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ABSTRACT 

Hydrothermal Routes to Technetium Cluster Compounds 

By  

William M. Kerlin 

 

Dr. Kenneth Czerwinski, Advisory Committee Chair 

Professor of Chemistry 

University of Nevada, Las Vegas 

 

Transition metals of groups six through nine exhibit unique direct multiple metal-

metal bonding cores. Technetium is a group seven transition metal and is the lightest 

radioelement in the periodic table. Technetium exhibits nine oxidation states (from -I to 

VII) and an extensive set of mixed oxidation states due to bi- or poly- nuclear complex 

formation. Technetium has no stable isotopes and thirty four technetium isotopes have 

been discovered. Two main isotopes are of great importance 99Tc and its metastable 

nuclear isomer 99mTc. The isotope 99mTc (T1/2 = 6.01 hours, γ = 140.5 keV) is used in 

diagnostic nuclear medicine while 99Tc (T1/2 = 2.13x105 years, β = 294 keV) is a 

prominent fission product and is mainly used in fundamental technetium chemistry 

research due to its long half-life. The isotope 99Tc is a concern in nuclear waste 

management due to its high production rate, mobility in the environment, long half-life 

and radiotoxicity. The rapid use of technetium in various diagnostic procedures 

extended its coordination chemistry but the fundamental chemistry of low valent 
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technetium is not as well explored compared to the surrounding elements Mo, Re, and 

Ru. Currently over 200 compounds containing the Re2
+n (n = 4, 5, 6) cores are known, 

whereas less than 30 compounds with Tc2
+n (n = 4, 5, 6) cores exist. One example of a 

Tc2
+6 core is Tc2(O2CCH3)4Cl2 which has been shown to be a useful starting compound for 

the synthesis of technetium binary halides. Hydro/solvo-thermal synthesis methods are 

used to reduce pertechnetate species, Tc(VII), to low-valent stable Tc-Tc dimers by 

changing the temperature and pressure of the system under constant volume and with 

different salts and acids. Results of these hydro/solvo-thermal reactions have yielded 

various new ditechnetium compounds that show interesting structures and properties. 

This study will focus on the synthesis of molecular metal-metal bonded technetium 

compounds like Tc2(μ-O2CCH3)4X2, (X = Cl, Br), polymeric metal-metal bonded 

technetium compounds or chains as [Tc2(μ-X)4(η-Y)]n, (X = carboxylate; Y = carboxylate, 

I) and technetium cluster chemistry involving iodide as polynuclear species for K[Tc8(μ-

I)8I4]I, and Tc5I5(μ-I)4(μ3-I)4.  

As a result, these studies related to the synthesis of technetium dimers/clusters will 

permit acquisition of new information on technetium metal-metal bond chemistry and 

thus extend the fundamental knowledge of this element as well as its potential 

applications in the nuclear fuel cycle or nuclear medicine. 
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1 CHAPTER 1: INTRODUCTION 

 

 Background 1.1

Technetium (element 43) was discovered by Perrier and Segrè in 1936 and was the 

first element to be produced artificially.[1,2] Technetium occupies a central position 

amongst the transition elements. Because it bears a close electronic relationship to its 

heavier congener rhenium, the occurrence of analogous compounds is expected, but 

the radioactive nature of technetium has served to limit the development of its 

chemistry relative to that of rhenium.[3] Technetium exhibits nine oxidation states (from 

-1 to +7) and an extensive set of mixed oxidation states due to bi- or poly- nuclear 

complex formations.[1] These variable oxidation states profoundly influence technetium 

coordination and redox chemistry, impacting its possible applications.  

Technetium has thirty four known isotopes and none are stable.[3] Two main 

isotopes are of great importance, viz., 99Tc and its metastable nuclear isomer 99mTc. The 

isotope 99mTc (t1/2 = 6.01 hours, γ = 140.5 keV) is used in diagnostic nuclear medicine, 

while 99Tc (t1/2 = 2.13x105 years, β = 294 keV) is a prominent fission product and is used 

in research for fundamental technetium chemistry evaluation due to its longer half-

life.[4] Technetium-99 accounts for ~6% by mass of the products from the fission of 

nuclear fuel containing 235U and 239Pu.[5] The prominent forms of technetium in the used 

nuclear fuel cycle are metallic, alloyed with Mo, Ru, Rh, Pd often called the “epsilon 

phase”,[4,6,7] and oxides TcO2 and TcO4
-[8]. Due to its half-long life and the mobility of the 

pertechnetate ion under non-reducing environmental conditions,[9] new studies have 
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been motivated to increase the scientific knowledge of fundamental technetium 

chemistry. Recent progress in this field is motivated by the extensive use of 99mTc in 

nuclear medicine.[10] The extensive use of technetium in various diagnostic procedures 

has expanded research on its coordination chemistry. A number of simple coordination 

compounds have been tested in vivo and are still in use today. This first generation of 

compounds where technetium was considered part of the “bioactive” molecule found a 

niche in radiopharmaceutical applications but the active compounds are not always fully 

characterized. One of the key compounds in technetium chemistry for 

radiopharmaceutical use was the preparation of 99mTc-hexakis-2-methoxy-2-

isobutylisonitrile (99mTc-MIBI). This compound was the first organometallic prepared 

from TcO4
- through very simple chemical procedure in aqueous media and was the first 

organometallic approved for clinical use in 1986 to obtain myocardial imaging.[11] Since 

1990, a second generation has emerged and is more focused on the targeting capability 

of the biomolecule to which the Tc is ligated. In this regard, technetium coordination 

and fundamental chemistry are of continued interest.[12] For radiopharmaceuticals use, 

the key starting material is usually the pertechnetate ion which is obtained from a 99Mo 

generator. The molybdate ion, MoO4
2- is bound to alumina column. In the column the 

parent 99Mo (t1/2 = 67 hours) decays to 99mTc. The chemical form of technetium, 

pertechnetate, is not bound to the column and can be eluted with a saline solution 

(0.9% NaCl).[13] Pertechnetate is then subsequently reduced by an appropriate reducing 

agent and coordinated to a ligand. This ligand is specially designed to keep the metal 

centre in its reduced form and to assure the desired biological distribution.[10] For 
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example a well-established compound is technetium +4 methylene diphosphonate 

(99mTc-MDP called Osteolite, DuPont) that is used for skeletal imaging. Technetium can 

also be reacted with a large variety of ligands to obtain the desired functionality, but the 

vast majority of these compounds are mononuclear.[11,14] 

With respect to coordination chemistry, the discovery of multiple metal-metal bonds 

between technetium centres is one of the more important advances in its inorganic 

chemistry. The synthesis and characterization of single and multiple bonds between 

metal centres started with the preparation of technetium compounds having low 

oxidation states or even mixed oxidation states. These dinuclear compounds can be 

used as starting compounds for the synthesis of related complexes or more complex 

chelated species that may find a use in nuclear medicine.[15] 

Published strategies for the synthesis of binuclear (and polynuclear) technetium 

compounds containing multiple metal-metal bonds typically fall into one of three 

categories: (1) moderate temperature (100-300 °C) reduction of higher-valent mono-

nuclear technetium precursors in aqueous hydrohalic acid solutions using molecular 

hydrogen (30-50 atm) as the reductant; (2) reduction of higher-valent mononuclear 

precursors using chemical reductants other than H2, either in aqueous acid or non-

aqueous solvents; (3) substitution and/or redox reactions involving pre-formed 

dinuclear complexes. Resvov and coworkers have been advocates for the first approach, 

while the rest of the community has traditionally opted for the latter two strategies.[16] 

The hydrogen reductions require the use of high-pressure stainless steel autoclaves. The 

use of glass test tubes and vessels inside the autoclave (vide infra) minimizes corrosion 
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of the stainless steel. Alternatively, more corrosion resistant alloys, such as Hastelloy, 

can be used in place of stainless steel.[17] Kryuchkov, and others have isolated a wide 

variety of dinuclear and polynuclear technetium compounds by systematically varying 

the experimental parameters (e.g., time, pertechnetate and acid concentrations, nature 

of the cation, temperature, hydrogen pressure, cool-down rate, etc.), but it is fair to say 

that serendipity (“thermodynamic self-assembly” in some quarters) plays a role in the 

outcome of these procedures as it does in many exploratory hydrothermal syntheses.[18] 

As a result, acquisition of new knowledge on technetium metal-metal bond 

chemistry could extend the fundamental knowledge of this element as well as its 

potential applications in nuclear fuel cycle or nuclear medicine. This work will focus on 

revisiting the 1980’s Russian approach relevant to metal-metal bond preparation. The 

synthesis and characterization of new technetium species was explored to provide 

details and insight into technetium fundamental chemistry and potential applications. 

Chapter 1 is a bibliographic study on the fundamental and applied chemistry of 

technetium. In this chapter, metal-metal bond chemistry for other transition metals is 

compared to technetium. Chapter 2 outlines the materials and methods used in this 

work, i.e., starting compound synthesis, hydro/solvothermal methods and the 

characterization techniques employed. Chapter 3 focuses on molecular metal-metal 

bonded technetium compounds synthesized. This chapter will describe a high yield 

preparation of Tc2(O2CCH3)4X2, (X = Cl, Br) as a one-step reduction from pertechnetate 

ion and compared to traditional synthesis of these molecular dimers. Chapter 4 presents 

synthesis of polymeric metal-metal bonded technetium compounds or chains. These 
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classes of repeating units; [Tc2(O2CCH3)4X]n, (X = Cl, Br, I) and [Tc2(O2CR)4(μ-O2CR)]n (R = 

CH3, CH2CH3, C6H5, alkyls), are compared to both rhenium and ruthenium homologues. 

Chapter 5 examines the technetium synthetic and coordination chemistry of the new 

polynuclear species; K[Tc8(μ-I)8I4]I, and Tc5(μ-I)4(μ3-I)4I5. Chapter 6 summarizes the 

extent of the synthesis of these hydro-solvothermal reactions from the pertechnetate 

ion forming a variety of multinuclear metal-metal bonded technetium compounds. In 

this chapter, conclusions and future work are presented in detail with emphasis and 

suggestions for continuing the synthesis of these technetium polynuclear compounds.  

 

 Metal-metal bonded compounds 1.2

 Transition metals 1.2.1

The studies of transition metal compounds with metal-metal bonds and their 

molecular and electronic structures are essential to understand the nature of the metal-

metal interactions as well as their catalytic and biological properties.[19-25] In general, 

transition metals can form single to quintuple bonds with other atoms but bond orders 

greater than 3 are only formed between two transition metal atoms. Some dinuclear 

and extended-structure compounds and heteroatomic clusters are found with multiple 

Tc-Tc bonds but the technetium metal-metal bond chemistry remains underdeveloped 

compared to its neighboring elements - molybdenum, ruthenium and rhenium.[16,26-29]  

Prior to 1963, very little effort was focused on metal-metal bonded compounds. In 

mid-1963, extensive studies on [Re3Cl12]3- demonstrated the existence of Re-Re double 

bonds in this trinuclear cluster anion. Pursuing various rhenium chemistry researchers 
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questioned the bond order of different compounds. The discovery and structure of 

[Re2Cl8]2-, the first quadruply metal-metal bonded dimer,[19] triggered a revolution of 

sorts and the correlation of metal-metal distances with bond orders ranging from <1 to 

4 was discussed and debated, and the concept of metal-metal bond orders was 

introduced. The quadrupole bond chemistry for rhenium was rapidly investigated and 

even a metal-metal triple bond was proposed in Re2Cl5(CH3SCH2CH2SCH3)2 compound.[19] 

During the next 20 years, the field of metal-metal bond grew rapidly, before slowing 

down to a steady level of research. Nowadays the concept of quadruple bond is well 

accepted and characterized for about 1500 compounds.[19,30]  

It has been suggested that metal-metal bonding interactions exist for almost every 

transition element, with the possible except of scandium. This type of bonding seems to 

exist even in higher oxidation states while for later transition metals it is observed 

primarily in the lower oxidation states. The middle of the transition series and especially 

the second and third row elements of the Periodic Table seem to have a high tendency 

to form metal-metal bonds in various oxidation states.[31]  

The covalent bonding between two metals is usually found when the compounds 

need to achieve the 18-electron configuration. Most of the time, a metal-metal bond is 

found when no other bonding partners or no structural constraints are available. It is 

known that when two fragments need one electron to complete the inert gas 

configuration, single bonds are formed. Bond orders of 2, 3 and 4 between metal atoms 

are now frequently encountered throughout the group 5, 6, 7, 8, and 9 transition metals 

on the periodic table. Specifically multiple bonds are mostly formed for chromium, 
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molybdenum, tungsten, technetium, rhenium, ruthenium, and rhodium compounds. 

The other transition metal elements that exhibit multiple M-M bonding but not as 

prolifically are those in group 5 (Nb and Ta), plus iron, osmium, cobalt and iridium. 

Bridging ligands protecting the metals seems to make these compounds more stable 

and accessible.[32,33] 

The main experimental techniques used to detect the presence of metal-metal bond 

in a compound are: X-ray diffraction analysis, magnetic measurements and Infra-red, 

Raman, Ultra-Violet and visible spectroscopies.[31]  

Bond lengths are reasonable indicator of the presence of a metal-metal bond when 

the metal atom distances are of the same order as in the metal. Usually when 

comparing two compounds of similar stereochemistry, the change of bond length shows 

the presence or absence of metal-metal bond.[32] Normally within most inorganic and 

organic structures bond order (single, double, and triple bonds) correlate with 

decreasing bond length. But within the metal-metal bonded realm of second and third 

row transition metals, specifically group 6-8, it should be noted that bond length and 

bond order are not strictly a simple inverse relationship.[34]  

Magnetic properties differ highly when paramagnetic transition metal ions do or do 

not interact with each other. The presence of metal-metal bond and their interactions 

can thus be studied by bulk magnetic susceptibility. The behavior of the compound in a 

magnetic field will give information about its electronic structure, the presence of 

unpaired electron or not but also in some case detect the presence of metal-metal 

bond. A combination of multiple characterization techniques results, such as bulk 
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magnetic properties, electron spin resonance, UV-Vis spectra and theoretical 

calculations, can give information about the ordering of the energy levels and the 

character of the highest filled orbital.[35]  

Spectroscopic techniques can be used to explore the metal-metal bond -*, π-π*, 

π-δ* and δ-δ*, type transitions and ligand-to-metal charge transfer transitions (LMCT). 

Of these transition types, δ-δ* are the most thoroughly examined for M2
n+ complexes 

using electronic absorption techniques at low temperature, i.e., 80 to 5 K.[34] 

 

 Technetium 1.2.2

Today the number of laboratories worldwide that are equipped to pursue synthetic 

chemistry with the most readily available isotope, viz., 99Tc, is severely limited. For the 

past several years, the radiochemistry program at UNLV have been exploring the 

fundamental chemistry of technetium, including that associated with metal-metal 

bonded dimers with bonds of order 4, 3.5 and 3.[36] We have found many similarities 

between the dinuclear chemistry of Tc and Re, but also subtle and sometimes 

frustrating differences in the synthetic chemistry that are likely a manifestation of the 

redox properties of the respective elements in equivalent oxidation states. In the 

literature it has been found that thirteen binary halides exist for rhenium, while only 

three technetium halides were fully characterized (TcF6, TcF5 and TcCl4) prior to 2008. 

Many new technetium compounds can be then foreseen to be discovered and 

characterized. For technetium, as of the year 2005, 25 dinuclear species, 4 hexanuclear, 

6 octanuclear halide clusters and 3 extended metal-atom chain (EMAC) compounds had 
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been structurally characterized, but no binary halides beyond those mentioned 

above.[16]  

As part of an effort to expand our knowledge of technetium chemistry, our group 

investigated the chemistry of the binary halides and prepared seven new phases (TcBr4, 

TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3).[3,37] In these phases, the electronic configuration of 

the Tc atom has a bearing on the extent of Tc-Tc interaction: in the tetrahalide, there is 

no appreciable metal-metal interaction, a Tc=Tc double bond is observed in α/β-TcCl3 

and a Tc≡Tc triple bond in α/β-TcCl2. Two main routes have proven fruitful for the 

synthesis of technetium binary halides: reaction between the elements in a sealed 

evacuated tube,[38,39] and reaction between Tc2(O2CCH3)4Cl2 and flowing HX gas (X = Cl, 

Br, I) at elevated temperatures. Technetium trihalides (TcBr3, TcI3 and α-TcCl3) have 

been obtained from the reaction of Tc2(O2CCH3)4Cl2 with HX gas (X = Cl or Br) at 300 

°C.[40,41] One compound that we have found to be a very useful starting material for 

investigations of both dinuclear technetium(III) chemistry and as a precursor to α-TcCl3 

(Tc3Cl9) is the acetate bridged dimer, Tc2(O2CCH3)4Cl2.[40] Its rhenium analog, 

Re2(O2CCH3)4Cl2, first prepared by Taha and Wilkinson [42], played a key role at the 

beginning of the multiple metal-metal bond field and was an early example of a d4-d4 

dimer with a quadruple metal-metal bond. Thus, new technetium metal-metal bonded 

dimers with carboxylate ligands are of particular interest as precursors for the 

preparation of new technetium binary halides, TcXy (X = F, Cl, Br, I; y = 2, 3, 4).[3,43] The 

study of Tc2(O2CCH3)2Cl4 also permitted to better understand the influence of acetate 

ligand on the Tc-Tc bonding.[44] Currently, only five compounds containing a Tc2
n+ (n = 5, 
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6) unit coordinated to acetate and halogen ligands are structurally characterized: 

Tc2(O2CCH3)4X [45,46], K[Tc2(O2CCH3)4Cl2] and Tc2(O2CCH3)4X2 (X = Cl, Br),[47,48] and no 

complexes with multiple metal-metal bonds coordinated to iodide ligands have been 

reported yet.  

Another part of our work effort was to investigate cluster chemistry with 

technetium. In general, it is known that multiple metal-metal bounds are found with 

trigonal or tetragonal prismatic geometries in hexanuclear and octanuclear clusters 

respectively. The first hexanuclear species were obtained after reduction in an autoclave 

at 140-180 °C of (Me4N)2TcCl6 or (Me4N)TcO4 in concentrated HCl or HBr by H2 (30-50 

atm). The obtained {[Tc6Cl6(μ-Cl)6]Cl2}3- and [Tc6Cl6(μ-Cl)6]2- clusters contain Tc6
11+ and 

Tc6
10+ cores with 31- and 32-electron counts, respectively. The {[Tc6(μ-Br)6Br6]Br2} 31-

electron cluster is similar to its chloride congener. The structures contain short Tc-Tc 

distances for the rectangular edges corresponding to the three electron-rich Tc≡Tc 

bonds, while the distances along the triangular faces are longer indicative of the six Tc 

single bonds.[49,50,51] Other cluster compounds having higher nuclearity were 

characterized. For example, the [Tc8(μ-Br)8Br4]+ cluster contains four types of Tc–Tc 

bonds with different distances suggesting the presence of Tc–Tc bonds of high 

multiplicity. The shorter distances, perpendicular to the rhomboidal faces, are 

characteristic of triple bonds, while the longer distances along the edge of the faces are 

described as single bonds.[16] More details are given in Chapter 5, a figure of these 

clusters are shown in Figure 5.1. A selected list of structurally characterized technetium 

compounds with Tc-Tc multiple bonds is shown in Table 1.1 and Table 1.2 separated into 
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four classes of compounds; molecular species, salts, polymeric chains and polynuclear 

clusters. Synthesis of these dinuclear compounds, Tc2
+5 and Tc2

+6 cores, and clusters are 

prepared by 3 different methods within the literature: (1) hydrogen reduction (30-70 

atm) from pertechnetate species in concentrated hydrohalic acid solutions at 

temperatures between 100 – 250 °C; (2) classic chemical reductions other than 

hydrogen on pertechnetate or higher valent mononuclear species in a variety of 

aqueous or organic solvents; (3) using dinuclear species prepared by method (1) by 

redox reactions or substitutions.[16]  
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Table 1.1. Selected group of Tc-Tc multiple bonded compounds separated by class of species: 
molecular and ionic salts.[16] Part A. 

Compound Tc-Tc (Å) Bond order Ref. 

Molecular 

Tc2(O2CCH3)4Cl2 

Tc2(O2CCMe3)4Cl2 

[Tc2(O2CCH3)4](TcO4)2 

[Tc2(O2CCH3)2Cl4(dma)2] 

Tc2Cl5(PMe2Ph)3 

Tc2(DTolF)3Cl2 

Tc2Cl4(PEt3)4 2.133(3) 

Tc2Cl4(PMe2Ph)4  

α-Tc2Cl4(Ph2P(CH2)2PPh2)2 

β-Tc2Cl4(Ph2P(CH2)2PPh2)2 

β-Tc2Cl4(Ph2PCH2PPh2)2 

2.1758(3) 

2.192 (1) 

2.149(1) 

2.1835(7) 

2.109(1) 

2.094(1) 

2.133(3) 

2.127(1) 

2.15(1) 

2.117(1) 

2.1126(7) 

4 

4 

4 

4 

3.5 

3.5 

3 

3 

3 

3 

3 

[48] 

[52] 

[53,54] 

[55] 

[56] 

[57] 

[58] 

[58] 

[59] 

[59] 

[60] 

Salts 

(Bu4N)2Tc2Cl8 

K2[Tc2(SO4)4]·2H2O 

K3Tc2Cl8·nH2O 

(NH4)3Tc2Cl8·2H2O 

Y[Tc2Cl8]·9H2O 

(C5H5NH)3Tc2Cl8 

K[Tc2(O2CCH3)4Cl2] 

[Tc2Cl4(PMe2Ph)4]PF6 

K2[Tc2Cl6] 

 

 

[Tc2(NCCH3)8(CF3SO3)2](BF4)4·CH3CN 

2.147(4) 

2.155(1) 

2.117(2) 

2.13(1) 

2.105(2) 

2.1185(5) 

2.1260(5) 

2.106(1) 

2.044(1), 

2.047(1), 

2.042(1) 

2.122(1) 

4 

4 

3.5 

3.5 

3.5 

3.5 

3.5 

3.5 

3 

 

 

3 

[61] 

[62] 

[63,64] 

[65,66] 

[67] 

[68] 

[69] 

[56] 

[70,71] 

 

 

[72] 

dma = N,N’-dimethylacetamide, DTolF = N,N'-di-p-tolylformamidinate 
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Table 1.2. Selected group of Tc-Tc multiple bonded compounds separated by class of species: 
polymeric chains and polynuclear clusters.[16] Part B. 

Compound Tc-Tc (Å) Bond order Ref. 

Polymeric chains 

Tc2(hp)4Cl 

Tc2(O2CCH3)4Cl 

Tc2(O2CCH3)4Br 

2.095(1) 

2.117(1) 

2.112(1) 

3.5 

3.5 

3.5 

[73] 

[45] 

[46] 

Polynuclear clusters 

Hexanuclear 

[(CH3)4N]3{[Tc6(µ-Cl)6Cl6]Cl2} 

 

[(CH3)4N]2[Tc6(µ-Cl)6Cl6] 

 

[(C2H5)4N]2{[Tc6(µ-Br)6Br6]Br2} 

 

[(CH3)4N]3{[Tc6(µ-Br)6Br6]Br2} 

 

Octanuclear 

{[Tc8(µ-Br)8Br4]Br}·2H2O 

 

 

[H(H2O)2]{[Tc8((µ-Br)8Br4]Br} 

 

 

[H(H2O)2]2{[Tc8((µ-Br)8Br4]Br2} 

 

 

[(C4H9)4N]2{[Tc6(µ-Br)4(µ-I)4Br2I2]I2} 

 

 

[Fe(C5H5)2]3{Tc6(µ-I)6I6]I2} 

 

2.16(1), 

2.69(1) 

2.22(1), 

2.57(1) 

2.188(5), 

2.66(2) 

2.154(5),  

2.702(2) 

 

2.146(2), 

2.521(2), 

2.687(23) 

2.155(3), 

2.531(2), 

2.70(2) 

2.152(9), 

2.520(9), 

2.69(1) 

2.162(9), 

2.507(2), 

2.704(10) 

2.17(1), 

2.67(1) 

  

[74] 

 

[75] 

 

[51] 

 

[51] 

 

 

[76] 

 

 

[77] 

 

 

[78] 

 

 

[51] 

 

 

[54] 

hp = 2-hydroxypyridine  
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 Comparison of technetium and surrounding elements 1.2.3

1.2.3.1 Classic starting materials 

The availability of starting materials for the surrounding elements are vast compared 

to that of technetium. Commonly the oxides of these elements are reduced to lower 

valent compounds for starting materials. Generally starting materials for the synthesis 

of dinuclear and clusters compounds are shown in Table 1.3, vary depending on element 

group. For general purposes the elements manganese and iron will not be discussed due 

to lack of multiple metal-metal bonding chemistry and has little or no comparison to 

ditechnetium, Tc2
+n, complexes. 

The vast majority of technetium syntheses start from pertechnetate salts, MTcO4 (M 

= alkali metals, NH4
+, NR4

+) and reduced to starting compounds or direct reduction to 

product, by molecular hydrogen or reducing agents such as trimethylsilyl chloride or 

zinc. Lower valent salts of TcCl6
2-, such as (NH4)2TcCl6 are reacted with Zn in 

concentrated hydrochloric acid to produce the octachloroditechnetate(II,III) anion, 

(NH4)3Tc2Cl8, with its Tc2
+5 core, which can be used as a starting material to many of the 

25 known Tc2
+n dinuclear compounds listed in Table 1.1 and Table 1.2.[79]  
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Table 1.3. Common starting material for synthesis of dinuclear and clusters by element. 

Element Starting Materials 

(X = Cl, Br) 

Chromium  Cr(CO)6, [Cr2(CO3)4]4-, 

Cr2(O2CCH3)4(H2O)2 

Molybdenum Mo(CO)6, MoCl3, Mo2(O2CCH3)4 

Tungsten WCl4, W(CO)6, [W2Cl8]2-, 

W2(O2CY)4 (Y = CH3,CF3) 

Technetium TcO4
-, TcCl6

2-,  

[Tc2X8]n- (n = 2, 3) 

Rhenium ReO4
-, ReCl6

2-, [Re2X8]2, Re3Cl9 

Re2(O2CR)4X2 (R = Alkyl) 

Ruthenium RuCl3·nH2O, Ru2(O2CR)4Cl (R= Alkyl) 

Ru2(O2CCH3)4(THF)2 

Osmium OsCl3, OsX6
2-, Os2(O2CMe)4X2 

 

 

Similar to technetium, at the infancy of rhenium dinuclear chemistry the method of 

choice was high pressure H2 reduction from potassium or ammonium perrhenate salts, 

MReO4. This method was chosen but was unpopular because of the corrosive nature of 

the reactants on the reaction vessel and competition [ReCl6]2- formation providing low 

yields of the [Re2Cl8]2- anion.[80] It was not until 1982 when the synthesis of the tetra-n-

butylammonium salt, (Bu4N)2Re2Cl8, was reported from the reaction of (Bu4N)ReO4 with 

reflexing benzoyl chloride followed by addition of gaseous saturated solution of 

hydrogen chloride in ethanol to give a straightforward quick simple one-pot synthesis in 

high yield (<90%).[81] The organic salt, (Bu4N)2Re2Cl8, became the starting material for 
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preparation of most dinuclear rhenium compounds known to date, approximately 

150.[82] A simple substitution reaction with RCO2H, R= alkyl groups and accompanying 

anhydride with (Bu4N)2Re2Cl8 yields Re2
+6 dihalotetracarboxylate compounds.[83,84] These 

Re2(O2CR)4X2 starting materials lead to a plethora of over 40 dirhenium Re2
+6 

compounds.  

Group 6 elements; chromium, molybdenum and tungsten have very different 

chemistry when forming metal-metal bonded compounds. Most Cr2
n+, compounds are 

formed from chromium (II) acetate, chromium (II)/(III) chlorides and tetracarbonato 

anion, [Cr2(CO3)4]4-, and chromium hexacarbonyl. Examination into the reactions that 

form dinuclear chromium compounds will be summed up to substitution reaction with 

Cr2(O2CCH3)4, [Cr2(CO3)4]4- and organo-lithium chemistry with Cr(CO)6.[85] For 

molybdenum, classically Mo(CO)6 is heated in with a carboxylic acid and its anhydride 

with in diglyme or 1,2-dichlorobenzene affords Mo2(O2CR)4 compounds to which the 

majority of dinuclear Mo2
+n compounds are synthesized.[86,87] The compound most used 

in formation of well over 500 Mo2
+n complexes is tetraacetato dimolybdate(II), 

Mo2(O2CCH3)4, by simple substitution reactions.[88] Tungsten unfortunately is more 

complicated than molybdenum with reference to easy direct formation of W2
n+ 

carboxylates.[89] For example attempts in early 1970’s to react W(CO)6 with acetic acid 

and acetic anhydride was unsuccessful in yielding W2(O2CCH3)4, as does Mo(CO)6 to 

Mo2(O2CCH3)4.[90,91,92] A breakthrough in tungsten quadruple dimer chemistry came with 

the first structural characterization of W2(O2CCF3)4·0.67(diglyme) via the reaction of 

Na/Hg reduction of NaW2Cl7(THF)5 with addition of sodium triflouroacetate (originally 
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reported as W2Cl6(THF)4 but later characterized as NaW2Cl7(THF)5).[93,94] Ultimately in 

1985, a route to W2(O2CCH3)4 was synthesized through W2(O2CCF3)4 with 

tetrabutylammonium acetate in toluene, providing the basis for synthesis of other W2
+4 

tetracarboxylates.[93,95,96,97,98] Additional routes to W2
n+ compounds involves reduction 

of WCl4 with a variety of reducing agents; i.e. Na/Hg, NaBEt3H with alkyl carboxylates 

and phosphine ligands to form W2(O2CR)4 and W2Cl4(PR3)4 compounds, where R = alkyl 

group.[89]  

Ruthenium and osmium exhibit very similar synthetic routes to M2
+n, (M = Ru, Os) 

carboxylate compounds and dinuclear species. Diruthenium compounds with Ru2
5+ 

cores are highly abundant, and readily obtained from reaction of RuCl3·nH2O refluxing 

with a carboxylic acid and the corresponding anhydride or preferred bridging ligand in 

ethanol under inert atmosphere leading to Ru2(O2CR)4Cl, (R = H, Me, Et, 

Prn).[99,100,101,102,103] The building material for the majority of Ru2
n+ compounds comes 

from Ru2(O2CPrn)4Cl, by substitution reactions in both aqueous and organic solvents as 

well as molten amides. Compounds of Ru2
+4,6 are synthesized via oxidation or reduction 

of Ru2(O2CPrn)4Cl.[104] What separates ruthenium and osmium dinuclear chemistry is the 

OsCl3 reaction with carboxylic acid and anhydride will not produce Os2(O2CPrn)4Cl, as 

does ruthenium, but addition of 2-hydroxypyridine(hp) will afford, Os2
6+ core, 

Os2(hp)4Cl2.[105] In order to obtain a carboxylate compound OsCl6
2- in hydrochloric acid 

solution is reacted with acetic acid/anhydride producing Os2(O2CCH3)4Cl2, then with 

simple carboxylate exchange, structures of the type Os2(O2CR)4Cl2 are 

generated.[106,107,108,109]  
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The chemistry of technetium polynuclear clusters greater than binuclear can be 

summed to one type of general reaction. The reduction of pertechnetate ion in 

concentrated HCl, HBr, HI under pressure (3 - 8 MPa) with molecular hydrogen at 140-

220 °C produces hexanuclear and octanuclear halides with counter cations, or hydration 

species.[52,54,74-79] As for the chemistry Mo and W polynuclear cluster are formed by 

metal-hexacarbonyl with iodide or disproporation and reduction reactions from metal 

chlorides of varying oxidation states. Rhenium(III) chloride is naturally a trinuclear 

species and is a great starting compound for synthesis of rhenium clusters.[21]  

 

1.2.3.2 Molecular carboxylate structures, M2(O2CR)nXz 

Only 6 structurally characterized molecular carboxylate structures of technetium, 

Tc2
+6 quadruple bond, shown in Table 1.1 and Table 1.2, and those presented in Chapter 

3 are known today. For the elements surrounding technetium with structure motif, 

M2(O2CR)nXz (M = Tc, Re, Mo, W, Ru, Os; R = Alkyl; X = singly charged anionic ligand; n = 

2-4; z = 1-4) exhibit a wider known group of compounds. This can be attributed to the 

lack of laboratories worldwide working with technetium especially investigations of 

metal-metal bonded chemistry. Molecular carboxylate dimers of rhenium have been 

synthesized and characterized on the order of 30 compounds a 5 fold increase over 

those of technetium. Besides halogen, dirhenium carboxylate dimers coordinated with 

water, solvents (i.e., CH2Cl2, DMF, DMSO, THF), ReO4
-, and large organic molecules are 

known.  
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Similar to rhenium, osmium exhibits about ten, Os2
+6, molecular carboxylates with 

halide and solvent coordinated structures. On the other hand, diruthenium complexes 

prefer Ru2
+4 molecular carboxylate orientation numbering some fifteen characterized 

compounds compared to zero Ru2
+6 molecular carboxylates. As for molybdenum and 

tungsten a plethora of Mo2
+4 and W2

+4 carboxylate structures are known but no 

evidence for Mo2(O2CCH3)4Cl2 or W2(O2CCH3)4Cl2. Although tungsten, exhibits metal-

metal triple bonds with W2
+6 paddelwheel type structure have been reported in 

literature, ie, W2(hpp)4Cl2, (hpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-

a]pyrimidine).
[110,111]  

 

1.2.3.3 Polymeric carboxylate chain structures, M2(O2CR)nX 

Technetium and ruthenium seem to share a unique class of M2
+5 core structures to 

which the core is linked by one atom or unit, M2(O2CR)4X (M = Tc, Ru; R = alkyl; X = 

ligand). These compounds are paramagnetic units with Tc-Tc dimer sharing one 

unpaired electron, and Ru-Ru dimers with 3 unpaired electrons within the paddlewheel 

structure. Further exploration of this class of dinuclear carboxylate dimer is described in 

chapter 4. 

It should be noted that technetium, ruthenium and osmium form polymeric 

paddlewheel chains with O,N- or N,N- bridging ligands, i.e., M2(hp)4Cl, (hp = 2-

hydroxypyridine) where polymeric linkage is formed through the chlorine atom.[19]  
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1.2.3.4 Known polynuclear cluster compounds 

A hypothesis within the cluster community is that these polynuclear species, 

[Tc8Br14]2- form from the binuclear ions [Tc2X8]4- and [Tc2X8]5- by cycloaddition, (Figure 

1.1), and believed to mechanistically form [Tc6X14]2- in the same manner.[62,112] 

Molybdenum and tungsten form hexa-nuclear chloride species [M6Cl14]3- as well as 

other bromides and iodides. Recently interesting results for penta-nuclear W iodide, 

[W5I13]n-, (n = 1, 2) clusters in which analogues [Mo5Cl13]2- but no iodide structure of Mo 

penta-nuclear cluster is known.[113,114] Chapter 5 will focus on technetium polynuclear 

iodide synthesis and characterization. 

 

 

 

Figure 1.1. A scheme of [Tc2X8]
n- units (n = 4,5) assembling via cycloaddition to form octanuclear 

technetium clusters. [62] 
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2 CHAPTER 2: Materials and Methods 

 

This chapter will describe the preparation of the starting technetium compound, 

KTcO4, the different types of hydrothermal methods, and the various characterization 

techniques used in this work. 

 

 Materials and methods used 2.1

Caution. Due to the radioactivity of 99Tc (beta Emax = 292 keV), all manipulations 

were performed in a specially designed laboratory that can handle chemical synthesis 

with radionuclides and is equipped with HEPA-filtered fume hoods. Local procedures 

and regulations were followed for safe radioisotope handling. 

All chemicals were purchased and used as received from suppliers. Using a Milli-Q 

system, the water was purified to > 18 MΩ cm. The synthesis of the primary technetium 

starting compound is described below. 

 

 Synthesis and characterization of KTcO4 2.1.1

The synthesis of this starting compound was following a slightly modified procedure 

described in literature.[115] In an Erlenmeyer flask, 500 mg of NH4TcO4
 purchased from 

Oak Ridge National Laboratory was dissolved in about 5 mL of DI H2O. To assure 

complete dissolution and purification of the compound, the solution was heated boiling 

(reflux) and 40 μL of 30% H2O2 was added which oxidizes any black TcO2 impurity to 

TcO4
-. To precipitate the desired white solid 150 mg of KOH was added to the boiling 
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solution. The white suspension was cooled to room temperature and the supernate was 

removed by glass pipet. The white solid was washed with isopropanol and diethyl ether, 

three times each with 3 mL. The solid was then thoroughly dried in the oven 90 °C 

overnight (492 mg, yield = 90%). See Figure 2.1 for pictures of the various steps of the 

synthesis. The solid was analyzed by UV-Visible after dilution in water and attenuated 

total reflectance IR spectroscopy; see Figure 2.2 and Figure 2.3. The UV-Visible spectrum 

of the compound dissolved in water displayed two major peaks at 244 nm and 287 nm 

which confirmed the presence of pertechnetate at the concentration of 2.25 x 10-4 

mol·L-1. The concentration of the solution was determined using the Beer Lambert Law 

described in Equation 2.4 in section 2.2.2.2 and a molar absorptivity value at 244 nm of 

5690 L·mol-1·cm-1.[3] The IR spectrum showed a strong peak at 904 cm-1 which is 

characteristic of Tc=O vibrations present in pertechnetate. Another feature of the IR 

spectrum is the absence of a water signature, confirming the purity of the dehydrated 

compound and thus the molecular weight of the white precipitate to be 202 g·mol-1.  

 

  

Figure 2.1. NH4TcO4 from Oak Ridge (left), dissolution and purification of bought pertechnetate 
(middle) and white precipitate KTcO4 (right). 
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Figure 2.2. UV-Visible spectrum of KTcO4 in H2O. 

 

 

 

Figure 2.3. Infra-red spectrum of KTcO4 solid. 

 

 Hydro/Solvo-thermal reaction techniques 2.1.2

Important branches of synthetic inorganic chemistry are hydrothermal and 

solvothermal syntheses. Hydrothermal and solvothermal reactions refer to syntheses in 

a sealed and heated apparatus containing an aqueous solution and/or organic solution, 
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respectively, at appropriate temperature (100 °C – 1000 °C) and pressure (1 MPa – 100 

MPa) to dissolve or recrystallize materials that are relatively insoluble under ordinary 

conditions. The origin of these techniques was focused on the synthesis of minerals and 

extraction of elements from minerals. Recently their application has involved, inter alia, 

inorganic syntheses of conventional and advanced compounds like zeolites, 

microporous or nano materials, growth of large single crystals like quartz, treatment of 

wastes, and mimicking of geothermal and bio-hydrothermal processes. The operability 

and tunable-ness of hydro/solvo-thermal chemistry enables bridges between synthetic 

chemistry and physical properties of as-made materials. [116] 

The definition of a hydro/solvo-thermal reaction varies from author to author and 

depends on the application. In broader terms, hydro/solvo-thermal process can be 

defined as “any heterogeneous or homogeneous chemical reaction in the presence of a 

solvent (whether aqueous or nonaqueous) above room temperature and at pressures 

greater than 1 atm in a closed system”. Under these conditions, the reactants which are 

otherwise difficult to dissolve go into solution. Therefore some workers define 

hydrothermal reactions as a special case of chemical transport reactions.[117] According 

to the reaction temperature, hydro/solvo-thermal syntheses can be classified as 

subcritical (100 °C – 240 °C) or supercritical (could reach 1000 °C and 0.3 GPa).[116] 

In some cases, hydro/solvo thermal reactions offer an attractive alternative and mild 

synthetic method over solid-state reactions. Solid-state reactions depend on the 

diffusion of the raw materials at interfaces whereas for hydro/solvo-thermal the 
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reactant ions and/or molecules are in solution. The difference of reaction mechanism 

may lead to different products even if the same reactants are used.[116]  

The main disadvantage of the hydro/solvo-thermal system is the “black-box” nature 

of the experiment, because one typically cannot observe directly the reaction 

processes.[117] However it is known that during the reaction, many of the fundamental 

physical properties of the solvent like viscosity, dielectric constant, density, etc., 

undergo considerable changes during the reaction at higher temperature and pressure. 

Due to the high solvation power, high compressibility and mass transport properties of 

these solvents, powders or single crystals are formed by chemical reaction. [116,117] 

The solvent used under high temperature and pressure conditions can play an 

important role in the reaction. In hydrothermal, water can act as a solvent as well as one 

of the reactants. This potential double role is a key to change the chemical and physical 

properties of reactants and products, accelerate reactions and transfer pressure. In 

solvothermal synthesis, an organic solvent is used. This solvent is the medium of the 

reaction but also a way to dissolve or partially dissolve the reactants. This solubility 

property will affect the chemical reaction rate, the concentration and state of the 

reactants, and thus finally change the reaction process.[116]  

The pressure and temperature conditions and the corrosion resistance needed for 

the experiments are the parameters that are considered for the selection of the 

autoclave. The most commonly used autoclaves in hydrothermal research are listed in 

Table 2.1.[117,118]  
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Table 2.1. Autoclaves. [117] 

Type Characteristic data 

Pyrex tube 5 mm i.d. 2 mm wall thickness 

Quartz tube 5 mm i.d. 2 mm wall thickness 

Flat-plate seal, Morey type 

Welded Walker-Buchler closure 2600 bar at 350 °C 

Delta ring, unsupported area 

Modified Bridgman, unsupported area 

Full Bridgman, unsupported area 

Cold-cone seal, Tuttle-Roy type (batch reactors) 

Piston cylinder 

Belt apparatus 

Opposed anvil 

Opposed diamond anvil 

Continuous flow reactor 

6 bar at 250 °C 

6 bar at 300 °C 

400 bar at 400 °C 

2kbar at 480 °C 

2.3 kbar at 400 °C 

3.7 kbar at 500 °C 

3.7 kbar at 750 °C 

5 kbar at 750 °C 

40 kbar at 1000 °C 

100 kbar at > 1500 °C 

200 kbar at > 1500 °C 

Up to 500 kbar at > 2000 °C 

2 kbar at 600 °C 

 

In general, thick glass or quartz cylinder and high refractory alloys are usually used to 

build the autoclave. In order to prevent any corrosive attacks from reagents, inert 

linings, liners or cans are usually used. These are made from Teflon, Pyrex, quartz, 

graphite, Armco iron, titanium, silver, platinum, tantalum, copper, nickel, and gold. 

Detailed descriptions of various autoclaves are discussed in literature.[117]  

Experiments within this thesis were performed using two types of autoclaves: (1) A 

Parr Instruments 5500 Series high pressure controlled atmosphere autoclave (Figure 

2.4). The maximum temperature is 350 °C and maximum pressure is 200 atm or 20.3 

MPa for a volume of 300 mL with ability to initially control the type of atmosphere of 
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the autoclave. A sketch of the autoclave with internal setup for experiments is shown in 

Figure 2.5. 

 

 

Figure 2.4. A: Schematic of commercially available autoclave parts [116]. B: Picture of the Parr 
instrument 5500 series compact reactor with temperature controller on the left. 

 

 

Figure 2.5. A sketch of the internal setup of the autoclave: A, Parr Instruments 5521 series 300mL 
high pressure autoclave. B, 100 mL fused quartz beaker with cover, C, 10 mL Teflon inverted cup 

used as a loose cover. D, replaceable Teflon gasket (one use only), E, 20 mL glass scintillation 
vial, F, solution containing reactants. 

Diaphragm seal

Manometer

Valve

Rupture disc

Teflon insert

Pressure vessel

Temperature sensor

A B
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(2) A Parr instrument 4749 general purpose bomb autoclave (Figure 2.6). Maximum 

temperature is around 250 °C and maximum pressure is 120 atm for a volume of 23 mL 

and an inert Teflon liner. One disadvantage is the atmosphere of the 4749 autoclave is 

not controlled unless steps are taken to produce a special atmosphere with large error 

in final pressure of the system. A sketch of the autoclave with internal setup for 

experiments is shown in Figure 2.6. 

 

 

Figure 2.6. Parr Instrument 4749 autoclave. Left picture of the outside, right sketch of the 
internal setup: (A) stainless steel screw cap, body, pressure plates, and rupture discs, (B) 23 mL 
Teflon liner, (C) 9 mL glass vial (1.8 cm I.D. x 3.5 cm H), (D) liquid reagents, (E) KTcO4, (F) NaBH4 

solid. 

 

The biggest difference between the two autoclave systems, besides volume, is 

controlling of atmosphere. The Parr 5550 can be monitored during the experiment to 

verify the internal pressures at any given temperature (internal thermocouple). The 

4749 is unable to record or display internal pressure and only an external thermocouple 
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provides temperature of the system. The two main reasons for using the 4749 autoclave 

are high throughput, i.e., between 4-6 autoclaves can be used simultaneously compared 

to only one run in the same time period using the Parr 5500. The second reason, which 

is most important, is corrosion of the stainless steel body and fittings on the Parr 5500 

requires constant cleaning and replacement of parts. The Parr 4749 is a Teflon lined 

autoclave that can withstand halogenated solvents and mineral acids. Minimal 

maintenance is required for the 4749 autoclave, just a few inexpensive rupture discs 

and routine cleaning of the internal cell. Both autoclave systems were influential in the 

hydro/solvothermal synthesis of the technetium cluster compounds presented in 

chapters 3-5. 

 

 Characterization techniques 2.2

 Single crystal X-ray Diffraction (SC-XRD) 2.2.1

2.2.1.1 Principle 

X-ray diffraction is used to determine crystal structure and atomic spacing. X-ray 

diffraction is based on constructive interference of monochromatic X-rays and a 

crystalline sample. [119]  

In an X-ray tube, evacuated to low pressure, across the two end electrodes a high 

voltage is placed and electrons are accelerated and directed against a metal target and 

pass through a window usually made of beryllium (low atomic number for low 

absorption) (Figure 2.7). This slows the electrons by multiple collisions producing a 
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continuum of radiation. [120,121] In most X-ray work, a monochromatic wavelength is 

needed so X-rays are filtered.  

 

 

Figure 2.7. Scheme of X-ray tube. 

 

During the experiment, when the X-rays interact with the sample some constructive 

interferences are produced when conditions satisfy the Bragg’s Law showed in Equation 

2.1: 

 
nλ = 2d sinθ Equation 2.1 

The Bragg’s law shows that the lattice spacing in a crystalline sample is related to the 

wavelength of the emitted radiation at a specific diffraction angle.  

 

Crystals are characterized by well-defined structures and symmetry of the unit cell 

forming smooth faces and specific angles between any pair of these faces. Table 2.2 

describes the various crystal systems and the Bravais lattice associated.  
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Table 2.2. Crystal systems and Bravais lattices.  

System Axial lengths and angles Bravais lattice Lattice 

symbol 

Cubic Three equal axes at right angles 

a = b = c, α = β = γ = 90° 

 

 

Simple 

Body-centered 

Face-centered 

 

P 

I 

F 

Tetragonal Three axes at right angles, two equal 

a = b ≠ c, α = β = γ = 90° 

 

Simple 

Body-centered 

 

P 

I 

Orthorhombic Three unequal axes at right angles 

a ≠ b ≠ c, α = β = γ = 90° 

 

 

 

Simple 

Body-centered 

Base-centered 

Face-centered 

 

P 

I 

C 

F 

Rhombohedral 

(or Trigonal) 

Three equal axes, equally inclined 

a = b = c, α = β = γ ≠ 90° 

 

Simple R 

Hexagonal Two equal coplanar axes at 120°, 

third axis at right angles 

a = b ≠ c, α = β = 90°, γ = 120° 

 

Simple P 

Monoclic Three unequal axes, one pair not at 

right angles 

a ≠ b ≠ c, α = γ = 90° ≠ β  

 

Simple 

Base-centered 

 

P 

C 

Triclinic Three unequal axes, unequally 

inclined and none at right angles 

a ≠ b ≠ c, α ≠ β ≠ 90° 

 

Simple P 

Note: the symbol ≠ implies non-equality by reason of symmetry. Accidental equality 

may occur.  
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2.2.1.2 Procedure 

For single crystal analysis, first a good crystal is selected, usually under an optical 

microscope, and then fixed with epoxy, glue, or Paratone to the tip of a thin glass fiber 

or a Kaptan cryoloop. The capillary is mounted on a goniometer to allow positioning and 

rotation in the instrument (Figure 2.8). The crystal is normally cooled to 100 K by 

computer controlled Oxford nitrogen cryostream system, to minimize thermal motion 

and thus enhancing diffraction data resolution.  

 

 

Figure 2.8. Scheme of goniometer and capillary for SC-XRD analysis. [122] 

 

When the crystal is installed inside the instrument, various steps are necessary to 

prepare data collection since it is an automated procedure.  

First the crystal needs to be centered, which means that the diffracted beam from 

crystal’s reflections at its maximum intensity must pass into the center of the detector. 
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[122] Then a simple cell and matrix are chosen to assign integral indices to all reflections. 

When the original primitive cell is found, the Bravais lattice is established. Peak-top 

measurements or a rapid data collection within the chosen range should identify 

sufficiently intense reflections. Reflections should be chosen so that the precision of the 

matrix is as similar as possible in all directions.[122]  

 

2.2.1.3 SC-XRD Instrument and Software 

Single crystal X-ray diffraction data were collected on a Bruker Apex II CCD 

diffractometer using Mo-Kα radiation (λ = 0.71073 Å). The Apex II suite was used to 

perform data processing and an absorption correction performed with SADABS. Solution 

to the structure was performed by Direct Methods and refinement was carried out using 

SHELX[123] and OLEX2.[124] 

If required anisotropic approximations of all atoms except hydrogen were refined 

against F2, whereas the hydrogen atoms positions were determined geometrically and 

refined using the riding model. All crystal structure visualizations were prepared in 

Mercury 3.3 software.[125] or Diamond 3.2[126]  

In certain cases, such as crystal structure elucidation for K[Tc8(μ-I)8I4]I , the resulting 

data showed the crystal was a non-merohedral twin and refinement against both crystal 

domains was attempted but produced a substantially higher R-value after which 

refinement against a single merged domain provided a reasonable R-value. 
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2.2.1.4 Solving Crystal Structures 

After data collection, the data are combined computationally with complementary 

chemical information to produce an electron density map. The calculation of the 

electron density map from an X-ray diffraction pattern is obtained by a Fourier analysis. 

Then the atoms are fitted to this map. After refinement and model fitting a crystal 

structure can be obtained.[122,127] 

Solving a crystal structure is often a result of successive approximations knowing 

that the repeating structure and the diffraction pattern are related to one another by 

Fourier summations. A structure is generally said to be solved when most of the atoms 

have been located in the unit cell. The choice of parameters and how they are fitted to 

the experimental data affects the result of the whole structure analysis. The structural 

refinement is evaluated from the agreement between the calculated and the measured 

structure factors. Having a fully refined structure with a set of coordinates and 

displacement parameters for each atom, it is possible to derive bond lengths, other non-

bonded distances, bond angles, torsion angles and hydrogen bonds. The results can be 

presented as graphics of the final structure, lists of table and they can be archived as CIF 

Format. A summary of SC-XRD technique is presented in Figure 2.9. 
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Figure 2.9. Summary of SC-XRD technique. [127] 

 

2.2.1.5 CIF (Crystallographic Information File)  

Informal meanings for CIF are used to describe the format, the data output by a 

control or refinement program, as well as the data file (comprising two or more data 

blocks) submitted as a manuscript for electronic publication.[122] It is a free-format ASCII 

archive file for the transmission of the crystallographic data. It is based around the Self-

defining Text Archive and Retrieval (STAR) procedure. This final organized data set in 

unique to the diffracted crystal motif and the CIF file is transferrable to many different 

software programs and databases for analysis and viewing. 

 

 Other techniques 2.2.2

2.2.2.1 Magnetic susceptibility 

Magnetic susceptibility is the physical quantity describing material properties in the 

external magnetic field.[128] It is defined by the ratio between magnetization (M) of the 

materiel in the magnetic field and the field intensity (H) by the Equation 2.2: 
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M = χ · H Equation 2.2 

where X is the magnetic moment of the molecule in the direction of the applied field 

and is unitless, M is measured in units of amperes per meter [A.m-1] and H is measured 

in [A.m-1] which is related to the magnetic induction B measured in tesla [T]. Applying a 

Boltzmann distribution with Avogadro’s number, equation 1.2 is transformed into 

magnetic susceptibility which leads to Curies law’s and calculating µeff, the effective 

bohr magneton value also referred to as effective magnetic moment.[129] 

All materials can be classified by value of magnetic susceptibility into three groups: 

[130] 

- Diamagnetic materials: -1 < χ < 0. Materials create an induced magnetic field in 

the opposite direction of the externally applied magnetic field. 

- Paramagnetic materials: 0 < χ <<1. Materials that are attracted by externally 

applied magnetic field and create an induced magnetic field in the same 

direction as the externally applied magnetic field. 

- Ferromagnetic materials: χ >>1. Materials that can be magnetized by an external 

magnetic field and remain magnetized after the field is removed.  

 

Various techniques can be used to determine the magnetic susceptibility of 

materials. Compounds Tc2(O2CCH3)4(µ-O2CCH3) and Tc2(O2CCH3)4I were analyzed using a 

Quantum Design PPMS (Physical Property Measurement System) in a DC magnetometer 

mode at UNLV by Professor Andrew Cornelius and Daniel Antonio. During 
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measurements, the sample is placed inside a constant persistent field, H, at 0.1 T using 

the superconducting magnet and a moment, M, is created in the sample. It is then 

moved quickly through the detection coils and a signal is induced according to Faraday’s 

law and the magnetic susceptibility is measured according to Equation 2.2.  

Compound Tc5I13 was analyzed using a Quantum Design MPMS5 SQUID (Magnetic 

Properties Measurement System – 5 Superconducting Quantum Interference Device) 

magnetometer, at Northwestern University by Dr. Christos D. Malliakas. A SQUID is an 

extremely sensitive magnetometer that can measure very small magnetic fields (as low 

as 5 x 10-18 T). Polycrystalline powdered Tc5I13 was loaded in a gelatin capsule. 

Temperature-dependent data were collected under zero-field-cooled (ZFC) and field-

cooled (FC) conditions between 2 and 300 K, with an applied field H = 500 Oe. The 

experimental data were fitted against the modified Curie-Weiss law (Equation 2.3) 

 
[χ = χ0 + C/(T-θ)] Equation 2.3 

where χ is the molar magnetic susceptibility, χ0 is the temperature independent 

paramagnetic term, C is the Curie constant, and θ is the Curie temperature. Background 

(plastic straw and gelatin capsule) was subtracted from the susceptibility data and 

diamagnetic contribution of the elements was corrected using Pascal’s constants.  

 

2.2.2.2 UV-Visible spectroscopy 

During ultraviolet-visible (UV-Vis) spectroscopy photons from the ultraviolet (UV), 

Visible and near infrared (NIR) regions are absorbed by the sample and electronic 
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transitions are observed.[131,132] Equation 2.4 gives the Beer-Lambert law [133] that can be 

used to determine quantitative concentrations of an absorbing species in solution [134]: 

 A = - log10 (I / I0) = ε . c . 𝑙 Equation 2.4 

where, at a given wavelength, A is the measured absorbance from the species in 

solution, I0 is the intensity of the incident light, I is the transmitted intensity measured, 𝑙 

the path length through the sample, c the concentration of the absorbing species, and ε 

the molar absorptivity or extinction coefficient. The latter is a constant determined for 

each species at a particular wavelength.  

This technique was used to determine speciation of the species present in 

solution.[131,132] The apparatus used was a Cary 6000i UV-Vis-NIR Spectrophotometer. 

Analyses were performed at room temperature between 190 and 800 nm. The spectra 

were baseline corrected using the same solvent as the sample analyzed.  

 

2.2.2.3 Liquid Scintillation Counting 

This technique was used to determine the concentration of technetium-99 in 

solution.[135] For the measurement, around 5 mg of compound was dissolved in 5 mL of 

concentrated ammonium hydroxide for multiple days and the solution was diluted to 

1000 with DI H2O. Samples for liquid scintillation counting (LSC) contained 10 mL of 

scintillation cocktail ULTIMA GOLD ABTM (Packard), 100 μL of diluted sample solution 

and 100 μL of DI H2O to correspond to calibration curves. The measurements were 

performed on a Perkin Elmer liquid scintillation counter Tri-Carb 3100TR coupled with 
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QuantaSmart software. A calibration curve of KTcO4 in water was used to determine the 

concentration of the solutions and thus the quantity of 99Tc in the solid.  

 

2.2.2.4 Iodide elemental analysis  

US-EPA Method 345.1 was used to determine the amount of iodide (2-20 mg/L I-). 

The desired compound is dissolved and prepared for titration. Bromine is used to 

convert iodide into iodate which is then titrated by sodium thiosulfate. A sample of the 

compound containing iodide is dissolved in 10 mL of ammonium hydroxide with two 

drop of 30% hydrogen peroxide. The dissolution time may take up to 24 hours to be 

complete depending of the compound. Using pH electrode, the solution is then adjusted 

to approximately 7 by dropwise addition of 3.6 M H2SO4. To prepare for titration several 

solutions are added to the dissolved compound: 15 mL of 2.0 M NaC2H3O2, 5 mL of 3.5 

M HC2H3O2, 40 mL 7.8 mM Br2 in (H2O). The solution is mixed for 5 minutes and then 2 

mL of 7.4 M NaCHO2 is added and mixed into the solution for 2 minutes. Solution is 

titrated with 0.0375 M Na2S2O3 sodium thiosulfate and few drops of indicator, 1% starch 

in water, until the light yellow solution becomes colorless.[136] 

 

2.2.2.5 Infrared spectroscopy 

IR spectroscopy is usually used to obtain information about the structure of a 

compound. Molecular structure of sample can be determined by analyzing in the IR 

spectrum the position, shape and intensity of the peaks.[132] This technique, performed 

on a Varian 3100 FTIR Excalibur Series equipped with a diamond attenuated total 
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reflection (ATR) apparatus, was principally used to detect the presence of carbonyl 

functional groups through characteristic C-O and C=O stretching modes. The samples 

were analyzed using attenuated total reflectance attachment.  

This technique enables to analyze directly the powder onto the diamond ATR and 

thus no further sample preparation is needed.  

 

2.2.2.6 Energy Dispersive X-ray spectroscopy 

In order to determine the elemental composition of the sample, energy dispersive X-

ray spectroscopy (EDS) can be used. This technique uses a focused beam of electrons to 

interact with the sample. At this point, core electrons in the sample are ejected, and 

during the filling of this hole with an outer shell electron, characteristic X-rays are 

emitted. The analysis of energies and intensities of these signature X-rays permits one 

to identify and quantify the elements present in the sample.[137,138] The EDS 

measurements were accomplished using two different instruments and techniques. The 

first method was through transmission electron microscopy (TECNAI-G2-F30 Super-twin) 

with a 300 keV field emission gun. The EDS spectrum was collected under STEM 

(scanning transmission electron microscopy) mode [139]. The technetium samples were 

prepared by the solution-drop method [140] on carbon film supported on a copper grid. 

The second method used was through Scanning Electron Microscopy (SEM JEOL JSM-

5610). The technetium samples were spread onto carbon tape, coated with carbon and 

analyzed by EDS mapping.  
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2.2.2.7 X-ray Absorption Fine Structure spectroscopy 

During X-ray Absorption Fine Structure (XAFS) spectroscopy experiments, incident X-

ray photons from a source, such as a synchrotron, equal to the binding energy of the 

core-level electron of element probed are absorbed promoting electron out of the core 

creating a photo-electron in continuum space.[141,142] These photo-electrons act as very 

sensitive probes that see charge distribution and the arrangement of surrounding 

“neighboring” atoms. This occurs when an ejected photoelectron wave interacts with a 

backscattered wave from neighboring atom electrons causing an interference or 

modulated pattern on the central atom. The interferences happen on different scales 

within the absorption spectra leading to specific information about the central atom as 

well as its close neighbors. The X-ray absorption spectrum is divided into two regions, 

shown in Figure 2.10: X-ray absorption near-edge spectroscopy (XANES) and extended 

X-ray absorption fine structure spectroscopy (EXAFS). The XANES section of the 

spectrum is sensitive to formal oxidation state and coordination chemistry of the 

absorbing atom. The XANES absorption is classified by all scattering pathways of the 

photo-electron wave, meaning multiple interactions with neighboring atoms. The EXAFS 

section allows for determination of distances, coordination number, and neighboring 

elements of the absorbing atom. Although multiple scattering can be considered for 

EXAFS, traditionally EXAFS is classified as a single scattering photo-electron with by a 

single neighboring atom, which allows for bond lengths between the central and 

neighboring atoms to be determined.[141,143] 
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Figure 2.10 Principles of XAFS of X-ray absorption spectroscopy. 

 

Measurements at the Tc K-edge were performed at the Advanced Photon Source 

(APS) at the BESSRC-CAT 12 BM station at Argonne National Laboratory. Solids were 

diluted by mass to about 1% technetium with boron nitride and placed in an aluminum 

sample holder of local design (Figure 2.11 A). The 100 μL solutions were injected in a 

special aluminum liquid sample holder (Figure 2.11 B).  

 

 

Figure 2.11. A: solid sample holder and B: liquid sample holder for XAFs experiment at APS. 
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During XAFS experiment, a double crystal of Si[111] was used as a monochromator 

and the spectra were recorded at the Tc K-edge (i.e., 21,044 eV). The energy was 

calibrated using a molybdenum foil (K-edge = 20,000 eV). The XAFS spectra were 

recorded in transmission mode and in fluorescence mode at room temperature using a 

13 element germanium detector. To analyze the data, the raw data are background 

subtracted and normalized using ATHENA software [144]. Using known crystallographic 

structures input files were generated by Atoms [145] and the amplitude and phase shift 

function were calculated using FEFF 8.2 [146]. These theoretical data were then used for 

the fitting procedure comparing the theory with the experimental data through k-

weight and Fourier transform into R-space using WINXAS [147]. 
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3 Chapter 3: Molecular Metal-Metal Bonded Technetium Compounds 

 

 Introduction 3.1

In this chapter, reliable, high yield syntheses of Tc2(O2CCH3)4Cl2 and Tc2(O2CCH3)4Br2 

are described as well as their characterization by single crystal x-ray diffraction. 

Tc2(O2CCH3)4Cl2 was first reported in the Russian literature in 1980, followed by the 

synthesis of Tc2(O2CCH3)4Br2 in 1992.[47,148] Subsequently, some sketchy details on the 

preparation of the chloride using hydrothermal techniques were provided in a 1981 

Russian patent.[149] A handful of additional publications dealing with Tc2(O2CCH3)4Cl2 and 

its bromide analog have appeared since the patent and alternative methods for its 

preparation have been described. Preetz and coworkers [150] modeled their synthesis of 

Tc2(O2CCH3)4Cl2 after that used by Cotton, et al., to prepare Re2(O2CCH3)4Cl2 (Equation 

3.1).[151] This reaction provides Tc2(O2CCH3)4Cl2 in about 40% yield, but requires the prior 

preparation of [n-Bu4N]2[Tc2Cl8]. Interestingly, the substitution reaction from [n-

Bu4N]2[Tc2Br8] with acetic acid and anhydride yields about 79%, Tc2(O2CCH3)4Br2 this 

may be due to more labile bromine atom. [148,152] 

 

 [Re2Cl8]2- 
excess CH3COOH
→            Re2(O2CCH3)4Cl2 + 4 HCl + 2 Cl- Equation 3.1 

 

The compound [n-Bu4N]2[Tc2Cl8] is accessible in comparable yield (40-50%) from 

ammonium pertechnetate, but the synthesis involves 4 steps and takes a minimum of 2 

days. Given the fact that both reactions are performed on a small scale, an overall yield 
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of Tc2(O2CCH3)4Cl2 and Tc2(O2CCH3)4Br2 on the order of 20% is far from satisfactory. Two 

other technetium(III) tetracarboxylate complexes are known, but both were isolated in 

low yield. The tetrapivalate, Tc2(O2CCMe3)4Cl2, was prepared from the reaction of 

(NH4)3Tc2Cl8 with molten pivalic acid,[52] and [Tc2(O2CCH3)4](TcO4)2 was isolated from the 

aerial oxidation of solutions containing [Tc2(O2CCH3)4Cl2]1-.[153]  

Until recently the single crystal structure of Tc2(O2CCH3)4Cl2, and Tc2(O2CCH3)4Br2, 

were unknown, and the complexes were characterized by EXAFS, IR and Raman 

spectroscopy.[48,148-150,152] Single crystal solid state elucidation is important for helping to 

understand the metal-metal bonded chemistry of technetium. 

 

 Experimental 3.2

 Preparation of Tc2(O2CCH3)4Cl2 3.2.1

The synthesis of tetraacetatodichloroditechnetate(III), Tc2(O2CCH3)4Cl2, was a local 

and improved (see below) modification of the procedure first reported by Rezvov, et 

al.[149] To a 20 mL glass scintillation vial was added KTcO4 (55.0 mg, 0.27 mmol) and an 

18 mL mixture of glacial acetic acid and concentrated hydrochloric acid (2:1 by volume). 

The vial was loosely capped with an inverted 10 mL Teflon cup and placed inside of a 

100 mL fused quartz beaker with cover. This dual containment, depicted in Figure 2.6, 

allows for gases to permeate the reaction mixture and minimizes the spread of 

technetium to the autoclave. The apparatus is sealed in a 300 mL Parr Instruments 5521 

series high pressure autoclave, Figure 2.5. The autoclave was purged two times with 5 

atm of H2, filled to a starting pressure of 35 atm H2, and then heated to 210 °C at 5 
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C/min. After 14 hours, the heater was switched off and the autoclave was allowed to 

cool slowly to room temperature. At that point, the autoclave was carefully 

depressurized and opened to reveal a deep red-orange mother-liquor covering a crop of 

dark red elongated hexagonal crystals, shown in Figure 3.1. The air-stable product was 

rinsed with acetic acid, followed by isopropyl alcohol, and diethyl-ether, and allowed to 

dry in air. The reaction produced 48.1 mg (0.095 mmol) of Tc2(O2CCH3)4Cl2 for a yield of 

70%, a significant improvement over the 51% yield reported in the patent.[149] The 

compound is insoluble in common organic solvents (e.g., acetone, acetonitrile, 

tetrahydrofuran, and methylene chloride) and aqueous acids including hydrochloric, 

sulfuric, and acetic, but hydrolyze under alkaline conditions consistent with the 

observations of Zaitseva, et al.[47] An ATR-FTIR spectrum, Figure 3.2, of Tc2(O2CCH3)4Cl2 

reveals COO stretches at 1441 cm-1 (vs) and 1375 (vs) cm-1, characteristic of bridging 

acetate groups and similar in energy to the analogous vibrations in Re2(O2CCH3)4Cl2, viz., 

at 1456 and 1385 cm-1, as reported by Taha and Wilkinson.[42] 

 

 

 



 

 47  
 

 

Figure 3.1. Leica optical microscope images of Tc2(O2CCH3)4Cl2 on the right and SEM image 
magnification x350 in back scattering mode on the left. 

 

 

 

Figure 3.2. ATR-FTIR spectrum of Tc2(O2CCH3)4Cl2. 
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 Preparation of Tc2(O2CCH3)4Br2 3.2.2

The synthesis of tetraacetatodibromoditechnetate(III), Tc2(O2CCH3)4Br2, was 

performed by a modification of the experimental setup described in Section 3.2.1. To 

the glass vial was added 52.0 mg (0.257 mmol) KTcO4, and a starting solution with an 

altered composition of 18 mL of glacial acetic acid to hydrobromic acid (20:1 by volume) 

ratio. Larger amounts of HBr in acetic acid (2:1 or 5:1 by volume) lead to a final product 

of K2TcBr6(s). By reducing the molar ratio of bromide ion in solution it is believed that 

TcBr6
2- ion was not completely formed in high enough concentration to precipitate out 

before reduction of Tc(+7) to low valent oxidation state, e.g., Tc(+3), Tc(+4). The thought 

process of systematically changing concentration of hydrobromic acid was derived from 

the work of Resvov, et al., in the synthesis of dichloro species.[149]  

All other conditions were followed as described in Section 3.2.1. The reaction 

produced clusters of dark red-orange short hexagonal crystals shown in Figure 3.3. In 

the final synthesis, 49.6 mg (0.084 mmol) of Tc2(O2CCH3)4Br2 was isolated in a yield of 

65%. The compound is insoluble in common organic solvents (e.g., acetone, acetonitrile, 

tetrahydrofuran, and methylene chloride) and aqueous acids including hydrochloric, 

sulfuric, and acetic, but hydrolyzes under alkaline conditions, identical to 

Tc2(O2CCH3)4Cl2. An FTIR spectrum, Figure 3.4 , of Tc2(O2CCH3)4Br2 reveals COO stretches 

at 1440 cm-1 (vs) and 1389 (vs) cm-1, 1355 cm-1 characteristic of bridging acetate groups 

and similar in energy to the analogous vibrations in Re2(O2CCH3)4Br2, viz., at 1451 and 

1382 cm-1.[148] 
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Figure 3.3. Leica optical microscope images of Tc2(O2CCH3)4Br2 on the right and SEM image 
magnification x90 in back scattering mode on the left. 

 

 

 

Figure 3.4. ATR-FTIR spectrum of Tc2(O2CCH3)4Br2. 
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 Preparation of Tc2(O2CCH3)3Cl2(H2O)2·H2O 3.2.3

  The synthesis of triacetatodiaquadichloroditechnetate(III) monohydrate, 

Tc2(O2CCH3)3Cl2(H2O)2·H2O, was performed by the experimental setup described above 

in Section 3.2.1 and is a byproduct of the reaction. At post procedure, the mother liquor 

presented no crystals of Tc2(O2CCH3)4Cl2 and the solution was capped (exposed to 

normal atmosphere) and set aside for two days. After the two days, visual inspection of 

the vial revealed crystals growing on the glass shown in Figure 3.5. Upon decanting of 

the mother liquor, dark red elongated hexagonal crystals of Tc2(O2CCH3)4Cl2 and 

rectangular turquoise crystals of Tc2(O2CCH3)3Cl2(H2O)2·H2O were isolated and are 

shown in Figure 3.6. The single crystal structure data obtained by XRD encouraged 

dissolving the small amount of crystals into acetonitrile for the UV-vis absorption, shown 

in Figure 3.7, indicating a broad band at 1000 nm. Liquid scintillation counting on the 

acetonitrile solution determine the amount of technetium in solution was 2.86 µM or 

1.4 mg of Tc2(O2CCH3)3Cl2(H2O)2·H2O.  

  

 

Figure 3.5. Mother liquor solution removed from original vial after two days, revealing crystals of 
Tc2(O2CCH3)3Cl2(H2O)2·H2O seen on the bottom and sides of the empty vial. The clear liquid in the 

bottom of the vial on the right is paratone oil used to obtain single crystals for XRD. 
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Figure 3.6. Leica optical microscope images of Tc2(O2CCH3)3Cl2(H2O)2·H2O (turquoise, 
rectangular)growing alongside Tc2(O2CCH3)4Cl2 (red, elongated needle) on the right and 

Tc2(O2CCH3)3Cl2(H2O)2·H2O isolated on the left. 

 

 

Figure 3.7. UV-Visible spectrum of Tc2(O2CCH3)3Cl2(H2O)2·H2O in acetonitrile. 

 

 

 Single Crystal X-ray Diffraction 3.2.4

A long dark red hexagonal crystal of Tc2(O2CCH3)4Cl2, Figure 3.1, dark red-orange 

hexagonal cone cluster crystal of Tc2(O2CCH3)4Br2, Figure 3.3, and irregular rectangular 

200 μm300 μm
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turquoise crustal of Tc2(O2CCH3)3Cl2(H2O)2·H2O, Figure 3.6 were mounted under 

Paratone on a Kaptan cryoloop for data collection. Single crystal X-ray diffraction data 

were collected on a Bruker Apex II CCD diffractometer using Mo-Kα radiation (λ = 

0.71073 Å). The crystal was maintained at 100 K during data collection using an Oxford 

nitrogen cryostream system. The Apex II suite was used to perform data processing and 

an absorption correction performed with SADABS. Solution to the structure was 

performed by Direct Methods and refinement was carried out using SHELX-97.[123] 

Anisotropic approximations of all atoms except hydrogen were refined against F2, 

whereas the hydrogen atoms positions were determined geometrically and refined 

using the riding model. 

 

 Results and Discussion 3.3

Interest in exploring hydrothermal methods was spurred by the need for a higher 

yield route to Tc2(O2CCH3)4Cl2 (see Chapter 1). The Russian literature suggested that 

Tc2(O2CCH3)4Cl2 was accessible from potassium pertechnetate, KTcO4, in what could be 

described euphemistically as a “one-pot reaction.” Treatment of a solution of KTcO4 in a 

20:1 mixture of acetic acid and concentrated aqueous hydrochloric acid with excess 

hydrogen for 14 hr at 210 °C provides Tc2(O2CCH3)4Cl2 in 70% yield in the form of dark 

red crystals that can be recovered by filtration of the mother liquor (Equation 3.2). The 

details of how Tc2(O2CCH3)4Cl2 is generated during the course of this procedure are not 

known, but it would appear from other papers in the technetium literature that 

reduction of the metal below the +4 oxidation state invariably leads to coupling of metal 



 

 53  
 

centers and the formation of dinuclear or polynuclear clusters.[16] This process is likely 

encouraged by the presence of bridging acetate ligands. Once formed, Tc2(O2CCH3)4Cl2 is 

insoluble in common organic solvents and the mother liquor from whence it was 

isolated. 

 

 
2 KTcO4 + 4 HCl + 4 CH3CO2H + 4 H2 → 

Tc2(O2CCH3)4Cl2 + 2 KCl + 8 H2O 
Equation 3.2 

 

The compound Tc2(O2CCH3)4Cl2 crystallizes in the monoclinic space group P21/n with 

a = 6.4258 (8) Å, b = 8.8474(11) Å, c = 12.5285(16) Å, and β = 90.778(2)°, broadly 

consistent with the isostructural Re analog.[154] Crystallographic data and refinement 

parameters are summarized in Table 3.1, with full information and cif in Appendix B. The 

molecular structure of the Tc2(O2CCH3)4Cl2 is shown in Figure 3.8 and Figure 3.9. In 

Figure 3.8, a normal view of the molecular structure shows the expected ditechnetium 

paddle wheel motif, capped with axial chlorines. Figure 3.9 shows a unit cell along the a- 

and b-axes. Selected bond lengths are summarized in Table 3.2 and Table 3.3. The 

refined Tc-Tc quadruple bond length (2.1758(3) Å) is essentially identical to the 

published extended x-ray absorption fine structure (EXAFS) value (Tc-Tc = 2.18(2) Å),[152] 

and is slightly shorter than that estimated (2.19 Å) from an analysis of the Raman 

spectrum.[148] It is also marginally shorter than the Tc-Tc separation reported (2.192 (2) 

Å) for the related pivalate derivative.[52] 
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Table 3.1. Crystallographic data and refinement parameters for Tc2(O2CCH3)4X2 [X = Cl, Br] and 
Tc2(O2CCH3)3Cl2(H2O)2·H2O, 1-3 respectively. 

Crystallographic data 1 2 3 

Empirical Formula C8H12Cl2O8Tc2 C8H12Br2O8Tc2 C6H15Cl2O9Tc2 
Formula weight 504.90 593.80 499.90 
Temperature (K) 100 100 100 
Wavelength (Å) 0.71073 0.71073 0.71073 
Crystal system Monoclinic Monoclinic Monoclinic 
Space group P21/n P21/n P21 
a (Å) 6.4258(8) 6.5299(7) 7.7102(7) 
b (Å) 8.8474(11) 9.0483(9) 11.4786(11) 
c (Å) 12.5285(16) 12.5915(13) 8.3468(8) 
α (°) 90.00 90.00 90.00 
β (°) 90.778(2) 90.718 94.8430(10) 
γ (°) 90.00 90.00 90.00 
V (Å3) 712.20(15) 743.90 736.07(12) 
Z 2 2 2 
Density calculated (Mg m-3) 2.346 2.643 2.256 
Absorption coefficient 
(mm-1) 

2.346 
7.259 2.273 

F(000) 488 560 486 
Range of 2θ (°) 2.82 – 30.51 2.77 – 30.51 2.45 – 31.50 

Index ranges (h, k, l) 
-9 ≤ h ≤ 9,  
-12 ≤ k ≤ 12, 
 -17 ≤ l ≤ 17 

-9 ≤ h ≤ 9,  
-12 ≤ k ≤ 12,  
-17 ≤ l ≤ 17 

-11 ≤ h ≤ 11,  
-16 ≤ k ≤ 16,  
-12 ≤ l ≤ 12 

Reflections collected 11170 11863 12743 
Independent reflections 
 

2169  
[R(int) = 0.0277] 

2265  
[R(int) = 0.0280] 

4868 
[R(int) = 0.0203] 

Complete to 2θ (%) 100.0 100.0 100.0 
Refinement method 
 

Full-matrix  
least-sq on F2 

Full-matrix  
least-sq on F2 

Full-matrix  
least-sq on F2 

Data/restraints/parameters 2169 / 0 / 93 2265 / 0 / 93 4868 / 4 / 194 
Goodness-of-fit on F2 1.076 1.046 1.027 
Final R indices [I > 2σ(I)] 
 

R1 = 0.0180,  
wR2 = 0.0467 

R1 = 0.0184,  
wR2 = 0.0400 

R1 = 0.0152,  
wR2 = 0.0363 

R indices (all data) 
 

R1 = 0.0204,  
wR2 = 0.0476 

R1 = 0.0219,  
wR2 = 0.0409 

R1 = 0.0157,  
wR2 = 0.0365 
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The paddlewheel unit is quite regular with the exception of the capping chlorides, 

which are bent roughly 8° from linear (Tc(1a)-Tc(1)-Cl(1) = 171.903(13)°). A smaller 

distortion (3.5°) is observed in the corresponding dirhenium analog,[154] and no 

distortion is observed for the pivalate complex,[52] which crystallizes in a tetragonal 

space group. We suspect that crystal packing is responsible for these small distortions. 

The packing for Tc2(O2CCH3)4Cl2 is illustrated in Figure 3.9. The distorted Tc-Tc-Cl angle 

may impact Tc-Cl distance. We find the latter to be 2.5078(4) Å, or considerably longer 

than the estimates of 2.43(1) Å from EXAFS [152] and 2.41 Å from the Raman data [148]. In 

the EXAFS analysis, the number of Cl atoms attached to Tc was fixed at one, and the Tc-

Cl distance and the Debye-Waller factor (DWF) for the Tc-Cl scattering were refined.[152] 

The DWF fit, i.e., 0.012 Å2, is significantly higher than the ones reported in other Tc 

chloride complexes, which are typically on the order of 0.003 Å2. The value of the 

residual (difference between the experimental spectra and the fit) is also high (17%) and 

suggests that the fit may not be optimal. Further analysis of the EXAFS spectra of 

Tc2(O2CCH3)4Cl2 by fixing the DWF to those determined in reference samples such as (n-

Bu4N)2Tc2Cl8 and refining the distance and the number of Cl atoms will be necessary to 

ascertain if the Tc-Cl distance found by EXAFS spectroscopy converges on the SC-XRD 

value. Table 3.2 summarizes important bond distances/angles determined by the 

various methods.  
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Figure 3.8. X-ray crystal structure of Tc2(O2CCH3)4Cl2. The ORTEP representations display 
ellipsoids at the 50% probability level with key bond lengths shown. 

 

 

Figure 3.9. Unit cell views of Tc2(O2CCH3)4Cl2 along the a-axis (left image) and b-axis (right 
image). Hydrogen atoms are omitted for clarity. 
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Table 3.2. Selected interatomic distances [Å] and angles [°] for Tc2(O2CCH3)4X2 [X = Cl, Br], 
Tc2(O2CC(CH3)3)4Cl2, and Re2(O2CCH3)4X2 [X = Cl, Br]. 

Compound [ref.] d M-M d M-X d M-O (av.) M-M-X 
M-M-O 

(av.) 

Tc2(O2CCH3)4Cl2 [152] 

                         [148] 

               [this work,48] 

2.18(1) 

2.192 

2.1758(3) 

2.43(1) 

2.41 

2.5078(4) 

2.03(1) 

2.03 

2.0211(12) 

- 

- 

171.903(13) 

- 

- 

90.63(4) 

Tc2(O2CCH3)4Br2[152] 

  [148] 

[this work] 

2.19(1) 

2.192 

2.1764(3) 

2.63(1) 

2.600 

2.6554(3) 

2.03(2) 

2.032 

2.0223(12) 

- 

- 

173.563(12) 

- 

- 

90.82(4) 

Tc2(O2CC(CH3)3)4Cl2 [52] 2.192(2) 2.408(4) 2.032(4) 180.00 90.67(11) 

Re2(O2CCH3)4Cl2 [154] 

Re2(O2CCH3)4Br2 [148] 

2.224(4) 

2.224 

2.5213(4) 

2.022 

2.0181(14) 

2.603 

176.519(5) 

- 

90.074(5) 

- 
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Table 3.3. Selected bond lengths and angles for Tc2(O2CCH3)4Cl2. 

 Bond length [Å]   Bond Angle [°] 

Tc(1)-O(1) 2.0164(12)  O(1)-Tc(1)-O(3) 89.59(5) 

Tc(1)-O(2) 2.0259(12)  O(1)-Tc(1)-O(2a) 177.47(5) 

Tc(1)-O(3) 2.0390(12)  O(1)-Tc(1)-O(4a) 89.63(5) 

Tc(1)-O(4) 2.0034(12)  O(1)-Tc(1)-Tc(1a) 91.22(4) 

Tc(1)-Tc(1a) 2.1758(3)  Tc(1a)-Tc(1)-Cl(1) 171.903(13) 

Tc(1)-Cl(1) 2.5078(4)  O(1)-Tc(1)-Cl(1) 91.12(4) 

O - C(avg.) 1.280(2)  C(3)-O(3)-Tc(1) 120.94(11) 

C - C(avg.) 1.484(2)  O(2)-C(1)-C(2) 120.23(15) 

 

 

Inevitably, interest quickly shifted to the synthesis of the bromo analogue. At first 

several experiments resulted in crystals of K2TcBr6(s) and it was puzzling that a direct 

molar ratio of 2:1 acetic acid to hydrobromic acid did not afford Tc2(O2CCH3)4Br2 as it did 

for the chloro species. A review of the original Russian patent on Tc2(O2CCH3)4Cl2, 

revealed that changing the molar amount of chloride in the system influenced the 

synthesis and yield of the compound. Steps were then taken to systematically increase 

the molar ratio of acetic acid:HBr in the system to synthesize Tc2(O2CCH3)4Br2. Only one 

ratio provided crystals of Tc2(O2CCH3)4Br2 which is not to say that the compound did not 

exist in solution for other molar ratios. The compound could not be characterized by UV-
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Vis spectroscopy because the mother-liquor solution saturated the detector and dilution 

revealed no further information.  

The optimal condition for the preparation of Tc2(O2CCH3)4Br2 involves the treatment 

of a solution of KTcO4 with a 20:1 mixture of acetic acid and concentrated aqueous 

hydrobromic acid with excess hydrogen for 14 hr at 210 °C. This provides 

Tc2(O2CCH3)4Br2 in 65% yield in the form of beautiful dark red-orange crystals that can 

be recovered by filtration of the mother liquor (Equation 3.3). As with Tc2(O2CCH3)4Cl2 

details of how Tc2(O2CCH3)4Br2 is generated during the course of this procedure are not 

known or obvious.  

 

 
2 KTcO4 + 4 HBr + 4 CH3CO2H + 4 H2 → 

Tc2(O2CCH3)4Br2 + 2 KBr + 8 H2O 
Equation 3.3 

 

The complex Tc2(O2CCH3)4Br2 crystallizes in the monoclinic space group P21/n with a 

= 6.5299 (7) Å, b = 9.0483(9) Å, c = 12.5915(13) Å, and β = 90.718(2)°, a slight elongation 

of the unit cell along a- and b-axis and broadly consistent with the isostructural Re-Cl 

analog.[154] Crystallographic data and refinement parameters are summarized in Table 

3.1, with full information and cif in Appendix B. The molecular structure of the 

Tc2(O2CCH3)4Br2 is shown in Figure 3.10 and Figure 3.11. In Figure 3.10, a normal view of 

the molecular structure shows the expected ditechnetium paddle wheel motif, capped 

with axial bromines. Figure 3.11 shows a unit cell along the a- and b-axes. Selected bond 

lengths are summarized in Table 3.2 and Table 3.4. The refined Tc-Tc separation 
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(2.1764(3) Å)[48] is consistent with the presence of a quadruple bond. The Tc-Tc 

separation found by SC-XRD essentially identical to the published extended x-ray 

absorption fine structure (EXAFS) value (Tc-Tc = 2.19(2) Å),[152] and is slightly shorter 

than that estimated (2.192 Å) from Raman spectroscopy.[148] It is also marginally shorter 

than the Tc-Tc separation reported (2.192(2) Å) for the related pivalate derivative.[52] 

The Tc-Tc bond lengths of the chloro (2.1758(3) Å) and the bromo (2.1764(3) Å) are 

essentially identical and indicate that the nature of the coordinating halogen ligand has 

minor effect on the [Tc2(O2CCH3)4]2+ unit.  

 

 

Figure 3.10. X-ray crystal structure of Tc2(O2CCH3)4Br2. The ORTEP representations display 
ellipsoids at the 50% probability level with key bond lengths shown. 
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Figure 3.11 Unit cell views of Tc2(O2CCH3)4Br2 along the a-axis (left image) and b-axis (right 
image). Hydrogen atoms are omitted for clarity. 

 

 

Similar to Tc2(O2CCH3)4Cl2, Tc2(O2CCH3)4Br2 adopts a paddlewheel structure with 

capping bromides that are bent slightly (about 6.5°) from linear (Tc(1a)-Tc(1)-Br(1) = 

173.563(12)°). The smaller angle of distortion of bromide from the Tc-Tc bond is due to 

more electron density present than in the chloride, ~8° from the 180°. It is suspected 

that crystal packing is responsible for these small distortions. The packing for 

Tc2(O2CCH3)4Br2 is illustrated in Figure 3.11, and identical to the packing of 

Tc2(O2CCH3)4Cl2.  

The distorted Tc-Tc-Br angle may impact Tc-Br distance as discussed with Tc-Cl 

above. The bond distance of Tc-Br was found to be 2.6554(3) Å, considerably longer 

than the estimates of 2.600 Å from the Raman data [148] but just a few hundreds of 
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angstrom larger from EXAFS, 2.63(1) Å.[152] Considering the rhenium bromo analogue, 

Re2(O2CCH3)4Br2, the Re-Br bond distance (Raman spectroscopy) is reported to be 2.603 

Å having significant error in M-Br, (M = Tc, Re) when compared to single crystal data. An 

increase in bond length of the M-Br is expected but is not observed, Tc-Br (2.6554(3) Å), 

and Re-Br (2.603 Å). Within the Cambridge Crystal Data Centre (CCDC) no single crystal 

structure for Re2(O2CCH3)4Br2 has been reported to date. But an example of the 

dirhenium-dibromo paddlewheel has been reported; Re2(O2CCMe3)4Br2, with a rhenium-

bromide bond distance of 2.603(1) Å which identical to the Re-Br bond distance 

reported by Raman spectroscopy for tetraacetate compound; Re2(O2CCH3)4Br2.[155] 

 

Table 3.4. Selected bond lengths and angles for Tc2(O2CCH3)4Br2. 

 Bond length [Å]   Bond Angle [°] 

Tc(1)-O(1) 2.0078(14)  O(1)-Tc(1)-O(3) 88.41(6) 

Tc(1)-O(2) 2.0380(14)  O(1)-Tc(1)-O(2a) 178.72(6) 

Tc(1)-O(3) 2.0230(14)  O(1)-Tc(1)-O(4a) 89.64(6) 

Tc(1)-O(4) 2.0202(14)  O(1)-Tc(1)-Tc(1a) 92.80(4) 

Tc(1)-Tc(1a) 2.1764(3)  Tc(1a)-Tc(1)-Br(1) 173.563(12) 

Tc(1)-Br(1) 2.6554(3)  O(1)-Tc(1)-Br(1) 93.41(4) 

O - C(avg.) 1.280(2)  C(3)-O(3)-Tc(1) 119.943(13) 

C - C(avg.) 1.483(3)  O(2)-C(1)-C(2) 119.96(18) 
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The discovery of Tc2(O2CCH3)3Cl2(H2O)2·H2O was by chance and never repeated due 

to unknown conditions that caused the compound to crystallize out of the mother liquor 

from the reaction of KTcO4 with acetic acid and hydrochloric acid, Equation 3.2, with air 

oxidation for two days at room temperature. The complex Tc2(O2CCH3)3Cl2(H2O)2·H2O 

crystallizes in the monoclinic space group P21 with a = 7.7102(7) Å, b = 11.4786(11) Å, c 

= 8.3468(8) Å, and β = 94.8430(10)°, with a monohydrate which seems to have no 

bearing or influence on the molecular structure. Crystallographic data and refinement 

parameters are summarized in Table 3.1, with full information and cif in Appendix B. The 

molecular structure of the Tc2(O2CCH3)3Cl2(H2O)2·H2O, Figure 3.12 showing the 

triacetate paddlewheel with chlorides in the equatorial position and water ligands axial 

to the paddlewheel. Within the literature no known structures of molecular triacetate 

halide paddlewheels have been reported for rhenium tricarboxylates such as; 

Re2(O2CH)3Cl3 and Re2(O2CCMe3)3Cl3 have been reported but are linear chains with 

linkage through a chloride atom, not molecular species.[156,157] It should be noted that 

one Ru2
+5 molecular triaceatate has been reported, Ru2(O2CCH3)3(dcnp), [dcnp = 1,8-

napthyridine-2,7-dicarboxylate], prepared from Ru2(O2CCH3)4Cl by substitution reaction 

with H2dcnp in methanol at room temperature.[158] The compound 

Tc2(O2CCH3)3Cl2(H2O)2·H2O is the first solid molecular triacetate to be reported in 

literature, where the Tc-Tc bond distance is 2.1152(2) Å and is comparable to other 

paddlewheel Tc2
+5 bonds distance listed in Table 1.2 and Table 4.3. Selected bond 

lengths and angles are summarized in Table 3.5.  
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Figure 3.12. X-ray crystal structure of Tc2(O2CCH3)3Cl2(H2O)2·H2O. The ORTEP representations 
display ellipsoids at the 50% probability level with key bond lengths shown. 

 

 The structure of Tc2(O2CCH3)3Cl2(H2O)2·H2O, (Tc-Tc, 2.1152 Å, σ2π4δ2δ*1) is quite 
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Table 3.5. Selected bond lengths and angles for Tc2(O2CCH3)3Cl2(H2O)2·H2O. 

 Bond length [Å]   Bond Angle [°] 

Tc(1)-O(4) 2.0480(13)  O(4)-Tc(1)-O(6) 88.44(5) 

Tc(1)-O(6) 2.0579(13)  O(2)-Tc(1)-O(4) 175.29(5) 

Tc(2)-O(3) 2.0549(13)  O(3)-Tc(2)-O(5) 88.62(5) 

Tc(2-O(5) 2.0683(13)  O(3)-Tc(2)-O(1) 176.41(7) 

Tc(1)-Tc(2) 2.1152(2)  O(5)-Tc(2)-Cl(2) 161.79(4) 

Tc(1)-Cl(1) 2.3480(5)  Tc(2)-Tc(1)-Cl(1) 104.661(14) 

Tc(2)-Cl(2) 2.3643(5)  Tc(1)-Tc(2)-Cl(2) 107.142(13) 

Tc(1)-O(7) 2.3884(15)  Tc(2)-Tc(1)-O(7) 172.31(4) 

Tc(2)-O(8) 2.3543(14)  Tc(1)-Tc(2)-O(8) 167.30(4) 

O - C(avg.) 1.276(3)  C(5)-O(5)-Tc(21) 118.87(12) 

C - C(avg.) 1.490(3)  O(5)-C(5)-O(6) 120.82(17) 

 

Why is the Tc2(O2CCH3)3Cl2(H2O)2·H2O structure important? The argument can be 

made that the formation mechanism for Tc2(O2CCH3)4Cl2 under the conditions described 

in Section 3.2.1 and Equation 3.2 may require the intermediate Tc2
+5 triacetate in order 

to oxidized to the Tc2
+6 tetraacetate structure in solution, shown in Figure 3.13. 

Oxidation of the Tc2(O2CCH3)3Cl2(H2O)2 in solution by addition of acetate anion to one of 

the Tc atoms in an SN2 type mechanism levitating two water ligands while forcing the 

chlorides to axial position which would distribute the electron density throughout the 
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molecule more evenly forming Tc2(O2CCH3)4Cl2. More investigation into the triacetate 

structure is needed but attempts to synthesize this compound again have failed. 

 

 

Figure 3.13. Proposed mechanism of the formation of Tc2(O2CCH3)4Cl2 from addition of acetate 
anion to Tc2(O2CCH3)3Cl2(H2O)2.Color of atoms: Tc in turquoise, C in dark gray, H in light gray, O in 

red, Cl in green. 

 

 Conclusion 3.4

A reliable, high-yield method for the synthesis of both Tc2(O2CCH3)4Cl2 and 

Tc2(O2CCH3)4Br2 has been developed based on a modification of an earlier report in the 
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technetium(III).[40] Now that a high yield route to Tc2(O2CCH3)4Br2 exists, expansion of 
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chloride compounds. The x-ray structures of Tc2(O2CCH3)4X2 (X = Cl, Br) are reported for 
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the first time and brings to 9 the total number of structurally characterized, quadruply 

bonded technetium(III) dimers, see Table 1.1.[16,36] By comparison, the number of 

structurally characterized rhenium(III) dimers with Re-Re quadruple bonds easily 

exceeds one hundred.[82]  

The compound Tc2(O2CCH3)3Cl2(H2O)2·H2O is the first ditechnetium triacetate dimer 

to be synthesis to-date. Investigations into the synthesis of the 

Tc2(O2CCH3)3Cl2(H2O)2·H2O, are needed as it could potentially be an intermediate 

molecule in the formation of Tc2(O2CCH3)4Cl2. In-situ spectroscopy could enlighten the 

proposed mechanism. With that a deeper exploration into solubility of Tc2(O2CCH3)4X2 (X 

= Cl, Br) is desperately needed, currently normal common organic solvents do not 

dissolve Tc2(O2CCH3)4Cl2, ie., CH2Cl2, hexane, isopropyl alcohol. If a solvent were to 

dissolve Tc2(O2CCH3)4Cl2 then expanding potential reaction routes to new compounds 

may be possible in turn increasing the knowledge of low-valent technetium chemistry. 

Currently gas flowing reactions or direct molten substitution are the only methods used 

to synthesis compounds from this otherwise potentially great starting material, 

Tc2(O2CCH3)4X2 (X = Cl, Br).[16,36,40,82,152]  

It should be noted that attempts to produce Tc2(O2CCH3)4X2 (X = F, I) failed but lead 

to the discovery of new Tc-dimers and polynuclear structures presented in chapter 4, 5, 

and Appendix A. A good starting point for future reactions to synthesis Tc2(O2CCH3)4F2, 

would be to start from TcF6
2- anion under a lower pressure of hydrogen but retain the 

temperature at 200 °C. Although HCl and HBr were used in the synthesis of 

Tc2(O2CCH3)4X2 (X = Cl, Br) the use of HF was not attempted due to concerns of HF 
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volatilization if the autoclaves were to rupture. If appropriate measures are taken then 

HF should be considered as a reactant and replaced for the HCl in Equation 3.2 to 

attempt the formation of Tc2(O2CCH3)4F2. A suggestion for future synthesis route to 

Tc2(O2CCH3)4I2 would be to start from TcI6
2- anion in excess acetic acid under H2 at 200 

°C or addition of iodine in a sealed quartz tube with Tc2(O2CCH3)4I (presented in chapter 

4) under vacuum and argon conditions at various temperatures up to 350 °C 

(decomposition of starting materials ~380 °C). 

Appendix A, contains three compounds that were synthesized in attempts to obtain 

Tc2(O2CCH3)4X2 (X = Br, I) by the reaction of KTcO4, potassium iodide or cesium iodide 

with a molar ratio of 1:4 technetium:iodide under same conditions sections 3.2.1, and 

4.2.1. Synthesis resulted in low yield or mixture of solid crystals containing 

Tc2(O2CCH3)4X, M[Tc2(O2CCH3)4X2], M2TcX6, and MX, (where; M = K, Cs; and X =Br, I), 

similar to the description of the Russian reactions by Spitsyn, et. al., 1981 and Koz’min, 

et. al., 1982 to obtaining a mixture of Tc2(O2CCH3)4Cl, K[Tc2(O2CCH3)4Cl2], K2TcCl6, and 

KCl from the K3Tc2Cl8 and acetic acid under hydrogen/argon atmospheres.[45,69,164] Single 

crystal structures of K[Tc2(O2CCH3)4Br2], Cs[Tc2(O2CCH3)4Br2], and Cs[Tc2(O2CCH3)4I2] 

were obtained and data tabulated in Appendix B, Section B10-12 respectively, but no 

further characterization was performed. 
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4 Chapter 4: Polymeric Carboxylate Chain Technetium Compounds 

 

 Introduction 4.1

Analysis of the literature indicates that ruthenium and technetium are capable of 

forming compounds having M2
5+ core structures that are linked by one atom or unit, 

e.g., M2(O2CR)4X (M = Tc, Ru; R = alkyl; X = bridging ligand).[16,104] These compounds are 

called extended metal atoms chains (EMAC). 

For ruthenium, over 50 EMAC species containing the paddlewheel Ru2
5+ cores 

bridged by carboxylate ligands are known (Ru2(O2CR)4X , R = alkyl; X = halide). The 

compound Ru2(O2CPrn)4Cl was the first compound structurally characterized and is also 

one the most used starting compound for ruthenium metal-metal bonded compound 

synthesis.[104] The structural characterization of other Ru2(O2CR)4X showed that the 

polymeric chain could be linear or bent, and the chain structure seems to depend on the 

nature of the alkyl group.[159] Some Ru2
5+ tetracarboxylates exhibit non-polymeric 

structures in the solid state but they have the formula Ru2(O2CR)4XL (R = alkyl; X = 

halide; L = neutral donor ligand or solvent molecule). The type of axial ligand seems to 

play an important role to the formation of the compound and determine if it will adopt 

an extended or molecular structure. Unfortunately the mechanism and the factors 

determining the structure remain unclear.[104] Further investigation of the alkyl group in 

the bridging carboxylate was pursued showing the possible existence of both ionic and 

polymeric forms in the solid and liquid states.[160] In addition to carboxylate ligands, 

some chains exist with O,N- or N,N- bridging ligands for ruthenium and osmium.[104] In 



 

 70  
 

order to modify magnetic or electronic properties, other ligands like OCN- or [Ag(OCN)2]- 

have been used as connectors, for example, {[Ru2(O2CCH3)4][Ag-(OCN)2]}n.[161]  

For technetium, only EMAC containing metal-metal bonds are known within 

literature: Tc2(2-hydroxypyridine)4Cl, Tc2(O2CCH3)4Cl and Tc2(O2CCH3)4Br (see Table 

1.2).[16] These compounds consist of single chains with the halogen atom linking Tc 

metal-metal bonded units. For the ditechnetium tetraacetate compounds, the units are 

linked by chlorine and bromine. No iodine complex was reported. Some effort was 

focused on the synthesis of Tc2(O2CCH3)4I. It was discovered that KTcO4 in acetic acid/MI 

media (M = Na, K, H), Tc:MI molar ratio 1:2, could be reduced in an autoclave to 

produce Tc2(O2CCH3)4I. The structure of the compound was solved by single-crystal X-ray 

diffraction and magnetic susceptibility measurements were performed. The structure of 

Tc2(O2CCH3)4I consists of infinite chains of Tc2(O2CCH3)4
+ units linked by bridging iodides, 

an arrangement similar to the one found in Tc2(O2CCH3)4X (X = Cl, Br), with a Tc2
5+ core 

unit and Tc-Tc bond of order 3.5.[162]  

In exploring the synthetic routes to Tc2(O2CCH3)4X2 (X = Cl, Br) as described in 

Chapter 3, fluoride was substituted for chloride as LiF, resulting in an unforeseen 

product, Tc2(O2CCH3)4(μ-O2CCH3) discussed below. Since it has been shown for 

ruthenium that the change of the alkyl group in the bridging unit could be of influence in 

the formation of a polymeric species, some more experiments were performed using 

various carboxylate ligands and different conditions. In this context, we found that 

KTcO4 suspended in excess carboxylic acid [RCOOH] was reduced in an autoclave under 

a hydrogen atmosphere at 120 – 200 °C to produce Tc2(O2CR)4(μ-O2CR) where [R = -CH3, 
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-CH2CH3, -C6H5, C(CH3)3]. These compounds possess carboxylate connector unit between 

the Tc2
5+ cores. Details of the synthesis and characterization are presented in this 

chapter.  

The characterization of these compounds showed a special type of structural motif 

shared by technetium and ruthenium that is not seen with other group 7 elements. In 

fact, it is important to note that technetium under these conditions has a very different 

chemistry than rhenium and no polymeric chains are observed for rhenium.  

 

 Experimental 4.2

 Preparation of Tc2(O2CCH3)4I 4.2.1

Route a. A 4 dram borosilicate glass vial of original dimensions 2.1 x 7.0 cm, 

inner diameter 1.8 cm, was custom-cut to 3.5 cm in height. Potassium pertechnetate 

(104.4 mg, 0.517 mmol) and sodium iodide (151.2 mg, 1.01 mmol) were added to this 

vessel with a molar ratio of 1:2 technetium:iodide. The glass vial was placed in a 23 mL 

Teflon acid digestion autoclave (Parr Instruments) and 6.00 mL of glacial acetic acid was 

dispensed into the glass vial. To the Teflon autoclave, outside the glass vial, sodium 

borohydride (322 mg, 8.51 mmol) and 0.200 mL of deionized water was added. An 

illustration of the experimental autoclave setup is shown in Figure 2.6. The system was 

sealed and placed in an oven at 210 °C for 3 days. Sodium borohydride reacts with water 

and acid to generate hydrogen gas in situ. Complete reaction would result in 

approximately 60-70 atm of H2 pressure at 210 °C. After 3 days, the autoclave was 

allowed to cool to room temperature on an aluminum block, and then opened in a 
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sealed bag revealing well-formed, light brown crystals of Tc2(O2CCH3)4I. The mother 

liquor was removed by glass pipet, the product was washed with acetic acid (2 x 2 mL), 

isopropyl alcohol (2 x 2 mL), and diethyl ether (2 x 2 mL), then dried in open air. Yield: 

120.1 mg (0.213 mmol, 82.8%). Anal. Calcd. for C8H12O8ITc2: Tc, 35.29; I, 22.62. Found: 

Tc, 35.08; I, 22.49. FT-IR (ATR, cm-1): 2916s (νas CH3), 2848s (νs CH3), 1459s (νas COO), 

1437s (νs COO), see Figure 4.1. The compound decomposes at around 380 °C.  

 

 

 

Figure 4.1. Infrared-spectrum of Tc2(O2CCH3)4I. 

 

Route b. The reaction was performed using the same procedure as the one 

described in route a. Potassium pertechnetate (91.3 mg, 0.452 mmol) and potassium 

iodide (135.1 mg, 0.814 mmol) was added to the glass vial (Tc:KI molar ratio 1:2). The 

glass vial was placed in a 23 mL Teflon acid digestion autoclave and 6.00 mL of glacial 

acetic acid was dispensed into the glass vial. To the Teflon autoclave, outside the glass 
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vial, sodium borohydride (321 mg, 8.49 mmol) and 0.200 mL of deionized water was 

added. The system was sealed and placed in an oven at 210 °C for 3 days. After 3 days, 

the autoclave was allowed to cool to room temperature on an aluminum block, and 

opened. The mother liquor was removed by glass pipet, the brown product 

(Tc2(O2CCH3)4I) was washed with acetic acid (2 x 2 mL), isopropyl alcohol (2 x 2 mL), and 

diethyl ether (2 x 2 mL), then dried in air. Yield: 104.1 mg (0.186 mmol, 82.1%). 

Route c. The reaction was performed using the same experimental set-up as the 

one described in route a. Potassium pertechnetate (98.1 mg, 0.486 mmol) was added to 

the glass vial. The glass vial was placed in a 23 mL Teflon acid digestion autoclave and 

6.00 mL of glacial acetic acid was dispensed into the glass vial followed by concentrated 

hydroiodic acid (120 μL, 0.908 mmol) for a molar ratio of 1:2 technetium:iodide. To the 

Teflon autoclave, outside the glass vial, sodium borohydride (324 mg, 8.56 mmol) and 

0.200 mL of deionized water was added. The system was sealed and placed in an oven 

at 210 °C for 3 days. After 3 days, the autoclave was allowed to cool to room 

temperature on an aluminum block, and opened. The mother liquor was removed by 

glass pipet, the brown product (Tc2(O2CCH3)4I) was washed with acetic acid (2 x 2 mL), 

isopropyl alcohol (2 x 2 mL), and diethyl ether (2 x 2 mL), then dried in air. Yield: 125.2 

mg (0.223 mmol, 92%). 

 

 Preparation of Tc2(O2CCH3)4(µ-O2CCH3) 4.2.2

Potassium pertechnetate (100.0 mg, 0.495 mmol) was added to a 3.5 cm in height 

custom-cut 4 dram borosilicate glass vial of original dimensions 2.1 x 7.0 cm, inner 
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diameter 1.8 cm. The glass vial was placed in a 23 mL Teflon acid digestion autoclave 

(Parr Instruments 4749) and 6.00 mL of glacial acetic acid was dispensed into the glass 

vial. To the Teflon autoclave, outside the glass vial, sodium borohydride (310 mg, 8.19 

mmol) and 0.200 mL of deionized water was added. See chapter 2 for an illustration of 

the experimental setup in detail. The system was sealed and placed in an oven at 200 °C 

for 3 days. Sodium borohydride reacts with water and acid to produce hydrogen gas in 

situ. Complete reaction would result in approximately 60-70 atm of H2 at 200 °C. After 3 

days, the autoclave was allowed to cool to room temperature on an aluminum block, 

and then opened in a sealed bag revealing medium sized light purple crystals of 

Tc2(O2CCH3)4(O2CCH3). The mother liquor was removed by glass pipet, the product was 

washed with acetic acid (2 x 2 mL), isopropyl alcohol (2 x 2 mL), and diethyl ether (2 x 2 

mL), then dried in open air. Yield: 101.4 mg (0.206 mmol, 83.1%). Elemental Analysis, 

C10H15O10Tc2 (493.04): Calcd.: Tc, 40.16; Found: Tc, 39.82. FT-IR (ν(cm-1) ATR-neat), 2916 

(str CH3-vas), 2850 (str CH3-vs), 1543 (str, COO- νas), 1435 (str, COO-νs). Decomposition ~ 

380 °C. 

 

 Preparation of Tc2(O2CCH2CH3)4(µ-O2CCH2CH3) 4.2.3

The procedure used for the preparation of Tc2(O2CCH2CH3)4(µ-O2CCH2CH3) is 

identical to the one presented above (4.2.2) except using propionic acid 

(ethanecarboxylic acid) in place of glacial acetic acid. After cleaning of the crystals, 

medium-sized, elongated light purple to reddish-pink crystals of 

tetrapropionatoditechnetium (II,III) propionate, Tc2(O2CCH2CH3)4(µ-O2CCH2CH3), were 
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isolated. Yield: 80.7 mg (0.144 mmol, 58.1%). Elemental Analysis, C15H25O10Tc2 (561.35): 

Calcd.: Tc, 35.27; Found: Tc, 36.01. FT-IR (ν(cm-1) ATR-neat), 2916 (str CH3-vas), 2850 (str 

CH3-vs), 1465 (str, COO- νas), 1431 (str, COO- νs). Decomposition ~ 380 °C. 

 

 Preparation of Tc2(O2CC6H5)4(µ-O2CC6H5) 4.2.4

The procedure used for the preparation of Tc2(O2CC6H5)4(µ-O2CC6H5) is identical to 

the one presented above (4.2.2) except using benzoic acid in place of glacial acetic acid. 

After cleaning of the crystals, medium-sized reddish-purple crystals of 

tetrabenzoatoditechnetium (II,III) benzoate, Tc2(O2CC6H5)4(µ-O2CC6H5), were isolated. 

Yield: 80.7 mg (0.144 mmol, 51.3%). Elemental Analysis, C15H25O10Tc2 (561.35): Calcd.: 

Tc, 35.27; Found Tc, 36.01. FT-IR was not acquired. Decomposition ~ 380 °C. 

 

 Preparation of Tc2[O2CC(CH3)3]4[µ-O2CC(CH3)3] 4.2.5

The procedure used for the preparation of Tc2[O2CC(CH3)3]4[µ-O2CC(CH3)3] is 

identical to the one presented above (4.2.2) except using pivalic acid in place of glacial 

acetic acid. Product was soluble in excess pivalic acid and no solid product was obtained. 

LSC of Tc-99 provided 0.446 mmol technetium in liquid product but does not confirm 

that all technetium is a pivalate dimer. Analysis of product by XAFS shows evidence of a 

tetrapivalatoditechnetium (II,III) pivalate; Tc2[O2CC(CH3)3]4[µ-O2CC(CH3)3] structure. 
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 Analysis 4.2.6

4.2.6.1 Single Crystal X-ray Diffraction 

Crystals synthesized in section 4.2.1 through 4.2.4 were obtained directly from the 

washed precipitate and mounted under Paratone on a Kaptan cryoloop for data 

collection. Single crystal X-ray diffraction data were collected on a Bruker Apex II CCD 

diffractometer using Mo-Kα radiation (λ = 0.71073 Å). The crystals were maintained at 

100 K during data collection using an Oxford nitrogen cryostream system. The Apex II 

suite was used to perform data processing and an absorption correction performed with 

SADABS. Solution to the structure was performed by Direct Methods and refinement 

was carried out using SHELX [123] and OLEX2.[124] 

For Tc2(O2CCH3)4I, anisotropic approximations of all atoms except hydrogen were 

refined against F2, whereas the hydrogen atoms positions were determined 

geometrically and refined using the riding model. All crystal structure visualizations 

were prepared in Mercury 3.3 software.[125] Crystallographic data and refinement 

parameters for Tc2(O2CCH3)4(µ-O2CCH3), Tc2(O2CCH2CH3)4(µ-O2CCH2CH3), are shown in 

Table 4.1, Tc2(O2CC6H5)4(µ-O2CC6H5) and Tc2(O2CCH3)4I, are shown in Table 4.2 and 

accounting for hydrogens the final R-factor = 0.0167. Full details on crystallographic data 

for the structures are shown in Appendix B. 
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Table 4.1. Crystallographic data and refinement parameters for Tc2(O2CCH3)4(μ-O2CCH3) and 
Tc2(O2CCH2CH3)4(μ-O2CCH2CH3). 

Crystallographic data   

Empirical Formula C10H15O10Tc2 C15H25O10Tc2 
Formula weight 493.04 561.35 
Temperature (K) 100 100 
Wavelength (Å) 0.71073 0.71073 
Crystal system Monoclinic Orthorhombic 
Space group C2/c P212121 
a (Å) 13.0754(5) 8.7086(4) 
b (Å) 8.3466(3) 13.8192(6) 
c (Å) 15.0242(5) 16.8542(7) 
α (°) 90.00 90.00 
β (°) 106.1770(10) 90.00 
γ (°) 90.00 90.00 
V (Å3) 1574.75(10) 2028.33(15) 
Z 4 4 
Density calc. (Mg m-3) 2.072 1.838 
Absorption coef. (mm-1) 1.801 1.411 
F(000) 964 1124 
Range of 2θ (°) 2.83 – 30.51  1.91 – 30.51 

Index ranges (h, k, l) 
-18 ≤ h ≤ 18, -11 ≤ k ≤ 11,      
-21 ≤ l ≤ 21 

-12 ≤ h ≤ 13, -19 ≤ k ≤ 19,    
-24 ≤ l ≤ 24 

Reflections collected 11879 33356 
Independent reflections 2400 [R(int) = 0.0155] 6201 [R(int) = 0.0239] 

Complete to 2θ (%) 100.0 100.0 

Refinement method Full-matrix least-sq. on F2 Full-matrix least-sq. on F2 
Data / restraints / 
parameters 

2400 / 6 / 112 
 
6201 / 0 / 279 

Goodness-of-fit on F2 1.129 1.050 
Final R indices [I > 2σ(I)] R1 = 0.0175, wR2 = 0.0495 R1 = 0.0208, wR2 = 0.0481 
R indices (all data) R1 = 0.0188, wR2 = 0.0467 R1 = 0.0222, wR2 = 0.0488 
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Table 4.2. Crystallographic data and refinement parameters for Tc2(O2CC6H5)4(μ-O2CC6H5) and 
Tc2(O2CCH3)4I. 

Crystallographic data   

Empirical Formula C35H25O10Tc2 C8H12IO8Tc2 
Formula weight 803.55 560.90 
Temperature (K) 100 100 
Wavelength (Å) 0.71073 0.71073 
Crystal system Triclinic Monoclinic 
Space group P-1 C 2/m 
a (Å) 10.9468(3) 7.1994(6) 
b (Å) 11.7511(3) 14.5851(13) 
c (Å) 14.3525(4) 7.1586(6) 
α (°) 67.5170(10) 90.00 
β (°) 71.2040(10) 110.954(10) 
γ (°) 78.4840(10) 90.00 
V (Å3) 1608.78(10) 701.97(10) 
Z 2 2 
Density calc. (Mg m-3) 1.655 2.645 
Absorption coef. (mm-1) 0.918 4.197 
F(000) 802 526 
Range of 2θ (°) 1.88 – 30.51  2.793 – 29.564 

Index ranges (h, k, l) 
-15 ≤ h ≤ 15, -16 ≤ k ≤ 16,      
-20 ≤ l ≤ 20 

-9 ≤ h ≤ 9, -19 ≤ k ≤ 19,     
-9 ≤ l ≤ 9 

Reflections collected 26379 4112 
Independent reflections 9772 [R(int) = 0.0174] 1021 [R(int) = 0.0170] 

Complete to 2θ (%) 100.0 100.0 

Refinement method Full-matrix least-sq. on F2 Full-matrix least-sq. on F2 
Data / restraints / 
parameters 

9772 / 0 / 424 
 
1021 / 0 / 48 

Goodness-of-fit on F2 1.029 1.125 
Final R indices [I > 2σ(I)] R1 = 0.0217, wR2 = 0.0558 R1 = 0.0167, wR2 = 0.0419 
R indices (all data) R1 = 0.0243, wR2 = 0.0572 R1 = 0.0178, wR2 = 0.0425 

 

4.2.6.2 Elemental analyses 

For 99Tc elemental analyses using liquid scintillation counting, weighed amounts of 

the compounds (ca. 5 mg) were suspended in 5 mL of ammonium hydroxide for several 

days. After complete dissolution, the solutions were diluted to 10 mL with DI H2O. 

Samples for LSC were prepared by mixing 100 μL of sample solution containing 99Tc and 
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100 μL of DI H2O, to correspond to calibration curves, with 10 mL of scintillation cocktail. 

99Tc concentrations were determined by liquid scintillation counting using a Perkin 

Elmer liquid scintillation counter Tri-Carb 3100TR. The scintillation cocktail was ULTIMA 

GOLD ABTM (Packard). US-EPA Method 345.1 was used to determine the amount of 

iodide in Tc2(O2CCH3)4I, See chapter 2.[163]  

 

4.2.6.3 Magnetic measurements 

Magnetic susceptibility measurements were performed on samples in a 0.1 T 

applied magnetic field from 10 to 300 K using a Quantum Design PPMS. The sample 

(83.3 mg, 0.146 mmol) was placed in a medical gel-capsule and packed with cotton. The 

capsule was wrapped, sealed with Parafilm and inserted securely into the bottom of a 

plastic straw fitted onto the PPMS sample holder. 

 

4.2.6.4 Infrared spectroscopy 

Infrared spectra were measured in an attenuated total reflectance (ATR) module 

with germanium objective using a Varian 3100 FT-IR Excalibur spectrometer. 

 

4.2.6.5 XAFS spectroscopy  

XAFS measurements were done at the Advanced Photon Source (APS) at the 

BESSRC-CAT 12 BM station at Argonne National Laboratory. The dry powder containing 

the Tc-pivalate complex was placed in an aluminium sample holder equipped with 

kapton windows. XAFS spectra were recorded at the Tc-K edge (21,044 eV) in 
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fluorescence mode at room temperature using a 13 element germanium detector. A 

double crystal of Si [1 1 1] was used as a monochromator. The energy was calibrated 

using a molybdenum foil (Mo-K edge = 20,000 eV). 

 

 Results and discussion 4.3

Historically, Tc2(O2CCH3)4Cl2 was the first dinuclear technetium complex coordinated 

to acetate ligands to be reported.[47,162] This compound was synthesized by treating 

potassium pertechnetate (KTcO4) in an acetic acid/HCl mixture at 210 °C in large 

stainless steel autoclaves that were pressurized to 30 atm with hydrogen gas (see 

chapter 3). In these earlier preparations, the autoclaves corroded rapidly upon exposure 

to the hot concentrated mineral acid. In our syntheses, Teflon-coated vessels were used 

and hydrogen was generated in-situ from the reaction of solid sodium borohydride with 

H2O/HX vapors (Figure 2.6) during the course of the reaction. The reaction of KTcO4, 

with iodide salts and/or hydroiodic acid in glacial acetic acid with a Tc:MI molar ratio of 

1:2 (M = K, Na, H) at 210 °C under 60-70 atm hydrogen afforded Tc2(O2CCH3)4I in 

approximately 80-90% yield. Under these experimental conditions, the paddlewheel 

technetium(III, III) dimer, Tc2(O2CCH3)4I2, was not observed. The halogen analogues of 

Tc2(O2CCH3)4I, i.e., Tc2(O2CCH3)4Cl[164] and Tc2(O2CCH3)4Br,[165] were respectively 

synthesized in autoclaves after treatment of K3Tc2Cl8·2H2O in glacial acetic acid at 120 °C 

under 30 atm of argon or hydrogen, and after treatment of K2Tc2Br6·2H2O in acetic acid 

at 230 °C under argon.  
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The compound Tc2(O2CCH3)4I crystallizes in the monoclinic space group C2/m with a 

= 7.1194(6) Å, b = 14.5851(13) Å, c = 7.1586(6) Å, and β = 110.9540(10)° (Table 4.2). The 

structure of Tc2(O2CCH3)4I consists of infinite chains of [Tc2(O2CCH3)4]+ units linked by 

bridging iodide ligand (Figure 4.2). The structure of Tc2(O2CCH3)4I is similar to that of 

Tc2(O2CCH3)4Br, but differs slightly from that of Tc2(O2CCH3)4Cl. In Tc2(O2CCH3)4Cl, the 

Tc-Tc-X angle is 120°, resulting in a zig-zag chain, while a value of 180° is observed in 

Tc2(O2CCH3)4X (X = Br, I) (Table 4.3). The compound Tc2(O2CCH3)4I packs as parallel 

chains along the a-axis with the b- and c-axes exhibiting staggered parallel chains within 

the unit cell, a similar arrangement is observed in Tc2(O2CCH3)4Br (Figure 4.3). Extended 

metal atom chains containing carboxylate bridged metal dimers are also known for 

ruthenium and rhenium. For ruthenium, more than 20 compounds containing the Ru2
5+ 

core have been reported;[104] these include Ru2(O2CCH3)4Cl [103] and Ru2(O2CH)4Br.[166] 

Surprisingly, EMAC compounds that contain the Re2
5+ core coordinated to carboxylate 

ligands have been not reported. This is an example of where technetium chemistry 

follows ruthenium rather than rhenium. We note that several EMACs with Re2
6+ 

tricarboxylate cores bridged by chloride ligands have been reported, [82] including 

Re2(O2CCMe3)3Cl3. In the latter compound, the Re-Re separation is 2.229(3) Å and the 

Re-Cl-Re angle is 134°.[157] 
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Figure 4.2. Ball and stick representation of Tc2(O2CCH3)4I. Ellipsoids are shown at the 50% 
probability level with selected bond lengths in Å. Color of atoms: Tc in turquoise, I in purple, C in 

gray, O in red and H in white. 

 

In Tc2(O2CCH3)4I, the Tc-Tc separation of 2.1146(4) Å is slightly longer than the one 

found in Tc2(O2CCH3)4Br (2.112(1) Å) and slightly shorter than the one in Tc2(O2CCH3)4Cl 

(2.117(1) Å) (Table 4.3). The Tc-Tc separations in Tc2(O2CCH3)4X (X = Cl, Br, I) are 

consistent with the presence of the Tc2
5+ core (electronic configuration σ2π4δ2δ*1).[16] 

The Tc-Tc separations in Tc2(O2CCH3)4X (X = Cl, Br, I) are shorter than those in 

Tc2(O2CCH3)4Cl2 (2.1785(3) Å)[48] and Tc2(O2CCMe3)4Cl2 (2.192(2) Å).[52] This phenomenon 

is likely due to stronger metal-metal π bonding in the Tc2
5+ core than in the Tc2

6+ core as 

was previously discussed for the Tc2X8
n- (n = 2, 3; X = Cl, Br) systems.[36] It should be 

Tc1

O1

C1

O2

C2 1.272 Å

2.1146 Å

2.0553 Å

3.0114 Å

I1
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noted that the same trend is observed in rhenium metal-metal bonding for 

[Re2Cl4(PMe2Ph)4]PF6, Re2
5+

 core (electronic configuration σ2π2δ2δ*1) and Re2Cl6(PEt3)2, 

Re6+ core (electronic configuration σ2π4δ2) compounds described by Cotton et al., 

concluding an increase in Re-Re bond length based on increase from 3.5 to 4 in bond 

order.[167] 

 

 

Figure 4.3. Unit cell packing for Tc2(O2CCH3)4I along the a) a-axis, b) b-axis and c) c-axis. Color of 
atoms: Tc in turquoise, I in purple, C in gray, O in red and H omitted for clarity. 

 

 

 

 

 

 

 

 

a) c)b)
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Table 4.3. Selected interatomic distances (Å) and angles (°) for compounds with M2
5+ and M2

6+ 

cores coordinated to carboxylate and halogen ligands.*EXAFS, all other SC-XRD. †This Work. 
Uncertainties of the values given are shown in Appendix B and the given references.  

Compound [ref.] 
dM-M 

 

M-Oeq(avg) 

 

M-Xax 

M-Oax 

M-M-Xax 

M-M-Oax 

M-X-M 

M-O-C 

Tc2(O2CCH3)4Cl [40] 2.117 2.065 2.656 176.07 119.32 

Tc2(O2CCH3)4Br [42] 2.112 2.060 2.843 179.63 180 

Tc2(O2CCH3)4I [†,162] 2.1146 2.0553 3.0114 179.534 180 

Tc2(ONCC5H4)4Cl [73] 2.095 2.087 2.679 93.07 180 

Ru2(O2CCH3)4Cl [103] 2.281 2.03 2.571 177.0 180 

Ru2(O2CH)4Br [166] 2.2897 

2.2901 

2.026 

2.026 

2.7170 

2.7313 

176.43 

177.07 

109.99 

- 

Ru2(O2CCH2CH2CH3)4Cl [101] 2.281 2.00 2.587 175.1 - 

Tc2(O2CCH3)4(μ-O2CCH3) [†] 2.1124 2.0660 2.2125 176.65 145 

Tc2(O2CCH2H3)4(μ-O2CCH2CH3)[†] 2.1139 2.0630 2.2249 176.40 147 

Tc2(O2CC6H5)4(μ-O2CC6H5) [†] 2.1233 2.0603 2.2067 168.00 128 

Tc2[O2CC(CH3)3]4[μ-

O2CC(CH3)3][†]* 

2.13 2.08 - - - 

Ru2(O2CCF3)4(μ-O2CCF3)[168] 2.278 2.022 2.157 178.9 148 

Ru2(O2CCH2H3)4(μ-

O2CCH2CH3)[168] 

2.273 2.025 2.165 174.6 148  

Ru2(O2CC6H5)5·C6H5CO2H [169] 2.277 2.016 2.244 175.57 - 

Tc2(O2CCH3)4Cl2 [48] 2.1758 2.0211 2.5078 171.903 - 

Tc2(O2CCMe3)4Cl2 [52] 2.192 2.032 2.408 180 - 

 

In the current literature, there are no reports of Tc2(O2CR)4(μ-O2CR) compounds, 

where [R = alkyl] despite the fact that over 50 are known for ruthenium. The first 

technetium pentacarboxylate to be synthesized was the acetate, Tc2(O2CCH3)4(μ-
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O2CCH3), purple in color, forming in no visual particular shape. An optical image of the 

pentaacetate technetium dimer is shown in Figure 4.4 together with an SEM-image. The 

compound Tc2(O2CCH3)4(μ-O2CCH3) crystallizes in the monoclinic space group C2/c with 

a = 13.0754(5) Å, b = 8.3466(3) Å, c = 15.0242(5) Å, and β = 106.1770(10)°. (Table 4.1). 

The structure of Tc2(O2CCH3)4(μ-O2CCH3) consists of infinite chains of [Tc2(O2CCH3)4]+ 

units linked by bridging acetate ligands (Figure 4.5). No comparable ruthenium 

pentaacetate is known but the trifluoroacetate analog is, Ru2(O2CCF3)4(μ-O2CCF3).[168] 

The structure of Tc2(O2CCH3)4(μ-O2CCH3) is completely analogous to that of 

Ru2(O2CCF3)4(μ-O2CCF3), with spiraling disordered positions of the carboxylate linkers, in 

an up-down configuration. In Ru2(O2CCF3)4(μ-O2CCF3), the Ru-Ru-O angle is 178.9°, 

resulting in a slight zig-zag chain, while a value of 176.65° is observed in Tc2(O2CCH3)4(μ-

O2CCH3) (Table 4.3), the latter may be due to the electron withdrawing –CF3 groups as 

well as the small increase in the ionic radius of ruthenium causing a more linear bond 

angle.  

The M-M bond lengths in M2(O2CR)4(μ-O2CR) [M = Tc, Ru; R = alkyl] are larger for M= 

Ru than the one for M = Tc This effect is due to the two extra electrons within the Ru-Ru 

bonding orbitals [3 unpaired electrons, σ2π4δ2(π*δ*)3]. The Tc2(O2CCH3)4(μ-O2CCH3) bond 

lengths can be compared with those listed in Table 4. In Tc2(O2CCH3)4(μ-O2CCH3), the Tc-

Tc separation of 2.1124(2) Å is comparable to those Tc2
+5 bond lengths found in 

Tc2(O2CCH3)4X, (Cl, Br, and I), i.e., 2.117(1) Å, 2.112(1) Å, and 2.1146(4) Å respectively 

(Table 4.3). The Tc-Tc separations in Tc2(O2CCH3)4X (X = Cl, Br, I, and O2CCH3) are all 

consistent with the presence of the Tc2
5+ core (electronic configuration σ2π4δ2δ*1).[16] 
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Figure 4.4. Optical microscope view (right) of single crystals Tc2(O2CCH3)4(μ-O2CCH3), and SEM-
image magnification x500 in scanning electron mode(left). 

 

 

Figure 4.5. Ball and stick representation of Tc2(O2CCH3)4(μ-O2CCH3). Color of atoms: Tc in pink, C 
in gray, O in red and H in white. 

 

The second carboxylate technetium dimer to be prepared was Tc2(O2CCH2H3)4(μ-

O2CCH2CH3). It forms having elongated reddish-pink-purple crystals shown in Figure 4.6 
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including an SEM-image. The compound Tc2(O2CCH2CH3)4(μ-O2CCH2CH3) crystallizes in 

the orthorhombic space group P212121 with a = 8.7086(4) Å, b = 13.8192(6) Å, c = 

16.8542(7) Å, and α = β = γ = 90°(Table 4.1). The structure of Tc2(O2CCH2CH3)4(μ-

O2CCH2CH3) consists of infinite chains of [Tc2(O2CCH2CH3)4]+ units linked by bridging 

propionate ligand (Figure 4.7).  

 

 

Figure 4.6. Optical microscope view (right) of single crystals Tc2(O2CCH2CH3)4(μ-O2CCH2CH3), and 
SEM-image magnification x150 in scanning electron mode (left). 
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Figure 4.7. Ball and stick representation of Tc2(O2CCH2CH3)4(μ-O2CCH2CH3). Color of atoms: Tc in 
pink, C in gray, O in red and H in white. 

 

The structure of Tc2(O2CCH2CH3)4(μ-O2CCH2CH3) is similar to that of 

Ru2(O2CCH2CH3)4(μ-O2CCH2CH3), but from Tc2(O2CCH3)4(μ-O2CCH3) where the acetate 

linkage is in alternating positions of up-down-up-down, etc., with a spiraling chain, 

whereas Ru2(O2CCH3)4(μ-O2CCH3) has the linker consistently on the same side of the 

polymeric chain and metal-metal bond. The compounds Tc2(O2CCH2CH3)4(μ-O2CCH2CH3) 

and Ru2(O2CCH2CH3)4(μ-O2CCH2CH3)[168] are isostructural but bond the lengths cannot be 

directly compared as explained above due to change in the number of antibonding 

electrons in the metal-metal bond. One interesting comparison is the ruthenium 

pentapropionate and technetium pentapropionate have similar M-M-Oax bond angles at 

174.6º and 176.40º respectively, even though the Tc2(O2CCH2CH3)4(μ-O2CCH2CH3) has a 

spiraling chain and disordered within its crystal packing. The metal-metal bond of 

Tc2(O2CCH2CH3)4(μ-O2CCH2CH3) is also closely comparable to the other known Tc2
+5 

carboxylate linkage chains listed in Table 4.3 with all having a metal-metal separation of 
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2.11XX Å. It should be noted that a slight increase in bond length that occurs between 

the Tc2(O2CCH3)4(μ-O2CCH3), Tc2(O2CCH2CH3)4(μ-O2CCH2CH3), and Tc2(O2CC6H5)4(μ-

O2CC6H5) from 2.1124(2) Å, 2.1139(2) Å to 2.1233(2) Å, is mostly likely related to the 

increasing size of the alkyl group. 

As mentioned, the larger steric effect seen in the increase of bond length brings up 

the third technetium pentacarboxylate, Tc2(O2CC6H5)4(μ-O2CC6H5) forming regular 

reddish purple crystals that are shown in Figure 4.8 together with an SEM-image. The 

compound Tc2(O2CC6H5)4(μ-O2CC6H5) crystallizes in the triclinic space group P-1 with a = 

10.9468(3) Å, b = 11.7511(3) Å, c = 14.3525(4) Å, and α = 67.5170(10)°, β = 71.2040(10)°, 

γ = 78.4840(10)° (Table 4.2). The structure of Tc2(O2CC6H5)4(μ-O2CC6H5), consists of 

infinite chains of [Tc2(O2CC6H5)4]+ units linked by bridging benzoate ligands (Figure 4.9). 

The compound Tc2(O2CC6H5)4(μ-O2CC6H5) is isostructural to its ruthenium neighbor 

(Table 4.3 Ru2(O2CC6H5)4(μ-O2CC6H5)·C6H5CO2H) that also crystallizes in the triclinic 

space group P-1. Other than structure, not much is comparable between the Ru and Tc 

complexes. Tc2(O2CC6H5)4(μ-O2CC6H5) has a type of compacted packing where the linking 

benzoate is turned almost 90 degrees facing the Tc-Tc paddlewheel. The benzoic acid in 

Ru2(O2CC6H5)4(μ-O2CC6H5)·C6H5CO2H takes on a similar roll allowing a straighter linkage 

in the chain, compared to the forced zig-zag in Tc2(O2CC6H5)4(μ-O2CC6H5). 
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Figure 4.8. Optical microscope view (right) of single crystals Tc2(O2CC6H5)4(μ-O2CC6H5), and SEM-
image magnification x150 in scanning electron mode (left). 

 

 

Figure 4.9. Ball and stick representation of Tc2(O2CC6H5)4(μ-O2CC6H5). Color of atoms: Tc in pink, C 
in gray, O in red and H in white. 

 

The last technetium pentacarboxylate to be synthesized was Tc2[O2CC(CH3)3]4[μ-

O2CC(CH3)3]. The compound was soluble in pivalic acid and even after multiple 

purification processes no single crystals were obtained. Thus, the structure was studied 
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by EXAFS spectroscopy. Twenty spectra were recorded in the k range [0 - 15] Å-1 and 

averaged. EXAFS spectra were extracted using Athena [170] software and data analysis 

was performed using Winxas.[147] For the fitting procedure, amplitude and phase shift 

function were calculated by FEFF 8.2.[146] Input files were generated by Atoms [145] using 

crystallographic structures of Tc2(O2CCH3)4Cl2.[48] The EXAFS spectra was fitted using the 

Tc-O, Tc-Tc and Tc-C scattering calculated in Tc2(O2CCH3)4Cl2. For the adjustment, the 

Debye-Waller factors for the Tc-O, Tc-Tc and Tc-C scatterings were fixed to the one 

previously determined in Tc2(O2CCH3)4Cl2.[152] Adjustments of the k3 -weighted EXAFS 

spectra were performed under the constraints S0
2 = 0.9. A single value of energy shift 

(ΔE0) was used for all scattering,  

The fitted k3-EXAFS spectra and the Fourier transform are presented in Figure 4.10. 

The results Table 4.4 of the adjustment indicates that the fist coordination sphere 

around the Tc atom is constituted by 4.3(9) O atoms at 2.08(2) Å and 0.8(2) Tc atoms at 

2.13(2) Å. The second coordination shell is constituted by 5(1) C atom at 2.90(3) Å. The 

results are in agreement with the present of a technetium pivalate compound with 

multiple Tc-Tc bonds. The Tc-Tc distance (i.e., 2.13(2) Å) is in agreement with the ones 

found for similar compounds with the Tc2
5+ core. Considering the XAFS measurement is 

not completed at 100 K like the data obtained from SC-XRD, the Tc-Tc bond distance of 

Tc2[O2CC(CH3)3]4[μ-O2CC(CH3)3] structure is slightly larger than that of the other 

Tc2(O2CR)4(μ-O2CR) where [R = -CH3, -CH2CH3, -C6H5] due to thermal noise in the XAFS 

measurement. Nonetheless, the Tc-Tc bond distance follows the trend of an increase in 

length based on the size of the alkyl ligand.  
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Table 4.4. Structural parameters obtained by adjustment of the k3- EXAFS spectra of 
Tc2[O2CC(CH3)3]4[μ-O2CC(CH3)3]. Adjustment between k= [3.5 - 12.5] Å-1. ΔE0 (eV) = 7.96. 

Scattering Structural parameter 

 C. N. R(Å) σ2(Å2) 

Tc0-O 4.3(9) 2.08(2) 0.0049 

Tc0-Tc 0.8(2) 2.13(2) 0.0025 

Tc0-C 5(1) 2.90(3) 0.0044 

 

 

Figure 4.10. Fitted experimental k3-EXAFS spectra (top) and Fourier transform of k3 – EXAFS 
spectra (bottom) of the Tc2[O2CC(CH3)3]4[μ-O2CC(CH3)3] complex. Adjustment between k = [3.5 - 

12.5] Å-1. Experimental data are in black and the fits are in blue. 
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Magnetic susceptibility measurements were performed in the temperature range 

from 10-300 K. The data (Figure 4.11) indicates the compound to be paramagnetic, 

which is consistent with the presence of a single unpaired electron in the Tc2
5+ core (i.e., 

σ2π4δ2δ*1). The magnetic moment in Bohr magnetons, μeff, was determined at 300 K 

using Equation 4.1: 

  𝜇𝑒𝑓𝑓 = √
3 ∙ 𝑘 ∙ 𝑋𝑚 ∙ 𝑇

𝑁 ∙ 𝛽2
= √7.9971 ∙ 𝑋𝑚 ∙ 𝑇 Equation 4.1 

where k is the Boltzmann constant (1.38 x 10-16 erg.deg-1.mol-1), N is Avogadro’s number 

(6.022 x 1023 atom.mol-1), β is the Bohr magneton (9.2731 x 10-21 erg.gauss-1), Xm is the 

magnetic susceptibility and T is the temperature in Kelvin. The equation is simplified by 

3k/Nβ2 = 7.9971 mol.gauss2.erg-1.deg-1. Therefore for a Xm = 0.00141 mol-1 at 300 K, the 

μeff for Tc2(O2CCH3)4I is calculated to be 1.84 B.M. or close to what one would expect for 

a single unpaired electron. 

 

Figure 4.11. Magnetic susceptibility as a function of the temperature for Tc2(O2CCH3)4I 
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The magnetic moment for Tc2(O2CCH3)4I (μeff = 1.84 B.M.) is comparable to the ones 

reported previously for Tc2(O2CCH3)4Cl and Tc2(O2CCH3)4Br, i.e., 1.73 and 2.0 B.M, 

respectively.[171] The μeff for Tc2(O2CCH3)4I(μ-O2CCH3) was determined to be 1.40 B.M. 

based on a xm = 0.00141 mol-1 at 300 K, as shown in Figure 4.12. Unfortunately, there is 

no data to compare this magnetic information within the technetium literature. The 

isostructural ruthenium complexes, listed in table 4.3, have magnetic susceptibilities 

much larger than Tc2(O2CCH3)4X, (X = Cl, Br, I, O2CCH3), i.e., Ru2(O2CCH3)4Cl (μeff = 2.79 

B.M.) is due to the fact that the Ru5
+2 [σ2π4δ2(π*δ*)3] core has three unpaired electrons 

where as Tc2
+5 [σ2π4δ2δ*1] core has one unpaired electron.[172]  

 

Figure 4.12. Magnetic susceptibility as a function of temperature for Tc2(O2CCH3)4(μ-O2CCH3). 
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 Conclusion 4.4

A new technetium metal-metal bonded iodide compound, Tc2(O2CCH3)4I was 

synthesized via the hydrothermal reduction of KTcO4 in acetic acid/MI (M = Na, K, H) 

media and its X-ray crystal structure elucidated. The discovery of Tc2(O2CCH3)4I brings to 

four the number of structurally characterized complexes with the Tc2
5+ unit coordinated 

to acetate ligands. The Tc-Tc separation in Tc2(O2CCH3)4I is consistent with the presence 

of the Tc2
5+ core with the electronic configuration σ2π4δ2δ*1. Magnetic measurements 

were performed on Tc2(O2CCH3)4I. The results show the compound to be paramagnetic, 

consistent with the electronic configuration σ2π4δ2δ*1. It is expected that Tc2(O2CCH3)4I 

will serve as a precursor for the synthesis of other multiply metal-metal bonded 

complexes, e.g., Tc2I8
2- or Tc2(O2CCH3)4I2. Proposed future reaction as indicated in 

conclusion of chapter 3, would be to oxidize the Tc2(O2CCH3)4I in a sealed quartz tube 

with iodine at various temperatures in vacuum or argon atmosphere to form 

Tc2(O2CCH3)4I2. 

Several new EMAC with the stoichiometry Tc2(O2CR)4(μ-O2CR) where [R = -CH3, -

CH2CH3, -C6H5, C(CH3)3] were prepared and characterized by SC-XRD or EXAFS. These 

new structures have expanded the number of known polymeric Tc2
+5 compounds from 3 

to 8. In the future it is believed that Tc2(O2CCH3)4(μ-O2CCH3) compound could become a 

new starting material for Tc-Tc metal-metal bond chemistry as well as a useful precursor 

to Tc-halides. The compound has already been shown to be a starting material for 

synthesis of pure technetium disulfide. The reaction of Tc2(O2CCH3)4(μ-O2CCH3) with 

flowing hydrogen sulfide gas at 450 °C for 1 hour provides 99.8% conversion to TcS2, as 
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potential waste form.[173] The reactions presented demonstrate that the chemistry of 

technetium and especially that of metal-metal bonded systems merits further 

exploration. 
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5 Chapter 5: Technetium Cluster Chemistry 

 

 Introduction 5.1

As of 1993, only 9 technetium polynuclear cluster halide compounds were known. At 

UNLV the technetium group within the radiochemistry program has synthesized 3 more 

clusters in the last 2 years, two of which are discussed in this chapter. The first of the 

original 9 cluster compounds discovered in 1982 was [H(H2O)2]{[Tc8((μ-Br)8Br4]Br}, 

(shown in Figure 5.1 as the cation). Research in this area expanded over the next few 

years to include a few additional octa-nuclear and hexa-nuclear structures of chloride, 

bromide and iodide compounds listed in Table 1.2. The cluster compounds were 

obtained using various starting materials such as MTcO4 and MnTcX6 (M = H+, NH4
+, NR4

+; 

n = 1, 2; X = Cl, Br, I) under a reducing hydrogen atmosphere as described in Chapter 1 

from concentrated HBr and HI solutions. The clusters [Tc8(μ-Br)8Br4]Br·2H2O,[76,78] 

(H5O2)[Tc8(μ-Br)8Br4]Br,[77,78] and (H5O2)2[Tc8(μ-Br)8Br4]Br2
[78] have properties consistent 

with the presence of one unpaired electron.[174] The [Tc8(μ-Br)8Br4]+ cluster exhibits four 

very different types of Tc–Tc bonds; Tc(1)-Tc(2) distance of 2.145(2) Å , Tc(1)–Tc(4), 

2.689(2) Å , Tc(3)–Tc(4), 2.521(2) Å, and Tc(3)–Tc(4A), 2.147(2) Å. The clusters clearly 

possess four Tc–Tc bonds of high multiplicity concluded to be “electron-rich triple 

bonds”, similar to those in the hexanuclear-Tc-chloro cluster (Me4N)3{[Tc6(μ-Cl)6Cl6]Cl2, 

shown in Figure 5.1.[175] 

In the effort to synthesize Tc2(O2CCH3)4I (Chapter 4), KTcO4 was reduced in an 

autoclave in a mixture of acetic acid and alkali metal iodide salts. Using the mixture 
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Tc:MI (M = K, Na, H) at a molar ratio 1:2 Tc2(O2CCH3)4I was synthesized. With the 

combination Tc:KI:HI in a molar ratio 1:1:3 a mixture of K[Tc8(μ-I)8I4]I and Tc2(O2CCH3)4I 

was produced. The compound K[Tc8(μ-I)8I4]I, is the first octanuclear technetium iodide 

cluster to be reported. 

 

 

Figure 5.1. A: Structure of [Tc8(μ-Br)8Br4]
+ cation in [Tc8(μ-Br)8Br4]Br·2H2O.[176] B: Structure of the 

trigonal prismatic cluster anion, [Tc6Cl6(μ-Cl)6]
- in (Me4N)3{[Tc6(μ-Cl)6Cl6]Cl2. Capping chloride ions 

have been omitted. The structure of [Tc6Cl6(μ-Cl)6]
2- is similar.[177] 

 

Prior to 2014, pentanuclear technetium clusters were unknown. Pentanuclear 

clusters of the neighboring elements molybdenum and tungsten are reported, i.e., 

[(Mo5Cl8)Cl5]2- and [(W5I8)I5]n- (n = 1, 2) (Figure 5.2), and W15I47, which contains 3 core 

units of [W5I8]Ix (x = 1, 2) linked by (I3)y units (y = 1, 3/2, 2) between clusters. [114,178,179] In 

the conclusion section of the W15I47 paper, the authors suggested that from the 

Extended-Hückel molecular orbital (EHMO) calculations on [(W5I8)I5]1- with comparison 

to EHMO calculation on [(Mo5Cl8)Cl5]2- that these clusters have 18 electrons per cluster 

in HOMOs and that the LUMO that is an essentially nonbonding level. This means higher 

occupation numbers up to 22 electrons are possible and most likely stable. The 

A B
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importance of a 22 electron core cluster is that stability of a technetium pentanuclear 

cluster structurally similar to [(Mo5Cl8)Cl5]2-, and [(W5I8)I5]1- may be possible. Assuming 

Tc as a pentanuclear core with 13 halogen atoms either terminal and/or bridging like 

that of [(W5I8)I5]1- but as a molecular species, the magic number of 22 electron core is 

achieved and Tc5X13 (X= halogen or equivalent ligand) should exist. In fact, a Tc5I13 

cluster has been synthesized and will be discussed later in this chapter. It should also be 

noted that there is no evidence within the literature of pentanuclear rhenium halide 

structures.  

 

 

Figure 5.2. Structure of (Pr4N)[W5I5(μ-I)4(η-I)4]·THF or written as (Pr4N)[W5I13]·THF. Both the (PrN) 

+ and THF have been omitted.[179] 

 

 Experimental 5.2

 Preparation of K[Tc8(μ-I)8I4] 5.2.1

The reaction was performed using the same experimental set-up as the one 

described for Tc2(O2CCH3)4I (Chapter 4) and Figure 2.6. Potassium pertechnetate (101.3 
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mg, 0.501 mmol) and potassium iodide (84.3 mg, 0.508 mmol) were added to the glass 

vial. The glass vial was placed in a 23 mL Teflon acid digestion autoclave and glacial 

acetic acid (6 mL) was added into the glass vial followed by concentrated hydroiodic acid 

(198 μL, 1.50 mmol). The Tc:KI:HI molar ratio is 1:1:3. To the Teflon autoclave, outside 

the glass vial, sodium borohydride (319 mg, 8.43 mmol) and 0.200 mL of deionized 

water were added. The system was sealed and placed in an oven at 210 °C for 3 days. 

After 3 days, the autoclave was allowed to cool to room temperature on an aluminum 

block and opened. The mother liquor was removed by glass pipet, the product was 

washed with acetic acid (2 x 2 mL), isopropyl alcohol (2 x 2 mL), and diethyl ether (2 x 2 

mL), then dried in air, revealing two crystalline solids: tan Tc2(O2CCH3)4I and purple 

K[Tc8(μ-I)8I4]I (144.1 mg total mass). An approximate 2:1 mixture of Tc2(O2CCH3)4I and 

K[Tc8(μ-I)8I4]I was estimated visually. The dark purple-black, elongated rectangular 

K[Tc8(μ-I)8I4]I crystals are readily distinguishable to the naked eye from the light brown 

Tc2(O2CCH3)4I crystals and were mechanically separated under a microscope. 

 

 Preparation of Tc5I13, or Tc5I5(μ-I)4(η-I)4 5.2.2

A weighed quantity of potassium pertechnetate (100 mg, 0.495 mmol) was placed in 

a glass vial and addition of 7.0 mL of hydroiodic acid then placed in a Parr Instruments 

4749 autoclave. To the outside of the vial but inside the autoclave were added (250 mg, 

6.61 mmol) of sodium borohydride and 200 μL of water. The autoclave was heated at 

200 ºC for 72 hours removed and allowed to cool to room temperature, providing deep 

dark purple-black crystalline rectangular needles of Tc5I13, 70% yield. The composition of 
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Tc5I13 was determined by technetium elemental analysis LSC and iodide titration (Anal. 

Calcd. for Tc5I13: Tc, 23.1; I, 76.9. Found: Tc, 22.9; I, 77.0). FT-IR (KBr) spectrum showed 

the absence of stretching modes from 4000 to 500 cm-1 confirming a no hydronium ion 

or hydrated species. Decomposition of the product in a sealed evacuated capillary tube 

occurs at temperatures above 290 °C to a grey metallic powder and headspace filled 

with purple iodine gas. 

 

 Analysis 5.2.3

5.2.3.1 Single Crystal X-ray Diffraction 

Dark purple rectangular crystals of K[Tc8(μ-I)8I4]I, and dark “black” purple needle-like 

crystals of Tc5I13, were obtained directly from the washed precipitate and mounted 

under Paratone on a Kaptan cryoloop for data collection. See Chapter 2 for 

instrumentation and analysis parameters for SC-XRD. Solution to the structure was 

performed by Direct Methods and refinement was carried out using SHELX [123] and 

OLEX2.[124] For K[Tc8(μ-I)8I4]I, the resulting data showed the crystal was a non-

merohedral twin and refinement against both crystal domains was attempted but 

produced a substantially higher R-values after which refinement against a single merged 

domain provided an R-value of 0.0277. Crystallographic data and refinement 

parameters for each compound, K[Tc8(μ-I)8I4]I and Tc5I5(μ-I)4(η-I)4 are shown in Table 

5.1. Full details on crystallographic data for the structure of K[Tc8(μ-I)8I4]I and Tc5I5(μ-

I)4(η-I)4 are tabled in Appendix B.  
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Table 5.1. Crystallographic data and refinement parameters for K[Tc8(μ-I)8I4]I and Tc5I5(μ-I)4(η-I)4. 

Crystallographic data   

Empirical Formula I13KTc8 I13Tc5 
Formula weight 2480.08 2144.25 
Temperature (K) 100 100 
Wavelength (Å) 0.71073 0.71073 
Crystal system Monoclinic Monoclinic 
Space group P21/n P21/n 
a (Å) 8.00180(5) 9.7648(9) 
b (Å) 14.5125(10) 15.5838(15) 
c (Å) 13.1948(9) 15.7621(13) 
α (°) 90.00 90.00 
β (°) 102.3090(10) 91.7520 
γ (°) 90.00 90.00 
V (Å3) 1497.04(17) 2397.4(4) 
Z 2 4 
Density calc. (Mg m-3) 5.486 5.928 
Absorption coef. (mm-1) 17.114 19.536 
F(000) 2104 3616 
Range of 2θ (°) 2.113 – 28.281  1.838 – 28.282 

Index ranges (h, k, l) 
-10 ≤ h ≤ 10, -19 ≤ k ≤ 19,      
-17 ≤ l ≤ 17 

-13 ≤ h ≤ 13, -20 ≤ k ≤ 20,    
-21 ≤ l ≤ 21 

Reflections collected 5888 33760 
Independent reflections 3710 [R(int) = 0.0277] 5940 [R(int) = 0.0473] 
Complete to 2θ (%) 99.7 100.0 

Refinement method 
Full-matrix least-squares on 
F2 

Full-matrix least-squares 
on F2 

Data / restraints / 
parameters 

3710 / 37 / 106 
5940 / 0 / 163  

Goodness-of-fit on F2 1.092 1.086 
Final R indices [I > 2σ(I)] R1 = 0.0277, wR2 = 0.0564 R1 = 0.0269, wR2 = 0.0470 
R indices (all data) R1 = 0.0353, wR2 = 0.0588 R1 = 0.0361, wR2 = 0.0495 
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5.2.3.2 Elemental analyses 

For 99Tc elemental analyses using liquid scintillation counting, weighed amounts of 

the compounds (ca. 5 mg) were suspended in 5 mL of ammonium hydroxide for several 

days. After complete dissolution, the solutions were diluted to 10 mL with DI H2O. 

Samples for LSC were prepared by mixing 100 μL of sample solution containing 99Tc and 

100 μL of DI H2O, to correspond to calibration curves, with 10 mL of scintillation cocktail. 

99Tc concentrations were determined by LSC using a Perkin Elmer liquid scintillation 

counter Tri-Carb 3100TR. The scintillation cocktail was ULTIMA GOLD ABTM (Packard). 

US-EPA Method 345.1, explained in Chapter 2, was used to determine the amount of 

iodide.  

 

 Results and discussion 5.3

 K[Tc8(μ-I)8I4]I  5.3.1

The reaction of KTcO4, with iodide salts and/or hydroiodic acid in glacial acetic acid 

at 210 °C under 60-70 atm hydrogen afforded Tc2(O2CCH3)4I and K[Tc8(μ-I)8I4]I. 

Experiments performed in acetic acid with a Tc:MI molar ratio of 1:2 (M = K, Na, H) 

provided exclusively Tc2(O2CCH3)4I in a ca. 80-90% yield. Experiments performed with a 

Tc:MI:HI molar ratio of 1:1:3 provided a mixture of K[Tc8(μ-I)8I4]I and Tc2(O2CCH3)4I. An 

approximate ratio of Tc2(O2CCH3)4I:K[Tc8(μ-I)8I4]I of 2:1 was visually estimated. Crystals 

of the individual compounds were hand separated under a microscope; Tc2(O2CCH3)4I is 

light brown and K[Tc8(μ-I)8I4]I is purple. See chapter 4 for other synthesis and 

characterization data on Tc2(O2CCH3)4I. The solid state structure of K[Tc8(μ-I)8I4]I was 
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solved by single-crystal X-ray diffraction and crystallizes in the monoclinic space group 

P21/n with a = 8.0018(5) Å, b = 14.5125(10) Å, c = 13.1948(9) Å, and β = 102.3090(10)°. 

The Tc-Tc separations in the [Tc8(μ-I)8I4] cluster (i.e., 2.164(3) Å, 2.5308(8) Å and 2.72(3) 

Å) suggest the presence of Tc≡Tc triple bonds, Tc=Tc double bonds and Tc-Tc single 

bonds, shown in Figure 5.3. 

 

 

 

Figure 5.3. Ball and stick representation of K[Tc8(μ-I)8I4]I. Ellipsoids are shown at the 70% 
probability level with selected bond lengths (Å). Color of atoms: Tc in turquoise, K in white and I 

in purple. 
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The octanuclear technetium bromide clusters ([H(H2O)2]2{[Tc8((μ-Br)8Br4]Br2}, 

[H(H2O)2]{[Tc8((μ-Br)8Br4]Br}, and {[Tc8(μ-Br)8Br4]Br}·2H2O) were synthesized from the 

reaction of HTcO4 or H2TcBr6 with hydrobromic acid in autoclaves (30-50 atm hydrogen) 

in the temperature range 130-200 °C.[18] Previous attempts to synthesize iodide clusters 

from the hydrothermal reaction of HTcO4 in HI at 140-220 °C under hydrogen were 

unsuccessful. Those reactions produced a small amount of black powder that was only 

characterized through elemental analysis as TcI2·0.5H2O.[180] In our reaction, the 

preferential formation of K[Tc8(μ-I)8I4]I over a divalent iodide hydrate might be due to 

the presence of glacial acetic acid as a solvent which minimizes hydrolysis of the 

reaction products. The formation mechanism(s) of polynuclear technetium halide 

clusters under hydrothermal conditions are not well understood. It was previously 

postulated that the hexa- and octanuclear bromide and chloride clusters were formed 

from the cycloaddition of Tc2X8
n- (n = 4, 5; X = Cl, Br) anions, but no experimental 

evidence has been provided. 

The compound contains the tetragonal-prismatic [Tc8(μ-I)8I4] cluster (Figure 5.3) and 

is the first octanuclear technetium cluster coordinated solely to iodide ligands to be 

reported. In the [Tc8(μ-I)8I4] cluster, there are nominally four Tc(+2) atoms and four 

Tc(+1) atoms (44 cluster electrons). Three distinct metal-metal separations are 

observed: four short Tc-Tc bonds (2.164(3) Å) along the edges of the tetragonal 

pyramid, two Tc-Tc bonds forming the short diagonals of the prism faces (2.5308(8) Å), 

and eight longer Tc-Tc longer bonds (2.72(3) Å) forming the bases of the prism. The 

shortest metal-metal separation (2.164(3) Å) is characteristic of electron-rich Tc≡Tc 
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triple bonds, while the longest (2.72(3) Å) is characteristic of Tc-Tc single bonds. The Tc-

Tc separations of 2.5308(8) Å suggest the presence of Tc=Tc double bonds (or at least 

Tc-Tc bonds with some degree of multiple bond character).[181] The overall geometry of 

the [Tc8(μ-I)8I4] cluster is similar to the ones found in the [Tc8(μ-Br)8Br4]n (n = 0, 1) 

clusters. Within literature only one paper probing the metal-metal bonding in an 

octanuclear technetium cluster of the type described here.[175] Unfortunately, few 

details were provided. It would seem that [Tc8(μ-X)8X4] clusters (X = Br, I) are prime 

targets for additional theoretical investigations. Selected interatomic bond distances for 

hexa-and octanuclear technetium bromide and iodide clusters are shown in Table 5.2. 

The shortest Tc-Tc separations in the isoelectronic [Tc8(μ-Br)8Br4] cluster (i.e., 2.155(3) Å 

and 2.152(9) Å) are slightly shorter than the ones found in [Tc8(μ-I)8I4]. In the trigonal-

prismatic [Tc6(μ-I)6I6]1- cluster,[54] the shortest Tc-Tc separation (2.18(1) Å) is slightly 

longer than the one in [Tc8(μ-I)8I4]. The [Tc8(μ-I)8I4] cluster contains eight bridging (Tc-Ibri 

= 2.68[3] Å) and four terminal (Tc-Iterm = 2.731[12] Å) iodide ligands. The [Tc8(μ-I)8I4] 

cluster is also capped by one iodine atom, with the shortest Tc-Icap distance being 

3.187(53) Å. The packing of the [Tc8(μ-I)8I4] cluster within the unit cell (Figure 5.4) along 

the a-axis and b-axis shows the rhombohedral face of the top half of the cluster. The 

shortest I···I separation between clusters is 3.7455(2) Å through terminal-equatorial 

iodide contacts, or somewhat less than the sum of the Van der Waals radii ( 4.2 Å).[182]  
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Table 5.2. Selected Interatomic bond distances (Å) in hexa- and octanuclear technetium clusters  

Compound [ref.] Tc-Tc Tc-Xterm Tc-XBri Tc-Xcap 

K[Tc8(μ-I)8I4]I [this work,162] 2.164/3/, 

2.5308(8)

, 2.72/3/ 

2.731/12/ 2.68/3/ 3.187/53/ 

[FeCp2]3{Tc6(μ-I)6I6]I2}[55] 2.18(1), 

2.67(1) 

2.71(1) 2.61/2/ 3.26(2) 

[H(H2O)2]{[Tc8(μ-Br)8Br4]Br} 

[78,183] 

2.155/3/, 

2.531/2/ 

2.70/2/ 

2.53/2/ 2.51/2/ 2.99/7/ 

[H(H2O)2]2{[Tc8(μ-Br)8Br4]Br2} 

[78,183] 

2.152/9/, 

2.520/9/ 

2.69(1) 

2.52/1/ 2.52/1/ 2.90/2/ 

[Tc8(μ-Br)8Br4]Br·2H2O [76] 2.146(2), 

2.521(2) 

2.69/2/ 

2.509/8/ 2.50/2/ 3.00/7/ 

Standard errors are given in rounded brackets and deviations from mean values—/x/.  

 

 

Figure 5.4. Unit cell packing along the (a) a-axis and (b) b-axis. Color of atoms: Tc in turquoise, I 
in purple and K in orange. The iodine-iodine Van der Waals distances for terminal-equatorial (a) 

and terminal-terminal (b) are shown. 

b)a)

3.7455 Å

4.1006 Å
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 Tc5I13 compound: (Tc5(μ-I)4(µ3-I)4I5) 5.3.2

The compound Tc5I13 is the first example of a pentanuclear binary halide within the 

group 7 elements. Rhenium has exhibited the pentanuclear Re5 metal cluster in 

Re5(CO)14(μ4-PMe)(μ-PMe2)(μ3-P[Re(CO)5]) but there are no known Re5X13 (X = Cl, Br, I) 

clusters.[184]  

 

Figure 5.5. Ball and stick representation of Tc5(μ-I)4(µ3-I)4I5 “Tc5I13”. Ellipsoids are shown at the 
70% probability level. Color of atoms: Tc in turquoise and I in purple. 

 

The structure of the compound was investigated by SCXRD. An SEM image of the 

type of crystals picked for SC-XRD analysis shown in Figure 5.6, on the order of 100 µm 

in length. The compound contains a square-pyramidal technetium pentanuclear cluster 

with five terminal, four edge bridging, and four triangular face capping iodides as shown 

in Figure 5.5. Crystal data for Tc5I13: P21/n [a = 9.7648(9) Å, b = 15.5838(15) Å, and c = 
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15.7621(15) Å; α = γ = 90°, β = 91.7520(14)°], R1 2.69%. The Tc-Tc bond distances of the 

square base (Tc2-5) in the pyramid, Figure 5.5, have a large range of 2.6040 – 2.6557 Å 

suggesting that the bonds are sharing electrons evenly throughout the base of the 

pyramid. Whereas, Tc1-Tcx (x is Tc 2-5 of the square base) bonds from top of the 

pyramid to the square base (Tc2-5) of the pyramid are a tighter range of 2.6470 – 2.6662 

Å suggesting less electron sharing between Tc1 and the other Tc atoms in the pyramid  

Table 5.3. The Tc-Tc distances are more consistent with Tc-Tc rather than Tc=Tc 

bonding based on previous theoretical studies, it was shown the that Tc-Tc = 2.56 Å, 

Tc=Tc = 2.4 Å and Tc≡Tc = 2.20 Å.[181] 

The Tc5I13 cluster is isostructural with [Mo5Cl13]2- and [W5I13]-1 anions and exhibits the 

same range of M—M bond lengths. [77,179] The only other known Tc-I polynuclear clusters 

are {[Tc6I6(μ-I)6]I2}3- and {[Tc8I4(μ-I)8]I}- anions both containing triply bonded Tc atoms 

2.18 Å and 2.164 Å respectively, connecting the a two triangular Tc3 faces for a Tc6 core 

and two Tc4 rhomboidal units for Tc8 core.[78,162] Tc5I13 does not have such electron rich 

metal-metal bonds within the structure. The Tc-I bonding in Tc5I13 has similar trends to 

the Mo-Cl and W-I bonding where the terminal metal-iodide bonds are longer then the 

bridging iodides. The trend is also seen in {[Tc6I6(μ-I)6]I2}3- and {[Tc8I4(μ-I)8]I}- anions with 

terminal iodides as well. 
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Figure 5.6. Tc5I13 SEM image magnification x200 in backscattering mode. 

 

Table 5.3. Selected Interatomic bond distances (Å) in penta-, hexa- and octanuclear 
molybdenum, tungsten, and technetium clusters.  

Compound [ref.] M-M (Å) M-X terminal (Å) Tc-X Bridged (Å) 

(Tc5I8)I5 [this work] 2.6470 – 2.6662(8) 2.7268 – 2.7670(8) 2.6851 – 2.7571(8) 

[Mo5Cl8)Cl5]2- [178] 2.602 – 2.563(3) 2.418 – 2.440 2.434 – 2.473 

 [(W5I8)I5]- [179] 2.673 – 2.692 (1) 2.763 – 2.843 (2) 2.741 – 2.788(2) 

{[Tc6I6(μ-I)6]I2}3- [54] 2.18 – 2.67(1) 2.71(1) 2.61(2) 

{[Tc8I4(μ-I)8]I}- [162] 2.164(3),  

2.531(8),  

2.72(3) 

2.731(2) 2.68(3) 

 

Multiple batches of Tc5I13 were synthesized. On several occasions micro-crystalline 

powder was made and SEM images of those powders are shown in Figure 5.7. Images A 

and C of Figure 5.7 are of powder like globes and to the naked eye looks as if the solid is 

black and metallic. At first glance it was thought to be Tc-metal powder but when high 

100 μm
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magnification the material, seen in images B and D (under 20 um in length) proved to be 

Tc5I13 in element ratio of 1:2.6, Tc:I; 23.1 wt.% technetium to 76.9 wt.% iodine 

determined by SEM-EDS. The SEM-EDS measurements indicate that there was no 

contribution from Tc-metal in the sample prepared for magnetic susceptibility 

measurements. The temperature dependence of the magnetic susceptibility of Tc5I13 

showed a paramagnetic behavior and data can be fitted with a modified Curie law, 

Figure 5.8 An effective magnetic moment of 0.43(2) μB was extracted from the fit. The 

relatively small value of the magnetic moment suggests a small fraction of unpaired 

electrons. A broad weak feature of unknown origin centered around 100 K was also 

observed.  

 

 

Figure 5.7. Tc5I13 SEM images in secondary electron mode. A: magnification x100, B: 
magnification x1000, C: magnification x200, D: magnification x1000. 

100 μm 10 μm
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Figure 5.8. Magnetic susceptibility data of Tc5I13 showing paramagnetic behavior. 

 

 Conclusion 5.4

In summary, two new technetium metal-metal bonded iodide cluster compounds (1) 

K[Tc8(μ-I)8I4]I, and (2) Tc5(μ-I)4(µ3-I)4I5 “Tc5I13” were synthesized via the hydrothermal 

reduction of (1) KTcO4 in acetic acid/MI (M = K, H) and (2) KTcO4 in hydroiodic acid 

media, respectively and their X-ray crystal structures elucidated.  

The compound K[Tc8(μ-I)8I4]I is the first technetium iodide octanuclear cluster to be 

reported. The Tc-Tc separations in K[Tc8(μ-I)8I4]I are consistent with the presence of Tc-

Tc single bonds, Tc=Tc double bonds and Tc≡Tc triple bonds. Other routes to M[Tc8(μ-

I)8I4]I are being explored for weighable quantities and free of other solid products.  

The compound Tc5(μ-I)4(µ3-I)4I5 is the first pentanuclear technetium iodide cluster to 

be reported within the group 7 elements. The synthesis route to Tc5I13 produces high 

yields of material which will allow for further experimental work on the compound.  
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6 Chapter 6: Conclusions and Future work 

 

The goal of the work presented in this thesis was to revisit some Russian routes from 

the 1980’s for synthesis of technetium metal-metal bonded compounds using 

hydrothermal technique. The synthesis and characterization of new technetium species 

helped to provide details and insight into fundamental technetium metal-metal bonded 

chemistry and potential applications. The M2
+n carboxylate core “paddlewheel” and MnX 

multi-cluster core chemistry for technetium was and still is poorly studied compared to 

that of its neighbors (Mo, Ru, Re and W). This work resulted in the synthesis and 

characterization of 7 new species; Tc2(O2CCH3)4I, Tc2(O2CR)4(μ-O2CR) where [R = -CH3, -

CH2CH3, -C6H5, C(CH3)3], K[Tc8(μ-I)8I4]I, and Tc5(μ-I)4(μ3-I)4I5. In addition, the solid 

structures of Tc2(O2CCH3)4Cl2 and Tc2(O2CCH3)4Br2 were obtained, which were unknown. 

These 7 compounds were characterized by single crystal X-ray diffraction as well as 

various spectroscopic and physical techniques. This work described different synthesis 

routes to produce technetium metal-metal bond compounds from pertechnetate using 

hydrothermal techniques in a new and novel one-step method. A summary of the 

reactions pursued is shown in Figure 6.1. The number of known technetium metal-metal 

bonded compounds forming polymeric chains has increased and lead to the 

characterization of 5 new compounds. This new chemistry indicated that a special type 

of structural motif is shared with ruthenium while it is not seen in other group 7 

elements. 
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Figure 6.1. Summary of synthesis routes from pertechnetate explored using hydrothermal 
techniques to prepare technetium metal-metal bond compounds. 

 

First, reactions involving the reduction of pertechnetate in carboxylic acid, under a 

60-70 atmosphere of H2 (obtained from the decomposition of NaBH4) at moderate 

temperature (120 °C to 210 °C) for 72 hours lead to the formation of Tc2(O2CR)4(μ-O2CR) 

[R = -CH3, -CH2CH3, -C6H5, C(CH3)3]. These compounds consists of infinite chains of 

Tc2(O2CR)4
+ units linked by bridging carboxylic acid units. 

When this reaction is performed in acetic acid, with a molar ratio of 2:1 for sodium 

halide:technetium under 60-70 atmosphere of H2 at 120 °C the connector unit between 

the Tc2
5+ cores is a halide atom. For the first time, the structure of Tc2(O2CCH3)4I has 

been determined and has an arrangement similar to the one found in the known 

Tc2(O2CCH3)4X (X = Cl, Br), with a Tc2
5+ core unit and Tc-Tc bond of order 3.5. When 

KTcO4 
100 mg

Tc2(O2CCH3)4(μ-O2CCH3)
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2:1  Sodium Halide : Tc
CH3COOH
NaBH4, 60-70 atm
72 Hrs @ 120 °C

2:1  HCl: CH3COOH
20:1  HBr: CH3COOH
NaBH4, 60-70 atm
72 Hrs @ 210 °C

CH3COOH
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72 Hrs @ 120 210 °C
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M = K, Cs    CH3COOH
NaBH4, 60-70 atm
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M = K, Cs , HI   CH3COOH
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72 Hrs @ 200 °C
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these compounds, Tc2(O2CCH3)4X (X = Cl, Br), are left in vials at room temperature for 

over 3 months in a mixture of acetic acid and 0.1 M KCl or KBr the molecular dimeric 

crystals Tc2(O2CCH3)4X2 (X = Cl, Br) are observed on the side wall of the vial. 

Unfortunately this reaction was not observed for the iodide species. 

Molecular technetium metal-metal bond species have also been prepared for the 

first time with a reliable, high yield, simple method based on a modification of an earlier 

report in the Russian patent literature. The reaction involved the reduction of 

pertechnetate in acetic acid and HCl or HBr, under a 60-70 atmosphere of H2 (obtained 

from NaBH4) at 210 °C for 72 hours. The X-ray structures of Tc2(O2CCH3)4X2 (X = Cl, Br) 

are reported for the first time and brings to 9 the total number of structurally 

characterized, quadruply bonded technetium(III) dimers. It is well known that 

Tc2(O2CCH3)4Cl2 is used as a starting compound for various Tc(III) chloride compounds. 

With the easily preparation of Tc2(O2CCH3)4Br2, expansion of Tc(III) bromide compounds 

is expected and currently being explored. Further investigation into synthesis of 

Tc2(O2CCH3)4X2 (X = F, I) should be explored from TcX6
-2 anion and for the difluoride, a 

reaction with HF in acetic acid under the same conditions described in Section 3.2.1. 

Molecular technetium metal-metal bonded salts have also been synthesized from 

the reduction of pertechnetate in acetic acid in presence of excess potassium or cesium 

halide under a 60-70 atmosphere of H2 obtained from NaBH4 at 200 °C for 72 hours, see 

Appendix A for more information. These reactions have not been fully characterized and 

thus were not presented in this work. As a result, the repeatability and the full 

characterization of these compounds should be performed in the near future.  
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Finally new polynuclear technetium iodides have been prepared and characterized. 

Reactions of pertechnetate under hydrothermal conditions provided the formation of 

two new technetium iodide clusters; K[Tc8(μ-I)8I4]I and Tc5(μ-I)4(μ3-I)4I5.  

The compound K[Tc8(μ-I)8I4]I, is the first technetium iodide octanuclear cluster to be 

reported, and was synthesized via the hydrothermal reduction of KTcO4 in acetic acid 

and MI (M = K, H) under a 60-70 atmosphere of H2 at 210 °C for 72 hours. The Tc-Tc 

separations in K[Tc8(μ-I)8I4]I are consistent with the presence of Tc-Tc single bonds, 

Tc=Tc double bonds and Tc≡Tc triple bonds similar to those of the known bromide 

compound, i.e., (H5O2)[Tc8(μ-Br)8Br4]Br.  

The compound Tc5(μ-I)4(μ3-I)4I5, the first pentanuclear technetium iodide cluster to 

be reported within the group 7 elements, was synthesized via the hydrothermal 

reduction of KTcO4 in hydroiodic acid media 60-70 atmosphere of H2 obtained from 

NaBH4 at 210 °C for 72 hours. The metal-metal separation in Tc5I13 is primarily consistent 

with the presence of Tc-Tc single bonds. Nevertheless, theoretical calculation needs to 

be performed in order to determine the Tc-Tc bond order within the Tc5
13+ core. Due to 

its yield formation, the compound can be used as a precursor in inorganic chemistry. 

One of the challenges will be to derive Tc5I13 in order to obtain soluble salts containing 

the Tc5I13 unit. One reaction that was pressured to solubilize Tc5I13 was to react with 

NOPF6 in dichloromethane but no suitable product was obtained but the reaction was 

conducted in open air, so future studies should investigate argon atmosphere reaction. 
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Future challenges include the synthesis and characterization of Tc2(O2CCH3)4I2. Most 

of the chemistry accomplished in chapters 3-5, was in some way directly related to 

completing this challenge. It is our view that there is more technetium cluster chemistry 

to be discovered.  
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 : Tc-Tc Dimer Salts APPENDIX A

A.1 Background 

First reported acetate paddlewheel dimer salt of technetium was potassium 

tetraacetatedichloroditechnetium(III, II); K[Tc2(O2CCH3)4Cl2] by Spitsyn 1981 in a mixture 

of other compounds such as, Tc2(O2CCH3)4Cl, K2TcCl6, and KCl. The compound was 

synthesis by two different routes starting from K3[Tc2Cl8]·2H2O; (1) under 30 

atmosphere argon at 110 °C in acetic acid for 2 hours, and (2) under 30 atmosphere 

molecular hydrogen at 120 °C in acetic acid for 20 hours and in both instances the 

crystals were separated by microscope.[164] Single crystal data obtained by Koz’min 1981 

for the Tc2(O2CCH3)4Cl, and 1982 for the K[Tc2(O2CCH3)4Cl2].[45,69] The compound 

K[Tc2(O2CCH3)4Cl2] crystallizes in the tetragonal space group P42/n; a = b = 11.9885(3) Å, 

c = 11.2243(2) Å. The reported Tc-Tc bond distance for K[Tc2(O2CCH3)4Cl2] is 2.1260(5) Å, 

and Tc-Tc-Cl bond angle of 175.90(5)° similar to other Tc2
+5 core compounds, 

[Tc2(O2CCH3)4X2]-, X = Br, discussed below in Section A.2 and A.3. 

 

A.2 Experimental 

The compounds: K[Tc2(O2CCH3)4Br2], Cs[Tc2(O2CCH3)4Br2], and Cs[Tc2(O2CCH3)4I2] 

were synthesized by the reaction of KTcO4, potassium iodide or cesium iodide with a 

molar ratio of 1:4 technetium:iodide under same conditions sections 3.2.1, and 4.2.1. 

Single crystal XRD data was obtained and tabulated in Appendix B, Sections B10-12. No 
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further characterization was performed. The basic structure of the M[Tc2(O2CCH3)4X2], 

(where M = K, Cs; and X = Br, I) is shown in Figure A.1.  

 

 

Figure A.1. Ball and stick model M[Tc2(O2CCH3)4X2], where M = K, Cs; and X = Br, I. Color of 
atoms: Tc in turquoise, C in dark gray, H in light gray, O in red, Br/I in light purple, and K/Cs in 

dark purple. 

  

A.3 Discussion/Conclusion 

The compounds synthesized; K[Tc2(O2CCH3)4Br2], Cs[Tc2(O2CCH3)4Br2], and 

Cs[Tc2(O2CCH3)4I2] crystallize in the tetragonal space group P42/n, same as in 

K[Tc2(O2CCH3)4Cl2]. The Tc-Tc bond distances and selected bond angles have been 

tabulated in Table A.1. The Tc-Tc bonds are consitant throughout the structures with 

K+ or Cs+

Br or I

Tc

O
C

H
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very little deviation average about 2.127 Å for the Tc2
+5 core with electronic 

configuration of σ2π4δ2δ*2π*1. The Tc-Tc-X bond angle seems to broadened with the 

increase in ionic size for cation (K+ to Cs+) by ~ 2°, from 175 to 173°, again a non-linear 

Tc-Tc-X bond angle as seen through the Tc2
+n, (n= 5, 6) tetraacetate paddlewheels. 

 

Table A.1. Selected bond distances (Å) and bond angles (°) for M[Tc2(O2CCH3)4X2], (where M = K, 
Cs; and X = Cl, Br, I).* corresponds to the work presented in this appendix. 

Compound [ref.] d M-M d M-X d M-O (av.) M-M-X 

K[Tc2(O2CCH3)4Cl2][164]        2.1260(5) 2.589(1) 2.07 175.90(5) 

K[Tc2(O2CCH3)4Br2][*] 2.1274(3) 2.7467(3) 2.060(13) 175.608(12) 

Cs[Tc2(O2CCH3)4Br2][*] 2.1298(3) 2.7453(3) 2.068(16) 173.744(14) 

Cs[Tc2(O2CCH3)4I2][*] 2.1275(4) 2.9813(3) 2.067(16) 173.735(13) 
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 : Crystal structures APPENDIX B

B.1 Tc2(O2CCH3)4Cl2  

Single crystal X-ray diffraction data for the structural analysis has been deposited 

with the Cambridge Crystallographic Data Centre, CCDC No. 890709. Copies of this 

information may be obtained free of charge from the Director, CCDC, 12 Union Road, 

Cambridge, CB2 1EZ, UK (fax: +44 1223 336033; email: deposit@ccdc.cam.ac.uk or 

www.ccdc.cam.ac.uk). Crystallographic data are given in Table B.1 and Table B.4. 

 

Table B.1. Crystal data and structure refinement for Tc2(O2CCH3)4Cl2. 

Empirical formula  C8H12Cl2O8Tc2 

Formula weight  504.90 

Temperature  100 K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/n 

Unit cell dimensions a = 6.4258(8) Å            α = 90°. 

 b = 8.8474(11) Å          β = 90.778(2)°. 

 c = 12.5285(16) Å        γ = 90°. 

Volume 712.20(15) Å
3
 

Z 2 

Density (calculated) 2.346 Mg/m
3
 

Absorption coefficient 2.346 mm
-1

 

F(000)                                                       488 

Crystal size                                             0.05 x 0.05 x 0.05 mm3 

Theta range for data collection 2.82 to 30.51°. 

Index ranges -9<=h<=9, -12<=k<=12, -17<=l<=17 

Reflections collected 11170 

Independent reflections 2169 [R(int) = 0.0277] 

Completeness to theta = 25.242° 100.0%  

Absorption correction                             Semi-empirical from equivalents 

mailto:deposit@ccdc.cam.ac.uk
http://www.ccdc.cam.ac.uk/
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Max. and min. transmission                    0.9703 and 0.8457 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2169 / 0 / 93 

Goodness-of-fit on F2 1.076 

Final R indices [I>2sigma(I)] R1 = 0.0180, wR2 = 0.0467 

R indices (all data) R1 = 0.0204, wR2 = 0.0476 

Largest diff. Peak and hole                     1.119 and -0.657 e.A-3 

 

Table B.2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 

103) for Tc2(O2CCH3)4Cl2. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 

 x y z U(eq) 

Tc(1) 1033(1) 768(1) 9584(1) 9(1) 

Cl(1) 3770(1) 2232(1) 8620(1) 14(1) 

O(3) 2687(2) -1075(1) 9109(1) 12(1) 

O(1) -722(2) 620(1) 8241(1) 12(1) 

O(2) -2766(2) -1015(1) 9064(1) 12(1) 

C(3) 2168(3) -2401(2) 9398(1) 11(1) 

O(4) 567(2) -2608(1) 9986(1) 12(1) 

C(2) -3471(3) -512(2) 7216(1) 15(1) 

C(1) -2284(2) -279(2) 8226(1) 11(1) 

C(4) 3415(3) -3724(2) 9059(1) 15(1) 

 

Table B.3. Bond lengths (Å) and angles (°) for Tc2(O2CCH3)4Cl2. 

Tc(1)-O(4)#1  2.0034(12) 

Tc(1)-O(1)  2.0164(12) 

Tc(1)-O(2)#1  2.0259(12) 

Tc(1)-O(3)  2.0390(12) 

Tc(1)-Tc(1)#1  2.1758(3) 

Tc(1)-Cl(1)  2.5078(4) 

O(3)-C(3)  1.274(2) 

O(1)-C(1)  1.281(2) 

O(2)-C(1)  1.277(2) 

O(2)-Tc(1)#1  2.0259(12) 
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C(3)-O(4)  1.287(2) 

C(3)-C(4)  1.484(2) 

O(4)-Tc(1)#1  2.0034(12) 

C(2)-C(1)  1.483(2) 

 

O(4)#1-Tc(1)-O(1) 89.63(5) 

O(4)#1-Tc(1)-O(2)#1 88.05(5) 

O(1)-Tc(1)-O(2)#1         177.47(5) 

O(4)#1-Tc(1)-O(3)          178.42(5) 

O(1)-Tc(1)-O(3) 89.59(5) 

O(2)#1-Tc(1)-O(3) 92.71(5) 

O(4)#1-Tc(1)-Tc(1)#1 93.44(4) 

O(1)-Tc(1)-Tc(1)#1 91.22(4) 

O(2)#1-Tc(1)-Tc(1)#1 89.92(4) 

O(3)-Tc(1)-Tc(1)#1 87.95(4) 

O(4)#1-Tc(1)-Cl(1) 94.33(4) 

O(1)-Tc(1)-Cl(1) 91.12(4) 

O(2)#1-Tc(1)-Cl(1) 88.05(4) 

O(3)-Tc(1)-Cl(1) 84.31(4) 

Tc(1)#1-Tc(1)-Cl(1)       171.903(13) 

C(3)-O(3)-Tc(1)             120.94(11) 

C(1)-O(1)-Tc(1)             118.83(11) 

C(1)-O(2)-Tc(1)#1         119.75(10) 

O(3)-C(3)-O(4)              120.57(15) 

O(3)-C(3)-C(4)               120.03(15) 

O(4)-C(3)-C(4)               119.39(15) 

C(3)-O(4)-Tc(1)#1        117.09(10) 

O(2)-C(1)-O(1)              120.15(15) 

O(2)-C(1)-C(2)              120.23(15) 

O(1)-C(1)-C(2)               119.56(15) 

 
Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y,-z+2 
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Table B.4. Anisotropic displacement parameters (Å2x 103) for Tc2(O2CCH3)4Cl2. The anisotropic 
displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

Tc(1) 9(1)  9(1) 8(1)  0(1) 1(1)  -1(1) 

Cl(1) 15(1)  14(1) 15(1)  0(1) 3(1)  -3(1) 

O(3) 12(1)  12(1) 12(1)  0(1) 1(1)  1(1) 

O(1) 13(1)  14(1) 9(1)  0(1) -1(1)  -1(1) 

O(2) 12(1)  13(1) 10(1)  0(1) -1(1)  -1(1) 

C(3) 13(1)  12(1) 9(1)  -2(1) -2(1)  0(1) 

O(4) 14(1)  10(1) 11(1)  1(1) 2(1)  1(1) 

C(2) 15(1)  19(1) 11(1)  -2(1) -3(1)  0(1) 

C(1) 12(1)  12(1) 10(1)  -2(1) 0(1)  2(1) 

C(4) 18(1)  13(1) 15(1)  -2(1) 0(1)  4(1) 

  

B.2 Tc2(O2CCH3)4Br2 

Single crystal X-ray diffraction data for Tc2(O2CCH3)4Br2 has been deposited with the 

Cambridge Crystallographic Data Centre, CCDC No. 897437. Copies of this information 

may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, 

CB2 1EZ, UK (fax: +44 1223 336033; email: deposit@ccdc.cam.ac.uk or 

www.ccdc.cam.ac.uk). Crystallographic data are given in Table B.5 and Table B.9. 

  
Table B.5. Crystal data and structure refinement for Tc2(O2CCH3)4Br2. 

Identification code   bk_tc2oac4br2_0m_a 

Empirical formula    C8 H12 Br2 O8 Tc2 

Formula weight    593.8 

Temperature    100(2) K 

Wavelength    0.71073 Å 

Crystal system    Monoclinic 

Space group    P2(1)/n 

Unit cell dimensions  a = 6.5299(7) Å       α= 90°. 

     b = 9.0483(9) Å       β= 90.718(2)°. 

mailto:deposit@ccdc.cam.ac.uk
http://www.ccdc.cam.ac.uk/
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     c = 12.5915(13) Å   γ = 90°. 

Volume    743.90(13) Å3 

Z     2 

Density (calculated)  2.643 Mg/m3 

Absorption coefficient  7.259 mm-1 

F(000)    560 

Crystal size   0.08 x 0.03 x 0.03 mm3 

Theta range for data collection 2.77 to 30.51°. 

Index ranges   -9<=h<=9,-12<=k<=12,-17<=l<=17 

Reflections collected  11863 

Independent reflections  2265 [R(int) = 0.0280] 

Completeness to theta = 30.51° 100.0%  

Absorption correction  Semi-empirical from equivalents 

Max. and min. transmission 0.7462 and 0.5214 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters 2265 / 0 / 93 

Goodness-of-fit on F2  1.046 

Final R indices [I>2sigma(I)] R1 = 0.0184, wR2 = 0.0400 

R indices (all data)   R1 = 0.0219, wR2 = 0.0409 

Largest diff. peak and hole 0.567 and -0.528 e.Å-3 

 

Table B.6. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 

103) for Tc2(O2CCH3)4Br2. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 

 x y z U(eq) 

Tc(1) 6010(1) 4247(1) 9583(1) 7(1) 

Br(1) 8774(1) 2658(1) 8556(1) 12(1) 

O(4) 5711(2) 5578(2) 11756(1) 10(1) 

O(3) 7715(2) 3986(2) 10922(1) 11(1) 

O(2) 2308(2) 3970(2) 10873(1) 11(1) 

O(1) 4383(2) 2464(2) 10006(1) 11(1) 

C(1) 2809(3) 2671(2) 10586(2) 10(1) 

C(3) 7252(3) 4698(2) 11764(2) 10(1) 

C(2) 1561(3) 1386(2) 10917(2) 14(1) 

C(4) 8448(3) 4468(2) 12758(2) 14(1) 
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Table B.7. Bond lengths (Å) and angles (°) for Tc2(O2CCH3)4Br2. 

Tc(1)-O(1)    2.0078(14) 

Tc(1)-O(4)#1    2.0202(14) 

Tc(1)-O(3)    2.0230(14) 

Tc(1)-O(2)#1    2.0380(14) 

Tc(1)-Tc(1)#1                2.1764(3) 

Tc(1)-Br(1)    2.6554(3) 

O(4)-C(3)    1.283(2) 

O(4)-Tc(1)#1    2.0202(14) 

O(3)-C(3)    1.280(2) 

O(2)-C(1)    1.274(2) 

O(2)-Tc(1)#1    2.0380(14) 

O(1)-C(1)    1.282(2) 

C(1)-C(2)    1.483(3) 

C(3)-C(4)    1.482(3) 

 

O(1)-Tc(1)-O(4)#1  89.64(6) 

O(1)-Tc(1)-O(3)  88.41(6) 

O(4)#1-Tc(1)-O(3)  177.77(6) 

O(1)-Tc(1)-O(2)#1  178.72(6) 

O(4)#1-Tc(1)-O(2)#1  89.96(6) 

O(3)-Tc(1)-O(2)#1  91.96(6) 

O(1)-Tc(1)-Tc(1)#1  92.80(4) 

O(4)#1-Tc(1)-Tc(1)#1  91.12(4) 

O(3)-Tc(1)-Tc(1)#1  90.05(4) 

O(2)#1-Tc(1)-Tc(1)#1  88.42(4) 

O(1)-Tc(1)-Br(1)  93.41(4) 

O(4)#1-Tc(1)-Br(1)  90.61(4) 

O(3)-Tc(1)-Br(1)  88.43(4) 

O(2)#1-Tc(1)-Br(1)  85.39(4) 

Tc(1)#1-Tc(1)-Br(1)  173.563(12) 

C(3)-O(4)-Tc(1)#1  118.91(13) 

C(3)-O(3)-Tc(1)  119.93(13) 

C(1)-O(2)-Tc(1)#1  120.62(13) 

C(1)-O(1)-Tc(1)  117.68(12) 

O(2)-C(1)-O(1)               120.48(17) 

O(2)-C(1)-C(2)               119.96(18) 
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O(1)-C(1)-C(2)               119.57(18) 

O(3)-C(3)-O(4)             119.92(18) 

O(3)-C(3)-C(4)             120.13(18) 

O(4)-C(3)-C(4)             119.92(18) 

 
Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y+1,-z+2 

 

Table B.8. Anisotropic displacement parameters (Å2x 103) for Tc2(O2CCH3)4Br2. The anisotropic 
displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

Tc(1) 7(1)  7(1) 8(1) 0(1) 1(1) 1(1) 

Br(1) 12(1)  11(1) 14(1) -1(1) 3(1) 3(1) 

O(4) 10(1)  10(1) 10(1) 0(1) 0(1) 1(1) 

O(3) 10(1)  11(1) 12(1) 0(1) 0(1) 1(1) 

O(2) 10(1)  10(1) 12(1) 0(1) 2(1) -2(1) 

O(1) 12(1)  9(1) 11(1) -1(1) 0(1) -1(1) 

C(1) 11(1)  11(1) 9(1) 2(1) -2(1) 0(1) 

C(3) 10(1)  10(1) 11(1) 2(1) 1(1) -4(1) 

C(2) 17(1)  11(1) 14(1) 3(1) -1(1) -5(1) 

C(4) 13(1) 17(1) 11(1) 3(1) -3(1) 0(1) 

  

Table B.9. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
Tc2(O2CCH3)4Br2. 

 x y z U(eq) 

H(2A) 1697 1250 11687 21 

H(2B) 2039 496 10554 21 

H(2C) 120 1564 10730 21 

H(4A) 8452 5382 13176 20 

H(4B) 9859 4199 12585 20 

H(4C) 7825 3672 13172 20 
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B.3 Tc2(O2CCH3)3Cl2(H2O)2 · H2O 

Single crystal X-ray diffraction data for Tc2(O2CCH3)3Cl2(H2O)2·H2O has not been 

deposited with the Cambridge Crystallographic Data Centre. Crystallographic data are 

given in Table B.10 and Table B.14. 

  

Table B.10. Crystal data and structure refinement for Tc2(O2CCH3)3Cl2(H2O)2·H2O. 

Identification code  bk_tc2_ac_4_cl2_k_0m 

Empirical formula  C6 H15 Cl2 O9 Tc2 

Formula weight  499.90 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21 

Unit cell dimensions a = 7.7102(7)           α= 90°. 

 b = 11.4786(11) Å    β= 94.8430(10)°. 

 c = 8.3468(8) Å        γ = 90°. 

Volume 736.07(12) Å3 

Z 2 

Density (calculated) 2.256 Mg/m3 

Absorption coefficient 2.273 mm-1 

F(000) 486 

Crystal size 0.06 x 0.04 x 0.04 mm3 

Theta range for data collection 2.45 to 31.50°. 

Index ranges -11<=h<=11, -16<=k<=16, -12<=l<=12 

Reflections collected 12743 

Independent reflections 4868 [R(int) = 0.0203] 

Completeness to theta = 31.50° 100.0%  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4868 / 4 / 194 

Goodness-of-fit on F2 1.027 

Final R indices [I>2sigma(I)] R1 = 0.0152, wR2 = 0.0363 

R indices (all data) R1 = 0.0157, wR2 = 0.0365 
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Absolute structure parameter 0.00(14) 

Largest diff. peak and hole 0.723 and -0.364 e.Å-3 

 

Table B.11. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 
103) for Tc2(O2CCH3)3Cl2(H2O)2·H2O. U(eq) is defined as one third of the trace of the 

orthogonalized Uij tensor. 

 x y z U(eq) 

Tc(1) 1060(1) 7544(1) 7039(1) 8(1) 

Tc(2) 2387(1) 9037(1) 6299(1) 8(1) 

Cl(1) 2845(1) 5961(1) 6413(1) 13(1) 

Cl(2) 5008(1) 8394(1) 5356(1) 12(1) 

O(1) 1088(2) 8939(1) 4004(1) 11(1) 

O(4) 2280(2) 7661(2) 9319(2) 12(1) 

O(3) 3651(2) 9244(1) 8539(2) 12(1) 

O(2) -362(2) 7412(1) 4826(1) 11(1) 

O(5) 440(2) 10104(1) 6993(2) 12(1) 

O(7) -681(2) 6035(1) 8052(2) 14(1) 

O(6) -943(2) 8544(1) 7805(2) 12(1) 

C(5) -850(2) 9646(2) 7618(2) 11(1) 

O(9) -3774(2) 6938(1) 8699(2) 19(1) 

C(1) -57(2) 8143(2) 3733(2) 11(1) 

C(2) -1017(3) 8068(2) 2108(2) 16(1) 

C(3) 3329(2) 8509(2) 9617(2) 11(1) 

C(4) 4190(3) 8632(2) 11276(2) 17(1) 

O(8) 3257(2) 10895(1) 5481(2) 19(1) 

C(6) -2251(2) 10409(2) 8152(3) 16(1) 

 

Table B.12. Bond lengths (Å) and angles (°) for Tc2(O2CCH3)3Cl2(H2O)2·H2O. 

Tc(1)-O(4)  2.0549(12) 

Tc(1)-O(6)  2.0683(13) 

Tc(1)-O(2)  2.0719(12) 

Tc(1)-Tc(2)  2.1152(2) 

Tc(1)-Cl(1)  2.3643(5) 

Tc(1)-O(7)  2.3884(15) 

Tc(2)-O(3)  2.0480(13) 
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Tc(2)-O(5)  2.0579(13) 

Tc(2)-O(1)  2.0887(12) 

Tc(2)-Cl(2)  2.3481(5) 

Tc(2)-O(8)  2.3543(14) 

O(1)-C(1)  1.277(2) 

O(4)-C(3)  1.277(2) 

O(3)-C(3)  1.273(2) 

O(2)-C(1)  1.276(2) 

O(5)-C(5)  1.275(2) 

O(6)-C(5)  1.277(2) 

C(5)-C(6)  1.489(2) 

C(1)-C(2)  1.491(2) 

C(3)-C(4)  1.491(3) 

 

O(4)-Tc(1)-O(6) 88.44(5) 

O(4)-Tc(1)-O(2) 175.29(5) 

O(6)-Tc(1)-O(2) 87.91(5) 

O(4)-Tc(1)-Tc(2) 91.27(4) 

O(6)-Tc(1)-Tc(2) 91.88(4) 

O(2)-Tc(1)-Tc(2) 91.81(4) 

O(4)-Tc(1)-Cl(1) 91.45(4) 

O(6)-Tc(1)-Cl(1) 163.45(4) 

O(2)-Tc(1)-Cl(1) 91.21(4) 

Tc(2)-Tc(1)-Cl(1) 104.661(14) 

O(4)-Tc(1)-O(7) 86.94(5) 

O(6)-Tc(1)-O(7) 80.59(6) 

O(2)-Tc(1)-O(7) 89.54(5) 

Tc(2)-Tc(1)-O(7) 172.31(4) 

Cl(1)-Tc(1)-O(7) 82.88(4) 

O(3)-Tc(2)-O(5) 88.62(5) 

O(3)-Tc(2)-O(1) 176.41(7) 

O(5)-Tc(2)-O(1) 89.16(5) 

O(3)-Tc(2)-Tc(1) 91.85(4) 

O(5)-Tc(2)-Tc(1) 91.00(4) 

O(1)-Tc(2)-Tc(1) 91.00(4) 

O(3)-Tc(2)-Cl(2) 89.20(4) 

O(5)-Tc(2)-Cl(2) 161.79(4) 

O(1)-Tc(2)-Cl(2) 92.03(4) 
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Tc(1)-Tc(2)-Cl(2) 107.142(13) 

O(3)-Tc(2)-O(8) 91.97(5) 

O(5)-Tc(2)-O(8) 77.00(5) 

O(1)-Tc(2)-O(8) 84.79(6) 

Tc(1)-Tc(2)-O(8) 167.30(4) 

Cl(2)-Tc(2)-O(8) 85.02(4) 

C(1)-O(1)-Tc(2) 118.16(12) 

C(3)-O(4)-Tc(1) 117.62(12) 

C(3)-O(3)-Tc(2) 117.51(12) 

C(1)-O(2)-Tc(1) 118.28(12) 

C(5)-O(5)-Tc(2) 118.87(12) 

C(5)-O(6)-Tc(1) 117.43(12) 

O(5)-C(5)-O(6) 120.82(17) 

O(5)-C(5)-C(6) 119.40(17) 

O(6)-C(5)-C(6) 119.78(16) 

O(2)-C(1)-O(1) 120.66(16) 

O(2)-C(1)-C(2) 120.32(16) 

O(1)-C(1)-C(2) 119.01(16) 

O(3)-C(3)-O(4) 121.72(16) 

O(3)-C(3)-C(4) 119.71(16) 

O(4)-C(3)-C(4) 118.57(16) 

Symmetry transformations used to generate equivalent atoms:  

 

Table B.13. Anisotropic displacement parameters (Å2x 103) for Tc2(O2CCH3)3Cl2(H2O)2·H2O. The 
anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

Tc(1) 8(1) 7(1) 9(1) 0(1) 1(1) 0(1) 

Tc(2) 8(1) 7(1) 9(1) 1(1) 1(1) 0(1) 

Cl(1) 13(1) 9(1) 19(1) 0(1) 3(1) 2(1) 

Cl(2) 10(1) 13(1) 13(1) 1(1) 3(1) 2(1) 

O(1) 12(1) 11(1) 11(1) 1(1) 1(1) 0(1) 

O(4) 12(1) 13(1) 12(1) 2(1) 1(1) -1(1) 

O(3) 10(1) 14(1) 13(1) 0(1) 1(1) -2(1) 

O(2) 11(1) 10(1) 12(1) 0(1) 0(1) -1(1) 

O(5) 12(1) 8(1) 16(1) 0(1) 3(1) 0(1) 

O(7) 13(1) 11(1) 20(1) -1(1) 4(1) -1(1) 
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O(6) 10(1) 10(1) 14(1) -1(1) 3(1) 0(1) 

C(5) 10(1) 12(1) 10(1) -1(1) 0(1) 0(1) 

O(9) 16(1) 17(1) 24(1) 3(1) 4(1) -2(1) 

C(1) 10(1) 10(1) 12(1) -2(1) 1(1) 3(1) 

C(2) 17(1) 19(1) 11(1) -1(1) -3(1) 0(1) 

C(3) 9(1) 14(1) 10(1) -1(1) 1(1) 1(1) 

C(4) 16(1) 24(1) 12(1) -2(1) -2(1) -2(1) 

O(8) 14(1) 11(1) 33(1) 7(1) 7(1) 2(1) 

C(6) 12(1) 14(1) 22(1) -3(1) 6(1) 2(1) 

 

Table B.14. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
Tc2(O2CCH3)3Cl2(H2O)2·H2O. 

 x y z U(eq) 

H(1O7) -820(30) 5460(17) 7540(30) 17 

H(2O7) -1570(30) 6250(20) 8270(30) 17 

H(1O9) -4510(30) 6570(20) 8420(30) 23 

H(2O9) -3610(30) 7490(30) 8220(30) 23 

H(2A) -1831 7411 2081 24 

H(2B) -186 7951 1297 24 

H(2C) -1664 8792 1880 24 

H(4A) 5056 9257 11294 26 

H(4B) 4766 7898 11602 26 

H(4C) 3314 8820 12021 26 

H(1O8) 2530(30) 11414(19) 5350(30) 23 

H(2O8) 4060(30) 11040(30) 5000(30) 23 

H(6A) -1848 10783 9172 24 

H(6B) -3287 9940 8300 24 

H(6C) -2540 11008 7337 24 
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B.4 Tc2(O2CCH3)4(µ-O2CCH3) 

Single crystal X-ray diffraction data for Tc2(O2CCH3)4(µ-O2CCH3) has not been 

deposited with the Cambridge Crystallographic Data Centre. Crystallographic data are 

given in Table B.15 and Table B.19. 

 

Table B.15. Crystal data and structure refinement for Tc2(O2CCH3)4(µ-O2CCH3). 

Identification code  bk_tcoac5_100k_0m_a 

Empirical formula  C10 H15 O10 Tc2 

Formula weight  493.04 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 13.0754(5) Å     α= 90° 

 b = 8.3466(3) Å      β= 106.1770(10)° c = 15.0242(5) Å γ = 90° 

Volume 1574.75(10) Å3 

Z 4 

Density (calculated) 2.072 Mg/m3 

Absorption coefficient 1.801 mm-1 

F(000) 964 

Crystal size 0.25 x 0.2 x 0.2 mm3 

Theta range for data collection 2.82 to 30.51°. 

Index ranges -18<=h<=18, -11<=k<=11, -

21<=l<=21 

Reflections collected 11879 

Independent reflections 2400 [R(int) = 0.0155] 

Completeness to theta = 30.51ｰ 100.0%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7465 and 0.6819 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2400 / 6 / 112 

Goodness-of-fit on F2 1.129 



 

 134  
 

Final R indices [I>2sigma(I)] R1 = 0.0175, wR2 = 0.0459 

R indices (all data) R1 = 0.0188, wR2 = 0.0467 

Largest diff. peak and hole 1.145 and -0.549 e.Å-3 

 

Table B.16. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 
103) for Tc2(O2CCH3)4(µ-O2CCH3). U(eq) is defined as one third of the trace of the orthogonalized 

Uij tensor. 

 x y z U(eq) 

Tc(1) 1804(1) 2595(1) 9440(1) 14(1) 

O(3) 867(1) 1653(1) 10204(1) 18(1) 

O(2) 2969(1) 4648(1) 11052(1) 19(1) 

O(1) 1504(1) 4864(1) 9872(1) 19(1) 

O(4) 2325(1) 1442(1) 11389(1) 18(1) 

C(1) 2141(1) 5416(2) 10606(1) 19(1) 

C(3) 1324(1) 1282(2) 11045(1) 17(1) 

C(4) 671(1) 645(2) 11633(1) 22(1) 

C(2) 1922(1) 7014(2) 10966(1) 27(1) 

O(5) 378(1) 2932(2) 8250(1) 25(1) 

C(5) 96(9) 3636(3) 7449(9) 15(1) 

C(6) 325(4) 5385(4) 7368(3) 48(1) 

 

Table B.17. Bond lengths (Å) and angles (°) for Tc2(O2CCH3)4(µ-O2CCH3). 

Tc(1)-O(3)  2.0540(10) 

Tc(1)-O(2)#1  2.0646(10) 

Tc(1)-O(4)#1  2.0709(10) 

Tc(1)-O(1)  2.0743(10) 

Tc(1)-Tc(1)#1  2.1124(2) 

Tc(1)-O(5)  2.2125(11) 

O(3)-C(3)  1.2757(16) 

O(2)-C(1)  1.2758(17) 

O(2)-Tc(1)#1  2.0646(10) 

O(1)-C(1)  1.2684(17) 

O(4)-C(3)  1.2737(17) 
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O(4)-Tc(1)#1  2.0709(10) 

C(1)-C(2)  1.497(2) 

C(3)-C(4)  1.4872(19) 

O(5)-C(5)#2  1.212(13) 

O(5)-C(5)  1.297(12) 

C(5)-O(5)#2  1.212(13) 

C(5)-C(6)  1.502(4) 

 

O(3)-Tc(1)-O(2)#1 91.19(4) 

O(3)-Tc(1)-O(4)#1 176.91(4) 

O(2)#1-Tc(1)-O(4)#1 88.75(4) 

O(3)-Tc(1)-O(1) 88.89(4) 

O(2)#1-Tc(1)-O(1) 176.88(4) 

O(4)#1-Tc(1)-O(1) 91.00(4) 

O(3)-Tc(1)-Tc(1)#1 92.43(3) 

O(2)#1-Tc(1)-Tc(1)#1 92.23(3) 

O(4)#1-Tc(1)-Tc(1)#1 90.66(3) 

O(1)-Tc(1)-Tc(1)#1 90.89(3) 

O(3)-Tc(1)-O(5) 90.09(4) 

O(2)#1-Tc(1)-O(5) 89.93(4) 

O(4)#1-Tc(1)-O(5) 86.82(4) 

O(1)-Tc(1)-O(5) 86.94(4) 

Tc(1)#1-Tc(1)-O(5) 176.65(3) 

C(3)-O(3)-Tc(1) 117.30(9) 

C(1)-O(2)-Tc(1)#1 116.95(9) 

C(1)-O(1)-Tc(1) 117.90(9) 

C(3)-O(4)-Tc(1)#1 118.16(9) 

O(1)-C(1)-O(2) 121.97(13) 

O(1)-C(1)-C(2) 119.53(13) 

O(2)-C(1)-C(2) 118.50(13) 

O(4)-C(3)-O(3) 121.42(12) 

O(4)-C(3)-C(4) 119.46(12) 

O(3)-C(3)-C(4) 119.13(12) 

C(5)#2-O(5)-C(5) 14.6(7) 

C(5)#2-O(5)-Tc(1) 151.0(4) 
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C(5)-O(5)-Tc(1) 140.0(4) 

O(5)#2-C(5)-O(5) 121.9(3) 

O(5)#2-C(5)-C(6) 117.8(9) 

O(5)-C(5)-C(6) 120.3(9) 
 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1/2,-y+1/2,-z+2    #2 -x,y,-z+3/2 

 

Table B.18. Anisotropic displacement parameters (Å2x 103) for Tc2(O2CCH3)4(µ-O2CCH3). The 
anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

Tc(1) 14(1) 15(1) 14(1) 0(1) 4(1) -2(1) 

O(3) 17(1) 20(1) 18(1) 0(1) 6(1) -3(1) 

O(2) 20(1) 18(1) 19(1) -4(1) 6(1) -2(1) 

O(1) 20(1) 17(1) 22(1) 0(1) 6(1) 1(1) 

O(4) 20(1) 20(1) 17(1) 1(1) 6(1) -2(1) 

C(1) 21(1) 16(1) 22(1) -1(1) 11(1) -2(1) 

C(3) 20(1) 14(1) 18(1) -2(1) 8(1) -2(1) 

C(4) 25(1) 23(1) 22(1) -2(1) 13(1) -5(1) 

C(2) 33(1) 19(1) 31(1) -6(1) 14(1) 1(1) 

O(5) 23(1) 27(1) 20(1) 4(1) 0(1) -2(1) 

C(5) 13(3) 15(1) 19(3) 0(1) 8(2) 1(1) 

C(6) 64(3) 15(1) 51(3) 6(2) -6(2) -4(1) 

 

Table B.19. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
Tc2(O2CCH3)4(µ-O2CCH3). 

 x y z U(eq) 

H(4A) -7 1178 11477 33 

H(4B) 1033 831 12274 33 

H(4C) 565 -485 11527 33 

H(2A) 1895 6903 11595 40 

H(2B) 1252 7415 10592 40 

H(2C) 2479 7749 10944 40 
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H(6A) 1078 5539 7481 72 

H(6B) 80 5980 7816 72 

H(6C) -37 5754 6756 72 

 

B.5 Tc2(O2CCH2CH3)4(µ-O2CCH2CH3) 

Single crystal X-ray diffraction data for Tc2(O2CCH2CH3)4(µ-O2CCH2CH3) has not been 

deposited with the Cambridge Crystallographic Data Centre. Crystallographic data are 

given in Table B.20 and Table B.24. 

  
Table B.20. Crystal data and structure refinement for Tc2(O2CCH2CH3)4(µ-O2CCH2CH3). 

Identification code  bk_tcprop5_0m 

Empirical formula  C15 H25 O10 Tc2 

Formula weight  561.35 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 8.7086(4) Å α = 90°. 

 b = 13.8192(6) Å β = 90°. 

 c = 16.8542(7) Å γ = 90°. 

Volume 2028.33(15) Å3 

Z 4 

Density (calculated) 1.838 Mg/m3 

Absorption coefficient 1.411 mm-1 

F(000) 1124 

Crystal size ? x ? x ? mm3 

Theta range for data collection 1.91 to 30.51°. 

Index ranges -12<=h<=12, -19<=k<=19, -

24<=l<=24 

Reflections collected 33356 

Independent reflections 6201 [R(int) = 0.0239] 

Completeness to theta = 30.51° 100.0%  
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Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6201 / 0 / 279 

Goodness-of-fit on F2 1.050 

Final R indices [I>2sigma(I)] R1 = 0.0208, wR2 = 0.0481 

R indices (all data) R1 = 0.0222, wR2 = 0.0488 

Absolute structure parameter 0.00 
Largest diff. peak and hole            1.181 and -0.504 e.Å-3 

 

Table B.21. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 
103) for Tc2(O2CCH2CH3)4(µ-O2CCH2CH3). U(eq) is defined as one third of the trace of the 

orthogonalized Uij tensor. 

 x y z U(eq) 

Tc(1) 3496(1) 2921(1) 1854(1) 16(1) 

Tc(2) 1077(1) 3031(1) 1901(1) 18(1) 

O(8) 1071(2) 2753(1) 3103(1) 28(1) 

O(9) 6051(2) 2892(1) 1844(1) 23(1) 

O(10) 8521(2) 3058(1) 1978(1) 29(1) 

O(1) 3706(2) 4385(1) 2073(1) 20(1) 

O(7) 3621(2) 2628(1) 3053(1) 24(1) 

O(4) 961(2) 3348(1) 707(1) 24(1) 

O(3) 3498(2) 3218(1) 657(1) 22(1) 

O(5) 3399(2) 1455(1) 1640(1) 22(1) 

O(2) 1159(2) 4491(1) 2131(1) 22(1) 

O(6) 855(2) 1567(1) 1682(1) 26(1) 

C(4) 2221(3) 3411(2) 328(1) 23(1) 

C(2) 2603(3) 5952(2) 2271(1) 27(1) 

C(1) 2491(2) 4881(2) 2160(1) 20(1) 

C(5) 2219(3) 3775(2) -511(1) 31(1) 

C(10) 2360(3) 2600(2) 3434(1) 29(1) 

C(8) 1938(3) -10(2) 1509(2) 36(1) 

C(7) 2075(2) 1066(2) 1611(1) 24(1) 

C(11) 2362(3) 2378(3) 4306(2) 45(1) 

C(6) 2542(4) 4857(2) -517(2) 40(1) 

C(9) 3446(3) -532(2) 1380(2) 38(1) 

C(3) 2239(4) 6472(2) 1508(2) 42(1) 
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C(12) 3929(4) 2151(3) 4645(2) 65(1) 

C(13A) 7279(10) 3382(6) 1788(4) 17(1) 

C(14A) 7297(5) 4338(3) 1350(3) 29(1) 

C(15A) 7207(6) 4176(4) 457(3) 40(1) 

C(13B) 7279(14) 3225(8) 1572(5) 13(1) 

C(14B) 7230(6) 3832(4) 828(4) 26(1) 

C(15B) 7511(10) 4895(5) 1025(4) 44(2) 

 

Table B.22. Bond lengths (Å) and angles (°) for Tc2(O2CCH2CH3)4(µ-O2CCH2CH3). 

Tc(1)-O(3)  2.0584(15) 

Tc(1)-O(5)  2.0588(14) 

Tc(1)-O(7)  2.0636(15) 

Tc(1)-O(1)  2.0651(14) 

Tc(1)-Tc(2)  2.1139(2) 

Tc(1)-O(9)  2.2250(13) 

Tc(2)-O(2)  2.0550(15) 

Tc(2)-O(8)  2.0617(17) 

Tc(2)-O(4)  2.0622(16) 

Tc(2)-O(6)  2.0661(15) 

Tc(2)-O(10)#1  2.2301(14) 

O(8)-C(10)  1.272(3) 

O(9)-C(13B)  1.251(12) 

O(9)-C(13A)  1.269(9) 

O(10)-C(13A)  1.213(9) 

O(10)-C(13B)  1.301(12) 

O(10)-Tc(2)#2  2.2301(14) 

O(1)-C(1)  1.270(2) 

O(7)-C(10)  1.273(3) 

O(4)-C(4)  1.273(3) 

O(3)-C(4)  1.271(3) 

O(5)-C(7)  1.273(2) 

O(2)-C(1)  1.280(2) 

O(6)-C(7)  1.274(3) 

C(4)-C(5)  1.500(3) 

C(2)-C(1)  1.495(3) 

C(2)-C(3)  1.506(4) 

C(5)-C(6)  1.522(4) 
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C(10)-C(11)  1.501(3) 

C(8)-C(7)  1.501(3) 

C(8)-C(9)  1.514(3) 

C(11)-C(12)  1.512(4) 

C(13A)-C(14A)  1.514(10) 

C(14A)-C(15A)  1.523(7) 

C(13B)-C(14B)  1.509(13) 

C(14B)-C(15B)  1.526(9) 

 

O(3)-Tc(1)-O(5) 91.44(6) 

O(3)-Tc(1)-O(7) 176.94(6) 

O(5)-Tc(1)-O(7) 88.91(6) 

O(3)-Tc(1)-O(1) 88.81(6) 

O(5)-Tc(1)-O(1) 177.27(6) 

O(7)-Tc(1)-O(1) 90.70(6) 

O(3)-Tc(1)-Tc(2) 91.33(4) 

O(5)-Tc(1)-Tc(2) 92.10(4) 

O(7)-Tc(1)-Tc(2) 91.70(4) 

O(1)-Tc(1)-Tc(2) 90.61(4) 

O(3)-Tc(1)-O(9) 89.77(6) 

O(5)-Tc(1)-O(9) 91.31(6) 

O(7)-Tc(1)-O(9) 87.19(6) 

O(1)-Tc(1)-O(9) 85.98(5) 

Tc(2)-Tc(1)-O(9) 176.40(4) 

O(2)-Tc(2)-O(8) 89.89(6) 

O(2)-Tc(2)-O(4) 88.71(6) 

O(8)-Tc(2)-O(4) 176.69(6) 

O(2)-Tc(2)-O(6) 176.59(6) 

O(8)-Tc(2)-O(6) 89.58(7) 

O(4)-Tc(2)-O(6) 91.65(7) 

O(2)-Tc(2)-Tc(1) 92.48(4) 

O(8)-Tc(2)-Tc(1) 91.49(4) 

O(4)-Tc(2)-Tc(1) 91.57(4) 

O(6)-Tc(2)-Tc(1) 90.90(4) 

O(2)-Tc(2)-O(10)#1 90.42(6) 

O(8)-Tc(2)-O(10)#1 86.76(6) 

O(4)-Tc(2)-O(10)#1 90.25(6) 

O(6)-Tc(2)-O(10)#1 86.19(6) 
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Tc(1)-Tc(2)-O(10)#1 176.61(4) 

C(10)-O(8)-Tc(2) 117.44(14) 

C(13B)-O(9)-C(13A) 19.3(3) 

C(13B)-O(9)-Tc(1) 148.3(5) 

C(13A)-O(9)-Tc(1) 146.5(4) 

C(13A)-O(10)-C(13B) 19.0(4) 

C(13A)-O(10)-Tc(2)#2 151.7(4) 

C(13B)-O(10)-Tc(2)#2 143.4(5) 

C(1)-O(1)-Tc(1) 118.44(13) 

C(10)-O(7)-Tc(1) 117.11(14) 

C(4)-O(4)-Tc(2) 117.54(14) 

C(4)-O(3)-Tc(1) 117.99(14) 

C(7)-O(5)-Tc(1) 117.39(14) 

C(1)-O(2)-Tc(2) 116.94(13) 

C(7)-O(6)-Tc(2) 118.11(14) 

O(3)-C(4)-O(4) 121.4(2) 

O(3)-C(4)-C(5) 118.9(2) 

O(4)-C(4)-C(5) 119.7(2) 

C(1)-C(2)-C(3) 110.6(2) 

O(1)-C(1)-O(2) 121.51(19) 

O(1)-C(1)-C(2) 119.63(19) 

O(2)-C(1)-C(2) 118.82(19) 

C(4)-C(5)-C(6) 109.5(2) 

O(8)-C(10)-O(7) 122.3(2) 

O(8)-C(10)-C(11) 117.8(2) 

O(7)-C(10)-C(11) 120.0(2) 

C(7)-C(8)-C(9) 114.8(2) 

O(5)-C(7)-O(6) 121.4(2) 

O(5)-C(7)-C(8) 119.70(19) 

O(6)-C(7)-C(8) 118.84(19) 

C(10)-C(11)-C(12) 114.4(2) 

O(10)-C(13A)-O(9) 122.4(7) 

O(10)-C(13A)-C(14A) 116.2(7) 

O(9)-C(13A)-C(14A) 120.7(7) 

C(13A)-C(14A)-C(15A) 110.6(4) 

O(9)-C(13B)-O(10) 116.9(8) 

O(9)-C(13B)-C(14B) 119.0(9) 

O(10)-C(13B)-C(14B) 124.0(9) 
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C(13B)-C(14B)-C(15B) 110.5(6) 

Symmetry transformations used to generate equivalent atoms:  

#1 x-1,y, z  #2 x+1,y, z,  

 

Table B.23. Anisotropic displacement parameters (Å2x 103) for Tc2(O2CCH2CH3)4(µ-O2CCH2CH3). 
The anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* 
U12]. 

 U11 U22 U33 U23 U13 U12 

Tc(1) 7(1)  17(1) 23(1)  0(1) -1(1)  -1(1) 

Tc(2) 7(1)  20(1) 29(1)  -1(1) 0(1)  0(1) 

O(8) 16(1)  38(1) 30(1)  2(1) 6(1)  0(1) 

O(9) 10(1)  26(1) 33(1)  5(1) 1(1)  0(1) 

O(10) 11(1)  31(1) 44(1)  1(1) 0(1)  -1(1) 

O(1) 12(1)  20(1) 29(1)  -3(1) -2(1)  -2(1) 

O(7) 17(1)  32(1) 24(1)  4(1) -1(1)  0(1) 

O(4) 16(1)  27(1) 29(1)  -3(1) -6(1)  2(1) 

O(3) 15(1)  28(1) 24(1)  -1(1) -1(1)  0(1) 

O(5) 13(1)  17(1) 35(1)  -1(1) -1(1)  -1(1) 

O(2) 12(1)  22(1) 33(1)  -5(1) 1(1)  2(1) 

O(6) 12(1)  20(1) 46(1)  -2(1) -1(1)  -1(1) 

C(4) 19(1)  24(1) 26(1)  -6(1) -5(1)  -1(1) 

C(2) 27(1)  20(1) 35(1)  -9(1) -2(1)  2(1) 

C(1) 16(1)  20(1) 24(1)  -5(1) -2(1)  0(1) 

C(5) 31(1)  40(1) 22(1)  -5(1) -6(1)  3(1) 

C(10) 26(1)  34(1) 28(1)  4(1) 3(1)  -1(1) 

C(8) 20(1)  18(1) 69(2)  -3(1) 0(1)  -3(1) 

C(7) 14(1)  21(1) 38(1)  -2(1) -3(1)  -2(1) 

C(11) 31(1)  74(2) 30(1)  12(1) 4(1)  -1(1) 

C(6) 52(2)  42(2) 27(1)  7(1) -4(1)  -2(1) 

C(9) 28(1)  19(1) 67(2)  -4(1) -8(1)  4(1) 

C(3) 64(2)  24(1) 38(1)  -1(1) 12(1)  -5(1) 

C(12) 41(2)  118(3) 35(1)  26(2) -7(1)  -9(2) 

C(13A) 13(2)  23(3) 16(3)  -4(2) 4(3)  2(2) 

C(14A) 20(2)  27(2) 41(2)  11(2) 5(2)  1(2) 

C(15A) 25(2)  57(3) 38(3)  21(2) -2(2)  -1(2) 

C(13B) 13(2)  14(3) 13(4)  -6(3) 2(3)  5(2) 

C(14B) 14(2)  33(3) 30(3)  17(3) -6(2)  -7(2) 
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C(15B) 55(5)  31(4) 45(4)  16(3) 0(3)  6(3) 

 

 Table B.24. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
Tc2(O2CCH2CH3)4(µ-O2CCH2CH3). 

 x y z U(eq) 

H(2A) 3655 6123 2445 33 

H(2B) 1877 6160 2689 33 

H(5A) 1208 3646 -759 37 

H(5B) 3014 3431 -822 37 

H(8A) 1259 -142 1051 43 

H(8B) 1436 -282 1987 43 

H(11A) 1678 1819 4403 54 

H(11B) 1930 2939 4595 54 

H(6A) 1732 5196 -224 61 

H(6B) 2566 5090 -1066 61 

H(6C) 3537 4981 -264 61 

H(9A) 3932 -292 894 57 

H(9B) 3255 -1228 1330 57 

H(9C) 4126 -414 1833 57 

H(3A) 3005 6303 1106 63 

H(3B) 2257 7172 1600 63 

H(3C) 1217 6279 1323 63 

H(12A) 4404 1629 4338 97 

H(12B) 3821 1948 5199 97 

H(12C) 4577 2730 4618 97 

H(14A) 8252 4693 1479 35 

H(14B) 6415 4738 1523 35 

H(15A) 7165 4803 185 60 

H(15B) 6281 3803 331 60 

H(15C) 8116 3818 280 60 

H(14C) 6215 3760 570 31 

H(14D) 8025 3603 452 31 

H(15D) 7430 5283 540 66 

H(15E) 8540 4970 1252 66 

H(15F) 6743 5115 1410 66 
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B.6 Tc2(O2CC6H5)4(μ-O2CC6H5) 

Single crystal X-ray diffraction data for Tc2(O2CC6H5)4(μ-O2CC6H5) has not been 

deposited with the Cambridge Crystallographic Data Centre. Crystallographic data are 

given in Table B.25 and Table B.29. 

  
Table B.25. Crystal data and structure refinement for Tc2(O2CC6H5)4(μ-O2CC6H5). 

Identification code   bk_tc2_o2cph_5_0m 

Empirical formula    C35 H25 O10 Tc2 

Formula weight    803.55 

Temperature    100(2) K 

Wavelength    0.71073 Å 

Crystal system    Triclinic 

Space group    P-1 

Unit cell dimensions  a = 10.9468(3) Å     α = 67.5170(10)°. 

     b = 9.0483(9) Å       β = 71.2040(10)°. 

     c = 12.5915(13) Å    γ = 78.4840(10)°. 

Volume    1608.78(8) Å3 

Z     2 

Density (calculated)  1.655 Mg/m3 

Absorption coefficient  0.918 mm-1 

F(000)    802 

Crystal size   0.2 x 0.2 x 0.02 mm3 

Theta range for data collection 1.88 to 30.51°. 

Index ranges   -15<=h<=15,-16<=k<=16,-20<=l<=20 

Reflections collected  26379 

Independent reflections  9772 [R(int) = 0.0174] 

Completeness to theta = 30.51° 99.5%  

Absorption correction  Semi-empirical from equivalents 

Max. and min. transmission 0.7466 and 0.6484 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters 9772 / 0 / 424 

Goodness-of-fit on F2  1.029 

Final R indices [I>2sigma(I)] R1 = 0.0217, wR2 = 0.0558 

R indices (all data)   R1 = 0.0243, wR2 = 0.0572 

Largest diff. peak and hole 0.894 and -0.474 e.Å-3 
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Table B.26. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 
103) for Tc2(O2CC6H5)4(μ-O2CC6H5). U(eq) is defined as one third of the trace of the orthogonalized 

Uij tensor. 

 x y z U(eq) 

Tc(1) 335(1) 5380(1) 4172(1) 11(1) 

Tc(2) 4508(1) 5115(1) 732(1) 11(1) 

O(10) 2016(1) 5750(1) 4335(1) 15(1) 

O(3) 6119(1) 5754(1) 750(1) 14(1) 

O(1) 5073(1) 3363(1) 1600(1) 14(1) 

O(5) 1315(1) 6275(1) 2498(1) 16(1) 

O(8) 1123(1) 3673(1) 4075(1) 16(1) 

O(6) 3441(1) 5765(1) 2051(1) 16(1) 

C(16) 2708(1) 7873(1) 1846(1) 17(1) 

C(2) 6355(1) 1458(1) 1630(1) 15(1) 

C(15) 2478(1) 6548(1) 2149(1) 14(1) 

C(10) 8334(1) 6462(1) 866(1) 20(1) 

C(23) 1391(1) 1490(1) 4881(1) 19(1) 

C(7) 7172(1) 745(1) 1051(1) 19(1) 

C(9) 8296(1) 6273(1) -30(1) 16(1) 

C(1) 5821(1) 2702(1) 1074(1) 13(1) 

C(31) 4238(1) 6436(1) 4461(1) 19(1) 

C(8) 7122(1) 5840(1) -33(1) 14(1) 

C(3) 6089(1) 1018(1) 2721(1) 20(1) 

C(11) 9468(2) 6771(1) 909(1) 25(1) 

C(29) 2135(1) 5501(1) 5245(1) 14(1) 

C(6) 7739(2) -396(1) 1561(1) 25(1) 

C(30) 3259(1) 5903(1) 5352(1) 16(1) 

C(22) 956(1) 2750(1) 4923(1) 15(1) 

C(21) 1670(2) 8782(1) 1816(1) 25(1) 

C(14) 9382(1) 6441(1) -895(1) 21(1) 

C(32) 5283(2) 6830(2) 4564(2) 28(1) 

C(17) 3965(2) 8206(2) 1571(1) 24(1) 

C(35) 3334(2) 5771(1) 6341(1) 23(1) 

C(12) 10550(2) 6932(2) 51(2) 28(1) 

C(28) 2278(2) 1332(2) 3983(1) 27(1) 

C(24) 890(2) 476(1) 5736(1) 25(1) 

C(4) 6653(2) -128(2) 3224(1) 26(1) 
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C(13) 10502(1) 6785(2) -856(1) 27(1) 

C(34) 4390(2) 6154(2) 6438(2) 31(1) 

C(5) 7490(2) -826(1) 2646(1) 27(1) 

C(18) 4169(2) 9442(2) 1279(2) 36(1) 

C(33) 5363(2) 6684(2) 5550(2) 33(1) 

C(20) 1893(2) 10015(2) 1499(1) 36(1) 

C(25) 1279(2) -709(2) 5694(2) 35(1) 

C(27) 2677(2) 140(2) 3958(2) 38(1) 

C(19) 3140(2) 10340(2) 1231(2) 41(1) 

C(26) 2172(2) -868(2) 4810(2) 41(1) 

O(9) 1292(1) 4928(1) 6072(1) 15(1) 

O(4) 7135(1) 5538(1) -800(1) 15(1) 

O(2) 6143(1) 3100(1) 81(1) 14(1) 

O(7) 425(1) 2874(1) 5816(1) 16(1) 

 

Table B.27. Bond lengths (Å) and angles (°) for Tc2(O2CC6H5)4(μ-O2CC6H5). 

Tc(1)-O(9)#1  2.0447(9) 

Tc(1)-O(8)  2.0578(9) 

Tc(1)-O(7)#1  2.0585(9) 

Tc(1)-O(10)  2.0746(9) 

Tc(1)-Tc(1)#1  2.1218(2) 

Tc(1)-O(5)  2.2100(9) 

Tc(2)-O(1)  2.0496(9) 

Tc(2)-O(4)#2  2.0535(9) 

Tc(2)-O(3)  2.0613(9) 

Tc(2)-O(2)#2  2.0824(9) 

Tc(2)-Tc(2)#2  2.1247(2) 

Tc(2)-O(6)  2.2034(9) 

O(10)-C(29)  1.2692(16) 

O(3)-C(8)  1.2812(16) 

O(1)-C(1)  1.2802(15) 

O(5)-C(15)  1.2657(15) 

O(8)-C(22)  1.2720(16) 

O(6)-C(15)  1.2623(16) 

C(16)-C(21)  1.395(2) 

C(16)-C(17)  1.397(2) 

C(16)-C(15)  1.4986(18) 
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C(2)-C(3)  1.3958(19) 

C(2)-C(7)  1.3961(19) 

C(2)-C(1)  1.4777(18) 

C(10)-C(11)  1.387(2) 

C(10)-C(9)  1.400(2) 

C(23)-C(24)  1.391(2) 

C(23)-C(28)  1.394(2) 

C(23)-C(22)  1.4804(18) 

C(7)-C(6)  1.389(2) 

C(9)-C(14)  1.3961(19) 

C(9)-C(8)  1.4752(18) 

C(1)-O(2)  1.2673(16) 

C(31)-C(32)  1.385(2) 

C(31)-C(30)  1.3959(19) 

C(8)-O(4)  1.2746(16) 

C(3)-C(4)  1.388(2) 

C(11)-C(12)  1.388(2) 

C(29)-O(9)  1.2820(16) 

C(29)-C(30)  1.4734(18) 

C(6)-C(5)  1.390(2) 

C(30)-C(35)  1.3952(19) 

C(22)-O(7)  1.2772(16) 

C(21)-C(20)  1.390(2) 

C(14)-C(13)  1.388(2) 

C(32)-C(33)  1.388(3) 

C(17)-C(18)  1.392(2) 

C(35)-C(34)  1.385(2) 

C(12)-C(13)  1.395(3) 

C(28)-C(27)  1.391(2) 

C(24)-C(25)  1.391(2) 

C(4)-C(5)  1.390(2) 

C(34)-C(33)  1.389(3) 

C(18)-C(19)  1.381(3) 

C(20)-C(19)  1.384(3) 

C(25)-C(26)  1.383(3) 

C(27)-C(26)  1.386(3) 

O(9)-Tc(1)#1  2.0447(9) 

O(4)-Tc(2)#2  2.0535(9) 
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O(2)-Tc(2)#2  2.0824(9) 

O(7)-Tc(1)#1  2.0585(9) 

 

O(9)#1-Tc(1)-O(8) 87.80(4) 

O(9)#1-Tc(1)-O(7)#1 91.77(4) 

O(8)-Tc(1)-O(7)#1 176.98(4) 

O(9)#1-Tc(1)-O(10) 176.95(4) 

O(8)-Tc(1)-O(10) 92.71(4) 

O(7)#1-Tc(1)-O(10) 87.55(4) 

O(9)#1-Tc(1)-Tc(1)#1 94.26(3) 

O(8)-Tc(1)-Tc(1)#1 91.51(3) 

O(7)#1-Tc(1)-Tc(1)#1 91.51(3) 

O(10)-Tc(1)-Tc(1)#1 88.73(3) 

O(9)#1-Tc(1)-O(5) 95.78(4) 

O(8)-Tc(1)-O(5) 90.35(4) 

O(7)#1-Tc(1)-O(5) 86.71(4) 

O(10)-Tc(1)-O(5) 81.22(4) 

Tc(1)#1-Tc(1)-O(5) 169.86(3) 

O(1)-Tc(2)-O(4)#2 88.79(4) 

O(1)-Tc(2)-O(3) 90.06(4) 

O(4)#2-Tc(2)-O(3) 176.91(4) 

O(1)-Tc(2)-O(2)#2 177.06(4) 

O(4)#2-Tc(2)-O(2)#2 90.16(4) 

O(3)-Tc(2)-O(2)#2 90.85(4) 

O(1)-Tc(2)-Tc(2)#2 94.36(3) 

O(4)#2-Tc(2)-Tc(2)#2 91.88(3) 

O(3)-Tc(2)-Tc(2)#2 91.07(3) 

O(2)#2-Tc(2)-Tc(2)#2 88.42(3) 

O(1)-Tc(2)-O(6) 97.40(4) 

O(4)#2-Tc(2)-O(6) 90.75(4) 

O(3)-Tc(2)-O(6) 86.55(4) 

O(2)#2-Tc(2)-O(6) 79.86(4) 

Tc(2)#2-Tc(2)-O(6) 168.00(3) 

C(29)-O(10)-Tc(1) 119.54(8) 

C(8)-O(3)-Tc(2) 117.83(8) 

C(1)-O(1)-Tc(2) 115.61(8) 

C(15)-O(5)-Tc(1) 124.59(8) 

C(22)-O(8)-Tc(1) 117.41(8) 
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C(15)-O(6)-Tc(2) 131.31(8) 

C(21)-C(16)-C(17) 119.74(14) 

C(21)-C(16)-C(15) 120.12(13) 

C(17)-C(16)-C(15) 120.13(13) 

C(3)-C(2)-C(7) 120.21(13) 

C(3)-C(2)-C(1) 120.51(12) 

C(7)-C(2)-C(1) 119.23(12) 

O(6)-C(15)-O(5) 123.53(12) 

O(6)-C(15)-C(16) 118.87(12) 

O(5)-C(15)-C(16) 117.60(12) 

C(11)-C(10)-C(9) 119.90(14) 

C(24)-C(23)-C(28) 120.80(14) 

C(24)-C(23)-C(22) 119.30(13) 

C(28)-C(23)-C(22) 119.89(14) 

C(6)-C(7)-C(2) 119.73(14) 

C(14)-C(9)-C(10) 120.11(13) 

C(14)-C(9)-C(8) 120.38(13) 

C(10)-C(9)-C(8) 119.44(12) 

O(2)-C(1)-O(1) 121.61(12) 

O(2)-C(1)-C(2) 118.77(11) 

O(1)-C(1)-C(2) 119.60(11) 

C(32)-C(31)-C(30) 119.68(15) 

O(4)-C(8)-O(3) 121.59(12) 

O(4)-C(8)-C(9) 119.52(12) 

O(3)-C(8)-C(9) 118.88(12) 

C(4)-C(3)-C(2) 119.56(14) 

C(10)-C(11)-C(12) 119.94(15) 

O(10)-C(29)-O(9) 121.70(12) 

O(10)-C(29)-C(30) 119.01(12) 

O(9)-C(29)-C(30) 119.28(12) 

C(7)-C(6)-C(5) 120.06(14) 

C(35)-C(30)-C(31) 120.08(13) 

C(35)-C(30)-C(29) 120.05(13) 

C(31)-C(30)-C(29) 119.86(12) 

O(8)-C(22)-O(7) 122.05(12) 

O(8)-C(22)-C(23) 119.30(12) 

O(7)-C(22)-C(23) 118.66(12) 

C(20)-C(21)-C(16) 119.94(16) 
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C(13)-C(14)-C(9) 119.54(15) 

C(31)-C(32)-C(33) 120.12(16) 

C(18)-C(17)-C(16) 119.64(16) 

C(34)-C(35)-C(30) 119.84(15) 

C(11)-C(12)-C(13) 120.25(14) 

C(27)-C(28)-C(23) 119.07(17) 

C(23)-C(24)-C(25) 119.55(16) 

C(3)-C(4)-C(5) 120.29(15) 

C(14)-C(13)-C(12) 120.19(15) 

C(35)-C(34)-C(33) 119.95(16) 

C(4)-C(5)-C(6) 120.12(14) 

C(19)-C(18)-C(17) 120.29(17) 

C(32)-C(33)-C(34) 120.31(15) 

C(19)-C(20)-C(21) 120.09(17) 

C(26)-C(25)-C(24) 119.71(17) 

C(26)-C(27)-C(28) 120.06(17) 

C(18)-C(19)-C(20) 120.29(16) 

C(25)-C(26)-C(27) 120.79(16) 

C(29)-O(9)-Tc(1)#1 115.47(8) 

C(8)-O(4)-Tc(2)#2 117.62(8) 

C(1)-O(2)-Tc(2)#2 119.95(8) 

C(22)-O(7)-Tc(1)#1 117.24(8) 

 
Symmetry transformations used to generate equivalent atoms:  

#1 -x,-y+1,-z+1    #2 -x+1,-y+1,-z 

 

Table B.28. Anisotropic displacement parameters (Å2x 103) for Tc2(O2CC6H5)4(μ-O2CC6H5). The 
anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

Tc(1) 12(1)  12(1) 10(1)  -4(1) -2(1)  0(1) 

Tc(2) 10(1)  11(1) 11(1)  -4(1) -3(1)  0(1) 

O(10) 14(1)  18(1) 13(1)  -5(1) -4(1)  -2(1) 

O(3) 13(1)  16(1) 16(1)  -7(1) -4(1)  -2(1) 

O(1) 16(1)  13(1) 13(1)  -5(1) -4(1)  0(1) 

O(5) 14(1)  21(1) 13(1)  -5(1) -2(1)  -3(1) 

O(8) 17(1)  15(1) 15(1)  -6(1) -2(1)  1(1) 
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O(6) 17(1)  17(1) 13(1)  -6(1) -3(1)  1(1) 

C(16) 21(1)  17(1) 13(1)  -7(1) -1(1)  -3(1) 

C(2) 15(1)  12(1) 18(1)  -3(1) -6(1)  -1(1) 

C(15) 14(1)  17(1) 9(1)  -5(1) -1(1)  -1(1) 

C(10) 18(1)  18(1) 27(1)  -10(1) -9(1)  -1(1) 

C(23) 18(1)  15(1) 26(1)  -10(1) -8(1)  4(1) 

C(7) 22(1)  14(1) 21(1)  -6(1) -6(1)  1(1) 

C(9) 13(1)  13(1) 23(1)  -6(1) -7(1)  -1(1) 

C(1) 14(1)  12(1) 15(1)  -5(1) -5(1)  -1(1) 

C(31) 16(1)  15(1) 25(1)  -6(1) -6(1)  -1(1) 

C(8) 13(1)  12(1) 17(1)  -4(1) -6(1)  0(1) 

C(3) 21(1)  19(1) 18(1)  -3(1) -5(1)  0(1) 

C(11) 23(1)  20(1) 39(1)  -13(1) -17(1)  1(1) 

C(29) 14(1)  12(1) 16(1)  -5(1) -5(1)  1(1) 

C(6) 25(1)  15(1) 32(1)  -7(1) -8(1)  4(1) 

C(30) 16(1)  12(1) 21(1)  -7(1) -8(1)  2(1) 

C(22) 14(1)  14(1) 18(1)  -7(1) -4(1)  1(1) 

C(21) 28(1)  19(1) 22(1)  -7(1) -2(1)  2(1) 

C(14) 15(1)  19(1) 27(1)  -8(1) -5(1)  -2(1) 

C(32) 17(1)  21(1) 47(1)  -13(1) -7(1)  -3(1) 

C(17) 26(1)  25(1) 21(1)  -8(1) -3(1)  -8(1) 

C(35) 26(1)  23(1) 24(1)  -10(1) -12(1)  -1(1) 

C(12) 17(1)  21(1) 51(1)  -13(1) -15(1)  -1(1) 

C(28) 24(1)  25(1) 33(1)  -17(1) -4(1)  4(1) 

C(24) 29(1)  16(1) 30(1)  -7(1) -10(1)  1(1) 

C(4) 28(1)  23(1) 21(1)  1(1) -8(1)  1(1) 

C(13) 15(1)  23(1) 40(1)  -9(1) -4(1)  -4(1) 

C(34) 36(1)  33(1) 40(1)  -21(1) -23(1)  2(1) 

C(5) 26(1)  15(1) 32(1)  1(1) -11(1)  1(1) 

C(18) 43(1)  32(1) 33(1)  -11(1) -2(1)  -20(1) 

C(33) 24(1)  31(1) 59(1)  -25(1) -20(1)  0(1) 

C(20) 52(1)  18(1) 31(1)  -9(1) -4(1)  5(1) 

C(25) 42(1)  16(1) 49(1)  -10(1) -18(1)  2(1) 

C(27) 35(1)  33(1) 53(1)  -31(1) -6(1)  9(1) 

C(19) 65(1)  21(1) 35(1)  -9(1) -3(1)  -14(1) 

C(26) 45(1)  21(1) 64(1)  -24(1) -20(1)  11(1) 

O(9) 15(1)  18(1) 12(1)  -4(1) -4(1)  -2(1) 

O(4) 12(1)  18(1) 16(1)  -7(1) -3(1)  -2(1) 
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O(2) 16(1)  13(1) 13(1)  -5(1) -4(1)  1(1) 

O(7) 18(1)  13(1) 15(1)  -5(1) -5(1)  1(1) 

 

 Table B.29. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
Tc2(O2CC6H5)4(μ-O2CC6H5). 

 x y z U(eq) 

H(10) 7584 6378 1444 24 

H(7) 7340 1040 309 23 

H(31) 4187 6529 3787 23 

H(3) 5525 1499 3116 24 

H(11) 9504 6873 1525 29 

H(6) 8297 -883 1169 30 

H(21) 812 8558 2011 30 

H(14) 9356 6321 -1506 25 

H(32) 5946 7201 3958 33 

H(17) 4677 7593 1584 28 

H(35) 2661 5420 6947 27 

H(12) 11327 7142 82 33 

H(28) 2607 2027 3397 32 

H(24) 286 593 6345 30 

H(4) 6466 -436 3966 32 

H(13) 11236 6921 -1448 32 

H(34) 4450 6054 7111 38 

H(5) 7892 -1599 2993 32 

H(18) 5020 9669 1113 43 

H(33) 6086 6948 5617 40 

H(20) 1187 10636 1466 44 

H(25) 933 -1406 6271 42 

H(27) 3295 18 3357 46 

H(19) 3288 11184 1013 50 

H(26) 2444 -1679 4785 49 
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B.7 Tc2(O2CCH3)4I 

Single crystal X-ray diffraction data for Tc2(O2CCH3)4I has been deposited with the 

Cambridge Crystallographic Data Centre, CCDC No. 995651. Copies of this information 

may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, 

CB2 1EZ, UK (fax: +44 1223 336033; email: deposit@ccdc.cam.ac.uk or 

www.ccdc.cam.ac.uk). Crystallographic data are given in Table B.30 and Table B.34. 

 
Table B.30. Crystal data and structure refinement for Tc2(O2CCH3)4I. 

Identification code  BK_0611B_3_0m_a 

Empirical formula  C8 H12 I O8 Tc2 

Formula weight  560.90 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C 2/m 

Unit cell dimensions a = 7.1994(6) Å          α = 90°. 

 b = 14.5851(13) Å       β = 110.9540(10)°. 

 c = 7.1586(6) Å           γ = 90°. 

Volume 701.97(10) Å
3
 

Z 2 

Density (calculated) 2.645 Mg/m
3
 

Absorption coefficient 4.197 mm
-1

 

F(000) 526 

Crystal size 0.2 x 0.2 x 0.06 mm
3
 

Theta range for data collection 2.793 to 29.567°. 

Index ranges -9<=h<=9, -19<=k<=19, -9<=l<=9 

Reflections collected 4112 

Independent reflections 1021 [R(int) = 0.0170] 

Completeness to theta = 25.242° 100.0%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7466 and 0.6136 

Refinement method Full-matrix least-squares on F
2
 

mailto:deposit@ccdc.cam.ac.uk
http://www.ccdc.cam.ac.uk/
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Data / restraints / parameters 1021 / 0 / 48 

Goodness-of-fit on F
2
 1.125 

Final R indices [I>2sigma(I)] R1 = 0.0167, wR2 = 0.0419 

R indices (all data) R1 = 0.0178, wR2 = 0.0425 

Extinction coefficient n/a 

      Largest diff. peak and hole           1.027 and -0.618 e.Å
-3

 

 

Table B.31. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 

103) for Tc2(O2CCH3)4I. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

I(1) 0 0 5000 16(1) 

Tc(1) 3695(1) 0 8706(1) 7(1) 

O(1) 2411(2) -986(1) 9904(2) 10(1) 

O(2) 5147(2) -985(1) 12621(2) 10(1) 

C(1) 3392(3) -1266(1) 11669(3) 10(1) 

C(2) 2465(3) -1944(1) 12638(3) 14(1) 

 

Table B.32. Bond lengths (Å) and angles (°) for Tc2(O2CCH3)4I. 

I(1)-Tc(1)#1  3.0114(3) 

I(1)-Tc(1)  3.0114(3) 

Tc(1)-O(1)  2.0559(13) 

Tc(1)-O(1)#2  2.0559(13) 

Tc(1)-O(2)#3  2.0566(13) 

Tc(1)-O(2)#4  2.0566(13) 

Tc(1)-Tc(1)#4  2.1146(4) 

O(1)-C(1)  1.274(2) 

O(2)-C(1)  1.270(2) 

O(2)-Tc(1)#4  2.0565(13) 

C(1)-C(2)  1.495(3) 

 

Tc(1)#1-I(1)-Tc(1)          180.0 

O(1)-Tc(1)-O(1)#2 88.82(7) 

O(1)-Tc(1)-O(2)#3 91.20(5) 

O(1)#2-Tc(1)-O(2)#3     177.10(6) 
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O(1)-Tc(1)-O(2)#4          177.10(6) 

O(1)#2-Tc(1)-O(2)#4 91.20(5) 

O(2)#3-Tc(1)-O(2)#4 88.64(7) 

O(1)-Tc(1)-Tc(1)#4 91.47(4) 

O(1)#2-Tc(1)-Tc(1)#4 91.47(4) 

O(2)#3-Tc(1)-Tc(1)#4 91.42(4) 

O(2)#4-Tc(1)-Tc(1)#4 91.42(4) 

O(1)-Tc(1)-I(1) 88.86(4) 

O(1)#2-Tc(1)-I(1) 88.86(4) 

O(2)#3-Tc(1)-I(1) 88.24(4) 

O(2)#4-Tc(1)-I(1) 88.24(4) 

Tc(1)#4-Tc(1)-I(1)          179.534(14) 

C(1)-O(1)-Tc(1)              117.73(12) 

C(1)-O(2)-Tc(1)#4          117.86(12) 

O(2)-C(1)-O(1)               121.41(17) 

O(2)-C(1)-C(2)               119.22(17) 

O(1)-C(1)-C(2)               119.38(17) 

Symmetry transformations used to generate equivalent atoms:  

#1 -x,-y,-z+1    #2 x,-y,z    #3 -x+1,y,-z+2    #4 -x+1,-y,-z+2    

 

Table B.33. Anisotropic displacement parameters (Å2x 103) for Tc2(O2CCH3)4I. The anisotropic 
displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

I(1) 10(1) 20(1) 11(1) 0 -3(1) 0 

Tc(1) 6(1) 8(1) 6(1) 0 1(1) 0 

O(1) 9(1) 11(1) 10(1) 0(1) 3(1) -2(1) 

O(2) 9(1) 11(1) 10(1) 1(1) 3(1) 0(1) 

C(1) 9(1) 10(1) 11(1) -1(1) 5(1) 0(1) 

C(2) 14(1) 15(1) 14(1) 3(1) 6(1) -2(1) 
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Table B.34. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
Tc2(O2CCH3)4I. 

 x y z U(eq) 

H(1) 1018 -1940 11949 21 

H(2) 2786 -1778 14045 21 

H(3) 2981 -2558 12553 21 

 

B.8 K[Tc8(μ-I)8I4] 

Single crystal X-ray diffraction data for K[Tc8(μ-I)8I4]I has been deposited in 

Fachinformationszentrum Karlsruhe (FIZ) 76344 Eggenstein-Leopoldshafen, Germany (e-

mail: crysdata@fiz-karlsruhe.de/request_for_deposited_data.html, fax: (+49) 7247-808-

666) for deposition number CSD-427573. Crystallographic data are given in Table B.35 

and Table B.38. 

 

Table B.35. Crystal data and structure refinement for K[Tc8(μ-I)8I4]I. 

Identification code  twin4_a 

Empirical formula  I13 K Tc8 

Formula weight  2480.08 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/n 

Unit cell dimensions a = 8.0018(5) Å         α = 90°. 

 b = 14.5125(10) Å     β = 102.3090(10)°. 

 c = 13.1948(9) Å       γ = 90°. 

Volume 1497.04(17) Å3 

Z 2 

Density (calculated) 5.486 Mg/m3 

Absorption coefficient 17.114 mm-1 

F(000) 2104 

Crystal size 0.2 x 0.2 x 0.05 mm3 

mailto:crysdata@fiz-karlsruhe.de/request_for_deposited_data.html
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Theta range for data collection 2.113 to 28.281°. 

Index ranges -10<=h<=10, -19<=k<=19, -17<=l<=17 

Reflections collected 5888 

Independent reflections 3710 

Completeness to theta = 25.242° 99.7%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.746634 and 0.387931 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3710 / 37 / 106 

Goodness-of-fit on F2 1.092 

Final R indices [I>2sigma(I)] R1 = 0.0277, wR2 = 0.0564 

R indices (all data) R1 = 0.0353, wR2 = 0.0588 

Extinction coefficient n/a 

      Largest diff. peak and hole            2.499 and -1.261 e.Å-3 

 

Table B.36. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 

103) for K[Tc8(μ-I)8I4]I. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

I(2) 7402(1) 2763(1) 9485(1) 9(1) 

I(6) 8834(1) 4090(1) 12511(1) 11(1) 

I(1) 11885(1) 2765(1) 9110(1) 11(1) 

I(3) 13375(1) 3994(1) 12270(1) 10(1) 

I(7) 15000 5000 10000 14(1) 

I(5) 5481(1) 3513(1) 6847(1) 13(1) 

I(4) 10240(1) 3560(1) 6279(1) 15(1) 

Tc(4) 8891(1) 4230(1) 10504(1) 7(1) 

Tc(2) 10358(1) 4283(1) 8214(1) 7(1) 

Tc(3) 7755(1) 4313(1) 8428(1) 6(1) 

Tc(1) 11523(1) 4192(1) 10329(1) 7(1) 

K(1) 3391(4) 5030(2) 5015(3) 17(1) 

 

 

 



 

 158  
 

Table B.37. Bond lengths (Å) and angles (°) for K[Tc8(μ-I)8I4]I. 

I(2)-Tc(4)  2.6602(7) 

I(2)-Tc(3)  2.6933(7) 

I(6)-Tc(4)  2.6660(7) 

I(6)-Tc(2)#1  2.6790(7) 

I(1)-Tc(2)  2.6693(7) 

I(1)-Tc(1)  2.6754(7) 

I(3)-Tc(1)  2.6872(7) 

I(3)-Tc(3)#1  2.7104(7) 

I(3)-K(1)#2  3.918(4) 

I(7)-Tc(1)#3  3.1341(6) 

I(7)-Tc(1)  3.1341(6) 

I(5)-Tc(3)  2.7191(7) 

I(5)-K(1)  3.430(3) 

I(5)-K(1)#4  3.502(3) 

I(4)-Tc(2)  2.7434(8) 

I(4)-K(1)#4  3.665(3) 

I(4)-K(1)#5  3.936(3) 

Tc(4)-Tc(1)  2.1674(8) 

Tc(4)-Tc(1)#1  2.5308(8) 

Tc(4)-Tc(3)  2.6983(8) 

Tc(4)-Tc(2)#1  2.7291(8) 

Tc(2)-Tc(3)  2.1611(8) 

Tc(2)-I(6)#1  2.6790(7) 

Tc(2)-Tc(4)#1  2.7292(8) 

Tc(2)-Tc(1)  2.7508(8) 

Tc(3)-Tc(1)#1  2.7065(8) 

Tc(3)-I(3)#1  2.7104(7) 

Tc(1)-Tc(4)#1  2.5309(8) 

Tc(1)-Tc(3)#1  2.7064(8) 

K(1)-K(1)#4  2.585(7) 

K(1)-I(5)#4  3.502(3) 

K(1)-I(4)#4  3.665(3) 

K(1)-I(3)#6  3.918(4) 

K(1)-I(4)#7  3.936(3) 

 

Tc(4)-I(2)-Tc(3) 60.53(2) 
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Tc(4)-I(6)-Tc(2)#1 61.41(2) 

Tc(2)-I(1)-Tc(1) 61.95(2) 

Tc(1)-I(3)-Tc(3)#1 60.18(2) 

Tc(1)-I(3)-K(1)#2     137.08(5) 

Tc(3)#1-I(3)-K(1)#2 84.35(5) 

Tc(1)#3-I(7)-Tc(1) 180.0 

Tc(3)-I(5)-K(1) 114.37(7) 

Tc(3)-I(5)-K(1)#4 92.86(6) 

K(1)-I(5)-K(1)#4 43.77(10) 

Tc(2)-I(4)-K(1)#4 94.96(6) 

Tc(2)-I(4)-K(1)#5 106.81(6) 

K(1)#4-I(4)-K(1)#5 90.90(7) 

Tc(1)-Tc(4)-Tc(1)#1 90.99(3) 

Tc(1)-Tc(4)-I(2)  105.45(3) 

Tc(1)#1-Tc(4)-I(2) 120.11(3) 

Tc(1)-Tc(4)-I(6) 109.03(3) 

Tc(1)#1-Tc(4)-I(6) 118.19(3) 

I(2)-Tc(4)-I(6) 109.87(2) 

Tc(1)-Tc(4)-Tc(3) 91.04(3) 

Tc(1)#1-Tc(4)-Tc(3) 62.24(2) 

I(2)-Tc(4)-Tc(3) 60.34(2) 

I(6)-Tc(4)-Tc(3) 159.77(3) 

Tc(1)-Tc(4)-Tc(2)#1 89.74(3) 

Tc(1)#1-Tc(4)-Tc(2)#1 62.93(2) 

I(2)-Tc(4)-Tc(2)#1 164.15(3) 

I(6)-Tc(4)-Tc(2)#1 59.53(2) 

Tc(3)-Tc(4)-Tc(2)#1 125.17(3) 

Tc(3)-Tc(2)-I(1) 108.80(3) 

Tc(3)-Tc(2)-I(6)#1 109.94(3) 

I(1)-Tc(2)-I(6)#1 139.74(3) 

Tc(3)-Tc(2)-Tc(4)#1 89.65(3) 

I(1)-Tc(2)-Tc(4)#1 110.99(3) 

I(6)#1-Tc(2)-Tc(4)#1 59.06(2) 

Tc(3)-Tc(2)-I(4) 106.65(3) 

I(1)-Tc(2)-I(4) 91.06(2) 

I(6)#1-Tc(2)-I(4) 88.17(2) 

Tc(4)#1-Tc(2)-I(4) 147.01(3) 

Tc(3)-Tc(2)-Tc(1) 89.78(3) 
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I(1)-Tc(2)-Tc(1) 59.133(19) 

I(6)#1-Tc(2)-Tc(1) 110.42(2) 

Tc(4)#1-Tc(2)-Tc(1) 55.01(2) 

I(4)-Tc(2)-Tc(1) 149.66(3) 

Tc(2)-Tc(3)-I(2) 105.11(3) 

Tc(2)-Tc(3)-Tc(4) 90.35(3) 

I(2)-Tc(3)-Tc(4) 59.128(19) 

Tc(2)-Tc(3)-Tc(1)#1 90.47(3) 

I(2)-Tc(3)-Tc(1)#1 112.84(3) 

Tc(4)-Tc(3)-Tc(1)#1 55.84(2) 

Tc(2)-Tc(3)-I(3)#1 103.60(3) 

I(2)-Tc(3)-I(3)#1 150.34(3) 

Tc(4)-Tc(3)-I(3)#1 113.66(3) 

Tc(1)#1-Tc(3)-I(3)#1 59.48(2) 

Tc(2)-Tc(3)-I(5) 113.38(3) 

I(2)-Tc(3)-I(5) 85.05(2) 

Tc(4)-Tc(3)-I(5) 141.75(3) 

Tc(1)#1-Tc(3)-I(5) 145.98(3) 

I(3)#1-Tc(3)-I(5) 90.35(2) 

Tc(4)-Tc(1)-Tc(4)#1 89.01(3) 

Tc(4)-Tc(1)-I(1) 108.42(3) 

Tc(4)#1-Tc(1)-I(1) 117.39(3) 

Tc(4)-Tc(1)-I(3) 104.63(3) 

Tc(4)#1-Tc(1)-I(3) 120.34(3) 

I(1)-Tc(1)-I(3) 112.45(2) 

Tc(4)-Tc(1)-Tc(3)#1 90.11(3) 

Tc(4)#1-Tc(1)-Tc(3)#1 61.92(2) 

I(1)-Tc(1)-Tc(3)#1 161.46(3) 

I(3)-Tc(1)-Tc(3)#1 60.33(2) 

Tc(4)-Tc(1)-Tc(2) 88.84(3) 

Tc(4)#1-Tc(1)-Tc(2) 62.06(2) 

I(1)-Tc(1)-Tc(2) 58.91(2) 

I(3)-Tc(1)-Tc(2) 166.15(3) 

Tc(3)#1-Tc(1)-Tc(2) 123.98(3) 

Tc(4)-Tc(1)-I(7) 156.43(3) 

Tc(4)#1-Tc(1)-I(7) 68.833(19) 

I(1)-Tc(1)-I(7) 89.599(19) 

I(3)-Tc(1)-I(7) 81.175(18) 



 

 161  
 

Tc(3)#1-Tc(1)-I(7) 72.709(18) 

Tc(2)-Tc(1)-I(7) 87.72(2) 

K(1)#4-K(1)-I(5) 69.60(12) 

K(1)#4-K(1)-I(5)#4 66.63(12) 

I(5)-K(1)-I(5)#4 136.23(10) 

K(1)#4-K(1)-I(4)#4 134.84(17) 

I(5)-K(1)-I(4)#4 154.94(10) 

I(5)#4-K(1)-I(4)#4 68.49(5) 

K(1)#4-K(1)-I(3)#6 77.31(16) 

I(5)-K(1)-I(3)#6 108.07(9) 

I(5)#4-K(1)-I(3)#6 62.24(5) 

I(4)#4-K(1)-I(3)#6 86.43(7) 

K(1)#4-K(1)-I(4)#7 135.93(17) 

I(5)-K(1)-I(4)#7 67.26(5) 

I(5)#4-K(1)-I(4)#7 155.36(10) 

I(4)#4-K(1)-I(4)#7 89.10(7) 

I(3)#6-K(1)-I(4)#7 107.91(9) 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+2,-y+1,-z+2    #2 x+1, y, z+1    #3 -x+3, -y+1, -z+2       

#4 -x+1,-y+1,-z+1    #5 x+1, y, z    #6 x-1, y, z-1    #7 x-1, y, z       

 

Table B.38. Anisotropic displacement parameters (Å2x 103) for K[Tc8(μ-I)8I4]I. The anisotropic 
displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

I(2) 11(1) 6(1) 9(1) 1(1) 2(1) -2(1) 

I(6) 12(1) 12(1) 9(1) 1(1) 4(1) -2(1) 

I(1) 11(1) 8(1) 13(1) -2(1) 2(1) 2(1) 

I(3) 10(1) 8(1) 10(1) 2(1) 0(1) 1(1) 

I(7) 11(1) 13(1) 18(1) 2(1) 6(1) -1(1) 

I(5) 13(1) 12(1) 11(1) 0(1) -3(1) -3(1) 

I(4) 13(1) 21(1) 13(1) -8(1) 4(1) -1(1) 

Tc(4) 7(1) 6(1) 7(1) 1(1) 1(1) 0(1) 

Tc(2) 7(1) 7(1) 7(1) -1(1) 2(1) 0(1) 

Tc(3) 6(1) 6(1) 6(1) 0(1) 1(1) 0(1) 

Tc(1) 7(1) 5(1) 7(1) 0(1) 1(1) 1(1) 

K(1) 14(2) 20(2) 17(2) 17(1) 4(1) 7(1) 
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B.9 Tc5(μ-I)4(µ3-I)4I5   

Single crystal X-ray diffraction data for Tc5(μ-I)4(µ3-I)4I5 has not been deposited in 

Fachinformationszentrum Karlsruhe (FIZ) 76344 Eggenstein-Leopoldshafen, Germany. 

Crystallographic data are given in Table B.39 and Table B.42. 

 

Table B.39. Crystal data and structure refinement for Tc5(μ-I)4(µ3-I)4I5. 

Identification code  BK_0703B_0m_a 

Empirical formula  I13 Tc5 

Formula weight  2144.25 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/n 

Unit cell dimensions a = 9.7648(9) Å        α= 90°. 

 b = 15.5838(15) Å    β= 91.7520(14)°. 

 c = 15.7621(15) Å    γ = 90°. 

Volume 2397.4(4) Å3 

Z 4 

Density (calculated) 5.928 Mg/m3 

Absorption coefficient 19.536 mm-1 

F(000) 3616 

Crystal size 0.3 x 0.02 x 0.02 mm3 

Theta range for data collection 1.838 to 28.282°. 

Index ranges -13<=h<=13, -20<=k<=20, -21<=l<=21 

Reflections collected 33760 

Independent reflections 5940 [R(int) = 0.0473] 

Completeness to theta = 25.242° 100.0%  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5940 / 0 / 163 

Goodness-of-fit on F2 1.086 

Final R indices [I>2sigma(I)] R1 = 0.0269, wR2 = 0.0470 

R indices (all data) R1 = 0.0361, wR2 = 0.0495 

Largest diff. peak and hole 1.400 and -1.365 e.Å-3 
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Table B.40. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 

103) for Tc5(μ-I)4(µ3-I)4I5. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 

 x y z U(eq) 

I(34) 3390(1) 1997(1) 3122(1) 11(1) 

I(25) 858(1) 4501(1) 1930(1) 11(1) 

I(45) 178(1) 3103(1) 3808(1) 10(1) 

I(23) 3825(1) 3265(1) 1203(1) 12(1) 

I(123) 1455(1) 1763(1) -127(1) 8(1) 

I(145) -2059(1) 1605(1) 2450(1) 8(1) 

I(134) 1038(1) 335(1) 1825(1) 8(1) 

I(125) -1666(1) 3088(1) 531(1) 9(1) 

Tc(1) -268(1) 1723(1) 1181(1) 6(1) 

Tc(5) -622(1) 3082(1) 2158(1) 6(1) 

Tc(4) 693(1) 1760(1) 2782(1) 6(1) 

Tc(2) 1111(1) 3157(1) 894(1) 7(1) 

Tc(3) 2406(1) 1831(1) 1526(1) 7(1) 

I(4) 686(1) 706(1) 4171(1) 10(1) 

I(5) -2819(1) 4097(1) 2590(1) 13(1) 

I(3) 4692(1) 922(1) 1127(1) 12(1) 

I(2) 1505(1) 4216(1) -454(1) 11(1) 

I(1) -1908(1) 657(1) 199(1) 10(1) 

 

Table B.41. Bond lengths (Å) and angles (°) for Tc5(μ-I)4(µ3-I)4I5. 

I(34)-Tc(3)  2.6776(8) 

I(34)-Tc(4)  2.6970(8) 

I(25)-Tc(5)  2.6716(8) 

I(25)-Tc(2)  2.6722(8) 

I(45)-Tc(5)  2.6928(8) 

I(45)-Tc(4)  2.7013(8) 

I(23)-Tc(2)  2.6851(8) 

I(23)-Tc(3)  2.6866(8) 

I(123)-Tc(1)  2.7014(8) 

I(123)-Tc(2)  2.7300(8) 

I(123)-Tc(3)  2.7419(8) 
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I(145)-Tc(1)  2.7030(8) 

I(145)-Tc(4)  2.7332(8) 

I(145)-Tc(5)  2.7420(8) 

I(134)-Tc(1)  2.6943(7) 

I(134)-Tc(4)  2.7131(7) 

I(134)-Tc(3)  2.7357(8) 

I(125)-Tc(1)  2.7113(7) 

I(125)-Tc(5)  2.7315(8) 

I(125)-Tc(2)  2.7571(8) 

Tc(1)-Tc(5)  2.6470(8) 

Tc(1)-Tc(2)  2.6543(8) 

Tc(1)-Tc(3)  2.6554(8) 

Tc(1)-Tc(4)  2.6662(8) 

Tc(1)-I(1)  2.7524(7) 

Tc(5)-Tc(4)  2.6041(8) 

Tc(5)-Tc(2)  2.6557(9) 

Tc(5)-I(5)  2.7670(8) 

Tc(4)-Tc(3)  2.6327(9) 

Tc(4)-I(4)  2.7370(7) 

Tc(2)-Tc(3)  2.6040(8) 

Tc(2)-I(2)  2.7268(8) 

Tc(3)-I(3)  2.7336(8) 

 

Tc(3)-I(34)-Tc(4)    58.66(2) 

Tc(5)-I(25)-Tc(2) 59.60(2) 

Tc(5)-I(45)-Tc(4) 57.73(2) 

Tc(2)-I(23)-Tc(3) 57.99(2) 

Tc(1)-I(123)-Tc(2) 58.51(2) 

Tc(1)-I(123)-Tc(3) 58.39(2) 

Tc(2)-I(123)-Tc(3) 56.83(2) 

Tc(1)-I(145)-Tc(4) 58.74(2) 

Tc(1)-I(145)-Tc(5) 58.168(19) 

Tc(4)-I(145)-Tc(5) 56.798(19) 

Tc(1)-I(134)-Tc(4) 59.08(2) 

Tc(1)-I(134)-Tc(3) 58.55(2) 

Tc(4)-I(134)-Tc(3) 57.78(2) 

Tc(1)-I(125)-Tc(5) 58.198(19) 

Tc(1)-I(125)-Tc(2) 58.068(19) 
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Tc(5)-I(125)-Tc(2) 57.87(2) 

Tc(5)-Tc(1)-Tc(2) 60.13(2) 

Tc(5)-Tc(1)-Tc(3) 88.58(2) 

Tc(2)-Tc(1)-Tc(3) 58.74(2) 

Tc(5)-Tc(1)-Tc(4) 58.69(2) 

Tc(2)-Tc(1)-Tc(4) 88.71(2) 

Tc(3)-Tc(1)-Tc(4) 59.30(2) 

Tc(5)-Tc(1)-I(134) 119.49(3) 

Tc(2)-Tc(1)-I(134) 120.24(3) 

Tc(3)-Tc(1)-I(134) 61.51(2) 

Tc(4)-Tc(1)-I(134) 60.81(2) 

Tc(5)-Tc(1)-I(123) 121.41(3) 

Tc(2)-Tc(1)-I(123) 61.29(2) 

Tc(3)-Tc(1)-I(123) 61.57(2) 

Tc(4)-Tc(1)-I(123) 120.86(3) 

I(134)-Tc(1)-I(123) 90.43(2) 

Tc(5)-Tc(1)-I(145) 61.65(2) 

Tc(2)-Tc(1)-I(145) 121.78(3) 

Tc(3)-Tc(1)-I(145) 120.48(3) 

Tc(4)-Tc(1)-I(145) 61.20(2) 

I(134)-Tc(1)-I(145) 88.63(2) 

I(123)-Tc(1)-I(145) 176.77(3) 

Tc(5)-Tc(1)-I(125) 61.28(2) 

Tc(2)-Tc(1)-I(125) 61.83(2) 

Tc(3)-Tc(1)-I(125) 120.57(3) 

Tc(4)-Tc(1)-I(125) 119.97(3) 

I(134)-Tc(1)-I(125) 177.93(3) 

I(123)-Tc(1)-I(125) 90.65(2) 

I(145)-Tc(1)-I(125) 90.19(2) 

Tc(5)-Tc(1)-I(1) 136.56(3) 

Tc(2)-Tc(1)-I(1) 134.59(3) 

Tc(3)-Tc(1)-I(1) 134.85(3) 

Tc(4)-Tc(1)-I(1) 136.68(3) 

I(134)-Tc(1)-I(1) 89.27(2) 

I(123)-Tc(1)-I(1) 87.13(2) 

I(145)-Tc(1)-I(1) 89.77(2) 

I(125)-Tc(1)-I(1) 89.02(2) 

Tc(4)-Tc(5)-Tc(1) 61.02(2) 



 

 166  
 

Tc(4)-Tc(5)-Tc(2) 90.00(3) 

Tc(1)-Tc(5)-Tc(2) 60.07(2) 

Tc(4)-Tc(5)-I(25) 116.30(3) 

Tc(1)-Tc(5)-I(25) 120.20(3) 

Tc(2)-Tc(5)-I(25) 60.21(2) 

Tc(4)-Tc(5)-I(45) 61.30(2) 

Tc(1)-Tc(5)-I(45) 122.18(3) 

Tc(2)-Tc(5)-I(45) 123.47(3) 

I(25)-Tc(5)-I(45) 88.72(2) 

Tc(4)-Tc(5)-I(125) 121.54(3) 

Tc(1)-Tc(5)-I(125) 60.52(2) 

Tc(2)-Tc(5)-I(125) 61.55(2) 

I(25)-Tc(5)-I(125) 93.39(2) 

I(45)-Tc(5)-I(125) 174.85(3) 

Tc(4)-Tc(5)-I(145) 61.43(2) 

Tc(1)-Tc(5)-I(145) 60.18(2) 

Tc(2)-Tc(5)-I(145) 120.25(3) 

I(25)-Tc(5)-I(145) 177.43(3) 

I(45)-Tc(5)-I(145) 89.04(2) 

I(125)-Tc(5)-I(145) 88.95(2) 

Tc(4)-Tc(5)-I(5) 137.40(3) 

Tc(1)-Tc(5)-I(5) 135.75(3) 

Tc(2)-Tc(5)-I(5) 132.54(3) 

I(25)-Tc(5)-I(5) 89.24(2) 

I(45)-Tc(5)-I(5) 87.68(2) 

I(125)-Tc(5)-I(5) 87.65(2) 

I(145)-Tc(5)-I(5) 91.93(2) 

Tc(5)-Tc(4)-Tc(3) 89.99(3) 

Tc(5)-Tc(4)-Tc(1) 60.28(2) 

Tc(3)-Tc(4)-Tc(1) 60.15(2) 

Tc(5)-Tc(4)-I(34) 115.74(3) 

Tc(3)-Tc(4)-I(34) 60.30(2) 

Tc(1)-Tc(4)-I(34) 120.27(3) 

Tc(5)-Tc(4)-I(45) 60.97(2) 

Tc(3)-Tc(4)-I(45) 123.50(3) 

Tc(1)-Tc(4)-I(45) 121.12(3) 

I(34)-Tc(4)-I(45) 88.52(2) 

Tc(5)-Tc(4)-I(134) 120.38(3) 
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Tc(3)-Tc(4)-I(134) 61.54(2) 

Tc(1)-Tc(4)-I(134) 60.11(2) 

I(34)-Tc(4)-I(134) 94.89(2) 

I(45)-Tc(4)-I(134) 174.94(3) 

Tc(5)-Tc(4)-I(145) 61.77(2) 

Tc(3)-Tc(4)-I(145) 120.19(3) 

Tc(1)-Tc(4)-I(145) 60.07(2) 

I(34)-Tc(4)-I(145) 177.20(3) 

I(45)-Tc(4)-I(145) 89.05(2) 

I(134)-Tc(4)-I(145) 87.63(2) 

Tc(5)-Tc(4)-I(4) 139.81(3) 

Tc(3)-Tc(4)-I(4) 130.05(3) 

Tc(1)-Tc(4)-I(4) 137.26(3) 

I(34)-Tc(4)-I(4) 87.10(2) 

I(45)-Tc(4)-I(4) 88.95(2) 

I(134)-Tc(4)-I(4) 87.49(2) 

I(145)-Tc(4)-I(4) 94.24(2) 

Tc(3)-Tc(2)-Tc(1) 60.65(2) 

Tc(3)-Tc(2)-Tc(5) 89.49(3) 

Tc(1)-Tc(2)-Tc(5) 59.80(2) 

Tc(3)-Tc(2)-I(25) 116.17(3) 

Tc(1)-Tc(2)-I(25) 119.91(3) 

Tc(5)-Tc(2)-I(25) 60.19(2) 

Tc(3)-Tc(2)-I(23) 61.03(2) 

Tc(1)-Tc(2)-I(23) 121.67(3) 

Tc(5)-Tc(2)-I(23) 120.99(3) 

I(25)-Tc(2)-I(23) 87.10(2) 

Tc(3)-Tc(2)-I(2) 134.42(3) 

Tc(1)-Tc(2)-I(2) 136.59(3) 

Tc(5)-Tc(2)-I(2) 136.00(3) 

I(25)-Tc(2)-I(2) 91.13(2) 

I(23)-Tc(2)-I(2) 86.63(2) 

Tc(3)-Tc(2)-I(123) 61.81(2) 

Tc(1)-Tc(2)-I(123) 60.21(2) 

Tc(5)-Tc(2)-I(123) 120.01(3) 

I(25)-Tc(2)-I(123) 177.81(3) 

I(23)-Tc(2)-I(123) 91.05(2) 

I(2)-Tc(2)-I(123) 89.95(2) 
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Tc(3)-Tc(2)-I(125) 120.76(3) 

Tc(1)-Tc(2)-I(125) 60.10(2) 

Tc(5)-Tc(2)-I(125) 60.58(2) 

I(25)-Tc(2)-I(125) 92.79(2) 

I(23)-Tc(2)-I(125) 177.95(3) 

I(2)-Tc(2)-I(125) 91.32(2) 

I(123)-Tc(2)-I(125) 89.09(2) 

Tc(2)-Tc(3)-Tc(4) 90.51(3) 

Tc(2)-Tc(3)-Tc(1) 60.61(2) 

Tc(4)-Tc(3)-Tc(1) 60.55(2) 

Tc(2)-Tc(3)-I(34) 116.05(3) 

Tc(4)-Tc(3)-I(34) 61.04(2) 

Tc(1)-Tc(3)-I(34) 121.41(3) 

Tc(2)-Tc(3)-I(23) 60.98(2) 

Tc(4)-Tc(3)-I(23) 121.39(3) 

Tc(1)-Tc(3)-I(23) 121.57(3) 

I(34)-Tc(3)-I(23) 85.73(2) 

Tc(2)-Tc(3)-I(3) 135.50(3) 

Tc(4)-Tc(3)-I(3) 133.90(3) 

Tc(1)-Tc(3)-I(3) 136.44(3) 

I(34)-Tc(3)-I(3) 89.64(2) 

I(23)-Tc(3)-I(3) 87.56(2) 

Tc(2)-Tc(3)-I(134) 120.56(3) 

Tc(4)-Tc(3)-I(134) 60.68(2) 

Tc(1)-Tc(3)-I(134) 59.95(2) 

I(34)-Tc(3)-I(134) 94.81(2) 

I(23)-Tc(3)-I(134) 177.74(3) 

I(3)-Tc(3)-I(134) 90.24(2) 

Tc(2)-Tc(3)-I(123) 61.35(2) 

Tc(4)-Tc(3)-I(123) 120.59(3) 

Tc(1)-Tc(3)-I(123) 60.04(2) 

I(34)-Tc(3)-I(123) 176.42(3) 

I(23)-Tc(3)-I(123) 90.77(2) 

I(3)-Tc(3)-I(123) 90.94(2) 

I(134)-Tc(3)-I(123) 88.72(2) 
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Table B.42. Anisotropic displacement parameters (Å2x 103) for Tc5(μ-I)4(µ3-I)4I5. The anisotropic 
displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

I(34) 8(1) 16(1) 8(1) 0(1) -1(1) -1(1) 

I(25) 14(1) 7(1) 10(1) -1(1) 0(1) -2(1) 

I(45) 14(1) 9(1) 7(1) -2(1) -2(1) 2(1) 

I(23) 9(1) 11(1) 16(1) 5(1) -1(1) -3(1) 

I(123) 10(1) 9(1) 6(1) -1(1) 2(1) 1(1) 

I(145) 7(1) 9(1) 8(1) -1(1) 2(1) -1(1) 

I(134) 9(1) 6(1) 8(1) -1(1) 1(1) 1(1) 

I(125) 9(1) 10(1) 7(1) 0(1) -1(1) 2(1) 

Tc(1) 6(1) 6(1) 5(1) -1(1) 0(1) 0(1) 

Tc(5) 7(1) 6(1) 5(1) 0(1) 0(1) 1(1) 

Tc(4) 7(1) 6(1) 5(1) 0(1) 0(1) 1(1) 

Tc(2) 8(1) 6(1) 7(1) 1(1) 0(1) 0(1) 

Tc(3) 6(1) 8(1) 7(1) 1(1) 1(1) 0(1) 

I(4) 13(1) 9(1) 7(1) 2(1) 1(1) 0(1) 

I(5) 13(1) 12(1) 13(1) -2(1) 2(1) 6(1) 

I(3) 9(1) 16(1) 13(1) 0(1) 2(1) 4(1) 

I(2) 13(1) 10(1) 9(1) 3(1) 1(1) 0(1) 

I(1) 9(1) 11(1) 9(1) -4(1) -1(1) -1(1) 

 

 

B.10 K[Tc2(O2CCH3)4Br2] 

Single crystal X-ray diffraction data for K[Tc2(O2CCH3)4Br2] has been deposited with 

the Cambridge Crystallographic Data Centre, CCDC No. 940547. Copies of this 

information may be obtained free of charge from the Director, CCDC, 12 Union Road, 

Cambridge, CB2 1EZ, UK (fax: +44 1223 336033; email: deposit@ccdc.cam.ac.uk or 

www.ccdc.cam.ac.uk). Crystallographic data are given in Table B.43 and Table B.47. 

 

mailto:deposit@ccdc.cam.ac.uk
http://www.ccdc.cam.ac.uk/
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Table B.43. Crystal data and structure refinement for K[Tc2(O2CCH3)4Br2]. 

Identification code             bk_tc2oac4br_120_0m 

Empirical formula              C8 H12 Br2 K O8 Tc2 

Formula weight              632.90 

Temperature              100(2) K 

Wavelength              0.71073 Å 

Crystal system              Tetragonal 

Space group              P42/n 

Unit cell dimensions             a = 12.0675(3) Å α = 90°. 

                b = 12.0675(3) Å β = 90°. 

                c = 11.1236(5) Å γ = 90°. 

Volume              1619.87(9) Å
3 

Z                4 

Density (calculated)             2.588 Mg/m
3 

Absorption coefficient             6.926 mm
-1 

F(000)               1196 

Crystal size              0.07 x 0.02 x 0.02 mm
3 

Theta range for data collection             2.39 to 30.51°. 

Index ranges              -17<=h<=17, -17<=k<=17, -

15<=l<=15 

Reflections collected              25988 

Independent reflections              2475 [R(int) = 0.0296] 

Completeness to theta = 30.51°             100.0%  

Absorption correction               Semi-empirical from equivalents 

Max. and min. transmission  0.7466 and 0.5692 

Refinement method   Full-matrix least-squares on F2 

Data / restraints / parameters  2475 / 0 / 98 

Goodness-of-fit on F2   1.125 

Final R indices [I>2sigma(I)]  R1 = 0.0171, wR2 = 0.0392 

R indices (all data)               R1 = 0.0206, wR2 = 0.0400 

Largest diff. peak and hole  0.565 and -0.367 e.Å
-3
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Table B.44. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 

103) for K[Tc2(O2CCH3)4Br2]. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 

 x y z U(eq) 

Tc(1) 5289(1) 4190(1) 9790(1) 8(1) 

Br(1) 5912(1) 2091(1) 9115(1) 12(1) 

K(1) 7500 2500 6674(1) 23(1) 

O(1) 6845(1) 4516(1) 10461(1) 11(1) 

O(3) 4860(1) 3590(1) 11456(1) 12(1) 

C(1) 7023(2) 5499(2) 10852(2) 10(1) 

C(3) 4398(2) 4262(2) 12184(2) 10(1) 

C(2) 8134(2) 5790(2) 11346(2) 14(1) 

C(4) 4068(2) 3848(2) 13395(2) 15(1) 

O(4) 4216(1) 5270(1) 11898(1) 11(1) 

O(2) 6267(1) 6232(1) 10834(1) 11(1) 

 

Table B.45. Bond lengths (Å) and angles (°) for K[Tc2(O2CCH3)4Br2]. 

Tc(1)-O(3)    2.0566(13) 

Tc(1)-O(1)    2.0582(13) 

Tc(1)-O(2)#1   2.0660(13) 

Tc(1)-O(4)#1   2.0752(14) 

Tc(1)-Tc(1)#1   2.1274(3) 

Tc(1)-Br(1)   2.7467(2) 

Tc(1)-K(1)#2   3.9583(4) 

Br(1)-K(1)    3.3599(6) 

Br(1)-K(1)#2   3.4668(6) 

K(1)-O(1)#3   2.8925(14) 

K(1)-O(1)#4   2.8925(14) 

K(1)-Br(1)#5   3.3600(6) 

K(1)-Br(1)#3   3.4668(6) 

K(1)-Br(1)#4   3.4668(6) 

K(1)-Tc(1)#3   3.9583(4) 

K(1)-Tc(1)#4   3.9583(4) 

O(1)-C(1)    1.281(2) 

O(1)-K(1)#2   2.8924(14) 

O(3)-C(3)    1.274(2) 
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C(1)-O(2)    1.271(2) 

C(1)-C(2)    1.491(3) 

C(3)-O(4)    1.276(2) 

C(3)-C(4)    1.491(3) 

O(4)-Tc(1)#1   2.0752(13) 

O(2)-Tc(1)#1   2.0660(13) 

  

O(3)-Tc(1)-O(1)  88.28(5) 

O(3)-Tc(1)-O(2)#1  89.25(5) 

O(1)-Tc(1)-O(2)#1  176.47(5) 

O(3)-Tc(1)-O(4)#1  176.99(5) 

O(1)-Tc(1)-O(4)#1  90.32(5) 

O(2)#1-Tc(1)-O(4)#1 92.02(5) 

O(3)-Tc(1)-Tc(1)#1  92.45(4) 

O(1)-Tc(1)-Tc(1)#1  92.51(4) 

O(2)#1-Tc(1)-Tc(1)#1 90.12(4) 

O(4)#1-Tc(1)-Tc(1)#1 90.27(4) 

O(3)-Tc(1)-Br(1)  89.46(4) 

O(1)-Tc(1)-Br(1)  91.50(4) 

O(2)#1-Tc(1)-Br(1)  85.95(4) 

O(4)#1-Tc(1)-Br(1)  87.92(4) 

Tc(1)#1-Tc(1)-Br(1) 175.608(12) 

O(3)-Tc(1)-K(1)#2  60.72(4) 

O(1)-Tc(1)-K(1)#2  44.92(4) 

O(2)#1-Tc(1)-K(1)#2 131.56(4) 

O(4)#1-Tc(1)-K(1)#2 116.55(4) 

Tc(1)#1-Tc(1)-K(1)#2 125.323(11) 

Br(1)-Tc(1)-K(1)#2  59.018(8) 

Tc(1)-Br(1)-K(1)  103.982(6) 

Tc(1)-Br(1)-K(1)#2  78.198(6) 

K(1)-Br(1)-K(1)#2  109.107(6) 

O(1)#3-K(1)-O(1)#4 124.40(6) 

O(1)#3-K(1)-Br(1)  81.77(3) 

O(1)#4-K(1)-Br(1)  153.75(3) 

O(1)#3-K(1)-Br(1)#5 153.75(3) 

O(1)#4-K(1)-Br(1)#5 81.77(3) 

Br(1)-K(1)-Br(1)#5  72.170(15) 

O(1)#3-K(1)-Br(1)#3 65.52(3) 
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O(1)#4-K(1)-Br(1)#3 69.42(3) 

Br(1)-K(1)-Br(1)#3  131.571(4) 

Br(1)#5-K(1)-Br(1)#3 131.571(4) 

O(1)#3-K(1)-Br(1)#4 69.42(3) 

O(1)#4-K(1)-Br(1)#4 65.52(3) 

Br(1)-K(1)-Br(1)#4  131.570(4) 

Br(1)#5-K(1)-Br(1)#4 131.571(4) 

Br(1)#3-K(1)-Br(1)#4 69.616(14) 

O(1)#3-K(1)-Tc(1)#3 30.16(3) 

O(1)#4-K(1)-Tc(1)#3 111.77(3) 

Br(1)-K(1)-Tc(1)#3  92.003(5) 

Br(1)#5-K(1)-Tc(1)#3 145.153(10) 

Br(1)#3-K(1)-Tc(1)#3 42.785(6) 

Br(1)#4-K(1)-Tc(1)#3 82.219(12) 

O(1)#3-K(1)-Tc(1)#4 111.77(3) 

O(1)#4-K(1)-Tc(1)#4 30.16(3) 

Br(1)-K(1)-Tc(1)#4  145.152(10) 

Br(1)#5-K(1)-Tc(1)#4 92.003(5) 

Br(1)#3-K(1)-Tc(1)#4 82.219(12) 

Br(1)#4-K(1)-Tc(1)#4 42.785(6) 

Tc(1)#3-K(1)-Tc(1)#4 116.074(17) 

C(1)-O(1)-Tc(1)  116.94(12) 

C(1)-O(1)-K(1)#2  125.06(11) 

Tc(1)-O(1)-K(1)#2  104.92(5) 

C(3)-O(3)-Tc(1)  117.29(12) 

O(2)-C(1)-O(1)  121.23(17) 

O(2)-C(1)-C(2)  119.19(17) 

O(1)-C(1)-C(2)  119.58(17) 

O(3)-C(3)-O(4)  121.58(17) 

O(3)-C(3)-C(4)  118.52(17) 

O(4)-C(3)-C(4)  119.90(17) 

C(3)-O(4)-Tc(1)#1  118.38(12) 

C(1)-O(2)-Tc(1)#1  119.09(12) 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y+1,-z+2    #2 -y+1,x-1/2,z+1/2    #3 -y+1,x-1/2,z-1/2       

#4 y+1/2,-x+1,z-1/2    #5 -x+3/2,-y+1/2,z       
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Table B.46. Anisotropic displacement parameters (Å2x 103) for K[Tc2(O2CCH3)4Br2]. The 
anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

Tc(1) 8(1)  7(1) 8(1)  0(1) 0(1)  0(1) 

Br(1) 12(1)  9(1) 14(1)  -1(1) 1(1)  1(1) 

K(1) 17(1)  39(1) 14(1)  0 0  -11(1) 

O(1) 10(1)  12(1) 12(1)  -1(1) -1(1)  0(1) 

O(3) 15(1)  11(1) 10(1)  1(1) 1(1)  0(1) 

C(1) 10(1)  13(1) 7(1)  1(1) 0(1)  -1(1) 

C(3) 9(1)  12(1) 10(1)  1(1) -1(1)  -1(1) 

C(2) 10(1)  19(1) 13(1)  -1(1) -2(1)  -2(1) 

C(4) 17(1)  18(1) 11(1)  3(1) 3(1)  1(1) 

O(4) 13(1)  11(1) 10(1)  0(1) 1(1)  0(1) 

O(2) 10(1)  11(1) 12(1)  -2(1) -1(1)  -1(1) 

  

Table B.47. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
K[Tc2(O2CCH3)4Br2]. 

 x y z U(eq) 

H(2A) 8354 6523 11053 21 

H(2B) 8679 5238 11084 21 

H(2C) 8100 5799 12226 21 

H(4A) 3757 4460 13867 23 

H(4B) 4719 3548 13809 23 

H(4C) 3510 3264 13306 23 

 

B.11 Cs[Tc2(O2CCH3)4Br2] 

Single crystal X-ray diffraction data for Cs[Tc2(O2CCH3)4Br2] has been deposited with 

the Cambridge Crystallographic Data Centre, CCDC No. 940548. Copies of this 

information may be obtained free of charge from the Director, CCDC, 12 Union Road, 
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Cambridge, CB2 1EZ, UK (fax: +44 1223 336033; email: deposit@ccdc.cam.ac.uk or 

www.ccdc.cam.ac.uk). Crystallographic data are given in Table B.48 and Table B.52. 

 
Table B.48. Crystal data and structure refinement for Cs[Tc2(O2CCH3)4Br2]. 

Identification code   bk_cstc2oac4br2_0m 

Empirical formula    C8 H12 Br2 Cs O8 Tc2 

Formula weight    726.71 

Temperature    100(2) K 

Wavelength    0.71073 Å 

Crystal system    Tetragonal 

Space group    P42/n 

Unit cell dimensions  a = 12.2300(3) Å α = 90°. 

     b = 12.2300(3) Å β = 90°. 

     c = 11.4330(5) Å γ = 90°. 

Volume    1710.07(10) Å
3
 

Z     4 

Density (calculated)  2.816 Mg/m
3
 

Absorption coefficient  8.416 mm
-1

 

F(000)    1340 

Crystal size   0.08 x 0.02 x 0.02 mm
3
 

Theta range for data collection 2.36 to 30.51°. 

Index ranges   -17<=h<=17, -17<=k<=17, -16<=l<=16 

Reflections collected  27324 

Independent reflections  2605 [R(int) = 0.0317] 

Completeness to theta = 30.51° 100.0%  

Absorption correction  Semi-empirical from equivalents 

Max. and min. transmission 0.7466 and 0.5187 

Refinement method  Full-matrix least-squares on F
2
 

Data / restraints / parameters 2605 / 0 / 98 

Goodness-of-fit on F
2
  1.032 

Final R indices [I>2sigma(I)] R1 = 0.0186, wR2 = 0.0430 

R indices (all data)   R1 = 0.0219, wR2 = 0.0439 

Largest diff. peak and hole 0.606 and -0.999 e.Å
-3
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Table B.49. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 

103) for Cs[Tc2(O2CCH3)4Br2]. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 

 x y z U(eq) 

Cs(1) 2500 7500 1848(1) 19(1) 

Tc(1) 4203(1) 5291(1) 4790(1) 8(1) 

Br(1) 2073(1) 5808(1) 4274(1) 12(1) 

O(1) 3775(1) 3757(1) 4175(1) 11(1) 

O(4) 5301(1) 4235(1) 6863(1) 11(1) 

O(2) 5453(1) 3171(1) 4592(2) 12(1) 

O(3) 3642(1) 4872(1) 6438(1) 12(1) 

C(1) 4493(2) 3002(2) 4180(2) 10(1) 

C(2) 4214(2) 1911(2) 3681(2) 15(1) 

C(3) 4311(2) 4416(2) 7145(2) 11(1) 

C(4) 3908(2) 4100(2) 8333(2) 16(1) 

 

Table B.50. Bond lengths (Å) and angles (°) for Cs[Tc2(O2CCH3)4Br2]. 

Cs(1)-O(2)#1    3.1070(16) 

Cs(1)-O(2)#2    3.1070(17) 

Cs(1)-Br(1)#3    3.4999(3) 

Cs(1)-Br(1)    3.5000(3) 

Cs(1)-O(3)#4    3.5352(16) 

Cs(1)-O(3)#5    3.5352(16) 

Cs(1)-Br(1)#4    3.6357(3) 

Cs(1)-Br(1)#5    3.6357(3) 

Cs(1)-O(4)#6    3.7292(16) 

Cs(1)-O(4)#7    3.7292(16) 

Tc(1)-O(2)#6    2.0527(16) 

Tc(1)-O(4)#6    2.0679(16) 

Tc(1)-O(3)    2.0690(16) 

Tc(1)-O(1)    2.0701(16) 

Tc(1)-Tc(1)#6     2.1298(3) 

Tc(1)-Br(1)    2.7453(3) 

Tc(1)-Cs(1)#8         4.1441(2) 

Br(1)-Cs(1)#8    3.6357(3) 

O(1)-C(1)    1.274(3) 
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O(4)-C(3)    1.273(3) 

O(4)-Tc(1)#6    2.0678(16) 

O(4)-Cs(1)#6    3.7292(16) 

O(2)-C(1)    1.282(3) 

O(2)-Tc(1)#6    2.0528(16) 

O(2)-Cs(1)#9    3.1070(16) 

O(3)-C(3)    1.277(3) 

O(3)-Cs(1)#8    3.5352(16) 

C(1)-C(2)    1.491(3) 

C(3)-C(4)    1.496(3) 

 

O(2)#1-Cs(1)-O(2)#2  115.99(6) 

O(2)#1-Cs(1)-Br(1)#3  159.39(3) 

O(2)#2-Cs(1)-Br(1)#3  84.49(3) 

O(2)#1-Cs(1)-Br(1)  84.49(3) 

O(2)#2-Cs(1)-Br(1)  159.39(3) 

Br(1)#3-Cs(1)-Br(1)  75.170(9) 

O(2)#1-Cs(1)-O(3)#4  51.03(4) 

O(2)#2-Cs(1)-O(3)#4  119.24(4) 

Br(1)#3-Cs(1)-O(3)#4  118.33(3) 

Br(1)-Cs(1)-O(3)#4  74.66(3) 

O(2)#1-Cs(1)-O(3)#5  119.24(4) 

O(2)#2-Cs(1)-O(3)#5  51.03(4) 

Br(1)#3-Cs(1)-O(3)#5  74.66(3) 

Br(1)-Cs(1)-O(3)#5  118.33(3) 

O(3)#4-Cs(1)-O(3)#5  164.77(5) 

O(2)#1-Cs(1)-Br(1)#4  62.38(3) 

O(2)#2-Cs(1)-Br(1)#4  66.77(3) 

Br(1)#3-Cs(1)-Br(1)#4    129.901(4) 

Br(1)-Cs(1)-Br(1)#4  129.901(4) 

O(3)#4-Cs(1)-Br(1)#4  55.40(3) 

O(3)#5-Cs(1)-Br(1)#4  110.69(3) 

O(2)#1-Cs(1)-Br(1)#5  66.77(3) 

O(2)#2-Cs(1)-Br(1)#5  62.38(3) 

Br(1)#3-Cs(1)-Br(1)#5   129.901(4) 

Br(1)-Cs(1)-Br(1)#5  129.901(4) 

O(3)#4-Cs(1)-Br(1)#5  110.69(3) 

O(3)#5-Cs(1)-Br(1)#5  55.40(3) 
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Br(1)#4-Cs(1)-Br(1)#5   71.912(8) 

O(2)#1-Cs(1)-O(4)#6  86.65(4) 

O(2)#2-Cs(1)-O(4)#6  118.51(4) 

Br(1)#3-Cs(1)-O(4)#6  85.15(3) 

Br(1)-Cs(1)-O(4)#6  57.18(3) 

O(3)#4-Cs(1)-O(4)#6  118.88(4) 

O(3)#5-Cs(1)-O(4)#6  67.78(4) 

Br(1)#4-Cs(1)-O(4)#6  144.32(3) 

Br(1)#5-Cs(1)-O(4)#6  80.08(3) 

O(2)#1-Cs(1)-O(4)#7  118.51(4) 

O(2)#2-Cs(1)-O(4)#7  86.65(4) 

Br(1)#3-Cs(1)-O(4)#7  57.18(3) 

Br(1)-Cs(1)-O(4)#7  85.15(3) 

O(3)#4-Cs(1)-O(4)#7  67.78(4) 

O(3)#5-Cs(1)-O(4)#7  118.88(4) 

Br(1)#4-Cs(1)-O(4)#7  80.08(3) 

Br(1)#5-Cs(1)-O(4)#7  144.32(3) 

O(4)#6-Cs(1)-O(4)#7  133.43(5) 

O(2)#1-Cs(1)-C(1)#1  16.49(4) 

O(2)#2-Cs(1)-C(1)#1  129.80(4) 

Br(1)#3-Cs(1)-C(1)#1  144.89(3) 

Br(1)-Cs(1)-C(1)#1  70.03(3) 

O(3)#4-Cs(1)-C(1)#1  56.33(4) 

O(3)#5-Cs(1)-C(1)#1  118.34(4) 

Br(1)#4-Cs(1)-C(1)#1  78.61(3) 

Br(1)#5-Cs(1)-C(1)#1  73.19(3) 

O(4)#6-Cs(1)-C(1)#1  72.35(4) 

O(4)#7-Cs(1)-C(1)#1  122.74(4) 

O(2)#1-Cs(1)-C(1)#2  129.80(4) 

O(2)#2-Cs(1)-C(1)#2  16.49(4) 

Br(1)#3-Cs(1)-C(1)#2  70.03(3) 

Br(1)-Cs(1)-C(1)#2  144.89(3) 

O(3)#4-Cs(1)-C(1)#2  118.34(4) 

O(3)#5-Cs(1)-C(1)#2  56.33(4) 

Br(1)#4-Cs(1)-C(1)#2  73.19(3) 

Br(1)#5-Cs(1)-C(1)#2  78.61(3) 

O(4)#6-Cs(1)-C(1)#2  122.74(4) 

O(4)#7-Cs(1)-C(1)#2  72.35(4) 



 

 179  
 

C(1)#1-Cs(1)-C(1)#2  145.00(6) 

O(2)#6-Tc(1)-O(4)#6  89.82(7) 

O(2)#6-Tc(1)-O(3)  88.92(7) 

O(4)#6-Tc(1)-O(3)  177.09(6) 

O(2)#6-Tc(1)-O(1)  177.20(6) 

O(4)#6-Tc(1)-O(1)  91.02(6) 

O(3)-Tc(1)-O(1)  90.11(7) 

O(2)#6-Tc(1)-Tc(1)#6  92.33(5) 

O(4)#6-Tc(1)-Tc(1)#6  91.78(5) 

O(3)-Tc(1)-Tc(1)#6  90.90(5) 

O(1)-Tc(1)-Tc(1)#6  90.32(5) 

O(2)#6-Tc(1)-Br(1)  93.29(5) 

O(4)#6-Tc(1)-Br(1)  90.98(5) 

O(3)-Tc(1)-Br(1)  86.46(5) 

O(1)-Tc(1)-Br(1)  84.02(5) 

Tc(1)#6-Tc(1)-Br(1)  173.744(14) 

O(2)#6-Tc(1)-Cs(1)#8  46.39(5) 

O(4)#6-Tc(1)-Cs(1)#8  118.89(5) 

O(3)-Tc(1)-Cs(1)#8  58.51(5) 

O(1)-Tc(1)-Cs(1)#8  131.04(5) 

Tc(1)#6-Tc(1)-Cs(1)#8   123.348(12) 

Br(1)-Tc(1)-Cs(1)#8  59.663(6) 

Tc(1)-Br(1)-Cs(1)  99.492(7) 

Tc(1)-Br(1)-Cs(1)#8  79.666(7) 

Cs(1)-Br(1)-Cs(1)#8  106.458(6) 

C(1)-O(1)-Tc(1)  118.74(14) 

C(3)-O(4)-Tc(1)#6  117.48(15) 

C(3)-O(4)-Cs(1)#6  133.26(14) 

Tc(1)#6-O(4)-Cs(1)#6  108.03(6) 

C(1)-O(2)-Tc(1)#6  117.54(14) 

C(1)-O(2)-Cs(1)#9  120.03(14) 

Tc(1)#6-O(2)-Cs(1)#9  105.02(6) 

C(3)-O(3)-Tc(1)  118.14(15) 

C(3)-O(3)-Cs(1)#8  124.47(14) 

Tc(1)-O(3)-Cs(1)#8  91.55(5) 

O(1)-C(1)-O(2)    121.0(2) 

O(1)-C(1)-C(2)    119.3(2) 

O(2)-C(1)-C(2)    119.7(2) 
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O(1)-C(1)-Cs(1)#9  139.50(15) 

O(2)-C(1)-Cs(1)#9  43.48(11) 

C(2)-C(1)-Cs(1)#9  87.67(13) 

O(4)-C(3)-O(3)         121.7(2) 

O(4)-C(3)-C(4  )  119.9(2) 

O(3)-C(3)-C(4)    118.5(2) 

Symmetry transformations used to generate equivalent atoms:  

#1 -y+1/2,x,-z+1/2    #2 y,-x+3/2,-z+1/2    #3 -x+1/2,-y+3/2,z    

#4 y-1/2,-x+1,z-1/2    #5 -y+1,x+1/2,z-1/2    #6 -x+1,-y+1,-z+1       

#7 x-1/2,y+1/2,-z+1    #8 -y+1,x+1/2,z+1/2    #9 y,-x+1/2,-z+1/2       

 

Table B.51. Anisotropic displacement parameters (Å2x 103) for Cs[Tc2(O2CCH3)4Br2]. The 
anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

Cs(1) 29(1) 15(1) 11(1) 0 0  -9(1) 

Tc(1) 8(1) 8(1) 8(1) 0(1) -1(1) 1(1) 

Br(1) 9(1) 13(1) 15(1) 2(1) -2(1)  1(1) 

O(1) 12(1)  10(1) 12(1)  -1(1) -2(1)  -1(1) 

O(4) 12(1)  13(1) 10(1)  1(1) 0(1)  0(1) 

O(2) 12(1)  10(1) 14(1)  -1(1) -1(1)  1(1) 

O(3) 11(1)  15(1) 10(1)  2(1) 0(1)  0(1) 

C(1) 13(1)  10(1) 8(1)  2(1) 0(1)  -1(1) 

C(2) 20(1)  10(1) 16(1)  -3(1) 0(1)  -2(1) 

C(3) 14(1)  9(1) 10(1)  -1(1) 0(1)  -1(1) 

C(4) 17(1)  18(1) 12(1)  4(1) 1(1)  2(1) 

  

Table B.52. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
Cs[Tc2(O2CCH3)4Br2]. 

 x y z U(eq) 

H(2A) 4215 1954 2825 23 

H(2B) 3488 1689 3954 23 

H(2C) 4757 1372 3937 23 

H(4A) 4441 3613 8705 24 

H(4B) 3205 3721 8260 24 

 H(4C)    3815     4758     8812  24 
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B.12 Cs[Tc2(O2CCH3)4I2] 

Single crystal X-ray diffraction data for Cs[Tc2(O2CCH3)4I2] has not been deposited 

with the Cambridge Crystallographic Data Centre. Crystallographic data are given in 

Table B.53 and Table B.57. 

 
Table B.53. Crystal data and structure refinement for Cs[Tc2(O2CCH3)4I2]. 

Identification code   bk_cstc2oac4i2_0m_a 

Empirical formula    C8 H12 Cs I2 O8 Tc2 

Formula weight    820.71 

Temperature    100(2) K 

Wavelength    0.71073 Å 

Crystal system    Tetragonal 

Space group    P42/n 

Unit cell dimensions  a = 12.6139(7) Å α = 90°. 

     b = 12.6139(7) Å β = 90°. 

     c = 11.6608(6) Å γ = 90°. 

Volume    1855.36(17) Å
3
 

Z     4 

Density (calculated)  2.932 Mg/m
3
 

Absorption coefficient  6.778 mm
-1

 

F(000)    1484 

Crystal size   0.07 x 0.07 x 0.03 mm
3
 

Theta range for data collection 2.38 to 30.51°. 

Index ranges   -18<=h<=18, -17<=k<=18, -16<=l<=16 

Reflections collected  29756 

Independent reflections  2829 [R(int) = 0.0231] 

Completeness to theta = 30.51° 99.8%  

Absorption correction  Semi-empirical from equivalents 

Max. and min. transmission 0.7466 and 0.5958 

Refinement method  Full-matrix least-squares on F
2
 

Data / restraints / parameters 2829 / 0 / 102 

Goodness-of-fit on F
2
  1.210 

Final R indices [I>2sigma(I)] R1 = 0.0181, wR2 = 0.0399 

R indices (all data)   R1 = 0.0188, wR2 = 0.0402 
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Largest diff. peak and hole 0.830 and -0.986 e.Å
-3

 

 

Table B.54. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 

103) for Cs[Tc2(O2CCH3)4I2]. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 

 x y z U(eq) 

Cs(1) 7465(9) 2580(7) 3241(1) 25(1) 

I(1) 8027(1) 755(1) 5786(1) 15(1) 

Tc(1) 5777(1) 264(1) 5212(1) 10(1) 

O(2) 3853(1) 1218(1) 4147(1) 14(1) 

O(4) 4712(1) -762(1) 3182(1) 14(1) 

O(1) 5485(1) 1756(1) 4575(1) 14(1) 

O(3) 6329(1) -185(1) 3615(1) 14(1) 

C(1) 4561(2) 1936(2) 4166(2) 14(1) 

C(3) 5682(2) -619(2) 2923(2) 14(1) 

C(2) 4304(2) 3008(2) 3703(2) 19(1) 

C(4) 6075(2) -979(2) 1776(2) 18(1) 

 

Table B.55. Bond lengths (Å) and angles (°) for Cs[Tc2(O2CCH3)4I2]. 

Cs(1)-O(1)    3.121(11) 

Cs(1)-O(1)#1    3.132(11) 

Cs(1)-O(3)#1    3.648(11) 

Cs(1)-I(1)#2    3.665(8) 

Cs(1)-I(1)#3    3.682(8) 

Cs(1)-I(1)#1    3.688(5) 

Cs(1)-O(3)    3.797(11) 

Cs(1)-I(1)    3.823(5) 

Cs(1)-C(1)    3.904(12) 

I(1)-Tc(1)    2.9813(3) 

I(1)-Cs(1)#4    3.665(8) 

I(1)-Cs(1)#5    3.682(8) 

I(1)-Cs(1)#1    3.688(5) 

Tc(1)-O(1)    2.0562(16) 

Tc(1)-O(3)    2.0664(16) 
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Tc(1)-O(2)#6    2.0670(16) 

Tc(1)-O(4)#6    2.0697(16) 

Tc(1)-Tc(1)#6     2.1275(4) 

O(2)-C(1)    1.271(3) 

O(2)-Tc(1)#6    2.0669(16) 

O(4)-C(3)    1.273(3) 

O(4)-Tc(1)#6    2.0696(16) 

O(1)-C(1)    1.280(3) 

O(1)-Cs(1)#1    3.132(11) 

O(3)-C(3)    1.272(3) 

O(3)-Cs(1)#1    3.647(11) 

C(1)-C(2)    1.492(3) 

C(3)-C(4)    1.498(3) 

 

Cs(1)#1-Cs(1)-O(1)  91(6) 

Cs(1)#1-Cs(1)-O(1)#1  85(6) 

O(1)-Cs(1)-O(1)#1  120.16(6) 

Cs(1)#1-Cs(1)-O(3)#1  131(7) 

O(1)-Cs(1)-O(3)#1  125.08(19) 

O(1)#1-Cs(1)-O(3)#1  49.85(17) 

Cs(1)#1-Cs(1)-I(1)#2  93(4) 

O(1)-Cs(1)-I(1)#2  81.3(3) 

O(1)#1-Cs(1)-I(1)#2  158.4(3) 

O(3)#1-Cs(1)-I(1)#2  121.82(17) 

Cs(1)#1-Cs(1)-I(1)#3  84(4) 

O(1)-Cs(1)-I(1)#3  157.9(3) 

O(1)#1-Cs(1)-I(1)#3  80.9(3) 

O(3)#1-Cs(1)-I(1)#3  72.6(2) 

I(1)#2-Cs(1)-I(1)#3  77.507(10) 

Cs(1)#1-Cs(1)-I(1)#1  126.1(6) 

O(1)-Cs(1)-I(1)#1  69.77(12) 

O(1)#1-Cs(1)-I(1)#1  65.60(12) 

O(3)#1-Cs(1)-I(1)#1  57.39(12) 

I(1)#2-Cs(1)-I(1)#1  130.4(3) 

I(1)#3-Cs(1)-I(1)#1  129.9(3) 

Cs(1)#1-Cs(1)-O(3)  46(6) 

O(1)-Cs(1)-O(3)  48.26(16) 

O(1)#1-Cs(1)-O(3)  120.02(19) 
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O(3)#1-Cs(1)-O(3)  166.30(8) 

I(1)#2-Cs(1)-O(3)  71.07(19) 

I(1)#3-Cs(1)-O(3)  117.39(17) 

I(1)#1-Cs(1)-O(3)  111.55(18) 

Cs(1)#1-Cs(1)-I(1)  51.2(6) 

O(1)-Cs(1)-I(1)    63.93(12) 

O(1)#1-Cs(1)-I(1)  67.81(12) 

O(3)#1-Cs(1)-I(1)  111.87(19) 

I(1)#2-Cs(1)-I(1)  126.1(3) 

I(1)#3-Cs(1)-I(1)  125.6(3) 

I(1)#1-Cs(1)-I(1)  75.487(10) 

O(3)-Cs(1)-I(1)   55.06(12) 

Cs(1)#1-Cs(1)-C(1)  101(6) 

O(1)-Cs(1)-C(1)  16.67(8) 

O(1)#1-Cs(1)-C(1)  133.89(8) 

O(3)#1-Cs(1)-C(1)  123.1(2) 

I(1)#2-Cs(1)-C(1)  67.7(2) 

I(1)#3-Cs(1)-C(1)  145.0(2) 

I(1)#1-Cs(1)-C(1)  74.85(15) 

O(3)-Cs(1)-C(1)  54.74(17) 

I(1)-Cs(1)-C(1)    80.45(17) 

Cs(1)#1-Cs(1)-Tc(1)#1   113(5) 

O(1)-Cs(1)-Tc(1)#1  111.49(9) 

O(1)#1-Cs(1)-Tc(1)#1  28.11(8) 

O(3)#1-Cs(1)-Tc(1)#1  29.51(8) 

I(1)#2-Cs(1)-Tc(1)#1  151.0(2) 

I(1)#3-Cs(1)-Tc(1)#1  90.2(3) 

I(1)#1-Cs(1)-Tc(1)#1  43.86(9) 

O(3)-Cs(1)-Tc(1)#1  137.09(9) 

I(1)-Cs(1)-Tc(1)#1  82.37(11) 

C(1)-Cs(1)-Tc(1)#1  118.68(13) 

Cs(1)#1-Cs(1)-Tc(1)  65(5) 

O(1)-Cs(1)-Tc(1)  26.81(8) 

O(1)#1-Cs(1)-Tc(1)  109.06(10) 

O(3)#1-Cs(1)-Tc(1)  139.27(8) 

I(1)#2-Cs(1)-Tc(1)  89.1(2) 

I(1)#3-Cs(1)-Tc(1)  145.5(2) 

I(1)#1-Cs(1)-Tc(1)  82.72(12) 
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O(3)-Cs(1)-Tc(1)  28.83(8) 

I(1)-Cs(1)-Tc(1)  42.68(8) 

C(1)-Cs(1)-Tc(1)  40.84(11) 

Tc(1)#1-Cs(1)-Tc(1)  114.291(12) 

Tc(1)-I(1)-Cs(1)#4  95.68(13) 

Tc(1)-I(1)-Cs(1)#5  98.98(13) 

Cs(1)#4-I(1)-Cs(1)#5  3.4(3) 

Tc(1)-I(1)-Cs(1)#1  77.13(19) 

Cs(1)#4-I(1)-Cs(1)#1  104.97(18) 

Cs(1)#5-I(1)-Cs(1)#1  104.64(19) 

Tc(1)-I(1)-Cs(1)  76.95(19) 

Cs(1)#4-I(1)-Cs(1)  102.30(18) 

Cs(1)#5-I(1)-Cs(1)  102.00(17) 

Cs(1)#1-I(1)-Cs(1)  2.7(2) 

O(1)-Tc(1)-O(3)  89.21(7) 

O(1)-Tc(1)-O(2)#6  177.26(6) 

O(3)-Tc(1)-O(2)#6  90.11(6) 

O(1)-Tc(1)-O(4)#6  89.74(6) 

O(3)-Tc(1)-O(4)#6  177.19(6) 

O(2)#6-Tc(1)-O(4)#6  90.81(6) 

O(1)-Tc(1)-Tc(1)#6  92.14(5) 

O(3)-Tc(1)-Tc(1)#6  90.90(4) 

O(2)#6-Tc(1)-Tc(1)#6  90.53(5) 

O(4)#6-Tc(1)-Tc(1)#6  91.75(5) 

O(1)-Tc(1)-I(1)   93.52(5) 

O(3)-Tc(1)-I(1)   86.50(4) 

O(2)#6-Tc(1)-I(1)  83.79(4) 

O(4)#6-Tc(1)-I(1)  90.96(4) 

Tc(1)#6-Tc(1)-I(1)  173.735(13) 

O(1)-Tc(1)-Cs(1)#1  45.86(13) 

O(3)-Tc(1)-Cs(1)#1  60.41(9) 

O(2)#6-Tc(1)-Cs(1)#1  131.70(13) 

O(4)#6-Tc(1)-Cs(1)#1  117.16(9) 

Tc(1)#6-Tc(1)-Cs(1)#1   124.24(12) 

I(1)-Tc(1)-Cs(1)#1  59.00(13) 

O(1)-Tc(1)-Cs(1)  43.21(13) 

O(3)-Tc(1)-Cs(1)  62.39(9) 

O(2)#6-Tc(1)-Cs(1)  134.34(13) 



 

 186  
 

O(4)#6-Tc(1)-Cs(1)  115.23(9) 

Tc(1)#6-Tc(1)-Cs(1)  123.13(12) 

I(1)-Tc(1)-Cs(1)  60.37(13) 

Cs(1)#1-Tc(1)-Cs(1)  2.7(2) 

C(1)-O(2)-Tc(1)#6  118.60(14) 

C(3)-O(4)-Tc(1)#6  117.25(14) 

C(1)-O(1)-Tc(1)  117.40(14) 

C(1)-O(1)-Cs(1)  118.93(19) 

Tc(1)-O(1)-Cs(1)  109.98(16) 

C(1)-O(1)-Cs(1)#1  121.29(18) 

Tc(1)-O(1)-Cs(1)#1  106.03(16) 

Cs(1)-O(1)-Cs(1)#1  4.1(3) 

C(3)-O(3)-Tc(1)  118.26(14) 

C(3)-O(3)-Cs(1)#1  125.40(16) 

Tc(1)-O(3)-Cs(1)#1  90.07(8) 

C(3)-O(3)-Cs(1)  124.37(16) 

Tc(1)-O(3)-Cs(1)  88.78(8) 

Cs(1)#1-O(3)-Cs(1)  2.5(3) 

O(2)-C(1)-O(1)   121.3(2) 

O(2)-C(1)-C(2)       119.1(2) 

O(1)-C(1)-C(2)    119.6(2) 

O(2)-C(1)-Cs(1)  143.36(19) 

O(1)-C(1)-Cs(1)  44.40(13) 

C(2)-C(1)-Cs(1)         85.14(17) 

O(3)-C(3)-O(4)   121.8(2) 

O(3)-C(3)-C(4)    119.0(2) 

O(4)-C(3)-C(4)    119.2(2) 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+3/2,-y+1/2,z    #2 y+1/2,-x+1,z-1/2    #3 -y+1,x-1/2,z-1/2       

#4 -y+1,x-1/2,z+1/2    #5 y+1/2,-x+1,z+1/2    #6 -x+1,-y,-z+1       

 

Table B.56. Anisotropic displacement parameters (Å2x 103) for Cs[Tc2(O2CCH3)4I2]. The anisotropic 
displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]. 

 U11 U22 U33 U23 U13 U12 

Cs(1) 20(1)  42(2) 12(1)  -2(1) 0(1)  -14(1) 

I(1) 11(1)  16(1) 18(1)  -4(1) -1(1)  -1(1) 
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Tc(1) 10(1)  10(1) 10(1)  0(1) -1(1)  -1(1) 

O(2) 14(1)  13(1) 14(1)  1(1) -3(1)  1(1) 

O(4) 15(1)  16(1) 11(1)  -2(1) 0(1)  0(1) 

O(1) 14(1)  11(1) 16(1)  2(1) -1(1)  -2(1) 

O(3) 13(1)  17(1) 12(1)  -2(1) 1(1)  -1(1) 

C(1) 17(1)  13(1) 11(1)  0(1) 1(1)  1(1) 

C(3) 17(1)  13(1) 12(1)  0(1) 0(1)  1(1) 

C(2) 25(1)  12(1) 19(1)  3(1) -1(1)  2(1) 

C(4) 21(1)  22(1) 12(1)  -4(1) 3(1)  -1(1) 

  

Table B.57. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) for 
Cs[Tc2(O2CCH3)4I2]. 

 x y z U(eq) 

H(2A) 4340 2992 2864 28 

H(2B) 4815 3525 3998 28 

H(2C) 3587 3210 3943 28 

H(4A) 5955 -1742 1694 28 

H(4B) 6836 -830 1716 28 

H(4C) 5694 -599 1170 28 
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