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Abstract 

Controlled Electrochemical Reduction of Gold and Palladium Metal Precursors in Polyaniline 
 

By  
 

Nicole Goodwin 
 

Dr. David W. Hatchett, Examination Committee Chair 
Professor of Chemistry 

University of Nevada, Las Vegas 

Polyaniline (PANI) has been extensively studied due to its unique electrochemical 

properties. The conjugated polymer is conductive with high chemical stability below 100°C, 

mechanical strength, and large surface area.  The applications of PANI have included chemical 

sensing, corrosion inhibition coatings, light emitting diode and as a substrate for metal composite 

catalysts. Both chemical and electrochemical methods have been developed and utilized in the 

synthesis of PANI/metal composites.  The simultaneous reduction of aniline and metal precursor 

produces a composite of PANI encapsulated metal, reducing the active surface area available for 

catalysis.  Alternatively, chemical reduction of the metal precursor into preformed PANI produces 

deposits at the point of contact with the polymer but offers little control over the amount, 

dispersion, and size of the metal in the composite catalyst.   

A method of electrochemically controlled uptake and reduction of Au and Pd metal 

precursors into PANI was developed.  This method exploits the doping mechanism of polyaniline 

to distribute the metals throughout the polymer as it is oxidized.  Deposition of the metal is 

achieved through the reduction of the polymer and the simultaneous reduction of the metal anion.  

The morphology of the composites was evaluated using SEM/EDX analysis.  Electrochemically 

controlled metal oxide formation and reduction confirmed that the surface area of the metal in the 
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composite increased with each deposition scan.  Both PANI/Au and PANI/Pd composites proved 

to be effective catalysts for propanol oxidation.     

With an understanding of the deposition processes associated with single metal species, the 

synthesis of bimetallic PANI/AuPd composites was achieved.  Previous work has shown that 

bimetallic catalysts often have higher catalytic efficiency and reduced poisoning when compared 

to their monometallic counterparts.   Competition of the metals in the deposition process was 

evaluated by reducing Au and Pd simultaneously.  In addition, the effect of deposition order was 

examined by depositing the metals sequentially.  SEM/EDX analysis was used to examine the 

morphology and composition of all the composites. Metal oxide formation and reduction was used 

to probe the electrochemically distinct metal species within the polymer.  Evidence of alloying 

was observed for most of the bimetallic composites.  Propanol oxidation data showed that the 

bimetallic composites had higher catalytic efficiency when compared to PANI/Au and PANI/Pd.   
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Chapter 1 - Introduction 

1.1 Polyaniline 

Polyaniline (PANI) is a novel polymer that has been extensively studied because of its 

unique electronic properties.  It is an intrinsically conductive polymer (ICP) with high mechanical 

strength, chemical stability, and a large three-dimensional surface area.  The conductivity of the 

polymer can be varied by changing the oxidation state and through acid doping.  These properties 

have been exploited to produce chemical sensors1,2,3, corrosion inhibition coatings4,5, light emitting 

diodes6,7, and low-cost microelectronics8.   

1.1.1 Intrinsically Conductive Polymers 

In the year 2000 Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa were 

awarded the Nobel Prize in chemistry for their discovery and development of intrinsically 

conductive polymers (ICPs).  Prior to their work, polymers were considered to be insulating 

plastics; the perfect material to protect against heat and electricity.  However, they found that some 

polymers, including polyacetylene, polypyrrole, and PANI exhibited almost metallic conductivity 

when they were doped with an acid, halide, or alkali metals. 

In his Nobel Prize lecture9, Heeger enumerates three advantages of using ICPs over metals 

or inorganic semiconductors in some applications.  First, there are several possible methods of 

synthesizing ICPs because of their solubility in common solvents.  Two such methods include 1) 

spin-casting polymers from solution into a thin film, and 2) inducing polymerization using a 

molecular template as a substrate.  Second, ICPs can be synthesized to be transparent over a desired 

range of wavelengths.  Transparency is imperative for applications such as photodiodes (photon 

induced generation of electricity) and light emitting diodes (electricity induced generation of 

photons).  Lastly, the Fermi energy can be controlled.  A device using an ICP as an electrode can 
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be designed to achieve a desired band gap that can absorb (photodiodes) or emit (LEDs) desired 

wavelengths of light. 

The first ICP to be examined was polyacetylene (PA).  Shirakawa, et al10, exposed PA 

films to bromine for several minutes, which resulted in the following reaction with the polymer: 

[CH]n  + 
nx

2
Br2  ⇌   [CHBrx]n 

PA films were also exposed to iodine vapors, resulting in doping of the polymer according to the 

following reaction: 

[CH]n  +  
nx

2
I2  ⇌  [CHIx]n 

The conductivity of the PA films increased from 3.2 x 10-6 S/cm to 0.5 S/cm and 38 S/cm after 

doping with bromine and iodine, respectively.  In addition, it was determined that the conductivity 

changed as a function of exposure time.  Therefore, the conductivity of PA could be controlled by 

changing the dopant molecule or by varying the amount of dopant in the polymer structure. The 

conductivities of a selection of ICPs are summarized in Table 1 with a variety of dopants.  For 

comparison, the conductivities of ICPs prior to doping range from 10-10 to 10-5 S/cm.11  This 

discovery of the tunable conductivity of ICPs initiated a new field of polymer chemistry research 

that captivated the scientific minds of various disciplines for decades. 
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Table 1. Conductivities of common conductive polymers. 

ICP Doped Conductivity (S/cm) Dopant Reference 

Trans-polyacetylene 0.5 Br2 vapor [10] 

Trans-polyacetylene 38 I2 vapor [10] 

Polyaniline 5 HCl [12] 

Poly(p-phenylene vinylene) 3 AsF5 [13] 

Polypyrrole 10-65 LiClO4 [14] 

 

Some common ICPs and their structures are presented in Figure 1.  Most of the polymers 

have highly-conjugated, electron-rich polymer backbones (e.g. PA) with the rest conjugated 

through doping (e.g. PANI).  Doping the polymer generates delocalized charge carriers (i.e. 

electrons or holes) that can travel along the π-conjugated backbone.  Doping is primarily achieved 

through oxidation or reduction of the polymer through chemical or electrochemical means, or via 

photoexcitation, where the uptake of ionic species balances charge.9,15 
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Figure 1. Common intrinsically conducting polymers, undoped.16 

 

For example, the redox doping of trans-PA with iodine is summarized by the following 

reaction: 

[CH]n +  
3x

2
I2  ⇌  [CH]n

x+  +  xI3
-  

The iodine molecule oxidizes the polymer, removing an electron from the valence band of the 

polymer, creating a positively charged “hole.”  The negatively charged triiodide molecule is 

formed in the process.17  Conduction is facilitated when a potential is applied, causing an electron 

from a neighboring atom to “jump” to the ionized atom to fill the hole.  The continued transfer of 
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electrons gives the appearance of a hole traveling down the polymer.  This is an example of p-type 

doping because a positively-charged charge carrier is generated.  The triiodide molecule remains 

electrostatically bound to the polymer, stabilizing the polymer and neutralizing the positive charge, 

so the polymer remains neutral overall.  Alternatively, trans-PA can undergo n-type doping with 

a reducing agent, such as sodium naphthalide. 

[CH]n +  xNa+C10H8
-  ⇌  [CH]n

x-  +  xNa+ + xC10H8  

The dopant reduces the polymer, injecting an electron into its conduction band.  When a potential 

is applied, the electron flows along the polymer backbone, through the conduction band.  The 

sodium counterion stabilizes the negatively charged polymer.  While both p-type and n-type 

doping are possible, p-type tends to be the preferred method because it produces more stable charge 

carriers.18 

1.1.2 PANI Conductivity 

PANI is an intrinsically conducting polymer that, when doped with acid, allows charge 

transfer through the conjugated polymer backbone.  PANI is unique among conductive polymers 

because it can be both proton and anion doped, which can be utilized to vary and change both the 

chemical and electronic properties of the polymer.  While most ICPs must undergo oxidation or 

reduction to achieve their conductive state, PANI is doped via an acid-base reaction that results in 

no net change in electrons along its conjugated backbone.8,9 To understand PANI’s unique 

conductivity, one must first examine its structure.  
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Figure 2.  Structure of polyaniline.8 

 

PANI is comprised of a combination of 2 distinct units: 1) reduced units of two benzenoid 

rings and two amine nitrogen atoms, and 2) oxidized units containing a benzenoid ring, a quinoid 

ring, and 2 imine nitrogen atoms, Figure 2.  The oxidation state of the polymer is determined by 

the ratio of oxidized units to reduced units.  The common oxidation states presented in Figure 3 

are the reduced form leucoemeraldine (Y = 1), the oxidized form pernigraniline (Y = 0), and 

emeraldine base (Y = 0.5) which contains an equal number of oxidized and reduced units.  Doping 

of the emeraldine base with acid results in the π-conjugated emeraldine salt form, which is the 

most conductive form of PANI.   
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Figure 3. Oxidation states of PANI.8 

 

The conductivity of PANI is best described using the polaron model, as seen in Figure 4.  

First, the imine nitrogen atoms (pKa=5.5)19 are protonated by the acid dopant.  To stabilize the 

positively charged nitrogen atoms the polymer undergoes an internal redox reaction, reducing the 

quinoid ring to a benzenoid ring.  As a result, the positively charged nitrogen atoms are oxidized, 

leaving a hole at each nitrogen in the valence band.  The positively charged hole is called a polaron.  

Finally, there a redistribution of charge to separate the polarons and stabilize the molecule.20  
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Overall, the number of electrons along the polymer backbone remains the same, however the 

redistribution of charge due to the acid doping increases conjugation and creates two charge 

carriers per tetrameric unit, facilitating conductivity.  However, just as with oxidative and 

reductive doping, the dopant anion remains coulombically bound to the polymer to maintain 

charge neutrality.  Therefore, the redox state, the level of doping, and the identity of the dopant 

are important in the targeted electronic properties of the material21.  Also, aniline conductivity is 

limited to applications in acidic media because of the acid-doping requirement.  However, as will 

be discussed in Section 1.2, PANI “doped” by metals will retain its conductivity in alkaline 

environments.  
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Figure 4. Polaron model of PANI conductivity.9 

 

In addition, band structure is an important factor in determining the conductivity of a 

material.  Differences in band structure can be accompanied by color changes of the material, 

because the band gap of a material determines what wavelengths of light it absorbs.  Each oxidation 

state of PANI produces a different color; leucoemeraldine is yellow or colorless, emeraldine base 

is blue, and pernigraniline is violet or black.  The green emeraldine salt form must have the ideal 

band structure to allow for charge transport.  The changes in color confirm different band 
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structures, which could explain why emeraldine salt is conductive while leucoemeraldine and 

pernigraniline are not.   

1.1.3 PANI Synthesis 

Since the first experiments with the polymerization of aniline were reported by Runge in 

1834, interest in the novel “black/dark green/dark blue/dark violet” product known as aniline black 

has grown.  He found that heating a mixture of aniline nitrate and copper (II) chloride produced a 

product with a dark green color.  In the early 1840s, Fritzsche oxidized an aniline salt using 

chromic acid, which produced a precipitate that turned from dark green to bluish-black.  

Electrochemical polymerization, reported by Letheby in 1862, resulted in a dark blue product.20 In 

the 180 years since Runge’s experiments, both chemical and electrochemical methods have been 

thoroughly investigated with varied results.  Generally, they combine aniline with an oxidant (a 

chemical or an electrode) in an acidic solution.  However, both methods have their own advantages 

and disadvantages.   

The chemical synthesis of polyaniline has evolved drastically since Runge’s experiments.  

In their 1990 review of PANI, Geniès, et al. summarize the various conditions that have been used 

to synthesize PANI.  Their list of oxidants includes potassium dichromate, ammonium persulfate, 

hydrogen peroxide, ceric nitrate, and ceric sulfate.22  Ciric-Marjanovic’s 2013 review expanded 

this list to include other transition metal and noble metal compounds, including Mn(III), Mn(IV), 

Mn(VII), V(V), Cu(II), Au(III), Pt(IV), Pd(II), and Ag(I) compounds, although ammonium 

persulfate is the most common oxidant.20 In addition, a pH of < 2 is typically maintained using 

HCl, H2SO4, or other strong acids.  Oxidation of the aniline molecule results in the formation of a 

radical cation.  Cations can react in a number of ways to produce a variety of different products 

depending on the reaction conditions including, oxidant strength, pH, aniline concentration, and 
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aniline/oxidant ratio. The aniline molecules form a radical cation that bond primarily in the para 

position due to steric interaction.  There are three configurations that can result from this bonding: 

“head-to-head” bonding resulting in azobenzene or hydrazobenzene, “tail-to-tail” bonding forming 

benzidine, or “head-to-tail” bonding forming 4-aminodiphenylamine or N-phenyl-1,4-

benzoquinonediimine, the precursors of polyaniline.  The two former reactions form oligomers 

that can be found in the solution or trapped in the polymer.  However, the “head-to-tail” bonding 

results in long PANI strands that precipitate out of solution.20 

Electrochemical synthesis of PANI was first reported by MacDiarmid, et al.23  A platinum 

foil electrode was immersed in a solution of aniline and HCl.  The potential was cycled between -

0.2 V and +0.75 V vs. SCE, causing polyaniline to “grow” onto the electrode surface.  Figure 5 

presents the proposed mechanism for the electropolymerization of aniline.  The electrochemical 

synthesis is initiated in similar manner when compared to chemical synthesis of PANI.  

Specifically, the potential dependent oxidation of aniline monomers forms the same aniline radical 

cation.  The aniline monomers then continue to bond in a “head-to-tail” fashion, forming longer 

chains.  After ~45 cycles, a film with a thickness of ~0.2 μm was produced at the electrode surface.  

The authors of this study do not explain in detail how the thickness was measured and correlated 

with the charge associated proton expulsion in the polymer.  Therefore, we use this value only as 

an estimate of thickness and as an evaluation method for polymer synthesis reproducibility. 
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Figure 5. Electrochemical polymerization of aniline.8 

 

Electrochemical doping was used to further characterize the electrochemically synthesized 

polymer. They found the electrode potential determined the oxidation state of the polymer when 

the electrode was immersed in an HCl solution and the potential was cycled from -0.2 V to 1.0 V 

vs. SCE.  The data is presented by Figure 6 and summarized in Table 2.  As the potential is swept 

from 0.5 V to 1.0 V, the PANI film became violet, corresponding to the oxidation of PANI to the 

pernigraniline form.  Peak A is the response to the migration of anion species to neutralize the 

newly oxidized film.  Conversely, as the scan was reversed, the anion species were expelled (peak 

Aꞌ) in response to the reduction of the polymer to the emeraldine form.  As the anodic scan 

continued, the color of the film changes from blue to light green depending on whether there were 

more oxidized units (Y < 0.5) or more reduced units (Y > 0.5).  Finally, peak B corresponds to the 
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migration of H+ atoms in response to the reduction of the film to the yellow leucoemeraldine form, 

while peak Bꞌ is the result of the reverse process. 

 

Table 2. Color of PANI oxidation states when acid doped. 

Potential (vs. Ag/AgCl) Oxidation State Color 

E > 0.75 V Pernigraniline Violet 

0.75 V > E > 0.10 V Emeraldine Green 

E < 0.10 V Leucoemeraldine Yellow 

 

 

 

Figure 6. Electrochemical acid doping of PANI as described by MacDiarmid et al.23 
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The electrochemical polymerization of aniline has been investigated thoroughly over the 

past 30 years.  Cyclic voltammetry continues to be an efficient method of PANI synthesis, however 

galvanostatic (constant current) and potentiostatic (constant potential) methods are utilized as well.  

A wide range of electrodes have been employed, from more conventional inert electrodes like Pt 

and conducting glass, to metals such as Au, Fe, and Cu, and conductive nonmetals such as glassy 

carbon, graphite, and n-type Si.8 The primary advantage of electrochemical polymerization of 

aniline is control.  The thickness and oxidation state of the film is more easily controlled when 

synthesized electrochemically than chemically.  The product is also much cleaner since it does not 

require additional chemicals to initiate oxidation.  However, the one advantage of chemical 

synthesis over electrochemical synthesis is the ability to produce PANI in much larger quantities.  

1.2 PANI/metal Composites 

The high surface area and electronic properties of PANI make it an effective material for 

developing polymer/metal catalytic membranes.  PANI/metal composites such as PANI/Pt24,25,26, 

PANI/Au27,28,29, and PANI/Pd30,31,32, have been extensively studied as catalytic membranes for 

alcohol oxidation reactions in both acidic and alkaline solutions.  These studies have shown that 

there are advantages to the deposition of noble metals in PANI.  The three-dimensional structure 

of PANI provides a template for developing relatively large catalytic surface areas in comparison 

to bulk two-dimensional metal catalyst surfaces.  PANI has also been shown to exhibit a promoting 

effect by influencing the electronic properties of the catalyst resulting in enhanced catalytic activity 

and decreased poisoning.33,34 

The uptake and dispersion of precursor metals species including AuCl4
-, PdCl4

2-, and 

PtCl42- into PANI is achieved using the normal anion doping of the polymer.  Moreover, inclusion 

of ~20 % metal content of each metal species eliminates the need to acid dope PANI to maintain 
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the conductivity.  Therefore, the useful pH range of PANI based materials can be extended into 

alkaline environments that have been traditionally precluded.  The benefit of working at high pH 

is that surface poisoning can be reduced when alcohol oxidation takes place in the presence of 

hydroxide.35,36 

1.2.1 PANI/metal Composite Synthesis 

    PANI/metal composites can be synthesized either chemically or electrochemically with 

variable results.  In chemical synthesis, aniline monomer is combined with either the pre-reduced 

metal or a metal precursor that can be reduced in a solution.  Then an oxidant such as ammonium 

persulfate is combined with the solution to initiate polymerization.  The emergent polymer can 

nucleate on the pre-formed metal to form the composite. Similarly, the metal precursor is reduced 

by the emerging polymer in-situ to produce the PANI/metal composite. In both cases the metal 

species is trapped in the emergent polymer during the synthesis, which minimizes the metal surface 

area available for catalysis.  Alternatively, preformed PANI can be mixed with a metal precursor 

in the presence of a reducing agent like NaBH4.  In this case the metal deposits on the existing 

PANI and is not extensively encapsulated.  However, the method provides very little control over 

the particle size, dispersion, or the overall metal surface area.  Moreover, the oxidation state of the 

polymer is altered through the reduction of the metal species.  Although chemical synthesis can be 

utilized to produce bulk quantities of PANI/metal composites the process produces 

inhomogeneous composites that often contain trapped oligomers with other chemical species.  

Electrochemical methods can be utilized to control the uptake, dispersion, and reduction of 

metal precursors in PANI.  Electrochemical methods allow the metal composition to be precisely 

controlled and varied producing composites with variable composition and morphology in 

comparison to composites produced chemically.  Electrochemically prepared PANI membranes 
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are produced in solutions containing the aniline monomer and acid electrolyte to ensure the PANI 

remains conductive.  The uptake and dispersion of metal anion precursors, AuCl4
- for example, 

can be achieved using the normal anion doping as the polymer is oxidized.  As PANI is oxidized 

the uptake of anion metal precursor occurs to maintain charge neutrality in the polymer.  The metal 

anion is dispersed based on the electrostatic charge in the polymer.  When PANI is then reduced, 

the metal anion is reduced into the polymer and chloride ions are expelled.    This process can be 

repeated to achieve PANI/metal composites with variable metal content.  While electrochemical 

synthesis allows for significantly more control over the PANI thickness and metal composition 

over chemical methods, it suffers in its inability to produce composites on a large, commercial 

scale. 

1.2.2 Bimetallic Composites 

    Single metal PANI/metal composites are prone to surface poisoning at elevated pH 

through the formation of metal oxides and surface adsorption of oxidative products. Therefore, 

despite the enhanced electronic properties, there are limitations associated with using single metal 

composites for alcohol oxidation.  In contrast, bimetallic catalysts have been evaluated in an effort 

to reduce surface poisoning and increase catalytic activity relative to single metal systems.37,38,39,40  

The mechanism for the reduced poisoning at bimetallic catalysts is still open for debate; however, 

two possible explanations are that it is related to the electronic effect and the bifunctional effect.   

The electronic effect involves interactions between two metal species that cause a shift in 

the electronic properties of the catalyst’s surface, reducing surface interactions with poisoning 

species.  An example of this effect is observed in the oxidation of formic acid using a Au/Pd core-

shell nanoparticle catalyst.  According to XPS studies the Pd shell had a lower binding energy than 

pure Pd black.  As a result, it was found that oxidation at the core-shell nanoparticles occurred 
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over a larger potential window than at Pd black because they were less prone to poisoning by OH- 

and CO.41  Alternatively, the bifunctional effect results from each metal’s affinity for different 

functional groups.  Different metals adhere to different functional groups in the molecule allowing 

for a more stable transition state and thus more efficient catalysis.  One study investigated the 

oxidation of alcohols and polyols over Au-Pd bimetallic catalysts.  The results suggested that the 

transition state of the molecule to be oxidized was stabilized through simultaneous interaction with 

the Pd species through an alkyl hydrogen and the Au species through the deprotonated oxygen.42  

In addition, studies have shown examples where solvent molecules adsorb onto one metal species 

preferentially, which can then react with poisoning species on the other metal species to form 

chemical species that are easier to remove from the catalyst surface.  One example examines Pt-

Ru bimetallic catalysts for the oxidation of methanol.  It was proposed that the Ru species became 

hydrated while methanol adsorption occurred at Pt.  The water became deprotonated, forming 

RuOH with the desorbed OH- reacting with adsorbed poisoning species, cleaning the surface of 

contaminants.43  Similarly, another study showed Sn and Pb could be used as “oxygen-adsorbing” 

species to clean the Pt surface during the catalytic oxidation of ethylene glycol.44  It is possible 

that a combination of both the electronic and bifunctional effects results in reduced poisoning and 

increased efficiency. 

1.3 Research Hypothesis 

PANI/bimetallic composites have been studied in diverse application using a variety of 

metal combinations.  PANI/Ag-Mn has been investigated as a possible chemical sensor of E. coli.45  

PANI/La-Cd catalyzes photodegradation of organic pollutants.46 The antimicrobial properties of 

PANI/Pt-Ag47 and PANI/Pd-Au48 have been studied for medical applications such as wound 

dressings, medical device coatings and “smart clothing.”  By far the most widely researched 
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application of PANI/bimetallic composites is catalysis, especially for the oxidation of small 

organic molecules for use in fuel cells.37,49,50,51,52,53  However, the methods utilized for synthesizing 

PANI/bimetallic composites have produced materials with variable results in terms of catalytic 

efficiency.   

This dissertation probes the hypothesis that the controlled uptake and reduction of metal 

anion precursors is critical in defining both the physical and electronic properties of PANI 

composites.  Moreover, the controlled reduction and deposition of metal species in PANI can result 

in alloying of metals to produce novel physical and chemical properties that are distinct in 

comparison to the individual species.  The hypothesis is explored through the deposition of a single 

metal species to form PANI/Pd and PANI/Au composites using linear sweep voltammetry.  The 

studies establish the parameters for the controlled uptake, dispersion, and reduction of individual 

metal species.  With a thorough understanding of these processes the synthesis of PANI/Au-Pd 

bimetallic composites is evaluated using both the simultaneous and sequential deposition of the 

metals.  Simultaneous deposition evaluates how competitive processes influence the overall 

electronic properties of the materials and any possible alloying of the species within PANI.  

Similarly, sequential deposition of Au and Pd evaluates the influence of existing metal deposits on 

the subsequent deposition of a second metal species and metal alloying in PANI.  Finally, the 

results are summarized and the use of controlled electrochemical reduction of metal species in the 

formation of PANI/bimetallic composites with novel physical and chemical properties is discussed 

relative to the overall hypothesis. 
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Chapter 2 - Experimental Methods 

2.1 Chemicals 

Perchloric acid, HClO4 (J.T. Baker, 69-72%, 9652-33), potassium hydroxide, KOH (Alfa 

Aesar, 99.99%, AA44273-36), n-propanol, CH3CH2CH2OH (Alfa Aesar, 99%, A19902), 

potassium tetrachloropalladate, K2PdCl4 (Strem, 99%, 10025-98-6), and potassium 

tetrachloroaurate, KAuCl4 (Aldrich, 98%, 334545) were used as received.  Aniline, C6H5NH2 

(Aldrich, 99.9%, 13,293-4) was distilled prior to use.  All solutions were prepared using 18.3 

M•cm water obtained from a Barnstead E-pure water filtration system. 

2.2 Electrochemical Synthesis of PANI/metal Composites 

Electrochemical measurements were performed in a three-electrode cell using a CH 

Instruments 660E potentiostat with included software.  A Pt sheet was used as the counter electrode 

with an immersed area that exceeded the working electrode by a factor of two.  All potentials are 

referenced to the Ag/AgCl electrode (3 M KCl filling solution).  An Au disc electrode was used 

as the working electrode for the electrochemical experiments (A = 0.02 cm2).  Au-plated mica was 

used as the working electrode for the SEM and EDX samples.  All solutions were purged with 

nitrogen gas for 10 minutes before they were used in electrochemical experiments. 

Polyaniline was electrochemically grown onto the working electrode from a solution of 

0.250 M aniline and 1 M HClO4 and cycling the potential between -0.2 V and +0.9 V for 10 

complete voltammetric cycles at a scan rate of 10 mV/s.  As described in the introduction, the 

aniline must be polymerized from an acidic solution with a pH below 4 to sufficiently grow films 

and to maintain conductivity through acid doping.  There are multiple reasons why HClO4 was 

used as the acid electrolyte for the polymerization of aniline. Traditionally H2SO4 and HCl are 

used, however, the polymer begins to degrade at oxidizing potentials when in the presence of these 
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acids.54,55  Additionally, polyaniline films polymerized from HClO4 have a smoother morphology 

when compared to those from H2SO4.56  The resulting PANI-modified electrodes were thoroughly 

washed with ultrapure water.   

For single metal studies, metal deposition was initiated using linear scan voltammetry 

(LSV) by immersing the PANI electrode into one of the following solutions containing metal 

precursors: 5 mM KAuCl4 (PANI/Au) or 5 mM K2PdCl4 (PANI/Pd). The metal precursor solutions 

had pH values of 2.88 and 3.85 respectively, so the addition of acid electrolyte was not necessary 

to maintain PANI conductivity.  In fact, the addition of acid electrolyte to the metal precursor 

solutions was avoided to prevent competing reactions with PANI that would prevent the reduction 

of the metal precursor in the polymer.  The electrode was held at +1 V for two minutes to ensure 

metal anion was allowed to migrate to all possible oxidized sites in PANI so maximum metal 

deposition could be achieved.  The electrode was poised at +1 V prior to immersion to prevent 

spontaneous reduction of metal into PANI.  Metal was reduced by a cathodic scan to a final 

potential of -0.2 V at a scan rate of 10 mV/s.  The reduction of the metal precursors results in the 

liberation of Cl- into the polymer and solutions.  The resulting PANI/metal composite electrode 

was promptly removed from metal precursor solution and washed with copious amounts of 

ultrapure water.  The process was repeated for a total of five scans.  Electrochemical 

characterization of the composite was examined after each deposition scan. 

Bimetallic composites were deposited into PANI films using the same electrochemical 

parameters described above, however, they were deposited either simultaneously from a single 

metal precursor or sequentially by alternating deposition with single metal precursor solutions.   

Simultaneous deposition of metals was achieved by performing five deposition scans using one of 

the following metal precursor solutions: 2.5 mM KAuCl4 and 2.5 mM K2PdCl4 (PANI/1Au1Pd), 
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3.33 mM KAuCl4 and 1.67 mM K2PdCl4 (PANI/2Au1Pd), or 1.67 mM KAuCl4 and 3.33 mM 

K2PdCl4 (PANI/1Au2Pd).  Metals were deposited sequentially by first depositing five scans of Au 

or Pd, followed by deposition of Pd or Au for 1-5 scans.  Composites with Au deposited first are 

labeled PANI/5Au/xPd, where x denotes the number of deposition scans of Pd used for synthesis.  

Alternatively, PANI/5Pd/xAu signifies that Pd was deposited first, followed by x cycles of Au.   

2.3 Characterization 

PANI/metal composites were characterized using three methods: acid doping, scanning 

electron microscopy (SEM), and energy dispersive spectroscopy (EDS).  Acid doping not only 

ensures that the PANI electrode is conductive, but also determines the approximate thickness of 

the PANI films.  SEM provides insight into the morphology of the composites.  Finally, EDS is 

used to confirm the metals have been incorporated into the composites. 

2.3.1 Acid Doping 

Acid doping was performed to ensure all PANI membranes had a consistent thickness.  The 

PANI electrodes were immersed in a solution of 1 M HClO4 and held at a potential of +0.9 V for 

2 minutes to condition the electrode.57  The potential was then cycled from +0.9 V to -0.2 V at 10 

mV/s until steady state was achieved.  The average PANI thickness was estimated based on the 

average charge density for the proton expulsion for three PANI electrodes (19150 ± 2516 µC/cm2).  

An estimated thickness of 240 ± 31 µm was obtained using the relationship that 80 µC/cm2 

corresponds to a 1 µm thickness.58  The standard deviation is based on the average of 3 electrodes. 

2.3.2 Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) 

SEM images were acquired using a JEOL JSM 6700F Field Emission SEM instrument.  

Surface pretreatment of the samples was not required because they are already conductive.  An 

accelerating voltage of 8.0 kV was used to image pristine PANI and all PANI/metal composites.  
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All images were obtained using a backscatter electron detector to provide a better contrast between 

metal and polymer than a secondary electron detector would provide.  EDS spectra were obtained 

using a JEOL JSM 5610 scanning electron microscope equipped with an Oxford Instruments ISIS 

EDS system.  An accelerating voltage of 8.0 kV was used to ensure the electron beam only 

measured the PANI composites and not the Au mica substrate.   

2.4 Electrochemistry of PANI/metal composites in alkaline solution 

Electrochemical studies for metal oxide formation/reduction and oxidation of propanol 

were performed to probe the electronic properties of the PANI/metal composites.  The results of 

the PANI/Pd and PANI/Au studies were compared to bimetallic studies to determine if the metals 

react within the composite to create novel catalysts or if they work independently of each other.  

2.4.1 Oxide formation and reduction at PANI/metal surface 

Examining the electrochemical response of PANI/metal composites in alkaline solution 

provides important information regarding the chemical and physical properties of the material.  

First, the PANI/metal composites are studied in environments that preclude proton doping to 

determine if they maintain their conductivity in high pH environments. The conductivity is directly 

related to changes in the physical properties after metal inclusion.  In addition, the formation and 

reduction of metal oxide is used to probe the reactivity and estimate the electrochemically active 

surface area of the metal deposited in the polymer.59  Finally, electrochemical analysis of the 

composites can yield information regarding the formation of bimetallic composites and provide 

insights into how the metals interact with each other.   Specifically, Au oxides and Pd oxides are 

formed and reduced at very distinct potentials that may be different when they are combined to 

form bimetallic deposits in PANI.  Cyclic voltammetry was used to examine the oxide formation 

and reduction at the metal surfaces of the PANI/metal composites.  After immersing the composite 
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in a solution of 1 M KOH, the potential was cycled between -0.7 V and +0.7 V vs. Ag/AgCl at a 

scan rate of 100 mV/sec, until steady state was reached.    

2.4.2 Propanol oxidation in alkaline solution   

The catalytic activity of all composites was examined using propanol oxidation in alkaline 

solution.  The responses of PANI/Au and PANI/Pd were studied first to determine the 

electrochemical behavior of each metal individually.  These data were then compared to the 

responses of the bimetallic composites to determine if the metals were interacting within the 

polymer.  Metal interaction could result in the formation of a range of electrochemically distinct 

sites within the polymer, a higher catalytic activity, and changes in poisoning of the catalyst 

surface.  Alcohol oxidation was performed in a solution of 1 M n-propanol and 1 M KOH using 

cyclic voltammetry with the same parameters from section 2.4.1. 
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Chapter 3 – Electrochemistry of PANI/Au and PANI/Pd Composites 

3.1 Introduction 

A thorough understanding of the deposition, morphology, and electrochemistry of 

PANI/Au and PANI/Pd single metal composites is important in the preparation and 

characterization of the physical and chemical properties of PANI/Au-Pd bimetallic composites.  

Linear sweep voltammetry is utilized to control the uptake, dispersion, and content of metal species 

in the polymer.  The resulting voltammetry was evaluated to determine how deposition changes 

with each subsequent scan, and how metal-polymer interactions differ between Au and Pd.  In 

addition, the morphologies and compositions of the composites were examined using SEM/EDS 

analysis.  Metal oxide formation and reduction was used to evaluate the electrochemically active 

surface area of the metals within the polymer, and elucidate information about electrochemical 

processes for the PANI/Au and PANI/Pd composites.  Finally, each composite was used as a 

catalyst for propanol oxidation in alkaline solution to determine each metal’s catalytic activity for 

the process and the extent of surface poisoning for each metal. 

3.2 Electrochemical Reduction of Metal Precursors in PANI  

The reduction of metal species PdCl4
2- and AuCl4

- can be expressed using the following 

electrochemical reactions: 

 

PdCl4
2-  +  2e-  ⇌  Pd(0) +  4Cl-     Equation 1 

AuCl4
-   +  3e-  ⇌  Au(0) +  4Cl-     Equation 2 

 

The PdCl4
2- anion is known to complex with water, producing hydrated species with the form 

PdCln(H2O)4-n
2-n (n=0-4), with PdCl4

2- being the most stable complex.60  For the purpose of this 
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study it will be assumed that the primary reacting species is PdCl4
2-.  In contrast, the AuCl4

- 

complex has been shown to remain stable for pH values below five.61  Therefore, speciation is not 

an issue because the pH value of the AuCl4
- solution is 2.88.   

Metal anion uptake is initiated through oxidation of PANI to maintain charge neutrality, 

Figure 7.  The positive charge at quinoid nitrogen sites and negative charge of the metal precursor 

are important in establishing the electrostatic interactions that influence dispersion of the species 

into the polymer.  Specifically, the polymer is poised at ~1 V to allow electrostatic interactions 

between the anion metal precursors (PdCl4
2- and AuCl4

-) and the oxidized polymer to form.  As 

the potential is cycled to more negative values the metal is reduced into the polymer and chloride 

ions are liberated.    Re-oxidation of the metal species in the polymer is minimized during 

subsequent deposition cycles.  During the first scan, the metal anion precursors can only interact 

with the polymer sites through oxidation of nitrogen groups.  However, after the first controlled 

reduction of PdCl4
2- or AuCl4

- in PANI there are at least two possible sites for further deposition 

of the metal species.  First, the metal precursors can interact with any remaining sites activated 

during oxidation of the polymer.  Alternatively, the metal precursors can interact with existing 

metal deposits in the polymer that are also oxidized.  Deposition at active polymer sites is expected 

to diminish with each scan and increase at the existing metal sites in PANI.  The controlled 

electrochemical deposition of single metals into PANI was examined as a function of the number 

of deposition cycles.     The pH values of the metal precursor solutions were sufficient that 

deposition was achieved without the addition of acid (3.85 and 2.88 for 5 mM K2PdCl4 and 

KAuCl4, respectively). 
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Figure 7. Schematic of metal deposition through exploitation of the acid doping mechanism of 
PANI. 

 

The voltammetric response of a single PANI electrode immersed in 5 mM PdCl4
2- is 

provided in Figure 8 (left).  The first scan (dashed line) shows the reduction of the metal precursor 

into pristine PANI is initiated at approximately 0.500 V and reaches a maximum at ~ 0.003 V.   

The reduction of Pd metal precursor shifts to more negative potential on the second scan (bold 

line) with diminished current relative to the first.  The data indicates that the number of electrostatic 

sites available within the polymer are reduced with the uptake and reduction of Pd metal after the 

first scan. The second voltammetric scan is characterized by a decrease in current associated with 

reduction at electrostatic sites in the polymer. Subsequent Pd deposition is characterized by 

increasing current at more positive potentials.  The deposition is consistent with increasing metal 

content based on reduction of the anion at existing deposits at 0.260 V for reduction cycles 3-5.     

The data show that the first scan is predominantly influenced by metal reduction in the pristine 

polymer.  In contrast, more thermodynamically favorable reduction occurs at existing metal 

deposits at PANI/Pd sites. 
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Figure 8. Reduction of PdCl4
2- (left) and AuCl4

- (right) into PANI.   Scans one (dashed), two 
(bold), and three, four and five (black) are provided.  Arrows indicate the increase or decrease of 

peaks with increasing scans. 

 

The voltammetric response of a single PANI electrode immersed in 5 mM AuCl4
- is also 

provided in Figure 8 (right).  The figure shows the reduction of the metal precursor into the pristine 

polymer for the first scan and subsequent reduction cycles into PANI/Au.  The first scan (dashed 

line) shows two distinct electrochemical reduction processes at ~ 0.375 V and ~ -0.010 V.  The 

data suggest the initial deposition of Au in PANI occurs at two energetically distinct electrostatic 

sites in the polymer.  The initial reduction processes shift in opposite directions for the second scan 

(bold line).  The data suggests that the electrostatic sites in the pristine polymer are influenced by 

existing Au metal deposits.  The two reduction processes merge into one singe voltammetric wave 

that decrease with each subsequent scan (3-5).   In addition, a unique voltammetric wave emerges 
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at ~ 0.600 V and increases with each subsequent reduction of AuCl4
- into the polymer.  The data 

is consistent with the increasing metal surface area associated with the accumulation of Au at in 

the polymer due to reduction at exiting metal deposits. 

3.3 SEM/EDS Analysis of PANI/Pd and PANI/Au 

The morphology and composition of PANI, PANI/Pd, and PANI/Au composites were 

examined using SEM/EDS analysis in Figure 9.  The SEM image for PANI shows polymer strands 

with average diameter of 116 ± 21 nm.  The porous structure provides a three-dimensional template 

with a high surface area for metal deposition.  The corresponding EDS spectrum shows the 

presence of Cl- in the polymer.  The inclusion of Cl- comes from the acid doping with HClO4 

during the synthesis.  There are two possible explanations for the presence of Cl-.  First, it could 

be electrostatically bound to the polymer from the reduction of the metal precursor.  Alternatively, 

it is possible that Cl- ions are physically trapped inside the polymer matrix from the synthesis of 

the polymer in the presence of ClO4
-.  

For comparison, the SEM image of PANI/Pd after five deposition scans is presented in 

Figure 9.  The image shows that the Pd metal encapsulates PANI, increasing the overall diameter 

to 210 ± 26 nm, with some Pd aggregation on the strands which is consistent with previous 

studies.62,63  The EDS spectrum for PANI/Pd shows that Cl- is again present in the polymer. 

However, the contribution most likely comes from the reduction of the Pd metal precursor and 

liberation of Cl- rather than acid doping by HClO4.  The metal deposition is performed in solution 

that contains only 5 mM PdCl4
2- and any residual ClO4

- that may be electrostatically bound to the 

polymer is expelled during the negative scan.  In addition to the Cl- peak, small Pd peaks emerge 

relative to the PANI sample at ~2.8 keV and 3.0 keV.64   
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Figure 9. SEM images (left) and EDS spectra (right) of pristine PANI (top), PANI/Pd (middle), 
and PANI/Au (bottom).  PANI/Pd and PANI/Au were examined after five metal reduction scans. 

 

In contrast, the SEM image of PANI/Au composites produced after five metal deposition 

scans shows the formation of 1-2 µm long Au deposits that are comprised of smaller aggregates.  

In addition, there are 10-50 nm Au particles dispersed throughout the polymer that do not form 

aggregates.  The data suggests that there are energetically distinct deposition sites within the 
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polymer that influence further deposition of the metal and aggregation.  For comparison, the EDS 

spectrum for PANI/Au is provided which confirms the presence of Au at ~2.1 keV.   

3.4 Electrochemistry of PANI/Pd and PANI/Au in Alkaline Solutions 

The premise that metal uptake in PANI enhances the conductivity without proton doping 

was explored in alkaline solutions (1 M KOH, pH  14).  The conditions were chosen to ensure 

that the conductivities of the composites are not influenced by proton doping of the polymer.  The 

formation and reduction of metal oxides and the surface specific oxidation of n-propanol was 

examined for both PANI/metal composites.  The goal was to provide a measure of the 

electrochemical activity of Au and Pd metals embedded in undoped PANI.  The scope of the 

analysis is focused on electrochemical responses rather than a full mechanistic evaluation of the 

oxide formation/reduction or the oxidation of propanol at the different metal surfaces.  However, 

electrochemical data derived from metal oxide reduction is used to provide an estimate of the metal 

surface areas for each species in the polymer.   Finally, the surface area derived from metal oxide 

reduction is utilized with data for the oxidation of propanol to evaluate changes in the charge 

density (C/cm2) for PANI/metal composites as a function of metal deposition cycle.  The 

electrochemical analysis is presented for the first, third and fifth deposition for both metals in 

PANI for clarity.  

3.4.1 Electrochemistry of PANI/Pd and PANI/Au in Hydroxide 

The electrochemical activity of the Pd deposits in PANI were evaluated in 1 M KOH 

solutions.  The voltammetric response was consistent with previous studies that have shown the 

formation of PdO in alkaline solution is a multi-step process that involves the oxidative adsorption 

of two hydroxide ions and the loss of water65,66, Equation 3.   
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PdO + 2H2O +  2e-  ⇌  Pd  +   2 OH-      Equation 3 

 

The voltammetry for PANI/Pd immersed in 1 M KOH after the first, third and fifth metal reduction 

are provided in Figure 10.   The sharp cathodic current at -0.439 V in the voltammetric response 

obtained for the cathodic scan is consistent with the reduction of PdO.  The current increases with 

increasing metal content in the polymer.  While the formation of PdO2 is not ruled out, the 

reduction occurs at potentials between +0.400 and -0.015 V6565,66, which is not observed in the 

voltammetric response for the PANI/Pd composite.  A Pd disc electrode with known geometric 

area was used to determine the charge density for the reduction of Pd oxide.  The surface area of 

the disc electrode was determined using the equation πr2, where r is the radius of the Pd disc.  

Surface roughness was not considered, therefore the surface areas determined are a rough estimate 

used for qualitative analysis.  The calculated charge density value was then utilized with the charge 

obtained from the reduction of PdO in PANI/Pd to estimate the surface area of the Pd metal 

embedded in the polymer.  The charge density is 1.76 x 10-3 C/cm2 for the reduction of palladium 

oxide at a disc electrode (area = 0.0707 cm2).  Similarly, the charges associated with metal oxide 

reduction for the first and fifth reductions of the metal precursor into the polymer are 4.69 x 10-7 

C and 3.36 x 10-5 C, respectively.  An estimate of the Pd surface area in the polymer is obtained 

by dividing each of these values with the charge density calculated for the disc electrode.  

Palladium surface areas of 2.66 x 10-4 cm2 and 1.91 x 10-2 cm2 are obtained for PANI/Pd after the 

first and fifth reduction of PdCl4
2- into the polymer, respectively.  The metal surface area increases 

by a factor of ~70 in PANI/Pd between the first and the fifth Pd deposition cycles.  Table 3 

provides estimates of the Pd surface area after each Pd reduction scan. 
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Table 3. Estimated Pd surface area after each Pd reduction scan, calculated by dividing the 
charge passed from Pd oxide reduction by charge density from the equivalent process at a Pd 

disk electrode with known surface area. 

# Pd Deposition Cycles Oxide Reduction, Charge (C) Calculated Surface Area (cm2) 

1 4.69 x 10-7 2.66 x 10-4 

2 4.28 x 10-6 2.43 x 10-3 

3 1.55 x 10-5 8.81 x 10-3 

4 2.33 x 10-5 1.32 x 10-2 

5 3.36 x 10-5 1.91 x 10-2 

 

 

Figure 10. The response of a PANI electrode immersed in 1 M KOH after one (top), three 
(middle), and five (bottom) reductions of PdCl4

2- into the polymer. 
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The oxidation reaction for the formation of gold oxide in alkaline solution is provided in 

Equation 4.  The equation neglects the complex mechanism associated with the adsorption of 

hydroxide and subsequent formation of gold oxide. However, the voltammetric response of 

PANI/Au in KOH is consistent with previous studies67,68 and the overall chemical reaction can be 

used to provide an estimate of the surface area of Au metal embedded in the polymer.  Like Pd, 

the charge density associated with the reduction of gold oxide at a disc electrode with defined area 

can be compared with the charge passed for gold embedded in the polymer to estimate the 

electrochemically active area.   

 

Au2O3  +  3 H2O  +  6e-  ⇌ 2 Au  +  6 OH-      Equation 4 

 

The voltammetry for a PANI/Au electrode immersed in 1 M KOH is provided in Figure 

11 for the first, third, and fifth reductions of AuCl4
- into the polymer.  The voltammetry for the 

PANI/Au electrodes is consistent with the formation of gold oxide in basic solutions.  Although 

the current associated with the formation/reduction of gold oxide is relatively small after the first 

reduction of AuCl4
-, the third and fifth reduction show significant increases associated with 

increasing Au metal content in the polymer.  The peak current for formation of gold oxide in 

PANI/Au is observed at 0.359 V vs. Ag/AgCl during the anodic scan.  The reduction of gold oxide 

occurs at 0.100 V vs. Ag/AgCl during the anodic scan.  The data indicate that the electrochemical 

reduction of AuCl4
- was used effectively to control and vary the Au metal content in PANI.  

Furthermore, the formation and reduction of gold oxide is resolved in alkaline solution which 

confirms the Au metal significantly enhances the electronic properties of the polymer.    
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Figure 11. The response of a PANI electrode immersed in 1 M KOH after one (top), three 
(middle), and five (bottom) reductions of AuCl4

- into the polymer. 

 

The charge density associated with the electrochemical reduction of gold oxide at a disc 

electrode is used to estimate the active metal surface area in the PANI/Au composite.  Table 4 

provides estimates of the Au surface area after each Au reduction scan.  The charge density 

associated with the reduction of gold oxide at an Au disc electrode (area = 0.020 cm2) is 1.38 x  

10-3 C/cm2.  The surface area estimates for Au deposited in the polymer are obtained from the 

charge associated with metal oxide reduction where Q = 1.90 x 10-6 C and Q = 1.92 x 10-4 C for 

the PANI/Au composite after the first and fifth reduction of the metal precursor.  An estimate of 

the gold surface area in the polymer is obtained by dividing each of these values by the charge 

density calculated for the disc electrode.  Gold surface areas of 1.38 x 10-3 cm2 and 1.39 x 10-1 cm2 
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are obtained after the reduction of AuCl4
- into PANI for the first and fifth cycle, respectively.  The 

data indicates that the surface area of Au has increased by two orders of magnitude between the 

first and fifth reduction of AuCl4
- into the polymer.  The value is much larger than the relative 

change in surface area estimated for PANI/Pd.  The difference might be attributed to the fact that 

the Pd deposits eventually encapsulate PANI which may minimize the relative change in surface 

area in comparison to gold.62   Although the relative gain in Pd surface area is smaller than Au, the 

data indicates the overall metal surface area can be increased through the sequential 

electrochemical deposition using the metal precursor.   

 

Table 4. Estimated Au surface area after each Au reduction scan, calculated by dividing the 
charge passed from Au oxide reduction by charge density from the equivalent process at a Au 

disk electrode with known surface area. 

# Au Deposition Cycles Oxide Reduction, Charge (C) Calculated Surface Area (cm2) 

1 1.90 x 10-6 1.37 x 10-3 

2 1.44 x 10-5 1.04 x 10-2 

3 3.97 x 10-5 2.87 x 10-2 

4 8.49 x 10-5 6.15 x 10-2 

5 1.92 x 10-4 1.39 x 10-1 

 

3.4.2 Electrocatalytic Oxidation of n-Propanol using PANI/Pd and PANI/Au 

The electrochemical response of metal deposited in the polymer can also be probed using 

propanol oxidation.  The general reaction for the oxidation of propanol at a metal surface is given 

in Equation 5.69,70   

 

CH3CH2CH2OH  +  18 OH-  ⟶  3 CO2  +  13 H2O  +  18 e-   Equation 5 
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The equation ignores intermediate processes and the possible incomplete oxidation of species at 

the catalytically active metal surface.  However, studies have examined the extent of catalytic 

electro-oxidation of alcohols at Au and Pd surface.  One study71 determined the final products of 

oxidation of glycerol in alkaline solution at Au and Pd catalysts using in situ infrared spectroscopy.  

The data suggested that oxidation does not reach completion at either metal.  In fact, oxidation at 

Pd ended with the glycerate ion and Au ended either at glycerate or hydroxypyruvate ion.  Without 

a more detailed analysis of the reaction species generated from the oxidation of propanol the 

reaction the extent of the reaction based on Equation 5 is unknown.  A full evaluation of solution 

and surface species from the oxidation of propanol at the PANI/metal composites is beyond the 

scope of this manuscript.  Therefore, the total charge derived from the oxidation of propanol is 

simply used qualitative tool for comparison of the composites rather than a measure of the extent 

of the reaction.  In addition, the oxidation of propanol can be used as an additional surface specific 

reaction to probe the signatures for both metals deposited in PANI.72,73   
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Figure 12. Electrocatalytic oxidation of n-propanol using PANI/Pd composites after one, three, 
and five reductions of Pd. 

 

The oxidation of propanol at PANI/Pd electrodes after the first, third, and fifth reduction 

of PdCl4
2- in PANI is provided in Figure 12.  These are the same electrodes used to examine 

palladium oxide formation/reduction in Figure 10.  The cathodic and anodic scans for the 

oxidation of propanol for PANI/Pd are very different; however, the charges associated with 

propanol oxidation for the anodic and cathodic scans are approximately equal.  The potential for 

the oxidation of propanol is exceeded on the cathodic scan because it occurs only after the 

reduction of surface adsorbed species or oxide at -0.280 V.  The oxidation of propanol is centered 

at -0.325 V on the cathodic scan, increasing in intensity as a function of increasing Pd in the 

polymer.  In contrast, the anodic scan shows oxidation of propanol over a much larger potential 
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range between -0.555 V to 0.040 V, and is centered at -0.220 V.  The higher current associated 

with the oxidation of propanol on the cathodic scan indicates that the reaction rate is higher once 

surface species are reduced from Pd when compared to the anodic scan.  The charge associated 

with propanol catalysis for the anodic scan was evaluated for the first and fifth reduction of Pd in 

the polymer giving values of 1.18 x 10-5 C and 1.07 x 10-3 C, respectively.  The corresponding 

charge densities are 4.43 x 10-2 C/cm2 and 5.62 x 10-2 C/cm2 for the catalytic oxidation of propanol 

once the surface areas of Pd are considered.  Table 5 summarizes the charge density of propanol 

oxidation at the PANI/Pd catalyst after each Pd reduction scan.  The charge density reaches a 

maximum after the third reduction of Pd into PANI then decreases slightly.  The results indicate 

that the controlled electrochemical reduction of the Pd metal precursor is an effective method for 

increasing the overall Pd metal content in PANI.  However, the efficiency associated with the 

increased surface area of the Pd deposits does not increase after the third reduction scan.  The 

electrochemical data also confirm that the inclusion of Pd in PANI allows the polymer to be 

utilized in alkaline solutions that preclude acid doping.   

 

Table 5. Charge passed and estimated charge density for propanol oxidation at PANI/Pd catalyst 
after each Pd reduction scan. 

# Pd Deposition Cycles Charge (C) Charge Density (C/cm2) 

1 1.18 x 10-5 4.43 x 10-2 

2 1.36 x 10-4 5.59 x 10-2 

3 5.58 x 10-4 6.34 x 10-2 

4 8.33 x 10-4 6.30 x 10-2 

5 1.07 x 10-3 5.62 x 10-2 
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The oxidation of propanol for PANI/Au electrodes after the first, third, and fifth reduction 

of AuCl4
- in PANI is provide in Figure 13.  The data is obtained with the same electrodes used in 

Figure 11 for the gold oxide formation/reduction.  The data show that there is disproportionate 

oxidation of propanol at PANI/Au for the anodic and cathodic scans.    Specifically, the oxidation 

of propanol is significantly diminished for the cathodic scan relative to the anodic scan.  The data 

from Figure 11 indicate that oxidation of gold occurs on the anodic scan for the PANI/Au electrode 

immersed in only 1 M KOH, and that the oxide reduction is initiated at 0.350 V.  Therefore, the 

oxidation of propanol is hindered on the cathodic scan prior to the reduction of surface species.  

 

 

Figure 13. Electrocatalytic oxidation of n-propanol using PANI/Au composites after one, three, 
and five reductions of Au. 
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To be consistent with the PANI/Pd analysis, the catalytic efficiency of PANI/Au as a 

function of AuCl4
- reduction cycles was estimated.  Table 6 summarizes the charge density of 

propanol oxidation at the PANI/Au catalyst after each Au reduction scan.  The charge passed 

during propanol catalysis is 5.20 x 10-5 C and 2.01 x 10-3 C after the first and fifth reduction of Au 

in the polymer.  The catalytic charge densities are calculated for the two composites giving values 

of 3.78 x 10-2 C/cm2 and 1.45 x 10-2 C/cm2, respectively.  The data indicate that the charge density 

associated with the oxidation of propanol does not increase proportionally with the increase in Au 

surface area observed for the PANI/Au composites.  The oxidation of propanol becomes less 

efficient as the Au content in the polymer is increased.  This loss in efficiency may be an artifact 

of Au metal aggregation and the formation of large dimension particles.  The data provide 

confirmation of the electrochemical activity of PANI/Au composites in alkaline solutions. 

Furthermore, the inclusion of Au metal in PANI allows the oxidation of propanol to be probed in 

alkaline solutions that are traditionally precluded using the polymer. 

 

Table 6. Charge passed and estimated charge density for propanol oxidation at PANI/Au catalyst 
after each Au reduction scan. 

# Au Deposition Cycles Charge (C) Charge Density (C/cm2) 

1 5.20 x 10-5 3.79 x 10-2 

2 2.18 x 10-4 2.09 x 10-2 

3 4.79 x 10-4 1.67 x 10-2 

4 8.50 x 10-4 1.38 x 10-2 

5 2.01 x 10-3 1.45 x 10-2 
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3.5 Conclusion 

The controlled reduction of metal precursors AuCl4
- and PdCl4

2- to form PANI/metal 

composites with variable metal content was demonstrated.  The uptake and dispersion of the 

negatively charged metal precursors was initiated through the normal oxidation of PANI.  The 

subsequent reduction of PANI initiated the reduction of the embedded metal precursors to produce 

metal deposits in the polymer.  Initial metal reduction occurred at polymer sites, however after the 

first reduction, metal deposition at PANI sites decreased and deposition at newly formed 

PANI/metal sites increased with each subsequent scan.  The reactivity of the metal deposits in 

PANI were examined electrochemically using controlled, surface specific reactions, including 

metal oxide formation/reduction and the oxidation of n-propanol.  The data confirm that the 

incorporation of Au and Pd metal significantly enhanced the electronic properties of the polymer 

such that proton doping was not required to maintain the conductivity in alkaline solutions.  Both 

PANI/metal composites remain electrochemically active in alkaline solutions that preclude the 

proton doping of the polymer.  The unique response of each metal to the oxidation of n-propanol 

can be used to characterize the response of PANI/Au-Pd bimetallic composites. 
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Chapter 4 – Simultaneous Deposition of Pd and Au into PANI 

4.1 Introduction  

  The methods derived in Chapter 3 for the controlled deposition of single metal species in 

PANI are used for the synthesis of PANI/Au-Pd bimetallic composites.  This chapter focuses on 

the preparation and characterization of PANI/Au-Pd composites from the simultaneous deposition 

from a solution containing both metals.  The simultaneous deposition evaluates competitive 

deposition processes for gold and palladium, which can influence the overall electronic properties 

of the composite materials.  Moreover, the role of controlled deposition of two metal precursors in 

metal alloying within PANI is evaluated. Reduction of the metals via linear sweep voltammetry is 

utilized to control the uptake and reduction of both Pd and Au metal precursors to determine if 

each metal is deposited independently or co-deposited in the polymer.  Likewise, the role of 

subsequent reduction of competing metal species in the polymer when metal is present is explored.  

The composition and distribution of the two metals in the composite is evaluated as a function of 

three different metal precursor solutions (with Au:Pd ratios of 1:1, 1:2, and 2:1) to achieve different 

metal compositions in the polymer.  The composites are characterized using the same methods 

from Chapter 3 for a direct comparison with the single metal composites and bimetallic 

composites.  The morphology and composition of the composites are examined using SEM/EDS 

analysis.  In addition, metal oxide formation and reduction are used to evaluate the electronic 

properties of the different metal species present in the polymer.  Finally, each composite is 

evaluated as a catalyst for propanol oxidation in alkaline solution to determine if the controlled 

formation of bimetallic composites produces catalysts with higher activities and reduced surface 

poisoning in comparison to their monometallic counterparts. 
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4.2 Electrochemical Reduction of Metal Precursors in PANI  

Traditionally, metal deposition in PANI has been achieved using single metal precursors and 

controlled or spontaneous reduction processes.  Spontaneous reduction is a point of contact process 

where the metal is reduced using the electron rich environment of the polymer.  The deposits 

aggregate at the surface and little control is afforded in terms of dispersion and overall metal 

composition.  In contrast, the previous chapter demonstrated that electrochemical methods allow 

the oxidation state of the polymer to be controlled and utilized to disperse metal precursors, which 

is followed by the reduction of the species to produce the composite material.  This work represents 

the first example of the controlled uptake and formation of bimetallic species in PANI.  PANI 

composites containing bimetallic catalysts have primarily been prepared using pre-formed species 

that are encapsulated during polymer synthesis.74,75,76,77  The controlled codeposition of Pd and Au 

onto indium tin oxide glass (ITO)78, dendrimer-modified ITO79, and poly(3,4-

ethylenedioxythiophene) (PEDOT)80 have been studied; however, the controlled simultaneous 

deposition of bimetallic catalysts in PANI has not been previously evaluated.  

The simultaneous electrochemical deposition of Au and Pd into PANI was examined as a 

function of the number of deposition cycles and the mole ratio of metal precursors.   The bimetallic 

deposition was achieved using the same electrochemical parameters as the single metal species 

which are discussed in Chapter 3.  The electrochemical reduction of Au and Pd in PANI was 

examined using mole ratios (AuCl4:PdCl4
-) of 1:1 (2.50 mM:2.50 mM, denoted 1Au1Pd), 2:1 (3.33 

mM:1.67 mM, denoted 2Au1Pd), and 1:2 (1.67 mM:3.33 mM, denoted 1Au2Pd), Figure 14.  The 

voltammetry associated with the initial reduction of the two metal precursors in pristine polymer 

is significantly different in comparison to the single metal Au or Pd deposition.  For example, the 

first metal reduction scan (dashed line) from the precursor solution where the Au concentration is 
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higher (2Au1Pd) most resembles the reduction of Au into pristine PANI.  However, the first peak 

shifts from 0.375 V to 0.331 V while the second voltammetric wave observed at -0.010 V shifts to 

a more positive potential at 0.100 V.  The potential shifts well exceed the resolution of the 

potentiostat at ± 5 mV.  It is likely that the inclusion of PdCl4
2- influences the reduction of AuCl4

- 

into pristine polymer.  The difference in the direction for the potential shift for the two reduction 

processes may be influenced by the combined interactions of the two different metal precursors in 

PANI.  In contrast, the second reduction of Au/Pd shows only a single reduction wave at 0.107 V 

(solid bold line), which is also consistent with response for scans three through five for deposition 

of Au.  The emergence of a new voltammetric wave for scans three to five is observed at about 

0.374 V and is indicative of the increase in metal content in the polymer.  The results follow the 

same general trend observed for the reduction of Au in PANI that show the accumulation of metal 

as a function of reduction scans.  However, reduction potentials are shifted relative to Au or Pd 

alone suggesting that both metals influence subsequent reduction, which can occur at the polymer, 

Pd, Au, and/or AuPd sites after the first scan.  With each additional scan the metal content 

increases, further influencing the reduction processes.  The question remains whether the 

properties of the metals deposited in PANI act as individual species or synergistically as an alloy 

in surface electrochemical reactions.   
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Figure 14. Simultaneous reduction of PdCl4
2- and AuCl4

- into PANI from metal precursor 
solutions composed of 3.33 mM KAuCl4 and 1.67 mM K2PdCl4 (left), 2.5 mM KAuCl4 and 2.5 

mM K2PdCl4 (middle), and 1.67 mM KAuCl4 and 3.33 mM K2PdCl4 (right). Scans one (dashed), 
two (bold), and three, four and five (black) are provided. 

 

For comparison, the voltammetric response of a PANI electrode immersed in a solution of 2.50 

mM AuCl4
- and 2.50 mM PdCl4

2- (1Au1Pd) does not resemble reduction of AuCl4
- or PdCl4

2- at 

pristine PANI.  A single voltammetric wave associated with reduction of the metal precursors into 

the pristine polymer is observed at 0.190 V after the first deposition (dashed line).  The potential 

is shifted negative by 0.185 V and 0.141 V in comparison to the reduction of Au and 2Au1Pd in 

PANI, respectively.  Although it is unclear if reduction using the 1:1 mole ratio solution results in 

the deposition of equal quantities of each metal, it is clear that the processes are shifted to more 

negative potentials relative to Au alone or the 2Au1Pd mole ratio sample.   Furthermore, the 

reduction of metal precursor shifts to more negative potential on the second scan with slightly 

increased current relative to the first (bold line).  The third, fourth, and fifth deposition scans show 

a continued decrease in current associated with the reduction around 0.200 V.  There is also an 

increase in current at 0.357 V consistent with increasing surface area associated with deposition at 
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existing metal sites in the polymer.  The voltammetry for scans two through five are consistent 

with reduction from 2Au1Pd precursor solution.  However, the peak associated with deposition at 

metal sites is shifted negative 0.017 V, due to the decreased Au:Pd ratio in the precursor solution.  

The variability of the potentials for reduction processes for solutions containing different mole 

ratios of the two metal precursors suggest again that both species influence the deposition of metal 

into the polymer. 

The voltammetric response of a single PANI electrode immersed in a solution of 1.67 mM 

AuCl4
- and 3.33 mM PdCl4

2- (1Au2Pd) is represented by the right voltammogram in Figure 14.  

The first voltammetric scan (dashed line) shows a single reduction peak at 0.193 V that is 

consistent with the 1Au1Pd precursor solution.  However, the second deposition is more consistent 

with the first voltammetric scan of Pd in PANI in comparison to either the 2Au1Pd or 1Au1Pd 

samples.  After the second voltammetric scan the deposition of metal species on existing deposits 

is again observed, consistent with the other samples.  The increase in current is consistent with 

increasing metal surface area in the polymer.  

The data for all three samples show an increase in metal content as a function of the number 

of scans.  Energetically distinct voltammetry is resolved for the first and second cycles for the 

three different solutions studied.  The data also indicate that the initial deposition of metal species 

is predominately influenced by PANI.  However, after the initial reduction of metal species into 

the polymer, subsequent reduction is dominated by metal sites that exist within the polymer.  Thus, 

all the samples show an increase in metal surface areas for scans three through five.  Based on the 

potential differences in the reduction processes we would expect the physical and electrochemical 

properties of the materials to be different.     
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4.3 SEM/EDS Analysis of PANI/Au-Pd Bimetallic Composites 

A study of the morphology of the composites can be used to evaluate differences in the 

deposition processes for the simultaneous deposition of Au and Pd in PANI.  Data for the 

deposition of single metals into PANI demonstrate that deposition of Au and Pd are very different.  

The data demonstrate that Au deposits as particles with subsequent aggregation while Pd almost 

completely encapsulates the polymer.  The simultaneous deposition of the two metals in PANI is 

different.  The SEM images and EDS spectra in Figure 15 provides a comparison of the 

morphology and composition of the bimetallic PANI composites formed from the simultaneous 

deposition of Au and Pd using three different mole ratios.  In addition, measurement of the polymer 

thickness for the samples presented in Figure 9 in the previous chapter and Figure 15 are 

summarized in Table 7. 
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Figure 15. SEM images (left) and EDS spectra (right) of PANI/1Au2Pd (top), PANI/1Au1Pd 
(middle), and PANI/2Au1Pd (bottom). 

  

The average overall diameter of the PANI strands of the PANI/1Au2Pd composite is ~ 171 

nm ± 40 nm.  While this is still ~ 55 nm wider than pristine PANI, it is less than the ~ 210 nm 

PANI/Pd strands from Chapter 3.  However, with the large standard deviation associated with the 

thickness measurement, it is possible that the distribution of Pd throughout the polymer is less 
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uniform than PANI/Pd and strands with the same thickness as PANI/Pd may be present.  

Alternatively, it can be suggested that the presence of Au affects the Pd deposition mechanism.  

Competition between the two metals is limited due to the affinity of PANI for Au, which results 

in its preferential deposition and may minimize encapsulation by Pd.  As a result, the 

PANI/1Au2Pd strands are smaller in diameter in comparison to monometallic PANI/Pd.  Also, 

after the first deposition there are multiple different sites available for metal deposition.  Further 

reduction of the Au and Pd metal precursors can occur at PANI, PANI/Pd, PANI/Au, and sites 

based on existing Au/Pd deposits.  Aggregation will occur if the interaction of the metal precursor 

with the existing metal deposits is preferential to interaction with PANI.  For example, the size 

and distribution of the Au deposits in the bimetallic sample are likely influenced by the existing 

Au deposits, the Pd deposits, and the relative concentration of the Pd metal precursor in the 

solution.  In fact, the Au deposits have average diameters of 45 nm ± 9 nm and do not form the 

large aggregates seen in the PANI/Au sample in Chapter 3.  They also appear to be evenly 

dispersed throughout the polymer.  It is important to note that the aggregates, though consistent 

with aggregates in PANI/Au, may be a mixture of Au and Pd.  The corresponding EDX spectrum 

confirms the presence of both Pd and Au in PANI. 
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Table 7. Size measurements of PANI/metal composites. 

PANI Composite PANI Thickness (nm) 

PANI 116 ± 21 

PANI/Pd 210 ± 26 

PANI/1Au2Pd 171 ± 40 

PANI/1Au1Pd 132 ± 12 

PANI/2Au1Pd 154 ± 40 

 

For comparison, the average thickness of the PANI strands in the PANI/1Au1Pd composite 

is ~ 20% less than those in the PANI/1Au2Pd composite, which is consistent with the decreased 

amount of Pd in the metal precursor solution.  In contrast, the size of the gold aggregates has 

increased approximately threefold.  Again, it is possible that the aggregates in the SEM image are 

not all pure Au but alloys of Au and Pd.  It is apparent that the concentration change associated 

with each metal precursor has a direct impact on the morphology of the metal deposits in the 

polymer.  Moreover, the increase in the amount of Au in the composite is corroborated by the EDX 

spectrum.  The intensity of the Au peak increases significantly while the Pd peak shows a slight 

decrease when compared to the PANI/1Au2Pd composite.  Finally, the SEM image for 

PANI/1Au2Pd composite is provided.  The average thickness of the PANI strands is not 

significantly different from those in the PANI/1Au1Pd composite.  The data indicates that the Pd 

does not necessarily fully encapsulate the polymer as observed for PANI/Pd alone.   However, as 

expected, the size of the Au aggregates continues to increase as the Au concentration in the metal 

precursor solution increases.  The EDS spectrum confirms that the amount of Au present in the 

sample is increased while the amount of Pd does not change appreciably in comparison.   
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4.4 Electrochemistry of PANI/Au-Pd Bimetallic Composites in Alkaline Solutions 

The electrochemical properties of the composites were examined using metal oxide 

formation and reduction of the composites as a function of the number of deposition scans.  The 

electrochemical properties of the composites are examined after each metal deposition to evaluate 

possible alloying during the controlled formation of the bimetallic composites.  The bimetallic 

composites were also examined as possible catalysts for n-propanol oxidation in alkaline solution 

containing 1 M n-propanol and 1 M KOH.  Propanol was chosen for this study because PANI/Au 

is not an effective catalyst for oxidation of either methanol or ethanol.  In addition, the potentials 

for n-propanol oxidation are distinct for Au and Pd and well documented.  The established 

potentials for the oxidation of n-propanol at Au and Pd allow the contribution of each metal species 

to be evaluated for the simultaneous deposition of Au and Pd.   In addition, the studies may provide 

information regarding metal interactions and synergistic enhancement of the catalytic properties. 

Moreover, the voltammetry of the propanol oxidation using bimetallic catalysts can be compared 

directly to PANI/Pd and PANI/Au to determine if bimetallic composites have higher catalytic 

activities with reduced surface poisoning when compared to their monometallic counterparts.  All 

composites were examined after five metal deposition scans to ensure a significant amount of each 

metal is present in the polymer to elucidate the catalytic properties. 

4.4.1 Electrochemistry of PANI/Au-Pd Bimetallic Composites in Hydroxide 

Figure 16 presents the metal oxide formation and reduction of the PANI/metal composites 

synthesized from one metal deposition scan.  The top and bottom voltammograms show that Pd 

oxide reduction and Au oxide reduction occur at -0.439 V and 0.100 V, respectively. The center 

voltammograms are the responses of the bimetallic composites to oxide formation and reduction.  

Despite the differences in the compositions of the metal precursor solutions, the peak shapes and 
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peak potentials of all three bimetallic composites are characteristic of PANI/Au oxide formation 

and reduction.  A voltammetric wave corresponding to PANI/Pd is not present.  These data suggest 

that the first deposition results in composites composed primarily of Au.  Therefore, it can be 

concluded that PANI has a much higher affinity for Au than it does for Pd.  However, the peak 

potentials are all shifted negative ~ 0.100 V and the oxide reduction peak is broadened, suggesting 

that the presence of Pd in the metal precursor solution influences Au deposition. 

 

 

Figure 16. The cyclic voltammetric response of a PANI electrode immersed in 1 M KOH after 
one metal reduction scan from precursor solutions 5 mM K2PdCl4 (top), 1.67 mM KAuCl4 with 
3.33 mM K2PdCl4 (second), 2.5 mM KAuCl4 with 2.5 mM K2PdCl4 (third), 3.33 mM KAuCl4 
with 1.67 mM K2PdCl4 (fourth), and 5 mM KAuCl4 (bottom).  The corresponding reduction of 
metal oxide is represented using the dashed lines for single metals Pd and Au for comparison. 
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Figure 17 presents the metal oxide formation and reduction of the PANI/metal composites 

synthesized from five metal deposition scans.  In contrast to the composites in Figure 16, the 

composites in Figure 17 show multiple energetically distinct metal species.  First, a reduction 

process is observed for all three bimetallic composites at ~ 0.045 V.  Although there is a slight 

shift to negative potential when compared to PANI/Au, the process is consistent with the reduction 

of Au oxide.  Furthermore, there is no electrochemical signature associated with Pd reduction after 

the first deposition cycle. Each subsequent reduction of metal into PANI results in voltammetry 

that is consistent with reduction of both Au and Pd metal oxide. For example, the oxide formation 

and reduction of the PANI/1Au2Pd composite shows there are two overlapping peaks in addition 

to the Au oxide reduction peak.  Since neither of these processes occur at potentials consistent with 

PANI/Au nor PANI/Pd, it can be suggested that they are a result of Pd and Au interacting within 

the polymer, creating multiple electrochemically distinct species.  The first of the overlapping 

peaks, with a peak maximum at ~ -0.303 V, is most likely due to Pd oxide reduction.  However, 

the potential shift of ~ 0.136 V compared to PANI/Pd suggests that Au heavily influences the 

electronic properties of Pd in the polymer.  The second voltammetric wave at ~ -0.190 V occurs at 

a potential almost exactly halfway between those of PANI/Au and PANI/Pd oxide reductions, 

suggesting that each metal contributes to the electronic properties.  For comparison, the oxide 

reduction of the PANI/1Au1Pd composite shows the Pd oxide reduction peak shifts slightly 

positive and decreases in intensity in response to the decreased Pd concentration and increased Au 

concentration in the metal precursor solution.  However, the other Au/Pd oxide reduction peak 

remains relatively unchanged.  In the voltammetric response of the PANI/2Au1Pd composite, the 

Pd peak continues to shift to a more positive potential, becoming almost engulfed by the Au/Pd 

peak at ~ -0.182 V.  The positive potential shift of the Pd peak shows the increased influence of 
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Au as its concentration in the metal precursor solution increases.  The data indicates that controlled 

simultaneous deposition of Au and Pd forms bimetallic alloys in PANI, and that the chemical and 

physical properties can be manipulated by varying the composition of the metal precursor in the 

solution.  The metal surface area cannot be determined for each metal because the contributions of 

the individual species are convoluted.   

 

 

Figure 17. The cyclic voltammetric response of a PANI electrode immersed in 1 M KOH after 
five metal reduction scans from precursor solutions 5 mM K2PdCl4 (top), 1.67 mM KAuCl4 with 

3.33 mM K2PdCl4 (second), 2.5 mM KAuCl4 with 2.5 mM K2PdCl4 (third), 3.33 mM KAuCl4 
with 1.67 mM K2PdCl4 (fourth), and 5 mM KAuCl4 (bottom).  The corresponding reduction of 
metal oxide is represented using the dashed lines for single metals Pd and Au for comparison. 
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4.4.2 Electrocatalytic Oxidation of n-Propanol using PANI/Au-Pd Bimetallic Composites 

The voltammetric responses of the PANI/metal composites in alkaline n-propanol solution 

are presented in Figure 18.  All relevant electrochemical measurements are summarized in Table 

8.  The signatures of PANI/Pd and PANI/Au propanol oxidation catalysis is provided for 

comparison against the PANI/bimetallic composites.  First, n-propanol oxidation catalyzed by 

PANI/Pd produces a symmetrical and broad voltammetric wave at ~ -0.220 V on the anodic scan, 

while the oxidation on the cathodic scan produces an asymmetrical and sharp voltammetric wave 

at ~ -0.330 V.  For comparison, propanol oxidation catalyzed by PANI/Au produces a broad, 

symmetrical peak at ~ 0.158 V on the anodic scan, while the cathodic scan shows a very small 

peak at ~ 0.020 V.  It should be possible to determine the level to which each metal contributes to 

propanol oxidation in the PANI/bimetallic systems because each metal has a unique response. 
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Figure 18. The cyclic voltammetric response of a PANI electrode immersed in 1 M n-propanol 
and 1 M KOH after five metal reduction scans from precursor solutions 5 mM K2PdCl4 (top), 
1.67 mM KAuCl4 with 3.33 mM K2PdCl4 (second), 2.5 mM KAuCl4 with 2.5 mM K2PdCl4 

(third), 3.33 mM KAuCl4 with 1.67 mM K2PdCl4 (fourth), and 5 mM KAuCl4 (bottom).  The 
corresponding reduction of metal oxide is represented using the dashed lines for single metals Pd 

and Au for comparison. 

 

The first bimetallic composite to be examined is PANI/1Au2Pd.  The anodic and cathodic 

scans result in voltammetric waves at ~ -0.187 V (Ea) and -0.260 V (Ec) respectively.  These 

potentials are shifted slightly positive in comparison to oxidation by PANI/Pd, suggesting that Pd 

provides a larger contribution to oxidation than Au.  In fact, even though the oxide reduction study 

shows that there is a significant amount of Au metal at the composite surface, there is no signature 

of oxidation by pure Au present in the voltammogram.  However, there is an increase in catalytic 

activity when compared to monometallic composites.   
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Propanol oxidation at PANI/1Au1Pd and PANI/2Au1Pd show similar results.  The peak 

shapes and potentials are more characteristic of PANI/Pd than PANI/Au. The anodic and cathodic 

scans for PANI/1Au1Pd result in peaks at ~ -0.195 V and ~ -0.253 V, respectively.  The values 

are slightly different in comparison to the other bimetallic composites.  For comparison, the 

equivalent peaks in the PANI/2Au1Pd composite occur at ~ -0.180 V and ~ -0.242 V for the anodic 

and cathodic scans, respectively.  In addition, it has a voltammetric wave that may be attributed to 

oxidation by Au species at ~ 0.120 V, which is shifted negative in comparison to PANI/Au (0.158 

V).  The anodic potential is the same when compared to the results for PANI/1Au2Pd.  However, 

the cathodic potential is shifted even more positive than the other two bimetallic composites.  

Overall, it appears that Pd influences catalysis more than Au.  The positive potential shift indicates 

that the electrochemical process is more thermodynamically favorable when Au is also present in 

the polymer.   

 

Table 8. Electrochemical measurements from the oxidation of n-propanol in alkaline solution 
using, PANI/Pd, PANI/1Au2Pd, PANI/1Au1Pd, PANI/2Au1Pd and PANI/Au composites as 

catalysts. 

PANI Composite Ea (V) Ec (V) ΔE (V) Qa (C) Qc (C) Qc/Qa 

PANI/Pd -0.220 -0.330 0.110 1.10 x 10-3 1.21 x 10-3 1.10 

PANI/1Au2Pd -0.187 -0.260 0.073 9.09 x 10-3 4.93 x 10-3 0.543 

PANI/1Au1Pd -0.195 -0.253 0.058 5.73 x 10-3 3.54 x 10-3 0.617 

PANI/2Au1Pd -0.180 -0.242 0.062 8.05 x 10-3 4.29 x 10-3 0.533 

PANI/Au 0.158 0.020 0.138 1.01 x 10-3 1.94 x 10-4 0.191 
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Alcohol oxidation often results in the adsorption of CO, CO2, and other carbonaceous 

byproducts onto the catalyst, “poisoning” the surface and reducing reactivity due to loss of surface 

area.  The formation of bimetallic catalysts may facilitate the removal of poisoning species from 

the catalyst surface increasing the efficiency of alcohol oxidation.  The peak separation between 

the cathodic and anodic scans (ΔE = Ec - Ea), and the charge associated with the cathodic and 

anodic scans (Qc/Qa) are indicative of the relative efficiency and removal of poisoning species 

from the metal surfaces. 

PANI/Au and PANI/Pd exhibit comparable ΔE values: 0.138 V and 0.110 V respectively.  

However, the bimetallic composites have significantly lower ΔE values, supporting the theory that 

poisoning species are more easily removed from bimetallic catalysts than from their single metal 

counterparts.  PANI/1Au1Pd has the smallest value (0.058 V), followed by PANI/2Au1Pd (0.062 

V) and PANI/1Au2Pd (0.073 V).  This phenomenon could be dependent on the size and dispersion 

of the Au aggregates in PANI.  For example, the size of the Au aggregates and amount of Pd 

present in both the PANI/1Au1Pd and PANI/2Au1Pd composites are similar, as are their ΔE 

values.  However, the aggregates in the PANI/1Au2Pd are significantly smaller, and there is more 

Pd present.   

To further examine the effects of surface poisoning, the Qc/Qa values were compared 

between PANI/Pd, PANI/Au, and the three bimetallic composites.  Propanol oxidation at PANI/Pd 

was equally efficient in both scan directions, with a Qc/Qa value ~ 1.  In comparison, oxidation at 

the PANI/Au catalyst is a relatively slow reaction.  Only a small amount of propanol is oxidized 

after the poisoning species are removed from the electrode surface, resulting in a Qc/Qa of 0.191.  

Once again, the bimetallic composites have Qc/Qa values that do not correspond to either PANI/Pd 

or PANI/Au.  PANI/1Au1Pd has the highest value, 0.617.  The addition of Au may be slowing 
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down the reaction, perhaps because there is less Pd at the catalyst surface available for alcohol 

oxidation.  In comparison, PANI/1Au2Pd and PANI/2Au1Pd have Qc/Qa values of 0.543 and 0.533 

respectively.  The reduction in charge for the former is probably due to the delayed removal of 

poisoning species, while the reduction in charge for the latter is probably due to the reduced 

availability of Pd sites.   

Overall the catalytic activity is enhanced at Au-Pd bimetallic catalysts when compared to 

PANI/Au and PANI/Pd.  The mechanism that leads to the increase is unknown, however there are 

several possibilities that have been evaluated.  First, the voltammetric data are consistent with 

previous studies81,82,83 that suggest that Pd is the active site for alcohol oxidation and Au acts as a 

promoter.  For example, Wang et al.84 proposed that OH- adsorption at Au can promote surface 

regeneration, which removes surface contaminants from Pd surfaces according to Equations 6 and 

7: 

 

OHads − Au − Pd − COads  →  Au − Pd − COOHads      Equation 6 

OHads − Au − Pd − COOHads  →  Au − Pd +  CO2  + H2O Equation 7 

 

Adsorbed OH- at the Au surface reacts with adsorbed CO at the Pd surface, forming acetate.  A 

second adsorbed OH- reacts with the acetate to form CO2 and H2O, which are desorbed from the 

catalyst surface.  The same study, and others85,86, also cited an electronic effect, noting that the 

interaction with Au caused a shift in the d-band center of Pd, which resulted in a stronger methanol 

adsorption at the alloy surface.  A third mechanism involves the stabilization of oxidation 

intermediates through the bifunctional nature of the catalyst.  Rodriguez, et al.87 propose that the 
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Au and Pd species form bonds through hydroxyl and alkyl hydrogens, respectively, to stabilize 

alcohols and facilitate oxidation. 

4.5 Conclusion 

PANI/AuPd composites can be electrochemically synthesized via the controlled co-

deposition of the metals using metal anion precursors.  The electrochemical data demonstrates that 

the deposition of metal in pristine PANI is energetically distinct in comparison to subsequent 

reduction when both PANI and PANI/metal sites available. The composition, morphology, and 

electrochemical properties of the composites can be controlled by varying the concentrations of 

the two metal precursors in solution.  The differences can be utilized to control dispersion and 

aggregation of each metal.  The electrochemical formation/reduction of the metal oxides suggests 

that regardless of the relative concentration of the two metals, deposition of Au is more favorable 

in the pristine polymer than Pd.  However, after five deposition cycles it is apparent that there are 

electrochemically distinct sites available, including Au, Pd, and alloyed AuPd bimetallic species.  

The catalytic oxidation of propanol at bimetallic composites displays higher catalytic efficiency 

and reduced poisoning when compared to their monometallic counterparts.  The bimetallic 

composite has higher current associated with the oxidation of propanol on the anodic (positive) 

scan due to reduced relative poisoning of the metal surface in composites with the single metal.  

Finally, propanol is oxidized primarily by Pd species.  Therefore, Au either reduces poisoning of 

the bimetallic catalyst by cleaning the surface or stabilizing the propanol molecule during catalysis. 
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Chapter 5 – Sequential Deposition of Pd and Au into PANI 

5.1 Introduction 

Chapter 4 evaluated the role of competition in the alloying of Au and Pd within PANI by 

depositing the two metals into the polymer simultaneously.  In contrast, this chapter will focus on 

the sequential deposition of Au and Pd into PANI.   The influence of metal deposits on the 

subsequent deposition of a second metal species was investigated.  The controlled uptake and 

reduction of the metal precursors was achieved using linear sweep voltammetry. Electrochemical 

and SEM/EDS analysis provides insight into the chemical and physical properties of the 

composites.  The goal is to determine if the controlled uptake and reduction of individual metal 

species sequentially can be used to produce composites with unique or enhanced electrochemical 

properties relative bimetallic composites produced from controlled simultaneous deposition.   

5.2 Electrochemical Reduction of Metal Precursors in PANI  

The literature contains few studies evaluating the controlled electrochemical formation of 

bimetallic catalysts in PANI.  Previous studies have evaluated PANI composites formed by 

sequentially depositing Pt then Ru into the polymer.  However, they were unable to form 

composites in the reverse order because of the inability to deposit Ru into PANI.88  In addition, 

the influence of deposition order of Pt and Ag onto a glassy carbon electrode was examined in 

absence of the polymer.89  Finally, PANI/Au-Pd composites have been produced using atom by 

atom deposition.90  The sequential atomic deposition of Au and Pd was achieved using the normal 

anion doping of the polymer.  Excess metal precursor was removed by washing the PANI 

membrane with supporting electrolyte.  Finally, the metal precursors that remained 

electrostatically bound in the polymer were reduced.  This process was repeated to build the 

bimetallic catalysts atom by atom in PANI.  These three studies thoroughly characterize the 
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resulting films and evaluate their catalytic activities as a function of amount of metal.  However, 

any data regarding the electrochemistry of the deposition processes themselves was omitted.  This 

study provides a more thorough evaluation of the electrochemistry involved in the controlled 

uptake and reduction of Au and Pd into PANI/Pd and PANI/Au, respectively. 

 

 

Figure 19. Controlled reduction of AuCl4
- into PANI/Pd. Scans one (dashed), two (bold lines), 

and three, four, and five (black lines) are provided.  Arrows indicate the increase or decrease of 
current with successive scans. 

 

The voltammetric response of the controlled electrochemical deposition of Au into 

PANI/Pd is presented in Figure 19.  The deposition of Au into PANI was explored in Chapter 3.  

Briefly, the first deposition scan (dashed line) results in the deposition of Au into PANI with two 
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reduction processes, indicated by voltammetric waves at 0.375 V and -0.010 V.  The second scan 

(bold line) shows that the potentials shift in opposite directions until there is only one distinct 

deposition wave in PANI after the third scan.  In addition, after the first reduction of Au a second 

voltammetric wave is observed at 0.600 V due to Au deposition at existing metal sites.  The 

deposition of Au into PANI decreases while increasing at PANI/Au with each subsequent scan.  

It is likely that the oxidation of the polymer is minimized because of the increase in metal 

content within the PANI/Au composite.   

Au deposition into PANI/Pd follows a similar trend with some clear differences.  The first 

scan (dashed line) shows that deposition at PANI sites occurs at a much more negative potential 

(-0.171 V) when Pd is present in the polymer than when depositing into pristine PANI.  Therefore, 

Pd changes the properties of PANI such that Au deposition at PANI sites becomes less 

thermodynamically favorable.  This may again be an artifact of decreasing electroactive sites 

within the polymer once Pd is deposited. Deposition of Au at PANI/Pd sites is represented by a 

small voltammetric wave at 0.413 V which is consistent with metal-on-metal deposition observed 

previously in Chapter 4.  However, the second deposition of Au is initiated about 0.100 V more 

positive in comparison to the pristine polymer, consistent with deposition at PANI/Au sites.  In 

fact, given the breadth of the metal deposition peak, it is possible that Au can be deposited on 

several electrochemically distinct sites including Au, Pd, and Au-Pd.  As with deposition into 

pristine PANI, the current associated with deposition at PANI decreases while the current 

associated with deposition at PANI/metal sites increases with each scan. The data confirm the 

decrease in PANI sites available as metal content increases.  
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Figure 20. Controlled reduction of PdCl4
2- in PANI/Au. Scan one (dashed), two (bold lines), and 

three, four, and five (black lines) are provided.  Arrows indicate the increase or decrease in 
current with successive scans. 

 

For comparison, deposition of Pd at PANI/Au is presented by Figure 20.  Previously it 

was demonstrated that the deposition at PANI occurs at 0.003 V and decreases with each scan.  

Alternatively, deposition at PANI/Pd sites occurs at 0.260 V and increases with each scan and 

increasing metal content. The data indicates that Pd deposition occurs primarily at metal sites in 

PANI/Au.  The first deposition (dashed line) is initiated at 0.621 V, with a slight peak at 0.501 V 

and a peak maximum at 0.297 V.  Each subsequent scan contains a peak maximum with a constant 

current output at 0.263 V and a small peak at about -0.200 V that increases slightly in intensity 

with each subsequent reduction of Pd. The peak at 0.501 V on the first scan is consistent with Pd 
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deposition on Au.  Deposition at more negative potentials on the second scan occurs at Pd or Au-

Pd sites.  The peak at -0.200 V could be deposition at PANI shifted significantly negative when 

compared to deposition at pristine PANI, similar to the shift between deposition of Au at PANI 

and PANI/Pd sites.  However, it is more likely that this peak is due to adsorption of H at the 

increasing number of Pd sites91 since the peak increases in intensity with each scan.   

5.3 SEM/EDS Analysis of PANI/Au-Pd Bimetallic Composites 

The variability in the electrochemical response for the different deposition processes 

suggests that the deposits formed during the sequential deposition may be different.  Specifically, 

the morphologies of the resulting metal deposits may be very different depending on the order of 

deposition. The SEM data shown in Chapter 3 demonstrates that Au tends to form aggregates while 

Pd encapsulates the polymer.  The bimetallic composites in Chapter 4 demonstrate that 

simultaneous deposition of the two metals reduces Pd encapsulation of the polymer and the 

concentrations of the metal precursors influence the size and distribution of metal particles.  The 

present SEM analysis will be utilized to determine how the presence of one metal in the polymer 

influences the deposition of a second metal into the same polymer through sequential deposition 

processes.  SEM images of each composite were taken at multiple magnifications to determine the 

thickness of the PANI strands, the sizes of any metal clusters, and overall distribution of metal 

throughout the polymer.  EDS analysis was also performed to determine the composition of the 

composites.   
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Figure 21. SEM images of PANI/5Au/5Pd composite at 750x (top left), 6,000x (middle and 
bottom left), and 20,000x magnifications (top and middle right), followed by the EDS spectrum 

(bottom right). 

 

Figure 21 presents the results of SEM/EDS analysis of the PANI/5Au/5Pd composite.  

First, a low magnification view of the polymer at 750x magnification is provided to show the bulk 

surface.  It is evident that the metal aggregates do not disperse evenly throughout the polymer.  
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Rather, the composite is comprised of regions where the aggregates are either clustered together 

or are sporadically spread, as evidenced at 6,000x magnification.  Closer examination of the metal 

deposits shows that they are consistent in size and shape with those seen in the SEM image of 

PANI/Au in Chapter 3.  Specifically, there are large aggregates made of individual metal particles 

that encapsulate sections of the polymer as well as two-dimensional deposits that are 

approximately 500 nm long and vary in shape, consistent with polycrystalline Au deposits.92,93  

However, in contrast to the PANI/Au composite, the 10-50 nm wide metal particles are not present.  

It is possible that these particles, as well as the PANI strands, are encapsulated by Pd.  Interestingly 

there is no signature of Pd present in the EDS spectrum, despite the increase in PANI strand 

thickness (116 nm to 150 nm), and the presence of spikes on the strands, which are both consistent 

with Pd deposition onto PANI.  It is possible that the amount of Pd deposited is insignificant in 

comparison to the amount of Au and Cl-.  In fact, the average thickness of the strands is 

significantly less when compared to PANI/Pd (210 nm vs 150 nm).  It is also possible that the 

presence of Au in PANI significantly hinders the ability of Pd to deposit on the polymer and it is 

instead depositing preferentially at PANI/Au sites.  In Section 5.4.1. the EDS results will be 

compared to electrochemical studies to produce a more thorough evaluation of the composite’s 

surface composition. 
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Figure 22. SEM images of PANI/5Pd/5Au composite at 750x (top left), 6,000x (bottom left), 
and 20,000x (top right) magnifications, followed by the EDS spectrum (bottom right). 

  

For comparison, SEM/EDS analysis of the PANI/5Pd/5Au composites are presented in 

Figure 22.  At 750x magnification it is apparent that the metal deposits are more evenly distributed 

throughout the polymer when Pd is deposited before Au.  Closer examination of the composites 

confirms that the metal particles do not cluster in comparison to the PANI/Au and PANI/5Au/5Pd 

composites.  In fact, it is apparent that the presence of Pd in PANI hinders the ability of Au to form 

large aggregates.  Instead, there are small particles ranging from 40 to 120 nm in diameter and 

metal aggregates about 200 to 500 nm in diameter.  Once again, as with PANI/5Au/5Pd, the EDS 

spectrum does not confirm the presence of Pd, even though the average thickness of the 

PANI/strands has increased from 116 nm for pristine PANI to 171 nm, as seen in Table 9.  

Although, the average thickness is about 40 nm smaller than that for PANI/Pd the difference may 



69 
 

not be significant given the high standard deviations of the measurements.  It is still possible that 

Pd alloys with the Au particles during the Au deposition scans to form the small metal aggregates.  

However, the electrochemical characterization of the metal deposits is required to determine the 

relative activity of each metal species and any possible synergistic behavior.  

 

Table 9. Thickness of PANI strands for PANI and PANI/metal composites.  The PANI/Pd 
composite was imaged after 5 deposition scans in K2PdCl4.  The bimetallic composites were 

imaged after 5 deposition scans each in K2PdCl4 and KAuCl4. 

PANI Composite PANI Thickness (nm) 

PANI 116 ± 21 

PANI/Pd 210 ± 26 

PANI/5Au/5Pd 150 ± 26 

PANI/5Pd/5Au 171 ± 48 

 

5.4 Electrochemistry of PANI/Au-Pd Bimetallic Composites in Alkaline Solutions 

The electrochemical properties of the composites were examined using the characteristic 

metal oxide formation and reduction and catalytic activity of the composites for propanol oxidation 

in alkaline media.  Chapter 3 determined the unique electrochemistry of PANI/Au and PANI/Pd, 

which was used in Chapter 4 to determine that the two metals interact within PANI when 

simultaneously deposited into the polymer.  The goal is to determine how individual metal species 

interact when deposited sequentially, and whether the order of deposition results in composites 

with unique electrochemical properties.  Given the differences in the morphologies of the different 

composites, it can be assumed that the electrochemical properties of the composites will also differ. 
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5.4.1 Electrochemistry of PANI/Au-Pd Bimetallic Composites in Hydroxide 

The electrochemical characterization of the composites will be achieved by evaluating the 

potentials for metal oxide formation and reduction.  The electrochemical processes will be utilized 

to determine if the metals act independently or synergistically. The electrochemical responses in 

1 M KOH of PANI/5Au/xPd, where x signifies the number of Pd deposition scans (1-5) at a 

PANI/Au electrode, are presented in Figure 23.  The responses of PANI/Au and PANI/Pd are 

provided for comparison.  After a single deposition scan of Pd into PANI/Au, a voltammetric wave 

at -0.463 V appears on the cathodic scan, corresponding to reduction of Pd oxides.  For 

comparison, the small shoulder at -0.246 V can be attributed to reduction of oxide at Au-Pd alloys 

within the polymer.  However, in contrast to the response for simultaneously deposited Au-Pd 

composites, the potential at which Pd oxide reduction occurs in the PANI/5Au/1Pd composite is 

the same as the corresponding process in PANI/Pd.  Therefore, it appears that the presence of Au 

has little effect on the electrochemical properties of Pd in the bimetallic composite.  The larger 

response at -0.463 V is most likely due to Pd oxide reduction in the absence of Au.  In contrast, 

the small shoulder at -0.246 V is from the reduction of Pd oxide that encapsulated the Au deposits.  

The diminished gold oxide reduction confirms that the Au surface area has decreased due to Pd 

deposition and encapsulation. 



71 
 

 

Figure 23. The left presents the voltammetric responses of PANI metal composites in 1 M KOH.  
The top CV is the PANI film after 5 deposition scans in KAuCl4.  The next three are the same 

PANI/Au film after 1, 3, and 5 deposition scans in K2PdCl4.  The response of a PANI film after 5 
deposition scans in K2PdCl4 is provided on the bottom for comparison. The corresponding 

reduction of metal oxide is represented using the dashed lines for single metals Pd and Au for 
comparison. The responses of the bimetallic composites are presented in overlay on the right. 

 

Investigating the electrochemistry of the metal oxide reduction of PANI/5Au/xPd as a 

function of number of Pd deposition cycles provides more insights into the deposition behavior of 

Pd into PANI/Au-Pd bimetallic composites.  As described above, the first deposition scan appears 

to encapsulate both PANI and PANI/Au sites.  In subsequent reduction cycles there is an increase 

in current at -0.463 V corresponding to PANI/Pd metal oxide reduction due to the increase in Pd 

metal surface area.  A more detailed view of the growth of Pd in the polymer is demonstrated by 

focusing on the cathodic scan between the potentials 0.400 V and -0.600 V. The voltammetry for 
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PANI/5Au/1Pd shows a significant shoulder from Au-Pd alloying at about -0.246 V that 

disappears completely with subsequent reduction cycles.  It appears that the bulk of the Pd 

deposition occurs at Au during the first deposition scan.  In contrast, Pd deposition occurs at 

PANI/Pd for each subsequent scan.  However, the data contradicts the EDS results shown in 

Figure 21, with the observation of Au only.  The discrepancy is most likely due to a difference in 

relative abundance between Au and Pd, essentially minimizing the Pd signal below the 

background.  Also, electrochemical studies focus purely on the identity of atoms at the electrode 

surface, while the high energy electron beam used for EDS analysis penetrates into the sample.  

The data suggests that the Pd forms a core shell over Au aggregates which results in the detection 

of bulk Au deposits beneath the thin layer of Pd.  

For comparison, Figure 24 presents the oxide formation and reduction of PANI/5Pd/xAu 

composites, where x signifies the number of Au deposition scans (1-5) at a PANI/Pd electrode.  

The responses of PANI/Pd and PANI/Au in 1 M KOH are provided for comparison.  The 

PANI/5Pd/xAu composites have three electrochemically distinct sites that form oxides, denoted I, 

II, and III.  Peak I corresponds to Pd oxide formation and reduction which occurs at -0.455 V in 

PANI/Pd.  The potential shifts positive by 0.005 V after a single addition of Au because of the 

interaction between the two metals.  The potential continues to shift as the Au content increases, 

reaching a final potential of -0.443 V after five reduction cycles.  The voltammetry at 0.050 V (III) 

can be attributed to gold oxide reduction. Finally, oxide reduction for Au-Pd species (II) is 

observed at -0.275 V after the first reduction cycle.  The data is consistent with previous studies 

which have shown that oxide reduction in Au-Pd alloys occurs at a potential intermediate to the 

reduction at bulk Au and bulk Pd.94,95,96  The potential shifts to the more positive potential of              

-0.199 V as the Au content increases, which is the midpoint between oxide reduction at Au and at 
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Pd.  The intermediate potential confirms that there are contributions from both Au and Pd in the 

form of alloying.  

 

 

Figure 24. The left presents the voltammetric responses of PANI metal composites in 1 M KOH.  
The top CV is the PANI film after 5 deposition scans in K2PdCl4.  The next three are the same 

PANI/Pd film after 1, 3, and 5 deposition scans in KAuCl4.  The response of a PANI film after 5 
deposition scans in KAuCl4 is provided on the bottom for comparison. The corresponding 

reduction of metal oxide is represented using the dashed lines for single metals Pd and Au for 
comparison. The responses of the bimetallic composites are presented in overlay on the right. 

 

The charge passed can also elucidate information about the species at the surface of the 

composite.  After the first deposition of Au, the charge associated with oxide reduction at Pd sites, 

peak I, is reduced from 5.66 x 10-4 C to 2.58 x 10-4 C.    As the Au content increases the charge 

remains constant.  In contrast, the charge associated with peak II increases with increasing Au 
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content.  Therefore, Au does not deposit at Pd sites after the first reduction.  In addition, the 

increase in the intensity of peak II is due solely to the increase in the amount of Au in the alloy.  

However peak III also increases with each addition of Au, so it can be assumed that Au deposits 

at both alloy sites and Au sites after the first deposition. 

5.4.2 Electrocatalytic Oxidation of n-Propanol using PANI/Au-Pd Bimetallic Composites 

The use of bimetallic catalysts for propanol oxidation has been shown to increase catalytic 

activity and to reduce electrode poisoning when compared to the use of their monometallic 

counterparts.  The previous electrochemical studies have shown that the sequential deposition of 

the metals results in PANI/Au-Pd composites with vastly different morphologies and 

electrochemical properties than those synthesized using simultaneous deposition.  Furthermore, 

the order of metal deposition has a significant influence on the morphologies and electrochemical 

properties of the composites.  The purpose of this final study is to determine whether 

PANI/5Au/xPd and PANI/5Pd/xAu also exhibit enhanced electrocatalytic properties relative to 

previous monometallic and bimetallic composites. 
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Figure 25. Voltammetric response of PANI metal composites in 1 M propanol and 1 M KOH.  
The top CV is the PANI film after 5 deposition scans in KAuCl4.  The next three are the same 

PANI/Au film after 1, 3, and 5 deposition scans in K2PdCl4.  The response of a PANI film after 5 
deposition scans in K2PdCl4 is provided on the bottom for comparison.  The corresponding 
oxidation of propanol at single metals Pd and Au is represented using the dashed lines for 

comparison. 

 

The first composites to be examined are the PANI/5Au/xPd composites, where x signifies 

the number of Pd deposition scans (1-5) at a PANI/Au electrode.  The voltammetric responses of 

PANI/5Au/1Pd, PANI/5Au/3Pd, and PANI/5Au/5Pd in an alkaline solution of n-propanol are 

presented in Figure 25.  Propanol oxidation at the PANI/5Au/xPd catalyst is consistent with oxide 

formation/reduction. For example, the Au signature disappears, and propanol appears to be 

oxidized by Pd.  As expected, as the number of deposition scans increases, the metal content 

increases, resulting in a higher charge passed due to the increased amount of alcohol being 
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oxidized.  Upon closer inspection, however, there are some subtle differences between the 

PANI/5Au/xPd composites and the PANI/Pd composite.  Table 10 summarizes the peak potentials 

on the anodic (Ea) and cathodic (Ec) scans, the potential difference between Ea and Ec, and the ratio 

of the overall charge passed on the cathodic (Qc) and anodic (Qa) scans. 

 

Table 10. Electrochemical measurements from the oxidation of n-propanol in alkaline solution 
using PANI/Au, PANI/5Au/xPd, and PANI/Pd composites as catalysts. 

PANI Composite Ea (V) Ec (V) ΔE (V) Qa (C) Qc (C) Qc/Qa 

PANI/Au 0.112 0.035 0.147 5.82 x 10-4 1.52 x 10-4 0.261 

PANI/5Au/1Pd -0.248 -0.388 0.140 6.49 x 10-4 6.10 x 10-4 0.939 

PANI/5Au/2Pd -0.259 -0.401 0.142 7.06 x 10-4 5.49 x 10-4 0.776 

PANI/5Au/3Pd -0.259 -0.403 0.144 1.00 x 10-3 7.37 x 10-4 0.734 

PANI/5Au/4Pd -0.252 -0.400 0.148 1.46 x 10-3 9.82 x 10-4 0.672 

PANI/5Au/5Pd -0.249 -0.399 0.150 1.63 x 10-3 1.07 x 10-3 0.659 

PANI/Pd -0.291 -0.402 0.111 1.16 x 10-4 1.19 x 10-4 1.03 

  

The potentials at which the oxidation reaction occurs provide insight into the electronic 

properties of the composites.  For example, the cathodic potential after the first deposition of Pd 

is indicative of propanol oxidation at Pd alone.  The presence of Au causes the potential to be 

shifted positive about 0.014 V relative to oxidation at PANI/Pd.  In addition, the anodic potential 

is shifted positive about 0.043 V relative to PANI/Pd.  It is shifted closer to Au but is otherwise 

consistent with oxidation at Pd.  These data suggest that Pd encapsulates and minimizes the Au 

signature after a single deposition.  After the second deposition scan the cathodic and anodic 

potentials shift negative 0.013 V and 0.011 V, respectively, to values more consistent with 
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oxidation at Pd.  The cathodic potential remains constant as the Pd content is increased.  In contrast, 

the anodic scan shifts back to more positive values after the fourth and fifth depositions.  As a 

result, the anodic and cathodic peak splitting increases from 0.140 V after a single deposition of 

Pd to 0.150 V after 5 depositions.  Both values are larger than the peak splitting associated with 

oxidation at PANI/Pd, which is 0.111 V.  This suggests that a larger driving force is required to 

remove poisoning species from the PANI/5Au/xPd composites than PANI/Pd.  Also, the 

adsorption of poisoning species becomes prominent and the species are more difficult to reduce 

from the catalysts as the Pd content increases.  

In addition, the charge passed by each composite can be used to evaluate the catalytic 

efficiency of the composites.  Addition of one deposition scan of Pd increases Qa from 5.82 x        

10-4 C to 6.49 x 10-4 C.  The increase is most likely due to an increase in metal content as opposed 

to any synergistic effects from the interaction of the two metals.  In contrast, Qc increases four-

fold from 1.52 x 10-4 C to 6.10 x 10-4 C.  This is due to an increase in oxidation occurring at Pd 

sites.  Both Qa and Qc increase as the number of Pd deposition scans increase due to an increase in 

the metal surface.  In addition, the Qc/Qa values were evaluated to estimate the extent to which the 

PANI/5Au/xPd composites are affected by surface poisoning.  After a single deposition of Pd, the 

Qc/Qa value increases from 0.261 to 0.939.  This value is indicative of oxidation of the alcohol at 

Pd rather than Au.  As the amount of Pd content in the composite increases, the value of Qc/Qa 

decreases from 0.939 to 0.659 after five reduction scans for Pd.  The contribution of Qa increases 

at a faster rate in comparison to Qc.  The data suggest that poisoning increases as the Pd metal 

content increases and the Au deposits are covered.  However, overall the bimetallic composites 

formed from deposition of Pd onto PANI/Au have a higher catalytic activity than either PANI/Pd 
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or PANI/Au which is an artifact of the increased metal content rather than any synergistic effects 

due to the interaction of the two metals. 

  

 

Figure 26. Voltammetric response of PANI metal composites in 1 M propanol and 1 M KOH.  
The top CV is the PANI film after 5 deposition scans in K2PdCl4.  The next three are the same 

PANI/Pd film after 1, 3, and 5 deposition scans in KAuCl4.  The response of a PANI film after 5 
deposition scans in KAuCl4 is provided on the bottom for comparison.  The corresponding 
oxidation of propanol at single metals Pd and Au is represented using the dashed lines for 

comparison. 

 

Evaluation of the voltammetry associated with oxide formation/reduction for the different 

composites indicates the order in which the metals are deposited into PANI has a significant effect 

on the catalytic behavior of the composite.  For example, the voltammetric responses of the 

PANI/5Pd/xAu composites in an alkaline solution of n-propanol, where x signifies the number of 
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Au deposition scans (1-5) at a PANI/Pd electrode, are presented in Figure 26.    The first obvious 

difference in the responses of the PANI/5Pd/xAu composites in comparison to the PANI/5Au/xPd 

composites is the overall shape of the voltammetric waves associated with propanol oxidation.  

Two overlapping voltammetric waves appear after a single deposition of Au at PANI/Pd.  The 

potentials associated with the oxidation of propanol are consistent with the formation of Pd/Au 

alloys because they are shifted relative to PANI/Pd or PANI/Au.  The oxidation of propanol 

broadens as the Au content increases due to an increase in alloying with Pd. The data indicates that 

alloying occurs as Au is reduced into PANI/Pd which does not encapsulate the existing Pd metal 

deposits.97  In addition, a voltammetric wave appears at about 0.100 V on the anodic scan after the 

second deposition of Au, consistent with the formation of distinct PANI/Au sites.  The peak 

increases in intensity and undergoes a positive potential shift with the increase in Au surface area. 

 

Table 11. Electrochemical measurements from the oxidation of n-propanol in alkaline solution 
using PANI/Au, PANI/5Au/xPd, and PANI/Pd composites as catalysts. 

PANI Composite Qa (C) Qc (C) Qc/Qa 

PANI/Pd 1.16 x 10-4 1.19 x 10-4 1.03 

PANI/5Pd/1Au 5.76 x 10-4 4.38 x 10-4 0.761 

PANI/5Pd/2Au 4.79 x 10-4 2.36 x 10-4 0.491 

PANI/5Pd/3Au 4.33 x 10-4 1.90 x 10-4 0.439 

PANI/5Pd/4Au 5.57 x 10-4 2.50 x 10-4 0.449 

PANI/5Pd/5Au 7.10 x 10-4 2.90 x 10-4 0.408 

PANI/Au 5.82 x 10-4 1.52 x 10-4 0.261 
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In addition to overall peak shape, the catalytic activities of the composites were 

investigated by evaluating the overall charge passed.  Table 11 summarizes the Qa, Qc, and Qc/Qa 

values for the PANI/5Pd/xAu composites. After a single deposition scan of Au at PANI/Pd, the 

charge passed for the anodic and cathodic scans increase by a factor of 5 and 3.5, respectively.  

The increase in charge can be attributed to the interaction between Pd and Au. However, the 

efficiencies of Au, Pd, and the Au-Pd alloys vary as a function of changing composition.  Au does 

not catalyze propanol oxidation as efficiently as the Au-Pd alloys, so as its surface content 

increases, the overall charge passed by the composite decreases. 

In addition, the Qc/Qa values were evaluated to determine the composites’ susceptibility to 

surface poisoning.  For example, the Qc/Qa value after one addition of Au into PANI/Pd decreases 

from 1.03 to 0.761.  This suggests that poisoning species are not reduced as easily from the Au-Pd 

alloy species as the Au content increases.  While the PANI/Pd composite exhibits a higher catalytic 

activity when Au is reduced into PANI/Pd, the overall efficiency does not increase proportionally.  

An increase in poisoning due to an increase in Au content is observed.    

5.5 Conclusion 

The effect of deposition order on the electrochemical properties of PANI/Au-Pd bimetallic 

composites was explored.  Deposition of Pd into PANI/Au appears to occur at a single deposition 

site.  The resulting films contain large Au aggregates separated by regions of PANI and Pd-

encapsulated PANI.  Despite the lack of Pd signature in the EDS data, the electrochemical data 

lack the signature of Au, suggesting that the Au could be fully encapsulated in a thin layer of Pd.  

In contrast, deposition of Au at PANI/Pd occurs at multiple electrochemically distinct sites.  The 

resulting composites have small Au particles evenly dispersed throughout the PANI/Pd film.  The 

electrochemical responses to KOH and n-propanol in KOH show a significant amount of alloying 
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of the two metals.  While the catalytic activities of the PANI/5Au/xPd and PANI/5Pd/xAu 

composites are increased in comparison to monometallic PANI/Pd and PANI/Au, susceptibility to 

surface poisoning remains an issue. 
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Chapter 6 – Conclusions 

This dissertation evaluates the hypothesis that the controlled uptake and reduction of metal 

anion precursors is critical in defining both the physical and electronic properties of PANI 

composites.  Moreover, the controlled reduction and deposition of metal species in PANI can result 

in alloying to produce novel physical and chemical properties that are distinct in comparison to 

the individual species.  First, the method of electrochemical deposition was developed that 

exploited the normal acid doping mechanism of PANI.  Oxidation of the polymer electrode poised 

in metal precursor solution resulted in the uptake of the metal anion precursor.  Reduction of both 

the polymer and the electrostatically bound metal anion occurred by sweeping the electrode to a 

negative potential using linear sweep voltammetry.  The physical properties of the resulting films 

were examined using SEM/EDS analysis.  Finally, electrochemical studies were used to probe the 

electrochemical properties of the composites, including the presence of metal alloying, the 

catalytic activity for propanol oxidation, and the extent of surface poisoning.   

The single metal composites PANI/Au and PANI/Pd were studied first to establish the 

parameters for the controlled uptake, dispersion, and reduction of individual metal species.  The 

studies demonstrated that the potentials at which Au and Pd are reduced into PANI are unique, 

confirming that PANI/Au and PANI/Pd have distinct chemical properties.  The electrochemical 

properties provided standards against which the bimetallic composites could be compared.  SEM 

data showed that the morphologies were significantly different, with Au forming aggregates and 

small particles and Pd encapsulating the polymer.  The deposition method was used to control 

the metal deposited and the overall surface area in the composite.  The electrochemical 

characterization of PANI/Au and PANI/Pd in KOH and propanol showed increasing current 
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responses associated with increasing metal content for both Au and Pd with distinct catalytic 

activity for propanol oxidation.   

The sequential and simultaneous deposition of Au and Pd into PANI were used to 

evaluate how the controlled reduction of individual species and both species influence the 

physical and chemical properties of the resulting composites. Specifically, the influence of 

competitive processes on the overall electronic properties of the materials and any possible 

alloying of the species within PANI was determined using the two different methods.  The 

electrochemical data demonstrated that the controlled deposition of two metals using both 

methods followed a similar pattern when compared to individual metal reduction.  However, 

deposition at existing metal sites occurred at a potential intermediate to reduction at PANI/Au 

and PANI/Pd metal sites.   

SEM images suggest that size and dispersion of metal aggregates are influenced by the 

concentrations of AuCl4
- and PdCl4

2- in the metal precursor solution for the simultaneous 

deposition.  It was also demonstrated that Au is the primary species deposited on the first 

reduction scan, regardless of the ratio of Au/Pd concentrations in the metal precursor solutions.  

The data confirms that PANI has a higher affinity for Au when compared to Pd.  The 

voltammetric response of the composites in KOH after subsequent metal scans reveals three 

electrochemically distinct sites, including one characteristic of Au oxide reduction, one 

characteristic of Pd oxide reduction, and one that results from the interaction of the two species, 

which is attributed to alloying.  Moreover, all three bimetallic composites have increased 

catalytic activity for propanol oxidation and reduced electrode poisoning when compared to 

PANI/Pd and PANI/Au.   
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Sequential deposition produces bimetallic composites that are markedly different than 

those obtained through simultaneous deposition.  The sequential deposition of Pd into PANI/Au 

encapsulates the Au aggregates and particles.  The electrochemistry of the resulting composite is 

characteristic of PANI/Pd.  Conversely, Au reduction into PANI/Pd results in small Au particles 

and Au-Pd alloys.  Oxide formation of the PANI/5Pd/xAu composites shows three 

electrochemically distinct sites corresponding to Au, Pd, and an alloy of the two.  Propanol 

oxidation occurs over a 1 V range because of the multiple distinct Au-Pd alloys within the 

polymer.  Both composites, regardless of deposition order, show an increase in catalytic activity 

for propanol oxidation relative to PANI/Au or PANI/Pd alone.     

The controlled uptake and reduction of Au and Pd in PANI using both simultaneous and 

sequential deposition was utilized to form bimetallic PANI/Au-Pd composites.  Control over the 

deposition of the metals was demonstrated.  Factors such as metal deposit size, dispersion, and 

surface area were directly influenced using the controlled deposition methods developed in this 

dissertation. Differences in the morphology of deposits were equated with changes in the 

electrochemical properties relative to individual metal species in the polymer.  Therefore, it can 

be concluded that the controlled deposition of metal species either simultaneously or sequentially 

influences the physical and electrochemical properties of the composites.  Finally, PANI/Au-Pd 

bimetallic composites have been shown to have higher catalytic activities for propanol oxidation 

than either PANI/Pd or PANI/Au with evidence that alloying of the two species contributes to an 

overall increase in efficiency. 
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