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ABSTRACT 

 

Binary Technetium Halides 

 

By 

 

Erik Vaughan Johnstone 

 

Dr. Kenneth Czerwinski, Advisory Committee Chair 

Professor of Chemistry 

Chair of the Department of Radiochemistry 

University of Nevada, Las Vegas 

 

In this work, the synthetic and coordination chemistry as well as the physico-

chemical properties of binary technetium (Tc) chlorides, bromides, and iodides were 

investigated. Resulting from these studies was the discovery of five new binary Tc halide 

phases: α/β-TcCl3, α/β-TcCl2, and TcI3, and the reinvestigation of the chemistries of 

TcBr3 and TcX4 (X = Cl, Br). Prior to 2009, the chemistry of binary Tc halides was 

poorly studied and defined by only three compounds, i.e., TcF6, TcF5, and TcCl4. Today, 

ten phases are known (i.e., TcF6, TcF5, TcCl4, TcBr4, TcBr3, TcI3, -TcCl3 and -

TcCl2) making the binary halide system of Tc comparable to those of its neighboring 

elements. 

Technetium binary halides were synthesized using three methods: reactions of the 

elements in sealed tubes, reactions of flowing HX(g) (X = Cl, Br, and I) with 

Tc2(O2CCH3)4Cl2, and thermal decompositions of TcX4 (X = Cl, Br) and α-TcCl3 in 

sealed tubes under vacuum. Binary Tc halides can be found in various dimensionalities 

such as molecular solids (TcF6), extended chains (TcF5, TcCl4, α/β-TcCl2, TcBr3, TcI3), 

infinite layers (β-TcCl3), and bidimensional networks of clusters (α-TcCl3); eight 

structure-types with varying degrees of metal-metal interactions are now known. The 
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coordination chemistry of Tc binary halides can resemble that of the adjacent elements: 

molybdenum and ruthenium (β-TcCl3, TcBr3, TcI3), rhenium (TcF5, α-TcCl3), platinum 

(TcCl4, TcBr4), or can be unique (α-TcCl2 and β-TcCl2) in respect to other known 

transition metal binary halides. Technetium binary halides display a range of interesting 

physical properties that are manifested from their electronic and structural configurations. 

The thermochemistry of binary Tc halides is extensive. These compounds can selectively 

volatilize, decompose, disproportionate, or convert to other phases. Ultimately, binary Tc 

halides may find application in the nuclear fuel cycle and as precursors in inorganic and 

organometallic chemistry.  
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Background  

 

The binary transition metal halides are compounds with the stoichiometry MXn, 

where M is a transition metal, X a halogen (F, Cl, Br, I), and n can vary from 1 to 7 [1, 

2]. Because of its radioactivity and short-half life (longest lived isotope: 
210

At, t1/2 = 8.1 

hr), astatine can be negated when considering this class of compounds [3]. There are over 

200 binary halides that are known for the transition metals. These compounds exhibit 

interesting structural and physicochemical properties, and they play a major role in 

synthetic and industrial applications as well. For example, transition metal halides have 

been demonstrated as useful catalysts for laboratory to industrial scale productions; PdCl2 

has been employed in reactions for oxidizing olefins to aldehydes or ketones and 

esterifications. An assortment of 2
nd

 and 3
rd

 row transition metal chlorides, i.e., WCl6, 

MCl5 (M = Nb, Ta, Mo, Re, W), MCl4 (M = Zr, Hf), MCl3 (M = Mo, Re, Ru, Os, Rh), 

and MCl2 (M = Pd, Pt), have been classified on activity and selectivity for the addition of 

a silyl enol ether to aldehyde and/or aldimine functional groups. High valent Group V 

and VI metals, i.e., WCl6 and MCl5 (M = Mo, Nb, Ta) were shown to catalytically cleave 

C-O bonds in ethers [1, 4, 5, 6, 7]. Binary halides have also been integrated for use in 

photographic films and emulsions. The physical properties of transition metal halides can 

be used for chemical vapor deposition, separations, and purification. Transition metal 

halides are ideal precursors in inorganic and organometallic synthetic chemistry. They 

can be converted to other binary compounds [1, 8] and organometallic compounds, such 

as the complexes Cl3Mo(µ-CH2)2MoCl3 and Cl2(RO)2W(µ-O)2W(OR)2Cl2 (R = Et, n-Pr) 

used in Kauffmann olefinations. These complexes are capable of converting aldehydes 

and ketones to olefins [9] or other d
0
 organoimido complexes [10]. 
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Binary transition metal halides can be prepared by different synthetic routes: 

reaction of the elements, reaction of a molecular dimer and flowing HX(g), halide 

exchange, metallothermic reduction of higher halides, thermal disproportionation or 

decomposition of higher halides [2]. Binary transition metal halides form a diverse array 

of crystal structures from infinite chains and layers to molecular clusters shown in Table 

1. Molecular structures are typically found for metal atoms in hexavalent and pentavalent 

states, which include: monomeric octahedron [11, 12], bioctahedral dimers, [13, 14], 

trimeric units [12], and tetrameric units [1, 12, 15, 16]. Infinite chain structures include 

repetitious units of MX6 octahedra. These units can be classified by the bridging 

interactions of the halide atoms, metal-metal interactions between each unit, and the 

resulting degree of deformation of the MX6 octahedra. Included in these structures are 

infinite repeating units of either corner-sharing [17, 18], edge-sharing [19, 20], or face-

sharing [21] MX6 octahedral subunits [1, 2, 22]. Similar to extended-chain structures, 

infinite-layered structures are also formed from repetitious subunits linked together as 

infinite sheets [23, 24, 25]. Within both infinite chain and sheet structures, metal-metal 

interactions often occur [22]. Additionally, there is an abundance of metal halide cluster 

structures that have been identified [26, 27, 28]. Trinuclear clusters exist as linked 

subunits that form bidimensional layers. Binary halides containing hexanuclear clusters 

are commonly found and form tridimensional networks [29, 30, 31]. 
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Table 1. Types of crystal structure arrangements observed for binary transition metal 

halides and examples of each. 

Molecular Infinite Chain 

Layered 

Cluster 

Monomeric Dimeric Trimeric Tetrameric 
Corner-

sharing 

Edge-

sharing 

Face-

sharing 
Trinuclear Hexanuclear 

MF6, M = 

Mo, W, 

Tc, Re, 

Ru, Os, Ir, 

Pt 

M2Cl10, 

M = 

Nb, Ta, 

Mo, W, 

Re 

((RuF5)3) 

((MF5)4), 

M = Nb, 

Ta, Mo, 

Ru, Os 

MF5, 

M = 

Tc, Re 

MCl4, 

M = Zr, 

Hf, Nb, 

Ta, Mo, 

W, Tc, 

Os, Pt; 

MBr4, 

M = 

Tc, Os, 

Pt 

MBr3, 

M = 

Mo, 

Ru; 

MI3, M 

= Zr, 

Hf, Nb, 

Mo, 

Ru, Os 

α-MCl3 

M = 

Mo, Ru; 

β-Mocl4 

Re3X9, 

M3X8, M 

= Nb, Ta 

M6X12, M = 

Mo, W; 

M6X14, M = 

Nb, Ta; 

M6X15, M = 

Nb, Ta 

 

One element whose binary halide chemistry has been significantly undeveloped is 

technetium (Tc, Z = 43), the lightest radioelement. Due to the late discovery of Tc and its 

radioactive nature, Tc halide chemistry is still drastically behind those of its neighboring 

2
nd

 and 3
rd

 row elements. For Tc, there are only five known binary halide compounds, 

dramatically less than heavier congener, Re (Table 2). The first binary Tc halides 

synthesized were TcF6, TcF5, and TcCl4, followed by the additions of the first Tc 

bromides, TcBr3 and TcBr4. Notably, only one chloride phase has been identified, and no 

binary Tc halides in oxidation states lower than +IV or binary Tc iodides have been 

reported. Considering this, it is of interest to investigate the binary Tc halides and 

determine what new phases may exist and how their chemistry will compare with the 

surrounding elements [32].
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Table 2. Binary Tc (bold) reported in 2009 and Re halides [1, 2] 

Oxidation State 
Fluorides Chlorides Bromides Iodides 

Tc Re Tc Re Tc Re Tc Re 

I - - - - - - - ReI 

II - - - - - - - ReI2 

III - - - ReCl3 TcBr3 ReBr3 - ReI3 

IV - ReF4 TcCl4 ReCl4 TcBr4 ReBr4 - ReI4 

V TcF5 ReF5 - ReCl5 - ReBr5 - - 

VI TcF6 ReF6 - ReCl6 - - - - 

VII  ReF7 - - - - - - 
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The objective of this thesis is to study binary Tc halides related to fundamental 

chemistry and nuclear fuel cycle applications. For fundamental chemistry, understanding 

the chemical behavior of Tc compared to its surrounding elements will better elucidate 

the periodicity within the transition metals. For nuclear fuel cycle applications, Tc binary 

halides could potentially prove useful for separations, i.e., halide volatility, and the 

development of a robust waste form material. 

The goal of the dissertation research is the synthesis and characterization of 

binary Tc chlorides, bromides, and iodides. This manuscript is composed of five chapters. 

The binary Tc phases investigated in this study are presented in three chapters (Chapter 3, 

4 and 5), each of these chapter focuses on a single oxidation state. In Chapter 1, the 

fundamental and applied chemistry of Tc is reviewed. The binary halide chemistry of Tc 

is presented in details. Chapter 2 provides detailed information on the experimental 

methods, materials, and instrumentation used for the preparation and characterization of 

binary Tc halides.  

Chapter 3 focuses on tetravalent binary halides and includes the reinvestigation of 

the chemistries of TcCl4 and TcBr4. For TcCl4, its synthesis has been revisited, its 

crystallographic structure redetermined and its magnetic properties measured. The 

synthetic and coordination chemistry of TcCl4 are discussed and compared to other 

transition metal tetrachlorides. The thermal properties of TcBr4 were studied and the new 

Na{[Tc6Br12]2Br} salt obtained from the decomposition of TcBr4.  

Chapter 4 focuses on the trivalent halides and three new binary Tc halides phases 

are reported: α-TcCl3, β-TcCl3, and TcI3. The solid-state structure and thermal properties 

of these trihalides were investigated. For the trichlorides, their electronic structure and 
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transport properties were investigated by theoretical methods. For TcBr3, its thermal 

properties have been investigated and a new method for its preparation reported. The 

chemistries of the trivalent Tc halides are compared with those of surrounding elements. 

 Chapter 5 focuses on divalent binary Tc halides and two new phases (i.e., -

TcCl2 and β-TcCl2) are reported. The crystallographic structure of these phases has been 

determined and both dichlorides exhibit new structure-types. Physical and thermal 

properties of β-TcCl2 were investigated. Theoretical calculations were used to understand 

the electronic structure as well as the physical properties of these compounds. The 

chemistries of the dichlorides are compared with those of surrounding elements. 

The conclusion summarizes the most important findings on the synthetic and 

coordination chemistry, as well as on the thermo-chemistry of binary Tc halides. Finally, 

the potential applications of Tc binary halides are discussed.  
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Chapter 1  

Introduction to Technetium Chemistry 

 

1.1 Technetium Background 

Technetium is a Group VII second row transition metal located centrally on the 

periodic table. Technetium was first predicted by D. Mendeleev in 1869 and discovered 

by C. Perrier and E. Segrè in 1936 from an irradiated Mo foil at the Berkeley cyclotron 

run by E. O. Lawrence. Its name was given by C. Perrier and E. Segrè after the Greek 

word for “artificial,” “ ó ” [33]. Technetium is the lightest inherently radioactive 

element on the periodic table; its isotopes range from masses of A = 86 to 117. An 

empirical explanation of the radioactive nature of Tc is presented in Appendix I. 

The most common occurring and longest-lived isotopes are 
97

Tc, 
98

Tc, and 
99

Tc 

(Table 3). Whereas 
97

Tc and 
98

Tc are produced by bombardment reactions in a cyclotron, 

99
Tc is found as a major fission product (A = 99 isobar, fission yield = 6.1 %) from the 

spent fuel in nuclear reactors, making it much more abundant than the other two long-

lived isotopes. The isotope 
99

Tc is a pure beta emitter (Emax = 294 keV) and decays into 

stable 
99

Ru (Figure 1.1). The weak beta emission and low specific activity (629 kBq/mg) 

of 
99

Tc allow for laboratory handling and storage using standard glass labware [32]. 
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Table 3. Common isotopes of Tc and their atomic and nuclear properties [32]. 

Isotope 
Atomic Mass 

(amu) 

Spin and Parity 

[h/2π] 

Half-life 

(t1/2) 

Mode and Energy of Decay 

(keV) 
97

Tc 96.906364 9/2+ 4.2 x 10
6
 y ε 

98
Tc 97.907215 (6)+ 4.2 x 10

6
 y β

-
 397; γ 745, 652 

99
Tc 99.907657 9/2+ 2.1 x 10

5
 y β

-
 292, 203 

99m
Tc - 1/2- 6.006 h IT 140, 143; β

-
; e

-
; γ 322, 233 

 

The isotope 
99m

Tc is primarily a low-energy gamma emitter (Table 3) that has 

found wide application in the radiopharmaceutical industry and is used in over 30 million 

nuclear diagnostic imaging procedures a year. The isotope 
99m

Tc can be produced from 

the fission of nuclear fuel or irradiation of natural Mo or enriched 
98

Mo with thermal 

neutrons in a nuclear reactor (Figure 1.1). After irradiation, 
99m

Tc is eluted-off as 

pertechnetate (
99m

TcO4
-
) in isotope generators that separate the Tc from its parent nuclide 

(
99

Mo, t1/2 = 67 h). These 
99m

TcO4
-
 solutions undergo “one-pot” reactions with a specific 

ligand, and reducing agent to quickly form low-valent complexes ready for injection.  

Many Tc core compounds have been synthesized in various oxidation states (Tc(V), 

Tc(III) and Tc(I)). Ligands have been developed as site specific agents [32, 34]. 

 
Figure 1.1. Decay scheme of the A = 99 isobar from 

99
Mo to 

99
Ru. 
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In the nuclear fuel cycle, 
99

Tc is a major fission product formed from actinides. It 

is also generated from the fission of 
232

Th, 
233

U, 
238

U, and 
239

Pu. Other Tc isotopes with 

masses of 100 or greater produced in nuclear reactors have half-lives less than 20 min 

and decay during storage of the fuel in spent fuel pools; the formation of 
97

Tc and 
98

Tc 

from the fission of actinide fuels by thermal neutron is considered negligible [35]. In the 

spent nuclear fuel, Tc is present in the elemental form as the metal or as alloys with Mo, 

Ru, Rh, and Pd (i.e., epsilon-phases) [36]. 

The PUREX (Plutonium Uranium Recovery by Extraction) process is employed 

to treat spent fuel [37]. In the PUREX process, the fuel rods without cladding are initially 

dissolved into hot nitric acid. Technetium metal in the fuel is then oxidized to 

pertechnetate while the epsilon-phases remain at the bottom of the dissolution tank [32]. 

Technetium is extracted as HTcO4·3TBP into an organic phase (30 vol.% n-dodecane 

with 70 vol.% tributyl phosphate (TBP)). In the presence of uranyl nitrate (i.e., 

UO2(NO3)2) and TBP, Tc extraction is increased due to formation of 

UO2(NO3)(TcO4)·2TBP. After back-extraction into nitric acid, Tc is vitrified with the 

high-level waste. In the UREX process after extraction of Tc(VII) and U(VI) into the 

organic phase, Tc would be separated from U using an anion exchange resin [38]. Note: 

there is no plan to develop UREX as a process. After separation, Tc would be 

incorporated in a robust waste form for geological disposal [39]. Ongoing research has 

focused on the development of new waste form materials for Tc as ceramics, alloys, and 

glass. 
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1.2 Technetium Coordination Chemistry 

The ground state electronic configuration of Tc is [Kr]4d
5
5s

2
. The half-filled 4d 

shell allows for nine oxidation states: from -I to +VII. In comparison to its neighboring 

Group VII elements, Tc chemistry resembles that of its heavier congener Re than of the 

lighter Mn [32]. Technetium coordination chemistry is extensive, forming a range of 

binary compounds to large inorganic and organometallic coordination complexes. The 

oxidation states of Tc can be classified into 3 categories: high-valent (Tc(VII), Tc(VI) 

and Tc(V)), mid-valent (Tc(IV) and Tc(III)), and low valent (Tc(II), Tc(I), Tc(0) and Tc(-

I)). In the following, an overview of the model complexes for each category will be 

presented. 

High-Valent: Tc(VII), Tc(VI), Tc(V) 

The highest oxidation state achievable for Tc is +VII. In this oxidation state, 

oxide (e.g., Tc2O7), oxyhalides (e.g., TcO3X, X = F, Cl, Br, I), oxo-salts (e.g., MTcO4, M 

= Li, Na, K, Cs), and coordination complexes with the (TcO3)
+
 core [40] (e.g., 

TcO3(HB(pz)3), pz = pyrazolyl) are found. For Tc(VII), one of the most commonly 

occurring class of compound are the pertechnetate salts. In these salts, the TcO4
-
 anion 

exhibits the tetrahedral geometry (Figure 1.3). Pertechnetate salts are found with many 

cationic units, such as Group I and II elements, the uranyl cation (UO2
2+

), lanthanides, 

and organic cations ( n-(CH3(CH2)n)4N)
+
 and (Ph4As)

+
. The characteristic UV-Visible 

spectrum of pertechnetate exhibits two absorptions at 244 nm (ε = 5690 M
-1

·cm
-1

) and 

287 nm (ε = 2170 M
-1

·cm
-1

) and resembles the spectra of its Re homologue [41]. 
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Figure 1.2. Characteristic UV-Visible spectrum of TcO4
-
 in H2O. 

 

A common Tc(VII) pertechnetate salt is NH4TcO4, which is often used as a starting 

material for inorganic Tc chemistry. In concentrated sulfuric and perchloric acids, the 

pertechnetate anion is protonated and pertechnetic acid, HTcO4, is the dominant species 

[42]. Alternative synthetic methods for preparing HTcO4 include the dissolution of Tc2O7 

in water and passing solutions of KTcO4 through a strong-acid cation exchange column 

[43]. The highly volatile heptavalent, Tc2O7, is formed as a yellow crystalline solid when 

Tc metal or TcO2 are treated at elevated temperatures in the presence of O2 [44]. 

Technetium heptaoxide is a molecular solid, it crystallizes as centrosymmetric Tc2O7 

molecules and is structurally more similar to Mn2O7 than Re2O7 [45]. Technetium 

trioxide halides of the formula TcO3X (X = F, Cl, Br) can be synthesized from the 

reaction of TcO2 with X2(g) at elevated temperatures; these compounds are often found 
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as impurities during the synthesis of binary Tc halides in the presence of unwanted O2 

[32, 46]. 

 

 

Figure 1.3. Ball-and-stick representation of the TcO4
-
 anion. Tc atoms in black and O 

atoms in blue. 

 

The chemistry for Tc(VI) is dominated by complexes containing the (Tc N)
3+

 

core. One of the model compounds is the (n-Bu4N)TcNCl4 salt, which is synthesized from 

the reaction of (n-Bu4N)TcO4 with concentrated HCl and NaN3. The TcNCl4
-
 anion 

exhibits the square-pyramidal geometry with a short Tc≡N bond distance (i.e., 1.581(5) 

Å) [47]. 

Due to the large role of Tc(V) complexes in the development of 

radiopharmaceutical synthesis and design, a myriad of pentavalent Tc complexes have 

been synthesized. The majority of these complexes contain the isoelectronic (Tc=O)
3+

 or 

(Tc≡N)
2+

 cores and form a wide range of coordination complexes (Table 1.1) [32]. Many 

of the (Tc=O)
3+

-core complexes are derived from (n-Bu4N)TcOCl4. This salt can be 
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prepared from the reduction of (n-Bu4N)TcO4 with 0 °C concentrated HCl or in aqueous 

solutions of HCl with the addition of H3PO2 [48]. The detailed preparation of (n-

Bu4N)TcOCl4 is presented in Chapter 2. The TcOCl4
-
 anion (Figure 1.4) and many of its 

derivatives exhibit the square-pyramidal geometry with the capping Tc=O (~ 1.59-1.68 

Å).  The M2TcOCl5 salts, which contain the octahedral TcOCl5
2-

 anion, can be obtained 

in low yield after the reduction of NH4TcO4 in cold HCl and precipitation with Group I 

cations [49]. The UV-Visible spectrum of TcOCl4
-
 in cold HCl exhibits two intense 

absorption bands at 234 nm and 293 nm (Figure 1.5). 

 

Table 1.1. Tc(V)-cores and characteristic complexes formed for each [32]. 

Tc(V) core Characteristic complex 

(TcO)
3+ 

(n-Bu4)TcOCl4 

(TcS)
3+

 (AsPh4)[TcS(edt)2] (edt = ethane-1,2-dithiol) 

trans-(TcO2)
+
 [TcO2(en)2]Cl (en = ethylenediamine) 

(TcN)
2+

 (AsPh4)2[TcN(NCS)4]  
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Figure 1.4. Ball-and-stick representation of the TcOCl4
-
 anion in (Bu4N)TcOCl4. Tc atom 

in black, O atom in blue, and Cl atoms in red. 

 

 

Figure 1.5. Characteristic UV-Visible spectrum of TcOCl4
-
 in 0 C HCl. 

 

Mid-Valent: Tc(IV) and Tc(III) 

Technetium(IV) is another thermodynamically stable oxidation state for Tc 

forming d
3
 complexes. For Tc(IV), two characteristic compounds are TcO2 and salts 
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containing the TcX6
2-

 (X = F, Cl, Br, I) species. Technetium dioxide can be synthesized 

in the solid-state from the decomposition of NH4TcO4 under an inert atmosphere at 

elevated temperatures. Technetium dioxide crystallizes in the monoclinic space-group 

P21/c and is similar to MO2 (M = Mo, Re); occupancies of TcO2 are slightly different 

from those of ReO2 [50]. Hydrated TcO2 (TcO2.nH2O, n = 1.6) is often formed as a 

brown precipitate from the hydrolysis of Tc(IV) complexes in aqueous solutions. Other 

methods to prepare hydrated TcO2 include the electrochemical or chemical reduction 

(hydrazine) of TcO4
-
 in neutral to basic media [51]. The TcX6

2-
 anion is formed from the 

reduction of NH4TcO4 in concentrated hydrohalic HX (X = F, Cl, Br, I) solutions. Salts 

of TcX6
2- 

can be easily precipitated with Group I cations, NH4
+
, and Me4N

+
.  In the salts, 

the TcX6
2-

 anion exhibits the Oh geometry. The UV-Visible spectrum of TcCl6
2-

 exhibits 

two major bands at 236 nm and 340 nm (Figure 1.6) [52]. 

 

 

Figure 1.6. Characteristic UV-Visible spectrum of TcCl6
2- 

in HCl. 

0

0.5

1

1.5

2

2.5

3

190 240 290 340 390 440 490 540 590

A
b

so
rp

ti
o

n

Wavelength (cm)



10 

 

Technetium(III) represents the second most numerous class of compounds after 

those of Tc(V). The archetypal compounds of Tc(III) are the halogeno-phosphine 

complexes TcX2L2
+
 and TcX3L3 where X = Cl or Br and L = mono- or bidentate 

phosphine-based ligand, i.e. PR3 (R = Me, Et, and Ph), dppe (1,2-

bis(diphenylphosphino)ethane), dmpe (1,2-bis(dimethylphosphino)ethane). These 

compounds can be synthesized using a variety of different starting materials; for 

example, TcCl3(Me2PhP3) is obtained by refluxing NH4TcO4, Me2PhP, and HCl in EtOH 

[53]. These halogeno-phosphine complexes often exhibit the tetragonal geometry where 

the halogen and phosphine-based ligands are situated either trans or mer in respect to 

each other [32, 54]. Finally, many of Tc(III) complexes are dinuclear and contain 

multiple Tc-Tc bonds (vide infra). 

Low-Valent: Tc(II), Tc(I), Tc(0), Tc(-I) 

For Tc(II), complexes containing nitrosyl groups, nitrogen heterocycles, 

halogeno-phosphine ligands, and polynuclear complexes are the most encountered 

species. Technetium(II) halogeno-phosphine complexes are typically prepared from a 

mid-valent precursor and reduced with a strong reducing agent, such as NaBH4, or in the 

presence of a reducing ligand. In these compounds, the Tc atom is coordinated to halogen 

and phosphine ligands in the tetragonal geometry. Two examples of this class of 

compounds are TcX2(dppe)2 (X = Cl, Br) [32, 55]. Nitrosyl compounds of Tc(II), such as 

(n-Bu4N)Tc(NO)Br4,  have been prepared from the reaction of hydrated TcO2 and NO(g) 

at 75 °C in aqueous HBr and followed by the precipitation with (n-Bu4N)Br. Exchange of 

the Br ligand with Cl and I resulted in analogous compounds (n-Bu4N)Tc(NO)Cl4 and (n-

Bu4N)Tc(NO)I4, respectively [56]. Diffraction studies on (n-Bu4N)Tc(NO)(MeOH)Cl4 
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obtained from the reduction of TcCl6
2-

 or TcOCl4
-
 with NH2OH in MeOH, yielded a 

distorted octahedral geometry with the nitrosyl and MeOH groups situated in trans 

arrangement to each other [57]. 

The Tc(I), Tc(0), and Tc(-I) oxidation states are dominated by carbonyl 

chemistry. Typical complexes each of these oxidation states are Tc(CO)5X (X = Cl, Br, 

I), Tc2(CO)10, and HTc(CO)5, respectively [58]. The Tc(CO)5X complexes can be 

prepared from the reaction of Tc2(CO)10 with the respective elemental halogens in CCl4. 

The compounds Tc(CO)5X (X = Cl, Br, I) were characterized by X-ray Diffraction 

(XRD) and Infrared (IR) spectroscopy and all exhibit the C4v symmetry [59]. 

Ditechnetium decacarbonyl, Tc2(CO)10, and its synthetic derivatives constitute the few 

complexes of Tc(0) known. The compound Tc2(CO)10 can be synthesized in up to gram 

quantities from the high temperature and pressure reactions of a variety of Tc species 

(i.e., TcO2, Tc2O7, NH4TcO4, NaTcO4) with CO(g) in stainless steel autoclaves. The 

addition of copper powder to the reaction has proven to be beneficial in these reactions 

[60]. The Tc2(CO)10 dimer exhibits the staggered D4d geometry comparable to other 

Group VII M2(CO)10 (M = Mn, Re) compounds. As for other carbonyl compounds, 

Tc2(CO)10 is volatile and can be purified via vacuum sublimation [61]. 

For Tc(-I), HTc(CO)5 and (Et4N)(TcFe2(CO)12) are the only two compounds with 

Tc atom in the (-I) oxidation state reported. The compound HTc(CO)5 can be prepared by 

reduction of Tc2(CO)10 with a 1 % Na-Hg amalgam in THF. The compound has been 

characterized by IR spectroscopy and its spectrum is similar to the ones of homologous 

Mn and Re complexes [59]. 
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Technetium metal can be synthesized using three primary techniques: the 

hydrogen reduction of NH4TcO4 at elevated temperatures, the decomposition of 

(NH4)2TcCl6 under inert atmosphere, or the electrodeposition of TcO4
-
 from dilute H2SO4 

solutions [62]. A detailed experimental preparation of Tc metal is presented in Chapter 2. 

Technetium metal appears bright silvery grey, and though it is brittle it can be 

manipulated into a variety of physical forms: rods, foils, plates, or wires [63]. The 

melting point of the metal was determined to be on average 2167 °C, and its boiling point 

estimated to 5173 °C. The density of Tc metal was measured to be 11.47 g/cm
3
 [64]. 

Technetium metal crystallizes in the hexagonal close-packed space group P63/mmc 

(Figure 1.7) with cell parameters a = 2.7364 Å and c = 4.3908 Å at 4.2 K [65]. Physical 

measurements have shown Tc to be a high temperature superconductor with transition 

temperatures at 11.2 K and 9.3 K for powder metal and an arc-melted sample, 

respectively; it has the 2
nd

 highest transition temperature for any element following that 

of niobium [66]. The magnetic susceptibility was measured at 298 K to be 2.7 x 10
-6 

cm
3 

·g
-1

 [64]. The catalytic behavior of Tc metal has been predicted and compared to that of 

other platinum-group metals. Experimentally it has shown to be quite effective in a 

number of catalytic reactions (e.g., hydrogenation of benzene to cyclohexane) [32, 67]. 
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Figure 1.7. Ball-and-stick representation of the hcp structure of Tc metal displaying the 

packing of atoms down the c axis. 

 

1.3 Technetium Multiple Metal-Metal Bond Chemistry 

Transition metals are capable of forming single to quintuple bonds with other 

metal atoms. The formation of bonds with bond orders greater than 3, which result in 

quadruple and quintuple bonds, are only accessible between two transition metal atoms 

with significant d orbital overlap. This interaction forms σ, π, and δ orbitals. For Tc 

multiple Tc-Tc bonds are observed in dinuclear compounds, heteroatomic clusters, and 

extended-structure compounds. In these compounds, Tc can be found in the oxidation 

state Tc(III), Tc(II), and Tc(I) [68]. 

Multiple Metal-Metal Bonded Dimers 

Dinuclear compounds can exhibit the core structure Tc2
n+

 (n = 6, 5, 4); quadruple 

bonds are observed for n = 6, a weak quadruple bonds for n = 5 and triple bonds for n = 
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4. Quadruple bonds are derived from d orbital overlaps and consist of one , two  and 

one  orbitals (Figure 1.8). The electronic configurations and corresponding bond orders 

of the Tc2
n+

 (n = 6, 5, 4) are presented in Table 1.2. 

 

 

Figure 1.8. Molecular orbitals involved in the quadruple bond. 

 

Table 1.2. Multiple Tc-Tc Bonds in Tc2
n+

 dimers and Characteristic Electron 

Configurations 

Tc2
n+ 

 
Number of 

Electrons 

Electron 

Configuration 
Bond Order (BO) 

n = 6 8 σ
2
π

4
δ

2
 4 

n = 5 9 σ
2
π

4
δ

2
δ

*1
 3.5 

n = 4 10 σ
2
π

4
δ

2
δ

*2
 3 

 

 

Prior to 2010, only five quadruple bonded dimers had been structurally 

characterized. The archetypal examples of these compounds are (n-Bu4N)2Tc2Cl8 and 

Tc2(O2CCH3)4Cl2. The (n-Bu4N)2Tc2Cl8 salt can be prepared by different methods: 

reduction of (NH4)2TcCl6 by mossy Zn in aqueous HCl followed by cation exchange with 

Bu4NCl [69] or reduction of (n-Bu4N)TcOCl4 by (Bu4N)BH4 in THF followed by 
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acidification with HCl(g) in CH2Cl2. A detailed preparation of (n-Bu4N)2Tc2Cl8 is 

presented in Chapter 2. The (n-Bu4N)2Tc2Cl8 can easily be converted to the Br analogue 

in dichloromethane with HBr(g) [70]. In (n-Bu4N)2Tc2Cl8, the Tc2Cl8
2-

 anion (Figure 1.9) 

consists of two eclipsed TcCl4 units linked by a Tc-Tc quadruple bond (i.e., Tc-Tc = 

2.147(4) Å) [71]. The (n-Bu4N)2Tc2Cl8  salt is highly soluble in polar solvents, i.e., 

acetone and CH2Cl2, and exhibits the characteristic δ→δ
*
 transition (670 nm) in its UV-

Visible spectra [72]. 

The Tc2(O2CCH3)4Cl2 complex was first synthesized from the hydrogen reduction 

of KTcO4 in HCl/acetic acid mixture in an autoclave; it was later derived from the 

reaction of (n-Bu4N)2Tc2Cl8 in refluxing mixture of acetic anhydride/acetic acid [73]. A 

detailed experimental procedure for the preparation of Tc2(O2CCH3)4Cl2 is presented in 

Chapter 2. The crystal structure of Tc2(O2CCH3)4Cl2 was recently determined (Figure 

1.9); it exhibits the paddle-wheel motif with four bridging acetate ligands and two axial 

chlorides. The Tc-Tc separation, 2.1758(3) Å, is indicative of a quadruple Tc-Tc bond 

and is comparable to other Tc(III) carboxylate dimers [74]. 
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Figure 1.9. Ball-and-stick representation of quadruply bonded Tc dimers: Tc2Cl8
2- 

anion 

(left) and Tc2(O2CCH3)4Cl2 (right). Tc atoms in black, Cl atoms in red, O atoms in blue, 

C atoms in grey, and H atoms in pink.  

 

Clusters Containing Multiple Metal-Metal Bonds 

Multiple metal-metal bonds are found in hexa- and octanuclear clusters with 

trigonal or tetragonal prismatic geometries, respectively. Technetium trigonal prismatic 

clusters have been synthesized using high-pressure autoclave techniques (Table 1.3). The 

(Me4N)3{[Tc6(µ-Cl)6Cl6]Cl2} and (Me4N)2[Tc6(µ-Cl)6Cl6] salts were prepared from the 

hydrogen reduction of (Me4N)2TcCl6 or (Me4N)TcO4 in HCl at 30-50 atm and 140-180 

°C [75, 76]. The corresponding Br analogue was synthesized under similar conditions 

with HBr. Starting with (Et4N)2TcCl6, the major product is (Et4N)2{[Tc6(µ-Br)6Br6]Br2}. 

The triangular prismatic structures (Figure 1.10) contain short Tc-Tc distances that 

extend perpendicular to the triangular faces indicative of triple bonds. The Tc-Tc 
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distances along the triangular edge are much longer in comparison and are indicative of 

single bonds (Table 1.3). 

Tetragonal prismatic octanuclear bromide and iodide clusters have also been 

identified: [Tc8(µ-Br)8Br4]Br·2H2O, (H5O2)[Tc8(µ-Br)8Br4]Br, (H5O2)2[Tc8(µ-

Br)8Br4]Br2, and (Bu4N)2[Tc8(µ-Br)4(µ-I)4Br2I2]I2 [77]. Similarly to the hexanuclear 

chloride and bromide clusters, these were prepared using autoclave methods with 

concentrated HBr and HI solutions. Within the [Tc8(µ-Br)8Br4]
+
 cluster, the shorter Tc-Tc 

bonds (~ 2.145(2) Å – 2.147(2) Å) perpendicular to the rhomboidal top and bottom faces 

are characteristic of triple bonds, while the Tc-Tc bonds surrounding the edges of the 

faces (2.521(2) Å to 2.689(2) Å) are characteristic of single bonds (Figure 1.10) [68]. 

 

 

Figure 1.10. Ball-and-stick representations of the hexa- (left) and octanuclear (right) 

cluster cores containing multiple metal-metal bonding. Tc atoms in black, Cl atoms in 

red, and Br atoms in orange.  
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Table 1.3. Hexanuclear Trigonal Prismatic Tc Clusters and Tc-Tc Distances 

Compound Core 
Tc-Tc Bond Length 

(Å) 

Tc Tc Bond Length 

(Å) 

(Me4N)2[Tc6(µ-Cl)6Cl6] Tc6
10+ 

2.69(1) 2.16(1) 

(Me4N)3{[Tc6(µ-Cl)6Cl6]Cl2} Tc6
11+ 

2.57(1) 2.22(1) 

(Et4N)3{[Tc6(µ-Br)6Br6]Br2} Tc6
11+ 

2.702(2) 2.154(5) 

(Et4N)2{[Tc6(µ-Br)6Br6]Br2} Tc6
12+ 

2.66(2) 2.188(5) 

 

 

Extended Structures Containing Multiple Metal-Metal Bonds 

The K2Tc2Cl6 compound is the only example of a compound with an extended 

structure containing multiple metal-metal bonds reported. This compound was 

synthesized in an autoclave at ~30 atm from the reaction KTcO4 with HCl and H2(g) at 

140 °C. The structure of K2Tc2Cl6 consists of infinite zigzag chains of edge-sharing 

Tc2Cl8 units (Figure 1.11). Within the Tc2Cl8 unit, the Tc-Tc distance (i.e., 2.044(1) Å) is 

consistent with the presence of a triple bond; the electronic configuration of the Tc Tc 

triple bond being σ
2
π

4
δ

2
δ*

2 
[78]. 

 

 

Figure 1.11. Ball-and-stick representation of two Tc2Cl8 units within a chain of K2Tc2Cl6. 

Tc atoms in black and Cl atoms in red. 
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1.4 Binary Technetium Halide Chemistry 

The chemistry of binary Tc halides was dominated by TcF6, TcF5, and TcCl4. 

During this time period, work done toward these compounds was focused on the chlorine 

system, and a second binary chloride TcCl6 was proposed at high temperatures under a 

chlorine atmosphere, but no further characterization has been reported. Similarly, gas 

phase experiments reported the existence of a trichloride in the form of Tc3Cl9 

homologous to the Re analogue, but the compound was never isolated in the solid-state 

[79]. In 2009, the first binary Tc bromides TcBr3 and TcBr4 were reported. In comparison 

to the binary Re halides, for which there are 15 known and characterized, the 

fundamental chemistry of binary Tc halides was notably undeveloped prior to this work. 

1.4.1 Binary Technetium Fluorides  

Technetium(VI) hexafluoride was reported in 1961. It can be isolated in purities 

greater than 90% after fractional sublimation when prepared from the direct fluorination 

of the metal in a nickel can at 400 °C (Eq. 1.1) or in lower yields when Tc metal is treated 

in a stream of F2/N2(g) at 350 °C [80]. It is a volatile golden-yellow solid that melts at 

37.4 °C and boils at 55.3 °C. The compound is stable and can be stored in nickel or dried 

Pyrex vessels for extend periods. 

Eq. 1.1: Tc(s) + xs F2(g) ↔ TcF6(s) 

At room temperature, TcF6 crystallizes in the body center cubic Bravais lattice 

with lattice parameter a = 6.16 Å ( Z = 2). The compound undergoes a solid phase 

transition under -6 °C from bcc to orthorhombic where it crystallizes in the space group 

Pnma with unit cell dimensions a = 9.360(3) Å, b = 8.517(3) Å, c = 4.934(2) Å, (Z = 4) 

(Figure 1.12A). This transition from the bcc phase has been identified by XRD for other 
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isotypic MF6 compounds (M = Mo, Ru, Rh, W, Re, Os, Ir, and Pt) [80]. Technetium 

hexafluoride is isomorphous with its rhenium congener and is composed of molecular 

TcF6 octahedra. The magnetic susceptibility of TcF6 was measured from 295 K to 14 K 

and is inversely proportional to temperature (1/T), and the magnetic moment was 

determined to be 0.45 B.M. [81]. In aqueous NaOH solutions, TcF6 disproportionates into 

amorphous TcO2 and TcO4
-
 [80a]. As a starting material, the compound has been shown 

to react with iodine yielding TcF5 [82]. It also reacts with NO, NOF, and NO2F to form 

NOTcF6, (NO)2TcF8, and NO2TcF7, respectively [83]. In HF, the compound reacts with 

N2H6F2; N2H6(TcF6)2 is obtained from the reaction of excess TcF6 with N2H6F2 while the 

addition of excess hydrazinium fluoride yields the Tc(IV) species N2H6TcF6 [84]. In the 

nuclear fuel cycle, TcF6 is formed during the gaseous diffusion enrichment of 
235

U as a 

contaminant with UF6 [85]. 

Technetium(V) pentafluoride was first reported in 1963, it can be obtained along 

with TcF6 as a by-product when a mixture of F2/N2(g) is reacted with Tc metal at elevated 

temperature (Eq. 1.2) [86]. Alternatively, TcF5 is also formed by the reaction of 

elemental iodine with an excess of TcF6 yielding oxidized IF5 and reduction of the 

hexafluoride to the pentafluoride (Eq. 1.3) [82]. The compound forms a low-melting 

point (50 °C) yellow solid that can be purified by vacuum sublimation, though when 

subjected to higher temperatures (60 °C) will decompose. Technetium pentafluoride 

crystallizes in the orthorhombic space group Pmcn with cell parameters a = 5.76 Å, b = 

17.01 Å, c = 7.75 Å, (Z = 8) [87]. The compound consists of infinite chains of corner-

sharing TcF6 octahedra that run along the a-axis and is isomorphous to CrF5, VF5, and 

ReF5 (Figure 1.12B) [86]. Magnetic properties of TcF5 have been determined; its 
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magnetic moment is 3.00 B.M., approximately the spin-only value for two unpaired 

electrons, and a Weiss constant of 156° [82]. 

Eq. 1.2: Tc(s) + F2/N2(g) ↔ TcF5(s) 

Eq. 1.3: I2(s) + 10 TcF6(s) ↔ 10 TcF5(s) + 2 IF5(s) 

Unlike rhenium that forms ReF7 and ReF4, there is no experimental evidence that TcF7 

and TcF4 have been prepared, though first-principle calculations have predicted the 

compounds to be stable [32, 88, 89]. 

 

 
Figure 1.12. Ball-and-stick representation of the structures of binary technetium 

fluorides: TcF6 (left) and TcF5 (right). Tc atoms in black and F atoms in green. 

 

1.4.2 Binary Technetium Chlorides 

Technetium tetrachloride was first reported in 1957 from the reaction of CCl4 

with Tc2O7 in a sealed tube contained inside a metal bomb at 400 °C in 80 % yield (Eq. 

1.4). A second synthetic approach for producing TcCl4 was reported from the solid-state 

reaction of flowing dry Cl2 over the metal between 200-400 °C (Eq. 1.5). The reaction 

forms a blood-red solid that can be sublimed in a stream of Cl2 gas at 300 °C [90]. 

Eq. 1.4: Tc2O7(s) + 7CCl4(l) → 2TcCl4(s) + 7COCl2(g) + Cl2(g) 

Eq. 1.5: Tc(s) + xs Cl2(g) → TcCl4(s) 
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Suitable single crystals of TcCl4 were obtained and its structure was solved by Single-

Crystal X-ray Diffraction (SCXRD); TcCl4 crystallizes in the orthorhombic space group 

Pbca with cell parameters of a = 11.65 Å, b = 14.06 Å, c = 6.03 Å, (Z = 8). The structure 

of TcCl4 is composed of infinite zigzag chains of distorted edge-sharing TcCl6 octahedra 

(Figure 1.13). Within the chains, three types of Tc-Cl linkages occur:  terminal Tc-Cl 

linkages (2.24 Å); bridging Tc-Cl linkages parallel to the chain (2.38 Å); bridging Tc-Cl 

linkages perpendicular to the chain length (2.49 Å) [91]. Magnetic measurements have 

shown TcCl4 to be paramagnetic. The magnetic moment was determined to be µ = 3.14 

μB, a lower value than expected for a d
3
 octahedral complex, and the Weiss constant θ = -

57 K [92]. 

The chemistry of TcCl4 is more developed than that of the other known binary Tc 

halides. This is primarily due to its ease of preparation and manipulation in comparison 

with the reactivity and special precautions required for the fluorides. When dissolved in 

12 M HCl, TcCl4 is converted into the TcCl6
2-

, whereas in aqueous and basic solutions it 

hydrolyses to amorphous TcO2 [2]. Tetravalent Tc complexes in the form TcCl4L2 can be 

synthesized from the reaction of TcCl4 with monodentate L donor ligands (L = PPh3, 

PMe2Ph, OPPh3, AsPh3, THF, CH3CN, DMSO, TO, and H2O ) [93]. A Tc nitrido 

chloride (TcNCl3) was prepared from the reaction of TcCl4 and IN3 in CCl4; this nitrido 

chloride can be converted to the TcNCl4
-
 anion by addition to a solution of (Ph4As)Cl in 

CH2Cl2 [94]. Other reactions of TcCl4 with aromatic π-complexes (i.e., [Tc(C6H6)2]PF6 

and {Tc[C6(CH3)6]2}PF6) and crown ethers (i.e., {[TcCl5(H2O)][(15-Crown-5)(H3O)](15-

Crown-5)}) have also been reported [95]. 
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Technetium(VI) hexachloride has been reported as a green volatile co-product 

from the chlorination of Tc metal. Limited information and chemical analysis have been 

performed on the compound, and its existence is still questionable [90, 46]. Other Tc 

chlorides, i.e., Tc3Cl9 and Tc3Cl12, have been observed in the gas phase, but have not 

been synthesized in the solid-state and no structural or chemical information is available 

[79]. These experiments and the existence of their Re homologues ReCl6, Re3Cl9, and 

Re3Cl12
3-

, which have been isolated in weighable quantities, gives great hope of isolating 

these binary Tc chlorides in the solid-state [96]. 

 

Figure 1.13. Ball-and-stick representation of the binary technetium chloride, TcCl4.Tc 

atoms in black and Cl atoms in red. 

 

1.4.3 Binary Technetium Bromides 

The first binary Tc bromides TcBr3 and TcBr4 were not reported until 2009. 

Technetium tetrabromide was prepared congruently with TcBr3 from the reaction of the 

elements (Tc:Br 1:4) in a sealed Pyrex tube at 400 °C (Eq. 1.6) [97]. The compound was 

sublimed as black needle single-crystals and analyzed by SCXRD. Technetium 

tetrabromide crystallizes in the orthorhombic space group Pbca with cell dimensions of a 

= 6.3237(5) Å, b = 12.1777(9) Å, and c = 14.7397(11) Å and is isomorphous with TcCl4, 
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PtBr4, and OsBr4 (Figure 1.14) [91b, 98]. The structure of TcBr4 consists of infinite 

zigzag chains of edge-sharing TcBr6 octahedral; inside the chain, the Tc-Tc distances 

(3.7914(4) Å) preclude metal-metal interactions. Similarly to TcCl4, there are three 

distinct Tc-Br distances observed with two bridging (dav = 2.6234[4] Å and 2.5256[4]) 

and one terminal (2.3953(4) Å).  

Eq. 1.6: Tc(s) + 2 Br2(g) → TcBr4(s) 

Technetium tribromide was synthesized from the stoichiometric reaction of Tc 

metal with elemental bromine with (Tc:Br ~1:3) in sealed Pyrex tubes at 350-400 °C for 

8 h (Eq. 1.7) [97]. The compound was isolated as sublimed black single-crystals suitable 

for SCXRD measurements. TcBr3 crystallizes in the orthorhombic space group Pmmn 

with cell parameters a = 11.0656(2) Å, b = 5.9717(1) Å, and c = 6.3870(1) Å (Figure 

1.14). It exhibits the TiI3 structure-type and is isomorphous to MBr3 (M = Ru, Mo) [98]. 

It consists of infinite chains of face-sharing distorted TcBr6 octahedra that extend parallel 

to the c-axis. Within the chain, the Tc-Tc distances repetitively alternate between long 

(3.1434(4) Å) and short separations (2.8283(4) Å); the shorter separations are indicative 

of metal-metal bonding [22]. The disparity between the two different distances of the Tc-

Tc separations follow the order ΔRuRu > ΔMoMo > ΔTcTc [99]. Technetium tribromide 

has been used as a precursor in synthetic chemistry; two new divalent complexes, 

TcBr2(PMe3)4 and Tc2Br4(PMe3)4 have been obtained from the reaction of TcBr3 with 

trimethylphosphine and NaBEt3H in THF [100].  

Eq. 1.7: Tc(s) + 3/2 Br2(g) → TcBr3(s) 
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Figure 1.14. Ball-and-stick representations of the structures of binary technetium 

bromides: TcBr4 (left) and TcBr3 (right). Tc atoms in black and Br atoms in orange. 

 

1.5 Conclusion  

Discovered in 1936, Tc is the lightest radioelement. There are 31 isotopes of Tc 

reported, the two most common being 
99

Tc, a major fission product of the nuclear 

industry and 
99m

Tc the workhorse of diagnostic nuclear medicine. Due to its radioactivity 

and late discovery, there is little known about Tc chemistry in comparison to its heavier 

homologue, Re. An example of this gap in knowledge between the two elements is their 

respective halide chemistries; for Re 15 compounds are reported whereas for Tc there is 

only five. 

For half a century, the halide chemistry of Tc has been defined by three 

compounds, TcF6, TcF5, and TcCl4, the first binary Tc bromides TcBr3 and TcBr4 were 

not reported until 2009. The absence of Tc divalent and trivalent chlorides as well as 

binary iodides is surprising considering the existence of such compounds for all of the 

elements surrounding Tc. The common synthetic routes used to obtain binary halides of 

the neighboring elements, e.g., sealed tube reactions between elements and flowing gas 

reactions between a molecular complex and HX gas (X = Cl, Br, I) had not been reported 

for Tc. Using these routes, the halide chemistry of Tc is revisited. In this dissertation, the 
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preparation, structure, and properties of new binary Tc halides is described and their 

chemistry compared to neighboring element analogs. This allows for a better 

understanding of the fundamental chemistry of Tc and the physicochemical trends within 

the periodic table. 
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Chapter 2  

Experimental Methods and Materials 

 

This chapter will provide detailed information on the experimental methods, 

materials, and instrumentation used for the preparation and characterization of binary Tc 

halides. In section 2.1, reagents and materials will be presented. Section 2.2 will be 

devoted to the experimental procedures used for synthesizing the necessary Tc 

precursors, this includes the purification of ammonium pertechnetate, the preparation of 

metallic Tc and Tc2(O2CCH3)4Cl2. The synthetic techniques used for preparing binary Tc 

halides will be detailed in section 2.3. The instrumentation used for characterizing the 

synthesized materials will be presented in section 2.4. 

2.1 Reagents and Materials 

Caution! 
99

Tc is a weak β-emitter (Emax = 292 keV). All manipulations were 

performed in a laboratory designed for handling radioactive materials using efficient 

HEPA-filtered fume hoods, Schlenk and glovebox techniques and following locally 

approved radiochemistry handling and monitoring procedures. Laboratory coats, 

disposable gloves, and protective eyewear were worn at all times. 

Technetium was purchased as ammonium pertechnetate (NH4TcO4) from Oak 

Ridge National Laboratory (ORNL). Other necessary chemicals listed in the experimental 

sections were either purchased from Sigma-Aldrich, Strem Chemicals Inc., Fischer, or 

Alfa Aesar and were used as received. The gases used in the experiments are presented in 

Table 2.1. 
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Table 2.1 Gases used for experiments. 

Gas Purity (%) Manufacturer 

Ar 99.998 % Praxis 

95% Ar, 5% H2 1 ppm – 99.999% Praxis 

HX (X = Cl, Br) ≥ 99.0% Sigma-Aldrich 

HI 99.9% Matheson-Trigas 

Cl2 ≥ 99.5% Sigma-Aldrich 

 

The Pyrex tubes (L = 1 m, 10 mm outer diameter, 7 mm inner diameter) and fused 

silica (quartz) tubes (L = 1 m, 10 outer diameter, 8 inner diameter) used for the sealed 

tube reactions (refer to sections 2.3.1 and 2.3.3) were obtained from Chemglass, Inc. The 

composition of the Pyrex is: SiO2 83.34%, B2O3 11.19%, Na2O 4.08%, Al2O3 1.33%, 

K2O 0.04%. 

The furnace used in the preparation of Tc metal, in the sealed tube and flowing 

gas reactions was a Thermo Fisher Scientific Lindberg/Blue M Mini-Mite clamshell 

furnace. This furnace allows to performed experiments in temperature up to 1100 C. 

2.2 Preparation of Starting Materials 

The Tc precursors used in the preparation of Tc binary halides are Tc metal and 

Tc2(O2CCH3)4Cl2. Technetium metal was used in sealed tube reactions between the 

elements (Cl2, Br2 and I2) at elevated temperature. The compound Tc2(O2CCH3)4Cl2 was 

used in flowing gas reaction with HX(g) (X = Cl, Br, I). Both compounds, Tc metal and 

Tc2(O2CCH3)4Cl2, originate from NH4TcO4, the only commercially available Tc 

precursor. Ammonium pertechnetate, purchased from ORNL, is an impure black solid. 
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The impurity is likely TcO2, which is likely produced from the radiolytic autoreduction of 

NH4TcO4. Prior to use in synthetic chemistry, the impure NH4TcO4 was purified. 

2.2.1 Purification of Ammonium Pertechnetate  

The procedure of purification is applicable from milligram to gram amounts; it 

can be completed using either a rotary evaporator (rotavap) or directly on a hotplate in an 

Erlenmeyer flask.  

With the rotavap, the impure black solid (785.0 mg) was transferred to 100 mL 

round bottom flask (RBF) and deionized H2O (5 mL), NH4OH (0.5 mL), and H2O2 (0.4 

mL) were added. A thin layer of grease was applied to the rim of the RBF connected to 

the rotavap, and the RBF was lowered into a mineral oil bath. The RBF was heated to 

ebullition and the solution boiled for 15 minutes. After the reaction, the contents were put 

under vacuum, the solution was slowly evaporated and a white solid (NH4TcO4) 

precipitated. The solid was then washed with an aliquot of i-PrOH (2 mL x 2) and diethyl 

ether (2 mL x 2). The solid was dried under a light flux of Ar(g) and using a handheld 

heat gun. The white solid (782.0 mg, 4.320 mmol) was transferred to a glass vial and 

stored for future use. 

Using a hotplate and an Erlenmeyer flask, a weighted amount of the black solid 

(204.0 mg) was transferred to a 50 mL Erlenmeyer flask containing a small Teflon 

magnetic stir bar. The solid was suspended into deionized H2O (2.5 mL) and NH4OH 

(130 µL) and H2O2 (200 µL) were added. Using a hotplate, the suspension was heated to 

its boiling point. As the solid dissolved, the color of the solution changed from brown to a 

pale yellow. When the black solid was solubilized, the reaction was continued for 10 

minutes at temperature. The volume of solution was evaporated down to 0.5 mL under a 
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flux of Ar(g) and a white solid was precipitated; the remaining solution was removed via 

pipette from the precipitate. The solid (Figure 2.1) was then washed with a small amount 

of i-PrOH (2 mL x 2) and diethyl ether (2 mL x 2). The solid was taken to dryness under 

a light flux of Ar(g) and a handheld heat gun. The compound (138.0 mg, 0.762 mmol) 

was transferred to a glass vial for storage. Ammonium pertechnetate was characterized by 

UV-visible spectroscopy in water; the TcO4
-
 exhibits characteristic bands at 244 nm and 

288 nm (see section 1.2).  

 

 
Figure 2.1. Purification of NH4TcO4 starting with the impure material from ORNL (left) 

to purified NH4TcO4 (right).  

 

2.2.2 Technetium Metal  

Technetium metal can be prepared by thermal decomposition of NH4TcO4 

(Eq.2.1) or (NH4)2TcCl6 (Eq. 2.2) under flowing H2(g) at elevated temperatures. In this 

work, Tc metal used for the preparation of binary halides has been primarily obtained 

from the decomposition of NH4TcO4 under H2(g). 

Eq. 2.1: NH4TcO4 + 2 H2 → Tc + 0.5 N2 + 4 H2O 

Eq. 2.2: (NH4)2TcCl6 → Tc + 2 NH3 + 2 HCl + 2 Cl2 
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For the decomposition of NH4TcO4 under H2(g), a sample of NH4TcO4 (782.0 

mg, 4.320 mmol) was transferred to an 8-cm-long quartz boat using a disposable funnel. 

The quartz boat was then inserted into a quartz tube situated into the middle of a 50-cm-

long quartz tube fitted with Solv-Seal end joints in the clamshell furnace. The flowing 

gas apparatus was purged with H2(g) for 15 minutes at room temperature, and then the 

temperature was increased to 750 °C (10 °C /min) and held there for two hours. 

Following the reaction, the contents were cooled to room temperature under a constant 

flow of H2(g). The sample was collected as a fine grey powder (Figure 2.2) into a glass 

vial using a disposable funnel (355.0 mg, 3.586 mmol). Yield: 83.0%. The compound 

was characterized by Powder X-ray Diffraction (PXRD), which shows the presence of 

hexagonal close-packed (hcp) metallic Tc as a single phase. 

For the decomposition of (NH4)2TcCl6 under H2(g), a quantity of (NH4)2TcCl6 

(529.7 mg, 1.522 mmol) was transferred to a quartz boat and inserted into a quartz tube 

flowing as setup. The system was purged with H2(g) for 15 minutes, and the temperature 

was increased (10 °C/min) to 750 °C. Around 395°C, a color change from yellow to 

black (i.e. TcNx) was observed and a volatile white solid (i.e. NH4Cl) was sublimed on 

the quartz tube outside of the furnace. At approximately 500 °C, a second color change 

was observed and the black solid turned to a pale grey, i.e., Tc metal (Figure 2.2). The 

reaction was continued for 2 hours at 750 °C after which the sample was cooled to room 

temperature under a constant flow of H2(g). The grey metal (150.6 mg, 1.521 mmol) was 

transferred to a glass vial using a disposable funnel. Yield: 99.9%. 
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Figure 2.2. Technetium metal obtained after the decomposition of NH4TcO4 under H2(g) 

at 750 C. 

 

2.2.3 Preparation of Bis(µ-tetraaceate)dichloride Ditechnetate 

The preparation of Tc2(O2CCH3)4Cl2 is a multistep procedure (Eq. 2.3) which 

involves the successive reduction of (n-Bu4N)TcO4 to (n-Bu4N)TcOCl4 and to (n-

Bu4N)2Tc2Cl8 followed by treatment of (n-Bu4N)2Tc2Cl8 in refluxing acetic acid/acetic 

anhydride. 

Eq. 2.3: (n-Bu4N)TcO4

HCl

(n-Bu4N)TcOCl4

HClBH

THF

,4

(n-Bu4N)2Tc2Cl8 

OAcAcOH 2/

Tc2(O2CCH3)4Cl2 

The preparations of the precursors involved in the multistep reaction are presented below. 

 a. Tetrabutylammonium Pertechnetate 

Tetrabutylammonium pertechnetate (i.e., (n-Bu4N)TcO4) is best prepared from the 

precipitation of an aqueous NH4TcO4 solution with (n-Bu4N)HSO4 (Eq. 2.4). 

Eq. 2.4: NH4TcO4 + (n-Bu4N)HSO4 → (n-Bu4N)TcO4 + NH4(HSO4) 

A quantity of impure NH4TcO4 (1.044 g, ~5.768 mmol) was transferred into a 25 mL 

Erlenmeyer flask with a disposable funnel. Deionized H2O (20 mL), NH4OH (1 mL), and 

H2O2 (0.5 mL) were added to the flask and the suspension was gently heated until 
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complete dissolution. The resulting liquid was evenly pipetted into six 15 mL glass 

centrifuge tubes (3 mL/tube). To each tube, 3 mL of an aqueous solution of 

tetrabutylammonium bisulfate (3.15 mg in 12 mL) was added and a fluffy white solid ((n-

Bu4N)TcO4) was instantaneously precipitated. Each tube was centrifuged and the 

supernatant was removed via pipette. The remaining solid was washed with cold H2O (3 

mL x 2) and the tubes were dried at 90 °C overnight. The resulting vivid white solid 

(2.201 g, 5.429 mmol) (Figure 2.3) was scraped from the tubes and transferred directly to 

a glass vial for storage. Yield: 94.1%. 

 b. Tetrabutylammonium Oxotetrachlorotechnetate 

Tetrabutylammonium oxotetrachlorotechnetate (i.e., (n-Bu4N)TcOCl4) is best 

prepared from the reduction of (n-Bu4N)TcO4 with cold 12 M HCl(aq) (Eq. 2.5).  

Eq. 2.5: (n-Bu4N)TcO4 + 6 HCl(aq) → (n-Bu4N)TcOCl4+ Cl2 + 3 H2O 

A weighted quantity of (n-Bu4N)TcO4 (2.201 g, 5.429 mmol) was evenly transferred into 

six 15 mL glass centrifuge tubes (~ 367 mg/tube). To each of the glass centrifuge tubes, 3 

mL of cold (0 °C) 12 M HCl(aq) was added. The tubes were shaken for 20 minutes, 

evolution of chlorine gas and color changes from white to orange/red and finally to a 

yellow/green accompanied by the precipitation of a green solid were observed. After 20 

minutes, the tubes were centrifuged and the supernatant removed using a disposable glass 

pipette. The green solid was then washed with i-PrOH (2 mL x 2) and recrystallized twice 

from a 1:4 mixture of acetone (2 mL) and diethyl ether (8 mL). The resulting solid was 

washed a final time with diethyl ether (10 mL). The remaining solvent was removed 

under a slight flux of Ar(g) and the solid was taken to dryness with a handheld heat gun. 

The solid was collected as a silvery-grey powder (n-Bu4N)TcOCl4 (1.894 g, 3.788 mmol) 
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and transferred to a glass vial via a disposable funnel for storage (Figure 2.3). Yield: 

70.0%. The compound was characterized by UV-visible, infrared and EXAFS 

spectroscopy. The UV-visible spectra of (n-Bu4N)TcOCl4 in HCl exhibits the bands at 

234 nm and 293 nm. 

 c. Bis(tetrabutylammonium) Octachloroditechnetate 

The compound (n-Bu4N)2Tc2Cl8 was prepared by a modification of the procedure 

reported by Preetz et al. [69, 101] and was obtained after the reduction of (n-

Bu4N)TcOCl4 by (n-Bu4N)BH4 in THF followed by acidification of the products with 

HCl(g) in CH2Cl2 (Eq. 2.6). 

Eq. 2.6: 2 (n-Bu4N)TcOCl4 + 4 (n-Bu4)BH4 + 16 HCl → (n-Bu4N)2Tc2Cl8 + 2 H2O 

+ 14 H2 + 4 (n-Bu4N)BCl4 

The preparation was performed in a 250 mL round-bottomed flask equipped with a three-

hole rubber stopper. The compound (n-Bu4N)TcOCl4 (933.0 mg, 1.866 mmol) was 

dissolved in THF (20 mL) under an Ar(g) atmosphere. A solution of (n-Bu4N)BH4 (967.0 

mg, 3.764 mmol) in THF (20 mL) was slowly added dropwise and reacted for 5 minutes. 

The resulting brown solution was decanted from the precipitate, and the remaining brown 

solid was washed with THF (10 mL x 2) and ether (20 mL x 2); the resulting solid was 

dried under an Ar(g) flux yielding a yellow-green solid. Dichloromethane (20 mL) was 

added to the flask, the yellow-green solid immediately dissolved and the solution was 

treated with a slight flux of HCl(g) for 7 minutes. An immediate change of color from 

yellow-green to emerald-green was observed.  After the reaction, hexane (60 mL) was 

added to the flask and green (n-Bu4N)2Tc2Cl8 was precipitated. The supernatant was 

removed and the solid was washed with hexane (20 mL) and ether (20 mL) and dried 
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under a stream of Ar(g). The solid was dissolved in 8 mL of acetone and transferred to 

four 15 mL glass centrifuge tubes (2 mL/tube) and precipitated with the addition of an 

equal volume of diethyl ether (2 mL/tube).  The tubes were centrifuged and the solids 

were isolated followed by a second recrystallization in a 1:1 mixtures of acetone and 

ether, yielding pure (n-Bu4N)2Tc2Cl8 (333.0 mg, 0.345 mmol) (Figure 2.3). Yield: 37.0%. 

The compound was characterized by UV-visible spectroscopy in CH2Cl2 and exhibits the 

bands characteristic at 330 nm and 670 nm. 

 d. Bis(µ-tetraacetate)dichloride Ditechnetate 

The compound Tc2(O2CCH3)4Cl2 was prepared by a modification of the 

procedure reported by Preetz et al. [102] and was obtained after treatment of (n-

Bu4N)2Tc2Cl8 in refluxing acetic acid/ acetic anhydride (Eq. 2.7). 

Eq. 2.7:(n-Bu4N)2Tc2Cl8 + 4 CH3COOH → Tc2(O2CCH3)4Cl2 + 2 (n-Bu4N)Cl + 4 HCl 

A quantity (728.0 mg, 0.755 mmol) of (n-Bu4N)2Tc2Cl8 was added to a 25 mL Schlenk 

flask using a disposable funnel. To the flask, an aliquot (6 mL) of a 1:4 mixture of glacial 

acetic acid and acetic anhydride was added and lightly refluxed. The green solid slowly 

dissolved resulting in a greenish yellow solution. After several minutes, a dark precipitate 

was formed in the solution and the flask was quickly cooled to room temperature. The 

solid and supernatant were pipetted as a suspension into two 10 mL glass centrifuge 

tubes. The tubes were centrifuged and the liquid was removed from the solid.  The 

crimson solid (Tc2(O2CCH3)4Cl2) was washed with acetone (3 mL x 2) and diethyl ether 

(3 mL x 2). The remaining solvent was removed under a light flux of Ar(g) and taken to 

dryness with a handheld heat gun. The red powder (242.1 mg, 0.480 mmol) (Figure 2.3) 

was transferred directly from the centrifuge tubes into a glass vial for storage. Yield: 
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63.5%. Overall yield based on NH4TcO4 = 15.5%. The compound was characterized by 

infrared spectroscopy (see section 4.1.2.2). 

 

 

Figure 2.3. A: (n-Bu4N)TcO4 after drying at 90 C. B and C, respectively: (n-

Bu4N)TcOCl4 and (n-Bu4N)2Tc2Cl8 after recrystallization with acetone:diethyl ether. D: 

Tc2(O2CCH3)4Cl2 after diethyl ether washes. 

 

2.3 Experimental Procedures 

Three solid-state techniques were used for synthesizing binary Tc halides: 1) 

sealed tube reactions between Tc metal and the elements (Cl2, Br2 and I2) at elevated 

temperatures, 2) reaction of Tc2(O2CCH3)4Cl2 with a flowing HX(g) (X = Cl, Br, I), and 

3) thermal decomposition of a binary halide under vacuum. Each of these techniques will 

be detailed in the following sections. 

2.3.1 Sealed Tube Reactions between the Elements 

Binary Tc halides can be prepared from the reaction of fresh Tc metal with the 

Cl2, Br2, or I2 in a sealed tube. This technique allows for various conditions to be utilized, 
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such as amount of reactants, temperatures, and pressures. The reactants can be varied 

from sub-stoichiometric to excess. Reactions performed from room temperature up to 500 

°C are done in Pyrex tubes. Temperatures higher than 500 °C to 1100 °C are performed 

in quartz tubes. The pressure from atmospheric pressure up to ~ 5 atmospheres within the 

reaction tube can be controlled depending on the amount of reactants. 

Preparing sealed tubes for reactions of the elements can be completed using a 

Schlenk line (Figure 2.4); this equipment allows for manipulation of the chemicals free of 

oxygen under specific gas, e.g., Cl2, or under vacuum. In a typical preparation, 

technetium metal was transferred to a Pyrex (L = 30 - 45 cm) or quartz (L = 30 – 45 cm) 

tube using a disposable paper funnel. The tube and its contents were connected to the 

Schlenk line using a piece of thick-walled Tygon tube and the contents placed under 

vacuum. The tube was flamed under vacuum to remove any residual oxygen and moisture 

and cooled to room temperature. To the resulting tube, the desired halogen was 

introduced as the element. 

The Cl2 was introduced as a gas. A lecture bottle was connected to the Schlenk 

line equipped with a bubbler of CCl4 and the gas was backfilled into the tube. To remove 

any remaining oxygen, an alternation of the vacuum and backfilling with the gas was 

performed three times. Finally, the gas and metal can be isolated from the Schlenk line, 

the end of the tube was cooled in liquid nitrogen and the gas condensed on the metal. The 

resulting tube and its contents were flame-sealed under partial vacuum. 

For solid I2 or liquid Br2, the flamed tube containing the metal was backfilled with 

Ar(g) and removed from the Schlenk line; the liquid was added with a volumetric 

micropipette and the solid added with a disposable funnel directly into the tube. The tube 
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and its contents were connected to the Schlenk line, the tube was backfilled with Ar(g), 

the end of the tube cooled in liquid nitrogen (LN2) and the contents condensed under an 

Ar(g) atmosphere. After the contents were condensed, a vacuum was introduced, the LN2 

Dewar was removed, and the contents were slowly allowed to warm to room temperature 

under dynamic vacuum (to remove any remaining O2). Before the halide was volatilized 

under dynamic vacuum, the vacuum was switched off and the contents were put under 

inert atmosphere and condensed again. These steps were repeated a minimum of three 

times to remove any remaining oxygen. Finally, the contents were condensed, put under 

vacuum, and the tube flame-sealed (L ~ 18 cm). The resulting tubes with technetium 

metal and halide (Figure 2.5) were then placed inside of a 50-cm-long quartz tube fitted 

in a clamshell furnace and reacted under the desired conditions. 
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Figure 2.4. Experimental setup used to prepare sealed tubes: a) Schlenk line; b) 

connection from inlet gas (i.e., Ar or Cl2); c) connection to vacuum pump; d) stopcock-

controlled port; e) Teflon tubing; f) Pyrex or quartz reaction tube; g) liquid nitrogen 

dewar; h) solid sample. 

 

 

Figure 2.5. Flame-sealed Pyrex tubes of technetium metal with elemental Cl (top), Br 

(middle) and I (bottom) prior to reacting. 
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2.3.2 Reactions between Tc2(O2CCH3)4Cl2 under Flowing HX(g) 

An alternative synthetic route for preparing binary transition metal halides is the 

reaction of a dinuclear acetate complex with flowing HX(g) (X = Cl, Br, I) (Equation 8).  

This reaction involves the exchange of the acetate ligands with halogen atoms. The 

starting complex for this reaction is Tc2(O2CCH3)4Cl2. These reactions are performed at 

elevated temperatures to remove liberated acetic acid. Using this method, the compound 

can be prepared in weighable quantities with excellent yields.  

Eq. 8: Tc2(O2CCH3)4Cl2 + 6 HX(g) ↔ 2 TcX3 + 4 CH3COOH + 2 HCl 

Two experimental set-ups have been used to prepare Tc binary halides from the 

reaction of Tc2(O2CCH3)4Cl2 and HX(g) (X = Cl, Br, I). The experimental set-up in 

Figure 2.6 has been used for the experiment under HCl gas. In this method, the starting 

Tc compound (Tc2(O2CCH3)4Cl2) was evenly dispersed in an 8-cm-long quartz boat that 

inserted into a 50-cm-long quartz tube fitted with two Solv-Seal end joints and two gas 

inlets/outlets. The HCl reaction gas was connected to one end joint and a sulfuric acid 

bubbler to the opposite end joint. The quartz tube was placed in clamshell furnace. The 

tube was initially purged with the gas and followed by the reaction under the desired 

conditions. After completion, the reacted solid can be collected into a storage vial using a 

disposable funnel. This method has been applied for the preparation of -TcCl3 (see 

section 4.1.2.1). 
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Figure 2.6. Experimental apparatus for flowing gas reactions using HCl gas: a) 

connection from inlet gas; b) Teflon-jointed glass connector; c) clamshell furnace; d) 

quartz tube; e) connection to bubbler filled with H2SO4. 

 

A modification of the experimental set-up using for flowing gas reaction has been 

developed for the reaction with HX(g) (X = Br, I). In the new setup (Figure 2.7), the 50 

cm long quartz tube fitted with Solv-Seal end joints and two gas inlets/outlets was used. 

The inlet was connected with Teflon tubing to a T-shaped stopcock controlling the flow 

of HX(g) or Ar(g), and the outlet was connected to a bubbler trap filled with concentrated 

H2SO4. The tube was placed in the clamshell furnace with a 8-cm-long quartz boat 

containing Tc2(O2CCH3)4Cl2 located directly above the thermocouple of the furnace. For 

each reaction, the tube was initially purged with flowing Ar(g) and the temperature was 

increased to 150 °C and held there for a minimum of 10 min, after which the atmosphere 

was switched to HX(g) and the temperature was then increased (10 °C/min) to the desired 

temperature. This was done to prevent the premature reaction of HX(g) with the 
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compound, resulting in the release of acetic acid below its boiling point (117 °C). This 

method has been applied for the preparation of TcI3 and TcBr3 (see Chapter 4). 

 

 

Figure 2.7. Experimental apparatus for flowing gas reactions using HX gas (X = Br, I): a) 

connection from Ar(g); b) connection from HX(g) (X = Br or I); c) T-shaped stopcock; d) 

Teflon-jointed glass connector; e) quartz tube; f) clamshell furnace; g) connection to 

bubbler filled with H2SO4. 

 

2.3.3 Sealed Tube Vacuum Decompositions 

In order to investigate the thermal behavior of Tc binary halides, sealed tube 

reactions were performed under vacuum at elevated temperatures. The starting Tc binary 

halide was inserted into a Pyrex or quartz tube with a disposal funnel, and the resulting 

tube and contents were connected to a Schlenk line (Figure 2.8 and Figure 2.9). The 

contents were put under vacuum, and the tube lightly flamed to remove any excess 

oxygen or moisture. The tube and its contents were flame-sealed under vacuum with or 
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without the use of liquid nitrogen. The resulting tube was placed in a quartz tube and 

reacted in a furnace under the desired conditions. 

 

 

Figure 2.8. Sealing a Pyrex tube under vacuum on a high vacuum Schlenk line. 

 

Figure 2.9. Vacuum sealed tube containing a binary technetium before (left) and after 

(right) thermal decomposition. 
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2.4 Instrumentation  

Binary Tc halides were characterized by diffraction, microscopic and 

spectroscopic techniques and their physical properties measured (Figure 2.10). 

Furthermore, the solid state and electronic structure as well as the physical properties of 

binary Tc halides were investigated by theoretical methods.  

 

 
Figure 2.10. Flowchart of experimental characterizations and the instrumentations used in 

the studies of binary technetium halides. 

 

Diffraction techniques 

Single-Crystal X-ray Diffraction measurement were performed in collaboration 

with Dr. Paul M. Forster in the Department of Chemistry at UNLV, Dr. Brian Scott at 

Los Alamos National Laboratory, and Dr. Christos Malliakas in the Department of 

Chemistry at Northwestern University. This technique was used to determine the solid 
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state structures of the new synthesized materials. At UNLV, single-crystal XRD data 

were collected on a Bruker Smart Apex II system equipped with an Oxford nitrogen 

cryostream operating at 150 K. Crystals were mounted under Paratone on a glass fiber. 

Data processing was performed using the Apex II suite and an absorption correction 

performed with SADABS. Structure solution (direct methods) and refinement were carried 

out using SHELX97 [103]. 

Powder X-ray Diffraction (PXRD) measurements were performed in 

collaboration with Dr. Thomas Hartmann in the Department of Engineering at UNLV. 

This technique was used for identification of the crystalline phases present the in sample. 

PXRD patterns were obtained using a Bruker D8 advanced diffractometer employing Cu 

Kα1 X-rays from 10 to 120° (2θ) with a step size of 0.008° (2θ) and 0.65 s/step. The 

PXRD patterns were quantified by Rietveld analysis using Topas 4.0 software. The 

samples ( 10–20 mg) were ground in an agate mortar and dispersed on a low-

background silicon disk sample holder, covered with a radiological containment dome, 

and placed in the instrument for measurement. 

Spectroscopy techniques 

X-ray Absorption Fine-Structure (XAFS) spectroscopy measurements were 

performed in collaboration with Dr. Frederic Poineau at UNLV and Dr. Sungsik Lee at 

Argonne National Laboratory. X-ray Absorption Near-Edge Structure (XANES) spectra 

can give information about the oxidation state of the absorbing atoms [104], while the 

Extended X-ray Absorption Fine Structure (EXAFS) spectrum contains information on 

the chemical environment around the absorbing atoms [101, 105]. The XAFS 

measurements were done at the Advanced Photon Source (APS) at the BESSRC-CAT 12 
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BM station at Argonne National Laboratory. Synthesized compounds were diluted in 

boron nitride, ground in a mortar, and placed in an aluminum sample holder equipped 

with Kapton windows. The XAFS spectra were recorded at the Tc-K edge (21,044 eV) in 

transmission and/or fluorescence mode at room temperature using a 13 element 

germanium detector. A double crystal of Si (111) was used as a monochromator. The 

energy was calibrated using a molybdenum foil (Mo-K edge = 20,000 eV). The EXAFS 

spectra were extracted using Athena software, and data analysis was performed using 

Winxas [106]. For the fitting procedure, the amplitude and phase shift functions were 

calculated by FEFF 8.2 [107]. Input files were generated by Atoms [108]. Adjustments of 

the k
3
-weighted EXAFS spectra were under the constraints S0

2
 = 0.9. For the XANES 

spectra, the energy of the absorption edge was determined using the first derivative 

method. 

Attenuated Total Reflectance FT-IR (ATR- FT-IR) spectra were obtained on a 

Varian Excalibur spectrometer using a KBr beam splitter and an integrated Durasampler 

diamond ATR. This technique was primarily used to probe the presence of acetate and 

organic ligands in the reaction products. 

UV-visible spectra were recorded in a quartz cell (1 cm) on a Cary 6000i double 

beam photospectrometer. This was used for determining purity of starting materials and 

Tc elemental concentrations using the Beer-Lambert law. 

Microscopy techniques 

Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray 

Spectroscopy (EDX) were performed in collaboration with Dr. Minghua Ren in the 

microscopy laboratory at UNLV. Microscopic techniques can give information on the 
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morphology of the sample and on their composition. Scanning electron microscopy 

imaging and EDX measurements were performed on a JEOL model JSM-5610 scanning 

electron microscope equipped with secondary-electron and backscattered-electron 

detectors.  

Transmission Electron Microscopy (TEM) was performed in collaboration with 

Dr. Longzhou Ma at the Harry Reid Center at UNLV. TEM and EDX were performed on 

a TECNAI-G2-F30 Supertwin transmission electron microscope with a 300 keV field 

emission gun. The elemental composition of the sample was analyzed by energy-

dispersive X-ray spectroscopy under the scanning transmission electron microscopy 

(STEM) mode. For the STEM/EDS mode, a 0.2 nm electron probe was used to examine a 

dedicated area of the sample. The TEM samples were prepared by a solution-drop 

method. A total of 2 - 5 mg of the sample material was ground with hexane in an agate 

mortar. After slight shaking, one drop of the suspension was placed onto a 3-mm-

diameter carbon-coated copper grid using a small-tipped transfer pipette. The liquid was 

evaporated at room temperature, leaving the fine particulate sample deposited on the 

carbon film. 

Physical properties 

Physical properties including magnetic and conductivity measurements were 

performed in collaboration with Dr. Andrew Cornelius and Mr. Daniel Antonio in the 

Department of Physics and Astronomy at UNLV and with Dr. Christos D. Malliakas in 

the Department of Chemistry at Northwestern University. At UNLV, magnetic 

measurements were performed using a Quantum Design PPMS. The sample was prepared 

by placing a weighted quantity of powder (~ 30 mg) in the bottom of a gelatin capsule 
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packed with cotton. The capsule was wrapped and sealed with Kapton tape and firmly 

inserted into the bottom of a plastic straw, which was fitted onto the sample holder. At 

Northwestern University, magnetic measurements were performed using a Quantum 

Design Magnetic Properties Measurement System (MPMS) superconducting quantum 

interference device (SQUID) magnetometer. Temperature-dependent magnetic 

susceptibilities were measured in a gelatin capsule containing powdered sample (~ 20 

mg). 

Band gap measurements were performed at Northwestern University using a 

Nicolet 6700 IR spectrometer equipped with a diffuse-reflectance kit was used for the 

4000-400 cm
-1

 spectral region. The spectrum was referenced against a metallic mirror 

used as a non-absorbing reflectance standard. The generated reflectance-versus-

wavelength data were used to estimate the band gap of the material by converting 

reflectance to absorbance data according to the Kubelka-Munk equation: α/S = (1-

R)
2
/(2R), where R is the reflectance and α and S are the absorption and scattering 

coefficients, respectively [109]. 

Charge transport measurements were performed at Northwestern using a four-

probe high-temperature electrical resistivity measurements device under vacuum from 

room-temperature to 530 K on single crystal. A custom-made resistivity apparatus 

equipped with a nanovoltmeter (Keithley 2182A), precision direct current (DC) source 

(Keithley 6220), and a high- temperature vacuum chamber controlled by a temperature 

controller (K-20 MMR Technologies) was used. Data acquisition was computer 

controlled by custom-written software [110]. Seebeck coefficient measurements were 

performed using a commercial MMR SB-100 Seebeck Measurement System under 
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vacuum between 308 and 530 K. The sample was mounted with silver paste in parallel 

with a constantan reference to monitor the temperature difference across the samples. 

Technetium elemental analyses 

The compositions of the materials were ascertained by technetium elemental 

analysis. In this method a known mass of sample (~ 10 mg) was suspended in a known 

volume of concentrated acid (HCl or HClO4) or in NH4OH/H2O2 solution and the 

solution warmed (100 °C) until complete dissolution of the sample. After cooling to room 

temperature, the Tc concentration can be determined by UV–visible spectroscopy in HCl 

using the absorbance at 340 nm of the TcCl6
2–

 anion [111]
 
or by liquid scintillation 

counting (LSC) using a Packard 2500 scintillation analyzer. The scintillation cocktail was 

ULTIMA GOLD ABTM (Packard). 

Theoretical calculations 

Theoretical calculations were used to analyze the solid state and electronic 

structures, as well as the physical properties (magnetic susceptibility and conductivity) of 

technetium binary halides. Density Functional Theory (DFT) computational calculations 

were performed by Dr. Phil Weck at Sandia National Laboratories, Dr. Eunja Kim in the 

Department of Physics and Astronomy at UNLV, and Dr. Justin Grant and Dr. Laura 

Gagliardi at the University of Minnesota. First-principles total energy calculations were 

performed using the DFT as implemented in the Vienna ab initio simulation package 

(VASP) [112]. The exchange-correlation energy was calculated using the generalized 

gradient approximation (GGA) with the parameterization of Perdew and Wang (PW91) 

[113]. The PW91 functional was found to accurately reproduce structural parameters 

observed experimentally for Tc halide systems [89, 100]. Natural Bond Order occupancy 
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(NBO) analysis was performed using the DFT implementation of the Gaussian 09 

software package [114]. Structural relaxation was performed without symmetry 

constraints and the exchange-correlation energy was calculated using the GGA and the 

Becke 3-parameter, Lee, Yang and Parr [115] (B3LYP) hybrid functional. The Dunning-

Huzinaga valence double-zeta basis set [116] (D95V) was used for Cl atoms in 

combination with the Stuttgart/Dresden effective core potentials [117] (SDD ECPs) for 

the Tc metal atoms. The effective bond order concept was employed in the discussion of 

the Tc-Tc chemical bonding [118]. 
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Chapter 3  

Technetium Tetrachloride and Tetrabromide 

 

This chapter includes the reinvestigation of the chemistries of TcCl4 (section 3.1) 

and TcBr4 (section 3.2). For TcCl4, its synthesis has been revisited, its crystal structure 

redetermined and its magnetic properties measured. The synthetic and coordination 

chemistry of TcCl4 are discussed and compared to other transition metal tetrachlorides. 

The thermal properties of TcCl4 and TcBr4 were studied under vacuum at elevated 

temperatures, their decomposition products were characterized by diffraction and 

microscopic techniques. 

3.1 Technetium Tetrachloride 

3.1.1 Introduction 

Transition-metal tetrahalides exhibit a wide range of structural and physical 

properties [1, 2]. For Tc, two tetrahalides have been reported: TcCl4 and TcBr4 [32, 97]. 

In comparison, its heavier congener, Re, forms tetrahalides with fluorine, chlorine, 

bromine, and iodine [119, 120, 121, 122]. Of the second-row transition metals, Tc is the 

last element in the series to form an isolable, structurally characterized tetrachloride. 

Though the structure of TcCl4 has been determined (see section 1.4.2), there is a 

discrepancy between the two sets of unit cell parameters published for this compound 

[91]. Theoretical calculations on the structure of TcX4 (X = F, Cl, Br, I) have been 

performed and for TcCl4 the calculated Tc-Cl distances are within ~ 1 % of the published 

experimental values [89]. 
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Previous magnetic studies of TcCl4 gave an effective magnetic moment of 3.14 

μB [92]. This value is significantly lower than the theoretical one, viz., 3.87 μB, expected 

for a spin-only d
3
 paramagnet. The low value reported for the magnetic moment and the 

lack of characterization raise questions about the purity of the TcCl4 sample analyzed 

[92]. To the best of our knowledge, neither a powder X-ray diffraction pattern nor any 

microscopy characterization has been reported for TcCl4. The chemistry of TcCl4 is also 

sparse, for example there are no reports on its thermal behavior at elevated temperatures.  

For other transition-metal tetrahalides, thermal decomposition and/or disproportionation 

often occurs and lead to divalent and trivalent binary halides [123, 124]. Similarly, TcCl4 

seemed a likely precursor to the Tc(II) or -(III) binary chlorides.  

In this work, a new method for the preparation of TcCl4 and its characterization 

by spectroscopic (EXAFS, EDX), microscopy techniques (SEM), and PXRD are 

reported. Its solid-state structure has also been redetermined by single crystal XRD. Its 

magnetic properties have also been measured. Finally, the thermal behavior of TcCl4 was 

investigated, and its decomposition products were characterized [125]. 

3.1.2 Experimental Details  

Preparation of TcCl4. Technetium metal (20.1 mg, 0.203 mmol) was placed in a Pyrex 

tube (L = 43 cm), connected to a Schlenk line, and flamed under vacuum. After 

backfilling with Cl2 (Tc:Cl, 1:6) at ambient temperature and pressure, the tube was 

isolated from the Schlenk line and the lower end of the tube was cooled in liquid nitrogen 

to condense the gas. The tube was flame-sealed (L = 18 cm) and placed in an open-ended 

quartz tube packed with glass wool at each end. The tubes were inserted into a clamshell 

furnace with the metal end of the sealed tube located in the center. The temperature was 
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increased to 450 °C (7.5 °C/min) and held at that temperature for 14 hours. After cooling 

to room temperature, a reddish-black crystalline powder was observed at the cool end of 

the tube together with a red amorphous film. The crystalline powder was removed, placed 

in a second Pyrex tube of identical dimensions as the first, sealed under a Cl2 atmosphere 

(Tc:Cl, 1:6), and reacted as before. The reddish-black powder (33.8 mg, yield: 69%) 

and several small red needles ( 1 mg) in the middle of the tube were recovered. The 

purity of the compound was confirmed by PXRD (vide infra). 

Thermal Decomposition of TcCl4 to TcCl2. A sample of TcCl4 (39.5 mg, 0.164 mmol) 

was placed in a 30-cm-long Pyrex tube, and the tube was then evacuated and sealed at 18 

cm. The tube was placed in a tube furnace for 14 hours at 450 °C with the solid at the 

center. After cooling to room temperature, the reaction yielded a black crystalline powder 

(6.2 mg) at one end of the tube, lustrous black needles in the middle, and a black 

amorphous film at the coolest end. The resulting products were analyzed by SCXRD, 

PXRD and SEM. 

Thermal Decomposition of TcCl4 to α-TcCl3. A sample of TcCl4 powder (23.2 mg, 

0.096 mmol) was placed in a 30-cm-long Pyrex tube, and the tube was then evacuated, 

sealed at 18 cm, and reacted for 2 hours at 450 °C. After the reaction, red needles and 

small purple hexagonal plates were located near the center of the tube, an amorphous 

black film was observed at the coolest end of the tube, and no remaining product was 

seen at the hottest portion of the tube. The hexagonal plates were characterized by 

SCXRD and SEM (vide infra). 
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3.1.3 Results and Discussion 

3.1.3.1 Synthesis of TcCl4 

Technetium tetrachloride was synthesized in a sealed glass tube from the elements 

at elevated temperature. A subsequent treatment of the resulting powder with excess 

chlorine at 450 °C for 14 hours was required to yield pure, single crystalline TcCl4 phase. 

In comparison to the flowing gas system, sealed tube reactions give somewhat lower 

yields but avoid the generation of volatile Tc oxychlorides (i.e., TcO3Cl and TcOCl4), 

which are observed even in the presence of low-oxygen-content Cl2 streams [46]. It also 

represents a safe, convenient way to handle and manipulate small quantities of a volatile 

radioactive sample. 

The behavior of Tc metal in a Cl2 atmosphere can be compared to that of other 

second- and third-row transition metals. Tetrachlorides are obtained directly from the 

reactions of Cl2 with Zr [126], Hf [126], Os [127, 128], and Pt metal [129]. Reacting Mo 

metal and excess Cl2 yields MoCl5. The β-MoCl4 compound is obtained from the reaction 

of the pentachloride with MoCl3 in a sealed tube at 250 °C [130], while the α-MoCl4 is 

synthesized by refluxing MoCl5 with tetrachloroethylene and carbon tetrachloride [131]. 

Chlorination of W metal yields WCl6, which can then be reduced with Al to form the 

tetrachloride [132]. For Re, the direct chlorination of the metal results in a mixture of 

ReCl5 and ReCl6 [133, 134]. Two phases of Re tetrachloride have been identified: β-

ReCl4 [135] and γ-ReCl4 [136]. The β-phase, which is the only structurally characterized 

phase, was obtained via the reaction of ReCl5 with either ReCl3 or SbCl3 [133]. 

Ruthenium and Rh trichlorides are both formed from the reaction of the elements, and 

neither element forms a stable tetrachloride in the solid state [137, 138]. 
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3.1.3.2 Characterization of TcCl4 

SEM and TEM Analysis 

The EDX spectrum of TcCl4 (Figure 3.1) shows the presence of the Tc Kα, Tc Lα, 

and Cl Kα lines, confirming the formation of a binary Tc chloride. The integrated areas of 

the Cl Kα and Tc Kα lines were used to calculate an atomic ratio of chlorine to Tc of 

3.99(5). SEM images (Figure 3.2) reveal the morphology of the tetrachloride as being a 

combination of small rods and larger rectangular plates ranging in size from 10 to 100 

μm. These crystalline rods and plates are typically found in clusters throughout the 

powder. After thermal decomposition of TcCl4, the rods contained in the initial powder 

are transformed into crystals with other morphologies. 

 

 

Figure 3.1. EDX spectrum of a TcCl4 crystal displaying Tc-Kα, Tc-Lα, and the Cl-Kα 

lines. The Cu and Fe peaks are due to the sample holder. O1 (red) indicates the selected 

area measured on the crystal. 
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Figure 3.2. SEM images of the TcCl4 powder: (A) x200; (B) x1000.  

 

Powder X-ray Diffraction 

The PXRD pattern (Figure 3.3) shows a crystalline single phase of TcCl4 and the 

absence of Tc metal. A LeBail fit of the PXRD pattern confirms that the compound 

crystallizes at room temperature in the Pbca space group with lattice parameters a = 

6.0258(5) Å, b = 11.6460(4) Å, and c = 14.0289(1) Å. Rietveld analysis of the pattern 

gave a less satisfactory fit because of the strong texture within the sample. 
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Figure 3.3. Experimental PXRD pattern (blue) of TcCl4 with a LeBail fit (red) confirming 

the Pbca space group. The difference between the experimental and fitted pattern is 

shown in grey (R-Bragg = 0.218). 

 

Single Crystal X-ray Diffraction 

The structure of TcCl4 was redetermined by SCXRD. Single crystals were grown 

in the presence of a Cl2 atmosphere as a phase transport agent within a sealed Pyrex tube. 

In agreement with previous results, TcCl4 crystallizes in the orthorhombic space group 

Pbca and consists of infinite ordered zigzag chains of edge-sharing TcCl6 octahedra 

(Figure 3.4) [91]. Technetium tetrachloride is isostructural with PtCl4 [20] and TcBr4 

[97]. The cell parameters at 100 K are a = 6.0111(4) Å, b = 11.5308(9) Å, and c = 

13.9334(10) Å. The Tc···Tc separation of 3.6048(3) Å within the chain precludes any 

direct metal–metal bonding. Within a given octahedron, three different Tc–Cl distances 

are observed. The shortest distance is attributed to the two cis terminal chlorines, Cl3 and 

Cl4 (average Tc–Cl = 2.2368[6] Å). The other two distances are associated with two 
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different sets of bridging chlorine atoms. Of these, the bonded chlorine atoms Cl1′ and 

Cl2′ perpendicular to the chain are the longest (average Tc–Cl = 2.4808[6] Å), whereas 

the chlorine atoms Cl1 and Cl2 parallel to the chain are slightly shorter (average Tc–Cl = 

2.3797[6] Å). Additional crystallographic data are provided in the Appendix II. 

 

 

Figure 3.4. Ball-and-stick representation of TcCl4. Two edge-sharing octahedra and a 

portion of a third octahedron are represented. Distances are in Å and angles in degrees. 

Tc atoms in black and Cl atoms in red.  

 

X-ray Absorption Fine Structure Spectroscopy 

Technetium tetrachloride was also analyzed using XAFS spectroscopy [139].  The 

EXAFS spectra of the compound were k
3
-weighted and the Fourier Transformation (FT) 

performed in the k-range [2-14] Å
-1

. The EXAFS spectra were fitted using the scattering 

functions calculated in the structure of TcCl4 (Figure 3.5). The spatial resolution (i.e., 

π/2ΔK = 0.131 Å) using this technique could not differentiate between the Tc-ClA1 (i.e., 
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2.237[2] Å) from the Tc-ClA2 (i.e., 2.380[2]) contribution, or the Tc-ClA2 from the Tc-

ClA3 (i.e., 2.480[2] Å) contribution. Though, under these conditions the Tc-Tc 

contributions of the various Tc chlorides could be differentiated: TcCl4 (i.e., 3.605(1) Å), 

α-TcCl3 (i.e., 2.444(1) Å), β-TcCl3 (i.e., 2.861(3) Å), and TcCl2 (i.e., 2.127(2) Å). 

For fitting the EXAFS spectra, the numbers were fixed at those of the crystal 

structure. The ΔE0 was constrained to be the same value for each wave, and all the other 

parameters were allowed to vary. The results of the adjustments (Figure 3.6, Table 3.1) 

indicate that the chemical environment of the absorbing Tc atom consists of six Cl atoms 

at 2.34(2) Å, four Cl atoms at 4.24(4) Å and two Tc atoms at 3.66(4) Å. These results are 

consistent with the ones determined by SCXRD. EXAFS spectroscopy on the sample 

indicates that the reaction of Tc metal and chlorine gas in a sealed tube at elevated 

temperature produces a homogenous phase of TcCl4 absent of any α/β-TcCl3, TcCl2, or 

unreacted Tc metal. Also, this demonstrates that TcCl4 is stable for at least five days in 

the sample holder. 

 

 

Figure 3.5. Ball-and-stick representation of the TcCl4 cluster used for the EXAFS 

calculations. 
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Figure 3.6. Adjustment of experimental k
3
-EXAFS spectra (bottom) and Fourier 

transform of k
3
-EXAFS spectra (top) of TcCl4. Adjustment performed between k = [2-14] 

Å
-1

. 
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Table 3.1. Structural parameters obtained by adjustment of the k
3
-EXAFS spectra of 

TcCl4. Adjustment between k = [2-14] Å
-1

. ΔE0 (eV) = 1.79 eV. The values found by 

SCXRD in TcCl4 are in italics [125]. MS stands for multi-scattering. 

Scattering Structural Parameter 

C.N. R (Å) σ
2
 (Å

2
) 

Tc0ClA 6 2.34(2), 2.366[4] 0.0072 

Tc0TcA 2 3.66(4), 3.605(1) 0.0058 

Tc0ClB 4 4.24(4), 4.292[4] 0.0091 

MS Tc0ClA 6 4.70(5) 0.0110 

 

The XANES spectrum of TcCl4 (Figure 3.7) was background subtracted, 

normalized, and the Tc K-edge position determined using the first derivative method.  

The absence of a pre-edge feature suggests there is no presence of TcO4
-
 or TcOCl4

-
 in 

the material [140]. The measured Tc-K edge position was determined to be 21053.0 eV. 

Compared to Tc-K edge position of NH4TcO4, the chemical shift (ΔE vs. TcO4
-
) to lower 

energy is -10 eV and corresponds to an oxidation state of +4. 

 

 
Figure 3.7. Normalized Tc K-edge XANES spectrum of TcCl4.  



62 

 

3.1.3.3 Physical Properties of TcCl4 

Previous magnetic susceptibility measurements were recorded on a sample of 

TcCl4 prepared from the reaction of Tc2O7 with CCl4 [32]. No magnetic measurements 

have been performed on a sample of TcCl4 synthesized from the reaction of the metal 

with chlorine gas, and no data have been collected below 78 K. A plot of the magnetic 

susceptibility versus temperature (Figure 3.8) shows features typical of an 

antiferromagnet with a cusp indicating the Néel temperature (TN) at about 24 K and of a 

paramagnet above TN. A fit of the data above 50 K to the Curie–Weiss law (Eq. 3.1) 

gives a Curie temperature of θ = 51(1) K and a diamagnetic contribution of χ0 = −3.1(8) × 

10
–4

 emu/mol.  

Eq. 3.1  χ = C/(T + θ) + χ0 

The effective moment at each Tc site is then μeff = (3CkB/N)
1/2

 = 3.76(3) μB. In 

comparison to the previously measured value of 3.14 μB [92], this measurement is much 

closer to the theoretical, spin-only value (i.e., the orbital angular momentum is effectively 

zero) of 3.87 μB. This moment is similar to the one found in other 4d
3
 species, i.e., 

K2TcCl6 (4.05 μB) [141] and K3MoCl6 (3.79 μB) [142]. The magnetic behavior for TcCl4 

is similar to the one expected for an isolated Tc
(IV)

Cl6 octahedron and is consistent with 

the absence of a significant metal–metal interaction in TcCl4 [92]. 
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Figure 3.8. Magnetic susceptibility as a function of temperature of TcCl4. Measurement 

performed between 10 K and 300 K on TcCl4 (34.1 mg) in a 0.1 T magnetic field.  The 

black line represents the experiment data.  The red line represents the fit x = f(T) of χ vs. 

(T) above 50 K. 

 

3.1.3.4 Thermal Behavior of TcCl4 

The thermal behavior of TcCl4 was studied under flowing argon and in a sealed 

tube under vacuum at 450 °C. The latter temperature is one that we previously employed 

for the synthesis of TcCl4. Experiments under flowing argon at 250 – 500 °C for 14 h 

only resulted in volatilization of the starting material. 

In a first experiment, TcCl4 was reacted at 450 °C for 14 h. After the reaction, a 

dark black powder, needlelike crystals (center of the tube), and a black amorphous film 

(cold end of the tube) were observed. The powder XRD of the black powder indicates the 

presence of both TcCl4 and TcCl2. The structure and properties of Tc dichloride are 
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presented in Chapter 5. The needle-like single crystals were indexed by SCXRD, yielding 

cell parameters and a space group identical with that of TcCl2 [143]. The SEM analysis of 

the powder (Figure 3.9A) and single crystals (Figure 3.9B) show the “sea urchin” cluster 

arrangement of the needle-shaped crystals characteristic of TcCl2 morphology. 

 

 

Figure 3.9. SEM images of the powder (A, ×200) and crystals (B, ×100) obtained after 

decomposition of TcCl4 at 450 °C under vacuum for 14 h. 

 

In a second experiment, TcCl4 was reacted at 450 °C in a sealed tube under 

vacuum for 2 hours. After the reaction, red needles, small purple hexagonal plates, and an 

amorphous film were observed at the coolest end of the tube. The red needles were 

indexed using SCXRD as TcCl4, while the purple hexagonal plates were indexed as -

TcCl3. The structure, morphology and properties of -TcCl3 are presented in Chapter 4.  

Analysis of the decomposition products by SEM (Figure 3.10A) shows the edge 

of a TcCl4 single crystal. Closer inspection of the TcCl4 crystal (Figure 3.10B) revealed 

the presence of small hexagonal shaped crystals (2 – 5 μm) characteristic of α-trichloride 

morphology. 
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Figure 3.10. SEM images of the surface of a TcCl4 crystal (A, ×500; B, ×4000) obtained 

after decomposition of TcCl4 at 450 °C under vacuum for 2 h. 

 

It appears that the presence of a vacuum and elevated temperature are required for 

decomposition of TcCl4. Decomposition provides two products in the early stages of the 

reaction, and the isolation of α-TcCl3 after 2 h and TcCl2 after 14 hours of reaction at 450 

°C suggests that the trichloride is likely the initial decomposition product. 

3.1.3.5 Comparison of TcCl4 with Other MCl4 Systems 

Five different structure-types have been identified for the second- and third-row 

transition-metal tetrachlorides spanning groups 4–10 (d
0
–d

6
) for Zr, Hf, Nb, Ta, Mo, W, 

Tc, Re, Os, and Pt. These tetrachlorides are comprised of MCl6 edge- or face-sharing 

octahedra, forming either infinite chains or layers (Figure 3.11). These compounds can be 

differentiated based on the presence or absence of metal–metal bonding. 
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Figure 3.11. Ball-and-stick representations of second- and third-row transition-metal 

tetrachloride structure-types: (A) Zr, Hf, Tc, and Pt; (B) Os; (C) β-Mo; (D) Nb, Ta, α-Mo, 

and W; (E) β-Re. The metal atoms are in black, and the Cl atoms are in red. 

 

The structure-types in Figure 3.11A–C are representative of transition-metal 

tetrachlorides that exhibit no metal–metal bonding. Similar to Tc, the tetrachlorides of Zr 

[144], Hf [145], and Pt [20] (Figure 3.11A) adopt the TcCl4 structure-type. The M–M 

separations within the chains suggest little or no interaction between neighboring metal 

ions. The OsCl4 [146] structure-type (Figure 3.11B) consists of infinite linear chains of 

edge-sharing OsCl6 octahedra with a single Os···Os separation of 3.56(1) Å, suggesting 

the absence of metal–metal bonding. The β-MoCl4 [25] structure-type consists of infinite 

layered sheets instead of chains of MCl6 octahedra (Figure 3.11C); the Mo···Mo 

separation in this structure, 3.670(1) Å, also precludes any metal–metal bonding. 

The structure-types for the transition-metal tetrachlorides that can be classified as 

metal–metal bonded are shown in Figure 3.11D and E. The NbCl4 [147] structure-type 
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(Figure 3.11D) is also found for TaCl4 [148], α-MoCl4 [131], and WCl4 [132]. 
 
These 

compounds consist of edge-sharing chains of distorted MCl6 octahedra with alternating 

short and long metal–metal distances. The shorter distances suggest the presence of some 

metal–metal interaction. β-Re tetrachloride (Figure 3.11E) consists of infinite chains of 

distorted Re2Cl9 confacial bioctahedra linked by a terminal chlorine atom. In the Re2Cl9 

unit, the Re–Re separation (i.e., 2.728(2) Å] is indicative of a strong metal–metal 

interaction. 

 

Table 3.2. Structure-types and Metal–Metal Separations in Transition-Metal 

Tetrachlorides.
 a 

Not reported. 
b 

Characterized by powder XRD and interatomic distances 

not reported. 

Electronic 

configuration 

Metal Structure-type M–M and M···M (in italics) 

distances (Å) 

d
0
 Zr TcCl4 (Figure 3.11A) 3.962(1) 

  Hf TcCl4 3.920(1) 

d
1
 Nb NbCl4 (Figure 3.11D) 3.029(2), 3.794(2) 

  Ta NbCl4 2.985(3), 3.791(3) 

d
2
 Mo α: NbCl4 

b
 

    β: MoCl4 (Figure 3.11C) 3.670(1) 

  W NbCl4 2.688(1), 3.787(1) 

d
3
 Tc TcCl4 3.604(8) 

  Re β: ReCl4 (Figure 3.11E) 2.728(2), 4.368(2) 

d
4
 Ru 

a
 

a
 

  Os OsCl4(Figure 3.11B) 3.560(1) 

d
5
 Rh 

a
 

a
 

  Ir 
a
 

a
 

d
6
 Pd 

a
 

a
 

  Pt TcCl4 
b
 

 

The transition-metal tetrachlorides are thermally unstable; they can decompose or 

disproportionate (Table 3.3). The thermal behavior of TcCl4 is similar to that of PtCl4, 

which also yields the dichloride as the final decomposition product [124]. Osmium 
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tetrachloride decomposes to OsCl3 at 470 °C [128].
  
In contrast, ReCl4 and β-MoCl4 

undergo disproportionation to the respective tri- and pentachloride [134, 135, 149, 150]. 

Tungsten(IV) chloride also disproportionates, forming WCl2 and WCl5 [132, 151]. In 

comparison to the surrounding elements, Tc displays unique thermal properties upon 

undergoing successive decomposition to the tri- and dichlorides. 

 

Table 3.3. Summary of Transition-Metal Tetrachloride Decompositions. 

Compound Conditions Products 

β-MoCl4 288 °C, under argon MoCl3 and MoCl5 

WCl4 450–500 °C, vacuum WCl2 and WCl5 

TcCl4 450 °C, 2 h, vacuum α-TcCl3 

450 °C, 24 h, vacuum TcCl2 

ReCl4 300 °C, under nitrogen ReCl3 and ReCl5 

OsCl4 470 °C, slight pressure of chlorine OsCl3 

PtCl4 350 °C, open system with flowing N2(g) Pt6Cl12 

 

3.1.4 Summary 

Technetium tetrachloride was synthesized from the reaction of Tc metal with 

excess Cl2 in sealed Pyrex tubes at elevated temperatures. This synthetic procedure is 

preferred for small samples and avoids the formation of unwanted oxychlorides. The 

phase purity of the compound obtained by this method was analyzed by PXRD and 

XAFS spectroscopy, which confirmed the presence of TcCl4 as a single phase. The 

structure of TcCl4 was revisited by SCXRD; more accurate structural parameters were 

obtained from this measurement. Magnetic measurements confirmed TcCl4 to be 

paramagnetic above 50 K and to exhibit antiferromagnetic behavior below 24 K. The 

morphology of TcCl4 was observed by SEM as rod-shaped clusters and used to track 

compositional changes at various temperatures under vacuum. The thermal behavior of 

TcCl4 was investigated in sealed tubes under vacuum after 2 and 14 hours at 450 °C. 

javascript:void(0);
javascript:void(0);
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Diffraction and microscopic techniques show TcCl4 to decompose to α-TcCl3 and TcCl2 

after 2 hours and to TcCl2 without a trace of the trichloride after 14 hours. The α-TcCl3 

appears to be the initial decomposition product, while TcCl2 is the ultimate product of 

decomposition under the prevailing experimental conditions. 

 

3.2 Technetium Tetrabromide 

3.2.1 Introduction 

Technetium tetrabromide has previously been synthesized from the reaction of the 

elements in sealed tubes and characterized by SCXRD (see section 1.4.3) [97]. Beyond 

its preparation and the determination of its crystal structure no other experiments on 

TcBr4 have been reported. Our previous studies (vide supra) have shown that TcCl4 is 

thermally unstable and decomposes under vacuum at 450 C to lower-valent binary 

chlorides (i.e., α-TcCl3 and TcCl2) [125]. Because TcCl4 and TcBr4 are isomorphous and 

thermal decomposition of the tetrachloride produces TcCl2, it was of interest to study the 

solid-state decomposition of TcBr4 as possible precursor to the unknown TcBr2. 

In this study, the thermal decomposition of TcBr4 in sealed Pyrex tubes under 

vacuum at elevated temperatures was investigated and the formation of the new 

hexanuclear Tc bromide cluster, Na{[Tc6Br12]2Br} was reported. The stoichiometry of 

the compound was confirmed by EDX spectroscopy, and its structure was determined 

using SCXRD. First-principle calculations were employed to better understand the 

electronic structure and bonding of the trigonal prismatic hexanuclear Tc6Br12 cluster 

[152]. 
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3.2.2 Experimental Details  

Preparation of Technetium Tetrabromide. Technetium metal (31.5 mg, 0.32 mmol) 

was transferred into a Pyrex tube (L = 43 cm), connected to a Schlenk line and flamed 

under vacuum. The tube was backfilled with Ar(g), isolated from the Schlenk line and 

Br2 (40 µL, 0.78 mmol) was added using a micropipette. The tube was reconnected to the 

Schlenk line and the end of the tube was cooled using liquid nitrogen. Once the Br2 was 

condensed, the coolant was removed, and the tube was evacuated under vacuum while 

slowly warming the tube allowing the Br2 to convert back to the liquid phase. After the 

Br2 had become liquid, the tube was isolated and the contents condensed again in liquid 

nitrogen. This process was repeated three times. After the third time, the tube was placed 

in liquid nitrogen, evacuated under vacuum, and flame-sealed (L = 18 cm). The tube was 

inserted into a clamshell furnace with the metal end of the sealed tube located in the 

center of the furnace. The temperature was increased to 400 °C at 10 °C/min, and held at 

temperature for 24 hours. After cooling to room temperature, a purplish black crystalline 

powder was observed where the metal once was and a black amorphous film at the 

opposite end of the tube. The crystalline powder was removed and placed in a second 

Pyrex tube of identical dimensions as the first, sealed with bromine, and reacted as 

before. The purplish black powder (77.6 mg, yield: 58%) in the tube was recovered. 

Thermal Decomposition of TcBr4 to Na{[Tc6Br12]2Br} in Pyrex. A sample of TcBr4 

(64.1 mg, 0.15 mmol) was placed in a 30-cm-long Pyrex tube, evacuated, and sealed at 

18 cm. The tube was placed in a tube furnace for 24 hours at 450 °C with the solid at the 

center of the furnace. After cooling to room temperature, the reaction yielded a 

crystalline black powder (41.7 mg) and several purplish black rail spike crystals adjacent 
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to the powder. The tube and its contents were annealed at 200 °C for a period of 3 days to 

ensure crystallinity. The powder was analyzed by PXRD and the single-crystals by 

SCXRD, EDX, and SEM. 

Thermal Decomposition of TcBr4 in Quartz.  A sample of TcBr4 (54.0 mg, 0.13 mmol) 

was placed in a 30-cm-long quartz tube, evacuated, and sealed at 18 cm. The tube was 

placed in a tube furnace for 24 hours at 450 °C with the solid at the center of the furnace. 

After cooling to room temperature, the reaction yielded a grayish black powder (23.4 mg) 

and amorphous black film at the coolest end of the tube. The powder was analyzed using 

PXRD. 

3.2.3 Results and Discussion  

3.2.3.1 Thermal Behavior of TcBr4 

Technetium tetrabromide was prepared according to the method reported in the 

literature [97]. A small quantity ( 64 mg) was placed in a Pyrex tube, and the tube was 

flame-sealed under vacuum, placed in a furnace, and reacted at 450 °C for 14 hours. After 

the reaction, a dark-purple/black crystalline powder ( 42 mg) was obtained in the hottest 

part of tube, and purple crystals ( 2 mg) were observed on the surface of the tube 

adjacent to the powder. The product was annealed at 200 °C for an additional 3 days. 

Analysis of the crystals by optical and scanning electron microscopy revealed a “rail 

spike” shape (Figure 3.12). 
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Figure 3.12. Left: Optical microscopy image of a single rail spike crystal of 

Na{[Tc6Br12]2Br}. Right: Scanning electron microscopy (SEM) image of a single rail 

spike crystal of Na{[Tc6Br12]2Br} at x500 magnification. 

 

The PXRD pattern of the bulk material obtained in Pyrex revealed a mixture of 

TcBr3 and Tc metal with the absence of TcBr4 (Figure 3.13). Identical reactions 

performed in quartz tubes (absence of sodium) did not yield any crystals. The PXRD 

pattern of the decomposition in quartz yielded a homogeneous phase of Tc metal (Figure 

3.14). This suggests that the source of Na in the compound originates from the Pyrex tube 

(see Chapter 2 for Pyrex composition). 
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Figure 3.13. XRD powder pattern of product (blue) obtained after decomposition of 

TcBr4 in Pyrex.  The refinement (red) shows the presence of Tc metal (P63/mmc; a = 

2.742(1) Å and b = 4.398(1) Å) and TcBr3 (Pmmn; a = 11.206(1) Å, b = 6.018(1) Å, and 

c = 6.4777(1) Å). The difference between the experimental and fitted pattern is shown in 

green. 
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Figure 3.14. XRD powder pattern of product (blue) obtained after decomposition of 

TcBr4 in quartz. The fit (red) shows the presence of Tc metal (P63/mmc; a = 2.743(1) Å 

and c = 4.400(1) Å). The difference between the experimental and fitted pattern is shown 

in green. 

 

3.2.3.2 Characterization of Na{[Tc6Br12]2Br} 

EDX Analysis 

The EDX spectrum (Figure 3.15) of the crystals show characteristic Na-Kα, Tc-Kα and 

Tc-Lα, and Br-Kα and Br-Lα lines, consistent with the presence of Na, Tc, and Br in the 

compound. A Br:Tc ratio of 2.0(3) was determined from the integrated intensities of the 

Tc-Kα and Tc-Lα, and Br-Kα and Br-Lα peaks (Lighter Z elements are difficult to 

accurately quantify by EDX; absorption correction (ZAF) was applied).  
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Figure 3.15. EDX measurement of Na{[Tc6Br12]2Br} crystal displaying Na-Kα, Tc-Kα, 

Tc-Lα, and the Br-Kα lines. The Cu peaks are due to the sample holder. O1 (red) indicates 

the selected area measured on the crystal. 

 

Single Crystal X-ray Diffraction 

A suitable crystal was selected for structural determination by SCXRD. The 

compound exhibits the stoichiometry Na{[Tc6Br12]2Br} and crystallizes in the triclinic 

space group P-1 (a = 9.517(5) Å, b = 10.523(6) Å, and c = 11.141(6) Å; α = 83.67(1)°, β 

= 73.72(10)°, γ = 84.84(1) °). Additional crystallographic data are provided in the 

Appendix II. The compound contains the trigonal-prismatic hexanuclear Tc6Br12 cluster 

(Figure 3.16 and Figure 3.17). The geometry of the Tc6Br12 cluster in Na{[Tc6Br12]2Br} 

is similar to that found for the Tc6Br12 cluster in (Et4N)2{[Tc6Br12]Br2}, the Tc6Br12
-
 

cluster in (Me4N)3{[Tc6Br12]Br2} [153], and the Re6Br12
2+

 cluster in {[Re6Br12]Br2} [154, 

155]. All of these clusters were prepared in an autoclave via the hydrogen reduction of 



76 

 

MO4
-
 (M = Tc, Re) or TcX6

2-
 salts in concentrated HXaq (X = Cl, Br) at elevated 

temperature [154, 156, 75]; it is the first time that a prismatic hexanuclear cluster of 

Group VII metal has been prepared from a solid-state reaction. 

In Na{[Tc6Br12]2Br}, the Tc6Br12 cluster is composed of two identical parallel 

Tc3Br6 units linked by multiple Tc–Tc bonds. In the Tc3
6+

 unit, the TcA–TcA distance (av. 

Tc–Tc = 2.685(5) Å) is characteristic of a Tc–Tc single bond [157]. This distance is 

longer than that found in the triangular Tc3
9+

 core in α-TcCl3 (i.e., 2.444(1) Å; Tc═Tc 

double bond) and similar to that found (Table 3.4) in the Tc3
6+

 core of 

(Et4N)2{[Tc6Br12]Br2} (i.e., 2.66(2) Å) [153]. The TcA–TcB distance between the Tc3Br6 

units (av. Tc–Tc = 2.174(5) Å) is similar to that found in the (Et4N)2{[Tc6Br12]Br2} salt 

(i.e., 2.188(5) Å) and is characteristic of a Tc≡Tc triple bond [72]. Further evidence of a 

triple bond is provided by theoretical calculation (vide infra). 
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Figure 3.16. Ball-and-stick representation of the Tc6Br12 cluster in Na{[Tc6Br12]2Br}. Tc 

atoms are in black and Br atoms in orange. Selected distances (Å): TcA1–TcA2 2.687(9), 

TcA2–TcA3 2.667(6), TcA3–TcA1 2.673(5), TcA1–TcB1 2.165(1), TcA2–TcB2 2.177(9), TcA3–

TcB3 2.177(5).  
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Figure 3.17. Ball-and-stick representation of two Tc6Br12 clusters joined by a capping 

bromine in Na{[Tc6Br12]2Br}. Tc atoms in black, bromine atoms in orange.  

 

Table 3.4. Selected Bond Distances (Å) in the Tc6Br12 Cluster in Na{[Tc6Br12]2Br}
a
 and 

(Et4N)2{[Tc6Br12]Br2}
b
 (Experimental Values in Bold and Calculated Values in Italics).

a 

Represents an average value.
b 

Reference 154. 

Compound TcA–TcA TcA–TcB Tc–BrT Tc–BrB 

Na{[Tc6Br12]2Br} 2.6845(5) 2.1735(5) 2.4966(8) 2.4738(7) 

(Et4N)2{[Tc6Br12]Br2}
b
 2.66(2) 2.188(5) 2.50(1) 2.49(1) 

Tc6Br12 2.720 2.173 2.479 2.494 

 

Each of the Tc3Br6 units contains three terminal BrT atoms (av. Tc–BrT = 

2.4966(8) Å) and three bridging BrB atoms (av. Tc–BrB = 2.4738(7) Å). In the Tc6Br12 

cluster, one of the two Tc3Br6 units is capped by a Br atom (BrC). The capping Br atom 
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lies above the center of the triangular face. The distances between the BrC and Tc atoms 

of the Tc3Br6 unit (i.e., 3.1952(5) Å, 3.0994(4) Å, and 2.9636(5) Å) are significantly 

longer than those in other technetium(II) complexes (i.e., Tc–Br  2.50 – 2.60 Å) and 

indicate that the Tc and Br atoms are coupled by a weak electrostatic interaction [32, 72, 

100, 158]. The distances between the BrC atom and the three bridging BrB atoms (i.e., 

3.472 Å, 3.482 Å, and 3.625 Å) of the Tc3Br6 unit indicate that those Br atoms are in van 

der Waals contact (sum of the van der Waals radii = 3.70 Å) [158]. The distances 

between BrC and BrT (i.e., 4.067 Å, 4.300 Å, and 4.447 Å) are larger than the sum of the 

van der Waals radii. 

The environment of the Tc6Br12 cluster in Na{[Tc6Br12]2Br} differs from that of 

Tc6Br12 in (Et4N)2{[Tc6Br12]Br2}. In the latter compound, both Tc3Br6 units are capped 

by Br atoms. The shortest interatomic distance between the Tc6Br12 clusters (Br···Br = 

3.935 Å) exceeds the sum of the Br van der Waals radii (3.70 Å), indicating that there are 

no direct interactions between the Tc6Br12 clusters. The Na atoms are located in the 

cavities between the clusters and hexagonally coordinated to three of the terminal Br 

atoms between two of the clusters (Na–Br = 2.96 – 3.26 Å). 

Computational Study 

In order to better understand the structure and bonding in the Tc6Br12 cluster, DFT 

calculations were performed. The interatomic distances found by DFT in Tc6Br12 are in 

excellent agreement with the crystallographic data. The largest discrepancy (± 0.036 Å) 

was found for the TcA–TcA distance in the Tc3Br6 unit. The calculated TcA–TcB distance 

(i.e., 2.173 Å) is identical with that found by SCXRD (2.1735 Å). The calculated Tc–BrT 

and Tc–BrB distances are respectively 0.018 Å shorter and 0.020 Å longer than the 
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experimental ones. The calculated TcA–TcA–TcA, BrBri–TcA–BrBri, and TcA–BrBri–Tcface 

angles are within 0.5° of the crystal data. 

The electronic structure of the Tc6Br12 cluster has been investigated.  Employing 

skeletal electron pair counting rules [159], it was found that Tc6Br12 has 30 bonding 

electrons within the metal framework, differing from the typical magic number of 18 

electrons for trigonal prisms [160]. The molecular orbital analysis reveals bonding in 

Tc6Br12 to be electron-rich Tc≡Tc bonds along the edge and Tc–Tc single bonds in the 

triangles with an overall electronic configuration of (σ
12

π
10

δ
4
δ*

4
). Natural bond orbital 

occupancy (NBO) calculations were performed to characterize the metal–metal bonding 

in the cluster (Figure 3.18). The NBO occupancy along the edge of Tc6Br12 is 5.4e, close 

to that of an ideal covalent triple bond (i.e., NBO = 6.0) and further confirms the presence 

of a Tc≡Tc triple bond in the cluster. The NBO occupancy along the face is 1.5e, 

consistent with a Tc–Tc single bond. 

 

 

Figure 3.18. The Natural Bond Order (NBO) occupancy of the Tc–Tc bonds in Tc6Br12. 

 

3.2.4 Summary 

The compounds Na{[Tc6Br12]2Br} and TcBr3 were obtained from the 

decomposition of TcBr4 under vacuum in a glass tube. The Br:Tc stoichiometry in 
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Na{[Tc6Br12]2Br} was confirmed using EDX spectroscopy and its structure determined 

using SCXRD. The compound contains the trigonal-prismatic hexanuclear Tc6Br12 

cluster. It is the first Group VII trigonal-prismatic hexanuclear cluster to be synthesized 

from a solid-state reaction. Theoretical calculations have been used to investigate the 

geometrical and electronic structure of the Tc6Br12 cluster. The calculated structural 

parameters are in excellent agreement with the experimental data. NBO analyses indicate 

the presence of six Tc–Tc single and three Tc≡Tc triple bonds within the Tc6
12+

 core. 

 

3.3 Conclusion 

Technetium tetrachloride and tetrabromide have been synthesized in the solid-

state and characterized by various techniques. Both compounds can be prepared from the 

reaction of the elements in sealed tubes at elevated temperatures. The crystal structures of 

TcCl4 and TcBr4 are isomorphic with their Pt analogues and are composed of extended 

zigzag chains of distorted TcX6 (X = Cl, Br) octahedra. Technetium tetrachloride and 

tetrabromide are thermally unstable and decompose in sealed tubes under vacuum 

resulting in Tc(III) and Tc(II) species; TcCl4 decomposes to -TcCl3 and TcCl2 while 

TcBr4 to TcBr3 and Na{[Tc6Br12]2Br}. It is noted that Na{[Tc6Br12]2Br} is the first 

compound to contain a prismatic hexanuclear cluster to be synthesized from a solid phase 

reaction; this raise the question about the transport in gas phase of hexanuclear cluster. 

Akin to other transition metal tetrahalides, these materials have great potential for further 

use as precursors in an array of inorganic and organometallic chemistries, and notably 

their volatile behavior could be of the utmost interest for applications in separations or 

thin layer deposition. Other Tc tetrahalides are waiting to be discovered, those include 
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TcF4 and TcI4. It will be of interest to see if these materials would exhibit the structure 

predicted from DFT calculations [89]. 
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Chapter 4  

Technetium Trichlorides, Tribromide, and Triiodide 

 

This chapter focuses on the trivalent binary Tc halides: Tc trichlorides (section 

4.1), Tc tribromide (section 4.2) and triiodide (section 4.3). Herein, three new binary Tc 

halides phases are reported: α-TcCl3, β-TcCl3, and TcI3. The solid-state structure and 

thermal properties of these trihalides were investigated by experimental methods. For the 

trichlorides, their electronic structure and transport properties were investigated by 

theoretical methods. For TcBr3, its thermal properties have been investigated and a new 

method for its preparation reported. Finally, in each section the chemistries of the 

trivalent Tc halides are compared with those of surrounding elements. 

4.1 Technetium Trichlorides: -TcCl3 and -TcCl3 

4.1.1 Introduction 

Binary transition metal trihalides display a diverse variety of chemical structures 

and properties; there are more than 20 known structure-types including chains, layers, 

three dimensional networks composed of metal halide clusters. These have been 

investigated in depth for Groups V, VI, and VIII [22]. Prior to 2010, Group VII 

trichlorides were only known for Re; ReCl3 consists of Re3Cl9 clusters with the triangular 

Re3
9+

 core (Figure 4.1A) [28]. Of the various methods for preparing ReCl3, the reaction 

of Re2(O2CCH3)4Cl2 with HCl(g) at elevated temperature is often the most direct and 

highest yielding route [27, 176]. As a precursor, ReCl3 has served as a synthetic template 

for more than 50 known compounds that exhibit the Re3
9+

 core, which has greatly 

expanded the multiply metal-metal bonded chemistry of this element [27]. For Group VI 
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and VIII, -MoCl3 and -RuCl3 exhibit the AlCl3 structure-type and consist of infinite 

layers of edge-sharing MCl6 octahedra (Figure 4.1B) [161, 23, 24, 29]. These trichlorides 

were prepared from the reaction between the elements in sealed tubes. Because the 

existence of TcCl3 had been reported in the gas phase [79], it was of interest to pursue its 

solid-state synthesis. This can be achieved by transposing the methods used for the 

preparation of the Re, Ru, and Mo trihalides to Tc.  

 

 
Figure 4.1. Ball-and-stick representations of the structures exhibited by a) ReCl3 and b) 

α-MCl3 (M = Mo, Ru). Metal atoms are in black, chlorine atoms are in red. 

 

 In this section, the reaction of Tc2(O2CCH3)4Cl2 with flowing HCl(g) and the 

sealed tube reaction of Tc metal and chlorine gas at elevated temperatures are presented. 

These reactions lead to two polymorphs of technetium trichloride: α-TcCl3 and -TcCl3. 

The preparation, solid-state structure, and thermal properties of these trichlorides are 

reported. The electronic structure, magnetic, and transport properties of these phases were 

also analyzed by first principle calculations [162, 163].  
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4.1.2 Alpha-Technetium Trichloride  

4.1.2.1 Experimental Details 

Preparation of -TcCl3. Technetium trichloride was prepared by reacting 

Tc2(O2CCH3)4Cl2 with HCl(g) at 300 °C using the experimental set-up presented in 

Chapter 2, Figure 6. A weighted quantity (43 mg, 0.099 mmol) of Tc2(O2CCH3)4Cl2 was 

evenly dispersed in a quartz boat. The apparatus was purged with HCl(g) and the 

temperature was raised to 300 °C (10 °C/ min) and held there for 3 hours after which the 

system was cooled to room temperature. During the experiment, Tc2(O2CCH3)4Cl2 was 

visually inspected and a change of color from pink to green occurred at ~100 °C and from 

green and black at ~ 250 °C. After the reaction, 32 mg of black powder were obtained.  

Yield = 77%. The black powder was analyzed by PXRD, IR and XAFS spectroscopy, 

and Tc elemental analysis. 

After the reaction, a portion of the black powder (15 mg) was placed in a 30-cm-

long Pyrex tube, evacuated (p = 1 mtorr) and the tube was flamed-sealed at 19 cm. The 

tube was placed in the furnace at 450 °C for 12 hours (10 °C/ min). Following the 

thermal treatment, a black film and small hexagonal crystals were observed at the cold 

part of the tube. A hexagonal crystal was selected for analysis by SCXRD. 

Thermal decomposition of α-TcCl3. A sample of α-TcCl3 (14.6 mg, 0.071 mmol) was 

placed in a 30-cm-long Pyrex tube, and the tube was then evacuated and sealed at 18 cm. 

The tube was placed in a tube furnace for 14 hours at 450 °C with the solid at the center 

of the furnace. After cooling to room temperature, the reaction yielded a black crystalline 

powder (10.6 mg) at one end of the tube and a red-black amorphous film at the coolest 

end. The resulting products were analyzed by PXRD and EDX spectroscopy. 
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4.1.2.2 Results and Discussion  

4.1.2.2.a Synthesis of α-TcCl3 

The reaction between Tc2(O2CCH3)4Cl2 with HCl(g) is the method of choice for 

production of weighable amounts of -TcCl3. During the heating, a color change from 

pink to green (~100 °C) and to black (~250 °C) was noticed. Analysis had shown the 

green product to be Tc2(O2CCH3)2Cl4 while the black amorphous compound to be -

TcCl3.  

The Tc2(O2CCH3)2Cl4 complex is isostructural with Re2(O2CCH3)2Cl4 and 

consists of two trans-acetate ligands bridging to the Tc2
6+

 unit and four terminal chlorides 

(Figure 4.2). The Tc-Tc distance (2.150(1) Å) is similar to the one found in (n-

Bu4N)2Tc2Cl8 (2.147(4) Å) and consistent with the presence of a metal-metal quadruple 

bond. The electronic spectrum of Tc2(O2CCH3)2Cl4 in CH2Cl2 exhibits bands at 650 nm, 

350 nm and 310 nm, similar to the spectrum of Tc2Cl8
2-

 [101]. By analogy with Tc2Cl8
2-

, 

the band at 650 nm is assigned to the  → * transition. The mechanism of formation of 

-TcCl3 mimics the one described for rhenium [164]; the dimer Tc2(O2CCH3)2Cl4 is 

formed as an intermediate in the early stage of the reaction while technetium trichloride is 

later formed at 300 °C (Figure 4.2). 
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Figure 4.2. Top: Mechanism of formation of -TcCl3 from Tc2(O2CCH3)4Cl2. Bottom: 

Ball and stick representation of A) Tc2(O2CCH3)4Cl2 and B) Tc2(O2CCH3)2Cl4. Color of 

atoms: Tc in black, Cl in red, O in red, and C in grey. Selected distances(Å) in 

Tc2(O2CCH3)2Cl4: Tc-Tc 2.150(1), Tc-O 2.021(2), Tc-Cla 2.290(1), Tc-Clb 2.334(1). 

4.1.2.2.b Characterization of α-TcCl3 

Infrared Spectroscopy and Elemental Analysis 

The IR spectrum displays no stretching in the region of 4000-500 cm
-1

 indicative 

that no Tc2(O2CCH3)4Cl2 or Tc2(O2CCH3)2Cl4 was present in the sample (Figure 4.3). 

The compound is soluble in concentrated HCl(aq) and acetone. For Tc elemental 

analysis, the solid was suspended in 10 mL of concentrated HCl and warmed for 1 hour 

at 100 C. After dissolution, the Tc concentration was determined by UV–visible 

spectroscopy using the absorbance at 340 nm of the TcCl6
2-

 anion [111]. Results were 

consistent with the stoichiometry of TcCl3, Anal. Calcd for TcCl3: Tc, 48.2. Found: Tc, 

47.3. The PXRD pattern of α-TcCl3 obtained after the reaction at 300 C shows the 

compound to be amorphous. 

A) B)

Tc
TcCl

O
O
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Clb

HClg

100 °C
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Figure 4.3. IR spectrum of α-TcCl3 (black) and Tc2(O2CCH3)4Cl2 (red). 

 

Single Crystal X-ray Diffraction 

The crystal structure of α-TcCl3 was determined by SCXRD from one of the 

hexagonal-shaped crystals (Figure 4.4); Alpha-technetium trichloride crystallizes in the 

trigonal space group with cell parameters: a = b = 10.1035(19) Å, c = 20.120(8) Å 

(full refinement details can be found in Appendix II). The compound is isostructural to 

ReCl3 and is composed of triangular clusters of Tc3Cl9 units with C3v symmetry [28]. In 

the Tc3Cl9 cluster, each of the Tc atoms is coordinated to two Tc neighbors and five 

chloride ligands (Figure 4.4). The Tc atoms form an equilateral triangle with Tc-Tc 

distances of 2.444(1) Å. This distance is 0.045 Å shorter than the Re-Re distance found in 

ReCl3 and is indicative of a Tc=Tc double bond.  
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Each Tc3Cl9 unit possesses 3 terminal Cl atoms (Cl1), three bridging Cl atoms 

(Cl2), and six intermolecular bridging Cl atoms (Cl3) shared with three adjacent Tc3Cl9 

units (Figure 4.4). The three terminal chlorine atoms are chemically equivalent and the 

Tc-Cl1 distance (2.237(2) Å) is significantly shorter than those found in several dinuclear 

Tc(III) complexes [68]. The three bridging Cl2 atoms are also equivalent and form an 

equilateral triangle (edge = 4.744(2) Å) that is shifted by 0.068(1) Å from the Tc3
9+

 plane. 

The Tc-Cl2 distance (2.373(1) Å) is similar to the Tc-( -Cl) distance in the hexanuclear 

cluster [Me4N]2[Tc6Cl6( -Cl)6] [165]. The Cl3 bridging Cl atoms are not chemically 

equivalent as two distinct distances are noted (2.373(1) Å and 2.585(2) Å). The larger Tc-

Cl distance is associated with the Cl atoms trans to Tc atoms; a similar distribution of 

metal-Cl bond distances has already been catalogued and discussed for the Re homologue 

[28]. The Tc3Cl9 units are joined by Cl atoms forming infinite layers four atoms thick 

(6.80 Å) and perpendicular to the c-axis. The shortest interlayer distance (Cl1···Cl2 = 

3.451(2) Å) is lower than the sum of the van der Waals radii (3.60 Å) [166]. The 

intermolecular metallic distance Tc···Tc’ (3.852(1) Å) precludes any metal-metal bonding 

between the units. 
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Figure 4.4. Left: Ball-and-stick representation of the Tc3Cl9 cluster in α-TcCl3. Portions 

of the three neighboring clusters are also presented. Angles ( ) and distances (Å) are 

shown. Right: SEM Image (x1000) of a single crystal of α-TcCl3. 

 

 

Figure 4.5. Structural view of α-TcCl3 from the c-axis. 

 

X-ray Absorption Fine Structure Spectroscopy 

The compound obtained from the reaction of Tc2(O2CCH3)4Cl2 with HCl(g) at 

300 °C was X-ray amorphous, did not contain any acetate ligands, and had a Tc content 
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consistent with TcCl3 (vide supra). In order to determine whether it exhibits the -TcCl3, 

-TcCl3 (vide infra), or some other structure, the compound was analyzed by EXAFS 

spectroscopy. The extracted EXAFS spectrum was k
3
-weighted and the FT done in the k 

range 2.5 – 14 Å
-1

. Two different adjustments were performed considering the structure 

of α-TcCl3 and β-TcCl3 [162, 163]. The scattering functions used for the adjustment were 

calculated from the crystallographic structure of α-TcCl3 and β-TcCl3 (Figure 4.6). For 

adjustment, the numbers of atoms were fixed at those of the crystal structures; ΔE0 was 

constrained to be the same value for each wave; all other parameters were allowed to 

vary. 

 

 

Figure 4.6. Ball-and-stick representations of the α-TcCl3 (left) and β-TcCl3 (right) 

clusters used for EXAFS calculations. Tc and Cl atoms are in black and red, respectively. 

Tc0 represents the absorbing atom. 

 

The best adjustment (Figure 4.7) was obtained considering the structure of α-

TcCl3. Structural parameters (Table 4.1) show the presence of Tc atoms at 2.46(2) Å and 
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3.81(4) Å and of Cl atoms at 2.36(2) Å and 3.68(4) Å; those distances are in agreement 

with those found in the crystal structure of α-TcCl3 [162].  

 

 

Figure 4.7. Fits of the k
3
-EXAFS spectra (top) and Fourier transform of k

3
-EXAFS 

spectra (bottom) for α-TcCl3 obtained from the reaction of Tc2(O2CCH3)4Cl2 with HCl(g) 

at 300 °C. Adjustment was performed between k = 2.5 and 14 Å
–1

 considering the 

structure of α-TcCl3. Experimental data are in blue, and the fit is in black. 
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Table 4.1. Structural parameters obtained by adjustment of k
3
-EXAFS spectra of α-TcCl3 

obtained from the reaction of Tc2(O2CCH3)4Cl2 with HCl(g) at 300 °C. Adjustment 

between k = 2.5 and 14 Å
–1

 considering the structure of α-TcCl3. ΔE0 (eV) = 2.29 eV. 

Reduced chi
2
 = 70. Values found by SCXRD in α-TcCl3 are in italic. 

Scattering  CN R (Å) σ
2
 (Å

2
) 

Tc0 Cl1 5 2.36(2), 2.388(4) 0.0056 

Tc0 Tc1 2 2.46(2), 2.4445(7) 0.0046 

Tc0 Cl2 4 3.68(4), 3.614(4) 0.0083 

Tc0 Tc2 1 3.81(4), 3.852(1) 0.0130 

 

4.1.2.2.c Thermal Properties of -TcCl3 

A sample of α-TcCl3 was reacted in a sealed tube under vacuum at 450 °C for 14 

h. After the reaction, a dark black powder and a dark red amorphous film (cold end of the 

tube) were observed. The PXRD of the black powder (Figure 4.8) indicates the presence 

of TcCl2 (see Chapter 5) and Tc metal. A [Cl:Tc] ratio of 2.09(1) was determined by 

EDX spectroscopy from the integrated intensity of the Tc-K  and Cl-K  lines and is 

consistent with the TcCl2 stoichiometry. 
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Figure 4.8. PXRD pattern of the product obtained from the thermal decomposition of α-

TcCl3 under vacuum at 450 °C (black). PXRD of TcCl2 single crystals (red). 

 

4.1.2.2.d Computational Studies on -TcCl3 

Interestingly, -TcCl3 is isostructural with ReCl3, while TcBr3 is isostructural 

with MBr3 (M = Mo, Ru) [97]. Prior to its isolation, it was assumed that TcCl3 would 

crystallize either with the ReCl3 structure ( ), the -MoCl3 structure (C2/m), or the 

TcBr3 structure (Pmmm) [97]. In order to provide a theoretical framework, first-principles 

density functional theory calculations on Tc trichloride with the ReCl3, TcBr3, and -

MoCl3 structures were carried out. This approach was previously found to accurately 

reproduce structural parameters observed experimentally for the Tc halide systems [89, 

167].  
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The main candidate structures investigated for TcCl3 were the ReCl3-type 

structure crystallizing in the  space group with the Tc3Cl9 motif, the TcBr3-type 

structure in the Pmmn space group, and the -MoCl3-type structure in the C2/m space 

group symmetry. Structural relaxation and total energy calculations for the three types of 

structures were performed. Consistent with experimental results, the ReCl3-type structure 

with symmetry (Figure 4.9) is found to be the most stable TcCl3 structure (E = -

18.743 eV/f.u.) with calculated lattice parameters a = b = 10.31 Å and c = 22.41 Å. The 

TcCl3 structure crystallizing with the ReCl3 motif is energetically more favorable than the 

ones with either the -MoCl3 or TcBr3 structures, by ca. 0.34 eV and 0.39 eV per formula 

unit, respectively. Chemical bonding in the Tc3Cl9 cluster has been analyzed by 

theoretical methods [168]. The results indicate the presence of a Tc═Tc double bond 

between the Tc atoms within the Tc3
9+

core. Occupation number calculations of the 

Tc=Tc bond show the presence of 1.99 electrons on both the σ and π orbitals, which lead 

to an effective bond order of 2. Density-of-state (DOS) calculations predict a band gap of 

0.6 eV that indicates -TcCl3 to be a semiconductor.  

 

mR3
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Figure 4.9. Ball-and-stick representation of the calculated structure of Tc trichloride with 

the ReCl3 structure ( ). Tc atoms are in black, Cl atoms are in red. 

 

4.1.3 Beta-Technetium Trichloride 

4.1.3.1 Experimental Details 

Synthesis of β-TcCl3. Technetium metal (60.5 mg, 0.611 mmol), was placed in a Pyrex 

tube (L = 43 cm) and flamed under vacuum. After backfilling with Cl2, the end of the 

tube was cooled in liquid nitrogen and the gas (~17 mL, 0.68 mmol) was condensed. The 

tube was flame-sealed (L = 18 cm) and placed in a clamshell furnace; the temperature 

was increased (10 °C/min) and held for 24 hours at 450°C. After cooling to room 

temperature, a dark crystalline powder (82.4 mg) was observed at the end of the tube that 

contained the metal and some very thin dark needles were present on the surface of the 

central portion of the tube. At the end of the tube located in the coldest area of the 
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furnace, a dark hygroscopic product had formed. The dark hygroscopic product was 

analyzed by PXRD.  

After the reaction, the product from the cool end of the tube was isolated and 

placed in a 30-cm-long Pyrex tube, evacuated to 1 mtorr, and sealed (L= 18 cm). The 

tube was placed in the furnace at 280 °C for 6 days. After this time, a dark crystalline 

product (2 mg) was produced in the hot part of the tube and a red film in the cold part. 

The crystalline product was analyzed by EDX spectroscopy and SCXRD. 

Thermal Conversion of β-TcCl3 to α-TcCl3. Technetium metal (62.2 mg) was sealed 

with Cl2 and reacted at 450°C. After the experiment, the compound at the cool end of the 

tube was removed and sealed in a 30-cm-long Pyrex tube and placed in the furnace at 280 

°C for 16 days. After the reaction, the product was analyzed by SCXRD.  

4.1.3.2 Results and Discussion  

 4.1.3.2.a Synthesis of β-TcCl3 

Technetium metal and chlorine gas were reacted (Tc:Cl; 1:2.5) in a sealed tube at 

450 °C for 24 h [143]. After the reaction, a dark powder containing technetium metal and 

TcCl2 (see Chapter 5) were obtained in the hot part of the tube, -TcCl2 needles in the 

center of the tube, and a dark hygroscopic product in the colder part of the tube. The dark 

hydroscopic product was analyzed by PXRD (Figure 4.10). The PXRD pattern of the 

dark product shows three characteristic diffraction peaks at 2θ = 16.51°, 12.66°, and 

15.11° (Figure 4.10). The first and third peak are consistent with the presence of TcCl4 

(hygroscopic) while the peak at 15.11° is attributed to -TcCl3 [162,91]. 

In order to separate TcCl4 from the other crystalline products, the dark 

hygroscopic product was sealed in a tube under vacuum and treated for 6 days at 280 °C; 
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at this temperature TcCl4 is volatile, allowing its separation from the remaining products 

[19]. After 6 days of treatment, a dark crystalline β-TcCl3 was obtained. Unlike α-TcCl3 

that can be easily produced in weighable quantities, β-TcCl3 is formed in minute yields 

(~10 mg; yield: ~2%) from this reaction. Such low yields may indicate that the compound 

is thermally unstable under these conditions and ultimately decomposes to α-TcCl3 or 

TcCl2. 

 

 
Figure 4.10. PXRD pattern (black) of the dark hygroscopic product obtained at the cold 

end of the sealed tube after the reaction of Tc metal and chlorine gas at 450 °C.  

Simulated positions presented of the most intense peaks for: TcCl4 (red), TcCl2 (black), 

α-TcCl3 (green), and β-TcCl3 (blue). 

 

4.1.3.2.b Characterization of β-TcCl3 

SEM Analysis 

Image analysis of β-TcCl3 by SEM shows layered crystals approximately 100 µm 

in size with a hexagonal shape (Figure 4.11). The composition of these crystals was semi-
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quantitatively determined by EDX spectroscopy (Figure 4.11). The spectrum yielded only 

lines from Tc-Kα and Cl-Kα indicating the product to be a binary Tc chloride. In 

addition, a [Cl:Tc] ratio of 2.99(9), determined from the integrated intensity of the Tc-Kα 

and Cl-Kα lines is consistent with the TcCl3 stoichiometry. 

 

 

Figure 4.11. EDX spectrum of β-TcCl3 displaying the Tc-Kα, Tc-Lα, and the Cl-Kα lines. 

The Cu line is due to the sample holder. SEM image of a layered hexagonal β-TcCl3 

crystal (x1000). 

 

Single crystal X-ray diffraction 

A hexagonal crystal was used for the structure determination by SCXRD. The 

compound crystallizes with a distorted AlCl3 structure-type in the monoclinic C2/m 

space group with cell paramters a = 6.013(4) Å, b = 9.713(4) Å, and c = 6.207(3) Å, β 

= 108.71° (additional refinement parameters are presented in Appendix II). The 

compound is isostructural to α-MoCl3 [23, 29]. The structure of β-TcCl3 consists of 
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infinite ordered layers of edge-sharing TcCl6 octahedron oriented parallel with the ab 

plane (Figure 4.12). Within a layer, the Tc atoms form an infinite sheet with a 

distorted honeycomb pattern sandwiched by two layers of Cl atoms. The stacking of 

the TcCl3 layers is similar to the one in α-MoCl3 and a separation of 5.87 Å between 

the Tc sheets is observed. The shortest inter-atomic distance between TcCl3 layers 

(Cl···Cl = 3.561 Å) is lower than the sum of the van der Waals radii (3.60 Å) and 

indicate the layers to be in weak interaction. Within a layer, the coupling of Tc atoms 

into Tc2
6+

 pair oriented along the b axis occurs and two set of Tc-Tc distances are 

observed (i.e., Tc-Tc = 2.861(3) Å and Tc···Tc’ = 3.601(2) Å). The Tc-Tc distance in 

the Tc2
6+

 pair is characteristic of significant metal-metal-bonding interaction (vide 

infra), whereas the Tc···Tc’ distance is similar to the one observed in TcCl4 (i.e., 

3.605(1) Å) which precludes any metal-metal bond formation [91]. Strong coupling 

between metal atoms occurs in other layered trichlorides, such as α-MoCl3 (Mo-Mo = 

2.757(3) Å). For α-RuCl3, coupling is still subject to discussion: Ru2
6+

 pairs were not 

acertained by XRD, but weak coupling has been proposed based on scanning 

tunneling microscopy measurements. The disparity (ΔMM) between paired and non-

paired metal-metal distances in layered MCl3 (M = Mo, Tc, Ru) (Table 4.2) follow the 

order ΔMoMo > ΔTcTc > ΔRuRu. The reason for the disparity between the MM 

paired and nonpaired distances has already been discussed for trichlorides having the 

AlCl3 structure-type [22], and a Peierls distortion is likely the origin of dimerization 

(i.e., formation of M2
6+

 unit). Two significant structural consequences of the Tc-Tc 

coupling are the deformation of the TcCl6 octahedron and of the Tc honeycomb (b/a = 

1.624 Å) from the hexagonal geometry (b:a =  = 1.732 Å). There are two types of 
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Cl atoms and three distinct Tc–Cl bond distances (Figure 4.13). The shortest bond 

involves the bridging Cl within the Tc2
6+ 

pair (Tc–Cl1 = 2.316(3) Å), while the 

longest bonds are the Cl2(a,b) atoms in trans positions to the Cl1 atoms (Tc–Cl2(a,b) = 

2.434(3) Å). Finally, a Tc–Cl distance of 2.403(2) Å is observed for the Cl2(c,d) atoms 

located in cis positions to the Cl1 atom. As a result of metal–metal bond formation, 

the Cl1 atoms are pushed away from the center of the layer and are located in a plane 

0.38 Å above the plane formed by the Cl2 atoms. 

 

 
Figure 4.12. Ball-and-stick representation of a β-TcCl3 layer. View perpendicular to the 

ab plane (top) and in the a direction (bottom). Tc and Cl atoms are in black and red, 

respectively. 
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Figure 4.13. Ball-and-stick representation of the edge-sharing octahedra in β-TcCl3. The 

Cl and Tc atoms are red and black, respectively. Selected distances (Å) and angles ( ): 

Distances: Tca–Tcb 2.861(3), Tca–Tc′ 3.601(2), Tca–Cl1(a,b) 2.316(3), Tca–Cl2(a,b) 

2.434(3), Tca–Cl2(c,d) 2.403(2), Cl1a–Cl1b3.642(4). Angles: Tcb–Tca–Cl2(c,d) 95.13(6), 

Cl1a–Tca–Cl1b 103.71(12), Cl2a–Tca–Cl2b85.50(8), Cl2c–Tca–Cl1a 94.07(10), Cl2c–Tca–

Cl1b 92.25(10), Cl2c–Tca–Cl2a88.69(8), Cl2c–Tca–Cl2b 83.78(9). 

 

Table 4.2. M-M and M···M distances in α-MCl3 (M = Mo, Ru) and β-TcCl3. 

Distance (Å) MoCl3
[23]

 TcCl3  RuCl3
[161]

 

M-M 2.757(3) 2.861 (3) 3.44(1) 

M···M 3.714(3) 3.601(2) 3.45(1) 

ΔMM 0.957(4) 0.740(3) 0.01(1) 

 

4.1.3.2.c Thermal Behavior of -TcCl3 

The compound β-TcCl3 is thermally unstable, after 16 days at 280 °C it converted 

to hexagonal crystals. The crystals were analyzed by SCXRD and indexed as -TcCl3 (

; a = b = 10.16 Å, c = 20.26 Å, α = β = 90°, γ = 120°). These experimental results 
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are somewhat consistent with first principle calculations that have determined the α-phase 

to be the more energetically stable form of TcCl3 [162, 163].  

4.1.3.2.d Computational Studies on -TcCl3 

The structure of β-TcCl3 was further analyzed by DFT techniques. As shown 

previously (section 4.1.2.2.d), the relaxed β-TcCl3 structure crystallizing in the space 

group C2/m is energetically less favorable than the α-TcCl3 structure with the  

symmetry. The space group of the relaxed structure of β-TcCl3 was determined with 

0.01 Å accuracy. The computed lattice parameters of β-TcCl3 are a = 6.15 Å, b = 9.68 Å, 

c = 6.65 Å, and β = 107.7°. The calculations confirm the structural impact of the Tc–Tc 

bonding (i.e., deformation of the Tc honeycomb and of the TcCl6 octahedra). The 

calculated bond distances (Tc–Tc = 2.74 Å, Tc···Tc′ = 3.72 Å, and Tc–Cl = 2.33 Å, 2.43 

Å, and 2.46 Å) are in overall fair agreement with the experimental data. 

An understanding of the metal–metal bonding in layered MCl3 systems can be 

approached by the study of molecules containing the M(μ-Cl)2M fragment (M = Mo, Tc). 

Previous studies on the hypothetical Mo2Cl6(PH3)4 complex have shown that the metal–

metal bond can be described as a double bond with σ and π character [169]. This result 

further supported the presence of a weak double bond in α-MoCl3 that was reported [23, 

29]. For technetium, the hypothetical Cl4Tc(μ-Cl)2TcCl4
4-

 fragment was studied. The 

occupancy of the metal-based orbitals in the metal–metal-bonded singlet state (S = 0) and 

the highest-multiplicity state (S = 2) for the d
4
–d

4
 configuration can be idealized as 

σ
2
π

2
δ

2
δ*

2
π*

0
σ*

0
 and σ

1
π

1
δ

2
δ*

2
π

1
*σ*

1
, respectively [170]. The computed Tc-Tc bond 

distance was found to be 2.71 Å for S = 0 and 3.87 Å for S = 2. The Tc-Tc bond distance 

for S = 0 is close to the value of 2.74 Å found in the β-TcCl3 crystal structure relaxed 
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with DFT. The effective bond order calculated for the S = 0 configuration (i.e., 1.38) 

indicates the presence of a weak double bond. Therefore, similar to the case of α-MoCl3, 

a weak Tc═Tc double bond with σ and π character is suggested between the Tc atoms.  

Calculations also predict β-TcCl3 to be slightly paramagnetic, with a 

magnetization of 0.9 µB/Tc. This value is within the range of the experimentally observed 

magnetic moments for α-MoCl3 (0.49 µB) and α-RuCl3 (2.25 µB) [23, 24, 29, 171, 172]. 

Density-of-state calculations are consistent with metallic character; this contrasts with α-

TcCl3, a semiconductor (Figure 4.14), and with α-RuCl3, which is a Mott insulator [173]. 

In β-TcCl3, the metallic character stems predominantly from Tc 4d orbitals, which are 

dominant in the vicinity of the Fermi level, with significant orbital hybridization with Cl 

2p. The Cl 2p valence states become the major contribution to the DOS below 2 eV. 
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Figure 4.14. Total and partial DOSs per formula unit of (a) β-TcCl3 and (b) α-TcCl3. 

Orbital-projected DOSs are represented for Tc 4d and Cl 2p orbitals. Positive and 

negative values of the DOS correspond to spin-up and spin-down contributions. 

 

4.1.4 Summary 

Two new polymorphs of TcCl3 have been prepared and characterized: α-TcCl3 

and β-TcCl3. Alpha-TcCl3 has been synthesized in weighable quantities from the reaction 

between Tc2(O2CCH3)4Cl2 and HCl(g) at 300 °C while β-TcCl3 has been identified from 

the reaction between Tc metal and Cl2(g). The mechanism of formation of -TcCl3 

mimics the one described for Re and Tc2(O2CCH3)2Cl4 is formed as intermediate in the 

early stage of the reaction. For -TcCl3, the compound is obtained congruently with 

TcCl4 and TcCl2.  To the best of our knowledge, Tc is the only transition metal where 

three binary chloride phases in different oxidation states (i.e., TcCl4, TcCl3, and TcCl2) 

are formed congruently from the reaction of elements. Concerning their solid-state 
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structure, α-TcCl3 is isomorphous to ReCl3 while β-TcCl3 is to α-MCl3 (M = Mo, Ru). 

Beta-TcCl3 is the first example of a d
4
 metal with this structure-type. Concerning their 

thermal properties, both trichlorides are unstable: -TcCl3 is converted to -TcCl3 after 

16 days at 280 °C and -TcCl3 decomposes to -TcCl2 and Tc metal after 12 h at 450 °C. 

The conversion of -TcCl3 to -TcCl3 is consistent with calculations that predict -TcCl3 

to be energetically less stable than -TcCl3. Calculations also show that both α-TcCl3 and 

β-TcCl3 exhibit a Tc═Tc double bond with σ and π character; bond-order calculations 

show the Tc═Tc bond to be stronger for α-TcCl3 than for β-TcCl3. Similar calculations 

performed on the bromide system indicate that TcBr3 with the Re3Br9 structure-type 

should be the most stable form of TcBr3; the preparation of Tc3Br9 will be investigated in 

section 4.2 (vide infra).  

 

4.2 Technetium Tribromide 

4.2.1 Introduction 

Because Tc is the lighter congener of Re, it often demonstrates chemically similar 

behaviour [32]. An example of this is the homologous reaction of Tc2(O2CCH3)4Cl2 with 

flowing HCl(g) at 300 °C that yields -TcCl3 with the ReCl3 structure-type [162, 28, 

176]. Alpha-TcCl3 has also been synthesized from the decomposition of TcCl4 under 

vacuum at 450 °C and the thermal treatment of β-TcCl3 at 280 °C under vacuum [163, 

19]. Unlike -TcCl3, β-TcCl3 exhibits structural similarities to the Ru and Mo analogues, 

crystallizing with the AlCl3 structure-type [163]. This structural similarity with the Ru 

and Mo is also observed for TcBr3. 



107 

 

Technetium tribromide has been obtained congruently with TcBr4 from the 

stoichiometric reaction of the elements in a sealed tube at elevated temperature (see 

Chapter 1). This method yields a TcBr3 phase with the TiI3 structure-type, which consists 

of infinite chains of face-sharing TcBr6 octahedra (Figure 4.15) [97]. A previous study 

mentioned that Tc3Br9, which would be isostructural to α-TcCl3 and Re3Br9, was obtained 

from the bromination of [Tc(CO)3Br]4, but no crystallographic data were reported [174]. 

With regard to this information, the existence of Tc3Cl9 and the trending chemical 

behavior of the Re3X9 system (X = Cl, Br, I) [28], it was of interest to perform the 

reaction of Tc2(O2CCH3)4Cl2 with flowing HBr(g) at elevated temperatures in an attempt 

to isolate Tc3Br9. 

The thermal decomposition of binary transition metal halides is a practical 

method for isolating low-valent phases [124, 175]. For Tc, previous studies performed at 

450 °C under vacuum have shown that TcCl4 decomposes sequentially to -TcCl3 and 

TcCl2, while TcBr4 decomposes to TcBr3 and Na{[Tc6Br12]2Br} [19,152].
 

In this section, the reactions of Tc2(O2CCH3)4Cl2 with flowing HBr(g) at 150 °C 

and 300 °C are reported. The reaction products were characterized using XRD, EDX 

spectroscopy, and IR spectroscopy. The thermal properties of TcBr3 were studied under 

vacuum in sealed tubes at elevated temperature [21]. 
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Figure 4.15. Ball-and-stick representation of the structure of MBr3 (M = Mo, Tc, Ru). 

Metals atoms are in black and Br atoms are in orange. 

 

4.2.2 Experimental Details 

 

Reaction of Tc2(O2CCH3)4Cl2 with HBr(g) at 150 °C. The experimental set-up used to 

prepare TcX3 (X = Cl, Br) is presented in Chapter 2, Figure 2.7. The Tc2(O2CCH3)4Cl2 

(65.6 mg, 0.15 mmol) was evenly dispersed in a quartz boat. The boat was placed into the 

middle of a quartz tube situated in the clamshell furnace. The tube was initially purged 

with Ar(g) for 15 minutes at room temperature; the temperature was then increased to 

150 °C (10 °C/min) and held for 5 minutes under Ar(g). Using a T-shaped stopcock, the 

gas was switched to HBr(g) and an immediate color change from crimson to a black-

purple was observed. The compound was reacted for 1 hour under flowing HBr(g) at 150 

°C after which the tube was cooled to room temperature under flowing HBr(g). A black 

TcBr3 powder (86.5 mg, 0.26 mmol, yield: 84%) was obtained after the reaction. 

After the reaction, the black TcBr3 powder was placed in a Pyrex tube (L = 30 

cm) and sealed (L = 18 cm) under vacuum (1 mtorr). The sealed tube was placed in a 

clamshell furnace, heated to 150 °C (10 °C/min), and held there for 24 hours; a small 

amount of a black amorphous film sublimed to the cooler end of the tube and the 

remaining powder was characterized by PXRD.  
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Reaction of Tc2(O2CCH3)4Cl2 with HBr(g) at 300 °C. The reaction of 

Tc2(O2CCH3)4Cl2 (67.8 mg, 0.16 mmol) with flowing HBr(g) at 300 °C was performed 

using the same method as that above. The apparatus was purged with Ar(g) for 15 

minutes and the temperature was increased (10 °C/min) to 150 °C and held for 5 minutes, 

after which the atmosphere was switched to HBr(g) and the temperature was then 

increased (10 °C/min) to 300 °C and held there for 1 hour. After the reaction, the black 

TcBr3 powder (83.4 mg, 0.25 mmol, yield: 77 %) was recovered. The powder was sealed 

in a Pyrex tube (L = 18 cm) under vacuum and heated in the furnace at 300 °C for 24 

hours; a dark film at the coolest portion of the tube was observed, and the remaining 

powder was analyzed by PXRD and IR spectroscopy. 

Decomposition of TcBr3 in Pyrex. Technetium tribromide (32.0 mg, 94.5 mmol) was 

placed in a 30-cm-long Pyrex tube and flame-sealed (L= 18 cm) under vacuum. The 

resulting tube was placed in a furnace with the solid at the center of the furnace and 

reacted at 450 °C for 24 hours. After cooling to room temperature, the reaction yielded a 

dark crystalline powder, rail spike crystals adjacent to the powder, needle crystals at the 

cooler end of the tube, and a dark amorphous film at the end of the tube. The rail spike 

and needle crystals were indexed by SCXRD; the remaining solid was characterized by 

PXRD. 

Decomposition of TcBr3 in Quartz. Technetium tribromide (32.2 mg, 95.1 mmol) was 

placed in a 30 cm-long quartz tube and sealed at 18 cm under vacuum. The tube was 

reacted using the same method as the decomposition in Pyrex for 24 hours at 450 °C. 

After the reaction, the contents of the cooled tube included a grayish crystalline powder 

(10.6 mg), metallic purple needle crystals near the cooler portion of the tube, and a dark 
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amorphous film at the end of the tube. The single crystals were analyzed by SCXRD, and 

the remaining powder was characterized by PXRD. 

4.2.3 Results and Discussion  

4.2.3.1 Synthesis of TcBr3 

Technetium tribromide was synthesized from the reaction of Tc2(O2CCH3)4Cl2 

with flowing HBr(g) at 150 °C and 300 °C in excellent yields. The experimental setup 

required the use of two gases (i.e., Ar(g) and HBr(g)) to prevent the premature release of 

acetic acid under its boiling point from the reaction HBr(g) with Tc2(O2CCH3)4Cl2.  In 

comparison to the sealed tube method previously used, this synthetic route is an efficient 

way to prepare TcBr3 in weighable quantities free of TcBr4 and/or Tc metal. This will 

better allow for TcBr3 to serve as a starting material for other novel compounds [100]. 

Molecular transition-metal acetate dimers are known for many second- and third-

row metals: M2(O2CCH3)4 (M = Mo, W, Rh) and M2(O2CCH3)4Cl2 (M = Re, Tc, Os). 

The reaction of these compounds (Mo, Rh, Re, and Tc) with flowing HX(g) at elevated 

temperatures is a direct route to binary metal halides (Table 4.3) [176]. For Mo, these 

reactions yield β-MoX2 (X = Cl, Br, I), whereas for Rh, these reactions result in the 

formation of RhX3 and the metal. The same reactions with flowing HX(g) (X = Cl, Br, I) 

and Re2(O2CCH3)4Cl2 yield Re3X9 containing the triangular Re3
9+

 core [28, 176]. 
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Table 4.3. Products obtained from the reaction of metal-metal bonded acetates with 

flowing HX(g) (X = Cl, Br, I) at various temperatures. [a] Reaction occurs at 250 °C, [b] 

Reaction occurs at 340 °C, [c] NR: not reported  

Reaction 150 °C/250 °C
[a]

 300 °C/340 °C
[b]

 

Tc2(O2CCH3)4Cl2 + HCl(g)
[162]

 Tc2(O2CCH3)2Cl4 Tc3Cl9 (α-TcCl3) 

Tc2(O2CCH3)4Cl2 + HBr(g)
[21]

 TcBr3 TcBr3 

Tc2(O2CCH3)4Cl2 + HI(g)
[21]

 TcI3 TcI3 

Re2(O2CCH3)4Cl2 + HX(g) (X = Cl, Br, I)
[28, 

176]
 

Re2(O2CCH3)2Cl4
[a]

  Re3X9
[b]

 

Mo2(O2CCH3)4 + HX(g) (X = Cl, Br, I)
[176]

 NR β-MoX2  

Os2(O2CCH3)4Cl2+ HX(g)
[c]

 NR NR 

W2(O2CCH3)4 + HX(g) (X = Cl, Br, I) NR NR 

 

4.2.3.2 Characterization of TcBr3 

Infrared Spectroscopy and SEM Analysis  

The IR spectrum (Figure 4.16) of the product obtained at 150 °C exhibits weak 

stretching modes ( 1043 and 1022 cm
-1

) from Tc2(O2CCH3)4Cl2, while the product at 

300 °C exhibits no stretching modes in this region indicating that the starting compound 

was no longer present. 
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Figure 4.16. IR spectra of Tc2(O2CCH3)4Cl2 (burgundy) and the products obtained from 

reactions of Tc2(O2CCH3)4Cl2 and HBr(g) at 150 °C (blue) and 300 °C (black). 

 

The elemental composition of the material obtained at 300 °C was determined by EDX 

spectroscopy. The spectrum shows only Tc-Lα and Br-Lα lines, confirming a binary 

technetium bromide (Figure 4.17). The stoichiometry was determined to be 1:3.1(1) 

Tc/Br, which is consistent with the TcBr3.  
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Figure 4.17. EDX spectrum of TcBr3 displaying Tc-Lα, and Br-Lα lines; area of TcBr3 

analyzed (top right). 

 

Powder X-ray Diffraction. 

The PXRD patterns of the reaction products at 150 °C and 300 °C with HBr(g) 

are shown in Figure 4.18. Rietveld analyses were performed on the powder patterns at 

both temperatures and were fitted based on the TiI3 structure-type. Technetium 

tribromide obtained from the reaction of Tc2(O2CCH3)4Cl2 with flowing HBr(g) at 150 °C 

and 300 °C (Pnmm; a = 6.4806(3) Å, b = 11.225(8) Å, c = 6.02(3) Å and a = 6.4836(2) 

Å, b = 11.230(7) Å, c = 6.0207(8) Å, respectively) is isostructural to TcBr3 (Pnmm; a = 

6.387(1) Å, b = 11.062(1) Å, c = 5.976(1) Å) obtained from reaction of the elements in a 

sealed tube and consists of infinite chains of face-sharing TcBr6 octahedra (Figure 4.15). 

The weak peak at 2θ = 12.65  in the pattern of the product at 150 °C is attributed to an 

impurity of unreacted Tc2(O2CCH3)4Cl2. For Tc, the predicted Tc3Br9 structure was not 
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obtained via this synthetic route; this result contrasts with the one of the HCl system that 

yields Tc3Cl9 with a Tc3
9+

core under similar conditions.  

 

 

Figure 4.18. PXRD pattern of the products obtained from the reaction of 

Tc2(O2CCH3)4Cl2 with HBr(g) at 150 °C (green) and 300 °C (blue) and the calculated 

(red) pattern of TcBr3. The amorphous “hump” from 2θ = 20 to 30° is due to a 

radiological containment dome. 

 

4.2.3.3 Thermal Behavior of TcBr3 

The thermal behavior of TcBr3, obtained from the reaction of Tc2(O2CCH3)4Cl2 

with flowing HBr(g) at 300 °C, was investigated in sealed Pyrex and quartz tubes under 

vacuum at 450 °C. Decomposition of TcBr3 in the Pyrex tube (Figure 4.19a) yielded 

similar results as the decomposition of TcBr4; the rail spike crystals sublimed adjacent to 

the powder and the needle-shaped crystals (Figure 4.20) at the end of the tube were 
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identified by SCXRD to be Na{[Tc6Br12]2Br} and TcBr3, respectively. The PXRD pattern 

(Figure 4.21) of the resulting powders yielded unreacted TcBr3. In contrast, the reaction 

in quartz tube (Figure 4.19b) resulted in TcBr3 and Tc metal identified in the remaining 

powder (Figure 4.22). Because the decomposition in a quartz tube did not provide a 

crystalline product, this suggests that the source of the Na in the compound originates 

from the Pyrex tube. It is still an open question whether TcBr2 is accessible by thermal 

decomposition routes and whether its structure will be the “naked” Tc6Br12 cluster or be 

similar to TcCl2 (see section 5.1). Other MBr3 (M = Mo, Re, Ru) are also susceptible to 

thermal decomposition: MoBr3 disproportionates to -MoBr2 (Mo6Br12) and MoBr4 at 

600 °C [177], whereas ReBr3 and RuBr3 decompose to the respective metals and Br2 at 

temperatures above 450 °C [178, 179]. 
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Figure 4.19. Resulting tubes from the thermal decomposition of TcBr3 in a) Pyrex 

yielding rail spike crystals adjacent to the powder (black circle) and needle crystals at the 

end of the tube and in b) quartz with only sublimed needle-shaped crystals. 
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Figure 4.20. SEM image (x35) of TcBr3 single crystals as individual and clusters of 

needles ranging in size from 100 µm to 2 mm. 

 

 

Figure 4.21. PXRD pattern of the products obtained from the decomposition of TcBr3 in 

Pyrex at 450 °C (olive green) and calculated (red) pattern fit for TcBr3. 
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Figure 4.22. PXRD pattern of the products obtained from the thermal decomposition of 

TcBr3 in quartz at 450 °C (blue) and calculated pattern (red) fit with TcBr3 and Tc metal. 

 

4.2.4 Summary 

The reactions of Tc2(O2CCH3)4Cl2 with HBr(g) at 150 °C and 300 °C produced 

TcBr3 crystallizing in the TiI3 structure-type. The behavior of Tc2(O2CCH3)4Cl2 with 

HBr(g) does not follow the one under HCl(g), and Tc3Br9 is not obtained. The TcBr3 

consists of face-sharing TcBr6 octahedra; this structure is also found for other MBr3 (M = 

Ru, Mo). The result indicates that the binary bromide chemistry of Tc(III) is more similar 

to that of Mo(III) and Ru(III) and not to Re(III), the latter exhibiting the triangular Re3X9 

clusters in their structure. The thermal behavior of TcBr3 was investigated under vacuum 

in sealed tubes at 450 °C. The compound is unstable, and TcBr3 decomposes to 

Na{[Tc6Br12]2Br} and Tc metal in a Pyrex tube and to Tc metal in a quartz tube. Previous 

calculations indicate that Tc3Br9 should be stable. The current results show that Tc3Br9 
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was not observed in the temperature range 150 °C – 400 °C and that the known TcBr3 

phase decomposes to technetium metal above 450 °C. This suggests that low-temperature 

routes would be required for the preparation of Tc3Br9. Such routes might include 

metathesis reactions using α-TcCl3 as a precursor or thermal decomposition of Ag2TcBr6 

under vacuum below 150 °C [55]. 

 

4.3 Technetium Triiodide  

4.3.1 Introduction  

Binary transition-metal iodides have been reported for all second- and third-row 

group IV–XI elements with the exception of Tc [1, 2]. Binary transition-metal iodides 

can be obtained by either of two methods: (1) the reaction between flowing HI(g) and a 

dinuclear acetate complex or (2) the reaction between the elements in a sealed tube. 

Neither of these reactions has been reported for Tc. Because Tc and I both have isotopes 

resulting from the fission of U fuel, i.e., 
99

Tc and 
129

I, it was also of interest to gain a 

better understanding of the chemical reactivity of Tc with I for potential nuclear fuel 

cycle applications [180]. 

In this section, the reaction of Tc2(O2CCH3)4Cl2 with flowing HI(g) at 150 °C and 

300 °C and the reaction of Tc metal with I2 in sealed Pyrex tubes are presented. The 

reaction products were characterized using diffraction, microscopic and spectroscopic 

techniques. The thermal properties of TcI3 were studied under vacuum in sealed tubes at 

elevated temperature. Finally, the coordination and synthetic chemistry of TcI3 is 

discussed and compared to their Mo, Ru, and Re analogues.
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4.3.2 Experimental Details  

Reaction of Tc2(O2CCH3)4Cl2 with HI(g) at 150 °C. The reactions were performed in 

an experimental setup similar to the one used for the reaction with HBr(g). A 

Tc2(O2CCH3)4Cl2 (74.0 mg, 0.17 mmol) sample was evenly dispersed in a quartz boat 

lined with a 0.1-mm-thick Au foil [181]. The system was purged with Ar(g) for 15 

minutes at room temperature. The temperature was then increased to 150 °C (10 °C/min) 

and held for 5 minutes, and the gas was immediately switched to HI(g). A rapid color 

change from crimson to deep black upon the introduction of HI(g) was observed. The 

compound was reacted for an additional 30 minutes under flowing HI(g) at 150 °C, after 

which the tube was cooled to room temperature under flowing HI(g). After the reaction, 

the black powder (111.7 mg, yield: 68 %) was analyzed by PXRD, Tc elemental analysis, 

IR and XAFS spectroscopies. 

Following characterization, the remaining powder (47.7 mg) was placed in a Au 

envelope, which was introduced into a Pyrex tube and sealed under vacuum. The tube 

was treated at 150 °C (10 °C/min) for 5 days. After the reaction, the black powder (36.4 

mg) was characterized by PXRD and EDX spectroscopy. 

Reaction of Tc2(O2CCH3)4Cl2 with HI(g) at 300 °C. The same experimental procedure 

and apparatus as those of the reaction of HI(g) at 150 °C were used for the reaction at 300 

°C. A weighted quantity of Tc2(O2CCH3)4Cl2 (58.5 mg, 0.13 mmol) was evenly dispersed 

in a quartz boat lined with Au foil. The system was purged with Ar(g) for 15 minutes at 

room temperature; the temperature was then increased to 150 °C (10 °C/min) and held for 

5 minutes under Ar(g), and the gas was switched to HI(g). The system was then ramped 

(10 °C/min) to 300 °C, held for 15 minutes at 300 °C, and cooled to room temperature 
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under HI(g). The resulting black powder (95.4 mg, yield: 74 %) was analyzed by PXRD. 

A sample of the compound (59.0 mg) was placed in an Au capsule, sealed in a Pyrex 

tube, and sintered at 300 °C a week. No single crystals were obtained after the reaction, 

and the powder (50.4 mg) was analyzed by PXRD. 

Reaction of Technetium Metal with Iodine. Technetium metal (36.8 mg, 0.37 mmol) 

was placed in an Au envelope in a Pyrex tube (L = 43 cm), connected to a Schlenk line, 

and flamed under vacuum. After backfilling with Ar(g), the tube was removed from the 

Schlenk line and I2 (188 mg, 0.74 mmol; Tc:I  1:4) was quickly inserted. The tube was 

connected to the Schlenk line and flame-sealed (L = 18 cm) under vacuum. The tube was 

inserted into a clamshell furnace with the metal-end of the sealed tube located in the 

center of the furnace. The temperature was increased to 400 °C (7.5 °C/min) and held at 

that temperature for 2 weeks. After cooling to room temperature, a black microcrystalline 

powder was observed at the cool end of the tube, but no single crystals were obtained. 

The black powder (78.9 mg, yield: 30%) was analyzed by PXRD. 

Decomposition of TcI3. Technetium triiodide ( 24 mg, 0.05 mmol) was inserted into a 

Au foil capsule, placed in a 30 cm Pyrex tube, and flame-sealed under vacuum. The 

resulting tube (L = 18 cm) was placed in a clamshell furnace and reacted at 450 °C (10 

°C/min) for 16 hours. Once at temperature, the entire tube was bright purple from the 

release of I2(g) from the sample. After cooling to room temperature, the tube contained a 

considerable amount of condensed I2 at the coolest portion but no crystalline Tc 

compounds. The resulting grayish-black powder was analyzed by PXRD.   
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4.3.3 Results and Discussion  

4.3.3.1 Synthesis of TcI3 

The preparation of a binary Tc iodide have been investigated using two synthetic 

approaches: the reaction of Tc2(O2CCH3)4Cl2 with flowing HI(g) at elevated temperatures 

and the reaction of Tc metal with I2 in sealed tubes at elevated temperatures. The first 

method has been used in analogous reactions for the synthesis of the binary Tc chloride 

(i.e., α-TcCl3) and bromide (i.e., TcBr3). This method is the favored route for the rapid 

production of weighable quantities of pure material. The reaction between Tc metal and 

I2 was slow; reactions required long durations (~ 2 weeks) with low yields of conversion 

of the metal to the iodide. Technetium triiodide obtained from the reaction of 

Tc2(O2CCH3)4Cl2 with HI(g) at 150 °C and 300 °C is not hygroscopic, but it slowly 

releases I2 at room temperature. Technetium triiodide is insoluble in acetone, diethyl 

ether, dichloromethane, deionized H2O, and 12 M HCl. 

4.3.3.2 Characterization of TcI3 

a. Reaction between Tc2(O2CCH3)4Cl2 and Flowing HI(g) 

 The product obtained from the reaction of Tc2(O2CCH3)4Cl2 with flowing HI(g) 

at 150 °C was characterized by Tc elemental analysis, IR and XAFS spectroscopies, and 

PXRD. 

Elemental Analysis and Infrared Spectroscopy 

 For Tc elemental analysis, an aliquot (16.7 mg) of the solid was suspended in 10 

mL of concentrated HClO4. After 10 days, the solid had dissolved, the Tc concentration 

was determined by LSC, and was consistent with the stoichiometry TcI2.97(6). The IR 

spectrum (Figure 4.23) of TcI3 shows the absence of stretching from 4000 cm
-1

 to 500 
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cm
-1

, confirming completion of the transformation of Tc2(O2CCH3)4Cl2 to TcI3. The 

PXRD indicates the compound to be X-ray amorphous, and TcI3 was characterized by 

XAFS spectroscopy. 

 

 

Figure 4.23. IR spectra of Tc2(O2CCH3)4Cl2 (burgundy) and the product obtained from 

reaction of Tc2(O2CCH3)4Cl2 and HI(g) at 150 C (purple). 

 

X-ray Absorption Fine Structure Spectroscopy  

X-ray absorption fine structure spectroscopy has proven to be an efficient 

technique for the characterization of binary Tc halides. It has previously been used for the 

characterization of TcCl4 (see section 3.1.3.2) and -TcCl3 (see section 4.1.2) In order to 

determine the TcI3 structure and compare it to other trivalent halide species, the 

compound was analyzed by XAFS spectroscopy. The XANES spectrum of TcI3 was 

recorded (Figure 4.24), background-subtracted, and normalized and the Tc K-edge 
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position determined using the first-derivative method. The position of the Tc K-edge of 

TcI3 (21050.8 eV) is lower than the one of Cs2TcI6 (21053.0 eV) and similar to the ones 

of α-TcCl3 (21051.0 eV) and β-TcCl3 (21050.5 eV); these results are consistent the 

presence of Tc
3+

 atoms in TcI3 [139]. 

 

 
Figure 4.24.  Normalized Tc K-edge XANES spectra of Cs2TcI6 (A in black) and TcI3 (B 

in blue). 

 

The extracted EXAFS spectrum was k
3
-weighted and the Fourier transform 

performed in the k-range 2 – 14.5 Å
-1

. Two different adjustments were performed 

considering the structure of a Tc3I9 cluster that exhibits the Tc3Cl9 structure and the 

structure of TcBr3 [28]. For the adjustment modeling the structure of ReI3, the scattering 

functions were calculated in a Tc3I9 cluster with the Tc3
9+

 triangular geometry (Figure 

4.25a). For the adjustment modeling the structure of TcBr3, the scattering functions were 

calculated in a TcI3 chain formed from face-sharing TcI6 octahedron (Figure 4.25b). For 

the adjustments, the numbers of atoms were fixed at those of the clusters; ΔE0 was 
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constrained to be the same value for each wave; all of the other parameters were allowed 

to vary. 

 

 
Figure 4.25. Ball-and-stick representations of the clusters used for EXAFS calculations: 

(a) cluster with the ReI3 structure-type; (b) cluster with the TcBr3 structure-type. Tc and I 

atoms are in black and blue, respectively. Tc0 represents the absorbing atom.  

 

The best adjustment was obtained by modeling the structure of TcBr3 (Figure 

4.26); further details of the adjustment of the EXAFS spectra of TcI3 based on the 

structure of TcBr3 are presented in Figure 4.26. Adjustment considering the structure of 

ReI3 did not provided a suitable fit and resulted in high value of the reduced χ
2
 (Figure 

4.27). 
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Figure 4.26. Fits of the experimental k

3
-weighted EXAFS spectra (bottom) and Fourier 

transform of k
3
-weighted EXAFS spectra (top) for the compound obtained from the 

reaction of Tc2(O2CCH3)4Cl2 with HI(g) at 150 °C. Adjustment was performed between k 

= 2 and 14.5 Å
-1 

considering the structure of TcBr3. Experimental data are in blue, and the 

fits are in black. 
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Figure 4.27. Fits of the experimental k
3
- EXAFS spectra (bottom) and Fourier transform 

of k
3
-EXAFS spectra (top) for the compound obtained from the reaction of 

Tc2(O2CCH3)4Cl2 with HI(g) at 150 °C. Adjustment performed between k = [2 - 14.5] Å
-1

 

considering the structure of ReI3. Reduced-chi
2
 = 9195. Experimental data are in blue and 

the fits are in black. 

 

The structural parameters (Table 4.4) found by EXAFS in TcI3 show the presence 

of two Tc atoms at 3.10(3) Å and six I atoms at 2.67(3) Å. The Tc–Cl and the Tc–Tc 

separations are consistent with the presence of face-sharing TcI6 octahedra with the TcBr3 

structure-type. The separation (d) between the center of two face-sharing regular 

octahedra (with a = distance from center to vertices) is given by the formula d = 2a√3/3. 
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When this formula is transposed to TcI6 octahedra (a = Tc–I and d = Tc–Tc), the Tc–Tc 

separation between two face-sharing TcI6 octahedra (Tc–I = 2.67 Å) is calculated to be 

3.08 Å. 

 

Table 4.4. Structural parameters obtained by adjustment of the k
3
 -EXAFS spectra of the 

compound obtained from the reaction of Tc2(O2CCH3)4Cl2 with HI(g) at 150 °C. 

Adjustment between k = [2 -14.5] Å
-1

 considering the structure of TcBr3. E0 (eV) = -

4.09 eV. Reduced-chi
2
 = 80. 

Scattering C.N R (Å) 2
 (Å

2
) 

Tc0I 6 2.67(3) 0.0010 

Tc0Tc1 2 3.10(3) 0.0090 

 

 

Powder X-ray Diffraction and Scanning Electron Microscopy 

In order to increase the crystallinity of TcI3 prepared at 150 °C, the compound 

was sealed in a tube and thermally treated at 150 °C for 5 days. After the reaction, no 

single crystals were obtained and the compound was characterized by PXRD, EDX 

spectroscopy, and SEM. 

The PXRD pattern (Figure 4.28) of the thermally treated compound is identical 

with the one obtained from the reaction at 300 °C. Neither of the patterns was suitable 

enough for deriving detailed structural information. The 2θ and d-spacing coordinates are 

presented in Table 4.5. The EDX spectra (Figure 4.29) show Tc-Lα and I-Lα peaks, which 

indicate the material to be a binary Tc iodide. The EDX quantification indicates that the 

compound exhibits the stoichiometry TcI3.1(3). 
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Figure 4.28. PXRD pattern of products obtained from the reaction of Tc2(O2CCH3)4Cl2 

with HI(g) at 150 °C (purple) and 300 °C (orange) after sintering for 5 days at the 

respective temperatures. 
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Table 4.5. 2θ ( ) and corresponding d-spacing (Å) derived from the powder XRD of TcI3. 

2θ ( ) d-spacing (Å) Relative Intensity (%) 

12.25 

27.98 

28.50 

29.68 

37.41 

42.07 

43.21 

43.88 

46.52 

7.241 

3.185 

3.129 

3.007 

2.401 

2.146 

2.091 

2.061 

1.950 

86 

45 

100 

95 

27 

41 

36 

32 

23 

 

 

 
Figure 4.29. EDX spectrum of TcI3 displaying Tc-Lα and I-Lα lines; secondary electron 

image (x500) of TcI3 sampled shown at top right. 

 

SEM analysis shows TcI3 to be composed of granulated agglomerates ranging 

from 10 to 100 µm in size. Within these clumps, single-crystal inclusions ( 5 µm) with 

the stoichiometry TcI3 are randomly dispersed (Figure 4.30). 
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Figure 4.30. SEM images of TcI3: (a) powder at x200 magnification; (b) individual pieces 

of powder at x500 magnification; (c) crystalline inclusion of TcI3 at x5000 magnification. 

 

b. Reaction between Tc Metal and I2 in a Sealed Tube 

The solid-state reaction of Tc metal with I2 (Tc:I 1:4) was investigated in sealed 

Pyrex tubes in the temperature range 250 – 400 °C for 2 weeks. After those reactions, no 

single crystals were obtained, and the resulting powders were analyzed by PXRD. The 

PXRD analysis indicates that Tc begins to react with I2 at 300 °C and higher yields of the 

product are obtained at 400 °C. After the reaction at 400 °C, the PXRD pattern of the 

product shows several new peaks (Figure 4.31) that match the ones of TcI3 synthesized 

from Tc2(O2CCH3)4Cl2 and HI(g). This indicates that TcI3 is the primary product from 

the reaction of Tc metal and excess I2. 
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Figure 4.31. PXRD pattern of the products obtained from the reaction of Tc metal and I2 

at 400 °C for 2 weeks (black) and fit with Tc metal (red). Inset: comparison of the 

product (black) to TcI3 from the reaction of Tc2(O2CCH3)4Cl2 with HI(g) (purple). 

 

4.3.3.3 Thermal Behavior of TcI3 

The thermal behavior of TcI3 obtained from the reaction of Tc2(O2CCH3)4Cl2 with 

flowing HI(g) at 150 °C was investigated in sealed Pyrex tubes under vacuum at 450 °C. 

The PXRD pattern indicates that the sample consists of Tc metal as a single phase 

(Figure 4.32). 
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Figure 4.32. PXRD pattern (purple) of the product obtained from the decomposition of 

TcI3 under vacuum at 450 °C in a gold envelope and the fit (red) with Tc metal. 

 

4.3.3.4 Comparison of TcI3 with Other MI3 Systems 

Technetium triiodide has been obtained from the reaction of Tc2(O2CCH3)4Cl2 

with flowing HI(g) at 150 °C and 300 °C. Its solid-state structure consists of face-sharing 

TcI6 octahedra. Concerning Tc neighboring elements, MX3 (M = Mo, Ru; X = Br, I) also 

exhibit the TiI3 structure-type, while ReX3 (X = Br, I) consists of Re3X9 clusters. This 

suggests that the chemistry of the heavier Tc halides resemble to their Ru and Mo 

analogues. The reaction of molecular acetate dimers (Mo, Rh, Re, and Tc) with flowing 

HX(g) at elevated temperatures is a direct route to binary metal halides (Table 4.3) [176, 

162]. 

The reaction between Tc metal and I2 at 450 °C produces TcI3. Similar behavior is 

observed for Mo, W, and Ru, all of which form triiodide species from analogous 
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reactions (Table 4.6) [2, 182, 183, 184, 185, 186]. For Re, no reaction between the metal 

and I2 in sealed tubes occurred in the temperature range 170–180 °C, which is also 

observed for Tc at lower reaction temperatures, i.e., 250 °C [187]. For W and Ru, both 

triiodides can be obtained from the reaction of the elements with I2 at elevated 

temperatures [184, 185, 186]. Osmium triiodide has been synthesized from 

decomposition of (H3O)2OsI6 or the reaction of OsI2 with I2 [175a], but no data on the 

reaction of the Os metal with elemental I2 were reported. 

 

Table 4.6. Reactions of 2
nd

 and 3
rd

 row transition metals of Group VI, VII, VIII with I2. 

[a] This work. [b] Not reported. 

Element Conditions Products 

Molybdenum Sealed tube reaction at 500 °C 
182, 183

 MoI3 and -MoI2 

Technetium Sealed tube reaction at 300-400 °C 
[a]

 TcI3 

Ruthenium  Sealed tube reaction at 350 °C 
184, 185

 RuI3 

Tungsten Sealed tube reaction at 500 °C 
186

 WI3 

Rhenium Flowing I2 and sealed tube reaction at 170-180 °C 
187

 No reaction  

Osmium  NR 
[b]

 --- 

 

 

Technetium triiodide consists of face-sharing TcI6 octahedra, a structure that is 

also found for the Ru and Mo homologues. Five different structure-types have been 

identified for the second- and third-row transition-metal triiodides spanning groups 4–10 

(d
0
–d

6
) [22]. These triiodides are comprised of either infinite chains or layers (Figure 

4.33). The TiI3 structure is the most common structure-type found for d
1
–d

5
 transition-

metal MX3 phases (M = Zr, Hf, β-Nb, Mo, Tc, Ru, X = Br, I; M = Os, X = Br). The TiI3 
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structure-type is composed of infinite chains of distorted face-sharing MX6 octahedra 

(Figure 4.33a). The distortion within the chain occurs from alternating M–M distances 

and the correlative formation of M–M pairs, resulting in an “out-of-phase” displacement 

of the metal atoms and a structural deviation from hexagonal to orthorhombic symmetry 

[22, 171, 99, 188].
 
 Similar to the other NbX3 phases (X = Cl, Br), α-NbI3 adopts the 

“Nb3–xCl8” structure-type (Figure 4.33b), which is a homogeneous mixture of M3X8 and 

MX4 [189]. For Re, the Re3X9 motif is found for the chloride, bromide, and iodide 

(Figure 4.33c). This structural arrangement consists of a Re3
9+

 triangular core with 

Re═Re double bonds, which for the bromide and iodide bridge from two adjacent Re 

atoms, unlike the chloride, which bridges all three atoms, forming layers of sheets [28]. 

Although the AlCl3 structure-type (Figure 4.33d) is not predominately found for 

transition-metal tribromides or triiodides, both d
6 
metals Rh and Ir exhibit the AlCl3 

structure-type in their tribromides and triiodides; these are comprised of infinite layers of 

edge-sharing MX6 octahedra (X = Br, I) [23, 29, 190]. 
 
No triiodide has been reported for 

Pd. For Pt, the structure of PtI3 is unique and consists of infinite chains of alternating PtI6 

octahedra and PtI4 tetrahedra (Figure 4.33e) [191]. The compounds WI3 and TaI3 have 

been prepared from the reaction of the respective metals and I2, but their X-ray 

crystallographic structures have not been reported [186, 192]. 
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Figure 4.33. Ball-and-stick representations of second- and third-row transition-metal 

triiodide structure-types for: (a) Zr, Hf, β-Nb, Mo, Tc, Ru, and Os; (b) Nb; (c) Re; (d) Rh 

and Ir; (e) Pt. Metal atoms are in black, and I atoms are in purple. 

 

An attempt to prepare TcI2 from the thermal decomposition of TcI3 was 

unsuccessful. Technetium triiodide is thermally unstable and decomposes to the metal at 

450 °C under vacuum. Direct decomposition to Tc metal also suggests that no other TcI3-x 

species are thermally stable at 450 °C and that the formation of TcI3 is 

thermodynamically unfavorable at these temperatures. In comparison, MoI3 decomposes 

to -MoI2 (Mo6I12) at 100 °C [193], while ReI3 decomposes stepwise to the di- and 

monoiodides between 320 °C – 420 °C and 420 °C – 470 °C, respectively, and the metal 

and I2 at temperatures above 580 °C [194]. 
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4.3.4 Summary 

Technetium triiodide, the first binary Tc iodide to be reported, was obtained in the 

solid-state from the reaction of Tc2(O2CCH3)4Cl2 with HI(g) at 150 °C and 300 °C and 

from the reaction of Tc metal and I2 in a sealed tube at 400 °C. Measurements by XAFS 

indicate the compound to consist of face-sharing TcI6 octahedra. The behavior of 

Tc2(O2CCH3)4Cl2 with HI(g) does not follow the one under HCl(g), and Tc3I9 is not 

obtained. TcI3 consist of face-sharing TcI6 octahedra, which is also found for MoI3 and 

RuI3. In contrast, ReI3 is composed of Re3I9 clusters. The thermal behavior of TcI3 was 

investigated under vacuum in sealed tubes at 450 °C; TcI3 decomposes to Tc metal, and 

no divalent phases were observed. 

 

4.4 Conclusion  

Technetium trichlorides, tribromide and triiodide were synthesized in the solid-

state and their solid-state structures and thermal properties are reported. With four known 

phases (i.e., α-TcCl3, β-TcCl3, TcBr3, and TcI3), Tc trihalides exhibit the most extensive 

chemistry among the binary Tc halides.  

 The compound α-TcCl3, TcBr3, and TcI3 can be prepared in weighable quantities 

from the reaction of Tc2(O2CCH3)4Cl2 and flowing HX(g) (X = Cl, Br, and I) at elevated 

temperatures. The mechanism of formation of -TcCl3 mimics the one described for 

rhenium and Tc2(O2CCH3)2Cl4 is formed as an intermediate in the early stage of the 

reaction. For TcBr3 and TcI3, the reactions differ from the one of rhenium and no 

Tc2(O2CCH3)2X4 (X = Br, I) has been observed. The compound β-TcCl3 was obtained 
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congruently with TcCl4 and TcCl2 from the stoichiometric sealed tube reaction between 

the elements at 450 C. 

The Tc trichlorides exhibit polymorphism. The compound α-TcCl3 is isostructural 

with ReCl3 and composed of infinite layers of interlinked Tc3Cl9 clusters. The β-TcCl3 is 

isostructural with -MCl3 (M = Mo, Ru) and constituted of infinite layers of edge-sharing 

TcCl6 octahedron. In those trichlorides, significant metal-metal interactions occur 

between Tc atoms and Tc=Tc double bonds are formed. Calculations confirm the 

presence of a Tc=Tc double bond with  and  character for both trichloride. The Tc=Tc 

bond is stronger in -TcCl3 than in -TcCl3. Technetium tribromide and TcI3 both form 

infinite chains of face-sharing TcX6 (X = Br, I) octahedra and are isostructural with MX3 

(M = Mo, Ru; X = Br, I). This suggests that the chemistry of the heavier Tc halides 

resemble their Ru and Mo analogues and differ from that of Re.  

The thermal behavior of the Tc trihalides has been investigated in sealed tubes 

under vacuum. The β-TcCl3 converts to α-TcCl3 at 280 °C after 16 days, and α-TcCl3 

decomposes to TcCl2 at 450 C after 14 hours. Technetium tribromide decomposes to 

Na{[Tc6Br12]2Br} in Pyrex and Tc metal in quartz at 450 C. The compound TcI3 

decomposes to the metal with no intermediates at 450 C.  

Technetium trihalides can find application in inorganic chemistry and/or in the 

nuclear fuel cycle. Because of its layered structure, β-TcCl3 may exhibit interesting 

intercalative properties that mimic those of α-RuCl3 [195]. Similar to its Mo neighbour, 

β-TcCl3 could be used as a precursor for the synthesis of binary carbides or phosphides, 

which would find application in the development of Tc waste forms [8]. Rhenium 

trichloride has been widely used as precursor in the synthesis of other molecular 
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complexes with the triangular [Re3]
9+

 core; it is expected that -TcCl3 should also lead to 

the formation of similar complexes. Technetium triiodide is insoluble in water and 

organic solvents and decomposes to Tc metal at 450 C. The thermal and solubility 

properties of TcI3 might be of particular interest for nuclear fuel cycle applications i.e., 

Mo/Tc separation using halide volatility processes and the development of Tc–I waste 

forms. At a more fundamental level, these studies allow for a better understanding of how 

the chemistry of Tc trihalides chemistry compares to that of its neighboring elements.
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Chapter 5  

Technetium Dichlorides 

 

In this chapter the new divalent binary technetium chlorides α-TcCl2 and β-TcCl2 

are reported. The compound β-TcCl2 has been synthesized from the reaction of the 

elements in sealed tubes at elevated temperatures while α-TcCl2 was obtained after 

thermal treatment of β-TcCl2 with AlCl3 in a sealed tube. The crystal structure of the two 

compounds has been determined using SCXRD. Physical properties (i.e., magnetic 

susceptibility, band gap and charge transport measurements) of β-TcCl2 were determined 

providing a better understanding of the electronic configuration of the material. The 

thermal properties of β-TcCl2 have also been investigated in sealed quartz tubes at 

elevated temperatures. Theoretical calculations were used to further understand the 

crystallographic and electronic structures as well as the physical properties of these 

compounds. 

5.1 Technetium Dichlorides: α-TcCl2 and β-TcCl2 

5.1.1 Introduction 

Transition metal dichlorides are fundamental compounds that serve as important 

materials for a variety of industrial and medical applications due to their explicit 

catalytic, photochemical, and redox properties [1, 2, 196, 197, 198, 199]. Molybdenum 

dichloride was the first of these compounds discovered in 1859 [200], and to date there 

have since been six other elements of the second and third row transition metals (Zr 

[201], Hf [202], W [203], Pd [204], and Pt [205]) that have also been reported to form 

dichlorides; a total of ten dichloride phases have been structurally characterized. Prior to 
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2011, there was no known binary dihalide for Tc and no reports of stoichiometric 

reactions of Tc with Cl2 [32]. The successful preparation of binary Tc bromides (see 

Chapter 1) using sealed tube reactions encouraged the exploration of similar reactions 

with Cl2 [97]. In the following section, the preparation and characterization of the first 

binary Tc dihalides, α-TcCl2 and β-TcCl2 are reported. The crystal structures of -TcCl2 

and β-TcCl2 were solved by SCXRD. The compound -TcCl2 was further characterized 

using PXRD, SEM, EDX, and XAFS spectroscopy. Physical properties of β-TcCl2 were 

determined and the magnetic susceptibility, band gap, and charge transport measurements 

are reported. The thermal properties of β-TcCl2 were investigated at elevated 

temperatures under vacuum. In order to gain a better understanding of the structural and 

physical properties of the material, theoretical calculations were performed [206, 207]. 

The synthetic, chemical, and structural properties of Tc dichlorides are compared to those 

of other 2
nd

 and 3
rd

 row transition metals. 

5.1.2 Experimental Details 

Preparation of β-TcCl2. Technetium metal (59.5 mg, 0.601 mmol) was placed in a 

Pyrex tube (L = 43 cm) and flamed under vacuum. After backfilling with Cl2, the end of 

the tube was cooled in liquid nitrogen and the gas (~17 mL, 0.68 mmol) was condensed. 

The tube was flame-sealed (L = 18 cm) and placed in a clamshell furnace. The 

temperature of the furnace was increased to 450 °C (10 °C/min) and held for 24 hours. 

After cooling to room temperature, a dark crystalline powder (83.8 mg) was observed at 

the end of the tube that contained the metal. On the surface of the tube near the middle 

some very thin dark needles of β-TcCl2 were present. After the reaction, β-TcCl2 crystals 

obtained at the center of the tube were analyzed by EDX spectroscopy and used for the 
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structure determination (SCXRD, EXAFS) and conductivity measurements without any 

further thermal treatment. The dark crystalline powder obtained at the hot end of the tube 

was characterized by PXRD and used for magnetic and band gap measurements. 

Preparation of α-TcCl2. The dark crystalline powder (65 mg) prepared in a similar 

reaction (vide supra) was placed in a 30-cm-long Pyrex tube with AlCl3 (45 mg), the tube 

was evacuated and flamed-sealed at 17 cm. The tube was placed in the furnace at 450 °C 

for 4 days (10°C/ min) and black needles, suitable for SCXRD, grew at the end of the 

tube. 

Thermal Behavior of β-TcCl2. A weighted quantity of β-TcCl2 (76.5 mg, 0.450 mmol) 

was transferred into a quartz tube (L = 43 cm), connected to a Schlenk line and 

evacuated. The tube was lightly flamed to remove any residual O2 or moisture, and the 

contents were flame-sealed at 18 cm under vacuum. The tube was placed in a clamshell 

furnace and the temperature was slowly increased (8 °C/min) to 800 °C and held for 24 

hours. During the reaction, a dark colored gas evolved from the powder above 600 C 

and sublimed as a reddish black film (i.e., TcCl4) at the cooler end of the tube. After the 

reaction, the resulting tube contained a grey powder at the hot portion of the tube and the 

black film at the opposite end. The powder (21.0 mg) was analyzed by PXRD.  

5.1.3 Results and Discussion  

5.1.3.1 Preparation of β-TcCl2 

The compound was prepared by reacting Tc metal and Cl2 (Tc:Cl, 1:2.5) at 450 

°C in a Pyrex sealed tube for 24 hours. This method is identical to the one used to obtain 

-TcCl3 (see section 4.1.3.1). In these reactions, the compound -TcCl2 is obtained 

congruently with TcCl4 and -TcCl3 (see section 4.1.4). 
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5.1.3.2 Characterization of -TcCl2 

Powder XRD 

The powder (Figure 5.1) obtained at the hot end of the tube was characterized by 

PXRD (Figure 5.2). Results show the powder to contain Tc metal (13 wt.%) and TcCl2 

(87 wt.%). 

 

 

Figure 5.1. SEM image of the TcCl2 /Tc metal powder obtained after the stoichiometric 

reaction of Tc metal with Cl2(g) in sealed tubes at 450 C. 
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Figure 5.2. PXRD pattern (black open circles) of the powder obtained after reaction of Tc 

metal and Cl2 at 450 °C in a sealed tube. The fit against the experimental pattern is 

represented in a red solid line. Position of peaks of Tc metal and TcCl2 is marked in green 

and blue lines, respectively. 

 

EDX Spectroscopy  

Analysis by EDX spectroscopy was performed on a needle located in the middle 

of the tube. (Figure 5.3). Using the ratio of the integrated intensities of the Tc-Kα and Cl-

Kα lines, the composition TcCl2.1(2) was found for the needle (Figure 5.4). 
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Figure 5.3. SEM images of - TcCl2 needles (bottom left, x35; bottom right, x200) 

obtained after the stoichiometric reaction of Tc metal with Cl2(g) in sealed tubes. 

 

 

Figure 5.4. The EDX spectrum of -TcCl2. Carbon and Cu peaks are due to the sample 

holder. 

 

Single Crystal X-ray Diffraction 

A single crystal of β-TcCl2 obtained after the reaction of Tc metal and Cl2 was 

used for the structure determination. Based on SCXRD a monoclinic non-isomorphic 
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supergroup I2/m is proposed with pseudo-tetragonal lattice with cell parameters a = b = 

8.5908(14) Å and c = 3.4251(6) Å and α = β = γ = 90° (additional crystallographic data 

provided in Appendix II). The structure of β-TcCl2 consists of infinite chains of face-

sharing Tc2Cl8 units running along the c-axis (Figure 5.5). The Tc2Cl8 units form 

tetragonal square prisms that are slightly elongated along the c-axis; in those prisms, the 

height is ∼8% longer than the edge of the square basis. In the Tc2Cl8 units, the 

metal−metal separations (i.e., 2.131(2) and 2.142(2) Å) are indicative of Tc≡Tc triple 

bonds (vide infra). In a chain, two orientations (A and B) of the Tc≡Tc bonds are 

observed; the Tc≡Tc bonds of two adjacent Tc2Cl8 units being either parallel or 

perpendicular (Figure 5.5B). The orientation of the Tc≡Tc bonds changes every two 

Tc2Cl8 units (i.e., AABBAABB...) and Tc≡Tc bonds with the same orientation have the 

same length. The distances between Tc≡Tc bonds of parallel (i.e., 3.425(2) Å) and 

perpendicular Tc2Cl8 units (i.e., 3.744(2) Å) preclude any metal−metal interaction 

between adjacent units. The average Tc−Cl distance in the Tc2Cl8 units is 2.398[3] Å. 

The average bridging <Tc−Cl−Tc> angle between two units with parallel Tc≡Tc bonds 

(i.e., 91.25[5]°) is smaller than the one between two units with perpendicular Tc≡Tc 

bonds (i.e., 102.65[5]°).  
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Figure 5.5. Ball-and-stick representation of the structure of β-TcCl2. (A) Single β-TcCl2 

chain. The orientation of the Tc≡Tc bond changes every two Tc2Cl8 units within a single 

chain. (B) View along the c-axis of the 2 × 2 × 4 supercell of β-TcCl2 showing the 

packing of the chains. (C) View down the c-axis of a single β-TcCl2 chain. Tc atoms are 

in black and chlorine atoms in red. 

 

 

Figure 5.6. Ball-and-stick representation of a portion of a β-TcCl2 chain. Selected 

distances (Å): Tc-Tca 2.136(3), Tc-Tcb, 3.425(2), Tc-Tcc 4.037(3), Tc-Tc(d,e) 3.744(2). Tc 

atoms are in black and chlorine atoms are in red. 
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X-ray Absorption Fine Structure Spectroscopy 

Measurements by EXAFS spectroscopy was also used to investigate the structure 

of β-TcCl2. The XANES spectrum of -TcCl2 was recorded (Figure 5.7), and the energy 

of the absorption edge was compared with those of other Tc chloro complexes (Figure 

5.8 and Table 5.1). The shift to lower energy observed in the series TcNCl4
-
, TcOCl4

-
, 

TcCl6
2-

, Tc2Cl8
2-

, Tc2Cl4(PMe2Ph)4, and -TcCl2 is correlated with the decrease of the 

oxidation state of the Tc atoms and is consistent with the presence of divalent Tc in -

TcCl2 [101]. 

 

 

Figure 5.7. The XANES spectrum of -TcCl2. 
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Figure 5.8. Chemical shift ΔE (eV) of the Tc-K edge relative to NH4TcO4 versus formal 

oxidation state for (a) (n-Bu4N)TcNCl4, (b) (n-Bu4N)TcOCl4, (c) (Me4N)2TcCl6, (d) (n-

Bu4N)2Tc2Cl8, (e) Tc2Cl4(PMe2Ph)4, and (f) -TcCl2 (red dot). 

 

Table 5.1. Chemical shifts (eV) of the technetium K-edge relative to NH4TcO4 measured 

for: (n-Bu4N)TcNCl4, (n-Bu4N)TcOCl4, (Me4N)2TcCl6, (n-Bu4N)2Tc2Cl8, 

Tc2Cl4(PMe2Ph)4 [104] and β-TcCl2. 

Compound Shift (eV) Compound Shift (eV) 

(n-Bu4N)TcNCl4 -6.3 (n-Bu4N)2Tc2Cl8 -12.1 

(n-Bu4N)TcOCl4 -7.7 Tc2Cl4(PMe2Ph)4 -13.24 

(Me4N)2TcCl6 -9.2 -TcCl2 -14.2 

 

 

For the EXAFS adjustment, the scatterings were calculated in a portion of the -

TcCl2 chain (Figure 5.6). For the fitting procedure, the numbers of atoms were fixed at 

those of the model; the fitted FT and the k
3
-EXAFS spectra are shown in Figure 5.9. The 

structural parameters (Table 5.2) found by EXAFS indicate the environment around the 

absorbing Tc atom to consist of Tc atoms at 2.13(2) Å, 3.45(3) Å, 3.79(4) Å, and 4.02(4) 
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Å and of Cl atoms at 2.42(2) Å and 3.58(4) Å. The presence of Tc atoms at 3.79(4) Å and 

3.45(3) Å confirms that the structure of β-TcCl2, produced by the reaction of Tc metal 

and elemental chlorine consists of face sharing Tc2Cl8 units, with two orientations of the 

Tc-Tc vectors, i.e., the Tc-Tc vectors of two adjacent Tc2Cl8 units are either parallel or 

perpendicular. The structural parameters found by EXAFS spectroscopy are in good 

agreement with the one found by SCXRD. 

 

 

Figure 5.9. Fitted experimental k
3
-EXAFS spectra (top) and Fourier transform of k

3
-

EXAFS spectra (bottom) of -TcCl2. Adjustment between k = 2.5−14 Å
-1

. Experimental 

data (blue) and fit (black). 
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Table 5.2. Structural parameters obtained by adjustment of the k
3
-EXAFS spectra of β-

TcCl2. The adjustment was performed between k = 2.5 − 14 Å−1. E0 = 1.82 eV. S0
2
 = 

0.9. 

Scattering C.N R (Å) σ
2
 (Å

2
) 

Tc  Tca 1 2.13(2) 0.0019 

Tc Cla 4 2.42(2) 0.0035 

Tc  Tcb 1 3.45(3) 0.0043 

Tc  Clb 4 3.58(4),  0.0079 

Tc  Tcc 1 4.09(4) 0.0084 

Tc  Tc(d,e) 2 3.79(4) 0.0062 

 

 

5.1.3.3 Characterization of -TcCl2 

Single Crystal X-ray Diffraction 

The compound -TcCl2 was obtained after treatment of -TcCl2 at 450 C in a 

sealed tube with AlCl3 for 4 days. After this time, elongated needles were obtained at the 

cold end of the tube and used for SCXRD (additional crystallographic data provided in 

Appendix II). The structure of -TcCl2 is also a new structure-type and consists of 

infinite chains of eclipsed Tc2Cl8 units running along the c-axis [143]. The Tc-Tc vectors 

of adjacent units are all parallel, and the distances between Tc atoms of the adjacent units 

(i.e., 3.417(2) Å) preclude any metal-metal bonding between these units. The eight Cl 

atoms form a rectangular prism comprised of two squares and four rectangular faces with 

the Tc-Tc vector parallel to the square faces. In the chain, the prisms share the square 

face, and the rectangular face is parallel to the c-axis (Figure 5.10).  
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Figure 5.10. Ball-and-stick representation of a portion of a -TcCl2 chain. Color of 

atoms: Tc in black and Cl in red. Selected distances (Å): Tc-Tca 2.136(3), Tc-Tcb  

3.417(2), Tc-Tcc  4.025(2). 

 

The structure of -TcCl2 is closely related to that of -TcCl2; both dichlorides 

consist of infinite chains of eclipsed Tc2Cl8 units [207, 143]. In the Tc2Cl8 units, the 

average Tc−Tc and Tc−Cl distances for β-TcCl2 are slightly larger than the ones found 

for α-TcCl2 (Table 5.3). For the two compounds, there are four chains in the reduced 

subcell that run along the c-axis. The volume of the β-TcCl2 reduced subcell (i.e., 

252.78(7) Å
3
) is slightly larger than the one of α-TcCl2 (i.e., 250.0(2) Å

3
). The interchain 

Cl···Cl distance in β-TcCl2 (i.e., 3.534(2) Å) is larger than the one in α-TcCl2 (3.522(1) 

Å) and slightly less than the sum of van der Waals radii (3.60 Å). 

5.1.3.4 Physical Properties of -TcCl2 

The magnetic and transport properties of β-TcCl2 were investigated. For the 

magnetic properties, the compound obtained as the powder (20.1 mg) was placed in a 

gelatin capsule and the zero field cooled magnetic susceptibility was measured with an 

applied field of 0.05 T. The representation of the magnetic susceptibility as a function of 

the temperature (Figure 5.11A) indicates the compound to be diamagnetic. The measured 

magnetic susceptibility was corrected for the paramagnetic contribution of unreacted Tc 

Tc

Tca

Tc

Tca

Tcb

Tcc

Tcd

Tce

Tcb

Tcc



153 

 

metal present in the sample. The ratio of Tc/TcCl2 was refined by PXRD analysis to be 

13/87 (Figure 5.2). 

The transport properties of β-TcCl2 were initially studied by diffuse reflectance 

spectroscopy. This technique is commonly used to determine optical gaps in 

semiconductor materials [208, 209]. In this method, the optical band gap is determined by 

fitting the linear portion of the absorption part of the reflectance spectra. For β-TcCl2, the 

diffuse reflectance spectrum (Figure 5.11B) was recorded at room temperature on a 

powder sample. A band gap of 0.12(2) eV was found by fitting the linear portion of the 

spectrum (Figure 5.11B; fit in red) indicating that the compound is a narrow gap 

semiconductor. The semiconducting nature of β-TcCl2 was also verified by high 

temperature electrical resistivity measurements on a single crystal. The room-temperature 

resistivity (Figure 5.11C) decreases from 8 to 0.3 μΩ·cm at 530 K. The corresponding 

Arrhenius fit (red solid line in Figure 5.11C) indicates a simple mechanism of carrier 

excitation with an activation energy of 0.17(2) eV. High temperature Seebeck 

measurements on a β-TcCl2 single crystal (Figure 5.11D) were positive and in the range 

of 50 − 70 μV/K (room temperature to 530 K) suggesting that β-TcCl2 is a p-type 

semiconductor with holes being the dominant type of carriers (Figure 5.11D). 
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Figure 5.11. (A) Molar magnetic susceptibility of the TcCl2 powder as a function of 

temperature. (B) Diffuse reflectance spectrum of the TcCl2 powder as a function of 

temperature. Fit of the absorption edge is in red. (C) Resistivity as a function o f 

temperature of a β-TcCl2 single crystal. Red solid line represents the Arrhenius fit with an 

activation energy of 0.17(2) eV. (D) Seebeck coefficient as a function of temperature of 

β-TcCl2.  
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5.1.3.5 Thermal Behavior of -TcCl2 

The thermal behavior of β-TcCl2 was investigated in a sealed quartz tube at 800 

°C under vacuum for 24 hours. The evolution of a dark gas was observed above 600 C 

and after the reaction the tube contained a grey powder and an amorphous black-red film.  

The recovered mass of the grey powder was consistent with the formation of Tc metal 

from the disproportionation of β-TcCl2 (Eq.5.1): 

Eq. 5.1: 2 β-TcCl2 → Tc + TcCl4 

These findings were confirmed by PXRD (Figure 5.12) yielding a pure phase of Tc 

metal. 

 

 

Figure 5.12. PXRD pattern (blue) of the solid obtained after thermal treatment of β-TcCl2 

at 800 °C under vacuum in a sealed tube fit with a homogenous phase of Tc metal (red) 

and the difference (green). 
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5.1.3.6 Computational Studies on α-TcCl2 and -TcCl2 

To better understand the structure and properties of the Tc dichlorides, electronic 

calculations were performed on α-TcCl2 and β-TcCl2. Calculations performed on a single 

β-TcCl2 chain (Figure 5.13) indicate that bond distances (Tc−Tc = 2.073 Å and Tc−Cl = 

2.417 Å), are in good agreement (± 5%) with the experimental data (Table 5.3). Energetic 

calculations show a difference of 0.007 eV/f.u. between the α-TcCl2 and β-TcCl2 chain, 

indicating that the β-TcCl2 chain is energetically slightly more favorable than the α-TcCl2 

chain. 

 

Table 5.3. Average bond distances (Figure 5.6) found by SCXRD, EXAFS [206], and 

DFT in β-TcCl2 and found by SCXRD for α-TcCl2 (Figure 5.10) [143].
 a 

Estimated 

standard deviations are in parentheses.
b
 SCXRD measurements were performed at 100 K 

for β-TcCl2 and 140 K for α-TcCl2.
c
 No perpendicular units are present in α-TcCl2. 

Bonds 
SCXRD 

b
 

β-TcCl2 

EXAFS 

β-TcCl2 

DFT 

β-TcCl2 

SCXRD 
b
 

α-TcCl2 

Tc-Tc[A] 2.136(3) 2.13(2) 2.073 2.127(2) 

Tc-Cl[A] 2.398(3) 2.42(2) 2.417 2.372(9) 

Tc-Tc[B] 3.425(2) 3.45(3) 3.425 3.417(2) 

Tc-Tc[C] 4.037(3) 4.02(4) 4.020 4.025(2) 

Tc-Tc[D] 3.744(2) 3.79(4) 3.740 
c
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Figure 5.13. Relaxed structures of α-TcCl2 and β-TcCl2 chains calculated using spin-

polarized density functional theory. The relative total energy difference per formula unit 

(f.u.), ΔE, is also reported. Tc atoms are in black and Cl atoms are in red. 

 

The nature of metal-metal bonding within the Tc2Cl8 unit was investigated by 

calculations of the NBO occupancy of the Tc-Tc bond. The results indicate a NBO of 

5.30 which is consistent with the presence of a Tc Tc triple bond (i.e., NBO = 6.00). In 

agreement with the experimental results, the band structure of β-TcCl2 indicates an 

indirect gap of around 0.5 eV which suggests semiconducting behavior. 

 

5.1.3.7 Comparisons of / -TcCl2 with Other Transition Metal Dichlorides 

Second and third row transition metal dichlorides can be obtained by many 

different routes, i.e., reaction between the elements at elevated temperature, thermal 

decomposition and/or disproportionation of tri- or tetrachloride precursors, reaction 

between metal-chloride species with gaseous reagents (e.g., Cl2, HCl) at elevated 

temperatures, and metallothermic reduction of higher-valent binary chlorides. The 
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various routes are summarized in Table 5.4. Technetium dichlorides have been obtained 

by two different routes: (1) reaction between the elements at elevated temperature, and 

(2) thermal decomposition of TcCl4 under vacuum.  

For the first route, α-TcCl2 and β-TcCl2 were obtained in sealed tubes for different 

conditions of pressure, deposition temperature, and reaction time. Single crystals of β-

TcCl2 (yield ∼5%), located in the center part of the tube (T ∼ 420 °C), were obtained 

congruently with TcCl4 and β-TcCl3 after the reaction of Tc metal and Cl2 at 450 °C (24 

hours) [207, 163]. The β-TcCl2 crystals were characterized by SCXRD and EXAFS 

spectroscopy [206]. In agreement with the X-ray structure, EXAFS spectroscopy shows 

the presence of parallel and perpendicular Tc2Cl8 units in the compound. Concerning α-

TcCl2, the black powder obtained after the reaction of Tc metal and Cl2 at 450 °C was 

transferred in a second tube, sealed with AlCl3 and reacted at 450 °C. During this 

experiment, the pressure of Al2Cl6(g) in the tube was estimated at ∼1.6 atm. After 4 days 

of treatment, single crystals of α-TcCl2 were obtained at the cold end of the tube (T ∼ 280 

°C) and used for SCXRD determination [143]. These results emphasize the role of the 

experimental parameters (reaction time, deposition temperature, pressure, chemical 

transport agent) on the structure of Tc dichloride. It is anticipated that varying these 

parameters will lead to other polymorphs of technetium dichloride.  

For the second route, TcCl4 decomposes stepwise to α-TcCl3 after 2 h and to 

TcCl2 after 14 h at 450 °C in a sealed tube under vacuum (see section 3.1.3.3) [125]. 

Because the formation of α-TcCl2 requires extensive thermal treatment with AlCl3, it is 

expected that the decomposition product of TcCl4 is β-TcCl2. The thermal behaviors of 

binary Tc chlorides differ from those of Re and are more similar to those of Pt. For Re, 



159 

 

ReCl4 disproportionates to ReCl3 and ReCl5, the trichloride volatilizes as the Re3Cl9 

cluster and no decomposition has been reported [210, 135]. Similar to Tc, PtCl4 and PtCl3 

decompose to the dichloride (β-PtCl2) [124]. The thermal behavior of TcBr4 has been 

reported at 450 °C under vacuum in a Pyrex tube and TcBr4 yields Na{[Tc6Br12]2Br} (see 

section 3.2.3.1). It is noted that PtBr3 and PtBr4 are both unstable and decompose to the 

dibromide [124].  
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Table 5.4. Second and third row transition metal MCl2 phases (M = Hf, Zr, Mo, W, Tc, 

Pd, and Pt) and their method of synthesis. 
a 

X-ray structure not reported 

MCl2 phase Experimental conditions 

HfCl2
a
 Disproportionation of HfCl3 at 450 °C in a evacuated sealed glass tube 

[202] 

ZrCl2 Reaction between ZrCl4(g) and ZrCl at 650-750 °C in a sealed tantalum 

tube under He atmosphere (≤0.5 atm) [201]. 

α-MoCl2 

(Mo6Cl12) 

Disproportionation of MoCl3 at 800 °C in an evacuated, sealed quartz 

tube [29]. Reduction of MoCl5 with Al in an evacuated sealed glass tube 

at 450 C [211]. 

β-MoCl2 Reaction of Mo2(O2CCH3)4 with flowing HCl(g) at 250-350 °C [176]. 

WCl2 Disproportionation of WCl4 at 450°C in an evacuated sealed glass tube 

[132]. Reaction of WCl6 with Al in an evacuated sealed glass tube at 450 

 C [211]. 

α-TcCl2 Reaction between the elements in a glass sealed tube at 450 °C followed 

by treatment (4 days) of the powder 450 °C with AlCl3 in a sealed tube 

[143].
 
 

β-TcCl2 Reaction between the elements in a glass sealed tube at 450 °C. 

Decomposition of TcCl4 at 450 °C in an evacuated, sealed glass tube 

[207]. 

α-PtCl2 Treatment of Pt6Cl12 at 500 °C in an evacuated sealed tube [212]. 

Reaction between the elements in a sealed tube at 550 °C [212]. 

β-PtCl2 

(Pt6Cl12)  

Decomposition of PtCl4 at 350 °C or PtCl3 at 400 °C [124]. 

Reaction of H2PtCl6·6H2O with flowing Cl2(g) at 475°C [212]. 

γ-PdCl2 Treatment of Pd metal with aqua regia followed by evaporation to 

dryness and thermal treatment of the resulting solid at 150 °C [212, 223] 

α-PdCl2 Treatment of γ-PdCl2 at 400 °C in a glass tube under argon [223]. 

δ-PdCl2 Treatment of α-PdCl2 at 500 °C in a glass tube under argon [223]. 

β-PdCl2 

(Pd6Cl12)  

Reaction between Pd and SO2Cl2 in an evacuated sealed glass tube at 

400 C [213]. Reaction between Pd3(O2CCH3)6 with HCl(aq) in acetic 

acid [214]. 

 

 

Among the second and third row transition metals, α-TcCl2 and β-TcCl2 are the 

11
th

 and 12
th

 dichloride phases to be structurally characterized, respectively. Notably, 

both compounds are structurally similar and consist of infinite chains of eclipsed Tc2Cl8 
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units. Polymorphism is common in transition metal dichlorides and two MoCl2, two PtCl2 

and four PdCl2 phases have been reported (Table 5.4). Transition metal dichlorides can 

be classified into one of four categories, viz., those composed of M2Cl8 units, those 

composed of square planar MCl4 units, those containing M6Cl8
4+

 hexanuclear clusters, 

and ZrCl2. The various motifs encountered in the dichloride phases are presented in 

Figure 5.14. 

Dichlorides composed of M2Cl8 units are encountered for Tc (α-TcCl2, Figure 

5.14A and β-TcCl2, Figure 5.14B) and Mo (β-MoCl2, Figure 5.14C). For technetium, the 

structure of α-TcCl2 and β-TcCl2 consists of infinite chains of Tc2Cl8 units. In the Tc2Cl8 

units, the metal−metal separation is characteristic of Tc≡Tc triple bonds [157]. Electronic 

structure calculations on α-TcCl2 and -TcCl2 confirm the presence of a triple bond. In 

these compounds, the Tc≡Tc triple bond exhibits the σ
2
π

4
δ

2
δ

*2
 electronic configuration, 

which is also in agreement with the diamagnetism of the compound. The Tc−Tc 

separation in the Tc2Cl8 unit in /β-TcCl2 (i.e., Tc−Tc = 2.136(3) Å) is also similar to the 

one found in the Tc2Cl8
3-

 anion (i.e., Tc−Tc = 2.13(1) Å in (NH4)3Tc2Cl8·2H2O) [215]. In 

binary Tc chlorides, the electronic configuration of the Tc atoms has an effect on the 

metal−metal separation in the coordination polyhedra and the Tc−Tc separation (ΔTcTc) 

follows the order: ΔTcTc (β-TcCl2) ≈ ΔTcTc (α-TcCl2) <ΔTcTc (α-TcCl3) < ΔTcTc (β-

TcCl3) < ΔTcTc (TcCl4). 

For β-MoCl2, a single crystal X-ray structure is still elusive, but EXAFS 

measurements revealed the presence of the Mo4Cl12 unit [206]. The latter consists of two 

face-sharing Mo2Cl8 units, and the Mo(μ-Cl)2Mo separations are consistent with Mo−Mo 

single bonds between the Mo2Cl8 units. The metal−metal separation in Mo2Cl8 (Table 
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5.5) is indicative of a Mo≡Mo triple bond [157]. The presence of single and triple bonds 

in β-MoCl2 is in agreement with the low magnetic susceptibility of the compound [216, 

217].  

Dichlorides composed of the M6Cl8
4+

 clusters are found for tungsten and 

molybdenum (Figure 5.14D). In these compounds, the octahedral M6
12+

 core is 

coordinated to eight face-capping Cl ligands (M6Cl8
4+

) and six terminal chlorine ligands 

[203,29]. The crystallographic and electronic structure of the M6Cl8
4+

 clusters have been 

extensively studied, and the results indicate the presence of metal−metal single bonds 

[218, 219, 220, 221]. The M6
12+

 core has 24 electrons shared between 12 single bonds, 

which is in agreement with the diamagnetism of the compounds [221]. 

Dichlorides composed of square planar MCl4 units are encountered for Pt and Pd. 

Their structures can either consist of infinite chains of edge-sharing MCl4 units (α-PtCl2 

[222], α-PdCl2 [204, 223], δ-PdCl2 [223], Figure 5.14E), infinite layers of corner-sharing 

MCl4 (γ-PdCl2, Figure 5.14F) [223], or M6Cl12 cubic clusters composed of four edge-

sharing MCl4 units (β-PtCl2 [224, 225] and β-PdCl2 [226, 227], Figure 5.14G). In those 

phases, the shortest metal−metal separation (Table 5.5) ranges from 3.073(3) Å in α-PtCl2 

[61] to 3.742(2) Å in γ-PdCl2 [223]; these distances are larger than those expected for 

Pt−Pt and Pd−Pd single bonds [157]. Analysis of the electronic structure of β-PtCl2 

suggests that minimal metal−metal interaction occurs in the Pt6Cl12 cubic cluster [228]. In 

the Pt and Pd dichlorides, the metals have a d
8
 electron configuration and those 

compounds are diamagnetic [229]. 

Finally, ZrCl2 consists of infinite layers of edge-sharing deformed ZrCl6 

octahedra (Figure 7H) [201]. The metal−metal separation (i.e., 3.3819(3) Å) is close to 
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the one expected for a single Zr−Zr bond [157]. The low magnetic susceptibility of ZrCl2 

is consistent with the presence of discrete metal−metal interactions in the compound 

[230]. 

Concerning transport properties, β-TcCl2 is a semiconductor with a band gap of 

0.12(2) eV; it is the lowest band gap reported for a transition metal dichloride. Zirconium 

dichloride is also a semiconductor and an activation energy of around 0.3 eV has been 

estimated from resistivity measurements [201]. The semiconducting nature of β-TcCl2 

contrasts with α-MoCl2 that is an insulator [231]. Concerning PtCl2 and PdCl2, no 

resistivity measurements have been performed. 

 

 

Figure 5.14. Ball and stick representation of the structural motif in 2
nd

 and 3
rd

 transition 

metal dichlorides: (A) α-TcCl2; (B) β-TcCl2; (C) β-MoCl2; (D) α-MoCl2, WCl2; (E) α-

PtCl2, α-PdCl2, δ-PdCl2; (F) γ-PdCl2; (G) β-PdCl2, β-PtCl2; (H) ZrCl2. Metal atoms are in 

black and Cl atoms are in red. 
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Table 5.5. Shortest metal-metal separation (M-M in Å) in second and third row transition 

metal dichlorides.  

Phase M-M (Å) Phase M-M (Å) 

ZrCl2 3.3819(3) 
[201]

 α-PtCl2 3.073(4) 
[222]

 

α-MoCl2 2.61(1) 
[29]

 β-PtCl2 3.319(2)
 [224]

 

β-MoCl2 2.21(2) 
[101]

 α-PdCl2 3.339(2)
 [223]

 

WCl2 NR 
[29]

 β-PdCl2 3.283(1)
 [226]

 

α-TcCl2 2.129(1) 
[143]

 δ-PdCl2 3.288(1) 
[223]

 

β-TcCl2 2.131(2) 
[207] 

 γ-PdCl2 3.742(2)
 [223]

 

 

 

5.1.4 Conclusion 

Two new dichloride phases -TcCl2 and β-TcCl2 have been reported. The 

compound -TcCl2 was obtained from the reaction of Tc metal and Cl2 in a sealed tube at 

450 °C while α-TcCl2 after treatment of β-TcCl2 with AlCl3 in a sealed tube at 450 °C. 

Both compounds exhibit new structure-types that consist of infinite chains of face-

sharing Tc2Cl8 units. Within a -TcCl2 chain, the Tc-Tc vectors of two adjacent Tc2Cl8 

units are either perpendicular or parallel while in an -TcCl2 chain, the Tc-Tc vectors are 

all parallel. The Tc-Tc distances within the Tc2Cl8 units are consistent with the presence 

of a Tc≡Tc triple bond. Further evidence of the triple bond has been shown from natural 

bond orbital occupancy calculations. The physical properties of -TcCl2 have been 

investigated; in agreement with theoretical calculations, resistivity measurements indicate 

β-TcCl2 to be a semiconductor while a magnetic susceptibility measurement shows the 

compound to be diamagnetic. A Seebeck measurement suggests β-TcCl2 is a p-type 

semiconductor. The compound -TcCl2 is thermally unstable and disproportionates to Tc 

metal and TcCl4 above 600 C. 
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Because technetium dichlorides can be obtained from the thermal decomposition 

of TcCl4 and/or from the reaction of the elements in a sealed tube, it is still an open 

question whether TcBr2 is accessible by these methods and whether its structure will be 

similar to that of TcCl2 or a Tc6Br12 cluster. The thermal decomposition of TcBr4 in 

Pyrex has been studied and yields Na{[Tc6Br12]2Br}; the latter contains the Tc6Br12 

trigonal prismatic cluster (see section 3.2.3.2). The reaction between Tc and Br2 (Tc/Br, 

1:2) has not yet been performed. Finally, it is noted that Re and Ru dichlorides are 

unknown; this is surprising in view of the existence of numerous Re(II) and Ru(II) 

complexes [232]. It is anticipated that ReCl2 and RuCl2 might be obtained from the 

metallothermic reduction of the trichlorides. 
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Conclusion 

 

In this work, the synthetic, coordination chemistry, and physico-chemical 

properties of binary Tc chlorides, bromides, and iodides were investigated. Resulting 

from these studies was the discovery of five new binary Tc halide phases: α/β-TcCl3, α/β-

TcCl2, and TcI3, and the reinvestigation of the chemistries of TcBr3 and TcX4 (X = Cl, 

Br). Prior to 2009, the chemistry of binary Tc halides was poorly studied and defined by 

only three compounds, i.e., TcF6, TcF5, and TcCl4; today, ten phases are known (Figure 

6.1) making the binary halide system of Tc comparable to those of its neighboring 

elements. 

Binary Tc halides were synthesized using three methods: reactions of the 

elements in sealed tubes, reactions of flowing HX(g) (X = Cl, Br, and I) with 

Tc2(O2CCH3)4Cl2, and thermal decompositions of TcX4 (X = Cl, Br) and α-TcCl3 in 

sealed tubes under vacuum. Binary Tc halides can be found in various dimensionalities 

such as molecular solids (TcF6), extended chains (TcF5, TcCl4, α/β-TcCl2, TcBr3, TcI3), 

infinite layers (β-TcCl3), and bidimensional networks of clusters (α-TcCl3). Eight 

structure-types with varying degrees of metal-metal interactions are now known. The 

coordination chemistry of binary Tc halides can resemble that of the adjacent elements: 

Mo and Ru ( -TcCl3, TcBr3, TcI3), Re (TcF5, -TcCl3), Pt (TcCl4, TcBr4), or can be 

unique ( -TcCl2 and -TcCl2) in respect to other known binary transition metal halides. 

Binary Tc halides display a range of interesting physical properties (magnetism, 

conductivity) that are manifested from their electronic and structural configurations. The 
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thermochemistry of binary Tc halides is extensive: they can selectively volatilize, 

decompose, disproportionate, or convert to other phases. 

 

 

Figure 6.1. Ball-and-stick representations of the ten binary Tc halide phases. 

 

For the binary Tc chlorides (Figure 6.2), stoichiometric sealed tube reactions of 

Tc metal and Cl2 at elevated temperatures produced β-TcCl2, β-TcCl3, and TcCl4. 

Reactions performed with a stoichiometric amount of Cl2 (Tc:Cl ~ 1:2.5) afforded all 

three compounds congruently; reactions performed in the presence of excess Cl2 (Tc:Cl 

~1:6) yielded the tetrachloride as a single phase. The compound α-TcCl3 was prepared 

using a similar method reported for ReCl3 from the reaction of flowing HCl(g) with 

Tc2(O2CCH3)4Cl2 at elevated temperatures. 
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The crystal structure of each chloride phase was determined by single crystal x-

ray diffraction. Technetium tetrachloride is composed of infinite zigzag chains of 

distorted edge-sharing TcCl6 octahedra and is isotypic with the Pt analogue. The metal-

metal separation in TcCl4 precludes Tc-Tc interaction. 

There are two polymorphs for the Tc trichlorides. The compound α-TcCl3, which 

is isostructural to ReCl3 and constituted of Tc3Cl9 clusters, and β-TcCl3 which consists of 

infinite layers of edge-sharing TcCl6 octahedra and is isostructural to α-MCl3 (M = Mo, 

Ru). Electronic calculations on / -TcCl3 are consistent with the presence of a Tc=Tc 

double bond; the Tc═Tc bond being stronger in α-TcCl3 than in β-TcCl3. 

Two polymorphs are reported for Tc dichloride, -TcCl2 and -TcCl2. Both 

phases exhibit new structure-types that consist of infinite chains of face-sharing Tc2Cl8 

units; in the chains, the Tc-Tc vector of adjacent Tc2Cl8 units can be perpendicular and 

parallel to each other (β-TcCl2) or all parallel (α-TcCl2). Electronic calculations on / -

TcCl2 are consistent with the presence of the electron rich Tc≡Tc triple bond (σ
2
π

4
δ

2
δ*

2
) 

which would make it the highest bond multiplicity reported so far in a binary halide. It is 

noticeable that the formation of metal-metal bond in binary Tc chlorides is correlated 

with the electronic configuration of the Tc atom, such as: no metal-metal bond in TcCl4 

(d
3
), a double Tc=Tc bond in α/β-TcCl3 (d

4
), and a triple Tc≡Tc bond in α/β-TcCl2 (d

5
). 

The thermal behavior of the Tc chlorides was studied in sealed tubes under 

vacuum and under flowing argon. Under vacuum, TcCl4 and α-TcCl3 both decompose to 

lower valent halides, β-TcCl3 thermally converts to α-TcCl3, and -TcCl2 ultimately 

disproportionates to the metal and TcCl4. Under flowing argon, TcCl4 volatilizes and no 

decomposition occurs. 
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Physical properties were measured for TcCl4 and -TcCl2 and predicted from 

computational calculations for -TcCl3 and -TcCl3. Magnetic measurements on TcCl4 

show the compound to behave as an antiferromagnetic material below 24 K and 

paramagnetic above 50 K. The magnetic moment of TcCl4 is consistent with the one of 

an isolated TcCl6 octahedron which confirms the absence of metal-metal interactions in 

the compound. Conversely, β-TcCl2 was determined to be diamagnetic, which is 

consistent with the electronic configuration of the Tc Tc triple bond (σ
2
π

4
δ

2
δ*

2
). 

Resistivity and optical band gap measurements indicated β-TcCl2 to be a narrow band gap 

and p-type semiconductor. For the trichlorides, calculations are consistent with a metallic 

behaviour for -TcCl3 and predict α-TcCl3 to be a semiconductor. 

 

 

Figure 6.2. Flowchart of the synthetic and thermo-chemistries of binary technetium 

chlorides. 
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For the binary Tc bromides, the synthetic chemistry of TcBr3 and TcBr4 has been 

revisited (Figure 6.3). Both compounds can be synthesized congruently from the 

stoichiometric bromination (Tc:Br ~ 1:3) of Tc metal in sealed tubes at elevated 

temperatures. Repetitious reactions performed in the presence of excess Br2 (Tc:Br ~ 1:5) 

yielded TcBr4 as a single phase. In addition, TcBr3 can also be synthesized as a 

homogeneous phase via the reaction of Tc2(O2CCH3)4Cl2 with flowing HBr(g) at 

elevated temperatures. Technetium tetrabromide is isostructural with TcCl4 and MBr4 (M 

= Pt, Os) and consists of infinite zigzag chains of edge-sharing TcBr6 octahedra. Unlike 

the Tc trichloride(s), polymorphism was not observed for TcBr3; it forms extended chains 

of face-sharing distorted TcBr6 octahedra and is isostructural to MBr3 (M = Mo, Ru). 

Similar to the chloride system, a correlation between the electronic configuration of the 

metal atom and the presence of metal-metal interaction is observed in the binary Tc 

bromides: no metal-metal interaction in TcBr4 and Tc-Tc interaction in TcBr3 was 

determined. 

The thermal properties of TcBr3 and TcBr4 were investigated under vacuum at 

elevated temperatures in Pyrex tubes, TcBr4 and TcBr3 both decomposed to 

Na{[Tc6Br12]2Br}.  The Na{[Tc6Br12]2Br} salt contains the prismatic hexanuclear Tc6Br12 

cluster. Within the Tc6Br12 cluster, the oxidation state of the Tc atoms is (+2) and 

calculations indicate the presence of three Tc Tc triple bonds and six Tc-Tc single bonds. 

It is noted that Na{[Tc6Br12]2Br} is the first Group VII compound to contain a trigonal 

prismatic hexanuclear cluster that was synthesized from a solid-state reaction. 
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Alternatively, when performed in quartz tubes these reactions yield mixtures of TcBr3 

and Tc metal. 

 

 

Figure 6.3. Flowchart of the synthetic and thermo-chemistries of binary technetium 

bromides.  

 

Concerning the iodide system, TcI3 is the first binary Tc iodide to be reported 

(Figure 6.4). Technetium triiodide was prepared using two methods: 1) reactions of Tc 

metal with I2 in sealed Pyrex tubes and 2) reactions of flowing HI(g) with 

Tc2(O2CCH3)4Cl2. The latter of these two methods produced TcI3 as a single phase, 

whereas the prior yielded mixtures of TcI3 and unreacted Tc metal. The structure of TcI3 

determined from EXAFS spectroscopy is isotypic with its Mo and Ru analogues and 

consists of face-sharing TcI6 octahedra. Solubility and thermal properties of TcI3 were 

investigated; the compound is insoluble in water and organic solvents and decomposes to 

the metal at 300 C. 
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Figure 6.4. Flowchart summarizing the synthetic and thermo-chemistries of TcI3. 

 

Binary Tc halides may find application in the nuclear fuel cycle and as precursors 

in inorganic and organometallic chemistry. The solubility properties of binary Tc halides 

(TcI3 and -TcCl2) might be of particular interest for the development of Tc-halide waste 

forms. Their thermal properties could potentially be utilized in separation processes via 

halide volatility, i.e., Mo/Tc separation using iodine volatility processes.  

Technetium organometallic complexes with multiple metal-metal bonds are still 

unknown; those complexes could be prepared using TcX4 (X= Cl, Br) as precursors. For 

example, Tc2(C3H5)4 could be obtained from the reaction of TcX4 (X = Cl, Br) with 

Mg(C3H5)Cl in diethyl ether. Technetium clusters with the triangular Tc3
9+

 core are still 

unknown, those complexes could be prepared from -TcCl3. Salts with the composition 

A3Tc3Cl12 (A = NH4, K, Rb, Cs) should be obtained from the dissolution of -TcCl3 in 

concentrated HCl followed by precipitation with ACl (A = NH4, K, Rb, Cs). Technetium 

tribromide has already been used in the preparation of new divalent complexes (i.e., 

TcBr2(PMe3)4 and Tc2Br4(PMe3)4) and it is expected that similar complexes will be 

obtained from TcI3. 

In respect to these studies on the binary Tc halides, there remain many 

unanswered questions and unexplored facets of research that pertains to these 

compounds. For example, it will be of particular interest to reinvestigate the binary 
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fluoride compounds of lower oxidation state, such as TcF4 or TcF3 [52,89,168]. For 

higher oxidation states, theoretical calculations on TcF7 [88] suggest the compound to be 

stable and possible to isolate via the fluorination of the metal under high pressures of 

F2(g), which is also the method used for the synthesis of ReF7. Other reactions employed 

for synthesizing 2
nd

 and 3
rd

 row transition metal halides that have not been investigated in 

this work also provide potential synthetic templates; this would include those used for 

ReCl6 [233], OsCl5 [234], and ReBr5 [96]. Attempts within this work were also 

unsuccessful in isolating “TcBr2”, and it is of interest to whether it can be produced and 

what chemical and structural relationships it may have with the Tc dichlorides. Lastly, it 

is hoped that these new finding would have profound significance and be beneficial for 

the realm of Tc and transition metal chemistry. 
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Appendix I 

An Explanation of the Radioactive Nature of Technetium 

 

The Nuclear Shell Model and Trends in the Chart of the Nuclides 

 

The nuclear shell model is a model of the atomic nucleus that is used to describe 

the pairing and distribution of nucleons (protons and neutrons) within discrete energy 

levels, similar to the atomic shell model for electrons.
[13]

 Proton and neutron shells are 

filled individually according to the Pauli Exclusion Principle where closed shells result in 

configurations much more stable in comparison to those with open arrangements. The 

filled-shell configurations are referred to as “magic numbers,” which correspond to N = 

2, 8, 20, 28, 50, 82, and 126. Whenever the neutron or proton count results in one of these 

numbers, these nuclides are denoted “magic”. A clear example of magic numbers is tin (Z 

= 50), which has 10 different stable isotopes. When both the number of neutrons and 

protons result in filled shells, the nuclide is considered as being “doubly magic.”  

“Magic” and “doubly magic” isotopes illustrate the close relationship between paired 

nucleons and relative nuclear stability [1].
 

 

                                                 
1
 a) Mayer, M. G.; Jensen, J. H. D. Elementary Theory of Nuclear Shell Structure; John Wiley 

and Sons: New York, 1955. b) Nuclides and Isotopes of the Nuclides, 17
th
 ed., Bechtel Marine 

Propulsion Corp., Knolls Atomic Power Laboratory, Schenectady, NY, 2010. 
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Figure 1. Values of (N, Z) for the stable nuclides in comparison to N = Z [1]. 

 

Of the known isotopes, 266 are stable. The values of (N, Z) for the stable nuclides 

in comparison to Z = N is presented in Figure 2. At low Z numbers (Z < 7), the pattern of 

stable nuclides, otherwise known as the “Valley of Stability”, follows N = Z. As the 

number of protons and corresponding neutrons that inhabit the nucleus are increased, this 

trend quickly changes and the Valley of Stability moves toward neutron-rich nuclides. 

This can be explained by the mass compensation of the neutrons in the nucleus needed to 

overcome the Columbic repulsions of the protons in proximity to each other. Typically, 

unstable nuclides found above the Valley of Stability (low N/Z or “proton rich”) will 

decay by emission of a positron (i.e., β
+
 decay) or by electron capture, while those below 

it (high N/Z or “neutron rich”) will decay by emission of an electron (i.e., β
-
 decay); both 

types of decay lead to stable nuclides within the Valley of Stability. Empirical evidence 

shows there are four different ways of classifying stable nuclides by the evenness or 

oddness of the number of protons and neutrons (Table 1) [1].
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Table 1. Distribution of stable nuclides by evenness or oddness of A, Z, and N [1]. 

A Z N Number of stable 

nuclides 

Even Even Even 159 

Odd Even Odd 53 

Odd Odd Even 50 

Even  Odd Odd 4 

 

Of the known stable nuclides, the majority (159) are comprised of even A 

nuclides with even proton and neutron numbers. In the shell model, this behavior is 

attributed to the absence of unpaired nucleons.  In almost equivalent amounts to each 

other are the odd A stable nuclei with either even Z and odd N or odd Z and even N. Each 

of these combinations accounts for roughly 1/5 of the existing stable isotopes, and is an 

outcome of nucleon configurations where even numbers of protons or neutrons result in 

paired nucleon stability. The fewest stable nuclei fall under the even A with odd Z and 

odd N with only 4 existing. These four even A nuclides with odd Z, odd N (i.e., 
2
H, 

6
Li, 

10
B, 

14
N) only exist at low Z numbers where lower energy configurations (i.e., “pairing 

energy”) are still possible with unpaired nucleons all in the same shell.  Beyond 
14

N there 

are no stable even A (odd Z, odd N) nuclides that exist [1]. 

These trends within the Chart of the Nuclides allow for assumptions to be made 

on why there are no stable isotopes of technetium. Hypothetically, if there was a stable 

isotope of technetium by these trends, it would have to fulfill these characteristics: 

1) It would have to fall within the Valley of Stability; for Tc, this ideally ranges 

from the masses 94 to 102.  

2) Because technetium has an odd atomic (proton) number (Z = 43), then no even 

A (even Z, even N) configurations are attainable (even A isotopes would result from odd 
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Z, odd N, which as discussed earlier only exist in stable configurations at low Z); 

therefore, the hypothetical stable isotope would have an odd A with an odd Z and even N 

count. This reduces the possibilities to those with odd A between 95 and 103, i.e., 95, 97, 

99, and 101. 

However, none of these isotopes are stable.  So what else accounts for the 

inherent radioactive nature of technetium? Mattauch’s isobar rule is another empirical 

trend within the chart of the nuclides that can be used for predicting the stability of an 

isotope. 

 

Mattauch’s Rule 

Mattauch’s isobar rule states that in general no two adjacent isotopes in an isobar 

can both be stable or that if two isotopes lie on the same isobar and one element is stable, 

then the other must be radioactive [2]. As previously determined from observable trends 

within the Chart of the Nuclides, the only stable technetium isotopes that could 

potentially exist in accordance to the Shell Model would be for those with A = 95, 97, 99, 

and 101. For these technetium isotopes to be stable, its neighboring elements on the Chart 

of the Nuclides, molybdenum (Z = 42) and ruthenium (Z = 44), must not have stable 

isotopes with identical masses. Analysis of the chart of the nuclides indicates that 

molybdenum and ruthenium exhibit seven stable isotopes between A = 92 and A = 104; 

for both elements, five of the seven isotopes are consecutively numbered, i.e., 
94

Mo to 

98
Mo and 

98
Ru to 

102
Ru.  The arrangement of these stable isotopes above and below 

technetium (Figure 2) explains why the remaining possible isotopes 
95

Tc, 
97

Tc, 
99

Tc, and 

                                                 
2
 Mauttach, J. Zeit. Fur Physik. 1934, 91, 361-371. 
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101
Tc cannot be stable, specifically because of the existence of stable 

95
Mo, 

97
Mo, 

99
Ru, 

and 
101

Ru [2].
 

 

Figure 2. An excerpt from the Chart of the Nuclides of isotopes of Mo (Z = 42) to Ru (Z 

= 44) illustrating the abundance of stable isotopes of Mo and Ru surrounding technetium.  

Stable isotopes are in black [1b]. 

Atomic Mass, Binding Energies, and Mass Parabolas 
 

A more rigorous explanation of the radioactivity of Tc isotopes involves the 

concepts of binding energies and mass defects. To first order, the mass of a nucleus, A, 

equals the sum of the number of protons, Z, and neutrons, N. This can be expressed in 

atomic mass units (AMU) or energy in million electron volts (MeV). In reality, however, 

the actual mass of a nucleus, M, is less than A by the amount of energy required to 

dissociate the nucleus into its constituent nucleons, EB, referred to as the mass defect or 

binding energy. This is represented in Equation 1, where MH is the mass of the hydrogen 

atom (938.77 MeV) and MN is the mass of the neutron (939.55 MeV). 

 

 M = ZMH + (A-Z)MN - EB (1) 

 

This may be rewritten as  

 

 M = aZ
2
 + bZ + c – δA

-1
 (2) 
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where a, b, and c are functions of A reflecting the volume and surface area of the nucleus 

and Coulomb forces, and δ is related to the pairing energy of the nucleons.  For a given 

isobar (constant A), a, b, and c are constants, so the plot of the constituent masses forms a 

parabola [3]. 

Examples of this are seen in Figures 3 and 4.  Stable isotopes will occupy the 

lowest possible energy at a minimum at the bottom of the parabola with unstable nuclei 

to the left of the bottom β
-
 decaying and those to the right decaying by β

+
 or electron 

capture both toward stable configurations. Therefore, each mass parabola can be treated 

as an individual cross-section from the Valley of Stability.  For masses with odd A from 

either odd Z and even N or even Z and odd N, there can be only one minimum value at 

the bottom of the parabola (Figure 3), i.e., A = 97 and 99. Conversely, even A isotopes 

can have from one to three stable nuclides/minima for a single isobar (Figure 4), i.e., A = 

98 [4]. 

 

                                                 
3
 Friedlander, G.; Kennedy, J. W.; Miller, J. M. Nuclear and Radiochemistry, 2

nd 
ed. Chapter 2; 

John Wiley and Sons: New York, 1964. 
 
4
 Choppin, G.; Lijenzin, J.; Rydberg, J.; Ekberg, C. Radiochemistry and Nuclear Chemistry, 4

th
 

ed.; Elsevier, Inc: Oxford, 2013; Chapter 4. 
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Figure 3. Isobar parabola for odd mass number nuclides demonstrating the tendency of 

neutron-rich nuclides to successively β
-
 decay and proton-rich nuclides to successively β

+
 

or electron capture decay toward a stable nuclide at the minimum or “valley” [1]. 

 

 

 

Figure 4. Isobar parabola for even mass number nuclides decaying into two stable 

nuclides [1]. 
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The energy value on the ordinate could be the actual mass of the nucleus or the 

mass defect given in MeV. Table 2 lists the mass defects for Mo, Tc, and Ru isotopes 97-

101. The most stable nuclei are highlighted in red. 

Table 2. Mass Defect Values for Mo, Tc, and Ru Isotopes in MeV. 

A = 42Mo 43Tc 44Ru 

97 -87.54 -87.22 -86.11 

98 -88.11 -86.43 -88.22 

99 -85.97 -87.32 -87.62 

100 -86.18 -86.02 -89.22 

101 -83.51 -86.34 -87.95 

 

The mass parabolas plotted as a function of the atomic mass (amu) and atomic 

number for the isobars A = 97, 98, and 99 are shown in Figures 5, 6, and 7, respectively. 

As mentioned previously, for both odd A (A = 97 and 99) isobars successive β
-
 and β

+
 

decays result in one stable nuclide; for A = 97 the final nuclide is 
97

Mo and for A = 99 

the end of the chain is 
99

Ru.  The A = 98 is noticeably different than the other two isobar 

chains as there are two stable nuclides, 
98

Mo and 
98

Ru. For both the decays of 
97

Tc and 

99
Tc, the beta disintegration energies (0.320 and 0.294 MeV, respectively) are relatively 

small in comparison to that of 
98

Tc (1.80 MeV). Both 
97

Tc and 
99

Tc decay in accordance 

with other trending isotopes in each isobar, but 
98

Tc is unusual in that it is reported to 

undergo β
-
 decay to 

98
Ru with no appreciable decay by β

+
 or electron capture to 

98
Mo; the 

branching ratio of electron capture to β
- 
decay is less than 4% [

5
]. The calculated Qβ- for 

the reported decay of 
98

Tc is 1.792 MeV, while the Qβ+ and QEC for this isotope to 
98

Mo 

are 0.661 and 1.682 MeV, respectively. 

 

                                                 
5
 Sueki, K.; Ebihara, M.; Nakahara, H. Radiochim. Acta. 1993, 63, 29-31. 
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Figure 5. Isobar A = 97 decay scheme.  No excited states are shown [1b]. 

 

 

Figure 6. Isobar A = 98 decay scheme.  No excited states are shown [1b]. 
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Figure 7. Isobar A = 99 decay scheme.  No excited states have been shown [1b]. 

 

Addition Notable Nuclear Properties of Technetium Isotopes 

Spin and parity give information on what nuclear levels are occupied and to what 

extent by the corresponding neutrons and protons of a nuclide; the highest occupied level 

and number of occupying nucleons determines the spin and parity. Filled proton or 

neutron shells have a resultant total angular momentum of zero due to paired nucleons 

that cancel out corresponding angular momenta where these nuclides have a resultant 0
+
 

spin and parity. For odd A masses with either odd Z and even N or even Z and odd N, the 

spin and parity are determined by the unpaired nucleon, and for even A masses with odd 

Z and N, they are determined by the combined interaction of both unpaired nucleons. The 

change in spin and parity from the decay of one nuclide to another is dictated by 

transition probabilities. Interestingly, the measured transitions between low-lying states 

in 
99

Tc were determined and properties of the levels could only be explained by models 



184 

 

assuming an oblate deformation of the nucleus [6].Another interesting observation is that 

the spin and parity of 
98

Tc has been loosely predicted as 6
+
, where the calculated value is 

1
+
 [1b]. 

Conclusion 

The radioactive nature of technetium can be described empirically using a 

combination of the nuclear shell model and trends within the Chart of the Nuclides 

including Mattauch’s isobar rule. Applying these observations to technetium, an odd-Z 

element, only isotopes with odd-A could possibly exhibit a stable configuration, but using 

Mattauch’s isobar rule, which states that no two adjacent isobars can both be stable, the 

remaining isotopes must be radioactive due to the adjacent stable isotopes of 

molybdenum and ruthenium. A detailed examination of the binding energies of the 

isobars of Tc graphically represented by the mass parabolas for isobars A = 97, 98, and 

99 illustrates that the Mo and Ru isotopes are at the energetically lowest points within the 

valley of beta stability and all adjacent isobar nuclides are unstable. This explanation 

clearly shows why technetium has no stable isotopes. The amount of technetium present 

on the earth is constantly increasing as it is generated in nuclear reactors; knowing this, it 

is important to increase our knowledge about this fascinating element.

                                                 
6
 McDonald, J.; Bäcklin, A. Nucl. Phys. 1971, 162(2), 365-375. 
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Appendix II 

Additional Crystallographic Data 

 

Table 1. Crystal data and structure refinement for TcCl4 at 100 K. 

Empirical formula  Cl4 Tc 

Formula weight  239.80 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbca 

Unit cell dimensions a = 6.0111(4) Å 

 b = 11.5308(9) Å 

 c = 13.9334(10) Å 

Volume 965.76(12) Å3 

Z 8 

Density (calculated) 3.299 Mg/m3 

Absorption coefficient 4.997 mm-1 

F(000) 888 

Crystal size 0.12 x 0.10 x 0.10 mm3 

Theta range for data collection 2.92 to 31.50°. 

Index ranges -8<=h<=8, -16<=k<=16, -20<=l<=20 

Reflections collected 15226 

Independent reflections 1608 [R(int) = 0.0276] 

Completeness to theta = 31.50° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7466 and 0.6251 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1608 / 0 / 46 

Goodness-of-fit on F2 1.208 

Final R indices [I>2sigma(I)] R1 = 0.0224, wR2 = 0.0586 

R indices (all data) R1 = 0.0249, wR2 = 0.0595 

Largest diff. peak and hole 1.569 and -0.643 e.Å-3 
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Table 2. Crystal data and structure refinement for Na{[Tc6Br12]2Br} at 100 K. 

Empirical formula  Br25 Na Tc12 

Formula weight  3196.74 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.5173(5) Å, α = 83.67° 

 b = 10.5233(6) Å, β = 73.72° 

 c = 11.1412(6) Å, γ = 87.49° 

Volume 1064.51(10) Å3 

Z 1 

Density (calculated) 4.987 Mg/m3 

Absorption coefficient 27.238 mm-1 

F(000) 1402 

Crystal size 0.2 x 0.02 x 0.02 mm3 

Theta range for data collection 1.91 to 30.51°. 

Index ranges -13<=h<=13, -15<=k<=15, -15<=l<=15 

Reflections collected 17149 

Independent reflections 6456 [R(int) = 0.0309] 

Completeness to theta = 30.51° 99.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7465 and 0.3078 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6456 / 0 / 175 

Goodness-of-fit on F2 1.079 

Final R indices [I>2sigma(I)] R1 = 0.0252, wR2 = 0.0736 

R indices (all data) R1 = 0.0285, wR2 = 0.0751 

Largest diff. peak and hole 1.769 and -1.958 e.Å-3 

 

Table 3. Crystal data and structure refinement for -TcCl2 at 100 K. 

Empirical formula TcCl2 

Formula weight 167.9 

Temperature 100 K 
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Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group I2/m(1/21/2γ)s0 

Unit cell dimensions 

a = 8.5908(14) Å, α = 90° 

b = 8.5908(14) Å,  = 90° 

c = 3.4251(6) Å,  = 90° 

q-vector(1) 1/2a
*
 + 1/2b

*
 + 1/4c

*
 

Volume 252.78(7) Å
3
 

Z 4 

Density (calculated) 4.4106 g/cm
3
 

Absorption coefficient 7.399 mm
-1

 

F(000) 308 

Crystal size 0.17 x 0.14 x 0.03 mm
3
 

θ range for data collection 4.03 to 34.33° 

Index ranges -12<=h<=13, -14<=k<=14, -5<=l<=5, -1<=m<=1 

Reflections collected 4977 (1576 main + 3401 satellites) 

Independent reflections 1610 (568 main + 1042 satellites) [Rint = 0.0542] 

Completeness to θ = 30.33° 99% 

Refinement method Full-matrix least-squares on F
2
 

Data / constrains / restraints / 

parameters 
1610 / 20 / 0 / 55 

Goodness-of-fit on F
2
 1.99 

Final R indices [I>2σ(I)] Robs = 0.0787, wRobs = 0.2114 

R indices [all data] Rall = 0.0900, wRall = 0.2211 

Final R main indices [I>2σ(I)] Robs = 0.0480, wRobs = 0.1221 

R main indices (all data) Rall = 0.0494, wRall = 0.1237 

Final R 1
st
 order satellites [I>2σ(I)] Robs = 0.1288, wRobs = 0.2857 

R 1
st
 order satellites (all data) Rall = 0.1533, wRall = 0.3006 

Extinction coefficient 3300(400) 

Tmin and Tmax coefficients 0.3403 and 0.8447 

Largest diff. peak and hole 8.92 and -5.98 e·Å
-3

 

R = Σ||Fo|-|Fc|| / Σ|Fo|, wR = {Σ[w(|Fo|
2
 - |Fc|

2
)
2
] / Σ[w(|Fo|

4
)]}

1/2
 and w=1/(σ

2
(I)+0.0064I

2
) 

Table 3. Crystal data and structure refinement for α-TcCl2 at 140 K. 

Empirical formula  Cl2 Tc 

Formula weight  169.90 

Temperature  140(1) K 
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Wavelength  0.71073 Å 

Crystal system  Tetragonal 

Space group  I 4/m 

Unit cell dimensions a = 8.557(3) Å 

 b = 8.557(3) Å 

 c = 3.417(2) Å 

Volume 250.18(19) Å3 

Z 4 

Density (calculated) 4.484 Mg/m3 

Absorption coefficient 7.476 mm-1 

F(000) 308 

Crystal size 1.50 x 0.06 x 0.04 mm3 

Theta range for data collection 3.37 to 28.15°. 

Index ranges -10<=h<=11, -10<=k<=10, -4<=l<=4 

Reflections collected 1330 

Independent reflections 170 [R(int) = 0.0094] 

Completeness to theta = 25.00° 99.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7541 and 0.0315 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 170 / 0 / 13 

Goodness-of-fit on F2 1.261 

Final R indices [I>2sigma(I)] R1 = 0.0335, wR2 = 0.0976 

R indices (all data) R1 = 0.0335, wR2 = 0.0976 

Largest diff. peak and hole 0.772 and -0.887 e.Å-3 
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