vitro.  In this study we also analyzed the effect of Be
2+ 

on treated cells and 

emphasis was laid to investigate the effect of Be
2+ 

on the viability of cells compared to Li
+
. 

  As explained in the Chapter 2, Ser-9 phosphorylation of GSK-3β plays an important role in 

its regulation. We investigated whether Be
2+ 

can regulate the Ser-9 phosphorylation of GSK-3β.  

Independently, the effect of Be
2+

 on endogenous GSK-3β was also analyzed as part of this 

research project (Mudireddy et al., 2014) but is not part of the thesis. 
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Materials and methods 

Cell culture 

 HFL-1 (human lung fibroblast) and A172 (human glioblastoma) cells were obtained from 

ATCC (Manassas VA). Cells were grown in RPMI 1640 supplemented with 25 mM HEPES, 

10  FBS, and 1x antibiotic-antimycotic (Invitrogen-Gibco) at 37   C in 5% CO2. HEPES was 

included as an auxiliary buffering agent.  

Cell viability assay 

 ApoToxGlo Triplex assay (Promega-cat#G6321, lot# 32439) was used to assess the cellular 

protease activity in cultured cells. This assay simultaneously measures the activity of two cellular 

proteases generically called as the live cell protease and the dead cell protease. The live cell 

protease activity is present only in the intact viable cells and is measured using a fluorogenic, 

cell-permeant, peptide substrate (glycyl-phenylalanyl-aminofluorocoumarin; GF-AFC). The cell-

permeant substrate enters the live intact cells where it is acted upon and cleaved by the live cell 

protease. The cleaved cell-permeant substrate generates a fluorescent signal proportional to the 

number of live cells. The other substrate in the assay is a fluorogenic cell-impermeant peptide 

substrate (bis-alanylalanyl-rhodamine 110; bis-AAF-R110). This cell-impermeant substrate is 

inaccessible to the live cell protease. The live cell protease becomes inactive upon loss of 

membrane integrity and leaks into the culture medium. The dead cell protease acts upon the 

second fluorogenic substrate and generates a fluorescent signal, which is different from the live 

cell signal. The live cell and dead cell proteases produce different fluorogenic products, AFC and 

R110 respectively. These products have different excitation and emission spectra allowing them 

to be detected simultaneously (Niles et al., 2007). A172 cells were cultured in the presence of 

different concentrations of beryllium and lithium for 24, 48 and 72 hr. The cells were initially 

cultured in 60 mm culture dishes and were trypsinized, counted and reseeded into 384 well plates 
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at 5000 cell/well. Proper care was taken to ensure that cells are under the influence of appropriate 

concentrations of the inhibitors for the above mentioned treatment periods. After the conclusion 

of the treatment time i.e at 24, 48 or 72 hr, the substrates from the ApoToxGlo Triplex (Promega) 

was added to the cells in the 384 well plates. The plate was then incubated for 30 min at 37   C. 

The live cell (ex 400 nm, em 505 nm) and dead cell fluorescence (ex 485 nm, em 520 nm) was 

measured using a Tecan M1000 plate reader.  

FRET based assay for analyzing in vitro kinase activity of enzymes  

 The z-Lyte is a FRET based biochemical assay that can be used to analyze the kinase activity 

of different enzymes. The assay kit provides customized substrate peptides that can be 

phoshorylated by the candidate enzyme whose kinase activity is to be tested. The z-lyte assay will 

be used to analyze the effect of BeSO4 and LiCl on the activity of pure recombinant proteins - 

GSK-3β and PKA.  

z-Lyte FRET assay principle: 

 The z-Lyte Ser/Thr peptide #9 (#PV3324) {sequence derived from glycogen synthase I 

(PRPASVPP(pS)P(pS) and the z-Lyte Ser/Thr peptide #1 (#PV3174) {sequence derived from 

porcine pyruvate liver kinase (LRRASLG)} were used as substrates for GSK-3β and PKA 

respectively. The peptide substrates are labeled with two fluorophores one at each end, which act 

as a FRET pair. In this case the peptide substrates are labeled with methyl coumarin (FRET 

donor) at one end and fluorescein (FRET acceptor) on the other end. The substrate peptides 

phosphorylated at the designated Ser residues will be immune to the peptide-cleavage activity of 

site-specific protease used in this assay. The substrate peptides phosphorylated at the designated 

Ser residues will not be cleaved and maintain the FRET pair thereby emitting a detectable 

fluorescence signal. Conversely the un-phosphorylated peptide substrate will be cleaved resulting 

in the loss of the FRET pair (loss of fluorescence signal as well)  
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 Pure recombinant GSK-3β and PKA were used in the kinase assay at a final concentration of 

1 ng/reaction in order to maintain the final or over all phosphorylation capacity of the enzyme at 

50% rather than 100% (this was done avoid the saturation of enzyme activity). It is important to 

prepare the inhibitors in the kinase buffer (50 mM HEPES, pH 7.5, 10 mM MgCl2, 1 mM EGTA, 

0.01% BRIJ-35, 100 µM ATP) only. The enzyme (1 ng/reaction) and the substrate peptides (2 

µM – final concentration) were incubated for 60 min at 25  C in a reaction volume of 20 µL. The 

kinase reaction was terminated by adding the development reagent A (site specific protease) and 

incubating the reaction mix for 60 min at 25  C, followed by the addition of the stop solution. The 

reaction mix is then transferred to a 96 well plate and the fluorescence is measured using Tecan 

M1000 platereader (coumarin fluorescence - ex 400 nm, em 445 nm) and fluorescein florescence 

- ex 400 nm, em 520 nm).  

 In the control samples (no inhibitors) the FRET pair will be intact because of the ability of the 

enzyme to phosphorylate the peptide substrates and shield them from the proteolytic activity of 

development solution A. The fluorescence values are expected to be higher for the control 

samples. If the inhibitors (BeSO4 and LiCl) are successful in inhibiting the kinase activity of the 

candidate enzyme then the phosphorylation of the substrate peptide will be hampered. The 

unphosphorylated or under phosphorylated substrate peptides will be cleaved by the development 

reagent A. The cleavage of the substrate peptides results in the loss of the FRET pair that will 

eventually be translated in the form of low fluorescence signal values. 

 To validate the FRET-kinase assay, the effect of H-89 a PKA specific inhibitor was analyzed 

on purified recombinant GSK-3β and PKA enzymes. 

Important precautions for z-Lyte assay: 
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 In order to maintain the phosphorylation levels at 50% the final enzyme concentration 

has to be approximately 1ng/reaction. (enzyme efficiency keeps decreasing with multiple 

thawing cycles). 

 The BeSO4 and LiCl stocks should always be prepared in the kinase buffer instead of any 

other solvent for best results. 

Emission ratio = Coumarin Emission (445 nm)/Fluorescein Emission (520 nm) 

The % of phosphorylation was calculated by using the formula provided in the assay kit protocol 

(Invitrogen #PV3324). 

% Phosphorylation = 1- {(Emission Ratio * F100%) – C100%}/{(C0% - C100%) + [Emission Ratio 

*(F100% - F0%)]} 

 

Emission Ratio  =  Coumarin/Fluorescein ratio of sample wells 

C100%    =  Average Coumarin emission signal of the 100% Phos. Control 

C0%    =  Average Coumarin emission signal of the 0% Phos. Control 

F100%   = Average Fluorescein emission signal of the 100% Phos. Control 

F0%    = Average Fluorescein emission signal of the 0% Phos. Control 

 

Western blotting 

 Cells were cultured in 100 mm CELLSTAR cell culture dishes (cat#664 160). Total cell 

lysates were prepared from A172 and HFL-1 cells treated with BeSO4.4H2O (lot&filling code: 

413015/1 22001, Fluka) and LiCl (L-8895, Lot#22K0184, sigma) for 24 and 48 hr. MPER buffer 

(Prod#78501, thermo scientific) was used for protein extraction. The MPER buffer was 

supplemented with protease inhibitor (halt protease inhibitor cocktail kit, Pierce cat#78442) and 

phosphatase inhibitors (sodium fluoride - 20 mM, beta glycerol phosphate - 10 mM, sodium ortho 
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vanadate - 0.1 mM, paranitro phenyl phosphate - 20 mM and 1X EDTA). Protein concentration 

was measured by BCA assay (Thermo scientific, #23227) and the protein samples were 

normalized. Samples were run either on 10% SDS PAGE gel or 4-12% gradient SDS-PAGE gels 

(ref#WG1402BX10 from Novex-life technologies) and transferred onto a PVDF membrane 0.2 

µm pore size (Millipore cat#IPFL20200; Bio-Rad. cat#162-0255). Post transfer the membranes 

were blocked in 10% milk or starting block TBS (Prod#37543, thermo scientific - when probing 

with phospho antibodies). The post transfer and blocked PVDF membranes were probed with the 

following primary antibodies separately: anti GSK-3α/β mouse monoclonal (cat#368662, clone 

1H8, EMD Calbiochem), phospho-GSK-3β (Ser-9) affinity purified rabbit polyclonal antibody 

(cat#9336, Cell Signaling Technologies), phospho-GSK-3β (Ser-9) affinity purified mouse 

monoclonal antibody (cat#361527, clone 2D3, EMD-Calbiochem), p53 mouse monoclonal 

(cat#sc-126, clone DO1, Santa Cruz Biotechnology, actin goat polyclonal (cat#1615, Santa Cruz 

Biotechnology). Blots were incubated with the appropriate HRP conjugated secondary antibodies, 

developed with ECL-Plus (GE Healthcare Life Sciences), and imaged using a GE Typhoon 9410 

Variable Mode Imager. 

Antibody information 

 phospho GSK-3β (2D3) (Ser-9): Mouse monoclonal (#361527, EMD-Calbiochem) and goat 

anti-mouse IgG peroxidase (cat#A9917 Sigma Aldrich) 

 Total GSK-3α/β (1H8): Mouse monoclonal IgG2b (cat#sc-368662, EMB – Calbiochem) and 

goat anti-mouse IgG peroxidase (cat#A9917, Sigma Aldrich) 

 p53 DO1: Mouse monoclonal IgG2b (cat#sc-126 Santa Cruz Biotechnology, inc) and goat 

anti-mouse IgG peroxidase (cat#A9917, Sigma Aldrich) 

 Actin: Goat monoclonal IgG2b (cat#sc-1615 Santa Cruz Biotechnology, inc) and bovine anti-

goat IgG-HRP (cat#sc-2350, Santa Cruz Biotechnology, inc) 



47 
 

TR-FRET assay for quantifying the pSer-9 of GSK-3β 

 BacMam-enabled lantha screen cellular assay is an efficient tool to analyze the post 

translational modification of proteins. The LanthaScreen BacMam assay system (Invitrogen - life 

technologies) combines two powerful techniques to generate reliable fluorescence data with 

minimized background. It consists of different components - a modified baculo virus capable of 

infecting mammalian cells and a terbium (Tb) labeled antibody system. The modified bacculo 

virus acts a vector to accomplish the successful expression of a fusion protein (Green Fluorescent 

Protein + protein of interest) in the host cells. After the successful transduction of the host cells 

they are treated with the inhibitors or stimulators for a specific period of time. After the treatment 

cells are lysed and fresh cell lysates are probed with the Tb antibody specific for the post 

translational modification of the candidate protein (fusion protein).  

 In this study the LanthaScreen BacMam reagent (part#PM4355A0, lot#E0272-43882, 

Invitrogen - life technologies) was used to introduce a GFP-GSK-3β fusion protein (Green 

Fluorescent Protein–GSK-3β) into A172 cells. The fusion protein contains the GFP on the N-

terminus, and the full length GSK-3β on the C-terminal side. The GFP and the GSK-3β are 

connected by a short linker. The successful transduction of the A172 cells with the BacMam virus 

can be confirmed by the expression of GFP. The transformed A172 cells numbering 40,000 each 

were then transferred to each well in a 384 well plate and cultured in the RPMI supplemented 

with BeSO4 or LiCl for 24 hr. After the completion of the treatment time, cells were lysed using 

the LanthaScreen cellular assay lysis buffer (PM4355X,  lot#MSN1143-086) supplemented with 

3 nM of the Tb-conjugated anti-pSer9 GSK-3β antibody (PM4312AV, lot#MSN1023-183-3). 

Tecan M1000 plate reader was used to record the Tb fluorescence (ex 332 nm, em 485) and GFP 

fluorescence (ex 395 nm, em 515 nm). Phosphorylation was reported as ((515 nm/485 nm)/GFP 

Fluorescence)*100000. 
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 In the BacMam-enabled lantha screen cellular assay the GFP-GSK-3β fusion protein acts as 

the substrate for the action of BesO4 or LiCl. The Ser-9 phosphorylation of the GSK-3β in the 

fusion protein is assessed by using a Tb-conjugated anti-pSer9 GSK-3β antibody. The binding of 

the terbium labeled anti- pSer9GSK-3β antibody to the substrate (fusion protein) brings the 

terbium close enough to the GFP to support the formation of a successful TR-FRET pair (Time 

Resolved Fluorescence Energy Resonance Transfer). Terbium and GFP forms an effective TR-

FRET pair (David Comley, 2006) which has the added advantage of minimizing the background 

fluorescence interference. In this assay the increase in the Ser-9 phosphorylation of the GFP-

GSK-3β fusion protein will in turn lead to the formation of abundant TR-FRET pairs. More the 

number of successful TR-FRET pairs the higher would be the fluorescence signal and it indicates 

that in the presence of a specific inhibitor at a particular concentration an increase in the pSer9-

GSK-3β is observed. 

Flow cytometry 

 Cells were treated with BeSO4
 
and LiCl for 24 hr. After the treatment period, cells were 

collected by trypsinization, washed with PBS and fixed with 4% formal dehyde. Cells were then 

permeabilized with methanol. Cells were blocked with starting block TBS (prod#37543, thermo 

scientific), supplemented with halt protease and phosphatase inhibitor cocktail (Pierce 

cat#78442). Fixed and blocked cells were then incubated with pSer9-GSK-3β rabbit monoclonal 

antibody (clone D85E12, cat#5558, Cell Signaling Technology) over night at 4  C, followed by 

FITC conjugated goat anti-rabbit secondary antibody (cat#sc-2012, Santa Cruz Biotechnology) at 

0.5 µg/1 x 10
6 

cells. Cells were run on a BD FACSCalibur flow cytometer collecting 20,000 

events per sample each time. Post data collection the FITC channel fluorescence intensity was 

analyzed using CellQuest Pro Software. 
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Microscopy 

Nikon Inverted Microscope Eclipse TE2000-U (dia-illuminator 100W) was used to capture 

bright field images of A172 cells treated with different concentrations of BeSO4 and LiCl. 

Data analysis 

 GraphPad Prism v6 (Mac OS) was used for curve fitting, calculating IC50, performing two-

tailed t-test (unpaired) with P < 0.05 considered as significant. For data sets involving two or 

more groups per treatment; the data was analyzed using one-way ANOVA (P < 0.05 considered 

significant) with post Tukey’s multiple comparision test. 

 

Results 

BeSO4 inhibits the kinase activity of purified recombinant GSK-3β in vitro 

 The Z-Lyte assay, which is a FRET-based kinase assay was used to assess the activity of 

GSK-3β. Purified recombinant GSK-3β enzyme was used in the assay along with the appropriate 

assay buffers. A synthetic peptide was used as the substrate, which has the coumarin and 

fluorescein labels conjugated to its ends. The reaction mix was spiked with different 

concentrations of BeSO4 (µM) or LiCl (mM). The effect of the inhibitors on the kinase activity of 

GSK-3β was analyzed by monitoring the FRET signal intensity. The activity of the pure 

recombinant GSK-3β is directly correlated to the FRET signal. Inhibition of GSK-3β leads to 

decrease in the FRET signal as well.  It is observed that with increasing concentration of Be
2+ 

and 

Li
+
, the activity of pure recombinant GSK-3β is decreasing (Fig. 2a&2b) and it is translated in the 

form of lower fluorescence signal. It is also observed that Be
2+ 

is a much more potent GSK-3β 

inhibitor compared to Li
+
. BeSO4 being effective in micromolar concentrations range compared to 

the effective range of LiCl which is in millimolars. From the in vitro FRET kinase assay the IC50 
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values were calculated as follows; BeSO4 IC50 = 2 µM, LiCl IC50 = 12 mM. The in vitro FRET 

kinase assay demonstrates that Be
2+ 

inhibits the activity of purified recombinant GSK-3β enzyme 

and is much more effective than the other established GSK-3β inhibitor Li
+
.  
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Fig. 2a Effect of beryllium on the in vitro kinase activity of GSK-3β. Pure recombinant GSK-

3β enzyme activity was measured using the FRET-based fluorescence assay. The activity of pure 

recombinant GSK-3β in the absence of inhibitors (control) or in the presence of 0.3, 1, 3, 10, 30, 

100, 300 µM BeSO4 was measured. Enzyme activity is measured as formation of the 

phosphorylated peptide product (mean +/- SD). Data was analyzed using one-way ANOVA (P < 

0.05 considered significant compared to control) by Tukey’s multiple comparison test. GraphPad 

Prism trial version 6.0 for Mac OS X, GraphPad Software, La Jolla California USA, 

www.graphpad.com. (ns = non significant compared to the control, * = P ≤ 0.05, ** = P ≤ 0.01, 

*** = P ≤ 0.001, **** = P ≤ 0.0001). For Be
2+

 the IC50 = 2 µM. 
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Fig. 2b Effect of lithium on the in vitro kinase activity of GSK-3β. Pure recombinant GSK-3β 

enzyme activity was measured using the FRET-based fluorescence assay. The activity of pure 

recombinant GSK-3β in the absence of inhibitors (control) or in the presence of 1, 3, 10, 30, 100, 

300 mM LiCl was measured. Enzyme activity is measured as formation of the phosphorylated 

peptide product (mean +/- SD). Data was analyzed using one-way ANOVA (P < 0.05 considered 

significant compared to control) by Tukey’s multiple comparison test. GraphPad Prism trial 

version 6.0 for Mac OS X, GraphPad Software, La Jolla California USA, www.graphpad.com 

was used. (ns = non significant compared to control, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 

0.001, **** = P ≤ 0.0001). For Li
+
, IC50 = 12 mM. 
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Specificity of Be
2+

 towards other kinases 

 To analyze whether Be
2+ 

is a specific GSK-3β inhibitor, another kinase i.e. protein kinase A 

(PKA) was chosen for the FRET-based kinase assay. Li
+ 

is a fairly specific GSK-3β inhibitor, 

which supposedly has no inhibitory effect towards PKA enzyme (Klein and Melton, 1996). In the 

presence of BeSO4 a decrease in the in vitro kinase activity of PKA is observed (Fig. 3a). On the 

other hand the kinase activity of PKA remains fairly constant in the presence of LiCl at lower 

concentrations 1-30 mM (Fig. 3b).  
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Fig. 3a Effect of Be
2+ 

on the in vitro kinase activity of protein kinsae A (PKA). In vitro PKA 

activity was measured by the FRET-based kinase assay in the absence (control) presence of 0.3, 

1, 3, 10, 30, 100 or 300 µM of BeSO4. Data was analyzed using one-way ANOVA (P < 0.05 

considered significant) by Tukey’s multiple comparison test. GraphPad Prism trial version 6.0 for 

Mac OS X, GraphPad Software, La Jolla California USA, www.graphpad.com was used. (ns = 

non significant, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 0.0001).  
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Fig. 3b Effect of Li
+ 

on the in vitro kinase activity of protein kinsae A (PKA). In vitro PKA 

activity was measured by the FRET-based kinase assay in the absence (control) presence of 1, 3, 

10, 30, 100 or 300 mM of LiCl. Data was analyzed using one-way ANOVA (P < 0.05 considered 

significant) by Tukey’s multiple comparison test. GraphPad Prism trial version 6.0 for Mac OS 

X, GraphPad Software, La Jolla California USA, www.graphpad.com was used. (ns = non 

significant, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 0.0001).  
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Effect of Be
2+ 

and Li
+ 

on the viability of cells 

 Use of BeSO4 and LiCl in culture media is bound to produce physiological and morphological 

effects on mammalian cells especially at higher concentrations. An important observation has 

been the induction of cellular senescence by BeSO4 at concentrations as low as 10 µM (Gorjala 

and Gary, 2010) We wished to investigate the effect of BeSO4 and LiCl on the viability and 

growth of cells. In order to analyze the effect of Be
2+ 

- Li
+ 

treatment on the viability of cells, A172 

cells were cultured in the presence of BeSO4 and LiCl for 24, 48 or 72 hr. The effect of inhibitors 

on the viability of cells was analyzed using a live cell protease based fluorescence assay. The 

viability assay shows that beryllium
 
does not have any major impact on the viability of A172 cells 

even at concentrations higher than its IC50 of GSK-3β (Fig. 4). Lithium caused a significant 

decrease in the number of viable cells at 24 hr; when used at a concentration of 30 mM or 

more.When treated with 10-100 µM BesO4 for 24 hr no major morphological changes were 

observed in A172 cells (appendix II, Fig. 2.1). For LiCl treatment, a concentration above 20 mM 

produced a marked decrease in the number of viable cells (Fig. 4). Morphologically as well A172 

cells treated with 20 mM or higher concentrations of LiCl look very unhealthy (appendix II, Fig. 

2.2) 
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Fig. 4a Effect of BeSO4 and LiCl treatment on cells viability at 24 hr. A172 cells were treated 

with 0, 10, 20, 30, 100 µM BeSO4 or 10, 20, 30, 100 mM LiCl for 24 hr. Cell viability was 

assessed using a fluorogenic substrate that can be cleaved by a protease associated with intact 

viable cells only. Mean intensities (+/- std. dev) are reported here. Data was analyzed using one-

way ANOVA (P < 0.05 considered significantly different from control) by Tukey’s multiple 

comparison test. GraphPad Prism trial version 6.0 for Mac OS X, GraphPad Software, La Jolla 

California USA, www.graphpad.com was used. (ns = non significant compared to the control, * = 

P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 0.0001). 
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Fig. 4b Effect of BeSO4 and LiCl treatment on cells viability at 48 hr. A172 cells were treated 

with 0, 10, 20, 30, 100 µM BeSO4 or 10, 20, 30, 100 mM LiCl for 48 hr. Cell viability was 

assessed using a fluorogenic substrate that can be cleaved by a protease associated with intact 

viable cells only. Mean intensities (+/- std. dev) are reported here. Data was analyzed using one-

way ANOVA (P < 0.05 considered significantly different from control) by Tukey’s multiple 

comparison test. GraphPad Prism trial version 6.0 for Mac OS X, GraphPad Software, La Jolla 

California USA, www.graphpad.com was used. (ns = non significant compared to the control, * = 

P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 0.0001). 
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Fig. 4c Effect of BeSO4 and LiCl treatment on cells viability at 72 hr. A172 cells were treated 

with 0, 10, 20, 30, 100 µM BeSO4 or 10, 20, 30, 100 mM LiCl for 72 hr. Cell viability was 

assessed using a fluorogenic substrate that can be cleaved by a protease associated with intact 

viable cells only. Mean intensities (+/- std. dev) are reported here. Data was analyzed using one-

way ANOVA (P < 0.05 considered significantly different from control) by Tukey’s multiple 

comparison test. GraphPad Prism trial version 6.0 for Mac OS X, GraphPad Software, La Jolla 

California USA, www.graphpad.com was used. (ns = non significant compared to the control, * = 

P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 0.0001). 
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Beryllium has little effect on the Ser-9 phosphorylation of GSK-3β 

 Autoregulation of GSK-3β by the inhibitory Ser-9 phosphorylation is an important 

mechanism by which it is regulated (Frame et al., 2001; Dajani et al., 2001). Lithium treatment 

leads to an increase in the Ser-9 phosphorylation of GSK-3β (Zhang et al., 2003). In order to 

investigate the effect of beryllium on the Ser-9 phosphorylation of GSK-3β A172 and HFL cells 

were cultured in different concentrations of BeSO4 and LiCl for 24 or 48 hr.  Phosphorylation of 

GSK-3β at Ser-9 was assessed by western blotting using a phosphospecific affinity-purified 

rabbit polyclonal and a phosphospecific mouse monoclonal antibody. Li
+ 

treatment caused an 

increase in the Ser-9 phosphorylation of GSK-3β in both A172 (Fig. 5a, b; lane–6, 7, 8) and HFL 

cells (Fig. 5c, d; lane-6, 7, 8). Fig. 5a, b The Li
+ 

treatment induced increase in the Ser-9 

phosphorylation was observed in the 24 & 48 hr samples. However, Be
2+ 

treatment did not elicit 

any drastic change in the Ser-9 phosphorylation of GSK-3β in A172 (Fig. 5a, b; lane–2, 3,4) or 

HFL cells (Fig. 5c, d; lane-3, 4, 5) at 24 or 48 hr. To rule out the possibility that the lack of 

increase in the Ser-9 phosphorylation of GSK-3β is not due to the failure of Be
2+ 

treatment, the 

levels of p53 were assessed in the same samples. Beryllium
 
treatment is known to cause an 

increase in the levels of p53 (Coates et al., 2007; Gorjala and Gary, 2010). As expected Be
2+ 

treatment caused an increase in the level of p53 (Fig. 5a-d), thus the p53 western serves as a 

positive control for Be
2+ 

induced upregulation of protein expression. The total GSK-3α and GSK-

3β levels remained constant in the A172 and HFL cells indicating that the Li
+ 

induced increase in 

the Ser-9 phosphorylation of GSK-3β is not due to the increase in the total GSK-3β levels (Fig. 

5a-d). Actin serves as a loading control (Fig. 5a-d). 
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Fig. 5 Li
+ 

treatment caused an increase in the Ser-9 phosphorylation of GSK-3β and Be
2+ 

does not. The protein levels of total GSK-3α/β, GSK-3β phosphorylated at Ser-9 (using two 

different antibodies), p53 and actin were assessed via western blotting. A172 cells were treated 

with 0, 10, 30, or 100 µM BeSO4 or 0, 10, 20 or 30 mM LiCl. A172 cells - (a) 24 hr or (b) 48 hr; 

HFL cells – (c) hr or (d) 48 hr. 
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Quantitative analysis of the Ser-9 phosphorylation of GSK-3β 

 Li
+ 

is a monovalent metal cation inhibitor of GSK-3β competing for its Mg
2+ 

binding site 

(Ryves and Harwood, 2001) and also leads to an increase in the inhibitory Ser-9 phosphorylation 

at physiologically relevant concentrations. Be
2+ 

too is a metal cation inhibitor of GSK-3β and we 

expected it to have similar effect on the Ser-9 phosphorylation of GSK-3β. On the contrary Be
2+ 

when used at physiologically relevant concentrations did not induce any appreciable change 

(increase) in the Ser-9 phosphorylation of GSK-3β as observed in the western blotting 

experiments (Fig. 5). As an alternate approach a TR-FRET based assay and flow cytometry 

analysis was used to study the effect of Be
2+ 

and Li
+ 

on the Ser-9 phosphorylation of GSK-3β. 

The quantification of the Ser-9 phosphorylation signal from GSK-3β was done via flow 

cytometry. A172 cells were fixed using 4% fomalin solution followed by permeabilization and 

probed with a flow cytometry specific pSer9-GSK3β antibody. It was observed that Li
+ 

treatment 

of A172 cells caused a dose dependent increase in the Ser-9 phosphorylation of GSK-3β. Be
2+ 

treatment had little effect on the Ser-9 phosphorylation of GSK-3β in comparision to Li
+
 (Fig. 6).  

 

 



63 
 

 
 

Fig. 6a Analyzing the effect of Be
2+ 

treatment on the Ser-9 phosphorylation of GSK-3β using 

flow cytometry. A172 cells were treated with 0, 10, 30, 100 BeSO4  for 24 hr. The change in the 

pSer-9 status of GSK-3β was assessed using a pSer9-GSK3β primary antibody and FITC 

conjugated secondary antibody. Each flow cytometry histograms represents the mean 

fluorescence per cell value obtained from independent replicates for each inhibitor used at 

different concentrations. 
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Fig. 6b Analyzing the effect of Li
+ 

treatment on the Ser-9 phosphorylation of GSK-3β using 

flow cytometry. A172 cells were treated with 0, 10, 20, 30 mM LiCl  for 24 hr. The change in 

the pSer-9 status of GSK-3β was assessed using a pSer9-GSK3β primary antibody and FITC 

conjugated secondary antibody. Each flow cytometry histograms represents the mean 

fluorescence per cell value obtained from independent replicates for each inhibitor used at 

different concentrations. 
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 Table 6. Analysis of mean fluorescence/cell (Ser-9 phosphorylation) at 24 hr  

Treatment Duration 
Mean Fluorescence/Cell 

(% of control +/- std dev) 

Control 24 hr 100 (+/- 2) 

10 µM BeSO4 24 hr 98.9 (+/- 1) 

30 µM BeSO4 24 hr 108 (+/- 5) 

100 µM BeSO4 24 hr 120 (+/- 8) 

10 mM LiCl 24 hr 185 (+/- 12) 

20 mM LiCl 24 hr 221 (+/- 8) 

30 mM LiCl 24 hr 245 (+/- 25) 

   

Control 48 hr 100 (+/- 2) 

10 µM BeSO4 48 hr 102 (+/- 4) 

30 µM BeSO4 48 hr 110 (+/- 5) 

100 µM BeSO4 48 hr 105(+/- 2) 

10 mM LiCl 48 hr 200 (+/- 15) 

20 mM LiCl 48 hr 247 (+/- 19) 

30 mM LiCl 48 hr 282 (+/- 3) 
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 As a final verification the TR-FRET lantha screen based assay was used to quantify the effect 

of Be
2+ 

and Li
+ 

on the Ser-9 phosphorylation of GSK-3β. The BacMam virus based transfection 

system was used to introduce the GFP-GSK-3β fusion protein into A172 cells. The transfected 

cells were treated with BeSO4 and LiCl for 24 hr. Cell lysates obtained from the Be
2+ 

or Li
+ 

treated A172 cells were probed with Tb-conjugated antibody that binds to the GFP-GSK-3β 

fusion protein phosphorylated at Ser-9. It leads to the formation of a successful FRET pair with 

Tb serving as the FRET donor and GFP acting as the FRET acceptor. The FRET donor and 

acceptor are brought together to generate a successful FRET signal because of the binding of Tb-

conjugated antibody to the pSer9 of GSK-3β. Increase in the Ser-9 phosphorylation of the GSK-

3β is translated in the form of increase in the FRET signal. Be
2+ 

has no significant effect on the 

Ser-9 phosphorylation of GSK-3β (Fig. 7a). Li
+ 

on the other hand caused a concentration 

dependent increase in the Ser-9 phosphorylation of GSK-3β (Fig. 7b). 
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Fig. 7a Be
2+ 

treatment has no effect on the Ser-9 phosphorylation of GFP-GSK-3β fusion 

protein. A172 cells expressing GFP-GSK3β fusion protein were treated with 0, 10, 30 or 100 µM 

BeSO4 for 24 hr. The Ser-9 phosphorylation of the GFP-GSK-3β was measured using the TR-

FRET assay (mean +/- SD). One-way ANOVA with Sidak’s multiple comparisons test was used 

to obtain P values comparing the each dosage group with its corresponding control group (P 

<0.05 considered as significant; ns - not significant; * - significant). 
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Fig. 7b Li
+ 

treatment induces an increase in the Ser-9 phosphorylation of GFP-GSK-3β 

fusion protein. A172 cells expressing GFP-GSK3β fusion protein were treated with 0, 10, 20 or 

30 mM LiCl for 24 hr. The Ser-9 phosphorylation of the GFP-GSK-3β was measured using the 

TR-FRET assay (mean +/- SD). One-way ANOVA with Sidak’s multiple comparisons test was 

used to obtain P values comparing the each dosage group with its corresponding control group (P 

<0.05 considered as significant; ns - not significant; * - significant). 
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Discussion 

 GSK-3β is an important kinase regulating various signaling pathways. GSK-3β plays a 

critical role in cell divison, cell adhesion and apoptosis (Frame and Cohen, 2001; Doble and 

Woodgett, 2003; Grimes and Jope, 2001). Many important proteins that are part of the cell cycle 

regulation apparatus are putative targets of GSK-3β. p53, p21 CIP1, mdm 2, cyclin D1 are some 

of the important GSK-3β-substrates, which plays an important role in cell cycle regulation and 

are in turn regulated by GSK-3β (reviewed in Sutherland, 2011). De regulation of GSK-3β has 

been associated with many diseases (Grimes and Jope, 2001; Henriksen and Dokken, 2006; 

Smalley and Dale, 1999; Peifer and Polakis, 2000). There is considerable interest towards the 

development of simple and effective GSK-3β inhibitors for therapeutic purpose and also to 

understand the precise role of GSK-β in different signaling pathways. 

 Be
2+ 

is a cytostatic agent and its cytostatic effects were documented for the first time in an 

animal limb regeneration model (Thornton, 1949; Chevremont and Firket, 1951). BeSO4 is known 

to elicit cellular senescence at concentrations as low as 10 µM (Coates et al., 2007; Gorjala and 

Gary, 2010). Work from our lab shows that Be
2+ 

treatment leads to an increase in the level of p53 

and p21 CIP1 (Coates et al., 2007; Gorjala and Gary, 2010; Mudireddy et al., 2014). There is a 

strong possibility that the cytostatic effects of Be
2+ 

could be due to the up regulation of cell cycle 

regulators like p53 and p21 CIP1. It has been reported that proteins involved in cell cycle 

regulation such as p53, p21 CIP1, cyclin D1 and mdm2 are important substrates of GSK-3β 

(reviewed in Sutherland, 2011). It could be possible that the cytostatic effects elicited by 

beryllium could be partly because of the ability of beryllium to regulate GSK-3β’s activity 

towards its putative substrates (cell cycle regulators). GSK-3β is a Mg
2+ 

and ATP dependent 

enzyme and it has been reported by Ryves et al that Be
2+ 

could inhibit GSK-3β enzyme
 
by 

competing for both the Mg
2+ 

and ATP binding sites (Ryves et al., 2002). The available 

information suggests that beryllium could possibly function as an effective GSK-3β inhibitor. 
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 Historically majority of the research work related to beryllium has been directed towards 

establishing its propensity to act as a carcinogen. Beryllium at high concentrations and when 

administered via the nasal route could act as a potential carcinogen (Haley et al., 1990; Nikula et 

al., 1997; Finch et al., 1998). Moreover beryllium seems to be effective as a carcinogen in rats but 

not in other mammalian models such as mice and guinea pigs (Schepers, 1961). The question 

whether Be
2+ 

could act as a potential GSK-3β inhibitor was ignored till it was shown that Be
2+ 

in 

the form of BeCl2 can inhibit the in vitro kinase activity of GSK-3β (Ryves et al., 2002). We have 

used Be
2+ 

in the form of BeSO4.4H2O and demonstrated that it can inhibit the in vitro kinase 

activity of the pure recombinant GSK-3β protein (Fig. 2a). In our study we found the IC50 of Be
2+ 

to be ~ 2 µM, which is quite close to the IC50 = 6 µM value reported by Ryves et al. Be
2+ 

was 

found to be a potent GSK-3β inhibitor acting at a much lower concentration compared to Li
+
. 

Be
2+ 

was also found to be inhibiting the activity of endogenous GSK-3β activity in A172 and 

HFL cells (Mudireddy et al., 2014). The ability of Be
2+ 

to inhibit the activity of GSK-3β at low 

concentrations has the added advantage of Be
2+ 

being much less toxic to the cells compared to Li
+
 

at physiologically relevant concentrations (Fig. 4). The low IC50 value of Be
2+ 

combined by its 

low cytotoxicity, points to the fact that Be
2+

 could act as a much more potent and effective GSK-

3β inhibitor compared to Li
+
. 

 To investigate whether Be
2+ 

can inhibit the activity of other related kinases, protein kinase A 

(PKA) was selected as a negative control.  PKA is closely associated with regulation of GSK-3β 

and is known to phosphorylate GSK-3β at the Ser-9 residue (Fang et al., 2000; Li et al., 2000; 

Tanji et al., 2002). Hence PKA could serve as a good candidate to investigate the specificity of 

beryllium towards other kinases. The effect of Be
2+ 

on the kinase activity of pure recombinant 

PKA was analyzed using the FRET- based kinase assay (Fig. 3a). Be
2+ 

seems to be inhibiting the 

in vitro kinase activity of purified recombinant PKA protein. Li
+ 

supposedly has no effect on the 

kinase activity of PKA (Fig. 3b) at a concentration that is within the range of its GSK-3β-IC50. 
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However at high concentrations i.e 100 – 300 mM, Li
+ 

seems to be inhibiting the in vitro kinase 

activity of pure recombinant PKA protein (Fig. 3b). To address the specificity of Be
2+ 

towards 

other kinases it is necessary to analyze the effect of Be
2+ 

treatment on other closely related 

kinases. To provide a comprehensive answer whether Be
2+ 

is an indiscriminate kinase inhibitor or 

a specific GSK-3β inhibitor it would be prudent to include as many kinases in this study. 

 The most surprising aspect of this study is the lack of prominent increase in the Ser-9 

phosphorylation of GSK-3β (Fig. 5, 6, 7a). Unlike Li
+
,
 
Be

2+ 
has minimal effect on the Ser-9 

phosphorylation status of GSK-3β. The Ser-9 residue on the N-terminal tail of the GSK-3β 

protein plays an important role in its regulation. The N-terminal Ser-9 residue when 

phosphorylated acts a pseudo substrate thus blocking the actual substrate-GSK-3β interaction. 

The inhibition of GSK-3β induced by the Ser-9 phosphorylation is reversible and the GSK-3β-

TIMAP-PP1 feedback loop plays a critical role in it (refer schematic diagram 3 on page 73). 

TIMAP serves as a substrate/target of GSK-3β and is an important regulatory subunit of protein 

phosphatase 1 (PP1). GSK-3β mediated phosphorylation of TIMAP, up regulates the phosphatase 

activity of PP1 (Li et al., 2007). The phosphatase activity of PP1 facilitates a decrease in the 

phosphorylation at Ser-9 of GSK-3β, there by having a positive effect on the GSK-3β-activity. 

The activation of GSK-3β has an enhancing effect on the activity of PP1 via the GSK-3β 

mediated TIMAP phosphorylation. Activated PP1 in turn leads to decrease in the pSer-9 of GSK-

3β. Hence GSK-3β and PP1 regulate each other via a positive feedback loop. Activated GSK-3β 

leads to enhanced phosphatase activity of PP1; PP1 in turn works towards decreasing the pSer-9 

of GSK-3β. Li
+ 

inhibits the activity of GSK-3β by inducing Ser-9 phosphorylation, which in turn 

negatively regulates the phosphatase activity of PP1. The Li
+ 

induced inhibition of GSK-3β has a 

compounding effect on the pSer9-GSK-β status because of the perturbation in the GSK-3β-

TIMAP-PP1 feedback loop (Zhang et al., 2003). It is quite plausible that the lack of appreciable 
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increase in the Ser-9 phosphorylation of GSK-3β in the presence of Be
2+ 

could be because of its 

inability to upset the GSK-3β-TIMAP-PP1feedback loop. 

 However the GSK-3β-TIMAP-PP1feedback loop may not be the only mechanism by which 

Li
+ 

regulates the Ser-9 phosphorylation of GSK-3β. It has been observed that Li
+ 

treatment leads 

to activation and phosphorylation of phosphotidylinositol 3-kinase (PI3K) and the 

threonine/serine kinase Akt/PKB respectively (Chalecka-Franaszek and Chuang, 1999). PI3K and 

Akt/PKB are important constituents of the insulin signaling pathway, which ultimately leads to 

activation of glycogen synthase via the inhibition of GSK-3β. Akt/PKB is known to 

phosphorylate GSK-3β at Ser-9 and inactivate it (Sutherland et al., 1993; Cross et al., 1994, 1995; 

Stambolic and Woodgett, 1994). Li
+ 

is an insulin mimetic agent (Cheng et al., 1983; Bosch et al., 

1986; Woo et al., 2000). It is possible that like insulin, Li
+ 

too caused an increase in the Ser-9 

phosphorylation of GSK-3β via the activation/phosphorylation of Akt/PKB. However according 

to some reports Li
+ 

has no effect on the phosphorylation of Akt/PKB (De Sarno et al., 2002). 

Another possible explanation for the minimal increase in the Ser-9 phosphorylation of GSK-3β in 

response to Be
2+

 could possibly be because of its in ability to interact/affect a critical component 

of the insulin signaling pathway. 

 This study adds valuable information to establish Be
2+

 as a metal cation that elicits strong 

inhibition of GSK-3β and demonstrates that Be
2+ 

is a potent and efficient GSK-3β inhibitor 

compared to Li
+
. 
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Schematic diagram 3: GSK-3β-TIMAP-PP1 positive feedback loop model proposed by Zhang et 

al. (Zhang et al., 2003) 
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CHAPTER 5 

Differential regulation of glycogen synthase and β-catenin by beryllium: a unique inhibitor 

of GSK-3β 

 

Introduction 

 Glycogen synthase kinase 3 (GSK-3) is an important serine/threonine kinase found in all 

eukaryotes. GSK-3 was first isolated in its homogenous form from rabbit skeletal muscle cells 

(Embi et al., 1980). The name glycogen synthase kinase refers to its ability to phosphorylate 

glycogen synthase, a key regulatory element of glycogen synthesis pathway. There are two 

isoforms of mammalian GSK-3: GSK-3α and GSK-3β, which are not functionally 

interchangeable in spite of sharing 95% sequence identity in their kinase domains (Woodgett, 

1990). Functional GSK-3α cannot alleviate the lethality induced in mouse embryos due the 

homozygous deletions of exon 2 of GSK-3β (Hoeflich et al., 2000). 

 GSK-3β is a fascinating enzyme playing a central role in extremely diverse intra cellular 

signaling pathways like Wnt signaling pathway and hedgehog pathway. GSK-3β regulates 

glycogen synthesis, gene transcription, apoptosis, protein synthesis and cellular differentiation in 

various cell types (Frame and Cohen, 2001; Doble and Woodgett, 2003; Grimes and Jope, 2001). 

The moniker glycogen synthase kinase doesn’t justify the ability of GSK-3β to phosphorylate 

various metabolically and structurally important proteins.  There is overwhelming evidence that 

establishes a plethora of different proteins as validated substrates of GSK-3β like tau, β-catenin, 

cyclin D1, axin, c-jun, c-myc, Heat Shock Factor – 1, BCL-3, CREB, Histone H1.5, mdm2, 

p21(CIP1), pyruvate dehydrogenase and many more (reviewed in Sutherland, 2011). Since GSK-

3β plays a critical role in the regulation and stability of various important proteins, de-regulation 

of GSK-3β has been associated with many diseases. Hyper phosphorylation of tau protein by 
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GSK-3β is one of the primary causes for the development of Alzheimer’s disease (Hooper et al., 

2008). Role of GSK-3β in the development of insulin resistance and type 2 diabetes has been 

established in various studies (Henriksen and Dokken, 2006).  

GSK-3β is an important constituent of the β-catenin destruction complex along with APC 

(Adenomatous Polyposis Coli), axin, casein kinase 1 (CK1), protein phosphatase 2A (PP2A) and 

E3-ubiquitin ligase β-TrCP (Zeng et al., 1997; Behrens et al., 1998; Hart et al., 1998, Ikeda et al., 

1998; Itoh et al., 1998; Salic et al., 2000; Kikuchi, 1999). The β-catenin destruction complex is 

involved in regulating β-catenin turn over and GSK-3β plays a central role in it (refer schematic 

diagram 2 on page 14) Wnt activation results in the repression of GSK-3β activity (Bilic et al., 

2007; MacDonald et al., 2009; Metcalfe and Bienz, 2011) leading to stabilization and nuclear 

translocation of β-catenin (Cook et al., 1996; Huber et al., 1996; Willert et al., 1999). In nucleus 

β-catenin interacts with TCF/LEF proteins to form a complex that regulates the transcription of 

TCF/LEF target genes (Huber et al., 1996). The inhibition of GSK-3β associated or bound to the 

components of β-catenin destruction complex has to be tightly regulated because some of the 

target genes of β-catenin are proto oncogenes (Dale, 1998; Brantjes et al., 2002).  

Apart from the Wnt ligands, insulin is another well characterized inhibitor of GSK-3β 

(Sutherland et al., 1993; Cross et al., 1995; Shaw et al., 1997). Insulin regulates GSK-3β by 

inducing an increase in the phosphorylation of its N-terminal Ser-9 residue (Sutherland et al., 

1993; Welsh and Proud, 1993; Cross et al., 1995). The phosphorylated Ser-9 residue on the N-

terminal region of GSK-3β acts as a pseudo substrate thus blocking the access of putative 

substrates to GSK-3β’s catalytic site (Frame et al., 2001; Dajani et al., 2001). The upstream 

kinases of the insulin signaling pathway especially Akt/PKB (protein kinase B) plays an 

important role in the insulin induced inhibition of GSK-3β (Cross et al., 1994, 1995; Stambolic 

and Woodgett, 1994). Akt/PKB has been found to phosphorylate GSK-3β at the N-terminal Ser-9 

residue thus inhibiting it (Shaw et al., 1997; Cross et al., 1994, 1995; Stambolic and Woodgett, 
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1994). There are other inhibitors of GSK-3β that are also known to induce the inhibitory Ser-9 

phosphorylation of GSK-3β (discussed later). The available information suggests that 

phosphorylation of Ser-9 residue on the N-terminal region of GSK-3β plays an important role in 

its regulation. 

 Even though Wnt ligands and insulin have been established as negative regulators of GSK-3β 

their mode of action seems to be different (Ding et al., 2000). Ding et al showed that insulin 

seems to be inhibiting GSK-3β activity via the inhibitory Ser-9 phosphorylation route and Wnt 

ligands could not mediate such an affect. The differential regulation of GSK-3β by insulin and 

Wnt ligands was supported by the observation that Wnt ligands could not induce the Ser-9 

phosphorylation of GSK-3β and insulin failed to induce nuclear localization of β-catenin (Ding et 

al., 2000). This study demonstrates that the Wnt pathway cannot inhibit the GSK-3β-enzyme 

fraction involved in the insulin signaling and vice versa. The hypothesis that the GSK-3β fraction 

involved in the insulin signaling pathway is insulated from the inhibitory effect of Wnt ligands 

and vice versa is contradicted by reports which suggests the possibility of a cross talk between 

insulin and Wnt signaling pathways (Desbois-Mouthon et al., 2001; Yi et al., 2008).  

Apart from insulin and Wnt, another well characterized inhibitor of GSK-3β is FRAT1. It 

was observed that FRAT1 selectively inhibits GSK-3β mediated phosphorylation of axin and β-

catenin (Thomas et al., 1999). Nonetheless FRAT1 did not interfere with the GSK-3β mediated 

phosphorylation of glycogen synthase (Thomas et al., 1999). It implies that FRAT1 is able to 

selectively target the Wnt signaling pathway, while the insulin signaling pathway is insulated 

from FRAT1’s inhibitory effects. 

The available data suggests that few GSK-3β inhibitors are able to selectively regulate the 

activity of GSK-3β depending upon the pathway in which it is involved. This information raises 

the possibility of GSK-3β existing in two different fractions – the “free GSK-3β” associated with 
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the insulin signaling pathway and the “bound GSK-3β” involved with the β-catenin destruction 

complex of Wnt signaling (refer schematic diagram 2 on page 14). It can be hypothesized that 

the ability of GSK-3β-inhibitors to inhibit a specific pathway depends on whether they are 

inhibiting the “free GSK-3β” or the “bound GSK-3β” or both. Alternatively it is also possible that 

the pathway selectivity of the GSK-3β-inhibitors depends on their effect on the other components 

of the signaling pathways (apart from GSK-3β). It would be interesting to investigate the effect of 

GSK-3β-inhibitors on the other members of the insulin signaling pathway such as Akt/PKB or 

IRS-1. Additionally analyzing the effect of GSK-3β-inhibitors on the proteins involved in the β-

catenin destruction complex (axin, APC, PP2A) could provide us with an insight into the 

underlying mechanism behind the differential regulation of GSK-3β.  

As discussed earlier inhibition of GSK-3β activity leads to stabilization and nuclear 

localization of β-catenin in the nucleus (Cook et al., 1996; Willert et al., 1999; Behrens et al., 

1996; Huber et al., 1996). Several studies have directly linked the abnormal accumulation of β-

catenin with development of various cancers (Smalley and Dale, 1999; Peifer and Polakis, 2000; 

Thakur and Mishra, 2013). It can be speculated that de-regulation of the “bound GSK-3β” could 

be playing an important role in the nuclear localization of β-catenin. 

 In recent times GSK-3β has emerged as an important therapeutic target because of its role in 

the etiological development of different abnormalities and diseases. It is important to identify 

potent inhibitors of GSK-3β in order to characterize and understand the impact of GSK-3β de-

regulation. There are various classes of GSK-3β inhibitors and the simplest among them is the 

group containing metal cations. Lithium (Li
+
) is a monovalent metal cation that acts as a potent 

inhibitor of GSK-3β and is commonly used in the form of LiCl salt (Klein and Melton, 1996; 

Stambolic et al., 1996). Li
+
 inhibits the activity of GSK-3β both directly and indirectly (Jope, 

2003). GSK-3β is a Mg
2+ 

dependent enzyme and Li
+ 

inhibits GSK-3β by directly competing with 
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Mg
2+ 

ions
 
for the magnesium binding sites on the protein (Ryves and Harwood, 2001; Ryves et 

al., 2002).  

The post translational modification that leads to an increase in the phosphorylation of Ser-9 

on GSK-3β is the indirect mode of action for some GSK-3β inhibitors. Like insulin, Li
+ 

too leads 

to an increase in the inhibitory Ser-9 phosphorylation in a wide variety of cells thereby inhibiting 

GSK-3β enzyme indirectly (Zhang et al., 2003). From the inhibitory Ser-9 phosphorylation 

perspective, Li
+
 mimics insulin and has a positive effect on glycogen metabolism (Cheng et al., 

1983; Bosch et al., 1986; Choi et al., 2000). In addition Li
+
 also mimics Wnt ligands and activates 

the Wnt signaling pathway, which in turn causes nuclear localization of β-catenin (Stambolic et 

al., 1996; Hedgepeth et al., 1997). Li
+ 

is a reasonably selective GSK-3β inhibitor but its inhibitory 

concentration range is in millimolars (Ki = 2 mM) (Klein and Melton, 1996). Beryllium (Be
2+

) 

another metal cation acts as an efficient inhibitor of GSK-3β and is 1000 times more potent 

compared to lithium (Mudireddy et al., 2014).  

 Beryllium in the form of BeSO4 salt acts as a potent GSK-3β inhibitor and is also tolerated 

well by mammalian cells at concentrations up to 100 µM (Mudireddy et al., 2014). Apart from 

the fact that Be
2+ 

could be competing for both Mg
2+

 and ATP binding sites on GSK-3β not much 

is known about the mechanism by which Be
2+ 

inhibits the activity of GSK-3β (Ryves et al., 

2002). Be
2+ 

fails to induce an increase in the Ser-9 phosphorylation of GSK-3β in A172 cells 

(Mudireddy et. al., 2014), indicating that it might be inhibiting GSK-3β by an unknown 

mechanism. In this study we investigated whether the lack of increase in Ser-9 phosphorylation of 

GSK-3β in the beryllium
 
treated cells is a universal phenomenon or a cell type specific event. Our 

results for the first time demonstrates the intra cellular effects of Be
2+ 

on important substrates of 

GSK-3β like glycogen synthase and β-Catenin. This study validates the efficacy of beryllium as a 

cell culture reagent for GSK-3β inhibition. Our results also suggests that unlike Li
+
, which shows 
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an unrestricted inhibitory action on GSK-3β activity, Be
2+ 

could be a more pathway-selective 

GSK-3β inhibitor. 

 

Materials and methods 

Cell culture 

 A172 (human glioblastoma), U87MG (human glioblastoma/astrocytoma), Caki-1 (human 

kidney carcinoma) and NIH/3T3 (murine embryo fibroblasts) were obtained from American Type 

Culture Collection (Manassas, VA). RKO E6 human colon carcinoma, A172 E6 and U87MG E6 

cells are RKO, A172 and U87MG transfected with pCMV-E6 plasmid expressing the human 

papillomavirus 16 E6 gene. A172 E6 cells are established and well characterized clones as 

described in (Xu et al., 2005). The E6 cell lines were a kind gift of Dr. J. Gregory Cairncross 

(University of Calgary, Calgary, Alberta, Canada). Cells were grown in RPMI 1640 

supplemented with 10% Fetal Bovine Serum, (10% Bovine Growth Serum for NIH/3T3 cells),  

25 mM Hepes and 1x antibiotic-antimycotic (Invitrogen-Gibco) at 37  C in 5% CO2.  

Serum starvation 

 NIH/3T3 cells were grown to 50-60% confluency in 5% BGS RPMI 1640. Cells were washed 

with serum-less RPMI 1640 and incubated in 2% BGS RPMI for 24 Hr. Cells were then serum 

starved for 2 Hr after being washed twice with serum-less RPMI 1640. Cells were then stimulated 

with 100 nM Insulin (Bovine pancreas insulin, sigma #I0516) for 30-60 min before harvesting the 

cells. 

Salt treatment 
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 BeSO4.4H2O (Fluka - lot & filling code 413015/1) was used to prepare a 10 mM stock in 

nanopure H2O and sterile filtered.  The stock solution was used to prepare the appropriate 

concentrations of beryllium-RPMI 1640 for dosing cells. A 4M LiCl (sigma#L-8895, 

lot#22K0184) stock was prepared in nanopure H2O. 1 M stocks of other salts like CaCl2 (sigma 

#C-5080, lot #10K0197), MgCl2 (sigma #M-2670, lot #91K0108), NaCl (Amresco#0241-500G, 

lot #0452C125), KCL (sigma#P-3911, lot#91K0142) and Na2SO4.5H20 (#SX0760 E-3) were 

prepared using nanopure H2O and sterile filtered. 

 Cells used for all experiments were obtained from a common pool and seeded in appropriate 

numbers (usually 1.5 – 2.0*10
6
) to obtain sub confluency (50 – 70%). Cells were grown 

overnight but not more than 24 Hr before dosing them with freshly prepared RPMI 1640 + 

inhibitors (beryllium or lithium). The untreated/control cells would receive normal (fresh) RPMI 

1640 without any beryllium or lithium. 

Small molecule inhibitors of GSK-3β 

 SB216763 (sc-200646A, lot #D2711) and Rottlerin (sc-3550, lot #K1313) were prepared in 

DMSO. 

Western blotting 

 Cells were grown in 100 mm CELLSTAR polysterene cell culture dishes (cat#664 160) and 

harvested by trypsinization. Cells were washed twice with phosphate-buffered saline and total 

cell lysates were prepared using M-PER (cat#78501, Thermo Scientific) supplemented with 

protease and phosphatase inhibitors (Halt protease inhibitor cocktail kit, Thermo Scientific 

cat#78442) and phosphatase inhibitors (sodium fluoride - 20 mM, beta glycerol phosphate - 10 

mM, sodium ortho vanadate - 0.1 mM, paranitro phenyl phosphate - 20 mM and 1x EDTA) and 

the cell suspension was gently vortexed for 10 sec. The lysed cell suspension was incubated on 

ice for 10 min and followed by gentle vortexing for 5 sec and centrifuged at 14,000 RPM for 30 
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min. Appropriate amount of cell supernatant was added to 5x laemmli SDS sample buffer and 

boiled immediately for 5 min. Total protein concentration in the supernatant was measured by 

using BCA assay (Thermo Scientific #23227). Normalized protein samples were loaded onto 8% 

SDS-PAGE gels for probing with total glycogen synthase, β-catenin and phospho-β-catenin 

proteins. For probing p53, actin, GSK-3β (Ser-9), total GSK-3β, p53 (1C12), total GSK-3α/β, α-

Tubulin, lamin-B and lamin A/C 10% SDS-PAGE gels were used. For the phospho glycogen 

synthase samples 4-12% bis-tris gradient gels (ref#WG1402BX10 from Novex-Life 

Technologies) were used. After electrophoresis the proteins were transferred to polyvinylidine 

difluoride membrane (Millipore cat#IPFL20200, Biorad cat#162-0255). Post transfer the 

membranes were blocked in 10% milk or starting block TBS (Prod#37543, Thermo Scientific) 

when probing with phospho antibodies. Primary antibody labeled blots were incubated with the 

respective HRP-conjugated secondary antibodies and developed with ECL-Plus (GE Healthcare 

Life Sciences) or clarity western ECL substrate (Bio-Rad cat#170-5061).  

Fractionation of cytoplasmic and nuclei proteins 

 For the preparation of cytoplasmic and nuclear extracts from mammalian cells (A172, 

U87MG, Caki-1, NIH/3T3, RKO E6, A172 E6 and U87MG E6), NE-PER nuclei and cytoplasmic 

extraction kit from thermo scientific was used (#78833, Thermo Scientific).  

 Cells were grown as explained in the cell culture section above. 

 To analyze the effect of beryllium on different cell lines, they were grown in RPMI 1640 

supplemented with appropriate concentration of BeSO4 (10 – 100 μM). 

 Cells were harvested by trypsinization. Phosphate buffered saline was used to wash the cells 

twice to remove traces of serum and trypsin. (soyabean trypsin inhibitor was used to nullify 

the adverse effects of trypsin on the cells). 

  250 μL of CER-I buffer was added to each dry cell pellet and vortexed vigorously for 15 sec. 

 The cell suspension in CER-I buffer was incubated on ice for 20 min. 
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 13.75 μL of CER-II buffer was added to the cell suspension and vortexed vigorously for 15 

sec followed by incubation on ice for 10 min. 

 Cell suspension was vortexed again vigorously for 5 sec. Followed by centrifugation at 

14,000 RPM for 30 min. 

 After centrifugation the supernatant (cytoplasmic proteins) was removed and added to a pre 

chilled 1.5 ml tube. 

 Extra supernatant present on top of the nuclei pellet was discarded. Nuclei pellets were then 

washed with 400 µL of phosphate buffered saline (to prevent any cross contamination of 

nuclear fraction with cytoplasmic proteins). 

 110 µL of NER buffer was added to each pellet. Nuclei suspension was mixed well. 

 The nuclei suspension was vortexed vigorously for 15 sec followed by incubation on ice for 

15 min. 

 Nuclei suspension was subjected to 4 cycles of vigorous vortexing followed by 15 min of 

incubation on ice. 

 The nuclei suspension was then centrifuged at 14,000 RPM for 30 min. 

 The supernatant containing the nuclear proteins was added to pre chilled 1.5 ml tubes. 

 Appropriate amount of cytoplasmic and nuclear supernatants were mixed with 5x laemmli’s 

buffer and boiled for 5 min. 

Note: All the steps were carried out at 4   C. 

Total protein concentration in the supernatant was measured by using BCA assay (Thermo 

Scientific # 23227). Normalized protein samples were loaded onto SDS-PAGE gels for probing. 

 

Antibodies 

p53 DO1: Mouse monoclonal IgG2b (cat#sc-126, Santa Cruz Biotechnology, inc) and goat 

anti-mouse IgG peroxidase (cat#A9917 Sigma Aldrich) 
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 Actin: Goat monoclonal IgG2b (cat#sc-1615, Santa Cruz Biotechnology, inc) and bovine anti-

goat IgG-HRP (cat# SC-2350 Santa Cruz Biotechnology, inc) 

 phospho GSK-3β (Ser-9): Rabbit antibody (#9336S, Cell Signaling Technology) and anti-

rabbit IgG-HRP (cat#31460 Thermo Scientific) 

 phospho GSK-3β D85E12 (Ser-9): Rabbit antibody(#5558, Cell Signaling Technology) and 

goat anti-rabbit IgG- FITC (cat#2012, Santa Cruz Biotechnology, inc) (for nuclei flow 

experiment) 

 Total GSK-3β (H-76): Rabbit polyclonal IgG2b (cat#sc-9166, Santa Cruz Biotechnology, inc) 

and anti-rabbit IgG-HRP (cat#31460, Thermo Scientific) 

 Total GSK-3α/β (0011-A): Mouse monoclonal IgG2b (cat#sc-7291, Santa Cruz 

Biotechnology, inc) and goat anti-mouse IgG peroxidase (cat#A9917 Sigma Aldrich) 

 β-catenin (E5): Mouse monoclonal IgG1 (cat#sc-7963, Santa Cruz Biotechnology, inc) and 

goat anti-mouse IgG peroxidase (cat#A9917 Sigma Aldrich) 

 Phospho β-catenin (Ser-33) – R: Rabbit polyclonal IgG (cat#sc-16743-R, Santa Cruz 

Biotechnology, inc) and anti-rabbit IgG-HRP (cat#31460, Thermo Scientific) 

 α -Tubulin (B-7): Mouse monoclonal IgG2a (cat#sc-5286, Santa Cruz Biotechnology, inc) and 

goat anti-mouse IgG peroxidase (cat#A9917, Sigma Aldrich) 

 Lamin – B (C12): Mouse monoclonal IgG2b (cat#sc-365214, Santa Cruz Biotechnology, inc) 

and goat anti-mouse IgG peroxidase (cat#A9917, Sigma Aldrich) 

 p53(1C12): Mouse monoclonal IgG1(#2524, Cell Signaling Technology) goat anti-mouse IgG 

peroxidase (cat#A9917, Sigma Aldrich) (for mouse  cell lines) 
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 Lamin A/C (4C11): Mouse monoclonal IgG2a (#4777S, Cell Signaling Technology) goat anti-

mouse IgG peroxidase (cat#A9917, Sigma Aldrich) 

 α-Tubulin: Rabbit polyclonal (#2144S, Cell Signaling Technology) and anti-rabbit IgG-HRP 

(cat#31460, Thermo Scientific) 

 phospho-Glycogen synthase (Ser641/Ser645): Rabbit polyclonal (#07-817, EMD Millipore) 

and anti-rabbit IgG-HRP (cat#31460, Thermo Scientific) 

 Total Glycogen synthase: Rabbit polyclonal (#3893S, Cell Signaling Technology) and anti-

rabbit IgG-HRP (cat#31460, Thermo Scientific) 

  Lamin-B (C-20): Goat polyclonal IgG (cat#sc-6216, Santa Cruz Biotechnology, inc) (used 

mostly for nuclei flow experiments) 

Secondary antibodies for flow cytometry and immunoflorescence experiments 

 Anti Mouse IgG (H+L), F(ab’)2 Fragment (Alexa Fluor 647 Conjugate: (#4410, Cell 

Signaling Technology) 

Donkey anti goat IgG-FITC (cat#sc-2024, Santa Cruz Biotechnology, inc) 

Stable nuclei isolation from mammalian cells for flow analysis 

A minimum of 5x10
6 
cells are required for stable nuclei isolation. 

 A172 Cells were grown in 100 mm dishes and harvested by trypsinization.  

 Post trypsinization cells were washed twice with phosphate buffered saline (soyabean trypsin 

inhibitor was used to nullify the adverse effects of trypsin on the cells). 

 Washed cells were resuspended in 500µL of cold nuclei extraction buffer (320mM sucrose, 

5mM MgCl2, 10mM HEPES, 2% Triton X-100 at pH 7.4) at approximately 1 mL/1 million 

cells. 
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 Cells were vortexed gently for 10 sec and incubated on ice for 10 min. 

 Cell suspension was centrifuged at 3,500 RPM for 20 min. 

 Isolated nuclei were washed twice with nuclei wash buffer (320mM sucrose, 5mM MgCl2, 10 

mM HEPES at pH 7.4, no Triton X-100). 

 Isolated nuclei were resuspended in 100 µL of primary antibody solution. Antibody 

incubation buffer (320mM sucrose, 5mM MgCl2, 10mM HEPES, 1% BSA and 0.1% sodium 

azide at pH 7.4, no Triton X-100). Recommended primary antibody concentration is 1 µg/ 

nuclei pellet. 

 Isolated nuclei were incubated with the primary antibody solution   4   C overnight (isolated 

nuclei can remain stable for 24 Hr in the nuclei wash buffer). 

 Post primary antibody incubation, the nuclei were washed twice with nuclei wash buffer. 

 Nuclei were resuspended in 100 µL of secondary antibody (FITC or Alexa 647 tag) solution 

at a concentration of 0.5 – 0.75µg/nuclei pellet and incubated at room temperature for 2 Hr 

(post secondary antibody steps under dark conditions). 

 Post secondary antibody incubation the nuclei were washed twice with nuclei wash buffer. 

 Nuclei were resuspended in 500 µL of nuclei wash buffer in flow cytometry tubes for 

analysis. 

Immunofluorescence Microscopy 

 Cells were grown in Matek glass bottom dishes - cover slip # 1.5 (thickness – 0.16-0.19 mm). 

After the treatment with inhibitors cells were washed twice with phosphate-buffered saline 

supplemented with 1 mM CaCl2 and 0.5 mM MgCl2. Cells were fixed with freshly prepared 4% 

paraformaldehyde – PBS (Ca
2+

&Mg
2+
) at 37  C for 10 min. Fixed cells were washed twice with 

PBS (Ca
2+

&Mg
2+

) and permeabilized with 0.2% Tween20 - PBS (Ca
2+

&Mg
2+

) at room 

temperature for 15 min. Cells were blocked in antibody incubation buffer (1% BSA + 0.2% 

Tween20 - PBS (Ca
2+

&Mg
2+
) for 30 min at room temperature. Cells were incubated in β-catenin 
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(E5): Mouse monoclonal IgG1 (cat#sc-7963 Santa Cruz Biotechnology, inc) and Lamin-B (C-

20): Goat polyclonal IgG (cat sc-6216 Santa Cruz Biotechnology, inc) overnight at 4   C. 

Secondary antibodies used were anti mouse IgG (H+L), F(ab’)2 fragment (Alexa Fluor 647 

conjugate: (#4410, Cell Signaling Technology), donkey anti goat IgG-FITC (cat#sc-2024 Santa 

Cruz Biotechnology, inc) and Hoechst dye to stain chromatin (1 µg/ml, Sigma-Aldrich). Images 

were collected using Nikon A1R BX40 confocal laser scanning microscopy system. The images 

were processed using ImageJ. 

p53 knock down using stealth RNAi in A172 cells 

 TP53 validated stealth RNAi (Cat No. 45-1492) from Invitrogen was used to knock down p53 

expression transiently in A172 cells.1.2x10
6
 A172 cells were seeded in 100 mm dishes to obtain 

50 – 60% confluency after 12 Hr. The 10% FBS RPMI 1640 was removed and cells were washed 

once with phosphate-buffered saline, later OptiMem reduced serum media (#11058, Gibco) was 

added to each dish. 20 nM of the Stealth p53 RNAi oligo II duplex was used since it was less 

toxic to cells compared to the RNAi Oligo I Duplex. Stealth p53 RNAi oligo II duplex and 

lipofectamine 2000 (ref #11668-030, Invitrogen/Life Technologies) were diluted in OptiMem 

individually in such a way that the final volume is equal to 250 µL. The lipofectamine 2000 + 

OptiMem mix was incubated at room temperature for 5 min. The Stealth p53 RNAi oligo duplex 

II + OptiMem solution was mixed with lipofectamine 2000 + OptiMem so that the final ratio 

between the oligo and lipofectamine 2000 is 1:5 (5 µL of Oligo and 25 µL of lipofectamine 2000.  

The Oligo + Lipofectamine 2000 + OptiMem mix (transfection mix) was incubated at room 

temperature for 20 min. The Oligo + Lipofectamine 2000 + OptiMem mix was added to A172 

cells growing in the OptiMem media. The dishes were incubated at 37   C for 8 Hr 30 min. The 

OptiMem media containing the transfection mix was replaced with normal RPMI 1640 (10% FBS 

+ 1% PSF) and RPMI 1640 supplemented with 100 µM BeSO4 or 20 mM LiCl after the 8.5 Hr 
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incubation time. Cells were harvested (either total cell lysates or cytoplasmic and nuclear 

fractionations) after culturing them under the influence of beryllium and lithium for 24 Hr. 

p53 knock down using shRNA(h) lenti viral particles in A172 cells 

 Integration of specific short hairpin RNA (shRNA) constructs into genomic DNA of A172 

cells can lead to the generation of A172 clones with constitutively down regulated p53 

expression. Stable A172 p53 KO or control A172 cell lines were generated by Dr. Priyatham 

Gorjala using a lentiviral shRNA expression vector.  Detailed methods describing the production 

of these cells are available in Dr. Gorjala's dissertation (Gorjala, 2012). 

Addgene clone transfection 

 The following addgene plasmids were obtained from addgene plasmid repository 

plasmid#14753–HA GSK-3β wt pcDNA3, plasmid 14754–HA GSK-3β S9A pcDNA3, 

plasmid#14755–HA GSK-3β K85A pcDNA3. A172 cells were transfected with the above 

mentioned plasmids to generate stable clones over expressing wt GSK-3β and its mutants. A172 

cells were grown to sub confluence in a 24 well plate. 1 µg of plasmid DNA was diluted in 25 µL 

of plain RPMI 1640 lacking serum and antibiotics. 4 µL of Plus
TM 

was added to the plasmid mix 

and incubated at room temperature for 15 min. 1 µL of Lipofectamine
TM 

reagent was diluted in 25 

µL of plain RPMI 1640 lacking serum and antibiotics. The pre complexed plasmid DNA was 

mixed with diluted Lipofectamine
TM 

and incubated at room temperature for 15 min. The cells in 

the 24 well plate was supplemented with 200 µL of serum less RPMI 1640 containing plasmid 

DNA + Plus
TM 

+ Lipofectamine
TM 
reagent and incubated at 37  C for 6 Hr. The RPMI containing 

the transfection mix was replaced with normal RPMI 1640 (10  FBS + 1  PSF) and cells were 

grown for 24 Hr at 37   C (cells were grown in normal RPMI initially to provide cells with proper 

growth conditions). Transfected A172 cells were grown in RPMI 1640 supplemented with 400 

µg/ml of G418 (cat#1811-23, lot#1213491, Gibco) for first 48 Hr followed by a lower 
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concentration of 200 µg/ml with G418 acting as selective pressure for isolating and propagating 

transfection positive A172 cells. Single cell colonies of transfectants were selected via serial 

dilution in a 96 well plate. The obtained clones were tested for the expression of the respective 

proteins by analyzing the presence of the HA tag in the lysate samples via western blotting. 

 

Results 

A cell type specific event: Be
2+

 induces either an increase or no change in the Ser-9 

phosphorylation of GSK-3β depending on the cell type 

A. Beryllium does not cause an increase in the Ser-9 phosphorylation of GSK-3β in A172 

(Human glioblastoma) and U87MG cells (Human glioblastoma astrocytoma) 

 Increase in the Ser-9 phosphorylation of GSK-3β is one of the hallmarks of Li
+
 induced 

inhibition of GSK-3β (Chalecka-Franaszek and Chuang 1999; Lochhead et al., 2001; Zhang et al., 

2003). We have shown previously that beryllium unlike lithium does not lead to substantial 

increase in Ser-9 phosphorylation of GSK-3β in A172 and HFL cells (Mudireddy et al., 2014). 

This was an unexpected result, so we wished to extend this analysis to include additional cell 

types to see whether the initial observation was a general result or whether it might be cell-type-

specific. The Ser-9 phosphorylation status of GSK-3β in A172 and U87MG cells was analyzed 

using western blotting (#9336S rabbit polyclonal anyibody, Cell Signaling inc.) (Fig. 8) Li
+ 

served as a positive control. In A172, Li
+ 

treatment (20 mM) caused an increase in the Ser-9 

phosphorylation of GSK-3β at 24 hr, an observation that is consistent with our prior results 

(Mudireddy et al., 2014). Treating A172 with increasing concentrations of Be
2+ 

did not elicit any 

appreciable change in the Ser-9 phosphorylation of GSK-3β. Treating U87MG cells with Be
2+ 

(100 µM) at 0, 6, 12 and 24 hr did not induce any increase in the Ser-9 phosphorylation of GSK-

3β or total GSK-3β (sc 9166, Santa Cruz Biotechnology, inc) (Fig. 9a). U87MG cells when 
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treated with Be
2+ 

(10, 100 µM)
 
or Li

+ 
(20 mM) at 24 hr in an independent experiment did not 

cause any increase in the Ser-9 phosphorylation of GSK-3β (Fig. 9b). 

 An established effect of Be
2+ 

treatment at molecular level is the increase of p53 protein levels 

in mammalian cells (Lehnert et al., 2001; Coates et al., 2007; Gorjala and Gary, 2010). The 

increase in the p53 protein level in the A172 (Fig. 8) and U87MG (Fig. 9a&9b) validates the 

effect of Be
2+ 

treatment on the mentioned cell lines. Thus, the p53 westerns serve as a positive 

control for Be
2+

- induced change in protein expression, which strengthens the conclusion that 

Be
2+ 

does not cause any substantial increase in the Ser-9 phosphorylation of GSK-3β in A172 and 

U87MG cells at 24 hr. 
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Fig. 8 Beryllium does not cause induction of GSK-3β Ser-9 phosphorylation in A172 cells at 

24 hr. A172 cells were treated with 0, 5, 10, 25, 50 or 100 µM BeSO4 or 10 or 20 mM LiCl for 24 

hr. Ser-9 phosphorylation of GSK-3β (GSK-3β-pS9) was detected by western blotting using 

phospho-GSK-3β (Ser-9) antibody. Total GSK-3β   and actin protein levels are shown as loading 

control. Li
+ 

treatment caused a prominent increase in the Ser-9 phosphorylation of GSK-3β but 

not in Be
2+ 

treated A172 cells.  
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Fig. 9 Beryllium does not cause induction of GSK-3β Ser-9 phosphorylation in U87MG 

cells. a U87MG cells treated with 100 µM BeSO4 did not show any increase in the Ser-9 

phosphorylation of GSK-3β at 0, 6, 12 or 24 hr. b U87MG cells treated with 0 or 20 mM LiCl
 
or 

10 or 100 µM BeSO4 in an independent experiment again show the lack of increase in the Ser-9 

phosphorylation of GSK-3β in the presence of Be
2+

. 
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B. Beryllium induces an increase in the Ser-9 phosphorylation of GSK-3β in NIH/3T3 

(murine embryo fibroblast) and Caki-1(human kidney carcinoma) cells 

 To analyze, whether the inability of Be
2+ 

to induce Ser-9 phosphorylation of GSK-3β is a cell 

type specific event or a universal phenomenon, two additional cell systems were included in this 

study. The Ser-9 phosphorylation status of GSK-3β in these cell lines was investigated post Be
2+ 

treatment. 

 To investigate the effect of Be
2+ 

on the Ser-9 phosphorylation of GSK-3β in NIH/3T3 cells 

(murine fibroblasts), cells were treated with increasing concentration of BeSO4 for 24 hr. A 

prominent increase in the Ser-9 phosphorylation of GSK-3β was observed in the Be
2+ 

treated 

NIH/3T3 cells (Fig. 10a). The p53 westerns demonstrate that 25-100 µM BeSO4 represents a 

sufficient dose to effect physiological change in this cell type. The p53 (1C12) antibody used here 

is specific for mouse cell lines and produces much weaker bands compared to the p53 DO1 

(sc#126, Santa Cruz Biotechnology, Inc) used for human cell lines. In our study the p53 DO1 

antibody did not yield any visible p53 bands in mouse samples hence the p53 (1C12) mouse 

specific antibody was used, even though it produces weak bands. However the p53 (1C12) results 

confirmed the expected results in mouse cell lines. 

 Caki-1 cells (human kidney carcinoma) were treated with 0, 5, 10, 25, 50 µM BeSO4 or 5, 15 

mM LiCl for 24 hr. Caki-1 cells (from the DRC data) are more sensitive to BeSO4 and LiCl, 

hence the maximum concentrations of beryllium and lithium was limited to 50 µM and 15 mM 

respectively. The cell lysates were analyzed for the Ser-9 phosphorylation of GSK-3β through 

western blotting (#9336S, rabbit polyclonal antibody). Increase in the Ser-9 phosphorylation of 

GSK-3β after treating the cells with increasing concentration of Be
2+ 

was observed (Fig. 10b). Li
+ 

also caused an increase in the Ser-9 phosphorylation of GSK-3β.  
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Fig. 10 Be
2+

 induces an increase in  the Ser-9 phosphorylation of GSK-3β in NIH/3T3 and 

Caki-1 cells. a-b, western blots showing the Ser-9 phosphorylation of GSK-3β (GSK-3β-pS9) 

was detected by western blotting using phospho-GSK-3β (Ser-9) antibody. Total GSK-3β  and 

actin protein levels are shown as loading control. p53 has been used to validate the effect of Be
2+ 

on the cells. a NIH/3T3 cells treated with 0, 1, 2.5, 5, 10, 25, 50 or 100 µM BeSO4 for 24 hr. b 

Caki-1 cells treated with 0, 5, 10, 25 or 50 µM BeSO4 or 5, 15 mM LiCL for 24 hr. 
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 To verify the results of pSer9-GSK-3β in NIH/3T3 cells, an alternate analytical method flow 

cytometry was used to quantify the Ser-9 phosphorylation of GSK-3β in situ (Fig. 11). Be
2+ 

(a) 

and Li
+ 

(b)
 
treatment of NIH/3T3 cells at 24 hr produced a concentration dependent increase in 

the Ser-9 phosphorylation of GSK-3β corroborating the western results. These flow results 

suggests that in NIH/3T3 cells Be
2+ 

is imitating Li
+ 

by inducing an increase in the inhibitory post 

translational modification of GSK-3β i.e. Ser-9 phosphorylation of GSK-3β. 
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Fig. 11 Be
2+ 

treatment induces an increase in the Ser-9 phosphorylation of GSK-3β in 

NIH/3T3 cells – a flow cytometric approach. The increase in the Ser-9 phosphorylation of 

GSK-3β in NIH/3T3 cells in the presence of beryllium and lithium was measured by flow 

cytometry. a flow cytometry histograms of NIH/3T3 cells treated with 0, 30 or 100 µM BeSO4 for 

24 hr. b flow cytometry histograms of NIH/3T3 cells treated with 0 or 20 mM LiCl for 24 hr. 

GSK-3β-pS9 (#5558 (D85E12), rabbit polyclonal) and FITC conjugated secondary antibody was 

used. For each beryllium and lithium treatment, mean fluorescence per cell was determined. Data 

shown here is representative of at least two independent experiments done in triplicates with 

similar results. 
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Different GSK-3β inhibitors induce an identical or matching effect on the phosphorylation 

status of GSK-3β, whereas beryllium’s effect on Ser-9 phosphorylation of GSK-3β is cell 

type specific 

 Post translational modification of GSK-3β (Ser-9 phosphorylation of GSK-3β) plays an 

important role in its regulation. An increase in the Ser-9 phosphorylation of GSK-3β in beryllium
 

treated NIH/3T3 and Caki-1 cells was observed in our study. On the other hand A172, HFL and 

U87MG cells seem to be immune to the beryllium induced Ser-9 phosphorylation of GSK-3β. It 

is important to investigate whether any other GSK-3β inhibitor can induce Be
2+ 

like cell type 

specific effect on the Ser-9 phosphorylation of GSK-3β. The effect of Be
2+

 was compared against 

lithium, SB216763, rottlerin, CaCl2 and insulin in A172, NIH3T3, and Caki-1 cells.   

 Insulin is a negative regulator of GSK-3β and it induces an increase in its inhibitory Ser-9 

phosphorylation. It is possible that only certain cell lines would be able to respond to insulin 

treatment. The insulin receptor is widely distributed in mammalian tissues, and it was anticipated 

that each of these cell types might be suitable for such a comparison.  A172 cells are derived from 

human glioma, and human glioma cells are known to express insulin receptors (Grunbereger et 

al., 1986)  Normal untransfected serum-starved NIH3T3 cells have been shown to respond to 

insulin (Bossenmaier et al., 2000).  The Caki-1 are renal carcinoma cells and kidney is a major 

organ for glycogen storage that is highly responsive to insulin. It can be expected that these three 

cell lines should be able to respond to insulin. 

 Rottlerin is known to cause an increase in the Ser-9 phosphorylation of GSK-3β (Gschwendt 

et al., 1994; Zhang et al., 2003). Zhang et al have used rottlerin at 5 µM to analyze its effect on 

the Ser-9 phosphorylation of GSK-3β in Neuro2A cells. We decided to use rottlerin at 10 µM for 

A172 cells (to maximize the effect) and considering the fact that Caki-1 cells are sensitive to 

GSK-3β inhibitors the rottlerin concentration was fixed at 5 µM for this study. Another small 
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molecule inhibitor of GSK-3β is SB216763 - an anilino malemide (Coghlan et al., 2000) was also 

selected for this study. Dose response curve of A172, NIH/3T3 and Caki-1 cells with SB21673 

was used to decide the SB216763 dosage to be used for the given cell lines 10 µM for Caki-1 and 

20 µM for both A172 and NIH/3T3 (Appendix-VI). In addition the effect of insulin, LiCl and 

CaCl2 on the Ser-9 phosphorylation of GSK-3β was compared parallely with BeSO4 in NIH/3T3, 

Caki-1 and A172 cells. In our studies insulin was found to be effective within a range of 100-200 

nM. 

 As observed previously BeSO4 at 24 hr
 

did not induce any increase in the Ser-9 

phosphorylation of GSK-3β in A172 cells (Fig. 12, panel c) conversely an increase in the Ser-9 

phosphorylation of GSK-3β in NIH/3T3 (panel a) and Caki-1 cells (panel b) is observed. Lithium 

– LiCl at 24 hr induced an increase in the Ser-9 phosphorylation of GSK-3β in all the three cell 

lines, A172 (panel c), NIH/3T3 (panel a) and Caki-1 (panel b). To analyze the effect of insulin on 

phosphorylation status of GSK-3β, cells were serum starved as mentioned in the materials and 

methods section. After inducing cells with 200 nM of Insulin for 30-60 min, an increase in the 

Ser-9 phosphorylation of GSK-3β is observed in NIH/3T3 (panel a) and a slight increase in A172 

(panel c) is observed. The effect of insulin on Caki-1 cells is not clear (panel b). Like lithium, 

insulin too produces an identical effect i. e. increase in Ser-9 phosphorylation of GSK-3β in 

NIH/3T3 and A172 cell lines. Rottlerin at 10 µM and 5 µM for 24 hr produced inconsistent 

results in A172 (panel c) and Caki-1 (panel b) cells respectively. Rottlerin at 10 µM seems to be 

causing a slight increase in Ser-9 phosphorylation in NIH/3T3 cells (panel a). Overall the effect 

of rottlerin on the Ser-9 phosphorylation is inconclusive. SB216763 at a concentration of 10-20 

µM caused a drastic decrease in Ser-9 phosphorylation of GSK-3β in NIH/3T3 (panel a), Caki-1 

(panel b) and A172 (panel c). SB216763 induced decrease in the Ser-9 phosphorylation of GSK-

3β is an unexpected result, which is quite different from the “inhibitory effects” of other GSK-3β 

inhibitors. In all the three cell lines the total Gsk-3β levels are stable indicating that SB216763 is 
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inducing a decrease only in the phosphorylation status of GSK-3β. A possible explanation for 

SB216763 induced decrease in pSer9-GSK-3β could be because of its failure to deactivate 

phosphatases that in turn could be causing a drastic decrease in the pSer9-GSK-3β. Li
+ 

affects an 

increase in the Ser-9 phosphorylation of GSK-3β by modulating the activity of protein 

phosphatase 1 (PP1) (Zhang et al., 2003). SB216763 is a specific GSK-3β inhibitor with no 

known inhibitory activity against other related kinases (Coghlan et al., 2000). It can be speculated 

that SB216763 because of its specific activity towards GSK-3β only may not be able to inhibit 

the activity of PP1. The active PP1 could be inducing a drastic decrease in the Ser-9 

phosphorylation of GSK-3β as observed in the SB216763 samples.  However SB216763 

produced identical results in three different cell lines (in relation to pSer9-GSK-3β); adding 

confidence in its ability to function as a reliable control. CaCl2 at 100 µM did not induce any 

noticeable change in the Ser-9 phosphorylation of GSK-3β. It indicates that the up regulation of 

pSer9-GSK-3β is a property limited to specific GSK-3β inhibitors.  

 A comparison of the effect of different GSK-3β inhibitors on the Ser-9 phosphorylation of 

GSK-3β clearly shows that among the 5 different GSK-3β inhibitors used in this study i.e. 

BeSO4, LiCl, Insulin and SB216763; only Be
2+

 elicits a clear cell type specific effect on 

the Ser-9 phosphorylation of GSK-3β (Table 5). Other GSK-3β inhibitors listed below elucidates 

their inhibitory effects either by inducing a definitive/identical increase (LiCl and insulin) or 

decrease (SB216763) in the Ser-9 phosphorylation of GSK-3β in the mentioned cell lines. These 

results suggest that Be
2+ 

could be modulating its effect on the Ser-9 phosphorylation of GSK-

3β via a unique and cell type specific mechanism.  
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Fig. 12 Unique effect of beryllium on the Ser-9 phosphorylation status of GSK-3β compared 

to other established GSK-3β inhibitors and CaCl2 salt. a-c, western blots showing the Ser-9 

phosphorylation of GSK-3β (GSK-3β-pS9) was detected by western blotting using phospho-

GSK-3β (Ser-9) antibody. Total GSK-3β and actin protein levels are shown as loading control. a, 

c NIH/3T3 and A172 cells were treated with 0, 100 µM BeSO4, 20 µM SB216763, 20 mM LiCl, 

100 µM CaCl2 or 10 µM rottlerin (only for A172 cells) for 24 hr or 200 nM Insulin for 30-60 min. 

b, Caki-1 cells were treated with 0, 60 µM BeSO4, 10 µM SB216763, 15 mM LiCl, 100 µM 

CaCl2 or 5 µM rottlerin for 24 hr or 200 nM Insulin for 30-60 min.  
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Table 7. Effect of GSK-3β inhibitors and CaCl2 salt on the Ser-9 phosphorylation status of  

GSK-3β 

 BeSO4 LiCl Insulin SB216763 Rottlerin CaCl2 

A172 No 

change 

Increase Increase Decrease Inconclu

-sive* 

No 

change 

NIH/3T3 Increase Increase Increase Decrease Inconclu

-sive 

No 

change  

Caki-1 Increase Increase Increase Decrease Inconclu

-sive* 

No 

change 

 

* Effect of rottlerin on the pSer9-GSK-3β was inconsistent; hence it was difficult to ascertain the 

role played by it in relation to the inhibitory Ser-9 phosphorylation of GSK-3β. 
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Induction of Ser-9 phosphorylation on GSK-3β by BeSO4 is not random salt effect 

 To establish that the Be
2+ 

induced increase in Ser-9 phosphorylation of GSK-3β in NIH/3T3 

cells is not a random salt effect, NIH/3T3 cells were treated with 0 or 100 µM BeSO4, KCl, 

MgCl2 or Na2SO4 for 24 hr (Fig. 13). The lack of increase in the Ser-9 phosphorylation of GSK-

3β in the 100 µM KCl, MgCl2 or Na2SO4 treated samples confirms the Be
2+ 

induced increase in 

Ser-9 phosphorylation is not a random salt effect.  
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Fig. 13 Beryllium induced Ser-9 phosphorylation in NIH/3T3 is not random salt effect. . 

NIH/3T3 cells were treated with 0 or 100 µM BeSO4, KCl, MgCl2 or Na2SO4 for 24 hr.Western 

blots showing the Ser-9 phosphorylation of GSK-3β (GSK-3β-pS9) was detected by using 

phospho-GSK-3β (Ser-9) antibody. Total GSK-3β and actin protein levels are shown as loading 

control. p53 has been used to validate the effect of Be
2+ 

on the NIH/3T3 cells 
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Investigating the credentials of beryllium as a biologically active GSK-3β inhibitor 

Be 
2+ 

induced down regulation in the phosphorylated form of glycogen synthase enzyme 

validates its intra cellular effect 

 Glycogen synthase (GS) enzyme plays a central role in glycogen metabolism. There are 

several kinases that regulate the activity of GS by modulating its phosphorylation. The moniker 

“glycogen synthase kinase – 3” was coined because of the ability of GSK-3 to phosphorylate 

glycogen synthase enzyme. GSK-3β phosphorylates GS and plays an important role in repressing 

its activity (Lawerence and Roach, 1997). There is enough evidence to demonstrate the important 

role played by GSK-3β in glycogen metabolism because of its ability to regulate GS. The 

phosphorylation sites which play an important role in the activation or de-activation of the GS are 

target sites of GSK-3β (Rylatt et al., 1980; Parker et al., 1983).  

 Since the activity of GS is regulated by GSK-3β any event or inhibitor, which can regulate 

the activity of GSK-3β is expected to have an affect on GS as well. The positive effect of Li 
+ 

- an 

established GSK-3β inhibitor on the stimulation of glycogen synthase and glycogen synthesis has 

been proved in various studies (Cheng et al., 1983; Tabata et al., 1994; Orena et al., 2000; 

Furnsinn et al., 1997; Chen et al., 1998). MacAulay et al demonstrated that exposure of L6 

muscle cells and 3T3-L1 adipocytes to Li
+ 

leads to accumulation of de-phosphorylated GS (active 

form of GS) (MacAulay et al., 2003). 

 Be
2+

 is a potent GSK-3β inhibitor, but the inhibitory effect of Be
2+ 

on the ability of GSK-3β 

to phosphorylate its bonafide substrates has not been demonstrated yet. Be
2+ 

seems to be inducing 

an increase in the Ser-9 phosphorylation of GSK-3β in NIH/3T3 and Caki-1 cells (Fig. 12). The 

phosphorylated Ser-9 residue on the N-terminal region acts as pseudo-substrate of GSK-3β 

thereby blocking its active site (Dajani et al., 2001). It can be hypothesized that the inactivated 

GSK-3β (blocked active site) will not be able to phosporylate its substrate i.e. the GS enzyme 
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hence a decrease in the pGS levels may be observed. In this study the effect of Be
2+ 

on glycogen 

synthase (GS) an important GSK-3β substrate was investigated in cell culture. 

Selecting the best cell line for glycogen synthase studies 

 In order to select a cell line with optimum expression of glycogen synthase (GS); A172, 

Caki-1 and NIH/3T3 were cultured in the presence of 0 or 20 mM LiCl for 24 hr. Total cell 

lysates of these cells lines were probed for the expression of pGS. Caki-1 and A172 samples 

seems to be having no visible pGS bands indicating that these two cell lines may not be suitable 

for GS studies (Fig. 14). NIH/3T3 cells show optimum expression of GS and also seem to be 

responsive to inhibitory effects of LiCl. Hence NIH/3T3 cells were selected for further pGS 

studies. 
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Fig 14: Murine fibroblasts are responsive to LiCl induced GS dephosphorylation.Total cell 

lysates extracted from A172 , Caki-1and NIH/3T3 treated with 0 or 20 mM LiCl for 24 hr were 

analysed using western blotting for the pGS levels. The pGS (Ser641/Ser645) antibody #07-817 

from millipore was used.   
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Effect of Be
2+

 on pGS in murine  fibroblasts (NIH/3T3 cells) 

 NIH/3T3 cells were treated with 0, 30 or 100 µM BeSO4 or 20 mM KCl or 20 mM LICl or 20 

µM SB216763 for 24 hr or serum starved NIH/3T3 cells were induced with 100 nM insulin for 

15–60 min. The phosphorylation state of glycogen synthase (GS) in the total cell lysates was 

analyzed by western blotting using a phospho specific affinity purified rabbit antibody from 

Millipore (#07-817). The GSK-3β inhibitors Be
2+

, Li
+
 and SB216763 caused a decrease in the 

phospho-glycogen synthase levels. As expected no decrease in the pGS levels was observed in 

the KCl treated samples (KCl was intended to serve as a negative control) (Fig. 15a). 

 This data suggests that Be
2+ 

treatment elicits a decrease in the pGS levels of NIH/3T3 cells, 

demonstrating the ability of beryllium to inhibit the intra cellular kinase activity of GSK-3β in 

cell culture. 
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Fig. 15a GSK-3β inhibitors and beryllium induce a decrease in the phospho-GS. NIH/3T3 

cells were cultured in the presence of 0 or 30 or 100 µM BeSO4 or 20 mM LiCl or 20 µM 

SB216763 or 20 mM KCL. For insulin treatment cells were grown in RPMI media supplemented 

with 10% bovine growth serum for 24 hr. Post 2X washing with serum less RPMI cells were 

serum starved by growing them in 0% BGS RPMI for 2 - 2.5 hrs. Cells were induced with 100 

nM insulin for 15 or 30 or 60 min. Total cell lysates were analyzed for phospho-GS using a 

affinity purified rabbit polyclonal antibody. The non specific low molecular weight back ground 

band in the pGS panel serves as an internal loading control. Total GS, actin and total GSK-3β 

were used as loading controls.  
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Fig 15b phospho-GS band intensity quantification. The phospho-GS bands intensity was 

quantified using Licor ImageStudio 5.0. The band intensity was plotted as percentage of control. 

(Additional information about band quantification is available in Appendix VII) 
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Closely spaced pGS bands in murine fibroblast samples 

 An interesting observation in the phospho-GS westerns has been the appearance of a cluster 

of three closely spaced bands as seen on the pGS blots at molecular weight close to that of 

glycogen synthase i.e. ~80-90 kDa. These bands have been generically designated as band 1, 

band 2 and band 3 (Fig. 16a). GSK-3 phosphorylates glycogen synthase (GS) on different serine 

residues designated as Ser-640, 644, 648 and 652 (Rylatt et al., 1980; Parker et al., 1983). GS is 

primed at Ser-656 by casein kinase II (CKII) (Picton et al., 1982) and is then sequentially 

phosphorylated at Ser-652 followed by Ser-648 and so on (Fiol et al., 2000). According to Fiol et 

al the phosphorylation of GS by GSK-3β is not random, phoshorylation of Ser-652 leads to 

phoshorylation of Ser-648, phosphorylation of Ser-648 leads to phosphorylation of Ser-644 and 

so on.  

 The consensus sequence for the phosphorylation sites of GSK-3β in rabbit skeletal muscle 

cells is -P-R-P-A-S(Ser-640/641)-V-P-P-S(Ser-644/645)-P-S-L-S(Ser-648)-R-H-S-S(Ser-652)-

P-H-Q-S(Ser-656)-E-D-E-E-P (Ryllat et al., 1980). The amino acids of GS mentioned in bold are 

the target sites of GSK-3β. Majority of the initial work related to GS was carried out in rabbit 

muscle cells and the amino acid numbers were designated based on biochemical studies. The 

work on mouse and human GS is more recent and follows the HUGO recommendations; that 

begin with the translation start site. Hence the amino acid numbers between rabbit GS and 

mouse/human GS differ by one i.e the Ser-640 of rabbit GS (in the consensus sequence) 

corresponds to the Ser-641 of mouse GS (explained in Roach et al., 2012). 

 For western blots, an affinity-purified rabbit polyclonal antibody specific for mouse or human 

GS was used.  The immunogen used for raising the phospho-GS-antibody is a synthetic peptide 

containing phosphor-serines at residues 641 and 645 in the human GS sequence. A cluster of 

closely spaced bands is apparent in the phospho-GS western blot (Fig. 16a).  Among the three 
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bands, band 2’s intensity is decreasing in response to GSK-3β inhibitors as indicated by the line 

label. Band 2 was interpreted as representing the main product of GSK3 phosphorylation, because 

it was sensitive to treatment with GSK3 inhibitors.  It is unclear whether the flanking bands 

represent background bands, or alternative forms of phospho-GS arising from the availability of 

multiple phosphorylation sites. Fortuitously, phospho-GS western blots also contain a 

background band that runs in a different region of the gel, at much lower MW – indicated by an 

arrow. This band was included in the western images to demonstrate the sharp resolution attained 

during electrophoresis, and also so that it could serve as an extra loading control to document 

equivalent total protein per lane.   

 Alternatively it is also possible that the closely spaced bands are representing the different 

isoforms of glycogen synthase protein. In mammals two isoforms of glycogen synthase are 

expressed: glycogen synthase -1 (GYS1) and glycogen synthase-2 (GYS2). GYS1 is expressed 

mostly in skeletal muscle and most other cell types and GYS2 is restricted to liver (Browner et 

al., 1989; Nuttall et al., 1994).  It has been observed that NIH/3T3 cells could possibly be 

expressing both the isoforms of glycogen synthase because of its embryonic lineage. There is no 

direct evidence to suggest that NIH/3T3 cells indeed express both the isoforms of glycogen 

synthase. However phospho-glycogen synthase antibodies from different sources seem to be 

identifying both the isoforms of glycogen synthase in NIH/3T3 total cell lysates (Appendix IX). 

Depending upon the information available from the use of antibodies from different sources in 

NIH/3T3 cells it can be speculated that indeed NIH/3T3 cells could possibly be expressing both 

the isoforms of glycogen synthase. It is observed that lithium, beryllium and SB216763 seem to 

induce a decrease in the phosphorylation status of band 2. From the molecular weight difference 

between the two isoforms of glycogen synthase it can be speculated that band 2 is representing 

glycogen synthase-1 (Fig. 16a). The effect of insulin on the pGS is not clear, possibly because of 

the failure of serum starvation or partly because NIH/3T3 cells may not be the perfect system to 
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analyze the insulin-pGS dynamics.  However the GSK-3β inhibitors included in this study seem 

to have little effect on the phosphorylation status of glycogen synthase-2 (band 3).  

 The GSK-3β inhibitors Be
2+

, Li
+
, insulin (* effect on band 2 not clear) and SB216763 caused 

a decrease in the pGS levels (Fig 16b). Correspondingly an increase in the pSer-9 of GSK-3β 

induced by all the GSK-3β inhibitors except for SB216763 was observed. SB216763 induced a 

decrease in the pGS but did not induce an increase in the pSer9-GSK-3β. KCL at 20 mM 

concentration did not induce any major change in the pSer9-GSK-3β signal or decrease in the 

pGS levels. This data supports the observation that Be
2+ 

treatment elicits a decrease in the pGS 

levels of NIH/3T3 cells.  

 These results demonstrate the ability of beryllium to inhibit intra cellular kinase activity of 

GSK-3β in cell culture.  This is first time ever the effect of beryllium on a GSK-3β substrate has 

been documented in cell culture. 

 

 

 

.  
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Fig. 16a Identification of the correct pGS band in the multiple pGS bands cluster.Cell 

lysates extracted from NIH/3T3 cells treated with 0, 30 or 100 µM BeSO4 or 20 mM KCL or 20 

mM LICl or 20 µM SB216763 for 24 hr or serum starved NIH/3T3 cells induced with 100 nM 

insulin for 30 – 60 min were assessed for the effect of different GSK-3β inhibitors on the pGS 

levels. Western blots showing the protein levels of pGS. 
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Fig 16b Effect of different GSK-3β inhibitors on phospho-GS. Cell lysates extracted from 

NIH/3T3 cells treated with 0, 30 or 100 µM BeSO4, 20 mM KCL, 20 mM LICl, 20 µM 

SB216763 for 24 hr or serum starved NIH/3T3 cells induced with 100 nM insulin for 30 – 60 min 

were assessed for the effect of different GSK-3β inhibitors on the pGS levels. Western blots 

showing the protein levels of pGS. Note: The total GSK-3α/β and pSer9—GSK-3β bands were 

re-arranged to match the lane sequence of the accompanying blots. 
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Beryllium has little effect on the Wnt signaling pathway compared to other GSK-3β 

inhibitors 

 β-catenin is an important substrate of GSK-3β wherein GSK-3β-mediated phosphorylation of 

β-catenin leads to its ubiquitin-mediated proteosomal degradation (Miller and Moon, 1996; 

Aberle et al., 1997; Ikeda et al., 1998). GSK-3β and β-catenin play a central role in the Wnt 

signaling pathway; inactivation of GSK-3β is known to stabilize β-catenin and lead to its 

accumulation in the nucleus (Polakis, 2000; Lustig and Behrens, 2003). Li
+
 treatment induces an 

increase in the N-terminal dephosphorylation of β-catenin which is then translocated to the 

nucleus (van Noort et al., 2002; Staal et al., 2002; Hagen et al., 2002). In order to understand the 

effect of Be
2+

 on the Wnt signaling pathway, we investigated whether Be
2+ 

treatment can cause an 

increase in the nuclear pool of β-Catenin.  

Compared to Li
+
, Be

2+
- treatment induces negligible nuclear localization of β-Catenin in 

NIH/3T3 cells 

 We optimized confocal microscopy to study the effect of BeSO4 on the nuclear localization of 

β-catenin. The effect of BeSO4 along with other GSK-3β inhibitors like insulin, LiCl or 

SB216763 was analyzed in NIH/3T3 cells (Fig. 17a). The control NIH/3T3 cells show that the β-

catenin is predominantly present in the cytoplasm (Fig 17a, lane 1). 20 mM LiCl led to nuclear 

accumulation of β-catenin in NIH/3T3cells as indicated by the arrows (Fig 17a, lane 2). Li
+ 

mimics the effect of Wnt ligands (Stambolic et al., 1996; Hedgepeth et al., 1997) and leads to 

accumulation of β-catenin in the nucleus. 20 µM SB216763 also caused nuclear localization of β-

catenin (Fig 17A, lane 4). For stimulation with insulin, NIH/3T3 cells were serum starved and 

stimulated with 200 nM insulin for 30 – 60 min. The nuclear localization pattern of β-catenin in 

NIH/3T3 cells treated with 200 nM insulin and 100 µM BeSO4 is comparable to the control cells. 

The lack of much nuclear localization of β-catenin is a hallmark of the control cells. Insulin is a 
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GSK-3β inhibitor which doesn’t affect the Wnt signaling pathway (Ding et al., 2000). The 

morphology and nuclear β-catenin localization pattern of NIH/3T3 cells treated with BeSO4 and 

insulin are similar to the control cells indicating that Be
2+

 could be mimicking insulin’s mode of 

inhibitory action on GSK-3β. 
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(Note: Refer supplementary figures I on page-186 for individual images) 

 

Fig. 17a Effect of Be
2+

 on the nuclear localization of β-catenin in NIH/3T3 cells. 

Immunofluorescence microscopy images of NIH/3T3 cells treated with 0, 100 μM BeSO4, 20 

mM LiCl, 20 µM SB216763 for 24 hr or stimulated with 200 nM insulin for 30 – 60 min after 

serum starvation. The cells were fixed with 4% formalin and double labeled with a mouse 

monoclonal antibody specific for β-catenin and a goat polyclonal anytibody specific for lamin-B 

followed by anti mouse Alexa-647/anti goat-FITC secondary antibodies. Nuclear localization of 

β-catenin in the LiCl and SB216763 treated NIH/3T3 cells is seen (lane 2, 4 respectively) 

whereas not much accumulation of nuclear β-catenin is observed in the insulin and BeSO4 treated 

cells (lane 3, 5). All the images are shown at x40 magnification. Scale bar set at 50 µm. 
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Be
2+ 

induces minimal nuclear localization of β-catenin in A172 and A172 cells over 

expressing wt GSK-3β 

 A172 cells were treated with 0, 100 μM BeSO4 or 20 mM LiCl or 20 µM SB216763 for 24 

hr. Control A172 cells show a conspicuous hollow nucleus (indicated by arrows) indicating the 

cytoplasmic localization of β-catenin (Fig. 17b). Li
+ 

and SB216763 induced a clear localization of 

β-catenin in the nucleus (lane 2, 4). Be
2+

 did not elicit any drastic change in the nuclear 

localization of β-catenin and the Be 
2+ 

treated cells are similar to the control cells in terms of 

nuclear localization of β-catenin (lane 3). These results indicate that Be
2+ 

has minimal effect on 

nuclear localization of β-catenin in A172 cells when compared to other GSK-3β inhibitors. 

 A172 over expressing wt GSK-3β can act as a valuable system to analyze the effects of GSK-

3β-inhibition. The abundant amount of GSK-3β could be helpful in demonstrating the after 

effects of GSK-3β-inhibition compared to untransfected A172 cells expressing native/normal 

levels of GSK-3β. A172 cells were transfected with the addgene clone  14753 to over express wt 

GSK-3β. Single cell clones of transfected A172 cells over expressing wt GSK-3β were selected. 

A172 clone over expressing wt GSK-3β named as P1 (Appendix V) was selected for the immuno 

fluorescence imaging. P1B cells (A172 cells over expressing wt GSK-3β) were treated with 0, 

100 μM BeSO4 or 20 mM LiCl for 24 hr. Control cells show conspicuous empty nucleus (arrows) 

indicating the cytoplasmic localization of β-catenin (Fig. 17c, lane 1). Li
+ 

treatment induced a 

clear localization of β-catenin in the nucleus (lane 2). Be
2+

 did not elicit any drastic change in the 

nuclear localization of β-catenin and the Be
2+ 

treated cells are somewhat similar to the control 

cells in terms of nuclear localization of β-catenin (lane 3). These results coupled with the data 

from untransfected A172 (Fig. 17b) cells indicate that Be
2+ 

has minimal inhibitory effects on Wnt 

signaling pathway in A172 cells compared to other established GSK-3β inhibitors. The confocal 

data from NIH/3T3, A172 and A172 cells over expressing wt GSK-3β (P1B) shows that probably 

Be
2+ 

has nil to minimal effect on the Wnt signaling pathway. 
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(Note: Refer supplementary figures II on page-191 for individual images) 

 

 

Fig. 17b The effect of Be
2+

 on nuclear localization of β-catenin in A172 cells. 

Immunoflorescence microscopy images of A172 cells treated with 0, 100 μM BeSO4, 20 mM 

LiCl or 20 µM SB216763 for 24 hr. The cells were fixed with 4% formalin and double labeled 

with a mouse monoclonal antibody specific for β-catenin and a goat polyclonal anytibody specific 

for lamin-B followed by anti mouse Alexa-647/anti goat-FITC secondary antibodies. Scale bar 

set at 50 µm. 
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(Note: Refer summplementary figures III on page–195 for individual images) 

 

 

Fig. 17c Effect of Be
2+

 on the nuclear localization of β-catenin in A172 cells over expressing 

wt GSK-3β. Immunoflorescence microscopy images of A172 cells wt GSK-3β treated with 0, 

100 μM BeSO4 or 20 mM LiCl for 24 hr. The cells were fixed with 4% formalin and double 

labeled with a mouse monoclonal antibody specific for β-catenin and a goat polyclonal antibody 

specific for lamin-B followed by anti mouse Alexa-647/anti goat-FITC secondary antibodies. 

Scale bar set at 50 µm. 
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Nuclear localization of β-catenin in stable nuclei isolated from A172 cells – A flow 

cytometric approach 

 The immuno fluorescence imaging experiments showed that Be
2+

 had minimal effect on the 

nuclear localization of β-catenin whereas other types of GSK-3β inhibitors such as Li
+
 and 

SB216763 were effective. Assessing nuclear localization of β-catenin in the stable nuclei isolated 

from A172 cells was used as an alternative approach to analyze the effect of Be
2+

 on Wnt 

signaling pathway. A172 cells were treated with 100 µM BeSO4 or 20 mM LiCl and nuclei were 

isolated from the cells (Fig 18). The isolated nuclei are stable for more than 24 hr at 4  C as 

(explained in the materials and methods section).  
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Fig. 18 FSC analysis of stable nuclei and formalin fixed A172 cells. A clear size difference 

between nuclei and cells is observed. The position of the peak (red) representing A172 cells on 

the x-axis demonstrates the fact that the isolated nuclei are smaller than the cells. 
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Be
2+ 

treatment did not have a profound effect like Li
+
 on the nuclear localization of β-

catenin 

 A172 cells treated with BeSO4 or LiCl for 24 hr were used for isolating stable nuclei. 

Concentration dependent increase in the localization of β-catenin was observed in the nuclei 

isolated from Li
+ 
treated A172 cells (Fig. 19b). A slight increase in the nuclear β-catenin is 

observed between the control nuclei and the Be
2+ 

treated nuclei (Fig 19a). The effect of Be
2+ 

on 

the nuclear localization of β-catenin in A172 cells is quite subdued in comparison to the results 

produced by Li
+ 

treatment (Fig 19b). 

 The flow cytometry results along with the confocal imaging results indicate that Be
2+ 

has 

minimal effect on the Wnt signaling pathway in NIH/3T3 and A172 cells, compared to other 

GSK-3β inhibitors like Li
+
 or SB216763. 

 



123 
 

 

Fig. 19a The effect of Be 
2+ 

on nuclear localization of β-catenin is minimal compared to Li
+
. 

A172 cells were treated with 0, 10, 30 or 100 µM BeSO4 for 24 hr. Stable nuclei were extracted 

from the Be 
2+ 

treated cells. The effect of Be 
2+ 
on the nuclear localization of β-catenin was 

assessed using a mouse mono clonal β-catenin primary antibody and an Alexa647 – conjugated 

secondary antibody. For each treatment, mean fluorescence per cell was determined from 

independent replicates and representative peak for each treatment is shown here. The x-axis 

values are represented in log scale. 
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Fig. 19b Li
+ 

has a profound effect on the nuclear localization of β-catenin. A172 cells were 

treated with 0, 10, 20 or 30 mM LiCl for 24 hr. Stable nuclei were extracted from the Li
+ 

treated 

cells. The effect of Li
+ 

on the nuclear localization of β-catenin was assessed using a mouse mono 

clonal β-catenin primary antibody and an Alexa647 – conjugated secondary antibody. For each 

treatment, mean fluorescence per cell was determined from independent replicates and 

representative peak for each treatment is shown here. The x-axis values are represented in log 

scale. 
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Be
+ 

treatment failed to induce clear nuclear translocation of β-catenin in A172, U87MG, 

Caki-1 and NIH/3T3 cells 

 The immunofluorescence data from NIH/3T3, A172 and A172 P1B cells indicates that 

beryllium is not able to induce prominent nuclear localization of β-Catenin. The 

immunofluorescence data was supported by the flow analysis of stable nuclei isolated from A172 

cells after Be
2+ 

and Li
+ 

treatment. Traditionally it has been observed that majority of the work 

related to nuclear translocation of β-Catenin is based on immunofluorescence experiments. We 

thought it would be logical to analyze the nuclear localization of β-catenin using westerns. We 

decided to culture cells under the influence of appropriate concentration of GSK-3β inhibitors and 

then fractionate the cytoplasmic and nuclear proteins separately. A clean biochemically 

fractionated cytoplasmic and nuclear protein samples lacking cross contamination might work as 

a good additional system to analyze the nuclear localization of β-catenin. Be
2+ 

treatment of A172, 

Caki-1 and NIH/3T3 cell lines for 24 hr caused an increase in the p53 levels, which is seen 

localized predominantly in the nuclear fraction. The up regulation of p53 in the Be
2+ 

treated 

samples validates the success of inhibitor effect and acts as a positive control for beryllium 

induced up regulation of protein expression.  

 NIH/3T3 – 10 µM BeSO4 has no effect on the p53 expression but 100 µM BeSO4 leads to 

elevated levels of p53 (Fig. 20a, lane 6) as seen in the nuclear fraction. The β-catenin levels both 

in the cytoplasmic and nuclear fractions stay fairly constant indicating that probably Be
2+ 

treatement failed to induce any detectable up regulation of β-catenin.  

 Caki-1 - 50 µM BeSO4 treatment lead to elevated levels of p53 as observed in the cytoplasmic 

and nuclear fraction (Fig. 20b, lane 3&6). A slight increase in the cytoplasmic levels of β-catenin 

in the presence of Be
2+

 is observed but the nuclear β-catenin levels stay fairly constant (b, lane 
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5&6) indicating that probably beryllium failed to induce detectable up regulation of β-catenin in 

the nuclear fractions of Caki-1 cells. 

 A172 - 10 µM BeSO4 has no effect on the p53 upregulation but 100 µM BeSO4 caused an 

increase in p53 levels as seen in the nuclear fraction and to an extent in the cytoplasmic fraction 

as well (Fig. 20c, lane 3&6). The β-catenin level both in the cytoplasmic and nuclear fractions 

stays fairly constant (C, lane 2, 3 & 5, 6). 100 µM CaCl2 was used as a negative control and was 

expected not induce any change either on p53 or β-catenin. These results indicate that probably 

beryllium failed to induce detectable up regulation of β-catenin in the nuclear fractions of A172 

cells. 

 In U87MG the Be
2+ 

induced p53 up regulation data of U87MG cells is not available but Be
2+ 

treatment of U87MG cells causes up regulation of p53 as observed in Fig. 9. There is no effect of 

Be
2+ 

treatment on the cytoplasmic and nuclear β-catenin levels in U87MG cells (Fig. 20d). 100 

µM CaCl2 was used as a negative control and was expected not induce any change either on p53 

or β-catenin. It is possible that probably beryllium failed to induce detectable up regulation of β-

catenin in the nuclear fractions of U87MG cells. 

 The strongest support for the minimal increase in the nuclear localization of β-catenin in the 

presence of beryllium comes from the immunofluorescence and flow analysis of stable nuclei 

experiments. These results suggest that probably Be
2+ 

has minimal effect on the nuclear 

localization of β-catenin. 
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Fig. 20 Be
2+

 treatment seems to have minimal effect on the nuclear translocation of β-

catenin. (a-b)NIH/3T3 and Caki-1 cells were treated with 0, 10 or 100 µM BeSO4 for 24 hr and 

the cytoplasmic/nuclear proteins were fractionated. (c-d) A172 and U87MG cells were treated 

with 0, 100 µM CaCl2 or 100 µM BeSO4 for 24 hr and the cytoplasmic/nuclear proteins were 

extracted out separately as explained in the materials and methods section. The levels of total β-

catenin, p53, lamin and tubulin were assessed by western blot analysis. The endogenous lamin 

and tubulin serve as loading control. The presence of tubulin or lamin in the cytoplasmic or 

nuclear fractions only shows the lack of cross contamination and the good quality of sample 

preparation 
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Beryllium has no effect on the stability of axin – a possible mechanism for the in ability of 

beryllium to induce nuclear localization of β-catenin 

 Beryllium treatment seems to be having minimal effect on the nuclear localization of β-

catenin. Unlike Li
+
, the inability of Be

2+ 
to induce a major change in the nuclear localization of β-

catenin is a surprising observation. In relation to beryllium’s role as a GSK-3β inhibitor, two 

contrasting results are observed i.e. the lack of appreciable nuclear localization of β-catenin and 

decrease in the phosphorylation of glycogen synthase. These results indicate that Be
2+ 

is able to 

inhibit the activity of GSK-3β fraction involved in the insulin signaling pathway. Contrarily it is 

observed that the GSK-3β enzyme fraction regulating the Wnt signaling pathway is fairly 

insulated from the inhibitory effects of Be
2+

. Axin is an important substrate of GSK-3β and 

phosphorylation of axin by GSK-3β leads to its stabilization (Yamamoto et al., 1999). Axin, 

GSK-3β, APC (Adenomatous Polyposis Coli), casein kinase 1 (CK1), protein phosphatase 2A 

(PP2A) and E3-ubiquitin ligase β-TrCP are constituents of β-catenin destruction complex. Wnt 

ligands induced inhibition of GSK-3β is known to cause destabilization of axin (Willert et al., 

1999). Inhibition of GSK-3β associated with the β-catenin destruction complex leads to 

dephosphorylation/destabilization of axin. The de phosphorylated form of axin cannot interact 

efficiently with β-catenin, which in turn leads to destabilization of the β-catenin destruction 

complex (Willert et. al., 1999). LiCl treatment caused a decrease in the levels of axin (Yamamoto 

et al., 1999) and it could be the possible reason behind the Li
+ 
induced nuclear localization of β-

catenin.  

 We hypothesized that the failure of beryllium treatment to induce any major changes in the 

nuclear localization of β-catenin could be due to its inability to perturb the stability of the β-

catenin destruction complex. We investigated the effect of beryllium on the stability of axin - an 

important constituent of the β-catenin destruction complex.   
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 In our study we demonstrated that Be
2+ 

has no effect on the stability of axin in A172 and 

NIH/3T3 cells (Fig. 21a) Li
+ 

caused a decrease in the total axin levels in A172 (human 

glioblastoma) (panel a, lane 7&8), however Be
2+ 

seems to be having little effect on the stability of 

axin (panel a, lane 2-6). Fig. 21b Li
+ 

caused a decrease in the total axin levels in NIH/3T3 cells 

(murine fibroblasts) (panel b, lane 3), however the total amount of axin in Be
2+ 

treated sample is 

almost same as the control (panel 1, lane 2). Fig. 21c In NIH/3T3 (murine fibroblasts) beryllium 

at different concentrations did not induce any change in the total axin levels. These results 

indicate that the difference in the effect of Be
2+ 

and Li
+ 
on the nuclear localization of β-catenin 

could be because of their inability and ability respectively to disturb the β-catenin destruction 

complex respectively (refer schematic diagram 4 on page 131). 
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Fig. 21 Be
2+

 had no effect on the stability of the important β-catenin destruction complex 

constituent protein – axin. a A172 (human gliblastoma) treated with 0, 5, 10, 25, 50 or 100 µM 

BeSO4 or 10 or 20 mM LiCl for 24 hr. b NIH/3T3 (murine fibroblasts) treated with 0, 100 µM 

BeSO4 or 20 mM LiCl for 24 hr. c NIH/3T3 (murine fibroblasts) treated with 0, 1, 2.5, 5, 10, 25, 

50 or 100 µM BeSO4 for 24 hr. The effect of beryllium and lithium on the total axin levels was 

assessed using western blotting. The endogenous actin serving as loading control. 
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Schematic diagram comparing the GSK-3β inhibitory action of beryllium with other GSK-

3β inhibitors 

 

 

 

Schematic diagram 4: Differential regulation/inhibition of GSK-3β by beryllium. The 

inability of beryllium to destabilize axin indicates that probably Be
2+ 

is not able to destabilize the 

β-catenin destruction complex. Hence beryllium may not be able to strongly inhibit the activity of 

“bound GSK-3β”. However the other GSK-3β inhibitors like lithium and SB216763 seems to be 

inhgibiting both the fractions of GSK-3β. In this regard beryllium seems to be mimicking insulin 

because it has been demonstrated that insulin has no inhibitory effect towards the Wnt/β-catenin 

pathway (Ding et al., 2000).  
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Activation of p53 could be responsible for down regulating nuclear localization of β-catenin 

 The possibility of a cross talk between β-catenin and p53 in the progression of human cancers 

especially colorectal cancer has been suggested previously (Kinzler and Vogelstein, 1996). Later 

studies established a more direct interaction between p53 and β-catenin, wherein it was observed 

that deregulated β-catenin can lead to stabilization of p53 and vice versa (Damalas et al., 1999; 

Levina et al., 2004). The elevated p53 expression in response to various stimuli is an anti 

proliferative mechanism adopted by the human body for protection against the development of 

cancer (Oren, 2003; Oren et al., 2002). Deregulation of β-catenin has been implicated in the 

development of various cancers, pre dominantly colorectal cancer (Morin , 1999; Polakis, 2000; 

Patel et al.,, 2004; Wang et al., 2005; Thakur and Mishra, 2013). Elevated p53 elicits its anti 

proliferative effects in relation to β-catenin, firstly by blocking the pro-proliferative action of β-

catenin and secondly by down regulating β-catenin expression (Sadot et al., 2001). (refer 

schematic diagram 5 on next page) 

 To eliminate the possibility of aberrant or mutant p53 interfering with the p53 mediated down 

regulation of β-catenin, cell lines expressing wt p53 were identified (Table 5).In our study we 

observed that A172, U87MG, Caki-1 and NIH/3T3 cells do not show any nuclear localization of 

β-catenin in the presence of Be
2+ 

(Fig 20). Be
2+ 

treatment caused up regulation of p53 expression 

(Lehnert et al., 2001; Coates et al., 2007; Gorjala and Gary, 2010) and it could be responsible for 

regulating the nuclear localization of β-catenin as explained in Sadot et al.  
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Schematic diagram explaining the role of p53 in regulating β-catenin 

 

 

Schematic diagram 5: Upregulation of p53 leads to down regulation of β-catenin via 

miRNA-34. (Sadot et al., 2001; Cha et al., 2012) 
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Down regulation of p53 expression up regulates nuclear localization of β-catenin 

 We have used three different methods to “knock down” the p53 protein expression either post 

transcription or post translation. 

p53 “knock down” using RNAi and its effect on the nuclear localization of β-catenin 

 Short interfering RNA (siRNA) is commercially available to induce an efficient p53 knock 

down. The p53 siRNA is a 20 nucleotide long synthetic double stranded RNA molecule, which 

will silence the p53 gene post transcriptionaly. Using siRNA to knock down p53 is the quickest 

and easiest way to obtain cells with down regulated p53 expression. The down regulation of p53 

using siRNA is transient with the effect lasting until 48 – 72 hr. The p53 siRNA was transfected 

into A172 cells as explained in the materials and methods section. Post transfection A172 cells 

were allowed to grow in normal RPMI 1640 for 6 hr followed by treatment with BeSO4 for 24 hr. 

A172 cells transfected with a non specific universal control siRNA served as the negative control. 

After Be
2+ 

treatment the cytoplasmic/nuclear proteins were extracted out separately.  

 It was observed that in the presence of endogenous wt p53 there is no nuclear localization of 

β-catenin after Be
2+ 

treatment
 
(Fig. 20). Fig. 22 A prominent p53 band was observed in the 

nuclear samples isolated from A172 cells transfected with the universal control siRNA (Fig. 22, 

lane 4). The band corresponding to p53 disappears in the nuclear samples isolated from A172 

cells transfected with p53 siRNA, indicating that p53 siRNA was successful in down regulating 

p53 expression (Fig. 22, lane 5). In A172 cells the successful knock down of p53 induced nuclear 

localization of β-catenin (lane 5) compared to the cells transfected with control siRNA (Fig. 22, 

lane 4). A more prominent increase in the nuclear β-catenin is observed when p53 knock down is 

coupled with Be
2+ 

treatment (Fig. 22, lane 6). 
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 The decrease of cytoplasmic β-catenin in the samples generated after p53 knockdown (panel 

1, lane 2, 3) is complemented by the increase of nuclear β-catenin (panel 1, lane 5,6) indicating 

that the nuclear translocation of β-catenin could be induced by down regulation of p53. 

 This result demonstrates that, down regulation of p53 causes nuclear localization of β-catenin 

and the nuclear localization of β-catenin is amplified in the presence of Be
2+

. 
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Fig. 22 Down regulation of p53 expression using RNAi causes nuclear localization of β-

catenin. Cytoplasmic and nuclear proteins were extracted separately from A172 cells transfected 

with the control siRNA and p53 siRNA. The transfected cells were treated with 0 or 100 µM 

BeSO4 for 24 hr. Western blots showing the protein levels of β-catenin, p53, lamin-A/C and 

tubulin.  Lamin-A/C and tubulin acting as the loading control. 
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p53 knock down using shRNA – Lentiviral vector system 

 Short hairpin RNA (shRNA) is a sequence inserted into a lentivirus vector plasmid. 

Successful insertion of the shRNA sequence into the genome and its subsequent expression will 

induce silencing of the target gene expression. The advantage of this method is the development 

of stable cell lines with p53 knock down.  

 The successful transfection of the lentivirus vector plasmid and down regulation of p53 

protein via the shRNA was confirmed using western blotting (Fig. 23). A172 cells were 

transfected with the p53 shRNA Lentivirus vector plasmid (as explained in the materials and 

methods section). As a negative control A172 cells were transfected with an empty Lentivirus 

vector plasmid called as A172 p53 control. Successful transfection and expression of the p53 

shRNA induced a down regulation of p53 expression (Fig. 23, lane 2). The p53 expression is not 

disturbed in the A172 p53 control cells and the p53 levels are comparable to the untransfected 

A172 cells (Fig. 23, lane 1, 3). Be
2+ 

treatment at 10 µM for 24 hr did not induce any increase in 

the p53 protein levels in the p53 KO cells (Fig. 23, lane 4). Conversely a Be
2+ 

induced increase in 

p53 expression is observed in the untransfected and p53 control A172 cells (Fig. 23, lane 4, 6). 

This experiment validates the successful down regulation of p53 expression by the shRNA lenti 

virus vector system. 
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Fig. 23 Down regulation of p53 by the shRNA lentivirus vector. The untransfected A172 cells, 

A172 p53 KO and A172 p53 control cells were treated with 0 or 10 µM BeSO4 for 24 hr. Total 

cell lysates were analyzed for p53 and actin after the Be
2+ 

treatment using western blotting. 
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p53 knock down using shRNA and its effect on the nuclear localization of β-catenin 

 The A172 cells carrying the lentivirus vector plasmid were designated as A172 p53 KO cells 

(Fig. 24). The cytoplasmic and nuclear protein fractions isolated from A172 p53 KO treated with 

BeSO4 show nuclear accumulation of β-catenin (Fig. 24, lane 5&6). The nuclear localization of β-

catenin in BeSO4 treated A172 p53 KO is quite evident in comparison to the control (untreated) 

A172 p53 KO (Fig. 24, lane 4). 
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Fig. 24 Down regulation of p53 protein via the shRNA lentivirus vector aids Be
2+

 in 

inducing nuclear localization of β-catenin. Cytoplasmic and nuclear proteins were extracted 

separately from A172 p53 KO cell treated with 0, 10 or 100 µM BeSO4 for 24 hr. Western blots 

showing the protein levels of β-catenin, p53, lamin-B and tubulin. Be
2+ 

induced nuclear 

localization of β-catenin is observed in the nuclear samples (panel 1, lane 5, 6). Lamin-B and 

tubulin acting as the loading control. 
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Down regulation of endogenous p53 using the HPV E6 protein 

 The down regulation of endogenous p53 using the HPV gene 6 product provides a good 

system to analyze the cellular effects elicited by down regulation of p53. A172 and U87MG cells 

transfected with pCMV-E6 plasmid and expressing the human papillomavirus 16 E6 gene were 

obtained as a gift from Dr. Cairncross, University of Calgary. The HPV E6 genes can be 

transfected into mammalian cells to create cell lines with down regulated p53 expression (Xu et 

al., 2005). The successful translation of HPV E6 genes leads to synthesis of the E6 protein, which 

can bind to wt p53 and induce ubiquitin mediated degradation of wt p53 (Werness et al., 1990; 

Crook et al., 1991). The cell lines expressing HPV E6 protein known as the A172 E6 and U87MG 

E6 have down regulated p53 expression as explained in Xu et al (2005). A172 E6 and U87MG E6 

cells were treated with BeSO4 and the effect of p53 down regulation on β-catenin was analyzed in 

the presence of Be
2+

.  

 The total cell lysates of U87MG E6 show minimal p53 expression and a subsequent increase 

in the total β-catenin is observed in a concentration dependent manner. Compared to the cells 

treated with 0 or 10 µM BeSO4  (Fig. 25, lane-1&2) a marked increase in the total β-catenin 

amount is observed in the U87MG E6 cells treated with 30 or 100 µM BeSO4 (lane-3&4).  

 The total cells lysates of Be
2+ 

treated A172 E6 cells show p53 bands because in E6 cell lines 

the p53 expression is not knocked out completely (Fig. 26). The total β-catenin levels in A172 E6 

cells are almost constant in the presence of increasing concentrations of BeSO4.  
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Fig. 25 Effect of down regulated p53 on the β-catenin levels in total cell lysates of U87MG 

E6. U87MG E6 were treated with 0, 10, 30 or 100 µM with BeSO4 for 24 hr. After total cell 

lysate extraction from the Be
2+

 treated cells, western blotting was used to analyze the protein 

levels of β-catenin, p53 with actin acting as the loading control. 
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Fig. 26 Effect of down regulated p53 on the β-catenin levels in total cell lysates of A172 E6. 

A172 E6 were treated with 0, 10, 30 or 100 µM with BeSO4 for 24 hr. After total cell lysate 

extraction from the Be
2+

 treated cells, western blotting was used to analyze the protein levels of β-

catenin, p53 with actin acting as the loading control. 
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 In order to analyze the effect of p53 down regulation on the nuclear localization of β-catenin 

A172 E6 and U87MG E6 cells were treated with BeSO4 for 24 hr. The cytoplasmic and nuclear 

proteins were fractionated out separately.  

 Be
2+ 

treatment does not seem to be having any effect on the expression/up regulation of p53 

in U87MG E6 cells. Be
2+ 

treatment at 30 µM or 100 µM concentration leads to nuclear 

accumulation of β-catenin (Fig. 27, lane 5-6) and increase in the cytoplasmic levels of β-catenin 

is also observed (lane 2, 3).  

 In A172 E6 cells, Be
2+ 

treatment caused an optimum increase in the p53 expression (Fig. 28, 

lane 2, 3 or 5, 6). An increase in the nuclear β-catenin is observed in the nuclear fraction of the 

A172 E6 treated with 100 µM BeSO4 (lane 6).  

 The analysis of the β-catenin accumulation/localization in the E6 cell lines shows that down 

regulation of p53 leads to stabilization and nuclear localization of β-catenin. 

 The down regulation of p53 expression was achieved by three independent techniques “p53 

RNAi knockdown”, “shRNA Lentivirus vector” and “E6 cell lines expressing HPV E6 protein”. 

The results from these three independent experiments demonstrate that down regulation of p53 

leads to nuclear localization of β-catenin. It is also observed that the nuclear localization of β-

catenin induced by the down regulation of p53 is amplified in the presence of Be
2+

. 
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Fig. 27 Effect of down regulated p53 on the nuclear localization of β-catenin in U87MG E6. 

U87MG E6 cells were treated with 0, 30 or 100 µM with BeSO4 for 24 hr. The 

cytoplasmic/nuclear proteins were extracted out separately from the Be
2+

 treated cells, western 

blotting was used to analyze the protein levels of β-catenin and p53. Tubulin and lamin acting as 

the loading controls.  
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Fig. 28 Effect of down regulated p53 on the nuclear localization of β-catenin in A172 E6. 

A172 E6 cells were treated with 0, 30 or 100 µM with BeSO4 for 24 hr. The cytoplasmic/nuclear 

proteins were extracted out separately from the Be
2+

 treated cells, western blotting was used to 

analyze the protein levels of β-catenin and p53. Tubulin and lamin acting as the loading controls 
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Beryllium and lithium have contrasting effects on the phosphorylation status of β-catenin 

 β-catenin is phosphorylated on Ser-33, Ser–37 and Thr-41 by GSK-3β (Ikeda et al., 1998; 

Sadot et al., 2002; Sutherland, 2011). The phosphorylated β-catenin is then ubiquitinated 

followed by proteasomal degradation. As an aftermath of Li
+ 

mediated GSK-3β inhibition, a 

decrease in phospho β-catenin level is observed in 293T cells (Sadot et al., 2002). The assessment 

of decrease/increase in the phospho β-catenin levels, in the presence of GSK-3β inhibitors can act 

as a direct and indisputable method of establishing the effect of GSK-3β inhibitors on Wnt/β-

catenin signaling pathway.  

 We investigated the effect of Be
2+

 treatment on the phospho β-catenin levels in A172 cells. 

Be
2+

 treatment did not induce any increase or decrease in the phospho β-catenin level (Fig. 29, 

lane 2, 3, 4, 5&6) and correspondingly the total β-catenin levels too stayed fairly constant (lane 2, 

3, 4, 5&6). These results suggest that probably Be
2+ 

has nil to minimal inhibitory effect on the 

Wnt signaling pathway. The analysis of the phospho β-catenin level in Li
+
 treated samples 

showed that Li
+ 
induces an increase in the phospho β-catenin (lane 7&8), which was unexpected. 

The lack of increase in the total β-catenin levels indicates that Li
+
 treatment is primarily 

modulating the phosphorylation status of β-catenin only (lane 7, 8). The increase in the p53 

protein levels in the presence of BeSO4 and LiCl validates the effectiveness of Be
2+

 and Li
+
 

treatment on A172 cells.  
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Fig. 29 Be
2+

 has no effect on the phosphorylation status of β-catenin. A172 cells were treated 

with 0, 5, 10, 25, 50 or 100 µM BeSO4 or 0, 10 or 20 mM LiCl for 24 hr. The phospho β-catenin 

(Ser–33), total β-catenin, p53 and actin protein levels were assessed using western blotting with 

actin serving as the loading control. 
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MG132 - a proteasome inhibitor, leads to accumulation of phospho β-catenin in A172 cells  

 MG132 (sc-201270) is a strong proteasome inhibitor (Lee and Goldberg, 1998). Inhibition of 

the proteasome machinery using MG132 should have a positive effect on β-catenin turn over.  

A172 cells were treated with 100 µM BeSO4 or 20 mM LiCl for 18 hr and then the Be
2+

- Li
+ 

RPMI was replaced with Be
2+

- Li
+ 

RPMI supplemented with 10 µM MG132 and the cells were 

cultured under the effect of MG132 for 6 hr.   

 In the presence of MG132 a slight increase in the phospho β-catenin was observed in the 

control samples (Fig. 30, lane 4) compared to the control samples lacking MG132 (lane 1). A 

profound increase in the p53 protein level is observed in the MG132 control cells (lane 4). The 

increase in p53 protein levels in the MG132 samples proves the effective inhibitory effect of 

MG132 on proteasome machinery. In the absence of MG132 the phospho β-catenin levels of the 

Be
2+

 treated samples are comparable to the control phospho β-catenin level (lane 1&2). In the 

presence of MG132 as well the phospho β-catenin levels of the Be
2+

 treated samples are 

comparable to the control phospho β-catenin level (lane 4&5). These results indicate that may be 

Be
2+

 has no role in inducing the increase in phospho β-catenin in the MG132 + Be
2+

 treated 

samples. The slight increase in the phospho β-catenin levels in the MG132 + Be
2+

 treated samples 

compared to the Be
2+

 treated samples could be because of the inhibitory effect of MG132 on the 

proteasome machinery (lane 2&4).  The phospho β-catenin levels of the Li
+
 treated samples both 

in the presence and absence of MG132 are almost the same (lane 3&6). It indicates that probably 

Li
+
-induced increase in the phospho β-catenin is an intrinsic property of Li

+
, which could be 

independent of the effects of MG132. 
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Fig. 30 Proteasome inhibitor (MG132) leads to an increase in the phospho β-catenin level in 

Be
2+

 treated samples but not in the Li
+
 samples. Western blots showing the protein levels of 

phospho β-catenin (Ser -33), total β-catenin, p53 and actin. A172 cells were cultured either in the 

absence (Fig 30 left) or presence (Fig 30 right) of 10 µM MG132. A172 cells were treated with 0, 

100 µM Be SO4 or 20 mM LiCl for 24 hr. 
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Down regulation of p53 has no effect on phospho-β-catenin 

 The observation that Li
+
 caused an increase in phospho β-catenin in A172 cells was 

unexpected, because β-catenin is a substrate for phosphorylation by GSK-3β and Li
+
 acts as an 

inhibitor of GSK-3β kinase activity. Moreover, Sadot et al. observed that Li
+
 causes a decrease in 

phospho-β-catenin when 293T cells are used (Sadot et al., 2002). The A172 cells shown in Fig. 

29 and 30 have wild type p53. 293T cells are human embryonic kidney cells that have been 

transformed with SV40 large T antigen, which inactivates p53. Considering the potential for 

complicated interactions between p53 signaling and the Wnt/β-catenin network, we wondered 

whether p53 status could account for the divergent effects of lithium on phospho-β-catenin when 

comparing our results to those of Sadot et al. Therefore, we repeated this experiment using the 

p53 shRNA-expressing A172 cells (p53 KO A172 cells) (Fig. 31). In p53 KO A172 the p53 

expression is down regulated (Fig. 23). However, our results with p53 KO A172 reproduced our 

earlier results when A172 cells expressing wild type p53 were used: In p53 KO A172 cells as 

well Li
+ 

caused an increase in the phospho-β-catenin but beryllium did not at 24 hr. These results 

were reproduced after 48 hr treatment time as well. Our results from p53 KO A172 cells (Fig. 31) 

indicate that probably p53 has no role to play in the lithium induced increase of phospho β-

catenin. 
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Fig. 31 Down regulation of p53 has no effect on the phospho-β-catenin levels. A172 p53 KO 

cells were treated with 0 , 10 or 100 µM BeSO4 or 20 mM LiCl for 24 or 48 hr. Western blots 

showing the protein levels of phospho β-catenin (Ser -33), total β-catenin, p53 and actin.  
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Beryllium in combination with MG132 (a proteasome inhibitor) induces an increase in the 

phospho-β-catenin levels in A172 p53 KO cells 

 In the presence of a proteasome inhibitor an increase in the phosphor-β-catenin levels was 

observed (Fig. 30). We wondered what would be the effect of MG132 on shRNA-expressing p53 

KO A172 cells. A172 cells were treated with 100 µM BeSO4 or 20 mM LiCl for 18 hr and then 

the Be
2+

-Li
+ 

RPMI was replaced with Be
2+

-Li
+ 

RPMI supplemented with 10 µM MG132 and the 

cells were cultured under the effect of MG132 for 6 hr.  

 In p53 KO A172 cells the use of MG132 caused phospho β-catenin to accumulate at higher 

levels(Fig. 32). There is a marked increase in the phospho β-catenin levels in the untreated 

(MG132) samples compared to the untreated samples lacking the proteasome inhibitor MG132. 

The beryllium treated samples seems to be following the pattern of untreated cells in terms of 

phospho β-catenin accumulation (appreciable amount of phospho-β-catenin accumulation in the 

presence of proteasome inhibitor). The p53 KO A172 cells seems to be imitating the normal 

A172 cells in showing a little difference in the phospho β-catenin levels in the presence or 

absence of proteasome inhibitor. The results from A172 cells (Fig. 30) and p53 KO A172 cells 

(Fig. 32) indicate and reiterate the point that probably p53 has no role in the lithium induced 

increase of phospho β-catenin .  
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Fig. 32 Down regulation of p53 coupled with proteasome inhibiton causes accumulation of 

phospho-β-catenin in p53 KO A172 cells. p53 KO A172 cells were treated with 0 or 100 µM 

BeSO4 or 20 mM LiCl for 24 hr. Western blots showing the protein levels of phospho β-catenin 

(Ser -33), total β-catenin, p53 and actin. p53 KO A172 cells were cultured either in the absence or 

presence of 10 µM MG132. 
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Discussion 

 In our previous study we established that Be
2+ 

is a potent GSK-3β inhibitor and it doesn’t 

elicits any increase in the Ser-9 phosphorylation of GSK-3β in A172 and HFL cells (Mudireddy 

et al., 2014). Analysis of the Ser-9 phosphorylation of GSK-3β in NIH/3T3 and Caki-1 cells 

treated with BeSO4 for 24 hr shows that Be
2+

 treatment caused an increase in Ser-9 

phosphorylation of GSK-3β (Fig. 9 & 10). The ability of Be
2+ 

to induce Ser-9 phosphorylation of 

GSK-3β seems to be a cell type specific action. In our present study Be
2+

 did not elicit any change 

in the Ser-9 phosphorylation status of GSK-3β in A172 and U87MG cells (Fig. 8&9). 

Surprisingly Li
+
 too did not induce any change in the Ser-9 phosphorylation of GSK-3β in 

U87MG cells; this is in contrast to the results reported in Atkins et al (2012). (Fig. 9b, lane 4). 

The comparison of beryllium’s
 
effect on the Ser-9 phosphorylation of GSK-3β with other GSK-

3β inhibitors like Li
+
, SB216763, insulin or rottlerin shows that it is only Be

2+ 
which elicits a cell 

type specific response in A172, NIH/3T3 and Caki-1 cells (Fig. 12 & Table 5). Li
+ 

influences the 

GSK-3β to TIMAP to PP1 positive feedback loop eliciting an increase in the Ser-9 

phosphorylation of GSK-3β (Zhang et al., 2003). It is possible that in some cell types Be
2+ 

may 

not be able to regulate the GSK-3β to TIMAP to PP1 feedback loop because of which no increase 

in the Ser-9 phosphorylation of GSK-3β is observed. The uniqueness of beryllium’s role
 
as a 

GSK-3β inhibitor lies in its ability
 
to regulate Ser-9 phosphorylation of GSK-3β differentially 

depending upon the specific cell lines. In our comparative study here Be
2+ 

is the only GSK-3β 

inhibitor among Li
+
, SB216763 and insulin, which has a cell type specific effect on the Ser-9 

phosphorylation of GSK-3β.  

 Be
2+ 

caused a decrease in the phosphorylation of glycogen synthase (GS) in NIH/3T3 cells 

(Fig. 15&16). This is the first time ever the inhibitory effect of Be
2+ 

on GSK-3β is demonstrated 

by assessing the effect of Be
2+ 

on the endogenous target proteins that are downstream of GSK-3β. 

Be
2+ 

caused an increase in the Ser-9 phosphorylation of GSK-3β and it could lead to its 
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inactivation in NIH/3T3 cells. The increase in the Ser-9 phosphorylation of GSK-3β in the Be
2+ 

treated samples is complemented well by the decrease in phosphorylation of glycogen synthase. It 

has been demonstrated that Li
+ 

causes a decrease in pGS levels in L6 muscle cells and 3T3-L1 

adipocytes (MacAualy et al., 2003). An intriguing aspect related to the effect of GSK-3β 

inhibitors on the phosphorylation status of glycogen synthase has been the selective 

dephosphorylation of glycogen synthase isoform-1 only. The expression of glycogen synthase 

isoforms is tissue specific (Browner et al., 1989; Nuttall et al., 1994). It has been reported that 

unicellular organisms like synechocystis (cyanobacteria) and yeast express both the isoforms of 

glycogen synthase (Frakas et al., 1991; Yoo et al., 2014). As explained in the results section 

NIH/3T3 could possibly be expressing both the isoforms of glycogen synthase. It is not clear why 

lithium, beryllium or SB216763 are able to induce a decrease in the phosphorylation status of 

glycogen synthase-1 only. The regulation of glycogen synthase is a complicated phenomenon 

which is not clearly understood yet. It has been reported that in yeast the expression of the 

glycogen synthase isoforms is differentially regulated (Frakas et al., 1991). Phosphorylation and 

dephosphorylation of glycogen synthase plays an important role in its regulation. It could be 

possible that the phosphorylation status of glycogen synthase could be differentially regulated as 

well. It has been observed that kinases are closely associated with phosphatases and they work in 

tandem in regulating the phosphorylation status of substrates. A good example of a 

kinase/phosphatase pair working in tandem would be the regulation of Ser-9 phosphorylation of 

GSK-3β as explained in the Zhang’s model (schematic diagram 3). Along with different kinases 

certain phosphatases like PP1G has been implicated in regulating the phosphorylation status of 

glycogen synthase (Smith et al., 1983; Aschenbach et al., 2001). There is a possibility that there 

might be a phosphatase that is specific for the isoforms of glycogen synthase and the GSK-3β 

inhibitors could be interfering with its phosphatase activity. However this is a speculation and 

there is no information to support such a possibility. 
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 Dominant phosphorylation sites: GSK-3β is one of the many kinases that phosphorylate 

glycogen synthase and regulate its activity (explained in Roach et al., 2012). It has been proposed 

that in rabbit muscle cells expressing glycogen synthase-1 the phosphorylation of site 2 (*Ser-8), 

site 2a (*Ser-11), site 3a (*Ser-641) and site 3b (*Ser-645) play an important role in its regulation 

(* amino acid numbers in relation to mouse glycogen synthase) (Skurat et al., 1994, 1995). The 

phospho-GS antibody used in this study is specific to the pSer-641 and pSer-645 residues. In liver 

glycogen synthase isoform 2 is present and the dominant phosphorylation site on glycogen 

synthase-2 is site 2 (*Ser-8) (Ros et al., 2009). It could be possible that the phosphorylation status 

of Ser-641 and Ser-645 might be playing a less important role in the regulation of glycogen 

synthase-2. Hence it can be speculated that the use of GSK-3β inhibitors in NIH/3T3 cells seems 

to have no effect on the phosphorylation status of glycogen synthase-2 (Fig 16). However the 

effect of GSK-3β inhibitors on the pGS levels has to be investigated in a cell line representing 

hepatic lineage. In this way the precise effect of GSK-3β inhibitors on the phosphorylation status 

of glycogen synthase-2 can be analyzed. 

 Compartmentalization of GS: Prats et al showed that along with the 

phosphorylation/dephosphorylation mechanism compartmentalization of glycogen synthase 

seems to be playing an important role in its regulation (Prats et al., 2009). It could be possible that 

the glycogen synthase isoforms in the NIH/3T3 cells could be compartmentalized and hence 

differentially regulated by GSK-3β inhibitors. 

 Li
+ 

mimics the actions of insulin and inhibits GSK-3β, which in turn has a positive effect on 

glycogen metabolism (Cheng et al., 1983; Bosch et al., 1986; Choi et al., 2000).Whether the Be
2+ 

treatment induced dephosphorylation of glycogen synthase (GS) has a positive effect on the 

activity of GS and glycogen metabolism has to be investigated further. 
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 The most common way to demonstrate the after effects of GSK-3β inhibition is by assessing 

the stabilization and nuclear localization of the important GSK-3β substrate called as β-catenin. 

Our data shows that Li
+ 
treatment promotes nuclear localization of β-catenin in NIH/3T3 and 

A172 cells. β-catenin is an important constituent of the Wnt signaling pathway. The Li
+ 

induced 

nuclear localization of β-catenin is an expected result because Li
+
 mimcs the action of Wnt 

ligands (Stambolic et al., 1996; Klein and Melton, 1996; Hedgepeth et al., 1997). Li
+
 treatment 

also regulates the glycogen metabolism pathway. Be
2+ 

treatment induced a minimal nuclear 

translocation of β-catenin in NIH/3T3 and A172 cells (Fig. 17&18). The analysis of the nuclear 

localization of β-catenin in Be
2+

 or Li
+
 treated NIH/3T3 and A172 cells suggests that in 

comparison to Li
+  
induced nuclear localization of β-catenin the effect of Be

2+ 
is subtle. Insulin did 

not elicit any major influence on the nuclear localization of β-catenin and the same has been 

reported in other studies (Ding et al., 2000).  

 The inability of Be
2+ 
to induce substantial nuclear localization of β-catenin while decreasing 

the levels of phospho-glycogen synthase
 
points to the fact that Be

2+ 
could be a pathway specific 

GSK-3β inhibitor. Analysis of the effect of Be
2+ 
on axin, an important constituent of the β-catenin 

destruction complex shows that Be
2+ 
has little effect on the β-catenin destruction complex, unlike 

Li
+
 (Fig. 21). With little effect on the stability of axin, Be

2+ 
will not be able to destabilize β-

catenin destruction complex. A stable and active β-catenin destruction complex marks β-catenin 

for ubiquitin mediated proteosomal degradation thus deterring any substantial nuclear localization 

of β-catenin. GSK-3β enzyme can be dived into two cellular fractions the “free GSK-3β”, which 

is part of the insulin signaling pathway and the “bound GSK-3β” involved in the Wnt pathway. 

Li
+ 

seems to be behaving as a GSK-3β inhibitor in a more universal fashion, inhibiting both the 

free GSK-3β and the β-catenin destruction complex bound GSK-3β fractions. The GSK-3β 

associated with the β-catenin destruction complex is responsible for phosphorylating β-catenin 

and marking it for ubiquitin mediated proteasomal degradation.  
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 We hypothesized that the lack of nuclear localization of β-catenin in the presence of 

beryllium is because of its inability to regulate the “bound GSK-3β” which is part of the β-catenin 

destruction complex. Axin is a member of the β-catenin destruction complex along with APC, 

PP2A, GSK-3β and CK-1. Phosphorylation of axin by GSK-3β stabilizes it and plays a central 

role in the regulation of β-catenin. Analysis of the effect of Li
+ 

on axin stability shows that Li
+
-

treatment caused de stabilization of axin in A172 and NIH/3T3 cells (Fig 21a&b, panel 1). 

However Be
2+ 

seems to be having no effect on axin stability in A172 and NIH/3T3 cells (Fig 21a, 

b&c). Lithium is known to de stabilize axin
 

by interfering with GSK-3β mediated 

phosphorylation of axin (Yamamoto et al., 1999). It can be concluded that Li
+ 

is able to inhibit the 

kinase activity of “bound GSK-3β” because of which it cannot phosphorylate axin. However Be
2+ 

seems to be unable to interfere with the kinase activity of “bound GSK-3β” thus eliciting no 

effect on axin’s stability. It can be hypothesized that the Be
2+ 

induced decrease of pGS is because 

of the Be
2+ 
mediated inhibition of “free GSK-3β”. Conversely the inability of Be

2+ 
to elicit the 

nuclear localization of β-catenin could be because of its failure to access or inhibit the “bound 

GSK-3β” thus leaving its kinase activity intact. The inability of Be
2+ 

to regulate proteins like axin 

and β-cartenin indicates that the Wnt pathway could be insulated from its inihibitory effects.  

 Various studies have demonstrated the possibility of a cross talk between p53 and β-catenin 

and that the activation of p53 expression down regulates β-catenin (Damalas et al., 1999; Sadot et 

al., 2001; Levina et al., 2004). In our study it was observed that Be
2+ 

could not induce nuclear 

localization of β-catenin; we thought it would be interesting to investigate the effect of p53 

upregulation on the nuclear localization of β-catenin. Our results demonstrated that in cell lines 

carrying wt p53 Be
2+

 treatment did not induce any nuclear localization of β-catenin (Fig. 16). Be
2+ 

treatment causes up regulation of p53 expression (Lehnert et al., 2001; Coates et al., 2007; 

Gorjala and Gary, 2010) and it could probably be one of the reasons for the lack of nuclear 

localization of β-catenin. Down regulation/knock down of p53 resulted in clear nuclear 
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localization of β-catenin (Fig. 22, 24, 27&28). De regulation of β-catenin plays a central role in 

development of various cancers. Hence β-catenin is regulated by multiple, overlapping and 

intricate mechanisms which are still not clearly understood; p53 mediated down regulation of β-

catenin is one among them. It has been proposed that p53 communicates with the endogenous β-

catenin using a micro RNA known as miRNA-34a (Kim et al., 2011; Siemens et al., 2013). Our 

efforts to knock down miRNA-34a using specialized RNAi analog to establish the role of miR-

34a in p53 mediated blockade of nuclear localization of β-catenin was not successful (data not 

shown). 

Li
+
 induced decrease of phospho β-catenin in 293T cells (human embryonic kidney cells) has 

been reported previously (Sadot et al., 2002). Our studies indicate that in A172 cells (human 

glioblastoma) Li
+ 

treatment at 10 or 20 mM concentration leads to an increase in phospho-β-

catenin levels. (Fig.29). Be
2+

 treatment on the other hand has no effect on the phospho-β-catenin 

(Fig. 29). Even though Be
2+ 

and Li
+ 

are both inhibitors of GSK-3β they seem to be playing 

contrasting roles in relation to the phosphorylation status of β-catenin. Interestingly no change 

was observed in the total β-catenin levels even when the phosphorylated form of endogenous β-

catenin was up regulated. This observation suggests that the change is primarily in the 

phosphorylation status of β-catenin. Recently it was shown that Wnt stimulation elicited 

accumulation of phosphorylated form of β-catenin in HEK293T cells (Gerlach et al., 2014). 

Lithium mimics the action of Wnts (Stambolic et al., 1996; Hedgepeth et al., 1997) and the Wnt 

signaling induced accumulation of phospho-β-catenin in HEK293T cells gives credibility to the 

ability of lithium to up regulate phosphorylated form of β-catenin.   

 It has been suggested that along with GSK-3β mediated phosphorylation there could be some 

serine/threonine phosphatases which are involved in the regulation of β-catenin. Protein 

phosphase 2A (PP2A) is an prominent member of the β-catenin destruction complex and plays an 

important role in the regulation of Wnt/β-catenin signaling pathway (Willert et al., 1999; Seeling 
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et al., 1999; Li et al., 2001; Yang et al., 2003; Yokoyama and Malbon, 2007). PP2A is made up of 

three subunits designated as A, B and C which constitutes the holoenzyme. It has been reported 

that the phosphorylation of PP2A inhibits its phosphatase activity, which in turn leads to an 

increase in β-catenin phosphorylation (Bos et al., 2006). Interestingly lithium
 
has been shown to 

inhibit PP2A in certain cell types (Mora et al., 2002). It has been reported that lithium inhibits 

PP2A by preventing methylation of subunit C and by causing the dissociation of subunit B from 

the core enzyme (Chen et al., 2006). These studies points to the fact that lithium has the ability to 

regulate the phosphatase activity of PP2A towards phospho-β-catenin. Another closely related 

phosphatase called as protein phosphatase 1 (PP1) is an important constituent of the GSK-3β–

TIMAP–PP1 feedback loop, wherein it positively regulates GSK-3β via its phosphatase activity 

(Jope, 2003; Li et al., 2007). The ability of Li
+
 to elicit an increase in the Ser-9 phosphorylation 

of GSK-3β has been partly attributed to the perturbations it can cause in the GSK-3β–TIMAP–

PP1 feedback loop (Zhang et al., 2003). It is possible that only Li
+ 

but not Be
2+

 is able to interfere 

with the PP2A activity, because of which only Li
+
 could be facilitating accumulation of phospho-

β-catenin in A172 cells.  

 However the precise role of PP2A in the β-catenin destruction complex is not clear yet. It has 

been reported that PP2A might be involved in de phosphorylation of APC (Ikeda et al., 2000). 

The most important question whether PP2A can dephosphorylate the β-catenin associated with 

the β-catenin destruction complex remains unanswered. It has been reported that PP2A can 

dephosphorylate β-catenin in vitro (Su et al., 2008). Su et al also suggests that APC could be 

protecting the phosphorylated N-terminal region of β-catenin by shielding it from PP2A. The 

available data implies that the role of PP2A in regulation of β-catenin in the β-catenin destruction 

complex is not clearly understood. 

 β-TrCP is a F-Box protein which is an important component of the ubiquitin ligase complex 

(SCF) involved in regulation of β-catenin stability (Winston et al., 1999; Latres et al., 1999) and 
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this ubiquitin ligase complex is associated with the β-catenin destruction complex (Hart et al., 

1999; Liu et al., 1999, Major et al., 2007). The GSK-3β mediated phosphorylation of Ser-33 and 

Ser-37 present on the N-terminal region of β-catenin in the β-catenin destruction complex serves 

as the recognition site for β-TrCP (reviewed in Kikuchi et al., 2006). The β-TrCP initiates the 

binding of E2 ligase followed by poly-ubiquitination of β-catenin which ultimately leads to its 

proteosomal degradation (reviewed in Kimelman and Xu, 2006). It has been suggested that APC 

could be playing an important role in the β-TrCP mediated ubiquitination of β-catenin (Sadot et 

al., 2002; Yang et al., 2006; Su et al., 2008). It has also been suggested that in the absence of 

APC, phoshorylated form of β-catenin is rapidly de phosphorylated thus diminishing the 

possibility of poly-ubiquitination (Su et al., 2008). These studies suggest that some members of 

the β-catenin destruction complex could be helping the β-TrCP mediated ubiquitination of β-

catenin. Hence the loss of a stable and functional β-catenin destruction complex could interfere 

with the β-TrCP mediated ubiquitination thus preventing the proteosomal degradation of 

phospho-β-catenin.  

 Lithium is a strong GSK-3β inhibitor and is known to inhibit GSK-3β’s ability to 

phosphorylate its substrates. β-catenin is a well established and highly studied GSK-3β substrate 

and the “accepted β-catenin dogma" is that the inhibition of GSK-3β should elicit a sharp 

decrease in phospho-β-catenin levels. Surprisingly our results suggest that the “accepted β-

catenin dogma” may not be always true. Lithium seems to be inhibiting the Wnt/β-catenin 

signaling pathway by three different mechanisms. Lithium induces Ser-9 phosphorylation of 

GSK-3β (Zhang et al., 2003), it induces destabilization of axin because of which the stability of 

the β-catenin destruction complex could be affected (Fig. 21). Lithium also inhibits the activity of 

PP2A (Chen et al., 2006; Mora et al., 2002). The above mentioned reasons could be responsible 

for the lithium mediated up regulation of phosphorylated form of β-catenin. We are proposing a 

hypothetical model to explain the “regulation of β-catenin/phospho-β-catenin” by the β-catenin 
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destruction complex and the role of lithium as a “Wnt mimicking agent” (schematic diagram 6, - 

next page) 
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Schematic diagram 6: Hypothetical model explaining the increase of phospho-β-catenin in 

the presence of lithium 
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The lithium induced increase in the phospho-β-catenin levels of A172 cells was a surprising 

observation (Fig. 29). Conventional knowledge about lithium’s role as GSK-3β inhibitor points to 

the fact that it should lead to a decrease in the levels of phospho-β-catenin, as explained in Sadot 

et al. A critical difference between our study and Sadot et al is their use of 293T cells (human 

embryonic kidney cells containing the SV40 T antigen) and we have used A172 cells 

(glioblasoma). Another important difference is the p53 status in A172 and 293T cells; T antigen 

is known disrupt the activity of p53 protein (Ali and DeCaprio, 2001). We speculated that the 

accumulation of phospho-β-catenin in A172 cells could be because of the presence of wt p53. 

Hence we used the shRNA A172 p53 KO cells to analyze the effect of lithium on phospho-β-

catenin. Our speculation that the presence of wt p53 in A172 cells could be causing accumulation 

of phospho-β-catenin in lithium treated cells was incorrect. The effect of lithium on phospho-β-

catenin did not change depending upon the functional status of p53. These observations are very 

intriguing because Li
+ 

induced inhibiton of GSK-3β should cause a decrease in the phospho-β-

catenin. As observed p53 status seems to be eliciting no effect on the Li
+ 

induced accumulation of 

phospho-β-catenin. There is a remote possibility that the Li
+ 

induced accumulation of phospho-β-

catenin in A172 cells could be an exclusive cell type specific event. However it would be prudent 

to examine the effect of Li
+ 

on phospho-β-catenin in other cell types as well. 

 Several studies have shown that β-catenin plays a critical role in cancerous proliferation of 

cells (Morin, 1999; Valenta et al., 2012). De regulation of β-catenin can happen due to many 

reasons and the two most important being: 1. mutations in the β-catenin gene (CTNNb1) which 

affects the important serine/threonine residues in the N-terminal region of the β-catenin. 2. Any 

mutation or inhibition of the proteins like APC, axin, GSK-3β or PP2A, which are all constituents 

of the β-catenin destruction complex. The mutated ser/thr residues on the amino terminal region 

of β-catenin cannot provide the post translational phosphorylation signal for the ubiquitin 

mediated proteasomal degradation of β-catenin. The stabilization and nuclear accumulation of β-
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catenin leads to activation of β-catenin-target genes some of which are involved in the 

development of cancer (Thakur and Mishra, 2013). Activation of Wnt signaling and abnormal 

nuclear localization of β-catenin results in development of tumoural phenotype in mesenchymal 

stem cells (Herencia et al., 2012), development of colon cancer (Tetsu and McCormick, 1999) 

and development of human colorectal carcinomas (Mann et al., 1999). Nuclear localization of β-

catenin is associated with the local lymph node metastasis or distant metastasis in a variety of 

cancers like colorectal (Cheng et al., 2011), breast (Robles-Frias et al., 2006), oesophageal (Hou 

et al., 2011) and cervical (Noordhuis et al., 2011). Nuclear localization of β-catenin is associated 

with malignant melanomas as well (Rimm et al., 1999) and abnormal repression of GSK-3β can 

possibly lead to activation of oncogenes. 

 Inhibition of GSK-3 presents a peculiar problem and has its own implications. Down 

regulation of GSK-3β activity could have a positive effect on the glycogen metabolism and tau 

protein phosphorylation dynamics, which have direct implications in diabetes miletus type 2 and 

alzheimer’s disease respectively. Conversely inhibition of GSK-3β could lead to activation of 

proto oncogenes due the stabilization and nuclear localization of β-catenin. 

 A potent GSK-3β inhibitor is expected to bring about the desired effect along with the 

stabilization and nuclear localization of β-catenin. As demonstrated in our study GSK-3β 

inhibitors insulin, Li
+
 and SB216763 were successful in down regulating the phosphorylation of 

GS and except for insulin the other two GSK-3β inhibitors (Li
+ 

and SB216763) caused nuclear 

localization of β-catenin as well. Li
+ 

is already in use for anti-bipolar therapy. The IC50 value of 

Li
+ 

is ~ 2mM but the therapeutic concentration is ~1 mM (Malhi et al., 2013). The use of Li
+ 

at a 

concentration lower than its IC50 for therapeutic purpose is to avoid complete or unrestricted 

inactivation of GSK-3β. Our study indicates that Be
2+ 

can act as a potent GSK-3β inhibitor at 

intra cellular level. The inhibitory effect of Be
2+ 

seems to be biased more towards the glycogen 

synthesis pathway, while keeping the Wnt signaling fairly insulated from its inhibitory effects. 
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Insulin is a GSK-3β inhibitor, but the GSK-3β fraction which is part of the β-catenin destruction 

complex seems to be “insulated” from the inhibitory action of insulin (Ding et al., 2003). 

However the possibility of a cross talk between insulin and Wnt signaling pathway does exists 

and it has been reported that insulin can stimulate β-catenin pathway (Desbois-Mouthon et al., 

2001). Hence it is necessary to use the word “insulated” in relation to GSK-3β inhibition with 

caution.  

 This preliminary study highlights the unique properties of Be
2+ 

in terms of its differential 

regulatory effect on the pathways in which GSK-3β plays a central role.
 
 This unique property of 

Be
2+ 

could conceivably be exploited for therapeutic purpose. Before commenting on the 

therapeutic potential of Be
2+ 

it is imperative to ascertain the mechanism behind the Be
2+ 

induced 

inhibition of GSK-3β. How is Be
2+ 

modulating the
 
inhibition of GSK-3β by “direct mechanism” 

and what is the effect of Be
2+ 
on the “scaffolding proteins” that are part of the β-catenin 

destruction complex are some of the un answered questions. 
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CHAPTER 6 

 

Beryllium could be involved in the regulation of BTG2, DDB2 and FAM III B gene 

products 

Introduction:  

 Our lab demonstrated that beryllium can induce an increase in the expression of important 

cell cycle regulators p53 and p21 (Coates et al., 2007; Gorjala and Gary, 2010, Mudireddy et al., 

2014). There is very limited information available about the effect of beryllium on mammalian 

cells at molecular level. There could be many other important genes/gene products that might be 

regulated by Be
2+

. Microarray is a powerful technique that can help in analyzing the expression of 

genes under different conditions. From the microarray data available in our lab, it was observed 

that apart from p21 there are other genes, which respond to beryllium treatment. BTG2, DDB2 

and FAM III B genes were selected for this study and the expression of these genes after Be
2+ 

treatment was analyzed using RT PCR. 

 

Materials and methods 

Cell culture 

 A172 cells were cultured in RPMI 1640 HEPES (cat#23400-021, Gibco) supplemented with 

10% fetal bovine serum (FBS) and 1x antibiotic-mycotic.  

Beryllium treatment 

 BeSO4.4H2O (lot&filling code: 413015/1 22001, Fluka) was used to prepare a stock solution. 

Beryllium stock solution was diluted to obtain required concentration. 
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 Cells used in this study were obtained after trypsinizing a batch of cell culture dishes. A 

common pool of cells was generated which was then used for the experiment. The cells 

designated as control were cultured in normal RPMI 1640 or 10 µM BeSO4 for 24 hr. 

Real time PCR 

 After the treatment of A172 with the inhibitors or ionizing radiation, total mRNA was 

extracted using Rneasy Mini Kit and QIA-shredder (Qiagen cat #74104 and 79654). The RNA 

concentration was measured using nano drop UV-vis spectrophotometer. Total mRNA was 

reverse transcribed to generate copies of cDNA. Real time PCR was performed on same quantity 

of cDNA sample using QuantiTect SYBR green PCR kit (Qiagen cat #205311) and QuantiTect 

SYBR green PCR kit (Qiagen cat # 204143). The following primer sets were used in the study 

QT00095431, QT00079247, QT00062090, QT00240247 for human GAPDH, human p21 

(CDKN1A) and human BTG2 respectively (QuantiTect Primer assay). .  

 The thermal cycling program was set in the following way for amplification and detection – 

Step 1: Initial denaturation step at 95  C for 15 minutes  

Step 2: Annealing at 55  C for duration of 30 seconds.  

Step 3: The primer extension step was set at 72  C for 30 seconds 

The step 1, 2 and 3 can be considered as a thermal cycle and the BioRad thermal cycler was 

programmed to repeat this cycle 40 times. 

Final step: The thermal cycle program was terminated after performing a final denaturation step 

at 95  C for 1 minute followed by a final extension performed at 72  C for 1 minute  

For the melt curve analysis the starting point was set at 55  C for 10 seconds with a step by 

increase of 0.5  C after cycle 2 (of the total 40 cycles). 
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For data analysis – RT PCR data was normalized against actin. The upregulation or down 

regulation of the gene expression under the effect of inhibitors or ionizing radiation was 

calculated as % of control.  

IR treatment 

 For ionizing radiation, the Cabinet X-Ray system, model Rx-650, by Faxitron X-ray corp was 

used. Accordingly A172 cells were exposed to 5 Gy or 10 Gy ionizing radiation. 

Statistical analysis: 

 GraphPad Prism v6.0c (Mac OS) was used for analyzing the data. One-way ANOVA with 

Tukey’s multiple comparisons test was used to obtain P values comparing each group with all the 

other groups (P <0.05 considered as significant). The log transformed values were used for the 

analysis. 

 

Results 

 Be
2+

 at concentrations, as low as 10 µM caused a marked increase in the mRNA levels of the 

important cell cycle regulator p21 in A172 cells (Fig. 33). Li
+ 

treatment too caused an increase in 

the mRNA levels of p21. However exposing the cells to ionizing radiation (X-rays) did not elicit 

any increase in the mRNA levels of p21. 

 Be
2+

 caused a significant decrease in the mRNA levels of FAM III B in A172 cells (Fig. 34). 

Li
+ 

and ionizing radiation (X-ray) treatment as well caused a decrease in the mRNA levels of 

FAM II B. However the function of FAM III B gene is not known. 

 DDB2 gene encodes the DNA damage binding protein 2 and it is is involved in DNA damage 

repair. (Keeney et al., 1993; Wakasugi et al., 2002; Liu et al., 2000). Be
2+ 

has no significant effect 
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on the mRNA levels of DDB2 in A172 cells. Li
+ 

treatment and exposure of A172 cells to X-ray 

did not have any significant effect on the DDB2 mRNA levels (Fig. 35). 

 B-cell translocation gene 2 (BTG2) is a member of the BTG gene family and encodes the 

BTG2 protein. BTG2 is a p53 dependent protein and is an important component of the cellular 

response to DNA damage (Rouault et al., 1996; Puisieux and Magaud, 1999; Winkler, 2010). In 

the presence of Be
2+ 

there is little increase in the mRNA levels of BTG2, which is comparable to 

the increase/change induced by ionizing radtaion (X-ray) treatment (Fig. 36). Li
+ 

treatment caused 

significant increase in the mRNA levels of BTG2 gene in A172 cells. 

 The is no significant change in the actin mRNA levels in the presence of Be
2+ 

or after 

treatment with ionizing radiation (Fig. 37). Li
+ 

treatment seems to be down regulating the actin 

mRNA levels to an extent. 
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Fig. 33 Beryllium at 10 µM concentration caused an increase in p21. A172 cells were treated 

with 0, 10 µM BeSO4, 10 mM LiCl for 24 hr or 5 Gy X-ray or 10 Gy X-ray. A significant 

increase in the p21 mRNA is observed in the 10 µM BeSO4 samples. Statistically significant 

differences are indicated as * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Statistically 

non significant values are mentioned as ns. 
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Fig. 34 Beryllium at 10 µM concentration caused a significant decrease in FAM III B 

mRNA. A172 cells were treated with 0, 10 µM BeSO4, 10 mM LiCl for 24 hr or 5 Gy X-ray or 

10 Gy X-ray. Data presented as mean +/- standard deviation. Statistically significant differences 

are indicated as * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Fig. 35 Beryllium at 10 µM concentration had no significant effect on the DDB2 mRNA. 

A172 cells were treated with 0, 10 µM BeSO4, 10 mM LiCl for 24 hr or 5 Gy X-ray or 10 Gy X-

ray. Data presented as mean +/- standard deviation. Statistically significant differences are 

indicated as * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Statistically non significant 

values are mentioned as ns. 
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Fig. 36 Beryllium at 10 µM concentration had no significant effect on the BTG2 mRNA. 

A172 cells were treated with 0, 10 µM BeSO4, 10 mM LiCl for 24 hr or 5 Gy X-ray or 10 Gy X-

ray. Data presented as mean +/- standard deviation. Statistically significant differences are 

indicated as * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Statistically non significant 

values are mentioned as ns. 
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Fig. 37 Beryllium at 10 µM concentration had no significant effect on the actin mRNA 

levels. A172 cells were treated with 0, 10 µM BeSO4, 10 mM LiCl for 24 hr or 5 Gy X-ray or 10 

Gy X-ray. Data presented as mean +/- standard deviation. Statistically significant differences are 

indicated as * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Statistically non significant 

values are mentioned as ns. 
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Discussion 

 Limited information is available about the effects of beryllium at molecular level. The effect 

of beryllium on the cell cycle regulators like p53 and p21 has been documented well in our lab. 

Here we tried to investigate the effect of Be
2+ 

on other genes/gene products.  

 Be
2+ 

affects a sharp decrease in the mRNA levels of the FAM III B gene. No information is 

available about the function of FAM III B gene. In our lab it was observed that beryllium 

treatment either induces an increase in expression of target genes or has no effect. The significant 

decrease in the expression of FAM III B gene is an interesting observation, which has to be 

investigated further. 

 One of the physiological affects associated with Be
2+ 

treatment is the up regulation of cell 

cycle regulators. DDB2 is a protein associated with DNA damage and the mRNA levels are 

increasing in the presence of Li
+ 

only but not Be
2+ 

or ionizing radiation. It indicates that Be
2+ 

may 

not be able to induce any DNA damage in A172 cells. BTG2 protein is associated with cell cycle 

regulation. Beryllium induces cellular senescence (Coates et al., 2007; Gorjala and Gary, 2010) 

and the up regulation of BTG2 could be one of the reasons behind Be
2+ 

induced senescence. 

 It is important to analyze the effect of Be
2+ 

on the above mentioned genes at the transcript 

level. It will be worthwhile to investigate whether Be
2+ 

can induce
 
any post translational 

modification or if it has any effect on the stability of the above mentioned gene products. 
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CHAPTER 7 

 

RESEARCH SUMMARY AND FUTURE DIRECTIONS 

Summary 

1. The DRC survey shows that not all cell lines are tolerant to beryllium. The breast cancer cell 

lines MCF-7 and T-47D were found to be tolerant to high concentrations of BeSO4. It was 

also observed that neuronal cell lines are responsive to optimum concentrations of BeSO4. 

2. Beryllium inhibits the in vitro kinase activity of pure recombinant GSK-3β much more 

potently compared to lithium - another potent inhibitor of GSK-3β. These results indicate a 

direct interaction between Be
2+ 

and GSK-3β. 

3. Beryllium is less toxic to cells at physiologically relevant concentrations compared to lithium. 

4. The effect of beryllium on the Ser-9 phosphorylation of GSK-3β seems to be cell type 

specific. Beryllium did not induce an increase in the pSer9-GSK-3β in A172, HFL and 

U87MG cells. However an increase in the pSer9-GSK-3β was observed in NIH/3T3 and 

Caki-1 cells. 

5. For the very first time our results demonstrate the effect of beryllium on the proteins that are 

downstream of GSK-3β. A beryllium induced decrease in the phosphorylation status of 

glycogen synthase (GS) was observed in NIH/3T3 cells. The inhibitory effect of beryllium on 

the kinase activity of GSK-3β is confirmed by the decrease in the phospho-GS levels. 

6. A very interesting aspect of this study has been the effect of beryllium on β-catenin, another 

important target protein of GSK-3β. Beryllium seems to be differentially regulating glycogen 

synthase and β-catenin. Lack of nuclear localization of β-catenin in NIH/3T3 and A172 cells 

in the presence Be
2+ 
indicates that the Wnt/β-catenin pathway could be insulated from its 

effects. 
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7. Beryllium seems to be having no effect on the stability of axin, an important member of the 

β-catenin destruction complex. The inability of beryllium to de-stabilize the β-catenin 

destruction complex could be the possible reason behind its differential regulation of 

glycogen synthase and β-catenin. 

8. We have observed in our study that the presence of active and functional p53 plays an 

important role in the regulation of β-catenin. Loss of functional p53 caused an increase in the 

nuclear localization of β-catenin in A172, A172 E6 and U87MGE6 cells. 

9. Beryllium was not able to modulate any change in the phosphorylation status of β-catenin. 

We observed that lithium seems to be inducing an increase in the phospho-β-catenin levels 

and beryllium cannot. This was a very surprising observation since lithium is a strong GSK-

3β inhibitor and is expected to induce decrease in the phosphorylated form of β-catenin. 

These results also indicate that beryllium could possibly be having no effect on the Wnt/β-

catenin pathway. We have proposed a hypothetical model to explain the lithium induced up 

regulation of β-catenin. 

 

FUTURE DIRECTIONS 

1. In order to analyze the effect of Be
2+

 on other cellular kinases, we investigated its effects on 

the kinase activity of pure recombinant protein kinase A (PKA) enzyme. Our studies 

(documented in CHAPTER 4) shows that Be
2+

 is down regulating the activity of pure 

recombinant PKA (Fig. 3a). The specificity of beryllium against the activity of other closely 

associated kinases like Akt/PKB has to be investigated thoroughly. Akt (also called protein 

kinase B) phosphorylates GSK-3β and is involved in the insulin signaling pathway 

(Sutherland et al., 1993; Shaw, et al., 1997; Cross et al., 1994, 1995; Stambolic and 

Woodgett, 1994). Apart from Akt/PKB another good candidate to analyze the effect of 

beryllium on other kinases would be the cyclin dependent kinases (CDK). The role of CDKs 

along with GSK-3β especially CDK-5 has been established in the tau hyperphosphoryaltion 
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(Plattner et al., 2006; Garcia-Perez et al., 1998). It will be interesting to investigate the 

inhibitory effect of beryllium on kinases closely associated with GSK-3β, in order to 

comment on the specificity of Be
2+

. 

2. The inhibitory Ser-9 phosphorylation plays a significant role in regulation of GSK-3β. We 

observed that beryllium modulates an increase in the Ser-9 phosphorylation of GSK-3β 

depending on the cell type. It would be logical to investigate whether beryllium induces any 

other post translational modification of GSK-3β. Phosphorylation of Tyr-216 along with the 

Ser-9 seems to play an important role in regulating GSK-3β (Diehl et al., 1998; Meijer et al., 

2004; Bijur and Jope, 2003; Park et al., 2013). It could be possible that the effect of 

beryllium on the Tyr-216 if any might be consistent across all cell types. Hence it would be 

worthwhile to investigate the effect of beryllium on Tyr-216 phoshorylation of GSK-3β.  

3. Li
+
 mimics insulin and has a positive effect on glycogen metabolism (Cheng et al., 1983; 

Bosch et al., 1986; Choi et al., 2000). Beryllium too inhibits GSK-3β and induces a decrease 

in the inactive phosphorylated form of GS (Fig. 16). However whether the beryllium 

induced decrease in the phospho-GS form translates into any positive effect on glycogen 

metabolism or glucose transport has to be investigated further. We have analyzed the effect 

of Be
2+ 

on the phospho-GS levels in murine embryo fibroblasts only and it would be 

worthwhile to extend these studies in cell lines representing liver and muscle lineages. Since 

muscle and liver are major sites of glycogen metabolism. 

4. A major concern that arises due to lithium induced inactivation of GSK-3β is the nuclear 

accumulation of β-catenin. The adverse effect of accumulated nuclear β-catenin is the 

activation of the β-catenin/TCF/LEF target genes, some of which are proto-oncogenes (Dale, 

1998; Brantjes et al., 2002). We observed that beryllium seems to be inducing minimal 

nuclear localization of β-catenin in NIH/3T3 and A172 cells (Fig. 17). However the effect of 

beryllium on the TCF/LEF target genes which are further down stream of β-catenin, needs to 

be investigated. The effect of beryllium on the the β-catenin/TCF/LEF targets has to be 

http://toxsci.oxfordjournals.org/content/135/2/380.long#ref-8
http://toxsci.oxfordjournals.org/content/135/2/380.long#ref-29
http://toxsci.oxfordjournals.org/content/135/2/380.long#ref-29
http://toxsci.oxfordjournals.org/content/135/2/380.long#ref-2
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investigated to re assure the fact that the beryllium induced inhibition of GSK-3β will not 

lead to activation of oncogenes. Some of the important β-catenin/TCF/LEF targets that can 

be investigated are CDK-1, matrix metalloproteinase-7, c-jun and fra-1 (Shtutman et al., 

1999; Brabletz et al., 1999; Mann et al., 1999). 

5. GSK-3β is an important member of the β-catenin destruction complex along with APC 

(Adenomatous Polyposis Coli), axin, casein kinase 1 (CK1), protein phosphatase 2A (PP2A) 

and E3-ubiquitin ligase β-TrCP (Zeng et al., 1997; Behrens et al., 1998; Hart et al., 1998, 

Ikeda et al., 1998; Itoh et al., 1998; Salic et al., 2000; Kikuchi, 1999). We have analyzed the 

effect of beryllium on the stability of axin and it was observed that unlike lithium, beryllium 

was not able to destabilize axin (Fig. 21). APC is another important member of the β-catenin 

destruction complex and a bonafide substrate of GSK-3β (Ikeda et al., 2000; Ferrarese et al., 

2007). It will be interesting to investigate the role of beryllium in regulating the 

phosphorylation/stability of APC and the overall effect it has on the stability of the β-catenin 

destruction complex. A comprehensive understanding of the effect of beryllium on the 

important members of the β-catenin destruction complex could provide answers behind the 

inability of beryllium to induce clear nuclear localization of β-catenin. 
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CHAPTER 8 

 

Alternate hypothesis – possible mechanism for Be
2+ 

transport into the cells 

 Bivalent metal cations such as Mg
2+ 

and Ca
2+ 

play important roles as co factors of 

proteins/enzymes along with other cations like Zn
2+

. The concentrations of these cations have to 

be very tightly regulated because the intra and extra cellular concentrations of these ions are 

critical for cellular signaling. There are specific mechanisms by which these ions are transported 

in and out of the cells. There are other metal ions like iron
 
that are also important for cellular 

functions but we will limit our discussion to the Mg
2+ 

and Ca
2+

. Beryllium is a group IIa metal 

cation with an ionic radii of 34 pm and is a potential GSK-3β inhibitor at intracellular level 

(unpublished data). For a metal ion or an inhibitor to function as a biologically active agent it is 

necessary that the inhibitor has to be internalized by the cell so that it can interact with the target 

protein. In our lab it was observed that A172 (human glioblastoma) and RKO (human colon 

carcinoma) cells were able to successfully internalize Be
2+ 

from the surrounding media (Gorjala 

and Gary, 2010). The important question is what is the mechanism by which beryllium is 

transported into the cell.  

 It could be possible that the cellular machinery associated with Ca
2+ 

or Mg
2+ 

transport might 

be playing an important role in the intracellular transport of beryllium as well. 

Calcium ion: 

 Ca
2+ 

is a divalent metal cation that is involved in the regulation of different cellular functions 

and is also an important intracellular messenger (Carfoli, 2003; Petersen et al., 2005; Berridge, 

2005). The intra cellular concentration of Ca
2+ 

is approximately 100 nM whereas the extracellular 

concentration is around 2 mM (Clapham, 2007). The intracellular and extracellular concentrations 
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of Ca
2+ 

are very tightly regulated and the intra cellular Ca
2+ 

ions are stored in the endoplasmic 

reticulum, mitochondria and golgi complex (explained in Bootman, 2012). The Ca
2+ 

homeostasis 

is maintained with the help of multiple transporters such as voltage gated channels, Na
+
/Ca

2+ 

exchanger (NCX), plasma membrane Ca
2+ 

ATPase (PMCA), Na
+
/Ca

2+ 
- K+ exchanger (NCKX) 

and sarcoendoplasmic reticular Ca
2+ 

ATPase (SERCA) (Clapham, 2007; Bootman, 2012).  

 The EF hand domain is the most common motif associated with the Ca
2+ 

binding proteins 

(Nakayama and Kretsinger, 1994). Calmodulin is one of the most well studied Ca
2+ 

binding 

proteins consisting of the EF hand motif (Stevens, 1983; Chin and means, 2000). Various proteins 

have calmodulin binding sites where it acts as an adaptor recruiting Ca
2+

 to the target proteins that 

lack the Ca
2+ 

binding ability (Chin and Means, 2000).  

 Calmodulin is classified as a Ca
2+ 

binding protein and it can be expected that its binding is 

fairly specific towards Ca
2+

. It has been observed that calmodulin has auxillary binding sites for 

other divalent cations like Zn
2+ 

and Mn
2+ 

(Milos et al., 1989). However in an independent study 

by Ozawa et al it was reported that calmodulin can bind to cations with ionic radii larger than 

Ca
2+

, such as Ba
2+ 

 and Pb
2+

 but not smaller ions like Mg
2+

, Zn
2+

 or Cu
2+

 (Ozawa et al., 1999). It 

might be possible that calmodulin binds to certain divalent cations like Be
2+

 apart from Ca
2+ 

and 

that Be
2+

 might interfere with the functions of calmodulin.  

 Apart from calmodulin it could be possible that certain Ca
2+ 

ion exchanger complex might be 

playing a potential role in the transport of Be
2+ 

into the cells. It was observed that a Na
+
/Ca

2+ 
-Li 

exchanger (NCLX) called as FLJ22233 can transport Li
+ 

into the cells and affect Ca
2+ 

efflux 

(Patly et al., 2004). Even though Li
+ 

is a monovalent cation it is being transported by a transporter 

associated with Ca
2+

. It can be speculated that as in the case of Li
+
, ‘ion exchangers’ associated 

with Ca
2+ 

transport could be involved in transport of Be
2+

.  
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 Additionally it can be conjectured that there might be an unidentified ‘ion exchanger’ that 

could be involved in the transport of Be
2+

. 

Magnesium ion: 

 Magnesium is a divalent cation with ionic radii of 133 pm. Mg
2+ 

is an important cofactor for 

various metabolically important enzymes and GSK-3β is one among them. The intracellular 

concentration of Mg
2+ 

ions vary from 17 to 20 mM (Romani, 2007). Mg
2+ 

plays an important role 

in the regulation of proteins and in maintaining the integrity of nucleic acids and phospholipids 

(Romani and Maguire, 2002). 

 There are different Mg
2+ 

ion transporters/channels associated with prokaryotes and prominent 

among them are the CorA super family consisting of CorA, ALR1/ALR2, Mrs2/AtMrs2, Lpe10 

(Hmiel et al., 1986, 1989; Moomaw and Maguire, 2008). Another Mg
2+ 

transporter associated 

with prokaryotes is the Mgt family consisting of MgtA and MgtB (Smith et al., 1995, 1998; 

Snavely et al., 1991; Moomaw and Maguire, 2008).  

 Some of the Mg
2+ 

transporters of eukaryotic origin belong to the TRPM family consisting of 

TRPM6, TRPM7 (LTRPC7, TRP-PLIK) (Alexander et al., 2008; Chubanov et al., 2005; 

Schlingmann et al., 2002; Schmitz et al., 2002) 

  The CorA transporter is known to transport Co
2+

 and Ni
2+ 

apart from Mg
2+ 

ions (Gibson et al., 

1991). However the Mg
2+ 

ion transporters are quite selective towards Mg
2+ 

ions, which are mostly 

hexacoordinated (Maguire and Cowan, 2002) and Be
2+ 

ions on the other hand are tetra 

coordinated with solvent ligands (Pittet et al., 1990). It could be possible that the transporters 

associated with Mg
2+ 

might selectively exclude the tertacoordinated Be
2+ 

ions. 

 However the argument that Ca
2+ 

and Mg
2+ 

transporters could be involved in the transport of 

Be
2+ 

is speculative and has to be supported with experimental evidence. 
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Table 8. Ionic radii of metal ions 

Atomic number Name Atomic radii (pm) Ionic radii (pm) 

3 Lithium 152 78 

4 Beryllium 113 34 

11 Sodium 186 98 

12 Magnessium 160 79 

19 Potassium 227 133 

20 Calcium 197 106 

 

(Data taken from John Emsley, The Elements, 3rd edition.  Oxford:  Clarendon Press, 1998) 
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Supplementary Figure I 

Individual immunoflorescence images corresponding to the Fig. 17a from Chapter 5. 

NIH/3T3 control/untreated cells (arrows indicate nuclear β-catenin)  

 

Supplementary figure Ia: Untreated NIH/3T3 cells 
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NIH/3T3 cells treated with 20 mM LiCl (profound nuclear localization of β-catenin) 

 

Supplementary figure Ib: NIH/3T3 cells treated with 20 mM LiCl for 24 hr. 
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NIH/3T3 cells treated with 20 µM SB216763 (profound nuclear localization of β-catenin) 

 

Supplementary figure Ic: NIH/3T3 cells treated with 20 µM SB216763 for 24 hr 
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NIH/3T3 cells treated with 100 µM BeSO4 (minimal nuclear localization of β-catenin) 

 

Supplementary figure Id: NIH/3T3 cells treated with 100 µM BeSO4 for 24 hr 
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NIH/3T3 cells induced with 100 nM Insulin  

 

Supplementary figure Ie: NIH/3T3 cells induced with 100 nM insulin for 30 – 60 min post 

serum starvation 
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Supplementary figure II 

Individual immunoflorescence images corresponding to the fig. 17b from Chapter 5. 

A172 control/untreated cells (arrows indicate nuclear β-catenin)  

 

Supplementary figure IIa: A172 cells untreated  
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A172 cells treated with 20 mM LiCl (arrows indicate profound nuclear localization of β-

catenin)  

 

Supplementary figure IIb: A172 cells treated with 20 mM LiCl for 24 hr 
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A172 cells treated with 100 µM BeSO4 (arrows indicate minimal nuclear localization of β-

catenin)  

 

Supplementary figure IIc: A172 cells treated with 100 µM BeSO4 for 24 hr 
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A172 cells treated with 20 µM SB216763 (arrows indicate prominent nuclear localization of 

β-catenin)  

 

Supplementary figure IId: A172 cells treated with 20 µM SB216763 for 24 hr 
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Supplementary Figure III 

Individual immunoflorescence images corresponding to the fig. 17c from Chapter 5. 

A172 P1B control/untreated cells (arrows indicate nuclear β-catenin)  

 

Supplementary figure IIIa: A172 P1B cells untreated  
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A172 P1B cells treated with 20 mM LiCl (arrows indicate prominent nuclear localization of 

β-catenin)  

 

Supplementary figure IIIb: A172 P1B cells treated with 20 mM LiCl for 24 hr  
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A172 P1B cells treated with 100 µM BeSO4 (arrows indicate minimal nuclear localization of 

β-catenin)  

 

Supplementary figure IIIc: A172 P1B cells treated with 100 µM BeSO4 for 24 hr  
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APPENDIX I  

Statistical analysis 

Table 9. In vitro kinase activity of purified recombinant GSK-3β 

Inhibitor Relative 

specific 

activity 

(GSK-3β) 

P – value 

 

 

Significantly 

different 

(unpaired t-

test) 
Control  1.00         -           - 

0.3 µM Be
2+ 

 0.97   P >0.05       No 

1 µM Be
2+

  0.62   P < 0.005       Yes 

3 µM Be
2+

  0.47   P < 0.005       Yes 

10 µM Be
2+

  0.13   P  < 0.0005       Yes 

30 µM Be
2+

  0.11   P < 0.0005       Yes 

100 µM Be
2+

  0.02   P < 0.0005       Yes 

300 µM Be
2+

  0.04   P < 0.0005       Yes 

Control  1.00         -        - 

1 mM Li
+ 

 0.91   P >0.05        No 

3 mM Li
+
  0.75   P < 0.005       Yes 

10 mM Li
+ 

0.51   P < 0.05       Yes 

30 mM Li
+
  0.23   P < 0.0001       Yes 

100 mM Li
+ 

 0.01   P < 0.0001       Yes 

300 mM Li
+
 -0.03   P < 0.0001       Yes 

 

Table 9. Two tailed unpaired t-test was used to compare the in vitro GSK-3β activity of the 

samples treated with inhibitors against their corresponding control. (Data from same experiment) 
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Table 10. In vitro kinase activity of pure recombinant PKA 

 

 

 

 

  

 

 

Table 10. Two tailed unpaired t-test was used to compare the in vitro PKA activity of the samples 

treated with inhibitors against their corresponding control. (Data from same experiment) 

 

 

 

 

Inhibitor Relative 

specific 

activity 

(PKA) 

P – value 

 

 

Significantly 

different 

(unpaired t-

test) 
Control  1.00         -           - 

0.3 µM Be
2+ 

 0.67    P >0.05         No 

1 µM Be
2+

  0.63   P < 0.005        Yes 

3 µM Be
2+

  0.70   P < 0.05        Yes 

10 µM Be
2+

  0.69   P < 0.05        Yes 

30 µM Be
2+

  0.40   P < 0.0001        Yes 

100 µM Be
2+

  0.32   P < 0.0001        Yes 

300 µM Be
2+

  0.31   P < 0.0001        Yes 

Control  1.00         -           - 

1 mM Li
+ 

 0.77   P < 0.05        Yes 

3 mM Li
+
  0.88   P >0.05         No 

10 mM Li
+ 

0.85   P >0.05         No 

30 mM Li
+
  0..99   P >0.05         No 

100 mM Li
+ 

 0.73   P < 0.05        Yes 

300 mM Li
+
 0.31   P < 0.0001        Yes 
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Table 11 Validation of the z-lyte assay using PKA inhibitor H89 

Inhibitor 

(H89) 

Relative 

specific 

activity 

(GSK-3β) 

P – value 

 

 

Significantly 

different 

(unpaired t-

test) 

Relative 

specific 

activity 

(PKA) 

P – value 

 

 

Significantly 

different 

(unpaired t-

test) 
0 µM   1.00        -           -   1.00        -          - 

0.1 µM   1.00    P >0.05         No   0.57 P < 0.0005      Yes 

0.3 µM   1.03    P >0.05         No   0.32 P < 0.0001      Yes 

1 µM   0.99    P >0.05         No   0.125 P < 0.0001     Yes 

3 µM   0.99    P >0.05         No   0.05 P < 0.0001     Yes 

10 µM   0.94    P >0.05         No   0.01 P < 0.0001     Yes 

 

Table 11. Two tailed unpaired t-test was used to compare the in vitro PKA activity of the samples 

treated H89 against their corresponding control (data from same experiment).  Two tailed 

unpaired t-test was used to compare the in vitro GSK-3β activity of the samples treated H89 

against their corresponding control (data from same experiment). 
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Table 12.  TR-FRET assay to quantify the pSer9-GSK-3β signal 

 

 

 

 

  

 

 

Table 12. Two tailed unpaired t-test was used to compare the TR-FRET signal of the inhibitors 

treated cells with their corresponding control cells (data from same experiment). 

 

 

 

 

 

 

 

 

Inhibitor Relative  

TR-Fret 

signal 

(GSK-3β) 

P – value 

 

 

Significantly 

different 

(unpaired- t  test) 
Control  1.000         -           - 

10 µM Be
2+

  1.002    P >0.05          ns 

30 µM Be
2+

  0.908   P >0.05          ns 

100 µM Be
2+

  1.037   P >0.05          ns 

Control  1.00         -           - 

10 mM Li
+ 

1.27   P >0.05          ns 

20 mM Li
+
  1.54  P <0.05  significant 

30 mM Li
+ 1.92          ns          ns 
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Table 13.  Flow analysis of nuclear β-catenin in stable nuclei 

      Treatment             Duration        Mean Fluorescence / nuclei 

       (% of control +/- std dev) 

              control                      24 hr                            100 (+/- 5) 

         10 µM BeSO4                      24 hr                            110 (+/- 3) 

         30 µM BeSO4                      24 hr                            148 (+/- 5) 

         100 µM BeSO4                      24 hr                            151 (+/- 12) 

         10 mM LiCl                      24 hr                            150 (+/- 12) 

         20 mM LiCl                      24 hr                            188 (+/- 23) 

         30 mM LiCl                      24 hr                            180 (+/- 20) 

 

Table 13 Mean fluorescence values corresponding to the nuclear β-catenin. Stable nuclei isolated 

from A172 cells treated with inhibitors for 24 hr. 
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Table 14.  Flow analysis of nuclear p53 in stable nuclei  

           Treatment               Duration       Mean Fluorescence / nuclei 

      (% of control +/- std dev) 

            control                  24 hr                          100 (+/- 3) 

       100 µM BeSO4                  24 hr                          124 (+/- 5) 

        20 mM LiCl                  24 hr                          148 (+/- 1) 

 

Table 14 Mean fluorescence values corresponding to the nuclear p53. Stable nuclei isolated from 

A172 cells treated with inhibitors for 24 hr. 
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Appendix II 

 

Physiologically relevant concentration of lithium is more cytotoxic to cells compared to 

beryllium at 24 hr 

Introduction 

 The IC50 value of lithium = 12 mM and the IC50 value of beryllium is ~2 µM. When A172 

cells are cultured in BeSO4 or LiCl at concentrations close to their IC50 values, lithium was found 

to be more cytotoxic. As observed in the viability test, Li
+ 

at concentrations close to its IC50 was 

more toxic to the viability of A172 cells (Fig. 4). 

 

Experiment 1 

 A172 cells were cultured in the presence of BeSO4 and LiCl for 24, 48 or 72 hr. The effect of 

the inhibitors on the viability of the cells was analyzed using a live cell protease based 

fluorescence assay.  The viability assay shows that Be
2+ 

is less cytotoxic to A172 cells even at 

concentrations way higher than its IC50. Be
2+ 

at 100 µM is fairly tolerated by A172 cells even for 

longer periods of time (Fig 1). There is no big difference in the number of dead cells between the 

control and beryllium samples. Li
+ 

treatment on the other hand seems to be causing an increase in 

cytotoxicity especially at 48 or 72 hr. 
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Fig. 1a Effect of BeSO4 and LiCl treatment on cells cytotoxicity at 24 hr. A172 cells were 

treated with 0, 10, 20, 30, 100 µM BeSO4 or 10, 20, 30, 100 mM LiCl for 24 hr. Cell cytotoxicity 

was assessed using a fluorogenic substrate that can be cleaved by a protease associated with dead 

cells only. Mean intensities (+/- std. dev) are reported here. Data was analyzed using one-way 

ANOVA (P < 0.05 considered significant) by Tukey’s multiple comparison test. GraphPad Prism 

trial version 6.0 for Mac OS X, GraphPad Software, La Jolla California USA, 

www.graphpad.com was used. (ns = non significant, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 

0.001, **** = P ≤ 0.0001). 

 

 

 

http://www.graphpad.com/
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Fig. 1b Effect of BeSO4 and LiCl treatment on cells cytotoxicity at 48 hr. A172 cells were 

treated with 0, 10, 20, 30, 100 µM BeSO4 or 10, 20, 30, 100 mM LiCl for 48 hr. Cell cytotoxicity 

was assessed using a fluorogenic substrate that can be cleaved by a protease associated with dead 

cells only. Mean intensities (+/- std. dev) are reported here. Data was analyzed using one-way 

ANOVA (P < 0.05 considered significant) by Tukey’s multiple comparison test. GraphPad Prism 

trial version 6.0 for Mac OS X, GraphPad Software, La Jolla California USA, 

www.graphpad.com was used. (ns = non significant, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 

0.001, **** = P ≤ 0.0001). 

 

http://www.graphpad.com/
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Fig. 1c Effect of BeSO4 and LiCl treatment on cells cytotoxicity at 72 hr. A172 cells were 

treated with 0, 10, 20, 30, 100 µM BeSO4 or 10, 20, 30, 100 mM LiCl for 72 hr. Cell cytotoxicity 

was assessed using a fluorogenic substrate that can be cleaved by a protease associated with dead 

cells only. Mean intensities (+/- std. dev) are reported here. Data was analyzed using one-way 

ANOVA (P < 0.05 considered significant) by Tukey’s multiple comparison test. GraphPad Prism 

trial version 6.0 for Mac OS X, GraphPad Software, La Jolla California USA, 

www.graphpad.com was used. (ns = non significant, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 

0.001, **** = P ≤ 0.0001). 

 

 

 

 

 

 

 

http://www.graphpad.com/
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Experiment 2 

A172 cells were treated with BeSO4 or LiCl for 24 hr. Bright field images of the A172 cells 

were captured using Nikon Inverted Microscope Eclipse TE2000-U (dia-illuminator 100W). 

When treated with 10-100 µM BesO4 for 24 hr no major morphological changes were observed in 

A172 cells (Fig 2.1). When A172 cells are cultured in the presence of LiCl for 24 hr a marked 

change in the morphological appearance of the cells was observed (Fig. 2.2). 

 

Results 

 Images of the A172 cells cultured in the presence of BeSO4 for 24 hr, shows that LiCl is more 

toxic to cells compared to BeSO4 at concentrations similar to their IC50 values. A172 cells seem to 

be tolerating LiCl at a concentration of 10 mM (Fig 2.2b). When the LiCl concentration was 

increased to 20 mM or 30 mM it induced high cytotoxicity in A172 cells (Fig. 2.2 c&d). LiCl at 

100 mM concentration was extrememly toxic to A172 cells at 24 hr. 
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Fig 2.1Be
2+ 

doesn’t produce any extreme morphological changes in A172 cells at 24 hr. A172 

cells were cultured in the presence of 0, 10, 20, 30 or 100 µM BeSO4 for 24 hr. 
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Fig 2.2 Li
+ 

treatment leads to extreme morphological changes in A172 cells at 24 hr. A172 

cells were cultured in the presence of 0, 10, 20, 30 or 100 mM LiCl for 24 hr. 
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Appendix III 

Quatitative analysis of Ser-9 phsophorylation of GSK-3β in A172 cells cultured in the 

presence of BeSO4 or LiCl at 48 hr 

 

Introduction 

 Li
+ 

caused an increase in the Ser-9 phosphorylation of GSK-3β in A172 cells at 24 hr. 

However Be
2+ 

did not induce any big change in the Ser-9 phosphorylation of GSK-3β. Here we 

have analyzed the effect of BeSO4 or LiCl on the Ser-9 phosphorylation of GSK-3β of A172 cells 

at 48 hr via flow cytometry. 

Flow cytometry 

 Cells were treated with BeSO4
 
and LiCl

 
for 48 hr. After the treatment period, cells were 

collected by trypsinization, washed with PBS and fixed with 4% paraformal dehyde. Cells were 

then permeabilized with methanol. Cells were blocked with starting block TBS (prod#37543, 

Thermo Scientific), supplemented with Halt protease and phosphatase inhibitor cocktail (Pierce 

cat#78442). Fixed and blocked cells were then incubated with pSer9-GSK-3β rabbit monoclonal 

antibody (clone D85E12, cat#5558, Cell Signaling Technology) over night at 4  C, followed by 

FITC conjugated goat anti-rabbit secondary antibody (cat#sc-2012, Santa Cruz Biotechnology) at 

0.5 µg/1x10
6 
cells. Cells were run on a BD FACSCalibur flow cytometer recording 20,000 events 

per sample, and FITC channel fluorescence intensity was analyzed using CellQuest Pro Software. 
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Results 

At 48 hr beryllium did not induce any clear increase in the Ser-9 phosphorylation of GSK-3β 

(Fig. 1a). Lithium treatment at 48 hr caused a concentration dependent increase in the Ser-9 

phosphorylation of GSK-3β.  

 

Conclusion 

 This study shows that even at longer exposure time i.e. 48 hr, beryllium has little effect on the 

Ser-9 phosphorylation of GSK-3β. 
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Fig. 1a Flow cytometric analysis of the Be
2+ 

treatment effect on Ser-9 phosphorylation of 

GSK-3β at 48 hr. A172 cells were treated with 0, 10, 30, 100 BeSO4  for 48 hr. The change in 

the pSer-9 status of GSK-3β was assessed using a pSer9-GSK3β primary antibody and FITC 

conjugated secondary antibody. Each flow cytometry histograms represents the mean 

fluorescence per cell value obtained from independent replicates for each inhibitor used at 

different concentrations. 
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Fig. 1b Flowcytometric analysis of the Li
+ 

treatment effect on Ser-9 phosphorylation of 

GSK-3β at 48 hr. A172 cells were treated with 0, 10, 20, 30 mM LiCl  for 48 hr. The change in 

the pSer-9 status of GSK-3β was assessed using a pSer9-GSK3β primary antibody and FITC 

conjugated secondary antibody. Each flow cytometry histograms represents the mean 

fluorescence per cell value obtained from independent replicates for each inhibitor used at 

different concentrations. 
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Appendix IV 

 

 Measuring beryllium induced up regulation of p53 expression using nuclei flow analysis 

Introduction 

 To confirm that effect of BeSO4 on nuclear β-catenin, flow-analysis of nuclei isolated from 

A172 cells treated with BeSO4 or LiCl was used. Along with the β-catenin analysis, the p53 

protein levels were also tested independently in the nuclei isolated from A172 cells treated with 

BeSO4 or LiCl. The aim of this experiment was to validate the fact that nuclei flow analysis 

method can be used to quantify protein expression. 

 

Result 

 The flow analysis of nuclei isolated from A172 cells treated with BeSO4 or LiCl for 24 hr 

indicate an increase in p53 levels. Beryllium treatment caused an increase in the p53 protein 

levels in A172 and HFL cells (Gorjala and Gary, 2010; Mudireddy et al., 2014). The nuclei flow-

analysis results confirm the beryllium induced upregulation of p53 expression. 

 

Discussion 

 The flow analysis could be used to quantify the Be
2+ 

induced upregulation of p53. The ability 

of the flow analysis technique to successfully detect the increase in the p53 level, validates it as a 

reliable quantitative method to detect the up regulation or down regulation of proteins. 
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Fig. 1 Detection of increase in p53 level after beryllium treatment at 24 hr in A172 cells. 

A172 cells were treated with 0, 100 µM BeSO4 or 20 mM LiCl for 24 hr. Stable nuclei were 

extracted from the Be
2+ 

or Li
+
 treated cells. The effect of Be

2+ 
or Li

+
 on the nuclear localization of 

p53 was assessed using a mouse mono clonal p53 primary antibody and an Alexa647 – 

conjugated secondary antibody. For each treatment, mean fluorescence per cell was determined 

from independent replicates and representative peak for each treatment is shown here. 
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Appendix V 

 

Validation of A172 cells over expressing wt GSK-3β, GSK-3β S9A and GSK-3β K85A 

Introduction 

  Mammalian cells over expressing wt GSK-3β and its mutants can serve as valuable tools in 

our study to characterize beryllium as a potent GSK-3β-inhibitor. Over expression of GSK-3β in 

A172 cells will provide a system with abundant amont of substrate protein to analyze the effect of 

inhibitors. A172 cells were transfected with the addgene plasmid#14753 – HA GSK-3β wt 

pcDNA3, plasmid#14754 – HA GSK-3β S9A pcDNA3, plasmid#14755 – HA GSK-3β K85A 

pcDNA3 as explained in the materials and methods section.  

Results 

Fig. 1 The total cell lysates extracted from these clones along with proper controls were probed 

for the expression of “HA – tag” using a rabbit polyclonal anti HA antibody (Thermoscientific 

#CAB3872).  

P1B, P1C,  P1D = A172 clones over expressing wt GSK-3β,  

P2A, P2B,  P2C = A172 clones over expressing GSK-3β S9A mutant  

 P3A, P3B = A172 over expressing GSK-3β K85A mutant 

 The detection  of HA band in the transfected A172 cells validates the success of transfection, 

since only A172 cells tranfected with the addgene clones will be expressing the HA-tag. 
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Discussion 

 Fig. 1 Expression of HA-tag in the A172 cells transfected with the addgene clones is 

observed indicating a successful integration and expression of the addgene plasmids in the host 

cells. The clones demonstrating the maximum expression of the HA-tag were selected for further 

analysis. The selected clones are: 

A172 clones over expressing wt GSK-3β – P1B  

A172 clones over expressing GSK-3β S9A mutant – P2B 

A172 over expressing GSK-3β K85A mutant – P3B 

 The P1B clone (A172 clones over expressing wt GSK-3β) was used in the confocal imaging 

experiment to demonstrate the effect of beryllium on the nuclear localization of β-catenin. 
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Fig. 1 Western analysis of A172 clones expression wt GSK-3β and its variants. Total cell 

lysates from the A172 clones expressing various variants of GSK-3β were assessed for the 

expression of the “HA – tag” using a rabbit polyclonal anti HA antibody. The “date label” refers 

to the day the samples were extracted. Untransfected A172 along with NIH/3T3 and Caki-1cells 

serve the purpose of negative controls. 
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Appendix VI 

 

DRC analysis to investigate the effect of SB216763 on NIH/3T3, A172 and Caki-1 cells 

Introduction 

 SB216763 is a strong GSK-3β inhibitor (Coughlan et al., 2000).  To determine the 

concentration suited best for inducing optimum  results in different cell lines a dose response 

curve experiment was done using A172, NIH/3T3 and Caki-1 cells. 

 

Materials and methods 

 Cell culture media 

 RPMI 1640 HEPES (cat#23400-021, Gibco) supplemented with 10% fetal bovine serum 

(FBS) and 1x antibiotic-mycotic was used for culturing B 35, C6, Caki-1, IMR 32 and SF539 cell 

lines. Only for NIH/3T3 cells, RPMI 1640 was supplemented with 10% bovine growth serum 

(BGS) instead of FBS.  

Dose response curve - cell counting 

 Cells were cultured in 60 mm CELLSTAR cell culture dishes (cat#664 160) at 37  C using a 

5% CO2 incubator. Cells were dosed with culture media supplemented with appropriate 

concentrations of BeSO4 and the dosing day was counted as Day 0. On the Day 2 the cells were 

collected by trypsinization using 0.5 ml trypsin (0.05% Trypsin-EDTA). The cells were collected 

by adding 2.5 ml of RPMI (2.5 ml RPMI + 0.5 ml trypsin = total 3 ml cell suspension). Cells 

were counted using a cell counter and 0.5 ml of the total cell suspension from day 2 was added to 

a new 60 mm culture dish. The cells were allowed to grow till day 4 and were trypsinized again, 
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counted in a manner similar to day 3. 0.5 ml of cells from the total 3 ml cell suspension from day 

4 was added to a new 60 mm dish. The process was repeated again on Day 6 with the exception 

that the cells were discarded instead of re seeding.  

 

Data analysis 

 The day 2, day 4 and day 6 cell counts were fitted onto a plot using non-linear regression. 

The effect of BeSO4 on the different cell lines was represented as % of control on the y-axis and 

the log values of BeSO4 concentration on the x-axis. GraphPad Prism v6.0c (windows) was used 

for curve fitting. 

 

Results 

 Caki-1 cells are the most sensitive to SB216763 compared to A172 and NIH/3T3. A 

concentration of 10-30 µM seems to be tolerated well by A172 and NIH/3T3 cells. Caki-1 cells 

are sensitive to SB216763 and seem to be tolerating a concentration of 10-20 µM. 
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Fig. 1 Dose response curve of A172, NIH/3T3 and Caki-1 cells for SB216763. Caki-1, A172 

and NIH/3T3 cells were cultured in the absence or presence of 1, 5, 10, 10 0r 100 µM SB216763 

for 24 hr. 
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Appendix VII 

 

Quantification of phospho-GS bands from fig 15a 
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Band Treatment 

Band 
Intensity 
background 
substracted % of control 

        

1 20 µM SB216763 1 10600 23.55555556 

2 20 µM SB216763 2 10700 23.77777778 

3 
100 nM Insulin 60 min 
1 36200 80.44444444 

4 
100 nM Insulin 60 min 
2 39500 87.77777778 

5 
100 nM Insulin 30 min 
1 40700 90.44444444 

6 
100 nM Insulin 30 min 
2 52500 116.6666667 

7 
100 nM Insulin 15 min 
1 38100 84.66666667 

8 
100 nM Insulin 15 min 
2 36100 80.22222222 

9 20 mM LiCl 1 19500 43.33333333 

10 20 mM LiCl 2 19800 44 

11 100 µM BeSO4 1 28000 62.22222222 

12 100 µM BeSO4 2 27800 61.77777778 

13 30 µM BeSO4 1 39300 87.33333333 

14 30 µM BeSO4 2 34400 76.44444444 

15 20 mM KCL 1 48200 107.1111111 

16 20 mM KCL 2 50200 111.5555556 

17 Control 1 42000 93.33333333 

18 Control 2 48000 106.6666667 
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Appendix VIII 

 

Quantification of pGS bands from fig 16 
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Band Treatment 

Band 
intensities 
background 
substracted 

% of 
controls 

1 20 mM KCL 1 27000 116.63067 

2 Control 1 23200 100.215983 

3 30 uM Be 1 15200 65.6587473 

4 100 uM Be 2 13500 58.3153348 

5 20 mM Li 1 25300 109.287257 

6 100 nM Insulin 1 13100 56.587473 

7 SB216763 1 10500 45.3563715 

8 10 uM Rott 1 23200 100.215983 

9 100 uM CaCl2 1 30700 132.613391 

        

Band Treatment 

Band 
intensities 
background 
substracted 

% of 
controls 

10 20 mM KCL 2 25200 108.855292 

11 Control 2 23100 99.7840173 

12 30 uM Be 2 14100 60.9071274 

13 100 uM Be 2 11900 51.4038877 

14 20 mM Li 2 18600 80.3455724 

15 100 nM Insulin 2 19100 82.5053996 

16 SB216763 2 11300 48.812095 

17 10 uM Rott 2 24500 105.831533 

18 100 uM CaCl2 2 18600 80.3455724 
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Appendix IX 

Expression of glycogen synthase isoforms in NIH/3T3 cells 
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Appendix X 

Validation of FRET-based kinase assay 

 To validate the FRET-based kinase assay, purified recombinant GSK-3β and purified 

recombinant PKA (protein kinase A) proteins were treated with H-89. The aim of this experiment 

was to demonstrate that the FRET-based kinase assay is a robust technique and is inherently 

competent to exclude false positives. H-89 is a specific PKA inhibitor (Marunaka et al., 2003) 

and it should not have any effect on the kinase activity of the purified GSK-3β protein. As 

observed in (Fig. 2c) H-89 treatment has no effect on the kinase activity of GSK-3β, whereas it 

leads to a decrease in the activity of PKA enzyme only. 
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Fig 1. H-89 inhibits the in vitro kinase activity of PKA but not GSK-3β.  Pure recombinant 

GSK-3β (filled bars) and PKA (pattern bars) proteins were used in the FRET-based kinase assay 

and the enzyme activity was measured in the absence (control) or in the presence of 0.1, 0.3, 1, 3 

or 10 µM H-89. Activity is expressed as the rate of formation of phosphorylated peptide substrate 

(mean +/- SD). Data was analyzed using one-way ANOVA (P < 0.05 considered significant 

compared to control) by Tukey’s multiple comparison test. GraphPad Prism version 5.0 for 

windows, GraphPad Software, La Jolla California USA, www.graphpad.com was used. (ns = non 

significant compared to control, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 

0.0001). 

http://www.graphpad.com/
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